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Abstract

Many of today’s cryptographic protocols rely on strong hash functions. MD5 is still
a popular hash algorithm. It was subject to meaningful attacks leading to the conclusion
that the algorithm should not be used at all anymore. In 2005, Wang et al. introduced a
completely new idea using differential cryptanalysis to find collisions in MD5. Since then,
many improvements and new techniques have been introduced. The latest single-block
collision attacks by Xie et al. and Stevens showed further considerable weaknesses in this
hash function.

In this thesis, the most popular collision attacks will be analyzed using a non-linear
toolbox. This framework enables us to check, propagate and find differential paths. Focus
was laid on how this tool could be used for the specific attacks on MD5. The message
modification and tunnel techniques were considerably slow for the bit-sliced approach of
the tool. Hence, the time-critical parts of attacks were implemented using data structures
based on whole words. Furthermore, a new differential characteristic was constructed for
the partial path published by Xie et al. and a conforming message pair was found for up
to 24 steps. We estimate the complexity of finding a collision with 262.04 MD5 compression
function evaluations.

Keywords: hash function, MD5, differential cryptanalysis, non-linear toolbox, mes-
sage modification, single-block collision
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Kurzfassung

Viele der heutigen kryptographischen Protokolle sind abhängig von stabilen Hash-
Funktionen. Der Algorithmus MD5 ist ein sehr bekannter Vertreter. Es gab schon viele
bedeutende Attacken darauf, welche offenbarten, dass MD5 nicht mehr verwendet werden
sollte. Wang et al. veröffentlichte im Jahr 2005 eine neue innovative Attacke unter der
Verwendung von differentieller Kryptanalyse. Darauf hin wurde der Angriff von vielen
Kryptographen weltweit untersucht und verbessert. Die aktuellsten Attacken von Xie et
al. und Stevens benötigen für eine Kollision nur mehr einen einzigen Nachrichtenblock.
Das zeigte, dass noch immer weitere Schwächen in MD5 gefunden werden können.

In dieser Arbeit werden die elementarsten Kollisionsattacken analysiert. Dabei stellt
sich die non-linear Toolbox als sehr wichtiges Hilfsmittel dar. Dieses Framework ermöglicht
es einem, differentielle Pfade zu überprüfen und zu finden. Im Kontext dieser Arbeit war
wichtig, herauszufinden, inwieweit dieses Programm für die spezifischen Angriffe auf MD5
benutzt werden kann. Die Techniken Message Modification und der Einsatz von soge-
nannten Tunneln sind auf diesem Framework langsam, da dessen interne Datenstruktur
Bit-orientiert arbeitet. Um eine Beschleunigung zu erzielen, wurden die wichtigsten Kol-
lisionsattacken mit optimierten Datenstrukturen implementiert. Interessant ist dieser Zu-
gang vor allem bei der Kollisionsattacke auf einzelne Nachrichtenblöcke. Schließlich wurde
auf Basis der partiellen differentiellen Charakteristik von Xie et al. ein neuer, vollständiger
Pfad erzeugt und eine Lösung für 24 Schritte gefunden. Die Gesamtkomplexität wird auf
262.04 Aufrufe der Kompressionsfunktion geschätzt.

Keywords: Hash-Funktion, MD5, Differentielle Kryptanalyse, Non-Linear Toolbox,
Message Modification, Kollision mit einzelnen Nachrichtenblöcken.
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Chapter 1

Introduction

Today’s information security relies on three important aspects: confidentiality, integrity
and authenticity. The first one ensures that only allowed parties are able to access their
designated message. Integrity provides a mechanism, so that involuntary modifications of
a message are detectable. Authenticity guarantees sure that a message is genuine. The
introduction of asymmetric encryption schemes was a big step toward providing these prop-
erties. One-way functions deliver the ability of evaluating a computation relatively easily
in one direction. The reverse calculation should be very hard. In the case of asymmetric
encryption, a private key is the only way of finding the inverse.

Hash functions are another type of one-way functions. In simple terms, they create a
digital fingerprint of a message. Computation of this fingerprint should be easy, however,
finding a message to a fingerprint should be a problem very hard to solve. Hash functions
play a key role in many different cryptographic applications. If you want to check your
bank account on the web, hash functions along with asymmetric cryptography provide a
secure connection. Another example would be creating a signature of a digital document
which is accepted similarly to a normal signature on paper.

The goal of an adversary would be the creation of another document sharing its signa-
ture with the original one. If this succeeds, no one would be able to distinguish between the
genuine and the illegitimate document. Stevens [SLW07] was able to create a rogue SSL
certificate which could be used to falsify the identity of the attacked web server. Hence,
cryptanalysis of hash functions is highly desired.

MD5 is such a hash function, belonging to a large family of hash functions called the
MD-family. All of them share a common method of operation. They split the message in
parts of a specified length and process each block together with the result of the last block.
Its successor, SHA-1, in particular, is used in many applications nowadays.

1.1 Related Work

In 2005, Wang et al. [WY05] made a breakthrough in attacking the MD-family of hash
functions. For MD5, a colliding pair of messages sharing the same fingerprint could be

1



CHAPTER 1. INTRODUCTION 2

generated in a reasonable time. This research had a great impact on cryptologists all over
the world. Since then, many of them started their own analysis based on Wang’s work.
MD5 was largely used at that time. The weaknesses of this algorithm became apparent and
this is why it was highly recommended to use stronger hash functions like SHA-2. Wang
used a completely new approach in her attack. About two years later, Stevens [SLW07]
was able to create collision with messages including a common prefix. For such an attack,
a cluster of computers was necessary. They were used for creating a forged SSL certificate.
One could use this technique in creating a rogue web page which appears to be genuine.
Furthermore, he was able to improve Wang’s approach and could reduce the runtime of
creating random collisions to a few minutes [Ste06] on a normal computer. These attacks
by Wang and Stevens used two message blocks for MD5 to create a colliding hash value.

In 2010, Xie et al. [XF10] were able to create another collision. This time, they were
able to use a message pair each having the length of exactly one block for MD5. Details on
the algorithm were not published. Xie et al. called a competition on who would publish
another one-block collision with a reward of $ 10.000. Stevens [Ste12a] was successful and
made the details of his attempt public. Very recently, Xie et al. [XLF13] published details
of their original attack.

The Institute for Applied Information Processing and Communications has created a
toolbox, later referred to as nltool, which can be used to analyze and perform differential
cryptanalysis. It can also be applied to MD5 including path and message search algorithms.

1.2 Contributions

The goal of this work is to apply this tool on two- and single-block-collisions. First of
all, in-depth analysis of these attacks is made. The new techniques already introduced
in these attacks, i.e. tunnels, will be subject to in-depth analysis. These methods are
recreated for a better understanding of their behaviour. Measurements are made on how
the nltool performs with its already implemented strategies on these attacks. After that,
optimizations are programmed to further speed up these collision attacks on MD5. These
optimizations include faster data structures for these specialized attacks. The attack for
two-block collisions based on Stevens [Ste06] can be executed in seconds which makes the
optimizations practical to measure.

The remaining work focuses on single-block-collisions using the works of Xie et al.
[XF10] [XLF13] and Stevens [Ste12a]. Again, a combination of the nltool and new opti-
mizations is made. The target is to determine which parts of these attacks can be done
automatically by the toolbox. For verifying Stevens’ algorithm description, the attack will
be implemented and complexities are determined. Finally, we will use the best partial path
given by Xie et al. [XLF13] and derive a full differential characteristic. This will be the
base for designing our own single-block collision attack.
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1.3 Outline

The work is structured as follows:
In Chapter 2, an overview over hash functions and their properties is given. Moreover,
certain security constraints are clarified.
Details about MD5 and its common aspects with the MD-family are explained in Chapter
3. An overview of all major attacks including their complexities is given.
The basics behind the the differential attacks are explained in Chapter 4. This is an
important base for the next chapters. Moreover, the nltool is described including its
fundamental features and algorithms.
Chapter 5 deals with all well-known collisions based on two message blocks. The approaches
by Wang et al. and Stevens are discussed extensively. We will provide implementation
details on how to use the nltool for these kinds of attacks.
Finally, one-block collisions are evaluated in Chapter 6. The implementation of Stevens’
approach is given and contributed results are presented. Furthermore, a partial path by
Xie et al. will be completed and an attack proposal is made.
A conclusion is made in Chapter 7.



Chapter 2

Cryptographic Hash Functions

An important type of functions in cryptography are so called one-way functions. They map
a huge domain to a fixed range of n bits. For example, the latter could be a 128 bit value.
The calculations of those functions should be simple. Yet, the computation of its inverse
value should be very hard. Using one-way functions, many other cryptographic primitives
can be derived: pseudo-random generators [ILL89], message authentication codes and
digital signature schemes [Rom90]. Concerning cryptography, so-called hash functions
[MVO96] are a class of one-way functions.

Definition 2.0.1 (Hash function). Given: Hash function h with output size n, input
domain D = {0, 1}m and range R = {0, 1}n: h : D → R.

We can further distinguish between modification detection codes (MDC) and message
authentication codes (MAC) [MVO96]. MDCs make use of unkeyed hash functions. They
use only a single input parameter: the message to digest. On the other hand, MACs
facilitate keyed hash functions. Those are defined by two distinct inputs, a message and a
secret key.

Unkeyed hash functions are very important because of their use in digital signature
schemes. Before using hash functions, the idea was to sign the whole document (with ar-
bitrary size). The operation of signing is very slow. Moreover, the signature has the same
size as the document itself. Rabin [Rab79] introduced the approach of signing the hash of a
document and not the document itself. Using hashes for the signature scheme, computing
power and signature size can be constant and independent of the size of the document.
Attacking such schemes can be done in two ways: either by breaking the signature algo-
rithm itself or by finding a different document with the same hash. If the latter succeeds,
an adversary would be able to create a correctly signed document and the authenticity
cannot be denied. This simple, yet powerful example shows the importance of reliable
hash functions. However, the term reliable can be described more properly. Accordingly,
more properties for hash functions can be defined [MVO96]:

Preimage resistance: For a given hash value, it is computationally infeasible to find
any message with the same hash value.

4



CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS 5

Second-preimage resistance: For a given message and a hash value, it is compu-
tationally infeasible to find another message with the same value. The attack on digital
signature schemes is a good example of finding a second message (or document) in order
to forge a signature.

Collision resistance: It is computationally infeasible to find any two messages with
the same hash value. Due to the nature of the birthday paradox (see theorem 2.2.1),
the complexity of this property is significantly lower compared to preimage and second-
preimage resistances. Thus, this class of resistance is subject to many attacks on hash
functions. This thesis will concentrate on finding collisions.

The term computationally infeasible is used intentionally without any further definition.
This property is used as a reference for comparisons between easy and hard problems.
Moreover, attacks that were infeasible ten years ago are now possible in reasonable time.

2.1 Other applications and properties

Unkeyed hash functions using one-way functions offer even more possibilities to take ad-
vantage of:

1. Confirmation of knowledge
They can be used for proving ownership of specific data. For example, someone
could publish a document. Before making it available to everyone, one could make
the hash value public to demonstrate the existence of document. Later on, all people
can generate the fingerprint of this document and compare it with the hash value.

2. Key derivation
In systems where keys have to be changed on a regular basis, new key values are
calculated as a hash value of a previously used key. It is important to protect the
expired keys if the current key happens to be revealed.

For one-way hash functions, supplementary definitions can be made [MVO96]:

Definition 2.1.1 (non-correlation). Input and output bits should not be correlated. In
this manner, an avalanche property (also used in strong block ciphers) is essential whereby
every input bit affects every output bit. This rules out hashes where preimage resistance
fails to imply second-preimage resistance because the function ignores a subset of input
bits.

Definition 2.1.2 (near-collision resistance). It should be computationally infeasible to
find any two inputs whose hash values only differ in a small number of bits.
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Definition 2.1.3 (partial-preimage resistance or local one-wayness). The recovery of any
substring should be as hard as recovering the complete input. On top of that, even for a
known part of the input, finding the rest should be hard. For example, if m input bits are
unknown, an average of 2m−1 hash operations should be necessary to recover the missing
bits.

2.2 Generic Attacks

Based on these definitions, generic attacks are possible without the knowledge of details for
a specific hash function. For a fixed message M of an n bit hash function h, the most naive
method of finding any other colliding M ′ is to create random values for M ′ and checking if
h(M) = h(M ′). The memory complexity is constant, the probability of finding a collision
is 2−n.

Desired Complexities. Comparing the different attack types is interesting in terms
of complexity. It is always given as the amount of hash function calls depending on the bit
size n of the hash value.

Table 2.1: Ideal strengths of properties of hash functions

Property Ideal Strength
Preimage resistance 2n

Second-preimage resistance 2n

Collision resistance 2
n
2

Considering preimage and second-preimage attacks, an adversary could precompute
an extensive list of pairs (x, h(x)). If the list is long enough, the probability can be
lowered for such attacks. For example, a 64-bit hash function is subject of this attack.
The opponent could create a list containing 232 value pairs. Hence, time and memory
complexity are O(232). The probability of finding a preimage using this list is now reduced
to 2−32. Depending on the algorithm, this probability is low enough to be feasible on
modern computers. Storing 232 pairs would require 64 GB of memory.

If the complexity of an attack is below the ideal strength, the hash function is considered
broken. As mentioned earlier, one can see the lower complexity for collision resistances
compared to preimage and second-preimage attacks. This is the reason why many attacks
focus on this weakness. Based on the ideal strength, general security observations can be
made. If a hash function returned a hash value of n = 64 bits, its collision resistance
would be at most 232. Depending on implementation details, this rather low complexity
is not a hard problem for today’s computers. In conclusion, such a hash function would
be considered unsuitable for modern requirements. This is also the reason why new hash
functions simply have a higher output size.

Generally speaking, requirements can be made on the bit size. Designing a hash function
below these bounds is not practical because the simplest attacks (i.e. collision resistance)



CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS 7

can be executed in feasible time. For a collision resistant hash function, a minimum of 160
bits is recommended. The complexity of a birthday attack is at least 280.

2.2.1 Collision attack types

An iterated hash function needs a starting value (the IV ). Depending on the freedom of
determining this value, three different attacks can be distinguished:

Definition 2.2.1 (Collision). A normal collision uses the fixed IV which is used for the
first message block to be hashed. This means that the input messages differ but not the
chaining value.

Definition 2.2.2 (Semi-free-start collision). In this case, a random chaining value is taken
instead of an IV such that a collision is created.

Definition 2.2.3 (Free-start collision). The two colliding hash function calls get two dif-
ferent messages and two different chaining values (compared to the free-start collision,
where the chaining value is shared by both hash function calls).

The freedom for free-start collisions is much higher. Hence, first attempts of attacking
a hash function are often based on chosen IV s. The attacks in this thesis mostly focus on
normal collisions, however, different IV s are used sometimes for complexity comparisons.

2.2.2 Birthday attack

This attack (also often referred to as square-root attack) provides the probability of find-
ing two random colliding input values. The birthday paradox arises from the classical
occupancy distribution.

Theorem 2.2.1 (Birthday Paradox [MVO96]). When drawing elements randomly, with
replacement, from a set of N elements, with high probability a repeated element will be
encountered after O(

√
N) selections.

A naive attack could be created by saving hash values and their corresponding inputs
in a list. See algorithm 1 for further details.

Yuval’s [Yuv79] birthday attack generates t = 2
n
2 messages based on a legitimate mes-

sage x. and stores them with their hash value. The time-complexity is therefore O(t).
Based on a fraudulent message x′, messages are generated and their hash-result is looked
up in the previously generated list, until a message pair is found. The draw-back is a high
memory requirement.

This concludes that the birthday attack works for any hash function with a bit size n
and finds results after an average of 2

n
2 calculations. This defines the general upper bound

for an attack for the collision resistance of a hash function.
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Algorithm 1 Birthday attack on hash functions

INPUT: Hash function h
OUTPUT: Message pair (x, x′) where h(x) = h(x′)

1 loop
2 Generate random x′ and calculate h(x′)
3 if h(x′) is in list then
4 return Corresponding x of list entry and x′

5 else
6 Save pair (x′, h(x′)) in list

2.3 Iterated hash functions

Because of the fact that the message size can be chosen arbitrarily, some kind of iteration
is necessary. The most important principle of this iteration is the one by Merkle [Mer89]
and Damg̊ard [Dam89]. Like encryption, the message is split into blocks of equal size.
Each block is then processed by a compression function.

Definition 2.3.1 (Compression function [Dau05]). A function f that compresses two
inputs into a single output:

f : {0, 1}m × {0, 1}l → {0, 1}m l > m ≥ 1

Figure 2.1 shows the integration of the compression function in the iterated hash prin-
ciple. The message blocks x1, . . . , xn are processed by the compression function. The
intermediate hash values H0, . . . , Hn provide that hash values from previous blocks are
part of the final hash result. Using the definition 2.3.1, we can see that the intermedi-
ate hash values have to smaller size m and the message blocks have size l. Function g is
sometimes used providing a last processing step before the final hash value.

f

x1

IV = H0
f

x2

H1 f

xi

H2 f

xn

Hi g
Hn

H

Figure 2.1: Iterative hashing principle

Due to the fact that the block size is fixed and the hash function has to be able to
process messages of arbitrary size, some kind of padding is necessary to fill the last block
completely. The most common way to accomplish this is by adding the length of the
message as a binary value and additional bits (i.e. zero bits) to the end of the block. This
process is called MD-Strengthening.
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The collision resistance of the compression function has a huge impact on the strength
of the complete hash algorithm. Theorem 2.3.1 states that if the compression function is
collision resistant, the hash function is collision resistant as well. Hence, the compression
function will be subject to in-depth analysis.

Theorem 2.3.1 (Construct collision free hash functions from fixed size collision free hash
functions[Mer89]). f is a fixed size collision free hash function mapping m to n bits. Then
there exists a collision free hash function h mapping strings of varying length to strings
of length n. a||b is the concatenation of the bit string a and b. The bit blocks h0, h1

with bit length r are defined by: h1 = f(0r+1||x1) and hi+1 = f(hi||1||xi+1) ending with
h(x) = h n

(m−r)+1
.



Chapter 3

Hash Functions based on the
MD-family

Dedicated hash functions are hash functions that are solely developed for the purpose of
hashing. Popular examples include MD4, MD5, SHA-1 and RIPE-MD. These are often
used in various cryptographic standards. Hash functions of this family share common de-
sign patterns. This section will explain these principles. The step operation, which is a
vital component in each of these hash functions, will be explained in detail. This chapter
will conclude with a list of important attacks on the MD-family.

The hash functions of the MD-family are iterated hash functions. The message is
split into blocks and each block is processed along with the intermediate hash result of
the previous block. This compression function is called once for each iteration. Further-
more, the Davies-Meyer scheme (see Figure 3.1) is part of the compression function. This
construction adds a feed-forward loop to strengthen non-invertability.

Hi−1

Exi

+

Hi

Figure 3.1: Davies-Meyer scheme [MVO96]

Figure 3.2 shows a high-level overview of the compression function. On the top left
part, you can see the intermediate hash value of a previous block. If this would be the first
message block, this input is the IV . The message block is split up into message words.

Step operations. The intermediate hash is broken down into several internal regis-
ters, i.e. a, b, . . .. Using these values including a selected message word, a step operation is

10
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applied on these registers. The number of steps and the step operation is clearly defined.
Most of the time, steps are logically grouped to rounds. As can be seen later on, the terms
rounds and steps per round are used frequently.

Message expansion. The message block itself is too small such that every step
operation uses its own independed message word ws. Depending on the hash function,
there are different approaches on how these message words are distributed. In other terms,
the message has to expanded to be used in the step operations.

Finally, the internal registers are added to its initial state. They are concatenated
leading to the final output of the compression function.

Intermediate hash

(a, b, ...)

Step operation

(a, b, ...)

Step operation

(a, b, ...)

Step operation

(a, b, ...)

Output

w0

w1

w2

ws−1

Message block

message expansion

Figure 3.2: Compression function of a MD-family hash function [Dau05]

3.1 MD5

MD5 was introduced in 1992 by Rivest [Riv92] as a successor to MD4. MD5 processes
512-bit message blocks each round. The intermediate hash values consists of four 32-bit
words. As we know, the compression function calls the step operation several times. In
MD5, 64 step operations are executed. These are grouped into 4 rounds of 16 steps per
round. Each step operation includes rotate and add operations. All those operations are
based on 32-bit words. Moreover, a boolean function in each step operation is used and
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differs each round. It includes AND, OR, XOR and NOT bit operations. See algorithm 2 for a
detailed view including the step operation. The latter is shown in a more clarified manner
in Figure 3.3. The constants for each step and round can be found in Table 3.1.

Functions in MD5. Due to the behaviour of a boolean functions, they are often
referred to as IF, IF3, XOR and ONX. See Table 3.2 for their operations.

Algorithm 2 The MD5 hash function [MVO96]

INPUT: Message M as bit string
OUTPUT: Hash result as an 128 bit string

1 Pad M such that its bit length is a multiple of 512, as follows. Append a 1-bit.
Then add (r − 1) 0-bits for the smallest r of a bit length 64 less than the multiple of
512. Append the 64-bit representation of the length of M . n is now the number of
512-bit blocks of the formatted M . The padded input is now split into 32-bit words
m0, . . . ,m16·(n−1).

2 Initialize H = (h0, h1, h2, h3) with IV = (IV0, IV1, IV2, IV3).
3 for k ← 0 to (n− 1) do
4 Copy the 32-bit values from the current block to a temporary storage (w0, . . . , w15) :

wj = m16·k+j 0 ≤ j ≤ 15
5 Initialize working values: (a−4, a−1, a−2, a−3)← (h0, h1, h2, h3)
6 for i← 0 to 63 do
7 Perform step operation:

ai ← (ai−4 + Fi(ai−3, ai−2, ai−1) + wzi + ki)≪ si + ai−1

8 Update chaining values: (h0, h1, h2, h3)← (h0 + a60, h1 + a63, h2 + a62, h3 + a61)

9 return the hash value as a concatenation: h0||h1||h2||h3

3.2 Other hash functions

In the following section, similar hash functions (both older and newer) are briefly men-
tioned. A difference in their general runtime is also compared in Table 3.3.

3.2.1 MD4

MD4 [Riv91] is the predecessor of MD5. It uses three rounds instead of four. Hence only
48 step operations are performed. Moreover, the constants zi and si are different to those
in MD5. Because of the reduced number of rounds, only three round functions are used:
f, g, h. ki only has per round values and not per step. Finally, the compression function
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Table 3.1: Constants used in MD5

Name Values
IV (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476)

ki first 32 bits of the binary result of abs(sin(i+ 1))
zi 0 ≤ i ≤ 15: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

16 ≤ i ≤ 31: (1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12)
32 ≤ i ≤ 47: (5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2)
48 ≤ i ≤ 63: (0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9)

si 0 ≤ i ≤ 15: (7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22)
16 ≤ i ≤ 31: (5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20)
32 ≤ i ≤ 47: (4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23)
48 ≤ i ≤ 63: (6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21)

Table 3.2: Functions used in MD5

Values Name
0 ≤ i ≤ 15: f(x, y, z) = (x ∧ y) ∨ (¬x ∧ z) IF

16 ≤ i ≤ 31: g(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z) IF3

32 ≤ i ≤ 47: h(x, y, z) = x⊕ y ⊕ z XOR

48 ≤ i ≤ 63: k(x, y, z) = y ⊕ (x ∨ ¬z) ONX

ai−4 ai−1 ai−2 ai−3

F

≪si=si

wi

ki

ai−3 ai ai−1 ai−2

Figure 3.3: MD5 step function

lacks the add operation after the rotation. In conclusion, MD4 is less complex due to
reduced rounds and a simpler step operation.
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Table 3.3: Comparison of MD4-based hash functions

Name Bitlength Rounds × Steps per round Relative performance
MD4 128 3 × 16 1.00
MD5 128 4 × 16 0.68
RIPEMD-128 128 4 × 16 two times parallel 0.39
SHA-1 160 4 × 20 0.28
RIPEMD-160 160 5 × 16 two times parallel 0.24

3.2.2 SHA-1

Due to security flaws in MD5, SHA-1 [EJ] was introduced. Instead of four intermediate
hash values, five are used. Thus, the hash value is 32-bit longer resulting in a total bit size
of 160 bits. The number of rounds stays the same, however, 20 steps per round are now
processed. Therefore, the compression function involves 80 step operations. Each 512-bit
message block is expanded to 80 message words. Each of the last 64 message words is the
XOR of four words from earlier steps in this expanded block. Accordingly, the word index
zi is obsolete because each step uses its own message word wi. Other constants used in
the compression function no longer contain zero values. SHA-1 is more sophisticated than
MD5 and crytographically stronger.

3.2.3 RIPEMD-160

RIPEMD-160 is also based on MD4 and adds ideas from MD4, MD5 and RIPEMD. The
compression function maps 21 input-words to 5 output-words. One main principle which is
also shared with RIPEMD is the parallelization of the input block. There is a so-called left
and right line. Instead of three, five round functions are present. The amount of rounds
and steps per round is improved.

3.3 Recent collision attacks on the MD-family

In the following subsection, our focus is laid on collision attacks. Preimage attacks were
also successfully done on adapted MD5 [SA08]. These types of attacks are not considered
here.

Already after introducing MD5, theoretical weaknesses were found. Den Boer and
Bosselaers [dBB94] found out that the changes made to strengthen MD5 were not con-
sidered very well. They observed a relation of any four add constants ki, . . . , ki+3. This
enabled them to find colliding inputs for the compression function. The first two rounds
of the compression function were easliy broken, for finding collisions in the fourth round,
216 collisions in the first two rounds had to be created.

The idea of differential cryptanalysis was introduced by Biham and Shamir [BS91],
where they applied XOR differences on the block cipher DES. This was highly applicable
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due to the amount of XOR operations in the algorithm.
The first approach on MD5 using differentials was made by Berson in 1992 [Ber93]. How-
ever, he could not find a practical collision. Another type of differences, so-called modular
differences were used in his work.

Wang et al. [WY05] uses Dobbertin’s idea [Ber93] to create a colliding message pair.
The attack incorporated the construction of a collision using exactly two message blocks.
Hence, two calls of the compression function f are necessary. This initiated many pub-
lications that have been trying to improve this approach. Klima [Ste06] started with a
technique called tunnels. Stevens optimized it further. These types of attacks are analysed
extensivly in Chapter 5.

Xie et al. [XF10] published a real collision using just one message block, i.e. the
colliding message pairs have a size of 512 bytes. This means that only one call to the
compression function f is necessary to achieve a collision. They started a competition on
who could publish another single block collision. About 2 years later, Stevens [Ste12a]
reported a working solution. Chapter 6 discusses these attacks in detail. In 2013, Xie et
al. [XLF13] published more details on their first single-block collision in 2010 [XLF13].
The complexity was significantly lower than the one by Stevens. They also published the
fastest practical two-block collision.

f

x1

f

x2

f

IV

x′1

f

x′2

H

f

x1

f

IV

x′1

H

Figure 3.4: 2-block and single block collisions

Figure 3.4 shows the fundamental difference between two-block and single-block colli-
sions. For the former, a colliding message pair (M,M ′) is split into (x1||x2, x

′
1||x′2). The dif-

ference in the intermediate hash after processing the first message block is already smaller
but not completely removed. It takes another iteration to achieve a true collision. For
single-block collisions, the message pair (M,M ′) does not need any split operation and can
be directly represented as (x1, x

′
1). The complexity for building attacks in that manner

is much higher than for two-block collisions. More details on these attacks are given in
Chapter 4. For an overview of the current achieved complexities of attacks, see Table 3.4.
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The metric of the complexity is the number of compression functions calls necessary for
the attack.

Table 3.4: Attacks and their complexities

Year Name Hash Complexity
2005 Wang’s two block collision [WY05] MD5 239

MD4 223

RIPEMD 230

SHA-0 261

2006 Klima’s two block collision [Kli06] MD5 31 seconds
2006 Stevens’ two block collision [Ste06] MD5 232.3

2008 Xie et al. two block collision [XFL08] MD5 236

2010 Xie et al. one block collision [XF10] [XLF13] MD5 247

2012 Stevens’ one block collision [Ste12a] MD5 249.81

2013 Xie et al. two block collision [XLF13] MD5 218

2013 Xie et al. one block collision [XLF13] MD5 241

MD5 is considered broken, as the complexity of many attacks on building collisions is
considerably below the bound of the birthday probability (264). The last challenges are
finding shorter message pairs leading to a collision.



Chapter 4

Differential Cryptanalysis of MD5

As of today, the most effective type of analysis on MD-based hash functions is differential
cryptanalysis [Ste12b]. Compared to other approaches, two (instead of a single) messages
and results of a hash function are observed simultaneously. The differences between these
evaluations are analyzed. It can be examined how those differences propagate through the
computation steps of a hash function. If those propagations can be controlled, it is possible
to remove differences in order to lower (or even eliminate) the difference at all. Most of
the time, it is used for collision attacks.

The term differential cryptanalysis has been first mentioned in the attacks against the
DES (Data Encryption Standard) cipher in 1990. Biham and Shamir took advantage of XOR
differences, since XOR (linear) functions are used in DES extensively [BS91]. The basic idea
could be adapted to other types of differences. E.g. Berson [Ber93] is able to use modular
differences on the MD5 hash function. One drawback of using a modular difference is that
it cannot handle rotation operations and boolean functions very well. In 1995, Dobbertin
attacked the compression function of MD5 [Dob96]. However, his attack could not be
applied on MD5 itself. Later, he was successful at finding collisions on MD4 [Dob98].
Some years later, Biham et al. [BCJ+05] attacked SHA-0 and SHA-1 using both XOR and
modular differences. This set off a new motivation for cryptanalysis on hashes based on
the MD-family. Wang et al. [WY05] introduced a new kind of differences. Using signed
bit differences, they were able to deliver a completely new attempt on creating collision on
the MD5 hash function. Furthermore, Rechberger et al. [CR06] published an attack on
the SHA-1 hash function using generalized differences.

In this section, the various types of differences and their properties will be explained.
Moreover, the general approach of all differental attacks on MD5 is explained. At the end
of this section, the nltool, which is a toolbox used for differential cryptanalysis, will be
presented.

17
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4.1 Differential Characteristics

A fundamental part in differential cryptanalysis is to define how differences at the inputs
affect the differences at the outputs of a cryptographic function. Figure 4.1 shows how
differences can propagate through different steps of some generic function. The input
difference is ∆A and the output difference is ∆D. Between these differences, other step
differences (in this example two) can be observed. It is often possible, that for the same
input and output difference, various intermediate step differences are possible. Hence, ∆A
and ∆D can have multiple ∆Bi and ∆Ci in this example. Depending on the depth of
analysis, more step differences can be observed.

∆A ∆Bi ∆Ci ∆D

Figure 4.1: Characteristics and differentials

Differential and Differential Characteristic. The pair of input and output differ-
ences (∆A,∆D) is called a differential. This top-level view does not give any insights into
inner differences. On the contrary, a differential characteristic shows a sequence of differ-
ences, i.e. given in the form (∆A,∆Bi,∆Ci,∆D). The term differential characteristic is
often also referred to as differential path.

Probabilities. For all attacks, it is important to calculate the probability of a given
differential or differential characteristic. The runtime of collisions depends greatly on the
probability. First of all, the probability of a differential can be calculated by summing up
all possible differential characteristics:

Pr(∆A→ ∆D) =

Pr(∆A→ ∆B0 → ∆C0 → ∆D)+

Pr(∆A→ ∆B1 → ∆C1 → ∆D)+

. . . =
∑
Bi

∑
Ci

Pr(∆A,∆Bi,∆Ci,∆D)

The probability of a differential is at least as high as a single differential characteristic:

Pr(∆A,∆D) ≥ Pr(∆A,∆Bi,∆Ci,∆D)

Probabilities can be further broken down into rounds and steps i.e. MD5 [WY05]:

Definition 4.1.1 (Round differential). (∆Ri,j−1 → ∆Ri,j) is a round differential where
i is the current compression function iteration and 1 ≤ j ≤ 4. Therefore, an iterated
differential can be expanded to this:

∆Hi

Mi,M
′
i−−−−→ ∆Hi+1 ⇔ ∆Hi → ∆Ri+1,1 → ∆Ri+1,2 → ∆Ri+1,3 → ∆Ri+1,4 = ∆Hi+1
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The round differential itself can be split into the step differentials:

(∆Ri,j−1 → ∆Ri,j)⇔ ∆Ri,j−1 → ∆Ai,j,1 → . . .→ ∆Ai,j,16 = ∆Ri,j−1

where (∆Ai,j,t−1 → ∆Ai,j,t) is the differential for step t in round j of iteration i.

Theorem 4.1.1 (Probabilities of full differentials, rounds and steps in MD5). The proba-
bility of an MD5 iteration is at least as high as the probabilities of the round differentials:

Pr(∆Hi

Mi,M
′
i−−−−→ ∆Hi+1) ≥

4∏
j=1

Pr(∆Ri,j−1 → ∆Ri,j)

The same holds for step probabilities:

Pr(∆Ri,j−1 → ∆Ri,j) ≥
16∏
t=1

Pr(∆Ai,j,t−1 → ∆Ai,j,t)

Differential characteristics are the fundamental element because they describe how dif-
ferences propagate through an algorithm. In the case of MD5, the differences of each step
are important because with this knowledge, collisions can be constructed. A collision can
be found using a differential where the output difference is zero.

4.2 Types of Differences

The following section covers all types of differences necessary for covering the attacks on
MD5. Moreover, correlations are analyzed. The most sophisticated type of difference, the
generalized difference, will be subject to further examination. This includes its behaviour
on the basic operations in the compression function of MD5.

4.2.1 XOR difference and modular difference

The first difference type used for differential cryptanalysis was the XOR difference [BS91].
On a bit level, we can define it by

Definition 4.2.1 (Bitwise XOR difference).

δX(bita, bitb) =

{
0 if bita = bitb

1 if bita 6= bitb

Definition 4.2.2 (XOR difference). Using bitwise ⊕-operations:

∆X(x1, x2) = x1 ⊕ x2 =
w−1n

i=0

δX(x1,i, x2,i) = {0, 1}w

i = 0 denotes the least significant bit and i = w − 1 the most significant bit.
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Later on, Berson et al. [Ber93] used a modular difference on the MD5 hash function:

Definition 4.2.3 (Modular difference or subtraction difference).

∆M(x1, x2) = (x1 − x2) mod 2w = {0, 1}w

These differences were very well suited for cryptographic primitives incorporating XOR

operations. For MD5, which uses ADD operations extensively, other types of differences
were necessary for more sophisticated cryptanalysis.

4.2.2 Signed differences

This third type of difference incorporates both XOR and modular difference. The exact
correlation of these types will be dealt with later on in Section 4.2.4. First of all, we need
to define a bitwise signed difference δs:

Definition 4.2.4 (Bitwise signed difference).

δS(bita, bitb) =


0 if bita = bitb

1 if bita > bitb

−1 if bita < bitb

Definition 4.2.5 (Signed difference).

∆S(x1, x2) =
w−1n

i=0

δS(x1,i, x2,i) = {−1, 0, 1}w

x1 and x2 are binary strings with length w. x1,i and x2,i denote the bit at position i.
The least significant bit is at index 0. The signed difference is a concatenation of bitwise
signed differences. For each bit pair, three difference values are possible.

Signed differences offer a better approach on dealing with propagations in MD5. In the
original work by Wang et al. [WY05] a combination of ∆M and ∆X was used. However,
the term signed difference was not mentioned at all. Further work by Xie et al. [XFL08]
introduced signed differences.
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4.2.3 Generalized Differences

Another way to define differences is using generalized conditions [CR06]. They will be later
referred to as ∆G. They are influenced by the idea of signed bit differences ∆S, however,
16 possible conditions on a pair of bits can be defined (Table 4.1).

Table 4.1: Generalized conditions on pair of bits (x1, x2) [CR06]

δG(x1, x2) (0,0) (1,0) (0,1) (1,1)
?

√ √ √ √

-
√

- -
√

x -
√ √

-
0

√
- - -

u -
√

- -
n - -

√
-

1 - - -
√

# - - - -

δG(x1, x2) (0,0) (1,0) (0,1) (1,1)
3

√ √
- -

5
√

-
√

-
7

√ √ √
-

A -
√

-
√

B
√ √

-
√

C - -
√ √

D
√

-
√ √

E -
√ √ √

Generalized differences are more sophisticated than signed differences because multiple
cases of bit relations can be covered by such a difference.

4.2.4 Correlations between types of differences

The previously defined differences are not completely independent from each other. This
section will discuss how they interact. First of all, a small example shows different values
for a given message pair:

x1 (0, 0, 0, 1, 1, 0, 0, 0)
x2 (0, 0, 0, 0, 1, 0, 1, 0)
∆X(x1, x2) (0, 0, 0, 1, 0, 0, 1, 0)
∆M(x1, x2) (0, 0, 0, 0, 1, 1, 1, 0)
∆S(x1, x2) (0, 0, 0, 1, 0, 0,−1, 0)
∆G(x1, x2) (0, 0, 0, n, 1, 0, u, 0)

Signed differences can be notated in a different manner as well. This is done by using
the modular difference but splitting its result into summands. Using the upper example,
it can be rewritten as:

∆S(x1, x2) = 0 · 27 + 0 · 26 + 0 · 25 + 1 · 24 + 0 · 23 + 0 · 22 − 1 · 21 + 0 · 20 = 24 − 21

This result can be easily converted to the modular difference ∆M :

∆S(x1, x2) = 24 − 21 = 14 = ∆M(x1, x2)
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Further works by Wang et al. or Stevens only use the index and the sign for a short
notation:

∆S(x1, x2) = 24 − 21 = [+4,−1]

Correlation of ∆X and ∆M . We will start with the two basic difference types.
The following example should show that for a given ∆S, different results for ∆X are pos-
sible. a and b are two 16-bit integers. We define ∆M(a, b) = 29 and see the variants for ∆X :

Number of difference bits in ∆X(a, b) is 1:

a 0000 0010 0000 0000
b 0000 0000 0000 0000
∆X(a, b) 0000 0010 0000 0000

Number of difference bits in ∆X(a, b) is 2:

a 0000 0100 0000 0000
b 0000 0010 0000 0000
∆X(a, b) 0000 0110 0000 0000

Number of difference bits in ∆X(a, b) is 3:

a 0000 0010 0000 0000
b 0000 1100 0000 0000
∆X(a, b) 0000 1110 0000 0000

This pattern continues as the number of 1-bits in the difference grows and moves toward
the most significant bit. For the purpose of this example, only 16-bit values were chosen.
For MD5, only integers with 32 bits are necessary.

Correlation of ∆X, ∆M and ∆S. It can be proven that a modular difference could
map to a variety of XOR differences and also vice versa. The upper example has shown
a mapping from ∆M to many possible ∆X . Thus, both modular difference and XOR dif-
ference cannot be used to accurately measure a message pair when applying differential
cryptanalysis. The correlation between ∆X , ∆M and ∆S can be defined here: [XFL08]

∆X(x1, x2) =
w−1∑
i=0

(x1,i − x2,i) • 2i mod 2w ≡
w−1n

i=0

(x1,i − x2,i) = ∆S
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Correlation of ∆S and ∆G. These two types of differences are extensively used in
the attacks in following chapters. Signed differences are employed in attacks by Wang et
al. and Stevens. Moreover, the generalized differences are used by the nltool which will
be covered later on in Section 4.4. Each possible outcome of the signed difference can be
mapped to a generalized difference:

δS(0) , δG(−), δS(1) , δG(n), δS(−1) , δG(u)

4.2.5 Probabilities of differences

It is important to determine the probabilities given to match a difference or condition. For
a signed bit difference, we can propose the following:

Pr(∆Sx) =
w−1∏
i=0

2−1 where δS(x1,i, x2,i) 6= 0

Example of calculating probabilities. The following example shows the calculation
of a step i in the third round with the following generalized conditions. In this case, we
have differences on the most significant bit only, other because of this, we shorten the
values of ∆G.

∆Gai−4 = ∆G[−− . . .−]

∆Gai−3 = ∆G[−− . . .−]

∆Gai−2 = ∆G[u− . . .−]

∆Gai−1 = ∆G[u− . . .−]

∆Gai = ∆G[u− . . .−]

The step operation with generalized differences can be written as:

∆Gai
Pr=?←−−− (∆Gfi(∆Gai−3,∆Gai−2,∆Gai−1) + ∆Gwzi + ∆Gki)≪ si + ∆Gai−4

In this step, fi = h (the third round) and no message word difference ∆Gwzi exists.
The constant can also be removed.

∆G[u− . . .−]
Pr=?←−−− ∆h(∆G[−− . . .−],∆G[u− . . .−],∆[u− . . .−]) + ∆[u− . . .−]

Looking at the most significant bit only and the Table 4.3, there is only one outcome
for the boolean function h with these bit differences:
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δGh(δG[−], δG[u], δG[u]) = δG[−]

So, the step operation can be reduced to:

∆G[u− . . .−]
Pr=?←−−− ∆G[−− . . .−] + ∆G[u− . . .−]

In this case, this is always true, so the probability of this step is 1.

4.2.6 Operations on generalized differences

This section will deal with the propagations of generalized differences along all bit opera-
tions specific for MD5: add, rotate and boolean function F . Moreover, the carry expansion
is explained.

Rotate

A rotation simply rotates all differences in a specified direction and shift value. For exam-
ple, we use several different types of generalized differences and rotate them by four to the
left:

∆G[−unx0n1n]≪ 4 = ∆G[0n1n− unx]

Add

Many important cases of ADD operations on generalized conditions are presented. We
compare them by showing the same operations on signed differences. If an ADD operation
on the most significant bit happens, the carry drops out because it is a modular addition.
The following simplified cases are done in 2-bit words.

∆G[−n]�∆G[−−] = ∆G[−n]⇔ 20 + 0 = 20

∆G[−n]�∆G[−n] = ∆G[n−]⇔ 20 + 20 = 21

∆G[n−]�∆G[n−] = ∆G[−−]⇔ 21 + 21 = 22 mod 4 = 0

∆G[−n]�∆G[−u] = ∆G[−−]⇔ 20 − 20 = 0

Carry Expansion

The carry expansion allows you reinterpret a difference as follows. For example, we can
rewrite the signed difference 20 like this:

20 = 21 − 20 = 22 − 21 − 20 = 23 − 22 − 21 − 20
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These equivalences can also be shown as generalized conditions (in this case 4-bit-
words):

∆G[−−−n]⇔ ∆G[−− un]⇔ ∆G[−unn]⇔ ∆G[unnn]

4.2.7 Propagations of the boolean function F

The boolean step function is used in the step operation and uses four different variants in
MD5. By choosing clever inputs, generalized differences can be passed through or blocked.
The main three generalized differences, ’-’, ’n’, ’u’ are shown in all variants. The table
shows which outcomes are possible. For the functions in rounds one and two, see Table
4.2, for three and four, 4.3. Definitions are partly taken from the MD4 analysis of Schläffer
[Sch06].

Types of outcomes. A ’
√

’ shows that this output difference happens with a proba-
bility of 100 % without any additional constraints. The symbol ’ ’ means a case which can
never happen. Finally, there are cases where the outcome relies not on differences, but on
the actual values of the bits (0 and 1). On top of that, conditions arise involving two bits
being equal or not equal. Depending on the case, the probability is then lowered to 50 %.
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Table 4.2: Output differences for boolean functions f (IF) and g (IF3) based on [Sch06]

δGx δGy δGz δGf =- δGf =n δGf =u δGg =- δGg =n δGg =u

- - -
√

  
√

  
n - - y = z y = 1, z = 0 y = 0, z = 1 z = 0 z = 1  
u - - y = z y = 0, z = 1 y = 1, z = 0 z = 0  z = 1
- n - x = 0 x = 1  z = 1 z = 0  
- u - x = 0  x = 1 z = 1  z = 0
- - n x = 1 x = 0  x = y x = 1, y = 0 x = 0, y = 1
- - u x = 1  x = 0 x = y x = 0, y = 1 x = 1, y = 0
n - u y = 1  y = 0 y = 0 y = 1  
u - n y = 1 y = 0  y = 0  y = 1
n - n y = 0 y = 1  y = 1 y = 0  
u - u y = 0  y = 1 y = 1  y = 0
n u - z = 0  z = 1  z = 1 z = 0
u n - z = 0 z = 1   z = 0 z = 1
n n - z = 1 z = 0   

√
 

u u - z = 1  z = 0   
√

- n u  x = 1 x = 0 x = 1 x = 0  
- u n  x = 0 x = 1 x = 1  x = 0
- n n

√
  x = 0 x = 1  

- u u   
√

x = 0  x = 1
n n n  

√
  

√
 

u n u
√

  
√

  
u u n

√
    

√

n u u   
√ √

  
u n n  

√
 

√
  

n n u
√

   
√

 
n u n

√
  

√
  

u u u   
√

  
√

IF: f(x, y, z) = (x ∧ y) ∨ (¬x ∧ z)
IF3: g(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z)
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Table 4.3: Output differences for boolean functions h (XOR) and k (ONX) based on [Sch06]

δGx δGy δGz δGh =- δGh =n δGh =u δGk =- δGk =n δGk =u

- - -
√

  
√

  
n - -  y = z y 6= z z = 0 y = 0, z = 1 y = 1, z = 1
u - -  x 6= y y 6= z z = 0 y = 1, z = 1 y = 0, z = 1
- n -  x = z x 6= z  z = 1 z = 0
- u -  x 6= y x = z  z = 0 z = 1
- - n  x = y x 6= y x = 1 x = 0, y = 1 x = 0, y = 0
- - u  x 6= y x = y x = 1 x = 0, y = 0 x = 0, y = 1
n - u

√
   y = 0 y = 1

u - n
√

   y = 1 y = 0
n - n

√
  

√
  

u - u
√

  
√

  
n u -

√
  z = 1 z = 0  

u n -
√

  z = 1  z = 0
n n -

√
  z = 1  z = 0

u u -
√

  z = 1 z = 0  
- n u

√
  x = 0  x = 1

- u n
√

  x = 0 x = 1  
- n n

√
  x = 0  x = 1

- u u
√

  x = 0 x = 1  
n n n  

√
   

√

u n u  
√

   
√

u u n  
√

 
√

  
n u u  

√
 

√
  

u n n   
√ √

  
n n u   

√ √
  

n u n   
√

 
√

 
u u u   

√
 

√
 

XOR: h(x, y, z) = x⊕ y ⊕ z
ONX: k(x, y, z) = y ⊕ (x ∨ ¬z)
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4.3 Basic steps for differential attacks

This section describes the basic steps that are required to build a differential attack on
hash functions of the MD-family.

Attacking the hash function. Colliding differential characteristics always exist. For
two- or more colliding message blocks, finding such characteristics is easier because only
a near-collision for the first message block has to be created. With this near-collision and
therefore a free-start collision on the second block, a complete collision can be constructed.
Single-block collisions are much harder, because a full collision has to be created in the
first block.

Attacking the compression function. The collision attack strategy can be broken
down into four basic steps [MNS12]:

1. Find a characteristic with a high probability after the first round.

2. Find a characteristic for the first round. A high probability is not always necessary

3. Message modification is a technique to increase the probability of the characteristic.
This is done by fulfilling conditions for the first round.

4. The remaining task is only probabilistic and uses random values to find a complete
message pair fulfilling all conditions.

Finding a good differential characteristic for the all rounds requires great effort. The
overall complexity of the attack depends on the quality of the characteristic. As you can
see, it is important that the probabilistic part of the attack should be as fast as possible.
The following properties are important for designing a good differential path [XFL08]:

1. A differential path for the first round has to exist in order to achieve feasible collisions.

2. The path in the second round has to reduce the differences from the first round.

3. The amount of free message words before the start of the differential has a huge
impact on building paths.

4. Changes of the path in the second round should not propagate back to the first round.

5. Only a small number of differentials have to occur in rounds three and four.

6. The behaviour of signed differences in each step has to be used in order to gener-
ate forward and backward propagations. This is applicable to every hash function.
Differences are either desired or unwanted and have to be used accordingly.

7. The boolean function F of MD5 can be used to stop propagations of differences. See
Section 4.2.7 for further details.
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4.4 The Non-Linear Toolbox

The previous techniques are far from trivial. Rechberger et al. [CR06] and Mendel et al.
[MNS11] have developed a tool which can find complex nonlinear differential characteris-
tics using generalized conditions. These conditions are propagated in bit slices.

Bit sliced step operation on MD5. All state words in the toolbox are written as
uppercase letters. The step operation is very complex when handling generalized propa-
gations. Therefore, it is split up into sub steps. The following state words are used, the
index always defines the current step in the compression function:

• W0,. . . ,W15 represent the message words w0, . . . , w15.

• A-4,. . . ,A-1 are the chaining input (which is also a−4, . . . , a−1).

• F0,. . . ,F63 are the results of the boolean function f0, . . . , f63.

• B0,. . . ,B63 are the results after applying the message word and the additive constant
to the result of the boolean function.

• A0,. . . ,A63 are the results after the rotation and the last add operation.

Input/Output. Figure 4.2 shows a typical differential characteristic with the output
of the intermediate state registers F and B as well. Later outputs will omit these registers
in order to save space.

Propagations. The inputs and outputs of each step are analyzed in each step op-
eration [CR06]. Three options are possible: The conditions contradict each other, the
conditions are consistent or they are consistent if certain additional bit conditions are also
fulfilled. An example would be the propagation of the expanded message words to the
internal state words.

Two-Bit Conditions. Generalized conditions only concern a single bit position. How-
ever, conditions could exist concerning multiple bits. Later on, we will see that especially
two-bit conditions are crucial for differential paths. Most of the time, the two-bit conditions
can be traced back to the boolean function F . An example would be f(ai−1, ai−2, ai−3). If
a propagation of ∆ai−1 should be stopped, Table 4.2 shows that ai−2 6= ai−3, hence leading
to a two-bit condition. Such conditions are not shown in the characteristic (like Figure
4.2) but can lead to inconsistencies.

Inconsistency Checks. It is necessary to detect inconsistent differential characteris-
tics because search algorithms could stop at this point and return to a non inconsistent
state. A complete check of all conditions is considerably slow, however, doing simple tests
at a later point may be enough to uncover contradictions. There are different types of
checks [MNS11]:
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• Two-bit condition checks analyse conditions where two bits should be equal or un-
equal. This is achieved by creating a linear system of equations representing the
conditions and then try to solve it.

• The complete condition check requires a high computational effort. It checks every
bit with the generalized difference - or x whether both imposed cases (0/1 and n/u)
are valid. This check should only be used on rare occasions due to its expensiveness.

4.4.1 Searching for Differential Characteristics

As mentioned earlier, the tool can also search for differential characteristics in an automated
manner [MNS11]. The algorithm can be split into three phases: decision, deduction and
backtracking. The same idea can be found in other topics, i.e. SAT solvers [GPFW96].
In the first phase, an undetermined bit is picked and set to more restricted condition
as described in the algorithm. The second phase involves propagation and a check of
contradiction. When a contradiction is found, backtracking is necessary in order to continue
the process with a previously valid characteristic. See algorithm 3 for further details.

Algorithm 3 Search algorithm of the nltool [MNS11]

INPUT: Characteristic filled with undetermined bits
OUTPUT: Full determined characteristic

1 U is a set of all bits with generalized condition ’?’ or ’x’
2 loop until U is empty

Decision phase
3 Pick a random bit x in U
4 if x is ’?’ then
5 Set x to ’-’

6 else if x is ’x’ then
7 Set x to ’u’ or ’n’ in a random manner

Deduction phase
8 Compute the propagation
9 if a contradiction is not found then

10 Continue with loop and go to step 2

Backtracking phase
11 Set the characteristic back to an earlier (non-contradicting) state and go to step 2

Search configurations. We are able to control which bits are picked first in the search
algorithm. So, depending on the attack, we can optimize the algorithm to focus on certain
internal registers first instead of guessing completely random bits. The following options
are possible:
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-4 A: 01100111010001010010001100000001

-3 A: 00010000001100100101010001110110

-2 A: 10011000101110101101110011111110

-1 A: 11101111110011011010101110001001

0 B: --------1----------0----01110110 F: 10011000101110101101110011111110

0 A: ?----------------110011--------- W: 1?-1----01-101---1-000--11111111

1 B: ------------------11110------0-- F: 1---1---1---1---1011101-1---1---

1 A: -----------------00---------00-- W: -10111110111--00--11010111111-11

2 B: ---1-----1-0-01--00-----01--00-- F: -----------0-1---010--1-----10--

2 A: 00-----01---------1-----110-01-- W: 11110010010000100001111101111111

3 B: --0---0-0-----011-10--11-0---101 F: ------1-------00--00---------001

3 A: ---0-----1--0---0-------010-00-- W: 110111000011110111101-1100111101

4 B: 0--1-0--0-1-01--0--1--01-------1 F: -------------------------1--00--

4 A: 00---01--1-----0------------1-0- W: 0--10001011101-00--10-01001010-1

5 B: --------0-1--1-1-10-1n-----1--0- F: 00-------1---------------10-0---

5 A: ---------n-----0--0------------- W: 0-10--1-0011-10--101-n001001-00-

6 B: 1--1---00-------------0-------0- F: ---------1----------------------

6 A: 001--0--1n---0-1--0---00-------- W: 1111--110----00-1100-00000111001

7 B: ---1-0--1---11---0-0--1--1-1---- F: 00---0---1-----0----------------

7 A: 1111----0n-----------------0-010 W: 11111001101111111010111110111110

8 B: 00101-00nu0-00-0-0001010-000-0-0 F: 001------n--------0-------------

8 A: 00n1-00-nu0001010000000-000-0--0 W: 0110110001010011-000101010000010

9 B: 1-1-111-0--11011-11-111110101011 F: 0011-0--un--------0---0---------

9 A: 11n1----0n11111110111---111-0-01 W: 101-111-0--11--1011--01110101011

10 B: u000100nuu00-1-001100----011-1-1 F: 0011----000001010-000---000---10

10 A: 10n111101n1-1-un110011--n11---01 W: n0-0-1--0--0-1100-110011000-1-1-

11 B: nu0uuuuuuu01-0u-----1-00n11--110 F: 10n1----011-11u110001---n11-0--1

11 A: 1n111--0nu0-n-un110n010-0------- W: 010001001---1-1111--1---0--1-1-1

12 B: -------n01001-111unn1111000----0 F: 1un11---nn111-11111u11--111---01

12 A: 1u1000100n1-1-un010n11001------- W: 1001111-001110101011111-111-1--1

13 B: 00n1---1nu--n1un100n------001001 F: 101111-0100-n-un110n01--0-----01

13 A: 01nn101n1n1-10un11n1uuu00---nu-- W: 10000011---1--11100100-1-10-1-00

14 B: 00uu1110nu-0unn--111n110n0---000 F: 1u1u0-10011-1-un010nu10-0-----11

14 A: 0n11nuunuu10101u0u0u1nunu---01-- W: 00000-1010-1-01--001--10--111110

15 B: u01un10n10101nn-------n1n1110u01 F: 11nnn01nun1-1-un0101uuu0n----u--

15 A: unn1010n01n1un0nunnnnu001---01-- W: 11101-----------0--------10----1

16 B: -1101u0n0nn1u01n--1nu10nu111---- F: 0n110u0n01n-u0n1unnnn10nu---01--

16 A: n0nu0u111n---1u000100n11111000--

17 B: un011-0--001nuu-11---00nnuuuuu11 F: u0nu01unun-1-nununnn01un1---00--

17 A: n10n01-1nu---1110010nn1un001----

18 B: 101n1nu000----u1un11--1u-------- F: nn0n01111u---1un0010nn11n---0---

18 A: 001101--00----0---0n11011001---0

19 B: ------1n1un00unn-0-100------0--- F: 01n101--0u----n10000nn011001----

19 A: 0--1----01101-0-0nu1unn111un0001

20 B: u00nun1----1--u10-1u-nu001nu1001 F: 0-110---0u----0---unu1n1100n----

20 A: u------0-u010-u-1nn0010unnn1001n

21 B: 101n0011nu----10--n111uu11u1-001 F: 0-------01----0--nuu01nun1u100-1

21 A: 10-00-00-00un-1-nuu-1000010110n0

22 B: u--0-0011nuuu0u--0--0n---nu---00 F: u--0---0-001n-u-101-uu0001n10010

22 A: n--0100n10-00-1-100--0-01100nu10

23 B: n--110---011n1110u10--u1n00u11-0 F: n--0--00-000n-1-1uu-1000n1001010

23 A: n0-uu010011nu---001--1-0n0111100

24 B: 1001---n1u0101u10u-----10u0nnn0u F: n--0100n-0-00---u0u--0-010011uu0

24 A: u--101010u010-0------u-001u0111-

Figure 4.2: Sample differential characteristic output of nltool for the first 25 steps of MD5
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• Select the registers where bits are picked. We can define certain state registers , i.e.
A5.

• Choose how the bits are selected word-wise.

• Define which values to guess. Usually we only choose ? or x bits, but this could be
altered as well.

• Define the choices on the previously picked bits. For each choice, the random distri-
bution probability can be set as a value between 0 and 1. 0 defines that the choice
is never picked, 1 always uses this choice.

The default configuration simply acts on all state registers A,B,F and W. It picks all ?
and x bits and sets them accordingly. For x-bits, u and n are uniformly chosen, i.e. their
probability is 0.5 and 0.5.

With the nltool, we can analyze, verify and search for differential paths. A common
input/output format enables us to easily manipulate data. The main function is calculat-
ing propagations and attempting to reduce implementational effort for attacks by using
automations. Custom search configurations enable you to optimize the tool for specific
attacks rather than to rely on the default configuration.



Chapter 5

Two Block Collisions and Further
Improvements

In 2004 Wang et al. [WY05] published a method to create a collision in MD5 with two
message blocks. This was done by using differential characteristics and message modifica-
tion. Klima [Kli06] introduced the idea of tunnels to speed up Wang’s original collision
attack. Further refinements were made by Stevens [Ste06] and Xie et al. [XFL08].

This chapter deals with an in-depth analysis of Wang’s attack. Moreover, the principles
of tunnels are explained. Using the nltool, differential characteristics will be shown for
analysis. For a better understanding of these tunnels, we will create our own tunnel
patterns. Finally, we will adapt the nltool to run Stevens’ two-block collision attack and
measure results.

5.1 Wang’s original approach

Wang et al. [WY05] use a combination of XOR and modular differences for their charac-
teristic. This results that their differential cryptanalysis use the signed bit difference. The
behaviour and correlations of these differences were explained in Section 4.2. They created
differential paths for the compression function of the MD5 hash function. Using this path,
they constructed a set of sufficient conditions over the bits ai in the first and second block.
These conditions are represented as a system of conditions to guarantee that the differ-
ences exactly follow the differential path [Ste12b]. The characteristic differential for both
message blocks can be seen in Figure 5.1. Because of the feed-forward behaviour of the
compression function, you can see in the second block that the chaining input a−4, . . . , a−1

exactly cancels out the last four internal register states a60, . . . , a63 resulting on a full
collision.

The following collision differential is created. M0 and M1 are the two message blocks.
These differences were chosen because they provide a low complexity for the collision finding
algorithm.

∆H0

M0,M ′0−−−−→ ∆H1

M1,M ′1−−−−→ ∆H2 = ∆H = 0

33
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The following differences are used. The original IV = H0 is used.

∆M0 = M ′
0 −M0 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0, 215, 0, 0, 231, 0)

∆M1 = M ′
1 −M1 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0,−215, 0, 0, 231, 0)
∆H1 = (231, 231 + 225, 231 + 225, 231 + 225)

Wang uses an extensive set of conditions such that the differential holds for each step.
For example, the following bit conditions have to hold for a4:

a4,7 = 0, a4,8 = a3,8, a4,9 = a3,9, a4,10 = a3,10, a4,11 = a3,11, a4,12 = 1, a4,13 = a3,13, a4,14 =
a3,14, a4,15 = a3,15, a4,16 = a3,16, a4,17 = a3,17, a4,18 = a3,18, a4,19 = a3,19, a4,20 = 1, a4,21 =

a3,21, a4,22 = a3,22, a4,23 = a3,23, a4,24 = 0, a4,32 = 0

The conditions of Wang either specify the binary value or a condition involving another
bit. In all cases here, these two-bit conditions hold for the same bit position connected
to the bit of the earlier step. With these conditions, the most naive approach would be
by trying all possible values for the message words w0, . . . , w15 and checking against the
set of conditions. The complexity is very high due to many probabilistic fulfillings of the
conditions. Using message modification (further described in Section 5.2), the performance
and complexity can be considerably lowered.

5.2 Message modification of Wang

The message modification techniques are used by Wang to accelerate the attack by im-
proving the probability of matching the conditions. There are two types of techniques:

1. Basic message modification: For a given differential (∆Hi

Mi,M
′
i−−−−→ ∆Hi+1), it mod-

ifies Mi such that the differential of the first round (∆Hi → ∆Ri+1,1) holds in a
deterministic manner. Further details are discussed in Section 5.2.1.

2. Advanced message modification: As before, Mi is altered not only to hold Pr(∆Hi →
∆Ri+1,1) = 1 but also greatly improve the probability of the second round. See
Section 5.2.2 for in-depth analysis.

In short terms, single-message modification adapts the message to hold for the first
round. Multi-message does this for the second round, which is more complicated.

5.2.1 Basic message modification

The basic message modification (or also referred to by Wang as single-message modifica-
tion) tries to modify the message words w0, . . . , w15 that hold for all conditions in the first
round in the differential characteristic.

For each of the 16 steps with i = 0, ..., 15 do
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-4 A: -------------------------------- -4 A: n-------------------------------

-3 A: -------------------------------- -3 A: n-----n-------------------------

-2 A: -------------------------------- -2 A: n----nu-------------------------

-1 A: -------------------------------- -1 A: n-----n-------------------------

0 A: -------------------------------- W: -------------------------------- 0 A: u-----n------------------------- W: --------------------------------

1 A: -------------------------------- W: -------------------------------- 1 A: u-----n-------------------n----- W: --------------------------------

2 A: -------------------------------- W: -------------------------------- 2 A: unuuuuu---nuuuuu---nu---nuu----- W: --------------------------------

3 A: -------------------------------- W: -------------------------------- 3 A: u----nu-------------------nunnn- W: --------------------------------

4 A: ---------unnnnnnnnnnnnnnnn------ W: u------------------------------- 4 A: n------------------nuuunnu-----n W: u-------------------------------

5 A: n-------n----------------u------ W: -------------------------------- 5 A: n---------un--un---------------- W: --------------------------------

6 A: nnnnnnuuu-----------unnnnnunnnnn W: -------------------------------- 6 A: u--un-----------------unnn------ W: --------------------------------

7 A: --------u--unnnun--------------n W: -------------------------------- 7 A: u----unnn-----unu--------------- W: --------------------------------

8 A: u----------------------unn----nu W: -------------------------------- 8 A: u---------------------nuuu----nu W: --------------------------------

9 A: n-----------------nu------------ W: -------------------------------- 9 A: u------------------n------------ W: --------------------------------

10 A: nn------------------------------ W: -------------------------------- 10 A: u------------------------------- W: --------------------------------

11 A: n-----------unnnnnn----un------- W: ----------------n--------------- 11 A: u-----------unnnnnn-----u------- W: ----------------u---------------

12 A: n-----nu------------------------ W: -------------------------------- 12 A: nnuuuuuu------------------------ W: --------------------------------

13 A: n------------------------------- W: -------------------------------- 13 A: n------------------------------- W: --------------------------------

14 A: n---------------u-----------n--- W: u------------------------------- 14 A: n---------------n-----------n--- W: u-------------------------------

15 A: n-u----------------------------- W: -------------------------------- 15 A: n-u----------------------------- W: --------------------------------

16 A: n------------------------------- 16 A: n-------------------------------

17 A: n------------------------------- 17 A: n-------------------------------

18 A: n-------------n----------------- 18 A: n-------------n-----------------

19 A: n------------------------------- 19 A: n-------------------------------

20 A: n------------------------------- 20 A: n-------------------------------

21 A: n------------------------------- 21 A: n-------------------------------

22 A: -------------------------------- 22 A: --------------------------------

23 A: -------------------------------- 23 A: --------------------------------

24 A: -------------------------------- 24 A: --------------------------------

25 A: -------------------------------- 25 A: --------------------------------

26 A: -------------------------------- 26 A: --------------------------------

27 A: -------------------------------- 27 A: --------------------------------

28 A: -------------------------------- 28 A: --------------------------------

29 A: -------------------------------- 29 A: --------------------------------

30 A: -------------------------------- 30 A: --------------------------------

31 A: -------------------------------- 31 A: --------------------------------

32 A: -------------------------------- 32 A: --------------------------------

33 A: -------------------------------- 33 A: --------------------------------

34 A: n------------------------------- 34 A: u-------------------------------

35 A: n------------------------------- 35 A: n-------------------------------

36 A: n------------------------------- 36 A: n-------------------------------

37 A: u------------------------------- 37 A: u-------------------------------

38 A: u------------------------------- 38 A: u-------------------------------

39 A: u------------------------------- 39 A: u-------------------------------

40 A: n------------------------------- 40 A: n-------------------------------

41 A: u------------------------------- 41 A: u-------------------------------

42 A: u------------------------------- 42 A: u-------------------------------

43 A: u------------------------------- 43 A: u-------------------------------

44 A: n------------------------------- 44 A: u-------------------------------

45 A: n------------------------------- 45 A: u-------------------------------

46 A: u------------------------------- 46 A: n-------------------------------

47 A: n------------------------------- 47 A: u-------------------------------

48 A: u------------------------------- 48 A: n-------------------------------

49 A: u------------------------------- 49 A: n-------------------------------

50 A: u------------------------------- 50 A: n-------------------------------

51 A: u------------------------------- 51 A: n-------------------------------

52 A: u------------------------------- 52 A: n-------------------------------

53 A: u------------------------------- 53 A: n-------------------------------

54 A: u------------------------------- 54 A: n-------------------------------

55 A: u------------------------------- 55 A: n-------------------------------

56 A: u------------------------------- 56 A: n-------------------------------

57 A: u------------------------------- 57 A: n-------------------------------

58 A: u------------------------------- 58 A: n-------------------------------

59 A: n------------------------------- 59 A: u-------------------------------

60 A: u------------------------------- 60 A: n-------------------------------

61 A: n-----n------------------------- 61 A: u-----u-------------------------

62 A: u-----n------------------------- 62 A: n----un-------------------------

63 A: n-----n------------------------- 63 A: n-----u-------------------------

Figure 5.1: Characteristic of Wang’s 2-block-collision [WY05]
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1. Generate a random value for wi. Calculate the corresponding a′i. This is a normal
MD5 step operation:

a′i = (ai−4 + f0(ai−1, ai−2, ai−3) + wi + ki)≪ si + ai−1

2. Check if a′i meets all conditions for ai. Two checks are necessary:

(a) Check if all zero bits with a′i match with the corresponding ones in ai. This can
be done by calculating (zero bit mask of ai) ∧ a′i and comparing it with zero.
If this is not the case, correct the wrong bits by applying the negated zero bit
mask.

(b) For all one bits do the same as above but use boolean OR operations.

3. If a correction of wi is necessary, recalculate it:

wi = (ai − ai−1)≫ si − ai−4 − f0(ai−1, ai−2, ai−3)− ki

4. Apply two bit conditions necessary for step i+ 1.

5.2.2 Advanced message modification

Basic message modification covers only finding message words to hold conditions for the
first 16 steps. To go further, advanced techniques are introduced. Black et al. [BCH06]
did an in-depth analysis of Wang’s multi message approach.

Example. The general idea of multi-message modification is explained by an example.
An in-depth analysis is made. The condition to be met is that the most significant bit
of a16 has to be zero. First of all, we start by modifying the message word w1 into w′1.
The rotate value in step 16 is 5. Because of this, an addition of 226 is necessary, because
226 ≪ 5 = 231:

w1 = w1 + 226

The latter is necessary for meeting the condition set in the example. Changing w1 also
affects the value of a1 which has to be recalculated as well:

a1 = (a−3 + f1(a0, a−1, ai−2) + w1 + k1)≪ 12 + a0

Due to the fact that a1 has changed (which is now represented as a′1), the next four
message words w2, . . . , w5 have to be recalculated in a manner that other step values
remain unchanged:

wi = ((ai − ai−1)≫ si)− ai−2 − f2(ai−1, ai−2, ai−3)− ki 2 ≤ i ≤ 5

After this process, w1, w2, w3, w4, w5, a1, a16 have been recalculated, whereas other step
values ai or message bits wi stay unchanged. The necessary condition a16,31 = 0 can now
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hold. Wang uses other conditions that can be corrected with this technique. With these
modifications, 37 conditions are undetermined in the first block and 30 conditions are
undetermined in the second block for rounds 2-4. This leads to the probabilities of 2−37

and 2−30.

5.2.3 Algorithm and results

For both message blocks, the algorithm generations a random message, uses the previously
explained modification algorithms and repeats this process with an expected probability.
See algorithm 4 for further details.

Algorithm 4 Wang’s two-block collision attack [WY05]

Creates a collision with the following differences:

∆H0

(M0,M ′0),2−37

−−−−−−−−→ ∆H1

(M1,M ′1),2−30

−−−−−−−−→ ∆H = 0

1 loop until the first colliding block is found
2 Select a random message M0.
3 Modify M0 with basic and advanced message modification as described in 5.2
4 Produce the first iteration differential with a probability of 2−37.

∆M0 → (∆H1,∆M1)

5 Test the characteristic with the compression function f on M0 and M ′
0.

6 loop until the first colliding block is found
7 Select a random message M1.
8 Modify M1 with basic and advanced message modification as described in 5.2
9 Produce the first iteration differential with a probability of 2−30.

(∆H1,∆M1)→ ∆H = 0

10 Test if the pair (M0||M1,M
′
0||M ′

1) leads to a collision.

The overall complexity can be split into finding the first and the second colliding mes-
sage block pair. For the first block, it does not exceed 239 MD5 operations. The second
block has a lower complexity with 232 MD5 operations.

5.2.4 Errors in Wang’s sufficient conditions

In 2005, Yajima and Shimoyama [YS05] tried to trace Wang’s collision search algorithm.
However, they were not able to find results. After extensive analysis, they found missing
conditions and also corrected some of Wang’s conditions.

They found errors in the 7th step. Some conditions were missing, other ones had to
be altered. On top of that, sufficient conditions in the second message block were also
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corrected. After those adoptions, they reran the search algorithm and found many pairs
for the first message blocks. It took them several hours to find one colliding message.

5.3 Using tunnels for faster results

In 2006, Klima introduced the idea of tunneling [Kli06]. It partly replaces the multi-
message modification algorithm and provides faster collision search.

Limitations of message modification. Klima found out about limitations of the
advanced message modifications by Wang et al. and introduced the idea of tunnels. The
main problem of the message modification is the point of verification, which, in the case
of the MD5 hash function, is at step 23. After the message search algorithm reaches this
exact step, it is not able to change any state registers after this step. The remaining set
of sufficient conditions can only be checked in a probabilistic manner. These are again the
limitations [DLS11]:

1. The internal state registers a0, . . . , a23 can be found in a deterministic manner satis-
fying all the conditions

2. All other registers a24, . . . , a63 can be determined by trial and error in a probabilistic
way

Tunnels. Tunnels can be used for adding more fixed conditions or to increase the
probability of meeting conditions. Adding fixed conditions reduces the search size and
therefore the complexity. The challenge when designing such tunnels is that dependencies
between the internal state registers are rather complex. In simple terms, tunnels are very
clever bit flips that do not affect anything before this point of verification. So they are
changes at a certain step which vanish until step 24 and reappear afterwards in order to
reduce the complexity.

Example: The tunnel in a8. The following example shows how such a tunnel works
by flipping bits in a8. The following state registers and message words have to be adapted
to allow this tunnel to work [DLS11]:

1. a9 would be affected by changes in a8. To circumvent this, change message word w9.

2. a12 would be also be influenced by the changes in a8. For a fix, adjust message word
w12.

3. The following state registers have changed: a8, w8, w9 and w12. When taking a look
at the indices of the expanded message words used in each step, you will see that w8

reappears in step 27, w9 in 24 and w12 in 31. So this tunnel is able to affect only bits
after the point of verification, step 23.
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0 A: --------------------------------

1 A: --------------------------------

2 A: ------------0-------0----0------

3 A: 1-------0---1-------1----011----

4 A: 1000100-01000000000000000010-1-1

5 A: 0000001-01111111101111000100-0-1

6 A: 00000011111111101111100000100000

7 A: 000000011--100010-0-010101000000

8 A: 11111011---100000-1-111100111101

9 A: 0111----000111111-01---001----00

10 A: 0010-0-0111-00011-00-0-011----10

11 A: 000---------10000001---10-------

12 A: 01----01----1111111----00---1---

13 A: 000---00----1011111----11---1---

14 A: -1100001--------10-------0000000

15 A: -01000-------------------000-000

16 A: -1------------0-----------------

17 A: --------------1-----------------

18 A: --------------0-----------------

19 A: --------------------------------

20 A: --------------------------------

21 A: --------------------------------

22 A: 0-------------------------------

23 A: 1-------------------------------

Figure 5.2: Sufficient conditions for the first block by Klima

4. The conditions for a8, a9, a10 only allow three bits (marked blue in Figure 5.2) to act
like this. Therefore, 23 possible bit flips can be applied for this tunnel.

Figure 5.2 shows all sufficient conditions for the first block. The tunnels are marked in
the following colors:

a3 with red background

a8 with blue background

a9 with yellow background

a13 with green background

The time of finding MD5 collisions was reduced to just 31 seconds on a normal laptop.

5.4 Further improvements by Stevens

Stevens [Ste06] improves the attack algorithm for finding two-block collisions of the MD5
hash function. It uses the same differential path including the set of sufficient conditions
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which was published by Wang et al. . He uses a new algorithm to deterministically ful-
fill the conditions for the rotations of the differential in the first round of MD5. A new
algorithm for the first block is presented. For optimizations, the set of conditions will be
extended.

Types of conditions. Wang uses an extensive set of equations to describe the dif-
ferential path. Stevens has his own notation where he describes conditions for all state
registers ai in for both message blocks. We can map the notations to the conditions used
for the nltool in Table 5.1.

Table 5.1: Stevens two-block conditions types on bits of ai and its mapping to the nltool

Stevens’ notation nltool equivalence
’.’ no restriction on a bit b of ai, δg ’-’
’0’ is the same as δg ’0’
’1’ is the same as δg ’1’
’^’ two-bit condition to the previous step in bit b: ai−1,b = ai,b
’!’ two-bit condition to the previous step in bit b: ai−1,b 6= ai,b
’I’,’J’ and ’K’ two-bit conditions connecting multiple bits where each bits

with ’I’ and ’J’ match each other. Bits with ’K’ have to be
the inverse of bits with ’I’

As can be seen, only single-bit conditions are subject to input for the nltool. The two-
bit conditions are propagated automatically.

Details on added restrictions. He adds further restrictions on modular differences.
These additional rules reduce the amount of probabilistic complexities in order to accelerate
the algorithm. For example, the modular difference 213 is not allowed to propagate after
the 14th bit:

bits 31-28:
a10 0010 ....
a9 0111 ....
a10 − a9 1010 ....

The condition therefore is that the bit on position 13 is rotate to position 30 and has
to be zero. Moreover, conditions a10,29 = a10,28 = a9,29 = 0 and a9,28 = 1 apply.

Like these additional restrictions, many more are defined with the focus of stopping
the propagation. As previously stated, carry bits make the conditions more complicated
as they propagate differently. Lets take a look at the modular difference before the shift
operation of −27 in step 14. The propagation has to stop at the 9th bit. This has to be
achieved by setting a15,30 = ¬a14,30. Because of that, the one-bit at position 7 rotates to
29 in step 14. The following two bits in positions 8 and 9 are also one-bits. Their rotated
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counterpart, however, could be 1 or 0 depending on the existence of a negative carry from
bits before:

no carry:
bits 31-29:

a15 001. ....
a14 011. ....
a15 − a14 110. ....

neg. carry:
bits 31-29:

a15 001. ....
a14 011. ....
a15 − a14 101. ....

In the same manner other propagations are stopped. This technique also holds for the
second block.

Algorithm. The algorithm for the first block works as follows. Using simple message
modification, a0, ..., a15 except a1 are generated. With these values, all message words
except m6 can be calculated. This creates a sparse result which is a starting point for
the next non-deterministic steps. The first loop runs until a16, ..., a20 are satisfying the
conditions. a16 is chosen. This can be done by generating random values for each loop
iteration. From a16, w1 can be calculated. This leads to calculating the missing a1 and the
affected message words. Calculate a17 to a21. The last loop checks all satisfying values of
a8 and a9 with m11 unchanged and verifies every a to step 63. Note that the conditions on
the IV for the next block also have to be checked. The second block works similar. It has
to be noted that a1 remains sparse instead of a2 at the beginning. The loops also work in
a probabilistic way. See algorithm 5 for all details.

Results. For the first block, he observed an average complexity of 227.6 MD5 compres-
sions. For both blocks the complexity is 232.25.

5.5 New collision differential by Xie et al.

In 2008, Xie [XFL08] presented a new solution based on Wang’s two-block-collision ap-
proach. The use of signed differences was introduced in order to improve the performance
and reduce the complexity. Their work also aimed at creating a more understandable path
than Wang’s. Multi-message modification was also adapted for this new path.

As defined earlier, Xie clearly distinguishes between the three differential types ∆X ,
∆M and ∆S (see definitions 4.2.2, 4.2.3 and 4.2.5).

They use a new collision differential, which is different to Wang’s:

∆M0 = M ′
0 −M0 = (0, 0, 0, 0, 0, 0,−28, 0, 0, 231, 0, 0, 0, 0, 0, 231)

∆M1 = M ′
1 −M1 = (0, 0, 0, 0, 0, 0, 28, 0, 0, 231, 0, 0, 0, 0, 0, 231)

∆H1 = (231 − 223, 231 − 223, 231 − 223, 231 − 223)

Their differential path starts very late in step 6. Therefore four message words w1, . . . , w4

are completely undetermined. This fact improves the multi-message modification because
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Algorithm 5 Stevens’ two-block collision attack [Ste06]

INPUT: Conditions sets for first and second block
OUTPUT: Message pair (M,M ′) where MD5(M) = MD5(M ′)

1 Use condition sets for the first block.
2 loop
3 Choose a0, a1, . . . , a15 fulfilling conditions.
4 Calculate w0, w6, . . . , w15

5 loop until a16, . . . , a20 are fulfilling conditions
6 Choose a16 fulfulling conditions
7 Calculate w1 from step 16
8 Calculate a2, w2, w3, w4, w5, a17, a18, a19, a20

9 loop over all possible a8, a9 satisfying conditions where w11 remains unchanged
10 Calculate w8, w9, w10, w12, w13 and a21, . . . , a63

11 Check all conditions from step 21 to 63. If all hold, exit loop.

12 M0 ← w0||w1|| . . . ||w15 and M ′
0 = M0 + ∆M0

13 Use condition sets for the second block and intermediate hash from the first block.
14 loop
15 Choose a1, . . . , a15 fulfilling conditions.
16 Calculate w5, . . . , w15

17 loop until a16, . . . , a20 are fulfilling conditions
18 Choose a0 fulfulling conditions
19 Calculate w0, . . . , w4 and a16, . . . , a20

20 loop over all possible a8, a9 satisfying conditions where w11 remains unchanged
21 Calculate w8, w9, w10, w12, w13 and a21, . . . , a63

22 Check all conditions from step 21 to 63. If all hold, exit loop.

23 M1 ← w0||w1|| . . . ||w15 and M ′
1 = M1 + ∆M1

24 return colliding message pair (M,M ′) = (M0||M1,M
′
0||M ′

1).

these free message words can be satisfied easily in the second round. More details on the
algorithm can be found in [XFL08].

For the first block, 36 conditions are defined that have to be met in a probabilistic
manner. For the second block, the amount of conditions is 32. The overall complexities
do not exceed 236 and 232 MD5 operations.
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5.6 Creating our own collisions with the nltool

This section deals with creating own two-block collisions with the nltool. First of all, we
create a local collision in the first round and show how to use this for the principle of
tunneling. The next step is to embed Stevens’ two-block collision attack into the nltool.
All necessary modifications are explained.

5.6.1 Placing tunnels

General idea. We will try to build our own tunnel as given in Figure 5.3. We start by
introducing a positive difference at an arbitrary position on some message word wi. In this
example, this difference should be canceled out immediately. Two negative differences in
following message words are necessary. Then we can discover the principle of tunneling.
When choosing the message words wisely, they reappear in the second round at a very late
step. For a better understanding, the figure shows which message words are used in the
second round.

-2 A: --------------------------------

-1 A: --------------------------------

0 A: -------------------------------- W: --------------------------------

1 A: -------------------------------- W: --------------------------------

2 A: -------------------------------- W: --------------------------------

3 A: -------------------------------- W: --------------------------------

4 A: -------------------------------- W: --------------------------------

5 A: -------------------------------- W: --------------------------------

6 A: -------------------------------- W: --------------------------------

7 A: -------------------------------- W: --------------------------------

8 A: ------------------------n------- W: -------------------------------n

9 A: ------------------------0------- W: ----u---------------------------

10 A: ------------------------1------- W: --------------------------------

11 A: -------------------------------- W: --------------------------------

12 A: -------------------------------- W: ------------------------u-------

13 A: -------------------------------- W: --------------------------------

14 A: -------------------------------- W: --------------------------------

15 A: -------------------------------- W: --------------------------------

16 A: -------------------------------- W: -------------------------------- [ 1]

17 A: -------------------------------- W: -------------------------------- [ 6]

18 A: -------------------------------- W: -------------------------------- [11]

19 A: -------------------------------- W: -------------------------------- [ 0]

20 A: -------------------------------- W: -------------------------------- [ 5]

21 A: -------------------------------- W: -------------------------------- [10]

22 A: -------------------------------- W: -------------------------------- [15]

23 A: -------------------------------- W: -------------------------------- [ 4]

24 A: -------------------------------u W: ----u--------------------------- [ 9]

introduced positive difference

negative difference to cancel out a8

2nd neg. difference to cancel out a8

Length ` of tunnel

after first round

Figure 5.3: A sample tunnel with ` = 8 as an nltool characteristic

Exact definition of this tunnel. The following section shows an example tunnel
structure for a single bit difference to be canceled out. As a demonstration, three ap-
proaches are given on how to describe the tunnel:

1. Show all the information compressed in an nltool output. Figure 5.3 shows this
output.
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2. Use a block diagram and follow positive and negative differences. See Figure 5.4 for
details.

3. Use formulae to define sufficient conditions for this pattern:

Formulae. In the following, differences are described as δ(x) = [+y]. This means,
that the generalized difference δGx has a positive difference ’n’ in position y. δ(x) = [−y]
denotes a negative difference ’u’ at position y.

The input is a positive message difference at position x at step i (0 ≤ x ≤ 31):

δ(wi) = δ[+x]

The propagation therefore is:

δ(ai) = δ[+x]≫ si = δ[+((x+ si) mod 32)]

It is important to let the boolean function F (which is f in the first round) block the
input difference. Table 4.2 shows the exact behaviour of f and its constraints. Because of
these conditions, extra conditions on the values of x, y, z occur.

1. Step i+ 1: (f(n,−,−) = −)⇒ y = z

2. Step i+ 2: (f(−, n,−) = −)⇒ x = 0

3. Step i+ 3: (f(−,−, n) = −)⇒ x = 1

The two single-bit conditions determine that bit x in ai+1 has to be 0 and bit x in ai+2

has to be 1 which can be observed in Figure 5.3.
The conditions necessary for the message word are

1. δ(wi+1) = δ[−((x+ si) mod 32)]≪ si+1

2. δ(wi+4) = δ[−((x+ si) mod 32)]

Choosing a starting point. In round 2 of MD5, the message expansion shuffles the
message word indices and therefore different lengths of this pattern can be found. The
indices for the message words w16, ..., w24 are (1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2,
7, 12). Table 5.2 shows all possible options of introducing the difference in the message
words w0, . . . , w11. The longest tunnel goes up to step 24 and is shown in Figure 5.3. The
longest pattern can be constructed with a bit difference starting in w8. The message word
w9 is used at step 24.
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a−4 a−1 a−2 a−3

F

≪s0=7

w0

k0

δ[+0]

δ[+7]

a−3 a0 a−1 a−2

F

≪s1=12

w1

k1

δ[−27]

δ[−7]
δ[+7]

a−2 a1 a0 a−1

F

≪s2=17

w2

k2 δ[+7]

a−1 a2 a1 a0

F

≪s3=22

w3

k3 δ[+7]

a0 a3 a2 a1

F

≪s4=7

w4

k4

δ[+7]
δ[−7]

Figure 5.4: The pattern for creating a local collision for an introduced difference at a0,0
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Table 5.2: Different starting points for differences and corresponding tunnel lengths

istart inegpos inegpos+4 Affected wi for second round Length `
0 27 7 0,1,4 0
1 27 12 1,2,5 0
2 27 17 2,3,6 1
3 15 22 3,4,7 7
4 27 7 4,5,8 5
5 27 12 5,6,9 1
6 27 7 6,7,10 1
7 15 22 7,8,11 2
8 27 7 8,9,12 8
9 27 12 9,10,13 5
10 27 17 10,11,14 2
11 15 22 11,12,15 2

istart ... Step i where δ(wi) = δ[+0]
inegpos ... Position of neg. δ in wi+1

inegpos+4 ... Position of neg. δ in wi+4
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5.6.2 Constructing our own two-block collisions

The goal now is to let the nltool create such collisions. Because of the well-documented
approach, Stevens’ two-block collision attack is implemented (see algorithm 5). In this
case, the complete differential path including all sufficient conditions is given, so only a
message search is performed. Now it has to be determined which parts of this attack could
be automatically performed by the nltool.

Bit-wise vs. Word-wise representations

As explained before in Section 4.4, the nltool uses slices for representing each bit (i.e. the
generalized condition). This is necessary to provide exact propagations of these condition
types. However, Stevens’ algorithm only needs a small subset of conditions (see Table 5.1).
For this reason, we will use the nltool to parse the differential characteristics and to derive
the two-bit conditions. After that, the internal state registers are represented in word-wise
data structures for a much faster calculation.

Implementation Details

Single-bit conditions. Each bit for the internal state registers ai and message words wi

are represented as a pair of 32-bit words. The first word represents the 1-bits, the second
one the 0-bits. Each bit therefore has the possibility of 4 possible values. Table 5.3 shows
these possibilities along with the output of the nltool as comparison.

Table 5.3: Internal data structure for own two-block-collisions

nltool representation of register x -10#

Bitmask x′ (1-bits) 0101

Bitmask x′′ (0-bits) 0011

Many bit operations in MD5 can be performed easily and very efficiently with these
bit masks. If none of the bits are undetermined (x′ ⊕ x′′ = 111 . . . 111), x′ represents x
and can be used for all normal calculations. For choosing a random value x to satisfy the
conditions in x′ and x′′, simple AND and OR operations can be applied.

Two-bit conditions. In Stevens’ two-block collision, two types of conditions are pos-
sible: either two bits are equal or have to be unequal. For each bit pair, its step and
bit position has to be saved. In conclusion, one two-bit condition needs four indices and
a type to differentiate. The two-bit conditions are parsed and stored at the beginning.
After that they are used to calculate forward propagations. Each target bit is checked and
inconsistencies can be recognized.

Input and output. When parsing the characteristic with the nltool is successful, the
data structure is initialized and the single-bit conditions are set to the internal bit masks.
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Two-bit conditions are only copied to the internal list and applied afterwards. After the
process is finished, the message words wi are used to create a new nltool characteristic
which can be printed out.

Performance and Results. With these features in mind, the implementation was
done for the first block of Stevens’ two-block-collision. The result can be found in Figure
5.5. The runtime for the first block of Stevens two-block-collision is about 15 seconds on
a laptop. The complexity for the first block is 222.82 · 23.9 = 226.72. Stevens measured a
complexity of 227.6 for the first block.



CHAPTER 5. TWO BLOCK COLLISIONS AND FURTHER IMPROVEMENTS 49

-4 A: 01100111010001010010001100000001

-3 A: 00010000001100100101010001110110

-2 A: 10011000101110101101110011111110

-1 A: 11101111110011011010101110001001

0 A: 11110000110100111000010111110000 W: 11110110100101110110011100111101

1 A: 11100110100000101100010001111100 W: 00000110111010110111010110011001

2 A: 01101000110001110110010010111110 W: 10101001011101100100001101011000

3 A: 11011101010011110110110010110101 W: 01111110000000011001110111011111

4 A: 10001001011unnnnnnnnnnnnnn101111 W: u0100100010000001100011010001011

5 A: n0000011n1111111101111000u001011 W: 10101001111101011011000110100000

6 A: nnnnnnuuu11111101111unnnnnunnnnn W: 10101111100000101001010010101111

7 A: 00000001u11unnnun10101010100000n W: 01100011010111111100101000110010

8 A: u1111011000100000111111unn1111nu W: 00000101000000101010110101000001

9 A: n11101100011111111nu000001110000 W: 10000010011101000010100111111011

10 A: nn100000100100011100000011000010 W: 10000000010110101010110000100111

11 A: n00101000100unnnnnn1110un1011011 W: 0101001100010010n011101101010011

12 A: n10000nu110011111110011000111110 W: 11111101100000101011111011010000

13 A: n0010100001110111110010111111100 W: 01100111101111001101111111100010

14 A: n010010111100000u00010001001n010 W: u0001001111101000000100001000011

15 A: n1u11101000001110111111010101101 W: 11111001101011000110000100100100

16 A: n0010000101001010011101110011011

17 A: n1011101111111101001000101010100

18 A: n0101001110100n11101000010010001

19 A: n0010000011011001000001110100100

20 A: n0110111011001000110011101011100

21 A: n1001010100011100110101110000000

22 A: 01101010100100011111010001001011

23 A: 10010110100000100110010100000110

24 A: 01100000010011001111011000100101

25 A: 11011001001011100011001100111100

26 A: 10101101111000111110011010101001

27 A: 10010100101111011000101011001001

28 A: 01110000001011100011110101101101

29 A: 00010100101111000010100011001100

30 A: 01010001001001000110010000101000

31 A: 11111101110110111010011000010011

32 A: 00100011111111001101101010000000

33 A: 11000011001001110010010000000001

34 A: n0011100010101100101001011010101

35 A: n1110111100101110111010000011110

36 A: n0000000011010110100011010010101

37 A: u0001001001111111101111110001100

38 A: u1011110101011100101010011000001

39 A: n0100101001101011010101100010110

40 A: n1011011101100100000010010010110

41 A: n1101111000000100010010011101011

42 A: n0011101100100100110100000001111

43 A: u0111011100100111001100101100001

44 A: u1001011100000001101111001011001

45 A: u1011000111001111001110001100000

46 A: u1111010011010110111110000110110

47 A: u0010000111101001101110101101110

48 A: u0000111001011111100011000101110

49 A: n1111101001100100111000010001000

50 A: u0101011100111100000010010001100

51 A: n0111111001101011101000111011011

52 A: u1011011101001000101111100011010

53 A: n0011111110010101100010011000110

54 A: u1001011011000001101110011110001

55 A: n1111010011110000110011111001100

56 A: u1010101110000111101010101101100

57 A: n0000100001110011000100000001001

58 A: u0000101001111110011111100111001

59 A: u0100101011110101010011110111011

60 A: u0101011111100110111011110110110

61 A: u11011n0000010101111000110000010

62 A: u10111n1111010010100100100000110

63 A: u01000n0011100011111010010100001

Inner collision

Figure 5.5: First block of 2-block-collision



Chapter 6

Single Block Collisions

Until 2010, all collision attacks on MD5 were created using a pair of two message blocks.
In 2010, Xie et al. [XF10] were able to create a collision using just a single message
block. This means, that only one call for the compression function of MD5 is necessary.
Finding a suitable differential and a computationally feasible solution is much harder than
for two-block collisions since all differences have to be canceled out in the first block.
Previous attacks created a near collision for the first block and then removed the remaining
differences in the second one. The complexity for these attacks is lower than for single-block
collisions. About one year ago, Stevens [Ste12a] was able to create another single-block
collision and provided more insights into his attack. In 2013, Xie et al. [XLF13] published
details on their original single-block attack as well as improved differentials. Unfortunately,
only partial differential paths were given. The only full one by Xie et al. can be extracted
from their solution.

In this chapter we will analyse Xie’s and Stevens’ attacks and compare their differential
paths. Moreover, Stevens’ attack will be embedded in the nltool and a more detailed
analysis is made on runtimes and path probabilities. We will run his attack and try find
new single-block collisions with his approach. After that we use the best partial path by
Xie et al. and derive a full one using the nltool. Finally, we will use the nltool to create a
partial solution with our custom built differential.

6.1 First result by Xie et al.

In 2010, Xie et al. [XF10] published a colliding message pair with only 512-bits each. This
means, that only a single message block is necessary to create this collision. They use the
following message differences:

∆M0 = M ′
0 −M0 = (0, 0, 0, 0, 0, 210, 0, 0, 0, 0, 231, 0, 0, 0, 0, 0)

A challenge was also called for finding a different single-block collision with a reward of
10,000 USD. Details on the algorithm were not described due to ”security reasons”. The
full path of their differential is shown in Figure 6.1.

50
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-4 A: -------------------------------- -4 A: --------------------------------

-3 A: -------------------------------- -3 A: --------------------------------

-2 A: -------------------------------- -2 A: --------------------------------

-1 A: -------------------------------- -1 A: --------------------------------

0 A: -------------------------------- W: -------------------------------- 0 A: -------------------------------- W: --------------------------------

1 A: -------------------------------- W: -------------------------------- 1 A: -------------------------------- W: --------------------------------

2 A: -------------------------------- W: -------------------------------- 2 A: -------------------------------- W: --------------------------------

3 A: -------------------------------- W: -------------------------------- 3 A: -------------------------------- W: --------------------------------

4 A: -------------------------------- W: -------------------------------- 4 A: -------------------------------- W: --------------------------------

5 A: ---------u---------------------- W: ---------------------u---------- 5 A: -------------------------------- W: --------------------------------

6 A: ---------u---------------------- W: -------------------------------- 6 A: -------------------------------- W: --------------------------------

7 A: ---------u---------------------- W: -------------------------------- 7 A: -------------------------------- W: --------------------------------

8 A: --u-----un---------------------- W: -------------------------------- 8 A: ------------------------------un W: ------u-------------------------

9 A: --u------u---------------------- W: -------------------------------- 9 A: -------------------------------u W: --------------------------------

10 A: --u------u----nu--------u------- W: u------------------------------- 10 A: -------------------------------u W: --------------------------------

11 A: -u------un--u-nu---u------------ W: -------------------------------- 11 A: ------------------------------un W: --------------------------------

12 A: -n-------u----nu---u------------ W: -------------------------------- 12 A: ----------------------u--------u W: --------------------------------

13 A: --uu---u-u----nu--u-nnn-----un-- W: -------------------------------- 13 A: ------------------u--nn--------u W: u-------------------------------

14 A: -u--unnunn-----n-n-n-unun------- W: -------------------------------- 14 A: --------------u---u--nn-------un W: --------------------------------

15 A: nuu----u--u-nu-unuuuun---------- W: -------------------------------- 15 A: -------u------u---u-nun--------- W: --------------------------------

16 A: u-un-n---u----n------u---------- 16 A: -------u-u---uu---u--nn---u-----

17 A: u--u----un----------uu-nu------- 17 A: ---u-nu-nunun--nnnu-nuuunnn---u-

18 A: -------------------u------------ 18 A: -n-uu-u---u---n-uu-nnnnnu-nn-u--

19 A: -----------------un-nuu---nu---- 19 A: --n------u----------u-------u-u-

20 A: n--------n----n--uu----nuuu----u 20 A: ----u-----un---u---------n------

21 A: -----------nu---unn-----------u- 21 A: --u-n----nu----u----n----n-n----

22 A: u------u--------------------un-- 22 A: ---------un---u-----n----u-n----

23 A: u--nn------un-----------u------- 23 A: ---------n---------------u-u----

24 A: n--------n-----------n----n----- 24 A: ------n---n--------------u-u---u

25 A: n------------------------n---un- 25 A: ---------n--------------u-------

26 A: n-------------u----------------- 26 A: n-----n--------------------n----

27 A: n---u-----------u-------u------- 27 A: n-----u-------------n------n----

28 A: n--------------------n---------- 28 A: ------n--------n-----------u----

29 A: n---------------n--------------- 29 A: n-----n--------------------u----

30 A: ----------------n--------------- 30 A: n----------------------n---u----

31 A: ----u--------------------------- 31 A: -----------------------n--------

32 A: n---u--------------------------- 32 A: -----------n--------------------

33 A: n------------------------------- 33 A: u----------n--------------------

34 A: -------------------------------- 34 A: u-------------------------------

35 A: -------------------------------- 35 A: --------------------------------

36 A: x------------------------------- 36 A: --------------------------------

37 A: x------------------------------- 37 A: x-------------------------------

38 A: x------------------------------- 38 A: x-------------------------------

39 A: x------------------------------- 39 A: x-------------------------------

40 A: x------------------------------- 40 A: x-------------------------------

41 A: x------------------------------- 41 A: x-------------------------------

42 A: x------------------------------- 42 A: x-------------------------------

43 A: x------------------------------- 43 A: x-------------------------------

44 A: x------------------------------- 44 A: x-------------------------------

45 A: x------------------------------- 45 A: x-------------------------------

46 A: x------------------------------- 46 A: x-------------------------------

47 A: x------------------------------- 47 A: x-------------------------------

48 A: x------------------------------- 48 A: x-------------------------------

49 A: x------------------------------- 49 A: x-------------------------------

50 A: x------------------------------- 50 A: x-------------------------------

51 A: -------------------------------- 51 A: x-------------------------------

52 A: -------------------------------- 52 A: x-------------------------------

53 A: -------------------------------- 53 A: x-------------------------------

54 A: -------------------------------- 54 A: x-------------------------------

55 A: -------------------------------- 55 A: x-------------------------------

56 A: -------------------------------- 56 A: --------------------------------

57 A: -------------------------------- 57 A: --------------------------------

58 A: -------------------------------- 58 A: --------------------------------

59 A: -------------------------------- 59 A: --------------------------------

60 A: -------------------------------- 60 A: --------------------------------

61 A: -------------------------------- 61 A: --------------------------------

62 A: -------------------------------- 62 A: --------------------------------

63 A: -------------------------------- 63 A: --------------------------------

Figure 6.1: Single-block collision differential conditions by Xie et al. [XF10] and Stevens
[Ste12a]
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Table 6.1: Single-block collision message pairs by Xie et al. [Ste12a]

M0 0x6165300e,0x87a79a55,0xf7c60bd0,0x34febd0b,0x6503cf04,0x854f709e,

0xfb0fc034,0x874c9c65,0x2f94cc40,0x15a12deb,0x5c15f4a3,0x490786bb,

0x6d658673,0xa4341f7d,0x8fd75920,0xefd18d5a

M ′
0 0x6165300e,0x87a79a55,0xf7c60bd0,0x34febd0b,0x6503cf04,0x854f749e,

0xfb0fc034,0x874c9c65,0x2f94cc40,0x15a12deb,0xdc15f4a3,0x490786bb,

0x6d658673,0xa4341f7d,0x8fd75920,0xefd18d5a

MD5 0xf999c8c9,0xf7939ab6,0x84f3c481,0x1457cb23

6.2 Stevens’ response to this challenge

Stevens was the first one who successfully published a different result for a single block
collision. [Ste12a]. This section does an in-depth analysis of his attack. He used the
following message differences:

∆M0 = M ′
0 −M0 = (0, 0, 0, 0, 0, 0, 0, 0, 225, 0, 0, 0, 0, 231, 0, 0)

Table 6.2: Single-block collision message pairs by Stevens [Ste12a]

M0 0xff68c94d,0x205ce30e,0x77d47295,0x8715727b,0xb2a76fd3,0xb756dc1b,

0x78c03d4a,0x18957b3e,0x00a2bfaf,0xf34b28a8,0x554b8e6e,0x75425fb3,

0x6749d893,0x55d1a06d,0xfb60835d,0xa2fe075f

M ′
0 0xff68c94d,0x205ce30e,0x77d47295,0x8715727b,0xb2a76fd3,0xb756dc1b,

0x78c03d4a,0x18957b3e,0x02a2bfaf,0xf34b28a8,0x554b8e6e,0x75425fb3,

0x6749d893,0xd5d1a06d,0xfb60835d,0xa2fe075f

MD5 0x3a3ee800, 0x9d58b51c, 0xb025b4fe, 0xc9219195

Stevens’ attack uses the message differences w8 at bit 25 and w13 at bit 31. They were
chosen because they have similar properties like the differences used by Xie’s single-block
collision attack. These differences brought up a partial differential path. Then he used
his differential path construction algorithm from an earlier work [SLW07] to create a full
differential path (see Figure 6.1). The amount of bit conditions for the first round of MD5
were kept very low. In particular, only a small number of conditions are set on a1, a7, a8, a11

and a12. Moreover, all conditions from a13 to a21 can be fulfilled easily. These paths are
only possible when the differential has a complete zero difference in its chaining input
value. Only a single-block collision attack with an identical prefix can have this property.
Using these condition sets he used a new algorithm for finding collisions.

The algorithm is described in algorithm 7. Figure 6.2 shows an overview of the main
parts. For better understanding, he splits it into four parts. Starting with steps 13 to
20, ai can be set randomly satisfying all necessary conditions. When taking a look at the
indices for the message words in the second round, those can be easily determined. In
the precomputation phase, a list of tuples values for a1, . . . , a6, a12 satisfying conditions in
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-4 A: 01100111010001010010001100000001

-3 A: 00010000001100100101010001110110

-2 A: 10011000101110101101110011111110

-1 A: 11101111110011011010101110001001

0 A: -101100---------------------0--- W: ---1111-0110100-------0------10-

1 A: -------------------------------- W: ------------------1-0-----------

2 A: 010-0-00-0001---01-1---000-000-- W: --------------------------------

3 A: 00000000000000000000000000000000 W: --------------------------------

4 A: 11101011011110001101000111011100 W: --------------------------------

5 A: ---1-1--1----111--1-111---1---11 W: --------------1----------0------

6 A: -------------------------------0 W: 1---------------101111100--10110

7 A: -------------------------------0 W: --------------------------------

8 A: 0000000000000000000000-00-0000un W: ------u-------------------------

9 A: 0000000000000000000000-00-00000u W: --------------------------------

10 A: 1111111111111111111111011-11111u W: -------------------------------0

11 A: ------------------1--00-------un W: ----0-----------010-11111011-01-

12 A: ------------------1-00u-------0u W: --------------------------------

13 A: 010-0-00-0001---01u10nn000-0001u W: u-------------------------------

14 A: 000-0-00-00001u-00u00nn0001000un W: --------------------------------

15 A: 0001010u100000u100u0nun000100001 W: -------------------------------1

16 A: -0--10-u0u000uu010u10nn101u0-000 W: [ 1]

17 A: -01u1nu1nunun01nnnu0nuuunnn010u- W: [ 6]

18 A: -n0uu-u100u011n1uu1nnnnnu1nn0u0- W: [11]

19 A: --n10-0-1u010-11011-u1000011u-u- W: [ 0]

20 A: --11u-1--1un--1u11--00100n10---- W: [ 5]

21 A: --u-n----nu---1u----n----n-n---- W: [10]

22 A: ----1-0--un---u0----n----u-n---0 W: [15]

23 A: ----1-0--n0----0----0---1u-u---1 W: [ 4]

24 A: 0-----n--0n---------1---1u-u---u W: [ 9]

25 A: ------0--n----------1---u1-1---- W: [14]

26 A: n-----n--------0----1----1-n---- W: [ 3]

27 A: n-----u--------1----n------n---- W: [ 8]

28 A: 0-----n--------n----1--0---u---- W: [13]

29 A: n-----n--------0----0------u---- W: [ 2]

30 A: n-----1--------1-------n---u---- W: [ 7]

31 A: ------0----------------n-------- W: [12]

32 A: -----------n--------------------

33 A: u----------n--------------------

34 A: u-------------------------------

35 A: --------------------------------

36 A: --------------------------------

37 A: x-------------------------------

38 A: x-------------------------------

39 A: x-------------------------------

40 A: x-------------------------------

41 A: x-------------------------------

42 A: x-------------------------------

43 A: x-------------------------------

44 A: x-------------------------------

45 A: x-------------------------------

46 A: x-------------------------------

47 A: x-------------------------------

48 A: x-------------------------------

49 A: x-------------------------------

50 A: x-------------------------------

51 A: x-------------------------------

52 A: x-------------------------------

53 A: x-------------------------------

54 A: x-------------------------------

55 A: x-------------------------------

56 A: 1-------------------------------

57 A: 0-------------------------------

58 A: --------------------------------

59 A: --------------------------------

60 A: --------------------------------

61 A: --------------------------------

62 A: --------------------------------

63 A: --------------------------------

1.
Steps 2-3

2.
Steps 4-7

3.
Steps 8-11

4.
Steps 12-24

Tunnels
T4, T9, T14

Step numbers refer to Algorithm 7.

Figure 6.2: High level overview of Stevens’ [Ste12a] collision attack (full differential).
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steps 1, 5, 6 and 16 is generated. The index of this list is the values of a6 and a12. In the
main loop, all values satisfying conditions in step 7 to 11 are iterated. The lookup-table
is then used for resolving indirect conditions between steps 6 to 7 and 11 to 12. From
that moment, all message words w0, . . . , w15 are resolved. The algorithm has progressed
to step 22. Now, tunnels are used to go further and modify message words in order to
hold bit conditions. Three distinct tunnels, later referred to as T4, T9 and T14 are used to
find values up to step 28 fulfilling all conditions. From this point on, no further message
modification is possible. All remaining steps are calculated and a collision check is made.
All conditions from this point have to be fulfilled in a probabilistic manner.

Algorithm 6 Steven’s single block collision algorithm [Ste12a]

INPUT: IV = (IV0, IV1, IV2, IV3), where IVi = {0, 1}32 and bitconditions from Figure
6.1

OUTPUT: Message pair (M,M ′), where f(IV,M) = f(IV,M ′) and M,M ′ = {0, 1}512

1 Set IV to (a−4, a−3, a−2, a−1).
2 Create random values for (a13, . . . , a20) satisfying conditions
3 Calculate m6,m11,m0,m5, a0

4 for all (a2, a3, a4, a5) satisfying conditions do . create lookup table
5 Calculate a6, a1,m1, a12

6 if (a6, a1, a12) satisfy conditions then
7 Append tuple (a6 ∧ b7, a12 ∧ b12), (a1, a2, a5, a6, a12) to lookup table

8 for all (a8, a9, a10, a11) satsfying conditions do . main loop
9 Calculate a7

10 if a7 satisfies conditions then
11 for all (a1, a2, , a5, a6, a12) at index (a6 ∧ b7, a12 ∧ b12) in lookup table do
12 Calculate all message words w0, . . . , w15 and a21, a22

13 if a21, a22 satisfy conditions then
14 for all values of tunnel T4 do
15 Calculate w4, a23

16 if a23 satisfies conditions then
17 for all values of tunnel T9 do
18 Calculate w9, a24

19 if a24 satisfies conditions then
20 for all values of tunnel T14 do
21 Calculate w14, w3, w8, w13, a25, a26, a27, a28

22 if a25, a26, a27, a28 satisfy conditions then
23 Calculate M from w0, . . . , w15 and M ′

24 if f(IV,M) = f(IV,M ′) then return (M,M ′)

25 Start again from step 1.
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6.2.1 Types of conditions

In Stevens’ notation for the single-block attack, he uses a different set of condition types
compared to his two-block collision attack (see Table 5.1).

Table 6.3: Stevens single-block conditions types on bits of ai and its mapping to the nltool

Stevens’ notation nltool equivalence
’.’ no restriction on a bit b of ai, δG ’-’
’0’ is the same as δG ’0’
’1’ is the same as δG ’1’
’+’ is the same as δG ’n’
’-’ is the same as δG ’u’
’^’ two-bit condition to the previous step in bit b: ai−1,b = ai,b
’!’ two-bit condition to the previous step in bit b: ai−1,b 6= ai,b

6.2.2 Tunnels

Tunnel T4 affects 13 bits in a3. All possible values of those bits are iterated. The involved
registers based on the changes of a3 are recalculated. Figure 6.3 shows all related registers
and bits.

wi ← (ai − ai−1)≫ si − ai−1 − f(ai−1, ai−2, ai−3)− ki i = (3, 4, 7)

a23 ← (g(a21, a22, a23) + w4 + k23)≪ s23 + a22

3 A: 00000000000000000000000000000000 W: --------------------------------

4 A: 11101011011110001101000111011100 W: --------------------------------

5 A: ---1-1--1----111--1-111---1---11 W: --------------1----------0------

6 A: -------------------------------0 W: 1---------------101111100--10110

7 A: -------------------------------0 W: --------------------------------

[...]

23 A: ----1-0--n0----0----0---1u-u---1 W: -------------------------------- [ 4]

Figure 6.3: Tunnel T4 of Stevens’ single-block collision

The same effects can be used for tunnel T9 (Figure 6.4) which flips 30 bits in a8.
w8, w9, w12 and a24 are affected and are calculated the same way is in T4.

Tunnel T14 (Figure 6.5) is more complex because steps 13 and 2 are involved. Like
before, three message words are influenced. w13 and w14 can be calculated. The message
word used in step 17 is w6. In this case, we have to deal with feedback. w6 is used in step
6 as well. a2 can propagate to this message word. Therefore, this tunnel also has to iterate
over the same bits in a2.



CHAPTER 6. SINGLE BLOCK COLLISIONS 56

8 A: 0000000000000000000000-00-0000un W: ------u-------------------------

9 A: 0000000000000000000000-00-00000u W: --------------------------------

10 A: 1111111111111111111111011-11111u W: -------------------------------0

11 A: ------------------1--00-------un W: ----0-----------010-11111011-01-

12 A: ------------------1-00u-------0u W: --------------------------------

[...]

24 A: 0-----n--0n---------1---1u-u---u W: -------------------------------- [ 9]

Figure 6.4: Tunnel T9 of Stevens’ single-block collision

2 A: 010-0-00-0001---01-1---000-000-- W: --------------------------------

3 A: 00000000000000000000000000000000 W: --------------------------------

4 A: 11101011011110001101000111011100 W: --------------------------------

5 A: ---1-1--1----111--1-111---1---11 W: --------------1----------0------

6 A: -------------------------------0 W: 1---------------101111100--10110

[...]

13 A: 010-0-00-0001---01u10nn000-0001u W: u-------------------------------

14 A: 000-0-00-00001u-00u00nn0001000un W: --------------------------------

15 A: 0001010u100000u100u0nun000100001 W: -------------------------------1

16 A: -0--10-u0u000uu010u10nn101u0-000 W: ------------------1-0----------- [ 1]

17 A: -01u1nu1nunun01nnnu0nuuunnn010u- W: 1---------------101111100--10110 [ 6]

[...]

25 A: ------0--n----------1---u1-1---- W: -------------------------------- [14]

Figure 6.5: Tunnel T14 of Stevens’ single-block collision

6.2.3 Complexity and results

Stevens measured the time of reaching step 28 with meeting all the conditions necessary
from a−4 to a28. This experimental calculation lead to a complexity of about 215.96 MD5
compression operations. The probability from this step to a real collision is about 2−33.85.
This was also experimentally verified. Accordingly, the overall complexity is 249.81 MD5
compressions. The measurements were made on an Intel Core 2 Q9550 CPU. Stevens and
his team estimated the runtime to about five weeks. Fortunately, the collision was found
two weeks earlier.

6.3 Comparison of Xie’s and Stevens’ differential path

The differential path of Xie et al. (Figure 6.1) starts earlier with many conditions start-
ing at step 12 continuing to 23. Their path has 154 conditions on positive or negative
differences. On the contrary, Stevens’ path (Figure 6.1) starts later, the major amount
of conditions can be found between steps 17 and 20. The amount of positive or negative
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differences conditions is slightly lower (145). Xie’s path is able to stop early with the last
difference at step 50. Stevens’ characteristic ends five steps later. Both share nearly the
same path differences at the most significant bit. Unfortunately, no further information
(i.e. message modification steps) can be deducted from Xie’s differential path. Because of
the number of conditions, the probability of Stevens’ path seems slightly higher.

6.4 Fast collision attack by Xie et al.

In 2013, Xie et al. [XLF13] published details about their previously called competition
in 2010 [XF10]. In their work, they presented a new method of choosing the best input
differences for creating colliding messages in MD5. Two classes of sufficient conditions were
defined in their work. They used strong conditions and weak conditions. This decision
was made by the necessary effort to satisfy the conditions. Moreover, a proof was made
on the existence of strong conditions only in steps 0 to 23. They used their findings to
select ideal message differences. An implementation of a two-block collision was done with
218 MD5 compressions. For single-block collisions, they proposed an attack with only 241

MD5 compressions. This section deals with the details of condition strength and selecting
proper message differences. Focus will be laid on single-block collisions and details on their
two-block collision are omitted.

6.4.1 Weaknesses and Condition Strengths

Xie et al. identified two distinct shortcomings of the MD5 hash function.

Message Expansion. Message modification is not applicable to the internal state
registers after a25. For steps 16, . . . , 25, the following message words are necessary:
w0, w1, w4, w5, w6, w9, w10, w11, w14, w15. After step 25, only the remaining message words
can be used and further message modification fails. Due to this fact, they defined the
sufficient conditions until step 25 as weak. The remaining conditions are strong.

Difference Inheritence. In the steps 32, . . . , 47, the boolean function XOR is used.
They proved that the MSB path can hold with four consecutive differences with a proba-
bility of 1 if no message word difference exists.

6.4.2 Single-Block Collisions

Xie et al. presented three message differences including their estimated complexity for a
single-block collision attack. They even used the difference used by Stevens [Ste12a] and
improved it. Partial differential paths for steps 22, . . . , 63 were given for each variant. Ta-
ble 6.4 gives an overview.
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Table 6.4: Xie et al. message difference variants and their complexities for a collision
attack [XLF13]

Message Difference Complexity in MD5 compressions
∆w5 = 210,∆w10 = 231 247 as in [XF10], improved to 242

∆w5 = 210,∆w10 = 231,∆w14 = 231 241

∆w7 = 231,∆w8 = 225,∆w13 = 231 246

Errors in their differentials. We analysed the partial differential path for the mes-
sage difference (∆w5 = 210,∆w10 = 231,∆w14 = 231) with the nltool. Unfortunately, the
given path had inconsistencies. Moreover, the modular differences were not matching the
signed differences in their work. We corrected the signs and the resulting partial differential
path can be found in Figure 6.6. Table 6.5 shows the corrected signed differences. The
other differential paths also were not consistent and some manual correction would have
been necessary. However, we only laid focus on the differential with the lowest complexity
for the collision attack.

Table 6.5: Corrections for partial differential path (∆w5 = 210,∆w10 = 231,∆w14 = 231)
by Xie et al. [XLF13]

Step Given ∆S by Xie et al. Corrected ∆S

24 ∆S[−2,−5,−10,−22, 31] ∆S[−2,−5,−10, 22,−31]
25 ∆S[1,−6, 18, 31] ∆S[1,−6,−18,−31]
26 ∆S[31] ∆S[−31]
27 ∆S[7, 15, 31] ∆S[7, 15,−31]
28 ∆S[−10, 27, 31] ∆S[−10, 37,−31]
29 ∆S[−15, 31] ∆S[−15,−31]
30 ∆S[−15, 31] ∆S[−15,−31]

Response to Stevens’ attack. Stevens’ attack [Ste12a] uses two differing bits in w8

and w13 resulting in a complexity of 250. Xie et al. were able to lower this complexity
by introducing a difference in w7. Moreover, they claimed that Stevens’ collision attack
is not a completely new one but is derived from their original attack. On top of that,
Stevens attack featured a higher complexity than the original single-block attack by Xie
et al. Hence, the results by Stevens did not completely satisfy their challenge. Therefore
he got only half of the awarded money.

Details of the algorithm. Unfortunately, no further details about any implemen-
tation of the single-block collision attacks were given by Xie et al. . The details on the
calculation of the complexities for the different paths were also omitted because they could
be derived from their work on the complexities of the two-block collision attack.
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In conclusion, only the partial differential paths could be used for further analysis. The
collision attack algorithm in their work is only applicable to two-block collisions. Moreover,
no additional resulting message pairs were given to check the validity of the paths.

6.5 Constructing single-block attacks with the nltool

This section describes all means that were necessary to embed Stevens’ attack into the
toolbox. After that, our own collision searches will be run and its results documented. A
probabilistic analysis will be made on Stevens’ path and compared to actual runtimes.

6.5.1 Using a custom search configuration

The first attempt on reconstructing Stevens’ attack with the nltool was by using a custom
search configuration and do the attack with the nltool completely automatically. With
this configuration we can override parameters for the default search algorithm (see Section
4.4.1). The following configuration was created:

Algorithm 7 Adapted search configuration of nltool for Stevens’ single block collision

1 Guess words a13, . . . , a20 with the following behaviour:
Set all bits with a generalized difference of ’-’ to ’0’ or ’1’ randomly.
The probability is 2−1 for both selections. Do a complete check after setting all bits.

2 Guess words a2, . . . , a5 with the same settings as above.
3 Guess words a8, . . . , a11 with the same settings as above.

Results. The integrated search algorithm of the nltool was run for several limited
steps. Table 6.6 shows the runtime and the complexity in MD5 operations.

Table 6.6: Complexities of modified nltool search configuration for Stevens’ single-block
collision

Step Average runtime Complexity
20 0.3 s 221.08

21 22 s 227.27

22 2 min 229.27

23 1.5 h 235.21

24 > 7 days > 242.02

Measurements made on Intel Core i5-2520 CPU @ 2.5 GHz
System is capable of doing 7.45 · 106 (=222.82) MD5 compressions per second.

Reaching step 29 is not possible within a feasible time. Changing the algorithm to set-
ting the words in different orders had a huge negative impact on the runtime. Implementing
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-4 A: --------------------------------

-3 A: --------------------------------

-2 A: --------------------------------

-1 A: --------------------------------

0 A: ???????????????????????????????? W: --------------------------------

1 A: ???????????????????????????????? W: --------------------------------

2 A: ???????????????????????????????? W: --------------------------------

3 A: ???????????????????????????????? W: --------------------------------

4 A: ???????????????????????????????? W: --------------------------------

5 A: ???????????????????????????????? W: ---------------------n----------

6 A: ???????????????????????????????? W: --------------------------------

7 A: ???????????????????????????????? W: --------------------------------

8 A: ???????????????????????????????? W: --------------------------------

9 A: ???????????????????????????????? W: --------------------------------

10 A: ???????????????????????????????? W: n-------------------------------

11 A: ???????????????????????????????? W: --------------------------------

12 A: ???????????????????????????????? W: --------------------------------

13 A: ???????????????????????????????? W: --------------------------------

14 A: ???????????????????????????????? W: n-------------------------------

15 A: ???????????????????????????????? W: --------------------------------

16 A: ????????????????????????????????

17 A: ????????????????????????????????

18 A: ????????????????????????????????

19 A: ????????????????????????????????

20 A: ????????????????????????????????

21 A: ????????????????????????????????

22 A: n------n-------------------n----

23 A: n---n-------n-------------------

24 A: u--------n-----------u----u--u--

25 A: u------------u-----------u----n-

26 A: u-------------------------------

27 A: u---------------n-------n-------

28 A: u---n----------------u----------

29 A: u---------------u---------------

30 A: u---------------u---------------

31 A: x---n---------------------------

32 A: x---n---------------------------

33 A: x-------------------------------

34 A: --------------------------------

35 A: --------------------------------

36 A: x-------------------------------

37 A: x-------------------------------

38 A: x-------------------------------

39 A: x-------------------------------

40 A: x-------------------------------

41 A: x-------------------------------

42 A: x-------------------------------

43 A: x-------------------------------

44 A: x-------------------------------

45 A: x-------------------------------

46 A: x-------------------------------

47 A: x-------------------------------

48 A: x-------------------------------

49 A: x-------------------------------

50 A: x-------------------------------

51 A: --------------------------------

52 A: --------------------------------

53 A: --------------------------------

54 A: --------------------------------

55 A: --------------------------------

56 A: --------------------------------

57 A: --------------------------------

58 A: --------------------------------

59 A: --------------------------------

60 A: --------------------------------

61 A: --------------------------------

62 A: --------------------------------

63 A: --------------------------------

Figure 6.6: Corrected partial differential path by Xie et al. [XLF13] with collision com-
plexity 241
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tunnels in the integrated data structure of the nltool does not have high performance be-
cause the nltool works with bit slices instead of whole words. Unfortunately, the tool itself
is not able to complete this attack in practical time.

6.5.2 Optimizing the nltool for Stevens’ attack

We were unable to run Stevens attack with the nltool in an automatic manner. Like the
implementation of Stevens’ two block collision, we will also embed Stevens’ algorithm in
the nltool. The complete attack algorithm will be implemented and no automated message
search is used by the toolbox. Due to the fact that the runtime of the message search
algorithm is expected to be longer (Stevens measured complexity was 249.81), the target
was to measure the progress of the attack. This was done by checking how many steps of
the complete differential were reached. From step 28 on, no further message modification
or tunnel strategy can be used, the remaining conditions are all matched in a probabilis-
tic manner. In order to make a reasonable complexity analysis even before the algorithm
finishes, the expected step probabilities and the steps where ∆Sai matches were calculated.

Basic data structures. First of all, we save all internal state registers in a 32-bit
word. All MD5 related step operations can be applied very quickly. To get started, we
need the following data structures to represent all related conditions (see table ).

• Like before, we need words storing the generalized conditions ’0’ and ’1’.

• Two-bit conditions only concern bits of ai,j and the step beforehand, ai−1,j. For a
faster approach, we use a bitmask where one-bits represent an active condition. Two
masks are necessary, one for ai,j = ai−1,j and ai,j 6= ai−1,j.

Table 6.7: Internal data structure for own single-block-collisions

Stephens’ representation of register x .10^!

Bitmask x′ (1-bits) 01000

Bitmask x′′ (0-bits) 00100

Bitmask for two-bit-equal conditions 00010

Bitmask for two-bit-unequal conditions 00001

Implementation details of the algorithm. The algorithm starts by setting a13, . . . , a20

to values that satisfy the given conditions. This can be done by generating random 32-
bit values and applying the bitmasks for single-bit conditions. For each step, we can
also apply two-bit conditions as a forward propagation. With these values, including the
chaining input, some message words and state registers can be calculated (see algorithm 7).

Lookup table. The next step is to compute the lookup table. A loop over all possible
values in the state registers 2 to 5 are made. The best way to achieve this is by using a
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counter and applying the masks for 1 and 0-bits on it. The lookup table itself is a tuple
where we have an index which consists of two words and the payload existing of five in-
ternal state registers. As described in the algorithm, the two words for the index are a
combination of state registers and variables referred to as B7 and B12. These words repre-
sent the bits for two-bit conditions which we already have. The size of the initially created
lookup table is saved for analysis. The lookup table itself is implemented as a hashmap
where the index is a pair of two 32-bit words and the value is a list of a struct with the
state words. The C++ construct std::map was used to create such a data structure.

Tunnels. The main loop starts by iterating steps 8 to 11 satisfying the conditions. In
the inner loop, a lookup to the table is made. Now all message words w0, . . . , w15 are de-
termined and step 22 is reached. The first tunnel T4 has the bitmask 0x14872e23 as given
by Stevens where each active bit defines flipable bits of the tunnel. A detailed explanation
of these tunnels is given in Section 6.2.2. T4 iterates over 213 possible values. Again we can
iterate by applying the mask at step 3 and check, if the next step satisfies. The same can
be applied to T9 with the bitmask 0xfffffdbc which has 228 possibilities for bit flips. T14

(0xeb78d1dc, 219 possibilities) is more complicated because it affects both steps 13 and
3. It first iterates over step 13 and modifies w14. Then it iterates over step 3 and checks
whether both values fit for a25.

Inner loop. The most inner loop is the step before the compression function is applied
and the remaining conditions can only be fulfilled in a probabilistic way. This inner loop
is exactly the point where a solution for the first 29 has been found.

Step probabilities. For a better understanding of the path, the probabilities of these
steps are calculated. This can be done by checking the set of exhaustive conditions of the
boolean functions h and k in Table 4.3. Figure 6.1 shows the path.

Results. The algorithm was run for several days. The consistency check revealed no
errors when reaching step 28 except for steps 3,8,13. These are the tunnel iterations, in
which the bits are flipped. The original set of sufficient conditions shows this set of bits
flipped to a zero value. Therefore, this wrong consistency allows you to check if the tunnel
bits really work and all other conditions are met perfectly.

The results of our own implementation were completely unsatisfactory. For this reason,
we took a look on the provided implementation of Stevens himself. Shortly after publishing
his paper, he put the source code of this algorithm online. This was done in the hope that
additional details that were not mentioned in his work are revealed.

6.5.3 Analysis of Stevens’ Implementation

Stevens published his implementation. This section will deal with its details. He uses
several techniques that were not directly documented in his work.
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Basic data structures. His implementation uses different bit masks and arrays that
are defined in the code. For single-bit conditions, he uses a mask for selecting the active
bits and the value mask itself. Moreover, he uses a mask for defining two-bit conditions.
His code clearly indicates two different mask arrays, however, only one array is used. This
array incorporates both two-bit equal and two-bit unequal conditions. Finally, he uses
three arrays for storing various modular differences. These are ∆Sai and two others, ∆STi
and ∆SRi.

∆Ti and ∆Ri. In Stevens notation, Ti is a substep result in the step operation rep-
resenting the value before the rotation operation. ∆Ti defines the difference at the step.
∆Ri is the difference after the rotation operation using ∆Ti from before. These two dif-
ferences are extensively used as an additional integrity check. These checks are done in
multiple stages in the algorithm starting at setting a13, . . . , a20 satisfying conditions. The
values for ∆STi and ∆SRi are only given partially in his work from steps 25 to 63. In his
implementation, however, the values for the steps before are also determined. He checks
∆Ti and ∆Si for the steps 13, . . . , 28.

Lookup Table. The iteration works in reverse by starting with all possible values for
a5 and then iterating over a2. Since a3, a4 are clearly fully determined, they are calcu-
lated beforehand and do not need any further iteration. In theory, 32 bits can be filled
in the lookup table, hence leading to 232 structs holding six 32-bit values. Storing this
amount of data would take up about 768 GB without the indices. Due to constraints
set on the bits, the actual number is much lower. In Stevens’ implementation, he actu-
ally only defines a lower bound and recreates the table if the number of entries is below 224.

Optimized calculations. Many parts of the step operation, i.e. the result of the
boolean function, do not change when iterating over the current state word ai. Therefore,
these values are only calculated once which speeds up the process by only performing nec-
essary calculations.

Tunnels. The tunnels T4 and T9 are applied as described in the paper. However, tunnel
T14 utilizes two different bit masks, once (0xeb89d1dc XOR 0x0b70001c) and 0x0b70001c.
The first tunnel iterates over all values in a13 satisfying a25. In this loop, there is another
iteration over the second tunnel value calculating a25 and a2. The values for a13 again are
a combination of both tunnel iterations. The bit mask 0x0b70001c is never mentioned in
his paper. It is assumed that he selected some bits for the second part of the tunnel and
excludes these bits in the first tunnel iteration (because of the XOR operation).

Unused parts of code. Without a doubt, the source code he published is working.
However, many structures, arrays, variables and even functions stay only defined and are
not used at all. It seems that he did a lot of testing during the development process and the
code was not cleaned up. Especially one array, which seemed to be used to another kind



CHAPTER 6. SINGLE BLOCK COLLISIONS 64

of two-bit conditions is only defined with zero values and is not referenced at any point of
the program. An assumption would be that he wanted to split the two-bit conditions in
two arrays, but then merged it into one.

Recording the progress. The last step in the inner loop now creates the message by
putting the message words together and create a second message with the two introduced
differences. The compression function is applied twice and a collision check is made. We
record how far collision attack gets. Therefore we compute the modular differences ∆M of
a32, . . . , a63 and compare it to the differential path it should follow.

Overhead on checking differences per step. Normally, the algorithm would per-
form the compression function after step 28 and no further checking is made. For a detailed
analysis, every modular difference after step 28 is checked and counted. For this reason,
the internal registers from a32, . . . , a59 are stored to check the differences. Measurements
were made on how this affects the overall runtime. The overhead is about 9.25 %.

Results. With Stevens’ implementation, the runtime on our cluster was estimated to
about 44 days and 16 hours on 40 CPUs. Fortunately, we already found a valid collision
in roughly 15 days. Figure 6.7 shows the full differential. Table 6.8 shows all relevant
information about the environment and the achieved steps. Table 6.9 shows the cumulated
step information for rounds 3 and 4 including the achieved progress. Table 6.10 shows the
inner loop count and the lookup table sizes for each instance.

Table 6.8: Summary of all measured results of the single-block collision attack

Number of parallel processes (CPU) 40
CPU information Intel Xeon 2.5 GHz
MD5 operations/s per process 222.61

MD5 operations/s overall 227.93

Collision found in 15 days, 18 hours
Overall runtime per process 23 days, 4 hours
Complexity for found collision 248.3

Average lookup table size 38337305.6 ≈ 225.19

Inner loops overall (= first 29 steps reached) 6981615616 ≈ 232.7
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Table 6.9: Step-by-step progress measurements of the algorithm

i ∆Mai ∆Mwi Pr(∆Gai−1 → ai) Measured steps reached
32 −220 0 2−1 239430
33 −220 + 231 225 2−2 37598
34 231 0 2−2 8654
35 0 0 2−1 3878
36 0 0 2−1 1841
37 ±231 0 2−1 900
38 ±231 0 1 900
39 ±231 0 1 901
40 ±231 231 1 901
41 ±231 0 1 900
42 ±231 0 1 904
43 ±231 0 1 900
44 ±231 0 1 901
45 ±231 0 1 900
46 ±231 0 1 900
47 ±231 0 1 901
48 ±231 0 2−1 441
49 ±231 0 2−1 225
50 ±231 0 2−1 100
51 ±231 0 2−1 58
52 ±231 0 2−1 24
53 ±231 0 2−1 15
54 ±231 0 2−1 12
55 ±231 0 2−1 9
56 0 225 2−1 3
57 0 0 0 3
58 0 0 0 5
59 0 231 2−1 2
60 0 0 0 4
61 0 0 0 1
62 0 0 0 3
63 0 0 0 7
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Table 6.10: Per process lookup table sizes and inner loop counts

Process number Lookup table size Inner loop count
1 29360128 152461312
2 23068672 171577344
3 41706752 191696896
4 33554432 172539904
5 34504704 163880960
6 35586048 181481472
7 41943040 151117824
8 58720256 207646720
9 37745920 165404672
10 37748736 146509824
11 53084160 157913088
12 20971520 181751808
13 25165824 147066880
14 51904512 167878656
15 36610560 165380096
16 21233664 166887424
17 75497472 192712704
18 61341696 154234880
19 50331648 149143552
20 23068672 171212800
21 40894464 154382336
22 49152000 170242048
23 56623104 178888704
24 19922944 159469568
25 16777216 196608000
26 39911424 214409216
27 45613056 191864832
28 34078720 154415104
29 40894464 170217472
30 46137344 216784896
31 24117248 190218240
32 22528000 215404544
33 38010880 154955776
34 20447232 173670400
35 58720256 161759232
36 18743296 188456960
37 75497472 160149504
38 16777216 203620352
39 29360128 215072768
40 46137344 152526848
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-4 A: 01100111010001010010001100000001

-3 A: 00010000001100100101010001110110

-2 A: 10011000101110101101110011111110

-1 A: 11101111110011011010101110001001

0 A: 11011001100010101001000101010011 W: 10111110011010001101010101010100

1 A: 11100010011001011100000100010110 W: 00111001011111011011010000111001

2 A: 01101110000000001011111111010010 W: 11110100111110100100110001011001

3 A: 00010100000000010010010000100001 W: 01011100011110110100001100001110

4 A: 11101011011110001101000111011100 W: 11000010010000110110100101000011

5 A: 10110100100011110011111111111111 W: 10110100010011101101110000100100

6 A: 11011100110111011011100001101100 W: 10000101111111010111110001100110

7 A: 10111011101100101000010110011000 W: 10001010001111111000000001011101

8 A: 101111110010010101011000110011un W: 011110u0011011111100000010000011

9 A: 0000000000000000000000100000000u W: 01010111011001110011010101010100

10 A: 1111111111111111111111011111111u W: 01100101011011111110011001001010

11 A: 010001000111000111110000011011un W: 10000010101110100101111110111010

12 A: 1011010001111011001000u01010110u W: 00001111101110001011011000000101

13 A: 011111101000001110u10nn11111001u W: u0100110110111100010111101110110

14 A: 00000100100001u000u00nn0001000un W: 01011100001010110010000011000111

15 A: 0001010u100000u100u0nun000100001 W: 10110000111011101110000100000101

16 A: 0010100u0u000uu010u10nn101u00000

17 A: 101u1nu1nunun01nnnu0nuuunnn010u1

18 A: 0n0uu1u100u011n1uu1nnnnnu1nn0u00

19 A: 10n101011u0100110110u1000011u0u0

20 A: 1011u11001un001u110000100n100011

21 A: 10u1n0100nu1111u1000n1111n1n0110

22 A: 001111011un110u01110n0000u1n0010

23 A: 101011001n010010101001001u1u1011

24 A: 010111n010n00111111011001u1u011u

25 A: 101001011n11001001101001u1010011

26 A: n10011n00010011000001010110n0011

27 A: u00011u1000010111010n011111n1011

28 A: 110110n10001000n11001010100u1010

29 A: n01001n10001110001100111010u1111

30 A: n1100011011100011000110n000u1010

31 A: 10100001000010101001110n11001111

32 A: 11101101001n00000001010101110110

33 A: u0110110010n00000100100000101000

34 A: u1000100110001111001011001011100

35 A: 00010111000101001111011110111100

36 A: 00100110000100101101001101101111

37 A: n1000111101011111111000101000000

38 A: n1111111010111001010110110101100

39 A: n1111100000010011100000011000000

40 A: n0100100011110111001111000110011

41 A: n1101011100010110000011011110010

42 A: u1100100110010111110101110110010

43 A: u0110100001001001101000100011000

44 A: u1000101111000101101001010100001

45 A: n0101111110110100001001001011010

46 A: u0001011011011000010010111010011

47 A: n0001010110100111011010111111111

48 A: u0001110111111000100111101110001

49 A: n1010010111011111001001100110110

50 A: u1010010001100111001100101010101

51 A: n1111010110111110100101110100000

52 A: u1111010001101001100100011101100

53 A: n1100111010101010101101111111010

54 A: u0111100111011010000011001100100

55 A: n0000011110011111001100111011101

56 A: 11010111110000000111011110011111

57 A: 00010001111010001111111101001001

58 A: 00111001010100100000011101011011

59 A: 10011110000101100011000100000100

60 A: 11000101001110111100010101011010

61 A: 11100101101101001001000000001000

62 A: 00000110101111001100110011111101

63 A: 00100010100101000101011010010010

Figure 6.7: Single block collision - Full single-block collision differential characteristic
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6.5.4 Create a collision attack with the partial path by Xie et al.

Although not many details on the attacks by Xie et al. [XLF13] were given, we will use the
information about their best partial differential path (see Figure 6.6) with a complexity
of 241 as a starting point to recreate the attack. We will use the nltool to derive a full
differential with the set of sufficient conditions and then use the established techniques like
message modification and tunneling to create a collision attack algorithm.

Deriving a full differential path. As Figure 6.6 presents, the conditions of steps
5, . . . , 21 are not given by Xie et al. We will use a specific search configuration to fill the
remaining parts. The naive approach by just randomly filling all ’?’ bits is not appropriate
since certain design constraints are desired. Figure 6.8 shows the parameters that were
chosen to create a full differential characteristic. First of all, it is important to keep certain
steps sparse with a low number of conditions. The corresponding message words can
therefore be fulfilled easily. Of course, this principle would be desired for the whole path,
however, certain steps have to contain a higher amount of conditions. The search using
the nltool can be broken down into the following phases:

1. Top-down search for the internal registers a5, . . . , a10. All ’?’ bits will be replaced
by a ’x’ bit, if possible. After that, we want to get rid of those ’x’ bits by randomly
checking ’u’ or ’n’. As the arrow in Figure 6.8 suggests, each word is processed until
stepping to the next step. The number of conditions should be low. The nltool will
find many solutions in a short time, we will select the one with the lowest number of
conditions.

2. Bottom-up search for a21, . . . , a14. The approach is the same as in the first phase.
The runtime of this phase is also expected to be rather low. We will also find solutions
with a varying number of conditions and select the one with the lowest complexity.

3. Randomly guessing all bits in a11, . . . , a13. This process is assumed to take longer
since the conditions that have to be met here have to fit with the previous and next
steps.

The first two phases found many suitable candidates in minutes. Phase three found so-
lutions after roughly 22 hours. The overall complexity for all three phases is an equivalent
of 239.56 MD5 compression evaluations.

Setting tunnel bits and creating sufficient conditions. To reach a set of sufficient
conditions, we need to determine, which bits are suitable to be used for the tunneling. The
same tunnels, T4, T9, T14, are integrated as used by Stevens [Ste12a]. By testing each bit
by placing a pattern of the affected state registers a3, a8, a13, we can determine the tunnel
masks. After setting the tunnel bits, we have derived a set of sufficient conditions, which
can be found in Figure 6.10. For tunnel T4, the mask for bit flipping is 0xfbfffffe and
for tunnel T9, 0x30007dde.
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-4 A: --------------------------------

-3 A: --------------------------------

-2 A: --------------------------------

-1 A: --------------------------------

0 A: ???????????????????????????????? W: --------------------------------

1 A: ???????????????????????????????? W: --------------------------------

2 A: ???????????????????????????????? W: --------------------------------

3 A: ???????????????????????????????? W: --------------------------------

4 A: ???????????????????????????????? W: --------------------------------

5 A: ???????????????????????????????? W: ---------------------n----------

6 A: ???????????????????????????????? W: --------------------------------

7 A: ???????????????????????????????? W: --------------------------------

8 A: ???????????????????????????????? W: --------------------------------

9 A: ???????????????????????????????? W: --------------------------------

10 A: ???????????????????????????????? W: n-------------------------------

11 A: ???????????????????????????????? W: --------------------------------

12 A: ???????????????????????????????? W: --------------------------------

13 A: ???????????????????????????????? W: --------------------------------

14 A: ???????????????????????????????? W: n-------------------------------

15 A: ???????????????????????????????? W: --------------------------------

16 A: ????????????????????????????????

17 A: ????????????????????????????????

18 A: ????????????????????????????????

19 A: ????????????????????????????????

20 A: ????????????????????????????????

21 A: ????????????????????????????????

22 A: n------n-------------------n----

23 A: n---n-------n-------------------

24 A: u--------n-----------u----u--u--

25 A: u------------u-----------u----n-

26 A: u-------------------------------

27 A: u---------------n-------n-------

28 A: u---n----------------u----------

29 A: u---------------u---------------

[...]

Zero differences
Steps 0-4

1.
Sparse diff.
Steps 5-10

2.
More density
Steps 14-21

3.
Steps 11-13

Figure 6.8: Path design principles for partial differential by Xie et al. [XLF13]

Comparison with other single-block differential paths. The full differential
paths by Stevens and Xie et al. (see Figure 6.1) contain 154 respectively 145 bits with
the generalized conditions ’u’,’n’ and ’x’. The number of our self created path in Figure
6.10 is 142 and therefore slightly lower. Our path is very similar to the one by Xie et al.
which also displays a high density of conditions between steps 14 and 16 whereas Stevens’
differential is much more sparse at this point and has a high amount of conditions between
steps 17 and 19. The steps with the highest densities are 12 and 13.

Constructing a collision attack. The last step is to design an algorithm which is
adapted to our own differential characteristic. The same way as custom configurations in
the nltool were used for deriving a full path, we can use it to fill the remaining bits with the
generalized condition ’-’ with ’0’ or ’1’. Of course, the naive approach would be to fill up
all bits in a completely random manner. However, we will adapt a step-by-step approach,
which was also used in previous single and two-block attacks. It has to be considered
that the performance is much slower compared to the word-wise approach, nevertheless
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intermediate results should be found.

Finding a step reduced collision. With the set of sufficient conditions, we can
design the collision attack which replaces all remaining ’-’ bits with ’0’ or ’1’. Stevens’
algorithm for choosing the message words is used (see Algorithm 7). All these searches until
step 23 can be done with the nltool by applying a custom search configuration, which was
also used for the path search. The search satisfies each internal state register completely
until moving on. The message search will be split into three phases as displayed in Figure
6.10. First, the process starts with the registers a13 to a20. After that, Stevens’ algorithm
uses a lookup table, which iterates a1, . . . , a5. In our search variant, these registers are set
the same way as in the first phase. Phase 3 fills up the remaining registers a6, . . . , a12. It
is important to reach partial solutions until step 22. From there on, tunnels can be used
to satisfy further steps. Table 6.11 shows that the complexity for reaching step 22 is 231.04.

Table 6.11: Complexities of modified nltool search configuration for our own single-block
collision attack

Step Runtime per process Number of CPUs Complexity
20 5 s 1 225.15

21 70 s 1 228.95

22 5 min 2 231.04

23 29 h 8 242.28

Iterate through tunnels and check modular differences. The tunnel mask was
determined to ensure that we can flip certain bits to go even further when satisfying condi-
tions. We use our modified word-based data structures to iterate through tunnel bits. The
validity check only includes verifying the modular difference and using the fast reference
implementation. Figure 6.9 shows two results where tunneling was successful. By flipping
certain bits in a3, we could ensure that all conditions including a23 can hold. When iter-
ating through values of a3, the message words w3, w4, w7 have to be updated. The same
applies for modifying a8.

Estimated complexity for full collision. Figure 6.10 shows the full differential
path. A full solution for 24 steps can be found at Figure 6.9. When looking at the steps
23 to 50, we have 43 remaining differences. As we take a look on Table 6.9 from the
previous attack, we see that the MSB path from step 36 to 47 holds with a probability of
1. Therefore we have 31 remaining conditions, the estimation for a full collision attack is
not higher than 262.04.



CHAPTER 6. SINGLE BLOCK COLLISIONS 71

-4 A: 01100111010001010010001100000001 -4 A: 01100111010001010010001100000001

-3 A: 00010000001100100101010001110110 -3 A: 00010000001100100101010001110110

-2 A: 10011000101110101101110011111110 -2 A: 10011000101110101101110011111110

-1 A: 11101111110011011010101110001001 -1 A: 11101111110011011010101110001001

0 A: 10011001011100011011010011010000 W: 10110111111010001010001110011011 0 A: 10011001011100011011010011010000 W: 10110111111010001010001110011011

1 A: 11111011011101001100010001110101 W: 01110111100100000010101110110110 1 A: 11111011011101001100010001110101 W: 01110111100100000010101110110110

2 A: 00000000000000010000000000000000 W: 11000010111100001000010010010101 2 A: 00000000000000010000000000000000 W: 11000010111100001000010010010101

3 A: 00000010010010000000000000000000 W: 11010001000000111101000011000010 3 A: 00000000010000010000000000000000 W: 10110101000000111101000010111010

4 A: 11100000010000001111111111111111 W: 01110111100110010110100100001011 4 A: 11100000010000001111111111111111 W: 01110101100111000111011100001011

5 A: 10001011nu1010110001001010001001 W: 111001010110110100101n0000000010 5 A: 10001011nu1010110001001010001001 W: 111001010110110100101n0000000010

6 A: 011001011n1110111111101111100011 W: 01001100001111000001010010001100 6 A: 011001011n1110111111101111100011 W: 01001100001111000001010010001100

7 A: 1010100110111011111n110000001111 W: 01111110110001110000010101110001 7 A: 1010100110111011111n110000001111 W: 10000000110011100000010101110001

8 A: 00u1111111000001000n000000100100 W: 10111101011011100111011011001110 8 A: 00u1111111000001000n000000100100 W: 10111101011011100111011011001110

9 A: 01u00000110000001010000000100n11 W: 01111111100001100000100111111010 9 A: 01u00000110000001010000000100n11 W: 01111111100001100000100111111010

10 A: 101110010101000n11001010n0011n00 W: n0000101010001000000100010001000 10 A: 101110010101000n11001010n0011n00 W: n0000101010001000000100010001000

11 A: 0010001110unn11n1001011nu1uuun00 W: 11111101010110010011110110111000 11 A: 0010001110unn11n1001011nu1uuun00 W: 11111101010110010011110110111000

12 A: 001n1uuuu01nuuu0uuuuuun01n001u10 W: 00011111100001100101110101101010 12 A: 001n1uuuu01nuuu0uuuuuun01n001u10 W: 00011111100001100101110101101010

13 A: 0u11un101u000unu101111nn01nunuuu W: 11101010010001010000100100011101 13 A: 0u11un101u000unu101111nn01nunuuu W: 11101010010001010000100100011101

14 A: 0n011n1111101110111n10u000101001 W: n0001011011110001000010001000000 14 A: 0n011n1111101110111n10u000101001 W: n0001011011110001000010001000000

15 A: 011u00101u1010u1101100001u100011 W: 01000110111110111000110110111011 15 A: 011u00101u1010u1101100001u100011 W: 01000110111110111000110110111011

16 A: 100111000001001uu01100u100000101 W: [ 1] 16 A: 100111000001001uu01100u100000101 W: [ 1]

17 A: n010u00n1000000110n0000u00000011 W: [ 6] 17 A: n010u00n1000000110n0000u00000011 W: [ 6]

18 A: 00101n01110011111111uu0000010001 W: [11] 18 A: 00101n01110011111111uu0000010001 W: [11]

19 A: 1110110010000011uu00110011u11101 W: [ 0] 19 A: 1110110010000011uu00110011u11101 W: [ 0]

20 A: 0nn11100u0nnn0n010111011un1n1101 W: [ 5] 20 A: 0nn11100u0nnn0n010111011un1n1101 W: [ 5]

21 A: n01u0n01001011100un100u11010011n W: [10] 21 A: n01u0n01001011100un100u11010011n W: [10]

22 A: n010101n0010101010110010000n0001 W: [15] 22 A: n010101n0010101010110010000n0001 W: [15]

23 A: n110n1110110n0100000010000000011 W: [ 4] 23 A: n100n1110110n0011110010000110100 W: [ 4]

Figure 6.9: Example of tunneling for T4
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-4 A: 01100111010001010010001100000001

-3 A: 00010000001100100101010001110110

-2 A: 10011000101110101101110011111110

-1 A: 11101111110011011010101110001001

0 A: -------------------------------- W: --------------------------------

1 A: -------------------------------- W: --------------------------------

2 A: 000000000-00000-0000000000000000 W: --------------------------------

3 A: 00000000010000010000000000000000 W: --------------------------------

4 A: ---00000010000001111111111111111 W: --------------------------------

5 A: --------nu---------1------------ W: ---------------------n----------

6 A: --1-----1n---------1------------ W: --------------------------------

7 A: --1-----10---------n---------1-- W: --------------------------------

8 A: --u------1000001000n00000-100100 W: --------------------------------

9 A: --u------10000001---00000-100n11 W: --------------------------------

10 A: ---1-00---01000n1--0--10n0011n-- W: n00-----------------------------

11 A: -010001---unn11n------1nu1uuun0- W: --------------------------------

12 A: -0-n1uuuu-1nuuu0uuuuuun01n001u1- W: ----------00---------1-------01-

13 A: -u-1un101u0-0unu-01111nn01nunuuu W: ------------0-------------01-10-

14 A: -n-11n1111-01110111n1-u0-0101-01 W: n---------1110--------000-------

15 A: 01-u00-0-u---0u11-1---00-u100-11 W: ---0---------------------011----

16 A: 100111-0-------uu-1-00u1-------- W: [ 1]

17 A: n010u0-n--------10n-00-u--0----- W: [ 6]

18 A: 001--n-11-001-1-111-uu--0001---- W: [11]

19 A: 1110-1-01-000-1-uu0---0-11u1---- W: [ 0]

20 A: -nn1-1-0u-nnn-n-101---1-un-n---- W: [ 5]

21 A: n--u0n-1----1---0un---u-10-0---n W: [10]

22 A: n--01--n-0--1----0---0--000n-0-1 W: [15]

23 A: n--0n--1-1--n----1---1---01--100 W: [ 4]

24 A: u------0-n--11-------u--01u--u1- W: [ 9]

25 A: u-----------0u--0----0--0u1---n- W: [14]

26 A: u---0-----------1----0--1-1----- W: [ 3]

27 A: u---1-----------n----1--n------- W: [ 8]

28 A: u---n-----------0----u---------- W: [13]

29 A: u---0-----------u--------------- W: [ 2]

30 A: u---1-----------u--------------- W: [ 7]

31 A: x---n--------------------------- W: [12]

32 A: x---n---------------------------

33 A: x-------------------------------

34 A: --------------------------------

35 A: --------------------------------

36 A: x-------------------------------

37 A: x-------------------------------

38 A: x-------------------------------

39 A: x-------------------------------

40 A: x-------------------------------

41 A: x-------------------------------

42 A: x-------------------------------

43 A: x-------------------------------

44 A: x-------------------------------

45 A: x-------------------------------

46 A: x-------------------------------

47 A: x-------------------------------

48 A: x-------------------------------

49 A: x-------------------------------

50 A: x-------------------------------

51 A: 1-------------------------------

52 A: 0-------------------------------

53 A: --------------------------------

54 A: --------------------------------

55 A: --------------------------------

56 A: --------------------------------

57 A: --------------------------------

58 A: --------------------------------

59 A: --------------------------------

60 A: --------------------------------

61 A: --------------------------------

62 A: --------------------------------

63 A: --------------------------------

1.

2.

3. Tunnels
T4, T9, T14

Figure 6.10: Set of sufficient conditions of self created differential path based on the partial
path by Xie et al. [XLF13] and message collision phases



Chapter 7

Conclusion

Attacking deprecated hash functions like MD5 has its charm because its principles and
ideas can be used for other hash functions, i.e. SHA-1, as well. MD5 is still used in many
protocols like SSL certificates. Many theoretical attacks have been published that are a
proof of concept. Moreover, also meaningful attacks exist like the attack by Stevens et al.
[SLW07] which generates a rogue certificate. The first part of this work focuses on hash
functions and the widely-used MD-family. Wang et al. achieved a major breakthrough in
the analysis of MD5. This approach was the base of many subsequent attacks by different
cryptologists all over the world. Klima introduced the idea of using tunnels which reduced
the complexity of Wang’s attack. Furthermore, it was greatly improved by Stevens. Those
collisions attacks relied on two message blocks. In 2010, Xie et al. [XF10] were to first
to create a collision with only a single message block. They called a competition on who
would find another independent solution. Stevens [Ste12a] was the first one and published
many details on his attack. Very recently in 2013, Xie et al. [XLF13] presented results
containing details about their first single-block attack of 2010 and further improvements.
Their best attack complexities are considerably below Stevens’ attack. Unfortunately, Xie
et al. only revealed partial differential paths and no full one.

In this thesis, we have analyzed all essential attacks including the original approach by
Wang et al. Furthermore, the concepts of message modification and tunnels were explained.
A detailed analysis of the differential paths was made using the nltool. A tunnel pattern
was explained in detail both using the nltool and manual calculations. Focus was laid on
what the toolbox could do automatically and which parts of the attacks required additional
implementation.

All of the attacks handle the internal states of MD5 in a word-wise manner to allow
fast operations (like the MD5 step operation) to be performed on all bits simultaneously.
The approach of the nltool is completely different as it handles the state registers and its
conditions on a bit sliced principle. This significantly slows down many attacks as they are
optimized on the word-wise approach. The two-block collision attack by Stevens [Ste06]
was partially reimplemented using the word-wise approach and embedded into the nltool.

The final part of this thesis addresses single-block attacks. We used the nltool to com-
pare the differential paths of Xie et al. and Stevens. Furthermore, the automated search
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algorithm by the toolbox was used to recreate a single-block collision based on Stevens’
differential path. The complexity exceeded computational feasibility. Hence, Stevens at-
tack was completely embedded into the nltool. First attempts of the implementation failed
due to exceeding complexity of our implementation. Therefore, Stevens reference imple-
mentation was analysed and more details which were not given in his work were revealed.
We then verified the algorithm by running a single-block collision attack successfully with
a complexity of 248.3 which verified Stevens’ given complexity.

Finally, the best partial differential path was taken from the work of Xie et al. in 2013.
The nltool was used to derive a full working differential characteristic by running a custom
search configuration. This enabled us to even control the density of the path at certain
steps. For finding actual message values with our custom derived path, the nltool was
run with choosing step-by-step values in the same manner as in Stevens’ attack. A partial
solution for 23 steps was found. We then used this partial solution for tunnel processing
which includes bit flipping and then calculating the MD5 steps with checking the modular
differences. Step 24 was reached with a complexity of 242.28. We estimate the complexity
of a full collision attack with 262.04.

Future work may include finding a better path with less conditions for a single-block
collision. The adoptions for the nltool using optimized bit masks for message modification
techniques could be used for other attacks on different hash functions of the MD-family.
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