
Masterarbeit

Reformation of a MDSD tool chain by
applying modern evaluation methods for

solution comparison

Robert Wenger, BSc

————————————–

Institut für Technische Informatik
Technische Universität Graz

Vorstand: O. Univ.-Prof. Dipl.-Ing. Dr. techn. Reinhold Weiß

Begutachter: Dipl.-Ing. Dr. techn. Christian Kreiner
Betreuer: Dipl.-Ing. Dr. techn. Michael Thonhauser

Graz, im Mai 2013

Kurzfassung

Verschiedene Techniken der modernen Softwareentwicklung erhöhen sogenannte
”
Nicht-

funktionelle“ Anforderungen von Software Produkten. Bei diesen Anforderungen handelt
es sich unter anderem um leichte Erweiterbarkeit, leichte Anpassbarkeit und leichte Wart-
barkeit. Eine Methodik, diese Punkte zu erfüllen, ist die Modellgetriebene Softwareent-
wicklung. Es existieren sehr viele Ansätze und fertige Teillösungen für Umsetzungen in
der Praxis, jedoch noch kein vollständiges allgemeines Paket.

Die Firma Salomon Automation mit Sitz in Friesach bei Graz implementierte vor ei-
niger Zeit eine Kette von Software-Werkzeugen, mit deren Hilfe es gelang, Teile ihres
Produktes WAMAS automatisch zu generieren. Dabei werden sowohl Code (verschiedene
Java-Versionen), als auch Definitionen für z.B. Hibernate erzeugt. Zusätzlich wird eine
vollständige Dokumentation aller Modelle und deren Zusammenhänge mitgeneriert. So-
mit können Anpassungen und Erweiterungen in der Funktionalität des Programms über
Modelländerungen umgesetzt werden. Der teilautomatisierte Prozess besitzt jedoch eini-
ges an Verbesserungspotential. Er soll durch Adaptionen der Generatoren, eine moder-
nere Modelldefinitonssprache und zusätzliche unterstützende Funktionalitäten, wie Team-
Unterstützung bei Modelldateiänderungen, auf aktuellen Stand gebracht werden.

Ziel dieser Arbeit ist zuerst die Aufnahme des aktuellen Standes, inklusive aller Ar-
beitsschritte. Die sich daraus ergebenden Problematiken und Verbesserungsmöglichkeiten
werden anschließend mit Hilfe von Methodiken zur Findung von klar definierten Anforde-
rungen untersucht. Die gefundenen Punkte stellen einerseits ein Anforderungsprofil dar,
mit dessen Hilfe bereits potentielle Kandidaten einer Lösung gefunden werden können.
Die Methodik zur Findung dieser

”
Knock-Out-Kriterien“ liefert andererseits auch noch

Bewertungspunkte, mit denen die unterschiedlichen Kandidaten untereinander verglichen
werden können. Diese Arbeit beinhaltet ebenfalls die Beschreibung dieser Methodik zur
formalen Findung der bestmöglichen Variante, passend zu den Anforderungen dieser Auf-
gabenstellung.

Abstract

Modern software development contains different technologies for improving so called non-
functional requirements of software products. Some examples for this points are expand-
ability, adaptability and maintainability. One possible way to implement a process for im-
proving those points is called ”Model Driven Software Development” (MDSD), although
there is no complete tool chain for implementing MDSD in a general way. Fortunately
many tools exist, which are able to automate some parts of the whole process.

Some time ago the company of Salomon Automation located in Friesach near Graz im-
plemented a working tool chain to generate parts of their main software product WAMAS
in an automatic way. As an output, this tool chain produces software code (different Java
versions) as well as definition files e.g. like Hibernate files. Additionally it generates a full
documentation of all models and their context. Therefore it is possible to realize adaption
or modification of the program’s functionality by simply changing models. Nevertheless,
this semiautomatic process has a high potential of improvement. By adapting the gen-
erators, implementing a modern model definition language and adding features for team
support the current tool chain should be brought up to date.

The first goal of this thesis is the documentation of the current working processes
containing all necessary steps. The resulting problems and points of improvement then
act as an input for a following requirement finding process. On the one hand the found
points are a profile for possible candidates for a solution. On the other hand the method of
finding those points also delivers criteria for comparing the candidates among themselves.
The second part of this thesis contains a description of this methods for formally finding
the best solution to this problem definition.

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

Credits

This master thesis has been carried out at the Institute for Technical Informatics, Graz
University of Technology. At this point, I would like to thank my supervisors Christian

Kreiner and Michael Thonhauser for their time and great support. Their advices and
support helped me staying on the right track during the whole work. Especially, I want

to thank Manuela: without her support, confidence and love this thesis would not have
been possible.

Graz, in May 2013 Robert Wenger

Contents

1 Introduction 1
1.1 Motivation and objectives . 1
1.2 Outline . 2

2 Related work 3
2.1 Related technologies of the current and future tool chains 3

2.1.1 Model driven software development 3
2.1.2 Repository systems . 5
2.1.3 Model merging with XMI files . 6

2.2 Methods for defining requirements and evaluating results 7
2.2.1 4+1 view model . 8
2.2.2 Volere Requirements Techniques . 9
2.2.3 Multi attribute utility theory (MAUT) 9

3 Detailed description of the current system 11
3.1 WAMAS . 11
3.2 The current modeling, code generation and documentation tool chain . . . 12

3.2.1 Persistency Model use case . 12
3.2.2 Mobile Client-Server Communication use case 18
3.2.3 Mobile Task Concept use case . 20
3.2.4 Report generation . 22

3.3 Aspects of currently used software, file formats and tools 23
3.3.1 Operating systems . 23
3.3.2 MagicDraw 9.5 with Teamwork Server 9.5 23

3.4 Workflow of the current tool chain . 24
3.4.1 Managing WAMAS and customer projects 25
3.4.2 Managing model files . 25

4 Requirement finding and evaluation methods applied 29
4.1 Description of the finding and evaluation methods 29

4.1.1 Applied method for finding requirements 29
4.1.2 Applied method for evaluating possible solutions 30

4.2 Definition of stakeholders, knock out criteria and view lists 32
4.2.1 Stakeholders . 32
4.2.2 Knock out criteria list . 34
4.2.3 View lists . 34

I

5 Different approaches to a new tool chain 37
5.1 MagicDraw . 37

5.1.1 MagicDraw 17.0 . 37
5.1.2 Teamwork Server 17.0 . 40
5.1.3 Model Merge Plugin . 43
5.1.4 MagicDraw Project Converter . 45
5.1.5 Summary . 45

5.2 Visual Paradigm . 46
5.2.1 Visual Paradigm for UML 8.3 . 46
5.2.2 Teamwork Server 5.3 . 49
5.2.3 Summary . 52

5.3 Microsoft Visio 2010 . 52
5.3.1 Summary . 53

5.4 IBM Rational Software . 54
5.4.1 IBM Rational Software Architect . 54
5.4.2 Rational Team Concert . 56
5.4.3 Summary . 57

5.5 Enterprise Architect . 58
5.5.1 Enterprise Architect 9.1 . 58
5.5.2 Integration for Eclipse . 61
5.5.3 Summary . 62

5.6 Gentleware products . 62
5.6.1 Poseidon for DSLs 2.0 . 62
5.6.2 Poseidon for UML 8.0 . 63
5.6.3 Apollo for Eclipse . 63
5.6.4 Summary . 64

5.7 Papyrus . 65
5.7.1 Summary . 66

5.8 Eclipse Modeling Framework . 66
5.8.1 Graphical Editors . 67
5.8.2 EMF Compare . 67
5.8.3 CDO Model Repository . 69
5.8.4 Dawn . 70
5.8.5 EMF Store . 70
5.8.6 Summary . 70

6 Evaluation of possible solutions 71
6.1 Calculations . 71

6.1.1 MagicDraw . 72
6.1.2 Visual Paradigm . 73
6.1.3 IBM Rational Software . 74

6.2 Result . 75

II

7 Conclusion and future work 77
7.1 Future and open work . 77

7.1.1 Implementation . 77
7.1.2 Eclipse 4 . 78
7.1.3 Domain Specific Language . 78

A Abbreviations 79

Bibliography 81

III

List of Figures

2.1 The basic idea of MDSD [Lad03] . 3
2.2 Example of a UML diagram [AUT11] . 4
2.3 The same information represented in four rows and one row 7
2.4 The same information represented in a different row order 7
2.5 4+1 view model [Kru95] . 8
2.6 The basic idea behind the Volere Requirements Specification [RR08] 9

3.1 Schematic description of the modular architecture of a project 11
3.2 Modeling layer of the Persistency Model use case 14
3.3 Generation and output layer of the Persistency Model use case 15
3.4 Description of the patching functionality . 16
3.5 Example class with patch classes . 17
3.6 Resulting class after execution of the model patcher 17
3.7 Layers of the Mobile Client-Server Communication use case 19
3.8 Layers of the Mobile Task Concept use case 21
3.9 Real implementation of the report generation 22
3.10 Locking a class with all its relationships in MagicDraw 9.5 24
3.11 Schematic description of the connections between project and the product

WAMAS . 26
3.12 Workflow of keeping the two repositories synchronized after modifying a

model file . 27
3.13 The ”Save As...”-dialog . 28

4.1 Schematic description of the n+1 lists by n stakeholders 30

5.1 Tree view of an example repository including all versions of the trunk and
a branch . 41

5.2 The ”merge view” of two versions of the same model 43
5.3 Example for changing an automatic merge suggestion 44
5.4 Extracted content of Visual Paradigm’s native file format using a ZIP-program 47
5.5 Dialog for exporting project into XMI2.1 file format 48
5.6 Example of two versions of a class diagram, compared with the ”Visual diff”

feature . 50
5.7 Example of a merge conflict in Visual Paradigm 51
5.8 Example for a simple state machine diagram designed with RSA 55
5.9 Example of a simple class diagram designed with RSA 56
5.10 Example of a logical compare of a UML model 57

IV

5.11 Example for a state machine diagram modeled with EA 9.1 60
5.12 Example of a class diagram modeled with EA 9.1 61
5.13 Update site URL for the assumed newest version of Papyrus 65
5.14 Update site URL for the assumed newest version of Papyrus for Helios . . . 66
5.15 UML class designed by the editor UML2 . 67
5.16 Graphical view of differences between two version of a model 68
5.17 Comparison of the diagram file with EMF compare 69

6.1 Result after comparison and calculation . 75
6.2 Result after comparison and calculation . 76

V

List of Tables

4.1 Requirements list of the model developer’s view 33
4.2 Requirements list of the product developer’s view 33
4.3 Requirements list of the system administrator’s view 33
4.4 Requirements list of the finance manager’s view 34
4.5 Knock out criteria list . 34
4.6 View list of the model developer . 35
4.7 View list of the product developer . 35
4.8 View list of the system developer . 35
4.9 View list of the finance manager . 36
4.10 Weighting list of the different views . 36

5.1 Prices of MagicDraw 17.0 depending on different license types and assur-
ance durations . 40

5.2 Prices for separately bought software assurances concerning MagicDraw . . 41
5.3 Price list of the Teamwork Server 17.0 depending on the quantity of simul-

taneous connections and assurance durations 42
5.4 Prices for separately bought software assurances concerning the Teamwork

Server . 42
5.5 Prices of Merge Plugin with different license types and assurance durations 44
5.6 Prices of separately bought assurances for the Merge Plugin 44
5.7 Fitting of KOC’s using MagicDraw with Teamwork Server and Merge Plugin 45
5.8 Fitting of VL-points using MagicDraw with Teamwork Server and Merge

Plugin . 45
5.9 Prices of Visual Paradigm depending on the type of license, the quantity

and the maintenance option . 49
5.10 Prices of Visual Paradigm depending on the type of license, the quantity

and the maintenance option . 52
5.11 Fitting of requirements using Visual Paradigm with Teamwork server . . . 53
5.12 Fitting of VL-points Visual Paradigm with Teamwork Server 53
5.13 Fitting of requirements using Microsoft Visio 2010 54
5.14 Prices of different licenses of Rational Software Architect 56
5.15 Prices of different licenses of Rational Team Concert 57
5.16 Fitting of requirements using IBM’s Rational Software Architect and Team

Concert . 58
5.17 Fitting of VL-points using IBM’s Rational Software Architect and Team

Concert . 58

VI

5.18 Prices of different Enterprise Architect 9.1 licenses types and amounts . . . 61
5.19 Fitting of requirements using Enterprise Architect 62
5.20 Fitting of requirements using Gentleware products 64
5.21 Fitting of requirements using Papyrus . 66

VII

Chapter 1

Introduction

1.1 Motivation and objectives

The company of Salomon Automation, located in Friesach near to Graz, creates software
and automation systems for intralogistic issues. Their main software product is called
WAMAS R©, which is short for Warehouse Management System. It uses self-contained
modular parts of software in its system, i.e. a database as a reference to the real world’s
warehouse. A more efficient way to adapt these parts for each customer is to automat-
ically generate the code out of description models, rather to implement it manually. To
accomplish this task, a tool chain has been developed, which takes UML 1.4 class and state
diagrams as inputs and delivers program code and documentation files of the customized
parts as output.

The first main goal of this document is a description of the current system, defining
the whole workflow. All necessary steps for creating and modifying model files as well
as managing the product WAMAS with the customer projects should be documented.
The tool chain currently consists of workarounds and inefficient process parts, which have
a high potential of improvement. Also some features can be considered, which should
support all development teams working on the product and the projects. Therefore the
collected information should provide a base for a further requirements finding process for
a new tool chain.

A requirements finding process should be defined as a second goal of this thesis. The
intention is to find methods for an objective description of the problem to point out the
important issues and define them as requirements for a new system. Based on that an
evaluation method should be described for comparing different candidates for a solution.

As a third goal, new systems and different approaches to a new tool chain should be
tested and described. The results of these tests should contain descriptions of all rel-
evant properties for a comparison, like included functionality, effort for implementation
and prices. As a result this document should provide all relevant information for a later
decision making process targeting a definition of a new tool chain.

1

CHAPTER 1. INTRODUCTION 2

1.2 Outline

Chapter 2 is dedicated to related work and theoretical information, concerning this mas-
ter’s thesis issue. In the first part of the related work, an introduction is given to Model
Driven Software Development (MDSD), the idea of Repository Systems including a brief
description of how they work is shown and also some problems concerning a merge of
model files are mentioned. These points are important to understand the issues belonging
to the current tool chain.

The second part of the related work is dedicated to methods for finding requirements,
aiming the problems of the current situation. It also shows up methods for evaluating the
results of possible solutions.

The next Chapter 3 describes the current system of the tool chain in a very detailed
way. It should give an overview of the current situation, used technologies, used software
and file formats. It results in a workflow which is shown as obviously improvable. The
optimization of it is probably the main criteria for a new system to be called ”better”.
Therefore it is important to have a very detailed description of the current one.

To this point this thesis will have dealt with theoretical work and a description of the
current environment. Chapter 4 shows the first practical work. It describes the chosen
methods for finding requirements and evaluating possible solutions. It also shows the
practical implementation based on the current situation at Salomon Automation.

The following Chapter 5 is giving the detailed information over the currently on the
market available technologies. Additionally, the different approaches are evaluated and
compared to each other.

Chapter 2

Related work

This chapter is dedicated to technologies used by the current tool chain. It also mentions
and explains technologies, which are related to new possible solutions.

2.1 Related technologies of the current and future tool chains

2.1.1 Model driven software development

Modern software development has a huge set of requirements to fulfill. Not only the pro-
duction of a software is in focus anymore, but also modularity, ability for fast adoptions
and changes, documentation and many more properties have grown in importance. Con-
stantly changing implementation technologies also play a major role.

To achieve this goal, a well known concept has been reactivated: the usage of models.
The resulting development concept is called Model driven software development (MDSD).
Figure 2.1 shows a graphical description of the idea behind MDSD.

Figure 2.1: The basic idea of MDSD [Lad03]

According to [SV06], MDSD heads out to achieve following goals:

• Development speed by using code generation from formal models.

3

CHAPTER 2. RELATED WORK 4

• Software quality by using transformations and formally-defined modeling languages.
The software architecture will recur uniformly in the implementation.

• By using transformation steps and generators, a so called separation of concerns
[Lad03] is automatically applied, as aspects, which cannot be easily implemented in
one single module, can be specified through the language as one single information.

• A higher level of reusability can be achieved, as it is easier to adapt models and
maybe their generators for a new purpose, than adapting the produced code.

• The language of the model description can also be domain specific. This allows an
improved manageability of complexity through abstraction.

• Usually models can be transformed between different languages and systems. Also
generators for different platforms and systems can use one and the same model as
inputs. Thus, interoperability and portability increases significantly.

In the year 2000 an association called Object Management Group (OMG) introduced
an approach to MDSD called Model Driven Architecture (MDA) [StOSSG00]. To work out
this approach the OMG saw the necessity of defining standards, like the Unified Modeling
Language (UML) or the MetaObject Facility (MOF). Especially the UML standard in
the version of 2.0 or higher is a well known and popular language to describe technical
problems and situations. Figure 2.2 shows an example of a UML2 Sequence Diagram,
which describes the flow and interactions of different modules of a software startup code.

Figure 2.2: Example of a UML diagram [AUT11]

CHAPTER 2. RELATED WORK 5

2.1.2 Repository systems

During software development many users work on the same project and on the same
amount of files. Usually a good software design leads to modularity and clearly defined
constraints, but unfortunately a final design mostly is found during the development pro-
cess. Especially agile methods support fast changes in functionality, therefore also fast
changes in the design must be supported in the development process.

Repository systems are intended to share files between different users and provide
mechanisms to change those information. This is a very important feature, which can lead
to much higher efficiency. It allows different developers to make changes, provide them to
others and synchronize the whole project.

Most repository systems have a common server. At this central point the whole project
including the files, the different versions and all meta information is located. To work on
the project, a client software to connect to the server is necessary. This client software
then is able to manage and synchronize all relevant information.

For the sake of completeness, a second strategy for repository systems has to be men-
tioned at this point. Differently to a central version storage system, most of the synchro-
nization, history and other managing commands apply locally, therefore the systems are
much faster and do not need a network. Only explicit synchronization with the server
repository needs network communication [HP11].

Obviously, the realization of a repository system shows up problems, which base on
concurrent changes and/or simultaneous changes. The following subchapters describe
some mechanisms for avoiding or solving these problems. Usually these mechanisms or
similar can be found in every software tool, which calls itself a repository system.

Locking

A very simple and kind of obvious solution for the problem of changes in the same file by
two or more developers at the same time is known as Locking. It uses the concept of ”first
come, first serve”. The first one, who needs the specific file to change, can lock the file
for everybody else. Therefore, simultaneously taken changes cannot occur, since the file
is not unlocked by the owning user.

Compare and merge

The idea behind the merging strategy is to have two different versions of the same file in-
cluding changes of two developers and compare them textually. The comparison contains
three different possible regions: equal text sections, differing text sections and sections,
which are available in one version but are missing in the other one. The last two pos-
sible regions are called conflicts. The two involved developers have then to resolve this

CHAPTER 2. RELATED WORK 6

conflicts, which means to take regions from one file and copy it to the other one. If all con-
flicts are solved, the two files are equal and one of them can be checked in as a new version.

As written in [BCE+06], ”a number of factors make model merging complicated”. If
both files are seen as two quantities of information (e.g. Q1 and Q2), a mathematical
notation can be used to describe the quantity of the resulting conflicts QConflict as in
Equation 2.1.

QConflict(Q1, Q2) = (Q1 ∪Q2) \ (Q1 ∩Q2) (2.1)

3-way merge

A so called 3-way merge is a more complex version of the normal comparing and merging
of two files. The algorithm uses information for solving conflicts automatically. To achieve
this goal it uses an additional file, the common ancestor. This file is the version, both
other files are originated from. If the first file is called Q1, the second file is Q2 and the
common ancestor file is named Q0, then the following Equation 2.2 shows the quantity
QFail, where the automatic resolving algorithm fails.

QFail(Q0, Q1, Q2) = (Q1 ∪Q2) \ (Q0 ∩Q1) \ (Q0 ∩Q2) ∪ (Q0 ∩Q1 ∩Q2) (2.2)

The advantage of this algorithm compared to the 2-way merge is the additional infor-
mation we get in the case, a section of one new file that differs to the section in the second
file, but equals to the section in the common ancestor file. In this case, the section in the
differing file has to be a wanted change.

Equation 2.2 shows the single case, in which a section differs in all three files. Obvi-
ously, in this case both developers must have changed the same region; the algorithm is
not able to decide, which change is the right one. This conflict must be resolved manually
by the involved persons.

2.1.3 Model merging with XMI files

Chapter 2.1.2 highlighted, why merging of files is a very likely action in modern software
development. This is not only related to source files, but also to all kind of files, which
are used nowadays. As a rule of thumb, we can say, that every file, which will be changed
during the development process, has eventually to be merged with a different version of
its own.

Referencing to Chapter 2.1.1, modern software development deals with files represent-
ing models. The files containing these models can be of different kinds of formats. One
very common format is XML Metadata Interchange (XMI), invented and defined by the
OMG for interchange of objects on basis of meta-meta-models after the MOF. Addition-
ally also other formats like Domain Specific Languages (DSLs) can be used for storing
models. As the name implies, these languages have to be designed for the domain of the

CHAPTER 2. RELATED WORK 7

specific problem and have therefore a very low reusability.

Unfortunately, some differencing problems respectively merge problems come up by
using an XML format for saving models. First of all, XMI is not row oriented. In other
words, the position of an opening tag after a closing tag is not necessarily defined. It can
be either follow directly after the last character of the closing tag or start in the next line.
Therefore both structures of the same information shown in Figure 2.3 are allowed.

Figure 2.3: The same information represented in four rows and one row

Also, the definition of XMI includes the permission of different orders of the same
information on the same level inside a file. As a consequence, different ordered lines in
files are able to represent the exactly same model. Figure 2.4 shows an example of this
situation: Both sides represent the same information, but differ in their line-order. This
example also covers the case of properties with a higher multiplicity than one. If the order
of different values of elements with the same name within the same level is varying, a line
based comparison tool will detect differences, even if there are none.

Figure 2.4: The same information represented in a different row order

2.2 Methods for defining requirements and evaluating re-
sults

During the development of a new system, defining requirements can be a hard and difficult
process. Some points can be obvious, but mostly some points come up after the official
requirement definition process. In this case, the project development is forced to step back
or even to restart. Therefore the requirement finding process has a high significance in
the whole project realization.

Another problem regularly rises after finding the requirements. Some points are neces-
sary, where else other points only describe nice-to-have-features. If more than one possible

CHAPTER 2. RELATED WORK 8

solution fits all knock-out-criteria, the decision has to be made by comparing the fittings
of the features. In reality this situation is very often used to play political power games,
which has nothing to do with finding the best solution to a problem.

The following subsections describe on the one hand some different methods for finding
knock-out-criteria. On the other hand also methods for impartially comparing properties
of different solutions are specified. Finally, the ideas of those methods are collected to-
gether and reused in a process, which is applied to the problem definition of this master’s
thesis.

2.2.1 4+1 view model

As mentioned before, the process of finding requirements is crucial for a fast and construc-
tive course of a project. The goal of the process is to get a compilation of requirements.

For finding requirements, the target system first was defined with an architectural
view model called ”4+1 view model” after Kruchten [Kru95]. The idea behind is to
define a system by four views, each owned by a different stakeholder. The architecture is
represented with a single view for each stakeholder, so he can easily access the information
he is interested in. A graphical representation of the view model is shown in Figure 2.5.

Figure 2.5: 4+1 view model [Kru95]

The four main views are:

• The logical view leads to requirements of the user’s point of view. This includes the
overall functionality of the system for the user.

• The process view addresses requirements that meet runtime issues, such as concur-
rency, performance and availability.

• The development view leads to requirements defined through modules and subsys-
tems. It should represent the static architecture of the system.

• The physical view leads to distribution and hardware specific problems.

CHAPTER 2. RELATED WORK 9

The sum of these views result in a fifth view, called scenarios. Those scenarios are
nothing else than use cases of the whole system. They connect to every view, as every
stakeholder has its own scenarios by using the system.

2.2.2 Volere Requirements Techniques

The Volere Requirements Techniques are originally developed by Suzanne and James
Robertson. As it is written in [RR08], the idea was the development of a common language
for all concerning stakeholders of a project. Those people can differ in education level, in
profession, in age, etc. and therefore, their point of view can vary extremely.

Figure 2.6: The basic idea behind the Volere Requirements Specification [RR08]

2.2.3 Multi attribute utility theory (MAUT)

The multi attribute utility theory (MAUT) is a method for impartially comparing different
choices. It calculates an overall benefit of every alternative which can be compared. This
subsection describes the procedure of calculating the best choice relating on document
[vW86] and on document [Sch01].

To calculate the main utility value v(x) of each alternative x, MAUT uses the simple
idea of summing up weighted value dimensions. Therefor the overall value is defined by
the overall value function

v(x) =
n∑

i=1

wi ∗ vi(x), (2.3)

where n is the number of value dimensions.
For every value dimension the evaluation value vi(x) is quite similar to be calculated.

A list of relevant attributes Ai of every dimension di can be weighted by their relative
importances wa,i. Thus, for all di(i = 1, ..., n) the evaluation value is calculated by the
formula

vi(x) =
∑
a∈Ai

wa,i ∗ va,i(x), (2.4)

where Ai is the list of attributes in the dimension di.

CHAPTER 2. RELATED WORK 10

To get the evaluation values for the relevant attributes, the easiest way is setting up
a scale e.g. from 0 to 10. An attribute, which does completely not fit, gets a zero and is
therefore not considered in the formula, and an attribute, which does completely fit, gets
the maximum value 10. During the creation of a scale there are two important rules that
have to be considered:

• Start the scale at zero. If there is an alternative, which does completely not fit to
a relevant attribute, a zero value will be ignored in the equations. Any other value
would have an effect on the result, even though it is the smallest value that can be
chosen.

• All dimensions must use the same scale. If e.g. one dimension uses scales from 0 to
10, and another uses 0 to 20, then a full fitting of a solution to an attribute in the
second dimension would be double important as in the first dimension. Since the
intention to declare the importances between different dimensions by extra weighting
values, different scales are not allowed.

It is also important to keep in mind, that the resulting values vi(x) of every dimension
will be compared among each other. After taking a deeper look at Equation 2.4, it becomes
obvious, that dimensions with a higher number of attributes will always produce a higher
value than dimensions with only a little number of relevant attributes. The consequence is
a parasitic weighting between dimensions. To avoid this effect it is important to normalize
the sum of all relative importances per dimension to one, which is shown in following
Constraint 2.5

∀i ∈ 1, ..., n :
∑
a∈Ai

wa,i = 1. (2.5)

For the sake of completeness, it is also a good idea to normalize the weightings of the
dimension values in Equation 2.3. However, as the resulting utility is not participating in
a sum with comparable values, it is not necessary.

Chapter 3

Detailed description of the current
system

3.1 WAMAS

One idea of the Salomon’s software product line is the division of every final software for
a customer in a common part, which is mostly constant and the base of every project, and
a variable part, which must be adapted for every customer. The constant part is called
WAMAS and has been developed as a logistic program that matches most of the usual
requirements for a customer. Therefore it can also be used as a standalone software tool.
It consists of Java 6 source code, UML 1.4 models which define some parts of WAMAS,
and generators, which produce source code out of these models.

To satisfy the needs of a new customer, first of all a new project is started by copying
the current release of the product WAMAS. Around this core system, customer depend-
ing code and models have to be developed and added to the project. In Figure 3.1, this

Figure 3.1: Schematic description of the modular architecture of a project

11

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 12

modular design should be indicated by the big red oval in the middle and the extensions
around the product, pictured as the blue ovals. For the sake of completeness, an orange
oval shows the part of changing the product source code. This is against the idea of the
modular concept, but is not always avoidable. However, the intention is to reuse as much
as possible of the original product code and models.

3.2 The current modeling, code generation and documen-
tation tool chain

The software adaptions for the projects are not intended to be developed directly as source
code. They furthermore will be carried out by additional model files and the usage of a
tool chain, which generates definition files and source code. As a description language for
those models, diagrams of the UML 1.4 specification are currently used.

In addition to executable code and definition files, also reports are generated from the
models. These reports are usable as documentation. In case of Salomon, the report files
are linked Hypertext Markup Language(HTML) files reachable through the intranet, called
”Public WIKI”, and represent a help and documentation service.

Salomon actually uses a lot of different types of generators e.g. Hibernate definitions,
state machines for mobile devices and software modules for communication. Some of those
outputs are complete software modules, like the database, others only consist of a frame-
work, which has to be filled up with manually written code. The created state machines
for the mobile devices would mark an example for this.

The next subchapters describe the currently used tool chain in a more specific and
detailed way. Actually, there are three, more or less different use cases of the tool chain:

• Generation of a database system for the real worlds customer warehouse, called
Persistency Model use case

• Generation of definitions for the communication between the mobile clients and the
server, called Mobile Client-Server Communication use case

• Generation of application and data flow definitions for the mobile client software,
called Mobile Task Concept use case

3.2.1 Persistency Model use case

The first use case of the code generation tool chain is the Persistency Model. It should
represent the complexity of the real world’s customer warehouse. As it can be imagined,
a customer’s warehouse consists of a huge number of different structures inside. Therefore
logistics software also consists of a high complexity to aim a most common usage. How-
ever, to describe this Persistency Model only class diagrams are necessary. Elder projects

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 13

showed, that a model of a real world warehouse, containing its whole complexity, usually
results in around 600 classes. This amount of objects in one diagram is impossible to
handle; therefore, a kind of modularity had to be brought in. Designing smaller parts of
the model in several files lead to a much higher lucidity. Thus, splitting the big model
into several sub models and sub model files, makes designing a model with this size much
easier. For an easier implementation of a model driven development, it is advantageous to
start with only one file containing the whole information. Hence, for this use case the tool
chain starts with a linker, which combines all files of the mentioned model parts to one big
model file. This linker only works with input model definitions in the file format of XMI
1.0. The result of the linker is further modified by a model patcher (refer to Chapter 3.2.1).

The output file of the patcher is still in the file format of XMI 1.0, but the generation
layer expects a file with an XMI definition version 1.1; hence a converter is required to
translate the XMI version after execution of the linker and the patcher. The whole mod-
eling phase of this use case is depicted in Figure 3.2.

The second step in this model driven development begins with a model tester, which
checks all relationships, the uniqueness of class names and the correctness of the entire
model. In case of an error, the tester is able to cancel the execution of the tool chain and
reports all errors found. If no errors occur, the main intention of this layer starts and the
generators create the files for the database system and the documentation, as shown in
Figure 3.3.

The output of the generators, combined inside the light blue rectangle in the beneath
area of Figure 3.3, contains different types of files. The database access layer consists of
XML files for mapping the Hibernate layer and Java 6 code for the Meta model and type-
safe entity container layer. Also Structured Query Language Data Definition Language
(SQL-DDL) scripts are generated to setup the database.

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 14

Figure 3.2: Modeling layer of the Persistency Model use case

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 15

Figure 3.3: Generation and output layer of the Persistency Model use case

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 16

Model patcher

The modeling layer of the persistency use case actually offers an additional functionality.
It is possible to modify the product model files exclusively by adding other model files.
These other files are the project model files. The idea behind this patching system is the
reusability of the product models, which should be the same in every project. The project
models expand and change the product models by containing instructions and informa-
tion for the model patch tool. The output of the tool is a new model file consisting of the
original model with all applied changes. This file is only temporarily available as an input
for the following generators.

Figure 3.4: Description of the patching functionality

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 17

Figure 3.5: Example class with patch classes

Example: A product model contains a class called ”C1”. This class consists of a
property ”a1” of the type ”short”. The project model contains two other classes called
”Patch1” and ”Patch2”, both are of the stereotype ”<<patch>>”. ”Patch1” consists of
a property ”a2” of type ”short”, with the stereotype ”<<add>>”, ”Patch2” consists of a
property ”a1” of type ”long”, with the stereotype ”<<change>>”. The patching classes
are connected to the original class by dependencies. This example is shown in Figure 3.5.
Running the patcher creates a new class based on the original one. It takes the information
of the two patching classes and applies it to the new class. The result is a class called
”C1” (the name has not been processed by the patcher) with the property ”a1” of the new
type ”long” and the new property ”a2” of type ”short” (Figure 3.6).

The model patcher is exclusively used in the Persistency Model use case.

Figure 3.6: Resulting class after execution of the model patcher

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 18

3.2.2 Mobile Client-Server Communication use case

Another use case of the code generation tool chain is the definition of the communication
between the mobile devices, called clients, and the server. Compared to the mentioned
use case before, the modeling of the communication use case is much easier. Because of
the less complexity, the model can be represented in a few class diagrams and stored in
only one file. Therefore no linker or model patcher is necessary. Without a linker in the
tool chain, there is also no need for a converter of the file format XMI 1.0 to XMI 1.1.
The input file for the following generator can be saved directly in the right format from
the used UML editor.

The generation layer again starts with one model file in the format XMI 1.1 and checks
first, using a model tester, the correctness of the input. If a negative result is produced,
the model tester is able to stop the execution of the tool chain and reports the errors
found. In case of no error, the code generators create the program code files. The report
generator creates the documentation files as described in Chapter 3.2.4.

The output of the source code generator consists of two parts. The first part is the
definition of the communication module on the client side, which uses the technology of
Connected Device Configuration (CDC) 1.0. The second part is the definition on the
server side, again in Java 6.

A graphical description of this use case is pictured in Figure 3.7.

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 19

Figure 3.7: Layers of the Mobile Client-Server Communication use case

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 20

3.2.3 Mobile Task Concept use case

The model of the Mobile Task Concept use case has a big difference to the use cases de-
scribed before. It not only consists of a structure diagram, like the class diagrams, it also
describes behavior of a program flow using state machine diagrams.

Similar to the Mobile Client-Server Communication the whole tool chain starts with
only one file containing all diagrams. So there is again no need for a linker or a converter.
Also no model patcher is used. Also similar to the last use case is the usage of a model
tester, which first checks the correctness of the model inside the file and gives its permis-
sion for a further processing or not.

The output of the source code generator consists of state machines, coded in Java 3,
which are targeted to run on the mobile devices. The behavior of the single states cannot
be modeled. Therefore some additional code has to be written manually and added to the
generated state machine framework.

The report generator creates the online documentation, as it is described in Chapter
3.2.4.

An illustration of this use case is pictured in Figure 3.8.

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 21

Figure 3.8: Layers of the Mobile Task Concept use case

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 22

3.2.4 Report generation

The generation of the reports is slightly more complex, than mentioned before. First of all,
it has to be explained, that the main part of the process currently is made by the UML ed-
itor used in the tool chain (refer to subchapter 3.3.2). Actually, this is an advantage, as no
compiler from the MagicDraw XMI (1.0 and 1.1) file format to HTML had to be developed.

Unfortunately the resulting report files from the UML editor are leaking of some
overview functionality. This is not a huge problem, because HTML can easily be read
and manipulated. A following self-developed report post-processor eliminates the missing
functionality and adds index files to create an overview over all generated documentation.

The Persistency Model use case requires another additional functionality. In contrast
to the other uses cases, which both turn over only one file to the report generator as an
input, the Persistency Model use case has at the beginning a lot of files, each containing
a part of the whole model. In addition to index files for the different diagrams, a linking
process is executed to connect the produced reports of these several files.

In the end, the resulting documentation is available via web browser in the company’s
documentation intranet, called ”Public Wiki”. As a matter of fact, this is seen as a big
support for the developers. They even prefer using the online documentation rather than
looking up the models by using the graphical editor and the model files.

Figure 3.9: Real implementation of the report generation

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 23

3.3 Aspects of currently used software, file formats and
tools

The subsequent chapters describe properties of software, file formats and tools used in
the current version of the tool chain. The descriptions are focused on issues, which are
important to understand the reasons of usage. They also point out disadvantages and
workarounds, which have a high potential of improvement.

3.3.1 Operating systems

Salomon uses Microsoft Windows and Linux as operating systems. During creation of this
document there is an upgrade taking place from the Windows version of XP to the, at this
time, newest version of Windows called Windows 7. The used Linux distributions cannot
be specified, as every developer is allowed to choose his favorite distribution.

As a consequence of the different operating systems, the used programs must be plat-
form independent concerning distributions of Microsoft Windows (XP and 7) and Linux.

3.3.2 MagicDraw 9.5 with Teamwork Server 9.5

MagicDraw is a visual modeling tool for i.a. UML. It provides transformation of UML
models to specific XML Schema and DB models, as well as any to any transformation.
It consists of many converters with different specifications, which provides a big range of
possibilities to import, export and create of files in different formats.

The MagicDraw version currently in use is 9.5. It works with UML 1.4 and is therefore
not up to date. As a file format it uses XMI and supports the versions 1.0, 1.1 and 1.2.
As mentioned before, the versions of XMI 1.0 and XMI 1.1 are currently in use.

The first reason for the usage of MagicDraw as the model designing tool is the simple
handling of the designing Graphical User Interface (GUI). Also the platform independency
is an important reason, because the company works with different operating systems (refer
to Chapter 3.3.1). But the main reason for using MagicDraw is the potential of automatic
processing of the model file format. XMI is a specified format and therefore, other tools
can read the output files and use it as input files.

An additional advantage is the built-in HTML report generator. It solves the problem
of developing an own generator, which reads model files and produces graphics and text
in HTML files. The output is not quite perfect, but changing of or adding functionality
to website files is much easier, than developing a MagicDraw model reader and converter.
More information about this topic can be found under Chapter 3.2.4.

NoMagic, the producer of MagicDraw, adds also a team supporting tool for Magic-
Draw called Teamwork Server. It provides a version control system, which is reachable

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 24

over network by more than one instance of MagicDraw at the same time. This offers
simultaneous access to the files managed by the Teamwork Server.

Furthermore, it allows an employee to lock specific parts, he currently works on. After
locking, other instances do not have any possibilities to edit them. This avoids concurrent
changes in the same part of a diagram.

Figure 3.10: Locking a class with all its relationships in MagicDraw 9.5

Unfortunately, the Teamwork Server is not able to make branches and merge them
back later, which is a big disadvantage in a workflow containing team driven development.
In contrast to the rest of the code of WAMAS and all its projects, the models are only
available in one version (and its history of course) for all development teams. This creates
overhead work, as usually many different branches of the non-model files exist. Currently
all branches are sharing the same model files.

In this version of the NoMagic Teamwork Server it is not possible to integrate another
version control system, like SVN. Therefore, the only handy system for managing all types
of files, including the usage of its editors and avoiding overhead work for solving concurrent
changes in same files, is driving a two-tier file repository system. In case of Salomon, on
the one hand Subversion (SVN) is used for managing all files of projects (and the prod-
uct), and on the other hand, the NoMagic Teamwork Server 9.5 is used for synchronized
editing of the model files. A more detailed description of the current handling of the model
files is available in Chapter 3.4.2.

3.4 Workflow of the current tool chain

After the description of the use cases and several used tools, file formats and more, now
the reader of this document should be able to understand the following description of the
workflow and the problems caused by some properties.

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 25

3.4.1 Managing WAMAS and customer projects

The basic idea behind is the splitting of the whole system in a constant part, called
WAMAS, and project specific parts, which use WAMAS as a fundament. Modifications,
depending on every customer, are made in the repositories of every project. Because of
the modular system mentioned in the chapters before, the WAMAS part has not to be
necessarily changed, if modifications for the projects are made.

Additionally, the used software repository system remembers the connection between
the checked out product and the current repository, hence it is possible to merge files be-
tween them. This fact makes it very convenient to develop the WAMAS product parallel
and independent to the projects. Any code changes can be overtaken to the projects by
updating the code. Also the other direction might be thought of, as a developer can find
a bug, which only occurs because of a specific use case in a customer project, and merge
it back.

In Figure 3.11 a schematic description shows an example of this workflow. Every
project (A, B, C and D) first starts as a so called ”SVN Copy” of the WAMAS repository,
represented by the red arrows starting at the red product rectangle. For example, after
creating ”Project A” some modifications have been made, so the version incremented.
Also the product itself has been updated; therefore it is available in version 1.1. The
definition of ”Project D” starts after this WAMAS update and begins already with this
newer version.

An interesting fact now is the ability to perform an update of the projects ”A” and
”C”, which only consists of the so called ”SVN update” of the WAMAS code. This is a
merge process, which usually is not free of conflicts. Although it needs some integration
time to solve the conflicts, it is a faster and handier way to update changes in the projects,
as it would be by integrating the changes manually.

3.4.2 Managing model files

The chapter before should explain the handling of projects, or to say it in a more precise
way, of its containing source code files. It has to be mentioned, that the WAMAS software
system not only consists of textual source code. Some parts are generated by model files
in the notation of MagicDraw XMI 1.0 or 1.1. These files are not able to be merged by SVN.

Explained in Chapter 3.3.2, the current system uses a central point of storage, where
a repository of the model files resides. The question may be raised, why it is necessary
to have the model files in the Eclipse workspace or rather in the SVN repository, but the
answer is easy: the generator needs the files as inputs. It has no access to the NoMagic
Teamwork Server and needs therefor a local copy of the file. Also, it is a good idea to have
the model files together with the produced code files.

As a consequence of this dual system, the model files in the SVN project and product
repositories have to be synchronized manually.

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 26

Figure 3.11: Schematic description of the connections between project and the product
WAMAS

Figure 3.12 pictures an example of the file synchronization workflow. Each of the four
colored bars represents a single program. The green bar is the repository server, where
the whole WAMAS code is checked in. The orange bar stands for the instance of Eclipse,
rather its workspace. The two bars on the right side represent the NoMagic system, con-
sisting of MagicDraw 9.5 (purple) and the Teamwork Server 9.5 (blue).

First, it is assumed, that a model file has to be modified. It is currently available
in the version 1.3. To start with the modification, the file has to be checked out from
the repository into the workspace of a local instance of Eclipse. Next, we can start the
graphical editor and open the specific file. However, the order of these two steps can also
be switched, because MagicDraw does not load the file from the Eclipse workspace. The
program loads it, as already mentioned, from a copy of the file on the Teamwork Server.
Thus they are pictured parallel in Figure 3.12 to indicate their independence. There is
also no connection between the Eclipse workspace bar and the MagicDraw bar.

After MagicDraw is opened and has loaded the model file, the next step is locking the
parts of the diagram, which will be modified. This avoids a concurrent modification by

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 27

Figure 3.12: Workflow of keeping the two repositories synchronized after modifying a
model file

another user. Once the classes in the diagram are locked, the user/developer is allowed to
access, modify and change them. In this example, the new submodel owns the incremented
version number 1.4 after the modification.

If the adaptions are finished, the user/developer wants to save their changes concen-
trate themselves to something else. Unfortunately, pressing a save-button is not enough.
On the one hand, the Teamwork Server has to be informed to adopt the new project. This
is made by explicitly committing the project or just unlocking the locked parts. On the

CHAPTER 3. DETAILED DESCRIPTION OF THE CURRENT SYSTEM 28

other hand, a copy of the model file has to be saved into the workspace of Eclipse to make
it reachable for the software generators. This is achieved with ”File” → ”Save Project
As”. A dialog window pops up, where the name and the location can be chosen. The
name must not be changed, as the existing file in the old version should be overwritten
with the new one in the Eclipse workspace.

There are also some radio buttons on the dialog to select the file format, refer to Figure
17. As described in Chapter 3.13, it is important to manually choose the right version of
XMI, depending on the use case. At this point it has to be mentioned, that the check box
with the text ”Rich XMI” below the radio buttons must be enabled. This causes the file
writing algorithm to use the whole specification of XMI. If it remains unchecked, it would
only save information, which is import for MagicDraw to read the file. Other tools, like
the following tool chain, would not be able to reconstruct the models in the files because
of missing information, i.e. default values.

Figure 3.13: The ”Save As...”-dialog

When the file is saved into the Eclipse workspace, the generators can be started. They
produce the new source files and of course, the reports. These new files have automati-
cally overwritten the old ones. Now the new system can be saved back into the repository
system by committing all files.

Chapter 4

Requirement finding and
evaluation methods applied

4.1 Description of the finding and evaluation methods

4.1.1 Applied method for finding requirements

The method for finding requirements leans on a mix of the 4+1 view model, described in
Section 2.2.1, and the Volere Requirements Specification Template, described in Section
2.2.2. The idea behind this method is the observation of the desired system by different
point of views and the definition of the stakeholders, having this point of views.

The duty of every stakeholder then is to write down attributes of the system, he de-
sires or he thinks, that are important for the system. A very crucial point is, that he is
only allowed to list attributes with regard to his role. For example, a user of a system
must not list the price of a program, if there is another stakeholder, who sees the system
of a financial point of view. Therefore, the participating people should first of all ask
themselves, what their role is and what they are really interested in. This game is one of
few in the world, in which selfishness and narrow-mindedness is not only allowed, but it
is welcomed.

After clearing out the points, they are divided into two categories. The first category
contains the necessary requirements. They are called knock out criteria (KOC) and repre-
sent properties, which are crucial for the whole system. If a solution candidate lacks of one
of those points, it can be ruled out immediately. Therefore it is not necessary to divide
the KOCs into different categories, they can be put together into one group. Evaluating
alternatives by those criteria can be seen as a first filtering level.

The second group contains the rest of the mentioned points. These attributes of the
system can be seen as nice-to-have-features. Possible candidates, which survived the first
filtering by the KOCs, can be evaluated and compared by this points. For the further
evaluation process, it is necessary to build groups, called views. Every view consists of a
list of attributes (called view lists (VL)) and a corresponding list of their importances in
the view, both defined by the stakeholder of the view (see Figure 4.1).

29

CHAPTER 4. REQUIREMENT FINDING AND EVALUATIONMETHODS APPLIED30

4.1.2 Applied method for evaluating possible solutions

To evaluate our candidates the MAUT (explained in Section 2.2.3) is used in a slightly
different notation. First, different relevant attributes are declared as the non necessary
requirements of the views. Therefore these views represent the dimensions. As a second,
the lists of weightings are written as row vectors. For the next equations n is defined as
the number of views, i as the index of a view and mi as the number of relevant attributes
inside a view i. Further, let the scalar variable vviewi be the evaluation value of one di-
mension, the row vector ~wattributes,viewi

= [w1,i, ..., wmi,i] be the list of weightings for the
relevant attributes and the row vector ~vattributes,viewi

(x) = [v1,i(x), ..., vmi,i(x)] be the list
of the evaluation values for the relevant attributes of a product x.

Keeping in mind, that the upper limits of the scale inside a view should sum up
to one, the defined row vector ~wattributes,viewi

has to be normalized to a row vector
~wattributes,viewi,norm. This can be achieved by using a sum row vector ~1i, which has the
same length mi as the weighting vector and consists only of ones.

~wattributes,viewi,norm =
1

(~1i ∗ (~wattributes,viewi
)T)
∗ ~wattributes,viewi

(4.1)

Then the following Equation 4.2

vviewi(x) = ~wattributes,viewi,norm ∗ ~vattributes,viewi
(x)T (4.2)

represents the same mathematical result as shown in Formula 2.4.

The same mathematical notation can be used for the overall value function. In
Equation 4.3 the scalar value v(x) is the utility value of a product x, the row vector

Figure 4.1: Schematic description of the n+1 lists by n stakeholders

CHAPTER 4. REQUIREMENT FINDING AND EVALUATIONMETHODS APPLIED31

~wviews = [w1, ..., wn] represents the weightings of the different views and the row vec-
tor ~vviews(x) = [vview1 , ..., vviewn] contains the view values (dimension values) calculated
before.

v(x) = ~wviews ∗ ~vviews(x)T (4.3)

Therefore to evaluate the utility value a number of vectors is needed. First, there are
vectors independent to the alternative x. These vectors are:

• The weighting vector of the views ~wviews. As it is independent of the alternative x,
it is only one vector with the size of n.

• The weighting vectors for the attributes of every view ~wattributes,viewi
. These are

about n vectors with a different number of elements.

For an impartial result, it is recommended to define these vectors before the definition
of the evaluation vectors. Actually it can be done at the time of finishing the requirement
finding process.

As a second, for every possible candidate x, one evaluation vector per the view is
needed:

• The evaluation vectors for the attributes of every view ~vattributes,viewi
(x). These are

about n vectors with different numbers of elements.

Consequences of this method

Like many other methods, also this one has benefits and disadvantages.

Benefits:

• A great benefit of this method is the detachment of the evaluation of the requirement
fittings and the evaluation of the importances of a requirement. Since the weightings
are equal for every solution, they can be contracted even before any possible solution
is found. This matter of fact reduces prejudice a lot.

• Also splitting the whole system into different views is a big advantage. Usually a
bigger system is owned by many stakeholders. A discussion between those stake-
holders has a high potential to lead to disputations, caused by the different views the
different stakeholders have. By letting every ”expert” evaluating his own domain,
this situation can be avoided. Also everyone has a feeling of participating in the
result, because his evaluation is a crucial input for the following decision making
process.

• The ability of implementing the equations to an automatic evaluation system (Mi-
crosoft Excel, Matlab, MathCad, etc.) allows different variants of evaluations. Several
versions leading to the same decision can make a possible solution obvious without
arguing on specific attributes’ weightings or evaluation values.

• The data of the evaluation is also a documentation for non included persons.

CHAPTER 4. REQUIREMENT FINDING AND EVALUATIONMETHODS APPLIED32

Disadvantages:

• If the whole process of finding the decision will not be kept transparently after getting
the evaluations and weightings, the stakeholders may feel overruled. This can lead
to a refusal by a coworker the next time a decision has to be made.

• The utility value depends strongly on the weightings of the different views. Therefore
finding proper values for this vector should be made by a person which has expertise
in every different view.

4.2 Definition of stakeholders, knock out criteria and view
lists

4.2.1 Stakeholders

The first thing to do is to define the stakeholders. The idea is to give everyone an own
view, who is related to the resulting system. Concerning this, four different stakeholders
emerge:

1. Model developer: The first one is obviously the user of the system. This role
is covered by the model developer or project owners, which are using the model
creating and modifying functions, and also the file distribution and managing parts
of the system.

2. Product developer: Taking a closer look on the role of the user shows up a group
of people, using the resulting tool chain: the product developer is responsible for the
core product and also uses some functionality of the system. He is also assigned to
connect the product with the output of the generators, therefore he creates the tool
chain for a proper use. This means he is responsible for creating the generators and
writing tools (i.e. converters) for connecting the single tool chain links.

3. System administrator: Another stakeholder can be found by looking onto the
role of the developer: the system administrator. He is responsible for keeping the
system at work and deals with the server and client programs.

4. Finance manager: As in every other system in the world one essential view is the
finances. Not only acquisition costs are an important point, also maintenance costs
and costs for training the users on the new system have to be considered.

After finding the stakeholders and accordingly the views, the persons have been asked
for creating a list containing all important points of the system from their point of view.
The following Tables 4.1, 4.2, 4.3 and 4.4 show the results of the opinion surveys.

CHAPTER 4. REQUIREMENT FINDING AND EVALUATIONMETHODS APPLIED33

Model developer (MD)

Keyword Description

suitable editor A graphical or text editor to develop UML2 class and state ma-
chine diagrams OR equivalent types of diagrams (graphical editors
are preferred)

repository system Full revision control system support for model files, which includes
the ability of file storage, revision control, branching and merging,
concurrent modification control and accessibility over network (in-
cluding the Internet)

report generation Graphical report generation to HTML with external accessibility
(API or command line executable)

stability Ability to handle large models (600 classes), inadequate waiting
times or regular software crashes are not acceptable

migration Ability of migrating the existing models (importing, converting
etc.)

loading time Typical waiting times when starting program, loading files, con-
necting to server etc., the faster the better

Table 4.1: Requirements list of the model developer’s view

Product developer (PD)

Keyword Description

API for file access Accessibility of the model files by the programs of the tool chain
(API for controlling the repository system)

suitable file for-
mat

Machine readability of the model files and their language for fur-
ther processing

Table 4.2: Requirements list of the product developer’s view

System administrator (SA)

Keyword Description

server: Linux Any server program must support Linux

clients: Win XP,
7 and Linux

Any client programs must support Windows XP, Windows 7 and
Linux

user management If there is a user management system, it would be a feature to
connect it to the company’s existing system.

Table 4.3: Requirements list of the system administrator’s view

CHAPTER 4. REQUIREMENT FINDING AND EVALUATIONMETHODS APPLIED34

Finance manager (FM)

Keyword Description

product price The products price should be affordable including costs for main-
tenance and software updates, and also applies: the cheaper, the
better

training costs A new system may lead to necessary training for the model devel-
opers, which leads to additional costs

development
costs

Adoptions of the old system or even a new development leads to
costs

Table 4.4: Requirements list of the finance manager’s view

4.2.2 Knock out criteria list

The first step after getting a response is to talk to every stakeholder for his opinion, which
of the points of his list are knock out criteria. In this domain, knock out criteria should
be really seen as points, which are able to rule out a possible solution, if even only one of
them is not fulfilled.

The following Table 4.5 shows the resulting knock out criteria list. This list has as-
signed a number to every point, which will be used further on in this document.

KOC List

Keyword brought in by

KOC1 suitable editor MD

KOC2 repository system MD

KOC3 API for file access PD

KOC4 suitable file format PD

KOC5 report generation MD

KOC6 stability MD

KOC7 migration MD

KOC8 server: Linux SA

KOC9 clients: Win XP, 7 and Linux SA

KOC10 product price FM

Table 4.5: Knock out criteria list

4.2.3 View lists

The next step is to eliminate the found KOC’s in the original lists, given by the stakehold-
ers. At this point, a special situation can occur: even if a point of the list is used for the
KOC list, it can also be used for further evaluation of a solution. On a general view, this
can happen, if a property of a system must have a kind of minimum level to be a solution

CHAPTER 4. REQUIREMENT FINDING AND EVALUATIONMETHODS APPLIED35

candidate. But after this level has been reached, it still can be a factor for comparison.
An example for this situation is here the suitable editor (KOC1). The new system must
have an editor, which can be used to edit all important properties of the models. But even
if this requirement is fulfilled, there is a wide range of more or less handy editors, in the
shown scenario, a graphical editor for UML will be preferred against a text editor for UML.

After reviewing every point and ruling out the KOC points, which can not be used
for comparison, the remaining points on every list can be seen as the criteria for a new
system’s rating. These lists are now called view lists and the stakeholders now have to
weigh the remaining points on a scale.

Note: For this thesis a weighting scale from 1 to 10 has been chosen. This is not the
scale for the evaluation, it is the scale for the weightings, which should not start with zero.
A zero weighting would rule out an attribute in every alternative, which would make it
irrelevant! The scale for the following evaluation of alternatives is chosen from 0 to 10.

The Tables 4.6, 4.7, 4.8 and 4.9 show the rating of the four stakeholders.

View List MD

Keyword Weight

VLMD1 suitable editor 8

VLMD2 report generation 3

VLMD3 loading time 5

Table 4.6: View list of the model developer

View List PD

Keyword Weight

VLPD1 suitable file format 8

Table 4.7: View list of the product developer

View List SA

Keyword Weight

VLSA1 user management 7

Table 4.8: View list of the system developer

CHAPTER 4. REQUIREMENT FINDING AND EVALUATIONMETHODS APPLIED36

View List FM

Keyword Weight

VLFM1 product price 7

VLFM2 training costs 8

VLFM3 development costs 5

Table 4.9: View list of the finance manager

After the view lists only the weightings between the views are missing. They have
been chosen by the project owner and are shown in following Table 4.10:

View’s Weighting List

View Weight

Model developer (PD) 10

Product developer (PD) 5

System administrator (SA) 2

Finance manager (FM) 8

Table 4.10: Weighting list of the different views

Chapter 5

Different approaches to a new tool
chain

The following chapters describe different tools, which are candidates for a solution. The
descriptions of the properties are focused on the requirements (KOC’s) found in the chap-
ters before.

5.1 MagicDraw

5.1.1 MagicDraw 17.0

The first idea that comes up is updating the currently used system for developing the
models to the newest version. This would be MagicDraw 17.0.1 beta 2, but because of the
beta stadium, the version 17.0 is in the focus of this estimation.

Different editions

The software is available in different editions (ordered from most expensive to cheapest,
which is congruent to the order of most features to least features):

• Enterprise

• Architect

• Professional C++/C#/Java

• Standard

• Personal

To decide in favor of an edition, it is enough to consider only points related to the
requirements, defined in Chapter 4.2. Related points in the feature list are:

• UML support

37

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 38

– Support for UML 2 metamodel and notation

– Import of UML 1.4 metamodel

– Class diagram - includes Package and Objects diagrams

– State Machine diagram

• UML extensions

– Customizable stereotypes, constraints, tagged values

– Ability to assign stereotypes from shortcut menu or type directly near the model
element name

• Editor operations

– Cut/copy/paste elements

– Manipulations with entities: moving, resizing; copying

– Automatic class, package, subsystem, message names, attribute, parameter
types, and operation return type completion

– Capability to draw generalization/realization in the opposite direction

• Save/load

– Support for XMI 2.1. Native files are stored in XMI (XML metadata inter-
change) format

– Import for XMI version 1.0, 1.1, and 1.2

• GUI

– Floating diagram window

– New Project window is the single place to start different types of projects: Blank
Project, New Project from Existing Source Code, New Project from Template,
Use Case Project

– Themes for Swing GUI. Includes MagicDraw and Big MagicDraw themes

• Reports

– The type of template files that the Report Wizard supports: normal text, RTF,
Open XML (DOCX, XLSX, PPTX), HTML, Spreadsheet template (need to be
saved as HTML format), and XML template (DocBook or FO) files

– Diagram images embedded in reports: SVG, EMF, WMF, JPG and PNG for-
mats

– Generate reports from console without running MagicDraw

• IDE Integrations

– Integration window allows integrating MagicDraw with multiple IDEs on the
first startup.

– Seamless integration with Eclipse 3.1 or later(JDT or Java IDE)

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 39

– Integration with Eclipse Workbench

• Languages

– GUI is available in these languages: English (US), German, Japanese, French,
Russian and Thai

A full feature list of the different versions can be found under reference [Maga].

The cheapest edition of MagicDraw 17.0, which satisfies all these points, is the ”Stan-
dard Edition”.

Evaluation and tests

MagicDraw is able to integrate itself seamless into Eclipse. After integration it provides
a graphical UML editor inside the Eclipse GUI Framework. If a file is opened through
the file browser, for the first time after starting Eclipse, it loads and starts MagicDraw
automatically in the background; hence MagicDraw can be used as a normal plugin. Also
the connection to the Teamwork Server can be directly used inside Eclipse.

Unfortunately the newest version 17.0.1 beta2 supports only Eclipse 3.7 or later, older
versions are officially not supported. For older Eclipse versions, like Helios, the NoMagic
Support Center recommends the MagicDraw Version of 17.0 for integration. Actually, the
integration of 17.0.1 beta2 into Eclipse 3.6 has been tested, and both the graphical editor
and the Teamwork Server worked.

Although integration into the Eclipse GUI is possible, it has some disadvantages.
Starting the MagicDraw plugin for the first time requires some time, around five minutes.
The official statement in an Email (20.09.2011) of the NoMagic support to this issue is:
”Due to performance during starting MagicDraw within Eclipse, this problem is already
known for us. This issue has been added into our defect list and we will try to fix it in
the future MagicDraw releases.”

MagicDraw provides an API for external control. This feature allows other programs
to use MagicDraw and to remote control its features.

As mentioned in Chapter 3.2.1 the database model is split into several files. These
submodel files can differ in their size. Because of the fact, that the linked file consists
of the sum of all submodel files, it is implied that no submodel file can be bigger than
the linked file. Therefore, to test the usability of MagicDraw 17.0 with realistic sizes of
model files, the linked database file can be opened. As a result of this test, after importing
the file, which took about a minute, there were no inappropriate delays or frozen GUI
elements, MagicDraw seemed to work fine.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 40

Pricing

Independent of the functionality of MagicDraw, it has to be considered, that it is not
free software. The chosen edition, which fits all the requirements, also depends on the
type of license and a so called ”Software Assurance”. This assurance is a one or multiple
year agreement between NoMagic and the end user in which NoMagic provides the latest
MagicDraw versions, bug fixes and support.

The different license types are:

• Standalone license: This license allows using MagicDraw on one machine where it
is installed.

• Mobile license: This type of license allows the owning user to install it three times.
Only one instance at the same time can use the license.

• Floating license: This license type allows the owner to install and use the same
license on multiple machines independent of the user. Every license using computer
must have a network connection to a license server. If it is used on a laptop, an
internet connection to the server is mandatory. The license server is included with
the first floating license and is free of charge.

The following Table 5.1 shows the listing of prices depending on the assurance duration
and the type of license:

Assurance duration

Type of license License 1 year 2 years 3 years

Standalone e 531,00 e 106,00 e 212,00 e 318,00

Mobile e 631,00 e 126,00 e 252,00 e 378,00

Floating e 849,00 e 170,00 e 340,00 e 510,00

Table 5.1: Prices of MagicDraw 17.0 depending on different license types and assurance
durations

It is also possible to buy assurances separately. Assurances include version updating;
therefore it is a cheaper way of getting the newest version of the program than buying a
new license. Currently Salomon Automation owns nine licenses of type ”Standalone” and
two licenses of type ”Floating” for MagicDraw 9.5, all for the Standard edition of the client.

The price list of the separately buyable software assurances is shown in Table 5.2.

5.1.2 Teamwork Server 17.0

Evaluation and tests

The Teamwork Server (TWS) still contains its features of team synchronization, concern-
ing locking single parts in diagrams, to let different users work simultaneously in the same
diagram. Additionally to the old functionality, this release also supports branching. It
works similar to other repository systems like SVN, as it consists of trunks, branches and

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 41

Assurance duration

Type of license 1 year 2 years 3 years

Standalone e 170 e 276 e 382

Mobile e 202 e 328 e 454

Floating e 272 e 442 e 612

Table 5.2: Prices for separately bought software assurances concerning MagicDraw

tags.

There are three different storage systems available to choose:

• Native storage system

• SVN

• Clear Case

In this case, only the first two repository systems are of interest for the new tool chain.
Git is not supported.

Figure 5.1 shows an extended project view with a trunk and a branch. This view is
intended to manage the whole repository. It is possible to create new branches or open
every version of every branch, including the trunk. Also every single version can be set as
the newest one.

Figure 5.1: Tree view of an example repository including all versions of the trunk and a
branch

Unfortunately it has to be pointed out that a branch in SVN is not the same as a branch
made by the Teamwork Server. The Teamwork Server copies files to different folders in
one SVN branch or version, therefore using branching with files in an SVN repository is

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 42

kind of having a two-level repository system. SVN manages the basic structure of file
version control, but the files and folders inside the SVN repository itself represent a repos-
itory system, managed by the TWS. Therefore a common storage of the source code files
and the model files is not possible.

Another benefit of the new version of the TWS is the support of an external user man-
agement system. By using Lightweight Directory Access Protocol (LDAP) it is possible to
connect the TWS with the user data of the Windows and Linux Networks, therefore extra
user names and passwords are avoidable. This feature saves managing time, as no extra
user management system has to be supervised.

The Teamwork Server is available for Windows, Mac and Linux versions.

More detailed information to the Teamwork Server can be found under reference
[Magb].

Pricing

Also the Teamwork Server is not free of charge. The license needed is depending on how
many simultaneous connections of clients should be allowed and, of course, the duration
of the so called ”Software Assurance”. The following Table 5.3 shows the listing of the
prices.

Assurance duration

Quantity of simultaneous connections License 1 year 2 years 3 years

up to 5 e 1.586 e 317 e 634 e 951

up to 10 e 3.174 e 635 e 1.270 e 1.905

more than 10 e 6.349 e 1.270 e 2.540 e 3.810

Table 5.3: Price list of the Teamwork Server 17.0 depending on the quantity of simulta-
neous connections and assurance durations

Currently Salomon has a Teamwork Server 9.5 license for more than ten connections
and also here it is possible to buy assurance separately for updating to the newest version.
The prices of separately assurances are shown in Table 5.4.

Assurance duration

Quantity of simultaneous connections 1 year 2 years 3 years

up to 5 e 508 e 825 e 1.142

up to 10 e 1.016 e 1.651 e 2.286

more than 10 e 2.032 e 3.302 e 4.572

Table 5.4: Prices for separately bought software assurances concerning the Teamwork
Server

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 43

5.1.3 Model Merge Plugin

Evaluation and tests

The Teamwork Server ’s ability to create and manage branches would not be a real big
advantage without the ability to merge different branches together by tool support. For-
tunately, NoMagic has a solution for this problem.

Figure 5.2: The ”merge view” of two versions of the same model

The Model Merge Plugin enables both 2-way and 3-way merging of model files. Both lo-
cal projects and remote projects inside a version control system can be processed. This plu-
gin serves the ability to create differences between two different models, i.e. two branches,
and can store it in a file.

As the name of the plugin implies, it is also possible to merge changes between different
versions of models. Similar to text based merge windows, the ”merge view” of the plugin
graphically points out differences. These conflicts can be solved from a user by accepting
suggestions of the merge algorithm or set merge actions manually.

Figure 5.2 shows an example of this ”merge view”. In this example a class, originally
named ”Reader”, has been renamed in two branches of the same model (actually one of

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 44

Figure 5.3: Example for changing an automatic merge suggestion

the two branches is the trunk). The Merge Plugin suggests a solution to this conflict by
taking the change of the target, in this case ”User”, indicated by the green check mark in
the specification tab at the bottom of the window.

The suggestions of the merge algorithm do not necessarily have to be right. By right-
clicking on the conflict property the selection can be changed, which is shown in Figure 5.3.

For the sake of completeness, also an example with merging of state machine diagrams
has been tested with the same positive results.

Pricing

The price of this plugin can be chosen similar to the MagicDraw license. The list of prices
is shown in Table 5.5.

Assurance duration

Type of license 1 year 2 years 3 years

Standalone e 493,00 e 575,00 e 657,00

Mobile e 642,00 e 749,00 e 963,00

Floating e 790,00 e 922,00 e 1.054,00

Table 5.5: Prices of Merge Plugin with different license types and assurance durations

Although Salomon Automation does not own any Merge Plugin licenses, the prices for
separately bought licenses may be interesting for prolongation or future update purposes.
These prices are shown in Table 5.6.

Assurance duration

Type of license 1 year 2 years 3 years

Standalone e 132,00 e 214,00 e 296,00

Mobile e 171,00 e 278,00 e 385,00

Floating e 211,00 e 343,00 e 475,00

Table 5.6: Prices of separately bought assurances for the Merge Plugin

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 45

5.1.4 MagicDraw Project Converter

NoMagic provides a free converter, which is able to open MagicDraw projects in the ver-
sion 9.x or earlier and save it to a MagicDraw 17 project. This program is standalone and
is therefore independent of the usage of MagicDraw 17 as an editor.

Testing the Project Converter with the linked database model file might lead to a
message that more memory for converting should be allowed. After adapting this setting,
the generated output looks fine and also the duration of conversion is acceptable.

5.1.5 Summary

The NoMagic products do fit all requirements, as shown in Table 5.7. Therefore it pro-
vides a solution for a new tool chain. It will be considered as a candidate for a possible
solution in the following detailed view list calculation. Therefore, the view list points have
to be evaluated, see Table 5.8.

KOC1 4

KOC2 4

KOC3 4

KOC4 4

KOC5 4

KOC6 4

KOC7 4

KOC8 4

KOC9 4

KOC10 4

= 4

Table 5.7: Fitting of KOC’s using MagicDraw with Teamwork Server and Merge Plugin

VLMD1 9

VLMD2 10

VLMD3 3

VLPD1 8

VLSA1 9

VLFM1 4

VLFM2 5

VLFM3 4

Table 5.8: Fitting of VL-points using MagicDraw with Teamwork Server and Merge Plugin

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 46

5.2 Visual Paradigm

5.2.1 Visual Paradigm for UML 8.3

Different editions

Visual Paradigm (VP) is a graphical UML designing tool. Similar to MagicDraw it consists
of a GUI for developing the UML diagrams. It is also able to define own stereotypes.

There are several different editions of Visual paradigms. The cheapest one, which fits
all requirements, can be chosen. These requirements are:

• UML Modeling

– Class diagram

– State machine diagram

• Modeling Toolset

– Visual Diff

– UML Profile support

• Documentation Generation

– Generate HTML document

• Team Collaboration

– Subversion collaboration

• Interoperability & Integration

– XMI import and export

– UML2 model import and export

– Command-line operations

• Supported Standards

– UML

– XML Metadata Interchange (XMI)

On the web page [Par] a list of all these points implemented that can be considered
as an edition filter can be found. Comparing these points with the requirements lead to
three different editions, the cheapest one of them is the ”Standard Edition”.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 47

Figure 5.4: Extracted content of Visual Paradigm’s native file format using a ZIP-program

Evaluation and tests

As a small disadvantage Visual Paradigm by default saves its projects in an own file for-
mat, called ”Visual Paradigm Project” (*.vpp). Opening the file with a text editor leads
to an unreadable text, but opening the file using a ZIP-program shows that the file format
consists of a packed folder containing many subfolders and files, see Figure 5.4.

Taking a deeper look on the name of these folders and files the interesting information
can easily be discovered. For example all classes of this project can be found in a folder
called ”model”, its subfolders are named like the diagram and contain the defined classes.
Reading these files with a simple text editor shows an obvious coding of the information.
They seem to be text files with a simple encoding, but for a safer statement, these files
have to be analyzed in a more specific way.

To finally sum up this issue, there is a very good chance to read the native file for-

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 48

mat of Visual Paradigm without a conversion into an interchangeable model file format.
However, the software is capable of exporting the projects to XMI 2.1. Figure 5.5 shows
the dialog window with the necessary settings. This feature is not only usable through
the GUI, but also can be called by command line. Therefore, as a plan B, it is possible to
”read” the native file format of Visual Paradigm by automatically converting the native
file to a temporary file, containing XMI 2.1 and parse this one.

Figure 5.5: Dialog for exporting project into XMI2.1 file format

Pricing

The price of the ”Standard Edition”, which supports all necessary features, depends on
the type of license. There are three different license types:

• Single-Seat License: This type of license allows one specific user to install VP on up
to different three computers. Simultaneous usage or usage by a different user is not
allowed.

• Floating License: This type of license is similar to the ”Single-Seat” type, but allows
anyone to use the license. A license server manages the number of licenses and assigns
everyone, who wants to use the client license, until the number of licenses is reached.

• Site License: Under this type of license anyone within the organization can use the
software, as the number of licenses is not fixed.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 49

The price of one unit is also depending on the amount of the order. Within a quantity
of five to nine licenses, the customer gets a discount of 5%, between ten and 49 licenses a
discount of 10%. To get information about discounts when ordering an amount of more
than 50 licenses, a request to the sales support is necessary.

Additionally it is possible to buy maintenance for one year. This means that receiving
updates for the chosen product are for free within one year. The price is about 20% of
the product.

Regarding to this information, the following table shows the prices of the different
opportunities, which can be considered. All prices are in US Dollar and for one unit.
Every year extending the maintenance costs about 20% of the product list price, buying
maintenance separately costs about 30%. It is also possible to buy a site license, which
includes one year maintenance and costs about $ 28.000. It would be usable by anyone in
the company at the same time.

Single-Seat License Floating License

Quantitiy no maintenance 1 year maintenance no maintenance 1 year maintenance

1-4 $ 299,00 $ 358,50 $ 388,50 $ 466,00

5-9 $ 284,05 $ 340,86 $ 369,27 $ 443,12

10+ $ 269,10 $ 322,92 $ 349,83 $ 419,80

Table 5.9: Prices of Visual Paradigm depending on the type of license, the quantity and
the maintenance option

5.2.2 Teamwork Server 5.3

Evaluation and tests

Visual Paradigm integrates team support for model files by a Teamwork Server. It can
use a native type of repository or can be configured with SVN, but Git is not supported.
Differently to some other UML tools with team support, Visual Paradigm really uses the
SVN API for branching. In other words, creating a new branch through Visual Paradigm
results also in a new branch in e.g. Tortoise SVN and vice versa. All team features only
work with the Visual Paradigm file format *.vpp and not with exported files like XMI.

Visual Paradigm’s Teamwork Server supports the usage of LDAP and next to the
Windows versions, there is also an explicit version for Linux available.

As a very useful tool, Visual Paradigm provides a feature called ”Visual diff”, which
can be found under menu point ”Tools”. With this tool it is possible, to compare two
diagrams in their graphical notation. The differences are listed and connected to the
graphical representation in two frames, containing the diagrams to compare. The settings
for comparison can be changed in the upper part of the window. Figure 5.6 shows an
example of this supporting tool. This feature is only usable for locally saved projects.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 50

Figure 5.6: Example of two versions of a class diagram, compared with the ”Visual diff”
feature

In addition a merging feature is provided and can be found on the toolbar under
”Team”. The merge functionality lists all differences between two versions and a common
ancestor, if available, and points them out in a dialog window. It supports the usual fea-
tures like accepting suggestions of the merging algorithm, declining and reverting original
values.

Figure 5.7 shows an example of a merge conflict of two branches. The original name
was ”Watch a stock”, and then two branches were made. In one branch the name has been
changed to ”Keep track of a stock”, in the other branch to ”Monitor a stock”. The first
merge action, between the trunk and the second branch did not bring up any problems.
To avoid misunderstanding, the user also has to accept the changings manually, but this is
not a very interesting act, as every change simply can be accepted. The more interesting
case is the next merge attempt of the first branch with the modified trunk. Of course, this
causes a problem, as it cannot be decided, which change should be accepted and which
should be declined. The merge window shows this conflict and provides the possibilities
to keep the current value, change to the conflict value or even revert it to the value of the
common ancestor.

For the sake of completeness, also an example with merging of state machine diagrams
has been tested with the same positive results.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 51

Figure 5.7: Example of a merge conflict in Visual Paradigm

Migration of model files of the current tool chain can be achieved in two slightly dif-
ferent ways. The first possibility is to unzip the files and import them directly into Visual
Paradigm by ”File → Import → XMI”. For some reason this method causes the loss of
the class diagram’s names and all stereotype information. The second variant of migra-
tion uses the NoMagic Project Converter. It can take the old files in *.xml.zip or *.xml
format. The output depends on the input format; therefore it must be unzipped before or
after usage of the converter to get an XMI file. After converting, the model files can be
imported by Visual Paradigm in the same way as mentioned before.

Visual Paradigm supports two different ways to get external access. First it supports
command line actions, like importing and exporting projects to a specific file format or gen-
erating HTML reports. The second possibility to get remote control of Visual Paradigm’s
features is a plugin support. VP allows external access to all commands, like in the menu
bar available, by implementing a plugin written in Java and using a VP-API-Java library.
Thus it is possible to handle the team support by a self-developed check-out and check-in
tool and a plugin, which delegates the actions to Visual Paradigm’s built in features.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 52

Similar to the tools before, this tool was also tested with the linked model file of the
database use case. Because of the loss of information using the direct import function, the
MagicDraw Project Converter was used first. Importing the converted file then allowed a
normal usage, without any frozen GUI elements or inappropriate waiting durations.

Pricing

The version of the Teamwork Server, that fits all requirements, like a repository for files
and concurrent modeling, is the ”Corporate” edition. Its price depends on the amount
of licenses and the duration of maintenance. The following Table 5.10 shows the list of
prices. All values are in USD.

Quantitiy no maintenance 1 year maintenance

1-4 $ 2999,00 $ 3598,50

5-9 $ 2849,05 $ 3418,58

10-49 $ 2699,10 $ 3238,65

Table 5.10: Prices of Visual Paradigm depending on the type of license, the quantity and
the maintenance option

Every year extending maintenance costs 20%, a year maintenance separately bought
costs 30%.

5.2.3 Summary

Visual Paradigm and the Teamwork Server do fit all requirements and provide a solution
for a new tool chain. The fitting of requirements is shown in Table 5.11. Therefore it will
be considered as a candidate for a possible solution in the following detailed calculation
of evaluation points.

5.3 Microsoft Visio 2010

Evaluation and tests

Microsoft Visio 2010 is a commercial graphic editor for UML diagrams, business work-
flows and many more. It is capable of connecting to other Microsoft Office based files for
interdisciplinary data sharing.

Visio is also able to create documentation in other Microsoft Office file formats, HTML
and more. Code Generation is unfortunately not possible, as it is just a drawing tool. But
it supports UML2 as well as exporting the models into XMI file format using an add-on
called ”UML Background Add-On”.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 53

KOC1 4

KOC2 4

KOC3 4

KOC4 4

KOC5 4

KOC6 4

KOC7 4

KOC8 4

KOC9 4

KOC10 4

= 4

Table 5.11: Fitting of requirements using Visual Paradigm with Teamwork server

VLMD1 9

VLMD2 10

VLMD3 8

VLPD1 8

VLSA1 5

VLFM1 8

VLFM2 5

VLFM3 9

Table 5.12: Fitting of VL-points Visual Paradigm with Teamwork Server

The support of team development is limited to distributing models in only readable
versions. They even can be opened without Microsoft Visio, but are not able to be modi-
fied. This feature uses the Microsoft Sharepoint Server.

Pricing

Microsoft Visio 2010 is not part of any Microsoft Office 2010 Suite, although it has the
same GUI strategy and provides very high support for the other programs of the office
suite. It is available as standalone program and the premium version costs about e1.299
per license.

5.3.1 Summary

The leak of the necessary team features clearly rules out Microsoft Visio 2010 as a possible
solution. Table 5.13 shows the fitting of requirements.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 54

KOC1 4

KOC2 8

KOC3 8

KOC4 8

KOC5 4

KOC6 4

KOC7 4

KOC8 8

KOC9 8

KOC10 4

= 8

Table 5.13: Fitting of requirements using Microsoft Visio 2010

5.4 IBM Rational Software

5.4.1 IBM Rational Software Architect

Evaluation and tests

The IBM Rational Software Architect (RSA) is a part of the Rational Rose Suite and is
intended to support architects and designers to produce UML models. It is completely
based on Eclipse 3.6 (Helios).

The installation of the software is possible as standalone program or as a plugin for
an already installed Eclipse version (Helios or later). Before any of the two versions can
be installed, an ”Installation Manager” is needed, which is designed to manage all instal-
lations of IBM products. To use RSA as a plugin, the fundamental Eclipse program has
to be extended by some plugins and patches.

Among other types of description diagrams RSA supports UML2 diagrams, containing
class and state machine diagrams. Examples for these two diagrams modeled with RSA
are available in Figure 5.8 and 5.9.

The file format for its models of the Rational Software Architect is based on XML to
satisfy UML2.0 requirements for its interconnections and semantics. It supports two types
of models: single and logical. Single models reside in single files. The logical models are
divided into so called fragments, that are logically related, even if they are physically sepa-
rated. In Rational Software Architect, these subunits or fragments are stored in *.efx-files
that are referenced by a main model file, saved with the file extension *.emx. However,
there seems to be a good chance to directly read the native file format. As an alternative,
the program supports exporting files into format XMI 2.2.

RSA also offers possibilities for importing files. Unfortunately it only supports the
import of XMI 2.2. This fact would make another conversion tool necessary, to ensure a
migration of the existing files into RSA.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 55

Figure 5.8: Example for a simple state machine diagram designed with RSA

The Rational Software Architect also provides a possibility for external control. It
offers the concept of so called ”pluglets”, which allows external programs and tools to use
RSA and its features.

Pricing

RSA offers two different license types, which are defined as follows:

• Authorized user license: This kind of license allows an installation on any number of
computers and each Authorized User may have simultaneous access to any number
of instances of the program at one time. An entitlement is unique to that person and
may not be shared, nor may it be reassigned other than for the permanent transfer
to another person.

• Floating user license: The program may be installed on any number of computers,
but if the user simultaneously accesses more than one installation another license is
required.

Independent to which kind of license, it is only for a usage of 12 months with included
service. After end of the duration, another license must be bought. Therefore it can be
seen as an annual rent of the software. Table 5.14 shows the prices for one year including
support depending on the kind of license. All values are in EUR.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 56

Figure 5.9: Example of a simple class diagram designed with RSA

Authorized user license Floating user license

e 529,20 e 1.059,60

Table 5.14: Prices of different licenses of Rational Software Architect

5.4.2 Rational Team Concert

Evaluation and tests

Rational Team Concert (RTC) is built on client-server architecture and includes source
control, reporting and support for build management. The product is optimized for small
and medium sized teams and is capable of being integrated into a wide range of other
products. It consists of a server program and clients, which can be included as features
into other IBM Rational programs, like RSA.

With the Rational Team Concert software bundle it is possible to branch and merge
models. It works with either a native repository system or a given one, like Subversion.
For branching, the included methods of SVN can be used, and for merging, Rational Team
Concert offers two possibilities. Depending on which file format in RSA has been chosen,
either a logical compare or non-logical compare can be performed. An example of a visual
logical comparison is shown in Figure 5.10.

Finally it has to be mentioned, that the amount of features aim a more complex pur-
pose than this project requires. It targets a full support for Scrum, continuous building
and integration and much more.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 57

Figure 5.10: Example of a logical compare of a UML model

Pricing

The following table lists the prices of Rational Team Concert for the respective license
type.

Authorized user license for Workgroups Floating user license for Workgroups

e 1.970,00 e 6.180,00

Table 5.15: Prices of different licenses of Rational Team Concert

5.4.3 Summary

IBM’s Rational Software Architect and Team Concert fit all requirements, as it is shown
in Table 5.16. It allows users to use full team support for model files by using an own
repository and provides also external access for the files. The only negative point that
could be mentioned is the intentional purpose of the RTC. It has many more features than

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 58

necessary for Salomon’s needs. Although it might be oversized, the software is evaluated
for the further process (see Table 5.17).

KOC1 4

KOC2 4

KOC3 4

KOC4 4

KOC5 4

KOC6 4

KOC7 4

KOC8 4

KOC9 4

KOC10 4

= 4

Table 5.16: Fitting of requirements using IBM’s Rational Software Architect and Team
Concert

VLMD1 9

VLMD2 8

VLMD3 6

VLPD1 6

VLSA1 5

VLFM1 1

VLFM2 5

VLFM3 9

Table 5.17: Fitting of VL-points using IBM’s Rational Software Architect and Team Con-
cert

5.5 Enterprise Architect

5.5.1 Enterprise Architect 9.1

Different editions

The Enterprise Architect (EA) is a model designing tool manufactured by Sparx Systems.
The software is available in different editions:

• Desktop

• Professional

• Corporate

• Business and Software Engineering

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 59

• Systems Engineering

• Ultimate

These editions differ mainly in the supported features, and of course in the price. The
interesting points of the feature compare list are:

• Advanced UML 2.3 Modeling

• Automation API

• Report Generation: HTML and Rich-Text

• Version Control Integration

• XMI Import and Export (2.1, 1.2, 1.1, 1.0)

• Shared Models

• Baseline Diff/Merge

• Lazy Load

• OMG XMI

• Eclipse Integration

The cheapest edition, which supports all these features, is the so called ”Business &
Software Engineering” edition.

Evaluation and tests

EA provides an intuitive GUI for designing UML2 diagrams, such as state machine and
class diagrams. Figure 5.11 and Figure 5.12 show examples for diagrams build with this
editor.

Enterprise Architect also provides powerful document generation and reporting tools
with a full WYSIWYG (”What you see is what you get”) template editor. Amongst others
also HTML documentation of models is available.

Migration of the current model files is also possible. EA supports the XMI versions
of 1.0, 1.1, 1.2 and 2.1. Unfortunately the trial version does not support import and
exporting of models to XMI, therefore only the product’s description site, available under
reference [Sys], can be used as an information source. According to this description, it
supports every important requirement:

• Support for XMI 1.0, 1.1, 1.2 and 2.1

• Export complete EA models to XMI

• Standard XML for use by 3rd party tools, such as MDA generators and report writers

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 60

Figure 5.11: Example for a state machine diagram modeled with EA 9.1

• Import from other XMI compliant tools in UML 1.1, 1.3 or 2.x format

EA also supports a version control system and a diff/compare-feature. The version
control system allows storing any compliant system of standard XMI text files. These
may then be set under version control and distributed to developers, analysts, managers
and team members in general, either for inclusion in privately assembled models (”private
mode”) or as part of the control and management of a shared DBMS (”shared mode”).
As a native repository system CVS is used, but also Subversion is possible.

The diff/compare-feature unfortunately leaks of an important feature. As the name
suggests it is possible to compare different models and create a difference view. With the
aid of this tool it is possible to detect differences, but it is not possible to merge those
models. Therefore any differences must be changed in one of the two involved models
manually. According to the homepage, also a ”Diagram compare is currently not sup-
ported”, this means, that only elements and not their dependencies can be compared.

Pricing

The price of the Enterprise Architect 9.1 in the ”Business & Software Engineering” edition
is depending on the amount of licenses. Additionally it depends on the kind of license
(”Standard License” or ”Floating License”). The following Table 5.18 shows the different
prices. All prices are in US Dollar and for one unit.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 61

Figure 5.12: Example of a class diagram modeled with EA 9.1

Quantity Standard License Floating License

1-4 $ 599,00 $ 799,00

5-19 $ 539,00 $ 719,00

20-100 $ 479,00 $ 639,00

101+ $ 419,00 $ 559,00

Table 5.18: Prices of different Enterprise Architect 9.1 licenses types and amounts

5.5.2 Integration for Eclipse

Evaluation and tests

Integration for Eclipse allows integration of the Enterprise Architect into Eclipse. In
detail, this Eclipse feature does not integrate EA into the Eclipse GUI. More or less it
only tells a running instance of EA, that it should synchronize a project folder with a
given Eclipse workspace. In other words, changes that will be saved to a normal project
folder would automatically be saved to a folder within the given Eclipse workspace too.
Therefore, a manual ”Save As”-command, as described in Section 3.4.2 and Figure 3.12,
would not be necessary any longer.

Pricing

This feature is free of charge.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 62

5.5.3 Summary

Unfortunately the Enterprise Architect lacks of some properties and features, which would
have been necessary for the Knock-Out-Criteria List (see Table 5.19). Therefore no further
evaluation has been executed.

KOC1 4

KOC2 4

KOC3 8

KOC4 4

KOC5 4

KOC6 4

KOC7 4

KOC8 8

KOC9 8

KOC10 4

= 8

Table 5.19: Fitting of requirements using Enterprise Architect

5.6 Gentleware products

5.6.1 Poseidon for DSLs 2.0

Evaluation and tests

As the name already suggests this is not software especially for UML2. Poseidon for DSLs
2.0 is an editor, which is able to create editors for own DSL definitions.

Defining a DSL causes some inconveniences. First of all, the DSL has to be developed.
Logistics software engineering is a very complex industrial sector; a development of a DSL
may lead to much effort.

A second disadvantage is the migration of the current models. If they should be
brought to a self-developed language, also the converter has to be self-developed. This
also may lead to a high amount of time and manpower to invest.

As a third point, the users of the language must be trained. In case of Salomon these
users would be the WAMAS developers. Currently they are trained on UML1.

Despite these negative points, a DSL can improve development of future models. Once
the language and its editor are finished and the developers are trained, usually the usage
of the designing tool can be easier and more intuitive than a solution with a common
description language. Also a file format can be chosen, which is capable of being merged
by a self-developed merging tool. Those advantages surly depend on the quality of the

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 63

developed language, but a well-engineered DSL may turn Salomon to a pioneer on its
industrial sector.

Pricing

The price of Poseidon for DSLs 1.x is about e 839, the price of the new release 2.0 is not
yet available.

5.6.2 Poseidon for UML 8.0

Evaluation and tests

Poseidon for UML is a standalone editor and is based on an editor created by Poseidon for
DSLs. It supports class diagrams and state machine diagrams as well as all other defined
UML2 diagrams. Theoretically it can be self-developed by using Poseidon for DSLs, but
this would imply to pay more money for the Poseidon for DSLs editor and in addition
more development time is required to gain the same result.

The native file format has the extension *.uml2 and, referring to the header of the file
viewed in a text editor, consists of XMI 2.0 for UML 2.1.

Unfortunately the trial version does not support teamwork. Contacting the support
results in no answer, therefore it was not possible to test this feature.

Pricing

The price of Poseidon for UML is e48 per year.

5.6.3 Apollo for Eclipse

Evaluation and tests

Apollo for Eclipse is, similar to Poseidon for UML, an editor for UML. As the name al-
ready suggests, it is a plugin for Eclipse, not a standalone editor.

The minimum Eclipse features required for Apollo are as follows:

• eclipse-SDK 3.3

• EMF Service Data Objects (SDO) SDK 2.3

• OCL SDK 1.1.0

• EMF Model Query SDK 1.1.0

• EMF Model Transaction SDK 1.1.0

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 64

• EMF Validation Framework SDK 1.1.0

• Graphical Editing Framework SDK 3.3.0

• Graphical Modeling Framework SDK 2.0.0

• Apache Batik 1.6.0 (included in GMF-SDK)

• UML2 SDK 2.1.0

Although the version of Eclipse used for testing Apollo had all these features installed
and the installation instructions had been followed, it was not able to integrate Apollo
and test its features. As already mentioned the support of Gentleware, the manufacturer
of Apollo for Eclipse, just did not answer to give any helping instructions.

A very disadvantageous attribute of Apollo is the support of only class diagrams. Also
on this topic no information was available through the support.

Pricing

The price of Apollo for Eclipse is depending on the payment interval. Paying the rent
monthly the costs are about USD 6, quarterly the price is about USD 16 and annually it
is about USD 56 (e48).

5.6.4 Summary

As the description above may suggest, many of the necessary points for this project are
not fulfilled (see Table 5.20). Therefore, none of Gentleware’s products will be considered
as a solution candidate.

KOC1 8

KOC2 8

KOC3 8

KOC4 4

KOC5 4

KOC6 4

KOC7 4

KOC8 8

KOC9 8

KOC10 4

= 8

Table 5.20: Fitting of requirements using Gentleware products

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 65

5.7 Papyrus

Evaluation and tests

Papyrus is an Eclipse based project for a graphic editor for UML2. The project is available
as a plugin, but also as a standalone solution based on the Eclipse version 3.5 called Galileo.

The assumed newest version of Papyrus as a plugin is 1.12.3, which can be found in
the Eclipse Galileo under ”Help → Install new feature...”. Using the appropriate update
site the UML modeler can be installed. The plugin first needs an external plugin called
ANTLR from the same site (Figure 5.13), as well as an Eclipse version, which includes
the modeling bundle.

For the Eclipse version 3.5, called Galileo, this solution works fine, unfortunately not
for the versions 3.6 (Helios) and 3.7 (Indigo).

As a following project a component called MDT Papyrus is under development. Figure
5.14 shows the appearance of the plugin for Helios, but is similar to Indigo. As illustrated,
the plugin is currently available in the version 0.7.3. In this version some important GUI-
functions, like adding a property to a class, are missing, hence a deployment of the Papyrus
plugin with Helios and Indigo is not possible yet.

Although it is not (yet) possible to use Papyrus as a graphic editor inside Eclipse
Helios, it can be considered as a standalone program. It saves the models in files with
the extension *.uml. According to the headers inside the file, it is the format of XMI 2.1
using Ecore as a meta model definition for UML2.

Pricing

As an project running under the Eclipse license, it is free of charge.

Figure 5.13: Update site URL for the assumed newest version of Papyrus

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 66

Figure 5.14: Update site URL for the assumed newest version of Papyrus for Helios

5.7.1 Summary

This editor is more or less mentioned as a design GUI. There are no team work features
or file version control features at all. Therefore it is not considered as a candidate at all,
as it is shown in Table 5.21.

KOC1 4

KOC2 8

KOC3 8

KOC4 4

KOC5 8

KOC6 4

KOC7 8

KOC8 8

KOC9 4

KOC10 4

= 8

Table 5.21: Fitting of requirements using Papyrus

5.8 Eclipse Modeling Framework

The Eclipse Modeling Framework is an open source approach to address Model Driven
Software Development in Eclipse. It consists of many single projects, which all should
be connectable and each is intended to solve a specific subproblem in a final tool chain.
It implements an EMOF definition for describing UML2, called Ecore. This file format
is easily readable by other programs because of its public accessible definition and also
public accessible code fragments available in Java, which are used for creating model data
structures of Ecore files.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 67

5.8.1 Graphical Editors

One editor for Eclipse has already been described: Papyrus. Like mentioned before, it
was a standard until Eclipse Galileo version. Unfortunately since Helios, this editor is no
longer supported. Also the development of a new main version of the Eclipse SDK, called
e4, suggests a low chance of getting a new version of Papyrus for Helios in the next time.

Fortunately the Helios EMF version has a second plugin for graphical modeling of
UML 2.x diagrams. It simply is called UML2. Figure 5.15 shows an example, designed
with this editor. On the right side of the picture the created class is shown, in the middle
is the corresponding model in tree view. As you can see, these two tabs also reference to
two different files. The .ecore-file contains the model information. The .ecore diagram-file
gets the model information from the other file and adds graphical information to create
the graphical representation. As a big disadvantage, the current version of this editor only
supports class diagrams.

Figure 5.15: UML class designed by the editor UML2

Another promising Helios feature seems to be Ecore tools. Downloading this plugin
leads to nearly the same editor, which only supports class diagrams. For Helios it is
available in the incubation version 0.10.0. For Indigo, the following Eclipse version after
Helios, it is available in version 1.0, but trying to install it in Helios leads to an error.

Another handy tool seems to be Graphiti. It is not a graphical editor for UML2; it
is a tool to develop graphical editors. With the aid of Graphiti it would be possible to
create a lightweight editor, which is completely based on Eclipse and exactly designed for
fitting all requirements. Unfortunately for Helios it is only available in version 0.8.1 and
is therefore, similar to many other Eclipse projects, still in development phase and not in
an appropriate usage state. Other working graphic editors have not been found.

5.8.2 EMF Compare

EMF Compare is an Eclipse project that brings model comparison to EMF. It is able to
compare two different model files and visualize the differences in a similar way the textual
comparison feature does it.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 68

In Eclipse it is possible to connect file extensions to different comparison and merging
tools. Therefore it is not necessary to make a difference between model files and the source
code files. The framework itself recognizes the type of file by its extension and calls the
right merge plugin.

In the following example, a model file, created with the EMF standard editor, has
been checked out with Subclipse directly into two Eclipse workspaces. After some modifi-
cations have been made to both diagrams, they have been synchronized with the repository.
Clearly the second synchronization fails and shows up conflicts. Figure 5.16 shows this
example.

Figure 5.16: Graphical view of differences between two version of a model

With the buttons on the right upper side it is possible to copy changes from the repos-
itory to the local file and thus solve the conflicts. As a support it is possible to open a
window part, which shows the content of the common ancestor.

In this example one detail has been concealed. The editor not only creates the file
with the extension .ecore, which contains the model information and can be processed
by EMF Compare. It also creates a file with the extension .ecore diagram. When this
file is opened with a text editor, the suggestion comes up, that this file contains graphic
information for the diagram. Unfortunately this file is very close connected to the model
files. Therefore it is a very big disadvantage, having this second file, because merged
model files do not suit any longer to those diagram files. Figure 5.17 shows the compari-
son of the diagram files corresponding to the same model, which has been compared before.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 69

Figure 5.17: Comparison of the diagram file with EMF compare

5.8.3 CDO Model Repository

CDO (Connected Data Objects) is also a project in Eclipse. It has two purposes: First,
it can be used as a runtime persistence framework or second, it can be used as a model
repository system at development time.

CDO 4.0.0 is expected to be used with Indigo, but for Helios it is available in the
version 3.0.0.

5.8.4 Dawn

Dawn is a sub-component of the Connected Data Objects (CDO) project and achieves
to create collaborative network solutions for user interfaces based on CDO. For example,
it provides collaborative access for GMF diagrams. Beside the real time shared editing
Dawn provides conflict visualization and handling and other useful features for collabo-
rative modeling. In addition to this, Dawn will also provide a Web-Viewer which allows
viewing every diagram change online.

CHAPTER 5. DIFFERENT APPROACHES TO A NEW TOOL CHAIN 70

5.8.5 EMF Store

The EMF Store is a model repository that allows to store EMF model instances and keeps
a version history of these instances. EMF Store follows the checkout/update/commit in-
teraction paradigm known from SVN or CVS. The framework allows to checkout a copy
of a model instance from the repository. Then it tracks changes on the model instances on
the clients and provides an API to send the changes to the repository. Also the API allows
updating the model instances according to changes of other clients via the repository.

5.8.6 Summary

To finally sum up the issue EMF, it has to be mentioned, that the Eclipse community
really takes care of the problem of MDSD with teamwork support. Many different tools
do really have the potential to be part of a solution to this problem, but two main draw-
backs occur, considering a solution with Eclipse. First, many features are not yet in an
appropriate state and second, some features only become available for newer versions of
Eclipse, like Indigo (version 3.7) or Juno (version 4.2). Currently there is no tool chain
realizable containing only Eclipse features for Helios, but it is very likely that in the next
years, assuming Salomon has updated Eclipse to a higher version, a tool chain exclusively
basing on this open source projects is a free and highly customizable solution for shared
and distributed model driven software development.

Chapter 6

Evaluation of possible solutions

6.1 Calculations

According to Section 4.2.3, the weightings of the view lists and the attributes inside are
as follows. First, the row vectors of the different view lists have to be defined, using their
short names (see Equations 6.1, 6.2, 6.3 and 6.4):

~wattributes,viewMD
= (8, 3, 5) (6.1)

~wattributes,viewPD
= (8) (6.2)

~wattributes,viewSA
= (7) (6.3)

~wattributes,viewFM
= (7, 8, 5) (6.4)

After the definitions, the vectors have to be normalized to avoid parasitic weightings
between the views (see Equations 6.5, 6.6, 6.7 and 6.8):

~wattributes,viewMD,norm =
~wattributes,viewMD

(~1MD ∗ (~wattributes,viewMD
)T)

= (
1

2
,

3

16
,

5

16
) (6.5)

~wattributes,viewPD,norm =
~wattributes,viewPD

(~1PD ∗ (~wattributes,viewPD
)T)

= (1) (6.6)

~wattributes,viewSA,norm =
~wattributes,viewSA

(~1SA ∗ (~wattributes,viewSA
)T)

= (1) (6.7)

~wattributes,viewFM ,norm =
~wattributes,viewFM

(~1FM ∗ (~wattributes,viewFM
)T)

= (
7

20
,

8

20
,
1

4
) (6.8)

It can be seen, that the attribute weights for the PD and the SA are one. This is a
direct consequence of their list lengths. The weightings are normalized to relative weight-
ings inside a view. Therefore, if the list length is one, the scale is irrelevant, because the
value always represents a 100% importance inside the view.

71

CHAPTER 6. EVALUATION OF POSSIBLE SOLUTIONS 72

The next step is the definition of the weightings between the views, as in Definition
6.9.

~wviews = (10, 5, 2, 8) (6.9)

6.1.1 MagicDraw

After evaluation of MagicDraw and its additional components in Section 5.1, the at-
tribute’s value vector for the different views are defined as follows (see Equations 6.10,
6.11, 6.12 and 6.13). To avoid confusion, for MagicDraw the shortname ”MaDr” has been
chosen as an abbreviation for the alternative x.

~vattributes,viewMD
(MaDr) = (9, 10, 3) (6.10)

~vattributes,viewPD
(MaDr) = (8) (6.11)

~vattributes,viewSA
(MaDr) = (9) (6.12)

~vattributes,viewFM
(MaDr) = (4, 5, 4) (6.13)

The further process requires the definition of the utility vector of the alternative (see
Equation 6.18), which consists of the calculated utility values of every view (see Equations
6.14, 6.15, 6.16 and 6.17).

vMD(MaDr) = ~wattributes,viewMD,norm ∗ ~vattributes,viewMD
(MaDr)T

= (
1

2
,

3

16
,

5

16
) ∗ (9, 10, 3)T =

117

16

(6.14)

vPD(MaDr) = ~wattributes,viewPD,norm ∗ ~vattributes,viewPD
(MaDr)T

= (1) ∗ (8)T = 8
(6.15)

vSA(MaDr) = ~wattributes,viewSA,norm ∗ ~vattributes,viewSA
(MaDr)T

= (1) ∗ (9)T = 9
(6.16)

vFM (MaDr) = ~wattributes,viewFM ,norm ∗ ~vattributes,viewFM
(MaDr)T

= (
7

20
,

8

20
,
1

4
) ∗ (4, 5, 4)T =

22

5

(6.17)

~vviews(MaDr) = (vMD(MaDr), vPD(MaDr), vSA(MaDr), vFM (MaDr))

= (
117

16
, 8, 9,

22

5
)

(6.18)

CHAPTER 6. EVALUATION OF POSSIBLE SOLUTIONS 73

The resulting utility value of this alternative x = ”MaDr” is calculated as follows in
Equation 6.19.

v(MaDr) = ~wviews ∗ ~vviews(MaDr)T

= (10, 5, 2, 8) ∗ (
117

16
, 8, 9,

22

5
)T =

6653

40
≈ 166, 3

(6.19)

6.1.2 Visual Paradigm

After evaluation of Visual Paradigm and its additional components in Section 5.2, the
attribute’s value vector for the different views are defined as follows (see Equations 6.20,
6.21, 6.22 and 6.23). To avoid confusion, for Visual Paradigm the shortname ”ViPa” has
been chosen as an abbreviation for the alternative x.

~vattributes,viewMD
(V iPa) = (9, 10, 8) (6.20)

~vattributes,viewPD
(V iPa) = (8) (6.21)

~vattributes,viewSA
(V iPa) = (9) (6.22)

~vattributes,viewFM
(V iPa) = (8, 5, 9) (6.23)

The further process requires the definition of the utility vector of the alternative (see
Equation 6.28), which consists of the calculated utility values of every view (see Equations
6.24, 6.25, 6.26 and 6.27).

vMD(V iPa) = ~wattributes,viewMD,norm ∗ ~vattributes,viewMD
(V iPa)T

= (
1

2
,

3

16
,

5

16
) ∗ (9, 10, 8)T =

71

8

(6.24)

vPD(V iPa) = ~wattributes,viewPD,norm ∗ ~vattributes,viewPD
(V iPa)T

= (1) ∗ (8)T = 8
(6.25)

vSA(V iPa) = ~wattributes,viewSA,norm ∗ ~vattributes,viewSA
(V iPa)T

= (1) ∗ (9)T = 9
(6.26)

vFM (V iPa) = ~wattributes,viewFM ,norm ∗ ~vattributes,viewFM
(V iPa)T

= (
7

20
,

8

20
,
1

4
) ∗ (8, 5, 9)T =

141

20

(6.27)

~vviews(V iPa) = (vMD(V iPa), vPD(V iPa), vSA(V iPa), vFM (V iPa))

= (
71

8
, 8, 9,

141

20
)

(6.28)

CHAPTER 6. EVALUATION OF POSSIBLE SOLUTIONS 74

The resulting utility value of this alternative x = ”V iPa” is calculated as follows in
Equation 6.29.

v(V iPa) = ~wviews ∗ ~vviews(V iPa)T

= (10, 5, 2, 8) ∗ (
71

8
, 8, 9,

141

20
)T =

4063

20
≈ 203, 2

(6.29)

6.1.3 IBM Rational Software

After evaluation of IBM Rational Software and its additional components in Section 5.4,
the attribute’s value vector for the different views are defined as follows (see Equations
6.30, 6.31, 6.32 and 6.33). To avoid confusion, for IBM Rational Software the shortname
”RaSo” has been chosen as an abbreviation for the alternative x.

~vattributes,viewMD
(RaSo) = (9, 8, 6) (6.30)

~vattributes,viewPD
(RaSo) = (6) (6.31)

~vattributes,viewSA
(RaSo) = (5) (6.32)

~vattributes,viewFM
(RaSo) = (1, 5, 9) (6.33)

The further process requires the definition of the utility vector of the alternative (see
Equation 6.38), which consists of the calculated utility values of every view (see Equations
6.34, 6.35, 6.36 and 6.37).

vMD(RaSo) = ~wattributes,viewMD,norm ∗ ~vattributes,viewMD
(RaSo)T

= (
1

2
,

3

16
,

5

16
) ∗ (9, 8, 6)T =

63

8

(6.34)

vPD(RaSo) = ~wattributes,viewPD,norm ∗ ~vattributes,viewPD
(RaSo)T

= (1) ∗ (6)T = 6
(6.35)

vSA(RaSo) = ~wattributes,viewSA,norm ∗ ~vattributes,viewSA
(RaSo)T

= (1) ∗ (5)T = 5
(6.36)

vFM (RaSo) = ~wattributes,viewFM ,norm ∗ ~vattributes,viewFM
(RaSo)T

= (
7

20
,

8

20
,
1

4
) ∗ (1, 5, 9)T =

23

5

(6.37)

~vviews(RaSo) = (vMD(RaSo), vPD(RaSo), vSA(RaSo), vFM (RaSo))

= (
63

8
, 6, 5,

23

5
)

(6.38)

CHAPTER 6. EVALUATION OF POSSIBLE SOLUTIONS 75

The resulting utility value of this alternative x = ”RaSo” is calculated as follows in
Equation 6.39.

v(RaSo) = ~wviews ∗ ~vviews(RaSo)T

= (10, 5, 2, 8) ∗ (
63

8
, 6, 5,

23

5
)T =

3111

20
≈ 155, 6

(6.39)

6.2 Result

After calculation of all results, every solution candidate has its own utility value. A com-
parison of these values mentions the best solution for the problem, in our case Visual
Paradigm. Figure 6.1 shows a graphical result of the calculated solution fittings for the
defined requirements.

Figure 6.1: Result after comparison and calculation

At this point it has to be mentioned that the calculation is based on weightings and
evaluation values, which are chosen from specific people, and maybe other persons would
have chosen different values. But here the great benefit of this method becomes appar-
ent: The whole process can easily be automated with simple tools like spreadsheets or
calculation tools and therefore may be repeated at any time. Also the different views
can be evaluated not only by one person but by groups, where the actual used values are
calculated with statistical methods to rule out spikes.

CHAPTER 6. EVALUATION OF POSSIBLE SOLUTIONS 76

Having a look at this thesis’ result, two properties may be discussed: First, the number
of properties have been on a lower side, therefore small changes at the weighting and utility
vectors would result in greater change, than it would with a higher number of attributes.
For this reason, systems should be analyzed for as many usefully properties as can be found.

Mentioning the second point, the result value of the ”winner” has a significant differ-
ence to both of the other candidates. Expressing it in a mathematical way, the maximum
utility value of a possible solution has to be calculated. This calculation uses attribute
values, with the highest possible value 10. The actual weighting vectors still remain to
their values, as they are independent to any alternative. Nevertheless, the sum of the
weighting vector inside a view has been normalized to one, therefore any evaluation with
equal values of every property, this value has to be the utility value. As a result the utility
vector consists of the maximum scale values of every view evaluation. This is a reasonable
result, as the highest rating must lead to the highest possible value, independent of the
weighting inside. The calculation has been simplified to the following Equation 6.40:

v(MAX) = MaximumRatingV alue ∗
∑

~wviews = 10 ∗
∑

(10, 5, 2, 8) = 10 ∗ 25 = 250

(6.40)

Compared to this maximum possible value, which is shown in Figure 6.2, the program
with the best fitting is nearly 15% better than the second best solution. This might
be an indicator, that the selection of the candidate still remains, even slightly different
evaluations will be chosen.

Figure 6.2: Result after comparison and calculation

Chapter 7

Conclusion and future work

This master thesis provides basic information for improving the actual situation in the
company of Salomon Automation. It should be seen as a documentation of the current
situation and also as a tool for a comparing and decision making process. It does not
include the best or final solution, but it contains methods to find it. It also provides an
example for using the mentioned methods by analyzing the current market of MDSD-tools
and supporting technologies.

7.1 Future and open work

7.1.1 Implementation

This thesis was intended to be a theoretical work to build a basis for a practical imple-
mentation. Unfortunately, this practical work is therefor an open issue. This refers to the
following points:

• Updating information: Since this master thesis has been developed over a longer
period, some information might not be up to date. Especially version numbers,
prizes and additional packages may have been updated.

• Implementation of new tools: After a decision for new tools, they have to be
implemented by the companies IT department. Not only installing of the clients has
to be done, also the servers has to be updated.

• Updating models: One of the major criteria was the ability to update the existing
models to the new format. Therefor, this issue has to be handled either, independent
from which solution has been chosen.

• Adaption of existing generators: The new model creating end editing tools will
have a new file format and maybe also a new language. Therefor the input software
modules of the generators have to be adapted.

77

CHAPTER 7. CONCLUSION AND FUTURE WORK 78

7.1.2 Eclipse 4

The growing importance and practical use of model driven software development drives
the Eclipse community more and more to build several solutions for parts of a tool chain.
This fact, and also the fact, that Eclipse is free of charge and is allowed, to be reused in
commercial Software (refer to the Eclipse Public License [Fou04]), makes it very interest-
ing for a solution.

7.1.3 Domain Specific Language

Based on the idea of building an own system (maybe using Eclipse), it is also possible to
develop a new language, which is more domain specific than common description languages
like UML. On the one hand, it could be an easier and more efficient language, which can
save time and money. A development of tools can use the found requirements in this
thesis as an input for a very suitable tool chain. On the other hand, it will consume an
initial effort for developing the language and creation of suitable tools. Therefor, I would
recommend a new study, which can be also accomplished in the context of a bachelor or
master thesis.

Appendix A

Abbreviations

ANTLR ANother Tool for Language Recognition
API Application Programming Interface
CDC Connected Device Configuration
CDO Connected Data Objects
CVS Concurrent Versions System
DB DataBase
DBMS DataBase Management System
DDL Data Definition Language
DSL Domain Specific Language
EA Enterprise Architect
EMF Eclipse Modeling Framework
EMOF Essential MOF
EUR EURo
FAQ Frequently Asked Questions
FM Finance Manager
FO Formatting Objects
GMF Graphical Modeling Framework
GUI Graphical User Interface
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IDE Integrated Development Environment
JDT Java Development Tools
JPG Joint Photographic experts Group
KOC Knock-Out Criteria
LDAP Lightweight Directory Access Protocol
MaDr Magic Draw
MAUT Multi Attribute Utility Theory
MD Model Developer
MDA Model Driven Architecture
MDD Model Driven Development
MDG Model Driven Generation
MDSD Model Driven Software Development
MDT Model Development Tools

79

APPENDIX A. ABBREVIATIONS 80

MOF MetaObject Facility
OCL Object Constraint Language
OMG Object Management Group
OSGi Open Services Gateway initiative
PD Product Developer
PNG Portable Network Graphics
RaSo Rational Software
RSA Rational Software Architect
RTC Rational Team Concert
RTF Rich Text Format
SA System Administrator
SDK Software Development Kit
SDO Service Data Objects
SQL Structured Query Language
SVG Scalable Vector Graphics
SVN Apache SubVersioN
TCP Transmission Control Protocol
TWS TeamWork Server
UML Unified Modeling Language
US United States
USD United States Dollar
ViPa Visual Paradigm
VL View Lists
VP Visual Paradigm
WAMAS WArehouse MAnagement System
WMF Windows MetaFile
WYSIWYG What You See Is What You Get
XMI XML Metadata Interchange
XML Extensible Markup Language
ZIP ZIPper (data format)

Bibliography

[AUT11] AUTOSAR. Specification of ecu state manager.
Technical report, AUTOSAR, 2011. Webaddress:
http://autosar.org/download/R4.0/AUTOSAR SWS ECUStateManager.pdf,
visited on September 5th 2012. IV, 4

[BCE+06] Greg Brunet, Marsha Chechik, Steve Easterbrook, Shiva Nejati, Nan Niu,
and Mehrdad Sabetzadeh. A manifesto for model merging. Technical report,
Department of Computer Science, University of Toronto, 2006. Webaddress:
http://www.cs.toronto.edu/˜gbrunet/pubs/gamma06.pdf, visited on March
15th 2013. 6

[Fou04] Eclipse Foundation. Eclipse public license. Technical report, Open Source
Initiative, February 2004. Webaddress: http://www.eclipse.org/legal/epl-
v10.html, visited on March 16th 2013. 78

[HP11] Valentin Haenel and Julius Plenz. Git - Verteilte Dokumentationsverwaltung
für Code und Dokumente. Open Source Press, München, 2011. 5

[Kru95] Philippe Kruchten. The ”4+1” view model of software architecture. IEEE
Software, 12:42–55, November 1995. IV, 8

[Lad03] Ramnivas Laddad. Aspectj in Action: Practical Aspect-Oriented Program-
ming. Manning Publications, 2003. IV, 3, 4

[Maga] No Magic. Magicdraw feature list. Technical report. Webaddress:
http://www.nomagic.com/files/MagicDraw Features.pdf, visited on August
18th 2012. 39

[Magb] No Magic. Teamwork server feature list. Technical report. Webaddress:
http://www.nomagic.com/files/brochures/a4/MagicDrawTeamworkServer.pdf,
visited on August 18th 2012. 42

[Par] Visual Paradigm. Visual paradigm edition list. Technical report. Webad-
dress: http://http://www.visual-paradigm.com/aboutus/, visited on May
14th 2013. 46

[RR08] Suzanne Robertson and James Robertson. Volere requirements techniques:
an overview. Technical report, The Atlantic Systems Guild, 2008. IV, 9

81

BIBLIOGRAPHY 82

[Sch01] Ralph Schäfer. Rules for using multi-attribute utility theory for estimating
a users interests. Technical report, DFKI GmbH, 2001. 9

[StOSSG00] Richard Soley and the OMG Staff Strategy Group. Model driven archi-
tecture. Technical report, Object Management Group, 2000. Webaddress:
http://www.omg.org/cgi-bin/doc?omg/00-11-05.pdf, visited on September
5th 2012. 4

[SV06] Thomas Stahl and Markus Völter. Model Driven Software Development -
Technology, Engineering, Management. dpunkt.verlag GmbH, Heidelberg,
2006. 3

[Sys] Sparx Systems. Enterprise architect feature list. Technical report. Webad-
dress: http://www.sparxsystems.com/products/ea/features.html, visited on
January 25th 2013. 59

[vW86] Detlof von Winterfeld. Decision Analysis and Behavioral Research. Cam-
bridge University Press, 1986. 9

	1 Introduction
	1.1 Motivation and objectives
	1.2 Outline

	2 Related work
	2.1 Related technologies of the current and future tool chains
	2.1.1 Model driven software development
	2.1.2 Repository systems
	2.1.3 Model merging with XMI files

	2.2 Methods for defining requirements and evaluating results
	2.2.1 4+1 view model
	2.2.2 Volere Requirements Techniques
	2.2.3 Multi attribute utility theory (MAUT)

	3 Detailed description of the current system
	3.1 WAMAS
	3.2 The current modeling, code generation and documentation tool chain
	3.2.1 Persistency Model use case
	3.2.2 Mobile Client-Server Communication use case
	3.2.3 Mobile Task Concept use case
	3.2.4 Report generation

	3.3 Aspects of currently used software, file formats and tools
	3.3.1 Operating systems
	3.3.2 MagicDraw 9.5 with Teamwork Server 9.5

	3.4 Workflow of the current tool chain
	3.4.1 Managing WAMAS and customer projects
	3.4.2 Managing model files

	4 Requirement finding and evaluation methods applied
	4.1 Description of the finding and evaluation methods
	4.1.1 Applied method for finding requirements
	4.1.2 Applied method for evaluating possible solutions

	4.2 Definition of stakeholders, knock out criteria and view lists
	4.2.1 Stakeholders
	4.2.2 Knock out criteria list
	4.2.3 View lists

	5 Different approaches to a new tool chain
	5.1 MagicDraw
	5.1.1 MagicDraw 17.0
	5.1.2 Teamwork Server 17.0
	5.1.3 Model Merge Plugin
	5.1.4 MagicDraw Project Converter
	5.1.5 Summary

	5.2 Visual Paradigm
	5.2.1 Visual Paradigm for UML 8.3
	5.2.2 Teamwork Server 5.3
	5.2.3 Summary

	5.3 Microsoft Visio 2010
	5.3.1 Summary

	5.4 IBM Rational Software
	5.4.1 IBM Rational Software Architect
	5.4.2 Rational Team Concert
	5.4.3 Summary

	5.5 Enterprise Architect
	5.5.1 Enterprise Architect 9.1
	5.5.2 Integration for Eclipse
	5.5.3 Summary

	5.6 Gentleware products
	5.6.1 Poseidon for DSLs 2.0
	5.6.2 Poseidon for UML 8.0
	5.6.3 Apollo for Eclipse
	5.6.4 Summary

	5.7 Papyrus
	5.7.1 Summary

	5.8 Eclipse Modeling Framework
	5.8.1 Graphical Editors
	5.8.2 EMF Compare
	5.8.3 CDO Model Repository
	5.8.4 Dawn
	5.8.5 EMF Store
	5.8.6 Summary

	6 Evaluation of possible solutions
	6.1 Calculations
	6.1.1 MagicDraw
	6.1.2 Visual Paradigm
	6.1.3 IBM Rational Software

	6.2 Result

	7 Conclusion and future work
	7.1 Future and open work
	7.1.1 Implementation
	7.1.2 Eclipse 4
	7.1.3 Domain Specific Language

	A Abbreviations
	Bibliography

