
Master’s Thesis

Repairing Boomerang Characteristics

Wolfgang Wieser

0831773

Graz, 2013

Institute for Applied Information Processing and Communications
Graz University of Technology

IAIK

Assessor: Florian Mendel

Advisor: Martin Schläffer





Abstract

Differential cryptanalysis is one of the two most widely used attacks on block ciphers and
hash functions. Therefore, the algorithm is applied on pairs of messages with a certain
difference for instance. Then the differences on output of the algorithm can be used to
determine information about the secret key. The boomerang attack extends the classic
differential cryptanalysis by using differences of differences. There exist related attacks
like the amplified boomerang attack and the rectangle attack. These attacks belong to
the family of second-order cryptanalysis. With these techniques round reduced versions
of various cryptographic functions have been broken. It even has been possible to break
the full eight rounds of the KASUMI block cipher. In the last years several boomerang
characteristics for a round reduced version of SHACAL-2, which is a block cipher based on
SHA-2, were published. For all of them contradictions were found - manually. In this thesis
we describe a tool which can automatically check the consistency of differential boomerang
characteristics. We developed different methods to check the consistency of boomerang
characteristics automatically.

Differential characteristics can be seen as a huge set of constraints. If a characteristic
is inconsistent, this means that a contradiction is somewhere in the set of constraints. We
propose debugging techniques to find these contradictions and to repair them. In this
thesis we describe four algorithms to find inconsistencies in boomerang characteristics. We
describe different techniques we tested to improve the results. Different detail-levels can
be used for the checks while repairing the characteristics. We tried to find a good trade-off
between speed and quality of the result. These algorithms and techniques can also be used
to repair first-order differential characteristics.

The repairing algorithms provide truncated boomerang characteristics which can be
used as a starting point to determine the characteristic and search confirming messages.
Finally, we describe how to search for boomerang characteristics with a high probability.
With this tool valid characteristics can be found automatically which helps to increase the
number of attacked rounds.



Zusammenfassung

Differentielle Kryptoanalyse ist eine der zwei häufigsten Verfahren um kryptographische
Blockchiffre und Hashfunktion anzugreifen. Dafür wird der Algorithmus zum Beispiel auf
Paare von Nachrichten mit einer bestimmten Differenz angewendet, um aus der Differenz
am Ausgang Informationen über den geheimen Schlüssel zu berechnen. Die Boomerang
Attacke erweitert die klassische differentielle Kryptoanalyse indem sie Differenzen von Dif-
ferenzen verwendet. Außer der Boomerang Attacke gibt es noch weitere Methoden, wie
etwa die Amplified Boomerang Attacke und die Rectangle Attacke. Diese Angriffsmethoden
gehören zur Kryptoanalyse zweiter Ordnung. Mit ihnen wurden bereits rundenreduzierte
Varianten von einigen kryptographische Funktionen gebrochen. Die KASUMI Blockchiffre
konnte sogar vollständig gebrochen werden.

In den letzten Jahren wurden einige Boomerang Charakteristiken für eine rundenre-
duzierte Variante von SHACAL-2, einer Blockchiffre basierend auf SHA-2, veröffentlicht.
Allerdings konnte in allen Charakteristiken ein Fehler gefunden werden - allerdings händisch.
Um die Überprüfung solcher Charakteristiken zu vereinfachen, haben wir Methoden en-
twickelt, um die Überprüfung zu automatisieren, die in dieser Arbeit beschrieben werden.

Differentielle Charakteristiken können als große Menge von Bedingungen gesehen wer-
den. Widersprechen sich manche dieser Bedingungen, ist die Charakteristik inkonsis-
tent. Daher verwenden wir Techniken die bereits zur Fehlersuche in Soft- und Hard-
ware bentzt werden, um diese Widersprüche zu finden und sie zu beheben. In dieser
Arbeit beschreiben wir vier Algorithmen die dazu verwendet werden können. Außerdem
beschreiben wir zusätzliche Methoden um die damit erzielten Ergebnisse zu verbessern.
Dabei können die dafür benötigten Überprüfungen der Charakteristik mit verschiedenen
Genauigkeitsstufen durchgeführt werden. Wir haben versucht einen guten Kompromiss
zwischen Geschwindigkeit und Qualität zu finden. Die vorgestellten Techniken können
auch zum Reparieren von Charakteristiken erster Ordnung verwendet werden.

Nach dem die Charakteristiken repariert wurden, sind einige ihrer Differenzen unbes-
timmt. Diese Werte können mit Hilfe einer Suche bestimmt werden. Mit der Suche
können auch passende Nachrichten gefunden werden. Dabei sollte die Charakteristik am
Ende eine möglichst hohe Wahrscheinlichkeit besitzen. In dieser Arbeit beschreiben wir
wie Charakteristiken mit einer möglichst hohen Wahrscheinlichkeit automatisch gefunden
werden können. Die vorgestellten Algorithmen und Methoden sollen helfen in Zukunft
Boomerang Attacken auf mehr Runden durchführen zu können.
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1 Introduction

Everyone uses cryptography but only a few people notice. All current smartphones have a
complex security system to protect the user data and the conversations. Another practical
examples for cryptography in everyday life are debit cards and online banking. Today
even contracts can be signed digitally. To guarantee the authenticity of such contracts
or to protect user data many different cryptographic algorithms have been developed. In
cryptanalysis these algorithms are analyzed to find vulnerabilities and learn from them
to create new stronger structures and algorithms. This is necessary because according to
Moore’s law computational power grows exponentially and so does the ability to do more
complex attacks.

One of the most powerful forms of cryptanalysis is differential cryptanalysis, which
can be divided into first-order and higher-order differential-cryptanalysis. For higher-order
differential cryptanalysis several attacks are known, one of them is the boomerang attack.
This attack uses four messages to find collisions or to distinguish an algorithm from a
random function. In this thesis we apply the boomerang attack on SHACAL-2. Target
of the differential cryptanalysis is to find differentials. Differentials predict the difference
between two outputs of a function depending on the input difference with a certain prob-
ability, which should be as high as possible. Since recent cryptographic algorithms are
designed in a way to counter differential cryptanalysis, finding differentials and character-
istics with a high probability is a challenging task.

However, it is not only a hard task to find a good characteristic, it is also difficult
to check if a differential characteristic is valid. For a boomerang attack even four char-
acteristics are necessary. These characteristics do not only need to be consistent within
themselves. They have to fulfill additionally constraints because they are strongly re-
lated to each other. We developed a tool to automate the consistency check of a whole
boomerang characteristic.

In case of a contradiction we have to localize the constraints which lead to the conflict
and change them to repair the characteristic. Therefore we use different debugging algo-
rithms to find conflict sets or diagnoses and to change the contained constraints. Once a
valid characteristic with a reasonable probability has been constructed, messages fulfilling
these characteristics must be found. The higher the probability of a characteristic the
easier it is to find a message.

In this thesis we implement a tool to automate the boomerang attack. Therefore,
we developed algorithms to check whether a given boomerang characteristic is valid. If
inconsistencies can be found they can be repaired automatically using different debugging
algorithms. When the characteristic is repaired confirming messages can be searched to
ensure that the characteristic is indeed valid.

In Chapter 2, we give an introduction into symmetric cryptography. One group of sym-
metric algorithms are block ciphers which are used to encrypt a bulk of data. One of
them is SHACAL-2, which is based on the hash function SHA-2, an international standard
hash function designed by the U.S. National Security Agency (NSA). Old hash functions
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are based on block ciphers. Therefore, the block cipher is used in different constructions
to form a non-invertible function. Since block ciphers are only suitable for encrypting a
message with a fixed length, several structures were developed to securely encrypt longer
messages. Additionally, we describe some basic attacks.

In Chapter 3, we describe the concept of differential cryptanalysis. It was developed
to attack block ciphers and hash functions but can also be applied on other cryptographic
functions. Differential cryptanalysis looks at differences of messages and analyze their
influence on the output. For some input differences some differences on the output are more
likely then the average. This can be used to generate differentials and characteristics. In
this chapter, we also describe some techniques which can be used to improve the probability
of characteristics in some attack settings.

In Chapter 4, the boomerang attack is introduced. The boomerang attack is a method
of higher-order differential cryptanalysis and therefore analyzes differences of differences.
There exist related attacks like the amplified boomerang attack, the rectangle attack and
the boomerang attack on hash functions.

In Chapter 5, we introduce the usage of debugging algorithms to repair differential
characteristics. Since differential characteristics can be seen as a huge set of constraints,
debugging algorithms can help to find inconsistencies. Lots of different debugging algo-
rithms are known, we selected ReplayXPlain, QuickXPlain and FastDiag and developed
SequentialSearch. In this chapter we describe these algorithms and how they can be used
to find diagnoses which can be used to repair characteristics.

Chapter 6, describes how first-order differential characteristics can be updated, checked
and searched on. Conditions describe the difference between the values in two messages
at the same position. Generalized conditions can be used to store possible combinations
of differences. Thus, generalized multi-bit conditions represent the possible differences
for more than one bit value such as a result of an addition. The relation between two
conditions can be described with two-bit conditions.

In Chapter 7, we extend these concepts to the boomerang attack and implemented
them in a tool. We describe how a change in one part of the boomerang characteristics can
be propagated to the other parts and how the validity of boomerang characteristics can
be proven. Moreover, we explain how boomerang characteristics can be repaired using the
debugging algorithms described before. These basic debugging strategies can be extended
by a statistical approach and by debugging all possible rotations of the boomerang charac-
teristics. This chapter also describes how we can search on boomerang characteristics and
how this can be used as extended consistency checks.

In Chapter 8, we apply the technique described before on recently published boomerang
characteristics for a round reduced variant of SHACAL-2. All of them have been proven to
have inconsistencies. Hence, we check all the characteristics with our tool to test if it can
find the inconsistencies automatically and how long these checks need. Then we choose
one characteristic and repair it with different debugging algorithms and various setups to
compare the performance and to find the best setup. Finally, we search a new boomerang
characteristic.

In Chapter 9, we summarize the results and discuss open problems.
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2 Symmetric Cryptography

There are two classes of algorithms in cryptography: public-key and private-key, also called
symmetric-key, algorithms. Public-key algorithms use a public encryption key and a secret
decryption key. This has the big advantage that the encryption key must not be kept secret
and therefore everyone can generate the ciphertext but only the recipient can decrypt it. A
big disadvantage of those algorithms it that they are very slow, because they have to work
on they whole message at once and thus have to work on very big numbers. Therefore,
for encryption of a bulk of data symmetric-key algorithms are used. These algorithms can
divide the data into blocks of arbitrary size. As a result they are much faster. However,
they use for encryption and decryption the same key. Therefore, the key for encryption
must transmitted on a secure channel and stored in a way that no unauthorized party can
gain access to the key. To solve this problem in practice hybrid cryptosystem are used.
Such systems use public-key cryptography to transfer the secret key and use the transfered
one-time key to encrypt and decrypt the messages with a symmetric-key algorithm.

2.1 Block Cipher

Beside stream ciphers, block ciphers belong to symmetric-key algorithms. Hence, for en-
cryption and decryption the same key must be used. Symmetric key algorithms are widely
used to encrypt bulk data, because they are faster than asymmetric key algorithms. Block
ciphers are deterministic algorithms working on fixed-length groups of bits, so called blocks.
Therefore the input message also called plaintext P is divided into several blocks p1, . . . , pn
with length l. If the message length is not a multiple of l the last block must be padded.

Simplified can be said that each message block is substituted by a random looking but
deterministically calculated value. Therefore on each block the transformation function is
applied. Typically the transformation function iterates a weaker round function several
times and each iteration is called a round. The round function itself is a function of the
output of the previous round and a subkey generated from the master key using a key
scheduling algorithm. More generally said, a block cipher E(·) can be seen as mapping
from all possible plaintexts P and all possible keys K to all possible ciphertexts C so that
E : P ×K → C. When p, c and k are specific elements of P,C and K, then the encryption
is defined as c = Ek(p) and the decryption is defined as p = E−1

k (c).
One widespread implementation of block ciphers is the Feistel network, which becomes

well known due to its usage in DES [Des77]. Another common structure is the substitution-
permutation network, used by several common algorithms, including AES [NIS01].

If each block would be calculated independently, identical plaintext blocks would re-
sult in identical ciphertext blocks. When the ciphertext contains a pattern, the resulting
ciphertext also contains a pattern and an attacker thereby may deduce some information
about the plaintext. Therefore, the encryption of each block uses information from the pre-
vious encryption to randomize the output in a deterministic way to hide patterns. Many
modes of operations have been suggested, in the following we shortly describe the four
most common modes.
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Electronic codebook (ECB): In this mode each block is encrypted separately. The only
advantage is that encryption and decryption can be completely parallelized. Encryption is
defines as ci = Ek(pi) and decryption by pi = E−1

k (ci).

Cipher–block chaining (CBC): In this mode each block of plaintext is XORed with
the previous block of ciphertext. For the first block the initial vector IV is used instead.
Because the encryption of the previous message block is needed to calculate the next one,
encryption cannot be parallelized. In return each ciphertext block depends on all previous
blocks. Decryption can be done parallel for all blocks because already all ciphertext blocks
are known. A block of the ciphertext can be calculated by ci = Ek(pi⊕ci−1) and decrypted
by pi = E−1

k (ci)⊕ ci−1, where c0 = IV .

Cipher feedback (CFB): In this mode only the previous block of ciphertext is used as
input for encryption and then the result is XORed with the block of plaintext. Thus a block
of ciphertext is defined as ci = Ek(ci−1) ⊕ pi and can be decrypted by pi = Ek(ci−1) ⊕ ci.
Thus for decryption no inverse implementation of the encryption function is necessary. As
in CBC decryption can be parallelized while encryption cannot.

Output feedback (OFB): In this mode the output of the encryption function is used as
input for the next encryption. Thus the chaining values do not depend on the plaintext and
can be precalculated. Moreover, encryption and decryption works identically. Encryption
is defined as ci = pi ⊕ oi and decryption is defined as pi = ci ⊕ oi, where oi = Ek(ii−1) and
o0 = IV . The output blocks can be seen as key stream. Thus, in this mode a block cipher
works very similar as an stream cipher.

2.2 Hash Function

A hash function H is a deterministic algorithm that maps an input message m of any length
to a fixed length output message h = H(m), the so called hash value. Because the set of
possible inputs is larger than the set of possible output, a hash function is surjective. This
means the same hash value can be produced by more than one input. Thus, a hash function
is not invertible. Moreover, for a good hash function the output should look random. This
means, if a single bit flips in the input, the hash value should be very different from the
previous hash value. Because the hash value changes strongly on a little change on the
input, hash functions can be used for checksums, as pseudo random number generator or to
calculate an index in a hash table. Other applications are message authentication, digital
signatures and password protection.

Hash functions often have a similar structure as block ciphers. Moreover, they are often
even based on block ciphers. Thus, methods of cryptanalysis for block ciphers can also be
applied on hash functions in a very similar way. Hence, for a long time hash functions were
attacked like block ciphers, although hash functions do not have a secret key.
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2.2.1 Security Notions

Because the mapping from input to output should be evenly distributed, every hash value
should be generated with the same probability. Therefore it should be hard to find two
different input messages mapping to the same hash value. From these facts, three properties
can be derived: preimage resistance, second-preimage resistance and collision resistance.
Let H(·, ·) be an iterated hash function generating an n-bit hash value hi depending on
the previous hash value hi−1 and a l-bit message block mi. Then the compression function
is defined by hi = H(hi−1,mi). For the first iteration hi−1 is the initial vector IV defined
by the specification of the hash function. Following definitions for compression function
attacks are based on the definitions given in [LM93, LIS12].

Collision attack: Since the hash value has a fixed length and the message can have any
length, many messages map to the same hash value. Thus, a collision attack in terms of
a hash function means finding two messages (mi,m

′
i), yielding the same hash value from

given IV , so that mi 6= m′i but H(IV,mi) = H(IV,m′i).

Semi-free-start collision attack: This type of collision attack allows additionally to
choose hi−1 so that mi 6= m′i but H(hi−1,mi) = H(hi−1,m

′
i).

Free-start or pseudo collision attack: For a pseudo collision attack the hash function
is called with different hi−1 and/or different messages result in the same hash value. Thus,
(hi−1,mi) 6= (h′i−1,m

′
i) but H(hi−1, pi) = H(h′i−1, p

′
i).

Preimage attack: While for collision attacks hash value can be chosen freely, for preimage
attacks also the hash value has a fixed value hi,fixed. Thus, for a preimage attack a message
mi must be found, so that H(IV,mi) = hi,fixed.

Pseudo preimage attack: For a pseudo preimage the hash function is called with differ-
ent hi−1 and/or different messages result in the same fixed hash value. Thus, (hi−1,mi) 6=
(h′i−1,m

′
i) but H(hi−1, pi) = H(h′i−1, p

′
i) = hi,fixed.

Partial preimage attack: For a partial preimage attack only some bits of the hash value
are fixed. Thus, for this attack a second message m′i must be found, so that these fixed
bits of the calculated hash value have the same value as in hi,fixed. The rest of the hash
value h′i = H(IV,mi) can have random values.

Second-Preimage attack: In this attack a collision for a fixed hash value is searched, so
that mi 6= m′i but H(IV,mi) = H(IV,m′i) = hi,fixed.

Since finding collisions cannot be avoided, a cryptographic hash function is called ideal if
the generic bounds are met. The generic bounds are defined by the number of message
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which must be hashed until the attack was succesfull. For a preimage or second-preimage
attack at least 2n and for a collision attack at least 2n/2 messages must be tried, where n
is the length of the hash value.

2.2.2 One-Way Compression functions

As mentioned before hash functions are often based on block ciphers. There exists three
common variants of chaining.

Davies–Meyer: This one-way compression functions uses the message block mi as key
and the previous output hi−1 as input for the encryption function E(·). Additionally the
new output is XORed with the previous output so that hi = Emi

(hi−1)⊕ hi−1. Using this
construction in each iteration k message bits can be processed, where k is the key size of
the encryption function [Win84].

Matyas–Meyer–Oseas: It uses the message block mi as input for the encryption function
and the output of the previous iteration hi−1 as key. Additionally, the ciphertext is XORed
with the message block so that hi = Ehi−1

(mi) ⊕ mi. This construction can process n
message bits in each iteration, where n is the block size of the used cipher. If the cipher
uses different block and key lengths, hi−1 would not fit as key. Therefore, this construction
uses an additional function g(·) to convert the size accordingly [MMO85].

Miyaguchi–Preneel: This one-way compression function extends the Matyas–Meyer con-
struction by an additional XOR operation. The ciphertext is additional XORed with the
output of the previous encryption hi−1 so that hi = Ehi−1

(mi)⊕mi⊕ hi−1. This construc-
tion also needs an additional function g(·) to convert the size of hi−1 to fit the key size of
the used encryption function [MIO89, PGV94].

In Figure 1 from left to right plain encryption, Davies–Meyer, Matyas–Meyer–Oseas,
Miyaguchi–Preneel are shown. For example SHA-2 works very similarly as SHACAL-2
in Davies–Meyer mode, which will be described in Section 2.4.

These compression functions can generate only hash values with a length up to the
length of the ciphertext of the used encryption function. Thus they are called single-
block-length compression functions. There are also other compression functions which can
generate hash value with a multiple length of the ciphertext. They are called multi-block-
length compression functions. To generate a larger hash value they do in each iteration
multiple encryptions and combine the results. One example is MDC-2, which is shown in
Figure 2 [BCH+90].

One-way compression functions often are used in Merkle-Damg̊ard construction. This
construction builds hash functions from one-way compression functions. Widely known
algorithms using the Merkle-Damg̊ard construction are MD5, SHA-1 and SHA-2.

To use an encryption function as hash function in a Merkle-Damg̊ard construction, the
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Figure 1: A encryption function in different constructions
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Figure 2: MDC-2 compression function

algorithm has to define an initial vector IV which is used as h0. The input message with
length l is divided into blocks of length n. If l is not a multiple of n, the message must be
padded. Therefore, different padding schemes are known, typically the message is padded
with zeros. To prevent for instance two message M1 =”message” and M2 =”message0”
resulting in the same hash value, the length of the message is added to message within
padding process [Mer79]. For each block the one-way compression function C is applied.
After the last round a final function F may be is executed. An illustration of the construc-
tion is shown in Figure 3. For this construction several attacks like multi-collisions and
length-extension are known [Jou04, CDMP05].
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Figure 3: Merkle-Damg̊ard construction

Hash functions based on block ciphers are typically slower than specially designed hash
functions. This is because of the key scheduling in encryption function. Additionally, the
security is based on the security of the encryption function. This includes the key scheduling
and the block size. A weak key scheduling can lead to fix points or key collisions and a
small block size reduces the complexity of attacks. As a result in the last years new special
designed hash functions were published and a new standard for hash functions was searched
in the SHA-3 competition.

2.3 Attack Techniques

In this section, we summarize two basic cryptographic attacks and two alternatives to
differential cryptanalysis which will be presented in Section 3.

2.3.1 Birthday Attack

The generic complexity of finding a collision in an ideal random function is 2n/2, where
n is the size of the output of the function. This complexity results from the birthday
attack: The cryptographic function is applied on q randomly distributed messages and the
results are stored in a list. Because of the birthday paradox after q ≈ 1.18

√
n messages

a collision can be found [Yuv79]. The birthday paradox states that the probability p of
finding two persons with the same birthday, increases non linearly with the number N of
asked persons [FO90]:

p(N) ≈ 1− e−
N2

2n+1 . (1)

It is important that the colliding day is not fixed. Thus, in the birthday attack the collision
is searched for any output of the function and not for a specific. Note that, searching a
collision for a fixed output corresponds to a second-preimage attack.

2.3.2 Meet-In-The-Middle Attack

For a meet-in-the-middle attack a cryptographic function Ek using a key k is divided into
two sub functions so that Ek = Ek,bw ◦ Ek,fw. The aim of the attack is to find a pair of
plaintext and ciphertext (p, c) resulting in the same intermediate value v = Ek,fw(p) =
E−1
k,bw(c) is valid. For such a pair Ek(p) = c is valid. In the first step of the attack all

possible values for v are calculated, iterating over all possible plaintexts or keys. Then in

8



the second step, for all possible ciphertexts or keys again v is calculated until a match is
found. Going forwards and backwards through a function at the same time can reduce the
complexity of an attack dramatically [DH77].

Zhu and Gong introduced a multidimensional version in [ZG11]. This attack can be used
if the cryptographic function consists of several sub-functions using different keys so that
c = Ekn(. . . Ek2(Ek1(p)) . . . ). In the simplest case two different keys k1 and k2 are used. The
intermediate value g is the value between Ek1 = Ek1,bw ◦ Ek1,fw and Ek2 = Ek2,bw ◦ Ek2,fw.
For all possible values of g the intermediate values v′1 = E−1

k1,bw
(g) and v′2 = Ek2,fw(c)

Then for all possible keys or plaintexts and ciphertexts the values for v1 = Ek1,fw(p) and
v2 = E−1

k2,bw
(c) are calculated until a match is found. Figure 4 shows the structure of both

variants.

p Ek,fw v E−1k,bw c

p Ek1,fw v1 E−1k1,bw
g1...gn−1 Ekn,fw v2 E−1kn,bw

c

Figure 4: Structure of the single and multi dimensional meet-in-the-middle-attack

2.3.3 Linear Cryptanalysis

Linear cryptanalysis was first applied on a block cipher in [MY93]. To be fast most en-
cryption algorithms have linear parts using operations like XOR. However, a block cipher
also consists of non linear parts like an s-box. An s-box substitutes an input value by a
fixed value and is often implemented as lookup table. Such a function should disguise the
relation between the key and the ciphertext. Thus, the mapping should be as random as
possible and is therefore nonlinear. Linear cryptanalysis tries to find some linear approxi-
mations which hold with a high probability for such nonlinear functions. In most cases this
is not possible for complete words but often single bits have nearly linear relation. This
relations may be used to reveal some information about the secret key.

2.3.4 Integral Cryptanalysis

This attack is also known as Square attack because it was first proposed to attack the
Square block cipher [DKR97]. Integral Cryptanalysis can be applied on cryptographic
functions based on substitution-permutation networks. The saturation attack is a more
generalized form and can also be applied on functions having a Feistel network struc-
ture [Luc00]. In contrast to differential cryptanalysis integral cryptanalysis does not use
pairs of messages but sets of messages. The messages within this set differ only in a specific
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part, the rest is constant for all messages. In addition, it is balanced if the XOR-sum of
all contained messages is 0. Then for instance the XOR-sums of the corresponding set of
ciphertexts can be used to deduce information whether a guessed key was correct [DKR97].

2.4 SHACAL-2

SHACAL-2 was designed 2000 by Handschuh and Naccache [HN00]. It was selected by
NESSIE (New European Schemes for Signatures, Integrity and Encryption). NESSIE is
a European research project with the target to provide proved and secure cryptographic
algorithms. The algorithm is a symmetric block cipher and is based on the SHA-2 hash
function. The compression function of SHA-2 is invertible, thus its structure can also
be used for decryption. SHACAL-2 uses the SHA-2 compression function without feed-
forward in encryption mode. Therefore, the key is used as message and the plaintext is
used as initial value, by ignoring the final addition with the initial values. Thus, SHACAL-
2 is a 256-bit block cipher and its key can have up to 512 bits and should have a minimum
length of 128 bit. If the key is shorter then 512, it is padded with zeros.

2.4.1 Definition of SHA-2

The structure of SHACAL-2 is defined as follows:

Message Expansion: Each 512-bit message input block gets divided into 16 words Mi

where i = 0, ...15. They are used to calculate 64 expanded message words Wi as follows:

Wi =

{
Mi 0 ≤ i<16
σ1(Wi−2) +Wi−7 + σ0(Wi−15 +Wi−16 16 ≤ i<64

(2)

Thereby, modular additions modulo 232 are used. The functions σ0(X) and σ1(X) are
given following equation, whereby X≫ n means a rotation of word X of size w by n bits
(X≫ n = (X � n) ∨ (X � (w − n))):

σ0(X) = (X � 3)⊕ (X≫ 7)⊕ (X≫ 18)

σ1(X) = (X � 10)⊕ (X≫ 17)⊕ (X≫ 19)
(3)

State Update Transformation: Before each round the state hi is initialized with a new
block 256-bit block of the message. Then 64 rounds of the step function are performed to
update the state. The state consists of eight 32-bit words Ai, ..., Hi, where i indicates the
step. In the step function a constant Ki is used. The definition of the step function is as
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Figure 5: Step function of SHACAL-2

follows:

MAJ(X, Y, Z) = X ∧ Y ⊕ Y ∧ Z ⊕X ∧ Z
CH(X, Y, Z) = X ∧ Y ⊕ ¬X ∧ Z

Σ0 = (X≫ 2)⊕ (X≫ 13)⊕ (X≫ 22)

Σ1 = (X≫ 6)⊕ (X≫ 11)⊕ (X≫ 25)

T1 = Hi + Σ1(Ei) + CH(Ei, Fi, Gi) +Ki +Wi

T2 = Σ0(Ai) +MAJ(Ai, Bi, Ci)

Ai+1 = T1 + T2, Bi+1 = Ai, Ci+1 = Bi, Di+1 = Ci

Ei+1 = Di + T1, Fi+1 = Ei, Gi+1 = Fi, Hi+1 = Gi.

(4)

Figure 5 shows the step function of SHACAL-2. In contrast to SHA-2 the initial state
value for SHACAL-2 is not added to the output state after the last step of the state
update transformation. More detailed descriptions of SHA-2 and SHACAL-2 are given
in [Nat08, HN00].

2.4.2 Current Attacks

In the last years several boomerang characteristics for a round reduced version of SHACAL-
2 were published [KKL+05, LKKD06, Wan07, LK08, FGL09]. But for all of them inconsis-
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tencies have been found in the switch manually [BLMN11]. See Tables 21-23 in Appendix A
for the definition of these characteristics. More details about the terms used below can be
found in Section 3.

It must be considered that the used boomerang characteristics are not independent.
Thus, for some bits, the conditions cannot be satisfied in both characteristics at the same
time. In [LK08], bit 13 in E25 in one characteristic has a difference. Thus, there must be
the same signed difference in the same bit in F25 and G25. In the next step F25 becomes G26

and G25 becomes H26. As a result bit 13 of G26 and H26 have the same signed difference.
The characteristics requires these two differences canceling out each other, which is not
possible, because their difference have the same sign. In this way we get a contradiction.
For the characteristics defined in [LKKD06, Wan07, FGL09], the conflict also lies in bit 13
of the switch. In a similar way, a contradiction for the characteristics defined in [KKL+05]
can be found [BLMN11].

In [HKK+03] an impossible differential attack on 30 rounds of SHACAL-2 was pub-
lished. The authors extend an 11-round impossible differential characteristic to a 14-round
distinguisher. Using this distinguishers, they are able to attack 30-round of SHACAL-2
with a data complexity of 744 chosen plaintexts and a time complexity of 2495.1 encryp-
tions. For more details see [HKK+03]. There exist also other attacks for reduced versions
of SHACAL-2. For a complete list see Table 1.

Table 1: Comparison of attacks on SHACAL-2

Attack Rounds Data Time Memory
Square [SKK+04] 28 463 · 232 CP 2494.1 245.9

Impossible Differential [HKK+03] 30 744 CP 2495.1 214.5

Differential [SKK+04] 32 243.4 CP 2504.2 248.4

RK Differential [KKL+05] 35 242.32 RK-CP 2452.1 247.32

RK Rectangle †[KKL+05] 37 2235.16 RK-CP 2486.95 2240.16

RK Boomerang †[FGL09] 39 23.5 RK-CPCC 2483.5 28.5

RK Rectangle †[LKKD06] 40 2243.38 RK-CP 2448.43 2247.38

RK Rectangle †[LKKD06] 42 2243.38 RK-CP 2488.37 2247.38

RK Rectangle †[Wan07] 43 2240.38 RK-CP 2480.4 2245.38

RK Rectangle †[LK08] 44 2233 RK-CP 2497.2 2238

CP . . . needed pairs of ciphertexts
RK . . . related-key
CC . . . chosen ciphertexts
†. . . the used characteristic contains conflicts
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3 Differential Cryptanalysis

The word cryptanalysis derives from the Greek words kryptós (hidden) and análysis (to
loosen) [WB01]. Thus, it stands for the science of studying the hidden aspects of informa-
tion systems. Cryptanalysis is used to break cryptographic systems and obtain information
of secret messages and the used cryptographic keys. To reach this target, different forms
of attacks are known. Some of them are linear cryptanalysis, integral cryptanalysis or side
channel attacks. A further form is the differential cryptanalysis, which is one of the most
powerful attack strategies.

First-order differential cryptanalysis or short differential cryptanalysis can be applied on
block ciphers, stream ciphers and hash functions. These attacks can be used to distinguish
an unknown algorithm from possible candidates, to deduce information about the secret key
or to find collisions. Differential cryptanalysis is typically a statistical attack using chosen
plaintexts. It was first published by Eli Biham and Adi Shamir 1991 in [BS91]. However, it
was already known to NSA and IBM during the development of DES 1975 [Cop94]. Thus,
the S-box of DES was chosen in a way to counter differential cryptanalysis. The basic idea
of differential cryptanalysis is to analyze the effect of differences in plaintext pairs on the
resulting output pair [BS91].

Differential cryptanalysis was first applied on a hash function in 1993 to attack
MD5 [dBB94]. The target of most attacks on hash functions using differential crypt-
analysis is finding a collision. In this case, two different messages should result in the same
output. An advantage compared to differential cryptanalysis on block ciphers is, that for
hash functions message modification can be used (see Section 3.3.1).

3.1 Preliminaries

Difference: In most cases a difference of two elements x and x′ is defined by an XOR
difference x ⊕ x′. Generally the difference for any group is defined as x•x′−1, where x′−1

is the inverse of x′ and • the group operator [LMM91]. But there are also other types
of differences. In designs using modular addition a modular difference (x � x′) is used
instead [Dob98]. In [WY05] signed bit differences were presented. Generalizing signed
bit differences allow to use generalized conditions [DCR06] which will be presented in
Section 6.1.1. In the remainder of this thesis the notation ∆(x, x′) stands for the difference
of x and x′. If x 6= x′, the according bit is called active, otherwise it is called inactive.

For non linear functions, like an S-box, for some input differences the probability for a
certain output difference deviates from average. This fact can be used to predict a certain
difference on the output of the non linear function. In addition, sometimes some differences
have a probability of zero, thus they are impossible. Such impossible differences are used
in impossible differential cryptanalysis [Knu98].

In differential cryptanalysis usually differences over several number of rounds are used.
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Differences over several rounds can be represented by characteristics or differentials.

Characteristic: A characteristic is a sequence of predicted differences after each round of
the cryptographic function. The sequence starts with the difference of the plaintexts. Each
entry corresponds to a one-round characteristic. For each of them the probability can be
estimated. The probability p of the whole characteristic is the product of the probabilities
of all involved one-round characteristics. This calculation is based on the assumption that
the involved one-round characteristics are independent from each other. For most cases,
this assumption is not valid. However, it is a good approximation if the characteristic
is sparse, thus has few active bits. Furthermore, the complexity of the attack can be
estimated by O(p−1). Differential characteristics sometimes are also called differential trail
or differential path.

Differential: A differential is a collection of characteristics, which share the same input
and output differences. Thus, a differential typically defines only the difference of the
plaintext and the ciphertext. If X is an input difference and Y is an output difference after
i rounds of a function, then the pair (X, Y ) called is a differential. As a result, in general
the probability of a differential is higher than the probability of a characteristic. On the
other hand, a characteristic can be seen as sequence of one round differentials.

3.2 The Attack

In this section, we explain the concept of a cryptographic attack using differential crypt-
analysis. Therefore, we assume a block cipher Ek1||...||kn(·) using n sub-keys k1, . . . , kn to
encrypt a plaintext p. The block cipher consists of n steps and for each step a step function
F (·) is applied on the former state si−1 and defines the new state si where s0 is the plain-
text. In each step a subkey ki derived from a master key with a key scheduling algorithm is
used. Thus, the resulting ciphertext c is defined as c = Ek1||...||kn(p) = Fkn(. . . Fk2(Fk1(p))).
Because we use differential cryptanalysis we use a pair of plaintexts (p1, p2) which result
in a pair of ciphertexts (c1, c2). The structure of the example is shown in Figure 6.

To find the keys, we introduce some differences. The difference on the input is defined
by ∆p = p0⊕p1. We also define differences of the states ∆si = s0,i⊕s1,i. These differences
are part of the differential characteristic.

Then the attack consists of two parts. In the first step we search a differential charac-
teristic with a probability as high as possible and suitable pairs of plaintexts are generated.
In the second step, keys are guessed and filtered by looking if they fulfill the probability of
the characteristic.

Searching a differential characteristic: The probability for a difference on the output
of the step function depends on difference on the input. For an ideal step function all output
differences are equally likely. However, for real step functions for certain input differences
some output differences are more or less likely than the average. For illustrattion we look

14



differential characteristic

p0 Fk1

k1

Fk2

s0,1

k2

Fkn−1

kn−1

Fkn

s0,n−1

kn

c0

p1 Fk1

k1

Fk2s1,1

k2

Fkn−1

kn−1

Fkns1,n−1

kn

c1

∆p ∆s1 ∆sn−1

Figure 6: Exemplary structure for differential attack

at the difference distribution table of the 4-bit s-box used by PRESENT [BKL+07] which is
shown in Table 2. A difference distribution table can be generated by sending all possible
input differences with all possible values through the s-box and count the differences on
output. The result is shown in Table 3. Each line represents an input difference and each
column an output difference. As one can see, if there is no difference on the input for all
possible values no difference occur on the output. The maximum number in the table is
four, thus the maximum probability for a output difference for a specific input difference is
pmax = 4

16
= 1

4
. For instance for the input difference 0xF the probability to get an output

difference of 0xF is 1
4
. If we assume for our exemplary encryption function the same

difference distribution table, we could use a characteristic {0xF → 0xF . . . 0xF → 0xF}
which would result in a total probability of p = (1

4
)n−1. Aim of this step is finding the

characteristic with the highest probability. Once a good characteristic is found several
pairs of plaintext with the initial difference of the characteristic must be generated and
encrypted to get ciphertext pairs belonging to them.

Table 2: PRESENT S-Box

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) 6 4 c 5 0 7 2 e 1 f 3 d 8 a 9 b

Filter key candidates: In the second phase we guess a key kn and calculate from all pairs
of ciphertexts one step backwards to determine their difference ∆sn−1 = F−1

kn
(c0)⊕F−1

kn
(c1).

Thereby we have to count how often the final difference of the characteristic is matched.
If the percentage of matching pairs corresponds to the expected probability the guessed
key is a good candidate for being the correct key. This must be done for all possible keys.
When more than one key candidate remains then either more pairs of plaintext must be
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Table 3: Difference distribution table of PRESENT s-box [KYK10]

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4
7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0
A 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
B 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
C 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
D 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
E 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
F 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

generated or this step is repeated with another characteristic until one single key candidate
remains.

If a key was found the attack can be repeated on n − 1 steps to get key kn−1 and so on.
Additionally it can be done upside down to get key k0. For this attack often less encryptions
are needed than for a brute force attack. However, this requires a characteristic with an
practical probability. The design of modern cryptographic functions considers this attack
and is chosen in a way to minimize the probability to find a good characteristic.

3.3 Techniques in Differential Cryptanalysis

There are some related techniques, which can be used to improve the probability of differ-
ential characteristics. A short description of some of them can be found in this sections.
We also summarize two techniques for first-order differential cryptanalysis, which have
some similarities with the boomerang attack (see Chapter 4), in Section 3.3.6.

3.3.1 Message Modification

For most attacks it is essential to use characteristics with a probability as high as possible.
The probability of a characteristic can be improved by selecting the messages accordingly.
Often it is possible to influence the state of some rounds directly. In many cases messages
can be chosen to correct single bits in the characteristic. If a bit of a message word for a
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certain round depends only on one bit of the message, this is quite straight forward. But
often it depends on several bits of the message. Then advanced modification techniques
must be used to handle the complexity. These advanced techniques depend strongly on the
attacked algorithm [WY05]. For instance, a detailed description of message modification
for SHA-0 can be found in [WYY05b].

3.3.2 Neutral Bits

When the value of a neutral bit in a message changes the resulting message pair still
conforms the same characteristic. In this context the term neutral bit is taken in its
information theoretical sense and may be a group of several elementary bits which are all
flipped simultaneously [BC04]. Knowing neutral bits reduces the complexity of searching
valid characteristics and validating messages for the differential.

3.3.3 Truncated Differentials

A differential that predicts not all of the bits is called a truncated differential. Formally a
truncated difference is defined as (X ′, Y ′), if (X, Y ) is a differential and X ′ is a subsequence
of X and Y ′ is a subsequence of Y . Using generalized conditions we can write a truncated
difference (see Section 6.1.1) using ’?’, because this conditions allow any value. For instance
in [????x?-?] only the second and the fourth bit are fixed, the others are free. This technique
allows differentials to be less strict and so it improves their probability [Knu95].

3.3.4 Related Key Attack

In a related key attack the attacker can observe the operation of a block cipher, using several
unknown but mathematical related keys. Therefore weak key scheduling algorithms can be
exploited. If the relation of some keys is known, this information can be used to choose the
keys in a way that they cancel out differences in the messages. As a result fewer differences
go through the block cipher which improve the probability of the characteristic and reduce
the complexity of other attacks [Knu93, Bih94]. A famous example is WEP using RC4,
which allows to recover the key [FMS01].

3.3.5 Differential Multi-Collision

For a differential multi-collision a difference in plaintexts (∆P ) as well as a difference in
the keys (∆K) is used. A set of q pairs of plaintexts (pi) and keys (ki) for a cryptographic
function Ek(·) is called a differential q-multi-collision, if

Ek1(p1)⊕ Ek1⊕∆K(p1 ⊕∆P ) = ... = Ekq(pq)⊕ Ekq⊕∆K(pq ⊕∆P ). (5)

If the keys are different, this attack can only generate pseudo-collisions. This attack can
also be used to generate a chosen-key distinguisher. Using this attack also weakness in the
key scheduling can be found [BKN09].
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3.3.6 Inside-Out Attack

In this attack no input and output differences are selected but an intermediate difference
∆1 of the block cipher E = E1 ◦ E0. Then we search for pairs of plain texts with desired

intermediate difference and an input difference ∆0. On input the difference ∆1

E−1
0−→ ∆0

and on output the difference ∆1
E1−→ ∆2 should occur (see Figure 7). After analyzing a

certain amount of pairs of plaintexts at least one pair with wanted differentials ∆0
E0−→ ∆1

and ∆1
E1−→ ∆2 should be found [Wag99].

E0 E0

P P ′∆0

E1 E1

C C ′

∆2

X X ′
∆1

Figure 7: Structure of the inside-out attack

Getting the needed difference in the middle of the function randomly enables differential
attacks, even if there are no differentials with high probability through the whole cipher.
Therefore, this idea can be used to deal with differentials with lower probabilities. The
attack can also be used to distinguish a certain cryptographic function from a ideal and
random function. For this one has to calculate the expected probability that a randomly
chosen pair of plaintexts fits the required conditions for the inside-out attack. If the
expected probability differs from the measured probability, then the analyzed algorithm
distinguishes from expected algorithm [KKS01].

3.3.7 Rebound Attack

For the rebound attack the cryptographic function E is divided into three sub-functions
E = Efw ◦Ein ◦Ebw. The attack can be divided into two phases. It consists of an inbound
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Figure 8: Structure of the rebound attack

and and outbound phase (see Figure 8). In the inbound phase a meet-in-the-middle attack
on Ein is implemented. The attack was designed for the cryptanalysis of hash functions.
Thus, the attacker can use freedom which are available when analyzing hash functions.
In the outbound phase differentials are used in forward- and backward directions through
Efw and Ebw to find collisions. When these differentials have a too low probability, the
inbound phase can be repeated. More details can be found in [MRST09].

4 Second-Order Differential Cryptanalysis

Higher order differential cryptanalysis is a generalization of differential cryptanalysis and
was first published in [Lai94]. This concept considers differences of differences. In this
section we give some basic definitions for higher-order, in particular for second-order dif-
ferential cryptanalysis, which are needed to describe the boomerang attack.

Abelian group: An abelian group (G, •) is a defined by a group of numbers G and an
group operator • with certain properties. Two of them are that the result of applying the
operation to two elements of the group does not depend on their order and the result is
also in G. Thus, for instance the result of modular addition of two 32-bit numbers denoted
as (N32,+) is also a 32-bit number. Further properties are that there exists an identity
element e so that a • e = a and for all group members exists an inverse element i so that
a • i = e. Additional associativity is given so that (a • b) • c = a • (b • c).

Higher order differentials are recursively defined as follows [Lai94, Knu95]:

Derivative: Let (S,+) and (T,+) be an abelian group. For a function f : S → T , the
derivative at a point a1 ∈ S is defined as

∆(a1)f(y) = f(y + a1)− f(y). (6)

Higher derivative: The i-th derivative of f at (a1, a2, ..., ai) is recursively defined as

∆(a1,...,ai)f(x) = ∆(ai)(∆(a1,...,ai−1)f(y)). (7)
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Thus, the 2nd derivative of f at point (a1, a2) is defined as

∆(a1,a2)f(x) = ∆(a2)(∆(a1)(f(x))

= ∆(a2)(f(x+ a1)− f(x))

= (f(x+ a1 + a2)− f(x+ a2))− (f(x+ a1)− f(x))

= f(x+ a1 + a2)− f(x+ a1)− f(x+ a2) + f(x).

(8)

Higher-order differential: A differential of order i is an (i+1)-tuple (α1, ..., αi, β) so that

∆(a1,...,ai)f(x) = b. (9)

Higher-order collision: If the output difference of a higher-order differential is zero it is
called a collision.

∆(a1,...,ai)f(x) = 0. (10)

A second-order differential collision is given if f(x+a1+a2)−f(x+a1)−f(x+a2)+f(x) = 0.

4.1 Boomerang Attack

The boomerang attack is one attack using the concept of second-order differential crypt-
analysis and was first presented in [Wag99]. Since we use differences of differences we have
to consider four plaintexts (P, P ′, Q,Q′) and four ciphertexts (C,C ′, D,D′). To attack the
target function E(·) the basic attack works as follows:

- Define an input difference ∆ for P ⊕ P ′
- Define an output difference ∇ for C ⊕ C ′
- Choose a plaintext P and calculate P ′ = P ⊕∆
- Apply function E(·) on P and P ′ to get C = E(P ) and C ′ = E(P ′)
- Calculate D = C ⊕∇ and D′ = C ′ ⊕∇
- Apply inverse function E−1(·) on D and D′ to get Q = E−1(D) and Q′ = E−1(D′)

For illustration of this algorithm see Figure 9. Because we choose plaintexts and cipher-
texts, the boomerang attack is a chosen plaintext - adaptive chosen ciphertext attack. The
fact that the transmitted difference (P ⊕ P ′) should be equal to the returning difference
(Q⊕Q′) induced Wagner to his choice of the name boomerang attack: ”This is why we call
it the boomerang attack: When you send it properly, it always comes back to you” [Wag99].

In more detail, the cryptographic function E(·) can be divided into two sub functions
E = E1 ◦E0, which can also be written as E(X) = E0(E1(X)). Thereby E0 represents the
first part and E1 the second part of the function E(·). The intermediate result between
these two parts is (X,X ′, Y, Y ′). The differences in this so called switch are ∆∗ and ∇∗.

X = E0(P ) = E−1
1 (C), X ′ = E0(P ′) = E−1

1 (C ′),

Y = E0(Q) = E−1
1 (D), Y ′ = E0(Q′) = E−1

1 (D′).
(11)
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Figure 9: Structure of the boomerang attack

For these intermediate differences in the switch the following equation must hold [Wag99]:

E0(Q)⊕ E0(Q′) = E0(P )⊕ E0(P ′)⊕ E0(P )⊕ E0(Q)⊕ E0(P ′)⊕ E0(Q′)

= E0(P )⊕ E0(P ′)⊕ E−1
1 (C)⊕ E−1

1 (D)⊕ E−1
1 (D′)⊕ E−1

1 (D′)

= ∆∗ ⊕∇∗ ⊕∇∗ = ∆∗.

(12)

If the following conditions are fulfilled, (P, P ′, Q,Q′) is called a right quartet [Mur09]:

P ⊕ P ′ = Q⊕Q′ = ∆, X ⊕X ′ = Y ⊕ Y ′ = ∆∗,

X ⊕ Y = X ′ ⊕ Y ′ = ∇∗, C ⊕D = C ′ ⊕D′ = ∇.
(13)

For this attack the output differences C⊕C ′ and D⊕D′ can have any values. That applies
also for the differences P ⊕ Q and P ′ ⊕ Q′. Therefore, almost only the characteristics
∆→ ∆∗ and ∇ → ∇∗ are important. Thus, differentials for a boomerang attack can be a
combination of two differentials for half of the attacked rounds - one in forward and one in
backward direction. Hence it is easier to get such high probability differentials using the
boomerang attack than a high probability differential for a first-order attack on E. If we
assume that the differentials are independent, a simple approximation of the probability p
for a right quartet is [Wag99]:

p ≥ Pr[∆
E0−→ ∆∗]2 · Pr[∇

E−1
1−→ ∇∗]2 = p2

0 · p2
1. (14)
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However, when using this probability it is expected to find one solution after p−2
0 ·p−2

1 itera-
tions. This probability does not hold if truncated characteristics are used. The probability

calculated in Equation 14 assumes that Pr[∆
E−1

0−→ ∆∗] = Pr[∆∗
E−1

0−→ ∆]. For truncated
differentials this is not valid in general. Thus, a more accurate formula for the probability
p of a successful boomerang attack using truncated differentials is [Wag99]:

p ≈
∑

w⊕x⊕y⊕z=0

Pr[∆
E0−→ w] · Pr[∇

E−1
1−→ x] · Pr[∇

E−1
1−→ y] · Pr[z

E−1
0−→ ∆]

≈ Pr[∆
E0−→ ∆∗] · Pr[∇

E−1
1−→ ∇∗]2 · Pr[∆∗

E−1
0−→ ∆]·

Pr[w ⊕ x⊕ y ∈ ∆∗|w ∈ ∆∗, x, y,∈ ∇∗].

(15)

4.2 Related Attacks

Beside the classic boomerang attack there exist some variants and also other higher-order
differential cryptanalysis attacks. Three of them are the amplified boomerang attack, the
rectangle attack and the boomerang attack using auxiliary differentials on hash functions.

4.2.1 Amplified Boomerang Attack

Sometimes it is not possible to apply a chosen ciphertext attack as needed for the boomerang
attack. Then the amplified boomerang attack may work because it is a chosen plaintext
variant of the boomerang attack. For this attack, input pairs are generated until two of
them, (P, P ′) and (Q,Q′), fulfill the boomerang properties (see Figure 10):

P ⊕ P ′ = Q⊕Q′ = ∆

X = E0(P ), X ′ = E0(P ′), Y = E0(Q), Y ′ = E0(Q′)

X ⊕X ′ = Y ⊕ Y ′ = ∆∗

X ⊕ Y = X ′ ⊕ Y ′ = ∇∗

C = E1(X), C ′ = E1(X ′), D = E1(Y ), D′ = E1(Y ′)

C ⊕D = C ′ ⊕D′ = ∇

(16)

The main difference compared to the original boomerang attack is that no differences
go backwards through the cryptographic function. This can be an advantage because using
this attack only in one end of the function a key must be guessed. Hence it is not necessary
to repeat the requests on the function for several guessed keys. Another advantage is that
the boomerang amplifier can also be used on k-tuples of texts not only on pairs. In addition
it is possible to add truncated differential for the remaining rounds. This allows using
truncated differentials only for a small part of the function. The attack is called amplified
boomerang attack because the boomerang structure amplifies the effect of a low-probability
event (X ⊕X ′ = Y ⊕ Y ′ = ∆0) enough that it can be easily detected [KKS01].
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Figure 10: Structure of the amplified boomerang attack

4.2.2 Rectangle Attack

The rectangle attack is an extension of the amplified boomerang attack. The structure
is shown in Figure 10. This attack allows even pairs of plaintexts resulting in wrong
intermediate difference ∆∗. The different input pairs get sorted by their intermediate
difference ∆∗. This approves all quartets which results in the output difference ∇. Thus,
the probability to find a correct quartet is higher. Therefore, for all characteristics for
which ∇∗ → ∇ and ∇∗ ⊕∆∗ → ∇ is valid the probability for a correct quartet is higher
than for the original boomerang attack [BDK01].

4.2.3 Boomerang Attack using Auxiliary Differentials

Leurent and Roy extended in [LR12] the idea of using auxiliary paths for message modi-
fications to the boomerang setting when attacking hash functions. The idea of auxiliary
paths divides the problem of finding a characteristic for a specific differential into smaller
sub problems. Then the biggest clique of auxiliary differential paths is searched to place
them into the characteristic. Therefore the auxiliary paths should be as independent as
possible.

This idea can also be applied to the boomerang attack. We consider a cryptographic
function E that can be decomposed into three sub-functions E = Ec ◦ Eb ◦ Ea, then
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- for fa a differential α→ α∗ holding with probability pa is used
- for fb a set B of b differentials βi → β∗i holding with probability pb is used
- for fc a differential γ → γ∗ holding with probability pc is used

The attack starts with a boomerang quartet (U0, U1, U2, U3)→ (V0, V1, V2, V3) over fb, with

U1 = U0 ⊕ α∗, U3 = U2 ⊕ α∗, V2 = V0 ⊕ δ, V3 = V1 ⊕ δ. (17)

In the next step an auxiliary path βi → β′i is used to generate U ′i = Ui ⊕ βi. With
probability p4

b this results in a new quartet (U ′0, U
′
1, U

′
2, U

′
3)→ (V ′0 , V

′
1 , V

′
2 , V

′
3) over fb, where

V ′i = Vi ⊕ β∗i . Thus, for this new quartet must also hold the following equation:

U ′1 = U ′0 ⊕ α∗, U ′3 = U ′2 ⊕ α∗, V ′2 = V ′0 ⊕ δ, V ′3 = V ′1 ⊕ δ. (18)

Then the complexity to find a correct quartet for the full function E is defined by [LR12]:

p =
1

p2
ap

2
c

(
C

b · pb
+ 1

)
. (19)

where C is the computational cost to find a correct quartet for fb. The structure of the
attack is shown in Figure 11.

5 Finding Inconsistencies

In this chapter, we discuss a completely different topic than before, namely debugging.
Debugging is a process to find errors or conflicts in a set of data, which does not work as
expected. It has its main application in computer programming and designing hardware.
However, it can be used to find conflicts in any set of data, which can be proven to be
correct or not too. A differential characteristic can also be seen as such a set.

There are lots of possibilities for debugging. In general, it can be distinguished between
static and dynamic debugging. Static debugging only uses the information whether a
specific subset of the inconsistent data set is valid or not. On the contrary, dynamic
debugging uses information about the validation process like a execution trace in case of
debugging source code. Using this additional information, they may be able to trace the
reason of a conflict very precisely. In this thesis, we use only static debugging algorithms,
because for differential characteristics it is not always possible to trace the cause of a fault.
Such algorithms are also called non-intrusive algorithms [Jun01]. In the following, we give
a couple of basic definitions. They are based on the definitions given in [Rei87].

Constraint: A constraint ci is a single condition, which either can be fulfilled or not.
Typically several constraints relate some variables to each other. An exemplary set of
constraints would be c1 : x1 < x2, c2 : x2 = x3 − x4. In this thesis, we define a constraint
as a generalized bit condition which should have the value defined in the characteristic.
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Figure 11: Structure of the boomerang attack using auxiliary differentials

Candidate or Test case: In a test case T some constraints are active and some are
inactive. Thus, it is as sub set {c1, . . . , ck} of all n available constraints C. Active con-
straints are set on the values defined in the characteristic. Inactive constraints are set on
’?’, so they allow any value and do not lead to a conflict. Thus, a test case in terms of a
differential characteristic is a characteristic in which some of the conditions are ignored.

Conflict: A conflict C is given if not all constraints in the test case can be fulfilled at
the same time. If we can find a conflict for a characteristic, then this characteristic is
impossible.

Conflict Set: A conflict set CS is defined as a set of constraints which are inconsistent.
This means that the constrains of a conflict set are inconsistent. An example would be
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c1 : x1 < x2, c2 : x1 = x2, c3 : x1 > x2. But this conflict set is not minimal, because each
pair of those constraints is a conflict set already. Thus, a minimal conflict set contains a
minimal set of constraints which are inconsistent. A minimal conflict set CS is defined as
@CS ′ so that CS ′ ⊂ CS. For the former example, one possible minimal conflict set would
be c1 : x1 < x2, c3 : x1 > x2.

Diagnosis: If the constraints contained in a diagnosis ∆ are removed from C, then the
remaining constraints must be consistent. Moreover, a diagnosis ∆ is determined by a set
of constraints, which must be removed from C to make C −∆ consistent. More formal, a
diagnosis ∆ ⊆ C : C −∆ ∪ {ci} is consistent ∀ci ∈ C. For a set of constraints more than
one diagnosis can exist which also can have different sizes.

The selected algorithms basically work in a the divide and conquer principle. They divide
the given set of constraints into subsets, therefore a test case, and check the consistency
of this set. Depending on the result of these checks, constraints are added or removed
from the current subset. Thereby they can pursue two different targets. Either search a
small set of inconsistent constraints, a conflict set. Or they search a big set of consistent
constraints. This correlates to the search of a diagnosis. Differential characteristics are well
suited to apply divide and conquer principle on them, because each condition separately
can be deactivated and no syntax or semantic gets violated.

Checking the consistency of a differential characteristic can end up in searching a ful-
filling pair of inputs. Thus, checking a differential characteristic can be very expensive.
Therefore, debugging algorithms should do as few consistency checks as possible. A set of
constraints can have an exponential number of conflicts. Thus, a very naive method would
be to test each possible combinations of constraints, until a conflict set or a diagnosis is
found. In the worst case this would also take an exponential number of checks.

We chose two algorithms which calculate conflict sets and two further algorithms which
calculate diagnoses. In this way we can test which concept is more suited for finding and
repairing differential characteristics. We chose very generic debugging algorithms where
we had made some experience already. Moreover, the selected algorithms are well suited,
because they are completely independent from the underlying structure of the constraints.
To show the differences between the presented algorithms we will apply them all on the
same example.

Example 1: We define a set of constraints {c1, c2, c3, c4} and two minimal conflicts sets
CS1 = {c2, c4}, CS2 = {c3}. Thus, possible diagnoses are ∆1 = {c2, c3},∆2 = {c4, c3}.

In the following sections, we describe four debugging algorithms we implemented (Sec-
tions 5.1-5.4) and the usage of them to find a diagnosis to repair boomerang characteristics
(Section 5.5).

26



5.1 SequentialSearch

For a first try of debugging differential characteristics we implemented a very simple debug-
ging algorithm. We created an algorithm which returns a diagnosis. Thus, after removing
the constraints in this diagnosis the remaining constraints are consistent and the charac-
teristic is repaired. This algorithm consists of two phases. In the first phase, it removes
constraints sequentially until the remaining constraints are consistent. Once having a
consistent set of constraints we can test for each removed constraints if it make the set in-
consistent and thus, is part of the diagnosis. Therefore, in the second phase, the algorithm
adds each removed constraint. If the new set is still consistent, this constraint is not part
of the diagnosis and remains in the actual set of constraints. Otherwise, this constraint is
part of the diagnosis and is removed again to keep the working set of constraints consistent.
The complete algorithm can be found in Algorithm 1.

SequentialSearch always determines and returns a diagnosis if any can be found. If
all constraints are removed from C without solving the conflict, in line 12 the algorithm
terminates and returns ∅. Otherwise, C must be consistent at the beginning of the second
loop in line 15. C remains consistent, because all ci which make C inconsistent again are
removed and added to X. Hence, per definition X must be a diagnosis.

In worst case almost each constraint can be removed once and added once again. This
can happen if the last constraint is a diagnosis. Thus, in worst case O(n) consistency
checks must be done.

Table 4 shows the algorithm applied on Example 1.

Table 4: Exemplary execution of SequentialSearch

iteration C D R check comment retval
1.1 c2, c3, c4 c1 ∅ check({c2, c3, c4})  
1.2 c3, c4 c1, c2 ∅ check({c3, c4})  
1.3 c4 c1, c2, c3 ∅ check({c4}) X → break upper loop
2.1 c4 c1, c2, c3 ∅ check({c1, c4}) X
2.2 c1, c4 c1, c2, c3 ∅ check({c1, c2, c4})  
2.3 c1, c4 c1, c2, c3 c2 check({c1, c3, c4})  |T | is 0 → ret R c2, c3

5.2 ReplayXPlain

The ReplayXPlain algorithm was presented in [Jun01]. It is an iterative algorithm based
on [DSP88]. The algorithm is described in Algorithm 2. The algorithm starts with an
empty set of constraints B which is therefore consistent (line 5). Then it adds the given
constraints c1, . . . , cn until B is inconsistent (loop in lines 9-12). Because the last constraint
ck added led to a inconsistency this constraint must be part of the conflict. Thus, ck is
added to the conflict set X (line 16). Then the algorithm makes a backtracking and loads
only the constraints in X into C (line 16). If this set still is consistent not the whole
conflict set is found. Therefore the remaining constraints again are added to C until a
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conflict occurs. These iterations go on until X is inconsistent and thus is a conflict set
(check in line 7). Moreover, it must be a minimal conflict set, because each of the contained
constraints led to a conflict.

Algorithm 1 SequentialSearch

Require: Set of n inconsistent constraints C = {c1, . . . , cn}
Ensure: A diagnosis for C

1: procedure SequentialSearch(C)
2: if size of C = 0 then
3: return ∅
4: end if
5: D ← ∅
6: repeat
7: c← first element of C
8: add c to D
9: remove c from C

10: until C is consistent
11: if size of C = 0 then
12: return ∅
13: end if
14: R← ∅
15: for all constraints d in D do
16: if C ∪ d is consistent then
17: add d tp C
18: else
19: add d to R
20: end if
21: end for
22: return R
23: end procedure

The number of checks depends on the size k of the resulting conflict set. If all constraints
of the conflict are the k last constraints, for all of them almost n checks have to be done
before they are added to C and thus, C gets inconsistent. Additionally for each element
of X a check must be done do determine if the conflict set is complete. Thus, in the worst
case O(k · n+ k) checks must be done.

Originally, this algorithm allows to define preferred constraints. We do not use this
possibility, because we typically cannot rank the constraints. Algorithm 2 is a slightly
modified version of the algorithm presented in [Jun01].
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Algorithm 2 ReplayXPlain

Require: Set of n inconsistent constraints C = {c1, . . . , cn}
Ensure: A conflict set for C

1: procedure ReplayXPlain(C)
2: if size of C = 0 then
3: throw exception ’no conflict’
4: end if
5: B ← ∅
6: X ← ∅
7: while B is consistent do
8: k ← 0
9: while B is consistent and k < n do

10: k ← k + 1
11: add ck to B
12: end while
13: if B is consistent then
14: throw exception ’no conflict’
15: end if
16: add ck to X
17: B ← X
18: end while
19: return X
20: end procedure

Table 5 shows the algorithm applied on Example 1.

Table 5: Exemplary execution of SequentialSearch

iteration B C X check comment retval
1 ∅ c1, c2, c3, c4 ∅ check(∅) X

1.1 ∅ c1, c2, c3, c4 ∅ check(∅) X
1.2 c1 c1, c2, c3, c4 ∅ check({c1}) X
1.3 c1, c2 c1, c2, c3, c4 ∅ check({c1, c2}) X
1.4 c1, c2, c3 c1, c2, c3, c4 ∅ check({c1, c2, c3})  → break inner loop

2 c3 c1, c2, c3, c4 c3 check({c3})  → break outer loop c3

5.3 QuickXPlain

QuickXPlain improves ReplayXPlain by recursively partitioning the problem into subprob-
lems of half size. It is described in Algorithm 3. Therefore the set of constraints is divided
into two subsets (lines 14-16). Subsets which do not contain an element of the conflict can
be skipped without further checks (line 10). Otherwise, some constraints have to be added
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to the other subset (lines 14-16). In this way, the inconsistent problem is divided until one
constraint remains which must be part of the conflict set (line 12). The algorithm always
terminates and returns a minimal conflict. In worst case O(2k · log2(n

k
) + 2k) consistency

checks must be done [Jun04].
The original algorithm allows to define a ranking of more or less preferred constraints.

We do not use this possibility, because we do not quantify the importance of the constraints.
Thus, algorithm 3 is a slightly modified version of the algorithm presented in [Jun04].

Algorithm 3 QuickXPlain

Require: Set of n inconsistent constraints C = {c1, . . . , cn}
Ensure: A conflict set for C

1: procedure QuickXPlain(C)
2: if size of C = 0 or C is consistent then
3: return ∅
4: else
5: return QX(∅, ∅, C)
6: end if
7: end procedure

8: procedure QX(B,∆, C)
9: if size of ∆ > 0 and B is inconsistent then

10: return ∅
11: else if C = {cα} then
12: return cα
13: end if
14: k ← bn

2
c

15: C1 ← {c1, . . . , ck}
16: C2 ← {ck+1, · · · , cn}
17: δ2 ← QX(B ∪ C1, C1, C2)
18: δ1 ← QX(B ∪ δ2, δ2, C1)
19: return δ1 ∪ δ2

20: end procedure

Table 6 shows the algorithm applied on Example 1.

Table 6: Exemplary execution of QuickXPlain

recursion B ∆ C δ1 δ2 check comment retval
1.0 ∅ ∅ c1, c2, c3, c4 c1, c2 c3, c4 no check c3

2.0 c1, c2 c1, c2 c3, c4 c3 c4 check({c1, c2}) X c3
3.0 c1, c2, c3 c3 c4 check({c1, c2, c3})  → ret ∅ ∅
3.1 c1, c2 ∅ c3 no check |C| is 1→ ret C c3

2.1 c3 c3 c1, c2 check({c3})  → ret ∅ ∅
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5.4 FastDiag

This algorithm works similarly as QuickXPlain, but it searches for a diagnosis instead of
a conflict set. The description of the algorithm can be found in Algorithm 4. In first step
FastDiag also divides the set of constraints into two subsets (lines 14-16). If one of them
is a diagnosis and thus, AC is consistent, then the other set can be omitted, because it
cannot contain constraints of the diagnosis (line 10). The set of constraints is divided until
one constraint remains and the set is still inconsistent. Then this constraint must be part
of the diagnosis (line 12). The algorithm is complete in the sense that if C contains one
minimal diagnosis, then it will be found. If there are more than one minimal diagnosis then
one of them is found. As for QuickXPlain in worst case O(2k · log2(n

k
) + 2k) consistency

checks must be done [FS10].
The original version of FastDiag allows to define a ranking of more or less preferred

constraints as in QuickXPlain. We again do not use this possibility. Thus, Algorithm 4 is
a slightly modified version of the algorithm presented in [FS10].

Algorithm 4 FastDiag

Require: Set of n inconsistent constraints C = {c1, . . . , cn}
Ensure: A diagnosis for C

1: procedure FastDiag(C)
2: if size of C = 0 then
3: return ∅
4: else
5: return FD(∅, C, C)
6: end if
7: end procedure

8: procedure FD(D,C,AC)
9: if size of D > 0 and AC is consistent then

10: return ∅
11: else if C = {cα} then
12: return cα
13: end if
14: k ← bn

2
c

15: C1 ← {c1, . . . , ck}
16: C2 ← {ck+1, · · · , cn}
17: D1 ← FD(C2, C1, AC \ C2)
18: D2 ← FD(D1, C2, AC \D1)
19: return D1 ∪D2

20: end procedure

Table 7 shows the algorithm applied on Example 1.
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Table 7: Exemplary execution of FastDiag

recursion D C AC C1 C2 check comment retval
1.0 ∅ c1, c2, c3, c4 c1, c2, c3, c4 c1, c2 c3, c4 no check c3, c4

2.0 c3, c4 c1, c2 c1, c2 check({c1, c2}) X → ret ∅ ∅
2.1 ∅ c3, c4 c1, c2, c3, c4 c3 c4 no check c3, c4

3.0 c4 c3 c1, c2, c3 check({c1, c2, c3})  |C| is 1→ ret C c3
3.1 c3 c4 c1, c2, c4 check({c1, c2, c4})  |C| is 1→ ret C c4

5.5 Finding diagnoses

To repair a set of constraints we have to remove the constraints which are contained in the
diagnosis. Therefore we have to differ if the used debugging algorithm returns a conflict set
or already a diagnosis. The algorithms SequentialSearch and FastDiag return a diagnosis,
thus no further steps are necessary. Conversely, QuickXPlain and ReplayXPlain return
constraint sets.

Typically a conflict set CSi = {ci,1, . . . , ci,n} is not a valid diagnosis. Therefore in
most cases more conflict sets must be searched. An new conflict set CSi+1 can be found
by removing CS1 from C and restart the debugging algorithm. This must repeated until

∆ =
n⋃
i=1

CSi is a valid diagnosis.

In a next step this diagnosis can be minimized. Therefore the hitting set algorithm
presented by Reiter in [Rei87] can be used. With the hitting set algorithm all minimal
diagnoses based on given conflict sets can be found. Simplified it can be said that there-
fore the hitting set algorithm takes one constraint from each conflict set. Removing one
constraint from each conflict set solves the conflicts, therefore they must be a diagnosis.
In our implementation we do not minimize the diagnosis, because a diagnosis containing
more constraints increases the probability to find a valid characteristic (see Section 7.2).

Sometimes one diagnosis is not sufficient. Having several diagnoses has the advantage that
one can select, for instance, the smallest one. Therefore, we avoid that the used algorithm
can find the same diagnosis again. Assuming an algorithm has found a diagnosis ∆i =
{ci,1, . . . , ci,n}, than an new diagnosis ∆i+1 = {ci+1,1, . . . , ci+1,n} should be found, so that
∆i and ∆i+1 differ in at least one constraint. This can be formulated as ∃ci,j|ci,j /∈ ∆i+1 and
∃ci+1,j|ci+1,j /∈ ∆i. Therefore, a constraint ci,j must be removed from C before executing
the algorithm again. To avoid that the algorithm returns ∆i+1 = ∆i \ ci,j, we have to set
ci,j statical active before. Thus, ∆i \ ci,j is not a valid diagnosis. All possible diagnoses
can be found by removing each constraint once from each found diagnosis until no new
diagnosis can be found. This technique requires the possibility to set constraints statically
active so that they are even active even when they are not in the tested set of constraints.
This can be done by using a global set of active constraints CA which is added temporarily
to the tested set of constraints before they are checked.
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6 Automatic Tool

In this thesis, we extended the tool presented in [MNS11] to handle bommerang charac-
teristics. We use all the functionalities to update, check and search first-order differential
characteristics provided in this tool to also handle boomerang characteristics. In this
chapter, we describe the provided functionalities, our extensions are described detailed in
Chapter 7.

6.1 Conditions and Characteristics

To specify, store and handle differential characteristics, generalized conditions and multi-
bit conditions are used. In this section, we describe the principle of conditions and extend it
to multi-bit conditions and characteristics. We also define linear two-bit conditions which
can describe the relation between two bits.

6.1.1 Generalized Conditions

If we look at characteristics, a pair of bits (xi, x
′
i) in a pair of messages can either be equal

or different. Moreover, we can even use a signed difference. Thus, it makes a difference
if the pair of bits has a negative difference (1,0) or a positive difference (0,1). We can
also consider the bit values, when both bits are equal. So we distinguish between (0,0)
and (1,1). For non-linear functions like an IF this has influence on the output [WYY05a].
We call these four differences {(0, 0), (1, 0), (0, 1), (1, 1)} the four basic differences. The
bit difference can be even more generalized using generalized conditions. These conditions
allow to represent a set of possible basic differences. In cases like when some input bits of
a non-linear function are unknown this generalization is necessary. This can be the case
when truncated differences (see Section 3.3.3) are used or the bits derive from an unknown
key. Then it is often only possible to calculate a set of possible output differences. If
some differences are not possible on the output, we can use this information on the input
of the next function to eliminate there some differences too. To represent all possible
differences for a certain pair of bits we can use generalized conditions which are listed in
Table 8 [DCR06].

The generalized condition can be any combination of the four basic differences. They
vary from ’?’, which allows every difference, to one of the four basic differences individually
with ’0’, ’u’, ’n’ or ’1’. If a contradiction occurs and no possible difference remains, we
mark the bit with ’#’. These abbreviation can be used to write differences very compact.
For instance

∇X = {X2|x7 · x′7 = 0, xi = x′i for 2 ≤ i ≤ 6, x1 6= x′1, x0 = x′0 = 0} (20)

can be written as ∇X = [7?−−−−x0], as described in [DCR06].
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Table 8: Generalized bit conditions

(xi, x
′
i) (1,1) (0,1) (1,0) (0,0) equation

# - - - -  
0 - - - X ¬X ∧ ¬X ′
u - - X - X ∧ ¬X ′
3 - - X X ¬X ′
n - X - - ¬X ∧ X ′

5 - X - X ¬X
x - X X - X ⊕ X ′

7 - X X X ¬X ∨ ¬X ′
1 X - - - X ∧ X ′

- X - - X ¬(X ⊕X ′)
A X - X - X
B X - X X X ∨ ¬X ′
C X X - - X ′

D X X - X ¬X ∨ X ′

E X X X - X ∨ X ′

? X X X X ∅

6.1.2 Generalized Multi-Bit Conditions

Sometimes it is useful to have conditions on more than one bit. This is particularly true
if the cryptographic function uses modular addition because the result of the addition of
two bits consists of a sum and a carry bit. Moreover, adding four single bits needs already
two carry bits and therefore three bits are needed to store the result. Thus, the number
of bits of the result of an operation on bits can be higher than one. To store the resulting
information, generalized multi-bit conditions can be used. Leurent introduces multi-bit
constraints in [Leu12a]:

- A 1.5-bit constraint is a set involving (xi, x
′
i, xi−1)

- A 2.0-bit constraint is a set involving (xi, x
′
i, xi−1, x

′
i−1)

- A 2.5-bit constraint is a set involving (xi, x
′
i, xi−1, x

′
i−1, xi−2)

These constraints link the sign of an active bit to the sign of the previous bit. Thus, a 1.5-bit
constraint encodes the concrete values xi and x′i and whether the xi−1 bit is equal or unequal
to xi. , a 1.5-bit constraint can store the following relation: x′i 6= xi = xi−1. However,
1.5-bit constraints do not use information about x′i−1. This principle is only efficient
when the difference (xi, x

′
i) is known, otherwise information gets lost. Therefore, 2.0-bit

constraints can be used to safe this information. As Leurentshowed, these constraints can
exactly represent the modular difference. Thus, on the one hand, the 1.5-bit constraints
are constructed in order to capture information about the carry when the sign of the
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difference is unknown. On the other hand, the 2.0-bit constraints can capture exactly the
modular difference, but the sign of the difference must be known. The 2.5-bit constraints
are a combination of both and can store the modular difference even when the sign is not
known [Leu12a].

We use a slightly different concept. We store the result of an addition with several
input bits into one condition. Therefore, we use generalized 2-bit conditions which allow
to store the result of an addition of up to 3 bits and generalized 3-bit conditions which
can handle additions of up to 7 input variables. Doing several additions at once has the
advantage that fewer intermediate variables are necessary. This increases performance and
lowers complexity. In the following description we explain the concept of generalized 2-bit
conditions. However, it works rather similarly for generalized 3-bit conditions.

Generalized 2-bit conditions consist of one sum bit and one carry bit. Because it is a
generalized 2-bit condition it is defined as a set of possible 2-bit differences. For a partial
list of all possible values see Table 9. In all the following the notation x2

i indicates a two
bit value at position i and x3

i a three bit value respectively.

Table 9: Partial list of generalized 2-bit conditions

(x2
i , x

2
i ’) (3,3) (2,3) (1,3) (0,3) . . . (3,0) (2,0) (1,0) (0,0)

0x0000 - - - - . . . - - - -
0x0001 - - - - . . . - - - X
0x0002 - - - - . . . - - X -
0x0003 - - - - . . . - - X X
0x0004 - - - - . . . - X - -
0x0005 - - - - . . . - X - X
0x0006 - - - - . . . - X X -
0x0007 - - - - . . . - X X X

...
...

...
...

...
...

...
...

...
...

0xFFF8 X X X X . . . X - - -
0xFFF9 X X X X . . . X - - X
0xFFFA X X X X . . . X - X -
0xFFFB X X X X . . . X - X X
0xFFFC X X X X . . . X X - -
0xFFFD X X X X . . . X X - X
0xFFFE X X X X . . . X X X -
0xFFFF X X X X . . . X X X X

Each bit of the value of the generalized condition represents a different condition. For
instance, when bit 13 is set this denotes that the 2-bit difference can have the difference
(1,3). The 16-bit number of a 2-bit generalized condition can also be represented in form of
a matrix. Therefore, each bit has an own cell and the bit index increases per row from left
to right. Thus, x increases with the row index and with ascending column index x′ rises.
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The resulting matrix can be divided into four regions and each of those regions consists
of four fields. The sequence of differences of the least significant bit in those four fields
is repeated within all four regions. The same sequence can be found for the second bit,
whereby the difference of the second bit is constant within each region. In Table 10 one
can see the resulting conditions for each bit. For instance the difference (1,3) represents
’n1’. In Table 11 the resulting conditions for the generalized 3-bit conditions are listed.

Table 10: Generalized 2-bit condition matrix
HHH

HHHX ′
X

0
∧
= (00)2 1

∧
= (01)2 2

∧
= (10)2 3

∧
= (11)2

0
∧
= (00)2 00 0u u0 uu

1
∧
= (01)2 0n 01 un u1

2
∧
= (10)2 n0 nu 10 1u

3
∧
= (11)2 nn n1 1n 11

Table 11: Generalized 3-bit condition matrix
H
HHH

HHX ′
X

(000)2 (001)2 (010)2 (011)2 (100)2 (101)2 (110)2 (111)2

(000)2 000 00u 0u0 0uu u00 u0u uu0 uuu
(001)2 00n 001 0un 0u1 u0n u01 uun uu1
(010)2 0n0 0nu 010 01u un0 unu u10 u1u
(011)2 0nn 0n1 01n 011 unn un1 u1n u11

(100)2 n00 n0u nu0 nuu 100 10u 1u0 1uu
(101)2 n0n n01 nun nu1 10n 101 1un 1u1
(110)2 nn0 nnu n10 n1u 1n0 1nu 110 11u
(111)2 nnn nn1 n1n n11 1nn 1n1 11n 111

6.1.3 Linear Two-Bit Conditions

In a characteristic often two or more bits depend directly on each other. Such extended
conditions occur mostly in the propagation of differences through boolean functions. These
relations can be modeled with linear two-bit conditions. If for instance the characteristic
requires that in the j-th step the bit cj,i = cj−1,i ⊕ cj−2,i is 0, then cj−1,i

!
= cj−2,i. Two-bit

conditions cannot be used to propagate information through the characteristic but they
can be used to find conflicts. Therefore, sets of linear two-bit conditions can be formed.
Two-bit conditions can connect bits of different steps and bits of the same step can be
connected depending on the update function. In this way, cycles can occur in the est of
equations which may be inconsistent [WLF+05, MNS11].
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6.2 Searching for a Characteristic and Messages

Finding differential characteristics with high probabilities is the most important and also
most difficult part in differential cryptanalysis. In this thesis, we use the searching tech-
nique described in [MNS11]. The idea for this technique is taken from resolution algorithm
in logic, which is implemented in SAT solvers [Rob65]. The searching algorithm can be
divided into three steps: decision, deduction and backtracking.

Decision: In this step a bit of the characteristic is guessed. Therefore, a random undeter-
mined condition is chosen and set on one of its possible differences. To improve efficiency
of the searching algorithms the selection of the guessed bit may not be completely random.
When it turns out that the guess on the selected bit leads to a conflict, this bit is marked
as critical. Guessing first on these critical bits, allows faster pruning of the search tree.
Additionally, searching bits only in a specified area allows to search in the most critical
part of a characteristic.

Deduction: In this step the changed condition is propagated over the whole charac-
teristic. Optionally the resulting characteristic can be checked for inconsistencies. See
Section 6.3 and 6.4 for more details. If in this step a conflict is detected, then backtracking
must be done. Otherwise another decision can be made.

Backtracking: When all possible guesses for the actual constraint led to an inconsistent
characteristic, the guess before has to be undone. If for this bit other values are possible
try them in the decision step. Otherwise jump back to earlier decisions.

A simplified description can be found in Algorithm 5.
Even when the characteristic has passed all checks, it does not need to be valid or the

probability to find confirming messages can be unacceptable low or even zero. Thus, in a
final step a message pair satisfying the characteristic must be found to confirm the validity
of the characteristic. Including this into the search is much more efficient because message
bits have big influence on the other bits. This allows to detect invalid characteristics earlier.
However, it should not be done too early because fixing a message restricts the search of
characteristic.

Typically only bits with certain generalized conditions are tested with some particular
values. It is possible to divide the search into some phases. In each phase on bits with a
certain generalized conditions can be guessed. Note that differences cause conflicts more
likely than equalities and guessing more equalities than differences increases the probability
of the resulting characteristic. Considering these facts the authors of [MNS11] proposed
to guess ’-’ for ’?’ and ’u’ or ’n’ for ’x’ in the first searching phase. The remaining bits are
determined in a second searching phase.

Because in the decision phase a random condition is chosen, the search path can look
for each run differently. Thus, the resulting characteristics and the runtime vary.
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Algorithm 5 Search

Require: Characteristic C
Ensure: true or false

1: procedure Search(C)
2: define list L of all undetermined conditions in C
3: if size of L = 0 then
4: return true
5: end if
6: c ← random condition in L
7: define list D of all possible differences of c
8: for all Difference d in D do
9: set c in C on d

10: if Update C fails or Checking C fails then
11: continue
12: else if Search(C) returns true then
13: return true
14: end if
15: end for
16: mark c as critical bit
17: return false
18: end procedure

6.3 Updating a Characteristic

After guessing a bit in the search, the characteristic must be updated. The complexity
of propagation conditions increases exponentially with the number of input bits and used
additions. Thus, we split up the computation of the step function and calculate the sub-
functions σ, Σ, CH and MAJ of the SHACAL-2 step function seperately as proposed
in [MNS11]. Due to this fact these step sub functions have only up to 3 input bits their
result for each input can be precomputed. The bitslices of the modular additions combining
these results have up to 5 input bits of generalized conditions. Thus, precomputing all
possible result for the additions is infeasible. Instead, a size-limited hash map stores
already computed results. Using more sub-functions with fewer input bits would cause too
many intermediate results which would negatively influence the performance of the search.

In the tool each bit difference of a characteristic is represented as generalized 1-bit, 2-bit
or 3-bit condition. Thus, the characteristic is represented by an array of conditions, the so
called state. The bits belonging to one word are also grouped. A step of the cryptographic
function is divided into several sub-step functions as mentioned before. These sub-step
functions know the needed input words and the word where the result should be stored.
Therefore, sometimes intermediate words are defined. An example for a sub-step function
can be the implementation of the MAJ function of SHACAL-2. The accuracy of these sub-
step functions is important. With this structure each bit can be connected with its related
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bits and it is straightforward to update all connected bits when a single bit difference
changes. To update the characteristic all actual changes are propagated over the whole
state until it remains stable or a conflict occurs. A conflict occurs when through updating
a generalized conditions no more possible differences remain.

In cryptographic functions typically not the whole state changes in each round of the
step function. For instance in SHACAL-2 the state consists of eight 32-bit words Ai, ..., Hi,
where i indicates the round. In each step only Ai and Ei must be calculated, the other words
can be directly taken from former steps: Bi+1 = Ai, Ci+1 = Bi, . . . . For the calculation of
Ai and Ei also the message word Wi is necessary, which also must be calculated for i ≥ 16.
Considering this fact only Ai, Ei and Wi must be calculated and stored in the state.

6.4 Advanced Consistency Checks

Guessing conditions and propagating them over the characteristic is an expensive task.
In most cases in some point of the search an obvious contradiction occurs. Typically the
contradiction was hidden already in the characteristic some guesses before the conflict
occurs. Thus, these last guesses wasted computational power. To improve the efficiency of
the search it is important to find conflicts as soon as possible. Due to the high complexity of
modern cryptographic functions a trade-off between quality and time for checks is necessary.
We use two checks described in [MNS11].

Two-Bit Condition Check: Linear two-bit conditions describe the linear relation be-
tween two bits. They either can be equal (ci,j = ci′,j′) or unequal (ci,j 6= ci′,j′). The concept
of linear two-bit conditions was presented in Section 6.1.3. Therefore cliques of linear two-
bit conditions are searched and their consistencies checked. Contradictions in cliques of
linear two-bits can be found by applying Gaussian elimination on the resulting linear sys-
tem of equations. To illustrate this we assume the following three linear two-bit conditions:

- c1,9 = c0,4 ⊕ c0,8 should be 0 → c0,4
!

= c0,8

- c2,5 = c0,8 ⊕ c1,5 should be 0 → c0,8
!

= c1,5

- c2,1 = c0,4 ⊕ c1,5 should be 1 → c0,4

!

6= c1,5

This leads to a conflict because its not possible to satisfy c0,4 = c0,8 = c1,5 and c0,4 6= c1,5.

Complete Condition Check: To find messages which fulfill the characteristics the bits
finally must be zero or one. Hence, each conditions must be able to be at least one of the
four basic differences. Thus, we can test each active condition being a negative difference
’u’ and a positive difference ’n’ and each inactive condition can be tested being ’0’ or ’1’.
For a valid characteristic at least for one option no conflict must be found. If both options
conflict we know the characteristic is inconsistent. If one option works, we can update that
bit condition, because it must have this value.
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This check is quite expensive. Thus, it is done only on conditions which are restricted
by two-bit conditions. Because these bits have to fullfil more constraints, the probability
to find conflicts on such conditions is higher than for the others. This check can also be
done by testing even sets of bits at the same time. Such tests can detect more conflicts
but are even more inefficient.

6.5 Related Work

We found two frameworks which are able to analyze differential characteristics. Both
tools can handle only first-order differential characteristics and cannot repair inconsistent
characteristics.

S-function Tool: In [MVDCP11] a general and efficient framework to determine the
differential properties of S-functions was presented. An S-function (”state function”) takes
a list of n states S0, . . . , Sn−1, k n-bit input words (a0, . . . , ak) and produces an n-bit output
b. Thereby the i-th bit of the output is defined as:

(b[i], Si+1) = f(a1[i], . . . , ak[i], Si), 0 ≤ i < n, S0 = 0. (21)

This means that each bit b[i] of the output word and the state Si+1 can be computed
directly from bit i of the input words and the state Si. Examples of S-functions are
modular addition, subtraction, multiplication, bitwise logical operations like XOR and
shifting operations. Some recent cryptographic functions forgo the concept of the s-box
and use only S-functions. This concept is the so called ARX design what stands for
Additions (a � b), Rotations (a ≫ i) and XORs (a ⊕ b). Blake and Skein, two of the
SHA-3 finalists, follow this design strategy.

S-boxes typically work on bytes and therefore a difference distribution table can be
calculated. Building a difference distribution table for an S-functions is infeasible, since
they work typically with 32-bit or 64-bit words. Thus, it is important to analyze such
functions efficiently. The presented framework can be used to calculate the probability
that a given input difference leads to a given output difference. In addition it is able to
count the number of output differences having a non-zero probability. Therefore it uses
methods based on graph theory and matrix multiplications. More details can be found
in [MVDCP11].

ARX-Toolkit: Leurent presents in [Leu12b] three tools to analyze ARX systems.
He did not manage to automate the search of differential paths, but his tools can help

to build and check characteristics. Using this tools he also found flaws in the differential
characteristics used in some recent boomerang attacks.

The first tool is designed for the analysis of S-functions and is based on the ideas of
the S-function tool. Additionally it can construct the transition matrix for the S-function
completely automated. For instance this tool can be used to find out which XOR-differences
are possible for an addition.
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With the second tool the differential properties of ARX designs can be studied. It
allows to check whether the differences are consistent across the rotations and propa-
gate constraints by detecting incompatibilities. It works similarly as the approach we use
from [DCR06], but with a different set of constraints from [Leu12a] which were presented
in Section 6.1.2. However, the tool is not able to build differential characteristics automat-
ically as our tool can.

The third tool is a graphical tool. It displays differential characteristic and allows
the user to add and remove constraints. This tool automatically propagates the new
constraints and if a contradiction is found, it highlights the specific constraints causing the
contradiction.

These tools can be downloaded under http://www.di.ens.fr/∼leurent/arxtools.html.

7 Automatic Boomerang Tool

In the former section, we described an automatic tool for finding first-order differential
characteristics. Now we extend that tool to handle second-order differential characteris-
tics. First, we describe how we represent the characteristics needed for the boomerang
attack. Then we explain some methods we use to update these characteristics and check
their consistency. Afterwards we show how we use the debugging techniques described in
Section 5 to repair the boomerang characteristics. Finally we illustrate how new charac-
teristics are searched.

7.1 Implementing Boomerang State

As shown in Figure 9 a boomerang attack requires four differential characteristics. In the
following, we call these four characteristics the boomerang state and each characteristic is
called substate. Furthermore, we will look only at one bit of each characteristic where the bit
has the same position in all characterisitcs. Such a bit quartet is shown in Figure 12. This
figure shows the arrangement of four conditions c0, c1, c2, c3 of the substates C0, C1, C2, C3

and their four bit values b0, b1, b2, b3. Each condition shares a bit with each of its neighbors.
For instance the conditions c0 and c1 share the bit b0.

b0

b1 b2

b3

c1

c2

c3

c0

Figure 12: A bit quartet in a boomerang state

We extend the tool in a way that allows us to combine four characteristics. Therefore
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we store four separate characteristics and each characteristic can be independently updated
and checked as described in Section 5. In a first step each characteristic is updated and
checked independently. Additionally, the four characteristics have to fulfill the boomerang
properties described in Section 4.1. Therefore, we implement some further checks and
propagation rules described in the following section.

7.2 Repair Boomerang Characteristics

The update and consistency check methods described before can be used to find conflicts
in boomerang characteristics. For the validity checks in the debugging algorithms different
detail-levels for the check can be used. We distinguish three levels:

- fast: updates substates (Section 6.3) and boomerang state (Sections 7.3.1, 7.3.2-7.3.4)
- intermediate: checks condition in substates and boomerang state (Sections 6.4, 7.3.5)
- deep check: does additionally a search on the boomerang state (Sections 6.2, 7.4)

The higher the used level the higher is the probability to find a boomerang characteristic
for which a confirming message can be found. On the other hand also the computing efforts
increase rapidly.

In the following, we describe how we try to fix conflicts in the boomerang character-
istic using the debugging techniques described in Section 5. Furthermore, we describe
two other approaches. These techniques can also be used to repair first-order differential
characteristics.

Using Debugging Algorithms: For this approach we use different debugging algorithms
to find a diagnosis. Therefore the debugging algorithms use a list of conditions and return
a list of positions which are in the diagnosis. Because the debugging algorithms are deter-
ministic we randomize the input list to find different diagnoses. Finally the characteristic
is fixed by setting the conditions in the diagnosis on ’?’.

Rotating Words: In this method we rotate the words of the characteristics before we ap-
ply a debugging algorithm. Thereby we rotate the words of two neighboring characteristics
independently and of two opposing characteristics equally. Applied on SHACAL-2 which
has a word length of 32-bit this results in 32 ∗ 32 = 1024 different rotations. If we assume
that the characteristics are rotation invariant, we have to rotate only one state which results
in 32 different rotations. For each rotation we apply a debugging algorithm and use the
size of the resulting diagnosis as measure of quality. This measure is only an approxima-
tion, because it is based on the size of a random diagnosis and not the smallest diagnosis.
In addition, the size of the diagnosis does not have to be proportional to the probability
of the repaired characteristic. Anyway, this approach is very time-consuming. However,
rotating the characteristics may result in smaller diagnoses. Therefore, the properties of
initial differential can be preserved better.
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Statistical Approach: For this approach we collect and evaluate the diagnoses of different
debugging runs. Thus, we can find the most common conflicting conditions. Then we set
them on ’?’ and rerun the debugging algorithm until the boomerang state is valid.

To improve the performance the debugging algorithm first work on a set of words instead
on a set of conditions. Thus, the algorithm has to work on less constraints. Moreover,
often several bits of one word are part of the diagnosis anyway. When a diagnosis is found,
for each bit in the contained words can be tested if it leads to a conflict when it is removed
from the diagnosis. This filtering step decreases the size of the diagnosis.

7.3 Update and Check Boomerang Characteristics

If a condition in one substate changes, then this may have effects on the other substates.
Thus, we have to propagate the new information over the whole boomerang state. In this
chapter, we describe how to update and check the consistency of a boomerang state.

7.3.1 Transfer Conditions

If a condition is active, then the opposing condition must be also active to fulfill the
properties of the boomerang attack. The same applies, if a condition is inactive. However,
they do not need to have the same difference which can be seen in Figure 13. Thus, we
can only transfer information whether a bit condition is active or not. If a condition can
be active and inactive, we cannot transfer any information to the opposing substate. This
is the case when the condition is ’3’, ’5’, ’7’, ’A’, ’B’, ’C’, ’D’, ’E’ or ’?’. This principle
is demonstrated in Figure 14. Anyway, we can use this transfer of information to find
contradictions in the boomerang state. If by propagation a condition must be active but
the opposing condition must not, this leads to a contradiction.

1

0 1

0

u

n

n

u 0

0 1

1

0

n

1

n

Figure 13: Example for different opposing differences

7.3.2 Update Neighboring Substates

Two neighboring conditions share a bit. If the bit is fixed for one condition, it is also fixed
for the other one. We can use this knowledge to transfer information from a substate to
its neighboring substates. Therefore, we have to extract the information for the shared bit
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x/u/n x −/0/1 −

Figure 14: Transferring conditions

Algorithm 6 TransferCondition

Require: BoomerangState S, List of all Conditions C of S
Ensure: true or false

1: for all Condition c in C do
2: if c = ’x’ or c = ’u’ or c = ’n’ then
3: set c.opposing() in S on ’x’;
4: else if c = ’-’ or c = ’0’ or c = ’1’ then
5: set c.opposing() in S on ’-’;
6: end if
7: end for
8: return S.validate()

and update the corresponding condition in the neighboring substate. An example is shown
in Figure 15.

The difference of a condition is directed and consists of bit0 at the base and bit1 at
the endpoint. As you can see in Figure 16, bit0 of a condition updates either bit0 or bit1
of the neighboring condition, depending to which condition it belongs. The same applies
for bit1. Thus, we have to care if we update the base bit or the bit of the endpoint of the
neighboring condition. To distinguish the conditions we name them as shown in Figure 16.

If we handle the generalized condition c as a four bit number, then two bits indicate
the same value of bit0 and bit1 each. In Figure 17, one can see that for instance bits0 and
bit2 both indicate whether bit0 can be 0 or not. Moreover, if one of both bits is set, then
bit0 can be 0. We can determine if at least one of these two bits is set, if c∧ 0b0101 is not
0.

1 0

? ?

u 1 0

A 5

u

Figure 15: Example of updating neighboring substates
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bit0 bit1

c1

c2

c3

c0

Figure 16: Directed difference and naming of the substates

(1,1) (0,1) (1,0) (0,0)

bit0 = 0

bit0 = 1

(1,1) (0,1) (1,0) (0,0)

bit1 = 0bit1 = 1

Figure 17: Two bits indicate the same value for bit0 and bit1 each

This can be done similarly for the other values:

- If c ∧ 0b0101 > 0 then bit0 can be 0
- If c ∧ 0b1010 > 0 then bit0 can be 1
- If c ∧ 0b0011 > 0 then bit1 can be 0
- If c ∧ 0b1100 > 0 then bit1 can be 1

Similar masks can be used to update the neighboring conditions. However, we have to
consider witch condition updates which one as mentioned before. As an illustration here
are two examples:

- If c0 ∧ 0b0101 = 0→ bit0 of c0 and bit0 of c1 cannot be 0 → c1′ = c1 ∧ 0b1010
- If c2 ∧ 0b0101 = 0→ bit0 of c2 and bit1 of c1 cannot be 0 → c1′ = c1 ∧ 0b1100

Although in these two examples bit0 of the updating condition cannot be 0, the neighboring
substate has to be updated with different masks. Comparing the two examples above, in
the second example the bits 1 and 2 of the updating mask are swapped. In Table 12 all
needed updating masks are listed. Depending on the value of condition c the updating
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Table 12: Updating masks

c c M0 M1 M0’ M1’
# 0b0000 0b0000 0b0000 0b0000 0b0000
0 0b0001 0b0101 0b0101 0b0011 0b0011
u 0b0010 0b1010 0b0101 0b1100 0b0011
3 0b0011 0b1111 0b0101 0b1111 0b0011
n 0b0100 0b0101 0b1010 0b0011 0b1100
5 0b0101 0b0101 0b1111 0b0011 0b1111
x 0b0110 0b1111 0b1111 0b1111 0b1111
7 0b0111 0b1111 0b1111 0b1111 0b1111
1 0b1000 0b1010 0b1010 0b1100 0b1100
- 0b1001 0b1111 0b1111 0b1111 0b1111
A 0b1010 0b1010 0b1111 0b1100 0b1111
B 0b1011 0b1111 0b1111 0b1111 0b1111
C 0b1100 0b1111 0b1010 0b1111 0b1100
D 0b1101 0b1111 0b1111 0b1111 0b1111
E 0b1110 0b1111 0b1111 0b1111 0b1111
? 0b1111 0b1111 0b1111 0b1111 0b1111

masks for the neighboring conditions can be selected from that table. Algorithm 7 shows
a description of this princple.

7.3.3 Transfer Multi-Bit Conditions

We update also the generalized multi-bit conditions presented in Section 6.1.2. The domain
of multi-bit conditions is too large to update them in the same way as single-bit conditions.
Alternatively, the conditions can be divided into a list of possible tuples of basic differences
and operations on this list can be done.

As mentioned before, opposing conditions share some properties. If a condition is a
difference, then the opposing condition must be also a difference and the other way round.
The same applies for multi-bit conditions. Thereby the bits of a condition must be updated
independently.

Because we look at tuples of basic differences, they can have only values from
{’0’, ’u’, ’n’, ’1’}. If a bit of the condition is a difference - either ’u’ or ’n’ - the same
bit in the opposing condition can be one of these two values. Further, if a bit of the
condition has no difference, and thus is ’0’ or ’1’, then the same bit of the opposing
condition can be one of these two values again. If for instance a two-bit generalized
condition allows to be ’0u’, the opposing condition can be {’1u’,’0n’,’1n’}. The other
way round, in the opposing condition ’0u’ can be set, if at least one of ’0u’, ’1u’, ’0n’
or ’1n’ is set. Each possible difference corresponds to a certain bit in the generalized
condition. Therefore for each possible difference in the opposing condition several bits
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Algorithm 7 UpdatingNeighbors

Require: BoomerangState S and Arrays M0, M0’, M1, M1’ containing the update masks
Ensure: true or false

1: list for States s[] = S.getSubStates()
2: for i = 0 to 3 do
3: for all Condition c in s[i] do
4: if i < 2 then
5: Mask m0 = M0[c]
6: Mask m1 = M1[c]
7: else
8: Mask m0 = M0’[c]
9: Mask m1 = M1’[c]

10: end if
11: update c in s[1 - (i % 2)] using m0
12: update c in s[3 - (i % 2)] using m1
13: end for
14: end for
15: return S.validate()

must be tested. For two-bit conditions four positions and for three-bit conditions seven
positions must be tested. The relative position of these related conditions depends on the
position of the corresponding bit. Using the condition matrix the related bit position bi
depends on the row and column of the actual bit position b. For an example see Table 13.
For reasons of clarity in the following formulas we use the ternary operator which is defined
as < condition > ? < if − branch > : < else − branch >. For bit position b the related
positions are defined as following:

2-bit conditions:

- b0 = b
- b1 = (b/4 (mod 2)) ? ( b (mod 2) ? b-5 : b-3) : (b (mod 2) ? b+3 : b+5 )
- b2 = (b/8 (mod 2)) ? ( b/2 (mod 2) ? b-10 : b-6) : (b/2 (mod 2) ? b+6 : b+10)
- b3 = b1 + b2 - b0

2-bit conditions:

- b0 = b
- b1 = (b/8 (mod 2)) ? ( b (mod 2) ? b-9 : b-7 ) : (b (mod 2) ? b+7 : b+9 )
- b2 = (b/16 (mod 2)) ? ( b/2 (mod 2) ? b-18 : b-14) : (b/2 (mod 2) ? b+14 : b+18)
- b3 = (b/32 (mod 2)) ? ( b/4 (mod 2) ? b-36 : b-28) : (b/4 (mod 2) ? b+28 : b+36)
- b4 = b1 + b2 - b0

- b5 = b2 + b3 - b0
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- b6 = b1 + b2 + b3 - 2 · b0

Table 13: Example for related 2-bit conditions
HHH

HHHX ′
X

0 .. 00 1 .. 01 2 .. 10 3 .. 11

0 .. 00 00 0u u0 uu
1 .. 01 0n 01 un u1
2 .. 10 n0 nu 10 1u
3 .. 11 nn n1 1n 11

For illustration we calculate the related bit positions of (1n), whereby index(LSB) = 0:

- b0 = 14
- b1 = (14/4 (mod 2)) ? ( 14 (mod 2) ? 9 : 11) : (14 (mod 2) ? 17 : 19) = 11
- b2 = (14/8 (mod 2)) ? ( 14/2 (mod 2) ? 4 : 8 ) : (14/2 (mod 2) ? 20 : 24) = 4
- b3 = 11 + 4 - 14 = 1

An further description can be found in Algorithm 8.

7.3.4 Update Neighboring Multi-Bit Conditions

To update neighboring multi-bit conditions the possible two-bit differences for neighboring
multi-bit conditions have to be stored in two separated lists. For each entry in those lists
the corresponding multi-bit values, either for bit0 or bit1 are calculated, depending on
which two conditions are checked. See Section 7.3.2 for more details about bit0 and bit1.
In the next step all possible combinations of these multi-bit values are tested. If no valid
combination can be found, these two multi-bit conditions are inconsistent. For all valid
combinations, we know that these values are still possible. Thus, we can store them into
the updated condition. This must be done for all pairs of neighboring conditions.

Here is an example for two-bit conditions:

- c2
0 = 0x0210

- c2
3 = 0x0802

Updating those two conditions we have to update bit0 for both of their values as shown in
Figure 17. For these values it can be checked which bits are set. Each set bit corresponds
to a specific two-bit difference (see Tables 9 and 10):

- c2
0 = 0x0210 = 24 + 29 → {(0, 1), (1, 2)} = {(0n), (nu)}
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Algorithm 8 Transfer2BitCondition

Require: BoomerangState S, List of all 2-bit Conditions C of S
Ensure: true or false

1: for all 2-bit Condition c in C do
2: cnew ← 0
3: for b0 = 0 to 63 do
4: b1 ← ((b0 �2) (mod 2)) ? (( b0 (mod 2)) ? b0 -5 : b0 - 3) :
5: (( b0 (mod 2)) ? b0+3 : b0+ 5)
6: b2 ← ((b0 �3) (mod 2)) ? (((b0 � 1) (mod 2)) ? b0-10 : b0 - 6) :
7: (((b0 � 1) (mod 2)) ? b0+6 : b0+10)
8: b3 ← b1 + b2 - b0

9: if c & ((1 � b0) | (1 � b1) | (1 � b2) | (1 � b3)) then
10: cnew ← cnew | (1 � b0)
11: end if
12: end for
13: if cnew = 0 then
14: return false
15: else
16: set c on cnew
17: end if
18: end for
19: return true
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- c2
3 = 0x0802 = 21 + 211 → {(1, 0), (3, 2)} = {(0u), (1u)}

From these lists of possible two-bit differences we calculate the needed two-bit values ac-
cording to Table 12:

- c2
0 = 0x0210 = 24 + 29 → {(0, 1), (1, 2)} = {(0n), (nu)} → bit1: {(01), (10)}

- c2
3 = 0x0802 = 21 + 211 → {(1, 0), (3, 2)} = {(0u), (1u)} → bit0: {(01), (11)}

In Table 14 we check all possible combinations of these two-bit values if they match.

Table 14: Checking all combinations of possible two-bit values

c2
0 c2

1 match
(01) (01) X
(01) (10) -
(11) (01) -
(11) (10) -

Because one of the combinations is valid, the two conditions do not contradict. The
previous check shows that for each conditions only one value is possible. Thus, the con-
ditions can be updated. Therefore we have to store from which two-bit difference we get
which two-bit value. From c2

0 we got (01) from (0u) and from c2
1 we got (01) from (0n).

Then we can set the corresponding bits in the updated two-bit conditions:

- c2
0’: {(0n)} = {(0, 1)} → c2

1’= 24 = 0x0010
- c2

3’: {(0u)} = {(1, 0)} → c2
0’= 21 = 0x0002

7.3.5 Test Conditions

To find a message each bit must be assigned to a concrete value. Thus, each difference must
be one of the four basic differences (’0’, ’u’, ’n’, ’1’). That implies that a condition with
value ’x’ finally must become ’u’ or ’n’, and respectively a condition with value ’-’ finally
must become ’0’ or ’1’. This fact can be used to do another test on the boomerang state.
In Algorithm 9 the principle is shown. We set all conditions which are ’x’, sequentially and
temporarily first on ’u’ (line 4) and then on ’n’ (line 5). For both possibilities we update
and check the boomerang state and store whether the state is consistent or not. If both
changes lead to a conflict, it is not possible to find a valid assignment for the bits of the
condition. Therefore, the state is invalid (line 11). If only one of these two changes leads to
a conflict, we can set the according condition permanently on the other value, which leads
to no conflict (lines 14, 16, 20, 22). Otherwise, we gain no new information and proceed
doing this test with the next ’x’ condition. The same concept can be applied on conditions
with value ’-’. Those conditions can be set sequentially and temporarily first on ’0’ (line 7)
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and then on ’1’ (line 8). This test could also be done for all other generalized conditions
which allow more than one difference.

Algorithm 9 ConditionTest

Require: BoomerangState S, List C of all Conditions of S
Ensure: true or false

1: for all Condition c in C do
2: corig ← c
3: if c = ’x’ then
4: set c in S on ’u’; v1 ← S.validate(); undo changes on S
5: set c in S on ’n’; v2 ← S.validate(); undo changes on S
6: else if c =’-’ then
7: set c in S on ’0’; v1 ← S.validate(); undo changes on S
8: set c in S on ’1’; v2 ← S.validate(); undo changes on S
9: end if

10: if v1 = false and v2 = false then
11: return false
12: else if v1 = false then
13: if corig = ’x’ then
14: set condition c in S on ’n’
15: else
16: set condition c in S on ’1’
17: end if
18: else if v2 = false then
19: if corig = ’x’ then
20: set condition c in S on ’u’
21: else
22: set condition c in S on ’0’
23: end if
24: end if
25: end for
26: return true

7.4 Search a Boomerang Characteristic

Searching boomerang characteristics works in the same way as the search for first-order
differential characteristics as described in Section 6.2. Therefore we treat the boomerang
characteristics as one big characteristic. To improve the efficiency we guess only on C0 and
C1 C2 and C3 will be determined using the updating algorithms. The search can again be
applied on a subset of words which can be defined for each state independently.

We use the search also as an extended consistency check. If for a set of words no valid
values can be found such that the characteristic is valid, the characteristic must be invalid.
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The principle behind this approach is comparable with the condition test in Section 7.3.5.
Searching on the complete characteristic would take too long since all possible values need
to be tried until a valid fully determined characteristic is found. Because the switch is the
most critical part of a boomerang characteristic, it is very likely to find inconsistencies in
this part. Therefore, we search only on a small part of characteristics in the switching area.
If for each condition in a set of words a concrete value can be found so that the resulting
partially determined characteristic is valid, this need not imply that the characteristic has
no hidden inconsistencies.

We distinguish between two groups of setups: the block search and the sequential
search. In the block search we search on words of several steps in one search phase. On
the contrary in a sequential search in each search phase we guess conditions only on words
of one step. In Section 8, we compare the performance of both approaches.

However, if this technique is used, no concrete conflict can be detected. To gain still
some information we create a statistic about how often guessing on a certain bit leads to
an invalid characteristic. Bits which lead more often than others may be part of a conflict.

8 Attacks and Results

We applied our checking algorithms to four published boomerang characteristics for round
reduced SHACAL-2. For all four characteristics contradictions were found manually be-
fore [BLMN11]. With our tool we can find these inconsistencies automatically. In the next
step we use our tool to generate repaired characteristics. However, these characteristics
still can have some hidden conflicts or an unacceptable low probability. Therefore, we
apply a partially search on these characteristics. In this section, we present our results
on checking, repairing and searching boomerang characteristics. For our attack we use a
multiprocessor system with 16 Intel Xeon X5550 with 2.67GHz.

8.1 Searching Setups

For checking, repairing and searching boomerang characteristics we use several searching
setups. In this section we shortly describe how a searching setup is defined and which
setups we use.

Since our tool stores only the state words A and E and the message words W , a setup
can contain only these words. Thus a setup to search for instance on first step would look
like {A0, E0,W0}. For the same reason we have to set for example A−1 to define the value of
B0. Thus, for SHACAL-2 it also possible to guess on A(−4)−(−1) and E(−4)−(−1). Addition-
ally, we can define several searching phases and the values of conditions we guess on. For
searching first on ’?’ in step five in state C0, then on ’?’ in step five and six in state C1 and
finally on ’?’ and ’x’ in step five and six in both states we define a searching setup as follows:

-P1: {A0,4, E0,4, W0,4 }: {’?’}
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-P2: {A1,4−5, E1,4−5, W1,4−5}: {’?’}
-P3: {A4−5, E4−5, W4−5 }: {’?’,’x’}

For our attacks we use several searching setups. All of them search at least in the switching
area of the characteristic. To evaluate whether it is better to search on all words in a single
phase or use several phases we create searching setups for both cases. In B1n and B2n
we define only one phase to search on n words. Contrarily, in S1n and S2n we divide the
search into n phases. Additionally, we use mixed setups Mn and Rn with n phases in which
we do first a sequential search and then a search on several steps in one phase. Moreover,
we analyze if it is better to search on only one state or to search on two neighboring states.
Therefore, the searching setups B1 and S1 includes only words of the first state, B2, S2
and M2 include also include words of the second state. Additionally, we vary the size of
the setups. This means that they search in different numbers of steps. In all setups we
search on ’?’ and ’x’ as proposed for SHA-2 in [MNS11] for the first searching phase. To
search a new boomerang characteristic we defined also a group of setups M and R, which
guess additionally on ’-’ as proposed in [MNS11] for the second searching phase. All used
setups can be found in Appendix B.

8.2 Check Boomerang Characteristics

In this section, we use our tool to check some recently published characteristics [KKL+05,
LKKD06, Wan07, LK08, FGL09] for a round reduced SHACAL-2. These characteristics
can be found in Tables 21-23. For three of them ([LKKD06, Wan07, FGL09]) we can find
an inconsistency by doing a neighbor-state-update. For simplicity we call this group of
characteristics G1. This conflict can be found in less than a second on a state-of-the-art
home PC. The found conflict is in bit 13 of state word E after step 24 which corresponds
to the results in [BLMN11]. Figure 18 shows the conditions which lead to the conflict.
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Figure 18: A bit quartet in a boomerang state

To determine that the other two characteristics ([KKL+05, LK08]) are invalid, we have
to use a partial search. Therefore we try several searching setups. For the characteristic
defined in [KKL+05] we search on words A, E and the message W in steps 24-26. This
check is more complex and takes about 17 times as long as the check for G1. For the
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characteristic from [LK08] we have to search on words A, E and W in steps 24-27. The
check for this characteristic takes about 20 times as long as the check for G1.

Because we need three different detailed checks for the characteristics, we divide them
into three groups of characteristics. Table 15 shows the needed time to prove the charac-
teristics as inconsistent and the grouping. The value for the running times in this table
are averaged over 100 executions.

Table 15: Running times to check characteristics

characteristic group running time [s]
C1 [KKL+05] G2 5.96
C2 [LKKD06] G1 0.35
C3 [Wan07] G1 0.35
C4 [LK08] G3 7.19
C5 [FGL09] G1 0.35

Doing all the checks for this chapter, we also created a statistic by which method how
many conflicts were found. The results can be found in Table 16. If a method is not listed
it has never found a conflict. The reason why a method has never found a conflict can also
be the order in which the checks are done.

Table 16: Number of found conflicts per checking method

Check Absolute Percentage
Update single characteristic (Section 6.3) 8310451 32.5%
Transfer conditions (Section 7.3.1 ) 1903036 7.4%
Update neighboring states (Section 7.3.2) 13716602 53.6%
Transfer neighboring multi-bit Conditions (Section 7.3.4) 66485 0.3%
Test conditions (Section 7.3.5) 1602201 6.3%

In total for this statistic 147537077 checks were performed. Only 25598775 (17.4%) of
them detected a conflict. According to this statistic about a third of all conflicts are found
by updating the states of the boomerang characteristic independently. Almost all other
conflicts can be found by updating the neighboring states of the boomerang characteristic.
On the contrary, checks on multi-bit conditions has been able to detect conflicts only in
0.3% of all cases if no other check has been able to find a conflict before. Thus, for more
speed checks on multi-bit conditions may be skipped. In relation to the computational effort
with transfer conditions a reasonable amount of conflicts can be found (7.4%). However,
the condition test is a very time consuming operation and it can find only 6.3% of the
conflicts. Therefore, this test should not be done in every check.
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8.3 Repair a Boomerang Characteristic

In this section, we compare the implemented debugging algorithms in combination with dif-
ferent setups. For the comparison we repaired only the characteristic described in [FGL09].
We decided to use a characteristic from group G1 because this characteristic can be checked
faster than the others. To repair a characteristic many consistency checks are necessary,
therefore this has a big influence on the running time.

Used abbreviations:

-S: SequentialSearch (Section 5.1)
-R: ReplayXPlain (Section 5.2)
-Q: QuickXPlain (Section 5.3)
-F: FastDiag (Section 5.4)
-Rot: Rotate with QuickXPlain (Section 7.2)
-Stat: Statistical (Section 7.2)
-IC: intermediate check without searching
-B104 . . . S207: see Appendix B

In order to compare the different debugging algorithms and setups we used them to gen-
erate repaired characteristics. Some of the setups are very fast, others take several hours
to generate one boomerang characteristic. To collect a representative amount of statistical
information we tried to generate at least 50 files for each setup. However, for instance Re-
playXPlain is so slow that we decided to generate files only by doing fast check. Repairing
with the statistical approach or with rotation using the setups B107 and B207 are also very
slow. Hence, we generated also only a few files with them. Table 17 shows how many files
were generated with which debugging algorithm in combination with which setup.

Table 17: Number of repaired characteristics

Setup Q F S R Rot Stat

IC 100 100 100 100 225 18
B104 50 50 50 0 0 0
B107 38 35 24 0 0 0
B204 50 50 50 0 0 0
B207 6 5 11 0 0 0
S104 50 50 50 0 0 0
S107 50 50 50 0 0 0
S204 50 50 50 0 0 0
S207 50 50 50 0 0 0

The bigger a diagnosis is the more conditions are set on ’?’ in the repaired boomerang
characteristic. Thereby properties of the original characteristic are lost. To find charac-
teristics with a high probability it is good to have areas without any active bits because

55



the probability for such partial differentials is 1. Thus, by setting conditions without a
difference on ’?’, this property is lost as they can be set on a condition with a difference
when we apply the search on them. We tried to repair the characteristic by removing only
conditions with differences, but then the debugging algorithms were not able to repair
the characteristic. Additionally, the complexity of searching confirming messages increases
with the number of removed constraints since they have to be determined again. Therefore,
small diagnoses are preferred.

In Table 18 the average size of the diagnoses of all repaired files can be found. It
shows that the average size of diagnoses found with QuickXPlain is always bigger than
the size of diagnoses found with FastDiag or SequentialSearch. This can be explained
by the fact that QuickXPlain searches conflict sets and not a diagnosis. As described in
Section 5.5 we combine them to a diagnosis but do not minimize it. For IC ReplayXPlain
and QuickXPlain, the resulting diagnoses on average have the same size. That is not
surprising since it is almost the same algorithm but without recursion. Also the statistical
approach and the method using rotation return comparatively large diagnoses. Comparing
FastDiag with SequentialSearch FastDiag yields smaller diagnosis in most cases. Diagnoses
found by using SequentialSearch are on average 11.8% larger. Using a searching setup
including more steps results also in a larger diagnosis. This is because a deep check on
more steps is harder to fulfill than one on less steps, thus more conflicts are found. It is
remarkable that for sequential searching setups the size of the diagnosis is larger than for
searching on the same steps in only one phase. However, it makes no big difference if on
one or two neighboring states are searched. Figure 19 shows a graphical comparison of the
average diagnosis size of QuickXPlain, FastDiag and SequantialSearch for all setups.

Table 18: Average size of diagnosis

Setup Q F S R Rot Stat

IC 507 42 45 507 248 558
B104 1525 319 322 - - -
B107 1694 467 446 - - -
B204 1602 514 562 - - -
B207 2190 773 642 - - -
S104 2194 1376 1528 - - -
S107 2194 1389 1545 - - -
S204 1781 983 1179 - - -
S207 2384 1157 1577 - - -

If we get a well repaired characteristic which we can use as starting point to search
a determined characteristic, time for reparation is not that important. Nevertheless, we
want to take a look on the running times of the different algorithms. The first thing
that is remarkable is the difference between ReplayXPlain and the other three debugging
algorithms. ReplayXPlain needs at about ten times as long as QuickXPlain and even
seventy times as long as FastDiag. The statistical approach is an iterative approach and
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Figure 19: Average size of diagnosis

therefore much slower than the others. To debug one rotation with QuickXPlain we need
about the same time as using QuickXPlain directly. I takes a bit longer, because we have
to reinitialize the whole boomerang state before each iteration. It takes much longer to
iterate over all possible 32 · 32 = 1024 rotations for SHACAL-2. Thus, we did not use
ReplayXPlain, the statistical approach and the rotation method with other setups. The
other debugging algorithms are quite comparable, whereby QuickXPlain is slower in most
cases. On average SequentialSearch is faster than FastDiag. A repair with deep check
using a setup which searches on more steps, is slower than a repair with a smaller setup.
Moreover, using a sequential setup is much faster than searching on all steps in one phase,
especially for larger setups. All averaged values can be found in Table 19.

Table 19: Average time in seconds to repair a characteristic

Setup Q F S R Rot Stat

IC 29 4 15 281 30* 1518
B104 1793 679 811 - - -
B107 9861 10492 11780 - - -
B204 5681 3877 3577 - - -
B207 45682 53849 18551 - - -
S104 1195 769 701 - - -
S107 1438 776 743 - - -
S204 1412 676 732 - - -
S207 2780 898 1273 - - -

Remark: * value for one specific rotation
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The time which is needed to repair a characteristic is mainly determined by the number
of checks and the time they need to find a conflict. Each debugging algorithm uses a dif-
ferently debugging strategy and thus for each algorithm checking the test cases can vary in
difficulty. In Table 20, the average number of checks for all algorithms and setups can be
found. Figure 20 shows a comparison of QuickXPlain, FastDiag and SequentialSearch. It
is remarkable that for these three algorithms for each setup the relation of needed checks
is similar. In all cases FastDiag is the fastest and QuickXPlain the slowest algorithm.
ReplayXPlain and the statistical approach need much more checks. To repair using Quick-
XPlain with rotation needs about as much as pure QuickXPlain, but this number of checks
is valid only for one specific rotation and must be done for all possible rotations.

Table 20: Average number of checks to repair a characteristic

Setup Q F S R Rot Stat

IC 79 12 43 741 13 4823
B104 155 44 70 - - -
B107 149 53 67 - - -
B204 135 58 87 - - -
B207 188 87 104 - - -
S104 214 121 134 - - -
S107 214 122 134 - - -
S204 172 95 120 - - -
S207 278 112 163 - - -

Figure 20: Average number of checks to repair a characteristic
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After creating repaired boomerang characteristics we want to analyze their quality. The
measurement of the quality is hard and finally can be only specified when the probability
for the fully determined characteristic is known. Additionally the resulting characteristic
depends strongly on the searching setup. However, we use the number of steps which
can be determined while searching on them in a certain time as measure for the quality.
Therefore, we search on all repaired characteristics with the setups M107 - M111, which
contain more steps with increasing index. Figure 21 shows the percentage of files repaired
by doing only an intermediate check which finished each setup sorted by the used algorithm.
It shows that with the statistical approach partial more results can be found than for
the others. The numbers of results for QuickXPlain and ReplayXPlain are comparable.
Also a similar number of files repaired with FastDiag, SequentialSearch and the statistical
approach can finish the search within time. Figure 22 shows the averaged percentage
over all repaired characteristics for QuickXPlain, FastDiag and SequentialSearch. It shows
again that characteristics repaired with QuickXPlain are more likely to finish the search
in a certain time than the others. For FastDiag and SequentialSearch a similar number of
results can be found.

Figure 21: Percentage of finished searching setups - only IC

Summarizing it can be said that the statistical approach and the use of rotation can
improve the debugging results. However, they need much more time. Comparing the
debugging algorithms itself ReplayXPlain stands out through its bad time performance.
In the other categories it is quite similar to QuickXPlain. Therefore, we prefer QuickX-
Plain against ReplayXPlain. SequentialSearch and FastDiag are very similar in all ratings.
Using an algorithm which searches a diagnosis (FastDiag and SequentialSearch) result in
smaller diagnoses than using an algorithm which searches a conflict set (QuickXPlain and

59



Figure 22: Averaged percentage of finished searching setups

ReplayXPlain) However, for characteristics repaired with larger diagnoses in search a result
can be found faster, though they will be more different from the original characteristic.

8.4 Search of Boomerang Characteristic

After repairing a boomerang characteristic the removed constraints must be determined
again. Therefore we use the boomerang search. In this section we will show that a good
starting characteristic is the most crucial part of searching. Therefore we compare the
results of searching on an automatically repaired characteristic and a manually repaired
characteristic.

As mentioned before it is important that a repaired characteristic still shares some prop-
erties of the original characteristic. Mainly it is essential that high probability parts stay
unchanged. We could not achieve this with automatically debugging currently. However,
for a characteristic repaired with a searching setup containing many steps it is relatively
easy to determine also many steps in the search. In return the final characteristic is very
dense and at some point it gets really hard to determine more steps. We tried many
variants, Table 26 shows the best characteristic we found. It is based on the character-
istic published in [FGL09]. First, we rotated the words of the second characteristic four
positions to the left. With this modification we wanted to reduce the number of active
conditions at the same bit position. The rotated characteristic is shown in Table 24. Then
we repaired it with QuickXPlain using the searching setup S107. From this result, we
removed all differences from the message of the second characteristic because we did not
want additional differences in this message (see Table 25). Finally, we searched on the
repaired characteristic using setup R17. The resulting boomerang characteristic is way too
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dense, therefore we repaired a characteristic manually.
Knowing the critical areas from analyzing the automatically repaired characteristics we

set all conditions of the words in the most critical areas on ’?’. This manually repaired
characteristic is shown in Table 27. Then we applied search with setup R19 on it and
got the characteristic shown in Table 28. This time we found the sparsest characteristic
without rotation. However, we could not determine all words.

Repairing characteristics currently seems to result in better results. Though, automatic
reparation can be used to get a feeling for critical parts of the characteristics.

9 Conclusion

In this thesis, we presented the first automatic implementation of the boomerang attack
and applied it on recently published boomerang characteristics for SHACAL-2. Therefore,
we presented methods to check the consistency of boomerang characteristics, to repair
them when the check fails and to search new characteristics and confirming messages.

To prove the consistency of a boomerang characteristic we developed algorithms to
check with different levels of accuracy. First, a fast check just updates the boomerang
characteristic by transferring single-bit and multi-bit conditions to opposing and neigh-
boring states. Second, an intermediate check proves the consistency of the boomerang
characteristic by setting single generalized conditions temporarily on all of its possible dif-
ferences. If all possible differences lead to a conflict, the characteristic is invalid. Third,
in the deep check we extend this approach by setting several conditions simultaneously in
the characteristic search. If no valid assignment can be found, the characteristic must also
be inconsistent. Using these methods we were able to find conflicts in recently published
characteristics within seconds.

In order to repair boomerang characteristic we proposed the usage of debugging al-
gorithms, since differential characteristics can be seen as set of constraints. First, with
SequentialSearch we developed an own debugging algorithm. Then we also used the three
debugging algorithms ReplayXPlain, QuickXPlain and FastDiag. Moreover, we proposed
two extended repairing methods. First, a statistical approach, that does several iterations
of debugging in which only the most frequent occurring conditions of the diagnoses are
used to repair the characteristic until it is consistent. The other technique debugs the
characteristic in all possible rotations and looks for the best one. Especially, with rotation
we achieved better results than using pure debugging, but they need much more time.
To evaluate the performance of the different debugging algorithms and methods we ap-
plied them on the characteristics published in [FGL09]. Therefore, we used also different
searching setups to find a setup with a good running time to quality trade-off.

As we showed, automatically debugging needs improvements to find a good starting
characteristic to search on it. Nevertheless, the presented debugging algorithms are able
to consider a rating of the constraints. Therefore, a rating algorithm for constraints can be
developed as future work. For instance, rating could protect high probability parts of the
characteristics from being repaired. Therefore, with such an algorithm it would be possible
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to repair characteristics as we did manually. As a next step repairing and searching could
be combined. Then it is possible to repair a characteristic a bit if no solution can be
found while searching on it. Additionally, the performance could be improved by using
information about the location of a detected conflict in the debugging algorithm.

Searching characteristics is challenging task and needs much experience to choose the
searching setup in a proper way. Future work is to improve the tool in way that conflicts
can be found even earlier, so that repairing and searching new characteristics can be done
faster. For instance, the linear two-bit conditions could be generated globally to relate
bits of different substates. Additionally, the four conditions representing the same position
in the four boomerang characteristics could be combined into one boomerang condition.
This would reduce the complexity in updating all characteristics when one condition has
changed in one of them.

With this tool boomerang characteristics can be checked and repaired. Furthermore,
valid differential characteristics can be found automatically which helps to increase the
number of attacked rounds.
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A Characteristics

In this chapter we list different characteristics. As described in Section 6.3 and Section 8.1
we store only the words for Ai, Ei and Wi in our states. Therefore, we have to define the
values A(−4)−(−1) and E(−4)−(−1) to have all input words for the first step. The following
tables show only two neighboring boomerang characteristics because the initial values of
other two can be assigned by an update on the boomerang state .

Remark on Table 22: The upper characteristic in Table 22 is very similar to the upper
characteristic in Table 21. It differs only in differences of word ∆D0 and ∆H0 and has an
additional step at the beginning and end each. The characteristics described in [LKKD06,
Wan07, FGL09] identically except from the differences in word E−4. For simplicity we set
all conditions in this word on ’?’.

Remark: on Table 23: The upper characteristic in Table 23 is equal to the upper charac-
teristic in Table 22.
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Table 21: SHACAL-2 - 33 Round Characteristics from [KKL+05]
i Ai Ei Wi

-4 x------------------------------- x-------------------------------

-3 --x---x----x-x--------x--x------ --x----------x------------------

-2 -------------------------------- ------------x-----x---x---------

-1 -------------------------------- --------------------------------

0 x------------------------------- -------------------------------- --------------------------------

1 -------------------------------- ------x----x-------------x------ --------------------------------

2 -------------------------------- -------------------------------- --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- x------------------------------- --------------------------------

5 -------------------------------- -------------------------------- --------------------------------

6 -------------------------------- -------------------------------- --------------------------------

7 -------------------------------- -------------------------------- --------------------------------

8 -------------------------------- -------------------------------- x-------------------------------

9 -------------------------------- -------------------------------- --------------------------------

10 -------------------------------- -------------------------------- --------------------------------

11 -------------------------------- -------------------------------- --------------------------------

12 -------------------------------- -------------------------------- --------------------------------

13 -------------------------------- -------------------------------- --------------------------------

14 -------------------------------- -------------------------------- --------------------------------

15 -------------------------------- -------------------------------- --------------------------------

16 -------------------------------- -------------------------------- --------------------------------

17 -------------------------------- -------------------------------- --------------------------------

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------------------

23 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

24 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

25 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

26 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

27 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

28 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

29 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

30 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

31 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

32 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

i Ai Ei Wi

-4 ???????????????????????????????? ????????????????????????????????

-3 ???????????????????????????????? ????????????????????????????????

-2 ???????????????????????????????? ????????????????????????????????

-1 ???????????????????????????????? ????????????????????????????????

0 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

1 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

2 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

3 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

4 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

5 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

6 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

7 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

8 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

9 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

10 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

11 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

12 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

13 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

14 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

15 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

16 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

17 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

18 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

19 -------------------------------- -------------------------------- ????????????????????????????????

20 -------------------------------- -------------------------------- ????????????????????????????????

21 --x----------x--------x--------- --x---x----x-x--------x--x------ ????????????????????????????????

22 -------------------------------- x------------------------------- ????????????????????????????????

23 -------------------------------- -------------------------------- --------------------------------

24 x------------------------------- x------------------------------- --------------------------------

25 -------------------------------- -------------------------------- --------------------------------

26 -------------------------------- -------------------------------- --------------------------------

27 -------------------------------- -------------------------------- --------------------------------

28 x------------------------------- -------------------------------- --------------------------------

29 --x----------x--------x--------- -------------------------------- --------------------------------

30 ----x-------?-------------x----- -------------------------------- --------------------------------

31 ------xx------?-xx----------x--- -------------------------------- --------------------------------

32 --------x-----------x----------- x------------------------------- --------------------------------
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Table 22: SHACAL-2 - 35 Round Characteristics from [LKKD06, Wan07, FGL09]
i Ai Ei Wi

-4 -------------------------------- ????????????????????????????????

-3 x------------------------------- x-------------------------------

-2 --x---x----x-x--------x--x------ --x----------x------------------

-1 -------------------------------- ------------x-----x---x---------

0 -------------------------------- -------------------------------- x-------------------------------

1 x------------------------------- -------------------------------- --------------------------------

2 -------------------------------- ------x----x-------------x------ --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 -------------------------------- x------------------------------- --------------------------------

6 -------------------------------- -------------------------------- --------------------------------

7 -------------------------------- -------------------------------- --------------------------------

8 -------------------------------- -------------------------------- --------------------------------

9 -------------------------------- -------------------------------- x-------------------------------

10 -------------------------------- -------------------------------- --------------------------------

11 -------------------------------- -------------------------------- --------------------------------

12 -------------------------------- -------------------------------- --------------------------------

13 -------------------------------- -------------------------------- --------------------------------

14 -------------------------------- -------------------------------- --------------------------------

15 -------------------------------- -------------------------------- --------------------------------

16 -------------------------------- -------------------------------- --------------------------------

17 -------------------------------- -------------------------------- --------------------------------

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------------------

23 -------------------------------- -------------------------------- --------------------------------

24 ---x---x----------x------------- ---x---x----------x------------- ????????????????????????????????

25 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

26 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

27 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

28 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

29 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

30 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

31 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

32 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

33 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

34 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

i Ai Ei Wi

-4 ???????????????????????????????? ????????????????????????????????

-3 ???????????????????????????????? ????????????????????????????????

-2 ???????????????????????????????? ????????????????????????????????

-1 ???????????????????????????????? ????????????????????????????????

0 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

1 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

2 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

3 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

4 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

5 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

6 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

7 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

8 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

9 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

10 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

11 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

12 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

13 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

14 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

15 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

16 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

17 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

18 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

19 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

20 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

21 -------------------------------- -------------------------------- ????????????????????????????????

22 x-x---x----x-x--------x--x------ x-x----------x------------------ ????????????????????????????????

23 x------------------------------- ------------x-----x---x--------- ????????????????????????????????

24 x------------------------------- -------------------------------- ????????????????????????????????

25 x------------------------------- -------------------------------- --------------------------------

26 -------------------------------- ------x----x-------------x------ --------------------------------

27 -------------------------------- x------------------------------- --------------------------------

28 -------------------------------- x------------------------------- --------------------------------

29 -------------------------------- x------------------------------- --------------------------------

30 -------------------------------- -------------------------------- --------------------------------

31 -------------------------------- -------------------------------- --------------------------------

32 -------------------------------- -------------------------------- --------------------------------

33 x------------------------------- x------------------------------- --------------------------------

34 --x---x----x-x--------x--x------ ------x----x-------------x------ --------------------------------
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Table 23: SHACAL-2 - 35 Round Characteristics from [LK08]
i Ai Ei Wi

-4 -------------------------------- ????????????????????????????????

-3 x------------------------------- x-------------------------------

-2 --x---x----x-x--------x--x------ --x----------x------------------

-1 -------------------------------- ------------x-----x---x---------

0 -------------------------------- -------------------------------- x-------------------------------

1 x------------------------------- -------------------------------- --------------------------------

2 -------------------------------- ------x----x-------------x------ --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 -------------------------------- x------------------------------- --------------------------------

6 -------------------------------- -------------------------------- --------------------------------

7 -------------------------------- -------------------------------- --------------------------------

8 -------------------------------- -------------------------------- --------------------------------

9 -------------------------------- -------------------------------- x-------------------------------

10 -------------------------------- -------------------------------- --------------------------------

11 -------------------------------- -------------------------------- --------------------------------

12 -------------------------------- -------------------------------- --------------------------------

13 -------------------------------- -------------------------------- --------------------------------

14 -------------------------------- -------------------------------- --------------------------------

15 -------------------------------- -------------------------------- --------------------------------

16 -------------------------------- -------------------------------- --------------------------------

17 -------------------------------- -------------------------------- --------------------------------

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------------------

23 -------------------------------- -------------------------------- --------------------------------

24 ---x---x----------x------------- ---x---x----------x------------- ????????????????????????????????

25 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

26 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

27 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

28 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

29 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

30 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

31 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

32 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

33 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

34 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

i Ai Ei Wi

-4 ???????????????????????????????? ????????????????????????????????

-3 ???????????????????????????????? ????????????????????????????????

-2 ???????????????????????????????? ????????????????????????????????

-1 ???????????????????????????????? ????????????????????????????????

0 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

1 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

2 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

3 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

4 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

5 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

6 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

7 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

8 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

9 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

10 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

11 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

12 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

13 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

14 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

15 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

16 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

17 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

18 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

19 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

20 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

21 x------------------------------- x-----------------x------------- ????????????????????????????????

22 --x---x----x-x--------x--x------ --x----------x----x------------- ????????????????????????????????

23 -------------------------------- ------------x-----x---x--------- ????????????????????????????????

24 -------------------------------- -------------------------------- --------------------------------

25 x------------------------------- -------------------------------- --------------------------------

26 -------------------------------- ------x----x-------------x------ --------------------------------

27 -------------------------------- -------------------------------- --------------------------------

28 -------------------------------- -------------------------------- --------------------------------

29 -------------------------------- x------------------------------- --------------------------------

30 -------------------------------- -------------------------------- --------------------------------

31 -------------------------------- -------------------------------- --------------------------------

32 -------------------------------- -------------------------------- --------------------------------

33 x------------------------------- x------------------------------- --------------------------------

34 --x---x----x-x--------x--x------ ------x----x-------------x------ --------------------------------
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Table 24: SHACAL-2 - 35 Round Characteristics: rotated [FGL09]
i Ai Ei Wi

-4 -------------------------------- ????????????????????????????????

-3 x------------------------------- x-------------------------------

-2 --x---x----x-x--------x--x------ --x----------x------------------

-1 -------------------------------- ------------x-----x---x---------

0 -------------------------------- -------------------------------- x-------------------------------

1 x------------------------------- -------------------------------- --------------------------------

2 -------------------------------- ------x----x-------------x------ --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 -------------------------------- x------------------------------- --------------------------------

6 -------------------------------- -------------------------------- --------------------------------

7 -------------------------------- -------------------------------- --------------------------------

8 -------------------------------- -------------------------------- --------------------------------

9 -------------------------------- -------------------------------- x-------------------------------

10 -------------------------------- -------------------------------- --------------------------------

11 -------------------------------- -------------------------------- --------------------------------

12 -------------------------------- -------------------------------- --------------------------------

13 -------------------------------- -------------------------------- --------------------------------

14 -------------------------------- -------------------------------- --------------------------------

15 -------------------------------- -------------------------------- --------------------------------

16 -------------------------------- -------------------------------- --------------------------------

17 -------------------------------- -------------------------------- --------------------------------

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------------------

23 -------------------------------- -------------------------------- --------------------------------

24 ---x---x----------x------------- ---x---x----------x------------- ????????????????????????????????

25 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

26 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

27 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

28 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

29 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

30 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

31 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

32 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

33 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

34 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

i Ai Ei Wi

-4 ???????????????????????????????? ????????????????????????????????

-3 ???????????????????????????????? ????????????????????????????????

-2 ???????????????????????????????? ????????????????????????????????

-1 ???????????????????????????????? ????????????????????????????????

0 ???????????????????????????????? ???????????????????????????????? --------------------------------

1 ???????????????????????????????? ???????????????????????????????? --------------------------------

2 ???????????????????????????????? ???????????????????????????????? --------------------------------

3 ???????????????????????????????? ???????????????????????????????? --------------------------------

4 ???????????????????????????????? ???????????????????????????????? --------------------------------

5 ???????????????????????????????? ???????????????????????????????? --------------------------------

6 ???????????????????????????????? ???????????????????????????????? --------------------------------

7 ???????????????????????????????? ???????????????????????????????? --------------------------------

8 ???????????????????????????????? ???????????????????????????????? --------------------------------

9 ???????????????????????????????? ???????????????????????????????? --------------------------------

10 ???????????????????????????????? ???????????????????????????????? --------------------------------

11 ???????????????????????????????? ???????????????????????????????? --------------------------------

12 ???????????????????????????????? ???????????????????????????????? --------------------------------

13 ???????????????????????????????? ???????????????????????????????? --------------------------------

14 ???????????????????????????????? ???????????????????????????????? --------------------------------

15 ???????????????????????????????? ???????????????????????????????? --------------------------------

16 ???????????????????????????????? ???????????????????????????????? --------------------------------

17 ???????????????????????????????? ???????????????????????????????? --------------------------------

18 ???????????????????????????????- ???????????????????????????????- --------------------------------

19 ???????????????????????????????- ???????????????????????????????- --------------------------------

20 ???????????????????????????????- ???????????????????????????????- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 --x----x-x--------x--x------x-x- ---------x------------------x-x- --------------------------------

23 ----------------------------x--- --------x-----x---x------------- --------------------------------

24 ----------------------------x--- -------------------------------- --------------------------------

25 ----------------------------x--- -------------------------------- --------------------------------

26 -------------------------------- --x----x-------------x---------- --------------------------------

27 -------------------------------- ----------------------------x--- --------------------------------

28 -------------------------------- ----------------------------x--- --------------------------------

29 -------------------------------- ----------------------------x--- --------------------------------

30 -------------------------------- -------------------------------- --------------------------------

31 -------------------------------- -------------------------------- --------------------------------

32 -------------------------------- ------------------------------- --------------------------------

33 ----------------------------x--- ----------------------------x--- --------------------------------

34 --x----x-x--------x--x--------x- --x----x-------------x---------- --------------------------------
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Table 25: Characteristic from Table 24 repaired with QuickXPLain and S107

i Ai Ei Wi

-4 -------------------------------- ????????????????????????????????

-3 ???????????????????????????????? ????????????????????????????????

-2 --x---x----x-x--------x--x------ ????????????????????????????????

-1 ???????????????????????????????? ------------x-----x---x---------

0 ???????????????????????????????? -------------------------------- x-------------------------------

1 ???????????????????????????????? -------------------------------- ????????????????????????????????

2 ???????????????????????????????? ------x----x-------------x------ ?????????????????????????-??????

3 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

4 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

5 ???????????????????????????????? ?????????????????????????????-?? --------------------------------

6 ???????????????????????????????? ???????????????????????????????? --------------------------------

7 ???????????????????????????????? -------------------------------- --------------------------------

8 ???????????????????????????????? ???????????????????????????????? --------------------------------

9 ???????????????????????????????? ???????????????????????????????? x-------------------------------

10 ???????????????????????????????? -------------------------------- ????????????????????????????????

11 -------------------------------- -------------------------------- ????????????????????????????????

12 -------------------------------- ???????????????????????????????? ???????????????????????????-????

13 -------------------------------- -------------------------------- ????????????????????????????????

14 ???????????????????????????????? -------------------------------- --------------------------------

15 ???????????????????????????????? -------------------------------- ????????????????????????????????

16 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

17 ???????????????????????????????? -------------------------------- ????????????????????????????????

18 -------------------------------- ???????????????????????????????? ????????????????????????????????

19 -------------------------------- ???????????????????????????????? --------------------------------

20 -------------------------------- ???????????????????????????????? ????????????????????????????????

21 ???????????????????????????????? ??????????-????????????????????? --------------------------------

22 -------------------------------- ???????????????????????????????? ????????????????????????????????

23 ???????????????????????????????? -------------------------------- ????????????????????????????????

24 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

25 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

26 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

27 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

28 ???????????????????????????????? ??-????-?????????????-?????????? ????????????????????????????????

29 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

30 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

31 ???????????????????????????????? ????????????????????????????-??? ????????????????????????????????

32 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

33 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

34 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

i Ai Ei Wi

-4 ???????????????????????????????? ????????????????????????????????

-3 ???????????????????????????????? ????????????????????????????????

-2 ???????????????????????????????? ????????????????????????????????

-1 ???????????????????????????????? ????????????????????????????????

0 ???????????????????????????????? ???????????????????????????????? --------------------------------

1 ???????????????????????????????? ???????????????????????????????? --------------------------------

2 ???????????????????????????????? ???????????????????????????????? --------------------------------

3 ???????????????????????????????? ???????????????????????????????? --------------------------------

4 ???????????????????????????????? ???????????????????????????????? --------------------------------

5 ???????????????????????????????? ???????????????????????????????? --------------------------------

6 ???????????????????????????????? ???????????????????????????????? --------------------------------

7 ???????????????????????????????? ???????????????????????????????? --------------------------------

8 ???????????????????????????????? ???????????????????????????????? --------------------------------

9 ???????????????????????????????? ???????????????????????????????? --------------------------------

10 ???????????????????????????????? ???????????????????????????????? --------------------------------

11 ???????????????????????????????? ???????????????????????????????? --------------------------------

12 ???????????????????????????????? ???????????????????????????????? --------------------------------

13 ???????????????????????????????? ???????????????????????????????? --------------------------------

14 ???????????????????????????????? ???????????????????????????????? --------------------------------

15 ???????????????????????????????? ???????????????????????????????? --------------------------------

16 ???????????????????????????????? ???????????????????????????????? --------------------------------

17 ???????????????????????????????? ???????????????????????????????? --------------------------------

18 ???????????????????????????????? ???????????????????????????????? --------------------------------

19 ???????????????????????????????? ???????????????????????????????? --------------------------------

20 ???????????????????????????????? ???????????????????????????????? --------------------------------

21 -------------------------------- ???????????????????????????????? --------------------------------

22 ?????????????????????x????????x- ---------x------------------x-x- --------------------------------

23 ?????????????????????????????--- ?????????????????????????????--- --------------------------------

24 ----------------------------x--- ?????????????????????????????--- --------------------------------

25 ----------------------------x--- -------------------------------- --------------------------------

26 -------------------------------- --x----x-------------x---------- --------------------------------

27 -------------------------------- ----------------------------x--- --------------------------------

28 -------------------------------- ----------------------------x--- --------------------------------

29 -------------------------------- ----------------------------x--- --------------------------------

30 -------------------------------- -------------------------------- --------------------------------

31 -------------------------------- -------------------------------- --------------------------------

32 -------------------------------- -------------------------------- --------------------------------

33 ----------------------------x--- ????????????????????????????x--- --------------------------------

34 --x----x-x--------x--x--------x- --x----x-------------x---------- --------------------------------
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Table 26: Result of search with R17 on characteristics from Table 24
i Ai Ei Wi

-4 -------------------------------- ------n------n------D---n-------

-3 ----------n-----uu-u---------n-- ---------------n----uuu-----u---

-2 --n---u----u-u--------u--u------ -n-u--nnn-u---n--uu---uu-----n--

-1 -----u---u-n------------uu-u---n ------------u-----u---n---------

0 --------uu-----u---n---u---n-nn- -------------------------------- n-------------------------------

1 ----------u--------u-n---------- -------------------------------- --------------------------------

2 -u-----------u-----------n------ ------n----n-------------u------ u-nn---n-u----n-n-----nn-----u--

3 -B-n---n----n-n-----u--n-n----un ----nn---u----------u----------- ---n-------------n-un-n-uuuu---u

4 n---u--n-nD--u-un---D---B-D----u ???????????????????????????????x ?????????????xuuuuuuu-----------

5 -u-n--u--5D----n----u---uuuu---- ?????????????????????????????-?x --------------------------------

6 -u-------------------u---------- ???????????????????????????????? --------------------------------

7 -u-----uu-u----------nu--------- -------------------------------- --------------------------------

8 --n-u-u-nn-u-n--u-n-B----------- uuu--n-----------n--Bu--un-n--nu --------------------------------

9 -------------------------------- --u--un---u---u---u-Bu-n--n-u-u- n-------------------------------

10 --------------------n----------- -------------------------------- n--u-u--u----n-n-unnnun-nnn--nn-

11 -------------------------------- -------------------------------- --u-n-u--u----n---uuuuu-u--nnnnn

12 -------------------------------- -nuu-nnn-u-u-n---uu-u----------- ------u------------u--------nnnn

13 -------------------------------- -------------------------------- -------------unnnnnnn-----------

14 -unnnnnnnnnnnnnnnnnnn----------- -------------------------------- --------------------------------

15 -------------------------------- -------------------------------- --------------------n-----------

16 -------------------------------- --n-u-u-n-nn--nnn--nn----------- --------------------------------

17 -------------------------------- -------------------------------- ----uu-----------B-nnnnnnnnnnnn-

18 -------------------------------- --unnnnnnnnnnnnnnnnnn----------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------n-----------

23 -------------------------------- -------------------------------- --------------------------------

24 -------------------------------- -------------------------------- --------------------------------

25 -------------------------------- -------------------------------- --------------------------------

26 -------------------------------- -------------------------------- --------------------------------

27 -------------------------------- -------------------------------- --------------------------------

28 -------------------------------- -------------------------------- --------------------------------

29 -------------------------------- -------------------------------- --------------------------------

30 ???????????????????????????x---- ???????????????????????????x---- ???????????????????????????x----

31 ???????????????????????????????? ????????????????????????????-??? ????????????????????x-----------

32 ???????????????????????????????? ????????????????????????????-??? ????????????????????????????????

33 ????????????????????????????-??? ????????????????????????????-??? ????????????????????????????????

34 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

i Ai Ei Wi

-4 ???????????????????????????????? ??????-??????-??????????5???????

-3 ??????????-?????--?-?????????-?? ????????????A??-??-?---?????-???

-2 ??-???-????-?-????????-??-?????? ?-?-??---?-?5?-??--???--?????-??

-1 ?????-???A?-????????????--?-???- ?-?-??---???A?--?--???-??A?---??

0 ????????-A?????-???-???-???-?5-? ?-?-??---?-?-?-??-????--?-???-?? --------------------------------

1 ??????????-????????-?-?????????? ??????-?????-?????-???-??-?????? --------------------------------

2 ?-???????????-???????????-?????? ??????-????-?????????????-?????? --------------------------------

3 ???-???-????-?-?????-??-?-????-- ????---??A??????????-????-?????? --------------------------------

4 5???-??-?-???-?--??????????????- ???????????????????????????????? --------------------------------

5 ?-?-??-??5???5?-????A?A?----???? ???????????????????????????????? --------------------------------

6 ?-???????A???A?????A?-A???????5? ??-??-????????????????????????-? --------------------------------

7 ?-?????--?-??A???A?5?--?????5??? ??-??-????????????????????????-? --------------------------------

8 ??-?-?-?--?-?-??-?-????????????? A--A?-???????5A??-???AA?--?-??-- --------------------------------

9 ?????????????A?????????????????? ??-?A--???-??A-???-5?A?5??-?-?-? --------------------------------

10 ?????????????A??????-??????????? ---??--???-???-??--????------?-- --------------------------------

11 ????????????????????5??????????? ?--??--???-???-??--?5-?-??-?-?-? --------------------------------

12 ????????????????????5??????????? ?---?---?-?-?-???--?-??????????? --------------------------------

13 ????????????????????5??????????? ?---?---?-?-?-???--?-??????????? --------------------------------

14 ?--------------------??????????? ?---?-------?-???--?-??????????? --------------------------------

15 ????????????????????A??????????? ??-???-?-?--????????-??????????? --------------------------------

16 ????????????????????A??????????? ??-?-?-?-5--??---??--??????????? --------------------------------

17 ???????????????????????????????? ??-?-?-?-5--??---??--??????????? --------------------------------

18 ???????????????????????????????? ??-------------------??5????5?5? --------------------------------

19 ???????????????????????????????x ??-------------------??????????x --------------------------------

20 ??????????????????????????????-- ??-------------------???????5?5- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 --u----n-u--------u--n---unn-nn- ---------n------------------n-n- --------------------------------

23 -------------------------unnn--- --------u----Du---n------------- --------------------------------

24 ----------------------------n--- -------------------------------- --------------------------------

25 ----------------------------u--- -------------------------------- --------------------------------

26 -------------------------------- --u----n-------------n---------- --------------------------------

27 -------------------------------- ----------------------------u--- --------------------------------

28 -------------------------------- ----------------------------n--- --------------------------------

29 -------------------------------- ----------------------------u--- --------------------------------

30 -------------------------------- -------------------------------- --------------------------------

31 -------------------------------- -------------------------------- --------------------------------

32 -------------------------------- -------------------------------- --------------------------------

33 ----------------------------u--- ----------------------------u--- --------------------------------

34 --x----x-x--------x--x--------x- --x----x-------------x---------- --------------------------------
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Table 27: Characteristics from [FGL09] manually repaired
i Ai Ei Wi

-4 -------------------------------- ????????????????????????????????

-3 x------------------------------- x-------------------------------

-2 --x---x----x-x--------x--x------ --x----------x------------------

-1 -------------------------------- ------------x-----x---x---------

0 -------------------------------- -------------------------------- x-------------------------------

1 x------------------------------- -------------------------------- --------------------------------

2 -------------------------------- ------x----x-------------x------ --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 -------------------------------- x------------------------------- --------------------------------

6 -------------------------------- -------------------------------- --------------------------------

7 -------------------------------- -------------------------------- --------------------------------

8 -------------------------------- -------------------------------- --------------------------------

9 -------------------------------- -------------------------------- x-------------------------------

10 -------------------------------- -------------------------------- --------------------------------

11 -------------------------------- -------------------------------- --------------------------------

12 -------------------------------- -------------------------------- --------------------------------

13 -------------------------------- -------------------------------- --------------------------------

14 -------------------------------- -------------------------------- --------------------------------

15 -------------------------------- -------------------------------- --------------------------------

16 -------------------------------- -------------------------------- --------------------------------

17 -------------------------------- -------------------------------- --------------------------------

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 ???????????????????????????????? ???????????????????????????????? --------------------------------

23 ???????????????????????????????? ???????????????????????????????? --------------------------------

24 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

25 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

26 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

27 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

28 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

29 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

30 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

31 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

32 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

33 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

34 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

i Ai Ei Wi

-4 ???????????????????????????????? ????????????????????????????????

-3 ???????????????????????????????? ????????????????????????????????

-2 ???????????????????????????????? ????????????????????????????????

-1 ???????????????????????????????? ????????????????????????????????

0 ???????????????????????????????? ???????????????????????????????? --------------------------------

1 ???????????????????????????????? ???????????????????????????????? --------------------------------

2 ???????????????????????????????? ???????????????????????????????? --------------------------------

3 ???????????????????????????????? ???????????????????????????????? --------------------------------

4 ???????????????????????????????? ???????????????????????????????? --------------------------------

5 ???????????????????????????????? ???????????????????????????????? --------------------------------

6 ???????????????????????????????? ???????????????????????????????? --------------------------------

7 ???????????????????????????????? ???????????????????????????????? --------------------------------

8 ???????????????????????????????? ???????????????????????????????? --------------------------------

9 ???????????????????????????????? ???????????????????????????????? --------------------------------

10 ???????????????????????????????? ???????????????????????????????? --------------------------------

11 ???????????????????????????????? ???????????????????????????????? --------------------------------

12 ???????????????????????????????? ???????????????????????????????? --------------------------------

13 ???????????????????????????????? ???????????????????????????????? --------------------------------

14 ???????????????????????????????? ???????????????????????????????? --------------------------------

15 ???????????????????????????????? ???????????????????????????????? --------------------------------

16 ???????????????????????????????? ???????????????????????????????? --------------------------------

17 ???????????????????????????????? ???????????????????????????????? --------------------------------

18 ???????????????????????????????? ???????????????????????????????? --------------------------------

19 ???????????????????????????????? ???????????????????????????????? --------------------------------

20 ???????????????????????????????? ???????????????????????????????? --------------------------------

21 ???????????????????????????????? ???????????????????????????????? --------------------------------

22 ???????????????????????????????? ???????????????????????????????? --------------------------------

23 x??????????????????????????????? ???????????????????????????????? --------------------------------

24 x------------------------------- ???????????????????????????????? --------------------------------

25 x------------------------------- ???????????????????????????????? --------------------------------

26 -------------------------------- ???????????????????????????????? --------------------------------

27 -------------------------------- x??????????????????????????????? --------------------------------

28 -------------------------------- x??????????????????????????????? --------------------------------

29 -------------------------------- x------------------------------- --------------------------------

30 -------------------------------- -------------------------------- --------------------------------

31 -------------------------------- -------------------------------- --------------------------------

32 -------------------------------- -------------------------------- --------------------------------

33 x------------------------------- x------------------------------- --------------------------------

34 ???????????????????????????????? ???????????????????????????????? --------------------------------
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Table 28: Result of search with R19 on characteristics from Table 27
i Ai Ei Wi

-4 -------------------------------- ---nnn-------u-n--------u----u--

-3 x------------------------------- x-------------------------------

-2 --u---x----x-x--------x--x------ --n----------u------------------

-1 -------------------------------- ------------x-----x---x---------

0 -------------------------------- -------------------------------- x-------------------------------

1 x------------------------------- -------------------------------- --------------------------------

2 -------------------------------- ------x----x-------------x------ --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 -------------------------------- x------------------------------- --------------------------------

6 -------------------------------- -------------------------------- --------------------------------

7 -------------------------------- -------------------------------- --------------------------------

8 -------------------------------- -------------------------------- --------------------------------

9 -------------------------------- -------------------------------- x-------------------------------

10 -------------------------------- -------------------------------- --------------------------------

11 -------------------------------- -------------------------------- --------------------------------

12 -------------------------------- -------------------------------- --------------------------------

13 -------------------------------- -------------------------------- --------------------------------

14 -------------------------------- -------------------------------- --------------------------------

15 -------------------------------- -------------------------------- --------------------------------

16 -------------------------------- -------------------------------- --------------------------------

17 -------------------------------- -------------------------------- --------------------------------

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------------------

23 -------------------------------- -------------------------------- --------------------------------

24 ---u---u----------u------------- --u-nnnn---------un------------- ---u---u----------u-------------

25 ------n--u-un--B-nn-----Bu------ --------u---u-----------u----u-u n-------------------------------

26 ???????xnnnD????xnnnnnnnnn------ ??????????????????????????????x- ????????????????????????????x---

27 -------------------------------- A------------------------------- nuuuuuuuuuu---unnnnu------------

28 -------------------------------- A------------------------------- --------------------u----------u

29 -------------------------------- -------------------------------- n------nnn-Dn---u---n-----u-nnnn

30 -------------------------------- -----------u-------------u------ ??????????????????????????????x-

31 -------------------------------- -------------------------------- ???????????????????????????????x

32 -------------------------------- -------------------------------- ??????????????????????????------

33 -------------------------------- -------------------------------- -----------D--------------------

34 -------------------------------- -------------------------------- -----------n-------------n------

i Ai Ei Wi

-4 -------------------------------- --------------------------------

-3 -------------------------------- --------------------------------

-2 -------------------------------- ------------------------------n-

-1 -------------------------------- --------------------------------

0 -------------------------------- -------------------------------- --------------------------------

1 -------------------------------- -------------------------------- --------------------------------

2 -----------------------------nu- ------------------------------n- --------------------------------

3 ???????????????????????????????x ????x--??x--????????xxxx--B????- --------------------------------

4 ???????????????????????????????- ??????-???x-????????????x-?????x --------------------------------

5 ---------------B-u-----u--B----- ----n-n------u-B-------u-----u-- --------------------------------

6 ----u----n---nnnn------n-un----D ---u----u-----B-u-uu------------ --------------------------------

7 un---nu-------u------n---n---B-- ----------u----u-----uB--------- --------------------------------

8 --------D---u---------n---D---nu ---------u----------------nn-n-u --------------------------------

9 -u---------uu--u--nn---n--n--n-- ----u-------u-------u----n--n--- --------------------------------

10 ----u---n----------------------- ------n-n-----n--u-------------- --------------------------------

11 -n------u---nnn--u--n-------u--- -----n-u-----n--n-u--------u---- --------------------------------

12 ---nn--u--uu---u-u----unn----u-u -n--u-----------u--u-n--n--u--n- --------------------------------

13 ---------u----------n-----n----- --------------------u----n-n---- --------------------------------

14 ---n-n---nn---u--n----n-n-n---n- --------------u------u-----n---- --------------------------------

15 --u-n------u---n-----------n-uu- --------u-n-uu-----n---n----u--- --------------------------------

16 ------------u--u-nnn--nn----n--u -------------------------------u --------------------------------

17 -u---u-------n-------n---------- -----n-------------------------- --------------------------------

18 u--n-uuuu---u--u--------un-n---- --n-u------------u----u-n-n-n--- --------------------------------

19 n------nnnnn-nnn-----------u---- n-n---u----nu---nnnnnnn----n---- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 --n---------un--------u--------- --u----------n--------n--------- --------------------------------

22 -------------------------u------ -------------------------------- --------------------------------

23 u------------------------------- -------------------------------- --------------------------------

24 u------------------------------- -------------------------------- --------------------------------

25 n------------------------------- -------------------------------- --------------------------------

26 -------------------------------- ?????????????????????????x------ --------------------------------

27 -------------------------------- n------------------------------- --------------------------------

28 -------------------------------- n------------------------------- --------------------------------

29 -------------------------------- u------------------------------- --------------------------------

30 -------------------------------- -------------------------------- --------------------------------

31 -------------------------------- -------------------------------- --------------------------------

32 -------------------------------- -------------------------------- --------------------------------

33 n------------------------------- u------------------------------- --------------------------------

34 --u-nuu-----nn--------n--u------ ------n----n-------------u------ --------------------------------
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B Used Searching Setups

B104: -P1: {A0,23−26, E0,23−26, W0,23−26 }: {’?’, ’x’}

B107: -P1: {A23−29, E23−29, W23−29 }: {’?’, ’x’}

B204: -P1: {A23−26, E23−26, W23−26 }: {’?’, ’x’}

B207: -P1: {A23−29, E23−29, W23−29 }: {’?’, ’x’}

S104: -P1: {A0,23, E0,23, W0,23 }: {’?’, ’x’}
-P2: {A0,24, E0,24, W0,24 }: {’?’, ’x’}
-P3: {A0,25, E0,25, W0,25 }: {’?’, ’x’}
-P4: {A0,26, E0,26, W0,26 }: {’?’, ’x’}

M107: -P1: {A0,23, E0,23, W0,23 }: {’?’, ’x’}
-P2: {A0,24, E0,24, W0,24 }: {’?’, ’x’}
-P3: {A0,25, E0,25, W0,25 }: {’?’, ’x’}
-P4: {A0,26, E0,26, W0,26 }: {’?’, ’x’}
-P5: {A0,27, E0,27, W0,27 }: {’?’, ’x’}
-P6: {A0,28, E0,28, W0,28 }: {’?’, ’x’}
-P7: {A0,29, E0,29, W0,29 }: {’?’, ’x’}

M108: -P1: {A0,23, E0,23, W0,23 }: {’?’, ’x’}
-P2: {A0,24, E0,24, W0,24 }: {’?’, ’x’}
-P3: {A0,25, E0,25, W0,25 }: {’?’, ’x’}
-P4: {A0,26, E0,26, W0,26 }: {’?’, ’x’}
-P5: {A0,27, E0,27, W0,27 }: {’?’, ’x’}
-P6: {A0,28, E0,28, W0,28 }: {’?’, ’x’}
-P7: {A0,29, E0,29, W0,29 }: {’?’, ’x’}
-P8: {A0,30, E0,30, W0,30 }: {’?’, ’x’}

M209: -P1: {A0,23, E0,23, W0,23 }: {’?’, ’x’}
-P2: {A0,24, E0,24, W0,24 }: {’?’, ’x’}
-P3: {A0,25, E0,25, W0,25 }: {’?’, ’x’}
-P4: {A0,26, E0,26, W0,26 }: {’?’, ’x’}
-P5: {A0,27, E0,27, W0,27 }: {’?’, ’x’}
-P6: {A0,28, E0,28, W0,28 }: {’?’, ’x’}
-P7: {A0,29, E0,29, W0,29 }: {’?’, ’x’}
-P8: {A0,30, E0,30, W0,30 }: {’?’, ’x’}
-P9: {A1,24−28, E1,24−28, W1,24−28 }: {’?’, ’x’}
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M210: -P1: {A0,23, E0,23, W0,23 }: {’?’, ’x’}
-P2: {A0,24, E0,24, W0,24 }: {’?’, ’x’}
-P3: {A0,25, E0,25, W0,25 }: {’?’, ’x’}
-P4: {A0,26, E0,26, W0,26 }: {’?’, ’x’}
-P5: {A0,27, E0,27, W0,27 }: {’?’, ’x’}
-P6: {A0,28, E0,28, W0,28 }: {’?’, ’x’}
-P7: {A0,29, E0,29, W0,29 }: {’?’, ’x’}
-P8: {A0,30, E0,30, W0,30 }: {’?’, ’x’}
-P9: {A1,24−28, E1,24−28, W1,24−28 }: {’?’, ’x’}
-P10: {A0,31, E0,31, W0,31 }: {’?’, ’x’}

M211: -P1: {A0,23, E0,23, W0,23 }: {’?’, ’x’}
-P2: {A0,24, E0,24, W0,24 }: {’?’, ’x’}
-P3: {A0,25, E0,25, W0,25 }: {’?’, ’x’}
-P4: {A0,26, E0,26, W0,26 }: {’?’, ’x’}
-P5: {A0,27, E0,27, W0,27 }: {’?’, ’x’}
-P6: {A0,28, E0,28, W0,28 }: {’?’, ’x’}
-P7: {A0,29, E0,29, W0,29 }: {’?’, ’x’}
-P8: {A0,30, E0,30, W0,30 }: {’?’, ’x’}
-P9: {A1,24−28, E1,24−28, W1,24−28 }: {’?’, ’x’}
-P10: {A0,31, E0,31, W0,31 }: {’?’, ’x’}
-P11: {A21−23, E21−23, W21−23 }: {’?’, ’x’}

S204: -P1: {A23, E23, W23 }: {’?’, ’x’}
-P2: {A24, E24, W24 }: {’?’, ’x’}
-P3: {A25, E25, W25 }: {’?’, ’x’}
-P4: {A26, E26, W26 }: {’?’, ’x’}

S207: -P1: {A23, E23, W23 }: {’?’, ’x’}
-P2: {A24, E24, W24 }: {’?’, ’x’}
-P3: {A25, E25, W25 }: {’?’, ’x’}
-P4: {A26, E26, W26 }: {’?’, ’x’}
-P5: {A27, E27, W27 }: {’?’, ’x’}
-P6: {A28, E28, W28 }: {’?’, ’x’}
-P7: {A29, E29, W29 }: {’?’, ’x’}
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R17 : -P1: {A0,(−4)−5, E0,(−4)−3, W0,(−4)−3 }: {’?’, ’x’}
-P2: {A0,24, E0,24, W0,24 }: {’?’, ’x’}
-P3: {A0,25, E0,25, W0,25 }: {’?’, ’x’}
-P4: {A0,26, E0,26, W0,26 }: {’?’, ’x’}
-P5: {A0,27, E0,27, W0,27 }: {’?’, ’x’}
-P6: {A0,28, E0,28, W0,28 }: {’?’, ’x’}
-P7: {A0,29, E0,29, W0,29 }: {’?’, ’x’}
-P8: {A0,23−25, E0,23−25, W0,23−25 }: {’-’}
-P9: {A1,21−24, E1,21−22, W1,21−22 }: {’?’, ’x’}
-P10: {A1,25−26, E1,23−24, W1,23−24 }: {’?’, ’x’}
-P11: {A1,27−28, E1,25−26, W1,25−26 }: {’?’, ’x’}
-P12: {A0,20−23, E0,22−23, W0,22−23 }: {’?’, ’x’}
-P13: {A0,18−19, E0,20−21, W0,20−21 }: {’?’, ’x’}
-P14: {A0,16−17, E0,18−19, W0,18−19 }: {’?’, ’x’}
-P15: {A0,14−15, E0,16−17, W0,16−17 }: {’?’, ’x’}
-P16: { E0,14−15, W0,14−15 }: {’?’, ’x’}
-P17: { E1,33, }: {’?’, ’x’}

R19 : -P1: {A0,24, E0,24−25, W0,24 }: {’?’, ’x’}
-P2: { E1,23−24, }: {’?’, ’x’}
-P3: { E1,22, }: {’?’, ’x’}
-P4: {A1,22, }: {’?’, ’x’}
-P5: {A0,23−25, E1,25, W0,25 }: {’?’, ’x’}
-P6: {A1,21−23, E1,21, }: {’?’, ’x’}
-P7: {A1,20, E1,20, W1,20 }: {’?’, ’x’}
-P8: {A1,19, E1,19, W1,19 }: {’?’, ’x’}
-P9: {A1,18, E1,18, W1,18 }: {’?’, ’x’}
-P10: { E0,(−4), }: {’?’, ’x’}
-P11: {A27−29, E27−29, }: {’?’, ’x’}
-P12: {A30−34, E30−34, }: {’?’, ’x’}
-P13: {A1,16−18, E1,16−18, }: {’?’, ’x’}
-P14: {A1,13−15, E1,13−15, }: {’?’, ’x’}
-P15: {A1,10−12, E1,10−12, }: {’?’, ’x’}
-P16: {A1,7−9, E1,7−9, }: {’?’, ’x’}
-P17: {A1,5−6, E1,5−6, }: {’?’, ’x’}
-P18: { W0,27−29 }: {’?’, ’x’}
-P19: {A1,(−4)−2, E1,(−4)−2, W0,33−44 }: {’?’, ’x’}
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