Master’s Thesis

Repairing Boomerang Characteristics

Wolfgang Wieser
0831773

Graz, 2013

Institute for Applied Information Processing and Communications
Graz Unwersity of Technology

Akl Ty

Assessor: Florian Mendel

Advisor: Martin Schlaffer

Abstract

Differential cryptanalysis is one of the two most widely used attacks on block ciphers and
hash functions. Therefore, the algorithm is applied on pairs of messages with a certain
difference for instance. Then the differences on output of the algorithm can be used to
determine information about the secret key. The boomerang attack extends the classic
differential cryptanalysis by using differences of differences. There exist related attacks
like the amplified boomerang attack and the rectangle attack. These attacks belong to
the family of second-order cryptanalysis. With these techniques round reduced versions
of various cryptographic functions have been broken. It even has been possible to break
the full eight rounds of the KASUMI block cipher. In the last years several boomerang
characteristics for a round reduced version of SHACAL-2, which is a block cipher based on
SHA-2, were published. For all of them contradictions were found - manually. In this thesis
we describe a tool which can automatically check the consistency of differential boomerang
characteristics. We developed different methods to check the consistency of boomerang
characteristics automatically.

Differential characteristics can be seen as a huge set of constraints. If a characteristic
is inconsistent, this means that a contradiction is somewhere in the set of constraints. We
propose debugging techniques to find these contradictions and to repair them. In this
thesis we describe four algorithms to find inconsistencies in boomerang characteristics. We
describe different techniques we tested to improve the results. Different detail-levels can
be used for the checks while repairing the characteristics. We tried to find a good trade-off
between speed and quality of the result. These algorithms and techniques can also be used
to repair first-order differential characteristics.

The repairing algorithms provide truncated boomerang characteristics which can be
used as a starting point to determine the characteristic and search confirming messages.
Finally, we describe how to search for boomerang characteristics with a high probability.
With this tool valid characteristics can be found automatically which helps to increase the
number of attacked rounds.

Zusammenfassung

Differentielle Kryptoanalyse ist eine der zwei haufigsten Verfahren um kryptographische
Blockchiffre und Hashfunktion anzugreifen. Dafiir wird der Algorithmus zum Beispiel auf
Paare von Nachrichten mit einer bestimmten Differenz angewendet, um aus der Differenz
am Ausgang Informationen tiber den geheimen Schliissel zu berechnen. Die Boomerang
Attacke erweitert die klassische differentielle Kryptoanalyse indem sie Differenzen von Dif-
ferenzen verwendet. Aufler der Boomerang Attacke gibt es noch weitere Methoden, wie
etwa die Amplified Boomerang Attacke und die Rectangle Attacke. Diese Angriffsmethoden
gehoren zur Kryptoanalyse zweiter Ordnung. Mit ihnen wurden bereits rundenreduzierte
Varianten von einigen kryptographische Funktionen gebrochen. Die KASUMI Blockchiffre
konnte sogar vollstandig gebrochen werden.

In den letzten Jahren wurden einige Boomerang Charakteristiken fiir eine rundenre-
duzierte Variante von SHACAL-2, einer Blockchiffre basierend auf SHA-2, veroffentlicht.
Allerdings konnte in allen Charakteristiken ein Fehler gefunden werden - allerdings héndisch.
Um die Uberpriifung solcher Charakteristiken zu vereinfachen, haben wir Methoden en-
twickelt, um die Uberpriifung zu automatisieren, die in dieser Arbeit beschrieben werden.

Differentielle Charakteristiken konnen als groffle Menge von Bedingungen gesehen wer-
den. Widersprechen sich manche dieser Bedingungen, ist die Charakteristik inkonsis-
tent. Daher verwenden wir Techniken die bereits zur Fehlersuche in Soft- und Hard-
ware bentzt werden, um diese Widerspriiche zu finden und sie zu beheben. In dieser
Arbeit beschreiben wir vier Algorithmen die dazu verwendet werden kénnen. Auflerdem
beschreiben wir zusatzliche Methoden um die damit erzielten Ergebnisse zu verbessern.
Dabei kénnen die dafiir bendtigten Uberpriifungen der Charakteristik mit verschiedenen
Genauigkeitsstufen durchgefithrt werden. Wir haben versucht einen guten Kompromiss
zwischen Geschwindigkeit und Qualitat zu finden. Die vorgestellten Techniken konnen
auch zum Reparieren von Charakteristiken erster Ordnung verwendet werden.

Nach dem die Charakteristiken repariert wurden, sind einige ihrer Differenzen unbes-
timmt. Diese Werte konnen mit Hilfe einer Suche bestimmt werden. Mit der Suche
konnen auch passende Nachrichten gefunden werden. Dabei sollte die Charakteristik am
Ende eine mdoglichst hohe Wahrscheinlichkeit besitzen. In dieser Arbeit beschreiben wir
wie Charakteristiken mit einer moglichst hohen Wahrscheinlichkeit automatisch gefunden
werden konnen. Die vorgestellten Algorithmen und Methoden sollen helfen in Zukunft
Boomerang Attacken auf mehr Runden durchfithren zu kénnen.

Acknowledgments

At first I would like to thank my supervisor Martin Schléffer to guide me through a huge
part of my studies starting with my bachelor thesis. I would like to thank him for your many
ideas, hints and showing me different exciting aspects of cryptography. Many thanks also
to my second supervisor Florian Mendel for his suggestions which helped me a lot during
this thesis. I would also like to thank Prof. Andreas Felfernig, Prof. Franz Wotawa and
Birigit Hofer from the Institute for Software Technology for introducing me to debugging in
their lectures and exercises, which gave me the idea to use debugging to repair differential
characteristics.

Equally, I would like to thank my family for their support enabling me to concentrate
entirely on my studies. I would like to thank all my fellow students for making the studying
pleasant even in stressful times and supporting me in group works and learning for exams.
Special thanks for great team work and joining me in most exercises go to Simon Aufler-
lechner, Raphael Spork and Clemens Miihlbacher. Last but not least I want to thank my
girlfriend Fabia for supporting and pushing me to finish my thesis and her understanding
in all the stressful times.

Contents
1 Introduction

2 Symmetric Cryptography

2.1 Block Cipher
2.2 Hash Function
2.2.1 Security Notions
2.2.2 One-Way Compression functions
2.3 Attack Techniques
2.3.1 Birthday Attack
2.3.2 Meet-In-The-Middle Attack
2.3.3 Linear Cryptanalysis,
2.3.4 Integral Cryptanalysis
2.4 SHACAL-2 e
2.4.1 Definition of SHA-2
2.4.2 Current Attackso

3 Differential Cryptanalysis

3.1 Preliminaries
3.2 The Attack
3.3 Techniques in Differential Cryptanalysis
3.3.1 Message Modificationo
3.3.2 Neutral Bits
3.3.3 Truncated Differentials
3.3.4 Related Key Attack
3.3.5 Differential Multi-Collision
3.3.6 Inside-Out Attack
3.3.7 Rebound Attack
4 Second-Order Differential Cryptanalysis
4.1 Boomerang Attack
4.2 Related Attacks
4.2.1 Amplified Boomerang Attack
4.2.2 Rectangle Attack L
4.2.3 Boomerang Attack using Auxiliary Differentials

© 00 00 0O O UL i~ W W -

—_ = =
_ o O O

5 Finding Inconsistencies
5.1 SequentialSearch
5.2 ReplayXPlain
5.3 QuickXPlain
54 FastDiag
5.5 Finding diagnoses

6 Automatic Tool
6.1 Conditions and Characteristics . . .
6.1.1 Generalized Conditions . . .

6.1.2 Generalized Multi-Bit Conditions

6.1.3 Linear Two-Bit Conditions .

6.2 Searching for a Characteristic and Messages

6.3 Updating a Characteristic
6.4 Advanced Consistency Checks . . .
6.5 Related Work

7 Automatic Boomerang Tool
7.1 Implementing Boomerang State . .
7.2 Repair Boomerang Characteristics .

7.3 Update and Check Boomerang Characteristics

7.3.1 Transfer Conditions

7.3.2 Update Neighboring Substates
7.3.3 Transfer Multi-Bit Conditions
7.3.4 Update Neighboring Multi-Bit Conditions

7.3.5 Test Conditions
7.4 Search a Boomerang Characteristic

8 Attacks and Results
8.1 Searching Setups
8.2 Check Boomerang Characteristics .
8.3 Repair a Boomerang Characteristic
8.4 Search of Boomerang Characteristic

9 Conclusion
References
A Characteristics

B Used Searching Setups

i

24
27
27
29
31
32

33
33
33
34
36
37
38
39
40

41
41
42
43
43
43
46
48
50
o1

52
92
93
95
60

61

63

69

78

1 Introduction

Everyone uses cryptography but only a few people notice. All current smartphones have a
complex security system to protect the user data and the conversations. Another practical
examples for cryptography in everyday life are debit cards and online banking. Today
even contracts can be signed digitally. To guarantee the authenticity of such contracts
or to protect user data many different cryptographic algorithms have been developed. In
cryptanalysis these algorithms are analyzed to find vulnerabilities and learn from them
to create new stronger structures and algorithms. This is necessary because according to
Moore’s law computational power grows exponentially and so does the ability to do more
complex attacks.

One of the most powerful forms of cryptanalysis is differential cryptanalysis, which
can be divided into first-order and higher-order differential-cryptanalysis. For higher-order
differential cryptanalysis several attacks are known, one of them is the boomerang attack.
This attack uses four messages to find collisions or to distinguish an algorithm from a
random function. In this thesis we apply the boomerang attack on SHACAL-2. Target
of the differential cryptanalysis is to find differentials. Differentials predict the difference
between two outputs of a function depending on the input difference with a certain prob-
ability, which should be as high as possible. Since recent cryptographic algorithms are
designed in a way to counter differential cryptanalysis, finding differentials and character-
istics with a high probability is a challenging task.

However, it is not only a hard task to find a good characteristic, it is also difficult
to check if a differential characteristic is valid. For a boomerang attack even four char-
acteristics are necessary. These characteristics do not only need to be consistent within
themselves. They have to fulfill additionally constraints because they are strongly re-
lated to each other. We developed a tool to automate the consistency check of a whole
boomerang characteristic.

In case of a contradiction we have to localize the constraints which lead to the conflict
and change them to repair the characteristic. Therefore we use different debugging algo-
rithms to find conflict sets or diagnoses and to change the contained constraints. Once a
valid characteristic with a reasonable probability has been constructed, messages fulfilling
these characteristics must be found. The higher the probability of a characteristic the
easier it is to find a message.

In this thesis we implement a tool to automate the boomerang attack. Therefore,
we developed algorithms to check whether a given boomerang characteristic is valid. If
inconsistencies can be found they can be repaired automatically using different debugging
algorithms. When the characteristic is repaired confirming messages can be searched to
ensure that the characteristic is indeed valid.

In Chapter 2, we give an introduction into symmetric cryptography. One group of sym-
metric algorithms are block ciphers which are used to encrypt a bulk of data. One of
them is SHACAL-2, which is based on the hash function SHA-2, an international standard
hash function designed by the U.S. National Security Agency (NSA). Old hash functions

are based on block ciphers. Therefore, the block cipher is used in different constructions
to form a non-invertible function. Since block ciphers are only suitable for encrypting a
message with a fixed length, several structures were developed to securely encrypt longer
messages. Additionally, we describe some basic attacks.

In Chapter 3, we describe the concept of differential cryptanalysis. It was developed
to attack block ciphers and hash functions but can also be applied on other cryptographic
functions. Differential cryptanalysis looks at differences of messages and analyze their
influence on the output. For some input differences some differences on the output are more
likely then the average. This can be used to generate differentials and characteristics. In
this chapter, we also describe some techniques which can be used to improve the probability
of characteristics in some attack settings.

In Chapter 4, the boomerang attack is introduced. The boomerang attack is a method
of higher-order differential cryptanalysis and therefore analyzes differences of differences.
There exist related attacks like the amplified boomerang attack, the rectangle attack and
the boomerang attack on hash functions.

In Chapter 5, we introduce the usage of debugging algorithms to repair differential
characteristics. Since differential characteristics can be seen as a huge set of constraints,
debugging algorithms can help to find inconsistencies. Lots of different debugging algo-
rithms are known, we selected ReplayXPlain, QuickXPlain and FastDiag and developed
SequentialSearch. In this chapter we describe these algorithms and how they can be used
to find diagnoses which can be used to repair characteristics.

Chapter 6, describes how first-order differential characteristics can be updated, checked
and searched on. Conditions describe the difference between the values in two messages
at the same position. Generalized conditions can be used to store possible combinations
of differences. Thus, generalized multi-bit conditions represent the possible differences
for more than one bit value such as a result of an addition. The relation between two
conditions can be described with two-bit conditions.

In Chapter 7, we extend these concepts to the boomerang attack and implemented
them in a tool. We describe how a change in one part of the boomerang characteristics can
be propagated to the other parts and how the validity of boomerang characteristics can
be proven. Moreover, we explain how boomerang characteristics can be repaired using the
debugging algorithms described before. These basic debugging strategies can be extended
by a statistical approach and by debugging all possible rotations of the boomerang charac-
teristics. This chapter also describes how we can search on boomerang characteristics and
how this can be used as extended consistency checks.

In Chapter 8, we apply the technique described before on recently published boomerang
characteristics for a round reduced variant of SHACAL-2. All of them have been proven to
have inconsistencies. Hence, we check all the characteristics with our tool to test if it can
find the inconsistencies automatically and how long these checks need. Then we choose
one characteristic and repair it with different debugging algorithms and various setups to
compare the performance and to find the best setup. Finally, we search a new boomerang
characteristic.

In Chapter 9, we summarize the results and discuss open problems.

2 Symmetric Cryptography

There are two classes of algorithms in cryptography: public-key and private-key, also called
symmetric-key, algorithms. Public-key algorithms use a public encryption key and a secret
decryption key. This has the big advantage that the encryption key must not be kept secret
and therefore everyone can generate the ciphertext but only the recipient can decrypt it. A
big disadvantage of those algorithms it that they are very slow, because they have to work
on they whole message at once and thus have to work on very big numbers. Therefore,
for encryption of a bulk of data symmetric-key algorithms are used. These algorithms can
divide the data into blocks of arbitrary size. As a result they are much faster. However,
they use for encryption and decryption the same key. Therefore, the key for encryption
must transmitted on a secure channel and stored in a way that no unauthorized party can
gain access to the key. To solve this problem in practice hybrid cryptosystem are used.
Such systems use public-key cryptography to transfer the secret key and use the transfered
one-time key to encrypt and decrypt the messages with a symmetric-key algorithm.

2.1 Block Cipher

Beside stream ciphers, block ciphers belong to symmetric-key algorithms. Hence, for en-
cryption and decryption the same key must be used. Symmetric key algorithms are widely
used to encrypt bulk data, because they are faster than asymmetric key algorithms. Block
ciphers are deterministic algorithms working on fixed-length groups of bits, so called blocks.
Therefore the input message also called plaintext P is divided into several blocks py,...,p,
with length [. If the message length is not a multiple of [the last block must be padded.

Simplified can be said that each message block is substituted by a random looking but
deterministically calculated value. Therefore on each block the transformation function is
applied. Typically the transformation function iterates a weaker round function several
times and each iteration is called a round. The round function itself is a function of the
output of the previous round and a subkey generated from the master key using a key
scheduling algorithm. More generally said, a block cipher E(-) can be seen as mapping
from all possible plaintexts P and all possible keys K to all possible ciphertexts C' so that
E: Px K — C. When p, c and k are specific elements of P,C' and K, then the encryption
is defined as ¢ = Ej(p) and the decryption is defined as p = E, '(c).

One widespread implementation of block ciphers is the Feistel network, which becomes
well known due to its usage in DES [Des77]|. Another common structure is the substitution-
permutation network, used by several common algorithms, including AES [NIS01].

If each block would be calculated independently, identical plaintext blocks would re-
sult in identical ciphertext blocks. When the ciphertext contains a pattern, the resulting
ciphertext also contains a pattern and an attacker thereby may deduce some information
about the plaintext. Therefore, the encryption of each block uses information from the pre-
vious encryption to randomize the output in a deterministic way to hide patterns. Many
modes of operations have been suggested, in the following we shortly describe the four
most common modes.

Electronic codebook (ECB): In this mode each block is encrypted separately. The only
advantage is that encryption and decryption can be completely parallelized. Encryption is
defines as ¢; = Fy(p;) and decryption by p; = Ek_l(ci).

Cipher—block chaining (CBC): In this mode each block of plaintext is XORed with
the previous block of ciphertext. For the first block the initial vector IV is used instead.
Because the encryption of the previous message block is needed to calculate the next one,
encryption cannot be parallelized. In return each ciphertext block depends on all previous
blocks. Decryption can be done parallel for all blocks because already all ciphertext blocks
are known. A block of the ciphertext can be calculated by ¢; = Fx(p; @ ¢;—1) and decrypted
by pi = E. '(¢;) @ ¢i1, where ¢g = V.

Cipher feedback (CFB): In this mode only the previous block of ciphertext is used as
input for encryption and then the result is XORed with the block of plaintext. Thus a block
of ciphertext is defined as ¢; = Fr(c;_1) ® p; and can be decrypted by p; = Ex(c;i_1) @ ¢;.
Thus for decryption no inverse implementation of the encryption function is necessary. As
in CBC decryption can be parallelized while encryption cannot.

Output feedback (OFB): In this mode the output of the encryption function is used as
input for the next encryption. Thus the chaining values do not depend on the plaintext and
can be precalculated. Moreover, encryption and decryption works identically. Encryption
is defined as ¢; = p; @ 0; and decryption is defined as p; = ¢; ® o;, where 0; = Fy(i;_1) and
0op = I'V. The output blocks can be seen as key stream. Thus, in this mode a block cipher
works very similar as an stream cipher.

2.2 Hash Function

A hash function H is a deterministic algorithm that maps an input message m of any length
to a fixed length output message h = H(m), the so called hash value. Because the set of
possible inputs is larger than the set of possible output, a hash function is surjective. This
means the same hash value can be produced by more than one input. Thus, a hash function
is not invertible. Moreover, for a good hash function the output should look random. This
means, if a single bit flips in the input, the hash value should be very different from the
previous hash value. Because the hash value changes strongly on a little change on the
input, hash functions can be used for checksums, as pseudo random number generator or to
calculate an index in a hash table. Other applications are message authentication, digital
signatures and password protection.

Hash functions often have a similar structure as block ciphers. Moreover, they are often
even based on block ciphers. Thus, methods of cryptanalysis for block ciphers can also be
applied on hash functions in a very similar way. Hence, for a long time hash functions were
attacked like block ciphers, although hash functions do not have a secret key.

2.2.1 Security Notions

Because the mapping from input to output should be evenly distributed, every hash value
should be generated with the same probability. Therefore it should be hard to find two
different input messages mapping to the same hash value. From these facts, three properties
can be derived: preimage resistance, second-preimage resistance and collision resistance.
Let H(-,-) be an iterated hash function generating an n-bit hash value h; depending on
the previous hash value h;_; and a [-bit message block m;. Then the compression function
is defined by h; = H(h;_1,m;). For the first iteration h;_; is the initial vector IV defined
by the specification of the hash function. Following definitions for compression function
attacks are based on the definitions given in [LM93, LIS12].

Collision attack: Since the hash value has a fixed length and the message can have any
length, many messages map to the same hash value. Thus, a collision attack in terms of

a hash function means finding two messages (m;, m;), yielding the same hash value from
given IV, so that m; # m) but H(IV,m;) = H(IV,m}).

Semi-free-start collision attack: This type of collision attack allows additionally to
choose h;_; so that m; # m but H(h;_1,m;) = H(h;_1,m}).
Free-start or pseudo collision attack: For a pseudo collision attack the hash function

is called with different h;_; and/or different messages result in the same hash value. Thus,
(hz'—h mz) ?é (h;,l,mé) but H(hi—lapi) = H<h;flap;)

Preimage attack: While for collision attacks hash value can be chosen freely, for preimage
attacks also the hash value has a fixed value h; fizeq. Thus, for a preimage attack a message
m; must be found, so that H(IV,m;) = h; fized-

Pseudo preimage attack: For a pseudo preimage the hash function is called with differ-
ent h;_; and/or different messages result in the same fixed hash value. Thus, (h;_1,m;) #
(hlgfh m;) but H(hiflapi) = H<h‘;71>p;> = hi,f@'red-

Partial preimage attack: For a partial preimage attack only some bits of the hash value
are fixed. Thus, for this attack a second message m/ must be found, so that these fixed
bits of the calculated hash value have the same value as in h; fizeq. The rest of the hash
value h; = H(IV,m;) can have random values.

Second-Preimage attack: In this attack a collision for a fixed hash value is searched, so
that m; # m} but H(IV,m;) = H(IV,m}) = h; fized-

Since finding collisions cannot be avoided, a cryptographic hash function is called ideal if
the generic bounds are met. The generic bounds are defined by the number of message

which must be hashed until the attack was succesfull. For a preimage or second-preimage
attack at least 2" and for a collision attack at least 2"/ messages must be tried, where n
is the length of the hash value.

2.2.2 One-Way Compression functions

As mentioned before hash functions are often based on block ciphers. There exists three
common variants of chaining.

Davies—Meyer: This one-way compression functions uses the message block m; as key
and the previous output h;_; as input for the encryption function E(-). Additionally the
new output is XORed with the previous output so that h; = E,,,.(h;_1) ® h;_;. Using this
construction in each iteration k message bits can be processed, where k is the key size of
the encryption function [Win84].

Matyas—Meyer—Oseas: It uses the message block m; as input for the encryption function
and the output of the previous iteration h;_; as key. Additionally, the ciphertext is XORed
with the message block so that h; = Ej,_,(m;) @ m;. This construction can process n
message bits in each iteration, where n is the block size of the used cipher. If the cipher
uses different block and key lengths, h;_; would not fit as key. Therefore, this construction
uses an additional function ¢(-) to convert the size accordingly [MMOS85].

Miyaguchi—Preneel: This one-way compression function extends the Matyas—Meyer con-
struction by an additional XOR operation. The ciphertext is additional XORed with the
output of the previous encryption h;_; so that h; = Ep,_,(m;) @ m; ® h;_;. This construc-
tion also needs an additional function g(-) to convert the size of h;_; to fit the key size of
the used encryption function [MIO89, PGV94].

In Figure 1 from left to right plain encryption, Davies-Meyer, Matyas—Meyer—Oseas,
Miyaguchi-Preneel are shown. For example SHA-2 works very similarly as SHACAL-2
in Davies—Meyer mode, which will be described in Section 2.4.

These compression functions can generate only hash values with a length up to the
length of the ciphertext of the used encryption function. Thus they are called single-
block-length compression functions. There are also other compression functions which can
generate hash value with a multiple length of the ciphertext. They are called multi-block-
length compression functions. To generate a larger hash value they do in each iteration
multiple encryptions and combine the results. One example is MDC-2, which is shown in
Figure 2 [BCH190].

One-way compression functions often are used in Merkle-Damgard construction. This
construction builds hash functions from one-way compression functions. Widely known
algorithms using the Merkle-Damgard construction are MD5, SHA-1 and SHA-2.

To use an encryption function as hash function in a Merkle-Damgard construction, the

bi hi_1 my; my;

k; E 1m; E hiy E hiy — E

/ARy /A V4R
N N GV

Ci hi hi hi

Figure 1: A encryption function in different constructions

Figure 2: MDC-2 compression function

algorithm has to define an initial vector IV which is used as hy. The input message with
length [is divided into blocks of length n. If [is not a multiple of n, the message must be
padded. Therefore, different padding schemes are known, typically the message is padded
with zeros. To prevent for instance two message M; ="message” and M, ="message(”
resulting in the same hash value, the length of the message is added to message within
padding process [Mer79]. For each block the one-way compression function C' is applied.
After the last round a final function ' may be is executed. An illustration of the construc-
tion is shown in Figure 3. For this construction several attacks like multi-collisions and

length-extension are known [Jou04, CDMPO05].

l | |

by b,
IV —| C C|------ C F [—H

Figure 3: Merkle-Damgard construction

Hash functions based on block ciphers are typically slower than specially designed hash
functions. This is because of the key scheduling in encryption function. Additionally, the
security is based on the security of the encryption function. This includes the key scheduling
and the block size. A weak key scheduling can lead to fix points or key collisions and a
small block size reduces the complexity of attacks. As a result in the last years new special
designed hash functions were published and a new standard for hash functions was searched
in the SHA-3 competition.

2.3 Attack Techniques

In this section, we summarize two basic cryptographic attacks and two alternatives to
differential cryptanalysis which will be presented in Section 3.

2.3.1 Birthday Attack

The generic complexity of finding a collision in an ideal random function is 2*/2, where
n is the size of the output of the function. This complexity results from the birthday
attack: The cryptographic function is applied on ¢ randomly distributed messages and the
results are stored in a list. Because of the birthday paradox after ¢ ~ 1.18/n messages
a collision can be found [Yuv79]. The birthday paradox states that the probability p of
finding two persons with the same birthday, increases non linearly with the number N of
asked persons [FO90]:

N2
(V) ~ 1 — e &
It is important that the colliding day is not fixed. Thus, in the birthday attack the collision
is searched for any output of the function and not for a specific. Note that, searching a
collision for a fixed output corresponds to a second-preimage attack.

2.3.2 Meet-In-The-Middle Attack

For a meet-in-the-middle attack a cryptographic function Fj using a key k is divided into
two sub functions so that Ey = Ej 4y © By f. The aim of the attack is to find a pair of
plaintext and ciphertext (p,c) resulting in the same intermediate value v = Ej f,(p) =
E;. 2o (¢) is valid. For such a pair Ej(p) = c is valid. In the first step of the attack all
possible values for v are calculated, iterating over all possible plaintexts or keys. Then in

8

the second step, for all possible ciphertexts or keys again v is calculated until a match is
found. Going forwards and backwards through a function at the same time can reduce the
complexity of an attack dramatically [DH77].

Zhu and Gong introduced a multidimensional version in [ZG11]. This attack can be used
if the cryptographic function consists of several sub-functions using different keys so that
¢c=Fg, (... Ex,(Er,(p)...). In the simplest case two different keys k; and ks are used. The
intermediate value g is the value between Ej, = Ej, 1 © Ey, fo and Ey, = Eg, i © By foo-
For all possible values of g the intermediate values v{ = Ej_ %bw(g) and vy, = Ej, u(c)
Then for all possible keys or plaintexts and ciphertexts the values for v; = Ej, f,(p) and
vy = B %bw(c) are calculated until a match is found. Figure 4 shows the structure of both
variants.

-1
D ——| Bk fw F— v Ek,bw —— ¢

—1 —1
P -+ Ekl,fw — U1 <« Ekl,bw k—— g1---Gn—1 —— Ekn,fw — V2 Ekn,bw k—— ¢

Figure 4: Structure of the single and multi dimensional meet-in-the-middle-attack

2.3.3 Linear Cryptanalysis

Linear cryptanalysis was first applied on a block cipher in [MY93]. To be fast most en-
cryption algorithms have linear parts using operations like XOR. However, a block cipher
also consists of non linear parts like an s-box. An s-box substitutes an input value by a
fixed value and is often implemented as lookup table. Such a function should disguise the
relation between the key and the ciphertext. Thus, the mapping should be as random as
possible and is therefore nonlinear. Linear cryptanalysis tries to find some linear approxi-
mations which hold with a high probability for such nonlinear functions. In most cases this
is not possible for complete words but often single bits have nearly linear relation. This
relations may be used to reveal some information about the secret key.

2.3.4 Integral Cryptanalysis

This attack is also known as Square attack because it was first proposed to attack the
Square block cipher [DKR97]. Integral Cryptanalysis can be applied on cryptographic
functions based on substitution-permutation networks. The saturation attack is a more
generalized form and can also be applied on functions having a Feistel network struc-
ture [Luc00]. In contrast to differential cryptanalysis integral cryptanalysis does not use
pairs of messages but sets of messages. The messages within this set differ only in a specific

part, the rest is constant for all messages. In addition, it is balanced if the XOR-sum of
all contained messages is 0. Then for instance the XOR-sums of the corresponding set of
ciphertexts can be used to deduce information whether a guessed key was correct [DKR97].

2.4 SHACAL-2

SHACAL-2 was designed 2000 by Handschuh and Naccache [HNOO]. It was selected by
NESSIE (New European Schemes for Signatures, Integrity and Encryption). NESSIE is
a European research project with the target to provide proved and secure cryptographic
algorithms. The algorithm is a symmetric block cipher and is based on the SHA-2 hash
function. The compression function of SHA-2 is invertible, thus its structure can also
be used for decryption. SHACAL-2 uses the SHA-2 compression function without feed-
forward in encryption mode. Therefore, the key is used as message and the plaintext is
used as initial value, by ignoring the final addition with the initial values. Thus, SHACAL-
2 is a 256-bit block cipher and its key can have up to 512 bits and should have a minimum
length of 128 bit. If the key is shorter then 512, it is padded with zeros.

2.4.1 Definition of SHA-2
The structure of SHACAL-2 is defined as follows:

Message Expansion: Each 512-bit message input block gets divided into 16 words M;
where ¢ = 0, ...15. They are used to calculate 64 expanded message words W; as follows:

W [M 0 <i<16 2
L O'1<Wi_2) + VVZ‘_7 + O'()(Wi_15 + Wi_lﬁ 16 < 1<64

Thereby, modular additions modulo 232 are used. The functions og(X) and oy(X) are

given following equation, whereby X > n means a rotation of word X of size w by n bits
(X>n=(X>n)V (X < (w-—n))):

0o(X)=(X>3) D (X >7) @ (X > 18)

01(X) = (X >10) & (X 3> 17) & (X >> 19) (3)

State Update Transformation: Before each round the state h; is initialized with a new
block 256-bit block of the message. Then 64 rounds of the step function are performed to
update the state. The state consists of eight 32-bit words A,, ..., H;, where ¢ indicates the
step. In the step function a constant K; is used. The definition of the step function is as

10

MAJ(X,Y,Z)=XAYBYANZ®XANZ
CHX,Y,Z)=XANY & -XAZ

Yo=(X>2)a (X > 13)a (X > 22)
YZ=X>>060a (X > 11)e (X > 25)

T\ = H;+X(E;) + CH(E;, F,G;) + K + W,
Ty = Yo(A;) + MAJ(A;, B;, C;)

Aipn=T1+1T,, B=4, Cin=D8;, Diun=C

Eiyn =D+ 1T,

Fio=F, Gn=F, Hi =G,

A; B; C; D; E; I G; H;
|
CYE
5, 1 x
—
!
al b O
+ — W,
=
! &
[+]
A By Cit1 Diyq Eip B Gir1 Hiy
Figure 5: Step function of SHACAL-2
follows:

Figure 5 shows the step function of SHACAL-2. In contrast to SHA-2 the initial state
value for SHACAL-2 is not added to the output state after the last step of the state
update transformation. More detailed descriptions of SHA-2 and SHACAL-2 are given

in [Nat08, HN0O].

2.4.2 Current Attacks

In the last years several boomerang characteristics for a round reduced version of SHACAL-
2 were published [KKL*05, LKKD06, Wan07, LK08, FGL09]. But for all of them inconsis-

tencies have been found in the switch manually [BLMN11]. See Tables 21-23 in Appendix A
for the definition of these characteristics. More details about the terms used below can be
found in Section 3.

It must be considered that the used boomerang characteristics are not independent.
Thus, for some bits, the conditions cannot be satisfied in both characteristics at the same
time. In [LKO8], bit 13 in Fbs in one characteristic has a difference. Thus, there must be
the same signed difference in the same bit in Fb5 and Gos. In the next step Fys becomes Gag
and Gas becomes Haog. As a result bit 13 of G and Hag have the same signed difference.
The characteristics requires these two differences canceling out each other, which is not
possible, because their difference have the same sign. In this way we get a contradiction.
For the characteristics defined in [LKKD06, Wan07, FGLO09], the conflict also lies in bit 13
of the switch. In a similar way, a contradiction for the characteristics defined in [KKL™05]
can be found [BLMN11].

In [HKK*03] an impossible differential attack on 30 rounds of SHACAL-2 was pub-
lished. The authors extend an 11-round impossible differential characteristic to a 14-round
distinguisher. Using this distinguishers, they are able to attack 30-round of SHACAL-2
with a data complexity of 744 chosen plaintexts and a time complexity of 24! encryp-
tions. For more details see [HKKT03]. There exist also other attacks for reduced versions
of SHACAL-2. For a complete list see Table 1.

Table 1: Comparison of attacks on SHACAL-2

Attack Rounds | Data Time | Memory
Square [SKK*04] 28 463 - 232 CP 21041 | 9159
Impossible Differential [HKK*03] 30 744 CP 24051 | 9145
Differential [SKK*04] 32 2434 Cp 20042 | p18.4
RK Differential [KKL*05] 35 21232 RK-CP | 24521 | 24732
RK Rectangle —I-[KKL+05] 37 2235.16 RK-CP 2486.95 2240.16
RK Boomerang [FGL09] 39 235 RK-CPCC | 21835 | 285
RK Rectangle 1[LKKDOG] 40 224338 RK-CP | 244843 | 924738
RK Rectangle 1[LKKDO0G] 42 224338 RK-CP | 2488:37 | 924738
RK Rectangle {[Wan07] 43 224038 RK-CP | 21804 | 9245.38
RK Rectangle t[LKOS§] 44 2233 RK-CP 24972 | 9238

CP ...needed pairs of ciphertexts

RK .. .related-key

CC ...chosen ciphertexts

T...the used characteristic contains conflicts

12

3 Differential Cryptanalysis

The word cryptanalysis derives from the Greek words kryptés (hidden) and andlysis (to
loosen) [WBO01]. Thus, it stands for the science of studying the hidden aspects of informa-
tion systems. Cryptanalysis is used to break cryptographic systems and obtain information
of secret messages and the used cryptographic keys. To reach this target, different forms
of attacks are known. Some of them are linear cryptanalysis, integral cryptanalysis or side
channel attacks. A further form is the differential cryptanalysis, which is one of the most
powerful attack strategies.

First-order differential cryptanalysis or short differential cryptanalysis can be applied on
block ciphers, stream ciphers and hash functions. These attacks can be used to distinguish
an unknown algorithm from possible candidates, to deduce information about the secret key
or to find collisions. Differential cryptanalysis is typically a statistical attack using chosen
plaintexts. It was first published by Eli Biham and Adi Shamir 1991 in [BS91|. However, it
was already known to NSA and IBM during the development of DES 1975 [Cop94]. Thus,
the S-box of DES was chosen in a way to counter differential cryptanalysis. The basic idea
of differential cryptanalysis is to analyze the effect of differences in plaintext pairs on the
resulting output pair [BS91].

Differential cryptanalysis was first applied on a hash function in 1993 to attack
MD5 [dBB94]. The target of most attacks on hash functions using differential crypt-
analysis is finding a collision. In this case, two different messages should result in the same
output. An advantage compared to differential cryptanalysis on block ciphers is, that for
hash functions message modification can be used (see Section 3.3.1).

3.1 Preliminaries

Difference: In most cases a difference of two elements x and 2’ is defined by an XOR
difference = @ 2’. Generally the difference for any group is defined as zez’'~!, where z/~!
is the inverse of ' and e the group operator [LMM91]. But there are also other types
of differences. In designs using modular addition a modular difference (x B z’) is used
instead [Dob98]. In [WYO05] signed bit differences were presented. Generalizing signed
bit differences allow to use generalized conditions [DCR06] which will be presented in
Section 6.1.1. In the remainder of this thesis the notation A(z, z") stands for the difference
of x and 2. If x # 2, the according bit is called active, otherwise it is called inactive.

For non linear functions, like an S-box, for some input differences the probability for a
certain output difference deviates from average. This fact can be used to predict a certain
difference on the output of the non linear function. In addition, sometimes some differences
have a probability of zero, thus they are impossible. Such impossible differences are used
in impossible differential cryptanalysis [Knu98].

In differential cryptanalysis usually differences over several number of rounds are used.

13

Differences over several rounds can be represented by characteristics or differentials.

Characteristic: A characteristic is a sequence of predicted differences after each round of
the cryptographic function. The sequence starts with the difference of the plaintexts. Each
entry corresponds to a one-round characteristic. For each of them the probability can be
estimated. The probability p of the whole characteristic is the product of the probabilities
of all involved one-round characteristics. This calculation is based on the assumption that
the involved one-round characteristics are independent from each other. For most cases,
this assumption is not valid. However, it is a good approximation if the characteristic
is sparse, thus has few active bits. Furthermore, the complexity of the attack can be
estimated by O(p~!). Differential characteristics sometimes are also called differential trail
or differential path.

Differential: A differential is a collection of characteristics, which share the same input
and output differences. Thus, a differential typically defines only the difference of the
plaintext and the ciphertext. If X is an input difference and Y is an output difference after
i rounds of a function, then the pair (X,Y’) called is a differential. As a result, in general
the probability of a differential is higher than the probability of a characteristic. On the
other hand, a characteristic can be seen as sequence of one round differentials.

3.2 The Attack

In this section, we explain the concept of a cryptographic attack using differential crypt-
analysis. Therefore, we assume a block cipher Ekl\l...\lkn(') using n sub-keys kq,...,k, to
encrypt a plaintext p. The block cipher consists of n steps and for each step a step function
F(-) is applied on the former state s;_; and defines the new state s; where s is the plain-
text. In each step a subkey k; derived from a master key with a key scheduling algorithm is
used. Thus, the resulting ciphertext c is defined as ¢ = Ej, ||k, (P) = Fi, (- . . Fiy (Fr, (D))
Because we use differential cryptanalysis we use a pair of plaintexts (p;, ps) which result
in a pair of ciphertexts (¢1,). The structure of the example is shown in Figure 6.

To find the keys, we introduce some differences. The difference on the input is defined
by Ap = po @ p1. We also define differences of the states As; = sp; @ s1,;. These differences
are part of the differential characteristic.

Then the attack consists of two parts. In the first step we search a differential charac-
teristic with a probability as high as possible and suitable pairs of plaintexts are generated.
In the second step, keys are guessed and filtered by looking if they fulfill the probability of
the characteristic.

Searching a differential characteristic: The probability for a difference on the output
of the step function depends on difference on the input. For an ideal step function all output
differences are equally likely. However, for real step functions for certain input differences
some output differences are more or less likely than the average. For illustrattion we look

14

differential characteristic

k’l k‘g knfl k‘n
L L 1 L
50,1 S0,n—1
Do Fk‘l Fk‘e 7777777 Fk?n—l Fkn — Co
Ap Asy As,_1
p1 Fy, Fe, [F------ F, F, ——a
S1,1 S1,n—1
T T i T
]{31 k2 kn—l kn

Figure 6: Exemplary structure for differential attack

at the difference distribution table of the 4-bit s-box used by PRESENT [BKL*07] which is
shown in Table 2. A difference distribution table can be generated by sending all possible
input differences with all possible values through the s-box and count the differences on
output. The result is shown in Table 3. Each line represents an input difference and each
column an output difference. As one can see, if there is no difference on the input for all
possible values no difference occur on the output. The maximum number in the table is
four, thus the maximum probability for a output difference for a specific input difference is
Dmaz = % = i. For instance for the input difference OxF the probability to get an output
difference of OxF is %. If we assume for our exemplary encryption function the same
difference distribution table, we could use a characteristic {OxF — 0zF ...0xF — 0xF'}
which would result in a total probability of p = (}1)”_1. Aim of this step is finding the
characteristic with the highest probability. Once a good characteristic is found several
pairs of plaintext with the initial difference of the characteristic must be generated and
encrypted to get ciphertext pairs belonging to them.

Table 2: PRESENT S-Box

x [0][1][2[3[4[5[6][7[8[9]a
SX) [[6[4][c|[5[0[7[2]e|[1[f|[3][d|8]a]0

o
o
(o
¢}
—

Filter key candidates: In the second phase we guess a key k,, and calculate from all pairs
of ciphertexts one step backwards to determine their difference As,_; = Fj *(co) ® F}, ' (c1).
Thereby we have to count how often the final difference of the characteristic is matched.
If the percentage of matching pairs corresponds to the expected probability the guessed
key is a good candidate for being the correct key. This must be done for all possible keys.
When more than one key candidate remains then either more pairs of plaintext must be

15

Table 3: Difference distribution table of PRESENT s-box [KYK10]

. [[of1[2]3[4[5[6[7[8[9[A[B|C|D|E|F]
0]/16]0]/0]/0|0]0]0]0]0]0]0]0]0]0]0]0
1 0(0[0[4]/0(0[0[4]0[4][0]0]0][4]0]0
2 [0]0]0[2]0[4[2]0[0]0[2]0|2]2|2]0
3020220 (4[2[0]0][2][2]/0]0]0]0
400/ 0j0j0[4[2[2[0[2[2]0[2[0]2]0
5 0]2]0]/0][2/0]/0]/0][0][2]2|2|4]2]0]0
6 0]0[2/0]0][0[2]0][2]|0]0]4]2|0]0]4
7 0 [4[2[0(0(0[2]0[2]0][0][0]2]|0]0]4
8 0|0]0|20[0[0]2]0][2[0]4][0]|2]|0]4
9 [0 |0[2]0[40[2[0[2][0[0]0|2]04]|0
Aloj0[2[2/0[4[0]0[2[0/ 200220
B 0[2[0[0[2/0(0(0[4]2][2]2]0|2/0]0
C|0/0/2/0[0([4]0]2]2]2 200|020
D 0|2/4]22|0]|0][2[0/0]2]2[0]0]0]0
E|0(0[2](2(0(0(2(2(2(2(0]0]2][2]0]0
F| 0 4/0(0(4/0/0/0j0j0j0|0]0|0 4|4

generated or this step is repeated with another characteristic until one single key candidate
remains.

If a key was found the attack can be repeated on n — 1 steps to get key k,_; and so on.
Additionally it can be done upside down to get key k. For this attack often less encryptions
are needed than for a brute force attack. However, this requires a characteristic with an
practical probability. The design of modern cryptographic functions considers this attack
and is chosen in a way to minimize the probability to find a good characteristic.

3.3 Techniques in Differential Cryptanalysis

There are some related techniques, which can be used to improve the probability of differ-
ential characteristics. A short description of some of them can be found in this sections.
We also summarize two techniques for first-order differential cryptanalysis, which have
some similarities with the boomerang attack (see Chapter 4), in Section 3.3.6.

3.3.1 Message Modification

For most attacks it is essential to use characteristics with a probability as high as possible.
The probability of a characteristic can be improved by selecting the messages accordingly.
Often it is possible to influence the state of some rounds directly. In many cases messages
can be chosen to correct single bits in the characteristic. If a bit of a message word for a

16

certain round depends only on one bit of the message, this is quite straight forward. But
often it depends on several bits of the message. Then advanced modification techniques
must be used to handle the complexity. These advanced techniques depend strongly on the
attacked algorithm [WYO05]. For instance, a detailed description of message modification
for SHA-O can be found in [WYYO05b].

3.3.2 Neutral Bits

When the value of a neutral bit in a message changes the resulting message pair still
conforms the same characteristic. In this context the term neutral bit is taken in its
information theoretical sense and may be a group of several elementary bits which are all
flipped simultaneously [BC04]. Knowing neutral bits reduces the complexity of searching
valid characteristics and validating messages for the differential.

3.3.3 Truncated Differentials

A differential that predicts not all of the bits is called a truncated differential. Formally a
truncated difference is defined as (X', Y”), if (X,Y") is a differential and X’ is a subsequence
of X and Y’ is a subsequence of Y. Using generalized conditions we can write a truncated
difference (see Section 6.1.1) using ’?’, because this conditions allow any value. For instance
in [?777x?-?] only the second and the fourth bit are fixed, the others are free. This technique
allows differentials to be less strict and so it improves their probability [Knu95].

3.3.4 Related Key Attack

In a related key attack the attacker can observe the operation of a block cipher, using several
unknown but mathematical related keys. Therefore weak key scheduling algorithms can be
exploited. If the relation of some keys is known, this information can be used to choose the
keys in a way that they cancel out differences in the messages. As a result fewer differences
go through the block cipher which improve the probability of the characteristic and reduce
the complexity of other attacks [Knu93, Bih94]. A famous example is WEP using RC4,
which allows to recover the key [FMS01].

3.3.5 Differential Multi-Collision

For a differential multi-collision a difference in plaintexts (AP) as well as a difference in
the keys (AK) is used. A set of ¢ pairs of plaintexts (p;) and keys (k;) for a cryptographic
function Fy(-) is called a differential g-multi-collision, if

Ey, (p1) ® Eroak(pr ® AP) = ... = Ei, (pg) ® Erenk (pg ® AP). (5)

If the keys are different, this attack can only generate pseudo-collisions. This attack can
also be used to generate a chosen-key distinguisher. Using this attack also weakness in the
key scheduling can be found [BKN09].

17

3.3.6 Inside-Out Attack

In this attack no input and output differences are selected but an intermediate difference
A of the block cipher F = FE; o Ey. Then we search for pairs of plain texts with desired
Bl
intermediate difference and an input difference Ay. On input the difference A; == A,
and on output the difference A, 2N Ay should occur (see Figure 7). After analyzing a
certain amount of pairs of plaintexts at least one pair with wanted differentials A, Lo, Aq

and A Iy Ay should be found [Wag99].

T) T
Ey Ey
Aq
X == X’
E1 El
C C’

Figure 7: Structure of the inside-out attack

Getting the needed difference in the middle of the function randomly enables differential
attacks, even if there are no differentials with high probability through the whole cipher.
Therefore, this idea can be used to deal with differentials with lower probabilities. The
attack can also be used to distinguish a certain cryptographic function from a ideal and
random function. For this one has to calculate the expected probability that a randomly
chosen pair of plaintexts fits the required conditions for the inside-out attack. If the
expected probability differs from the measured probability, then the analyzed algorithm
distinguishes from expected algorithm [KKSO01].

3.3.7 Rebound Attack

For the rebound attack the cryptographic function E is divided into three sub-functions
E = Fyy 0 Eiy o By, The attack can be divided into two phases. It consists of an inbound

18

outbound inbound outbound

Figure 8: Structure of the rebound attack

and and outbound phase (see Figure 8). In the inbound phase a meet-in-the-middle attack
on FE;, is implemented. The attack was designed for the cryptanalysis of hash functions.
Thus, the attacker can use freedom which are available when analyzing hash functions.
In the outbound phase differentials are used in forward- and backward directions through
E;, and Ep, to find collisions. When these differentials have a too low probability, the
inbound phase can be repeated. More details can be found in [MRST09].

4 Second-Order Differential Cryptanalysis

Higher order differential cryptanalysis is a generalization of differential cryptanalysis and
was first published in [Lai94]. This concept considers differences of differences. In this
section we give some basic definitions for higher-order, in particular for second-order dif-
ferential cryptanalysis, which are needed to describe the boomerang attack.

Abelian group: An abelian group (G,) is a defined by a group of numbers G and an
group operator « with certain properties. Two of them are that the result of applying the
operation to two elements of the group does not depend on their order and the result is
also in GG. Thus, for instance the result of modular addition of two 32-bit numbers denoted
as (N3g, +) is also a 32-bit number. Further properties are that there exists an identity
element e so that a « ¢ = a and for all group members exists an inverse element i so that
a « i = e. Additional associativity is given so that (a « b) e c =a e (b e c).

Higher order differentials are recursively defined as follows [Lai94, Knu95]:

Derivative: Let (S,+) and (T,+) be an abelian group. For a function f : S — T, the
derivative at a point a; € S is defined as

A f(y) = fly+a1) = fy). (6)

Higher derivative: The i-th derivative of f at (aq, as, ..., a;) is recursively defined as
A(al,-n,ai)f(x) = A(ai)(A(a1,...,ai_1)f<y>>' (7)

19

Thus, the 2"¢ derivative of f at point (a1, ay) is defined as

Aar,a0)f(2) = DBag) (Aay) (f (@)
= Ay (f(x +a1) — f(x))
= (flx+ar+a) — f(x+a2) — (flz+a) — f())
= flr + a1 +a2) — f(x +a1) — f(x+az) + f(x).

Higher-order differential: A differential of order i is an (i+1)-tuple (o, ..., a;, 5) so that
A(a1 ai)f(‘r) =b. (9)

Higher-order collision: If the output difference of a higher-order differential is zero it is
called a collision.

Afay,.an) f () = 0. (10)
A second-order differential collision is given if f(x+4a;+as)— f(x+a1)— f(z+az)+ f(z) = 0.

4.1 Boomerang Attack

The boomerang attack is one attack using the concept of second-order differential crypt-
analysis and was first presented in [Wag99]. Since we use differences of differences we have
to consider four plaintexts (P, P', @), Q') and four ciphertexts (C,C’, D, D’). To attack the
target function E(-) the basic attack works as follows:

- Define an input difference A for P @ P’

- Define an output difference V for C' & C’

- Choose a plaintext P and calculate P' = P& A

- Apply function E(-) on P and P’ to get C' = E(P) and C' = E(P’)

- Calculate D =C@®V and D' =C"dV

- Apply inverse function E~1(-) on D and D’ to get Q = E~1(D) and Q' = E~Y(D’)

For illustration of this algorithm see Figure 9. Because we choose plaintexts and cipher-
texts, the boomerang attack is a chosen plaintext - adaptive chosen ciphertext attack. The
fact that the transmitted difference (P @ P’) should be equal to the returning difference
(Q® Q') induced Wagner to his choice of the name boomerang attack: ”This is why we call
it the boomerang attack: When you send it properly, it always comes back to you” [Wag99].
In more detail, the cryptographic function F(-) can be divided into two sub functions
E = Ej o Ey, which can also be written as E(X) = Ey(F1(X)). Thereby FEy represents the
first part and E; the second part of the function E(:). The intermediate result between
these two parts is (X, X', Y,Y”). The differences in this so called switch are A* and V*.

X = Ey(P) = EfN(C), X' =FEy(P) = E;(C),

Y —E(@ = E'D), Y= Eal@) = E\(D). -

20

Ey Ey
Y Al Y’
,,,,,,,,,, [N
Y/” v*/;r
- A* -
X ----{1-------- > X/
E;1 Ef1
E1 El
v." v//z
D D
C o

Figure 9: Structure of the boomerang attack

For these intermediate differences in the switch the following equation must hold [Wag99]:

Eo(Q) @ Eo(Q') = Eo(P) © Eo(P') @ Eo(P) © Eo(Q) @ Eo(P') © Eo(Q')
= Ey(P)® Ey(P) @ Er'(C) e BEr (D) e Ef (D) @ ETH(D) (12)
=A"eV eV =A%

If the following conditions are fulfilled, (P, P', @, Q') is called a right quartet [Mur09]:

PoP =QaQ =A, XX =YY =A"

13
XoY=X'oYV' =V, CoeD=C¢D =V. (13)

For this attack the output differences C'®C’ and D @ D’ can have any values. That applies
also for the differences P & Q and P’ & ()'. Therefore, almost only the characteristics
A — A* and V — V* are important. Thus, differentials for a boomerang attack can be a
combination of two differentials for half of the attacked rounds - one in forward and one in
backward direction. Hence it is easier to get such high probability differentials using the
boomerang attack than a high probability differential for a first-order attack on E. If we
assume that the differentials are independent, a simple approximation of the probability p
for a right quartet is [Wag99]:

p> PriA 2o A2 Pr v B W = Rt (14)

21

However, when using this probability it is expected to find one solution after py?-p;? itera-
tions. This probability does not hold if truncated characteristics are used. The probability

-1 -1
calculated in Equation 14 assumes that Pr[A o, A*] = Pr|A* N Al. For truncated
differentials this is not valid in general. Thus, a more accurate formula for the probability
p of a successful boomerang attack using truncated differentials is [Wag99]:

Eo Er Bl By,

p Z Pr[A — w]- Pr[V — z] - Pr|V — y] - Prjz — A]
whrByPz=0

E E7! E-! (15)
~ Pr[A =% A*] - Pr[V == V*]* - Pr[A* = A]-

Prlu@zdy e Aflw e A" x,y, € V7.

4.2 Related Attacks

Beside the classic boomerang attack there exist some variants and also other higher-order
differential cryptanalysis attacks. Three of them are the amplified boomerang attack, the
rectangle attack and the boomerang attack using auxiliary differentials on hash functions.

4.2.1 Amplified Boomerang Attack

Sometimes it is not possible to apply a chosen ciphertext attack as needed for the boomerang
attack. Then the amplified boomerang attack may work because it is a chosen plaintext
variant of the boomerang attack. For this attack, input pairs are generated until two of
them, (P, P’) and (Q, Q'), fulfill the boomerang properties (see Figure 10):

PeP =QaQ =A
X = Ey(P), X" = Ey(P'),Y = Ey(Q),Y' = Eo(Q")
XoX =YapY =A"

(16)
XoY=X oY =V"
C=E(X),C = El(X'),D =E(Y), D' = E(Y)
CeoD=C"®D =V

The main difference compared to the original boomerang attack is that no differences
go backwards through the cryptographic function. This can be an advantage because using
this attack only in one end of the function a key must be guessed. Hence it is not necessary
to repeat the requests on the function for several guessed keys. Another advantage is that
the boomerang amplifier can also be used on k-tuples of texts not only on pairs. In addition
it is possible to add truncated differential for the remaining rounds. This allows using
truncated differentials only for a small part of the function. The attack is called amplified
boomerang attack because the boomerang structure amplifies the effect of a low-probability
event (X @ X' =Y @Y’ = A) enough that it can be easily detected [KKS01].

22

Eo Ey
Lov L1
Y/*” A*/;n
. A* p
X ----3-------- > X/
B E;
E1 El l
/2 V//W
0D oD
C c’

Figure 10: Structure of the amplified boomerang attack

4.2.2 Rectangle Attack

The rectangle attack is an extension of the amplified boomerang attack. The structure
is shown in Figure 10. This attack allows even pairs of plaintexts resulting in wrong
intermediate difference A*. The different input pairs get sorted by their intermediate
difference A*. This approves all quartets which results in the output difference V. Thus,
the probability to find a correct quartet is higher. Therefore, for all characteristics for
which V* — V and V* & A* — V is valid the probability for a correct quartet is higher
than for the original boomerang attack [BDKO1].

4.2.3 Boomerang Attack using Auxiliary Differentials

Leurent and Roy extended in [LR12] the idea of using auxiliary paths for message modi-
fications to the boomerang setting when attacking hash functions. The idea of auxiliary
paths divides the problem of finding a characteristic for a specific differential into smaller
sub problems. Then the biggest clique of auxiliary differential paths is searched to place
them into the characteristic. Therefore the auxiliary paths should be as independent as
possible.

This idea can also be applied to the boomerang attack. We consider a cryptographic
function E that can be decomposed into three sub-functions £ = E. o Ej, o E,, then

23

- for f, a differential o — o* holding with probability p, is used
- for f, a set B of b differentials 8; — 3 holding with probability p; is used
- for f. a differential v — v* holding with probability p. is used

The attack starts with a boomerang quartet (Uy, Uy, Uz, Us) — (Vo, V1, Va, V3) over f,, with
Uy=Uy@a", Us=U;®a’, Vo=Vo@o, Va=ViDo. (17)

In the next step an auxiliary path §; — f} is used to generate U/ = U; & ;. With
probability py this results in a new quartet (US, Uy, Us, U) — (Vy, V], V4, VJ) over f,, where
V! =V; @& Bf. Thus, for this new quartet must also hold the following equation:

U =U®a", U,=U,®a, Vo =Vy@ds, V3=V ®d. (18)

Then the complexity to find a correct quartet for the full function E is defined by [LR12]:

1 C
D= + 1>) 19
o (19)
where C' is the computational cost to find a correct quartet for f,. The structure of the
attack is shown in Figure 11.

5 Finding Inconsistencies

In this chapter, we discuss a completely different topic than before, namely debugging.
Debugging is a process to find errors or conflicts in a set of data, which does not work as
expected. It has its main application in computer programming and designing hardware.
However, it can be used to find conflicts in any set of data, which can be proven to be
correct or not too. A differential characteristic can also be seen as such a set.

There are lots of possibilities for debugging. In general, it can be distinguished between
static and dynamic debugging. Static debugging only uses the information whether a
specific subset of the inconsistent data set is valid or not. On the contrary, dynamic
debugging uses information about the validation process like a execution trace in case of
debugging source code. Using this additional information, they may be able to trace the
reason of a conflict very precisely. In this thesis, we use only static debugging algorithms,
because for differential characteristics it is not always possible to trace the cause of a fault.
Such algorithms are also called non-intrusive algorithms [Jun01]. In the following, we give
a couple of basic definitions. They are based on the definitions given in [Rei87].

Constraint: A constraint ¢; is a single condition, which either can be fulfilled or not.
Typically several constraints relate some variables to each other. An exemplary set of
constraints would be ¢; : 11 < x9, ¢ : x5 = x3 — 4. In this thesis, we define a constraint
as a generalized bit condition which should have the value defined in the characteristic.

24

E, E,
Up -=mmmmmm ——Us y-uag R e » Uz
R) I E
Ky K, ‘ Ky ‘ LK,
Eb Eb Eb ‘ Eb ‘
Va Vs Vi=V,®p vy V3
57 = L ? \ 51 .
e o, ?> e .7
W Wi %4 %4
E. E.
E. E,
5*/2 5*/2
e -7 Cs
Co 4

Figure 11: Structure of the boomerang attack using auxiliary differentials

Candidate or Test case: In a test case T some constraints are active and some are
inactive. Thus, it is as sub set {ci,...,c} of all n available constraints C. Active con-
straints are set on the values defined in the characteristic. Inactive constraints are set on
77 so they allow any value and do not lead to a conflict. Thus, a test case in terms of a
differential characteristic is a characteristic in which some of the conditions are ignored.

Conflict: A conflict C' is gi