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Abstract
This thesis deals with a thermodynamically consistent, nonlocal multifield-continuum
theory to describe viscous softening materials. For this purpose we introduce beside
the classical local internal variables, which are only treated on integration point level,
so called generalized internal variables, which build together with its dual quantities
additional degrees of freedom. The nonlocality comes in with the consideration of the
gradient of the generalized internal variables. The presented continuum theory is applied
to von-Mises viscoplasticity. To prevent locking, a mixed FE-formulation with additional
macroscopic strains, based on the Hu-Washizu principle, has been realized. Numerical
examples compare the results of the local and the nonlocal theory and show clearly the
regularization effect of the gradient-extended theory.

Kurzfassung
Diese Arbeit beschäftigt sich mit einer thermodynamisch konsistenten, nichtlokalen
Mehrfeld-Kontinuumstheorie zur Beschreibung viskoser entfestigender Materialien. Hierfür
werden neben den klassischen lokalen internen Variablen, welche nur auf Integrations-
punktlevel behandelt werden, so genannte generalisierte interne Variablen eingeführt,
welche zusammen mit ihren dualen Größen zusätzliche Freiheitsgrade bilden. Die Nicht-
lokalität kommt schließlich durch Berücksichtigung des Gradienten der generalisierten
internen Variablen ins Spiel. Die vorgestellte Kontinuumstheorie wird schließlich auf
die von-Mises Viskoplastizität angewandt. Zur Verhinderung von locking Effekten wurde
basierend auf dem Hu-Washizu Prinzip eine gemischte FE-Formulierung mit erweiterten
makroskopischen Verzerrungen realisiert. Numerische Beispiele stellen die Ergebnisse der
lokalen und nichtlokalen Theorie gegenüber und machen die regularisierende Wirkung der
gradientenerweiterten Theorie klar ersichtlich.
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1. Basics of geometrically linear local
continuum mechanics

In this chapter we give an introduction to classical geometrically linear local continuum
thermodynamics. Starting from fundamental balance laws and the second law of
thermodynamics, we will discuss some aspects of constitutive theory. We will also look at
standard dissipative materials and will apply the concept to rate-independent and rate-
dependent plasticity. The main references for the first three sections of this chapter are
[1], [8], [16] and [27]. Most of the information in Section 1.4 is taken from [17] and [24].

1.1. Geometry and basic physical quantities

Let the material body under focus B ⊂ R3 be a bounded and simply connected domain
with sufficiently smooth boundary ∂B. The body is assumed to be a continuous set of
particles x ∈ B. The position of a particle x is given by the vector x = xiei with respect
to a fixed cartesian coordinate system {xi} with basis vectors ei. The attention on the
motion of the body under external loading will be restricted to a time intervall T = [0, T ].
The following kinematic quantities will be used throughout the text: the displacement field
u(x, t) : B ×T → R3, the velocity field

v(x, t) :

{
B ×T → R3

(x, t) 7→ ∂
∂tu(x, t)

and the strain field

ε(x, t) :

{
B ×T → Sym

(x, t) 7→ 1
2

[
∇u+ (∇u)T

]
,

where Sym denotes the space of symmetric second order tensors. In the following the
abbreviation ˙(·) := ∂

∂t (·) will be used.
Furthermore the existence of a traction field t(x, t,n) : B × T × R3 → R3 is postulated,
which represents the force acting on a surface element, the orientation of which is given
by its normal vector n. Cauchy’s theorem states, that there exists a unique tensor field
σ(x, t), called stress tensor field, such that

t(x, t,n) = σ(x, t)n . (1.1)

By using the balance of angular momentum it can be shown that σ(x, t) ∈ Sym.
At last the heat flux q(x, t,n) : B×T ×R3 → R is introduced. In full analogy to Cauchy’s
theorem, the heat flux can be expressed by the linear relationship

q(x, t,n) = q(x, t) · n , (1.2)

where q(x, t) : B ×T → R3 denotes the heat flux vector.
For all further considerations all fields shall be assumed to be smooth enough.

1



1. Basics of geometrically linear local continuum mechanics

1.2. Balance principles

Balance principles, which are the conservation of mass, the balance of linear and angular
momentum and the first law of thermodynamics, must be fulfilled by every material.
Furthermore the second law of thermodynamics, which is formulated by an inequality, is
a fundamental requirement for every constitutive law.

1.2.1. Balance of mass

We assume that V ⊂ B is a sufficiently smooth open set. The balance of mass postulates,
that the temporal change of the total mass of the body V is zero:

d

dt

∫
V
ρ dv = 0 ,

where ρ(x, t) denotes the mass density field. Because V is not time dependent in the linear
theory, we can switch integration and differentiation, and obtain the local statement of
balance of mass as

d

dt
ρ(x, t) = 0 .

Hence, we simply get ρ = ρ0, where ρ0(x) is the initial mass density field.

1.2.2. Balance of linear momentum

Let V ⊂ B be a sufficiently smooth open set. The linear momentum is defined by

J(t) :=

∫
V
ρv dv .

It is postulated, that the temporal change of the linear momentum equals the external
forces acting on V and its boundary ∂V :

d

dt
J(t) = Fext ,

where the external forces consist of mass specific body forces, e.g. gravity acceleration,
and boundary tractions:

Fext :=

∫
V
ρfB dv +

∫
∂V
tdsx .

Using the representation (1.1) and transforming the boundary integral into a volume
integral by using Gauss’ theorem, yields after localization Cauchy’s equation of motion:

div[σ] + ρfB = ρv̇ (1.3)

for (x, t) ∈ V ×T .

1.2.3. First law of thermodynamics

As before the open subset V ⊂ B is assumed to be smooth enough. The first law of
thermodynamics postulates the conservation of energy during a thermodynamic process.
The temporal change of total energy E stored in the body V equals the sum of mechanical
power Pext of all external forces and the power Q due to heat flow:

d

dt
E(t) = Pext +Q . (1.4)

2



1. Basics of geometrically linear local continuum mechanics

The total energy is the sum of the kinetic energy K and the internal energy U , given by

K(t) =

∫
V

1

2
ρv · v dv and U(t) =

∫
V
ρe dv ,

where e(x, t) denotes the mass specific internal energy. The applied powers read

Pext =

∫
V
ρfB · v dv +

∫
∂V
t · v dsx and Q =

∫
V
ρr dv −

∫
∂V

q dsx ,

where thermal power arises from internal heat sources, described by the mass specific
quantity r(x, t), and from heat flowing across the boundary. Here one should be aware of
the minus sign which takes care of the fact, that an incoming heat flux, which after (1.2)
forms an obtuse angle with the normal vector n, must raise the total energy.
Transforming the surface integral arising in Pext into a volume integral and using Cauchy’s
equation of motion (1.3), allows to rewrite the global balance of energy in terms of the
internal stress power Pint := −

∫
V σ : ε̇dv as

d

dt
U(t) = −Pint +Q , (1.5)

or in local form
ρė = σ : ε̇+ ρr − div[q] (1.6)

for (x, t) ∈ V × T . Insertion of (1.5) in (1.4) yields the global balance of mechanical
energy

d

dt
K(t) = Pext + Pint . (1.7)

1.2.4. Second law of thermodynamics

Thermodynamic processes are not only restricted by the first law of thermodynamics,
which does not give an information about the direction of a process, e.g. heat always
flows from higher to lower temperature. To describe the latter and the irreversibility of a
thermodynamic process, a new state variable, the entropy S, is introduced. The second
law of thermodynamics states, that the temporal change of the entropy is given by the
sum of some entropy input Sinp across the boundary and some entropy production Spro
inside the body:

d

dt
S(t) = Sinp + Spro with Spro ≥ 0 ,

where Spro = 0 for reversible processes. The entropy can be written in terms of the mass
specific entropy η(x, t) as

S(t) =

∫
V
ρη dv

and the entropy inputs are given by

Sinp =

∫
V

ρr

θ
dv −

∫
∂V

q · n
θ

dsx and Spro =

∫
V

d

θ
dv ,

where d(x, t) denotes the dissipation power density and θ(x, t) the absolute temperature
which must be strictly positive for all (x, t) ∈ V × T . Incorporation of (1.6) gives after
localization the so called Clausius-Duhem inequality:

d = σ : ε̇− ρė+ θρη̇ − q · ∇ln[θ] ≥ 0 (1.8)

3



1. Basics of geometrically linear local continuum mechanics

for (x, t) ∈ V ×T . Introducing the local dissipation power density dloc := σ : ε̇−ρė+θρη̇,
which describes the local internal dissipation, and the conductive dissipation power density
dcond := −q · ∇ln[θ], which describes the dissipation due to heat conduction, the stronger
restrictions

dloc ≥ 0 and dcond ≥ 0 (1.9)

are assumed. The first inequality is known as Clausius-Planck inequality and the second
one as Fourier inequality. Looking at (1.9)1 a good parametrisation for the specific internal
energy would be e = e(ε, η), and we obtain from (1.9)1 the relations θ = ∂ηe and σ = ρ∂εe.
However, since the entropy is a state variable which is difficult to handle practically, the
so called Helmholtz free energy ψ̄ is introduced via a Legendre transformation

ψ̄(ε, θ) := min
η
{e(ε, η)− θη} = e(ε, η(θ))− θη(θ) ,

see Definition 5 in Appendix A. In an analogue way, one can also derive other
thermodynamic potentials like the Gibbs free enthalpy ϕ̄ = ϕ̄(σ, θ) and the enthalpy
h̄ = h̄(σ, η). Rewriting (1.8) in terms of ψ̄ gives

d = σ : ε̇− ρ ˙̄ψ − ρθ̇η − q · ∇ln[θ] ≥ 0 (1.10)

for (x, t) ∈ V ×T .

1.3. Coleman-Noll procedure

To ensure physical and mathematical consistence, constitutive equations have to fulfil
several assumptions. The most important of them are

1. the principle of equipresence,

2. the principle of material objectivity and

3. the principle of thermodynamic consistence.

Principle of equipresence
This principle states, that all constitutive laws of the material model must contain the
same set of independent variables, unless constraints are given by some physical rule or
some invariance rule. Let the constitutive state be chosen as

ct := {u,∇u, θ,∇θ} ,

and let a set of internal variables I(x, t) be taken into account, which describe dissipative
processes in the body, e.g. plastification, damage, . . . . Since the internal variables are
additional unknown fields, additional equations in form of evolution equations are needed
together with some initial conditions1. The principle of equipresence demands

ψ̄ = ψ̄(ct,I) , σ = σ(ct,I) , η = η(ct,I) and q = q(ct,I) .

Principle of material objectivity
This principle states, that constitutive laws are not allowed to depend on the choice or on
the motion of the reference frame. As an example we look at the Helmholtz free energy ψ̄.

1It will be seen later that, depending on the constitutive model, we may also have to take into account
boundary conditions for the internal variables.
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1. Basics of geometrically linear local continuum mechanics

The principle of material objectivity demands the invariance of ψ̄(ct,I) under rigid body
motions, this means

ψ̄(c+
t ,I+) = ψ̄(ct,I)

with c+
t := {u+,∇u+, θ+,∇θ+} being a collection of the transformed states

u+(x, t) := u(x, t) + c(t) +Q(t)x ,

θ+(x, t) := θ(x, t) ,

where c(t) : T → R3 describes a translation and Q(t) : T → R3×3 a rotation with Q(t) =
−[Q(t)]T and det[Q(t)] = 1 for all t ∈ T . It is immediately seen that ψ̄ cannot depend on
u explicitly. Every second order tensor can be decomposed into a symmetric and a skew
symmetric tensor, i.e.

∇u+ = Sym[∇u+] + Skew[∇u+]

= Sym[∇u] + Sym[Q] + Skew[∇u] + Skew[Q] ,

and we see that Sym[∇u+] = Sym[∇u] due to Sym[Q] = 0. This means that ψ̄
cannot depend on Skew[∇u] but on Sym[∇u] = ε. Therefore, together with I the new
constitutive state is

c := {ε, θ,∇θ} .
Of course it is assumed that the chosen internal variables I are in agreement with the
principle of material objectivity.
Because needed soon, the time derivative of ψ̄ reads

˙̄ψ = ∂εψ̄ : ε̇+ ∂θψ̄ · θ̇ + ∂∇θψ̄ · ∇θ̇ + ∂I ψ̄ · İ , (1.11)

where of course in the last term, depending on the mathematical nature of the internal
variables (scalar, vector or tensor of higher order), the appropriate multiplication must be
chosen.

Principle of thermodynamic consistence
As pointed out before, it is a crucial point for a constitutive law to be consistent with the
second law of thermodynamics. Therefore the Clausius-Duhem inequality (1.10) must be
fulfilled for all processes u(x, t) and θ(x, t) for all (x, t) ∈ V × T . Inserting (1.11) into
(1.10) gives with the definition ψ := ρψ̄

d = (σ − ∂εψ) : ε̇− (ρη + ∂θψ) θ̇ − ∂∇θψ · ∇θ̇ − q · ∇ln [θ]− ∂Iψ · İ ≥ 0 . (1.12)

From a physical point of view it is clear, that ε and ε̇, θ and θ̇, and ∇θ and ∇θ̇ can be
controlled independently. As a result every single term of the first three terms in (1.12)
can be positive or negative. In order to fulfil (1.12) it is maybe obvious to claim

σ = ∂εψ , η = −1

ρ
∂θψ and ∂∇θψ = 0 .

The last condition states, that ψ is not allowed to be a function of ∇θ. Using the Fourier
inequality (1.9)2 one now obtains from (1.12) the so called reduced dissipation inequality

F · İ ≥ 0 with F := −∂Iψ(ε, θ,I) , (1.13)

which has to be fulfilled for all (x, t) ∈ V × T by every evolution law for the internal
variables. The defined quantity F is in some sense responsible for the temporal change of
the internal variables I and is therefore called thermodynamic driving force conjugate to I.

For all further considerations the temperature field θ(x, t) is assumed to be homogeneous
and constant in time. From now on we will also look at the whole body B when formulating
global equations.
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1. Basics of geometrically linear local continuum mechanics

1.4. Standard dissipative solids

In standard dissipative materials the evolution law for I is governed by a scalar dissipation
potential function φ, which is assumed to depend on İ. Let two linear functionals be
introduced as

Ψ(ε,I) :=

∫
V
ψ(ε,I) dv and Φ(İ) :=

∫
V
φ(İ) dv ,

where the first one describes the energy storage due to deformation and is therefore called
stored energy functional, and where the second one describes the dissipation due to internal
mechanisms and is therefore called dissipation potential functional.
We now define the internal rate potential per unit volume

π(ε,I, ε̇, İ) :=
d

dt
ψ(ε,I) + φ(İ) .

The functions ψ and φ are related through Biot’s constitutive differential equation

∂Iψ(ε,I) + ∂İφ(İ) = 0

for (x, t) ∈ B × T , see [17] and the references therein. This allows the thermodynamic
driving force to be written as F = ∂İφ(İ). Then the reduced dissipation inequality (1.13)
reads

d = ∂İφ(İ) · İ ≥ 0 (1.14)

for (x, t) ∈ B × T , which restricts the dissipation function φ. Assuming φ to be convex
with respect to İ, see Definition 2 in Appendix A, we get, according to Lemma 2 in
Appendix A, d ≥ φ(İ)− φ(0) for all İ. From this we can immediately see, that (1.14) is
automatically fulfilled if φ(İ) ≥ 0 for all İ and φ(0) = 0.
In summary the internal stress power can be written as

Pint = −
∫

B
ψ̇ dv −

∫
B
ddv = −Ψ̇−D with D :=

∫
B
∂İφ(İ) · İ dv (1.15)

being the dissipation power.
Let us further look at the case, when φ is a positively homogeneous function of order one,
this means φ(αİ) = αφ(İ) for all α ∈ R+, see Definition 7 in Appendix A. Such a type of
φ, e.g., occurs for rate-independent plasticity, and we get after differentiation with respect
to α an easy relation between d and φ, namely

d = ∂İφ(İ) · İ = φ(İ) , (1.16)

where ∂İ(·) has to be understood as sub-differential since φ is not differentiable in İ = 0
in the classical sense, see [3] and [21]. We observe that for the fulfilment of (1.14) only the
condition φ(İ) ≥ 0 has to be enforced; from (1.16) we immediately get φ(0) = 0, and for
an arbitrary but fixed F we have φ(İ1 + İ2) = Fİ1 + Fİ2 = φ(İ1) + φ(İ2) and hence
convexity follows from Lemma 5 in Appendix A. Later it will be helpful to introduce the
dual dissipation function, which is defined via a Legendre transformation

φ∗(F) := max
İ
{F · İ − φ(İ)} .

Since φ is convex with respect to İ, this transformation is involutoric. This means the
dual of the dual dissipation function is the dissipation function itself, i.e.

φ(İ) = max
F
{F · İ − φ∗(F)} , (1.17)

see Lemma 3 in Appendix A.
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1. Basics of geometrically linear local continuum mechanics

1.4.1. Application to plasticity

Plasticity always comes along with dissipation. First we look at the rate-independent case.
Let all admissible states in the space of thermodynamic driving forces F be defined by
the set

EF (I) :=
{
F̄ : ϕ(F̄ ,I) ≤ 0 for a given I

}
,

where ϕ(F̄ ,I) is called yield function. The elastic domain is given by the interior of
EF (I) defined as

int[EF (I)] :=
{
F̄ : ϕ(F̄ ,I) < 0 for a given I

}
.

Therefore a plastic state is only reached on the yield surface ∂EF (I) = EF (I)\int[EF (I)].

Remark 1. If the yield function ϕ(F̄ ,I) is convex with respect to F̄ , then EF (I) is a
convex set. This shall be shown here. Due to Definition 2 in Appendix A, we have

ϕ(λF̄1 + (1− λ)F̄2,I) ≤ λϕ(F̄1,I) + (1− λ)ϕ(F̄2,I)

for all λ ∈ [0, 1] and for all F̄1, F̄2 ∈ EF (I). We get ϕ(λF̄1 + (1 − λ)F̄2,I) ≤ 0, and
accordingly EF (I) is a convex set, see Definition 1 in Appendix A.

In order to derive the dissipation function φ we make use of a very important principle -
the principle of maximum plastic dissipation. It demands that the actual thermodynamic
driving force F ∈ EF (I) maximizes the plastic dissipation power density dp := d = F̄ · İ
with a given rate İ. So F can be derived through the constrained optimization problem

F = arg max
F̄∈EF (I)

[F̄ · İ] and F = arg min
F̄∈EF (I)

[−F̄ · İ] , (1.18)

respectively, for I being given. Since for rate-independent plasticity d = φ, the dissipation
function at the actual admissible state can be obtained by the same task:

φ(İ) = max
F̄∈EF (I)

{F̄ · İ} ,

which gives by comparison with (1.17) φ∗(F) = 0 for ϕ(F ,I) ≤ 0. Assuming (1.18)2 to
have one optimal solution, the principle of maximum plastic dissipation implies

1. the evolution law for I,

2. the Karush-Kuhn-Tucker conditions (in short KKT conditions) and

3. the convexity of EF (I),

see [24]. To show point 1, we introduce the Lagrangian functional L(F̄ ,I, λ) := −F̄ · İ +
λϕ(F̄ ,I), where λ ∈ R is the Lagrange multiplier, and obtain the wanted evolution law
for the internal variables as

∂FL(F ,I, λ) = 0 ⇔ İ = λ∂Fϕ(F ,I) . (1.19)

To get some information about the Lagrange multiplier λ we do a case-by-case analysis.
If ϕ(F ,I) < 0, the constraint F ∈ EF (I) has no influence on the solution F , see Figure
1.1(b). Therefore we can say λ = 0. On the other hand, if ϕ(F ,I) = 0 we have λ 6= 0
in general, see Figure 1.1(c). This leads to the condition λϕ(F ,I) = 0. Next, we look
at the evolution law (1.19)2 rewritten as ∂F [−dp(F ,I)] = λ∂Fϕ(F ,I). The emerging
partial derivatives are vectors lying normal to the surfaces ϕ(F̄ ,I), and −dp(F̄ , İ) in

7



1. Basics of geometrically linear local continuum mechanics

F
ϕ(F̄ ,I) < 0

(a)

F

ϕ(F̄ ,I) < 0

(b)

F

ϕ(F̄ ,I) < 0

(c)

Figure 1.1. Derivation of the KKT conditions: (a) impossible situation, (b) solution for
ϕ(F ,I) < 0, (c) solution for ϕ(F ,I) = 0.

point F , see Figure 1.1(c), which is the reason why the evolution law (1.19)2 is often
called normality rule. Since these normal vectors have the same direction but different
orientation, the Lagrange multiplier must be positive. So we conclude

λ ≥ 0 , ϕ(F ,I) ≤ 0 and λϕ(F ,I) = 0 , (1.20)

which are the well known KKT conditions. Physically spoken, these conditions are nothing
else then the loading/unloading conditions, see [6].

Remark 2. Note, that the function which has to minimized, namely −dp, is linear (and
therefore convex) in F̄ . Hence, F can only lie on the boundary ∂EF (I), which is in
agreement with our assumption that plastic states are only reached on the yield surface.

It remains to show point 3. According to Lemma 2 in Appendix A, an equivalent condition
for the yield function ϕ to be convex is

ϕ(F̄1,I)− ϕ(F̄2,I) ≥ ∂F̄2
ϕ(F̄2,I) · (F̄1 − F̄2) (1.21)

for all F̄1, F̄2 ∈ EF (I). It is sufficient to set F̄2 = F with ϕ(F ,I) = 0 and the convexity
condition (1.21) reduces to

0 ≥ (F̄ −F) · ∂Fϕ(F ,I) (1.22)

for all F̄ ∈ EF (I). From the principle of maximum plastic dissipation we have F ·İ ≥ F̄ ·İ
for all F̄ ∈ EF (I) and incorporating the evolution law (1.19)2 yields

0 ≥ λ(F̄ −F) · ∂Fϕ(F ,I)

for all F̄ ∈ EF (I). From the KKT conditions we have λ ≥ 0 and accordingly we obtain
(1.22). Finally, the convexity of EF (I) follows from Remark 1.

In summary, the principle of maximum plastic dissipation is a convex optimization
problem, see [3] for the mathematical background.

Remark 3. If the convex function which has to be minimized or the convex function
occurring in the inequality constraint has cones, e.g. one thinks about Tresca’s yield
surface [6], sub-differentials must be used.
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1. Basics of geometrically linear local continuum mechanics

σ σ

rough

E

η

y0

Figure 1.2. One-dimensional model of viscoplasticity, with E being Young’s modulus, η
being the viscosity and y0 being the yield stress.

In rate-dependent plasticity states F outside the closure of the elastic domain are allowed.
In the one dimensional rheological model the rate-dependency can be taken into account
by a dashpot with viscosity η ∈ (0,∞), see Figure 1.2.
As pointed out in [24] viscoplasticity can be interpreted as a regularization. The viscosity
plays the rule of a penalty factor and the principle of maximum plastic dissipation can be
written as an unconstrained optimization problem:

φ(İ) = max
F̄
{F̄ · İ − 1

2η
〈ϕ(F̄ ,I)〉2} , (1.23)

where 〈·〉 depicts the so called Macaulay brackets 〈x〉 := 1
2 (x+ |x|) for x ∈ R. Details

can be found in [20]. In an analogous way as before, we obtain the evolution law for the
internal variables as

İ =
1

η
〈ϕ(F ,I)〉∂Fϕ(F ,I) . (1.24)

A comparison with (1.19) identifies the Lagrange multiplier as λ = 1
η 〈ϕ(F ,I)〉, which of

course cannot be negative.
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2. Geometrically linear continuum mechanics
of gradient-type dissipative solids

In this chapter the theory of gradient-extended standard dissipative solids is presented.
For this purpose the major sources are [28] and [18]. We will see, that so called generalized
internal variables lead to an additional elliptic partial differential equation, which makes
it necessary to prescribe boundary conditions for the generalized internal variables. After
the derivation of the rate-dependent strong form of the full coupled system of equations
by using the balance of mechanical energy (1.7), we will switch to an equivalent potential
formulation. The time incremental formulation of this potential will be consistent with
the strong form. Finally, we do a discretization by finite elements, see [30] and [29].

2.1. Geometry

The macroscopic setting has already been stated in Section 1.1. However, here we also
look at some additional microscopic fields, which describe the microscopic state of the
solid. To distinguish between the two scales we introduce the notation (̄·)(x, t) for the
macroscopic fields and the notation (̌·)(x, t) for the microscopic fields. We define the
microscopic deformation map

ϕ̌(x, t) :

{
B ×T → Rm

(x, t) 7→ ǔ(x, t) ,

with m ∈ N, see Figure 2.1. The array ǔ is called microscopic displacement and consists of
m scalars, which describe dissipative processes in the material and can therefore be seen as
internal variables. However, in contrast to standard internal variables, ǔ is also affected
by additional balance equations, which makes it also necessary to prescribe boundary
conditions for ǔ. This circumstance is the reason to call ǔ an array of generalized internal
variables. The fact that we are following a multi-field approach here, demands different
decompositions of the boundary ∂B. They are ∂B = ∂Bū ∪ ∂Bt̄, ∂Bū ∩ ∂Bt̄ = ∅
and ∂B = ∂Bǔ ∪ ∂Bť, ∂Bǔ ∩ ∂Bť = ∅, where on ∂Bū and ∂Bǔ the macroscopic
and microscopic displacement fields ūD(x, t) and ǔD(x, t), respectively, are prescribed
(Dirichlet boundary), and where on ∂Bt̄ and ∂Bť the macroscopic and microscopic
traction fields t̄N (x, t) and ťN (x, t), respectively, are prescribed (Neumann boundary).

The crucial point of the presented gradient-extended theory is the incorporation of
microscopic information of the neighbourhood, which is handled by introducing the length
scale parameter l ∈ R+. Consequently we are dealing with a nonlocal continuum theory.

2.2. Strong form of the coupled system of equations

Because we also take micro-mechanical fields into account, we adopt the constitutive state
c introduced in Section 1.3:

c(u) := {ε̄, ǔ,∇ǔ} with u := {ū, ǔ} . (2.1)

10



2. Geometrically linear continuum mechanics of gradient-type dissipative solids

x3

x2

x1

e3

e2
e1

B

x

ǔ

ϕ̌(x, t)

Rm

l

Figure 2.1. Geometrical setting when dealing with microscopic information, which is
summarized in the array ǔ. The length scale parameter l provides for the
nonlocality of the gradient-extended theory.

The consideration of the gradient of the microscopic displacement field in the constitutive
state is not standard and gives the theory its name. Since ǔ also describes dissipative
processes we write the stored energy functional and the dissipation potential functional,
introduced in Section 1.4, as

Ψ(c,I) =

∫
B
ψ(c,I) dv and Φ(ċ, İ) =

∫
B
φ(ċ, İ) dv , (2.2)

where we have also taken into account some local internal variables I, which were treated
in the last chapter. Of course the constitutive state (2.1) must be in agreement with the
principle of material objectivity, this means

ψ(c+,I+) = ψ(c,I) and φ(c+,I+) = φ(c,I) ,

where again the plus sign denotes the translated and rotated state. Since the entries of ǔ
are scalar fields we can say

ǔ+(x, t) = ǔ(x, t) ,

which immediately identifies c as an objective constitutive state.
To obtain the coupled system of equations we use the global balance of mechanical energy
(1.7). Here we restrict ourselves to the quasi-static case, which means

Pint + Pext = 0 . (2.3)

Looking at the representation (1.15) for the internal power, we calculate

ψ̇ = ∂ε̄ψ : ˙̄ε+ ∂ǔψ · ˙̌u+ ∂∇ǔψ : ∇ ˙̌u+ ∂Iψ · İ (2.4)

and extend the dissipation power density d according to the dependencies of the dissipation
potential function in (2.2) as

d = F̄ : ˙̄ε+ f̌ · ˙̌u+ F̌ : ∇ ˙̌u+ F · İ ,

where F̄ := ∂ε̄φ is conjugate to ε̄ and stands for dissipative macroscopic stresses, f̌ := ∂ǔφ
conjugate to ǔ and F̌ := ∂∇ǔφ conjugate to∇ǔ. These new thermodynamic driving forces
are concluded in the array

f :=
{
F̄ , f̌ , F̌

}
.

11



2. Geometrically linear continuum mechanics of gradient-type dissipative solids

By introducing a microscopic body force per unit mass f̌B, the external power can be
written as

Pext =

∫
B
ρf̄B · ˙̄udv +

∫
∂Bt̄

t̄N · ˙̄udsx +

∫
B
ρf̌B · ˙̌u dv +

∫
∂Bť

ťN · ˙̌u dsx .

Finally, the global balance of mechanical energy (2.3) yields after integration by parts

0 =−
∫

B
div[∂ε̄ψ + F̄ ] · ˙̄udv −

∫
B
ρf̄B · ˙̄udv +

∫
∂Bt̄

[(∂ε̄ψ + F̄) · n− t̄N ] · ˙̄u dsx

−
∫

B
div[∂∇ǔψ + F̌ ] · ˙̌udv +

∫
B

(∂ǔψ + f̌ − ρf̌B) · ˙̌udv

+

∫
∂Bť

[(∂∇ǔψ + F̌) · n− ťN ] · ˙̌u dsx +

∫
B

(∂Iψ + F) · İ dv ,

(2.5)

which has to be fulfilled for all ˙̄u ∈ V0
ū, ˙̌u ∈ V0

ǔ and İ ∈ L2(B), where we have introduced
the function spaces

V0
ū :=

{
w(·, t) ∈ [H1(B)]3 : w = 0 on ∂Bū

}
,

V0
ǔ :=

{
w(·, t) ∈ [H1(B)]m : w = 0 on ∂Bǔ

}
with H1(B) being the space of functions in L2(B), the first derivative(s) of which is
(are) square integrable, see Appendix A. Note, that the size of the array İ is unspecified
and we mean by İ ∈ L2(B), that every single element from the array İ is from L2(B).
Consequently, if an array size is not given, we will suppress the information of the array
size in the notion of the corresponding function space. Furthermore, from now on we will
just write L2 instead of L2(B).
As pointed out in Subsection 1.4.1, it is important to distinguish between rate-
independency and rate-dependency. The mathematical main difference is, that for the rate-
dependent case the Lagrange multiplier λ is explicitly known, namely λ = 1

η 〈ϕ(f,F , c,I)〉.
The resulting coupled system of equations, which is obtained from (2.5), is summarized
for rate-dependency in Table 2.1.

2.3. Potential formulation and time incrementation

Especially for the purpose with finite elements, we switch to an equivalent potential
formulation. For this we write the internal rate potential per unit volume, introduced
in Section 1.4, as

π(c,I, ċ, İ) =
d

dt
ψ(c,I) + φ(ċ, İ)

and construct the potential

Π( ˙̄u, ˙̌u, İ) :=

∫
B
π(c,I, ċ, İ) dv − Pext(u̇, t)

=
d

dt
Ψ(c,I) + Φ(ċ, İ)− Pext(u̇, t)

for a given state {ū, ǔ,I} at a given time t. Since the expression d
dtΨ(c,I) is linear in

{ċ, İ}, the convexity of φ with respect to {ċ, İ} confers to the potential Π. As a result
the temporal change of the macro- and microscopic displacement fields and of the internal
variables is given by the minimization principle

{ ˙̄u, ˙̌u, İ} = arg{min
˙̄u∈V0

ū

min
˙̌u∈V0

ǔ

min
İ∈L2

[Π( ˙̄u, ˙̌u, İ)]} . (2.6)
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2. Geometrically linear continuum mechanics of gradient-type dissipative solids

Macroscopic equilibrium:
−div[∂ε̄ψ + F̄ ]− ρf̄B = 0 in B

ū = ūD on ∂Bū

(∂ε̄ψ + F̄) · n = t̄N on ∂Bt̄

Microscopic balance equation:

−div[∂∇ǔψ + F̌ ] + ∂ǔψ + f̌ − ρf̌B = 0 in B
ǔ = ǔD on ∂Bǔ

(∂∇ǔψ + F̌) · n = ťN on ∂Bť

Conjugate problem for local internal variables:
∂Iψ + F = 0 in B

Evolution equations with λ = 1
η 〈ϕ(f,F , c,I)〉:

ċ = λ∂fϕ in B
c(t = 0) = c0 in B

İ = λ∂Fϕ in B
I(t = 0) = I0 in B

Table 2.1. Strong form of rate-dependent coupled system of equations for gradient-type
solids.

By considering the new dependencies, the dissipation function φ reads in terms of its
Legendre transform φ∗

φ(ċ, İ) = max
f∈L2

max
F∈L2

{f · ċ + F · İ − φ∗(f,F)} , (2.7)

see (1.17). If we incorporate this representation, we can introduce an extended internal
rate potential per unit volume as

π∗(c,I, ċ, İ, f,F) :=
d

dt
ψ(c,I) + f · ċ + F · İ − φ∗(f,F) , (2.8)

and accordingly we can define an extended potential as

Π∗( ˙̄u, ˙̌u, İ, f,F) :=

∫
B
π∗(c,I, ċ, İ, f,F) dv − Pext(u̇, t) (2.9)

for a given state {ū, ǔ,I} at a given time t. Then the extended variational principle reads

{ ˙̄u, ˙̌u, İ, f,F} = arg{min
˙̄u∈V0

ū

min
˙̌u∈V0

ǔ

min
İ∈L2

max
f∈L2

max
F∈L2

[Π∗( ˙̄u, ˙̌u, İ, f,F)]} , (2.10)

where the two max-operations come from the Legendre transformation (2.7). Note,
that due to the formulation of the dissipation function φ in terms of its dual φ∗, the
minimization principle (2.6) has been transformed into a saddle point problem.
So far no distinction has been made between rate-independent and rate-dependent
processes. As in the last section, we will specialize to the latter case, for which we can
replace the dual dissipation function by 1

2η 〈ϕ(f,F , c,I)〉2, see (1.23). Accordingly (2.8)
reads

π∗η(c,I, ċ, İ, f,F) :=
d

dt
ψ(c,I) + f · ċ + F · İ − 1

2η
〈ϕ(f,F , c,I)〉2 . (2.11)
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Of course Π∗η is defined by just replacing π∗ by π∗η in (2.9). Naturally, also the variational
principle (2.10) is adopted just by plugging in Π∗η. At this point we should check if the
variational problem gives the strong form summarized in Table 2.1. To make Π∗η stationary,
it is necessary that

δΠ∗η( ˙̄u, ˙̌u, İ, f,F) = δ ˙̄uΠ∗η + δ ˙̌uΠ∗η + δİΠ∗η + δfΠ
∗
η + δFΠ∗η = 0

for all δ ˙̄u ∈ V0
ū, δ ˙̌u ∈ V0

ǔ, δİ ∈ L2, δf ∈ L2 and δF ∈ L2. Calculating the single variations,
as it will be done at the end of the section for the time discrete case, and doing integration
by parts in fact really gives the strong form of coupled equations.

For the numerical implementation it is necessary to do a numerical time integration of
the corresponding evolution equations, see Table 2.1. Hence we divide T = [0, T ] into a
number of uniform time increments with time step τ . Then the discrete times are given
by tn = τn for n = 0, 1, 2, . . . . We assume all fields to be known at tn and want to obtain
the fields at time tn+1. For a shorter notation we will skip the index n+ 1, e.g.

ūn := ū(x, tn) and ū := ū(x, tn+1) .

One-step procedures are the easiest methods to solve an initial value problem numerically.
Because of being unconditionally stable, it would be convenient to use the implicit Euler
scheme here, which reads applied to the evolution problems in Table 2.1

c = cn + τ
1

η
〈ϕ(f,F , c,I)〉∂fϕ(f,F , c,I) ,

I = In + τ
1

η
〈ϕ(f,F , c,I)〉∂Fϕ(f,F , c,I)

(2.12)

for n = 0, 1, 2, . . . . However, as in the continuous case, we will follow a potential approach
here. To obtain the time incremental version of the potential Π∗η, we do an integration
with respect to time t from tn to tn+1

Π∗τη :=

∫ tn+1

tn

Π∗η dt =

∫
B

∫ tn+1

tn

π∗η dt︸ ︷︷ ︸
=:π∗τ

η

dv −
∫ tn+1

tn

Pext dt︸ ︷︷ ︸
=:P τext

.

By assuming time independent macro- and microscopic external forces, we find the time
incremental external power as

P τext =

∫
B
ρf̄B · (ū− ūn) dv +

∫
∂Bt̄

t̄N · (ū− ūn) dsx

+

∫
B
ρf̌B · (ǔ− ǔn) dv +

∫
∂Bť

ťN · (ǔ− ǔn) dsx .

The time incremental internal rate potential per unit volume is

π∗τη = IAlgo{π∗η} ,

where IAlgo{·} stands for a consistent integration algorithm. This means, that the
integration must be done in such a way, that we obtain the macroscopic equilibrium,
the microscopic balance equation and the conjugate problem for local internal variables,
see Table 2.1, at time tn+1 from the time incremental potential formulation. The time
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discrete versions of the evolution equations are the result of such a consistent approach.
By introducing an extended constitutive state at time tn+1 as

c∗(u∗) := {ε̄, ǔ,∇ǔ, f} with u∗ := {ū, ǔ, f} (2.13)

and the set of local internal variables together with its dual forces at tn+1

s := {I,F} , (2.14)

we write for the time incremental rate potential per unit volume

π∗τη (c∗, c∗n, s, sn) = ψ(c,I)− ψ(cn,In) + f · (c− cn) + F · (I − In)

− τ

2η
〈ϕ(f,F , cn,In)〉2 . (2.15)

Once again we write down the time incremental potential, but now with its dependencies,
as

Π∗τη (ū, ǔ,I, f,F) =

∫
B
π∗τη (c∗, c∗n, s, sn) dv − P τext(u,un) .

The macro- and microscopic displacement fields, the local internal variables and the
thermodynamic driving forces at time tn+1 are obtained via the variational principle

{ū, ǔ,I, f,F} = arg{min
ū∈Vū

min
ǔ∈Vǔ

min
I∈L2

max
f∈L2

max
F∈L2

[Π∗τη (ū, ǔ,I, f,F)]} ,

with

Vū := {w(·) ∈ [H1(B)]3 : w = ūD on ∂Bū} ,
Vǔ := {w(·) ∈ [H1(B)]m : w = ǔD on ∂Bū} .

For this it is necessary that the first variation of Π∗τη vanishes:

δΠ∗τη (ū, ǔ,I, f,F) = δūΠ∗τη + δǔΠ∗τη + δIΠ∗τη + δfΠ
∗τ
η + δFΠ∗τη = 0 (2.16)

for all δū ∈ V0
ū, δǔ ∈ V0

ǔ, δI ∈ L2, δf ∈ L2 and δF ∈ L2. Using δūc = {δε̄,0,0} and
δǔc = {0, δǔ,∇δǔ}, the single variations read

δūΠ∗τη =

∫
B

(∂ε̄ψ + F̄) : δε̄dv +

∫
B
ρf̄B · δūdv −

∫
∂Bt̄

t̄N · δū dsx ,

δǔΠ∗τη =

∫
B

[(∂ǔψ + f̌) · δǔ+ (∂∇ǔψ + F̌) : ∇δǔ] dv +

∫
B
ρf̌B · δǔ dv

−
∫
∂Bť

ťN · δǔdsx ,

δIΠ∗τη =

∫
B

(∂Iψ + F) · δI dv ,

δfΠ
∗τ
η =

∫
B

(c− cn −
τ

η
〈ϕ〉∂fϕ) · δfdv ,

δFΠ∗τη =

∫
B

(I − In −
τ

η
〈ϕ〉∂Fϕ) · δF dv .

(2.17)

Doing integration by parts and localizing, gives the time discrete strong form of the
governing equations for gradient-type dissipative solids, see Table 2.2. Here we see, that the
chosen integration algorithm for π∗η is indeed consistent. Furthermore we should point out
the difference between the implicit Euler scheme (2.12) and the time discrete evolution
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2. Geometrically linear continuum mechanics of gradient-type dissipative solids

Macroscopic equlibrium:
−div[∂ε̄ψ + F̄ ]− ρf̄B = 0 in B

ū = ūD on ∂Bū

(∂ε̄ψ + F̄) · n = t̄N on ∂Bt̄

Microscopic balance equation:

−div[∂∇ǔψ + F̌ ] + ∂ǔψ + f̌ − ρf̌B = 0 in B
ǔ = ǔD on ∂Bǔ

(∂∇ǔψ + F̌) · n = ťN on ∂Bť

Conjugate problem for local internal variables:
∂Iψ + F = 0 in B

Evolution equations with λ = 1
η 〈ϕ(f,F , cn,In)〉:

c = cn + τλ∂fϕ(f,F , cn,In) in B
c(t = 0) = c0 in B

I = In + τλ∂Fϕ(f,F , cn,In) in B
I(t = 0) = I0 in B

Table 2.2. Time discrete strong form of rate-dependent coupled system of equations for
gradient-type solids.

equations in Table 2.2. However, when we apply the gradient-extended theory to von-
Mises plasticity, this disagreement will disappear since the von-Mises yield function does
not depend on c, I and cn, In, respectively.
If one takes a closer look at the time discrete conjugate problem and the evolution equation
for the local internal variables I, given in Table 2.2, one can see, that for a known actual
state c∗, s can be solved via a decoupled local solution algorithm, which will be specified
in the next chapter for von-Mises plasticity. As a result I and F will not be discretized
globally, which means, that these quantities only exist on integration point level. Therefore
we can reduce the necessary condition (2.16) to

δūΠ∗τη + δǔΠ∗τη + δfΠ
∗τ
η = 0 (2.18)

for all δū ∈ V0
ū, δǔ ∈ V0

ǔ and δf ∈ L2. Introducing the arrays g := {f̄B, f̌B,0}, tN :=
{t̄N , ťN ,0}, δu∗ := {δū, δǔ, δf} and δu∗c

∗ := {δε̄, δǔ,∇δǔ, δf}, we can write the system
of equations in a short way, since every single variation in (2.18) must be zero on its own:

δu∗Π∗τη :=

 δūΠ∗τη
δǔΠ∗τη
δfΠ
∗τ
η

 =

∫
B
∂c∗π

∗τ
η · δu∗c∗ dv −

∫
B
ρg · δu∗ dv −

∫
∂Bt

tN · δu∗ dsx = 0

for all δū ∈ V0
ū, δǔ ∈ V0

ǔ and δf ∈ L2. The numerical solution of this variational principle
is discussed in the following section.

2.4. Standard finite element formulation

Let the body Bh ≈ B ⊂ R3 or Bh ≈ B ⊂ R2 be regularly decomposed1 into N finite
elements Be

h with e = 1, . . . , N and let M denote the number of nodes of the whole mesh.

1A non-regular decomposition is characterized by hanging nodes.
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x2

x1

B

Be
h

x
ξ1

ξ2

ξ

ξ1

ξ2xe
h(ξ)

Figure 2.2. Interpolation of the geometry.

Following the isoparametric concept, the geometry is described on element level by the
ansatz

xeh(ξ) :=
Me∑
i=1

hi(ξ)xei ,

where M e denotes the number of nodes of element Be
h, ξ the natural coordinates, hi(ξ)

the shape functions and

xei :=


x1
i

x2
i

x3
i


e

,

the coordinates of the node with local number i belonging to the element Be
h, see Figure

2.2 for the two-dimensional case. Note, that the shape functions hi are constructed in
such a way, that they are one at node i, and zero at every other node of the element.
Principally the same ansatz is also chosen for the element-wise approximation of the global
fields ū, ǔ and f:

ūeh(x) =

Me∑
i=1

hi(ξ)d̄ei , ǔeh(x) =

Me∑
i=1

hi(ξ)ďei and feh(x) =

Me∑
i=1

hi(ξ)fei . (2.19)

These functions are uniquely determined by their nodal values

d̄ei =


d̄1
i

d̄2
i

d̄3
i


e

, ďei =

 ď1
i
...

ďmi


e

and fei .

Remark 4. One has to be careful in choosing the shape functions of the different global
fields. To satisfy the discrete BBL-condition this cannot be done arbitrarily. But we follow
a rather pragmatical approach here and will choose the same shape functions for the macro-
and microscopical displacement fields and for the thermodynamic driving forces without
caring about the stability condition. However this choice turns out to be disadvantageous
in the sense that a locking effect occurs. To prevent this, the finite element formulation
will be adopted in the next section by an enhanced strain field.

The element-wise representations in (2.19) can also be written in form of matrix-vector
products:

ūeh(x) = H̄e(ξ)d̄e , ǔeh(x) = Ȟe(ξ)ďe and feh(x) = He
f (ξ)fe ,
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2. Geometrically linear continuum mechanics of gradient-type dissipative solids

where e.g.

H̄e =

 h1 0 0 . . . hMe 0 0
0 h1 0 . . . 0 hMe 0
0 0 h1 . . . 0 0 hMe

 and d̄e =

 d̄e1
...

d̄eMe

 .
Using the assembling operator A, we can summarize the global approximation of u∗ as

u∗h(x) =

N

A
e=1

 ūehǔeh
feh

 =

N

A
e=1

 H̄e 0 0

0 Ȟe 0
0 0 He

f


︸ ︷︷ ︸

=:H∗e

 d̄eďe
fe


︸ ︷︷ ︸

=:d∗e

= H∗(ξ)d∗ ,

and accordingly δu∗h = H∗(ξ)δd∗. The approximation of the global constitutive state array
c∗ is conceptually written in the same way:

c∗h = B∗(ξ)d∗ ,

where B∗(ξ) := D∗H∗(ξ) with D∗ being a generalized differential operator matrix. Of
course δu∗hc

∗
h = B∗(ξ)δd∗.

Let the Lagrange-element-family interpolation space be denoted by Sh(Bh) ⊂ H1(Bh)
and let

Vūh := Vū(Bh) ∩ [Sh(Bh)]3 ,

Vǔh := Vǔ(Bh) ∩ [Sh(Bh)]m ,

V0
ūh := V0

ū(Bh) ∩ [Sh(Bh)]3 ,

V0
ǔh := V0

ǔ(Bh) ∩ [Sh(Bh)]m

be the conform ansatz spaces. Then the discrete variational principle reads

{ūh, ǔh,I, fh,F} = arg{ min
ūh∈Vūh

min
ǔh∈Vǔh

min
I

max
fh∈Sh

max
F

[Π∗τηh]}

with Π∗τηh := Π∗τη (ūh, ǔh,I, fh,F), where the local fields I and F will be evaluated by a
local update algorithm on integration point level, and therefore are not discretized globally.
The discrete reduced necessary condition is

δu∗hΠ∗τηh =

∫
Bh

∂c∗hπ
∗τ
ηh · δu∗hc

∗
h dv −

∫
Bh

ρg · δu∗h dv −
∫
∂Bth

tN · δu∗h dsx = 0

for all δūh ∈ V0
ūh, δǔh ∈ V0

ǔh and δfh ∈ Sh, with π∗τηh := π∗τη (c∗h, c
∗
nh, s, sn). Plugging in all

above relations, we obtain a system of nonlinear equations in d∗:

F (d∗) :=

∫
Bh

B∗Tσ∗ dv −
∫

Bh

H∗Tρgdv −
∫
∂Bth

H∗T tN dsx = 0 , (2.20)

where
σ∗ := [∂c∗hπ

∗τ
ηh(c∗h(d∗), c∗nh(d∗n), s, sn)] (2.21)

is a row matrix containing generalized stresses. Because of its nonlinearity, the system
(2.20) must be solved iteratively. This will be done by a Newton-Raphson scheme. Let a
solution estimate d∗k at iteration k+ 1, obtained by iteration k, be given, which is not an
equilibrium state. A new solution

d∗k+1 = d∗k + ∆d∗k
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in terms of an increment ∆d∗k is obtained by a linearisation of (2.20) around d∗k:

F (d∗k+1) ≈ F (d∗k) + ∂d∗F (d∗)|d∗k ∆d∗k

= F (d∗k) +

∫
Bh

B∗T [∂2
c∗hc

∗
h
π∗τηh]|d∗k∂d∗c∗h dv∆d∗k

=: F (d∗k) +

∫
Bh

B∗TC∗kB∗ dv∆d∗k = 0 ,

where we introduced the material tangent moduli C∗k.

Remark 5. The use of partial differentials in the above Taylor expansion is mathemat-
ically a bit improper, and concerning the material tangent moduli it can be misleading.
Suppressing the dependency of the rate potential per unit volume on the global and local
state at tn, a proper definition of C∗k reads

C∗k :=

{
d

dc∗h

[
∂

∂c∗h
π∗τη (c∗h, s)

]}∣∣∣∣
d∗k

.

This means, that for the outer derivation the dependency of the local set s on the global
field variables, coming from the local update algorithm, must be respected. However, to
make writing easier, we will use the notation

C∗k = [∂2
c∗hc

∗
h
π∗τηh]|d∗k , (2.22)

given in the above Taylor expansion.

With the stiffness matrix

K∗k :=

∫
Bh

B∗TC∗kB∗ dv ,

the vector of internal forces

f∗kint :=

∫
Bh

B∗Tσ∗k dv

and the vector of external forces

f∗ext :=

∫
Bh

H∗Tρgdv +

∫
∂Bth

H∗T tN dsx , (2.23)

we obtain the linear system of equations

K∗k∆d∗k = −f∗kint + f∗ext︸ ︷︷ ︸
=:r∗k

from which we can calculate ∆d∗k and get the new solution d∗k+1. With this at hand the
new stresses σ∗k+1 can be computed via the nonlinear constitutive law, and accordingly
the new residuum r∗k+1 is known. One should also note, that at every iteration a new
stiffness matrix must be calculated. However, this disadvantage is compensated by a
quadratic order of convergence, in contrast to, e.g., the modified Newton-Raphson scheme,
where throughout the iteration the same initial stiffness matrix is used, but only a linear
order of convergence is achieved. On the other hand, since we remain in the geometrically
linear theory, the B∗e matrices must only be computed one time for every integration
point. For one-dimensional problems the Newton-Raphson scheme is illustrated in Figure
2.3.
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fext

fext
n n

n+ 1

∆d∗0 ∆d∗1

d∗
n = d∗0 d∗1 d∗2 d∗

1

K∗0r∗0

r∗1

r∗2 fint(d
∗)

iteration 1 iteration 2

Figure 2.3. The Newton-Raphson scheme. Here fint(d
∗) denotes a function in terms of the

independent variable d∗, which is not only meant to be evaluated at n+1. The
grey rectangles display the corresponding unbalanced energies ue0 and ue1.

As measure how far we are still away from equilibrium, we introduce the unbalanced energy
at iteration k + 1

uek :=
∥∥∥[r∗k]T∆d∗k

∥∥∥ ,
and break off the iteration if we fall bellow a given tolerance tol:

uek ≤ tol .

Remark 6. It is important to note, that the Newton-Raphson scheme is locally convergent
and may fail if the solution estimate d∗0 is too far away from the exact solution.

Remark 7. Since the incremental Dirichlet boundary conditions are exactly fulfilled after
the first Newton-Raphson iteration step, they have to be set zero for all remaining steps
within an increment.

2.5. Enhanced-strain method

In order to prevent locking, several mixed methods are used today, e.g. methods based
on the Hu-Washizu principle. Beside the displacements, it also treats the stresses and
strains as independent variables. This of course comes along with an increase of degrees
of freedom. The enhanced strain method [25] bases on the idea to treat the additional
degrees of freedom only on element level, which allows them to be eliminated by a static
condensation. Hence, the advantage of such an adaption lies in the circumstance, that
the number of degrees of freedom is the same as in a pure displacement formulation. To
realize this idea, we enhance the macroscopic strain field ε̄ by some additional strains eε̄,
i.e.

ε̄(ū, eε̄) =
1

2

[
∇ū+ (∇ū)T

]
+ eε̄ (2.24)

and use eε̄ instead of ε̄ as independent variable in the Hu-Washizu potential formulation.
Writing (2.24) as eε̄ = ε̄ − 1

2

[
∇ū+ (∇ū)T

]
we see, that the introduction of enhanced
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strains eε̄ is nothing else than a substitution, and we can interpret eε̄ as a residuum.
Accordingly the constitutive state (2.1) reads

c(u, eε̄) := {ε̄(ū, eε̄), ǔ,∇ǔ} with u = {ū, ǔ} , (2.25)

and the extended constitutive state (2.13)

c∗(u∗, eε̄) := {ε̄(ū, eε̄), ǔ,∇ǔ, f} with u∗ = {ū, ǔ, f} .

2.5.1. Hu-Washizu principle

Starting point is the potential (2.9) in its viscous-regularized form:

Π∗η( ˙̄u, ˙̌u, İ, f,F) =

∫
B
π∗η(c,I, ċ, İ, f,F) dv − Pext(u̇, t)

with π∗η given in (2.11). The kinematic constraint e ˙̄ε = 0 is considered in the potential by
a Lagrange multiplier λ, i.e.

Π̃∗η( ˙̄u, ˙̌u, İ, f,F ,λ, e ˙̄ε) :=

∫
B

(π∗η − λ : e ˙̄ε) dv − Pext(u̇, t) .

To make this potential stationary the necessary condition reads

δΠ̃∗η = δ ˙̄uΠ̃∗η + δ ˙̌uΠ̃∗η + δİΠ̃∗η + δfΠ̃
∗
η + δF Π̃∗η + δλΠ̃∗η + δe ˙̄εΠ̃

∗
η = 0

for all δ ˙̄u ∈ V0
ū, δ ˙̌u ∈ V0

ǔ, δİ ∈ L2, δf ∈ L2, δF ∈ L2, δλ ∈ L2 and δe ˙̄ε ∈ L2, where

δλΠ̃∗η =

∫
B

e ˙̄ε : δλdv ,

δe ˙̄εΠ̃
∗
η =

∫
B

(∂e ˙̄εψ̇ + F̄ − λ) : δ
e ˙̄ε dv .

Note that according to (2.4) ∂e ˙̄εψ̇ = ∂ε̄ψ, and a localization argument gives

λ = ∂ε̄ψ + F̄ and e ˙̄ε = 0 .

From this we see, that the Lagrange multiplier λ equals the total stress tensor2 σ̄ in the
weak sense. Hence, we define a rate potential per unit volume of Hu-Washizu type as

π̃∗η(c,I, ċ, İ, f,F , σ̄) :=
d

dt
ψ(c,I)− σ̄ : e ˙̄ε+ f · ċ + F · İ − 1

2η
〈ϕ(f,F , c,I)〉2 .

A consistent time incrementation reads

π̃∗τη (c∗, c∗n, s, sn, σ̄, σ̄n) = ψ(c,I)− ψ(cn,In)− σ̄ : eε̄+ σ̄n : eε̄n

+ f · (c− cn) + F · (I − In)

− τ

2η
〈ϕ(f,F , cn,In)〉2 ,

where again quantities without sub index are meant to be evaluated at time tn+1.
Accordingly

Π̃∗τη (u∗, s, eε̄, σ̄) =

∫
B
π̃∗τη (c∗, c∗n, s, sn, σ̄, σ̄n) dv − P τext(u,un)

2The total stress tensor also contains the dissipative stresses F̄ .
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and the variational principle reads

{ū, ǔ,I, f,F , eε̄, σ̄} = arg{min
ū∈Vū

min
ǔ∈Vǔ

min
I∈L2

max
f∈L2

max
F∈L2

min
eε̄∈L2

max
σ̄∈L2

[Π̃∗τη (ū, ǔ,I, f,F , eε̄, σ̄)]} .

As discussed in the end of Section 2.3, the necessary condition for this problem can be
reduced to

δΠ̃∗τη = δu∗Π̃∗τη + δeε̄Π̃
∗τ
η + δσ̄Π̃∗τη = 0

for all δū ∈ V0
ū, δǔ ∈ V0

ǔ, δf ∈ L2, δeε̄ ∈ L2 and δσ̄ ∈ L2, with

δu∗Π̃∗τη =

∫
B
∂c∗ π̃

∗τ
η · δu∗c∗ dv −

∫
B
ρg · δu∗ dv −

∫
∂Bt

tN · δu∗ dsx ,

δeε̄Π̃
∗τ
η =

∫
B
∂eε̄π̃

∗τ
η : δeε̄dv =

∫
B

(∂ε̄π̃
∗τ
η − σ̄) : δeε̄dv ,

δσ̄Π̃∗τη =

∫
B
∂σ̄π̃

∗τ
η : δσ̄ dv ,

where ∂ε̄π̃
∗τ
η = ∂ε̄ψ + F̄ and ∂σ̄π̃

∗τ
η = −eε̄, from which we follow, that π̃∗τη indeed

comes from a consistent integration algorithm. However, note that in the finite element
approximation eε̄h 6= 0 in Bh.

2.5.2. Finite element discretization

Again, the discretized global fields are denoted by the sub index h. The discrete variational
principle reads

{ūh, ǔh,I, fh,F , eε̄h, σ̄h} = arg{ min
ūh∈Vūh

min
ǔh∈Vǔh

min
I

max
fh∈Sh

max
F

min
eε̄h

max
σ̄h

[Π̃∗τηh]} ,

with Π̃∗τηh := Π̃∗τη (u∗h, s,
eε̄h, σ̄h), where, as already mentioned before, the local solution

pair s = {I,F} is computed by a local update algorithm on integration point level. The
ansatz spaces for the discrete stresses σ̄h and for the discrete enhanced strains eε̄h remain
unspecified yet. The reduced necessary condition is

δu∗hΠ̃∗τηh + δeε̄hΠ̃∗τηh + δσ̄hΠ̃∗τηh = 0

for all δūh ∈ V0
ūh, δǔh ∈ V0

ǔh, δfh ∈ Sh, δeε̄h and δσ̄h. To lower the computational costs
we want to eliminate σ̄h. For this purpose we assume the discrete stresses and enhanced
strains to fulfil the orthogonality relation∫

Bh

σ̄h : eε̄h dv = 0 . (2.26)

This condition is a first specification of the ansatz spaces for discrete stresses and discrete
enhanced strains, which are now not independent any more. With (2.26) at hand we can
say ∫

Bh

σ̄h : δeε̄h dv = 0 and

∫
Bh

eε̄h : δσ̄h dv = 0 ,

and get the simplified system of equations

0 =

[
δu∗hΠ̃∗τηh
δeε̄hΠ̃∗τηh

]
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with

δu∗hΠ̃∗τηh =

∫
Bh

∂c∗h π̃
∗τ
ηh · δu∗hc

∗
h dv −

∫
Bh

ρg · δu∗h dv ,

δeε̄hΠ̃∗τηh =

∫
Bh

∂ε̄h π̃
∗τ
ηh : δeε̄h dv ,

where π̃∗τηh := π̃∗τη (c∗h, c
∗
nh, s, sn, σ̄h, σ̄nh). According to Section 2.4, we have δu∗h =

H∗(ξ)δd∗ and δu∗hc
∗
h = B∗(ξ)δd∗. The enhanced strains eε̄h and its variation δeε̄h are

approximated in Voigt’s notation on element level by

eε̄h =:

n

A
e=1

Ae(ξ)āe =: A(ξ)ā and δeε̄h = A(ξ)δā , (2.27)

where Ae(ξ) is the element interpolation matrix, and āe a row matrix containing the
element degrees of freedom of the enhanced strain eε̄h. It should be mentioned, that
āe does not contain any nodal values; its entries are constant over the element e. The
structure of the matrix Ae(ξ) will be derived at the end of the next chapter. Note that
due to the geometrical linearity, the Ae matrices, like the B∗e matrices, do not change in
the integration points during the whole incrementation and iteration process.
With all these approximations at hand, the system of nonlinear equations in d∗ and ā
reads

F (d∗, ā) =

[ ∫
Bh

B∗Tσ∗ dv −
∫
Bh

H∗Tρgdv −
∫
∂Bth

H∗T tN dsx∫
Bh
AT [∂ε̄hπ

∗τ
ηh] dv

]
= 0 , (2.28)

where we have considered that ∂c∗hπ
∗τ
ηh = ∂c∗h π̃

∗τ
ηh, and used the definition of the generalized

stresses (2.21)
σ∗ = [∂c∗hπ

∗τ
ηh(c∗h(d∗, ā), c∗nh(d∗n, ān), s, sn)] .

To solve the nonlinear system (2.28) we again make use of the Newton-Raphson procedure.
For this, we do a linearisation of F (d∗, ā) around (d∗k, āk):

F (d∗k+1, āk+1) ≈ F (d∗k, āk) +

[
K∗kd∗d∗ K∗kd∗ā
K∗kād∗ K∗kāā

] [
∆d∗k

∆āk

]
with the single sub stiffness matrices

K∗kd∗d∗ =

∫
Bh

B∗T [∂2
ε̄hε̄h

π∗τηh]|(d∗k,āk)B
∗ dv ,

K∗kd∗ā =

∫
Bh

B∗T [∂2
c∗hε̄h

π∗τηh]|(d∗k,āk)Adv

K∗kād∗ =

∫
Bh

AT [∂2
ε̄hc

∗
h
π∗τηh]|(d∗k,āk)B

∗ dv = [K∗kd∗ā]T

K∗kāā =

∫
Bh

AT [∂2
ε̄hε̄h

π∗τηh]|(d∗k,āk)A dv .

(2.29)

Then, together with the vector of internal forces at iteration k[
f∗kint d∗
f∗kint ā

]
:=

[ ∫
Bh

B∗Tσ∗k dv∫
Bh
AT [∂ε̄hπ

∗τ
η ]|(d∗k,āk) dv

]
,

and the vector of external forces (2.23), we obtain the block system[
K∗kd∗d∗ K∗kd∗ā
K∗kād∗ K∗kāā

] [
∆d∗k

∆āk

]
=

[
−f∗kint d∗ + f∗ext
−f∗kint ā

]
=:

[
r∗kd∗
r∗kā

]
, (2.30)
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2. Geometrically linear continuum mechanics of gradient-type dissipative solids

from which ∆d∗k and ∆āk could be calculated. However, since the additional degrees of
freedom ā, stemming from the enhanced strains, are defined on element level, we can do
a static condensation. The block system (2.30) reads for an arbitrary element e

[K∗ed∗d∗ ]k[∆d∗e]k + [K∗ed∗ā]k[∆āe]k = [r∗ed∗ ]k , (2.31)

[K∗eād∗ ]k[∆d∗e]k + [K∗eāā]k[∆āe]k = [r∗eā ]k . (2.32)

Expressing [∆āe]k from (2.32)

[∆āe]k = −{[K∗eāā]k}−1[K∗eād∗ ]k[∆d∗e]k + {[K∗eāā]k}−1[r∗eā ]k , (2.33)

and inserting this into (2.31), yields(
[K∗ed∗d∗ ]k − [K∗ed∗ā]k{[K∗eāā]k}−1[K∗eād∗ ]k

)
︸ ︷︷ ︸

=:[S∗e]k

[∆d∗e]k = [r∗ed∗ ]k − [K∗ed∗ā]k{[K∗eāā]k}−1[r∗eā ]k︸ ︷︷ ︸
=:[f∗e]k

.

Then, the global vector ∆d∗k can be obtained from the reduced linear system of equations

S∗k∆d∗k = f∗e (2.34)

with

S∗k =

N

A
e=1

[S∗e]k and f∗e =

N

A
e=1

[f∗e]k .

With known ∆d∗k the incremental element enhanced strains [∆āe]k are calculated via
(2.33), what makes it necessary to store the corresponding element sub stiffness matrices.
Finally, the degrees of freedom have to be updated:

d∗k+1 = d∗k + ∆d∗k and [āe]k+1 = [āe]k + [∆āe]k for e = 1, . . . , N .

The new strains can be computed on element level at any point ξ by the discrete version
of (2.24), i.e. by an interpolation via the element matrices B∗e and Ae. For the later
discussed local update algorithm, the strains must be known at the integration points after
every Newton-Raphson iteration step.
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3. Application to plasticity with
gradient-type softening

Following [28] we will apply the developed model of gradient-type rate-dependent
plasticity to von-Mises plasticity with gradient-type softening and hardening, respectively.
However, before doing this we look at some general considerations on plasticity on a
phenomenological level. Most of the information collected in Section 3.1 and Section 3.3
is taken from [6], [10], [13] and [15]. To explain the effect of localization we will look at an
one-dimensional example and discuss some arising problems concerning the physics and
the numerics. Finally we will specify the emerging finite element matrices when using the
enhanced-strain method.

3.1. Basics on phenomenological plasticity and material stability

We take a cylindric specimen of initial length L made out of some metal and do a tension
test. From this we get a stress-strain curve, which gives a relationship between the nominal
stress

σ :=
F

A
,

where F denotes the applied force and A the original cross-sectional area of the specimen,
and the engineering strain

ε :=
∆L

L
with ∆ being the incremental operator. Typical results are given in Figure 3.1 for annealed
mild steel and aluminium alloy. The elastic behaviour of many metals can be sufficiently
described by Hooke’s law. If the yield stress y0, which in most cases cannot be determined
exactly from the experiment, is exceeded, we observe plastic deformations. In big contrast
to elastic deformations, plastic ones are irreversible and depend on the load history.
In general the velocity with which the specimen is loaded has an influence on the magnitude
of the stress (rate-dependency). Further, two typical time effects are relaxation and creep.
Former names the observation, that at constant prescribed deformation the stress declines
in time. On the other hand, if we keep the stress constant, the deformation of the specimen
will increase continuously in time - this effect is called creep.
To do a mathematical modelling of plasticity, several simplifications are commonly made.
First of all, we assume that the unloading curve is linear with slope equal to that of
Hooke’s line. In reality the unloading-loading process undergoes a small hysteresis. If we
completely neglect rate-dependency and the effect of hardening and softening, respectively,
we end up with the model of classical plasticity, see Figure 3.2(a). For stress-driven
processes the strain can reach arbitrary values in the plastic range, whereas for strain-
driven processes the stress is uniquely determined. If we take a hardening law into account,
we have a unique assignment between stress and strain and observe, that strain can only be
increased by increasing the stress, see Figure 3.2(b). This means the work of the additional
stress ∆σ on the additional strain ∆ε is positive. Therefore, according to Drucker, we call
a material stable if

∆σ∆ε > 0 ,
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3. Application to plasticity with gradient-type softening

σ

ε

A B

C

y0

(a)

σ

ε

y0.20

(b)

Figure 3.1. Typical stress-strain curves obtained by a tension test: (a) annealed mild steel
with typical yield plateau AB at yield stress y0 and hardening region BC and
(b) aluminium alloy, where y0.2

0 denotes the stress, at which a strain of 0.2%
remains after unloading.

or in the multi-axial case, if σ̇ : ε̇ > 0. Following this definition, the model of ideal
plasticity is not stable, but neutral stable, since ∆σ∆ε = 0. When considering softening,
see Figure 3.2(c), we see that ∆σ∆ε < 0. Hence, the behaviour of a softening material is
unstable. However, it is important to note explicitly, that we do not look at the work of
the total stresses σ on ∆ε, which is of course always positive for σ > 0 and ∆ε > 0.

σ

ε

y0

(a)

σ

ε

y0
∆σ

∆ε

(b)
σ

ε

y0
∆σ

∆ε

(c)

Figure 3.2. Stress-strain curves for (a) perfect plasticity, (b) plasticity with linear harden-
ing and (c) plasticity with linear softening.

To disable the supposition, that softening materials violate the second law of thermody-
namics, we look at the reduced dissipation inequality (1.13). The plastic strain εp serves
as an internal variable, and the question arises, if we can give the conjugate force −∂εpψ a
physical meaning. For this we claim the free energy ψ to be a sum of two parts, namely the
elastic free energy ψe, which only depends on the elastic strain εe, and the part ψh, which
only depends on internal variables Ih describing the softening of the material. Doing an
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3. Application to plasticity with gradient-type softening

additive decomposition of the total strain

ε = εe + εp ,

we can say

−∂εpψ(ε,Ih) = −∂εpψe(ε− εp) = ∂εeψ
e(εe) = ∂εψ(ε,Ih) = σ ,

where the last equality sign only holds if we exclude dissipative stresses. Hence, we
conclude the dissipation inequality as

σ : ε̇p ≥ 0 . (3.1)

Looking at the one-dimensional counterpart σε̇p ≥ 0, it is easily seen from Figure 3.2(c),
that softening materials are in agreement with the second law of thermodynamics, although
they are not stable in Drucker’s sense.
Let us now look at a cyclic process of loading and unloading, see Figure 3.3(a).

∂Eσ(ε
p)

A

0σ

B
σ

C ∂Eσ(ε
p + dεp)

dσ

σ-space

(a)

0σ
A

B

C
σ

dσ

εp dεp

dW p

(b)

Figure 3.3. Complete load cycle for (a) the multi-axial case and (b) the one-dimensional
case. The line AB characterises elastic loading, the line BC infinitesimally
small plastic loading and the line CA elastic unloading. For the one-
dimensional case the infinitesimal irreversible plastic work is, by neglecting
higher order terms, dW p := (σ − 0σ) dεp.

Let ∂Eσ(εp) be the yield surface in stress space at plastic strain εp. The initial stress 0σ

(point A) lies either inside the yield surface, which corresponds to an elastic state, or on
the yield surface, which corresponds to a plastic state. When we do a further loading, this
point moves closer and closer to ∂Eσ(εp) until the plastic state with stress σ (point B)
is reached, which means that the point lies on the yield surface. An infinitesimal growth
of stress dσ (point C) of course causes an additional elastic strain dεe and an additional
plastic strain dεp. Now, by elastic unloading, we return to the initial state (point A).
Motivated by the one-dimensional case, see Figure 3.3(b), the irreversible plastic work is
postulated to be non-negative for all admissible 0σ:

dWp := (σ − 0σ) : dεp ≥ 0 ,

and correspondingly
(σ − 0σ) : ε̇p ≥ 0 , (3.2)
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3. Application to plasticity with gradient-type softening

where the equality sign holds for ideal plastic materials. This inequality also goes back to
Drucker and is identical to (3.1) for 0σ = 0. Writing (3.2) as σ : ε̇p ≥ 0σ : ε̇p, we can
see, that the stress σ corresponding to ε̇p maximizes the plastic dissipation dp := 0σ : ε̇p

under all admissible stresses 0σ. This is nothing else than the principle of maximum
plastic dissipation, which has been discussed in Section 1.4. Applying Voigt’s notation in
terms of the principal normal stresses on inequality (3.2), we can conclude, that (3.2) is
fulfilled if, and only if

• the yield surface is convex and

• the vector ε̇p is directed along the outward normal of the yield surface, see (1.19).

Finally, it should also be noted, that (3.2) is not a sufficient condition for a material to be
stable, since it also allows softening, which can be easily seen if we once again look at the
one-dimensional case in Figure 3.2(c).
So far, we looked at rate-independent plasticity. If we apply a big enough strain, which
does not violate the assumption of geometrical linearity, rather quickly on a viscoplastic
specimen, the stress exceeds the yield limit y0 by following the linear elastic law, see Figure
3.4. After the total strain has been applied and is hold constant, the overstress decreases
and plastic deformation occurs. The state, which would be reached by a specimen with
zero viscosity under the same applied total strain (point P, when ignoring the effect of
hardening and softening), is reached asymptotically. Of course the unloading is elastic
again.

σ

y0

ε

P

Figure 3.4. Stress-strain curve of a viscoplastic specimen. The point P belongs to a state
which would be reached by ideal plasticity. If we take hardening or softening
into account the point P would lie above or below the line σ = y0.

3.2. Localization phenomena and mesh sensitivity

Softening is an effect which is strongly related to damage. The sliding of the stress in
the plastic state can be microscopically explained by merging of defects and by arising
of microcracks, what reduces the effective area of the specimen. In experiments one can
observe the phenomena of localization. In localized zones high plastic deformations occur
and may cause failure. A famous example of such a localization phenomena are shear
bands, which are observed in many ductile materials.
It will be seen by the following one-dimensional, rate-independent example, that we will
run into some trouble concerning the physics and numerics, when we try to describe
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3. Application to plasticity with gradient-type softening

softening by a local continuum theory. A resort is provided by a nonlocal continuum
theory. The information of the two following subsections is taken from [23] and [22].

3.2.1. Softening bar: local theory

We look at a bar with length L and unit cross sectional area loaded by an uni-axial stress
σ. The body is decomposed into two (finite) elements denoted by A and B with length a
and b such that L = a+b, see Figure 3.5(a). Both elements are assumed to follow the same
constitutive relation and time dependencies are excluded. The elastic region is described
by Hooke’s law with Young’s modulus E, and the softening region by a linear relationship
with proportionality factor hE and the hardening parameter h being negative, see Figure
3.5(b).

L

A

a b

σ

B

(a)

σ

εa, εb

y0

1

E

ε0

1
hE

(b)

Figure 3.5. (a) One-dimensional model problem with weakened element B, and (b)
constitutive behaviour of element A and element B.

To simulate localization, we assume the yield stress y0 in element B to be a little bit smaller
than in element A. We are interested now in the constitutive response of the composite
and do a strain-driven tension test. From zero upward to the strain which belongs to the
yield stress of element B, the constitutive relation of the composite equals the constitutive
relation for either elements. This does not hold for the softening region. For this, we look
at an actual total engineering strain ε of the composite, which is given by

ε =
a

L
εa +

b

L
εb , (3.3)

where εa and εb are the actual engineering strains of element A and element B. Now
we impose an increment ∆εb on element B and assume that the new strain causes a
plastification of element B. The incremental constitutive relation of element B reads

∆σ = hE∆εb < 0 .

Because of equilibrium d
dxσ(x) = 0, the stress σ must be constant over the whole composite.

As a result the applied increment ∆εb causes an elastic unloading of element A, and
consequently the change of the engineering strain in element A reads

∆εa =
∆σ

E
= h∆εb < 0 .

Inserting this into the incremental form of (3.3) yields

∆ε =
ha+ b

L
∆εb .

29



3. Application to plasticity with gradient-type softening

Then the incremental constitutive relation of the composite reads by using a = L− b

∆σ = −Eχ∆ε with χ :=
−hL

b(1− h) + hL
.

Here it is important to note, that the incremental stress depends on the length b of the
softening element B. Physically spoken this element forms a damaged zone. In contrast,
the element A remains in the elastic region since its yield stress is not exceeded. The
crucial point here is, that the length b of the damaged zone is not known. So far we have
an infinite number of solutions, see Figure 3.6.

σ

y0

ε
1

E

ε0

a©

b©
c©d©

1
−Eχ

Figure 3.6. Constitutive behaviour of the composite. Since b remains undetermined, we
obtain an infinite number of solutions for the softening regime: a© χ = 0, b©
χ > 0, c© χ→ ±∞ and d© −1 > χ > −∞.

The first problem is in the offing. If we do a simulation by the finite element method, the
plastic zone cannot spread over the weakened element, the size of which in fact corresponds
to the length b. Accordingly, the stress response of the composite is mesh-dependent and
the line representing the softening range of the stress-strain diagram will rotate clockwise
about the point (ε0, y0) by using finer and finer meshes. The mathematical reason for
this lies in the loss of ellipticity of the governing differential equations, see [28] and the
references therein.
But not only a numerical problem occurs. Of course every material has defects and some
regions tolerate more strain than others before plastification takes place. Because in our
example the local strains are uniformly distributed up to the yield stress, the weakest
region of our composite (element B) is the first one which reaches the softening range.
Corresponding to the above discussion it is also the only one, since all other “stronger”
regions (element A) undergo an elastic unloading. Of course the weakest region can be
arbitrarily small (b → 0), which means, that the corresponding softening branch can be
arbitrarily close to the elastic line in the stress-strain diagram (χ→ −1), see again Figure
3.6. Not only that softening zones of negligible thickness are not observed in experiments,
such arbitrarily small zones do not effect energy dissipation. In order to describe softening
zones of finite thickness a nonlocal continuum theory is used, which is presented in the
next subsection.

3.2.2. Softening bar: nonlocal theory

We again look at the same bar with length L, but with the difference that we do not
decompose it into two elements with slightly different yield stresses. Instead we identify
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the point P1 to be weakest location of the material, see Figure 3.7(a). Again we assume
the constitutive behaviour of the bar to be linear in the elastic range and to be also linear
in the softening regime, see Figure 3.7(b). Because of the uniformity of the local elastic
strain, the point P1 will plastify at first.

L

σ

x̃

x
P1 P2

(a)

σ

ε

y0

1

E

ε0

1
hE

∆ε
∆σ

ε∗

(b)

Figure 3.7. (a) One-dimensional model problem with spreading out softening zone of
length 2x̃, and (b) constitutive behaviour of the bar.

Doing a strain driven tension test, we can write for the stress after exceeding the yield
limit

σ = y0 + ∆σ with ∆σ < 0 . (3.4)

As it will be seen later, it is convenient to express this relation in terms of the global
plastic strain εp. For this we additively decompose the total engineering strain ε = εp+εe,
where εe denotes the global elastic strain, which equals the local one in every point of the
specimen. Together with the incremental relations ∆σ = E∆εe and ∆σ = hE∆ε we
obtain

∆εe = h∆ε and ∆εp = (1− h)∆ε ,

and consequently we can write the incremental stress in terms of the incremental plastic
strain as

∆σ =
hE

1− h∆εp . (3.5)

Since in (3.4) the strain increment is counted from ε0, see again Figure 3.7(b), we can say
∆εp = εp, and inserting (3.5) into (3.4) yields

σ = y0 +
hE

1− hε
p ,

or in terms of ε∗ := −1−h
hE y0

σ = y0

(
1− εp

ε∗

)
. (3.6)

Note that this statement is a global one. However since the tensile stress σ is constant
over the whole specimen, (3.6) also holds locally for the softening region. So far there is
no difference to the local theory treated in the last subsection. To enforce the softening
region to spread over, and in fact not to remain in the weakened finite element, we do a
gradient-type expansion of the plastic strain, i.e.

εp∇(x) := εp(x) + l2
[

d

dx
εp(x)

]2

,

where the micro-scale parameter l ∈ R+ has the dimension of a length. Replacing the
plastic strain in the local version of (3.6) by the nonlocal representation εp∇, gives a
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nonlinear and inhomogeneous ordinary differential equation in εp:

l2
[

d

dx
εp(x)

]2

+ εp(x) =

(
1− σ

y0

)
ε∗ .

For l = 0 we simply get the solution

εp(x) =

(
1− σ

y0

)
ε∗ ,

which provides the local plastic strain to be constant over the whole softening region. For
l > 0 the solution reads

εp(x) =

(
1− σ

y0

)
ε∗ − 1

4

x2

l2
, (3.7)

and we see that the plastic strain field is not uniform in this case. At the beginning of
the softening (σ = y0), the plastic strain εp is just zero at the softening’s origin P1 to
which the coordinate x = 0 belongs. We are interested in the size of the softening zone
subject to a given load σ. Since εp must be positive, the nonlocal solution (3.7) is valid
for −x̃ ≤ x ≤ +x̃, where x̃ is obtained from the condition εp(x̃) = 0. This gives

x̃ = 2l

√(
1− σ

y0

)
ε∗ .

We see that for l = 0 the softening zone remains at x = 0 for all values of σ and does not
spread out. The plastic strain over the whole specimen for l = 0 can then be written by
a Dirac-distribution as

εp(x) =

(
1− σ

y0

)
ε∗δ(x) .

On the other hand for l > 0 the softening zone becomes broader and broader with
increasing strain increment, and x̃ reaches a maximal value at ε = ε∗, where σ = 0,
of

x̃max = 2l
√
ε∗ .

To understand the mechanism behind the spreading of the softening zone in case of the
nonlocal theory, we look at the point P1 and at another point P2, see again Figure 3.7(a).
Initially the point P2 unloads elastically until the gradient-type plastic strain, which, due to
the gradient, can be relatively high, causes a sufficient reduction of the term y0

(
1− εp∇/ε∗

)
,

see (3.6), such that the yield function

ϕ(σ, εp∇) := σ − y0

(
1− εp∇

ε∗

)
becomes zero at a stress smaller than y0. Consequently the softening branch of point P2 is
shifted downward in parallel to the softening branch of point P1 in the local stress strain
diagram, see Figure 3.8.

3.3. Yield Criterion

To decide when a plastic state is reached we need a yield criterion. Such a yield criterion
is conceptionally derived from physical assumptions, which are, depending on the material
under focus, more or less confirmed by experiments. Hence, there does not exist a master
criterion which provides good results for every type of material. Our focus lies on metals
for which the von-Mises yield criterion is commonly used. A great advantage of this
criterion lies undoubtfully in its simple structure.
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σ

y0

ε
ε0

P1

P2

Figure 3.8. Local constitutive behaviour of points P1 and P2, where P1 is the activator of
the softening zone.

3.3.1. General remarks

We assume the material under focus to be isotropic and ignore for the present hardening
and softening, respectively. Because of isotropy any yield function ϕ can only depend on
the invariants of the stress tensor σ given by

J
(1)
σ = tr[σ] , J

(2)
σ =

1

2

[
(tr[σ])2 − tr[σ2]

]
, J

(3)
σ = det[σ] ,

see e.g. [12]. In terms of the principal normal stresses σ11, σ22 and σ33, they simply read

J
(1)
σ = σ11 + σ22 + σ33 , J

(2)
σ = σ11σ22 + σ22σ33 + σ33σ11 , J

(3)
σ = σ11σ22σ33 .

One should notice the symmetry of the three invariants in the three principal normal
stresses, which means that they are not changed by a permutation of σ11, σ22 and σ33.
It is useful to decompose the stress tensor into its hydrostatic part σhyd and into its
deviatoric part s:

σ = σhyd + s .

A hydrostatic stress state is characterized by vanishing shear stresses and is given by

σhyd = pI with p :=
1

3
(σ11 + σ22 + σ33) =

1

3
tr[σ]

being the mean or hydrostatic pressure and with I denoting the second order unity tensor.
Consequently the remaining deviatoric stress tensor, which contains the shear stresses, can
be written as

s = σ − 1

3
tr[σ]I .

This motivates the general definition of a deviator of a second order tensor:

dev[·] := [·]− 1

3
tr[·]I .

For metals, which are our considered materials here, it is known from experiments, that
the influence of a hydrostatic stress state on plastic deformation is negligible. Therefore,
in the yield function the invariants of the stress tensor can be replaced by the invariants
of the deviatoric stress tensor

J
(1)
s = s11 + s22 + s33 , J

(2)
s = s11s22 + s22s33 + s33s11 , J

(3)
s = s11s22s33 .
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Since J
(1)
s = 0, we conclude

ϕ = ϕ(J
(2)
s , J

(3)
s ) .

The yield surface itself is given by ϕ(J
(2)
s , J

(3)
s ) = 0. A further consequence of the

independence of plastic states on σhyd concerns the plastic strains itself. Since dilatation
is due to a hydrostatic stress state, we conclude it to be an elastic deformation and hence,
plastic deformation does not come along with volumetric changes, i.e.

tr[εp] = 0 , (3.8)

because we are assuming small strains here.
Considering the yield surface to lie in the space of principal normal stresses, we can observe
some geometrical properties, see Figure 3.9(a). Let a stress state S = (σ11, σ22, σ33)
be given, which lies on the yield surface. The vector OS, pointing from the origin
O to point S, can additively be decomposed into OS = OD + DS, where D =
(s11, s22, s33) contains the principle deviatoric normal stresses and where DS represents

the hydrostatic stress state (p, p, p)T . Because of J
(1)
s = 0 the vector OD must always

lie in the plane E : σ11 + σ22 + σ33 = 0 (called deviator plane) with normal vector
n = (1/

√
3, 1/
√

3, 1/
√

3)T . The vector DS is parallel to the line σ11 = σ22 = σ33 and is
therefore perpendicular to E . Since plasticity is unaffected by hydrostatic stress states, we
can conclude that the yield surface is a cylindrical surface with a template lying in E and
a generatrix being normal to E . Consequently it is sufficient for further considerations to
look at the template itself.

σ22

σ11

σ33

O

D

S

E

σ11 = σ22 = σ33

(a)

s33

s22s11

E

O

S

(b)

Figure 3.9. (a) Yield surface in space of principal normal stresses [10] and (b) allowed
template of the yield surface [10].

Some characteristics of the template can be derived from physical properties of the
material, see Figure 3.9(b). First of all the assumed isotropy results in a symmetry of the
template about the s11-, s22- and s33-axis. Secondly the template does not go through the
origin O since a purely hydrostatic stress state causes no plastic deformations. And thirdly,
by assuming that the material’s behaviour is the same under tension and compression, i.e.
we do not take Bauschinger’s effect into account, we can follow, that, starting from a
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plastic state on the template, unloading and reloading into the opposite direction along a
straight line going through the origin O, leads to a state on the template which has the
same distance from the origin as the original plastic state. Therefore, the template is also
symmetrical about straight lines perpendicular to the s11-, s22- and s33-axis. Finally it
should be mentioned again, that the template must be convex in order to fulfil inequality
(3.2).

3.3.2. Von-Mises yield criterion

The von-Mises yield criterion bases on the assumption, that the comparison stress σV can
be obtained by the postulation, that the octahedral shear stress of the complex loaded
body equals the octahedral shear stress of the tensile loaded specimen used in tension
tests. The octahedral shear stress is

τoct :=
1

3

√
2[J

(1)
σ ]2 − 6J

(2)
σ ,

see [5], and is an invariant quantity. It reads in terms of the principal normal stresses

τoct =
1

3

√
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 .

The reduction to the one-dimensional case σ1 = σV and σ2 = σ3 = 0 gives

[τoct]1d =

√
2

3
σV ,

and the above mentioned postulate τoct = [τoct]1d yields the comparison stress

σV =

√
1

2
[(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2] .

With this at hand, we define the yield function as ϕ(σ) := σV − y0. For non-viscous
materials a plastic state is reached if, and only if, ϕ = 0, whereas for viscous materials
plastic states are characterized by ϕ being greater than zero and being equal zero in the
asymptotic limit. Using the invariants of the stress tensor σ, the yield function can be
expressed as

ϕ(J
(1)
σ , J

(2)
σ ) =

√
[J

(1)
σ ]2 − 3J

(2)
σ − y0 .

Since yielding is assumed not to be affected by hydrostatic stress states, it is convenient
to express the yield function in terms of the invariants of the deviatoric stress tensor s.

Again we make use of J
(1)
s = 0 and obtain the relation J

(2)
σ = J

(2)
s + 1

3 [J
(1)
σ ]2. This gives

ϕ(J
(2)
s ) =

√
−3J

(2)
s − y0 ,

and we see, that the yield function only depends on the second invariant of s. Finally,

we will derive a form of the yield function which will be used later on. From [J
(1)
s ]2 =

(s11 + s22 + s33)2 = 0 we get

s2
11 + s2

22 + s2
33 = −2(s11s22 + s22s33 + s33s11)

and hence J
(2)
s = −1

2‖s‖
2
2, where ‖·‖2 denotes the Euclidean matrix norm. Hence, we

obtain for the yield function after a redefinition by the factor
√

2/3

ϕ(s) = ‖s‖2 −
√

2

3
y0 , or ϕ(σ) = ‖dev[σ]‖2 −

√
2

3
y0 .
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3. Application to plasticity with gradient-type softening

With this form at hand we can identify the template of the yield surface in the deviator
plane E as a circle with radius

√
2/3y0 and with midpoint lying in O. The requested

symmetry properties and the convexity are obviously fulfilled, see Example 2 in Appendix
A. Finally, we verify the von-Mises yield function by checking the condition of plastic
incompressibility (3.8) in its infinitesimal form. Looking at (1.19)2 and (1.24), respectively,
we have

tr[dεp] ∝ tr[∂σϕ(σ)] .

According to (3.12) we get tr [∂σ‖dev[σ]‖2] = 0, and together with its symmetry properties
and convexity, we identify the von-Mises yield criterion to be physically reasonable.

Remark 8. We obtain the same yield surface if we postulate, that the comparison stress
can be derived by setting the strain energy of distortion of the complex loaded body
equal to the strain energy of distortion of the tensile loaded specimen. This is known as
hypothesis of Huber-Hencky, see [6].

3.3.3. Incorporation of hardening and softening

So far we ignored the effect of hardening and softening, respectively. For simplicity we
will only look at isotropic hardening/softening1, which means that the template of the
yield surface is blown up (hardening) or shrunken (softening) by keeping its shape, i.e. its
convexity and symmetries, and its origin. In case of the von-Mises criterion this means,
that the radius of the circle lying in E becomes larger (hardening) or lower (softening).
Mathematically speaking we extend the dependency of the yield function by internal
variables describing the hardening/softening of the material. Since only the yield stress
y0 is affected by the internal variables, we can take into account hardening and softening
by a single scalar quantity α, and we can split the yield function in the following way:

ϕ(σ, α) = F (σ)− f(α) .

To clear the physical meaning of α, let us first look at the one dimensional case with a
tensile loaded specimen made out of a metal following a linear hardening law, see Figure
3.2(b) and Figure 3.2(c). Defining the material parameter H := hE, we write

F (σ) = |σ| and f(α) = y0 +Hα ,

with H > 0 for hardening and H < 0 for softening. Clearly, for the one-dimensional case,
the internal variable α equals the plastic strain εp. The situation is a bit more complicated
for the multi-axial case. We need a scalar quantity, which, depending on the plastic strain
tensor εp, changes the yield stress y0. We define, see [15],

α :=

∫ t

0

√
2

3
ε̇p : ε̇p dt̄ , (3.9)

and call this quantity equivalent plastic strain. From this definition we see, that α̇ = 0
whenever ε̇p = 0, and α̇ > 0 whenever ε̇p 6= 0. The factor 2/3 comes from the above
observation, that in the one-dimensional case α̇ = |ε̇p|. This should be checked here: for
a specimen of which the material is isotropic and plastically incompressible, the plastic
strain rate tensor reads

ε̇p =

 ε̇p 0 0
0 −1

2 ε̇
p 0

0 0 −1
2 ε̇
p

 ,
1Kinematic hardening is related to Bauschinger’s effect, which was not taken into account when discussing

the geometrical properties of the yield surface’s template.
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3. Application to plasticity with gradient-type softening

and we obtain
√

2
3 ε̇

p : ε̇p = |ε̇p| by direct calculation.

As an example we finally look at von-Mises plasticity. Incorporation of a linear hardening
law gives

ϕ(σ, α) = ‖dev[σ]‖2 −
√

2

3
(y0 +Hα) , (3.10)

with α being defined in (3.9).

3.4. Von-Mises plasticity with gradient-type softening

In this section the gradient-extended theory presented in Chapter 2 will be applied to
von-Mises plasticity at small strains for the rate-dependent case. We will set up the
governing strong form of the problem and specify the extended internal rate potential per
unit volume π∗τη . Finally we will derive an update algorithm for the local plastic strains.

3.4.1. Governing equations

In a first step we have to specify the constitutive state, i.e. the generalized internal
variables ǔ, and the local internal variables I. Beside the macroscopic displacement field
u we introduce a scalar hardening field α serving as a generalized internal variable, which
has, at the moment, nothing to do with the equivalent plastic strain. Furthermore the
macroscopic plastic strain εp serves as a local internal variable. Together we have

ū = {u} , ǔ = {α} and I = {εp} ,

and the constitutive state reads
c = {u, α,∇α} .

We ignore dissipative macroscopic stresses represented by F̄ and take only thermodynamic
driving forces conjugate to α and εp into account, i.e.

f̌ =: {β} and F =: {B} .

Looking at Table 2.1, we need to specify the free energy ψ. We decompose it additively
as

ψ(c, εp) = ψ̄loc(ε
e(ε, εp)) + ψ̌loc(α) + ψ̌non(∇α) ,

where ψ̄loc describes the elastic macroscopic distortion with εe = ε − εp, ψ̌loc the local
microscopic hardening/softening process, and ψ̌non the nonlocal microscopic harden-
ing/softening process. The single terms take the specific form

ψ̄loc(ε
e(ε, εp)) =

1

2
κ(tr[εe(ε, εp)])2 + µ‖dev[εe(ε, εp)]‖22 ,

ψ̌loc(α) =
1

2
Hα2 ,

ψ̌non(∇α) =
1

2
µl2‖∇α‖22 ,

where κ denotes the bulk modulus, µ the shear modulus, H the isotropic hardening
modulus, and l a length scale parameter, see Figure 2.1. To evaluate the macroscopic
equilibrium, the microscopic balance equation and the conjugate problem for the local
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3. Application to plasticity with gradient-type softening

internal variable εp, we need the derivatives ∂εψ, ∂εpψ, ∂αψ and ∂∇αψ, see Table 2.1.
Using the condition of plastic incompressibility tr[εp] = 0, we can write

‖dev[εe]‖22 =
3∑
i=1

(
εii − εpii −

1

3
tr[ε]

)2

+
3∑

i,j=1
i 6=j

(εij − εpij)2

and calculate

∂

∂εii
‖dev[εe]‖22 =

4

3

(
εii − εpii −

1

3
tr[ε]

)
− 2

3

3∑
j=1,j 6=i

(
εjj − εpjj −

1

3
tr[ε]

)

= 2

(
εii − εpii −

1

3
tr[ε− εp]

)
= − ∂

∂εpii
‖dev[εe]‖22 ,

∂

∂εij
‖dev[εe]‖22 = 2(εij − εpij) = − ∂

∂εpij
‖dev[εe]‖22 for i 6= j .

Furthermore ∂ε tr[ε] = I and hence we get

∂εψ = κ tr[ε]I + 2µdev[ε− εp] ,
∂εpψ = −2µdev[ε− εp] .

The remaining derivatives read

∂αψ = Hα and ∂∇αψ = µl2∇α .

For the evolution laws the yield function ϕ must be specified. An adapted version of the
von-Mises yield function (3.10) reads in space of thermodynamic driving forces B as

ϕ(B, β) = ‖dev[B]‖2 −
√

2

3
(y0 − β) , (3.11)

where isotropic hardening is modelled by the scalar force −β. It will be seen later in this
section, that the minus sign before β is in agreement with the plus sign before the term
Hα in (3.10). Now we need to calculate the derivatives ∂βϕ and ∂Bϕ, see again Table 2.1.
They read

∂βϕ =

√
2

3
and ∂Bϕ =

dev[B]

‖dev[B]‖2
.

To follow the result of the derivative of ϕ witch respect to B, we have by the chain rule

∂

∂Bii
‖dev[B]‖2 =

1

‖dev[B]‖2

(
Bii −

1

3
tr[B]

)
,

∂

∂Bij
‖dev[B]‖2 =

1

‖dev[B]‖2
Bij for i 6= j .

(3.12)

Remark 9. The expression

N := ∂Bϕ(B, β) =
dev[B]

‖dev[B]‖2
(3.13)

can be seen as the direction of the evolution of the plastic strain and lies “normal” to the
yield surface.
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3. Application to plasticity with gradient-type softening

Macroscopic equilibrium:
−div[κ tr[ε]I + 2µ dev[ε− εp]]− ρf̄B = 0 in B

u = ūD on ∂Bū

t = t̄N on ∂Bt̄

Microscopic balance equation:
−µl2∇2α+Hα+ β = 0 in B

∇α · n = 0 on ∂B

Conjugate problem for local plastic strains:
−2µdev[ε− εp] +B = 0 in B

Evolution equations for hardening field and local plastic strains:

α̇ = 1
η 〈‖dev[B]‖2 −

√
2
3(y0 − β)〉

√
2
3 in B

α(t = 0) = 0 in B

ε̇p = 1
η 〈‖dev[B]‖2 −

√
2
3(y0 − β)〉N in B

εp(t = 0) = 0 in B

Table 3.1. Strong form of rate-dependent coupled system of equations for von-Mises
plasticity with gradient-type hardening/softening.

The fully coupled system of equations is summarized in Table 3.1, where we set f̌B = 0
and choose ∇α · n = 0 on the whole boundary ∂B.
Taking the Euclidean matrix norm of the evolution equation for local plastic strains gives
with ‖N‖2 = 1

‖ε̇p‖2 =
√
ε̇p : ε̇p =

1

η
〈‖dev[B]‖2 −

√
2

3
(y0 − β)〉 ,

and we see from the evolution law for the hardening variable that

α̇ =

√
2

3
ε̇p : ε̇p .

A comparison with the definition (3.9) yields, that the hardening variable α indeed
corresponds to the equivalent plastic strain.
Furthermore, it is worth looking at the microscopic balance equation. For l = 0 the
Laplacian vanishes and we get Hα = −β. Inserting this into the yield function (3.11) and
comparing with (3.10), explains the subtraction of β from y0 in the bracket of (3.11).

Next we do a time discretization of the equations summarized in Table 3.1. Applying
the result given in Table 2.2, we obtain the time discrete form of the coupled strong
formulation, see Table 3.2, where again the subindex n+ 1, standing for the evaluation at
time tn+1, is omitted and τ = tn+1 − tn.
We see, that the consistent integration algorithm results in an implicit Euler scheme for
the evolution equations of gradient-type von-Mises plasticity. The reason for this lies in
the fact, that the von-Mises yield function (3.11) does not depend on the plastic strains
εp and on the constitutive state c explicitly. One should remember, that the consistent
integration algorithm comes from the time incrementation of the internal rate potential
per unit volume. Identifying the extended constitutive state (2.13) as

c∗(u∗) = {ε, α,∇α, β} with u∗ = {u, α, β} ,
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3. Application to plasticity with gradient-type softening

Macroscopic equilibrium:
−div[κ tr[ε]I + 2µ dev[ε− εp]]− ρf̄B = 0 in B

u = ūD on ∂Bū

t = t̄N on ∂Bt̄

Microscopic balance equation:
−µl2∇2α+Hα+ β = 0 in B

∇α · n = 0 on ∂B

Conjugate problem for local plastic strains:
−2µdev[ε− εp] +B = 0 in B

Evolution equations for hardening field and local plastic strains:

α = αn + τ
η 〈‖dev[B]‖2 −

√
2
3(y0 − β)〉

√
2
3 in B

α0 = 0 in B

εp = εpn + τ
η 〈‖dev[B]‖2 −

√
2
3(y0 − β)〉N in B

εp0 = 0 in B

Table 3.2. Time discrete strong form of rate-dependent coupled system of equations for
von-Mises plasticity with gradient-type hardening/softening.

and the set (2.14) of local internal variables together with its dual forces as

s = {εp,B} ,

we can, according to (2.15), write the time incremental extended internal rate potential
per unit volume as

π∗τη (c∗, c∗n, s, sn) =
1

2
κ(tr[ε])2 + µ‖dev[ε− εp]‖22 +

1

2
Hα2 +

1

2
µl2‖∇α‖22

− 1

2
κ(tr[εn])2 − µ‖dev[εn − εpn]‖22 −

1

2
Hα2

n −
1

2
µl2‖∇αn‖22

+ β(α− αn) +B : (εp − εpn)− τ

2η
〈ϕ(B, β)〉2 .

Taking a closer look at the equations summarized in Table 3.2, we see, that for a given
total strain ε, we can solve the local pair s by a decoupled subproblem formed by the
conjugate problem for local plastic strains and the time discrete evolution problem for
local plastic strains. A solution algorithm is derived in the next subsection.

3.4.2. Update algorithm for local plastic strains

We look at the following decoupled subproblem to find εp and B for ε being given:

− 2µdev[ε− εp] +B = 0 , (3.14)

εp = εpn +
τ

η
〈‖dev[B]‖2 −

√
2

3
(y0 − β)〉N , (3.15)

where also the actual plastic flow direction N is an unknown quantity. By considering
plastic incompressibility, we first of all observe

tr[B] = 2µ (ε11 + ε22 + ε33 − tr[ε]− εp11 − εp22 − εp33) = 0 ,
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3. Application to plasticity with gradient-type softening

which allows (3.14) to be written as

dev[B] = 2µdev[ε− εp] . (3.16)

From (3.15) we get

dev[εp] = dev[εpn] + ∆γN with ∆γ :=
τ

η
〈‖dev[B]‖2 −

√
2

3
(y0 − β)〉 (3.17)

being the plastic consistency parameter. Inserting this into (3.16) gives

dev[B] = 2µdev [ε− εpn]︸ ︷︷ ︸
=:dev[Btr]

−2µ∆γN , (3.18)

with dev[Btr] being the deviatoric trial thermodynamic driving force, which only consists
of known values. Introducing the trial direction of plastic flow

N tr :=
dev[Btr]

‖dev[Btr]‖2
,

we can write (3.18) as

‖dev[B]‖2N =
∥∥dev[Btr]

∥∥
2
N tr − 2µ∆γN , (3.19)

where for the term on the left hand side we made use of (3.13). Taking the Euclidean
matrix norm of (3.18) yields with ‖N‖2 = 1

‖dev[B]‖2 =
∥∥dev[Btr]

∥∥
2
− 2µ∆γ , (3.20)

and by a comparison with (3.19) the yet unknown direction of plastic flow N can be
identified as

N = N tr . (3.21)

Hence, only the plastic consistency parameter remains unknown. By inserting (3.20) into
the definition of ∆γ given in (3.17), we get a linear equation in ∆γ:

∆γ =
τ

η
〈
∥∥dev[Btr]

∥∥
2
− 2µ∆γ −

√
2

3
(y0 − β)︸ ︷︷ ︸

=ϕ(B,β)

〉 . (3.22)

Assuming ϕ > 0, the trial solution ∆̃γ of (3.22) reads

∆̃γ =
τ

2µτ + η

[∥∥dev[Btr]
∥∥

2
−
√

2

3
(y0 − β)

]
with which we can calculate via (3.18)

dev[B̃] = dev[Btr]− 2µ∆̃γN .

To confirm or confute the trial plastic consistency parameter ∆̃γ, we have to check
backwards and obtain the plastic consistency parameter as

∆γ =

{
∆̃γ if ϕ(B̃, β) > 0 ,

0 if ϕ(B̃, β) < 0

with which the actual plastic strain εp can be computed via (3.17).

Remark 10. Looking at (3.18) we see, that the trial state is corrected by a term with
“direction” N . Because of (3.21), the direction of plastic flow N , embedded in the space
of principal deviatoric thermodynamic driving forces, is radial to the template of the von-
Mises yield surface, see Figure 3.10. Therefore the presented update algorithm can be
seen as a radial-return algorithm.
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[dev[B]]11 [dev[B]]22

[dev[B]]33

dev[Btr]

N

ϕ < 0

ϕ > 0

ϕ = 0

dev[B]
−2µ∆γN

Figure 3.10. Radial-return algorithm.

3.4.3. Generalized stresses and material tangent moduli

In order to evaluate the stiffness matrix and the vector of internal forces, we have to
compute the material tangent moduli and the vector of generalized stresses at every
integration point. For this we switch to Voigt’s notation. Since we are only considering
plane strain problems in our numerical examples, we write

c∗h = {ε11h, ε22h, ε12h, ε21h, αh,∇αh, βh} and u∗h = {u1h, u2h, αh, βh} , (3.23)

where we do not consider the symmetry of the strain tensor. Following the notation used
in Section 2.4, the nodal values of the node with global number j are

d∗j =
{
ūj , ǔj , fj

}
with ūj = [d1

j , d
1
j ]
T being the nodal macroscopic displacements, ǔj = αj being the nodal

hardening variable and fj = βj being the nodal conjugate force.

As defined in (2.21) and already given in (2.17), the vector of generalized stresses σ∗k is

σ∗k =


[∂εhπ

∗τ
ηh]4×1

∂αhπ
∗τ
ηh

∂∇αhπ
∗τ
ηh

∂βhπ
∗τ
ηh


k

=


[∂εhψ]4×1

∂αhψ + βh
∂∇αhψ

αh − αnh −m
[
τ
ηϕ(B, βh)∂βhϕ(B, βh)

]

k

,

with

m :=

{
1 if ϕ(B, βh) > 0 ,

0 if ϕ(B, βh) < 0 .
(3.24)

The emerging derivatives, which have already been calculated, are

∂εhψ = κ tr[εh]I + 2µ dev[εh − εp] ,
∂αhψ = Hαh + βh ,

∂∇αhψ = µl2∇αh ,

∂βhϕ =

√
2

3
.
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The needed values αh and βh in the integration points are calculated via an element-wise
interpolation of the nodal values αj and βj , which are actually known from d∗k = d∗k−1 +
∆d∗k−1. Similarly we get εh and ∇αh by just considering the appropriate derivatives,
which are concluded in the B∗ matrix2. The local variables εp and B are obtained by
the update algorithm derived in the last subsection. Here one has to be very careful in
the calculation of

∥∥dev[Btr]
∥∥

2
since the defined deviatoric operator just makes sense for a

3× 3 array. Therefore we have to expand the 2× 2 arrays εh and εp by one row and one
column containing zeros. We obtain [dev[B]]33 6= 0, which means, that, although we are
doing a two-dimensional calculation here, the thermodynamic driving forces Btr and B,
respectively, must be treated as 3× 3 arrays.
Voigt’s notation transforms every quantity, which can be represented by a two-dimensional
array, in a one-dimensional array: [·]11 [·]12 [·]13

[·]21 [·]22 [·]23

[·]31 [·]32 [·]33

 [[·]11 , [·]22 , [·]33 , [·]12 , [·]23 , [·]31 , [·]21 , [·]32 , [·]13]T ,

e.g. [
1 0
0 1

]
 1 :=


1
1
0
0


Then we can conclude

[∂εhψ]4×1 = κ tr[εh]1 + 2µ


[dev[εh − εp]]11

[dev[εh − εp]]22

[dev[εh − εp]]12

[dev[εh − εp]]21

 ,
where again it should be noted, that [dev[εh − εp]]33 6= 0, which identifies the stress σ33h

to be nonzero for the plane strain case.

Furthermore, for the realization of the Newton-Raphson scheme, we need to compute
the material tangent moduli. They read

C∗k =


[∂2
εhεh

π∗τηh]4×4 [0]4×1 [0]4×3 [∂2
εhβh

π∗τηh]4×1

[0]1×4 ∂2
αhαh

π∗τηh [0]1×3 1

[0]2×4 [0]2×1 ∂2
∇αh∇αhπ

∗τ
ηh [0]2×1

[∂2
βhεh

π∗τηh]1×4 1 [0]1×3 ∂2
βhβh

π∗τηh


k

. (3.25)

As mentioned in Remark 5, it is important here to consider the dependencies of the local
fields εp and B on the global ones, specialized by the local update algorithm. Let us first
look at the elastic case for which m = 0 and dev[εp] = 0, and hence no local fields occur.
Then, by using

∂εh dev[εh − εpn] = I− 1

3
I ⊗ I =: P

2For εh also the matrix A is needed, which will be constructed in the next subsection.
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with (I)ijkl := δijδkl being a fourth order unity tensor, where the symmetry of ε has not
been taken into account, the unknown terms in (3.25) read

∂2
εhεh

π∗τηh = κI ⊗ I + 2µP ,
∂2
αhαh

π∗τηh = H ,

∂2
∇αh∇αhπ

∗τ
ηh = µl2I , (3.26)

∂2
βhβh

π∗τηh = 0 ,

∂2
εhβh

π∗τηh = 0 .

Remark 11. When explicitly using the symmetry of a symmetric tensor of second order
P , i.e. Pij = Pji, we have ∂PP = Is with (Is)ijkl := 1

2(δikδjl + δilδjk) being the symmetric
fourth order unity tensor.

If we reach the plastic state (m = 1), some components in (3.26) have to be corrected by
additional terms, i.e.

∂2
εhεh

π∗τηh = κI ⊗ I + 2µP− 2µ∂εh dev[εp(εh, βh)] ,

∂2
βhβh

π∗τηh = −τ
η

√
2

3
∂βhϕ(B(εh, βh), βh) ,

∂2
εhβh

π∗τηh = −2µ∂βh dev[εp(εh, βh)] .

From the local update algorithm we conclude

dev[εp] = dev[εpn] +
τ

2µτ + η

[
2µ‖dev[εh − εpn]‖2 −

√
2

3
(y0 − βh)

]
dev[εh − εpn]

‖dev[εh − εpn]‖2
,

ϕ =
∥∥dev[Btr]

∥∥
2
− 2µτ

2µτ + η

[∥∥dev[Btr]
∥∥

2
−
√

2

3
(y0 − βh)

]
−
√

2

3
(y0 − βh) .

With

∂εh‖dev[εh − εpn]‖2 =
dev[εh − εpn]

‖dev[εh − εpn]‖2
=

dev[Btr]

‖dev[Btr]‖2
= N tr

we obtain

∂εh dev[εp(εh, βh)] =
2µτ

2µτ + η
N tr ⊗N tr −∆γ

2µdev[Btr]

‖dev[Btr]‖22
⊗N tr +

∆γ

‖dev[εh − εpn]‖2
P

=
2µτ

2µτ + η
N tr ⊗N tr +

2µ∆γ

‖dev[Btr]‖2
(P−N tr ⊗N tr) .

Furthermore

∂βhϕ(B(εh, βh) = − 2µτ

2µτ + η

√
2

3
+

√
2

3
=

√
2

3

η

2µτ + η

and

∂βh dev[εp(εh, βh)] =

√
2

3

τ

2µτ + η
N tr .

Finally the according components of the material tangent moduli (3.25) read in Voigt’s
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notation

[∂2
εhεh

π∗τηh]4×4 = κ11T + 2µ[P]4×4

−m
[

4µ2τ

2µτ + η
[N tr]4×1[N tr]T4×1 +

4µ2∆γ

‖dev[Btr]‖2
([P]4×4 − [N tr]4×1[N tr]T4×1)

]
,

∂2
αhαh

π∗τηh = H ,

∂2
∇αh∇αhπ

∗τ
ηh = µl2I ,

∂2
βhβh

π∗τηh = m

(
−2

3

τ

2µτ + η

)
,

[∂2
εhβh

π∗τηh]4×1 = m

(
−
√

2

3

2µτ

2µτ + η
[N tr]4×1

)
,

where [P]4×4 = [I]4×4 − 1
311T , and m being defined in (3.24).

3.4.4. Finite element matrices

For our numerical examples, given in the next chapter, we will discretize the two-
dimensional domain by quadrilaterals of first order. The shape functions are

h1(ξ) =
1

4
(1 + ξ1)(1 + ξ2) ,

h2(ξ) =
1

4
(1− ξ1)(1 + ξ2) ,

h3(ξ) =
1

4
(1− ξ1)(1− ξ2) ,

h4(ξ) =
1

4
(1 + ξ1)(1− ξ2) .

(3.27)

For the row matrix d∗e, which contains the macroscopic nodal displacements, the nodal
hardening variable and its nodal conjugate force, we choose the ordering

d∗e =
[
d1

1 , d
2
1 , α1 , β1 , . . . , d

1
4 , d

2
4 , α4 , β4

]eT
.

Then, under consideration of the ordering of u∗h given in (3.23)2, the interpolation matrix
on element level is

H∗e =


h1 0 0 0 . . . h4 0 0 0
0 h1 0 0 . . . 0 h4 0 0
0 0 h1 0 . . . 0 0 h4 0
0 0 0 h1 . . . 0 0 0 h4

 .
Moreover, by looking at the ordering of c∗h given in (3.23)1, the generalized differential
operator matrix reads

D∗ =



∂
∂x1 0 0 0

0 ∂
∂x2 0 0

1
2

∂
∂x2

1
2

∂
∂x1 0 0

1
2

∂
∂x2

1
2

∂
∂x1 0 0

0 0 1 0

0 0 ∂
∂x1 0

0 0 ∂
∂x2 0

0 0 0 1


.
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x2

x1

ξ1

ξ2

ξ1 = −1 ξ1 = 1

ξ2 = −1

ξ2 = 1
12

3 4

I, J
i, j

(F )i I = (Je)i I

Figure 3.11. Transformation from parameter space to physical space. The local node
numbers of the bi-unit square are in agreement with the numbering of the
shape functions (3.27).

With this at hand, we can calculate B∗e = D∗H∗e at every integration point. For the
determination of the sub stiffness matrices given in (2.29), we else need the interpolation
matrix A for the enhanced strains eε. Note, that the interpolation of eε must be
constructed in such a way, that the orthogonality condition (2.26) is fulfilled. For this, as
it will be seen soon, it is easier to do a transformation of the element enhanced strains
from physical space to parameter space represented by the bi-unit square in the natural
coordinate system, i.e.

eεe =:
Je(0)

Je(ξ)
[Je(0)]−TEe(ξ)[Je(0)]−1 , (3.28)

where Ee(ξ) denotes the element enhanced strains on the bi-unit square, Je(ξ) the Jacobi
matrix

Je(ξ) :=
∂

∂ξ
xeh(ξ) =

 ∂x1e
h

∂ξ1

∂x1e
h

∂ξ2

∂x2e
h

∂ξ1

∂x2e
h

∂ξ2


and Je(ξ) the Jacobian Je(ξ) := det[Je(ξ)].

Remark 12. The transformation (3.28) is motivated by the transformation law of
covariant second order tensors, see [12] or [26]:

(eε)ij = (F−T ) I
i (E)IJ(F−1)Jj

with the “deformation gradient”

(F )i I :=
∂xi

∂ξI
, (3.29)

see Figure 3.11.

Remark 13. As mentioned in [30], the evaluation of the Jacobi matrices in (3.28) at
the center of the bi-unit square comes from the requirement of the transformation to be
invariant. The arising Jacobians are just weighting factors.

Moreover, we do a similar transformation of the element stresses σe from the physical
space to the parameter space, i.e.

σe =: Je(0)Σe(ξ)[Je(0)]T , (3.30)

with Σe(ξ) being the element stress tensor defined on the bi-unit square.
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Remark 14. The transformation (3.30) comes from the transformation law of contravari-
ant second order tensors, see again [12] or [26]:

(σ)ij = (F )i I(Σ)IJ(F T )Jj ,

where F again denotes the deformation gradient (3.29).

By taking the inner product of the discrete stress tensor and the discrete enhanced strain
tensor,

σeh : eεeh =
Je(0)

Je(ξ)
Je(0)Σe

h(ξ)[Je(0)]T : [Je(0)]−TEe
h(ξ)[Je(0)]−1

=
Je(0)

Je(ξ)
[Je(0)]−1Je(0)Σe

h(ξ)[Je(0)]T : Ee
h(ξ)[Je(0)]−1

=
Je(0)

Je(ξ)
Σe
h(ξ)[Je(0)]T [Je(0)]−T : Ee

h(ξ)

=
Je(0)

Je(ξ)
Σe
h(ξ) : Ee

h(ξ) ,

the orthogonality condition (2.26) can be written on element level as∫
Be
h

σeh : eεeh dv = Je(0)

∫ 1

−1

∫ 1

−1
Σe
h : Ee

h dξ1 dξ2 = 0 , (3.31)

where we have made use of dv = Je(ξ) dξ1 dξ2. Therefore the fulfilment of the
orthogonality condition can be reached by the construction of interpolations in the
parameter space. Again, we will switch to Voigt’s notation, and the transformation (3.28)
can be written in matrix-vector product form as

eε11

eε22

eε12

eε21


e

=
Je(0)

Je(ξ)


J0

11J
0
11 J0

21J
0
21 J0

11J
0
21 J0

11J
0
21

J0
12J

0
12 J0

22J
0
22 J0

12J
0
22 J0

12J
0
22

J0
11J

0
12 J0

21J
0
22

1
2(J0

11J
0
22 + J0

12J
0
21) 1

2(J0
11J

0
22 + J0

12J
0
21)

J0
11J

0
12 J0

21J
0
22

1
2(J0

11J
0
22 + J0

12J
0
21) 1

2(J0
11J

0
22 + J0

12J
0
21)



e

︸ ︷︷ ︸
=:Me


E11

E22

E12

E21


e

,

where the abbreviation J0
iI := [J(0)]i I is used. According to [4] we construct the

interpolation of E on element e as

Ee
h =

1

2

[
aeI ⊗GI(ξ) +GI(ξ)⊗ aeI

]
(summation on I; I=1,2)

with

aeI :=

[
a1
I

a2
I

]e
and G1 :=

[
ξ1 , 0

]
, G2 :=

[
0 , ξ2

]
.

This yields

Ee
h =

1

2

{[
ξ1a1

1 ξ2a1
2

ξ1a2
1 ξ2a2

2

]
+

[
ξ1a1

1 ξ1a2
1

ξ2a1
2 ξ2a2

2

]}e
=

[
2ξ1a1

1 ξ2a1
2 + ξ1a2

1

ξ1a2
1 + ξ2a1

2 2ξ2a2
2

]e
,
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which can be written in matrix-vector product form as
E11h

E22h

E12h

E21h


e

=


ξ1 0 0 0

0 ξ2 0 0

0 0 1
2ξ

1 1
2ξ

2

0 0 1
2ξ

1 1
2ξ

2


︸ ︷︷ ︸

=:T (ξ)


a1

1

a2
2

a2
1

a1
2


e

.

Finally, we obtain in Voigt’s notation

eεeh =
Je(0)

Je(ξ)
M eT (ξ)ae ,

and a comparison with (2.27)1 identifies the element matrix Ae as

Ae(ξ) =
Je(0)

Je(ξ)
M eT (ξ) .

It remains to check the orthogonality condition (3.31). For this we assume for simplicity
the element stresses Σe

h to be element-wise constant:
Σ11
h

Σ22
h

Σ12
h

Σ21
h


e

=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




b1

b2

b3

b4


e

.

Because of ∫ 1

−1

∫ 1

−1
ξ1 dξ1 dξ2 =

∫ 1

−1

∫ 1

−1
ξ2 dξ1 dξ2 = 0 ,

we indeed get with our chosen interpolations

Je(0)

∫ 1

−1

∫ 1

−1
ΣeT
h E

e
h dξ1 dξ2 = 0 for e = 1, . . . ,Me .

Now the sub stiffness matrices (2.29) can be computed by a numerical integration rule.
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To show the regularization provided by the gradient-extended theory, two examples, taken
from [28], have been computed by the enhanced-strain method, namely a bar under tensile
load, and a perforated plate under tensile load. Both problems are monotonically strain
driven. To compare the results obtained from the local and the nonlocal theory, meshes
with different sizes are used, i.e. to show mesh dependency in the local case, and mesh
independency in the nonlocal case. Due to symmetry only the half and the quarter,
respectively, of the domains have been discretized.
Starting point for the implementation was a linear version of the FE-code SOOFEA, written
in Python and developed by Dr. Michael Hammer, which has been largely reprogrammed
in the course Finite Element Method - A Seminar for Problem Solving on the
Computer (304.082) [9].

4.1. Bar under axial loading

We look at a bar with quadratic cross sectional area under strain-driven tensile load and
plane strain state, see Figure 4.1(a). Because of the symmetry of the geometry and the
load, only half of the bar is discretized by finite elements (quadrilaterals of first order),
see Figure 4.1(b).

100

uu 10

(a)

u

u

1©

50

x

(b)

Figure 4.1. (a) Geometry of the bar with quadratic cross sectional area under tensile load
and (b) discretization of the halved system by finite elements. In element 1©
the yield stress y0 is reduced by 3%.

The material properties are:

κ 164.21 kN/mm2

µ 80.19 kN/mm2

y0 0.45 kN/mm2

η 10−5 kNs/mm2

H −0.129 kN/mm2

It is maybe of interest to know the corresponding Young’s modulus E and Poisson’s ratio
ν. They are given by the relations

E =
9κµ

3κ+ µ
and ν =

3κ− 2µ

2(3κ+ µ)
,

and we get E ≈ 206.892 215 879 kN/mm2 and ν ≈ 0.290 012 569.
An imperfection is realized by reducing the yield stress y0 in element 1© by 3%, see again
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Figure 4.2. Load-displacement curves of the tensile loaded bar for different mesh sizes: (a)
l = 0 mm and (b) l = 3 mm.

Figure 4.1(b). To stay in the geometrically linear theory, the total displacement u applied
on the halved bar must not be greater than 1 mm. The computation started with a first
increment of ∆u1 = 0.1 mm, which does not cause any convergence problems since we are
still in the elastic range1. If plastic states are reached (in the integration points) a too large
displacement increment could cause a failure of the Newton-Raphson procedure because of
its local convergence, see Remark 6. Therefore 200 further time steps with ∆uk = 0.0045
for k = 2, . . . , 201 were done to reach a total displacement of u = 1 mm. The whole
deformation process was chosen to take place within 1 s, accordingly τk = 0.045 s for
k = 2, . . . , 201. The integration was done by a Gaussian quadrature with 2×2 integration
points. The arising linear systems of equations (2.34) are solved by a pre-implemented
LU-solver.
The responses of the bar for two different length scales, namely l = 0 mm, which
corresponds to the local theory, and l = 3 mm, which corresponds to the nonlocal theory,
and for three different meshes are shown in Figure 4.2(a) and Figure 4.2(b). As expected
from the discussion in Section 3.2, we see a strong mesh dependency of the results for the
local case. On the other hand, for l = 3 mm, we clearly notice the regularization effect
of the gradient-extended theory, i.e. the results are mesh independent. Furthermore, by
doing a contour plot of the hardening variable α, see Figure 4.3, we indeed observe, that
in the local case the softening region remains in the weakened element, whereas in the
nonlocal case the softening region spreads out.
Finally it should be noted, that for the force β non-physical oscillations2 in space occur,
which is a classical allusion to stability problems. This issue is intensely discussed in [19].
However, these oscillations can be identified as being of minor influence on the solution.

4.2. Perforated plate under tensile loading

The second numerical example is a monotonically strain driven, tensile loaded quadratic
plate under plane strain state with a circular hole in the middle, see Figure 4.4(a). Because

1To be precise, the Newton-Raphson procedure reaches the equilibrium state after one iteration.
2Note, that from a physical point of view β ≥ 0 for softening plasticity, and β ≤ 0 for hardening plasticity.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3. Contour plots of the hardening variable α over the halved bar under tensile
load for l = 0 mm (left) and l = 3 mm (right) and different mesh sizes: (a)-(b)
20 elements, (c)-(d) 40 elements and (e)-(f) 80 elements. The pictures are
taken at u = 1 mm. Note, that the color-coding is not the same for the left
and the right pictures.

of the symmetry, only a quarter of the plate is discretized, see Figure 4.4(b). The material
properties are the same as in the first numerical example. The geometrically linear theory
is not harmed up to a total displacement of v = 0.02 mm. As first increment we choose
∆v1 = 0.001 mm, and continue the iteration process with 200 further time steps with
∆vk = 0.95 · 10−4 mm for k = 2, . . . , 201. Again, the time at which the total displacement
is applied is 1 s, and accordingly τk = 0.00475 s for k = 2, . . . , 201. As before the integration
was done by a 2×2 Gaussian quadrature and the linear system of equations (2.34) is again
solved by a pre-implemented LU-solver.
The load-displacements curves for l = 0 mm and l = 0.004 mm and two different meshes
are shown in Figure 4.5(a) and Figure 4.5(b). As expected, we observe a strong mesh
dependency of the results obtained from the local theory, whereas this is not the case for
the results obtained from the nonlocal theory. The contour plots of the hardening variable
α over the whole quarter plate are shown in Figure 4.6. In the case l = 0 mm we can
clearly identify a shear band, whose width becomes smaller with finer mesh. From Figure
4.7(a) and Figure 4.7(c) it can be seen, that in the local theory the shear band is related
to strong deformations. Because of element distortion the solution becomes bad at the
corners, which can be seen in Figure 4.6(c). On the other hand, for l = 0.004 mm we
observe the softening zone to spread over several elements, no matter which mesh size is
used. Looking at Figure 4.7(b) and Figure 4.7(d) we see that the nonlocal theory provides
a regularization of the shear band.
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Figure 4.4. (a) Geometry of the perforated quadratic plate (thickness 1 mm) under tensile
load and (b) quarter system with boundary conditions
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Figure 4.5. Load-displacement curves of the tensile loaded perforated plate for different
mesh sizes: (a) l = 0 mm and (b) l = 3 mm.
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(a) (b)

(c) (d)

Figure 4.6. Contour plots of the hardening variable α over the quarter perforated plate
under tensile load for l = 0 mm (left) and l = 0.004 mm (right) and different
mesh sizes: (a)-(b) 622 elements and (c)-(d) 2492 elements. The pictures are
taken at v = 0.02 mm. Note, that the color-coding is not exactly the same for
the left and the right pictures.
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(a) (b)

(c) (d)

Figure 4.7. Deformed meshes of the perforated plate for l = 0 mm (left) and l = 0.004 mm
(right) and different meshes: (a)-(b) 622 elements and (c)-(d) 2492 elements.
The pictures are taken at v = 0.02 mm.
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Appendix A.

Mathematical tools

In this appendix several mathematical definitions and relations are summarized, which are
needed in the text. Much of the information collected here is taken from [7].

Convexity

Definition 1. Let V be a linear vector space. A set Z ⊂ V is called convex, if for all
x, y ∈ Z and λ ∈ [0, 1]

λx+ (1− λ)y ∈ Z .
Geometrically, this definition can be interpreted in the following way: a set Z is convex,
if every straight line, built by any two points x and y within Z, lies completely in Z, see
Figure A.1.

x

y

Z

(a)

x

y

Z

(b)

Figure A.1. (a) Convex set and (b) non-convex set in R2.

Definition 2. Let Z be a convex set. A functional F : Z → R is called convex, if for all
x, y ∈ Z and λ ∈ [0, 1]

F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y) . (A.1)

If we replace in (A.1) the ≤ sign by the < sign, we call F strictly convex.

In the one-dimensional case, convex functionals are identified by lying below its secant,
built by (x, F (x)) and (y, F (y)), for all points in Z, see Figure A.2.

Remark 15. Changing the direction of the inequality-sign in (A.1), we end up with the
definition of a concave functional. Clearly, a convex/concave functional can be made
concave/convex just by changing its sign.

Example 1. It is immediately seen, that every linear functional is also convex.

Example 2. Let the linear vector space Z be equipped with a norm ‖·‖ : Z → R. Then
‖·‖ forms a convex functional, as can be quickly proven by using two of the three norm
axioms, namely the triangle inequality and the homogeneity property:

‖λx+ (1− λ)y‖ ≤ ‖λx‖+ ‖(1− λ)y‖ = λ‖x‖+ (1− λ)‖y‖
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F

F (x)

F (y)

x y
Z

Figure A.2. One-dimensional example of a functional being convex in Z.

for all x, y ∈ Z and λ ∈ [0, 1].

Definition 3. The epigraph of a functional F : V → R is defined as

epi(F ) := {(x, α) ∈ V × R : α ≥ F (x)} ⊂ V × R .

Lemma 1. [21, Theorem 4.6] A functional F : V → R is convex if and only if its epigraph
epi(F ) is a convex set.

As can be seen from Figure A.3(a), a convex function F (x) can be described by the point
wise maximum of all linear functions t(x) satisfying t(x) ≤ F (x). In other words, a convex
function is given by its tangents {t(x)}, which are so called supporting hyperplanes. In
general a supporting hyperplane of a convex region is the closest possible hyperplane, which
does not “cut” the region. At non-smooth points (cones), the supporting hyperplane is
not uniquely defined, see Figure A.3(b).

F

epi(F )

F (x)

t(x)
x

(a)

convex region

(b)

Figure A.3. (a) A convex function (region) described by its supporting hyperplanes and
(b) non-uniqueness of supporting hyperplanes at cones.

Definition 4. Let F : V → R be a functional. We define the directional derivative at
point x ∈ V in direction χ ∈ V as

δF (x;χ) := lim
ε→0

F (x+ εχ)− F (x)

ε
=

d

dε
F (x+ εχ)|ε=0 .

If δF exists in x in every direction χ, we call F Gateaux-differentiable in x.
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Lemma 2. [24, Lemma 2.6.1] Let V be a convex set. An equivalent condition for a
functional F : V → R being convex is

∂yF (y) · (x− y) ≤ F (x)− F (y) (A.2)

for all x, y ∈ V.

Proof. For the first equivalence direction we assume F to be convex:

F (y + λ(x− y)) ≤ F (y) + λ[F (x)− F (y)]

for all x, y ∈ V and λ ∈ [0, 1]. Division by λ and taking the limit λ→ 0 yields

δF (y;x− y) ≤ F (x)− F (y)

∂yF (y) · (x− y) ≤ F (x)− F (y) .

For the second equivalence direction, we assume the inequality (A.2) to hold. Further let
us define

ỹ := λx+ (1− λ)y ∈ V with λ ∈ [0, 1] .

We have

∂ỹF (ỹ) · (x− ỹ) ≤ F (x)− F (ỹ)

∂ỹF (ỹ) · (x− λx− (1− λ)y) ≤ F (x)− F (ỹ)

(1− λ)∂ỹF (ỹ) · (x− y) ≤ F (x)− F (ỹ) , (A.3)

and

∂ỹF (ỹ) · (y − ỹ) ≤ F (y)− F (ỹ)

∂ỹF (ỹ) · (y − λx− (1− λ)y) ≤ F (y)− F (ỹ)

−λ∂ỹF (ỹ) · (x− y) ≤ F (y)− F (ỹ) . (A.4)

Multiplying (A.3) by λ and (A.4) by (1− λ) gives after adding these two inequalities

0 ≤ λF (x) + (1− λ)F (y)− F (ỹ) ,

and accordingly F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y). �

Legendre transformation

First of all we do some general considerations. Let F : R → R be a strictly convex and
twice continuously differentiable function. Therefore F ′′(x) > 0 and the inverse function
of the first derivative [F ′(x)]−1 =: g exists. Hence, we can say x = g(k) with k(x) := F ′(x)
being the new variable. The antiderivative of g is given by

s(k) := kg(k)− F (g(k)) = F ′(x)︸ ︷︷ ︸
=k

x− F (x) .

This can be checked via

s′(k) = g(k) + kg′(k)− g′(k)F ′(g) = g(k) + kg′(k)− g′(k)k = g(k) .

For the geometrically motivated introduction of the Legendre transformation, choose an
arbitrary k ∈ R and build the line y(x) = kx. Now check out the point x(k), such that
the distance d(k, x) := kx− F (x) becomes a maximum:

x(k) = arg max
x

[d(k, x)] .

The existence of such a point x(k) is at least guaranteed by the mean value theorem.
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Definition 5. The Legendre transformation of a function F (x) is defined as

s(k) := max
x
{d(k, x)} = kx(k)− F (x(k)) .

Figure A.4 illustrates the Legendre transformation.

F (x)

kx

x

y

x(k)

s(k)

Figure A.4. Geometrical illustration of the Legendre transformation s(k).

Clearly, the Legendre transform s(k) of a function F (x) can be computed via the condition
∂
∂xd(k, x) = 0 in x = x(k).

Example 3. To obtain the Legendre transform s(k) of F (x) = ax2 with a ∈ R, we get
from ∂

∂xd(k, x) = 0 the point at which the maximum arises, namely x(k) = k
2a . This gives

s(k) = k2

4a .

There is a strong relation between the hyperplanes of a function F (x) and its Legendre
transform. As pointed out in the section about convexity, a convex function can be
represented by its supporting hyperplanes:

F (x) = max
k
{t(x) = kx− e with t(x) ≤ F (x)} .

It can be seen from Figure A.4, that the constraint t(x) ≤ F (x) is fulfilled if and only if

e ≥ s(k) = max
x
{kx− F (x)} .

This yields
F (x) = max

k
{kx− s(k)} ,

and for convex functions we have shown the following:

Lemma 3. The Legendre transformation is involutoric, this means the Legendre transform
of the Legendre transformation of F (x) is again F (x), i.e.

s(k) = max
x
{kx− F (x)} and F (x) = max

k
{xk − s(k)} .

The Legendre transformation offers to transform a minimization problem into a saddle-
point problem. For this, we exemplarily look at the minimization problem

x̃ = arg min
x

[F (x) +G(x)] ,

with F (x) being convex. Expressing F (x) by its Legendre transform s(y) = maxx{yx −
F (x)}, we can write

{x̃, ỹ} = arg{min
x

max
y

[yx− s(y) +G(x)]} .
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The concept of the Legendre transformation, exemplarily presented for the one-dimensional
case, can of course be transferred to the the n-dimensional case with F : Rn → R. A general
and simultaneously abstract treatment of the Legendre transformation is the formulation
in Banach spaces.

Definition 6. Let V be a Banach space and V∗ its dual space with 〈·, ·〉V×V∗ : V×V∗ → R
denoting the duality pairing. We look at a convex functional F : Z → R over a convex set
Z ⊂ V. The Legendre transform of F is defined as

F ∗ : Z∗ 3 y 7→ sup
x∈Z
{〈y, x〉V×V∗ − F (x)} ∈ R ,

and is also called dual functional.

Lemma 4. The dual functional F ∗(y) is convex.

Proof. We have to show

F ∗(λy1 + (1− λ)y2) ≤ λF ∗(y1) + (1− λ)F ∗(y2)

for all y1, y2 ∈ Z∗ and λ ∈ [0, 1]. The single steps are

F ∗(λy1 + (1− λ)y2) = sup
x∈Z
{〈λy1 + (1− λ)y2, x〉V×V∗ − F (x)}

= sup
x∈Z
{λ〈y1, x〉V×V∗ + (1− λ)〈y2, x〉V×V∗ − F (x) + λF (x)− λF (x)}

≤ λ sup
x∈Z
{〈y1, x〉V×V∗ − F (x)}+ (1− λ) sup

x∈Z
{〈y2, x〉V×V∗ − F (x)}

= λF ∗(y1) + (1− λ)F ∗(y2) ,

and we are done. �

For further details we refer to [7] and [21].

Positively homogeneous function

Definition 7. Let V be a linear vector space. A function F : V → R is said to be positively
homogeneous of order 0 6= k ∈ R if

F (αx) = αkF (x) for all α > 0 .

Lemma 5. [14, Remark p.46] Let a function F : V → R be positively homogeneous of
order one (k = 1). Then F is convex if and only if

F (x+ y) ≤ F (x) + F (y) for all x, y ∈ V .
Proof. For the first equivalence direction let us assume that

F (x+ y) ≤ F (x) + F (y)

holds for all x, y ∈ V. Then we get for λ ∈ [0, 1]

F (λx+ (1− λ)y) ≤ F (λx) + F ((1− λ)y) = λF (x) + (1− λ)F (y) .

For the second equivalence direction we assume F to be convex. For λ = 1
2 we have

F (
1

2
x+

1

2
y) ≤ 1

2
F (x) +

1

2
F (y)

and obtain due to F being positively homogeneous of order one

F (x+ y) ≤ F (x) + F (y) ,

which concludes the proof. �
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Sobolev spaces of positive integer order

Sobolev spaces are needed for the mathematical treatment of weak formulations of
boundary value problems. Let B ⊂ Rn be a bounded and open domain with n ≥ 1.
By Lp(B) we denote the space of functions v : B → R, of which the p-th potency is
integrable, i.e. the corresponding norm is given by

‖v‖Lp(B) :=

[∫
B
|v(x)|p dx

]1/p

for 1 ≤ p <∞

with x = (x1, x2, . . . , xn).
For p = 2 we get the space of all functions which are square integrable over the domain
B. We can define an inner product

(u, v)L2(B) :=

∫
B
u(x)v(x) dx ,

and it can be shown, that L2(B) is by the induced norm ‖v‖L2(B) = (v, v)
1/2
L2(B) complete

and hence a Hilbert space, see e.g. [2].

For integers k ≥ 0 we define the Sobolev spaceHk(B) as the set of all functions v ∈ L2(B),
which possess generalized derivatives through order k. The considered Sobolev spaces are
equipped with an inner product

(u, v)Hk(B) :=

∫
B

(uv + u,iv,i + u,ijv,ij + . . .+ u, . . .︸︷︷︸
k indices

v, . . .︸︷︷︸
k indices

)dx , (A.5)

where (·),i := ∂
∂xi

(·) for i = 1, . . . , n and Einstein’s summation convention is used. Again

it can be shown, that the induced norm ‖v‖Hk(B) = (v, v)
1/2

Hk(B)
makes the Sobolev space

complete, and therefore Hk(B) is a Hilbert space for k ≥ 0.
As an example, we get for k = 1 the space of all square integrable functions, of which the
first generalized derivative is also square integrable. Its norm reads

‖v‖2H1(B) = ‖v‖2L2(B) + ‖∇v‖2L2(B) .

Clearly from the definition we get

L2(B) = H0(B) ⊃ H1(B) ⊃ H2(B) ⊃ . . . .
Remark 16. If we are considering m-valued functions (v1, v2, . . . , vm) : B → Rm, the
inner product (A.5) reads

(u,v)Hk(B) :=

∫
B

(uivi + ui,jvi,j + ui,jlvi,jl + . . .+ ui, . . .︸︷︷︸
k indices

vi, . . .︸︷︷︸
k indices

)dx .

Definition 8. Let B ⊂ Rn be an open set. The space Cr(B) with r ∈ N0 denotes the set
of all functions which are bounded on B and r times continuously differentiable on B.

A very important characterisation of the presented Sobolev spaces is given by Sobolev’s
embedding theorem:

Theorem 1. [11, p.268] Let B ⊂ Rn be an open set and n
2 + r < k. Then

Hk(B) ⊂ Cr(B) .

Example 4. For n = 2 and k = 2 we get H2(B) ⊂ C0(B). Note, that for n = 2 a
H1(B)-function can be discontinuous. However, for n = 1 we have H1(B) ⊂ C0(B).
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