
Semdroid

Semantic Android Application Analysis Using Machine Learning

Alexander Oprisnik

Semdroid

Semantic Android Application Analysis Using Machine Learning

by

Alexander Oprisnik

Master’s Thesis

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology

A-8010 Graz, Austria

January 2014

Assessor: Univ.-Prof. Roderick Bloem, M.Sc. Ph.D.

Advisors: Dipl.-Ing. Dr.techn. Peter Teufl

Dipl.-Ing. Daniel Hein

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Abstract

Smartphones, tablets, and other mobile devices are becoming an integral part of our daily
lives. We entrust these devices with sensitive information about ourselves and we take them ev-
erywhere we go. Thus, it is very important to protect this information, to keep the sensitive data
secure. The Android platform, which is currently one of the most popular operating systems for
mobile devices, already provides several security measurements in order to protect this data and
to prevent unauthorized access. However, it is still possible for applications to spy on the user,
execute harmful code, or leak sensitive information. Besides detecting such malicious behavior,
it is also important to assess the security of benign applications, especially for security-critical
scenarios, like for password safes, or for Bring-Your-Own-Device (BYOD) scenarios in corporate
environments.

Hence, powerful analysis tools are demanded that are able to assess the functionality of ap-
plications and to detect suspicious behavior in order to mitigate the risks for users and to improve
both the application quality and security.

In this thesis, we present a new static Android application analysis framework, called Sem-
droid, which employs several different analysis plugins that are capable of assessing an applica-
tion’s functionality. This proposed new framework performs application preprocessing, manages
all analysis plugins, and collects the analysis results.
Moreover, we introduce a new static analysis approach, the Semantic Pattern Analysis, which is
able to accurately determine and pinpoint application functionality. Feature vectors containing
analysis-relevant information are extracted from the Android application packages, converted to
so-called Semantic Patterns and then classified using machine learning algorithms. Since the
application’s components are analyzed separately, the targeted functionality can be accurately pin-
pointed.

Implemented analysis plugins are able to detect custom cryptography, where it is possible
to distinguish between asymmetric- and symmetric-key cryptosystems, and to detect SMS func-
tionality included in Android applications. Identifying cryptographic code can help to assess an
application’s security and can be used as a starting point for subsequent analysis processes. De-
tecting SMS capabilities helps to identify possible security threats, like SMS spyware, or remote-
control-functionality via SMS messages. All plugins have been thoroughly evaluated using both
an automated and a manual, empiric evaluation process.

Semdroid can be used on a personal computer, or can be directly deployed onto an Android
device for on-device analysis of installed applications.

Keywords: Android, application, static analysis, machine learning, Semantic Patterns, mal-
ware detection, Support Vector Machine, cryptography detection, SMS-handling detection

Kurzfassung

Smartphones, Tablets, und andere mobile Geräte nehmen eine immer größer werdende Rol-
le in unserem Alltag ein. Wir vertrauen diesen Geräten unsere privaten Daten an und nehmen
sie überall hin mit. Daher ist es sehr wichtig, dass diese Daten geschützt werden. Das Android-
Betriebssystem ist zur Zeit eines der populärsten Betriebssysteme für mobile Geräte und stellt
schon einige Sicherheitsmaßnahmen zur Verfügung, damit diese Daten sicher bleiben und niemand
ohne Erlaubnis darauf zugreifen kann. Jedoch können die Applikationen den Benutzer trotzdem
noch auszuspionieren, schadhaften Code ausführen, oder sensitive Informationen durchsickern
lassen. Neben Malware-Erkennung ist es außerdem wichtig, die Sicherheit einer gutartigen An-
wendung zu verifizieren, speziell in sicherheitskritischen Umgebungen, wie für Password-Safes
oder für Bring-Your-Own-Device (BYOD) Umgebungen, wo Mitarbeiter ihre privaten Geräte für
Firmenzwecke verwenden können.

Daher werden mächtige Analysewerkzeuge benötigt, die in der Lage sind, die Funktionalität
von Applikationen zu bestimmen. Außerdem soll ein verdächtiges Verhalten erkannt werden, um
die Risiken für den Benutzer minimieren zu können und die Sicherheit und Qualität von Anwen-
dungen verbessern zu können.

In dieser Arbeit stellen wir Semdroid vor, ein Analysewerkzeug für die statische Analyse von
Android-Applikationen. Dieses Framework verwendet verschiedene Analysemethoden, welche
die Funktionalität von Applikationen bestimmen können. Das Framework bereitet die Applika-
tionen für die Analyse vor, verwaltet alle Analysemethoden und sammelt die Ergebnisse.
Außerdem stellen wir einen neuen Analyseansatz vor, die sogenannte Semantic Pattern Analy-
se, welche in der Lage ist, eine spezifischen Funktionalität in einer Applikation zu lokalisieren.
Feature-Vektoren, werden aus der Android Anwendung extrahiert, zu sogenannten Semantic Pat-
terns konvertiert und dann mittels maschinellem Lernen klassifiziert. Da die verschiendenen Kom-
ponenten der Applikation separat analysiert werden, kann die Funktionalität genau lokalisiert wer-
den.

Die implementierten Analysemethoden können kryptografischen Code erkennen und es ist
sogar möglich, zwischen symmetrischer und asymmetrischer Kryptografie zu unterscheiden. Eine
weitere Analyse ist in der Lage, SMS-Code in Android Applikationen zu detektieren.

Dadurch dass man kryptografischen Code finden kann, kann man die Sicherheit einer Appli-
kation besser abschätzen und den gefundenen Code als Startpunkt für weitere Analysen verwen-
den. SMS-Code-Erkennung kann verwendet werden um eventuelle Sicherheitsrisiken und Gefah-
ren, wie SMS-Spyware oder Fernsteuerungsprogramme über SMS-Nachrichten aufzudecken. Alle
Analysen wurden genauestens evaluiert.

Semdroid kann sowohl auf einem PC als auch auf einem Android-Gerät verwendet werden.

Schlüsselwörter: Android, Applikation, Statische Analyse, Maschinelles Lernen, Semantic
Patterns, Malware-Erkennung, Support Vector Machine, Kryptografie-Erkennung

Acknowledgments

First, I would like to thank my advisors, Peter Teufl and Daniel Hein, for their guidance and
support over the last couple of months. They patiently answered all of my numerous questions
and gave me valuable feedback that allowed me to finish this thesis.

My thanks also go to the entire IAIK team, especially to Roderick Bloem, and to all my
colleagues, for having numerous discussions that helped me to steer in the right direction and to
finish my studies. Furthermore, I want to thank Keith Andrews for his LATEX skeleton thesis, which
made writing this thesis a little bit easier.

In addition, I would like to thank my friends, who supported me throughout my years of study.
Last but definitely not least, I really want to thank my parents, Ingrid and Franz, for their contin-
uous support over the last couple of years. I am very grateful for their endless love and valuable
advice. Without them, this work would have never been possible. Thank you.

Alexander Oprisnik

i

Contents

List of Figures v

List of Tables vi

List of Listings vii

1 Introduction 1
1.1 Overview . 1
1.2 Outline . 4

2 Background 6
2.1 The Android Platform . 6

2.1.1 The Intent System . 8
2.1.2 Broadcast Receivers . 10
2.1.3 The Permission System . 11

2.2 The Dalvik Virtual Machine . 11
2.2.1 Dalvik Bytecode . 11
2.2.2 Dalvik Executable Format . 11

2.3 Android Applications . 12
2.4 Android Manifest . 14
2.5 SMS Handling . 15

2.5.1 SMS Sniffers . 18
2.5.2 SMS Catchers . 18

2.6 Malware . 20
2.7 Decompiling Android Applications . 21
2.8 Cryptography . 21

2.8.1 Symmetric Cryptography . 22
2.8.2 Asymmetric Cryptography . 23
2.8.3 Hash Functions . 25

2.9 Machine Learning . 26
2.10 Semantic Patterns . 27

2.10.1 The Problem . 27
2.10.2 The Semantic Pattern Transformation 27
2.10.3 Example . 28
2.10.4 Applications . 28

ii

3 Related Work 30
3.1 Static Analysis . 30
3.2 Dynamic Analysis . 32

4 Semdroid – An Introduction 34
4.1 Overview . 34
4.2 Input . 35
4.3 App Object . 35
4.4 Test Suite . 37
4.5 Results . 37
4.6 Evaluation . 38
4.7 Training . 38
4.8 Deployment . 39

4.8.1 Personal Computer . 39
4.8.2 Android Device . 40

4.9 Semdroid Conclusions . 41

5 The Architecture of Semdroid 42
5.1 Component Overview . 42
5.2 App Parsing . 44
5.3 Analysis . 44
5.4 Test Suite . 45
5.5 Evaluation . 45
5.6 Result Transformation . 46
5.7 Training . 46
5.8 On-Device Analysis . 46

6 The Semantic Pattern Analysis 48
6.1 Analysis Workflow . 48
6.2 Feature Layers . 50
6.3 Instances . 50
6.4 Component Selection . 52
6.5 Feature Selection . 54

6.5.1 Feature Types . 55
6.5.2 Feature Values . 56
6.5.3 Feature Representation . 59
6.5.4 Feature Filtering and Grouping . 61

6.6 Semantic Patterns . 62
6.7 Machine Learning . 62

6.7.1 Classification . 63
6.7.2 Anomaly Detection . 63

6.8 Training . 63

iii

7 Semantic Pattern Analysis – Architecture 65
7.1 Component Overview . 65
7.2 Feature Extractor . 66

7.2.1 Feature Layer Generator . 66
7.2.2 Semantic Pattern Framework . 70

7.3 Machine Learning Framework . 70
7.4 Analysis Results . 70
7.5 Training . 70

8 Semantic Pattern Analysis – Applications 72
8.1 Analysis Creation . 73
8.2 Symmetric Cryptography . 73

8.2.1 Analysis Configuration . 74
8.2.2 Training Data . 74

8.3 Asymmetric Cryptography . 75
8.3.1 Analysis Configuration . 75
8.3.2 Training Data . 78

8.4 SMS Handling . 78
8.4.1 Analysis Configuration . 78
8.4.2 Training Data . 79

9 Evaluation 81
9.1 Evaluation Process . 81

9.1.1 Automated Evaluation . 81
9.1.2 Manual Evaluation . 82

9.2 Symmetric Cryptography . 82
9.2.1 Automated Evaluation . 82
9.2.2 Manual Evaluation . 83
9.2.3 Conclusions . 88

9.3 Asymmetric Cryptograpy . 90
9.3.1 Automated Evaluation . 90
9.3.2 Manual Evaluation . 90

9.4 SMS Handling . 93
9.4.1 Automated Evaluation . 96
9.4.2 Manual Evaluation . 96

9.5 Obfuscation and Optimization . 99
9.6 Performance . 99

10 Conclusions and Outlook 104

A Opcode Groups 107

Bibliography 109

iv

List of Figures

2.1 Android system architecture . 7
2.2 Dalvik executable structure . 13
2.3 Android application package file (.apk) . 15
2.4 Secure communication . 22
2.5 Example semantic network . 29

4.1 Basic Semdroid application analysis . 35
4.2 The App Object . 36
4.3 Evaluation results . 39
4.4 Personal computer analysis results . 40
4.5 Semdroid Android application . 41

5.1 Basic Semdroid architecture . 43
5.2 Application parsing . 43
5.3 Analysis black box . 45
5.4 Test suite architecture . 45
5.5 Evaluation architecture . 46
5.6 Training architecture . 47

6.1 Semantic Pattern Analysis . 49
6.2 General feature layer structure . 50

7.1 Semantic Pattern Analysis architectural overview 66
7.2 Feature layers . 67
7.3 App single feature layer generator . 68
7.4 Class single feature layer generator . 68
7.5 Method single feature layer generator . 69
7.6 General instance generation architecture . 69
7.7 Semantic Pattern Analysis training architecture 71

9.1 Manual evaluation results: Symmetric cryptography categories 84
9.2 Manual evaluation results: Encodings . 87
9.3 Manual evaluation results: Asymmetric cryptography details 91

v

List of Tables

2.1 Dalvik variable string conventions . 12

2.2 Example method features . 28

8.1 Analysis configuration: symmetric cryptography detection 74

8.2 Analysis configuration: asymmetric cryptography detection 77

8.3 Analysis configuration: detecting SMS functionality 79

9.1 Evaluation results: symmetric cryptography . 83

9.2 Analysis results for 98 password safes: symmetric cryptography 83

9.3 Evaluation results: asymmetric cryptography 90

9.4 Analysis results for 98 password safes: asymmetric cryptography 90

9.5 Evaluation results: SMS broadcast receivers . 96

9.6 Analysis results: SMS receivers in different application categories 97

9.7 Obfuscation results comparison . 101

9.8 Performance overview: PC . 101

9.9 Performance overview: on-device . 102

9.10 Performance comparison . 103

A.1 Opcode groups used for the analysis process . 108

vi

Listings

2.1 Launching an activity via Intents . 9

2.2 Example Intent filter (XML) . 10

2.3 Simple AndroidManifest.xml for SMS handling 16

2.4 Simple SMS broadcast receiver . 17

2.5 SMS command receiver . 19

2.6 Bouncy Castle AES Encryption Implementation 24

2.7 Simple RSA implementation . 25

8.1 Bouncy Castle RSA implementation . 76

9.1 Bouncy Castle Base64 encoding . 89

9.2 Bouncy Castle SRP6Server implementation excerpt 93

9.3 JPakeCrypto zero-knowledge proof excerpt . 94

9.4 Apache fractions implementation . 95

9.5 ProGuard configuration . 100

vii

Chapter 1

Introduction

1.1 Overview

Mobile devices are becoming increasingly important for our daily lives. Today, many people
use smartphones and tablets on a daily basis, and the number of active users is rapidly growing.
One of the operating systems employed on these mobile devices is the Android operating system,
which enjoys great popularity. Together with this popularity, it also became an appealing target
for attackers. The number of malicious applications is on the rise as more and more applications
spy on the user, leak sensitive data, or cause unwanted costs by secretly sending SMS messages
to premium rate numbers. Some of these applications even compromise the security of sensitive
data unintentionally, for example, by using weak- or no cryptography.

In order to protect this sensitive data, the Android platform employs a permission system1.
Before an application is installed, the user is notified about the required permissions of the appli-
cation. Unfortunately, based solely on these permissions, it is not possible to determine whether
an application has malicious intentions. For example, if an application requires the permission for
reading incoming SMS messages as well as the permission for internet access, it cannot be distin-
guished whether those permissions are used for malicious activities. The application could listen
to incoming SMS messages and then forward them to a remote server without the knowledge of
the user.

Furthermore, the requested permissions are not necessarily utilized by the application. Ac-
cording to Felt et al. [15], a third of all Android applications are overprivileged – they request
permissions that they do not actually need. Thus, if an application requires the permission to read
SMS messages, it might not actually read the messages at all. In addition, some permissions are
not very fine-grained. For example, the permission android.permission.READ_PHONE_STATE al-
lows, like the name suggests, to read the phone state. Amongst others, this permission is required
in order to listen to incoming phone calls and to monitor the phone state. However, with this
permission it is also possible to extract the device ID as well as the phone number. Thus, it is not
possible to determine which actions are actually performed with the given permission and what
sensitive data is actually read by the application. It could be a legitimate usage, which requires
reading the phone state, or also an application that spies on the user and transmits the device ID to
a given server – or both.

With the release of Android 4.2, Google introduced an improved security system for the An-
droid platform. If the user allows application verification (opt-in), all applications will be analyzed

1http://developer.android.com/guide/topics/security/permissions.html

1

http://developer.android.com/guide/topics/security/permissions.html

1.1. Overview 2

before installation2. According to Hiroshi Lockheimer3, Android Vice President of Engineering, a
signature of the application is calculated and sent to Google servers for quick identification. This
does not only apply to applications installed via Google Play but also to any third-party applica-
tion installed on the device. With Android 4.3, this app verification mechanism has been moved
to the Google Play Services, which allows more frequent updates independent from new Android
platform releases4. Furthermore, with Android 4.2, Google also changed the way premium SMS
messages are handled. If an application wants to send a message to a premium rate number, the
user will be notified and asked whether the message should be sent.

Despite these security improvements, Android malware is still a serious threat. According
to F-Secure5, the number of Android threats increased by 49 percent in the first quarter of 2013
compared to the previous quarter. New malware types arise and targeted Android attacks are
becoming more popular. F-Secure also states that the number of malware families has doubled
over the last year.

Besides detecting malicious applications, it is also important to analyze benign applications,
especially applications that have access to security-critical and personal data. Password safes, for
example, are used to store login credentials of the user. The user expects, that the password safe
securely stores these credentials and that nobody else has access to this data. Unfortunately, this
is not always the case; according to Egele et al. [12], 88% of the 11748 applications they have
analyzed did not use the cryptographic APIs correctly. So, how can we be sure that we can trust
these password safes and messenger applications? How can we be sure that these applications
have been implemented correctly, that they store the user’s data in a secure way, and that they do
not have security flaws?
The answer is simple: we can’t – at least not without detailed knowledge about the functionality of
the application. Hence, sophisticated analysis strategies are demanded that are able to dissect An-
droid applications and to detect certain device functionality, to check whether a given application
is secure.

In general, there are two different analysis approaches: Static and dynamic application anal-
ysis. Static application analysis relies on analyzing application data without actually executing
the application’s code. For example, a simple static analysis could look for known suspicious
code or search for certain strings and then classify the app based on these results. In contrast to
static analysis, dynamic application analysis monitors the device state while the application un-
der analysis is executed on a test device or an emulator. Since the application state is monitored
throughout execution, it is possible to detect suspicious behavior. For example, a test to detect the
SMS-handling capabilities of an application would send an SMS message to the test device. If
the application under test reacts to the incoming message, the monitoring system can classify the
application accordingly.

Both approaches have their advantages and disadvantages. Suppose an application is able to
remote-control the Android device via SMS messages. Using dynamic analysis, this behavior can
be very hard to detect; in order to expose this remote-control functionality, a control SMS message
has to be sent to the test device in order to trigger this functionality. Since the simulated incoming
SMS message has to be an exact replica of a recognized SMS control message and since such a
control message could be any arbitrary string, it is almost impossible to check all string combina-
tions and, thus, to detect these remote-controlling capabilities.

2http://source.android.com/devices/tech/security/enhancements42.html
3http://blogs.computerworld.com/android/21259/android-42-security
4http://blogs.computerworld.com/android/21259/android-42-security
5http://www.f-secure.com/en/web/home_global/news-info/product-news-offers/view/story/

943273/

http://source.android.com/devices/tech/security/enhancements42.html
http://blogs.computerworld.com/android/21259/android-42-security
http://blogs.computerworld.com/android/21259/android-42-security
http://www.f-secure.com/en/web/home_global/news-info/product-news-offers/view/story/943273/
http://www.f-secure.com/en/web/home_global/news-info/product-news-offers/view/story/943273/

1.1. Overview 3

In this case, using static analysis could yield better results, since the entire code, and thus all exe-
cution paths can be checked, including the SMS-command-handling functionality.
However, examining all possible execution paths and tracking all variables and registers can be
very time-consuming and complex as well. Furthermore, it is possible that a given code segment
is never actually called, as for example if a library is included in the application, making “smarter”
static analysis approaches very important.

In this thesis, we propose a new static analysis framework, Semdroid, as well as an accompa-
nying new static analysis approach, the Semantic Pattern Analysis. This approach allows to ac-
curately detect certain application functionality included in Android application packages. Since
several application components are analyzed separately (methods, classes, the whole application),
it is possible to pinpoint the exact location of the targeted functionality. For example, for an
analysis that discerns SMS functionality, the actual Java method responsible for handling the in-
coming SMS message is given. The Semdroid framework itself, which has been implemented in
Java, manages all analysis plugins, supplies them with preprocessed application data, and collects
all results. These analysis plugins can be based on the Semantic Pattern Analysis, but it is also
possible to employ different analysis techniques, based on any other static analysis approach.

How does the Semantic Pattern Analysis work? First, we decide which application compo-
nents should be analyzed. For instance, it is possible to separately analyze selected methods or
classes of a given application, or to analyze the application as a whole. Then, for each of these
components, characteristic features, like Dalvik opcodes, method calls, or local variables, are ex-
tracted. These feature lists are then converted to so-called Semantic Patterns using a previously
established Semantic Network. Finally, machine learning algorithms are applied on these Seman-
tic Patterns in order to classify and label the corresponding application components according to
their functionality.

There are two ways to deploy Semdroid: First, it is possible to analyze applications on a per-
sonal computer and display the results or output them to a file. Second, a Semdroid Android
application is available, which can be directly deployed onto an Android device. Installed applica-
tions can be dissected and detailed analysis results give the user an insight on what the applications
are actually capable of doing. In future work, Semdroid could also be deeply integrated into the
Android operating system. Then, Semdroid could be used to assess possible security risks and
to take security measures according to the treats – for example, by selectively revoking access
to relevant permissions for suspicious applications, or by preventing the installation of such an
application.
In theory, a mixed model could also be employed that calculates application fingerprints directly
on the Android device and forwards them to a server, which then returns the analysis results to the
device. Currently, this third deployment method has not been implemented, but could be addressed
in future work.

In this thesis, we are going to present analysis plugins that are capable of detecting SMS func-
tionality and cryptographic code. The information about included cryptographic implementations
might only be of use to IT experts, but the information gathered from other analyses could be of
interest to a broader audience. For example, if the user installs a given application that did not
mention built-in SMS-handling capabilities, but an analysis concludes that this functionality is
included in the application, it helps the user to determine possible security and privacy risks. If
the analysis detects that the application is even capable of remote-controlling the device via SMS
messages, the user should be very careful and suspicious. If a legitimate SMS application also
includes a backdoor that allows to remote-control the device via SMS commands, Semdroid is

1.2. Outline 4

able to detect both the legitimate SMS handing as well as the remote-control functionality. For the
analysis process presented in this thesis, we distinguish between normal and SMS code. In future
work, it could also be possible to further differentiate between different SMS-handling scenarios,
like between normal SMS handling and remote-control functionality.

Detecting cryptographic code has been the focus of this thesis. The analysis plugins we have
created are able to accurately detect custom cryptographic implementations included in Android
applications, and it is even possible to distinguish between symmetric- and asymmetric-key cryp-
tosystems. Going back to the password safes mentioned earlier, this means that we are able to
detect custom cryptography utilized by these applications. This information can then be used to
assess the security of the application, and thus the security of the login credentials. Container ap-
plications6 are a second use case for cryptography detection. Ideally, these container applications
should include a custom cryptographic library in order to be independent of integrated cryptogra-
phy implementations. Again, detecting such cryptographic functionality can aid a security officer
to assess the security of such an application. If custom cryptography implementations are used,
it is possible to label them as potential security risks if they are not properly implemented. The
security officer can also manually examine the cryptographic code detected by the analysis and
evaluate the security of the application.

Due to the flexible framework design, new analysis plugins can easily be developed and inte-
grated into the Semdroid analysis process. In future work, the Semantic Pattern Analysis could be
used for various analysis tasks, like to determine the application category on Google Play, or to
detect UI code, malware, or any other functionality.

1.2 Outline

This section gives an overview of the contents covered in upcoming chapters.
Chapter 2, presents background information on selected topics. First, an overview of the Android
platform is given, including details about Android application files, the Android permission sys-
tem, and the Dalvik Virtual Machine. Furthermore, core Android concepts, like the Intent system
and broadcast receivers, are explained. We are also giving a short overview of Android malware,
how device are infected, how the malware is activated, and what malicious tasks are performed.
In this thesis, we show how the Semantic Pattern Analysis can be used to detect SMS function-
ality, as well as cryptographic code included in Android applications. Therefore, we will first
explain how SMS messages are handled on the Android platform, followed by a short introduc-
tion to cryptography, which explains the basics principles behind symmetric- and asymmetric-key
cryptography, as well as hash functions. The focus of the cryptography section lies on the funda-
mental characteristics of current Java implementations important for code analysis and application
classification.
In order to analyze applications, many frameworks, including Semdroid, rely on (partly) decom-
piling the Android application. Thus, popular decompiling frameworks and their functionality will
be presented.
Finally, we will elaborate two core concepts utilized by the proposed new Semantic Pattern Anal-
ysis, namely machine learning and Semantic Patterns, which conclude this chapter.

In Chapter 3, related work is presented. A selection of existing Android application analy-
sis tools is listed and their basic concepts are explained. This chapter is divided into two parts;

6Secure enterprise applications used in a Bring-Your-Own-Device environment, where employees can use their
private (insecure) devices. Thus, all security features must be implemented and enforced by the enterprise application
itself.

1.2. Outline 5

first, static analysis frameworks, like the Semantic Pattern Analysis are given, followed by several
dynamic approaches.

Chapter 4 gives an introduction to Semdroid and the ideas behind the proposed new Android
application analysis framework. We will elaborate the functionality of this framework and present
the analysis workflow. Since Semdroid is a framework suitable for any static analysis, analysis
plugins are considered black boxes capable of analyzing given applications. Furthermore, details
on the training- and evaluation framework included in Semdroid are given, and different deploy-
ment methods are presented.

The next chapter, Chapter 5, delves into the architectural details behind Semdroid. It presents
the structure of all core components involved in the system and explains how all these components
interact with each other.

Then, we will give an overview of the proposed new Semantic Pattern Analysis in Chapter 6.
First, the analysis workflow is presented, including the component selection, the feature layer
generation and the feature selection. Then, the Semantic Pattern Transformation and the machine
learning process are described, followed by an explanation of the mandatory training process
required by the Semantic Pattern Analysis.

After this general overview, Chapter 7 gives architectural details of the Semantic Pattern Anal-
ysis. This analysis is compatible to Semdroid and can thus be employed within this analysis
framework. The main focus of this section lies on the feature extraction process, how features are
extracted from Android application packages, and how the resulting feature layers are assembled.

We developed several Semantic Pattern Analyses for different tasks, which will be presented
in Chapter 8. For each analysis, the thoughts behind the feature selection and combination are
elaborated and their intentions are discussed. The first two analysis plugins are able to detect
cryptographic code, one for symmetric-key encryption and the second for asymmetric ciphers.
Finally, we present an analysis plugin capable of detecting SMS functionality.

Chapter 9 gives detailed evaluation results of the analyses presented in the previous chapter.
For each analysis, the evaluation results, including the accuracy, will be presented and their capa-
bilities will be elaborated. In addition, we will present the general performance of the Semantic
Pattern Analysis for both on-device- and PC-based analysis.

Finally, Chapter 10 concludes this thesis by summarizing Semdroid and the Semantic Pattern
Analysis and its capabilities. Furthermore, we will give an outlook and possible topics that could
be addressed in future work.

Chapter 2

Background

This chapter contains background information on selected topics mentioned throughout the thesis.
First, details about the Android platform will be discussed in Section 2.1. The Dalvik Virtual Ma-
chine and the corresponding Dalvik bytecode of Android applications are presented in Section 2.2.
Since Semdroid examines Android application packages, Section 2.3 explains their characteristics
and presents their structure and contents.

Since we implemented an analysis process that is able to detect SMS-handling capabilities,
Section 2.5 gives details on how SMS messages are handled on Android and how applications can
listen to these messages. Some applications allow to remotely control the device via SMS control
messages, which can also be utilized for malicious tasks. Thus, Section 2.6, explains the basic
concepts behind Android malware.

In order to extract features from Android application packages, we have to dissected these
packages. Since this process is related to application decompilation, Section 2.7 gives a short
overview of this topic and mentions notable tools.

A second analysis process presented in this thesis is able to detect custom cryptography.
Hence, Section 2.8 contains a basic cryptography introduction, which highlights general fea-
tures and specifications of cryptographic implementations. The focus lies on the characteristics
of symmetric- and asymmetric ciphers, as well as of hash functions.

The Semantic Pattern Analysis utilizes machine learning as well as Semantic Patterns for the
analysis process. Therefore, these two topics are covered in Sections 2.9 and 2.10 respectively.

2.1 The Android Platform

In 2003, Android Inc. has been founded by Andy Rubin. Two years later, in August 2005, Google
acquired Android and continued the development of the operating system under the lead of Ru-
bin. The first version has been unveiled in late 2007, as the first product of the Open Handset
Alliance1. The Android platform is open source and can be found at the Android Open Source
Project (AOSP)2. The first Android device, the HTC Dream, has been released in October 2008.
Five years later, the Android operating system enjoys great popularity as the number of daily ac-
tivated devices is steadily growing. Since the initial release, updates continuously improved the
platform.

1http://www.openhandsetalliance.com
2http://source.android.com

6

http://www.openhandsetalliance.com
http://source.android.com

2.1. The Android Platform 7

Libraries

Linux Kernel

Applications

Home Contacts Phone Browser ...

Android Runtime

Core Libraries

Dalvik Virtual
Machine

Surface
Manager

OpenGL | ES

SGL

Media
Framework SQLite

FreeType

SSL

WebKit

libc

Application Framework
Activity

Manager
Window
Manager

Content
Providers View System

Package
Manager

Telephony
Manager

Resource
Manager

Location
Manager

Notification
Manager

Display Driver Camera
Driver

Flash Memory
Driver

Binder (IPC)
Driver

Keypad Driver WiFi Driver Audio Drivers Power
Management

Figure 2.1: Android system architecture. Adapted from http://developer.android.com/

images/system-architecture.jpg.

As depicted in Figure 2.1, Android utilizes a Linux kernel for its core functions. On top
of this kernel there are several libraries required by the Android operating system. The employed
runtime environment is the Dalvik Virtual Machine (Dalvik VM), which executes so-called Dalvik
bytecode. Details on this Dalvik VM will be given in Section 2.2.

The application framework holds various managers that can be utilized by Android applica-
tions to perform different tasks. Furthermore, a content provider framework allows to provide
content across applications, and a view system is employed for the user interface. On top of this
application framework, the Android applications are built.

Access to sensitive data, as well as access to certain hardware functionality is restricted by a
permission system. Applications have to request access to these system resources, and the user
is informed about all required permissions before an application is installed on the device. Sec-
tion 2.1.3 will take a closer look at this permission system.

According to the Android application fundamentals guide [22], there are four main compo-
nents Android applications consist of: activities, services, content providers, and broadcast re-
ceivers.
Each application can include an arbitrary number and combination of these components and each
of these components has different use cases:

• Activities are used for components that require a user interface. The guidelines state that
for each task, a separate Activity should be used. Since the release Android 3.0, Fragments
should be employed to encapsulate view components. An activity can include multiple
fragments and, depending on several parameters, like the screen size, the display size, or
the device orientation, a different layout or fragment combination can be displayed. More
information on fragments can be found in the official Android Fragment guide [23].

http://developer.android.com/images/system-architecture.jpg
http://developer.android.com/images/system-architecture.jpg

2.1. The Android Platform 8

• Services represent background tasks without a user interface. They run in the background
without blocking the UI thread. For inter-process communication (IPC), other components
can bind to the Service and exchange data.

• ContentProviders are, as their name suggests, used to provide content to applications. The
ContentProvider interface can be used to store and provide data in a unified way. It is
possible to make these providers either publicly accessible to other applications installed on
the device, or to make their contents private.

• BroadcastReceivers are used to listen to events. The developer has to register the receiver
with the Android system in order to receive notifications about specific events. The event
type the receiver is interested in has to be specified, and a priority can be assigned to the
receiver as well. For example, if an incoming SMS message arrives, a system-wide broad-
cast is sent and all registered broadcast receivers will be notified in order of their specified
priority. Since broadcast receivers are an integral part required for handling SMS messages,
they will be further discussed in Section 2.1.2.

Intents are used to start activities and services, and to deliver broadcast messages. Section 2.1.1
delves into the details of this intent system. Furthermore, other components include widgets and
notifications, which can also be used by the developer. Widgets can be placed on the home screen
of the device and they can have various sizes and formats. Notifications are placed in the notifica-
tion area and can be used to alert the user if important events occurred.
More information on these basic components can be found for example in Meier [33] and Steele
and To [50].

2.1.1 The Intent System

The Android operating system utilizes an intent system to deliver messages from one component
to another. Intents are also used to broadcast system-wide messages. In addition, intent filters are
used to specify the capabilities of components, like which broadcast messages a broadcast receiver
would like to listen to.

Intents

According to the official Intent and Intent Filter guide [24], intents are messages that activate the
three core components – activities, services and broadcast receivers. The Intent object holds a
given action and can include additional data to operate on. For broadcast messages, the Intent
object often holds a description of the event that has occurred and can also include additional
information. The main contents of intents are:

• Action
The intent action is a string value representing the action to be performed, or for broadcasts,
the action that has occurred. If a phone call should be initiated, ACTION_CALL is available
that can be set as the intent action. Similarly, other actions are available for various events,
like incoming SMS messages.

• Category
This field holds additional information about the category of the component responsible

2.1. The Android Platform 9

1 // the parameters are: the context and the activity to be started
2 Intent intent = new Intent (t h i s , MyActivity . c l a s s) ;
3
4 // add extra data to the Bundle
5 intent .putExtra (MY_STRING , " some d a t a ") ;
6
7 // start the activity
8 startActivity (intent) ;

Listing 2.1: Launching a second activity from a given activity via Intents.

for handling the intent. For example, CATEGORY_HOME is used by third party launchers3 to
specify that they can be used as a launcher. Similarly, CATEGORY_LAUNCHER has to be set if
the activity should be listed in the installed applications list.

• Component name
The component name specifies the component that should handle the intent. For example,
if a given activity should be started, the activity name has to be set as component name.

• Data
This field corresponds to the data to be processed. If a contact should be modified, the data
field contains the corresponding contact URI as well as the MIME type of the data.

• Extras
The extras field can be used to specify additional data. The data structure used for the
extras field is a Bundle4, which basically represents a list of key/value pairs. For example,
incoming SMS broadcast intents include the sender and the message in the extras bundle.
Similarly, if a headphone is plugged or unplugged, a state is supplied in the bundle, which
can be used to distinguish between plugging and unplugging.

• Flags
Additional flags can be added to the intent as well. Available flags include options to clear
tasks, create a new task or exclude the launched activity from the “recent” list.

More information on the structure of Intents can be found in the Intent API reference5. List-
ing 2.1 gives an example on how to start an activity using intents. The corresponding launch action
has to be set, and the component to be started is defined. Additional data is passed to the activity
by supplying a Bundle in the extras-field. The launched application can then access the data by
calling getIntent().getStringExtra(MY_STRING).

Intent filters

Intent filters can be used to specify the capabilities of components. It is possible to create Intent-
Filters via code, or, the more common way, via XML definitions included in the Android manifest
file. Since the application capabilities have to be known before the components are used, intent
filters can be defined in the Android manifest, the main configuration file for Android applications
(see Section 2.4).

3A launcher is the main screen displayed when the device is started. It is used to start other installed applications.
4http://developer.android.com/reference/android/os/Bundle.html
5http://developer.android.com/reference/android/content/Intent.html

http://developer.android.com/reference/android/os/Bundle.html
http://developer.android.com/reference/android/content/Intent.html

2.1. The Android Platform 10

1 < i n t e n t − f i l t e r >
2 < a c t i o n a n d r o i d : n a m e =" a n d r o i d . i n t e n t . a c t i o n .MAIN" / >
3 < c a t e g o r y a n d r o i d : n a m e =" a n d r o i d . i n t e n t . c a t e g o r y .LAUNCHER" / >
4 < / i n t e n t − f i l t e r >

Listing 2.2: Example Intent filter for adding the activity to the application launcher.

The main Activity of an application, which is usually added to the installed applications list
and started when the app icon is pressed, must have an intent filter defined that enables these
capabilities. Listing 2.2 gives the XML snippet for this filter included in the Android manifest of
the application. The intent filter action is set to MAIN and the category of the activity has to be
LAUNCHER.

2.1.2 Broadcast Receivers

The Android operating system offers convenient APIs to listen to broadcast messages. Important
system events trigger the broadcast of Intents (see Section 2.1.1), containing information about
the occurred event. These events include system-boot-complete broadcasts, notifications about
incoming SMS messages and phone calls, connectivity changes, battery state updates, and many
more. Broadcast receivers have to be registered with the Android system in order to receive events
they are interested in by defining an appropriate IntentFilter. Meier [33] provides a good resource
on how to to implement broadcast receivers.

There are two ways to register broadcast receivers: they can either be declared in the central
application configuration file, the AndroidManifest.xml (see Section 2.4), or at runtime via Java
code.
The first variant is called static registration because the receiver is registered automatically when
the application is installed and receivers will always be called even if the application itself is not
started.
The second variant, dynamic registering via Context.registerReceiver()6, requires manual
registration and unregistration. Thus, events will only be received if the application (like, for
example, a background service) is running. In either case, an IntentFilter has to be supplied, which
defines the intent actions the receiver requests to listen to (see Section 2.1.1 for more information
on Intents). Furthermore, a priority has to be specified for the IntentFilter, which defines the order
broadcast receivers will be called with.

Broadcast receivers can also be registered for multiple events. For example, it is possible to
implement a receiver that listens to both incoming SMS messages as well as to incoming phone
calls.

Furthermore, the Android platforms allows to abort broadcast messages7 that have been sent
through sendOrderedBroadcast8. Once the broadcast has been aborted, registered receivers with
a lower priority than the aborting receiver will not be notified any more. In order to abort broadcast

6http://developer.android.com/reference/android/content/Context.html#

registerReceiver(android.content.BroadcastReceiver, android.content.IntentFilter)
7http://developer.android.com/reference/android/content/BroadcastReceiver.html#

abortBroadcast()
8http://developer.android.com/reference/android/content/Context.html#

sendOrderedBroadcast(android.content.Intent, java.lang.String)

http://developer.android.com/reference/android/content/Context.html#registerReceiver(android.content.BroadcastReceiver, android.content.IntentFilter)
http://developer.android.com/reference/android/content/Context.html#registerReceiver(android.content.BroadcastReceiver, android.content.IntentFilter)
http://developer.android.com/reference/android/content/BroadcastReceiver.html#abortBroadcast()
http://developer.android.com/reference/android/content/BroadcastReceiver.html#abortBroadcast()
http://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent, java.lang.String)
http://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent, java.lang.String)

2.2. The Dalvik Virtual Machine 11

messages, the receiver has to call abortBroadcast()9. While this is a very useful feature for
many use cases, this functionality can also be exploited by malware. For example, incoming SMS
messages can be hidden from the user by registering a high-priority SMS broadcast receiver. More
information on this topic can be found in Section 2.5.

2.1.3 The Permission System

Android employs a permission system [19] that protects sensitive data and device functional-
ity. Developers have to manually define which permission is required by their applications and
the user is notified about required application permissions before the app is installed on the de-
vice. For example, if an application wants to listen to incoming SMS messages, the permission
android.permission.RECEIVE_SMS has to be defined in the Android manifest (see also Sec-
tion 2.4). Other examples include access to the device state and device IDs, the camera, the
external storage, internet access, and much more.
In Section 2.4, an example manifest will be given, which includes the SMS permission (List-
ing 2.3).

2.2 The Dalvik Virtual Machine

Android applications are written in Java. In addition, they can also include native C/C++ code. The
Android platform does not use the classic Java Virtual Machine (JVM) to execute Java bytecode
but the proprietary Dalvik Virtual Machine (Dalvik VM). The JVM utilizes .jar containers, which
include all Java .class files, one per Java class. For the Dalvik VM, all .class files of an
application are transformed to a single Dalvik executable (.dex file). This file holds the Dalvik
bytecode, which is then executed on the Android device. The dx tool, which is included in the
Android platform tools, is used for this conversion.

The Dalvik VM is register-based as opposed to the stack-based architecture of the JVM. Ac-
cording to Nolan [39], the JVM consists of four distinct parts: The heap, program counter regis-
ters, a method area and the JVM stack. More information on the JVM, the Dalvik VM and their
differences can be found in The Android Open Source Project [56] and Nolan [39].

2.2.1 Dalvik Bytecode

The instruction set for the Dalvik VM consists of 218 opcodes. As already stated, the Dalvik VM is
register-based. The opcodes can directly operate on these registers. A full list of all opcodes can be
found in The Android Open Source Project [56]. There are 31 different opcode formats available,
each of them having a unique ID. The Android Open Source Project [58] gives an overview of
these instruction formats.

2.2.2 Dalvik Executable Format

When the Android application package (Section 2.3) is created, the Java .class files are con-
verted to a single classes.dex file, the Dalvik executable. The structure of this file is depicted in
Figure 2.2, according to the official Android Dalvik documentation [57] and to Nolan [39].

9http://developer.android.com/reference/android/content/BroadcastReceiver.html#

abortBroadcast()

http://developer.android.com/reference/android/content/BroadcastReceiver.html#abortBroadcast()
http://developer.android.com/reference/android/content/BroadcastReceiver.html#abortBroadcast()

2.3. Android Applications 12

Dalvik Java

B byte

C char

D double

F float

I int

J long

S short

V void

Z boolean

Lmy/package/Clazz; the class my.package.Clazz

[typeDescriptor array of typeDescriptor

Table 2.1: Dalvik variable string conventions as listed in The Android Open Source Project
[57].

The header contains general information about the executable. All strings utilized by the appli-
cation can be found in the string_ids block. For each of these strings, a string element containing
the string ID and the actual address of the string in the data section is included. Next, the type_ids
section contains all type definitions. Again, each type has a unique type ID as well as a string ID,
which links to the type string, like Ljava/lang/BigInteger. Here, we also see the string naming
conventions for variables. Table 2.1 gives an overview of these conventions. For more information
on the string naming conventions of Dalvik, we refer to The Android Open Source Project [57].

The three blocks proto_ids, field_ids, and method_ids list all method prototype, field, and
method definitions. Prototype ID items have four fields: a unique ID, the shorty_idx, which is
a short-form descriptor for the given prototype, a return type ID, and a parameters offset to the
list of parameter types of this method prototype. Field ID items also feature four fields: again, a
unique ID, a class string ID, a type ID, and a name string ID. Finally, the method ID item consists
of a unique ID, a prototype ID, and a name String ID.

Then, class_defs section holds all class definitions, where each class has its own ID, access
flags, superclass ID, interface offset, source file ID, annotations offset, class data offset, and static
values offset. Link data contains data used in statically linked files. The data section contains the
actual data, where all offsets from previously discussed items lead to. For example, for each class,
a class_data_item is available, which contains, amongst others, all encoded fields and methods.
For each method, the address offset is given, which points to the actual code item of the method.
For more detailed information on the Dalvik executable format, we refer to The Android Open
Source Project [57] and to Nolan [39].

The Android SDK includes dexdump, a tool to print the contents of a Dalvik executable.

2.3 Android Applications

Android applications are implemented in Java and can also include native C/C++ code. In addi-
tion, XML can be used to define user interface components and for various other resource types,

2.3. Android Applications 13

classes.dex

header

string_ids

type_ids

proto_ids

field_ids

method_ids

class_defs

data

link_data

Figure 2.2: Dalvik executable structure (classes.dex). Adapted from Nolan [39] and The
Android Open Source Project [57].

including strings, dimensions, and many more. The file extension of Android applications is .apk,
which is short for Android application package. This Android application package is a ZIP com-
pressed container holding several files and folders. The files included in this package are signed10

by the developer using Jarsigner. Figure 2.3 shows the contents of such an .apk file, which are:

• AndroidManifest.xml
The Android manifest represents the main configuration file for applications. It includes
definitions for supported devices, used permissions and lists all application components.
More information on the manifest is given in Section 2.4.

• classes.dex
The Dalvik bytecode is stored in the classes.dex. As already explained in Section 2.2,
Android uses a proprietary Dalvik Virtual Machine and Dalvik bytecode. Details on the
structure of the classes.dex as well as examples can be found in Section 2.2.2.

• resources.arsc
This file contains the Android resource table, which holds information on all used resources,
including their ID.

• assets
Additional files required by the application are placed in this folder. Unlike files in /res/

raw/, files put in the assets folder will not receive an ID.

• lib
This folder contains native (compiled) libraries required by the application. The shared ob-

10http://developer.android.com/tools/publishing/app-signing.html

http://developer.android.com/tools/publishing/app-signing.html

2.4. Android Manifest 14

jects (.so file extension) have to be placed in a subfolder named after the target architecture.
According to the Android NDK documentation11, supported folder names are, amongst oth-
ers, armeabi for ARM processors, armeabi-v7a for ARMv7, x86 for X86 platforms or mips
for the MIPS architecture.

• META_INF
This folder contains three files:

– MANIFEST.MF

This file contains a list of all files included in the Android application package, as well
as their corresponding SHA-1 digests.

– CERT.SF

Android application packages are signed using Jarsigner. According to the Jarsigner
documentation [40], a signature file, called CERT.SF, as well as a signature block file,
CERT.RSA are created. The CERT.SF holds the SHA-1 hash value of the MANIFEST.MF

file, as well as separate SHA-1 values for all entries included in the MANIFEST.MF file.
This signature file is then signed with the credentials of the developer and the resulting
signature is stored in CERT.RSA, together with the developer’s certificate.

– CERT.RSA

This signature block file contains the signature of CERT.SF and the certificate used for
the signing process.

• res
All resources required by the Android application are placed in this directory. For example,
user interface elements can be designed via XML, as well as animations or graphics. Images
and other raw values, like colors, strings, or integers can be defined in resource files as well.
More information on Android resources can be found in the official App Resource guide
[21] and in Meier [33].

2.4 Android Manifest

The Android manifest is an XML file where all application components are defined. First, the
package name of the application, as well as the version ID and version string have to be set. In
addition, the targeted Android version and supported screen sizes have to be specified. Activities,
services, broadcast receivers, and content providers are registered in this file. Intent filters are used
to specify the capabilities of these components. Furthermore, all required permissions also have
to be defined in the manifest. The developer can also define which hardware- or software features
the application demands12, like a camera, NFC, or Bluetooth. The Android manifest guide [20]
gives more information on the structure of the AndroidManifest.xml.

Listing 2.3 shows a small example manifest. In this example, the package name is set to
com.oprisnik.smsreceiver. The application requires at least Android Donut13 (API level 4)
and the targeted Android version is Jelly Bean (API level 18).

Since the application reacts to incoming SMS messages, the permission to receive SMS mes-
sages is declared; the uses-permission-tag is used for this purpose. In this case, the demanded
permission is called android.permission.RECEIVE_SMS.

11http://developer.android.com/tools/sdk/ndk/index.html
12http://developer.android.com/guide/topics/manifest/uses-feature-element.html
13http://source.android.com/source/build-numbers.html

http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/guide/topics/manifest/uses-feature-element.html
http://source.android.com/source/build-numbers.html

2.5. SMS Handling 15

.apk

AndroidManifest.xml

classes.dex

assets
asset

res
resource

resources.arsc
META-
INF

MANIFEST.MF

CERT.SF

CERT.RSA

lib
library

Figure 2.3: Contents of an Android application package file (.apk). Files are listed in blue,
folders are yellow. The Android application package itself is a ZIP compressed
container.

The application itself consists of a single broadcast receiver named SmsReceiver, for which an
intent filter (Section 2.1.1) is defined. The action android.provider.Telephony.SMS_RECEIVED

is set for this filter, which registers it to incoming SMS messages. Furthermore, a priority of 1000
is defined for the filter. The next section delves into the details of SMS handling on Android and
gives an example implementation for the SmsReceiver declared earlier.

2.5 SMS Handling

As stated in Section 2.1.2, broadcast receivers can be used in order to get notified about various
events – including incoming SMS messages. The receiver can either be registered statically in
the Android manifest, as explained in the previous section, or dynamically via Java code. The
priority of the broadcast receiver defines the call order for all registered receivers. Default SMS
applications usually have a low priority and, thus, will be called last. For the receiver registered
in Listing 2.3 this means that it will be called before default SMS applications, since the SYS-
TEM_HIGH_PRIORITY is 1000 – which has been assigned to the receiver.

Now, we need to implement the broadcast receiver itself. Listing 2.4 shows a very simple
implementation for such a receiver. The receiver, called SmsReceiver, has to extend the abstract
BroadcastReceiver class. Since the receiver has been registered to SMS_RECEIVED actions, the
onReceive-method will be called for incoming SMS messages. Information on the incoming SMS
message are stored in the bundle of the intent and can be accessed via the pdus key. The code in
Listing 2.4 parses all SMS messages, which can then be used for further tasks. For example, for
each message, the originating address as well as the message body can be extracted and saved in a
database.

2.5. SMS Handling 16

1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g =" u t f −8" ?>
2 < m a n i f e s t x m l n s : a n d r o i d =" h t t p : / / schemas . a n d r o i d . com / apk / r e s / a n d r o i d "
3 package ="com . o p r i s n i k . s m s r e c e i v e r "
4 a n d r o i d : v e r s i o n C o d e =" 1 "
5 a n d r o i d : v e r s i o n N a m e =" 1 . 0 " >
6
7 <uses−sdk a n d r o i d : m i n S d k V e r s i o n =" 4 " a n d r o i d : t a r g e t S d k V e r s i o n =" 18 " / >
8
9 <uses−p e r m i s s i o n a n d r o i d : n a m e =" a n d r o i d . p e r m i s s i o n . RECEIVE_SMS" / >

10
11 < a p p l i c a t i o n
12 a n d r o i d : i c o n =" @drawable / i c _ l a u n c h e r "
13 a n d r o i d : l a b e l =" @s t r i ng / app_name " >
14
15 < r e c e i v e r a n d r o i d : n a m e =" . SmsReceiver ">
16 < i n t e n t − f i l t e r a n d r o i d : p r i o r i t y =" 1000 ">
17 < a c t i o n

a n d r o i d : n a m e =" a n d r o i d . p r o v i d e r . Te lephony . SMS_RECEIVED" / >
18 < / i n t e n t − f i l t e r >
19 < / r e c e i v e r >
20 < / a p p l i c a t i o n >
21 < / m a n i f e s t >

Listing 2.3: Simple AndroidManifest.xml for SMS handling. A BroadcastReceiver for
SMS events is defined. The receiver priority is set to 1000. The SMS
permission has to be requested in order for SMS handling to work.

Since it is possible to abort broadcasts, an SMS receiver with a high priority can abort the
broadcast, which will effectively hide the message from all other receivers with a lower priority
– including the default SMS application. The message will not be added to the user’s inbox
and the user will not be notified about this messsage. Uncommenting line 24 in Listing 2.4,
abortBroadcast(), enables this behavior; receivers with a lower priority will no longer receive
the intent and, thus, incoming SMS messages.

With Android 4.4 KitKat, Google changed the way SMS messages are handled on Android.
According to Main and Braun [32], a default SMS application has to be set by the user. Only
this default application can write to the SMS provider and only the default SMS application will
receive the broadcast message with the new action SMS_DELIVER_ACTION. Other applications can
still listen to incoming SMS messages via the SMS_RECEIVED_ACTION – but they cannot abort the
broadcast any more. All applications will receive the broadcast. Thus, applications cannot abort
the broadcast any more. For default SMS applications, it is still possible to hide certain messages
from the user, since they can decide not to add incoming messages to the SMS content provider.

In this thesis, applications that hide incoming messages from the user, either by aborting the
broadcast, or by manipulating the SMS content provider, are called “SMS catchers”. Receivers
that just listen to incoming SMS messages without hiding certain messages from the user’s inbox
are called “SMS sniffers”. Both types usually have a high priority set for their broadcast receivers
in order to receive all messages.

2.5. SMS Handling 17

1 p u b l i c c l a s s SmsReceiver ex tends BroadcastReceiver {
2
3 @Override
4 p u b l i c vo id onReceive (f i n a l Context context , Intent intent) {
5 // get the intent extras
6 Bundle bundle = intent .getExtras () ;
7
8 // parse SMS objects
9 Object [] pdus = (Object []) bundle .get (" pdus ") ;

10 SmsMessage [] messages = new SmsMessage [pdus .length] ;
11
12 f o r (i n t i = 0 ; i < messages .length ; i++) {
13 messages [i] = SmsMessage .createFromPdu ((byte []) pdus [i]) ;
14
15 // Read message address and body
16 // messages[i].getOriginatingAddress();
17 // messages[i].getMessageBody();
18 }
19
20 // do something with the messages
21 doSomething (messages) ;
22
23 // uncomment to abort the broadcast
24 // abortBroadcast();
25 }
26 }

Listing 2.4: Simple SMS broadcast receiver. Parses incoming SMS messages. If
uncommented, abortBroadcast() will abort the SMS broadcast.

2.5. SMS Handling 18

2.5.1 SMS Sniffers

SMS sniffers listen to incoming SMS messages without aborting the message broadcast. List-
ing 2.4 can be considered as a sniffer, since the broadcast is not aborted. Depending on the actions
performed in doSomething, they can be categorized in two sub-groups:
The first sniffer type just records that a message has been received, without reading the actual SMS
contents or the phone number of the sender. For this type, only the fact that an SMS has arrived is
important, not the actual contents of the message. Notification widgets that just display the unread
message count would fall in this category.

The second category of SMS sniffers parse and use the message contents. Third-party SMS
widgets or applications that sync your messages with other devices can be placed in this category.

The tasks performed by sniffers can either be malicious or benign. Examples for legitimate
sniffers have already been given. Malicious sniffers could forward all incoming SMS messages to
a third party, for example via the internet or via SMS messages. Furthermore, one could also sniff
sensitive data, like transaction authentication numbers (TANs) used by online banking systems.
These TANs can then be used to perform unwanted bank transactions. Similarly, all systems
that employ two-factor authentication via SMS messages can be exploited as well. Two-factor
authentication adds a second layer of security by sending verification PINs to the user, for example,
via SMS messages. The user then has to enter this PIN in order to be able to successfuly log in. If
the device is infected, an adversary is able to acquire these verification PINs and, thus, is able to
log into the user’s account (assuming that the attacker is in possession of the user’s password as
well).

2.5.2 SMS Catchers

SMS catchers behave like sniffers but, in addition, abort the SMS broadcasts. Again, two different
catcher types can be distinguished: The first category aborts all SMS broadcasts. The second
category only aborts the broadcast if certain criteria are met, like if the incoming message has a
special structure or if it originates from a given phone number.

Since the broadcast is cancelled, other broadcast receivers with lower priorities will not receive
the message, including most default SMS applications. Thus, the user will not be notified about
the incoming message.

With the release of Android 4.4, aborting SMS broadcasts is not possible any more. For SMS
catchers this means, that they have to be the default SMS application. If they receive certain SMS
messages, they just do not display them to the user (add them to the database) and perform their
hidden tasks accordingly. Thus, third party SMS applications set as default SMS applications can
still act as SMS catchers. It has to be noted though, that other installed applications that listen for
incoming SMS messages will also receive the broadcast.

In general, it is very hard to determine whether an SMS catcher has malicious intentions.
There are some use cases where SMS catchers can be used for legitimate operations. Many mobile
ticketing providers, for instance, handle the ordering and billing process via SMS messages. SMS
catchers can be used to hide the SMS handling from the user, which can improve the usability
of an application since the user simply has to press a single button. All the background work
consisting of sending corresponding SMS messages to the ticketing providers and handling the
SMS responses is done directly by the application. The resulting booking information retrieved
via SMS messages can then be directly displayed in the application in a more appealing way.

Blacklisting of unwanted numbers can also be a desired feature of a third-party SMS applica-

2.5. SMS Handling 19

1 p u b l i c c l a s s SmsCommandReceiver ex tends BroadcastReceiver {
2
3 @Override
4 p u b l i c vo id onReceive (f i n a l Context context , Intent intent) {
5 // get the intent extras
6 Bundle bundle = intent .getExtras () ;
7
8 // parse SMS objects
9 Object [] pdus = (Object []) bundle .get (" pdus ") ;

10 SmsMessage [] messages = new SmsMessage [pdus .length] ;
11
12 f o r (i n t i = 0 ; i < messages .length ; i++) {
13 messages [i] = SmsMessage .createFromPdu ((byte []) pdus [i]) ;
14 doSomething (messages [i] . getMessageBody ()) ;
15 }
16
17 // save messages etc. like a legitimate SMS application
18 . . .
19 }
20
21 p u b l i c vo id doSomething (String command) {
22 // handle the SMS command
23 i f (command .equals ("MY_COMMAND") {
24 // perform the action according to the command
25 performAction () ;
26
27 // abort the broadcast so that no other SMS receivers get the message
28 abortBroadcast () ;
29 }
30 }
31 }

Listing 2.5: Simple SMS command broadcast receiver. Parses incoming SMS messages.
if the incoming SMS message equals MY_COMMAND, a given action is
performed.

tion. This case can also be considered as a SMS catcher for messages from blocked numbers.

Remote-control software can include SMS catchers for their tasks as well. By sending com-
mand SMS messages to the device, remote control functionality, like acquiring the location of
the device or deleting certain data, can be provided. Incoming messages are scanned and if they
match a given pattern, a command is be executed and the broadcast is aborted. Listing 2.5 shows
a simple implementation of such a command receiver. If the SMS message equals MY_COMMAND, a
given action, like sending the current device location to a given server, is performed.

Malicious apps can utilize this feature to spy on the user or to perform various other tasks.
Sensitive data, the device location and other valuable information can be returned to the adversary.
Similarly, security applications can utilize this feature to locate your device or to delete sensitive
data in case the device is lost. Thus, this functionality is utilized by both malicious and legitimate
applications.

TAN sniffers discussed in the previous section can also be implemented as TAN catchers,
where the SMS broadcast containing the TAN is intercepted, forwarded to a third party, and then
cancelled. The user will not get a notification about the incoming TAN.

2.6. Malware 20

2.6 Malware

Today, several different malware types can be found in Android applications. As already dis-
cussed, SMS sniffers and catchers pose a threat. They can be used to spy on the user or to
remote-control the device. SMS commands can be sent to the device and actions can be performed
accordingly.

Gunasekera [26] gives an overview of Android security and also gives an overview of Android
malware. The malware genome project [68] gives detailed insights into several other malware
families and their characteristics found in applications from 2010 and 2011. They collected 1260
malware samples, which can be categorized into 49 different malware families. Three key points
have been assessed for malicious applications by Zhou and Jiang [68]: malware installation, ac-
tivation, and functionality. First, the malicious code has to be installed on the device. There are
different possibilities on how the device can get infected. Common strategies include repackaging,
update, or drive-by-downloads. Repackaging means that malicious code is inserted in a (popular)
application, repackaged, and distributed. Similarly, the update scenario includes an update func-
tionality into the repackaged application. When the application is used, the malicious code will
be downloaded and executed. Drive-by-downloads trick the user into downloading malicious ap-
plications from the attacker’s website or from a fake market – for example via advertisements for
their “great”, malicious applications.

Next, the malicious code has to be activated. Again, there are many possibilities on how
this can be achieved, ranging from boot receivers, to SMS and call receivers, listening to battery
updates or when the USB cable is plugged in. Of course, it is also possible that the malicious code
is executed when the user starts an application or performs certain actions within the malicious
application.

Finally, the functionality of the malicious code has to be assessed. There are several possibili-
ties for malicious operations that have been found in existing applications. Common intentions of
malicious applications can be categorized as follows:

• Root exploits
The application tries to gain root access, which allows the application to access the whole
system.

• Remote control functionality
The device can be remote-controlled via SMS messages or the internet.

• Spyware
The application spies on the user and sends sensitive data, like the location, incoming mes-
sages, contacts, or calendar appointments to the attacker. As already stated, such function-
ality can also be desired, as for example for locating a lost device or for parental control.

• Financial charges
The malicious application calls premium rate numbers or sends text messages to premium
rate numbers. With the release of Android 4.2, Google added a notification dialog that asks
the user if the message really should be sent to the premium rate number14.

For more detailed information on malware in general as well as on different malware families
found in the wild, we refer to Zhou and Jiang [68]. Furthermore, Gunasekera [26] and Castillo [4]
provide additional information.

14http://source.android.com/devices/tech/security/enhancements42.html

http://source.android.com/devices/tech/security/enhancements42.html

2.7. Decompiling Android Applications 21

2.7 Decompiling Android Applications

It is possible to reconstruct Java code from the Dalvik bytecode. Nolan [39] gives detailed informa-
tion on the decompilation process, and explains how to implement your own Android decompiler.
Most decompilation frameworks first convert the Dalvik executable to a .jar file containing all
.class files. Then, these .jar files containing Java bytecode can be decompiled to Java source
code using various tools, like JD-GUI15 or JAD16. Commercial versions like JEB17 are available
as well.

A popular tool for converting the Dalvik executable to Java bytecode is dex2jar [9]. Alterna-
tively, many other tools like Dare18 or ded19 can be used for this conversion process.
Some frameworks also transform the Dalvik bytecode to a different intermediate language, like
for instance smali [48]. This disassembler utilizes its own intermediate language and stores them
as so-called .smali files.

Since the XML files used for the Android manifest as well as for various other purposes,
including user interface components, are stored in a binary format, tools like AXMLPrinter220 or
axml21 can be used to transform the binary resources back to a human-readable XML format.

Apktool22 is a very popular decompiling tool, which aims at simplifying the decompilation
process. It performs all of the steps mentioned above – with a single click; the Dalvik bytecode will
be converted to a .jar file and JD-GUI is then used to display its Java source code. Furthermore,
the Android binary XML files will be converted to normal, human-readable XML. In addition, the
Dalvik bytecode is converted to smali, which can be used for step-by-step debugging.

In order to protect one’s intellectual property and to prevent piracy, many applications use
code obfuscation to hinder reverse engineering. For Android, the most prominent obfuscation tool
is ProGuard23, which ships with the Android SDK. Furthermore, this tool also optimizes the code
and shrinks it. For example, methods are inlined, classes are merged, and other code optimization
is performed. DexGuard24 is also available, which is a commercial optimizer and obfuscator for
Android applications. Compared to ProGuard, it offers advanced functions, like string-, class-,
and asset encryption.

2.8 Cryptography

In order to establish a secure connection between two parties, cryptographic mechanisms can be
employed in order to encrypt their communication. Figure 2.4 shows how such a system looks
in general. The first party encrypts a given plaintext using a cryptograpic key K1. The resulting
ciphertext can then be transmitted to the second party, even over an insecure channel. An adversary
is not able to decrypt the ciphertext without knowing the secret key K2. Only the second party,
which is in possession of K2 can recover the original text.

15http://jd.benow.ca/
16http://en.wikipedia.org/wiki/JAD_(JAva_Decompiler)
17http://www.android-decompiler.com
18http://siis.cse.psu.edu/dare/index.html
19http://siis.cse.psu.edu/ded/index.html
20https://code.google.com/p/android4me/
21https://code.google.com/p/axml/
22https://code.google.com/p/android-apktool/
23http://developer.android.com/tools/help/proguard.html
24http://www.saikoa.com/dexguard

http://jd.benow.ca/
http://en.wikipedia.org/wiki/JAD_(JAva_Decompiler)
http://www.android-decompiler.com
http://siis.cse.psu.edu/dare/index.html
http://siis.cse.psu.edu/ded/index.html
https://code.google.com/p/android4me/
https://code.google.com/p/axml/
https://code.google.com/p/android-apktool/
http://developer.android.com/tools/help/proguard.html
http://www.saikoa.com/dexguard

2.8. Cryptography 22

Encryption DecryptionPlaintext Plaintext
Ciphertext

K1 K2

Figure 2.4: Secure communication between two parties. The plaintext is encrypted using
a cryptograpic key K1. The ciphertext is sent to the second party, which can
decrypt the original plaintext using key K2.

Encryption mechanisms can be divided into two main categories: symmetric- and asymmetric
encryption mechanisms. For symmetric-key encryption, the same cryptographic key is used for
en- and decryption, thus K1 and K2 of Figure 2.4 are identical. Asymmetric encryption utilizes
two different cryptographic keys, one for encryption (K1), and a second key for decryption (K2).

Another category of cryptographic functions are hash functions. They are used to map ar-
bitrary input data to a fixed-length output – the so-called hash value. In the following sections,
the main characteristics of these two types will be dissected and important algorithms will be
presented.

The next sections will give a brief overview of these three categories. Since one goal of this
thesis is to detect symmetric-, and asymmetric ciphers, as well as hash functions, we focus on
general structural details of these three categories. For more information, we refer to and Trappe
and Washington [59], Menezes, Vanstone, and Oorschot [34] and Schneier [45].

2.8.1 Symmetric Cryptography

Symmetric block ciphers use the same key for both en- and decryption. Two of the most common
symmetric ciphers are the Data Encryption Standard (DES) and the newer Advanced Encryption
Standard (AES). These ciphers are so-called block ciphers. Block ciphers split the input in blocks
of a predefined size and encrypt each block separately. There are different modes of operation
for block ciphers, since encrypting all blocks separately has some weaknesses and should not be
used for all applications. For more information on block cipher modes of operation, we refer to
Menezes, Vanstone, and Oorschot [34].

In this thesis, we will focus on AES, since AES is very common and we use different AES
implementations as training data later on in this thesis. AES, which is the successor of DES, has
been developed by Joan Daemen and Vincent Rijmen under the name Rijndael. The official AES
specification can be found in National Institute of Standards and Technology [37]. The block size
of AES is 128 bits, and it supports key sizes of 128, 192, and 256 bits.

The input, also called the state, can be represented as a 4x4 array of bytes. The algorithm
itself utilizes 10, 12, or 14 rounds (depending on the key size), where each round transformation
consists of the following four steps:

• SubBytes
The first step, SubBytes, adds non-linearity by transforming the input bytes using an invert-
ible S-Box (lookup table).

• ShiftRows
As its name suggests, ShiftRows is responsible for shifting all rows over different offsets.

2.8. Cryptography 23

• MixColumns
MixColumns transforms all columns of the current input state.

• AddRoundKey
For each round, a round key is calculated and added to the input state.

For more details on these four steps and on the key schedule, we refer to National Institute of
Standards and Technology [37] and Stinson [51].

If we take a look at the AES implementation of Bouncy Castle given in Listing 2.6, it can be
observed that many mathematical operations are performed. The four steps are not clearly visible,
since this code is optimized. The SubBytes operation manifests in array lookups for S[], T0[]
holds precomputed values for the rounds. KW represents the working key. The algorithm uses
solely basic data types (byte and int) as well as arrays of these types. Many XOR, AND, and shift
operations are used. For all Sbox lookups, the corresponding array elements are accessed.

2.8.2 Asymmetric Cryptography

Asymmetric encryption algorithms use different keys for en- and decryption. These keys are also
often called public- and private key, since one key can be made publicly available, whereas the
other key has to be kept private. Then, everyone can send messages to the party by encrypting the
data with the public key. The message can only be decrypted by persons who know the private
key.

Similarly, it is also possible to sign content with the private key. Everyone can then validate
the signature by using the public key. For large datasets, it is not practicable to sign the entire file
(i.e. to encrypt the data with the private key). Thus, the data is first hashed (see Section 2.8.3) and
only the resulting hash value is signed with the private key.

One of the most common asymmetric encryption algorithms is RSA, named after the three
inventors Ron Rivest, Adi Shamir and Leonard Adleman. In this thesis, we use RSA imple-
mentations as training data. Thus, we need to take a closer look at this asymmetric encryption
mechanism. In order to encrypt a message m with the public key e, the following algorithm is
used:

c ≡ me (mod n)

The encrypted message c can then be decrypted by using the private key d and by applying:

m ≡ cd (mod n)

The modulus n consists of two large prime numbers p and q:

n = p ∗ q
The private keys, as well as p and q are very large numbers (usually with a length of around

1024-8192 bits depending on the required strength). The public key can also be smaller in order
to speed up the computations. According to Menezes, Vanstone, and Oorschot [34], e = 3 is a
very common public key.

More information on RSA can be found, amongst others, in Menezes, Vanstone, and Oorschot
[34] or Smart [49].

From an analytical point of view, we see that the algorithm itself is very easy, only one equa-
tion has to be solved to en-/decrypt data. Since the keys as well as n are very large numbers, they
do not fit into a single integer. Hence, a different approach has to be used in order to perform the
calculations on a CPU. For Java, a very common approach is to use the java.math.BigInteger

2.8. Cryptography 24

1 p r i v a t e vo id encryptBlock (i n t [] [] KW) {
2 i n t r , r0 , r1 , r2 , r3 ;
3
4 C0 ^= KW [0] [0] ;
5 C1 ^= KW [0] [1] ;
6 C2 ^= KW [0] [2] ;
7 C3 ^= KW [0] [3] ;
8
9 r = 1 ;

10
11 whi le (r < ROUNDS − 1) {
12 r0 = T0 [C0&255] ^ shift (T0 [(C1> >8) &255] , 24) ^

shift (T0 [(C2> >16) &255] ,16) ^ shift (T0 [(C3> >24) &255] ,8) ^ KW [r] [0] ;
13 r1 = T0 [C1&255] ^ shift (T0 [(C2> >8) &255] , 24) ^ shift (T0 [(C3> >16) &255] ,

16) ^ shift (T0 [(C0> >24) &255] , 8) ^ KW [r] [1] ;
14 r2 = T0 [C2&255] ^ shift (T0 [(C3> >8) &255] , 24) ^ shift (T0 [(C0> >16) &255] ,

16) ^ shift (T0 [(C1> >24) &255] , 8) ^ KW [r] [2] ;
15 r3 = T0 [C3&255] ^ shift (T0 [(C0> >8) &255] , 24) ^ shift (T0 [(C1> >16) &255] ,

16) ^ shift (T0 [(C2> >24) &255] , 8) ^ KW [r+ +] [3] ;
16 C0 = T0 [r0&255] ^ shift (T0 [(r1> >8) &255] , 24) ^ shift (T0 [(r2> >16) &255] ,

16) ^ shift (T0 [(r3> >24) &255] , 8) ^ KW [r] [0] ;
17 C1 = T0 [r1&255] ^ shift (T0 [(r2> >8) &255] , 24) ^ shift (T0 [(r3> >16) &255] ,

16) ^ shift (T0 [(r0> >24) &255] , 8) ^ KW [r] [1] ;
18 C2 = T0 [r2&255] ^ shift (T0 [(r3> >8) &255] , 24) ^ shift (T0 [(r0> >16) &255] ,

16) ^ shift (T0 [(r1> >24) &255] , 8) ^ KW [r] [2] ;
19 C3 = T0 [r3&255] ^ shift (T0 [(r0> >8) &255] , 24) ^ shift (T0 [(r1> >16) &255] ,

16) ^ shift (T0 [(r2> >24) &255] , 8) ^ KW [r+ +] [3] ;
20 }
21
22 r0 = T0 [C0&255] ^ shift (T0 [(C1> >8) &255] , 24) ^ shift (T0 [(C2> >16) &255] ,

16) ^ shift (T0 [(C3> >24) &255] , 8) ^ KW [r] [0] ;
23 r1 = T0 [C1&255] ^ shift (T0 [(C2> >8) &255] , 24) ^ shift (T0 [(C3> >16) &255] ,

16) ^ shift (T0 [(C0> >24) &255] , 8) ^ KW [r] [1] ;
24 r2 = T0 [C2&255] ^ shift (T0 [(C3> >8) &255] , 24) ^ shift (T0 [(C0> >16) &255] ,

16) ^ shift (T0 [(C1> >24) &255] , 8) ^ KW [r] [2] ;
25 r3 = T0 [C3&255] ^ shift (T0 [(C0> >8) &255] , 24) ^ shift (T0 [(C1> >16) &255] ,

16) ^ shift (T0 [(C2> >24) &255] , 8) ^ KW [r+ +] [3] ;
26
27 C0 = (S [r0&255]&255) ^ ((S [(r1> >8) &255]&255) < <8) ^

((S [(r2> >16) &255]&255) < <16) ^ (S [(r3> >24) &255] < <24) ^ KW [r] [0] ;
28 C1 = (S [r1&255]&255) ^ ((S [(r2> >8) &255]&255) < <8) ^

((S [(r3> >16) &255]&255) < <16) ^ (S [(r0> >24) &255] < <24) ^ KW [r] [1] ;
29 C2 = (S [r2&255]&255) ^ ((S [(r3> >8) &255]&255) < <8) ^

((S [(r0> >16) &255]&255) < <16) ^ (S [(r1> >24) &255] < <24) ^ KW [r] [2] ;
30 C3 = (S [r3&255]&255) ^ ((S [(r0> >8) &255]&255) < <8) ^

((S [(r1> >16) &255]&255) < <16) ^ (S [(r2> >24) &255] < <24) ^ KW [r] [3] ;
31 }
32
33 p r i v a t e s t a t i c i n t shift (i n t r , i n t shift) {
34 re turn (r >>> shift) | (r << −shift) ;
35 }

Listing 2.6: Bouncy Castle AES implementation excerpt for block encryption. Class:
org.bouncycastle.crypto.engines.AESEngine

2.8. Cryptography 25

1 p r i v a t e BigInteger publicKey = . . . ;
2 p r i v a t e BigInteger privateKey = . . . ;
3 p r i v a t e BigInteger modulus = . . . ;
4
5 p u b l i c BigInteger encrypt (BigInteger plaintext) {
6 re turn plaintext .modPow (publicKey , modulus) ;
7 }
8
9 p u b l i c BigInteger decrypt (BigInteger ciphertext) {

10 re turn ciphertext .modPow (privateKey , modulus) ;
11 }

Listing 2.7: Simple RSA Java implementation using java.math.BigInteger.

class, which provides a convenient interface to operate on such big numbers. It provides all func-
tionality needed to perform RSA en- and decryption.
A very simple Java implementation is given in Listing 2.7. The public- and private key, as well
as the modulus are given. En- and decryption can then be performed by calling the corresponding
methods.

Since n is composed of two prime numbers, the Chinese Remainder Theorem can be used
in order to improve the performance of the algorithm. For more information on the Chinese
Remainder Theorem, we refer to Menezes, Vanstone, and Oorschot [34]. Listing 8.1 of Chapter 8
shows, how it can be implemented in Java.

2.8.3 Hash Functions

As stated in Trappe and Washington [59], cryptographic hash functions take a message with an
arbitrary length and produce a fixed-length output, the message digest, also called hash value.
Mathematically speaking, given a message m, the hash value h(m) is calculated. Hash functions
should have the following three properties:

• Preimage resistance:
Given h(m), it is very difficult to find the message m.

• Second preimage resistance:
Given h(m) and m, it is very difficult to find a second m′ with h(m) = h(m′).

• Collision resistance:
It should be infeasible to find two different messages m and m′ with h(m) = h(m′).

Currently used hash functions include the Secure Hash Algorithm 1 (SHA-1) and its successor
SHA-2. We do not delve into the technical details of these algorithms. For this thesis, it is only
relevant that the structure of these algorithms is similar to the structure of symmetric block ciphers.
They also utilize many shift operations and rotations, as well as bitwise operations, including
XOR and AND. For more details, we refer to Smart [49] and National Institute of Standards and
Technology [38].

2.9. Machine Learning 26

2.9 Machine Learning

In this thesis, machine learning is used to classify data found in Android applications. To be more
precice, we employ supervised learning algorithms. As stated in Bishop [2], the training data
used for supervised learning algorithms consists of input vectors, as well as their corresponding
target values. Using this data, a machine learning model can be trained, which can then be used to
classify new instances.

Other machine learning types include unsupervised learning, where the algorithm tries to dis-
cover structures or groups within given data, without having any target values attached to the
training vectors, semi-supervised learning, which combines both approaches, or reinforcement
learning, which tries to find actions to take for a given scenario.

The main focus in this thesis is to detect certain application functionality. Thus, we decided to
use supervised learning strategies. As training data, we use applications where we manually label
the functionality of their components.
A simple example would be an analysis process, where we want to detect malicious applications.
The training data comprises malicious applications labeled “malware”, as well as benign applica-
tions labeled “normal”. A machine learning model can then be trained using this data. Then, new
applications can be classified using the previously created machine learning model.

A second approach, which could also be used for the Semantic Pattern Analysis in future work,
is anomaly detection, also called outlier detection. The goal of this method is to find outliers –
instances that are considered to be abnormal. A common method is to calculate the distance to the
average normal data. If this distance is too large, the data can be considered as an anomaly. Other
methods include probability densities and other statistical approaches, as explained in Witten,
Frank, and Hall [60].

Mitchell [35] gives an overview of several machine learning strategies, including decision tree
learning, bayesian learning, and neural networks. For this thesis, we mainly use Support Vector
Machines (SVMs) for machine learning tasks. A Support Vector Machine is a machine learning
algorithm for two classes. It is also possible to use them for more than two classes; according to
Bishop [2], multiple two-class SVMs can be combined in this case.
Data points are represented as multi-dimensional vectors. The SVM uses a hyperplane to separate
the two classes. Depending on the side the new data point is located at, this point can be labeled
accordingly. Besides this linear SVM, it is also possible to use different kernels, like polynomials
or sigmoids. Furthermore, soft margins have been added in 1995, which allow errors in the training
set.
For more details, we refer to Cortes and Vapnik [7].

For estimating the performance of a machine learning model, k-fold cross-validation can be
used. The dataset is randomly split into k partitions. Then, for each of these partitions, the model
is evaluated: one partition is used as testing data, the other k-1 partitions are used for training.
Then, the results are averaged.
More information on this topic can be found in Bishop [2] and Witten, Frank, and Hall [60].

In this thesis, we utilize Weka for all machine learning purposes. Weka is a powerful machine
learning framework developed by the University of Waikato [27]. It is implemented in Java and
provides convenient APIs to perform various machine learning operations. It includes several
implementations of common machine learning algorithms and is used for all machine learning
tasks in this thesis. Additionally, the Weka Explorer provides a convenient interface for testing
machine learning algorithms as well as for visualization purposes. Detailed information can be

2.10. Semantic Patterns 27

found in Hall et al. [27] and Witten, Frank, and Hall [60].
Furthermore, we use LIBSVM [5], a Java Support Vector Machine implementation. This library
is compatible with Weka and can be easily integrated.

2.10 Semantic Patterns

The concept of Semantic Patterns has been introduced by Peter Teufl [52]. Semantic Patterns can
be used to transform arbitrary features, containing both numeric and symbolic features, to vectors
suitable for machine learning algorithms.
By applying the Semantic Pattern Transformation, the feature vectors are transformed to Semantic
Patterns, simple double vectors used as input for machine learning algorithms.

2.10.1 The Problem

Most machine learning algorithms can solely be applied to vectors containing values, meaning
that only distance-based feature values (numeric values) can be used for the analysis process.
If symbolic feature values should be added as well, as for example feature = myString, it is
not possible to simply supply these mixed features to a machine learning model. In order to use
combinations of different feature representations, a preprocessing step has to be performed to
create valid input data suitable for common machine learning algorithms.

This preprocessing should also include a normalization step for the feature values. Suppose we
have two separate double arrays as feature values, one containing very large values and the second
containing only very small values; both of these arrays should have an impact on the results. Thus,
they have to be normalized accordingly. Different value ranges for different features have to be
considered and require pre-processing of the data in order to achieve good results.
Furthermore, missing values have to be handled accordingly.

2.10.2 The Semantic Pattern Transformation

In order to be able to combine both symbolic and distance-based feature values, the Semantic
Pattern Transformation [54] can be used to convert arbitrary feature combinations to vectors.
These vectors can then be used as input for machine learning purposes.

The main idea behind Semantic Patterns is to examine the semantic relations between feature
values. An associative network, the so-called semantic network, is created, containing nodes
for all feature values. Each node of this network represents a feature value. Weighted links are
established between these nodes, which represent the relations between these feature values. Since
all features of a given instance belong together, the nodes representing these features are linked, if
they have not yet been linked for previous instances, or the link weight is adjusted accordingly, if
the two nodes are already connected.

Once this semantic network has been established, the Semantic Patterns can be created. For
each feature value of a given instance, the representing node of the network is “activated” and
activation spreading is performed:
First, an initial activation value is set for each node. For the activated node, all weighted links to
other nodes are examined. For each of these connected nodes, a new activation value is calculated
according to several pre-defined parameters, the weight of the link, as well as the current activation
values of the involved nodes. The resulting new activation value is then assigned to the connected
node.

2.10. Semantic Patterns 28

Name Opcodes Local variables Method call count

method 1 IF_NE, CMP SmsMessage, String 24

method 2 IF_EQ, CMP SmsMessage, int 26

method 3 ADD, CMP double, int 15

method 4 ADD, IF_EQ int, String 26

Table 2.2: Example method features.

This process is repeated for all feature values of the given instance. The resulting activation
values are then used for creating the Semantic Pattern. This pattern contains simple double values,
being the activation values of all nodes, which can then be supplied to various machine learning
algorithms as input.

Due to the current structure of the Semantic Pattern Transformation, the feature order does not
have an impact on the resulting Semantic Pattern. In future work, this topic could be addressed
and the feature order could be considered for the transformation process. The implications this
order independence has for the proposed new Semantic Pattern Analysis will be discussed later on
in this thesis.

2.10.3 Example

Here, we give a small example on how the Semantic Pattern Transformation works. Since the
goal of this thesis is to classify components of Android applications, this example is also based
on Android components. To be more precise, we will show, how features found in four different
methods of an Android application are transformed to Semantic Patterns.
In order to keep it simple, this example is based on a simplified version of the Semantic Pattern
Transformation, which omits several optimizations and calculations.

Suppose we want to convert the features of the methods given in Table 2.2 to Semantic Pat-
terns. For each method, five features are given, two opcodes, two local variables and number of
method calls invoked by the current method.
For each of these feature values, a node is created in the associative network. Then, links are
established between all features of the same method. If two feature values are already linked, the
weight of the link is adjusted accordingly. Figure 2.5 shows the final semantic network with all
weighted links, indicated by different line strengths.

Then, the spreading activation process is performed. First, each node gets an initial activation
value, which is, in this case, 0. The Semantic Pattern for method 1 is then calculated by applying
activation spreading to each feature value. For example, for the first feature, IF_NE, the corre-
sponding node is activated. For all nodes linked to IF_NE, new activation values are calculated
depending on the link weight and the current activation values. This process is repeated for all
features of method 1. Once this process has been completed, the final Semantic Pattern contains
all activation values of all nodes.

2.10.4 Applications

This section gives a short overview of applications, where Semantic Patterns have already been
deployed.
In Teufl [52], the concept of Semantic Patterns has been evaluated on various data. The framework

2.10. Semantic Patterns 29

SmsMessage

int

String

24

26

15 double

IF_NE

CMP

ADD

IF_EQ

Figure 2.5: Resulting semantic network for the features in Table 2.2. Different line
strengths indicate different weights.

has been evaluated with different strategies: Amongst others, both supervised and unsupervised
learning strategies have been tested, semantic search has been performed and the influence of
missing values has been assessed.

Furthermore, Resource Description Framework (RDF) data analysis has been performed in
Teufl and Lackner [53]. The CIA world factbook25 has been used as RDF data source and the
semantic relations between various countries have been evaluated using Semantic Patterns.

In Teufl et al. [55], Semantic Patterns have been used to detect malicious Android application
on Google Play. For this analysis, application metadata, i.e., the application description on Google
play in combination with the required app permissions, has been used as data source. The Se-
mantic Pattern transformation has been applied on this metadata and various analyses have been
conducted, including a semantic search, anomaly detection. Furthermore, the feature relevance
and relations between features have been examined.

25https://www.cia.gov/library/publications/the-world-factbook/

https://www.cia.gov/library/publications/the-world-factbook/

Chapter 3

Related Work

This chapter presents selected static- and dynamic analysis frameworks for the Android platform.
Since the Semantic Pattern Analysis presented in this thesis is based on machine learning algo-
rithms, the focus of this chapter will also be on frameworks utilizing various machine learning
approaches. First, Section 3.1 presents related static analysis tools. Then, Section 3.2 will cover
some dynamic analysis approaches.

3.1 Static Analysis

Static analysis relies solely on examining the application’s code without executing it on any device.
For Android application packages, this means that the Dalvik bytecode is examined, as well as
all other files included in these packages, like the Android manifest, native libraries, or various
resource files (see Section 2.3).

One of the first static analysis frameworks has been presented in Schmidt et al. [44]. This
framework supports on-device-, collaboration-, or remote analysis. For this analysis, ELF (Ex-
ecutable and Linking Format) objects have been analyzed. They used all system- and function
calls invoked by these ELF file (by using the readelf command) to classify the executables using
machine learning.
The Semantic Pattern Analysis proposed in this thesis operates on Android application packages
instead of ELF files. Thus, the features used for the analysis process are also different. For the
Semantic Pattern Analysis, we utilize various features found in the Dalvik executable as opposed
to system calls found in the ELF files.

Shabtai, Fledel, and Elovici [46] showed that machine learning can be used to classify An-
droid applications. They use features found in the Dalvik executable and in various XML files to
determine whether a given application is a game or a tool. They evaluated different feature selec-
tion algorithms and different machine learning strategies. In addition, they state that this approach
could also assist in detecting malware.

In Sanz et al. [43] automatic application categorization has been performed as well. Instead of
two application categories, the following seven categories have been used: Communication, En-
tertainment, Tools, Multimedia and Video, Productivity, Brain & Puzzle, and Society. Compared
to Shabtai, Fledel, and Elovici [46], they used different features, namely the defined strings in the
application, required permissions, the rating, the number of ratings, and the size of the application.
Various machine learning algorithms, including Bayesian networks, decision trees, and SVMs.

Compared with the Semantic Pattern Analysis, these two frameworks use different feature

30

3.1. Static Analysis 31

compositions. The approach of Shabtai et al. also uses features found in various XML files, the
approach by Sanz et al. uses the rating and other metadata of a given Application. For our analysis
process, we focused solely on the Dalvik executable and the Android manifest. Furthermore,
we combine numeric- and symbolic features, including opcode histograms, local variables, or
method calls. Depending on the targeted functionality of our analysis plugins, we utilize different
feature sets and filtering steps customized specifically for the given analysis. Moreover, these
two frameworks operate application-wide. The Semantic Pattern Analysis is designed to pinpoint
certain application functionality within applications by separately analyzing their components.

Ghorbanzadeh et al. [18] use the permissions of Android applications to estimate the applica-
tion categories. Applications from 34 different categories have been used to train a neural network.
In addition, they created suspicious applications by tampering with their required permissions,
which can then be detected by their neural network.
In theory, we could implement a similar analysis plugin that uses solely the application permis-
sions. These permissions would then be transformed to Semantic Patterns and classified using
machine learning algorithms.

In Felt et al. [15], a framework called Stowaway has been presented, which detects over-
privileged applications – applications that do not actually require all permissions defined in their
Android manifest. They came to the conclusion that about one third of all tested applications
are overprivileged. Furthermore, they created a mapping between Android API calls and their re-
quired permissions. For Semdroid, this Android permission map is used to obtain component-wise
permission requirements. This information can then be used by the analysis plugins, for example
for filtering operations or as features.

DroidMat [61] is a static malware detection framework. As features, they use the permissions
and the components defined in the Android manifest, information found in intents, API calls and
the components these calls are invoked from, and inter-component communication. They use
clustering algorithms and the k-nearest neighbor algorithm to classify their data.
This framework uses a clustering approach, as opposed to the classification algorithms used for
the Semantic Pattern Analysis, like SVMs.

Besides machine learning, there are also some interesting other approaches. For example,
RiskRanker [25] assesses possible security risks in Android applications and categorizes them
accordingly. Chin et al. [6] examined inter-app communication and present potential attacks.
Another interesting framework is SCanDroid [16], which tries to assess the security of Android
applications by examining the data flow.

Androguard [1] is a static analysis tool that can be used for reverse engineering purposes, as
well as for malware detection. The framework is written in Python and allows to disassemble and
decompile Android application packages. Furthermore, they provide an open source database of
known Android malware, as well as a risk indicator for malicious applications. It offers convenient
APIs to integrate new static analysis tools.

As demonstrated in Georgiev et al. [17], SSL certificate verification is often performed incor-
rectly – even in widely spread libraries utilized by many security-critical applications. Man-in-
the-Middle (MITM) attacks can be mounted on these systems, which pose dangerous threats to
these systems.
Similarly, Fahl et al. [14] presented an analysis tool called MalloDroid, which aims at detecting
SSL vulnerabilities in Android applications. They used their tool to analyze 13.500 popular free
applications on Google Play. In 1.074 of these applications, they found SSL/TLS vulnerabilities
that could be exploited by using MITM attacks.

Egele et al. [12] showed that many Android applications do not correctly use the cryptographic

3.2. Dynamic Analysis 32

APIs provided by the Android operating system. Their tool, CryptoLint, uses static code analysis
to track the usage of these cryptographic APIs. A set of rules is then use to detect possible pro-
gramming mistakes. Using these rules, they analyzed 145.095 applications found on Google Play.
Out of these applications, 15.134 utilize the cryptographic APIs provided by the Android platform
– but 11.748 of these applications violated at least one CryptoLint rule. Thus, only 1.421 of these
application implemented the cryptography correctly.
Compared to the machine learning approach of the Semantic Pattern Analysis, CryptoLint is based
on type analysis, super control flow graph extraction, and static slicing techniques in order to de-
termine the parameters the cryptographic APIs have been invoked with. Their framework has been
built on top of Androguard.

Judging from the results of the last three frameworks, it seems that many applications do not
implement and use cryptography correctly. All of these frameworks checked the cryptographic
APIs provided by the Android framework. With the Semantic Pattern Analysis, it is possible
to also detect custom cryptographic implementations. In future work, this cryptographic code
could then be further analyzed using similar static analysis approaches – for example, by adding
additional Semdroid analysis plugins.

3.2 Dynamic Analysis

For dynamic application analysis, there are also several frameworks available. Compared to the
static analysis approach used for the Semantic Pattern Analysis, the applications have to be exe-
cuted in an actual Android environment while the Android system is monitored closely.

TaintDroid [13] such a dynamic framework, which has been released in 2010 and which uti-
lizes a modified Android distribution for real-time taint tracking. They trace sensitive data through-
out the system and perform real-time monitoring of the current device state. For TaintDroid, the
Android framework including the Dalvik VM has been instrumented to perform detailed system
logging and tracking of sensitive data. A custom Android image has to be built and installed on
the device in order for TaintDroid to function.

DroidBox [11] is another popular dynamic analysis framework based on TaintDroid. Accord-
ing to the project page, it allows to monitor the network usage and file read and write operations.
In addition, it is possible to analyze information leaks via the network, files and SMS messages,
to list broadcast receivers, and to monitor sent SMS messages as well as phone calls. It is possible
to monitor cryptographic API calls, to detect circumvented permissions, and to monitor started
services and classes loaded through the DexClassLoader.

Furthermore, they also offer the DroidBox APIMonitor, which directly instruments Android
application packages. Thus, these instrumented applications can be executed in a standard An-
droid environment. Monitoring code is directly injected in the Dalvik executable and the built-in
Android logging mechanism is used to retrieve the results.

Another dynamic analysis framework is DroidScope [64]. This analysis framework is based
on a modified Android emulator and allows to monitor information leakage through both Java-
and native code.

Dynamic analysis paired with machine learning is utilized by Andromaly [47]. Thsi framework
closely monitors the current system metrics of the Android device. By using machine learning
algorithms, Andromaly decides whether the currently active application is malicious.

Crowdroid [3] utilizes a client-server architecture for malware detection. They employ a be-
havioral approach. First the Crowdroid Android application monitors all system calls for a given

3.2. Dynamic Analysis 33

application. Then, these system-call vectors are sent to a server, where clustering algorithms are
used to classify the application.

In Zhao et al. [66] and Zhao et al. [67] SVM-based learning algorithms have been used for
malware classification. Using this approach, they were able to create a detection system with a
high detection rate and a low rate of false positives.

MADAM [10] is another dynamic analysis framework, which monitors the Android system at
kernel-level and at user-level. They log system calls, the phone state (idle or not), and the number
of SMS messages sent in a given time interval. Again, machine learning alrogithms are used to
detect malicious activities.

The power consumption of Android devices has been used for application classification and
malware detection in Zefferer et al. [65]. First, the current power consumption has been captured
directly on the Android device. Then, the power traces can be classified using machine learning
algorithms. With this approach, it is possible to categorize the application. Categories used in the
paper are games, internet, idle, malware, music and multimedia and the accuracy lies at roughly
90%. Furthermore, by monitoring the power consumption for a short time after an SMS message is
received, it is possible to state whether the application has been handled normally, or if suspicious
operations, like handling a SMS command, have been performed.

Chapter 4

Semdroid – An Introduction

This chapter presents the proposed new static Android application analysis framework, called
Semdroid. Starting with an overview in Section 4.1, the basic analysis workflow is dissected and
each step of this process is elaborated in detail. The results of the analysis process are discussed
in Section 4.5. Then, details about the deployment of Semdroid are presented in Section 4.8.

Furthermore, Semdroid provides an evaluation framework used to determine the performance
and accuracy of a given analysis, which is described in Section 4.6. Some analysis processes,
for example, based on machine learning algorithms, require a training step, where pre-classified
training data is used to create a machine learning model. For this case, Semdroid provides a
convenient training interface that aids the developer in creating new training processes. Section 4.7
gives an overview of this interface.

In this chapter, analysis plugins are considered to be black boxes capable of analyzing given
applications. No actual analysis approaches are discussed for now. For more information on the
proposed new Semantic Pattern analysis, see Chapter 6.

4.1 Overview

Semdroid is a static Android application analysis framework capable of detecting application func-
tionality within Android applications and labeling the corresponding components accordingly.
This framework, which has been implemented in Java, is very flexible and can be used for various
analysis- and classification tasks. Multiple analysis plugins can be employed that analyze Android
application packages (.apk file, see Section 2.3) and generate application analysis reports.
Since Semdroid is not limited to a particular static analysis type, any static analysis approach can
be used. For example, we have created a simple analysis plugin that list all methods that invoke
certain API calls, as well as sophisticated analysis processes, like the proposed new Semantic
Pattern Analysis.

Figure 4.1 gives an overview of the application analysis workflow. Suppose a given Android
application package should be analyzed. First, an App object is created, which represents the
data found in the application package and holds all necessary information required by the analysis
processes. Basic global filtering operations are performed to remove unwanted information, as for
example certain common library classes or methods, or irrelevant Dalvik opcodes.

Then, a test suite containing multiple analysis plugins is used to classify the application. The
App object is the input for each analysis. Each analysis then examines the contents of the App
object and produces an application analysis report containing all results. The test suite bundles

34

4.2. Input 35

App Object.apk File Analysis
Results

Test Suite

Analysis 1

Figure 4.1: Basic Semdroid application analysis. The given Android application package
file is parsed, an App object is created, which represents the contents of the
.apk file and a test suite containing multiple analysis plugins examines the App
object. Finally, the results are returned.

all results and returns them for further processing. Depending on the deployment method, these
results are then post-processed, saved, or displayed.

4.2 Input

The input for the Semdroid framework are Android application packages (.apk files). The struc-
ture of these files has been explained in Section 2.3. It is also possible to directly supply Dalvik
executables, the classes.dex files found in Android application packages. Furthermore, .jar
files can be used as well. They will be converted to Dalvik executables and then processed like
any .dex file.

Some analysis plugins require additional information included in Android application pack-
ages, which is not stored in the .dex file. For example, the AndroidManifest.xml can be used
to determine the required permissions or the defined application components. Hence, for .apk
files, we also extract the contents of the Android manifest. If the file under analysis is a .jar or
.dex file, this information is not available, which could affect the analysis results for analyses that
require this additional information.

4.3 App Object

The App object represents the extracted contents of the input file discussed in the previous section.
This intermediate representation is a core component of Semdroid since it is used as input for all
analysis processes. It holds all necessary information required for application analysis.

Basically, for this representation, the application structure is reconstructed, as all implemented
classes and methods are listed, and links between all components are established. This call-graph-
like structrue allows to easily trace methods and method calls, or to traverse all classes of the
application or all methods of a given class. Furthermore, the Dalvik bytecode is pre-processed;
maps and lists are created for used local variables and method calls, the required permissions
are recorded and all Dalvik opcodes are listed. Additional data found in the Android manifest
(Section 2.4) is included as well. Since .dex and .jar files do not contain an Android manifest,
this additional data cannot be added in this case.

A simplified structure of the App object is shown in Figure 4.2. Some objects have been omit-
ted to keep the figure simple. The App object contains a list of DexClasses, one per available
class, a Manifest object, which represents the AndroidManifest.xml, as well as additional appli-
cation information. The Manifest object contains all entries according to Section 2.4, which are
not shown in Figure 4.2.

4.3. App Object 36

App

DexClass

DexMethodField

Opcode MethodCall Local
Variable

Manifest

app name
file name

hash value

Figure 4.2: Structure of the App object, which represents the .apk file. It includes informa-
tion of the Android manifest and the Dalvik bytecode. All classes and their im-
plemented methods and fields will be parsed, including all operations, method
calls, and local variables for each method.

Each DexClass holds, amongst others, all its fields and implemented methods. In addition,
a link to the App object is established and additional information is added. For example, the
superclass for the given class is determined. If this superclass is implemented by the application,
the DexClass reference is added, if it is an external class, the name of this external class is saved.
For any given class it is also possible to get the first external superclass. The superclass hierarchy
is traversed until a class is found that is not implemented by the application itself. This can be
useful for various analyses: For example, for detecting SMS functionality one has to examine
classes that extend the BroadcastReceiver-class provided by the Android platform.

DexMethods contain the “main features” used by most analysis plugins: a list of all opcodes,
method calls, and local variables. For method calls, the corresponding DexMethod is linked if the
given method is implemented by the application itself. If the method call is an API call to external
classes, the full class- and method names are available. The same holds for local variables where
the DexClass or the full class name is linked, depending on whether the class is implemented by the
application. For each method call, additional information is stored as well, like the Java footprint
of the method, input parameters, the return value, or the required permissions for API calls invoked
from within the method. Local variables include the variable type, name, and signature.

Furthermore, it is possible to query all data, i.e. opcodes, method calls, and local variables,
of a given DexMethod, including the data of nested method calls. The inclusion depth for the
method calls can be specified by the developer. Suppose we have a method A that calls a method
B. If we want to acquire all opcodes of method A and specify a method call inclusion depth of 1,
all opcodes of both method A and method B will be returned. The opcodes of method B will be
inserted at the correct list position, right where method B is called in method A.

4.4. Test Suite 37

Once the App object has been created, it will be handed to the test suite. The original input
file will not be touched by any other component. Thus, all information required for analysis must
be included in this object.

4.4 Test Suite

All analysis plugins are bundled in a test suite. The App object under analysis is handed to this
test suite, which then passes it on to all analysis plugins and gathers the analysis results. Once all
analyses are finished, the test suite bundles all results and returns a final test suite report. This final
report is then be used for further processing, as for displaying it to the user.

Each analysis examines the contents of the App object and, based on this information, creates
an application analysis report. Typically, each analysis performs additional filtering steps tailored
specifically for the given use case. The application components are then analyzed and labeled
accordingly. More details on the analysis results as well as the labeling process can be found in
Section 4.5.

Analyses do not have to be based on machine learning, any static analysis can be used to
classify applications. They just have to return an application analysis report. For the framework, it
does not matter how this report is generated, as long as the analysis can be performed by statically
examining the contents of the App object. For example, simple static analysis approaches that just
check if certain API calls are performed can be used as well as sophisticated analyses based on
complex feature extraction mechanisms or machine learning algorithms like the Semantic Pattern
Analysis discussed in Chapter 6.

4.5 Results

Each analysis produces an application analysis report. This report contains all analysis results,
including labels for all analyzed application components. One advantage of the framework is, that
analysis plugins can specify the exact location where they suspect a certain device functionality.
For example, an analysis that detects cryptographic code can specify the methods or classes of the
application that implement cryptographic functionality.

A labeling concept is employed that allows analyses to tag application components. Currently,
these components are the following parts of an App object: the whole application, classes, and
methods. Depending on the analysis, different components of the application can be chosen.
For example, analysis approaches that determine the application category usually label the whole
application, while an analysis that detects cryptographic code could operate on a method- or class-
level. It is also possible to combine these component types and label, for example, both selected
methods as well as classes.

An analysis can create arbitrary labels with a distinctive name and attach application com-
ponents to these labels. Furthermore, the labels are also directly attached to the corresponding
components. Components are not limited to a single label. Multiple labels can be added to the
same component, if desired. The application analysis report produced by the analysis contains
all found labels and their attached components. Since a test suite can contain multiple analysis
plugin, the global test suite report contains a list of all application analysis reports, one per plugin.

Basically, there are two ways to traverse the resulting datasets: First, it is possible to traverse
each analysis report of each analysis, each label of each report, and finally each component at-

4.6. Evaluation 38

tached to the label. Second, the App object itself can be traversed component by component and
all attached labels can be displayed.

This component-based labeling process also helps to get a quick and rough estimate of the
analysis performance. Judging by the component names, the credibility of the analysis results can
be assessed. For example, if an analysis looks for symmetric block ciphers and adds the label
“symmetric block cipher” to a method called “com.symmetric.Cipher: void encryptBlock(byte[]
block)”, it is quite likely that the classification could be correct. When creating a new analysis,
taking a glance at the component names helps to get a first idea of the analysis performance.
However, since these component names do not actually represent their implemented functionality,
these results should be used with caution. For accurate results, the actual code of these components
has to be manually checked. Furthermore, if obfuscation techniques are used by the application
under analysis, method names could be random strings, which renders this method useless.

4.6 Evaluation

Semdroid also provides an evaluation framework that can be used to measure the performance of
a given analysis. In order to perform such an evaluation, two additional parameters have to be
provided: an evaluation dataset and a reference analysis. The evaluation dataset consists of mul-
tiple applications (.apk, .dex or .jar files) to be used for the evaluation process. The reference
analysis is used to pre-analyze all applications of the evaluation dataset. For each of these applica-
tions, a reference application analysis report is produced, which is then compared with the report
created by the analysis under evaluation. This reference analysis can be any standard Semdroid
analysis. It is also possible to omit the reference analysis and to directly supply a list of reference
application analysis reports, one for each application in the evaluation dataset.

The resulting evaluation report contains various performance details: the number of correctly
classified components, incorrectly classified components, and the detection rate. Furthermore,
additional information is added for each label. The same parameters that are calculated globally
are also calculated label-wise. In addition, the number of false positives as well as false negatives
is given. For each entry, the affected components are listed: for example, all correctly classified
instances are attached to the “correct” section. The report is saved in both HTML and XML format.
Figure 4.3 shows such an HTML evaluation report for a demo analysis that detects symmetric
cryptography.

4.7 Training

Some analysis techniques, like the proposed Semantic Pattern analysis (see Chapter 6), or other
techniques based on machine learning, require a training process. Similar to the evaluation process
(Section 4.6), a given training dataset (i.e. a folder containing multiple .apk,.dex and .jar files)
is used in conjunction with a training analysis to create a new analysis. The training analysis,
which is, similar to the reference analysis used for the evaluation process, a standard Semdroid
analysis. It is used to add reference labels to the components of all training applications. Based
on this pre-labeled App objects, the analysis-specific training process can commence, which has
to be implemented by the developer of the analysis. Once this application-specific training step
is complete, the new analysis and all required files will be automatically created by the Semdroid
training framework. More information on the specific training process for the Semantic Pattern
Analysis can be found in (Section 6.8).

4.8. Deployment 39

Figure 4.3: Evaluation results in HTML format. Detailed global evaluation results as well
as label-wise performance information are presented. The analysis under eval-
uation detects cryptographic code and labels it CRYPTO.

4.8 Deployment

This section presents different possibilities on how Semdroid can be deployed. Currently, there
are two possible ways to use Semdroid: on a personal computer or directly on an Android device.
Section 4.8.1 give details of the first deployment method and Section 4.8.2 explains on-device
analysis.

Additional deployment methods include a hybrid on-device approach and a web service. For
the hybrid on-device analysis, fingerprints have to be calculated for a given application, which
are then sent to a server. The server analyzes these fingerprints and returns the results back to
the device. This hybrid approach has not yet been implemented, but could be addressed in future
work. Furthermore, it would be possible to set up a web service that allows to upload and analyze
applications and to display the analysis results. This deployment would require a web server that
initiates a Semdroid analysis for the uploaded file. The analysis results are already converted
HTML files, which could be displayed to the user.

4.8.1 Personal Computer

Semdroid can be used on a personal computer. A command line interface is available that can
be used to analyze applications or folders containing multiple applications, to start the training
process, and to evaluate a given analysis. More information on the training and evaluation process
are given in Sections 4.6 and 4.7.

The analysis results are saved as both XML and HTML files. Figure 4.4 shows the resulting
HTML results for two analyses. A list of all analyzed applications is given, and for each analysis,

4.8. Deployment 40

Figure 4.4: Analysis results on a personal computer. Two analyses have been performed
that are able to detect asymmetric and symmetric cryptography. The symmetric
analysis found 7 cryptographic methods and 11 normal ones.

the results are displayed in the “Labels” column. By clicking on a given label, the associated
components are listed.

4.8.2 Android Device

A standalone Semdroid Android application is available, which can be installed on any Android
device. In order to add a new analysis plugin, the corresponding analysis files have to be placed
in a pre-defined folder on the device. The new analysis is then automatically recognized by the
Semdroid Android application.

The main screen of Semdroid lists all installed applications, as depicted in Figure 4.5 on the
left side. By selecting an application, a dialog window will be shown that asks the user to pick
an analysis. The selected analysis will then analyze the Android application package. The right
picture in Figure 4.5 shows the analysis results for a given analysis: a list of all labels is displayed
and for each label, the associated components are given.

In theory, it is also possible to create and train new analysis plugins directly on the device
(Section 4.7). The training process usually requires a rather large training dataset (i.e. many
Android applications). Since the performance on a mobile device is considerably lower than on
a state-of-the-art personal computer, this training process can be very time consuming. The same
applies to the evaluation framework (Section 4.6) where large evaluation datasets can be used to
determine the analysis performance. In addition, for the evaluation process, each application has
to be analyzed at least twice – once by the reference analysis and once by each analysis under
evaluation. Thus, it is not really practicable to create or evaluate analysis plugins directly on the
device. For this reason, these two features are currently not accessible from within the Semdroid

4.9. Semdroid Conclusions 41

Figure 4.5: Semdroid Android application. The left image shows a list of all installed appli-
cations. By clicking on an application, the analysis process will be initiated and
the user is asked to select an analysis to be performed. The right image shows
the analysis results.

Android application.

4.9 Semdroid Conclusions

In this chapter, an overview of Semdroid, the proposed new static Android application analy-
sis framework, has been given. First, Android application packages are parsed and application
representation objects, the so-called App objects, are created. Global pre-filtering operations are
applied to remove unwanted information. Test suites consisting of multiple analysis plugins are
then used to analyze the App objects. Analyses can utilize any static analysis approach. Typically,
they use the data found in the App object to create an application analysis report. These reports
contain all analysis results and links to the corresponding application components. All analysis
results are bundled in a test suite report, which is then used for further processing.

Semdroid can be deployed on both personal computers and Android devices. For on-device
analysis, the Semdroid Android application is available. It lists all installed applications, which
can then be analyzed. Once the analysis is completed, the results will be displayed. On personal
computers, a command line interface can be used to analyze given applications. The resulting
analysis reports will be saved in both HTML and XML format and contain detailed analysis results.
Furthermore, an evaluation framework is available that can be used to determine the performance
and analysis accuracy. A training framework, which assists in creating new analysis plugins that
require a training process, is available as well.

The next chapter delves into the architectural details of the Semdroid framework.

Chapter 5

The Architecture of Semdroid

In this chapter, we present the architecture of Semdroid. The previous chapter outlined the basic
functionality of the framework and gave an introduction to the capabilities of the system. Now, an
architectural overview of the implemented system will be presented and the main components of
Semdroid will be outlined. First, an introduction to all components will be given in Section 5.1.
Subsequent chapters are then following up on the details of these components. Finally, Section 5.8
presents the architecture of the Semdroid Android application.

5.1 Component Overview

The basic concepts behind Semdroid have already been described in the previous chapter. An
architectural view of the whole system can be found in Figure 5.1. Currently, there are three
main tasks that can be performed: application analysis, evaluation, and generating (training) new
analysis plugins.

In any case, the first step for each application is to create the App object (Section 4.3), which
is an intermediate representation of the Android application. The AppParser is used to perform
this task: It parses the contents of the Android application package and outputs the resulting App
object. Section 5.2 gives more details on the architecture of the AppParser.

The TestSuite component is responsible for analyzing new applications and for assembling
the resulting analysis report. It initializes all analysis plugins, calls the AppParser to preprocess
the Android application packages and then schedules the application analysis process. Similar to
that, the Evaluation component is used to analyze evaluation applications. But in addition to the
analysis plugins under evaluation, a reference analysis is added that creates a reference application
analysis report. This reference report is then compared to the reports generated by the analysis
plugins and the evaluation results are calculated. For both of these processes, the results are then
transformed to various output representations by using different transformers: one for XML, one
for HTML, and a third one for direct console output. The Training module utilizes a training
analysis to pre-classify training applications. Then, the new analysis is trained using this data and
the resulting model is saved.
In upcoming sections, these components will be discussed in more detail.

42

5.1. Component Overview 43

AppParser

TestSuiteTraining Evaluation

Analysis

.apk File

AppAnalysis
Report

TestSuiteReport XML
Transformer

App

HTML
Transformer

results.xml

results.html

Console
Formatter

Analysis

EvaluationResults

Figure 5.1: Basic Semdroid architecture. The main components used for application anal-
ysis as well as for the training- and evaluation process are shown. Input- and
output objects are marked green, framework components blue, and intermediate
objects have a yellow background.

.apk

AndroidManifest.xml

classes.dex

AppParser App

Manifest Helper

Class Visitor

Method Visitor

Dex File Visitor

Opcode Visitor

Field Visitor

...

Class Filter

Method Filter

Opcode Filter

Permission Map

Figure 5.2: Application parsing. The application parser takes an .apk file, extracts relevant
information, performs global filtering operations, and returns an App object.

5.2. App Parsing 44

5.2 App Parsing

The AppParser is responsible for extracting information from an Android application package and
to bundle this information in an App object. Figure 5.2 shows the architecture behind this process.
Section 2.3 outlined the contents of Android application packages. For Semdroid, two files of
these packages are currently parsed: the AndroidManifest.xml and the classes.dex.

First, a manifest helper is used to parse and pre-process the Android manifest, which results
in a Manifest object holding all of its contents (e.g., permissions, activities, services, broadcast
receivers, and their intent filters). Since it is also possible to directly supply .dex or .jar files
instead of APKs, the Manifest object cannot be created in these cases.

The second file to be parsed is the classes.dex, which contains the Dalvik bytecode. In
order to traverse the Dalvik executable, we modified the dex2jar [9] library to suit our needs: By
using custom visitors for all application components (classes, methods, fields, and opcodes), the
application structure is reconstructed and links between these components are established. The
resulting structure of the App object has already been described in Section 4.3 and can be seen in
Figure 4.2.

Moreover, a pre-filtering step is performed that removes irrelevant data. This pre-filtering step
can be adjusted to omit selected opcodes and to filter unnecessary classes, methods, and method
calls by setting up white- and blacklists. As depicted in Figure 5.2, a class filter specifies whether
a given class should be added. Similar to that, method- and opcode filters decide whether given
methods and opcodes should be added to the App object. For instance, this can be used, to ignore
common libraries. This pre-filtering process is performed globally, since it influences the structure
of the App object handed to all analysis plugins as input. Hence, these filters have to be chosen
carefully; all important data required by any analysis has to be included in the App object. Each
analysis typically performs additional filtering operations to retrieve analysis-relevant data only.

As explained in Section 2.1.3, the Android operating system employs a permission system to
enforce access to sensitive data and device functionality. Since these permissions have to be de-
fined globally for the application, it is not possible to get a component-based mapping of required
permissions. Therefore, Felt et al. [15] created a permission map that maps Android API calls
to their required permissions. Semdroid utilizes this permission map to determine the required
permissions for each component of the application. The opcode visitor depicted in Figure 5.2 has
access to this permission map. For each API call, the required permissions are then recorded and
attached to the component.

5.3 Analysis

Analyses are the core components of the system that perform the actual analysis operations. Fig-
ure 5.3 shows the input and output for a given analysis process. The analysis itself is considered
to be a black box that takes as input the App object and outputs a so-called AppAnalysisReport.
This report contains a list of labels, where each label represents a certain application functionality.
Each label contains a list of components that are considered to have the functionality specified
by the label. Furthermore, the analysis should also add the label to the application component
itself. Internally, additional mappings between labels and components are established that speed
up the labeling process. The analysis report also contains additional information, like a link to the
application the report belongs to, and the name of the analysis that created the report.

5.4. Test Suite 45

AnalysisApp Object AppAnalysis
Report

LabelComponent
...

...

Figure 5.3: Analysis black box. An App object is the input for the analysis. The analysis
has to produce an AppAnalysisReport containing all resulting labels. Each label
can have multiple components attached.

TestSuite TestSuiteReport

AppParser

.apk file

Analysis AppClassification
Report

... ...

Figure 5.4: Test suite architecture. A given Android application package to be analyzed is
passed to the test suite. The AppParser creates the App object, which is then
handed to all analysis plugins. Each analysis creates an AppClassificationRe-
port, which are then added to the final TestSuiteReport returned by the test suite.

5.4 Test Suite

The test suite handles the analysis process. It initiates the application parsing process, coordinates
all analysis plugins and collects the results, as explained in Section 4.4. In Figure 5.4 a more
detailed view of the test suite is presented. A given Android application package (again, either an
.apk, .dex, or .jar file) is passed to the test suite. The AppParser (Section 5.2) is responsible
for creating the App object. Once this object has been created, the test suite initiates all analysis
plugins. Each analysis then analyzes the App object and returns the results according to the previ-
ous chapter. The test suite collects all results in a TestSuiteReport, which is then used for further
processing, as for saving it in different formats. Again, additional information, like a link to the
analyzed App object and the name of the test suite, is added to the report as well.

5.5 Evaluation

The evaluation framework can be used to measure the performance of an analysis. The structure of
this framework is similar to the structure of a test suite and can be found in Figure 5.5. Basically,
the evaluation framework extends the test suite framework. In addition to the app parser and a
list of analysis plugins under evaluation, a reference analysis is added and for each analysis, an
Evaluator is added that records the performance of the given analysis.

The reference analysis creates a reference analysis report. The Evaluator then compares the
report of the analysis under evaluation with this reference report. It records the performance of the
analysis both globally and label-wise. The global analysis performance includes the total number
of analyzed components, as well as the number of correctly and wrongly classified components.
Label-wise, the same parameters are recorded, but in addition, the number of false positives and

5.6. Result Transformation 46

EvaluationTestSuite
EvaluationResults

AppParser Analysis EvaluationResult

... ...
Reference
Analysis

.apk file

...

Evaluator

...

...

Figure 5.5: Evaluation architecture.

false negatives is calculated as well. In addition, the components belonging to each of these values
are also linked. After all training applications have been evaluated, the Evaluator returns the final
evaluation results for each analysis. Each of these EvaluationResults contains the global evaluation
results as well as a list of EvaluationResult objects, each of which represents one label.

5.6 Result Transformation

Both the test suite results and the evaluation results can be transformed to different formats. As
shown in Figure 5.1, there are three different transformations available: XML, HTML, and direct
console output. Figures 4.3 and 4.4 show examples for the evaluation- and test suite results in
HTML format. The XML formatter converts the results to an XML file that could be used for
further processing. The HTML representation is achieveb by applying an Extensible Stylesheet
Language Transformation (XSLT) to the XML results. Furthermore, it is possible to directly
output the results to the console by using the console formatter.

5.7 Training

The training framework included in Semdroid aids in creating new analysis plugins that require
a training process. The basic functionality of this training process can be found in Section 4.7.
Figure 5.6 shows the training architecture. As usual, the AppParser is used to parse the training
applications. The resulting training App objects are then analyzed by a training analysis that
directly attaches reference labels to the components of the App objects. These labels represent the
desired results the analysis to be trained should ideally produce.

Then, an analysis-specific trainer can be deployed to create the models required for the new
analysis. The input for this trainer are the pre-labeled App objects. For example, a trainer for
analysis approaches based on machine learning would create machine learning models by using
the data and reference labels found in the App objects. Once this analysis-specific training process
has been completed, the resulting model files are stored and the training framework generates
additional files required for the new analysis to work. Then, the new analysis can be used to
analyze new applications.

5.8 On-Device Analysis

The Semdroid Android application consists of two activities: one for listing all installed applica-
tions, and one for displaying the analysis results. Once an application as well as an analysis to be

5.8. On-Device Analysis 47

AnalysisTraining

AppParser Analysis
Trainer

Training
Analysis

.apk file

...

Figure 5.6: Training architecture. Given training applications are parsed and pre-classified.
An analysis-specific trainer is then used to create models required by the new
analysis.

performed has been selected by the user, the application will be analyzed by using the framework
according to Section 5.3. The resulting TestSuiteReport is then parsed and displayed by the second
activity. General information on the Semdroid Android application can be found in Section 4.8.2.

In addition, an interface is available that allows third party applications to analyze applications
and to retrieve the analysis results. An Intent service is available, which can be started by any
application that has the corresponding custom Semdroid permission. The starting intent contains
information about the application under analysis (i.e., the package name or the path to the Android
application package) and the analyses to be performed. The given application will then be analyzed
by the Semdroid framework according to these parameters. Once the analysis is finished, a system-
wide broadcast is sent containing the analysis results. Any application with the corresponding
permissions can implement a broadcast receiver to listen to these analysis results.

One use case for this interface would be a policy manager that analyzes all applications before
installing it on the device. According to the analysis results, the policy manager can then prevent
or allow the installation of the application.

Chapter 6

The Semantic Pattern Analysis

With Semdroid, a powerful static Android application analysis framework is available. Now we
present a new static analysis technique that can be employed within this framework, the Semantic
Pattern Analysis. There are many different approaches for static application analysis. Since the
goal of this thesis is to detect rather general functionality, such as cryptographic code or SMS-
handling capabilities, we decided to base this analysis process on machine learning. These rather
abstract application capabilities can have multiple different implementations and thus vary from
app to app. For example, there are many different encryption algorithms available, which are all
based on different concepts. Even for the same encryption algorithm, countless different imple-
mentations are possible. Now, if we want to correctly detect all those algorithms and label them,
for example, as “cryptography”, sophisticated detection algorithms are required that are able to
recognize this variety of different, but in a way also similar, implementations. Machine learning
algorithms are very well suited for this task and thus have been used as a basis for the Semantic
Pattern Analysis.

But why “Semantic Patterns”? Since we want to combine both numerical and symbolic fea-
tures, we need to transform the resulting feature set to a simple vector that can be processed by
machine learning algorithms. As explained in Section 2.10, the Semantic Pattern Transforma-
tion can be used to do exactly that – transform arbitrary feature sets to Semantic Patterns, simple
vectors suitable as input for machine learning algorithms.

This chapter describes the proposed new Semantic Pattern Analysis. Section 6.1 outlines the
workflow for application analysis: First, features are extracted from the Android application that
characterize the component’s functionality. Section 6.5 delves into the details of this feature se-
lection process as different feature types and values as well as filtering methods and feature rep-
resentations are presented. Then, the features are transformed to Semantic Patterns, which will
be explained in Section 6.6. Finally, these patterns are used as input for various machine learning
algorithms that perform the final classification step. Section 6.7 gives an overview of this final
step.
In order to create a new Semantic Pattern Analysis, a training process has to be performed that
creates the models required for the analysis. Section 6.8 will elaborate this process in more detail.

6.1 Analysis Workflow

Figure 6.1 shows the basic analysis workflow. As described in Section 4.3, the Semdroid frame-
work provides the input for the analysis, the App object. Using this object, the following three

48

6.1. Analysis Workflow 49

Semantic Pattern Analysis

App
Object feature

extraction

Report
machine
learning

conversion

Semantic
Patterns

Feature
Layers

Figure 6.1: Semantic Pattern Analysis. First, feature layers are extracted, which are then
converted to Semantic Patterns and classified using machine learning algo-
rithms.

steps are performed: feature extraction, Semantic Pattern Transformation, and final component
analysis by applying machine learning.

The first step is to create one or multiple feature layers containing various characteristics
found in the App object. The simplest variant consists of a single feature layer, but advanced
analysis processes may also create multiple layers. Each of these layers contains a list of so-
called instances. An instance represents a single component of the application under analysis
and is classified and labeled separately (at least for the single layer case). The three component
types currently used are: methods, classes, and the whole app object itself. Section 6.2 gives
detailed information on these feature layers. Furthermore, Section 6.3 gives more information
on instances and Section 6.4 describes the component filtering process utilized by the Semantic
Pattern Analysis.

Each of these instances contains a list of features that represent the capabilities of the current
component. The App object and its components hold many different feature types that can be
used, including Dalvik opcodes, method calls, or local variables. Furthermore, it is possible to use
different representations for a given feature, and to apply feature filtering mechanisms to retrieve
relevant data only. According to the targeted functionality, a suitable feature set has to be chosen.
The whole feature selection process with all its facets will be explained in detail in Section 6.5.

Once the feature layers have been created, the Semantic Pattern Transformation is used to
convert these feature layers to Semantic Patterns. A previously trained Semantic Network is re-
quired for this process. This network has to be created by performing a training process described
in Section 6.8. For each instance included in the feature layers, one Semantic Pattern is created
according to Section 6.6. This resulting Semantic Pattern is a simple vector that is used for further
analysis.

The resulting Semantic Patterns are then classified using various machine learning algorithms.
The machine learning models have to be created in advance by applying a training process on pre-
classified data. The training framework included in Semdroid (Section 4.7) can be used to perform
this process. For each Semantic Pattern, and thus for each application component under analysis,
a label is returned by the machine learning algorithm that describes the capabilities of the current
component. Since the component used for creating the Semantic Pattern is directly linked to the
pattern, the resulting label can be easily added to this component of the App object (or to multiple
components if the source for the Semantic Pattern has been more than one component).

Finally, the application analysis report is created according to the Semdroid labeling concept
presented in Section 4.5. The report contains all analyzed components and their labels and will be
returned to the Semdroid framework, which performs several post-processing steps.

6.2. Feature Layers 50

Feature layer n

Feature layer 2

Feature layer 1

Instance 1 Instance mn

Instance 1 Instance m2

Instance 1 Instance m1

FeatureFeature Feature FeatureFeature Feature

FeatureFeature Feature FeatureFeature Feature

FeatureFeature Feature FeatureFeature

...
...

Feature

...

...

......

......

......

Figure 6.2: General feature layer structure. First, feature layer 1 is created, which holds an
arbitrary number of instances. Then, layer 2 is added, which can already access
the results (i.e. the instances) of the previous layer.

6.2 Feature Layers

The first step of the Semantic Pattern Analysis is to create feature layers. A feature layer contains
a list of instances, where each instance represents a component of the application under analysis.
Figure 6.2 shows the general feature layer structure. Multiple layers are created, each of which
contains multiple instances. Instances contain a list of features. These features can be one of the
following three types: symbolic, distance-based (numeric), or instance links. The last type can be
used to add a whole instance as a feature to another instance, if multiple feature layer are used.
This could be used, for example, by advanced machine learning algorithms like deep learning
strategies. Multiple layers have a hierarchical structure, where the second layer has access to the
elements of the first layer, the third has access to both the second and the first layer and so on. The
same holds for the processing order: First, feature layer 1 will be processed, then layer 2 is used,
which can already access the results of feature layer 1 (e.g., by using instance-link features).

For now, all implemented Semantic Pattern Analyses utilize a single feature layer. For Fig-
ure 6.2 this means that only feature layer 1 is used, and all other layers are omitted. Multilayer-
and deep learning strategies could be addressed in future work – generating multiple layers as well
as establishing instance links is already possible with the current version of Semdroid.

6.3 Instances

Instances represent application components. As already described, each instance contains a list
of features. Depending on the intentions of the analysis, different instances and instance com-

6.3. Instances 51

binations are used. The three instance types currently utilized by the Semantic Pattern Analysis
correspond to the components used for the labeling process discussed in Section 4.5. They are:
method-, class-, and app-instances.

• Method instances
Method instances represent a method of a given DEX class. This instance type is the most
fine-grained component currently used for labeling. Thus, it is used to pinpoint certain func-
tionality, like a method that processes SMS messages or implements cryptographic function-
ality.

• Class instances
This instance type represents a whole DEX class and its contents. Typically, features found
in the methods of the class are used in conjunction with additional class-features like its
superclass or defined fields. Class instances are more coarse-grained than method instances.
One use case is, again, cryptographic code detection. Typically, cryptographic implemen-
tations use one distinct class per encryption algorithm or hash function. Thus, class in-
stances offer a suitable representation for these cryptographic implementations. Compared
to method instances, which could be used as well, all methods are analyzed together and
will be seen as a group. By using method instances, it could be possible that the crypto-
graphic code is not recognized. For example, if the implementation utilizes many nested
method calls, the analysis might not detect the correct functionality if the code of these
nested method calls is not considered. If both analyses would detect the functionality cor-
rectly, method instances would label each method separately, whereas class instances would
return one hit per cryptographic class.

• App instances
App instances represent the whole Android application package. This means that a single
app instance is used for the current application under analysis, and thus, that the application
is labeled as a whole. A use case for app instances would be an analysis that determines the
application category (e.g., game, entertainment, or tool).

It is also possible to mix components: One could add an arbitrary combination of method-
, class- and app-instances to the same feature layer. Furthermore, different components, like for
example whole packages, could be used if the feature generation process creates suitable instances.

For method calls, it is possible to include the features of nested methods as well. As explained
in Section 4.3, this can be achieved by specifying a method call inclusion depth. All features of
nested methods will be included until the defined inclusion depth is reached. Naturally this only
applies to methods implemented by the application directly. Android or Java API calls will be
ignored since the call itself can be used as a feature. This inclusion depth mitigates the problem of
method instances where outsourcing code to separate methods could have a negative impact on the
analysis results. By including the features of nested method calls, certain functionality can still be
detected even if the code is split among several methods, or swapped out to static helper methods,
which are all called by the “main” method that initiates the computation.
Consider the SMS broadcast receiver given in Listing 2.5 of Chapter 2. An analysis that detects
SMS command handling capabilities of an application could check all onReceive-methods of
broadcast receivers. If only the code of these methods is checked, the SMS handling capabilities
of Listing 2.5 would not be detected, since they have been outsourced in the doSomething method,
which is called from within onReceive. If solely the second method, doSomething, is analyzed,
the analysis might not be able to find suspicious behavior either – because the context is missing.

6.4. Component Selection 52

The method could be required for different tasks not related to SMS handling. Hence, by including
the features of nested method calls, the analysis can be able to detect the SMS command handling
capabilities since all required features are combined. For the SMS receiver given in Listing 2.5,
the features of doSomething would be included in the analysis of onReceive.
This functionality is not limited to method instances. Any instance type can benefit from this
inclusion depth; class instances, for example, can directly include the features found in called
methods (e.g., of static helper classes).

6.4 Component Selection

Not all components of the App object have to be used as instances for feature layers. They can
be filtered according to multiple criteria. By examining the properties of the components, one can
specify whether the current component should be used. The following sections explain the details
behind specific component filters.

Depending on the implemented analysis, the filtering process can vary. A basic single feature
layer analysis that adds method instances to the feature layer could use the following filter hier-
archy: For each class included in the application, a class filter is used to determine whether the
current class should be used. Then, if the class is indeed used, a method filter removes irrelevant
methods. For each method that has not been filtered, a method instance is generated.

A basic single feature layer analysis that operates on class instances may only apply the class-
filtering process and completely omit method filters.

App Filters

Since we only have one App object per application under analysis, app filters are not required. If
the App object would be filtered, we would retrieve empty analysis results since no application
(i.e. no App object) has been analyzed. Hence, we currently do not employ app filters.

Class Filters

Class filters decide whether a given class should be used. For example, common libraries can be
excluded from the analysis by using white- and blacklists. Furthermore, more specific filters can
be added as well: For instance, a broadcast receiver is required for SMS handling. Thus, some
analysis approaches may filter for broadcast receivers only, and skip all other classes. Furthermore,
the intent filter (Section 2.1.1 for the given receiver can be used to gather additional information.
For the example of SMS broadcast receivers, it can be checked whether the given receiver listens
to SMS actions by checking if the corresponding actions are defined in the intent filter. The
analysis could then only analyze receivers that listen specifically to these SMS events. It has to be
noted though that SMS receivers can also be registered dynamically. If this is the case, the intent
filter defined in the Android manifest might not be complete. For more information on broadcast
receiver registration, we refer to Section 2.1.2.

In general, such filtering operations include:

• Full name
The full class name, including the package, is used for filtering.
Example: com.my.example.Clazz

6.4. Component Selection 53

• Package name
The package name or only a part of the package name is considered for filtering.
Examples: com.my.example, com.my

• Super class
The superclass of a given class can be used for filtering. For example, only classes that
extend a certain class should be analyzed. It is also possible to traverse the superclass hier-
archy until an external super class not implemented by the application itself is found. This
external superclass is then used to determine whether the original class should be analyzed,
for example by checking the full name or the package name of this super class. This can be
useful if the analysis is only interested in classes that extend certain Android components.

• Other information
Naturally, all other information found in the class object can be used for filtering as well.
Any custom class filter can be implemented and used.

Method Filters

Method filters decide whether a given method should be used to generate features, depending on
various parameters, like the method name, the method size (i.e. the number of Dalvik opcodes),
or any other information found in the App object. Since most analyses utilize separate class- and
method filters, the class-selection has already been performed by the class filter. Thus, method
filters can focus on the information found in the actual method and do not necessarily have to
check the used class. This also makes filters more flexible, since the same method filter can be
used in conjunction with different class filters. For broadcast receivers, one might be interested in
analyzing the entry point for a received intent – the onReceive-method. In order to allow only such
methods, a whitelist can be used. For a real-world scenario, a class filter that only allows classes
that extend broadcast receivers and a method filter that only allows methods named onReceive

could be employed. Depending on the analysis, the class filter of analysis 1 could filter for boot
receivers, whereas the class filter utilized by analysis 2 could only allow SMS receivers. In both
cases, the same method filter for onReceive methods can be used.

Common filtering strategies include:

• Method name
It can be checked whether the method name exactly matches a given string, or if the name
contains certain strings. For instance, this is useful if a given class overrides a certain method
provided by the Android system. By checking the method name, it is possible to target such
specific methods.

• Method length
The number of operations performed by the method can be used as an indicator whether the
given method should be used.

• Other method information
Additional information, like the method parameters or the return value, can be considered
for the filtering process as well.

6.5. Feature Selection 54

6.5 Feature Selection

The feature selection process is an integral part of the Semantic Pattern Analysis that has a huge
impact on the accuracy and performance of the analysis process. Previous sections discussed
feature layers and their contents, the instances. Now, the actual features that characterize these
instances have to be gathered. In this section, we dissect this process and discuss different feature
types, values, and representations. Furthermore, filtering and grouping strategies are presented,
which help to retrieve relevant data only.

Each analysis utilizes a different feature composition. Finding a proper feature set that yields
good analysis results is not an easy task. One has to be familiar with the targeted functionality.
By looking at the characteristics of this functionality, suitable features have to be selected. Next,
an analysis can be created that uses the desired feature composition. This analysis can then be
evaluated and adjustments can be made depending on the evaluation results. This process may
have to be repeated several times until the analysis performance is satisfactory.

It has to be noted that the feature order is irrelevant for the analysis process due to the structure
of the Semantic Pattern Transformation (see Section 6.6). Looking at opcodes, this means that the
order of their execution is irrelevant. This fact has both positive and negative effects. The negative
side is that the order of, for example, executed instructions holds valuable information that could
lead to more accurate analysis results in some cases. In contrary, one advantage of this order inde-
pendence is, that code mutations can be easily detected. For the Semantic Pattern Analysis, this is
a very welcome behavior, since we also want to detect variations of a given targeted functionality.
If some operations are interchanged while the core functionality remains the same, the analysis
results could differ if the feature order is considered. By not considering this feature order, the
results remain the same and both variant will be detected. This is the desired behavior since the
core functionality of the component has not changed.

The basic feature notation used in this thesis is as follows:

feature type = feature value

The feature type helps identifying the feature source and is a general descriptor for a feature
group. Examples for feature types are: opcode, local variable, or method call. The same fea-
ture type can be used multiple times. For instance, if multiple opcodes should be added as separate
features, the opcode type identifier can be used for all opcodes. Feature values represent the spe-
cific feature value of the current feature group: OP_IF, int, or com.my.Class: doSomething()

are some examples. Combined, this leads to the following examples:

opcode = OP_IF

local variable = int

method call = com.my.Class : doSomething()

Note that this is only a human-readable notation introduced for a better understanding. The
actual implementation utilizes feature objects that hold this information.
All of the examples above use symbolic feature values (i.e. strings). It is also possible to use
distance-based (numeric) feature values, including arrays. Two examples for distance-based fea-
ture values are:

opcode count = 32

opcode histogram = [2, 3, 1, . . . , 4]

6.5. Feature Selection 55

This allows to use different feature representations that have different properties and effects
on the analysis performance. Section 6.5.3 gives an overview of these feature representations.
Prior to that, Sections 6.5.1 and 6.5.2 present feature types and feature values currently used by
analyses. Since it is practical to just use a subset of all features, Section 6.5.4 covers different
filtering and grouping strategies.

The final feature selection process for a given instance looks as follows: The developer has to
decide, which feature types should be used. Then, each feature of a given feature type to be used,
is examined. A feature filter then decides whether it should be added. If it should be added, a
corresponding feature identifier and feature value are chosen. Finally, the feature is added to the
instance according to the selected feature representation for the given type.

6.5.1 Feature Types

This section describes the different feature types that are currently available for the feature selec-
tion process. Depending on the intents of the analysis, the developer has to choose the feature
types to be used. Typically, a subset of the types listed below is used. In general, all data found in
the App object (see Section 4.3) can be used for feature generation. Commonly used feature types
include:

• Dalvik opcodes
The Dalvik opcodes are utilized by almost all analyses. These opcodes have already been
described in Section 2.2. They are either used directly, or can be grouped according to
pre-defined rules.

• Method calls
Method calls invoked by the component under analysis are also commonly used as features.
A distinction between API calls, which are calls to external methods not implemented by
the application, and internal method calls implemented by the application has to be made.
In general, API calls are more interesting than internal method calls. In many cases, it
makes sense to filter for a specific subset of API calls, which are relevant for the targeted
functionality. Features of internal method calls can be directly included by inlining these
features directly in the calling component itself, as explained in Section 6.3.

• Local variables
Similar to method calls, local variables proved to be good features as well. To be more
specific, the type of the local variable holds valuable information. Basically, there are two
groups of local variables: First, there are primitive or basic data types (integer, float, double,
byte, etc.). Second, there are composite data types, Java class objects. These java classes
can again be separated into two groups: internal objects implemented by the application
itself and external objects provided by the Android platform (e.g., java.math.BigInteger
or android.telephony.SmsMessage)

• Fields
The defined fields of classes can be used to extract features. Since fields basically are the
same as local variables, except their scope, the same rules as for local variables apply.

• Superclasses
The superclass of a given class under analysis can be used as a feature. This superclass can,
again, either be provided by the Android framework or implemented by the application.

6.5. Feature Selection 56

Since analysis processes are generally more interested in superclasses provided by the An-
droid system, the framework offers the possibility to retrieve this first external superclass.
In order to get this class, the superclass hierarchy is traversed until a class not implemented
by the application is reached. Some examples for potentially interesting Android classes
include: BroadcastReceiver, Activity, or Fragment.

• Required permissions
Thanks to the Android permission map [19], it is possible to determine the required permis-
sions for each component. Basically, a mapping between Android API calls and required
permissions is used to generate a permission list for the component.

• Intent filter parameters
For broadcast receivers, activities, or services, the Intent filter parameters (Section 2.1.1)
defined in the Android manifest can be used to extract suitable features. Amongst others,
these parameters are: the defined actions, categories, data types, or priorities.

• Other information
It is possible to add any information found in the App object. For example, the Android
manifest holds valuable information like defined activities, services, or content providers.

Currently, the App object created by the Semdroid framework only parses the Dalvik bytecode
and the Android manifest of the Android application package. All other files, like native libraries,
included resources, and assets, are not considered yet. In order to be able to add these features,
Semdroid would have to parse these components and add them to the App object. Then, they can
be accessed like any other application data and thus be used by the feature generators.

6.5.2 Feature Values

Once the features have been selected and filtered, a suitable feature value has to be chosen. The
feature value can either be symbolic (i.e. a string) or distance-based (i.e. a double value or array).
For each feature type, it is possible to use several different feature values.

By choosing appropriate feature values, an implicit grouping operation can be performed:
Suppose we have two class names com.my.FirstClass and com.my.SecondClass as symbolic
feature values. If the full class name is used as feature value, the two values are different and thus
treated separately. However, if we just consider the package name of these classes, both feature
values would be mapped to com.my and thus both classes would be grouped together.

Using feature values containing arbitrary data defined by the developer, such as local variable-,
field-, class-, or method names, is not a good idea in most cases since the developer could simply
change these names at any time. Since many Android applications use obfuscation techniques (see
Section 2.7), these names are often replaced by meaningless strings, which makes them useless
for the analysis process. Hence such feature values are usually not used. Class- or method names
provided by the Android system (i.e. names of Android classes and API calls), however, are
excellent feature values utilized by many analysis processes.
Besides the feature values presented below, it is also possible to use more complex feature values
that depend on various criteria and that perform sophisticated grouping operations. In order to use
such complex feature values, a custom feature value generator can be implemented.

6.5. Feature Selection 57

Opcodes

For opcodes, only one feature value is used, namely the opcode group name. Different opcodes
can be grouped together, where each group has a unique name. For example, it would be possible
to group all mathematical opcodes to a group called MATH. Furthermore, it is possible to ignore
certain opcodes. The used grouping mechanism can be defined by the developer of the analysis.
Example: OP_IF

Method Calls

For method calls a myriad of different representations are possible. For upcoming examples, the
following method call is considered:

com.my.example.Clazz: public String doSomething(int parameter1)

Examples for possible method call feature values are:

• Full name
This feature value uniquely identifies the given method.
Example: com.my.example.Clazz: public String doSomething(int parameter1)

• Method name
Only the method name is used instead of the full name. This means that all methods with
the same name, but of different classes will be grouped together.
Example: doSomething

• Class name
By using the class name, all methods from the same class will be grouped together since
they share the same feature value. Instead of the class name, other class representations,
like for example the superclass, can be used as well.
Example: com.my.example.Clazz

• Package name
Here, the package name or a part of the package name is used as feature value.
Examples: com.my.example, com.my

• Other method information
Other information of a given method like the return value, method parameters or method
length can be used as well.
Examples: String, public, int, 123

Local Variables and Fields

Similar to method calls, different information of local variables can be used for feature values.
Since fields and local variables are basically the same except the scope they can be accessed from,
they share the same possible feature as well. One additional feature value that can be used For the
following examples, “variable” refers to both local variables and fields.

There are two basic groups of variables: primitive/basic data types and composite data types.
If the variable is a primitive data type (e.g., int, long, or byte), the name of the type itself is

6.5. Feature Selection 58

the only used feature representation. For composite data types, there are more options that can be
employed. Suppose, we have the following variable:

com.my.example.Clazz myVariable

Examples for possible feature values are:

• Class name
Example: com.my.example.Clazz

• Package name
Again, the package name or only a part of the package name can be used as feature value.
All variables of the same package will be grouped together.
Examples: com.my.example, com.my

• Variable name
Since the actual name of the variable does not hold valuable information due to obfuscation,
using the variable name is only reasonable in special cases.
Example: myVariable

• Full name
Similar to the variable name itself, this feature value should only be used in special cases.
Example: com.my.example.Clazz myVariable

• Other information
It is also possible to use any other information as feature value, like the number of methods
included in the class, or the number of opcodes of the class, or the superclass name.
Example: 123

Superclasses

The class type of a given superclass can be used as feature value. In general, analyses are more
interested in superclasses defined by the Android system rather than superclasses implemented
by the application itself. Thus, Semdroid provides the functionality to retrieve this first external
superclass. These superclass feature values can also be used for method calls and variables. They
are:

• Superclass name
All classes that extend the same superclass will be grouped together.
Example: android.app.Activity

• Package name
By just using the package name, it is possible to group several superclasses together. An
example would be to group all Android components or UI elements.
Examples: android.app, android

Permissions

For permissions, the full permission name is used by most analysis approaches as feature value.
An example for such a permission feature value is android.permission.SEND_SMS.

6.5. Feature Selection 59

It would also be possible to group permissions together. For example, there are several per-
missions for SMS handling. One could group all these SMS permissions together to a virtual
permission name like for example SMS_HANDLING.

Intent Filters

Certain Android components, like broadcast receivers or activities, use intent filters to specify
which actions they would like to react to (see Section 2.1.1). The values found in these intent filters
can be used as features, like the defined actions, category, mime type, and so on. For example,
the main activity of an application must define the action android.intent.action.MAIN and the
category android.intent.category.LAUNCHER in the intent filter.

6.5.3 Feature Representation

For each feature or group of features, a suitable feature representation has to be chosen. The basic
feature notation has already been discussed in the introduction of this section. A type identifier as
well as a feature value must be specified for each feature to be used. The feature value can also
be used for grouping operations as explained in Sections 6.5.2 and 6.5.4. Now, the final feature
representation has to be chosen. Different feature types can use different feature representations.
The following feature representations are currently used:

• Basic feature value
This representation directly uses a feature type/value pair. The feature value represents the
current feature and can be used to perform grouping operations. Multiple features of the
same feature type typically share the same type identifier.

General format:

featureType = featureV alue

Example:

opcode = OP_IF

• Feature type count
Instead of directly using the feature value, the number of occurrences of the given feature
value is used. Two cases have to be distinguished: it is possible to consider a whole feature
category (e.g., all opcodes or method calls), or just a subset. For instance, one could be
interested in the opcode count of the current component or just in the number of occurrences
of a specific opcode or opcode group. It has to be noted, that the count of occurrences does
not necessarily correspond to the number of actual executed operations on the CPU. If loops
are used that execute the same code several times, these operations are only counted once
since these loops are not resolved in the current version of Semdroid. The same holds for
method calls invoked from within a loop. If the features of nested method calls are directly
inlined as explained in Section 6.3, these features are also only counted once.

General format:

featureType = featureV alueCount

6.5. Feature Selection 60

Examples:

opcodeCount = 42

OP_IF = 11

com.my.Object = 8

• Feature usage
This representation states whether a given feature is used (is available). For example, it
could be of interest whether a given application requires the SMS permission. This can be
realized by defining a feature identifier called requiresSMSPermission and by setting the
corresponding feature value to true or false. If a distance-based feature value should be
used instead of this symbolic value, it is also possible to replace true with 1 and false with
0.
Another possibility to realize this kind of functionality is to simply use the “basic feature
value” representation. For the example of the SMS permission, one could also add the
feature permission = android.provider.Telephony.SMS_RECEIV ED, if the per-
mission is indeed requested by the application. One difference between these two repre-
sentations is that if the SMS permission is not required by the application, the resulting
features differ: If the “basic feature value” representation is used, the SMS permission fea-
ture is missing. For the “feature usage” representation, a feature will always be added that
explicitly states whether the permission is required.

General format:

featureType = true|false
Examples:

requiresSMSPermission = true

callsAbortBroadcast = false

usesBigInteger = 1

• Histogram
This representation counts the number of occurrences of each feature value contained in
a pre-defined feature set. The resulting histogram is then used as a distance-based fea-
ture value. Again, by choosing appropriate feature values, grouping operations can be per-
formed. In addition it is recommended to normalize the histogram. Especially opcode- or
opcode group histograms yield very good results and are utilized by many analyses. It has
to be noted, that the feature set used for the histogram as well as the order of this set always
has to remain the same. Even if a given feature is not present, the value must be set to 0
and included in the histogram in order to be able to compare two histograms. Similar to
the “feature type count” representation, loops are currently not handled; looped features are
only counted once.

General format:

featureType = [fCount1, fCount2, . . . , fCountN]

Example:

opcodeHistogram = [1, 3, 2, 5, . . . , 5]

6.5. Feature Selection 61

It is also possible to combine different feature representations for the same feature type. For
example, one could use a histogram representation for basic local variable types, and additionally
add selected local variables in a different format, like as “basic feature values”.

6.5.4 Feature Filtering and Grouping

Since it is not practical to use all features of a given feature type of an application, filtering strate-
gies have to be employed to constrain these features. Our test showed that choosing appropriate
filters and groups improves both the performance and the accuracy of the analysis. If all fea-
tures are used, a lot of “noise” and unnecessary information is introduced. Many features are not
relevant for the current analysis and thus it does not make sense to include them in the analysis
process. Using all features also decreases the analysis performance, since all of these features have
to be evaluated. Thus, it is wise to just pick certain features or feature types and to ignore the rest.

First, one has to decide which general feature types should be used for the current analy-
sis. This has to be assessed manually by the developer of the analysis and depends vastly on the
targeted functionality. In order to select a suitable feature set that yields good analysis results,
in-depth knowledge about the characteristics of the functionality to be detected is required.
Suppose an analysis that detects symmetric-key cryptography has to be developed. First, one has
to look at the main characteristics of symmetric cryptography. Based on these characteristics, the
developer then has to pick suitable features. For this example, the developer of the analysis could
decide to use the opcodes and local variables. Furthermore we are only interested in mathematical
operations as well as primitive local variable types, like int, double, boolean, etc. Then, the op-
codes can be grouped: all non-mathematical opcodes can for example be represented by a group
OTHER, while mathematical opcodes are used directly. Furthermore, a filter for local variables is
applied that only considers primitive local variables and discards all composite data types.

In this example, the two different approaches for eliminating irrelevant information have been
combined: feature filtering and feature grouping. The feature filtering process is used to com-
pletely remove irrelevant features. The grouping process is then used for the remaining features to
remove irrelevant or too detailed information, by reducing the number of possible feature values
and by grouping them together.

These two approaches are completely independent from each other. For example, a filter for
method calls can be applied that only adds a method call, if the method is included in a certain
set of packages. Independent of this filter, feature value grouping can be performed to group
the remaining method calls. The resulting grouped feature values are then used according to the
feature representation selected by the developer.

Section 6.5.2 presented an overview of used feature values and explained how they can be
used for grouping. But it is also possible to use a more general grouping approach. For example,
one could group all basic local variables to a virtual new feature value called BASIC and all other
types to a feature value called OTHER. Furthermore, it is possible to use any arbitrary grouping:
For instance, one could group two local variables com.first.Class1 and com.second.Class2 to
a feature value firstOrSecondClass.

The different feature values discussed in Section 6.5.2, which are used to perform grouping
operations, can be used for filtering as well: A temporary feature value, which is independent from
the actual feature value used for the current feature, can be chosen. This temporary feature value
can then be used by the given filter to decide whether the feature should be used. An example for
this would be a filter that solely adds local variables of a certain package: The temporary feature
value is the package name. If this temporary feature value is then included in a whitelist, the local

6.6. Semantic Patterns 62

variable is considered as a feature. The actual feature value can be different from the temporary
feature value, like the full class name of the local variable.

Furthermore, the filtering strategies employed for class- and method filtering process (Sec-
tion 6.4) can also be used in an extended form for feature filtering: Basically, for feature types that
have a reference to a class (e.g., the superclass, method calls, local variables, or fields), the same
class component filtering methods can be applied. Moreover, since class references could point to
external classes not implemented by the application (like an external superclass provided by the
Android platform), filters can also consider this information for the selection process. For method
calls, the component filtering strategies for methods can be applied. In addition to these compo-
nent filtering strategies for methods, method calls can also be external API calls provided by the
Android framework. Hence, filters can also employ this information for their decision making.

A final example: For each method call, one of the class-filtering strategies mentioned in Sec-
tion 6.4 can be employed to pre-filter for method calls of certain relevant classes. Then, a second
filtering step can be performed that checks if the method name itself contains a certain text.

6.6 Semantic Patterns

Once the feature layers have been generated, the Semantic Pattern transformation is used to con-
vert these layers to Semantic Patterns, value-based vectors, which are used for the final analysis
process.

For current analysis plugins, a single feature layer is created. This layer contains a list of
instances. A previously created Semantic Pattern network is used to derive Semantic Patterns
from these instances. Since instances can contain both symbolic and distance-based values, the
Semantic Pattern Transformation is used to create corresponding Semantic Patterns, one for each
instance. These Semantic Patterns are simple vectors that can be supplied to machine learning
algorithms. For more information on this transformation process, we refer to Section 2.10.

6.7 Machine Learning

The last step of the Semantic Pattern Analysis is to analyze the Semantic Patterns. Machine learn-
ing algorithms are used to classify these patterns. Then, the component attached to the Semantic
Pattern can be labeled according to the results of the machine learning process.

Basic machine learning principles have been presented in Section 6.7. Two different ap-
proaches can be used to analyze the Semantic Patterns: classification and anomaly detection.
For classification, we have a pre-defined number of labels, also called classes. For each Semantic
Pattern, the most probable class it belongs to is determined. Anomaly detection on the other hand
decides whether the Semantic Pattern seems to be “normal”, meaning that the pattern is similar to
previously seen “normal” patterns. If the pattern deviate from these “normal” patterns, it can be
considered as an anomaly. For instance, one could use several benign applications to train normal
application behavior. Malicious applications that deviate from this normal behavior can then be
detected by the machine learning algorithm. The next two sections will give more information on
these two approaches.

6.8. Training 63

6.7.1 Classification

In this thesis, we use support vector machines (SVM, see Section 2.9) to classify the Semantic
Patterns. Depending on the analysis, different kernels and parameters can be used that are tailored
specifically for the given analysis. Furthermore the number of classes can vary from analysis to
analysis as well: For some analysis approaches, a binary class, consisting of two possible classes,
is required, while others may require multiple classes. If more than two classes are used, a mul-
ticlass SVM is required that divides the classification problem into several binary class problems.
SVMs have been chosen because first tests showed great classification results compared to other
machine learning algorithms. However, it is also possible to specify any other machine learning
algorithm supported by the Weka framework.

6.7.2 Anomaly Detection

For anomaly detection, distance-based techniques can be used. These algorithms try to detect
outliers. The Semantic Pattern framework can be used to cluster the training data. These clusters
can then be used to decide whether a new Semantic Pattern shows normal behavior. If this pattern
does not lie within any cluster, it can be considered as an anomaly.

Currently, we do not employ analysis approaches based on anomaly detection. All analysis
plugins presented in Chapter 8 are based on classification algorithms. However, in future work, an
analysis process based on anomaly detection could be added to the Semdroid framework.

6.8 Training

A training process has to be performed that generates a Semantic Network and a machine learning
model used for the analysis process. The training framework provided by Semdroid (Section 6.8) is
used for this task. This framework performs pre-labeling of the training applications by applying
a training analysis. The components of supplied App objects then include the desired labels.
Then, the feature layers are extracted for each of these objects in the same way as for a normal
analysis process. The feature layers for all training applications are then used to create a Semantic
Network, which is persisted to a file. The first part of the training process, the creation of the
Semantic Pattern network, is now complete.

The second training step creates a machine learning model. Besides creating the Semantic
Network, the Semantic Patterns are also created for all instances. For each of these instances, the
desired labels are attached to the representing Semantic Pattern. This data is then used to create
a machine learning model by performing a standard supervised learning process (Section 2.9).
Once the training process is complete, the resulting machine learning model is also persisted to a
file.

The training process is now complete. The Semdroid framework creates all additional con-
figuration files required for the new analysis. In order to analyze new applications, the Semantic
Network and the machine learning model are automatically loaded. Then, the analysis process can
be performed according to Section 6.1.

The pre-analysis process is very important in order to create analysis plugins with a great
performance. The training data has to be labeled accurately, in the best case without any false pos-
itives or false negatives. A training classifier is used to perform this labeling process. As described
in Section 6.8, any analysis can be used for this process – even another Semantic Pattern Analysis.
However, in order to get accurate training data, a very good but also time-consuming approach is

6.8. Training 64

to manually dissect the training applications, to assess the functionality of the components, and
finally to label these components accordingly. The results can be recorded in a text file and then
loaded by a training analysis that adds labels to the components according to this text file.
Furthermore, we also implemented a training analysis that labels components based on the folder
the application is placed in.

Chapter 7

Semantic Pattern Analysis –
Architecture

This chapter presents architectural details of the Semantic Pattern Analysis. As explained in the
previous chapter, this analysis process can be employed within the Semdroid framework, which
provides pre-processed Android application packages and handles the post-processing of the anal-
ysis results. Semantic Pattern Analyses try to locate certain application functionality within these
pre-processed Android application packages and return detailed analysis results containing all
findings. Section 7.1 gives an overview of the main components involved in this process. After
that, subsequent chapters delve into the details of these components. Since the Semantic Pattern
Analysis relies on a training process, the architecture of the training framework is outlined in
Section 7.5.

7.1 Component Overview

Section 5.3 already presented the requirements for any given Semdroid analysis. In short, the input
for an analysis is a pre-processed App object, which represents the Android application package
under analysis. Based on the information found in this App object, the analysis has to analyze
the application components and to return analysis results containing all findings. The blackbox
structure for Semdroid analysis plugins has been presented in Figure 5.3.

Now, with the Semantic Pattern Analysis, we can take a look inside of one of these black boxes;
Figure 7.1 shows the architecture behind this new analysis process. The App object is handed to
the feature extractor, the component responsible for assembling vectors suitable as input for ma-
chine learning algorithms. Each of these vectors represents a certain application component. In
order to create these vectors, a feature layer generator first assembles feature layers according to
Section 6.2. These layers are then processed by the Semantic Pattern framework, which gener-
ates the final vectors demanded by the machine learning framework. Then, the machine learning
framework labels each of these vectors separately. Label objects that correspond to the labels
assigned by the machine learning framework are created and all components are attached to the
labels they belong to. The final AppAnalysisReport containing all of these labels is then returned
to the Semdroid framework.

65

7.2. Feature Extractor 66

Semantic Pattern Analysis

...

App App Analysis
Report

Label

...

Feature Extractor

Feature Layer
Generator

Feature Layers

Semantic
Pattern

Framework

... Machine
Learning

Framework
Vector

Component

Figure 7.1: Semantic Pattern Analysis architectural overview. The App object (red) is used
as input for the analysis. Vectors are extracted and analyzed by the machine
learning framework. The resulting AppAnalysisReport (red) contains all labels
and links to components belonging to the labels.

7.2 Feature Extractor

The feature extractor is responsible for creating vectors consisting of double values, one for each
component under analysis. These components are also linked to the vectors in order to be able to
distinguish them later on. In theory, any feature extractor that generates such vectors suitable for
machine learning algorithms could be used for this process. For the Semantic Pattern Analysis, this
feature extractor consists of two parts: The first step is to generate feature layers. These layers are
then converted to the desired list of vectors (Semantic Patterns) by applying the Semantic Pattern
Transformation. Upcoming sections present the architecture behind these two processes.

7.2.1 Feature Layer Generator

Input: App object

Output: Feature layers

The input for every analysis is the pre-processed App object. The feature layer generator
is responsible for extracting features from the application, for grouping these features together
in instances, and for further grouping the instances in feature layers. Filtering operations are
performed to retrieve analysis relevant data only.

The structure of the FeatureLayerGenerator can be found in Figure 7.2. The general feature
layer structure has been described in Section 6.2 and is depicted in Figure 6.2. Feature layers con-
tain instances. Different instance generators, managed by the feature layer generator, are used to
create these instances. According to certain criteria, the feature layer generator selects an appro-
priate instance generator for a given component. This instance generator then assembles the final

7.2. Feature Extractor 67

Feature layer N

Feature layer 1

FeatureLayerGenerator

InstanceGenerator 1 InstanceGenerator N

App

Instance 1 Instance 2 Instance 3 Instance M...

...

...

Figure 7.2: Feature layer creation and structure.

instance containing selected features representing the component. For example, the feature layer
generator could select different instance generators for different class types. If a class extends
an Android activity, a different generator can be used for methods of this class than for methods
of a class that, for example, is an Android service. Simple single-layer generators, just use one
instance generator for all components of a given type. Furthermore, some feature layer generators
employ filtering strategies to filter for relevant components only.

Instance generators take a given component and assemble the instance representing this com-
ponent. Specialized generators are available for the three main component types: the AppInstance-
Generator, the ClassInstanceGenerator, and the MethodInstanceGenerator. These instance gen-
erators are independent of the used feature layer generator, meaning that the same instance gener-
ator can be employed by several different feature layer generators (e.g., by a single-layer- as well
as a multi-layer generator).

Now, three specific feature layer generators will be highlighted. All of them pursue a single
feature layer strategy and are used for three different component types: apps, classes, and methods.
Following after these three feature layer generators, more details on instance generators will be
given.

App Single Feature Layer

The AppSingleFeatureLayerGenerator is the simplest feature layer generator currently employed.
It creates a single instance for each application, as depicted in Figure 7.3. The structure is very
simple: The AppInstanceGenerator takes the App object and creates a single app instance by using
various data found in the application, like Dalvik opcodes, utilized local variables, or Android API
calls.

7.2. Feature Extractor 68

Feature layer
App Single

Feature Layer Generator

App Instance
Generator

App
App Instance

Figure 7.3: App single feature layer generator. A single app instance is generated for each
application.

Feature layer
Class Single

Feature Layer Generator

Class Instance
Generator

App Class
Instance

Class
FilterDexClass

Class
Instance...

Figure 7.4: Class single feature layer generator. For each class, a class filter decides
whether an instance should be added for the given class. The class instance
generator is responsible for creating these class instances.

Class Single Feature Layer

Instead of creating a single instance for the whole App object, the ClassSingleFeatureLayerGen-
erator holds several class instances. For each class included in the Android application, a separate
class instance is generated. Figure 7.4 depicts the structure of this generator. A class filter is used
to decide whether a given class should be added. For example, a simple filtering strategy is to
remove common libraries not relevant for the analysis. For each remaining class, the ClassIn-
stanceGenerator creates a class instance, containing various features representative for the given
class. More information on filtering strategies can be found in Section 6.4.

Method Single Feature Layer

Method single feature layer generators create, as their name already suggests, a single feature
layer containing multiple method instances. Similar to the previously mentioned class feature
layer generator, a class filter is used to remove unwanted classes. Then, all methods of remaining
classes are traversed and a method filter performs an additional selection process. Since the filters
are independent of the feature layer generator, the same implementation can be used for any fea-
ture layer generator. Surviving methods are then passed to the method instance generator, which
generates the final instances.

Instance Generation

Instances contain a number of features. The feature selection process has already been elaborated
in detail in Section 6.5. The architecture behind this selection process can be found in Figure 7.6.
In short, the instance generator first performs a feature filtering process. Application components
contain various data, like opcodes or local variables. Feature filters decide whether a given portion

7.2. Feature Extractor 69

Feature layer
Method Single

Feature Layer Generator

Method Instance
Generator

App Method
Instance

Class
FilterDexClass

Method
Instance...

Method
FilterMethod

Figure 7.5: Method single feature layer generator. The class- and method filters remove un-
wanted data. The MethidInstanceGenerator creates instances for the remaining
methods, which are added to the feature layer.

Data

Instance

Instance GeneratorComponent Feature

Feature
Filter

Feature...

Feature Value
Generator

Figure 7.6: General instance generation architecture. A feature of a given feature type is
filtered, a feature value is generated and this value is used to generate a feature
according to the chosen feature representation.

of this data qualifies for a suitable feature. Data that passed this filtering process is handed to
the feature value generator, which generates an appropriate feature value. It is possible to have
multiple feature filters and feature value generators. For example, depending on the feature type
(e.g., whether the feature is an opcode or a local variable), different filters and value generators
can be employed. Then, according to the selected feature representation (see Section 6.5.3), the
final data is added to the instance.

The analysis developer can fully configure all parts of this system: The feature filtering pro-
cess can be set up according to the requirements of the analysis process. For different feature
types, different filters, feature value generators, and feature representations can be specified. For
example, the developer can decide to add grouped opcodes in the form of an opcode histogram,
and to add filtered local variables directly as “basic feature values”.

In general, any instance generator can use any information found in the App object. In practice,
the feature scope varies depending on the component type: For example, for a class instance
generator, usually the features of the class and of all methods this class implements are used.
Method instance generators normally only include features of the method the instance represents.
Sometimes it can be useful to also include information of the parent class, like the name of the
superclass (e.g., broadcast receiver, activity, or service). App instance generators can include any
information of the whole application.

7.3. Machine Learning Framework 70

7.2.2 Semantic Pattern Framework

Input: Feature layers

Output: Vectors (Semantic Patterns)

The machine learning framework demands simple double vectors as input. Hence, we need
to convert the feature layers to such vectors – one vector per instance. For the Semantic Pattern
Analysis, the Semantic Pattern Transformation is applied on the feature layers, which does exactly
what we need: convert the feature layers to a number of Semantic Patterns, simple double vectors.
In order to achieve this task, we had to extend the Semantic Pattern framework developed by Peter
Teufl to suit our needs. The architecture of the Semantic Pattern framework can be found in Teufl
[52]. We added an interface to communicate with this framework. The extended framework allows
us to retrieve the Semantic Patterns and other required data, like the Semantic Networks.

7.3 Machine Learning Framework

Input: Vectors (Semantic Patterns)

Output: Labels

Now, we need to label the vectors retrieved from the feature extractor. For this task, machine
learning algorithms are used. In particular, we utilize the Weka framework (Section 2.9) for this
purpose. First, the vectors are converted to Weka-specific instances, which are then separately
analyzed by the machine learning model generated by the training process. For each of these
Weka instances, and thus for each component under analysis, a label string is returned. These
labels are then used by the Semantic Pattern framework to assemble the final analysis results.

7.4 Analysis Results

According to Section 4.5, an AppAnalysisReport has to be returned to Semdroid, containing all
analysis results. For each unique label string generated by the machine learning framework, a
Label object is created. The components linked to each vector (e.g., analyzed methods or classes)
are then attached to the label they belong to, as depicted in Figure 7.1. Furthermore, the Label
object is also added to the component itself, according to the Semdroid labeling specifications
presented in Section 4.5. The resulting application analysis report is then returned to the Semdroid
framework.

7.5 Training

As stated in Section 6.8, the Semantic Pattern Analysis requires a training process that generates
the Semantic Network and the machine learning model required to be able to analyze new applica-
tions. The Semdroid training framework presented in Section 5.7 is used for this task. It performs
the application pre-processing and supplies the pre-labeled App objects. Then, an analysis-specific
trainer is called that generates all models required by the analysis, as can be seen in Figure 5.6.

For the Semantic Pattern Analysis, this analysis-specific training module is depicted in Fig-
ure 7.7. For all training applications, feature vectors are extracted using the feature extractor

7.5. Training 71

Semantic Pattern Analysis
Trainer

Feature Extractor Machine Learning
Trainer

App

...

Vector

...

Label

...
Semantic Pattern

Network
Machine

Learning Model

Figure 7.7: Semantic Pattern Analysis training architecture. Vectors are extracted from pre-
labeled training App objects. The machine learning training framework creates
a machine learning model using the vectors and their corresponding target labels
as input. The resulting objects, the Semantic Network and the machine learning
model, are highlighted in red.

architecture discussed in Section 7.2. Since all application components have already been pre-
labeled by the Semdroid framework, these reference labels are attached to the vectors. These
labeled vectors are then handed to the machine learning training framework, which generates a
machine learning model using the supplied training data. Again, we use the Weka framework for
this training process. The machine learning algorithm and the parameters to be used can be spec-
ified by the analysis developer. The resulting machine learning model is then saved together with
the Semantic Network created by the Semantic Pattern framework.

Moreover, additional debug data can be saved, including an ARFF file that contains all training
instances supplied to the machine learning framework, as well as the feature layers extracted from
the training applications. The ARFF file can, for example, be used to manually train a machine
learning model using the Weka Explorer (Section 2.9).

Chapter 8

Semantic Pattern Analysis –
Applications

With the Semantic Pattern Analysis, we have a powerful analysis technique that is able to pinpoint
specific application functionality.
This chapter gives an overview of specific analysis plugins we have implemented and evaluated.
Each of these analysis plugins has been hand-tailored and adjusted in order to achieve good analy-
sis results. First, the targeted scope has been defined, whether the analysis should operate on app-,
class-, or method level. Then, we selected a suitable feature set that harmonizes with the targeted
functionality. We also tested different feature sets and scopes for the same analysis and picked the
best feature combination.

For the training process required by the Semantic Pattern Analysis, we need suitable training
applications. These applications have been handpicked, manually analyzed, and the functionality
of their components noted in a text file. The training analysis used to pre-label these applications
just loads the component names and their desired labels from this text file. After the training
process has generated all models required for the new analysis plugin, it is possible to analyze
new, unknown applications.

The following analysis plugins have been implemented and evaluated:

• Symmetric cryptography

• Asymmetric cryptography

• SMS handling

The focus of this thesis lies in detecting cryptographic code. Since symmetric ciphers and
hash functions have similar structures (e.g., some hash functions are based on symmetric block
ciphers), they are grouped together.
Asymmetric cryptography on the other hand does not necessarily have strong similarities to the
other two types and is thus targeted separately, by different analysis plugins. It would also be
possible to combine all these types in a single analysis that detects all cryptographic structures and
assigns different labels according to the type of cryptography. For instance, this analysis could
have the following three labels: SYMMETRIC, ASYMMETRIC, and NORMAL. In this thesis, we
decided to have separate analysis plugins for the symmetric- and asymmetric case.

Section 8.1 gives an overview of the analysis creation process. Following sections will then
delve into the details of each of these analysis plugins, what feature compositions have been used,

72

8.1. Analysis Creation 73

what training data has been used, and how the models have been trained.
The evaluation results for these analysis plugins will be presented and discussed in the next chap-
ter, Chapter 9.

8.1 Analysis Creation

This section explains the approach we took to create new analysis plugins.
First, a given target functionality has to be chosen. The developer must have detailed knowledge
about this functionality and its characteristics.
Next, the developer has to decide which feature layers should be used. For most cases, a single
feature layer should suffice, but a multi-layer approach could yield better result for some cases.
For the analysis processes presented in this chapter, we always used a single-layer approach.

Then, it has to be decided which components should be targeted. The three main component
types are: methods, classes, and apps. Depending on the targeted functionality, it has to be decided
which of these approaches is appropriate. For example, for targeting the application category, it
makes sense to work application-wide, whereas for detecting other functionality like cryptographic
code, both the class- and method-based approaches could be suitable.
It is also possible to mix these instances. One could use class-instances for class X (e.g., if the
class is an activity) and method-instances for class Y – for example, if the class is a broadcast
receiver. Once the component type has been selected, appropriate class- and method filters can
be set to retrieve relevant data only. For example, a class filter for broadcast receivers could be
employed.

Then, the feature set has to be selected according to Section 6.5. These features have to
be chosen depending on the characteristics of the targeted functionality. For example, in order to
detect cryptographic code, mathematical opcodes could be used. It is possible to combine different
feature types, like opcodes and method calls. For each of these feature types, filters can be set,
feature values have to be chosen, and a feature representation has to be selected. Once all features
have been selected, the machine learning algorithm and its parameters have to be defined.

Finally, we need training applications. Then, we manually examine their functionality and
label the application components accordingly. In a text file, we note the components and the
desired labels. Once this process has been completed, the new analysis can be trained. The training
analysis takes the previously created text file and labels all application components accordingly.
All files required for the new analysis will be automatically created and the new analysis can be
used.

8.2 Symmetric Cryptography

The first analysis process can detect symmetric ciphers and hash functions. As discussed in Sec-
tion 2.8, cryptographic operations rely heavily on mathematical functions. Thus, these mathemat-
ical operations are an essential part for feature vector generation. All operations are primarily
performed on basic data types (byte, int, double, float) and arrays of these basic types.

Hash functions and symmetric block ciphers can have very similar structures, since many hash
functions are based on such block ciphers. Even for hash functions that are not based on symmetric
block ciphers, the performed operations can be very similar, they usually perform many mathe-
matical operations, like shifts, AND, or XOR operations. This makes it very hard to distinguish

8.2. Symmetric Cryptography 74

Targeted functionality: Symmetric cryptography

Targeted components: Methods

Feature Layer: Single feature layer

Class filter: –

Method filter: More than 30 opcodes

Method call inclusion depth: 2

Features: Opcodes

Opcode grouping: Mathematical opcodes separately,

others ignored

Opcode feature values: Opcode group name

Opcode representation: Histogram

Machine learning algorithm: SVM

Table 8.1: Analysis configuration: symmetric cryptography detection

between hash functions and symmetric block ciphers. Thus, both of these types are considered to
be symmetric cryptography.

For symmetric block cipher as well as hash function detection, the usage of an opcode his-
togram, containing mainly mathematical opcodes, yielded very good results. We also experi-
mented with several other feature sets, which included basic local variables, or method calls, but
by simply using the opcode histogram, we achieved the best results.

8.2.1 Analysis Configuration

The configuration for this analysis can be found in Table 8.1. This analysis targets methods im-
plementing symmetric cryptography. A single feature layer is created, which contains method
instances. We do not employ a class filter, methods of all classes are used. For methods, we only
look at methods with more than 30 opcodes. We chose a value of 30 because the symmetric code
we have manually analyzed performed at least 30 operations. The method call inclusion depth
(see Section 6.3) is set to 2, meaning that all features of invoked methods, and of methods invoked
by these methods, will be added as well.

As features, this analysis process simply utilized grouped opcodes, added as a normalized
opcode histogram. All mathematical opcodes are considered as a separate group, like ADD, OR,
AND, or XOR. All other opcodes will be ignored. A complete list of all opcodes can be found
in Table A.1. A Support Vector Machine is used for machine learning tasks, since SVMs yielded
great results.

8.2.2 Training Data

As training data, we manually labeled six AES methods found in the Bouncy Castle library as
cryptographic code: three encryptBlock and three decryptBlock methods of the three classes
AESEngine, AESLiteEngine, and AESFastEngine.
In addition, we picked 100 methods that do not contain cryptographic code and labeled them as

8.3. Asymmetric Cryptography 75

“normal” code. These methods have been randomly selected from one of the author’s applications.
We also manually verified that they do not perform cryptographic operations.

8.3 Asymmetric Cryptography

Now, we want to detect asymmetric cryptography. As stated in Section 2.8.2, some of the most
prominent asymmetric encryption algorithms include RSA, ElGamal, and elliptic curve cryptog-
raphy (ECC). In addition, some signature algorithms, like the Digital Signature Algorithm (DSA),
have similar asymmetric properties since they have been built upon asymmetric encryption mech-
anisms.

In contrast to symmetric cryptography, most asymmetric block ciphers utilize considerably
larger cryptographic keys. For example, for RSA, key lengths of 2048, 4096, or even 8192 bits
are very common. In order to perform mathematical operations on such large numbers, many
cryptographic Java libraries utilize the BigInteger1 class, which provides an efficient implemen-
tation for arithmetic operations on such large numbers. If this BigInteger implementation is not
used, one has to manually allocate corresponding arrays of basic data types (i.e. byte arrays) that
hold these large numbers. Then, all mathematical operations required by the algorithm have to
be correctly implemented. Since this process is quite time-consuming and error-prone, all Java
implementations of the RSA algorithm that we manually dissected utilize the more convenient
BigIntger implementation.

Many asymmetric encryption algorithms can be implemented in just a few lines of code, like
the simple RSA example shown in Listing 2.7. The RSA implementation included in Bouncy
Castle is given in Listing 8.1. This code actually houses two different implementations of the RSA
algorithm:
The basic algorithm, which has already been described in Section 2.8.2, can be seen in line 36.
The other branch of the if-condition (lines 3 to 33) utilizes the Chinese Remainder Theorem to
speed up the computation. This theorem requires a little more code though.

For our analysis process, this means that keeping track of the BigInteger implementation could
be very useful in order to detect most asymmetric cryptosystems. Thus, we track the usage of
classes included in java.math, which also contains the BigInteger class, for both method calls and
local variables. Since opcodes are always very important, we also include an opcode histogram.

8.3.1 Analysis Configuration

Table 8.2 shows the configuration used for this analysis. Again, a single method instance feature
layer is utilized. All methods with more than 5 opcodes are analyzed. Since some asymmetric
encryption algorithms, including RSA, can be implemented with just a few operations, we had to
lower the number of minimum opcodes compared to the symmetric case.

For this analysis, we utilize the opcodes, as well as certain method calls and local variables.
Again, the opcodes will be grouped; mathematical opcodes are added directly and in addition, we
also add all CMP, MOV, and IF operations. Table A.1 lists all opcodes and the used opcode group
names. The grouped opcodes are then added as a normalized histogram.

As already explained, for method calls this analysis filters for API calls to classes included in
java.math. For this API calls, we use the “basic feature value” representation (Section 6.5.3) and
the full method call name, including the package- and class name, as feature values.

1http://developer.android.com/reference/java/math/BigInteger.html

http://developer.android.com/reference/java/math/BigInteger.html

8.3. Asymmetric Cryptography 76

1 p u b l i c BigInteger processBlock (BigInteger input) {
2 i f (key i n s t a n c e o f RSAPrivateCrtKeyParameters) {
3 //
4 // we have the extra factors, use the Chinese Remainder Theorem - the

author
5 // wishes to express his thanks to Dirk Bonekaemper at rtsffm.com for
6 // advice regarding the expression of this.
7 //
8 RSAPrivateCrtKeyParameters crtKey = (RSAPrivateCrtKeyParameters)key ;
9

10 BigInteger p = crtKey .getP () ;
11 BigInteger q = crtKey .getQ () ;
12 BigInteger dP = crtKey .getDP () ;
13 BigInteger dQ = crtKey .getDQ () ;
14 BigInteger qInv = crtKey .getQInv () ;
15
16 BigInteger mP , mQ , h , m ;
17
18 // mP = ((input mod p) ^ dP)) mod p
19 mP = (input .remainder (p)) .modPow (dP , p) ;
20
21 // mQ = ((input mod q) ^ dQ)) mod q
22 mQ = (input .remainder (q)) .modPow (dQ , q) ;
23
24 // h = qInv * (mP - mQ) mod p
25 h = mP .subtract (mQ) ;
26 h = h .multiply (qInv) ;
27 h = h .mod (p) ; // mod (in Java) returns the positive

residual
28
29 // m = h * q + mQ
30 m = h .multiply (q) ;
31 m = m .add (mQ) ;
32
33 re turn m ;
34 }
35 e l s e {
36 re turn input .modPow (key .getExponent () , key .getModulus ()) ;
37 }
38 }

Listing 8.1: Bouncy Castle RSA implementation – excerpt from org.bouncycastle.

crypto.engines.RSACoreEngine.

8.3. Asymmetric Cryptography 77

Targeted functionality: Asymmetric cryptography

Targeted components: Methods

Feature Layer: Single feature layer

Class filter: –

Method filter: More than 5 opcodes

Method call inclusion depth: 0

Features: Opcodes, method calls, local variables

Opcode grouping: Mathematical opcodes, CMP,

MOV, IF, others ignored

Opcode feature values: Opcode group name

Opcode representation: Histogram

Method call filtering: API calls to java.math

Method call feature values: Full method call name

Method call representation: Basic feature value

Local variable filtering: Classes in package java.math

Local variable feature values: Full variable type class name

Local variable representation: Basic feature value

Machine learning algorithm: SVM

Table 8.2: Analysis configuration: asymmetric cryptography detection

8.4. SMS Handling 78

Similar to method calls, we also consider local variables as features. Again, we are only
interested in classes contained in java.math, the features are added using the “basic feature value”
representation, and the full class name is used as feature value.

8.3.2 Training Data

For asymmetric training data, we utilize the Bouncy Castle implementations of RSA and ElGa-
mal. Thus the two processBlock methods of the RSACoreEngine and ElGamalEngine (in the
package org.bouncycastle.crypto.engines) have been labeled as asymmetric cryptography.
In addition, 200 “normal” methods have been randomly selected that do not contain asymmetric
cryptography.

8.4 SMS Handling

Android offers a convenient interface to listen to incoming SMS messages (see Section 2.5. Now,
we have created an analysis that detects such broadcast receivers that handle incoming SMS mes-
sages. They can be categorized as either SMS sniffers or catchers, depending on whether they
abort the broadcast. Hence, the main difference between these two types is, that SMS catchers
call abortBroadcast() in order to cancel the message broadcast. Other than that, the performed
operations could be identical. Both types can read and process the contents of the SMS message
in the same way. Since the call to abortBroadcast() can be detected by a separate static analysis
approach that checks all method calls invoked by the given broadcast receiver, we do not directly
distinguish between sniffers and catchers. Instead, our analysis simply labels any receiver that
handles SMS broadcasts as “SMS receiver”.

Furthermore, it has to be noted that it is very hard to detect sniffers that do not read the
contents of the incoming message or perform actions with these contents, since any receiver could
theoretically be registered to SMS events, even if it performs completely unrelated actions. Thus,
we do not consider such receivers for this analysis process.

As shown in Felt et al. [15], a third of all applications is overprivileged. Thus, these applica-
tions require permissions that they do not actually require. By using our analysis, we can detect
whether actual SMS code is included in the application, and thus, if the application requires the
SMS_RECEIVED-permission, which might be requested by the application.

For this analysis process, we do not rely on the permissions requested by the application, since
the goal of this analysis is to detect SMS functionality just by analyzing the Dalvik executable.
Similarly, we also do not consider receiver information found in the Android manifest. However,
for a real-world scenario, the requested permissions as well as information from the Android
manifest, like statically defined SMS receivers, could be added as well.

In future work, additional SMS analysis plugins could be developed that are able to detect
more specific SMS code, like receivers that allow to remotely control the device via SMS mes-
sages, or analysis approaches that are able to detect “legitimate” SMS code used for normal SMS
applications.

8.4.1 Analysis Configuration

Figure 8.3 shows the configuration for this SMS analysis plugin. Since we only want to analyze
custom broadcast receivers, a class filter for broadcast receivers is deployed. This filter traverses

8.4. SMS Handling 79

Targeted functionality: SMS handling

Targeted components: Methods

Feature Layer: Single feature layer

Class filter: First external superclass is BroadcastReceiver

Method filter: onReceive-methods

Method call inclusion depth: 1

Features: Opcodes, method calls, local variables

Opcode grouping: Mathematical opcodes separately, GET,

PUT, CMP, MOV, IF, others ignored

Opcode feature values: Opcode group name

Opcode representation: Histogram

Method call filtering: Android API calls to android.telephony.*

Method call feature values: Package name

Method call representation: Basic feature value

Local variable filtering: Local variables from android.telephony.*

Local variable feature values: Class name

Local variable representation: Basic feature value

Machine learning algorithm: SVM

Table 8.3: Analysis configuration: detecting SMS functionality.

the class hierarchy until the first external superclass, not implemented by the application itself, is
found. If this external superclass is BroadcastReceiver, the class is marked for analysis.
Then, a method filter that only allows onReceive-methods is applied, since this method is the
entry point for incoming broadcast messages.

The features extracted from the onReceive methods are: opcodes, local variables, and method
calls. First, the grouped opcode histogram is added according to the opcode groups given in
Table A.1. For local variables and method calls, we consider all data included in the android.

telephony.* package provided by the Android system. This package includes, amongst others,
the SmsMessage class utilized by many SMS receivers, as well as other related classes. For both
of these feature types, the basic feature value representation is used, the feature values for method
calls being the package name, and for local variables the variable type (i.e. the full class name).
The method call inclusion depth has been set to 1, so that we also detect SMS code in methods
called by onReceive, and a SVM is used for machine learning purposes.

8.4.2 Training Data

The training data has been generated as follows: In order to retrieve SMS code, we dissected
Android applications that require the SMS_RECEIVED-permission. For each broadcast receiver, we
checked whether the class name contains “SMS”. Then, we manually checked whether the receiver
indeed handles incoming SMS messages.

For “normal” broadcast receivers, we only considered applications that do not request the SMS

8.4. SMS Handling 80

permission. For each broadcast receiver we then also checked if the class name does not contain
“SMS”. If these two criteria have been met, we used the corresponding receiver as “normal”
training data. In total, we gathered 34 SMS broadcast receivers and 220 normal receivers, which
we used to train and to evaluate the model.

Chapter 9

Evaluation

This chapter presents the evaluation results of the analysis plugins elaborated in the previous chap-
ter. Each of these analysis plugins has been evaluated in terms of accuracy, by performing both an
automated evaluation as well as a manual, empirical evaluation.
Section 9.1 gives more details on the used evaluation methodology. The following sections then
present the evaluation results for all analysis plugins. We also analyzed the impact of obfuscation
and code optimization on the analysis results, which will be presented in Section 9.5.

Finally, the general performance of the Semdroid framework and the Semantic Pattern Analy-
sis is assessed in Section 9.6; the execution times for different analysis plugins are given for both
on-device and PC-based analysis.

9.1 Evaluation Process

The evaluation process consists of two parts: automated- and manual evaluation. First, the corre-
sponding analysis will be automatically evaluated using pre-defined evaluation applications. Then,
a second evaluation test set is analyzed by the analysis under evaluation and the analysis results
are manually checked for irregularities and conspicuous analysis results.

9.1.1 Automated Evaluation

The automated evaluation process looks as follows: First, we manually select and dissect all evalu-
ation applications. The functionality of the components has to be assessed for all applications and
a selection of these components has to be labeled according to this functionality. Then, we note
the application names, the component names and the corresponding labels in a text file. This text
file is then parsed by the evaluation analysis, which labels all application components according
to this mapping.

The evaluation process itself is performed by the Semdroid evaluation framework presented
in Section 4.6. The framework automatically evaluates the analysis using the given evaluation
analysis, which loads the label mapping file created earlier. The resulting HTML evaluation report
contains detailed evaluation results for the current analysis, which are then presented in this thesis.

For analysis plugins that utilize App instances, a different evaluation analysis is available:
Applications used for the evaluation process are placed in a folder named after the desired label.
The evaluation analysis then labels the App instances according to the folder the application is
placed in.

81

9.2. Symmetric Cryptography 82

9.1.2 Manual Evaluation

After the automated evaluation process has been conducted, a second, manual evaluation is per-
formed. A second evaluation dataset is handed to the analysis under evaluation. We then examine
the analysis results and present notable findings. In order to assess the functionality of selected
components, we use the decompilation tools discussed in Section 2.7, including dex2jar and JD-
GUI.

The applications used for this manual evaluation process have been collected from various
categories on Google Play, mostly from the top free applications of the corresponding category.
Detailed information on the actual application set used for the evaluation will be given in the
corresponding sections for the analysis plugins.

9.2 Symmetric Cryptography

The first analysis, which detects symmetric cryptography, has been automatically evaluated using
1000 evaluation methods that perform both symmetric cryptography and normal operations. Then,
a manual evaluation, where we analyzed 98 password safes found on Google Play, is used to
further assess the capabilities of this analysis.

9.2.1 Automated Evaluation

First, we manually labeled known cryptographic code, being methods where the actual crypto-
graphic operations are performed. For this evaluation data, Bouncy Castle, an open source cryp-
tographic library, has been used. The package org.bouncycastle.crypto.engines contains
several symmetric block cipher engines. Methods of these engines that perform the encryption
and decryption process have been tagged as cryptographic code. In addition, we also labeled parts
of the ciphers and methods related to cryptographic round key generation required by many sym-
metric block ciphers. Furthermore, org.spongycastle.crypto.digests contains hash function
engines. Since the structure of hash functions and block ciphers can be very similar (some hash
functions even are based on block ciphers), methods that perform hash operations have been added
as well. In total, we extracted 67 methods from these two packages.

In addition to Bouncy Castle, we manually examined selected Android applications and la-
beled cryptographic components found in these applications. In particular, we used 24 methods
of the Cryptix provider1 and 14 other cryptographic methods, including custom AES, SHA1, and
Bcrypt implementations.

Furthermore, a selection of non-cryptographic methods has been made, including different
functionality ranging from activities over services to various other code. We also included 20
“normal” methods that perform asymmetric-key cryptography. Since we just want to detect sym-
metric block ciphers and hash functions, the analysis plugin should label asymmetric code as
“normal”.

The resulting 1000 methods, split into 100 cryptographic methods and 900 normal ones (since
custom cryptographic implementations are quite rare), have been used to evaluate the Semantic
Pattern Analysis for cryptography detection.

1http://ds0.cc.yamaguchi-u.ac.jp/~joji/doc/cryptix3.2.0/cryptix/provider/cipher/package-

summary.html

http://ds0.cc.yamaguchi-u.ac.jp/~joji/doc/cryptix3.2.0/cryptix/provider/cipher/package-summary.html
http://ds0.cc.yamaguchi-u.ac.jp/~joji/doc/cryptix3.2.0/cryptix/provider/cipher/package-summary.html

9.2. Symmetric Cryptography 83

Label Components Correct Wrong Correct [%]

Symmetric cryptography 100 99 1 99%

Normal 900 900 0 100%

Total 1000 999 1 99.9%

Table 9.1: Automated evaluation results for symmetric cryptography detection. 100 crypto-
graphic methods and 900 normal methods have been tested.

Type Group Count Total

Symmetric cryptography

Cryptography 1740

3653

Non-cryptographic hash functions 46

Encoding schemes and data notations 765

Compression functions 13

Other 240

Obfuscated 849

Normal 55534

Total 59215

Table 9.2: Analysis results for 98 password safes: symmetric cryptography.

The results can be found in Table 9.1. All normal methods have been labeled correctly by
the analysis. The cryptographic code detection has been great as well – 99 out of 100 methods
have been correctly labeled. The only method not detected is the setKey method of the Camellia
symmetric block cipher implementation found in Bouncy Castle (org.bouncycastle.crypto.
engines.CamelliaEngine: void setKey(boolean, byte[])).

9.2.2 Manual Evaluation

We analyzed 98 password safes found on Google Play and then categorized the resulting methods
according to their functionality. Since a password safe should include some form of cryptography
to protect the user’s login credentials, we focused on these applications since they are more likely
to include custom cryptography. If no custom cryptography is found, the application could either
utilize the built-in Android libraries, or, in the worst case, does not employ cryptography at all.

In total, 59215 methods have been analyzed. Methods with less than 30 opcodes have been
omitted, since we assume that symmetric cryptography requires at least 30 operations. It has to
be noted that since we analyzed 98 different applications, it is possible that the same methods,
or similar methods, can be found in multiple applications. For example, several password safes
utilize the Bouncy Castle cryptographic library – either directly, or as a repackaged variant. We
did not group these methods together, since they have different package names, or could be from
different versions of Bouncy Castle.

The analysis classified 55534 methods as “normal” code, and the remaining 3653 methods
as symmetric cryptography. Then, we manually examined these cryptographic methods and cat-
egorized them accordingly. Table 9.2 shows the different categories. 849 of these methods have
been obfuscated and were not further analyzed. This leaves 2804 remaining methods, which were

9.2. Symmetric Cryptography 84

1158

268 89

98

72

54

Symmetric Ciphers
Hash functions
MACs
Modes of operation
Key and parameter generation
Random number generation

Figure 9.1: Manual evaluation results: Symmetric cryptography categories.

categorized into symmetric cryptography, non-cryptographic hash functions, various encodings,
compression functions, and other methods.

Cryptography (1740 methods)

The first subgroup, custom symmetric-key cryptography, accounts for the majority of methods
labeled as custom cryptography. We further categorized these 1740 methods according to their
functionality. Figure 9.1 shows these subcategories. 1158 methods include code used for sym-
metric block ciphers. Similarly, 268 methods are used for cryptographic hash functions, and 89
for message authentication codes. Furthermore, code that implements different modes of opera-
tion (like CBC) can be found in 98 methods. Some pseudorandom number generators (PRNGs)
also perform operations on given data that are similar to hash functions and to cryptographic code
in general. Thus, 54 methods that are involved in generating random numbers have been found.
Finally, 72 methods contain code used for key- and parameter generation.

• Symmetric ciphers (1158 methods)
The majority of cryptographic methods, 1158, are used to build symmetric ciphers. Since
the analysis tries to detect cryptography in general, parts of these ciphers are also labeled as
cryptographic code since they are involved in the process.

– Bouncy Castle implementations
Some applications included the original Bouncy Castle library, or repackaged versions,
like Spongy Castle2, in order to avoid name conflicts with the Bouncy Castle imple-
mentation included in Android. A few app developers also renamed Bouncy Castle on
their own, as, for example, by using the package name org.bownzycastle.*. Most
of the cryptographic code found in applications originates from Bouncy Castle.

2http://rtyley.github.io/spongycastle/

http://rtyley.github.io/spongycastle/

9.2. Symmetric Cryptography 85

– Custom implementations
A few implementations included custom cryptography, mostly custom AES imple-
mentations. Furthermore, a few applications included cryptographic code found in
libraries. One example for such cryptographic code is UnixCrypt3, which is included
in some Apache libraries. According to its documentation, this class implements DES.
Thus, the analysis has been correct.

– Parts of ciphers
Many implementations of encryption algorithms are split into several methods. For
example, the AES algorithm consists of four parts: SubBytes, ShiftRows, MixColumns,
and AddRowKey. Many implementations of this algorithm, including Bouncy Castle,
have a similar structure where each of these steps is encapsulated within a separate
method. Not only does the analysis correctly recognize the main method that performs
the encryption and calls all subsequent methods as cryptographic code, but it also tags
all parts involved in this encryption process as cryptography.

– Round key generation
Many ciphers, like AES, require so-called round keys, which have to be derived from
the encryption key. Most of these key generation methods are recognized as well.

– LFSR
Linear feedback shift registers, in short LFSRs, have similar structures to symmetric-
key ciphers. Thus, some of them are detected by the analysis. As its name sug-
gests, an LFSR utilizes shift operations and XOR to add the results. The Grain
stream cipher utilizes an LFSR for its computations. Hence, the analysis detected two
LFSR implementations included two Bouncy Castle Grain implementations, namely
Grainv1Engine and Grain128Engine, which can be found in the package
org.spongycastle.crypto.engines.

• Hash functions (268 methods)
Our analysis found 268 methods required by cryptographic hash functions. The majority of
these methods have their roots in Bouncy Castle implementations. In addition, 10 custom
SHA implementations (both SHA-0 and SHA-1) have been found, contributing with a total
of 20 methods, since different parts of the implementations have been labeled separately.

• Message Authentication Codes (MACs) (89 methods)
In addition, the analysis found 89 methods that implement MACs. All of these methods have
been found as parts of Bouncy Castle, in the package org.bouncycastle.crypto.macs.*

or similar repackaged variants.

• Modes of operation (98 methods)
Various modes of operation, as for example cipher-block chaining (CBC), Galois/Counter
Mode (GCM), or several output feedback modes have been found. Again, all of these
methods have been included as part of Bouncy Castle, in the package org.spongycastle.

crypto.modes.*.

• Key and parameter generation (72 methods)
We found two custom password-based key derivation functions: BCrypt [42], which is based
on Blowfish, and scrypt [41]. The custom BCrypt implementation has been found in one
password safe, whereas the scrypt implementation is included in two other safes, as part of

3http://commons.apache.org/proper/commons-codec/apidocs/org/apache/commons/codec/digest/

UnixCrypt.html

http://commons.apache.org/proper/commons-codec/apidocs/org/apache/commons/codec/digest/UnixCrypt.html
http://commons.apache.org/proper/commons-codec/apidocs/org/apache/commons/codec/digest/UnixCrypt.html

9.2. Symmetric Cryptography 86

the Spongy Castle library.
Furthermore, key generators for DES, IDEA, and LOKI91 have been detected by the analy-
sis, as well as key factories and parameter generators included in the Bouncy Castle library.

• Random number generation (54 methods)
Random number generation is a problem related to cryptography. Random numbers are re-
quired for various tasks, including key- and salt generation. Hence, Bouncy Castle includes
several pseudorandom number generators (PRNGs), found in package org.spongycastle.
crypto.prng.*. For instance, the VMPC random number generator [69] included in this
package has been detected by the analysis. VMPC itself is a one-way function and a stream
cipher. Thus, it has been correctly detected by the analysis.
In addition to VMPC, org.spongycastle.util.test.FixedSecureRandom has been de-
tected as well. As the name states, it creates a fixed secure random sequence used for testing.
Finally, the analysis also detected a custom random number generator not included in Bouncy
Castle, which implements the R250 random number generation algorithm [29].

Non-Cryptographic Hash Functions (46 methods)

In addition to cryptographic hash functions, there are also some hash applications, where non-
cryptographic hash functions can be used, like for hash-based lookup. An example for this would
be MurmurHash34, which has been found in three password safes as part of the Google Guava
project5. Google Guava includes two implementations of this hash function, for different digest
sizes of 32 and 128 bits. Since the structures of these non-cryptographic hash functions can be
very similar to cryptographic ones, it makes sense that they are detected by the analysis.

Encoding Schemes and Data Notations (765 methods)

Various encoding schemes and data notations are recognized as cryptographic code. In total, 765
methods belong to this category. The number of methods belonging to this category is quite
high because many password safes included several encoding schemes. Figure 9.2 shows the
different encoding schemes that we found. The most prominent one is Base64, with 243 methods,
followed by UTF-8 and JSON. Since these encodings manipulate given input data and transform
it to a different output, it makes sense that the analysis detects these encodings as cryptographic
code. The encoding process to a certain format is similar to an “encryption” process (which
does not employ cryptographic keys of course and is not secure), while the decoding process has
similarities to cryptographic “decryption”. In both cases, the given input data is transformed to a
different output.

• Base64
Base64 [28] is a binary-to-text encoding scheme utilized by many applications. The Base64
implementation found in Bouncy Castle is shown in Listing 9.1. The Semantic Pattern
Analysis labels many of these implementations as cryptographic code. The code looks quite
similar to cryptography; it is very mathematics-heavy, it requires many shift operations as
well as bitwise AND calculations. In addition, it utilizes an encoding table, similar to the
substitution boxes (S-boxes) found in many block ciphers, including AES.

4https://code.google.com/p/smhasher/wiki/MurmurHash3
5https://code.google.com/p/guava-libraries/

https://code.google.com/p/smhasher/wiki/MurmurHash3
https://code.google.com/p/guava-libraries/

9.2. Symmetric Cryptography 87

243

148

101
71

25
14

100

63 Base64
UTF-8
JSON
ASN1
ISO 9796-1
HEX
Readers and writers
Other

Figure 9.2: Manual evaluation results: Encodings.

• JSON
JSON6 is short for for JavaScript Object Notation and is used to interchange data between
computers. Some methods required for serializing objects, to read and write objects, and to
convert data types are recognized as cryptographic code. Since such JSON code is included
in 13 different applications, a total of 101 methods are found.

• ISO 9796-1 Padding
The ISO 9796-1 padding is a padding scheme used for asymmetric ciphers. According to
Menezes, Vanstone, and Oorschot [34], the message is padded, extended, and redundancy
is added. Thus, despite being used for asymmetric cryptography, the padding itself has
similarities to symmetric cryptography. The code of this padding can be found in Bouncy
Castle, in org.bouncycastle.crypto.encodings.ISO9796d1Encoding.

• Readers and writers
Similarly, input stream readers and output stream writers have to transform the data read
from and written to their respective streams. One example that has been found in three pass-
word safes is org.spongycastle.bcpg.ArmoredOutputStream, which performs Base64
encoding and CRC computations.

• Other encodings
Similar to the Base64 encoding, other encoding schemes, like the Hex encoding included in
Bouncy Castle, utilize encoding tables and shift operations. The BER and DER encodings,
as well as some other rules found in the ASN.1 standard have been labeled as cryptography
as well.

6http://www.json.org/

http://www.json.org/

9.2. Symmetric Cryptography 88

Compression Functions (13 methods)

Compression algorithms also transform a given input to a different (smaller) output. Thus, it makes
sense that these implementations are found by the analysis. In practice, the analysis found a ZIP
implementation included in one application, and bzip2 implementations in two other applications.
In total, 13 methods have been detected that are required by these three implementations.

Others (240 methods)

Finally, the analysis detected 240 other methods not necessarily related to the previous categories.
For example, checksums have been detected, as well as other methods containing many mathe-
matical operations similar to symmetric cryptosystems.

• Checksums
Similar to non-cryptographic hash functions, some checksums also have comparable struc-
tures. To be specific, our analysis found an implementation of Adler-32, which is one of
these checksum algorithms [8].

• False positives
Finally, the analysis also incorrectly classified a few methods, mainly concerned with many
mathematical functions, as for example the method findCornerFromCenter found in the
MonochromeRectangleDetector7, which tries to find a corner of a barcode. Overall, it has
to be said that such false positives are very rare.

9.2.3 Conclusions

Summarizing these results, it is safe to say that the performance of this analysis is very good.
Actual cryptographic code used for symmetric-key cryptosystems is found with a very high detec-
tion rate. Code for asymmetric-key cryptosystems is correctly classified as “normal” code. Since
it is hard to strictly define “cryptographic code”, the analysis also finds similar code not neces-
sarily used in the context of cryptography. All other methods tagged as cryptographic code, like
the various encodings or compression functions, perform mathematical operations directly on the
given input data, very similar to encryption algorithms. These components might not necessar-
ily offer strong cryptography or use cryptographic keys for the transformation process, but the
characteristics are still similar.

In general, this analysis can be characterized to detect components that apply mathematical
operations on a given input, which transform it to a different output. These operations are similar
to the operations used by symmetric block ciphers and hash functions.

It also has to be noted that many applications did not include any custom cryptography at
all, even security-related applications, like password safes or mobile banking applications. By
manually examining some of these applications, it can be seen that many of them utilize the
built-in cryptographic libraries provided by the Android system. Many utilize the standard Java
cryptographic API to retrieve cipher- or hash instances.

7https://code.google.com/p/zxing/source/browse/trunk/core/src/com/google/zxing/common/

detector/MonochromeRectangleDetector.java?r=1003

https://code.google.com/p/zxing/source/browse/trunk/core/src/com/google/zxing/common/detector/MonochromeRectangleDetector.java?r=1003
https://code.google.com/p/zxing/source/browse/trunk/core/src/com/google/zxing/common/detector/MonochromeRectangleDetector.java?r=1003

9.2. Symmetric Cryptography 89

1 /**
2 * encode the input data producing a base 64 output stream.
3 *
4 * @return the number of bytes produced.
5 */
6 p u b l i c i n t encode (byte [] data , i n t off , i n t length , OutputStream out)
7 throws IOException {
8 i n t modulus = length % 3 ;
9 i n t dataLength = (length − modulus) ;

10 i n t a1 , a2 , a3 ;
11
12 f o r (i n t i = off ; i < off + dataLength ; i += 3) {
13 a1 = data [i] & 0xff ;
14 a2 = data [i + 1] & 0xff ;
15 a3 = data [i + 2] & 0xff ;
16
17 out .write (encodingTable [(a1 >>> 2) & 0x3f]) ;
18 out .write (encodingTable [((a1 << 4) | (a2 >>> 4)) & 0x3f]) ;
19 out .write (encodingTable [((a2 << 2) | (a3 >>> 6)) & 0x3f]) ;
20 out .write (encodingTable [a3 & 0x3f]) ;
21 }
22
23 /*
24 * process the tail end.
25 */
26 i n t b1 , b2 , b3 ;
27 i n t d1 , d2 ;
28
29 sw i t ch (modulus) {
30 case 0 : /* nothing left to do */
31 break ;
32 case 1 :
33 d1 = data [off + dataLength] & 0xff ;
34 b1 = (d1 >>> 2) & 0x3f ;
35 b2 = (d1 << 4) & 0x3f ;
36
37 out .write (encodingTable [b1]) ;
38 out .write (encodingTable [b2]) ;
39 out .write (padding) ;
40 out .write (padding) ;
41 break ;
42 case 2 :
43 d1 = data [off + dataLength] & 0xff ;
44 d2 = data [off + dataLength + 1] & 0xff ;
45
46 b1 = (d1 >>> 2) & 0x3f ;
47 b2 = ((d1 << 4) | (d2 >>> 4)) & 0x3f ;
48 b3 = (d2 << 2) & 0x3f ;
49
50 out .write (encodingTable [b1]) ;
51 out .write (encodingTable [b2]) ;
52 out .write (encodingTable [b3]) ;
53 out .write (padding) ;
54 break ;
55 }
56
57 re turn (dataLength / 3) * 4 + ((modulus == 0) ? 0 : 4) ;
58 }

Listing 9.1: Bouncy Castle Base64 encoding – excerpt from org.bouncycastle.util.

encoders.Base64Encoder.

9.3. Asymmetric Cryptograpy 90

Label Components Correct Wrong Correct [%]

Asymmetric cryptography 20 20 0 100%

Normal 980 980 0 100%

Total 1000 1000 0 100%

Table 9.3: Automated evaluation results for asymmetric cryptography detection. 20 meth-
ods implementing asymmetric cryptography and 900 normal methods have been
tested.

Type Count

Asymmetric cryptography 512

Normal 2415001

Total 2415513

Table 9.4: Analysis results for 98 password safes: asymmetric cryptography.

9.3 Asymmetric Cryptograpy

Compared to the symmetric case, it is much harder to find suitable asymmetric evaluation data.
Since asymmetric-key ciphers, like RSA, can be easily implemented with a single line, or with a
couple of lines, we do not have many different implementation possibilities (at least not many that
make sense and that can be found in production code).
Similarly, we did not find many different custom implementations in our evaluation applications.

9.3.1 Automated Evaluation

Again, we labeled methods implementing asymmetric cryptography as “asymmetric cryptogra-
phy”, and other methods as “normal” code. Signature algorithms based on asymmetric cryptog-
raphy, like DSA, have been considered as asymmetric code as well. Since we did not find many
implementations of asymmetric-key ciphers, the evaluation test set is smaller than for the symmet-
ric case. In total, we used 20 methods implementing asymmetric cryptography and 980 randomly
selected “normal” methods. These “normal” methods also include symmetric cryptography and
hash functions, which should ideally not be detected as asymmetric cryptography.

The evaluation results can be found in Table 9.3. All methods have been correctly classified;
it did not label any symmetric cryptography or hash function as asymmetric code, and all methods
containing asymmetric cryptography have been found.
It has to be noted though, that this does not mean that the analysis is perfect for real-world appli-
cations. Thus, the next section present the analysis results for additional applications.

9.3.2 Manual Evaluation

The automated evaluation results yielded excellent results. But what about applications in the
wild? In order to get a better understanding of the analysis performance, we performed the same
manual evaluation as for the symmetric case and manually examined the analysis results for 98
password safes.

9.3. Asymmetric Cryptograpy 91

DSA

51

RSA

51

GOST

80
SRP6

22Naccache–Stern

32
ElGamal

16

ECNR Signer 16

Key agreement
28

ECC

114

BigInteger math

12

Others

26

Obfuscated

64

Figure 9.3: Manual evaluation results: Asymmetric cryptography details.

Table 9.4 shows the analysis results for these 98 password safes. Since asymmetric cryptogra-
phy can be implemented very efficiently, with just a couple of lines, the analysis targets all methods
that perform more than 5 operations, as opposed to the minimum of 30 operations for symmetric
cryptography detection. Hence, this analysis plugin examined significantly more methods than the
previous plugin for symmetric code.

Again, we looked at methods the analysis labeled as asymmetric cryptography and then cate-
gorized these methods accordingly. Figure 9.3 shows these different categories. 64 methods have
been obfuscated and we did not further analyze them. In general, it can be observed that a major-
ity of the detected methods are parts of the Bouncy Castle library, or repackaged Bouncy Castle
variants.

• RSA
Of the 98 password safes, 8 included RSA code from Bouncy Castle. Furthermore, we
found two custom RSA implementations. Both of these two custom implementations pro-
vide methods to perform RSA en- and decryption, as well as to sign content and to verify
signatures. In addition, a test case with the name TestRSA has been detected by our analysis,
as well as an RSA key pair generator. In total, 51 methods include RSA computations.

• ElGamal
Most ElGamal implementations are from repackaged Bouncy Castle libraries. Only a single
other custom implementation has been detected; this implementation offers method for en-
and decryption, as well as for signing and verifying a signature. Furthermore, a test case
for this custom implementation has also been detected, which verifies the correctness of the
implemented algorithm. Also, a class that generates ElGamal key pairs is included in this
custom implementation as well.

• DSA
The DSA implementations detected by the analysis are again mostly from (repackaged)

9.3. Asymmetric Cryptograpy 92

Bouncy Castle libraries. However, we also detected two custom implementations, found
in two different applications. The first one can be found in Apache libraries, namely
SHA1withDSA_SignatureImpl8. As the name states, this algorithm uses SHA1 and DSA.
Thus, the signature generation and verification methods have been detected by our analysis.
The second custom implementation is called RawDSASignature and holds a standard DSA
algorithm.

• Other signature algorithms
Furthermore, several other signature algorithms have been detected. The package org.

bouncycastle.crypto.signers contains several of these signature algorithms. For the
classes DSASigner and GOST3410Signer (based on the GOST R 34.10-94 Signature Al-
gorithm, see Leontiev and Shefanovski [31]) the two methods generateSignature and
verifySignature have been labeled as asymmetric cryptography. For ECDSASigner, EC-
NRSigner, and ECGOST3410Signer the generateSignature methods have been detected.
All of these methods perform asymmetric cryptography.

• Naccache–Stern cryptosystem
The public-key cryptosystem described in Naccache and Stern [36] is based on the higher
residuosity problem. This cryptosystem also uses an RSA modulus n, which consists of two
large prime numbers multiplied together. The encryption process itself utilizes the Chinese
Remainder Theorem. Thus, the computations are similar to RSA, which explains why it has
been correctly recognized as asymmetric-key cryptography.
From the 98 password safes, 8 include the Bouncy Castle Naccache-Stern implementation,
and for each of these implementations, several methods involved in the en- and decryption
process, as well as key generation mechanisms have been detected. In total, this cryptosys-
tem accounts for 32 methods.

• Elliptic Curve Cryptography
Elliptic Curve Cryptography (ECC) contributes with 114 methods. Since the Bouncy Cas-
tle ECC implementation relies heavily on BigIntegers, these methods have been correctly
classified as asymmetric-key cryptography.

• SRP
The Secure Remote Password Protocol [63] is an asymmetric key exchange protocol. Bouncy
Castle includes this SRP-6a protocol, impelemented according to Wu et al. [62]. The Se-
mantic Pattern Analysis labeled several methods of this implementation (for the server and
for the client) as asymmetric cryptography. A total of 6 password safes include methods
from this SRP implementation. Listing 9.2 shows the code of one of these methods, namely
generateServerCredentials(). It can be seen, that this method really performs asym-
metric cryptography.
Furthermore, another password safe includes a custom SRP implementation, that operates
on a custom BigInteger class, called UBigHexInteger.

• Key agreement
Key-agreement protocols are used in order to create a shared key between two parties. One
common key-agreement protocol is the Diffie-Hellman key exchange (see Menezes, Van-
stone, and Oorschot [34]). It is based on the same operations as RSA, and thus detected
by the Semantic Pattern Analysis. Furthermore, other key-agreement protocols, like Elliptic
Curve Menezes-Qu-Vanstone (ECMQV), are detected as well.

8org.apache.harmony.security.provider.crypto.SHA1withDSA_SignatureImpl

9.4. SMS Handling 93

1 /**
2 * Generates the server’s credentials that are to be sent to the client.
3 * @return The server’s public value to the client
4 */
5 p u b l i c BigInteger generateServerCredentials () {
6 BigInteger k = SRP6Util .calculateK (digest , N , g) ;
7 t h i s .b = selectPrivateValue () ;
8 t h i s .B = k .multiply (v) .mod (N) .add (g .modPow (b , N)) .mod (N) ;
9 re turn B ;

10 }

Listing 9.2: Bouncy Castle org.bouncycastle.crypto.agreement.srp.SRP6Server

excerpt for generating server credentials, according to SRP-6a.

Again, 8 applications include the respective Bouncy Castle implementations, which have
been detected. In addition, one application includes a custom SSL Diffie-Hellman imple-
mentation.

• Zero-knowledge proof (ZKP)
According to Schneier [45], a zero-knowledge proof is used by a party to prove to a second
party that a given statement is true (e.g., that the first party knows a secret), without revealing
any additional information. In order to implement such zero-knowledge proofs, strategies
similar to asymmetric encryption mechanisms can be used. For more information, we re-
fer to Schneier [45] and Menezes, Vanstone, and Oorschot [34]. One of the applications
we have analyzed included such a custom ZKP implementation by Mozilla, called JPake-
Crypto9. Three methods found in this class, namely createZkp, checkZkp, and round2

have been labeled as asymmetric cryptography. The code for the first two methods is shown
in Listing 9.3. The operations used for creating the ZKP as well as for verifying the ZKP
is very similar to asymmetric cryptography. Thus it makes sense that this code has been
detected by the analysis.

• Fractions
Another method labeled as asymmetric cryptography is called addSub and can be found in
org.apache.commons.lang3.math.Fraction. The implementation of this method is given
in Listing 9.4. This implementation utilizes many BigIntegers and uses them for various
mathematical operations similar to asymmetric encryption algorithms. More information
on the implemented add and subtract algorithm can be found in Knuth [30, Section 4.5.1].

• Others
Finally, 38 other methods have been tagged, 12 of which are part of BigInteger helper li-
braries. The other 26 methods also are helper methods that operate on BigIntegers.

9.4 SMS Handling

In order to evaluate this analysis, we performed both an automated- and a manual evaluation
process. The next two sections present their respective evaluation results.

9http://dxr.mozilla.org/mozilla-central/source/mobile/android/base/sync/jpake/JPakeCrypto.

java

http://dxr.mozilla.org/mozilla-central/source/mobile/android/base/sync/jpake/JPakeCrypto.java
http://dxr.mozilla.org/mozilla-central/source/mobile/android/base/sync/jpake/JPakeCrypto.java

9.4. SMS Handling 94

1 /* This Source Code Form is subject to the terms of the Mozilla Public
2 * License, v. 2.0. If a copy of the MPL was not distributed with this
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
4
5 /*
6 * Generate the ZKP b = r - x*h, and g^r, where h = hash(g, g^r, g^x, id).

(We
7 * pass in gx to save on an exponentiation of g^x)
8 */
9 p r i v a t e s t a t i c Zkp createZkp (BigInteger g , BigInteger x , BigInteger gx ,

10 String id , JPakeNumGenerator gen) throws NoSuchAlgorithmException ,
UnsupportedEncodingException {

11 // Generate random r for exponent.
12 BigInteger r = gen .generateFromRange (Q) ;
13
14 // Calculate g^r for ZKP.
15 BigInteger gr = g .modPow (r , P) ;
16
17 // Calculate the ZKP b value = (r-x*h) % q.
18 BigInteger h = computeBHash (g , gr , gx , id) ;
19 Logger .debug (LOG_TAG , " myhash : " + h .toString (1 6)) ;
20
21 // ZKP value = b = r-x*h
22 BigInteger b = r .subtract (x .multiply (h)) .mod (Q) ;
23
24 re turn new Zkp (gr , b , id) ;
25 }
26
27 p r i v a t e s t a t i c vo id checkZkp (BigInteger g , BigInteger gx , Zkp zkp)
28 throws IncorrectZkpException , NoSuchAlgorithmException ,

UnsupportedEncodingException {
29
30 BigInteger h = computeBHash (g , zkp .gr , gx , zkp .id) ;
31
32 // Check parameters of zkp, and compare to computed hash. These shouldn’t
33 // fail.
34 i f (gx .compareTo (BigInteger .ONE) < 1) { // g^x > 1.
35 Logger .error (LOG_TAG , " g^x > 1 f a i l s . ") ;
36 throw new IncorrectZkpException () ;
37 }
38 i f (gx .compareTo (P .subtract (BigInteger .ONE)) > −1) { // g^x < p-1
39 Logger .error (LOG_TAG , " g^x < p−1 f a i l s . ") ;
40 throw new IncorrectZkpException () ;
41 }
42 i f (gx .modPow (Q , P) .compareTo (BigInteger .ONE) != 0) {
43 Logger .error (LOG_TAG , " g^x^q % p = 1 f a i l s . ") ;
44 throw new IncorrectZkpException () ;
45 }
46 i f (zkp .gr .compareTo (g .modPow (zkp .b , P) .multiply (gx .modPow (h , P)) .mod (P))

!= 0) {
47 // b = r-h*x ==> g^r = g^b*g^x^(h)
48 Logger .debug (LOG_TAG , " gb*g (xh) = " + g .modPow (zkp .b ,

P) .multiply (gx .modPow (h , P)) .mod (P) .toString (1 6)) ;
49 . . . // original source: additional logging
50 Logger .error (LOG_TAG , " zkp c a l c u l a t i o n i n c o r r e c t . ") ;
51 throw new IncorrectZkpException () ;
52 }
53 Logger .debug (LOG_TAG , " *** ZKP SUCCESS *** ") ;
54 }

Listing 9.3: JPakeCrypto zero-knowledge proof excerpt – full implementation can
be found at http://dxr.mozilla.org/mozilla-central/source/mobile/
android/base/sync/jpake/JPakeCrypto.java.

http://dxr.mozilla.org/mozilla-central/source/mobile/android/base/sync/jpake/JPakeCrypto.java
http://dxr.mozilla.org/mozilla-central/source/mobile/android/base/sync/jpake/JPakeCrypto.java

9.4. SMS Handling 95

1 /**
2 * Implement add and subtract using algorithm described in Knuth 4.5.1.
3 *
4 * @param fraction the fraction to subtract, must not be <code>null</code>
5 * @param isAdd true to add, false to subtract
6 * @return a <code>Fraction</code> instance with the resulting values
7 * @throws IllegalArgumentException if the fraction is <code>null</code>
8 * @throws ArithmeticException if the resulting numerator or denominator
9 * cannot be represented in an <code>int</code>.

10 */
11 p r i v a t e Fraction addSub (Fraction fraction , boolean isAdd) {
12 i f (fraction == n u l l) {
13 throw new IllegalArgumentException (" The f r a c t i o n must n o t be n u l l ") ;
14 }
15 // zero is identity for addition.
16 i f (numerator == 0) {
17 re turn isAdd ? fraction : fraction .negate () ;
18 }
19 i f (fraction .numerator == 0) {
20 re turn t h i s ;
21 }
22 // if denominators are randomly distributed, d1 will be 1 about 61%
23 // of the time.
24 i n t d1 = greatestCommonDivisor (denominator , fraction .denominator) ;
25 i f (d1==1) {
26 // result is ((u*v’ +/- u’v) / u’v’)
27 i n t uvp = mulAndCheck (numerator , fraction .denominator) ;
28 i n t upv = mulAndCheck (fraction .numerator , denominator) ;
29 re turn new Fraction
30 (isAdd ? addAndCheck (uvp , upv) : subAndCheck (uvp , upv) ,
31 mulPosAndCheck (denominator , fraction .denominator)) ;
32 }
33 // the quantity ’t’ requires 65 bits of precision; see knuth 4.5.1
34 // exercise 7. we’re going to use a BigInteger.
35 // t = u(v’/d1) +/- v(u’/d1)
36 BigInteger uvp = BigInteger .valueOf (numerator)
37 .multiply (BigInteger .valueOf (fraction .denominator /d1)) ;
38 BigInteger upv = BigInteger .valueOf (fraction .numerator)
39 .multiply (BigInteger .valueOf (denominator /d1)) ;
40 BigInteger t = isAdd ? uvp .add (upv) : uvp .subtract (upv) ;
41 // but d2 doesn’t need extra precision because
42 // d2 = gcd(t,d1) = gcd(t mod d1, d1)
43 i n t tmodd1 = t .mod (BigInteger .valueOf (d1)) .intValue () ;
44 i n t d2 = tmodd1==0?d1 :greatestCommonDivisor (tmodd1 , d1) ;
45
46 // result is (t/d2) / (u’/d1)(v’/d2)
47 BigInteger w = t .divide (BigInteger .valueOf (d2)) ;
48 i f (w .bitLength () > 31) {
49 throw new ArithmeticException
50 (" o v e r f l o w : n u m e r a t o r t o o l a r g e a f t e r m u l t i p l y ") ;
51 }
52 re turn new Fraction (w .intValue () ,
53 mulPosAndCheck (denominator /d1 , fraction .denominator /d2)) ;
54 }

Listing 9.4: Apache fractions implementation. Excerpt from org.apache.commons.

lang3.math.Fraction Licensed under the Apache License, Version 2.0.

9.4. SMS Handling 96

Label Broadcast receivers Correct Wrong Correct [%]

SMS receivers 34 34 0 100%

Other receivers 220 219 1 99.54%

Total 254 253 1 99.96%

Table 9.5: Automated evaluation results for detecting SMS broadcast receivers. 10-fold
cross-validation has been used.

9.4.1 Automated Evaluation

For the automated analysis, we used the training data as discussed in Section 8.4.2. In total,
we have 253 broadcast receivers, split into 34 SMS receivers and 220 other receivers that do
not handle SMS broadcasts. We evaluated the analysis using 10-fold cross validation. These
evaluation results are given in Table 9.5. On average, all but one receiver have been correctly
classified, resulting in 99.96% correctly classified broadcast receivers.

9.4.2 Manual Evaluation

For the manual, empiric evaluation, we analyzed several top free applications from 11 selected
categories on Google Play, namely Arcade & Action, Brain & Puzzle, Cards, Communication,
Entertainment, Finance, Live Wallpapers, Media & Video, Music & Audio, Photography, and
Tools.
Table 9.6 lists the analysis results and gives the number of detected SMS receivers. Overall,
372 applications have been analyzed, which contained 4397 broadcast receivers. In 31 of these
applications, the analysis found at least one SMS receiver. In total, these 31 applications included
53 SMS broadcast receivers. Furthermore, we noticed that 33 application did not include any
broadcast receiver at all.

We then manually verified the functionality of these 52 SMS receivers. The 4344 normal
receivers have not been further analyzed since this task is very time-consuming. Thus, we currently
cannot give accurate numbers about the true false negative rate of the analysis.

• Arcade & Action
Out of the 29 games, 4 included SMS receivers. One application included 5 receivers, all
others included a single receiver each, resulting in a total of 8 receivers. Normally, one
would not expect SMS receivers in games, but 4 of these receivers really listen to incoming
SMS messages. One of these receivers is called BillingSMSReceiver, thus it can be assumed
that it is used for in-app billing via SMS messages.
The other 4 receivers are tracking receivers, that are activated on application installation.
These tracking/installation receivers mainly utilize the TelephonyManager included in the
android.telephony package used for the training process as filtering criteria.

• Brain & Puzzle
Our analysis did not find any SMS receivers in the 26 games of this category, which is the
expected result since games normally should not include SMS code.

• Cards
Similarly, of the 30 analyzed card games, only 2 contained SMS receivers. These two
receivers are identical, from the same advertisement library, and are used as installation

9.4. SMS Handling 97

Category Apps Broadcast receivers
Total SMS No receivers Total SMS Normal

Arcade & Action 29 4 0 322 8 314

Brain & Puzzle 26 0 2 273 0 273

Cards 30 2 3 281 2 279

Communication 66 18 5 1063 27 1036

Entertainment 21 2 2 273 2 271

Finance 55 1 6 205 1 204

Live Wallpapers 63 0 4 802 0 802

Media & Video 43 2 10 245 2 243

Music & Audio 18 1 0 281 1 280

Photography 33 1 1 376 1 375

Tools 17 4 0 276 9 267

Total 372 31 33 4397 53 4344

Table 9.6: Analysis results: SMS receivers in different application categories. 11 different
application categories have been analyzed. The number of analyzed applications
is given for each category, as well as the number of apps that include at least
one SMS receiver, and the number of apps without any receiver. Then, the total
number of analyzed broadcast receivers is given, which is split up in SMS- and
normal receivers.

9.4. SMS Handling 98

receivers similar to the false positives of the Arcade & Action category. Again, they access
the TelephonyManager in order to retrieve the device ID. Thus, these two receivers are false
positives.

• Communication
Since communication applications are more likely to include SMS code, we used a bigger
test set consisting of 66 applications for this category. 18 of these applications included SMS
broadcast receivers, 27 in total. Of these 27 receivers, 24 really perform SMS operations,
for example, used by replacement SMS applications, and by blacklisting utilities. Three
receivers have not been classified correctly; they are again install receivers that read the
device ID and unlock special features according to the install referrer.

• Entertainment
Two of the 21 entertainment applications include SMS receivers. One of these receivers is
used for in-app purchases via SMS messages. The second one is used to remote-control a
media player – but not via SMS messages. Thus, the second receiver is a false positive.

• Finance
Next, 55 finance applications have been analyzed. One out of these applications included a
real SMS receiver.

• Live Wallpapers
As expected, no live wallpaper application included SMS code.

• Media & Video
Media and video applications normally should not include SMS receivers either. However,
the analysis detected two receivers, both of which really handle SMS messages. One of these
receivers is part of a third-party library though, which may not be used by the application –
since the application also does not request the SMS permission.

• Music & Audio
Similar to the previous category, only one SMS broadcast receiver has been detected in the
18 applications of this category. However, since this receiver is a call receiver that mon-
itors incoming phone calls instead of SMS messages, this receiver has not been classified
correctly.

• Photography
Of the 33 applications, one included an SMS broadcast receiver. This receiver is, again, an
installation receiver that requests the device ID, similar to the other false positives previously
mentioned.

• Tools
The last category, tools, is again more likely to include SMS code. As the analysis result
show, 9 SMS receivers have been detected. Our manual analysis shows, that all of these 9
receivers really are SMS receivers. Three of these applications are mobile security appli-
cations, which contribute with 6 SMS receivers. The last application is a utility that allows
to send SMS messages from your PC. Thus, three different receivers are implemented to
provide this functionality.

In total, of the 53 detected SMS receivers, 12 are false positives. The other 41 receivers really
handle SMS messages. Most of the false positives have a similar structure, they access classes

9.5. Obfuscation and Optimization 99

found in the android.telephony.* package, mostly the TelephonyManager. Since we use the
package name as feature value for method calls, method calls to the SmsMessage class and to
the TelephonyManager are both mapped to android.telephony. Thus, the machine learning
algorithms is not able to distinguish between these two classes. By using different feature values,
the analysis performance could be further improved; in particular, a great approach could be to use
the class name as feature value, but without the package name, since the Android platform provides
two different implementations of SmsMessage and SmsManager, located in android.telephony

and android.telephony.gsm. The latter implementation has been deprecated since API level 4
(Android 1.6), but applications could still use this class. Hence, by using the class name only, both
implementations would result in the same feature values.

Furthermore, in future work, the analysis could be refined to be able to differentiate between
different SMS-handling scenarios; for example, one refinement could be to detect SMS command
receivers, normal SMS applications, or blacklisting applications.

9.5 Obfuscation and Optimization

We also analyzed the impact of code obfuscation and optimization on the analysis performance.
In order to measure this impact, we analyzed the Bouncy Castle library obfuscated with different
ProGuard settings and compared the analysis results with the original version. For this test, we
used the two analysis plugins for symmetric- and asymmetric cryptography detection.

Table 9.7 compares the results for the normal library as well as for the obfuscated one. For
obfuscation, the default optimized Android ProGuard configuration provided by the Android SDK
has been used. Only shrinking and method name obfuscation has been disabled in order to be
able to better compare the results. Listing 9.5 shows the full ProGuard configuration. It can be
observed, that more cryptographic methods are detected for the obfuscated library. Furthermore,
the total number of analyzed methods is larger as well. Keep in mind, that the number of analyzed
methods depends on the number of opcodes of the given method. Since ProGuard performs various
optimizations, including method inlining, cryptographic code has been inlined in some additional
methods, instead of performing the method call of the original version. Thus, more cryptographic
code is detected since the same cryptographic code is found in multiple methods. The discrepancy
in the total number of analyzed methods can also be explained by method inlining. Since the
number of opcodes of selected methods has been increased due to inlining, methods that were
below the threshold in the normal version are now above the threshold, and thus, analyzed by the
framework.

Other than that, the analysis results are very similar. Hence, obfuscation does not have a
significant impact on the analysis performance. We also performed an additional evaluation, where
class- and method name obfuscation has been enabled. The same number of methods have been
classified as cryptographic- and normal code. Since we do not consider class- and method names
as features, this is the expected behavior. Thus, obfuscation does not have a significant impact on
the analysis performance.

9.6 Performance

This section is dedicated to the performance of the Semantic Pattern Analysis conducted within
the Semdroid framework. For this performance evaluation, we randomly selected 50 Android ap-
plications from various categories on Google Play, found in the ”Top Free” lists of their respective

9.6. Performance 100

1 −dontshrink
2 −optimizations !code /simplification /arithmetic , ! code /simplification /cast ,

!field/*,!class/merging/*
3 -optimizationpasses 5
4 -allowaccessmodification
5 -dontobfuscate
6 -dontusemixedcaseclassnames
7 -keepattributes *Annotation*
8 -dontpreverify
9 -verbose

10 -dontwarn android.support.**
11
12
13 -keep public class com.google.vending.licensing.ILicensingService
14
15 -keep public class com.android.vending.licensing.ILicensingService
16
17 # keep setters in Views so that animations can still work.
18 # see http://proguard.sourceforge.net/manual/examples.html#beans
19 -keepclassmembers public class * extends android.view.View {
20 void set*(***);
21 *** get*();
22 }
23
24 # We want to keep methods in Activity that could be used in the XML

attribute onClick
25 -keepclassmembers class * extends android.app.Activity {
26 public void *(android.view.View);
27 }
28
29 -keep class * extends android.os.Parcelable {
30 public static final android.os.Parcelable$Creator *;
31 }
32
33 -keepclassmembers class **.R$* {
34 public static <fields>;
35 }
36
37 # Also keep - Enumerations. Keep the special static methods that are

required in
38 # enumeration classes.
39 -keepclassmembers enum * {
40 public static **[] values();
41 public static ** valueOf(java.lang.String);
42 }
43
44 # Keep names - Native method names. Keep all native class/method names.
45 -keepclasseswithmembers,allowshrinking class * {
46 native <methods>;
47 }

Listing 9.5: ProGuard configuration used for obfuscation. These settings are from the
default Android ProGuard settings (optimized version). Only shrinking has
been disabled, as well as method name obfuscation.

9.6. Performance 101

Analysis Label Normal library Obfuscated library

Symmetric cryptography

Cryptography 293 344

Normal 1513 1570

Total 1806 1914

Asymmetric cryptography

Cryptography 27 32

Normal 6941 7026

Total 6968 7058

Table 9.7: Obfuscation results comparison containing the number of detected cryptographic
methods for the normal Bouncy Castle library and the obfuscated version.

Analysis AP FLG SPT ML Total

App-instance-based 984 30 2 1 1017

Class-instance-based 984 30 24 23 1061

Method-instance-based 984 115 57 53 1209

All 3 combined (expected) 984 175 83 77 1319

All 3 combined (measured) 984 174 71 69 1298

Table 9.8: Performance overview: PC. The analyses have been conducted on a PC using an
Intel® Core™ i7-920 (2.66 GHz) with 6 GB of RAM, running Windows 8.1. All
values are given in milliseconds [ms].

categories. These 50 applications have a total size of 501 mb, resulting in an average application
size of roughly 10 mb.

We evaluated three different analysis plugins with a different granularity: app-, class- and
method-instance-based. These three analysis plugins have been evaluated separately, and bundled
together in a single test suite. The first analysis utilizes a single feature layer containing solely
app instances. Since this analysis operates on the app level, we only have a single instance per
application. The class-based analysis creates more instances, one per analyzed Java class. The
average number of classes included in one of the 50 test applications is 1157. Keep in mind that
the analysis ignores small classes with less than 30 opcodes. Similarly, the third analysis based on
method instances creates 2006 method instances on average. Again, the analysis only considers
methods with more than 30 opcodes.

Applications can be analyzed on a personal computer, or directly on an Android device. We
analyzed all 50 applications separately on both a PC and an Android device and recorded detailed
timing information. Then, we averaged these results to get an estimate of the average analysis
performance.

Table 9.8 shows the average timings for the PC-based analysis. All timings are given in mil-
liseconds. The evaluation has been broken down into several core stages of the analysis process:
First, the App object parsing time (AP) is given, followed by the timings required for feature layer
generation (FLG), Semantic Pattern Transformation (SPT), and machine learning (ML). The total
required time, i.e., the sum of all core timings, is listed as well. Since the App parsing process
is identical for all analysis plugins, the time required for this process has been averaged once and
then used for all AP values in Table 9.8.

9.6. Performance 102

Analysis AP FLG SPT ML Total

App-instance-based 16827 598 10 15 17450

Class-instance-based 16827 548 592 322 18289

Method-instance-based 16827 2176 1794 843 21640

All 3 combined (expected) 16827 3322 2396 1180 23725

All 3 combined (measured) 16827 3963 2400 1190 24380

Table 9.9: Performance overview: on-device analysis. The analyses have been conducted
on a Google Nexus 5 (Qualcomm® Snapdragon™ 800) running Android 4.4.2.
All values are given in milliseconds [ms].

The fastest analysis is the app-instance-based analysis. Since this analysis generates a single
instance per application, the Semantic Pattern Transformation and the machine learning process
have to be performed only once per application.

The runner-up is the class-based analysis. The feature layer generation takes roughly the
same time as for the app-instance-based analysis. Since there are 1157 class instances on average
that have to be converted and analyzed, both the SPT and ML process take considerably longer
compared to the app-instance case. These two processes do not exactly need 1557 times more time
due to the fact that the analysis plugins have different Semantic Pattern networks and machine
learning models. One difference between these two analyses is, that the features are split up
between multiple instances for the clas-based analysis, whereas the other analysis utilizes a single
app instance. This also means that app instances can be considerably larger than a single class
instance, which explains the fact that SPT and ML do not require 1557 times more time. Feature
layer generation takes approximately the same time for both analysis plugins, since approximately
the same features have to be traversed.

The method-based analysis takes roughly 150 ms longer than the class-based analysis. In
detail, the feature layer generation takes almost four times longer, requiring 115 ms on average.
This is the case because we have nearly twice as many instances (2006 as opposed to 1157 on
average). For each of these instances, separate opcode and local variable histograms have to be
calculated and averaged. In addition, the method call inclusion depth has been set to 2, meaning
that for each method, the opcodes of nested methods have to be traversed as well. Since double
the number of instances have to be converted to Semantic Patterns and classified by the machine
learning framework, it takes approximately double the time.

The most time-consuming part of the analysis process is the App parsing. Since the whole
application has to be parsed and the whole application structure has to be reconstructed, this pro-
cess requires 984 ms on average – it accounts for almost 97% of the analysis time required by
the app-instance-based analysis, or for 81% for the method-instance-based analysis. Due to the
architecture of the Semdroid framework (Section 4.1), this App parsing only has to be performed
once, no matter how many analysis plugins are included in the test suite. Hence, if we combine
multiple analysis, the analysis time does not significantly increase. If we combine all three analy-
sis plugins, the whole process takes 1319 ms, only 27% longer than for the fastest analysis alone.
This measured time is also very close to the expected value, which can be calculated by adding the
FLG, SPT, and ML times for all three analysis plugins and the App parsing process (AP) once.

Table 9.9 lists the same timings for on-device analysis. Since the computational power of

9.6. Performance 103

Analysis Components PC [ms] On-device [ms] Times slower

App-instance-based 1 1017 17450 17.15

Class-instance-based 1157 1061 18289 17.24

Method-instance-based 2006 1209 21640 17.90

All 3 combined 4392 1298 24380 18.78

Table 9.10: Performance comparison for PC-based and on-device analysis. “Components”
gives the average number of analyzed application components.

a mobile device is significantly lower than the power of a personal computer, the analysis takes
much longer, ranging from 17.5 to 21.6 seconds depending on the analysis. The observations
from the PC results also apply to the on-device results. The App parsing is again the most time-
consuming operation, accounting for approximately 97% of the required time for the app-based
analysis – very similar to the PC-based case. Again, combining analyses is a very good idea; all
three analysis plugins combined only require 24.4 seconds.

Table 9.10 compares the results for both the PC-based and the on-device analysis process. On
average, analyzing applications directly on an Android device takes 17-18 times longer than on a
PC. In addition, Table 9.10 also lists the average number of analyzed application components.

Chapter 10

Conclusions and Outlook

Smartphones and mobile devices in general are becoming an integral part of our daily lives. Users
entrust their devices with sensitive data, like login credentials, credit card details, or private pic-
tures. Thus, it is very important to protect this information, to keep this data secure.
By thoroughly analyzing the applications users have installed on their Android devices, the secu-
rity of this data can be improved. Potentially dangerous or unwanted functionality can be detected
– in the worst case, even malicious applications – and the user can be warned.

In this thesis, we presented Semdroid, a powerful static Android application analysis frame-
work. With this framework, it is possible to analyze Android application packages and to pinpoint
certain functionality within these applications. The analysis plugins used for this purpose can be
based on any static analysis technique. Semdroid performs application pre-processing, manages
all analysis plugins, collects their results, and performs various post-processing steps. Further-
more, Semdroid provides a training- and evaluation framework that can be used to create new
analysis plugins and to evaluate their performance.

The Semdroid framework can be used on a personal computer or directly on any Android de-
vice. If the framework is used on a personal computer, detailed HTML and XML analysis reports
will be generated. For on-device analysis, a special Semdroid Android application is available,
which allows to analyze installed applications and to examine the analysis results.

The proposed new Semantic Pattern Analysis, which allows to assess various application func-
tionality, can be employed within the Semdroid framework. This analysis approach extracts so-
called feature layers from the application under analysis. These layers contain a number of in-
stances, where each one represents a component of the application, like a class or a single method.
Each of these instances holds a list of features representative for the component. Possible features
include, amongst others, opcodes, local variables, and method calls. The Semantic Pattern Trans-
formation developed by Teufl [52] is then applied on the feature layers to transform the instances
to Semantic Patterns – vectors containing simple double values. These patterns are then supplied
to machine learning algorithms that label the components according to their functionality.

The first two analysis plugins presented in this thesis target cryptographic code and yielded
great results. They are based on the Semantic Pattern Analysis and are able to pinpoint symmetric-
and asymmetric-key cryptography included in Android application packages.
Then, the SMS-handling capabilities of applications can be detected by a third analysis plugin.
By using the Semantic Pattern Analysis, it is possible to detect broadcast receivers that handle
incoming SMS messages.

All analysis plugins have been thoroughly evaluated and we also showed that code obfuscation

104

105

and optimization does not have a negative impact on the analysis performance. Furthermore, we
also compared the performance for on-device and PC-based application analysis.

The Semantic Pattern Analysis and the Semdroid framework offer many possibilities that could
be addressed in future work. We want to give a short overview of what some of these ideas could
be:

• Additional analysis plugins
In this thesis, we created several analysis plugins for different use cases. But there are many
more applications for the Semantic Pattern Analysis; in theory, any functionality can be
targeted, like boot receivers, UI code, background services.
The Semdroid framework itself is not limited to analysis approaches based on the Semantic
Pattern Analysis. Hence, different analysis approaches could also be integrated into the
Semdroid framework.

• Malware detection
Known malicious code could be targeted as well. An advantage of the Semantic Pattern
Analysis is, that it should be able to detect different variants of a given functionality –
meaning that a slightly modified malicious code should be detected as well.

• Anomaly detection
New analysis plugins could also be based upon anomaly detection, also called outlier detec-
tion, as described in Section 6.7.2.

• Deep learning and multilayer strategies
Current analysis plugins only utilize a single feature layer. In future work, multiple feature
layers could be used as well. The resulting layers of Semantic Patterns created by the Se-
mantic Pattern Transformation can then be supplied to machine learning algorithms, which
could be based on deep learning strategies.

• Additional feature types
Besides the currently used features found in the Dalvik executable and the Android manifest,
additional feature sources could be used as well. These new features can, for instance, be
found in various resource files included in the Android application package, like in layout
files, used drawables, or defined strings. Native code could also be added to this feature
pool; the native instructions could be treated similar to the currenty used Dalvik opcodes.
Furthermore, other metadata, like the application description found on Google Play could
be considered as a feature source as well.

• Feature order
Currently, the order of the features is not considered. As already explained, this brings some
advantages, as well as disadvantages. Future work could consider this feature order by using
a modified version of the Semantic Pattern Transformation.

• Analysis granularity
Current analysis plugins operate on one of these three levels: methods, classes, or apps.
New plugins could also use any other scope. This scope could, for example, be more fine
grained by analyzing parts of methods separately, or more course grained by considering
Java packages as a whole.

• Branches
Usually the Java code of an application has different branches (execution paths). It could

106

be possible to analyze each of these branches separately by using a modified variant of
the Semantic Pattern Analysis. For example, if the code of the application under analysis
includes an if operation, both of these branches could be analyzed separately.

• Code usage
Currently, the analysis process checks all classes and methods included in the Android ap-
plication package – but the code is not necessarily used by the application. For example, if
an application includes a cryptographic library, but only utilizes a single encryption algo-
rithm, all other encryption algorithms included in the library will also be detected – even if
they are never actually used by the application itself. Future work could include additional
checks that indicate whether a given component is used.

• Combining analysis approaches
For now, all analysis plugins operate independently. Future work could look at the results
of multiple analysis plugins and make automated assumptions based on the analysis results.
A concrete example for this approach would be malware. If we know that a certain malware
family requires a boot receiver, an SMS catcher, and some other known code X, three sep-
arate analysis plugins that detect these three code fragments can be employed. If all these
code fragments are found, the application under analysis could have malicious intentions
and can thus be labeled as malware.

• Deeper Android integration
The analysis framework could also be deeply integrated into the Android operating system.
If a suspicious application is to be installed on the device, the installation process can be
denied in order to protect the device. Similarly, if the user wants to install an insecure
application, like a password manager that does not sufficiently protect the login credentials,
the user can be alerted that the application might be insecure. The Semdroid framework
already provides an API that allows external applications to analyze applications and to
retrieve the analysis results.

With Semdroid and the Semantic Pattern Analysis a very flexible framework for analyzing
Android applications is available. The performance of the analysis plugins evaluated in this thesis
exceeded our expectations. These analysis plugins allow to detect symmetric- and asymmetric-key
cryptography as well as SMS-handling capabilities. New analysis plugins can easily be added and
evaluated. In future work, the framework could be extended to support deep learning, as well as
additional feature types, like native code. Since on-device analysis is feasible, a deeper Android
integration could provide additional security for the Android platform.

Appendix A

Opcode Groups

Original Symmetric Asymmetric SMS
Opcode Cryptography Cryptography Handling

THROW_VERIFICATION_ERROR - - -

EXECUTE_INLINE - - -

INVOKE_SUPER_QUICK - - -

INVOKE_VIRTUAL_QUICK - - -

IGET_QUICK - - GET

IPUT_QUICK - - PUT

NOP - - -

MOVE - MOVE MOVE

MOVE_RESULT - MOVE MOVE

MOVE_EXCEPTION - MOVE MOVE

RETURN_VOID - - -

RETURN - - -

CONST - - -

CONST_STRING - - -

CONST_CLASS - - -

MONITOR_ENTER - - -

MONITOR_EXIT - - -

CHECK_CAST - - -

INSTANCE_OF - - -

ARRAY_LENGTH - ARRAY_LENGTH -

NEW_INSTANCE - - -

NEW_ARRAY - - -

FILLED_NEW_ARRAY - - -

FILL_ARRAY_DATA - - -

THROW - - -

GOTO - - -

PACKED_SWITCH - - -

SPARSE_SWITCH - - -

CMPL - CMP CMP

CMPG - CMP CMP

CMP - CMP CMP

IF_EQ - IF IF

IF_NE - IF IF

IF_LT - IF IF

IF_GE - IF IF

107

108

IF_GT - IF IF

IF_LE - IF IF

IF_EQZ - IF IF

IF_NEZ - IF IF

IF_LTZ - IF IF

IF_GEZ - IF IF

IF_GTZ - IF IF

IF_LEZ - IF IF

AGET - - GET

APUT - - PUT

IGET - - GET

IPUT - - PUT

SGET - - GET

SPUT - - PUT

INVOKE_VIRTUAL - - -

INVOKE_SUPER - - -

INVOKE_DIRECT - - -

INVOKE_STATIC - - -

INVOKE_INTERFACE - - -

NEG NEG NEG NEG

NOT NOT NOT NOT

X_TO_Y X_TO_Y X_TO_Y X_TO_Y

ADD ADD ADD ADD

SUB SUB SUB SUB

MUL MUL MUL MUL

DIV DIV DIV DIV

REM REM REM REM

AND AND AND AND

OR OR OR OR

XOR XOR XOR XOR

SHL SHL SHL SHL

SHR SHR SHR SHR

USHR USHR USHR USHR

ADD_INT_LIT_X ADD_INT_LIT_X ADD_INT_LIT_X ADD_INT_LIT_X

RSUB_INT_LIT_X RSUB_INT_LIT_X RSUB_INT_LIT_X RSUB_INT_LIT_X

MUL_INT_LIT_X MUL_INT_LIT_X MUL_INT_LIT_X MUL_INT_LIT_X

DIV_INT_LIT_X DIV_INT_LIT_X DIV_INT_LIT_X DIV_INT_LIT_X

REM_INT_LIT_X REM_INT_LIT_X REM_INT_LIT_X REM_INT_LIT_X

AND_INT_LIT_X AND_INT_LIT_X AND_INT_LIT_X AND_INT_LIT_X

OR_INT_LIT_X OR_INT_LIT_X OR_INT_LIT_X OR_INT_LIT_X

XOR_INT_LIT_X XOR_INT_LIT_X XOR_INT_LIT_X XOR_INT_LIT_X

SHL_INT_LIT_X SHL_INT_LIT_X SHL_INT_LIT_X SHL_INT_LIT_X

SHR_INT_LIT_X SHR_INT_LIT_X SHR_INT_LIT_X SHR_INT_LIT_X

USHR_INT_LIT_X USHR_INT_LIT_X USHR_INT_LIT_X USHR_INT_LIT_X

Table A.1: Opcode groups used for the analysis process. The left column lists the original
opcodes (pre-grouped according to dex2jar [9]). Then, the opcode group names
are listed for all analysis plugins.

Bibliography

[1] Androguard. http://code.google.com/p/androguard/. 2013.

[2] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006. ISBN

0387310738.

[3] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. “Crowdroid: Behavior-based
Malware Detection System for Android”. In: Proceedings of the 1st ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices. SPSM ’11. Chicago, Illinois,
USA: ACM, 2011, pages 15–26. ISBN 978-1-4503-1000-0. doi:10.1145/2046614.2046619.
http://doi.acm.org/10.1145/2046614.2046619.

[4] Carlos A Castillo. “Android malware past, present, and future”. In: White Paper of McAfee
Mobile Security Working Group (2011). http://www.mcafee.com/us/resources/white-
papers/wp-android-malware-past-present-future.pdf.

[5] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A library for support vector machines”.
In: ACM Transactions on Intelligent Systems and Technology 2 (3 2011). Software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 27:1–27:27.

[6] Erika Chin et al. “Analyzing Inter-application Communication in Android”. In: Proceedings
of the 9th International Conference on Mobile Systems, Applications, and Services. Mo-
biSys ’11. Bethesda, Maryland, USA: ACM, 2011, pages 239–252. ISBN 978-1-4503-0643-
0. doi:10.1145/1999995.2000018. http://doi.acm.org/10.1145/1999995.2000018.

[7] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”. In: Machine Learning
20.3 (Sept. 1995), pages 273–297. ISSN 0885-6125. doi:10.1023/A:1022627411411. http:
//dx.doi.org/10.1023/A:1022627411411.

[8] P. Deutsch and J-L. Gailly. ZLIB Compressed Data Format Specification version 3.3. RFC
1950 (Informational). Internet Engineering Task Force, May 1996. http://www.ietf.
org/rfc/rfc1950.txt.

[9] dex2jar. http://code.google.com/p/dex2jar/. 2013.

[10] Gianluca Dini et al. “MADAM: A Multi-level Anomaly Detector for Android Malware”.
In: Computer Network Security. Edited by Igor Kotenko and Victor Skormin. Volume 7531.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, pages 240–253.
ISBN 978-3-642-33703-1. doi:10.1007/978-3-642-33704-8_21. http://dx.doi.org/10.
1007/978-3-642-33704-8_21.

[11] DroidBox. http://code.google.com/p/droidbox/. 2013.

109

http://code.google.com/p/androguard/
http://www.amazon.com/exec/obidos/ASIN/0387310738/alexanderoprisnikthesis
http://www.amazon.com/exec/obidos/ASIN/978-1-4503-1000-0/alexanderoprisnikthesis
http://dx.doi.org/10.1145/2046614.2046619
http://doi.acm.org/10.1145/2046614.2046619
http://www.mcafee.com/us/resources/white-papers/wp-android-malware-past-present-future.pdf
http://www.mcafee.com/us/resources/white-papers/wp-android-malware-past-present-future.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.amazon.com/exec/obidos/ASIN/978-1-4503-0643-0/alexanderoprisnikthesis
http://www.amazon.com/exec/obidos/ASIN/978-1-4503-0643-0/alexanderoprisnikthesis
http://dx.doi.org/10.1145/1999995.2000018
http://doi.acm.org/10.1145/1999995.2000018
http://worldcatlibraries.org/wcpa/issn/0885-6125
http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1023/A:1022627411411
http://www.ietf.org/rfc/rfc1950.txt
http://www.ietf.org/rfc/rfc1950.txt
http://code.google.com/p/dex2jar/
http://www.amazon.com/exec/obidos/ASIN/978-3-642-33703-1/alexanderoprisnikthesis
http://dx.doi.org/10.1007/978-3-642-33704-8_21
http://dx.doi.org/10.1007/978-3-642-33704-8_21
http://dx.doi.org/10.1007/978-3-642-33704-8_21
http://code.google.com/p/droidbox/

Bibliography 110

[12] Manuel Egele et al. “An Empirical Study of Cryptographic Misuse in Android Applica-
tions”. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Commu-
nications Security. CCS ’13. New York, New York, USA: ACM Press, Nov. 2013, pages 73–
84. doi:10.1145/2508859.2516693. http://dl.acm.org/citation.cfm?id=2508859.
2516693.

[13] William Enck et al. “TaintDroid : An Information-Flow Tracking System for Realtime Pri-
vacy Monitoring on Smartphones”. In: Design. OSDI’10 49.4 (2010). Edited by Remzi H
Arpaci-Dusseau and Brad Chen, pages 1–6. ISSN 03601315. http://static.usenix.org/
events/osdi10/tech/full_papers/Enck.pdf.

[14] Sascha Fahl et al. “Why Eve and Mallory Love Android: An Analysis of Android SSL
(in)Security”. In: Proceedings of the 2012 ACM Conference on Computer and Communi-
cations Security. CCS ’12. Raleigh, North Carolina, USA: ACM, 2012, pages 50–61. ISBN

978-1450316514. doi:10 . 1145 / 2382196 . 2382205. http://doi.acm.org/10.1145/
2382196.2382205.

[15] Adrienne Porter Felt et al. “Android permissions demystified”. In: Proceedings of the 18th
ACM conference on Computer and communications security. CCS ’11. Chicago, Illinois,
USA: ACM, 2011, pages 627–638. ISBN 978-1-4503-0948-6. doi:10 . 1145 / 2046707 .
2046779. http://doi.acm.org/10.1145/2046707.2046779.

[16] Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster. “SCanDroid: Automated security
certification of Android applications”. In: Manuscript, Univ. of Maryland, http://www. cs.
umd. edu/˜ avik/projects/scandroidascaa (2009).

[17] Martin Georgiev et al. “The Most Dangerous Code in the World: Validating SSL Certificates
in Non-browser Software”. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security. CCS ’12. Raleigh, North Carolina, USA: ACM, 2012, pages 38–
49. ISBN 978-1450316514. doi:10.1145/2382196.2382204. http://doi.acm.org/10.
1145/2382196.2382204.

[18] M. Ghorbanzadeh et al. “A neural network approach to category validation of Android ap-
plications”. In: Computing, Networking and Communications (ICNC), 2013 International
Conference on. 2013, pages 740–744. doi:10.1109/ICCNC.2013.6504180.

[19] Google Inc., Android Developers. Android Permissions. 2013. http://developer.android.
com/guide/topics/security/permissions.html.

[20] Google Inc., Android Developers. App Manifest. 2013. http://developer.android.com/
guide/topics/manifest/manifest-intro.html.

[21] Google Inc., Android Developers. App Resources. 2013. http://developer.android.
com/guide/topics/resources/index.html.

[22] Google Inc., Android Developers. Application Fundamentals. 2013. http://developer.
android.com/guide/components/fundamentals.html.

[23] Google Inc., Android Developers. Fragments. 2013. http://developer.android.com/
guide/components/fragments.html.

[24] Google Inc., Android Developers. Intents and Intent Filters. 2013. http://developer.
android.com/guide/components/intents-filters.html.

http://dx.doi.org/10.1145/2508859.2516693
http://dl.acm.org/citation.cfm?id=2508859.2516693
http://dl.acm.org/citation.cfm?id=2508859.2516693
http://worldcatlibraries.org/wcpa/issn/03601315
http://static.usenix.org/events/osdi10/tech/full_papers/Enck.pdf
http://static.usenix.org/events/osdi10/tech/full_papers/Enck.pdf
http://www.amazon.com/exec/obidos/ASIN/978-1450316514/alexanderoprisnikthesis
http://dx.doi.org/10.1145/2382196.2382205
http://doi.acm.org/10.1145/2382196.2382205
http://doi.acm.org/10.1145/2382196.2382205
http://www.amazon.com/exec/obidos/ASIN/978-1-4503-0948-6/alexanderoprisnikthesis
http://dx.doi.org/10.1145/2046707.2046779
http://dx.doi.org/10.1145/2046707.2046779
http://doi.acm.org/10.1145/2046707.2046779
http://www.amazon.com/exec/obidos/ASIN/978-1450316514/alexanderoprisnikthesis
http://dx.doi.org/10.1145/2382196.2382204
http://doi.acm.org/10.1145/2382196.2382204
http://doi.acm.org/10.1145/2382196.2382204
http://dx.doi.org/10.1109/ICCNC.2013.6504180
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/resources/index.html
http://developer.android.com/guide/topics/resources/index.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html

Bibliography 111

[25] Michael Grace et al. “RiskRanker: Scalable and Accurate Zero-day Android Malware De-
tection”. In: Proceedings of the 10th International Conference on Mobile Systems, Ap-
plications, and Services. MobiSys ’12. Low Wood Bay, Lake District, UK: ACM, 2012,
pages 281–294. ISBN 978-1-4503-1301-8. doi:10.1145/2307636.2307663. http://doi.
acm.org/10.1145/2307636.2307663.

[26] Sheran Gunasekera. Android Apps Security. 1st. Berkely, CA, USA: Apress, 2012. ISBN

1430240628.

[27] Mark Hall et al. “The WEKA Data Mining Software: An Update”. In: SIGKDD Explo-
rations 11.1 (Nov. 2009), pages 10–18. ISSN 1931-0145. doi:10.1145/1656274.1656278.
http://doi.acm.org/10.1145/1656274.1656278.

[28] S. Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC 4648 (Proposed Stan-
dard). Internet Engineering Task Force, Oct. 2006. http://www.ietf.org/rfc/rfc4648.
txt.

[29] Scott Kirkpatrick and Erich P Stoll. “A very fast shift-register sequence random number
generator”. In: Journal of Computational Physics 40.2 (1981), pages 517–526.

[30] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical
Algorithms. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1997. ISBN

0201896842.

[31] S. Leontiev and D. Shefanovski. Using the GOST R 34.10-94, GOST R 34.10-2001, and
GOST R 34.11-94 Algorithms with the Internet X.509 Public Key Infrastructure Certificate
and CRL Profile. RFC 4491 (Proposed Standard). Internet Engineering Task Force, May
2006. http://www.ietf.org/rfc/rfc4491.txt.

[32] Scott Main and David Braun. Getting Your SMS Apps Ready for KitKat. 2013. http://
android-developers.blogspot.in/2013/10/getting-your-sms-apps-ready-for-

kitkat.html.

[33] Reto Meier. Professional Android 4 Application Development. Wrox Professional Guides.
Wiley, 2012. ISBN 1118102274.

[34] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied
Cryptography. 1st. Boca Raton, FL, USA: CRC Press, Inc., 1996. ISBN 0849385237.

[35] Thomas M. Mitchell. Machine Learning. New York, NY, USA: McGraw-Hill, 1997. ISBN

0070428077.

[36] David Naccache and Jacques Stern. “A new public key cryptosystem based on higher
residues”. In: Proceedings of the 5th ACM conference on Computer and communications
security. ACM. 1998, pages 59–66.

[37] National Institute of Standards and Technology. “Advanced Encryption Standard (AES)”.
In: (2001).

[38] National Institute of Standards and Technology. Descriptions of SHA-256, SHA-384, and
SHA-512. 2001. http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-
384-512.pdf.

[39] Godfrey Nolan. Decompiling Android. Apress, 2012. ISBN 1430242485.

http://www.amazon.com/exec/obidos/ASIN/978-1-4503-1301-8/alexanderoprisnikthesis
http://dx.doi.org/10.1145/2307636.2307663
http://doi.acm.org/10.1145/2307636.2307663
http://doi.acm.org/10.1145/2307636.2307663
http://www.amazon.com/exec/obidos/ASIN/1430240628/alexanderoprisnikthesis
http://worldcatlibraries.org/wcpa/issn/1931-0145
http://dx.doi.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.amazon.com/exec/obidos/ASIN/0201896842/alexanderoprisnikthesis
http://www.ietf.org/rfc/rfc4491.txt
http://android-developers.blogspot.in/2013/10/getting-your-sms-apps-ready-for-kitkat.html
http://android-developers.blogspot.in/2013/10/getting-your-sms-apps-ready-for-kitkat.html
http://android-developers.blogspot.in/2013/10/getting-your-sms-apps-ready-for-kitkat.html
http://www.amazon.com/exec/obidos/ASIN/1118102274/alexanderoprisnikthesis
http://www.amazon.com/exec/obidos/ASIN/0849385237/alexanderoprisnikthesis
http://www.amazon.com/exec/obidos/ASIN/0070428077/alexanderoprisnikthesis
http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
http://www.amazon.com/exec/obidos/ASIN/1430242485/alexanderoprisnikthesis

Bibliography 112

[40] Oracle. jarsigner - JAR Signing and Verification Tool. 2013. http://docs.oracle.com/
javase/7/docs/technotes/tools/windows/jarsigner.html.

[41] Colin Percival and Simon Josefsson. “The scrypt Password-Based Key Derivation Func-
tion”. In: (2012).

[42] Niels Provos and David Mazieres. “A Future-Adaptable Password Scheme.” In: 1999.

[43] B. Sanz et al. “On the automatic categorisation of android applications”. In: Consumer
Communications and Networking Conference (CCNC), 2012 IEEE. 2012, pages 149–153.
doi:10.1109/CCNC.2012.6181075.

[44] A.-D. Schmidt et al. “Static Analysis of Executables for Collaborative Malware Detection
on Android”. In: Communications, 2009. ICC ’09. IEEE International Conference on. 2009,
pages 1–5. doi:10.1109/ICC.2009.5199486.

[45] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C. 2nd.
Wiley, 1996, pages I–XXIII, 1–758. ISBN 0471117099.

[46] Asaf Shabtai, Yuval Fledel, and Yuval Elovici. “Automated Static Code Analysis for Clas-
sifying Android Applications Using Machine Learning”. In: Proceedings of the 2010 In-
ternational Conference on Computational Intelligence and Security. CIS ’10. Washing-
ton, DC, USA: IEEE Computer Society, 2010, pages 329–333. ISBN 978-0-7695-4297-3.
doi:10.1109/CIS.2010.77. http://dx.doi.org/10.1109/CIS.2010.77.

[47] Asaf Shabtai et al. “"Andromaly": a behavioral malware detection framework for android
devices”. In: J. Intell. Inf. Syst. 38.1 (Feb. 2012), pages 161–190. ISSN 0925-9902. doi:10.
1007/s10844-010-0148-x. http://dx.doi.org/10.1007/s10844-010-0148-x.

[48] smali. http://code.google.com/p/smali/. 2013.

[49] N.P. Smart. Cryptography: An Introduction. 3rd. 2012. http://www.cs.bris.ac.uk/
~nigel/Crypto_Book/.

[50] James Steele and Nelson To. The Android Developer’s Cookbook: Building Applications
with the Android SDK. Addison-Wesley Professional, 2010. ISBN 0321741234.

[51] Douglas R. Stinson. Cryptography: Theory and Practice, Third Edition. Taylor & Francis,
2005. ISBN 1584885084.

[52] Peter Teufl. “Semantic Patterns”. PhD thesis. Graz University of Technology, 2012.

[53] Peter Teufl and Günther Lackner. “RDF Data Analysis with Activation Patterns”. In: 10th
International Conference on Knowledge Management and Knowledge Technologies 1–3
September 2010, Messe Congress Graz, Austria. Edited by Klaus Tochtermann und Her-
mann Maurer. Journal of Computer Science. 2010, pages 18–18.

[54] Peter Teufl, Herbert Leitold, and Reinhard Posch. “Semantic Pattern Transformation”. In:
Proceedings of the 13th International Conference on Knowledge Management and Knowl-
edge Technologies. Edited by ACM. ACM, 2013, pages –.

[55] Peter Teufl et al. “Android Market Analysis with Activation Patterns”. In: MOBISEC. 2011.

[56] The Android Open Source Project. Bytecode for the Dalvik VM. 2013. http://source.
android.com/devices/tech/dalvik/dalvik-bytecode.html.

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
http://dx.doi.org/10.1109/CCNC.2012.6181075
http://dx.doi.org/10.1109/ICC.2009.5199486
http://www.amazon.com/exec/obidos/ASIN/0471117099/alexanderoprisnikthesis
http://www.amazon.com/exec/obidos/ASIN/978-0-7695-4297-3/alexanderoprisnikthesis
http://dx.doi.org/10.1109/CIS.2010.77
http://dx.doi.org/10.1109/CIS.2010.77
http://worldcatlibraries.org/wcpa/issn/0925-9902
http://dx.doi.org/10.1007/s10844-010-0148-x
http://dx.doi.org/10.1007/s10844-010-0148-x
http://dx.doi.org/10.1007/s10844-010-0148-x
http://code.google.com/p/smali/
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/
http://www.amazon.com/exec/obidos/ASIN/0321741234/alexanderoprisnikthesis
http://www.amazon.com/exec/obidos/ASIN/1584885084/alexanderoprisnikthesis
http://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
http://source.android.com/devices/tech/dalvik/dalvik-bytecode.html

Bibliography 113

[57] The Android Open Source Project. Dalvik Executable Format. 2013. http://source.
android.com/devices/tech/dalvik/dex-format.html.

[58] The Android Open Source Project. Dalvik VM Instruction Formats. 2013. https://source.
android.com/devices/tech/dalvik/instruction-formats.html.

[59] Wade Trappe and Lawrence C. Washington. Introduction to Cryptography with Coding
Theory. 2nd. Pearson Prentice Hall, 2005. ISBN 0131862391.

[60] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine Learning
Tools and Techniques. Third Edition. Morgan Kaufmann, 2011. ISBN 0123748569.

[61] Dong-Jie Wu et al. “DroidMat: Android Malware Detection through Manifest and API Calls
Tracing”. In: Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference on.
2012, pages 62–69. doi:10.1109/AsiaJCIS.2012.18.

[62] Thomas Wu et al. “Srp-6: Improvements and refinements to the secure remote password
protocol”. In: Submission to IEEE P 1363 (2002).

[63] Thomas D Wu et al. “The Secure Remote Password Protocol.” In: NDSS. Volume 98. 1998,
pages 97–111.

[64] Lok Kwong Yan and Heng Yin. “DroidScope: Seamlessly Reconstructing the OS and Dalvik
Semantic Views for Dynamic Android Malware Analysis”. In: Proceedings of the 21st
USENIX Security Symposium. 2012.

[65] Thomas Zefferer et al. “Power Consumption-based Application Classification and Malware
Detection on Android Using Machine-Learning Techniques”. In: FUTURE COMPUTING
2013: The Fifth International Conference on Future Computational Technologies and Ap-
plications. IARIA, 2013, pages 26–31.

[66] Min Zhao et al. “AntiMalDroid: An Efficient SVM-Based Malware Detection Framework
for Android”. In: Information Computing and Applications. Edited by Chunfeng Liu, Jincai
Chang, and Aimin Yang. Volume 243. Communications in Computer and Information Sci-
ence. Springer Berlin Heidelberg, 2011, pages 158–166. ISBN 978-3-642-27502-9. doi:10.
1007/978-3-642-27503-6_22. http://dx.doi.org/10.1007/978-3-642-27503-6_22.

[67] Min Zhao et al. “RobotDroid: A Lightweight Malware Detection Framework On Smart-
phones.” In: 2012, pages 715–722. http://dx.doi.org/10.4304/jnw.7.4.715-722.

[68] Yajin Zhou and Xuxian Jiang. “Dissecting Android Malware: Characterization and Evolu-
tion”. In: Proceedings of the 2012 IEEE Symposium on Security and Privacy. SP ’12. Wash-
ington, DC, USA: IEEE Computer Society, 2012, pages 95–109. doi:10.1109/SP.2012.16.
http://dx.doi.org/10.1109/SP.2012.16.

[69] Bartosz Zoltak. “VMPC one-way function and stream cipher”. In: Fast Software Encryp-
tion. Springer. 2004, pages 210–225.

http://source.android.com/devices/tech/dalvik/dex-format.html
http://source.android.com/devices/tech/dalvik/dex-format.html
https://source.android.com/devices/tech/dalvik/instruction-formats.html
https://source.android.com/devices/tech/dalvik/instruction-formats.html
http://www.amazon.com/exec/obidos/ASIN/0131862391/alexanderoprisnikthesis
http://www.amazon.com/exec/obidos/ASIN/0123748569/alexanderoprisnikthesis
http://dx.doi.org/10.1109/AsiaJCIS.2012.18
http://www.amazon.com/exec/obidos/ASIN/978-3-642-27502-9/alexanderoprisnikthesis
http://dx.doi.org/10.1007/978-3-642-27503-6_22
http://dx.doi.org/10.1007/978-3-642-27503-6_22
http://dx.doi.org/10.1007/978-3-642-27503-6_22
http://dx.doi.org/10.4304/jnw.7.4.715-722
http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1109/SP.2012.16

	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Overview
	1.2 Outline

	2 Background
	2.1 The Android Platform
	2.1.1 The Intent System
	2.1.2 Broadcast Receivers
	2.1.3 The Permission System

	2.2 The Dalvik Virtual Machine
	2.2.1 Dalvik Bytecode
	2.2.2 Dalvik Executable Format

	2.3 Android Applications
	2.4 Android Manifest
	2.5 SMS Handling
	2.5.1 SMS Sniffers
	2.5.2 SMS Catchers

	2.6 Malware
	2.7 Decompiling Android Applications
	2.8 Cryptography
	2.8.1 Symmetric Cryptography
	2.8.2 Asymmetric Cryptography
	2.8.3 Hash Functions

	2.9 Machine Learning
	2.10 Semantic Patterns
	2.10.1 The Problem
	2.10.2 The Semantic Pattern Transformation
	2.10.3 Example
	2.10.4 Applications

	3 Related Work
	3.1 Static Analysis
	3.2 Dynamic Analysis

	4 Semdroid – An Introduction
	4.1 Overview
	4.2 Input
	4.3 App Object
	4.4 Test Suite
	4.5 Results
	4.6 Evaluation
	4.7 Training
	4.8 Deployment
	4.8.1 Personal Computer
	4.8.2 Android Device

	4.9 Semdroid Conclusions

	5 The Architecture of Semdroid
	5.1 Component Overview
	5.2 App Parsing
	5.3 Analysis
	5.4 Test Suite
	5.5 Evaluation
	5.6 Result Transformation
	5.7 Training
	5.8 On-Device Analysis

	6 The Semantic Pattern Analysis
	6.1 Analysis Workflow
	6.2 Feature Layers
	6.3 Instances
	6.4 Component Selection
	6.5 Feature Selection
	6.5.1 Feature Types
	6.5.2 Feature Values
	6.5.3 Feature Representation
	6.5.4 Feature Filtering and Grouping

	6.6 Semantic Patterns
	6.7 Machine Learning
	6.7.1 Classification
	6.7.2 Anomaly Detection

	6.8 Training

	7 Semantic Pattern Analysis – Architecture
	7.1 Component Overview
	7.2 Feature Extractor
	7.2.1 Feature Layer Generator
	7.2.2 Semantic Pattern Framework

	7.3 Machine Learning Framework
	7.4 Analysis Results
	7.5 Training

	8 Semantic Pattern Analysis – Applications
	8.1 Analysis Creation
	8.2 Symmetric Cryptography
	8.2.1 Analysis Configuration
	8.2.2 Training Data

	8.3 Asymmetric Cryptography
	8.3.1 Analysis Configuration
	8.3.2 Training Data

	8.4 SMS Handling
	8.4.1 Analysis Configuration
	8.4.2 Training Data

	9 Evaluation
	9.1 Evaluation Process
	9.1.1 Automated Evaluation
	9.1.2 Manual Evaluation

	9.2 Symmetric Cryptography
	9.2.1 Automated Evaluation
	9.2.2 Manual Evaluation
	9.2.3 Conclusions

	9.3 Asymmetric Cryptograpy
	9.3.1 Automated Evaluation
	9.3.2 Manual Evaluation

	9.4 SMS Handling
	9.4.1 Automated Evaluation
	9.4.2 Manual Evaluation

	9.5 Obfuscation and Optimization
	9.6 Performance

	10 Conclusions and Outlook
	A Opcode Groups
	Bibliography

