
Hubert Gasparitz

SkyTrust: Design and Security Analysis of a
Flexible Cloud-Based Key Storage Solution

Master’s Thesis

Graz University of Technology

Institute for Applied Information Processing and Communications (IAIK)
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Reinhard Posch

Evaluator: Univ.-Prof. Dipl-Ing. Dr.techn. Reinhard Posch
Supervisor: Dipl-Ing. Dr. techn. Peter Teufl

Allerheiligen bei Wildon, January 2014

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly marked all material which
has been quoted either literally or by content from the used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008;
Genehmigung des Senates am 1.12.2008

ii

Abstract

Powered by the cloud-computing trend, central web-services have significantly gained
relevance in the recent years. Several central service providers offer various services
which provide the user the ability to store and access their data everywhere and any-
time. Security critical applications that perform cryptographic operations represent
an exception to this trend and store cryptographic keys in security tokens which are
in possession of the user. Nevertheless, the demand for cloud-based cryptographic
solutions has also increased and therefore several institutions have developed appro-
priate solutions that provide authentication and electronic signature creation. The
major drawback of these solutions is that they are mostly limited to a certain scope or
environment.

To remedy the limitations of these solutions and provide an alternative the Skytrust
project was started. The Skytrust system provides a flexible and extensible central
server-based key storage solution that offers all primitive cryptographic functions for
arbitrary devices such as smartphones, tablets or web browsers. The Skytrust system
is accessible over a platform independent interface that enables a vast amount of
application scenarios.

In this master’s thesis we designed and implemented a basic prototype of the Skytrust
system, which demonstrates the integration of the central server-based key storage
solution into a web application. Based on this prototype an Application Permission System
is proposed that can be used to maintain the access to such a complex system. In order
to understand the risks of the Skytrust system a comprehensive security analysis on the
implemented prototype is conducted to determine threats and countermeasures of the
system.

Key words: server-based key storage solution, cryptographic services, security analy-
sis

iii

Kurzfassung

Der Cloud-Computing Trend der letzten Jahre hat dazu geführt, dass zentrale Web-
Services an Popularität gewinnen. Diese zentralen Webservices ermöglichen es dem
Benutzer immer und überall auf seine gespeicherten Daten zuzugreifen. Sicherheits-
relevante Anwendungen sind hier eine Ausnahme und speichern kryptographische
Schüssel auf Security-Tokens, welche sich im Besitz des Benutzers befinden. Nichts
desto trotz steigt aber auch die Nachfrage nach serverbasierten kryptographischen
Services. Zahlreiche Institutionen haben nun kryptographische Services entwickelt, die
Authentifizierung und das Erstellen von Digitalen Signaturen ermöglichen. Ein großer
Nachteil dieser Lösungen ist aber, dass sie meist eine eingeschränkte Funktionalität
anbieten oder auf ein bestimmtes Anwendungsszenario limitiert sind.

Um diese Einschränkungen zu beseitigen wurde das Skytrust Projekt gestartet. Das
Skytrust System bietet eine zentrale serverbasierte Schlüsselspeicherlösung, die alle
kryptographischen Basisoperation für verschiedenste Geräte wie Smartphones, Ta-
blets oder Webbrowsers zur Verfügung stellt. Das Zugang zum Skytrust System wird
über ein plattformunabhängiges Interface realisiert, welches eine breite Palette von
Anwendungsszenarien ermöglicht.

Hauptaufgabe dieser Masterarbeit war es, einen Prototypen des Skytrust Systems zu ent-
wickeln, der die Integration des zentralen kryptographischen Schlüsselspeicherlösung
in eine Webanwendung demonstriert. Basierend auf diesem Prototypen wurde ein App-
lication Permission System entwickelt, welches den Zugriff auf solch ein System regeln
soll. Da Webanwendungen in einer risikobehafteten Umgebung ausgeführt werden,
wurde weiter eine Sicherheitsanalyse basierend auf dem Prototyp durchgeführt, um
Bedrohungen und Gegenmaßnahmen des Systems zu identifizieren.

Stichwörter: Serverbasierte kryptographische Schlüsselspeicherlösung , Kryptographi-
sches Service, Sicherheitsanalyse

v

Acknowledgements

At first I would like to thank my advisor Peter Teufl, who enabled me to work on the
Skytrust project. Whenever any question came up during the work on the thesis, he
had time for discussions and gave me new suggestions. It was a special experience to
work on such a great topic, which has so much use cases in the real life. A special thank
for the correction of the draft versions of this thesis. Additionally to Peter I would like
to thank Florian Reimair for the support and the interesting discussions during the
entire work.

Second, I would like to thank my parents Margareta and Hubert for the support during
the whole study.

Third, I would like to thank my girlfriend Elisabeth for the understanding in difficult
times of the study and this thesis.

Finally, a special thank to my brother Jürgen who inspired me to start a study and
supported me in difficult times.

vii

Contents

1 Introduction 1

2 Background 5
2.1 OAuth . 5

2.1.1 Roles . 6

2.1.2 Client Registration . 7

2.1.3 Client Profiles . 7

2.1.4 Protocol Flow . 9

2.1.5 Authorization Grant Types . 10

2.1.6 Security Considerations . 12

2.1.7 Summary . 13

2.2 Web Service . 14

2.2.1 Simple Object Access Protocol . 14

2.2.2 Representational State Transfer . 15

2.2.3 Summary . 17

2.3 HTML 5 Web Messaging . 17

2.3.1 Workflow . 17

2.3.2 Security Considerations . 19

2.3.3 Summary . 19

2.4 Same-Origin Policy . 19

2.4.1 Security Considerations . 21

2.4.2 Summary . 21

2.5 Cross-Origin Resource Sharing . 22

2.5.1 Concept . 22

2.5.2 Security Considerations . 24

2.5.3 Summary . 25

2.6 Summary . 25

3 Related Cryptographic Hardware and Web-based Solutions 27
3.1 Standard Cryptographic Key Storage Solutions 27

3.1.1 Smart Card . 28

3.1.2 Security Tokens . 29

3.1.3 Hardware Security Module (HSM) 30

3.1.4 Summary . 31

3.2 Web-based Solutions . 31

3.2.1 Amazon Cloud HSM . 32

ix

Contents

3.2.2 Austrian Mobile Phone Signature 32

3.2.3 SigningHub . 33

3.2.4 Cryptomathic . 33

3.2.5 Dictao . 33

3.3 Analysis . 34

3.3.1 Criteria . 34

3.3.2 Comparison . 35

3.3.3 Summary . 37

4 Skytrust System Design 39
4.1 Basic Concept . 39

4.2 Skytrust Element . 41

4.2.1 Receivers . 41

4.2.2 Actors . 42

4.2.3 Gatekeeper . 43

4.2.4 Authentication . 44

4.2.5 Packetizer . 44

4.2.6 Router . 45

4.2.7 Summary . 45

4.3 Skytrust Transport Protocol . 45

4.3.1 Header . 46

4.3.2 Payload . 47

4.3.3 Summary . 48

4.4 Skytrust Environments . 48

4.4.1 Skytrust Server Environment . 49

4.4.2 Skytrust Client Browser Environment 50

4.4.3 Summary . 52

4.5 Basic Prototype . 52

4.5.1 Prototype Structure . 53

4.5.2 Control Flow . 54

4.6 Application Permission System Concept 55

4.6.1 Basic Idea . 55

4.6.2 Derived Permission System . 59

4.6.3 Permission Concept - Example . 63

4.7 Summary . 64

5 Security Analysis 65
5.1 Scenario . 66

5.1.1 Workflow . 67

5.1.2 Assumptions . 68

5.2 Assets . 68

5.2.1 Primary Cryptographic Keys – Core Asset 69

5.2.2 Credentials – Related Asset . 69

5.2.3 Cryptographic Operation – Related Asset 70

x

Contents

5.2.4 Temporary Cryptographic Keys – Related Asset 70

5.2.5 Web application code – Related Asset 71

5.2.6 Data – Related Asset . 71

5.2.7 Communication – Utilized Asset 71

5.2.8 Skytrust Element – Utilized Asset 71

5.2.9 Summary . 72

5.3 Attack Scenarios . 72

5.3.1 Scenario 1 – Local Attack . 72

5.3.2 Scenario 2 – Web Attack . 75

5.3.3 Scenario 3 – Communication Attack 77

5.3.4 Scenario 4 – Server attack . 78

5.3.5 Scenario 5 – Operator attack . 80

5.4 Securing HTML5 Communication . 81

5.5 Summary . 82

6 Conclusion and Outlook 83

Bibliography 85

xi

List of Figures

2.1 OAuth web application profile . 8

2.2 OAuth user agent profile . 8

2.3 OAuth native application profile . 9

2.4 OAuth 2.0 protocol flow . 9

2.5 OAuth Authorization code grant . 11

2.6 SOAP message envelope . 15

2.7 HTML 5 postMessage workflow . 18

2.8 Ajax proxy . 20

2.9 JSONP . 21

2.10 CORS preflight requests . 23

4.1 Skytrust concept . 40

4.2 Skytrust Element . 42

4.3 Skytrust protocol structure . 46

4.4 Skytrust Server Environment (SSE) . 50

4.5 Skytrust Client Browser Environment (SCBE) 51

4.6 Basic prototype . 53

4.7 Application grant notification . 62

4.8 Key permission table . 63

4.9 Application permission table . 63

4.10 Derived permission table . 64

5.1 Security analysis scenario . 66

5.2 Skytrust prototype assets . 69

5.3 Skytrust system attack scenarios . 73

5.4 Enhanced origin check . 82

xiii

List of Tables

2.1 Permitted same-origin HTML tags . 20

3.1 Comparison web-based key storage solutions 36

4.1 Key permissions . 56

4.2 Operation factor . 57

4.3 Environment factor . 58

4.4 Authentication factor . 58

4.5 Developer factor . 59

4.6 Key security levels . 60

4.7 Environment critical levels . 60

4.8 Operation groups . 61

5.1 Categorized assets . 70

xv

List of Abbreviations

APDU Application Protocol Data Unit
API Application Programming Interface
CA Certificate Authority
CORBA Common Object Broker Architecture
CORS Cross Origin Resource Sharing
CSRF Cross Site Request Forgery
HSM Hardware Security Module
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
JCE Java Cryptography Extension
JMS Java Message Service
JSON JavaScript Object Notation
JSONP JavaScript Object Notation with Padding
MITM man-in-the-middle
MTOM Message Transmission Optimization Mechanism
NFC Near Field Communication
OTP One Time Password
PKCS Public Key Cryptography Standard
REST Representational State Transfer
RMI Remote Method Invocation
SCBE Skytrust Client Browser Environment
SE Skytrust Element
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
SOP Same Origin Policy
SSCD Secure Signature Creation Device
SSE Skytrust Server Environment
SSL Secure Socket Layer
TLS Transport Layer Security
URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium
XML Extensible Markup Language
XSS Cross-Site Scripting

xvii

Chapter 1

Introduction

In recent years central server-based services gained more and more reception and a
further growth is predicted by Gartner [20]. Various service providers, for example,
Amazon 1 or Google 2, offer cloud services which enables the user to store and maintain
their documents and data on a web server in the Internet. An important reason for
the high demand for cloud services is resulted from the platform heterogeneity. The
platform heterogeneity enables the user to the access the data conveniently from various
devices such as smartphones or tablets with different operating systems, for example,
iOS and Android from everywhere and at any time.

However, security relevant applications that execute cryptographic operations do not
entirely follow this trend. These applications store and maintain the cryptographic keys
for encryption and decryption mostly in a cryptographic device which is in possession
of the user. For instance, a bank card that is issued from a banking company to the
user is utilized to authorize financial transactions of the user. Another example are
e-identity cards such as the Austrian citizen card [35] that offers citizens the possibility
to authenticate themselves or to create electronic signatures.

Although it is obvious to leave sensitive cryptographic key material directly at the
user instead of storing it on a central server, this approach has a certain drawback.
In case of a local smart card that stores the cryptographic key material the user has
to take along the card everywhere and anytime. If the smart card is not available,
broken or the smart card is incompatible to a particular system the service cannot be
used. Unfortunately, the local based solution for private cryptographic key material
is not flexible and platform independent enough to fulfil the requirements of modern
applications.

Therefore, the leading industry has recognized that a central storage and usage of
cryptographic sensitive key material is indispensable. Several companies such as Cryp-
tomathic 3 offer the possibility to create electronic signatures with private signing keys
that are stored on a central server storage. A solution similar to Cryptomathic, is the

1http://aws.amazon.com/
2https://appengine.google.com/
3http://www.cryptomathic.com

1

http://aws.amazon.com/
https://appengine.google.com/
http://www.cryptomathic.com

Chapter 1 Introduction

Austrian Mobile Phone Signature 4 that is offered by an Austrian company called A-Trust.
This system allows the Austrian citizens to authenticate themselves and create quali-
fied electronic signatures according to the European Signature Directive [15]. Another
solution for storing cryptographic keys on a central storage and execute cryptographic
operations is offered by Amazon. The Amazon CloudHSM 5 provides the user full access
to a central stored Hardware Security Module (HSM) that can be used to perform
cryptographic operations as well as to store cryptographic key material.

The main disadvantages of the above solutions are the restriction to certain cryp-
tographic operations and the limitation to a particular infrastructure. For instance,
the Austrian Mobile Phone Signature is limited to the creation of electronic signatures
and therefore not able to perform cipher operations. On the other hand, the Amazon
CloudHSM is restricted to a certain client that is able to communicate with the particular
Virtual Private Cloud solution of Amazon.

To keep the limitations of the existing solutions aside, the Skytrust system project
was started to provide a flexible, extensible, and platform independent solution that
allows the central storage of cryptographic key material as well as the execution of
cryptographic operations. To address these aims a core element called Skytrust Element
is used. It breaks up the usual access of a cryptographic service into a receiving
component, called receiver, and an acting component, called actor. This separation
allows the flexible combination of several acting components that store keys and
provide cryptographic services such as HSMs or smart cards with various receiver
components such as web applications and smartphone applications.

The task of this thesis was to demonstrate the functionality of the Skytrust system by
designing and implementing a basic prototype that enables the utilization of a server-
based Skytrust Element, that connects a cryptographic key storage solution, from a web
application. The connection between the server and the web application is established
over a provided web page, that exposes the API of the server. Furthermore, a suggestion
for an Application Permission System, that restricts the access to the Skytrust system,
was elaborated. Finally we conducted a comprehensive security analysis to determine
possible threats and countermeasures of the Skytrust system.

The remainder of this thesis is structured as follows:

Chapter 2 discusses the general background that is covered in the thesis. This includes
basic knowledge about the OAuth framework which allows the delegation of the
authentication process to another service. Then, a short introduction into web service
technologies such as Simple Object Access Protocol (SOAP) as well as Representational State
Transfer (REST) is given. Further, the HTML5 web messaging technology is considered.
Finally, restrictions that are associated with web messaging such as Same Origin Policy
(SOP) and Cross Origin Resource Sharing (CORS) are explained.

4https://www.handy-signatur.at/
5http://aws.amazon.com/de/cloudhsm/

2

https://www.handy-signatur.at/
http://aws.amazon.com/de/cloudhsm/

Chapter 3 gives an overview on standard cryptographic key storage solutions such as
smart cards, security tokens and Hardware Security Modules as well as related existing
web-based solutions for cryptographic key storage such as the Amazon CloudHSM,
Cryptomathic, SigningHub, Dictao, and the Austrian Mobile Phone Signature.

Chapter 4 introduces the basic Skytrust system design. A description of the Skytrust
Element, the according protocol and the implemented prototype is given. Furthermore,
the elaborated thoughts about an Application Permission System are presented.

Chapter 5 presents the results of the comprehensive security analysis on the imple-
mented prototype with respect of a particular scenario. The security analysis includes
the identified assets of the system, threats and countermeasures as well as an enhance-
ment of the web messaging communication.

Finally, conclusions about the Skytrust system prototype are drawn and approaches
for future work are given.

3

Chapter 2

Background

This chapter covers the general background that is needed in this master’s thesis.
Pushed by the Web 2.0 development, web services became a key component of the
World Wide Web. Central server-based web services that are offered over the Internet
allow the user to store and process data everywhere and anytime. In order to use these
web services, authentication systems to restrict the access are used. Beside the common
username / password authentication the OAuth authentication scheme gained more and
more relevance during the last years. We discuss the OAuth authentication scheme
which enables the delegation of the authentication to a trusted third identity provider.
Web services are designed to allow machine-to-machine communication by offering an
interface. In order to interact with the web service interface different technologies such
as Simple Object Access Protocol (SOAP) and Representational State Transfer (REST) are
used. Since we utilize the REST technology in this master’s thesis, we have a closer look
on this technology. In order to use a web service in a user agent respectively a browser
mainly a web interface or web application is used. The Same Origin Policy (SOP) of the
browser ensures that an uncontrolled access to the windows or frames is not possible.
In order to transfer data between the web application and the embedded frame in the
browser the HTML5 web messaging standard is utilized. This standard overcomes the
SOP and ensures the controlled transfer of messages between windows of different
origins.

In the remainder of this section, we will discuss at first the OAuth authentication
scheme in Section 2.1. Section 2.2 describes the web service technology in consideration
of SOAP and REST. In Section 2.3 we focus on the HTML5 web messaging communi-
cation mechanism. Finally, Section 2.4 and Section 2.5 discuss the SOP and the CORS
technology which is also used to enable cross-origin data transfer.

2.1 OAuth

In 2007 the first OAuth Core 1.0 specification [23, 42], an open standard for authentica-
tion delegation was introduced. The specification defines a protocol that allows a user
to grant a requesting application limited access to a web account without showing any

5

Chapter 2 Background

sensitive data of the user.
However, the OAuth protocol is not a new technology. It combines previous developed
protocols such as Google AuthSub 1 or Yahoo BBAuth 2. The OAuth authentication stan-
dard spread out very well, so that nowadays nearly every popular provider supports
the authentication standard.

Due to security issues [22] and complexity, in 2012 the successor of the OAuth core 1.0
specification standard the The OAuth 2.0 Authorization Framework [25] was presented by
the Hardt Auth Work Group. The major adjustment to OAuth 1.0 is that OAuth 2.0 now
supports different control flows for different deployment scenarios such as web server
applications and mobile applications. Due this adjustment, the new framework is no
longer backward compatible to the previous version. The ongoing development of the
OAuth web authorization protocol is documented at 3.

The remainder of this section discusses the core parts of the OAuth 2.0 web autho-
rization framework based on the The OAuth 2.0 Authorization Framework [25]. First,
preliminaries such as roles, client registration and client profiles are discussed. Second,
the basic protocol flow is considered. Third, the authorization grant types are covered
and finally, a brief overview on security considerations about OAuth 2.0 is given.

2.1.1 Roles

In order to understand the OAuth protocol, the following basic roles that occur in the
protocol flow have to be considered:

• client
The client is an application which requests access to the protected data of the user
(e.g. third-party application).

• resource owner
The resource owner is a person or an application which grants the access to the
protected data.

• resource server
The resource server is a web server which hosts the protected data.

• authorization server
The authorization server authorizes the access to the protected data. The resource
server and the authorization server are in some cases the same server.

1https://developers.google.com/accounts/docs/AuthForWebApps
2http://developer.yahoo.com/auth/
3http://datatracker.ietf.org/wg/oauth/

6

https://developers.google.com/accounts/docs/AuthForWebApps
http://developer.yahoo.com/auth/
http://datatracker.ietf.org/wg/oauth/

2.1 OAuth

2.1.2 Client Registration

In order to initiate the OAuth protocol flow the client application has to be registered at
the authorization server to identify the requesting application on authorization server
side when a request is sent. The registration is usually done by an HTML registration
form where the developer of the application defines a client type, a client redirection url
and some additional information like application name, website, logo image. As client
types the OAuth framework distinguishes the following types:

• confidential and
• public

The difference between these two types is the ability to store the client credentials. The
confidential client is able to store the client credentials confidential. For instance, a web
server application which stores the client credentials in a safe key store.

In contrast to the confidential client, the public client is not able to store the client
credentials confidential as it is usual in, for example, JavaScript or PHP applications.
In such a case the client credentials are stored in the application code and a potential
attacker is able to obtain the credentials from the code.

The redirection url defines the endpoint of the requesting application where the au-
thorization server redirects the resource owner when the requesting application was
granted.

After the successful registration the client credentials, consisting of a client identifier
(clientID) and a clientSecret, are issued to the developer. Whereas the client identifier
is a simple unique string that represents the client, the clientSecret is a secret key
which should be stored in a secure environment. These two elements are used for
authenticating the client application to the authorization server by the Http-Basic
Authentication Scheme [19]. If the client application does not support the Http-Basic
Authentication, only the clientID is sent to the authorization server as a parameter of the
request.

2.1.3 Client Profiles

Supplementary to the client types the OAuth 2.0 Framework defines three client profiles
which illustrate a specific application scenario.

Web application profile: The web application profile is used for a confidential web
application which runs on a web server as shown in Figure 2.1. The resource owner
interacts with a front end of the web application. The client credentials as well as the
access token that are issued to the client are always maintained on a secure environment

7

Chapter 2 Background

on the server. The resource owner is not able to obtain any of this credentials or tokens.

Figure 2.1: OAuth web application profile

User agent based profile: The user agent based profile downloads – in contrast to the
web application profile – the client code from the web server as shown in Figure 2.2.
The code is executed in a user agent, for example, a web browser on a device the
user owns. Thus, the client credentials are embedded into the downloaded code, the
clientSecret is omitted to prevent the access of an arbitrary attacker to the clientSecret.

Figure 2.2: OAuth user agent profile

Native application profile: The native application profile, shown in Figure 2.3, is used
for local installed applications on, for example, a smartphone or a computer. Thus, the
code and the client credentials are executed local on the machine, it is assumed that the
credentials and the issued tokens can be obtained by a potential attacker.

8

2.1 OAuth

Figure 2.3: OAuth native application profile

2.1.4 Protocol Flow

After introducing the basic terms of OAuth the basic OAuth protocol flow can be
discussed. The protocol flow is subdivided into six steps, as shown in Figure 2.4, and
works as follows:

Figure 2.4: OAuth 2.0 protocol flow

Step one: The client sends an authorization request to the resource owner. This can be
done directly, as shown in Figure 2.4 or via the authorization server.

Step two: After a successful authorization the client receives an authorization grant.
This authorization grant represents the authorization of the resource owner
to access the resource owners data. This step varies depending on different
authorization grant types. These types are discussed further down in Section

9

Chapter 2 Background

2.1.5.
Step three: The client requests an access token from the authorization server by repre-

senting the authorization grant.
Step four: The authorization server validates the client as well as the authorization

token, and issues – if the credentials are valid – an access token to the client.
Step five: The client is able to obtain data from the resource server by representing the

access token.
Step six: The resource server validates the access token, represented by the client and

serves – if the access token is valid – the requested data.

2.1.5 Authorization Grant Types

As mentioned, above at the basic protocol flow, the current version of the OAuth 2.0
framework specification distinguishes four different grant types:

• Authorization code (for web applications)
• Implicit code (for browser applications or mobile applications)
• Resource owner password credentials (for logging in with username and pass-

word)
• Client credentials (for application access)

Authorization Code Grant

The authorization code grant type is the common process for confidential clients to obtain
an access token or a refresh token from the authorization server. An example for such
an application is, for instance, a web service.

To receive the authorization code the client must be able to communicate with the
resource owners user agent – which is typically a web browser – and receiving requests
from the authorization server. Figure 2.5 illustrates the control flow of the authorization
code grant. In order to initiate the authorization flow the resource owner’s user agent,
typically a web browser, is redirected to the authorization server. This is usually done
by creating a login link which allows the redirection. By clicking the link a prepared
request with a response type, the clientID, the redirect-uri, an optional scope, and an
optional state is sent to the authorization server.
The response type defines the request type. In case of the authorization code grant the
type is code.
The optional parameter scope is used to restrict the resources that should be accessible
on the resource server. The available scope elements are not predefined by the OAuth
framework and thereby different on each authorization and resource server implemen-
tation.
The optional state parameter is a random value, for example, a cryptographic nonce
that is not guessable, which binds the request to the client to prevent the authorization

10

2.1 OAuth

Figure 2.5: OAuth Authorization code grant

flow from cross-site forgeries. The authorization server returns the state parameter in
the response that is sent from the authorization server to the client application, that is
in further consequence able to verify the response by matching the state parameter.

The authorization server validates the request if the clientID is available in the database
and the stated redirect URI is equal to the URI that was entered at the registration
step. If the request is valid, the authorization server authenticates the resource owner
and displays a consent prompt which contains information about the application, the
developer and which user data should be accessed. The resource owner is able to grant
or deny the client application the access to the sensitive data. If the user grants the
application, the authorization server redirects the user agent back to the client web
application with an authorization code as parameter. If not, an error message is redirected
as parameter to the client web application.

More details about the error message can be found in the OAuth 2.0 Authorization
Framework [25] in the Sections Error Response.

With the authorization code the client web application is able to request an access
token by representing the authorization code to the authorization server. The request
includes the grant type, the received authorization code, the redirect-uri, the clientID and
the clientSecret. The authorization server authenticates the client by the given clientID
and the clientSecret. Supplementary to the verification of clientID and clientSecret the
authorization code and the redirect-uri are validated to ensure the equality to the issued
credentials from the previous step. If the the credentials are valid the authorization
server issues an access token to the client. Otherwise, an error message is returned. With
this access token the client is able to access the resource server to request the desired
data as described at the basic protocol flow above in Section 2.1.4.

11

Chapter 2 Background

Implicit Grant

Unlike to the authorisation code grant the implicit grant is designed for browser applica-
tions that are implemented in a scripting language such as JavaScript. Since browser
applications are downloaded from a web server and executed inside a web browser the
confidentiality of the client credentials cannot be ensured. Therefore, the clientSecret is
not used in the implicit code grant flow. To obtain the access token from the authorization
server the client sends a similar request as at the authorization code grant flow, but with
the type token. Again the authorization server validates the clientID and the redirect-uri
and displays a consent prompt to the user. If the user grants the browser application
the access to the requested private data, the authorization server directly returns an
access token. No further steps are needed in this case. With a JavaScript application the
access token can be obtained from the URI.

Resource Owner Password Credentials Grant

The resource owner password credentials grant is designed for legacy applications. These
applications requests an access token by showing the credentials of the user. Since the
application is responsible for collecting the credentials this grant type should be only
used by trusted clients. For instance, an arbitrary device operating system. This resource
owner password credentials grant should be used only if the authorization code grant
or the implicit grant are not realizable. The request type for the password grant is
password. As parameters for the request the username and the password are attached to
the clientID and the type. Thus, the secure storage of the client credentials cannot be
ensured, the clientSecret is omitted.

Credentials Grant

The credentials grant is a special grant type and used for the application itself. With this
grant type the application is able to update the website url or the application icon. The
request contains only the grant type client credentials, the clientID and the clientSecret.
Since the clientSecret is attached this request must be only used by confidential clients.

2.1.6 Security Considerations

The OAuth 2.0 framework provide several security mechanisms such as limited access
token lifetime or scope limitation to mitigate the impact of possible attacks. Furthermore
the OAuth 2.0 Threat Model and Security Considerations by Lodderstedt, McGloin, and
Hunt [36] provides a comprehensive analysis of the OAuth 2.0 framework and gives
guidelines for the implementation of a OAuth provider.

12

2.1 OAuth

However, several analyses showed that there are security issues.
Slack and Frostig [54] discussed security issues of the implicit grant flow and provided
a solution to prevent a possible attack.
Sun and Beznosov [60] analysed the three major identity providers (Facebook, Google
and Microsoft) for implementation weaknesses and found that the weaknesses result
from identity provider implementations and the simplicity features of the OAuth
protocol.

To account these considerations a brief excerpt on the recommended security features
is given.

Authorization Code Grant: The first recommendation is to use the authorization code
flow for gaining access to the requested resource. The authorization code represents
the user authorization that can be used to obtain the access or the refresh token. The
code is sent to the specified redirect URI to exchange the token by establishing a secure
connection to the authorization server. The Implicit Grant is not recommended, due to
simple access to the access token.

Redirect Uri: The redirect uri parameter ensures that the authorization code is sent to
the appropriate endpoint of the application. Therefore, the redirection endpoint has
to be a full URI, to prevent the attacker to gain the authorization code. Incomplete
redirect uris can be abused by an attacker. Furthermore, the authorization server has
to verify the enclosed redirect uri parameter of the authorization step with the redirect
endpoint that was entered at the registration.

Transmission Security: The core OAuth 2.0 specification defines that the client as well
as the authorization server must guarantee the support of Transport Layer Security (TLS)
[10].

State parameter: The state parameter helps to prevent Cross-Site Request Forgeries(CSRF).
By linking the request to the callback from the authorization server a forgery should be
prevented.

2.1.7 Summary

In this section the OAuth 2 web authorization framework was discussed. First, the
preliminaries such as roles, the client registration and the different client profiles were
covered. Second, the basic protocol flow was introduced. Then, the different grant types
where focused on. Especially the recommended authorization code flow. Finally, some

13

Chapter 2 Background

security considerations showed that there are vulnerabilities in connection with the
Implicit Grant.

2.2 Web Service

A web service [21] is a software system that supports the network communication
between machines by means of a machine processable format. Furthermore, it allows
the communication with other services by special protocols such as Simple Object
Access Protocol (SOAP) or Representational State Transfer (REST). These protocols usually
use HTTP with an Extensible Markup Language (XML) [44] or a JavaScript Object
Notation (JSON) [7] serialization to transmit the data. Popular representatives of such
web service providers are, for example, Google 4 and Amazon 5. Such service providers
can be used, for example, to display location based data in a web site by using the
Google Maps API 6.

In this section a brief overview of the main representative protocols SOAP and REST is
given.

2.2.1 Simple Object Access Protocol

The Simple Object Access Protocol [40] is a protocol, defined by the World Wide Web
Consortium (W3C) 7, for communication between applications in decentralized envi-
ronments. The SOAP standard describes how the data is represented in a message
by utilizing XML as describing language and basically HTTP as transport protocol.
The usage of SOAP in combination of XML and HTTP has advantages and disad-
vantages compared to former standards such as Remote Method Invocation (RMI) and
Common Object Broker Architecture (CORBA). A major advantage is that SOAP is plat-
form independent. The platform independence allows the communication of clients
and servers of different programming languages, for example, Java clients with C#
servers. A further benefit is, that it uses open standards to transport the messages.
These are as mentioned the HTTP protocol and furthermore the Simple Mail Transfer
Protocol (SMTP) and the Java Message Service (JMS). A major benefit of XML are the
human readable messages. However, this advantage also has a disadvantage. In contrast
to competing former standards the conversation into XML messages and parsing of the
XML messages is time-consuming and therefore SOAP is significant slower than RMI
and CORBA. To mitigate that problem an additional Message Transmission Optimization
Mechanism (MTOM) [39] was designed by the W3C to reduce the effort of transmitting
binary data by using common techniques such as BASE64 Encoding [31].

4https://developers.google.com/
5http://aws.amazon.com/de/
6https://developers.google.com/maps/
7http://www.w3c.org

14

https://developers.google.com/
http://aws.amazon.com/de/
https://developers.google.com/maps/
http://www.w3c.org

2.2 Web Service

Message Structure

The message structure of SOAP is very simple and human readable through using
XML. The root element of SOAP message is an envelope as illustrated in Figure 2.6. The

Figure 2.6: SOAP message envelope

envelope contains at least one body element. This body element contains the data that
is transmitted to the receiver. Supplementary as needed an optional header is attached.
The header contains meta data, routing information, authentication information and
data to identify the message.

A more detailed description on SOAP can be found under Distributed Systems: Concepts
and Design [6, Ch. 9.2.1, p. 387ff].

2.2.2 Representational State Transfer

The Representational State Transfer (REST) was specified by Roy Fielding in his PhD
Thesis Architectural styles and the design of network-based software architectures [16] in 2000.
REST is – in contrast to SOAP – not a protocol. It is an architecture style which does not
define any protocol syntax or implementations. However, it defines four architectural
principles:

Stateless Client Server Communication: This principle defines the stateless commu-
nication between client and server. Any request that is sent to the server must include
every information that is needed to perform the operation respectively retrieve the data.
However, it is not possible to rely on results from previous requests. The advantage of
this principle is that the used system resources of the server are still available after an
executed request. Any session management is directed to the client.

15

Chapter 2 Background

Resources and Resource Representations: The second principle of REST defines the
usage of resources and resource representations. Resources are abstract definitions
for documents, images, services or collection of resources. To identify these resources
during the communication, every resource entity is linked with a unique resource
identifier such as a Uniform Resource Identifier (URI) or a Uniform Resource Locator (URL).
The unique identifier enables the identification of each resource at any time. Further-
more, the principle defines resource representations. Resources are often required in
various representations to be processed. Therefore, this principle defines a separation of
resource and resource representation. This provides the ability to retrieve the same re-
source in various representations. Representation formats are, for example, XML, JSON,
HTML, PDF or image formats. The separation between the representation is realized by
content negotiation. A requesting client defines the representation type of the resource
in the content-type of the request and the server retrieves the appropriate representation
of the resource. Thereby, the provided resources can be consumed by various clients
and not only by one specific application. Moreover, additional representations can be
simply added afterwards.

Uniform Interfaces: A further principle of the REST architecture is the uniform
interface. The idea behind is to generalize the component interface to simplify the
whole architecture by defining a set of operations that are supported by the underlying
protocol. For instance, a web service that uses the HTTP protocol supports the methods
that are defined in the HTTP standard [17]. The HTTP standard defines 8 methods
whereof usually only the main five are used. These operations are:

• GET
The get method is used to retrieve a resource from the server. The method is
idempotent and safe. Idempotent ensures that no side effects occur regardless how
often the method is called. Safe means that the resource on the server is not
modified.

• POST
The post method is used to process an arbitrary operation at the server. Thereby,
this operation is either idempotent or safe. This method is often used to create
resources on the server.

• PUT
The put method is used to insert or update a resource on the server. The put
method is idempotent because a further request does not have any effect on the
server.

• DELETE
The delete method deletes a resource on the server. This method is idempotent.
However, a further delete request deletes the object again, however without any
result.

• PATCH
The patch method [11] is used to update an existing resource on the server. In

16

2.3 HTML 5 Web Messaging

case of an unknown resource on the server the method creates a new resource.
Thereby, the method is neither idempotent nor safe.

Link to Resources: The final principle is the idea of links that are used to navigate
between states. These states can be, for example, an additional information that can be
retrieved by following a link. The advantage of a link is that any kind of resource can
be linked. For instance, a list of links with associated URIs.

Security Considerations

The REST architecture itself defines no security standard. To provide a secure connection
to a REST web service HTTPS is used. Due to the fact that REST uses a uniform interface
HTTP can be simply replaced by HTTPS without any changes to the interface.

2.2.3 Summary

In this section web services protocols such as SOAP and REST were discussed. Both
systems are widely spread and used. SOAP is a protocol in contrast to REST, which
only defines architecture principles. In this master’s thesis we decided to use REST.
The main reason for REST was that the deployment is very simple as well as the client
can be a web page which is executed in a web browser.

2.3 HTML 5 Web Messaging

In 2010 the W3C has introduced a new HTML5 web messaging standard [26]. This
standard defines mechanisms to communicate between web applications from different
origins in a browser context. Furthermore, the HTML5 web messaging standard is
designed to prevent possible Cross-Site Scripting (XSS) attacks. The following section
discusses the workflow, how the communication between two windows respectively
frames can be established and how the origin of the message is validated. Finally some
security considerations are drawn.

2.3.1 Workflow

In order to communicate between two windows respectively frames in a web browser
environment two types of frames or windows have to be distinguished. These two
different windows or frames are the sender and the receiver. Usually the sender embeds
the receiver by using an iframe. In order to transmit a message from the sender to
the receiver the postMessage command, as shown in Figure 2.7, is used. The message

17

Chapter 2 Background

parameter represents the message and the target-origin parameter defines the origin to
which the message is sent. The message parameter is not limited to strings. Further data
objects are, for example, Files and ArrayBuffers. The specified target-origin, for example,
http://www.test.com has to be equivalent to the origin of the receiver, otherwise the
message will not be dispatched to the receiver. The postMessage command supports an
all permitted (*) symbol for the target-origin. In this case the message is dispatched to
each origin. However, this can be used by an attacker to spy the messages. Hence, it is
recommended to set a specific target origin.

Figure 2.7: HTML 5 postMessage workflow

In order to receive an event at the receiver the window or frame has to register an
event listener as shown in Figure 2.7. The first parameter defines the type of the event
listener which is in this case a message listener. The second parameter determines which
function is called if a message occurs. The third parameter is used for a special case
which is not further discussed, and therefore set to false.

If a postMessage call is sent to the specific origin of the receiver window or frame the
event listener is invoked and the defined function is called with an event message. The
transmitted event message contains three properties. The first property is the message
itself. The second property is the origin from which the message was sent from. The
origin is generated by the browser and contains the scheme, the port and the host of the
sender. The last property is the source which defines a reference to the source window
or frame of the message. To verify the origin of the sender the receiver validates the
origin as shown in Figure 2.7, by comparing for equality. It is recommended to perform
this validation to prevent the malicious usage of the postMessage channel. The source
property is used to sent messages back to the window or frame that is defined by the
given source as shown in Figure 2.7.

18

2.4 Same-Origin Policy

2.3.2 Security Considerations

The HTML5 web communication concept provides authenticity and confidentiality for
the client side communication in a web browser. The authenticity of the message can be
verified by the origin parameter of the event message. Thereby, that the real origin of the
sender is attached by the web browser the sender can be authenticated. Confidentiality
is reached by the browser implementation of the postMessage command. The browser
ensures that the message is exclusively dispatched to the specified target-origin.

However, Barth, Jackson, and Mitchell [4] showed a vulnerability in the confidentiality
of the HTML5 web message channel by simulating a certain navigation scenario. The
presented modification to ensure confidentiality was adopted by the HTML5 working
group 8.
Furthermore, Hanna et al. [24] analysed the usage of the HTML5 web message channel
in Facebook and Google applications and discovered that the provided origin checks
are incomplete.
Son and Shmatikov [57] analysed the Alexa top 10,000 websites and discovered origin
vulnerabilities which can be used for exploits.

2.3.3 Summary

In this section we discussed the HTML5 web messaging standard. We described how
the HTML5 web messaging standard can be utilized to communicate between cross
origin windows on client side. Furthermore, we covered security issues which result
from incorrect or missing origin checks at the receiver window.

2.4 Same-Origin Policy

The Same Origin Policy (SOP) [3, 49] is a security concept for user agents and web
related technologies. The policy limits the access of websites to that origin on which
the web page is deployed. For instance, a web page which is running on https:

//test.com/index.html is allowed to call the url https://test.com/test.html. If
the web page try to load the url http://test.com/test.html, the user agent bans
the request due to the origin of the first page (https, test.com, 443) differs from the
requested page (http, test.com, 80).

The origin itself is a combination of three URI elements. The first element is the scheme,
which can be, for example, http or, https. The second element is the host, which can be,
for example, google.com. And the last element is the port, which can be, for example, 80.

8http://www.w3.org/html/wg/

19

https://test.com/index.html
https://test.com/index.html
https://test.com/test.html
http://test.com/test.html
http://www.w3.org/html/wg/

Chapter 2 Background

In case of a missing port the port element is derived from the scheme. For instance, the
http scheme uses the port 80.

Nevertheless, there is a necessity for loading data from cross origins such as special
libraries from third party providers that are needed to operate the web service. There-
fore, SOP permits several HTML tags, as illustrated in Table 2.1, to load data from
different origins. However, there are further solutions to circumvent the Same Origin
Policy such as Cross Origin Resource Sharing, discussed further down in Section 2.5, Ajax
proxies and JSONP.

HTML Tag description

<script>... </script> script files
<link rel="stylesheet", href="..." Cascading Style Sheets (CSS)
... images
<video> and <audio> media files
<object><embed> and <applet plugins
@font-face fonts
<frame>, <iframe> frames

Table 2.1: Permitted same-origin HTML tags

Ajax Proxy: In order to circumvent the SOP restriction of the XMLHttpRequest [58]
an application proxy can be used, as shown in Figure 2.8. The application proxy fetches
the data from a remote server by implementing an HTTP client and provides the
data for the current web page. The web page is able to load the data by using the
XMLHttpRequest from the own web server. Thereby the SOP is not violated.

Figure 2.8: Ajax proxy

20

2.4 Same-Origin Policy

JSON with Padding: Another approach to circumvent the SOP is the usage of
JavaScript Object Notation with Padding, as shown in Figure 2.9. At first, the de-
veloper of the web page defines a function that displays the cross origin data, for
example, includeForbidden when it is fetched. Then, a request to fetch the data is inserted
into the page by using the <script>, as shown in Figure 2.9. The response of the remote
server is constructed in that way that the previous defined function to display the data
is called. Thereby, the SOP can be circumvented and data from a cross origin remote
server is fetched when the web page is loaded.

Figure 2.9: JSONP

2.4.1 Security Considerations

Although the Same Origin Policy enhances the security of user agents by restricting the
origin of loadable data, the above mentioned possibilities to circumvent the SOP are
abused by attackers. The most common attacks are Cross Site Request Forgery (CSRF)
and Cross-Site Scripting (XSS) attacks. CSRF attacks are used to exploit the trust of
a web site. For instance, a user is logged into a banking website and has an active
session. An attacker sends a manipulated URL to the user. If the user clicks on the
manipulated URL a manipulated transaction with the active session of the user is
performed. However, there are possibilities to prevent CSRF attacks. By including
secrets into requests, for example, hidden forms, using limited session lifetime or
checking the referer header, CSRF attacks can be prevented.

In contrast to CSRF, XSS attacks injects code into websites in order to gain data, for
example, read session information. XSS attacks can be mitigated by using frameworks
for escaping and input checks.

An comprehensive analysis of SOP is presented by Saiedian and Broyles [51]. Saiedian
and Broyles also discussed a protection mechanism to prevent attacks.

2.4.2 Summary

The Same Origin Policy is designed to restrict the origin of the loadable data to the
origin on which a web page is deployed. However, multiple possibilities such as Ajax

21

Chapter 2 Background

Proxies, JSONP or CORS to circumvent the SOP result in vulnerabilities as discussed
above. Therefore, a more promising approach such as the Content Security Policy [59] will
be necessary. This approach supports the definition of policies for the web application.
However, this technology was not scope of this work.

2.5 Cross-Origin Resource Sharing

Cross Origin Resource Sharing (CORS) [34, 27] defines a mechanism for user agents
to retrieve data from origins which are different to the origin of the requesting web
page. The following section discusses the concept of CORS as well as some security
considerations.

2.5.1 Concept

Same Origin Policy (SOP) denies requests from a website located, for example, on
http://test.com to another website located on http://website.com. However, by
using the CORS concept such requests can be allowed.

The main concept behind CORS is to use additional custom HTTP headers and addi-
tional hidden requests to determine if a request is allowed or not. The supplementary
requests are named preflight requests and are sent before the actual request is sent. Figure
2.10 illustrates the request process with the supplementary preflight requests. In case
of a request to the server, the user agent respectively the browser applies a preflight
request. This request is some kind of asking for permission for the actual request. If
the request is permitted, the actual request is dispatched to the server. The preflight
response is cached for further requests to reduce the traffic between the browser and
the server.

Preflight Request

By sending a preflight request to the server the browser determines whether the actual
request is permitted or not. To determine the access, however, some supplementary
information on the server is required. The required information is added by the browser
by adding the supplementary headers. The supplementary headers are added by default
and cannot be influenced by the user. The preflight request contains the following
headers:

• Origin
• Access-Control-Request-Method
• Access-Control-Request-Headers

22

http://test.com
http://website.com

2.5 Cross-Origin Resource Sharing

Figure 2.10: CORS preflight requests

The Origin header is always added by the browser and contains a triplet composed
of scheme, host and port. The Access-Control-Request-Method defines the method of the
actual request, which should be sent afterwards. The Access-Control-Request-Headers
defines additional custom headers that are sent in the actual request.

Preflight Response

As the preflight request applies for permission, the server has to verify the parameters
of the request, to determine whether the actual request is permitted or not. In case of a
successful verification of the request headers the server issues a preflight response that
contains several headers. These headers are:

• Access-Control-Allow-Origin
• Access-Control-Allow-Credentials
• Access-Control-Expose-Headers
• Access-Control-Max-Age
• Access-Control-Allow-Methods

The Access-Control-Allow-Origin header is a mandatory header when a valid CORS
response is returned from the server. The given origin defines the origin from which
subsequent requests are allowed. For instance,
Access-Control-Allow-Origin: http://test.com permits subsequent requests from
http://test.com. Moreover, it is allowed to set an all permitted (*) symbol to permit every
origin. However, the usage of this literal is not recommended to prohibit a malicious
usage of the server.
The Access-Control-Allow-Credentials header is, in contrast to the Access-Control-Allow-
Origin header, optional. The header defines if the actual request contains any HTTP

23

Chapter 2 Background

cookies or HTTP authentication information. Together with this header the withCreden-
tials property of the XMLHttpRequest is used. Both parameters must be true to retrieve
a valid response from the server.
The Access-Control-Expose-Headers is an optional header. In combination with the XML-
HttpRequest2 [58] method the client is able to access simple response headers during the
preflight requests. These simple response headers are Cache-Control, Content-Language,
Content-Type, Expires, Last-Modified and Pragma. To access further headers the header
has to be defined at the Access-Control-Expose-Headers header. Due to known bugs 9, it is
not ensured that common browser implementations support the Access-Control-Expose-
Headers in the same way.
The Access-Control-Max-Age header is also optional and defines how long a preflight
response should be cached. As mentioned above the preflight is cached on client side.
If the Access-Control-Max-Age time is expired a preflight request is sent to the server
before the actual request is sent.
The Access-Control-Allow-Methods header is mandatory and defines which HTTP meth-
ods are allowed for further requests. It is possible to permit a comma-separated list
which includes more than one method. This can be, for example
Allow-Control-Allow-Methods: POST, DELETE.

Preflight Error

In case of a non valid origin the server returns an error message that is displayed in the
browser log and looks like, for example, XMLHttpRequest cannot load http://test.com.

Origin http://test.com is not allowed by Access-Control-Allow-Origin.

2.5.2 Security Considerations

The CORS concept is a tool to protect an Application Programming Interface (API) against
attacks from cross origin. However, several implementation faults of CORS lead in
vulnerabilities. Especially the Access-Control-Allow-Origin header is a central point of
attacks by setting an all permitted (*) symbol. It is recommended to use white listing
approach to restrict trusted domains. A further attack point is the Access-Control-Max-
Age header. Due to performance reasons the preflight request are cached on client side
as long as defined in the Access-Control-Max-Age header. However, the CORS concept is
not able to provide a protection against Cross-Site Scripting (XSS) attacks.

Schmidt [52] provided a comprehensive analysis on CORS and discussed the vulnera-
bilities of the Access-Control mechanism.
Shah [53] discussed a CSRF attack on CORS which even enables the file upload.
Ryck et al. [50] presented a comprehensive analysis of web standards as well as the

9http://www.html5rocks.com/en/tutorials/cors/

24

http://www.html5rocks.com/en/tutorials/cors/

2.6 Summary

CORS technology and showed the vulnerability of the Access-Control-Allow-Origin
header.

2.5.3 Summary

The CORS concept was designed to protect APIs against misuse from malicious cross
origin pages. However, the above discussed security considerations has shown that the
CORS concept has several vulnerabilities and an additional protection is necessary to
protect an API.

2.6 Summary

In this chapter the basic technologies which are in context with web services were
discussed. At first, we covered the OAuth authentication scheme which is used to
delegate the authentication to a trusted third party identity provider. Further, an
overview on the web service interaction protocols SOAP and REST was given. Finally,
the Same Origin Policy (SOP) and related technologies such as Cross Origin Resource
Sharing (CORS) or the HTML5 web communication mechanism were covered.

25

Chapter 3

Related Cryptographic Hardware and
Web-based Solutions

In this chapter, a broad overview on cryptographic hardware respective web-based solu-
tions that are able to store cryptographic keys and perform cryptographic operations is
given. Various cryptographic hardware solutions provide the ability to handle and store
cryptographic keys as well as the ability to perform cryptographic operations. However,
these hardware solutions have advantages in terms of handling but also disadvantages
in terms of key distribution and compatibility. Web-based solution provide, in contrast
to hardware solutions, flexible key distribution.
The presented overview of benefits and limitations of the existing web-based solutions
establishes a basis for this master’s thesis, where we introduce a solution that combines
different hardware key storage solutions and provides them for local as well as for
cloud-based applications.

This chapter is divided into three main sections. The first section discusses standard
cryptographic key storage solutions such as smart cards, security tokens and Hardware
Security Modules (HSMs). The second section focuses on the existing web-based
solutions for cryptographic services. Finally, a comparison of the different solutions is
conducted.

3.1 Standard Cryptographic Key Storage Solutions

Standard cryptographic hardware key storage solutions are well established and mainly
used for authentication purposes, for example, bank cards. The application area for
such key storage solutions is not limited to authentication purposes, however, the can
be used for signature creation as well as to perform basic cipher operations such as
encryption and decryption. Although hardware key storage solutions have advantages
in terms of usability, they even have disadvantages in terms of key distribution and
compatibility. In this section we discuss the the most common hardware key storage
solutions such as smart cards, security tokens and Hardware Security Modules (HSMs).

27

Chapter 3 Related Cryptographic Hardware and Web-based Solutions

In order to provide an overview we focus on the strengths and weaknesses of each
solution.

3.1.1 Smart Card

Smart cards are a well known and wide spread technology which is used to provide
authentication, identification, key storage and cryptographic operations. In 1950 the
first type of smart card was introduced in the United States by Diners Club. Since the
introduction of the first smart card the design has changed from a magnetic strip smart
card to a smart card which contains a microprocessor. Through the development of the
microprocessor smart card the application range was not limited to the tamper storage
of data any more. The microprocessor enables the execution of cryptographic operations
with the secret key that is stored on the smart card. The usage of the sensitive data is
restricted to a secret (PIN) that has to be presented by the user of the card before any
operation can be executed. This security mechanism established as standard for further
technologies.

The application area of smart cards is widely spread. The range starts from banking
cards over payment systems to health insurance cards. However, the smart card technol-
ogy is not limited to authentication scenarios. With an appropriate smart card reader
the owner of the smart card is able to perform cipher operations such as encryption
and decryption.

The latest development in the field of smart cards are contactless smart cards that
communicate with the reader via the Near Field Communication (NFC) technology. These
smart cards can be utilized easily by moving it over a specific reader.

Strengths:

• Usability: A major strength of smart cards is they are widespread. Thereby, that
smart cards are used for bank transactions they are utilized by everyone. Moreover,
the new NFC communication standard simplifies the usage of the smart cards
and enhances the usability.

• Flexibility: A further strength of smart cards is that they are flexible. Users are
able to take along their smart cards and use them on different devices.

• Use cases: Although smart cards are mainly used for authentication scenarios
the application area is not limited only to these scenarios. Smart cards offer
the possibility to create signatures as well as the execution of cipher operations.
Thereby, smart cards can be used in a broad range of applications.

28

3.1 Standard Cryptographic Key Storage Solutions

Weaknesses:

• Connectivity: The major weakness of smart cards is, that an appropriate reader
is needed to use the functionality of the smart card. Without this reader the smart
card cannot be used.

• Incompatibilities: A further weakness is the restricted support of the smart card
readers on different platforms. Driver and hardware incompatibilities limits the
usage of smart cards.

• Limited Scope: Although smart cards are very popular for authentication pur-
poses, for example, bank cards, they are occasionally used for signature creation
or cipher operations. This results from the low dissemination of card readers.

• Key Distribution: A further weakness of smart cards is the key distribution. In
case of an update the smart card has to be replaced.

In summary, the smart card is used for various applications. It provides a secure key
storage and the microprocessor enables the execution of cryptographic operations. The
strengths are the usability and the flexibility that enables the usage of smart cards
everywhere. The weaknesses of smart cards are availability of appropriate reader and
the platform incompatibilities. So the usage of smart cards for signature creation or
basic cryptographic functions is limited.

More details about smart cards can be found in the Smart Card Handbook [47]. Fur-
thermore, Rizvi, Rizvi, and Al-Baghdadi [48] provided a overview on the smart card
technology and discussed typical application scenarios.

3.1.2 Security Tokens

Security tokens are similar to smart cards, however with the difference that security
tokens utilize common connection technologies such as USB slots, SD card slots or
SIM card slots. Thereby, security tokens can be easily connected to various types of
machines. The following types are most used:

• SIM cards in smartphones
• Secure SD cards
• Special Tokens USB slot

The major field of application for security tokens are authentication scheme such as
multi factor authentication with OTP.

A new development in this field are contactless security tokens, for example, Yubikeys 1

which utilize the USB slot technology as well as the Near Field Communication (NFC)
standard. Thus many new application scenarios arise.

1http://www.yubico.com/products/yubikey-hardware/yubikey/

29

http://www.yubico.com/products/yubikey-hardware/yubikey/

Chapter 3 Related Cryptographic Hardware and Web-based Solutions

Strengths

• Usability: The strengths of security tokens are their handy size and the support of
common connection technologies. This enables the easy usage of security tokens
which is a major benefit, in contrast to common smart cards. Furthermore, the
support of contactless communications standards such as NFC enhances the
usability and handiness of security tokens.

• Flexibility: As well as smart cards security tokens are very flexible. They can be
also used on several devices.

• Connectivity: Due to the support of common connection technologies such as
USB, the weakness of smart cards is removed. Thereby, security tokens are not
limited in their use cases.

• Use cases: The application area of security tokens is broad. Currently they are
mainly used for authentication schemes. However, they can be even used for
signature creation and basic cryptographic functions.

Weaknesses:

• Key distribution: The major weakness of security tokens is the key distribution.
In order to update the key on the security token a key distribution center and
a secure connection between the security token and the key distribution center
is required. The key management leads to a high burden for the security token
issuer.

• Incompatibilities: Although security tokens support common connection tech-
nologies platform incompatibilities can occur due to lack of drivers.

In summary, security tokens are a flexible solution for local cryptographic key storage.
The major advantage – in contrast to smart cards – is the connectivity by utilizing
common connection technologies. The only weakness of security tokens is that they
have some operating system incompatibilities.

3.1.3 Hardware Security Module (HSM)

A Hardware Security Module (HSM) is tamper-resistant cryptographic device that is
able to perform cryptographic operations and maintain cryptographic keys. The HSM
provides these functions through an Application Programming Interface (API). The
design of the HSM varies depending on the type from a plug-in PCI card to an external
device. However, the main purpose of the HSM is to keep the sensitive key material
secret whatever an attack is enforced on the device such as discussed by Anderson
et al. [1]. The FIPS 140-2 standard [41] provides a validation for HSMs. This validation
ensures that a FIPS proofed HSM guarantee a certain level of protection. The use cases
for HSMs are key generators and key storages for Certificate Authoritys (CAs), secure

30

3.2 Web-based Solutions

random generators for smart cards and functions wherever an accelerated cryptographic
operation is needed.

Strengths:

• Highest Security: The major strength of HSMs is the provided security level. The
tamper resistance ensure that an attack is not able to obtain any sensitive key
material.

Weaknesses:

• Restricted Scope: The only weakness of HSMs is that they are mainly used for
server applications. Thereby, they are not available for users to store keys and
perform cryptographic operations.

To sum up, the HSM is the best solution to protect keys from tamper attacks. Neverthe-
less, the main use case scenarios for HSMs are server applications and thereby private
users are not able to utilize them.

3.1.4 Summary

Smart cards, security tokens and Hardware Security Modules are the common solutions
to store keys in a tamper resistant environment. Especially smart cards and security
tokens have their strengths in usability and flexibility. However, the main limitations
of these solutions are platform incompatibilities and key distribution. Therefore, web-
based solutions were developed to mitigate these limitations. Most of the current
solutions for web-based key storage and cryptographic operations rely on HSMs. An
overview about the current solutions for web-based key storage is given in these
following section.

3.2 Web-based Solutions

Due to the limitations of cryptographic hardware solutions in terms of key distribution
and platform incompatibilities the leading industry has recognized that web-based
solutions for cryptographic key storage are necessary. Therefore, several companies
developed web-based cryptographic key storage solutions that mitigate the limitations
and offer authentication and signature creation. In this section we introduce the existing
solutions.

31

Chapter 3 Related Cryptographic Hardware and Web-based Solutions

3.2.1 Amazon Cloud HSM

The Amazon AWS CloudHSM service 2 was introduced by Amazon in 2013. Amazon
was the first provider that enables a user to use a Hardware Security Module (HSM)
appliance that is not installed locally.

By utilizing the Amazon Virtual Private Cloud (Amazon VPC) the full access to the HSM
can be enabled. In order to use the Amazon CloudHSM the user is responsible to set
up the HSM appliance. Thereby, that the user sets up the appliance Amazon is not able
to access or to obtain the cryptographic keys which are stored in the HSM.

In order to access the HSM appliance inside the Amazon VPC a mutual authenticated
Secure Socket Layer (SSL) connection is used.

The Amazon CloudHSM supports the common API standards such as PKCS11 [45],
Microsoft CAPI [9] and Java JCA/JCE [29].

3.2.2 Austrian Mobile Phone Signature

The Austrian Citizen Card [35] defines a signature concept, that combines the ability to
create qualified electronic signatures and to determine a citizen’s identity. As the citizen
card is technology neutral, various appearances are possible. One of these appearances
is the well known health insurance card which was introduced in 2004. Apart from
the citizen card concept a server-based solution for the signature creation and the
citizens identification exists since 2009. The Austrian Mobile Phone Signature 3 provides
an XML based interface for applications to access an HSM that stores all sensitive keys
of the Austrian citizens. The access to the appropriate key is protected by a two factor
authentication mechanism including a password as well as a One Time Password (OTP)
that is sent to the citizens mobile phone.

The Austrian Mobile Phone Signature offers the functionality for identification and
authentication and the ability to create qualified electronic signatures according to the
EU Signature Directive [15]. This signature is, as defined in the EU Signature Directive,
equivalent to the handwritten signature. Thereby, various government authorities as
well as banks accept authentication and signature creation with the Austrian Mobile
Phone Signature. The wide acceptance of the Austrian Mobile Phone Signature leads
to a user friendly solution that ensures the equivalent signature quality without any
limitations of card readers, platform incompatibilities and installation issues.

The signature creation of the Austrian Mobile Phone Signature technology is restricted
to the XMLDSig [12] scheme. Any creation of raw signatures as well as the ability to
perform basic cipher operations such as encryption and decryption is not permitted.

2http://aws.amazon.com/de/cloudhsm/
3https://www.handy-signatur.at/

32

http://aws.amazon.com/de/cloudhsm/
https://www.handy-signatur.at/

3.2 Web-based Solutions

More details about the Austrian Mobile Phone Signature are discussed by Orthacker,
Centner, and Kittl [43].

There are similar solutions to the Austrian Mobile Phone Signature available in Europe
such as the Norwegian BankID 4 and Italian server-based qualified signature 5 that also
provide the signature creation for their citizens.

3.2.3 SigningHub

SigningHub 6 enables the user to create advanced electronic signatures under sole
control of the signer. To access the cloud-based service SigningHub offers a REST-API
that allows an easy integration into existing solutions. The authentication is ensured
by supporting multi factor authentications solutions with OTPs, smart cards, tokens
and username/password. The used key material is maintained by SigningHub and
stored on smart cards or tokens. Furthermore, SigningHub proposes to provide a
Secure Signature Creation Device (SSCD) to produce qualified signatures.

3.2.4 Cryptomathic

Cryptomathic 7 offers authentication as well as the creation of digital signatures. The
authentication is guaranteed by supporting various authentication schemes such as
OTP solutions and multi factor authentication schemes. The sensitive keys are centrally
stored in an HSM. As well as SigningHub, Cryptomathic proposes to reach the SSCD
level to create qualified electronic signatures. Moreover, Cryptomathic allows the
integration into existing applications by an appropriate client that supports standard
signature formats such as PKCS# 1 [30], PKCS# 7 [32], XAdES [8], PAdES [14], CAdES
[13]. Furthermore, the integration in to web application is supported by a provided
applet.

3.2.5 Dictao

Dictao 8 provides – in contrast to SigningHub and Cryptomatic – only a solution for
authenticating and digital signature creation that have be integrated into an existing
enterprise service. Dictao supports multi factor authentication schemes as well as OTPs.
Furthermore, common digital signature formats such as XMLDSig, XAdES, CMS/PKCS#
7, S/MIME [46], PDF are supported.

4https://www.bankid.no/Dette-er-BankID/BankID-in-English/This-is-how-BankID-works/
5http://www.digitpa.gov.it/
6http://www.signinghub.com/
7http://www.cryptomathic.com/
8http://www.dictao.com/

33

https://www.bankid.no/Dette-er-BankID/BankID-in-English/This-is-how-BankID-works/
http://www.digitpa.gov.it/
http://www.signinghub.com/
http://www.cryptomathic.com/
http://www.dictao.com/

Chapter 3 Related Cryptographic Hardware and Web-based Solutions

3.3 Analysis

The above presented web-based key storage solutions provide an overview of the
available solutions. Although the discussed solutions provide a similar functionality
they have differences in their implementation. For instance, the Amazon CloudHSM
provides full access to a HSM which is not provided by the other solutions. In order to
get an overview of these differences and the characteristics of each solution we analyse
them by defining several criteria.

In the remainder of this section, at first we introduce the criteria and discuss their
importance. Afterwards, we classify each solution in considering of the criteria and
present a comparison.

3.3.1 Criteria

Although there are several solutions of web-based key storage solution with different
functionalities available they differ only in a few aspects. The following criteria show
the differences of the solutions.

Key Storage Solution: The key storage property considers the central storage of the
cryptographic key material. This criterion is essential, since the utilized key storage
solution effects the storage as well as the execution of the cryptographic in a crucial
way.
Possible key storage solutions are smart cards, security tokens or HSMs. Either of these
solutions is able to provide a high level of security. However, for web-based solutions
mostly HSMs are used.

Access Protection: In order to use a key storage solution such as a smart card or a
security token the user usually has to authenticate by presenting a secret, for example,
a PIN. The access protection criterion evaluates the sole control of the user.

Provided Functionality: Cryptographic key storage solutions offers the ability to
store cryptographic keys as well as the execution of cryptographic operations. The
supported cryptographic operations differ depending on the application area of the
solution. Mainly they offer XML based signature formats such as XMLDSig or XAdES.
Furthermore, some solutions support the raw signature creation or cipher operations
such as encryption and decryption.
However, the provided functionality respectively supported operation influence the
applicability of these solutions and is therefore an important criterion.

34

3.3 Analysis

Provided Interface: Basic prerequisites for cryptographic key storage solutions are
usability and flexibility to embed the solution into an existing application. However,
there exist several approaches to use respectively embed a web-based key storage
solution. A common way to utilize a web-based key storage solution is the usage of an
appropriate client. This client is responsible for the secure connection to the web-based
storage. Since a secure connection is established the client manages the data transfer.
However, such clients are mostly designed for specific platforms and therefore the
platform independence is not provided.
Another approach is the usage of an interface, that is accessible for web applications or
even local applications.

The provided interface criterion is essential to compare web-based key storage solutions,
however, a flexible interface is crucial for a broad application area.

3.3.2 Comparison

The above presented criteria can be used to compare the, in Section 3.2 introduced,
web-based key storage solutions. The comparison is shown in Table 3.1. Due to the fact
that almost every solution propose to use a central HSM to store the cryptographic
key material we omit the key storage solution criterion in the comparison. SigningHub
does not define the key storage solution, however, the usage of a Secure Signature
Creation Device (SSCD) implies the utilization of at least a smart card. Due to the low
relevance of these comparison we decided to omit this criterion in the overview to
enhance clarity.

The comparison of the introduced web-based key storage solutions shows that almost
every solution provide several authentication schemes from from username/password
over different kinds of OTPs to multi factor authentication schemes. Only the Amazon
CloudHSM needs a Virtual Private Cloud connection that is established by a provided
client.

The comparison of the functionality indicates that the most solutions offers authen-
tication and signature creation by supporting digital signature schemes. However,
SigningHub offers only the ability to create digital signatures. In contrast to these
solutions the Amazon CloudHSM offers full access to an HSM. Thus, the range of
cryptographic operations is not restricted.

The analysis of the interface property shows that two solutions require a certain client
to utilize the system. The Amazon CloudHSM is limited to the predefined Virtual Private
Network (VPN) connection between client and CloudHSM that is maintained in the
Amazon datacenter. Cryptomathic can be only accessed over an appropriate client or
by a provided applet. Dictao is limited to the environment on which it is deployed
and therefore cannot guarantee a flexible interface. In contrast to these solutions the

35

Chapter 3 Related Cryptographic Hardware and Web-based Solutions

Solution Access protection Provided Functionality Interface

Amazon CloudHSM VPC over client full HSM appliance client
not restricted

Austrian Mobile MFA with OTP authentication/ XML interface
Phone Signature signing (XMLDSig)

SigningHUB MFA, OTP, SC, signing (PAdES) REST API interface
UP, AT

Cryptomatic MFA, OTP authentication / client / applet
signing (XAdES,PAdES,

CAdES)

Dictao MFA, OTP authentication / restricted to
signing (XMLDSig, XAdES, environment

CMS/PKCS#7, S/MIME)

MFA – Multi factor Authentication

OTP – One Time Password

VPC – Virtual Private Cloud

SC – Smart Card

UP – Username - Password

AT – Authentication Token

Table 3.1: Comparison web-based key storage solutions

36

3.3 Analysis

Austrian Mobile Phone Signature and SigningHub provide an interface. These solutions
are not limited to any certain client.

3.3.3 Summary

The current situation shows that several web-based key storage solutions, that allow
authentication and signature creation, are available on the market. Especially the
functionality for signature creation is offered by almost all solutions such as the
Austrian Mobile Phone Signature, SigningHub, Cryptomathic and Dictao. In contrast
to these solutions the Amazon CloudHSM provides full access to an HSM. However,
almost every solution requires a client to utilize the provided functionality. Thereby the
possible use cases are limited. Only the Austrian Mobile Phone Signature and SigningHub
can be utilized without a client. A key fact of all of these solution is the availability of
a network connection. Without a network connection these solution cannot be used.
However, our solution, which is presented in the next section, remedy the limitations
of the above discussed solutions and provides a flexible, extensible and platform
independent server-based key storage.

37

Chapter 4

Skytrust System Design

The analysis of the existing web-based solutions for cryptographic key storage solutions
has shown that almost all of them offer authentication and signature creation. Only the
Amazon CloudHSM offer the full access to an HSM. Thereby, the range of cryptographic
operations is not limited and even cipher operations can be supported. Nevertheless, the
Amazon CloudHSM has disadvantages due to the limitation to a certain client. Without
this client the functionality of the HSM cannot be utilized.
To overcome the necessity of a client and the restriction to certain operations the
Skytrust project was started. The Skytrust project has the aim to provide a flexible,
extensible and platform independent key storage solution. In contrast to the existing
solutions the Skytrust system offers the full functionality of the cryptographic key
storage solution over a flexible interface. This ensures that the Skytrust system can be
utilized by arbitrary devices and platforms.

In this chapter at first, the concept behind the Skytrust system is discussed, by giving an
overview how the limitations can be mitigated and evaded. Second, the core element of
the Skytrust system is focused on. Third, the underlying transport protocol is covered.
Fourth, possible environments are introduced which are used in the basic prototype
that is presented in Section 4.5. Finally, a permission system is proposed that can be
utilized to restrict the access to the Skytrust system.

4.1 Basic Concept

The goal of the Skytrust system is to provide a flexible, extensible and platform inde-
pendent solution for cloud-based cryptographic services. In order to accomplish these
aims, the basic concept behind the Skytrust system is to break up the usual process of
the access to a cryptographic token or a service into a receiving component and an
acting component, as illustrated in Figure 4.1

The receiving component, called receiver, is the access point to the Skytrust system.
The receiver enables an arbitrary application to use cryptographic operations without
performing any of these operations. By providing an interface, any application is able
to use the Skytrust system such as a local cryptographic service. The only difference

39

Chapter 4 Skytrust System Design

Figure 4.1: Skytrust concept

between the local and the cloud-based solution is the place where the cryptographic
operation is executed or the cryptographic key material is stored. The application does
not recognize, if the cryptographic operation is executed on a local connected device,
for example, a smart card with smart card reader or on a cloud-based key storage
solution.

The real cryptographic operation is carried out on the acting element which is called
actor. The actor connects arbitrary key storage solution providers to the Skytrust system.
The principle task of the actor is to perform the cryptographic operation by utilizing
the functionality of the key storage solution. The key storage solution itself performs
the cryptographic operation and the maintains the cryptographic key material such as
a smart card, a Java Cryptography Extension (JCE) software key store, an HSM or a
cloud key storage provider.

With the above introduced Skytrust concept the proposed goals of flexibility, exten-
sibility and platform independence can be reached and a broad range of different
deployment scenarios are conceivable. A possible deployment scenario is, for example,
a local connected smart card that is accessed from an arbitrary application by a defined
receiver. In order to utilize a further key storage solution, for example, only a new actor
has to be attached that connects the key storage solution. The connected key storage
solution can be used without further modification of the Skytrust system.
Furthermore, the Skytrust system is not limited to a certain device. Due to the separa-
tion of the cryptographic process, the receiver and the performing actor do not need to
be necessarily on the same device. Thereby, the deployment scenarios can be extended
by remote actors. Such a remote actor can be utilized to perform arbitrary cryptographic
operations on another device, for example, a web application performs a cryptographic
operation on an HSM that is placed on a server. Moreover, this functionality can be even
used to offer cross platform encryption. Thereby, that various receiver types are able
to utilize the same actor such as an IOS application and an Android application that
access the same remote actor on a server, cross platform encryption can be established.
This is a major advantage, in contrast to the already existing solutions as presented in
Section 3.2.

However, the basic prerequisite for the usage of the remote actor solution is the
availability of a network connection. That is the main disadvantage of the remote
actor in contrast to local tokens such as smart cards and security tokens. The fact

40

4.2 Skytrust Element

that nowadays mobile networks are available almost everywhere this limitation is
significantly reduced.

Due to the possibility to access remote actors that provide cryptographic services, the
user has to be authenticated to determine which keys belongs to the user. Furthermore,
some key storage solutions need a secret, for example, a PIN, to unlock the key that
is used. In order to meet this requirements the Skytrust system has an authentication
component, as illustrated in Figure 4.1. This authentication component handles the
authentication process to authorize the user to the respective key. The authentication
component is decoupled from the receiver in order to prevent the unauthorized access
to credentials by the receiver respectively the application. This concept enhances the
security of the Skytrust system. A further advantage of the decoupled authentication
component is that various authentication schemes such as username/password, two factor
authentication methods or OAuth authentication can be supported easily. This guarantees
once again the flexibility and extensibility of the Skytrust system.

Summary: The Skytrust system is designed to provide a flexible, extensible and
platform independent solution to access a cryptographic key provider. The decoupled
concept enables a broad range of deployment scenarios from local elements to remote
elements, which is a major advantage to current solutions. Furthermore, the receiver
concept allows the easy integration of the Skytrust system into existing solutions
without using a special client, which is a major benefit. Finally the authentication
mechanism guarantees also a high level of security.

4.2 Skytrust Element

In order to implement the above mentioned concept of the Skytrust system a so called
Skytrust Element (SE) is used. It is the core element and realizes the, in the previous
section, mentioned receiver and actor concept. To gain flexibility and extensibility the
Skytrust Element is basically constructed in a modular way. Every entity in the Skytrust
Element extends the central module entity, as illustrated in the schematic structure
in Figure 4.2. In the remainder of this section we discuss the entities of the Skytrust
Element and point out their duties.

4.2.1 Receivers

The receiver module is the connector interface for an arbitrary application that wants
to use the Skytrust system. The connector interface provides a basic set of crypto-
graphic operations to the user. The following receiver types are planned and briefly
considered:

41

Chapter 4 Skytrust System Design

Figure 4.2: Skytrust Element

• API+ receiver
• WebIF receiver
• HTTP receiver
• HTML5 postMessage receiver

The API+ receiver is the standard API to perform cipher operations such as encrypt,
decrypt or sign/verify. The extension + offers additional operations to enhance the func-
tionality of the Skytrust system. This means to provide the possibility to perform more
complex operations, for example, block encryption mechanisms or to retrieve certificates.
The WebIF receiver provides support for a possible future web client.
The HTTP receiver is the connection point for possible other Skytrust Elements. That
receiver allows, with an according actor on the other Skytrust Element, to connect two
Skytrust Elements on different places and machines with each other. For instance, a
cloud key storage provider with a local Skytrust Element. A describtion of possible
Skytrust environments is discussed in Section 4.4.
Finally, the HTML5 postMessage receiver is the connection point for web applications
that uses the HTML5 postMessage channel to utilize the Skytrust system. We decided,
according to the principle of an extensible design, to enable the enclosure of supple-
mentary receivers. By implementing the receiver programming interface a developer is
able to integrate a new receiver to the Skytrust Element.

4.2.2 Actors

The actor module is responsible for linking an arbitrary key storage solution, which
stores keys and performs cryptographic operations, to the Skytrust system. The result
of the cryptographic operation is returned back to the corresponding receiver, which
has sent the request. In order to support extensibility additional actor modules can

42

4.2 Skytrust Element

be integrated as well. To accomplish that, every actor has to provide a basic set of
commands, for example, which cryptographic operations the actor is able to perform.
These methods are used to establish the functionality of the actor to the Skytrust
Element. We decided to support the following actors:

• HTTP actor
• JCE actor
• PKCS11 actor
• Smart card provider actor

The HTTP actor module connects a further Skytrust Element to the current Skytrust
Element. It is the corresponding module to the, above discussed, HTTP receiver. The
HTTP actor forwards an incoming transport packet to a further Skytrust Element. With
that actor it is possible to connect several Skytrust Element instances with each other.
Details on possible deployment scenarios can be found in Section 4.4.
The JCE actor module connects a Java Cryptography Extension (JCE) [29] software key
store solution to the Skytrust Element. This actor can be used to link different JCE
providers such as the IAIK JCE 1 provider to the Skytrust system.
A further actor is the PKCS11 actor. The Public Key Cryptography Standard (PKCS) [45]
represents an API that connects cryptographic tokens such as HSMs to the Skytrust
Element. This actor can be used to perform strong cryptographic operations in a secure
environment.
The last predefined actor is the Smart card provider actor that connects a smart card to
the Skytrust Element. That actor translates the Skytrust protocol commands, introduced
further down in Section 4.3, into corresponding Application Protocol Data Unit (APDU)
commands of the smart card.

4.2.3 Gatekeeper

In order to manage the access to the keys that are stored on the cryptographic key
storage a component called gatekeeper is utilized. The gatekeeper therefore stores
additional constraints for each key. These constraints determine, for example, if a user
has to be authenticated to use the key. In order to achieve this the gatekeeper inspects
a request that wants to perform a cryptographic operation with a restricted key and
verifies whether the requesting user is authorized. If the user is not authorized to access
the key, the gatekeeper enforces an authentication request. The authentication request is
performed by the authentication component, discussed further down. If the authentication
request is successful the gatekeeper unlocks the key to perform the desired operation.
Otherwise, the usage of the desired key is not allowed. Beside that, the gatekeeper
manages the successive use of the key. This means, that according to the additional
restrictions, the key can be used for subsequent cryptographic operations without a
further authentication. Therefore, the gatekeeper maintains a session identifier, which

1http://jce.iaik.tugraz.at/

43

http://jce.iaik.tugraz.at/

Chapter 4 Skytrust System Design

is included in the transport protocol, to determine if a reuse is allowed. If the session
identifier is expired, the user has to re-authenticate. More details about the session
identifier can be found in the Skytrust Transport Protocol Section 4.3.

4.2.4 Authentication

The authentication component is the entity that is responsible for user authentication.
As mentioned earlier, at the gatekeeper, a request is sent to authenticate the user to
verify whether the user is allowed to access the key. The authentication entity can
handle such a request from the gatekeeper. According to the type of authentication,
for example, PIN, the authentication entity displays an appropriate user interface. If
the authentication component is not able to handle the request type, it forwards the
request to the next Skytrust Element, which may able to handle the request. If no
further Skytrust Element is available the authentication component returns an error
to the gatekeeper. The supported authentication methods of the Skytrust system are
common methods such as username/password, PIN and OAuth.
A further task of the authentication component is to keep the entered user credentials
or the issued access tokens, from the OAuth provider, away from the utilizing applica-
tion. In order to meet that requirement the authentication component in the Skytrust
system is decoupled from the receiver and thereby from the application. Depending
on the environment conditions, the Skytrust system even allows the delegation of the
authentication process to a separate application. For instance, in case of a Skytrust
Element that runs on a smartphone the authentication process can be forward via
internal communication methods to an especially designed authentication application.
A further purpose of the authentication component is the secure storage of the session
identifier which represents the users authorization to use a selected key. As already
mentioned, at the gatekeeper, the Skytrust system allows the successive use of the key
without further authentication. In order to meet that requirement a session identifier
is attached in the transport protocol. If a response transport packet contains such a
session identifier, the authentication component stores it for further usage. Furthermore,
the authentication component also removes the session identifier from the transport
packet to prevent that the receiver respectively the utilizing application gains access to
the session identifier. In case of a new request the authentication component attaches
the stored session identifier to the transport protocol.

4.2.5 Packetizer

The packetizer component is responsible for encoding and decoding the transport
packets of the Skytrust Transport Protocol. Every module has access to this packetizer
to encode or decode incoming messages. Further details about the protocol and the
encoding and decoding can be found in Section 4.3.

44

4.3 Skytrust Transport Protocol

4.2.6 Router

The router is the central entity in the Skytrust Element. The main purpose of the router
is to forward incoming Skytrust Transport Protocol packets to the corresponding module.
We decided to keep the routing strategy as simple as possible. Depending on the
command, every actor of the Skytrust Element is checked whether the actor is able to
process the command or not. In case that no actor is able to process the command an
error is returned. In order to identify the Skytrust Elements on which the transport
packet was routed the router attaches the current Skytrust Element to the transport
packet.
The Skytrust system allows the connection of several Skytrust Elements with each
other. In order to support such complex networks the router has to be extended in the
future.

4.2.7 Summary

The Skytrust Element itself is a complex element with different modules that com-
municate with each other. The router, as the central entity, decides to which element
Skytrust Transport Protocol packets are directed. To maintain the platform independence
the modules encode and decode the transport messages by using the packetizer. The
receivers offers an interface of cryptographic operations to various platforms such as
programs or web clients. The real key providers which performs the cryptographic op-
erations and store the sensitive keys, are connected by an actor to the Skytrust Element.
The constraints of the available keys are regulated by the gatekeeper. In case of needed
authorization, the gatekeeper sends a request to authenticate the user. The authentication
process is executed by the authentication entity which performs the authentication and
returns it to the gatekeeper. To enhance security, the receivers are not able to access user
credentials from the authentication entity. The following section the Skytrust Transport
Protocol is discussed which is used to ensure the communication between the Skytrust
Element entities.

4.3 Skytrust Transport Protocol

The Skytrust Transport Protocol is the underlying communication protocol of the Skytrust
system to enable the transfer of messages between the Skytrust Element modules such
as receivers and actors, as well as Skytrust Elements itself. The purpose of the protocol
is to cover all necessary data, which is needed to carry out cryptographic operations,
authentication and routing. Therefore, the structure of the transport protocol is spit
into a world readable header part and a world readable or hidden payload part, as
illustrated in Figure 4.3. The basic idea behind this separation is to provide the ability
to encrypt respectively hide the payload for special use cases in the future such as end

45

Chapter 4 Skytrust System Design

to end encryption. We decided to leave the payload world readable to keep simplicity.
The communication is protected by HTTPS to prevent the interception of transport
protocol packets. As transport protocol format JSON [61] is used. The main reason for
that decision was the easy usage, the simple structure and the availability of JSON
libraries on nearly every platform [28].
The design of the presented protocol is subject to change to meet further deployment
scenarios in the future.

The remainder of this section is separated into the header part and the payload
part of the protocol. The header covers the information, that is needed to route the
transport packets between the Skytrust Elements or Skytrust Element modules. The
payload contains the data, which is needed to process the cryptographic operation, the
settings for the used algorithm, key informations as well as informations about the
authentication.

Figure 4.3: Skytrust protocol structure (Subject to changes)

4.3.1 Header

As mentioned, in the introduction, we decided to leave the header world readable. The
main reason for that was that, whatever routing strategy is used in the future, any kind
of information about sender, receiver or the path is needed. In the prototyping stage
we decided to add only a path parameter into the header. The path parameter contains
a list of Skytrust Elements on which the command packet was routed. The path list
is constructed by the router by adding the Skytrust Element name, as described in
Section 4.2.6. The constructed path list should state over which Skytrust Elements the
transport packet was routed. To route a packet back from the performing actor this
path is reversed. Thereby, the router is capable to return the packet back on the same

46

4.3 Skytrust Transport Protocol

way. Additionally to the path parameter a command identifier is enclosed to the header.
The main reason for that was to identify each packet by a uniform identifier during the
transportation over several Skytrust Element entities and the ability to map command
packets together. If authentication is necessary for a certain request the gatekeeper
sends an authentication request which contains the command identifier of the initial
request. The response of the authentication component also contains the command
identifier. Thereby, the mapping between the initial request and the authentication
response can be established. To keep the identifier unique a pseudorandom number
is used. In the future this number can be possibly replaced by a combination of a
pseudorandom number and a time stamp which is hashed by a hash function such as
SHA256. A further parameter that is placed in the header is the Skytrust Session Identifier.
The session identifier identifies the authenticated user as well as the corresponding
key, which was used. This session identifier is used to perform subsequent operations
without further authentication. The execution of subsequent relies on the constraints of
the key. More on the subsequent execution of cryptographic operations can be found in
Section 4.6. Since we decided to keep the payload world readable in the prototype stage
the payload can be used to determine to which target actor the transport packet should
be directed. However, as mentioned above, in the future some further parameters are
necessary to enable an appropriate routing.

4.3.2 Payload

The payload contains, in contrast to the header, all data and information that is needed
to perform the cryptographic operation, to handle the authentication or to perform the
key discovery. The first element in the payload of the Skytrust Transport Protocol is the
type which defines the type of the packet. The type distinguishes whether the transport
packet is a request or a response. Based on this type the further payload elements differ,
as illustrated in Figure 4.3.

The request payload contains at first a command that specifies which operation should
be performed on the target actor. The command parameter is mandatory, otherwise
no operation can be carried out. Available commands are the basic cryptographic
operations such as encrypt, decrypt, sign, as well as the commands to retrieve public
keys and user certificates from the key provider, and also commands for authentication.
The first optional request payload parameter is the algorithm parameter. This parameter
specifies which cipher algorithm is used to encrypt, decrypt or sign the enclosed data.
Thereby, that not every command requires an algorithm, for example, retrieve certificates
the parameter is optional. In order to provide flexibility the algorithm parameter is
defined as a collection of entries. Which implies, that more entries are associated under
the parameter. Possible sub entries of the algorithm parameter are the name of the
algorithm and additional specifications that are needed to execute the algorithm, for
example, the modulus length. The second optional parameter is the key parameter. This
parameter is, equal to the algorithm parameter, a collection of sub entries. The key

47

Chapter 4 Skytrust System Design

parameter defines, which key should be used on the target actor. At the moment only
the key identifier is fixed as sub entry of the key parameter. Any further parameters are
possible. The authinfo collection is the next parameter, that is defined in the request
protocol. The parameter is associated with the authenticate command. As mentioned, at
the gatekeeper, an authentication request is sent to authenticate the user to verify, if the
user is authorized to use the desired key. Therefore, the collection contains parameters
which define what authentication scheme is needed as well as in case of a possible
Oauth authentication, where the authentication server is reachable. Finally, the request
protocol part contains the load parameter, which contains the plain data for encryption
and signing or the encrypted data for decryption. In order to provide compatibility to
a broad range of applications the data is encoded in BASE64 [31].

The response payload contains – in contrast to the request payload – other parameters
as mentioned above. The main reason for the separation is to keep the protocol as
simple as possible and to keep the protocol short to enhance readability. The first
parameter in the response payload is the code parameter. This parameter indicates,
whether the request was successful or not. As return status values HTTP status codes
[17] are used. The HTTP status codes are widely spread and well known. The next
parameter is the optional authentication parameter. That parameter is a collection of
several sub entries that contains the authentication credentials, which were collected
by the authentication component. The load parameter contain, similar to the request
payload, the data.

4.3.3 Summary

The Skytrust Transport Protocol is the underlying communication layer between the
Skytrust Element modules and several Skytrust Elements. The availability of JSON
libraries on almost every platform ensures the flexibility to distribute Skytrust Elements
on various devices. In order to enable the possibility for end to end encryption in
further consequence, the protocol is subdivided into a header and a payload part. The
header is world readable to ensure the correct routing between elements. The payload
is contains the data that is needed to perform the desired operations. In order to keep
the protocol short and simple a separation between request messages and response
messages is done. The compactness of the protocol enables the extension of the protocol
in further consequence, to cover further deployment scenarios.

4.4 Skytrust Environments

In the recent years the demand for web services has strongly increased. Today, web
services are no longer limited to the storage of data, however, even the processing of
these data is possible. Commonly these web services are executed in a web browser. In

48

4.4 Skytrust Environments

order to provide encryption and decryption of data in web applications the encryption
and decryption process has to be carried out inside the browser environment. The
development of the W3C Web Cryptographic API [55], a JavaScript based cryptography
library, enables the ability to perform these cryptographic operations. However, the
major issue of encryption in the browser environment is the secure storage of crypto-
graphic keys which is not supported by the current web browsers.
In order to solve the secure key storage problem the above presented Skytrust system can
be used. In order to enable the integration of the Skytrust system in to existing web ap-
plications, we introduce two basic environments. The Skytrust Server Environment (SSE)
provides the central cloud-based key storage solution that can be utilized to store the
cryptographic keys of the user. To integrate the Skytrust Server Environment (SSE) into
the existing web application the Skytrust Client Browser Environment (SCBE) is used.

This section briefly focuses on the two basic environments.

4.4.1 Skytrust Server Environment

The Skytrust Server Environment (SSE) is the an environment on which the, in the
previous section introduced, Skytrust Element (SE) can be placed. By deploying the
Skytrust Element (SE) on a web server environment, the cloud-based solution for key
storage can be supported by the Skytrust system. The web server, based on a REST
structure, offers an API to other Skytrust Elements to perform cryptographic operations
on trusted components such as an HSM or a smart card. The basic structure of this
server environment is illustrated in Figure 4.4.

To ensure a secure connection between the requesting Skytrust Elements and the server
environment the HTTPS protocol is used. Moreover, the server contains additional
components such as a User database to authenticate the user which wants to access the
Skytrust system and to link the appropriate keys that are stored in the cryptographic
key storage solution to the user. A further component of the server is the OAuth Authen-
ticator, which is responsible for requesting the user credentials at a supported OAuth
provider such as GoogleOAuth 2. The authenticator establishes a secure connection to
the resource server and retrieves by presenting an access token the desired credentials.
Furthermore, a session management is provided to enable stateful connections to the
requesting Skytrust Elements.

All in all, the Skytrust Server Environment is Skytrust Element that provides the func-
tionality of strong cryptographic key storage solution to several Skytrust Elements by
presenting a REST interface.

2https://developers.google.com/accounts/docs/OAuth2

49

https://developers.google.com/accounts/docs/OAuth2

Chapter 4 Skytrust System Design

Figure 4.4: Skytrust Server Environment (SSE)

4.4.2 Skytrust Client Browser Environment

The Skytrust Client Browser Environment (SCBE) is an extension of the, in the previous
section discussed, Skytrust Server Environment. It provides the functionality of the
cryptographic key storage for local web applications that are executed in a user agent,
for example, a web browser. An overview of this environment is illustrated in Figure
4.5.

The Skytrust Client Browser Environment (SCBE) is deployed in a web page, which
can be easily embedded into an arbitrary web application by an inline frame (iframe).
The advantage of this solution is that the SCBE web page is deployed on a trusted
web server, which uses the secure HTTPS protocol to communicate with the Skytrust
Server Environment. In particular, the SCBE exposes the API of the Skytrust Server
Environment, to forward or to process commands itself. Therefore, the SCBE web
page includes a Skytrust Element. The platform independent concept of the Skytrust
Element design permits to construct such a JavaScript based element. The Skytrust
Element offers, by the prepared HTML5 postMessage receiver, an interface to the web
application, which is able to utilize cryptographic operations that are performed on
the server environment. Furthermore, the Skytrust Element of the SCBE web page is
capable to integrate JavaScript based cryptographic libraries such as the W3C Web
Cryptography API, by incorporate appropriate actors. This library can be used to provide
hybrid encryption. In particular, the CryptoAPI generates a temporary symmetric key
that is utilized to encapsulate the data. The temporarily generated symmetric key is

50

4.4 Skytrust Environments

Figure 4.5: Skytrust Client Browser Environment (SCBE)

afterwards encapsulated with an asymmetric public key of the user, which is stored
on the SSE. After the encryption the encapsulated symmetric key and the encrypted
data are stored in a container format, for example, S/MIME and returned to the web
application. Thereby, that the encapsulated symmetric key is stored in conjunction with
the data, no key has to be stored in the user agent respectively the browser. In order to
decrypt a container file, at first the encapsulated temporary symmetry key is separated
from the encrypted data. Afterwards the encapsulated temporary symmetric key is
decrypted at the SSE with the private asymmetric key of the user. In order to use the
private asymmetric key, authentication is needed. This authentication is performed
by the SCBE web page which contains an authentication component. By displaying an
input form for user credentials or opening a redirection window to a supported Oauth
provider, the SCBE web page is capable to perform the authentication. The decryption
of the data can be also performed in the SCBE web page.

The integration of Skytrust system into an existing web application is realised by
embedding the SCBE web page into a web application as an inline frame (iframe). The
security mechanisms of the browser such as the Same Origin Policy (SOP) ensures
that an unauthorized access of the embedded SCBE web page is prevented. The
communication to the SCBE web page is restricted to the HTML5 web messaging
standard. This standard permits the controlled communication between frames of
different origins (scheme, host and port). In order to use the SCBE web page iframe
through the HTML5 communication channel a Skytrust Element is embedded into the
web application. The web application is able to use the Skytrust system by utilizing a

51

Chapter 4 Skytrust System Design

provided receiver, for example, a W3C Web Cryptography API receiver. Thereby, that
the web application utilizes the provided receiver the hybrid encryption scheme of
the SCBE and SSE can be abstracted. The advantage of this solution is that the web
application does not recognise that a hybrid encryption scheme is used. This solution
enables the integration of the Skytrust system into various applications that utilize the
W3C Web Cryptography API.

In order to use the SCBE and SSE environment a comprehensive security analysis
has to be conducted to understand the risks of such a system. Thereby, that the data
encryption is performed in the browser environment and keys are transferred between
SCBE web page and the SSE an unauthorized access has to be prevented. The detailed
security consideration of the presented environments is conducted in Chapter 5.

4.4.3 Summary

The Skytrust Server Environment and the Skytrust Client Browser Environment illustrate the
simple integration of the Skytrust Element into different environments and deployment
scenarios. Especially the Skytrust Server Environment is a general environment that can
be used and integrated in various other scenarios. In consideration of the ability to allow
cross domain key encryption the server environment has a central part. Beside that, the
Skytrust Client Browser Environment is a very specific environment that is designed for
the integration into an existing web service. Thereby, that no key has to be stored in the
browser, the secure storage limitation of the browser can be removed. The flexibility
of the Skytrust Element enables therefore a broad range of field of application. This
addresses the opportunity for further environments such as a Skytrust Element on
smartphone, which supports the local Near Field Communication (NFC) technology to
perform cryptographic operations.

4.5 Basic Prototype

In order to demonstrate the fundamental functionality, flexibility and extensibility of
the, in the previous section introduced Skytrust Server Environment (SSE) and Skytrust
Client Browser Environment (SCBE), we implemented a basic prototype as illustrated in
Figure 4.6. This basic prototype uses both environments and accesses the cryptographic
key storage solution on the server over the HTML5 postMessage interface. To check out
the functionality a simple HTML web page was set up, to send appropriate commands
to the interface. In this section we depict how typical cryptographic operations, as for
instance encryption, decryption or retrieve a certificate respectively retrieve a public key,
are performed by the Skytrust system. Security related issues, which came up on the
communication between the web application and the, via an inline frame embedded,
SCBE web page over HTML5 postMessage channel are covered further down in Chapter
5.

52

4.5 Basic Prototype

Figure 4.6: Basic prototype

4.5.1 Prototype Structure

At first we set up the Skytrust Server Environment (SSE) and the Skytrust Client Browser
Environment (SCBE) web page on a web server and implemented a REST interface. Since
the prototype is only constructed to demonstrate the control flow and the functionality
of the Skytrust system, we reduced the components of each Skytrust Element to the
essential parts. Therefore, the Skytrust Server Environment contains only one actor which
is a JCE software key store. The JCE performs the cryptographic operation and stores
the cryptographic key material. As receiver the HTTP receiver interface is used, and
accessed over the REST interface. The Skytrust Client Browser Environment web page
is set up on the same web server. The communication between SSE and SCBE web
page is established on the server by the REST API and on the web page by the HTTP
forwarder. In order to reduce the server implementation effort, we decided to deploy
the SSE and the SCBE on the same server. In case of different origins, adaptations
due to the Cross Origin Resource Sharing (CORS) have to be considered and raise the
effort, which is not needed for demonstrating the functionality. The SCBE web page
accommodates beside the HTTP forwarder only an HTML5 postMessage receiver – which
represents the interface to the web application – and an authentication component. The
authentication component uses the HTML5 session storage of the browser, to store the
session identifier. The usage of the HTML5 session storage of the web browser to store
the session identifier has security issues. However, the secure storage of the session

53

Chapter 4 Skytrust System Design

identifier was not scope of this work. Moreover, we set up a simple HTML web page
on another web server which embedded the Skytrust system by including the SCBE
web page as inline frame (iframe). The main task of the simple web page was to send
appropriate HTML5 postMessage commands to the SCBE web page to simulate the
functionality of the Skytrust system.

4.5.2 Control Flow

In order to initiate a command such as to retrieve a certificate, an appropriate Skytrust
Transport Packet is created and sent over the HTML5 postMessage channel to the SCBE
web page, called SCBE iframe. At the SCBE iframe the origin check of the HTML5

postMessage channel communication is done. If the origin check is valid the packet is
forwarded to the authentication component. If any session identifier is stored in the
HTML5 session storage, the session identifier is added to the transport protocol by the
authentication component. Afterwards the packet is sent over the HTTP forwarder to
the server. On the server the received packet is forwarded to the HTTP receiver, which
validates the packet structure and directs it, in case of validity to the Router. If the packet
structure is invalid an error transport packet is returned to the SCBE iframe respectively
the web application. In order to detect if authentication is needed, the transport packet
is verified by the gatekeeper for a possible session identifier. If the session identifier
is valid the packet is forwarded to the JCE actor. Otherwise the packet is stored in
a queue and an authentication request is sent. This request is delegated back to the
SCBE iframe, which is able to perform the authentication process. The authentication
component inspects the authinfo parameter of the transport packet and opens a window
to the appropriate OAuth provider. After the successful authentication at the OAuth
provider the returned access token is sent back to the server. At the gatekeeper the OAuth
authenticator is used to retrieve the retrieve the credentials at the OAuth provider. If the
credentials are correct a new session identifier created by the gatekeeper and added to
the stored initial packet. Then the packet is forwarded to the JCE actor. At the JCE key
store the cryptographic operation is performed and the result is sent back to the router.
In order to sent the packet back on the same way it came the path parameter of the
protocol header is inspected and forwarded to the appropriate receiver. On the SCBE
iframe the transport packet is directed to the authentication component to maintain the
session identifier for a further request. Afterwards the packet is returned to the web
application.

To sum up the control flow shows the separation of the cryptographic operation and the
authentication process from the web application. Any security relevant cryptographic
operation is decoupled from the insecure web application and performed on a secure
environment. Moreover, the authentication is executed by the authentication component
in the Skytrust Client Browser Environment web page, called SCBE iframe by using
an external OAuth provider. This prevents the access of the web application on user

54

4.6 Application Permission System Concept

critical data or keys. A comprehensive security analysis of this prototype is provided
by Chapter 5.

4.6 Application Permission System Concept

In this section we propose a general Application Permission System Concept for the
Skytrust system. Permission systems are widely spread and used to restrict the access
of applications to an API. In order to allow an application access to a specific API
the user is prompted. However, the major drawback of this solution is that the user
always tends to grant the application the access rights. This results from the fact that
the prompted permissions are to complex and the user is not able to decide whether
the permissions are correct.

Barrera et al. [2] analysed the Android Permission system by analysing over 1100

applications and showed that most of the application utilize a subset of the available
permissions. A further issue they covered was that these permissions mostly inaccurate.
They propose to provide a finer granularity for these frequent used permissions.

Smetters and Good [56] analysed access control features for document sharing. Smetters
and Good covered that it is important to limit the flexibility of the permission system
to simplify use.

Due to the fact that the Skytrust system performs security critical operations, a precise
but even clear permission system has to be provided. To accomplish that goal, we
analysed the Skytrust system to identify the key factors that should be considered for
such a permissions system.

The remainder of this section is separated into the following subsections. The first
subsection discusses the basic idea behind the application permission system as well
as the influence factors. The second section describes the determined factors and how
they can be used to derive appropriate permissions. Finally, an example how such a
derived permission table can look like, is presented.

4.6.1 Basic Idea

The basic idea behind an Application Permission System is to enforce constraints under
which an arbitrary application can use an interface. Therefore, many influence factors
have to be considered. Such factors are the application as well as the environment
on which the application is running. The application permission system joins all
these factors to manages the access to a programming interface. The Skytrust system
differs from a standard programming interface in that way that it allows the access to
cryptographic keys. Thereby, the execution environment, from which the cryptographic
keys are used, has to be considered. For instance, a web application that utilizes a

55

Chapter 4 Skytrust System Design

particular key has to be considered differently as a local application that is executed in
a secure environment. In order to cope with the extended requirements, we decided to
combine the application permissions with the still available key permissions to derive
accurate constraints for each key in each environment respective on each application. In
particular the existing gatekeeper is used to derive, on basis of the key and application
permissions, appropriate constraints for an arbitrary application that uses a specific
key.

In this section we deduce the basic constraints for the permission system. First, the Key
Permissions are discussed in detail, which were introduced at the gatekeeper. Second, the
core factors that influence the application permissions are considered.

Key Permissions

The Key Permissions restrict the access to a particular key that is managed by the key
storage provider. In order to manage the restriction we decided that each key has
to be unlocked before the cryptographic operation can be performed. That means,
whenever the user wants to perform a cryptographic operation with a specific key,
authentication is needed. However, this procedure is not very comfortable, in case
of several successively performed operations. Therefore, the key permissions should
allow successively operations and take into account the restriction of the key usage.
In order to cover these restrictions we defined the key permissions that are illustrated
in Table 4.1. The key permissions define for each key, identified by a key identifier, an
authentication type, a duration and further credentials. The authentication type determines
which authentication scheme is used to unlock the key. The duration defines the time
how long respectively how often a key is usable before the user has to re-authenticate.
And the credentials parameter is designated for further values that are needed to
perform operations with the key.

key identifier auth type duration credentials

uid PIN, OAuth, U/P times / minutes -

Table 4.1: Key permissions

Derived Core Factors

In order to define accurate permissions for the Skytrust system we analysed the Skytrust
system itself to determine the core factors which influence the cryptographic operation
by an arbitrary application. The result of this analysis is presented in this section.

56

4.6 Application Permission System Concept

Operation Factor: The first factor we derived as core factor is the operation itself. The
main reason for that fact is the key type that is used by the cryptographic operation.
Depending on whether the private asymmetric key or the public asymmetric key is
utilized by an operation the critical level of the operation has to be distinguished.
Thereby, that the private asymmetric key is secret and cannot be extracted from the
Skytrust system, operations that utilize the private key are critical. Operations that
utilize the public asymmetric key are public and can be extracted from the Skytrust
system are therefore less critical. The following operations, illustrated in Table 4.2, are
summarized by the operation factor:

encrypt: The encrypt operation encrypts plain data or keys by utilizing the public
asymmetric key of the user.

decrypt: The decrypt operation decrypts encrypted data or keys by using the private
asymmetric key of the user.

sign: The sign operation creates a signature of the data. This is accomplished by calcu-
lating a hash value of the data which is encrypted with the private asymmetric
key of the user.

Furthermore, the additional operations such as retrieve one or all certificates respectively
public keys are also added to the operation factor. The collected elements of the operation
factor are illustrated in Table 4.2.

Factor Elements

Operation encrypt
decrypt

sign
getKey/Cert

retrieveKeys/Certs

Table 4.2: Operation factor

Environment Factor: A further factor that is relevant for an application permission
system is the surrounding environment in which the application is executed. The
surrounding environment influences the security of an application in an extensive way.
Applications which are executed in an insecure environment such as a smartphone
environment, are more vulnerable than applications which are executed in a secure
environment such as applications on a local machine. These differences have to be
considered by an application permission system. We distinguish the following, in Table
4.3 shown, environments:

local: The local entry defines a local application that is executed on a common personal
computer or a laptop.

57

Chapter 4 Skytrust System Design

Factor Elements Attributes

Environment Local -
Mobile Operating system (iOS, Android,...)

Web Origin

Table 4.3: Environment factor

mobile: The mobile entry summarizes mobile application that are executed on a mobile
phone platform, such as iOS or Android.

web: The web entry is utilized for web application that are executed in a user agent
respectively a web browser.

Furthermore, the Attibutes column specifies additional information that can be used to
identify the environment from which a request was sent. More about the usage of this
factor can be found in Chapter 5.

Authentication Factor: Another factor that is important for an application permission
system is the authentication type which is used to authenticate to the application.
Moreover, a developer should be able to define how long respectively how often the
user is able to use application before the user has to re-authenticate. We distinguish the
following, in Table 4.4 illustrated, authentication schemes:

Factor Elements Attributes

Authentication PIN
duration / timeOAuth

UN/PW

Table 4.4: Authentication factor

PIN: The PIN element considers entering a pin or secret code to gain access to an
application.

OAuth: The OAuth entry considers different OAuth schemes to authenticate to an
application.

UN/PW: The UN/PW entry abstracts username / password authentication schemes.

Developer Factor: Finally, even the status of a developer should be included as a
factor in the permission system. A trusted developer with many experience has a higher
confidentiality than a developer that registers at online web from to gain access to the

58

4.6 Application Permission System Concept

Skytrust system. The difference between such developers have to be considered. The
different developer status types are illustrated in Table 4.5.

Factor Elements Attributes

Developer highly trusted
-medium trusted

low trusted

Table 4.5: Developer factor

In this section, we discussed the basic idea behind an application permission system.
First, we presented the in the Skytrust system still available key permission system, that
is enforced by the gatekeeper. Second, we determined the core factors that have to be
considered for an application that performs cryptographic operations on the Skytrust
system.

4.6.2 Derived Permission System

In this section, the permission concept is presented that includes all determined factors
of the previous section. Moreover, the derivation of the permissions is presented.
Furthermore, a simplified representation of the permission concept is outlined, that is
shown to the user before the Skytrust system is accessed.

In order to derive appropriate permissions for each key and application, we decided to
categorize each factor into three critical levels. This permits an abstract view on every
factor and enhance a simpler derivation of the permissions. These levels define how
critical a key or environment is. For instance, a low critical key means that the key can
be used for arbitrary operations. On the other hand a high critical key should only be
used in a highly trusted environment.

Key Categories: In order to categorize the key permissions into three critical levels
we use the duration parameter. The duration parameter defines the duration time or
count how long or often a key is state unlocked to perform cryptographic operations.
Furthermore, this parameter can be used to determine the confidentiality of the key.
For instance, a key with a long duration time is less critical than a key with a short
duration time. Table 4.6 shows the boundaries we defined for the critical levels. Note,
that the boundaries are only guidelines to classify appropriate levels.

59

Chapter 4 Skytrust System Design

duration critical level

1-5 min / 10 times high
6-30 min / 11-50 times medium
> 30 min / > 50 times low

Table 4.6: Key security levels

Environment Categories: The classification of the environment depends on how
trustworthy an environment is on which the application is executed. We defined
that local applications that are executed on a local machine are less critical than web
applications that are executed in a user agent such as a web browser. Furthermore, we
categorized the smartphone environment as medium critical. However, the main reason
for this decision was that smartphone operating systems not always up to date. This
issue is particularly relevant for the Android operating system as discussed in Android
Fragmentation Report 3. The environment critical levels are presented in Table 4.7.

Environment critical level

local low
smartphone medium

web application high

Table 4.7: Environment critical levels

Operation Categories: In contrast to the environment and the key factor the operation
factor is categorized in operations groups. Since every operation uses another type of
key, for example, the encrypt operation uses the public key and the decrypt operation
uses the private key, the categorization of the operations is based on the key type.
The categorization of the operations is illustrated in Table 4.8. The no group contains
operations that perform no operation with the key. Hence, we categorized the retrieve
key operations into this category. Furthermore, we categorized the encrypt operation
into the public group and the decrypt and the sign operation into the private group. Based
on this groups we defined the critical levels.

3http://opensignal.com/reports/fragmentation-2013/

60

http://opensignal.com/reports/fragmentation-2013/

4.6 Application Permission System Concept

Group Elements critical level

no
getKey / getCert

low
retrieveKeys / retrieveCerts

public encrypt medium

private
decrypt

high
sign

Table 4.8: Operation groups

Permissions Derivation

In order to derive the accurate permission for a particular key, the key permissions and
the application permissions are combined by the following derivation rules. However,
this set of rules serves only a basis and have to be modified in future to permit more
granularity depending on the particular deployment scenario and use case.

1. Authentication type
If the authentication type of the key and application does not match, the key
authentication has to be performed anyway. In case of an identical authentication
scheme the key authentication can be omitted.

2. Authentication duration
The key duration has priority over the application duration. However, if the
duration of the application is shorter than the duration of the key, the application
duration has priority.

Beside these rules the following suggestions can be considered:

• Environment Influence
The security level of an application environment reduces the duration of the key
usage. This prevents the possibility that a high security key is unlocked for a long
time in an insecure environment. We propose to reduce the duration time of a
medium environment application by half and the for a low environment to a
privilege elevation for every request.

• Developer Influence
The confidence level of the developer restricts the key usage. An application
which is developed by a, for example, low trusted developer is not permitted to
utilize high critical keys.

• Low Environment Influence
Applications that are executed in a low security environment and utilize keys
with a high security level have to be granted. Therefore, we propose to prompt a
separate notification to the user to grant the execution with such a critical key.

61

Chapter 4 Skytrust System Design

Application Grant

In order to inform the user about the restrictions of the application the above derived
security levels are used. Figure 4.7 shows a possible Application Grant notification. The
notification obtains the security levels from the appropriate levels in the application
permission system to inform the user about the properties of the application.

Figure 4.7: Application grant notification

The Application Grant notification 4.7 can be interpreted as follows:

• The web application TestApplication requests access to the Skytrust Server.
• The web application is executed in a web browser and therefore the Environment

critical level is high.
• The web application utilizes operation which use the public and the private key

of the user.

62

4.6 Application Permission System Concept

4.6.3 Permission Concept - Example

In this section, we illustrate possible entries for the key permissions, shown in Figure
4.8, and entries for the application permission entries, shown in Figure 4.9.

Figure 4.8: Key permission table

Figure 4.9: Application permission table

A derived entry in the final permission table, shown in Figure 4.10, for a particular key
and a particular application can be interpreted as follows:

• Emailkey1 is used by the smartphone application Test.
• The emailkey1 has to be unlocked by entering a PIN and can be reused 3 times.

The derived critical level of the key is high.
• Application Test utilizes a username / password authentication scheme and allows

the user to use the application 10 minutes before the user has to re-authenticate.
The derived environment critical level is medium.

• The application Test utilizes the retrieve certificates / keys, encrypt and decrypt opera-
tions. The derived operations critical level is high.

• Thereby, that the application Test is a smartphone application the duration of the
Emailkey1 is reduced by half. This results in a key duration of one. In particular,
each operation with Emailkey1 such as encrypt or decrypt has to be granted by the
user.

63

Chapter 4 Skytrust System Design

Figure 4.10: Derived permission table

Summary: In this section an application permission concept was presented that
allows the combination of key permission and application permission. Furthermore,
classification categories to simplify the deduction and to provide a simple representation
for the user were presented. Although the combination of the key permission and the
application permission provide a more precise configuration of the access of application
to appropriate keys, this advantage leads in complex deriving rules.

4.7 Summary

In this chapter we presented the Skytrust Element and its broad range of deployment
scenarios. The flexible, extensible and platform independent concept was demonstrated
by a prototype which contains two possible environments on which a Skytrust Element
can be engaged. Furthermore, a possible Application Permission System which allows the
precise restriction of accessing applications to keys, was presented. In the following
section a comprehensive security analysis on the outlined Skytrust Element respective
the presented prototype is provided.

64

Chapter 5

Security Analysis

In this chapter a comprehensive security analysis on the Skytrust system is given.
Web services that offer the ability to store and process data gained high relevance in
the past years. These web services are mostly utilized by web applications which are
executed in a user agent respectively a web browser. Thereby web browser becomes
a central element in the web application scenario. In order to enable the ability to
perform cryptographic operations on the processed data of the web applications, the
Web Cryptography API [55] was developed. However, the main problem of cryptographic
operations that are executed in the web browser is that web browsers are not capable to
provide a secure key storage. To solve the secure storage problem the Skytrust system can
be utilized. The Skytrust Server Environment and the Skytrust Client Browser Environment
enables the integration of the Skytrust system into existing web applications. However,
the execution of cryptographic operations in the browser context as well as the transfer
of data between frames and environments enables the possibility to enforce attacks.

In order to understand the risks of the Skytrust system in a web application scenario, a
comprehensive security analysis to determine core assets, threats and countermeasures
is conducted.

The foundation how to conduct the threat modelling and the risk analysis is taken from
[5] and [38].

The remainder of this section is structured as follows. First, the underlying scenario of
the security analysis, the work flow and assumptions on this scenario are presented.
Second, the core assets are defined and categorized into three categories. Afterwards
five attack scenarios are defined and discussed by pointing out the threats, the counter-
measures and the residual risk. Finally a concluding summary is given.

65

Chapter 5 Security Analysis

5.1 Scenario

The underlying scenario, which is used to analyse the Skytrust system, is based on
Skytrust prototype which was presented in Section 4.5. The scenario, illustrated in
Figure 5.1, simulates a web application that utilizes the Skytrust system for hybrid data
encryption.

Figure 5.1: Security analysis scenario

The hybrid encryption scheme enables the execution of the data encryption in the
browser and the key encryption on the server. Thereby, that the symmetric AES key is
sealed with a secure stored key of the cloud-storage solution, the symmetric AES key
must not stored in the browser. In order to enable this scenario the Skytrust Server
Environment (SSE) is used. The SSE connects a software keystore which contains
the private sensitive key material of the user. This server is provided by a trusted
institution at Domain A and it can be reasonably assumed that only the authorized
user has access to the appropriate keys. Moreover, the server provider manages all
accessing web applications that are able to access the system. In order to access the
server also a trusted Skytrust Client Browser Environment (SCBE) web page on Domain A
is provided that can be embedded into the web application as an inline frame (iframe).

66

5.1 Scenario

Skytrust Client Browser Environment (SCBE) web page offers an HTML5 postMessage
interface for the Web application on Domain B. Furthermore, the Skytrust Client Browser
Environment (SCBE) web page ensures the symmetric data encryption and decryption
by a connected JavaScript Web Cryptography API as well as asymmetric encryption and
decryption of the symmetric AES keys by the trusted server over an HTTPS connection.
As the Skytrust Client Browser Environment (SCBE) web page is embedded as an iframe,
it is decoupled of the web application and can be used for secure user authentication.

5.1.1 Workflow

In order to get a clear picture of how the above scenario works a detailed description of
the workflow is given. The first phase of interaction is the loading of the web application
and the embedded SCBE web page as iframe into a client, respectively a browser. After
that step the user is able to encrypt plain and decrypt encrypted data. Regardless
of which function is requested, a transport packet is created. The transport packet
encloses the function, the plain or encrypted data and additional information which is
forwarded over the HTML5 postMessage channel to the iframe respectively the SCBE
web page. At the SCBE web page the appropriate function and data is processed. In case
of an encryption call the plain data is encrypted by a random AES key that is generated
by the Web Cryptography API. Afterwards, the AES key is encrypted on the server with
the public RSA key of the receiver. The encryption of the AES key with the public RSA
can be also operated in the SCBE web page, however, the public RSA key of the user
can be retrieved from the server. After the symmetric key encryption the encrypted data
and the encrypted AES key are returned to the web application in a container format, for
example, S/MIME. Thereby, that the encrypted AES key is stored with the encrypted
data, the AES key can be deleted in the browser.

In order to decrypt the encrypted data from the web application the previous process
is reversed. At first, the encrypted AES key is decrypted at the server. Contrary to the
encryption process the decryption process has to be carried out on the trusted Skytrust
Server Environment, as the private RSA key must not leave the server. Furthermore, an
additional authentication is needed to authorize the decryption of the encrypted AES key
with the private RSA key of the user. The authentication step is performed by the SCBE
web page by redirecting the user to an OAuth provider to enter the credentials. The
returned access token from the OAuth provider is forwarded to the server to unlock the
private RSA key. The server itself requests with the access token at the OAuth provider
in order to receive the authorization for unlocking the key. If the user is authorized to
unlock the private RSA key the decryption of the encrypted AES key is performed and the
AES key returned to the SCBE web page to perform the symmetric decryption of the
data. After the decryption the data can be returned to the web application.

67

Chapter 5 Security Analysis

5.1.2 Assumptions

In order to provide more accuracy some further assumptions were made:

• OAuth Provider: As already mentioned the authentication process of the user is
operated by the SCBE web page by redirecting the process to an OAuth provider.
This provider can be, for example, Google OAuth or the Austrian Mobile Phone
Signature. Regardless of the exact functionality of the provider an access token
is returned to the SCBE web page, which can be used to authenticate the user.
Security issues due to the authentication process with OAuth such as discussed
by Sun and Beznosov [60] have to be considered to ensure security.

• Communication: Furthermore, the communication between the trusted SCBE
web page and the server on Domain A is secured by HTTPS. HTTPS ensures the
encrypted and authenticated communication between server and client. HTTPS
bases on TLS which protects the HTTP requests. The usage of HTTPS only ensures
the secure identification of the server. However, the authentication of the client,
which is provided by TLS, is mostly not required by servers. By using a client
certificate the security of the HTTPS connection can be enhanced. In order to
prevent attacks it is mandatory to verify the server certificate.
As the Skytrust Client Browser Environment web page and the Skytrust Server
Environment are deployed on the same server limitations due the Same Origin
Policy (SOP) do not have to be considered. If that is not the case and the SCBE
web page is not offered by the same server security issues of the Cross Origin
Resource Sharing (CORS), as discussed in Ryck et al. [50], have to be taken into
account.

• AES keys: As described in the scenario the AES keys are used for symmetric
encryption of data. The AES keys exist only for a short time as long as the
encryption or decryption of the data is processed and the AES key sealed or
unsealed by the primary keys. Therefore, theses keys are called temporary AES
keys.

5.2 Assets

The Skytrust system utilizes well-known cryptographic key storage solutions such as
HSMs and communication technologies such as HTTPS. However, due to the distributed
architecture of the Skytrust system the existing risk and security analyses can only
partially reused at the Skytrust system. The core asset of the Skytrust system are the
cryptographic keys that are stored in the Skytrust system. The security goal is to keep
these cryptographic keys secret. Based on the core asset the primary cryptographic keys
further assets have to be considered.

In the remainder of this section, the core asset and related assets are discussed. Figure
5.2 shows the above introduced scenario and the extracted assets. In order to get

68

5.2 Assets

an overview on the relevance of each of the assets we categorized them into three
categories as shown in Table 5.1.

Figure 5.2: Skytrust prototype assets

5.2.1 Primary Cryptographic Keys – Core Asset

The core asset of the Skytrust system are the primary cryptographic keys. These
cryptographic keys are utilized by the cryptographic functions to offer encryption,
decryption and signing operations. It is essential for the Skytrust system that the
primary cryptographic keys are not extractable of the Skytrust system. Moreover, the
Skytrust system must ensure that the keys are not manipulable by an attacker.

Further assets that are related to the primary cryptographic key are the credentials, the
cryptographic operation, the temporary keys, the web application code as well as the plain /
encrypted data.

5.2.2 Credentials – Related Asset

Accessing the Skytrust system without authentication should not be possible. Therefore
the authentication scheme as well as the credentials have to be considered as an asset.
The above described scenario utilizes an OAuth authentication scheme to restrict

69

Chapter 5 Security Analysis

Asset categories

core related utilized

primary keys credentials communication
operation Skytrust Element

temporary keys
web application code

plain / encrypted data

Table 5.1: Categorized assets

the access to the user’s keys. Depending on the particular deployment scenario this
authentication scheme can vary. For a local Skytrust Element that, for example, utilizes
a smart card to carry out cryptographic operations a PIN based authentication scheme
is sufficient. Which is on the other hand not possible for the current scenario due to
various stored keys for different users at the Skytrust server.

5.2.3 Cryptographic Operation – Related Asset

The cryptographic operation also presents a related asset, since the operation utilizes
the primary or the temporary keys. Depending on the function of the operation different
keys are used such as private keys for decryption and signing operations and public
keys for encryption operations. However, in the distributed architecture of the Skytrust
system these operations are divided into a local execution part and a remote execution
part. In order to create a signature by using the signing operation the hash value is
created locally and the encryption with the private key remotely at the server. This
example illustrates that also additional operations such as Hash functions are used,
which do not require a cryptographic key. These operations must also be considered in
the cryptographic operation asset.

Regardless of which operation is performed, it is necessary for the Skytrust system that
the execution of the operation cannot be manipulated by an attacker.

5.2.4 Temporary Cryptographic Keys – Related Asset

Depending on different encryption schemes the availability of temporary keys have to
be considered as a related asset. In this context temporary key means that the randomly
generated symmetric AES key for data encryption is available as long as the encryption
and decryption of data is processed in the Skytrust Element. After the data encryption
the symmetric AES key is sealed by an asymmetric key and attached to the encrypted

70

5.2 Assets

data. Afterwards the symmetric AES key is deleted in the Skytrust Element. Therefore,
the randomly generated symmetric AES key are called temporary keys.

The symmetric AES key never leaves the Skytrust Element on which the operation is
performed except in case of the decryption of the encrypted AES key.

5.2.5 Web application code – Related Asset

The code of the web application also has to be considered as related asset. A weak im-
plementation of the web application can reveal information about plain and encrypted
data.

5.2.6 Data – Related Asset

The final related asset is the data. The data is indirectly connected to the core asset as it
is related to the temporary keys and the operation. By considering the data as an asset
the data has to be divided into plain and encrypted data. Especially the transfer of
plain data has to be taken into account, since the data can be easily read by an arbitrary
attacker. On the other hand the encrypted data also have to be considered, however
in another way, since the data is encrypted and thereby might not be readable by an
attacker.

5.2.7 Communication – Utilized Asset

The communication between the Skytrust Elements is categorized as utilized asset. Due
the large area of different deployment scenarios and the distributed architecture the
communication is very important. The scope of deployment scenarios ranges from a
simple Skytrust Element with a connected secure key storage such as a local connected
smart card on a personal computer, over a Skytrust Element that is connected to a
cloud Skytrust environment to a complex structure of Skytrust Elements with different
key storage solutions. Is is essential that an arbitrary attacker is not able to gain access
to data that is transferred between Skytrust Elements. Therefore, the communication
is a complex asset and has to be considered depending on the particular deployment
scenario.

5.2.8 Skytrust Element – Utilized Asset

A further utilized asset of the Skytrust system is the Skytrust Element itself. Thus, there
are various deployment scenarios possible, the underlying platform and environment
of the Skytrust Element should pay particular attention. Each platform has different

71

Chapter 5 Security Analysis

security challenges that influence the behaviour of the Skytrust Element. For instance,
the JavaScript Skytrust Element which is located at the Skytrust Client Browser Environ-
ment (SCBE) has to consider other storage possibilities as a Java Skytrust Element on
the Skytrust Server Environment (SSE).

5.2.9 Summary

In this section we extracted the core assets that influence the Skytrust system by taking
account of the requirements of the scenario defined in Section 5.1 and categorized them
into three categories. The categorization presents the connection between the core asset
and each other asset. In the next section we define the attack scenario and their effects
on the assets from this section.

5.3 Attack Scenarios

In order to provide a precise security analysis we decided to define five attack scenarios
which possibly occur on a real case usage of the Skytrust system. These five scenarios,
illustrated in Figure 5.3, are:

• a local attack scenario which simulates an attack on the local machine of the user
• a web attack scenario which simulates an attack on the SCBE web page respectively

the iframe
• a communication attack scenario which simulates an attack to obtain data from the

communication between SCBE web page and server
• a server attack that simulates an attack on the server
• an operator attack that simulates an attack of the operator of the server

In the remainder of this section we discuss the effects of each attack scenario to extract
the threats, the countermeasures and the residual risk of the Skytrust system.

5.3.1 Scenario 1 – Local Attack

The local attack scenario simulates an attack on the Skytrust system of an attacker
which has infiltrated the local machine of the user by installing any kind of a malware
application. With this malware application, for example, a key logger the attacker is able
to obtain the credentials of the user. Thereby, the attacker is able to perform operations
in behalf of the user. Furthermore, the attacker is able to attack the web application or
the SCBE web page iframe by injecting a malicious script to receive session information
to impersonate the user or to gain access to data.

72

5.3 Attack Scenarios

Figure 5.3: Skytrust system attack scenarios

Threats: The following threats on the Skytrust system occur from the local attack
scenario:

• (T): Gain Access to Data
An attacker who has access to the local machine of the user, is able to obtain plain
and encrypted data, which is transferred from the web application to the Skytrust
Client Browser Environment (SCBE) web page iframe. Although the attacker is not
able to gain access to the core asset, the primary key, the attacker is also able to
obtain the data of the user.

• (T): Obtain Credentials
An attacker who is able to obtain the credentials of the user by using, for example,
a key logger or by injection code, is able to carry out own operations with the
core asset, the primary key.

• (T): Obtain Session Identifier by XSS
An attacker who has access to the local machine of the user is able to inject code
into the embedded SCBE web page iframe of the web application in the browser.
Thereby, the attacker is able to gain access to the session identifier of the user.
With this session identifier the attacker is able to impersonate the user by using
the core asset, the primary key.

• (T): Obtain Session Identifier by CSRF
An attacker who has access to the local machine of the user is able to embed

73

Chapter 5 Security Analysis

an exploit page into the web application to lure the victim to perform malicious
requests.

Countermeasures: The Skytrust system provides the following countermeasures to
mitigate the above mentioned threats:

• (C): Authentication Scheme Skytrust System
Although the attacker is able to obtain the user’s credentials on the local machine
the malicious usage of the core asset, the primary key, is prevented by the
Skytrust system by utilizing a strong authentication scheme with multi factor
authentication, for example, two-factor authentication. By using this multi factor
authentication scheme the credentials are not sufficient enough to unlock the key.
Furthermore, also a possession factor, for example, a smartphone is necessary to
permit the key usage. In order to utilize the key a verification code is sent to the
smartphone. This code has to be entered to perform an operation. Thereby, that
the attacker is not in possession of this device the attack can be prevented.

• (C): Authentication Scheme Web Application
The access to the plain and encrypted data that is stored in the web application
can be prevented by using a strong multi factor authentication scheme. However,
this depends on the implementation of the web application. We recommend to
use a multi factor authentication system if it is provided by the operator of the
web application.

• (C): Permission Concept
The Skytrust system enforces an unique session identifier to store the authen-
tication of the user. In certain use case scenarios, for example, trusted local
applications that utilize the Skytrust system, this session identifier is used to
enable the subsequent operation without any further authentication. This com-
fortable function still has the drawback that the authentication have to be stored
on client side. Since the identifier is stored in the HTML5 session storage the
identifier is not protected in the same way as a cookie. To mitigate this drawback
the proposed permission system allows the privilege elevation of particular oper-
ations by an additional authentication step so that the attacker is not able to reuse
a critical key. The maintenance as well as the protection of the session identifier is
out of scope of this work.

• (C): Trusted Implementation SCBE Web Page
In order to prevent Cross-Site Scripting (XSS) attacks several protection mecha-
nisms such as escaping frameworks or scanning tools are available. By following
best practises [18] and utilizing well known libraries for executing the crypto-
graphic operations the possibility of code injection attacks can be mitigated.

74

5.3 Attack Scenarios

Residual Risk – Low/Medium: To determine the residual risk of the local attack the
following two cases have to be distinguished:

• Attacker is not in possession of verification device: Residual Risk – Low
If the attacker is not able to gain access to the verification device of the multi
factor authentication scheme, the attacker is not able to use the core asset, the
primary key. Therefore the residual risk is considered to be low.

• Attacker is in possession of verification device: Residual Risk – Medium
If the attacker is able to gain access to the verification device of the multi factor
authentication scheme the Skytrust system is not able to prevent the usage of the
core asset, the primary key. Therefore, the residual risk has to be considered to be
medium.

Furthermore, the attacker is able to obtain the plain and encrypted data which is
processed by the web application. This cannot be prevented by the Skytrust system,
however, only the developer of the web application is able to prevent attacks by
following best practices in the communication between web application and the SCBE
web page iframe.
In order to reduce the possibility of a local attack, we recommend to use common
methods to avoid malware attacks such as the usage of anti-virus programs, installing
operating system updates, etc.

5.3.2 Scenario 2 – Web Attack

The web attack scenario simulates an attack on the Skytrust Client Browser Environment
web page to obtain any kind of information. By enforcing Cross-Site Scripting (XSS)
attacks the attacker tries to gain access to credentials. Furthermore, a Cross Site Request
Forgery (CSRF) attack can be used to trick the user to send a malicious request. Further-
more, the attacker attempts to manipulate the utilized libraries or to perform requests
to foreign servers.

Threats: The following threats on the Skytrust system occur from the web attack:

• (T): Obtain Credentials, Session Identifier, Keys
By injecting a malicious script the attacker is able to obtain:

– credentials
– plain / encrypted data
– temporary AES keys

Thereby, the attacker is able to use the core asset, the primary keys, in behalf of
the user. Furthermore, also the temporary AES keys can be used to decrypt the
encrypted data.

75

Chapter 5 Security Analysis

• (T): Manipulation of Operations
By replaying the cryptographic library which is used in the SCBE web page an
attacker is able to manipulate the cryptographic operation. Thereby, the attacker
is able to gain access to the data.

• (T): Manipulate Skytrust Element
By injecting a malicious script the attacker tries to manipulate the Skytrust
Element to send request to a foreign server or to influence the functionality.

Countermeasures: The Skytrust system provides the following countermeasures to
prevent the above mentioned threats:

• (C): Trusted Implementation SCBE Web Page
In order to prevent Cross-Site Scripting (XSS) attacks several protection mecha-
nisms such as escaping frameworks or scanning tools are available. By following
best practises [18] and utilizing well known libraries for executing the crypto-
graphic operations the possibility of code injection attacks can be mitigated.

• (C): Independent Execution Environment
The Skytrust Client Browser Environment (SCBE) SCBE web page on Domain A is en-
capsulated by the Same Origin Policy (SOP) from the web application which is de-
ployed on Domain B. The communication is restricted to the HTML5 postMessage
channel. The HTML5 postMessage channel has still vulnerabilities as discussed in
Section 2.3. To mitigate these vulnerabilities and to improve the HTML5 postMes-
sage communication a suggestion for an improvement is presented further down
in Section 5.4.

• (C): Permission Concept
The Permission Concept countermeasure is already discussed in Section 5.3.1.

• (C): Authentication Scheme Skytrust System
The Authentication Scheme Skytrust System countermeasure is already discussed in
Section 5.3.1.

Residual Risk – Low: Due to the trusted implementation of the Skytrust Client Browser
Environment web page the weak point of a web attack is limited to the HTML5 postMes-
sage channel. The weaknesses of the HTML5 postMessage channel can be mitigated by
implementing an optimization as discussed further down in Section 5.4.

A residual risk is the session identifier that is stored in the HTML5 session storage of
the browser. The maintenance as well as the protection of the session identifier is out
of scope of this work. However, by using the privilege elevation as described in the
Application Permission System Concept from Section 4.6 even the session identifier storage
risk can be mitigated. Therefore the residual risk of the web attack can be considered
as low.

76

5.3 Attack Scenarios

5.3.3 Scenario 3 – Communication Attack

The communication attack scenario simulates an attack on the network communication
between Skytrust Client Browser Environment (SCBE) web page and the Skytrust Server
Environment (SSE). The attacker attempts to intercept the communication to perform a
man-in-the-middle (MITM) attack. Thereby, the attacker is tries to obtain credentials to
impersonate the user.

Threats: The following threats on the Skytrust system occur from the communication
attack:

• (T): Obtain Credentials, Data and Keys
By intercepting the communication, the attacker tries to obtain:

– credentials
– plain / encrypted data
– temporary AES keys

If the attacker has access to the authentication credentials the attacker is capable
to perform cryptographic operations with the core asset, the primary keys. also the
access to temporary AES key can be used to gain access to the plain data.

Countermeasures: The Skytrust system provides the following countermeasures to
mitigate the above mentioned threats:

• (C): Secure Communication
The Skytrust system utilizes well known and security proved protocols such as
HTTPS for communication between the Skytrust Server Environment and the
Skytrust Client Browser Environment web page. This ensures a high level of
security and prevent a possible attack on the communication between SCBE web
page and Skytrust Server Environment.

• (C): Strong Authentication Scheme
The Skytrust system support various authentication schemes to authenticate the
user. Which authentication scheme is used depends on the appropriate deploy-
ment scenario and the surrounding environment. In case of current scenario the
OAuth authentication scheme is used. Furthermore, the authentication component
of the SCBE web page maintains the appropriate token that is issued from the
authorization authority. The web application never gains access to this token.
However, there is a possibility to obtain the access token and perform crypto-
graphic operations with keys that are related to the appropriate user. To mitigate
this issue we emphasize, to use a short key usage time, as defined in the Appli-
cation Permission System Concept from Section 4.6, and an authentication scheme
with two factor authentication to ban the attack and reduce the impact.

77

Chapter 5 Security Analysis

Residual Risk – Low: Thereby, that the communication between SCBE web page and
SSE is secured with HTTPS the residual risk of the communication attack relies on the
security of HTTPS.
HTTPS uses the Transport Layer Security (TLS) protocol to secure the communication
between server and client. However, several HTTPS implementations do not require a
client certificate in the handshake protocol. Therefore only the server is authenticated to
the client. In order to ensure security and to prevent man-in-the-middle attacks the server
certificate has to be verified. Nevertheless, the residual risk of the communication is
considered to be low.

5.3.4 Scenario 4 – Server attack

The server attack simulates an attack on the Skytrust Server Environment (SSE). An
arbitrary attacker uses vulnerabilities in the server implementation to gain access to
the server environment. Thereby, the attacker is able to gain unauthorized access to the
credentials of the users, the attacker is able to impersonate the users. Furthermore, the
attacker is able to access the key storage solution of the server environment. The server
attack simulates an attack on the provided interface. By enforcing phishing attacks the
attacker tries to gain credentials.

Threats: The following threats on the Skytrust system occur from the server attack:

• (T): Obtain Credentials
Due to the access to the server environment and spying out the Skytrust protocol
the attacker is able gain unauthorized access to:

– credentials
– temporary AES keys

• (T): Manipulate Skytrust Element
An attacker who is able to gain access to the server is able to manipulate the
Skytrust Element. Thereby, the attacker is able to gain access to data.

• (T): Obtain or Manipulate Primary Keys
An attacker who has access to the server also attempts to gain access to the secure
storage device to retrieve or manipulate the core asset, the primary keys.

• (T): Interface Attack
An attacker attempts to use vulnerabilities in the interface implementation to gain
unauthorized access to the server or the Skytrust Element. Thereby, the attacker
is able to gain access to credentials or temporary AES keys.

• (T): Phishing Attack
An attacker may establish a false SCBE web page in order to execute phishing
attacks.

78

5.3 Attack Scenarios

Countermeasures: The Skytrust system provides the following countermeasures to
mitigate the threats:

• (C): Trusted Server Implementation
As well as for the Skytrust Element we recommend to use best practices and
common technologies for the implementation of the Skytrust Server Environment.
Especially for server solutions precautions against common attack such as SQL
injection, Input Validation, Session Hijacking should be provided. In case of
different domains of the SSE and the SCBE web page an implementation against
CORS attacks should be provided.
Moreover, also the internal execution and hypervisor access should be taken into
account. Several authors have proposed solutions for ensuring security such as
Kamara and Lauter, Lombardi and Pietro [33, 37].

• (C): Secure Storage
The Skytrust system provide a broad range of secure key storage solutions to
store cryptographic keys such as a Hardware Security Module (HSM), a smart card,
a cryptographic service provider or other cryptographic tokens that provide a
high level of security. Which secure key storage solution is selected depends on
the particular deployment scenario as well as on a conducted security analysis of
the appropriate environment. Each of the above mentioned key storage solution
prohibit the manipulation of the stored key material so that the attacker is not
able to obtain the keys. However, if the attacker is in possession of the credentials
that are necessary to utilize the key the attack cannot be prevented.

• (C): Environment Identification
The Skytrust Server Environment and the Skytrust Client Browser Environment web
page share a unique secret, which is used to on every request that is sent to the
server. Furthermore the Skytrust Server Environment provides a CORS imple-
mentation that allows only known origins access to the server.

Residual Risk – Medium: The server attack has a strong impact on the Skytrust
system, if the attacker is able to gain access to the server. By obtaining the credentials
of the user the attacker is able to perform cryptographic operations in behalf of the
user. Therefore, the residual risk is considered to be medium.

However, if the server environment is up to date and an appropriate implementation is
available, the unauthorized access to the server and therefore to the Skytrust should be
prevented.

79

Chapter 5 Security Analysis

5.3.5 Scenario 5 – Operator attack

The operator attack simulates an attack on the Skytrust Element and the secure storage
solution by the operator of the server environment. In considering of this attack two
sub attacks have to be distinguished:

• Sub attack 1: The first sub attack simulates that the secure storage solution, for
example, an HSM is provided from a third party provider.

• Sub attack 2: The second sub attack simulates that the server provider is also the
provider of the secure storage solution.

Threats: The following threats came up by taking into account the operator attack
scenario. Threats and countermeasures that are related to the first sub attack scenario
are marked with (1) and the second sub attack scenario with (2). If the threats and
countermeasures are valid for both scenarios this is marked with (1), (2).

• (T) (2): Obtain or Manipulate Primary Keys
The attacker is in possession of the credentials to configure the secure storage
solution. Thereby, the attacker is able to retrieve and to manipulate the primary
keys of the user.

• (T) (1)(2): Manipulating the Skytrust Element
Due the access to the server environment the attacker is able gain access to:

– credentials
– temporary AES keys

Thereby, the attacker is able to modify the cryptographic operations by manipu-
lating the Skytrust Element.

Countermeasures: The Skytrust system provides the following countermeasures to
mitigate the threats.

• (C) (1)(2): Secure Storage
The Skytrust system provide a broad range of secure key storage solutions to
store cryptographic keys such as a Hardware Security Module (HSM), a smart card,
a cryptographic service provider or other cryptographic tokens that provide a
high level of security. However, if the attacker is in possession of the credentials
to manage the secure storage solution, the keys of the users can be manipulated
and extracted by the attacker.

• Trusted Server Implementation
The trusted server implementation countermeasure is already discussed in Section
5.3.4.

80

5.4 Securing HTML5 Communication

Residual Risk – Medium/High: The operator attack has the strongest impact on the
Skytrust system. Depending on the sub attack scenario the residual risk has to be
distinguished.

• Sub attack 1: Residual Risk – Medium
Thereby, that the secure storage solution is maintained by a third party provider
the attacker is not able to manipulate or retrieve the primary keys. Therefore, the
core asset is secured and the residual risk is medium.

• Sub attack 2: Residual Risk – High
If the attacker is in possession of the credentials to maintain the secure storage
solution, the extraction and manipulation of the core asset, the primary keys,
cannot be prevented. Therefore, the residual risk is high.

An approach to mitigate the residual risk of the operator attack is to deploy the Skytrust
Server Environment (SSE) in a Hardware Security Module. If the Skytrust Server Environ-
ment is deployed in an HSM the access to the environment is restricted to the REST API.
By utilizing an HTTPS connection direct to this environment any other access point or
any manipulation of the Skytrust Element is prohibited. Only the operator who has set
up and configured the HSM is able to change the configuration and the maintained
keys. If the server operator is not in possession of the credentials to configure the HSM
the access to the SSE is secured. This solution is an approach for a future research
topic.

5.4 Securing HTML5 Communication

As already mentioned, in Section 2.3, the HTML5 communication is vulnerable against
attacks that are enforced over the communication channel. In this section a possible
security improvement is presented.

The main issue of the communication between frames is the validation of the origin.
The origin check at the Skytrust Client Browser Environment (SCBE) web page can
be enhanced in combination with the Application Permission System. The application
permission system allows the specification of an origin value for an API key that is
utilized by a web application. This origin value can be used to validate the API key of
the web application which is sent in the Skytrust transport protocol over the HTML5

postMessage channel. By calling a service at the Skytrust Server Environment the origin
can be verified. If the verification is successful the transport protocol packet is processed
otherwise not. An overview of this enhanced origin check is illustrated in Figure 5.4.

In the future that enhancement is may be applicable in connection with third party
SCBE web pages that wants to utilize the Skytrust Server Environment. By using the same
approach for the Cross Origin Resource Sharing (CORS) white listing an improvement
can be achieved. This might be also a future research topic for securing the Skytrust
system.

81

Chapter 5 Security Analysis

Figure 5.4: Enhanced origin check

5.5 Summary

The security analysis of the Skytrust system shows that the presented infrastructure
provides a high level of security. The security goal of the Skytrust system to protect the
cryptographic keys is ensured. Only if an attacker is in possession of the credentials to
maintain the secure storage solution the primary keys can be manipulated. However,
by following best practices for the implementation of the Skytrust Client Browser Envi-
ronment (SCBE) web page as well as of the Skytrust Server Environment (SSE) even the
malicious usage of the core asset, the primary keys can be prevented. Furthermore, even
the origin check of the HTML5 web communication can be enhanced with the proposed
Application Permission System. Moreover, the proposed privilege elevation mitigates
the session identifier vulnerability. An interesting approach for future research is the
deployment of the Skytrust Server Environment in an HSM. Thereby even the operator
attack can be mitigated.

82

Chapter 6

Conclusion and Outlook

The goal of this thesis was to design and implement a prototype of the Skytrust system
and to conduct a security analysis of the Skytrust system in a web application scenario.
The major motivation to develop the Skytrust System is based on the limitation of the
current available solutions such as the Amazon Cloud HSM, the Austrian Mobile Phone
Signature, SigningHub, Cryptomatic, and Dictao to authentication and signature creation.
The comparison of the existing solutions has shown that only the Amazon Cloud HSM is
able to perform cipher operations. Nevertheless, the system has a drawback due to the
restriction to a particular client. This insufficient situation motivated the development
of Skytrust system.

However, the Skytrust system achieves its flexibility, extensibility and platform inde-
pendence by splitting up the common access of a cryptographic service into an acting
entity called actor and receiving entity called receiver. This division associated with the
presented transport protocol meet the required specifications.

We demonstrated the functionality of the Skytrust system by implementing a prototype
that simulates a cloud-based cryptographic key storage solution that can be integrated
into an existing web application for data encryption. Thereby, that the asymmetric keys
of the user are stored in the central cloud-based cryptographic storage, the secure key
storage limitations of the browser can be eliminated.

In order to manage the access to such a cloud-based key storage solution we pro-
posed an Application Permission System that ensures a precise restriction to the Skytrust
system. Through combining key permissions and application permissions an accu-
rate access control can be managed. The influence factors for the key permissions
and the application permission were extracted by an analysis of the Skytrust system
requirements.

Since the Skytrust system operates with sensitive cryptographic key material, we con-
ducted a comprehensive security analysis based on the prototype and a particular
scenario. The analysis has shown that the Skytrust system provides a high level of secu-
rity. However, the security of the Skytrust system is based on the utilized technologies
such as HSMs to store the cryptographic keys or HTTPS to protect the connection.

83

Chapter 6 Conclusion and Outlook

The accurate usage of these technologies enables the high security level of the Skytrust
system.

However, the broad range of possible deployment scenarios from a single Skytrust
Element that connects a smart card to complex configurations of several Skytrust Elements
on various domains enables several future research topics. Moreover, the proposed
deployment of the Skytrust Server Environment in an HSM can even be a topic for future
research.

The conclusion of this work is, that the presented approach for providing a flexible,
extensible, and platform independent cloud-based key storage solution that supports
the execution of cryptographic operations, works as proposed and therefore presents a
possible new participant in the field of cloud-based key storage solutions.

84

Bibliography

[1] Ross Anderson et al. Cryptographic processors – a survey. Tech. rep. UCAM-CL-
TR-641. University of Cambridge, Computer Laboratory, Aug. 2005. url: http:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-641.pdf (cit. on p. 30).

[2] David Barrera et al. “A Methodology for Empirical Analysis of Permission-based
Security Models and Its Application to Android”. In: Proceedings of the 17th ACM
Conference on Computer and Communications Security. CCS ’10. Chicago, Illinois,
USA: ACM, 2010, pp. 73–84. isbn: 978-1-4503-0245-6. doi: 10.1145/1866307.
1866317. url: http://doi.acm.org/10.1145/1866307.1866317 (cit. on p. 55).

[3] A. Barth. The Web Origin Concept. RFC 6454 (Proposed Standard). Internet En-
gineering Task Force, Dec. 2011. url: http://www.ietf.org/rfc/rfc6454.txt
(cit. on p. 19).

[4] Adam Barth, Collin Jackson, and ohn C. Mitchell. “Securing Frame Communica-
tion in Browsers”. In: Commun. ACM 52.6 (June 2009), pp. 83–91. issn: 0001-0782.
doi: 10.1145/1516046.1516066. url: http://doi.acm.org/10.1145/1516046.
1516066 (cit. on p. 19).

[5] Jenkins B.D. Security Risk Analysis and Management. white paper. 1998 (cit. on
p. 65).

[6] George Coulouris et al. Distributed Systems: Concepts and Design. 5th. USA:
Addison-Wesley Publishing Company, 2011. isbn: 0132143011, 9780132143011

(cit. on p. 15).

[7] D. Crockford. The application/json Media Type for JavaScript Object Notation (JSON).
RFC 4627 (Informational). Internet Engineering Task Force, July 2006. url: http:
//www.ietf.org/rfc/rfc4627.txt (cit. on p. 14).

[8] Juan Carlos Cruellas et al. XML Advanced Electronic Signatures (XAdES). W3C
Note. http://www.w3.org/TR/XAdES/. W3C, Feb. 2003 (cit. on p. 33).

[9] Cryptography Reference. Nov. 2013. url: http://msdn.microsoft.com/en-us/
library/aa380256.aspx (visited on 01/20/2014) (cit. on p. 32).

[10] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard). Updated by RFCs 5746, 5878, 6176. Internet
Engineering Task Force, Aug. 2008. url: http://www.ietf.org/rfc/rfc5246.
txt (cit. on p. 13).

85

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-641.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-641.pdf
http://dx.doi.org/10.1145/1866307.1866317
http://dx.doi.org/10.1145/1866307.1866317
http://doi.acm.org/10.1145/1866307.1866317
http://www.ietf.org/rfc/rfc6454.txt
http://dx.doi.org/10.1145/1516046.1516066
http://doi.acm.org/10.1145/1516046.1516066
http://doi.acm.org/10.1145/1516046.1516066
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.w3.org/TR/XAdES/
http://msdn.microsoft.com/en-us/library/aa380256.aspx
http://msdn.microsoft.com/en-us/library/aa380256.aspx
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt

Bibliography

[11] L. Dusseault and J. Snell. PATCH Method for HTTP. RFC 5789 (Proposed Standard).
Internet Engineering Task Force, Mar. 2010. url: http://www.ietf.org/rfc/
rfc5789.txt (cit. on p. 16).

[12] Donald Eastlake et al. XML Signature Syntax and Processing (Second Edition).
W3C Recommendation. http://www.w3.org/TR/2008/REC-xmldsig-core-
20080610/. W3C, June 2008 (cit. on p. 32).

[13] ETSI TS 101 733 Electronic Signatures and Infrastructures (ESI); CMS Advanced
Electronic Signatures (CAdES) v1.7.4. Tech. rep. http://www.etsi.org. European
Telecommunications Standards Institute ETSI, July 2008 (cit. on p. 33).

[14] ETSI TS 102 778-3. Electronic Signatures and Infrastructures (ESI); PDF Advanced
Electronic Signatures (PAdES); PAdES Enhanced - PadES-BES and PAdES-EPES Pro-
files. Tech. rep. http://www.etsi.org. European Telecommunications Standards
Institute ETSI, July 2009 (cit. on p. 33).

[15] European Union. Directive 1999/93/EC of the European Parliament and of the Council
of 13. December 1999 on a community framework for electronic signatures. 1999 (cit. on
pp. 2, 32).

[16] Roy Thomas Fielding. “Architectural styles and the design of network-based
software architectures”. AAI9980887. PhD thesis. University of California, 2000.
isbn: 0-599-87118-0 (cit. on p. 15).

[17] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard).
Updated by RFCs 2817, 5785, 6266, 6585. Internet Engineering Task Force, June
1999. url: http://www.ietf.org/rfc/rfc2616.txt (cit. on pp. 16, 48).

[18] OWASP Foundation. HTML5 Security Cheat Sheet. 2013. url: https://www.owasp.
org/index.php/HTML5_Security_Cheat_Sheet (visited on 10/16/2013) (cit. on
pp. 74, 76).

[19] J. Franks et al. HTTP Authentication: Basic and Digest Access Authentication. RFC
2617 (Draft Standard). Internet Engineering Task Force, June 1999. url: http:
//www.ietf.org/rfc/rfc2617.txt (cit. on p. 7).

[20] Gartner Says Worldwide Public Cloud Services Market to Total £131 Billion. Feb. 2013.
url: http://www.gartner.com/newsroom/id/2352816f (visited on 12/20/2013)
(cit. on p. 1).

[21] Hugo Haas and Allen Brown. Web Services Glossary. W3C Note. http://www.w3.
org/TR/2004/NOTE-ws-gloss-20040211/. W3C, Feb. 2004 (cit. on p. 14).

[22] Eran Hammer. Explaining the OAuth Session Fixation Attack. Apr. 2009. url: http:
//hueniverse.com/2009/04/explaining- the- oauth- session- fixation-

attack/ (visited on 10/21/2013) (cit. on p. 6).

[23] E. Hammer-Lahav. The OAuth 1.0 Protocol. RFC 5849 (Informational). Obsoleted
by RFC 6749. Internet Engineering Task Force, Apr. 2010. url: http://www.ietf.
org/rfc/rfc5849.txt (cit. on p. 5).

86

http://www.ietf.org/rfc/rfc5789.txt
http://www.ietf.org/rfc/rfc5789.txt
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://www.etsi.org
http://www.etsi.org
http://www.ietf.org/rfc/rfc2616.txt
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.gartner.com/newsroom/id/2352816f
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://hueniverse.com/2009/04/explaining-the-oauth-session-fixation-attack/
http://hueniverse.com/2009/04/explaining-the-oauth-session-fixation-attack/
http://hueniverse.com/2009/04/explaining-the-oauth-session-fixation-attack/
http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc5849.txt

Bibliography

[24] Steve Hanna et al. “The Emperors New APIs: On the (In)Secure Usage of New
Client Side Primitives”. In: Proceedings of the 4th Web 2.0 Security and Privacy
Workshop (W2SP). 2010 (cit. on p. 19).

[25] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749 (Proposed Standard).
Internet Engineering Task Force, Oct. 2012. url: http://www.ietf.org/rfc/
rfc6749.txt (cit. on pp. 6, 11).

[26] Ian Hickson. HTML5 Web Messaging. Candidate Recommendation. http://www.
w3.org/TR/2012/CR-webmessaging-20120501/. W3C, May 2012 (cit. on p. 17).

[27] Monsur Hossain. Using CORS. Oct. 2011. url: http://www.html5rocks.com/en/
tutorials/cors/ (visited on 08/19/2013) (cit. on p. 22).

[28] Introducing JSON. url: http://www.json.org/ (visited on 08/22/2013) (cit. on
p. 46).

[29] Java Cryptography Architecture (JCA) Reference Guide. url: http://docs.oracle.
com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html

(visited on 01/20/2014) (cit. on pp. 32, 43).

[30] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA Cryp-
tography Specifications Version 2.1. RFC 3447 (Informational). Internet Engineering
Task Force, Feb. 2003. url: http://www.ietf.org/rfc/rfc3447.txt (cit. on
p. 33).

[31] S. Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC 3548 (Informa-
tional). Obsoleted by RFC 4648. Internet Engineering Task Force, July 2003. url:
http://www.ietf.org/rfc/rfc3548.txt (cit. on pp. 14, 48).

[32] B. Kaliski. PKCS #7: Cryptographic Message Syntax Version 1.5. RFC 2315 (Informa-
tional). Internet Engineering Task Force, Mar. 1998. url: http://www.ietf.org/
rfc/rfc2315.txt (cit. on p. 33).

[33] Seny Kamara and Kristin Lauter. “Cryptographic cloud storage”. In: Proceedings
of the 14th international conference on Financial cryptograpy and data security. FC’10.
Tenerife, Canary Islands, Spain: Springer-Verlag, 2010, pp. 136–149. isbn: 3-642-
14991-X, 978-3-642-14991-7. url: http://dl.acm.org/citation.cfm?id=
1894863.1894876 (cit. on p. 79).

[34] Anne van Kesteren. Cross-Origin Resource Sharing. Candidate Recommendation.
http://www.w3.org/TR/2013/CR-cors-20130129/. W3C, Jan. 2013 (cit. on
p. 22).

[35] Herbert Leitold, Arno Hollosi, and Reinhard Posch. “Security Architecture of the
Austrian Citizen Card Concept”. In: ACSAC. 2002, pp. 391–402 (cit. on pp. 1, 32).

[36] T. Lodderstedt, M. McGloin, and P. Hunt. OAuth 2.0 Threat Model and Security
Considerations. RFC 6819 (Informational). Internet Engineering Task Force, Jan.
2013. url: http://www.ietf.org/rfc/rfc6819.txt (cit. on p. 12).

87

http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6749.txt
http://www.w3.org/TR/2012/CR-webmessaging-20120501/
http://www.w3.org/TR/2012/CR-webmessaging-20120501/
http://www.html5rocks.com/en/tutorials/cors/
http://www.html5rocks.com/en/tutorials/cors/
http://www.json.org/
http://docs.oracle.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
http://www.ietf.org/rfc/rfc3447.txt
http://www.ietf.org/rfc/rfc3548.txt
http://www.ietf.org/rfc/rfc2315.txt
http://www.ietf.org/rfc/rfc2315.txt
http://dl.acm.org/citation.cfm?id=1894863.1894876
http://dl.acm.org/citation.cfm?id=1894863.1894876
http://www.w3.org/TR/2013/CR-cors-20130129/
http://www.ietf.org/rfc/rfc6819.txt

Bibliography

[37] Flavio Lombardi and Roberto Di Pietro. “Secure virtualization for cloud com-
puting”. In: Journal of Network and Computer Applications 34.4 (2011). Advanced
Topics in Cloud Computing, pp. 1113–1122. issn: 1084-8045. doi: http://dx.doi.
org/10.1016/j.jnca.2010.06.008. url: http://www.sciencedirect.com/
science/article/pii/S1084804510001062 (cit. on p. 79).

[38] J.D. Meier, Alex Mackman, and Blaine Wastell. Threat Modeling Web Applications.
May 2005. url: http://msdn.microsoft.com/en-us/library/ff648006.aspx
(visited on 10/10/2013) (cit. on p. 65).

[39] Noah Mendelsohn et al. SOAP Message Transmission Optimization Mechanism. W3C
Recommendation. http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/.
W3C, Jan. 2005 (cit. on p. 14).

[40] Noah Mendelsohn et al. SOAP Version 1.2 Part 1: Messaging Framework (Second
Edition). W3C Recommendation. http://www.w3.org/TR/2007/REC-soap12-
part1-20070427/. W3C, Apr. 2007 (cit. on p. 14).

[41] NIST. Security Requirements for Cryptographic Modules (FIPS PUB 140-2). FIPS PUB.
National Institute for Standards and Technology. Gaithersburg, MD 20899-8900,
USA, May 25, 2001, pp. viii + 61. url: http://csrc.nist.gov/publications/
fips/fips140-2/fips1402.pdf (cit. on p. 30).

[42] OAuth Core 1.0. Dec. 4, 2007. url: http://oauth.net/core/1.0/ (visited on
07/08/2013) (cit. on p. 5).

[43] Clemens Orthacker, Martin Centner, and Christian Kittl. “Qualified Mobile Server
Signature”. In: 25th IFIP TC-11 International Information Security Conference, SEC
2010. Vol. 330. AICT. Springer, 2010, pp. 103–111 (cit. on p. 33).

[44] Jean Paoli et al. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recom-
mendation. http://www.w3.org/TR/2008/REC-xml-20081126/. W3C, Nov. 2008

(cit. on p. 14).

[45] PKCS 11 v2.20: Cryptographic Token Interface Standard. June 2004. url: ftp://ftp.
rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf (visited on
09/10/2013) (cit. on pp. 32, 43).

[46] B. Ramsdell and S. Turner. Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.2 Message Specification. RFC 5751 (Proposed Standard). Internet Engineer-
ing Task Force, Jan. 2010. url: http://www.ietf.org/rfc/rfc5751.txt (cit. on
p. 33).

[47] Wolfgang Rankl and Wolfgang Effing. Smart Card Handbook. 4th. Wiley Publishing,
2010. isbn: 0470743670, 9780470743676 (cit. on p. 29).

[48] S.A.M. Rizvi, Halima Sadia Rizvi, and Zaid Al-Baghdadi. “Smart Cards: The
Future Gate”. In: Proceedings of The World Congress on Engineering and Computer
Science 2010. Vol. Vol. I. Oct. 2010, pp81–86. url: http://www.iaeng.org/
publication/WCECS2010/WCECS2010_pp81-86.pdf (visited on 10/22/2013) (cit.
on p. 29).

88

http://dx.doi.org/http://dx.doi.org/10.1016/j.jnca.2010.06.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.jnca.2010.06.008
http://www.sciencedirect.com/science/article/pii/S1084804510001062
http://www.sciencedirect.com/science/article/pii/S1084804510001062
http://msdn.microsoft.com/en-us/library/ff648006.aspx
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://oauth.net/core/1.0/
http://www.w3.org/TR/2008/REC-xml-20081126/
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
http://www.ietf.org/rfc/rfc5751.txt
http://www.iaeng.org/publication/WCECS2010/WCECS2010_pp81-86.pdf
http://www.iaeng.org/publication/WCECS2010/WCECS2010_pp81-86.pdf

Bibliography

[49] Jesse Ruderman. Same Origin Policy for Javascript. url: https://developer.
mozilla . org / en - US / docs / Web / JavaScript / Same _ origin _ policy _ for _

JavaScript (visited on 08/19/2013) (cit. on p. 19).

[50] Philippe De Ryck et al. A security analysis of emerging web standards - Extended
version. CW Reports CW622. partner: KUL; projects: WebSand, NESSoS; tier:
NoTier. Department of Computer Science, KU Leuven, May 2012. url: https:
//lirias.kuleuven.be/handle/123456789/349398 (cit. on pp. 24, 68).

[51] Hossein Saiedian and Dan S. Broyles. “Security Vulnerabilities in the Same-Origin
Policy: Implications and Alternatives”. In: Computer 44.9 (2011), pp. 29–36. issn:
0018-9162. doi: http://doi.ieeecomputersociety.org/10.1109/MC.2011.226
(cit. on p. 21).

[52] Michael Schmidt. HTML5 web security. Dec. 2011. url: http://media.hacking-
lab.com/hlnews/HTML5_Web_Security_v1.0.pdf (cit. on p. 24).

[53] Shreeraj Shah. “HTML5 Top 10 Threats Stealth Attacks and Silent Exploits”. In:
BlackHat Europe 2012. Blackhat, 2012 (cit. on p. 24).

[54] Quinn Slack and Roy Frostig. Murphi Analysis of of OAuth 2.0 Implicit Grant Flow.
url: http://www.stanford.edu/class/cs259/WWW11/ (visited on 12/27/2013)
(cit. on p. 13).

[55] Ryan Sleevi and David Dahl. Web Cryptography API. W3C Working Draft. http:
//www.w3.org/TR/2013/WD-WebCryptoAPI-20130625/. W3C, June 2013 (cit. on
pp. 49, 65).

[56] D. K. Smetters and Nathan Good. “How Users Use Access Control”. In: Proceed-
ings of the 5th Symposium on Usable Privacy and Security. SOUPS ’09. Mountain
View, California: ACM, 2009, 15:1–15:12. isbn: 978-1-60558-736-3. doi: 10.1145/
1572532.1572552. url: http://doi.acm.org/10.1145/1572532.1572552 (cit.
on p. 55).

[57] Sooel Son and Vitaly Shmatikov. “The Postman Always Rings Twice: Attacking
and Defending postMessage in HTML5 Websites”. In: NDSS. The Internet Society,
2013 (cit. on p. 19).

[58] Jungkee Song, Hallvord Steen, and Julian Aubourg. XMLHttpRequest. W3C Work-
ing Draft. http://www.w3.org/TR/2012/WD-XMLHttpRequest-20121206/. W3C,
Dec. 2012 (cit. on pp. 20, 24).

[59] Brandon Sterne and Adam Barth. Content Security Policy 1.0. Candidate Recom-
mendation. http://www.w3.org/TR/2012/CR-CSP-20121115/. W3C, Nov. 2012

(cit. on p. 22).

89

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
https://lirias.kuleuven.be/handle/123456789/349398
https://lirias.kuleuven.be/handle/123456789/349398
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2011.226
http://media.hacking-lab.com/hlnews/HTML5_Web_Security_v1.0.pdf
http://media.hacking-lab.com/hlnews/HTML5_Web_Security_v1.0.pdf
http://www.stanford.edu/class/cs259/WWW11/
http://www.w3.org/TR/2013/WD-WebCryptoAPI-20130625/
http://www.w3.org/TR/2013/WD-WebCryptoAPI-20130625/
http://dx.doi.org/10.1145/1572532.1572552
http://dx.doi.org/10.1145/1572532.1572552
http://doi.acm.org/10.1145/1572532.1572552
http://www.w3.org/TR/2012/WD-XMLHttpRequest-20121206/
http://www.w3.org/TR/2012/CR-CSP-20121115/

Bibliography

[60] San-Tsai Sun and Konstantin Beznosov. “The Devil is in the (Implementation)
Details: An Empirical Analysis of OAuth SSO Systems”. In: Proceedings of the
2012 ACM Conference on Computer and Communications Security. CCS ’12. Raleigh,
North Carolina, USA: ACM, 2012, pp. 378–390. isbn: 978-1-4503-1651-4. doi: 10.
1145/2382196.2382238. url: http://doi.acm.org/10.1145/2382196.2382238
(cit. on pp. 13, 68).

[61] K. Zyp and F. Galiegue, eds. A JSON Media Type for Describing the Structure and
Meaning of JSON Documents. Jan. 2013. url: http://tools.ietf.org/html/
draft-zyp-json-schema-04 (visited on 08/22/2013) (cit. on p. 46).

90

http://dx.doi.org/10.1145/2382196.2382238
http://dx.doi.org/10.1145/2382196.2382238
http://doi.acm.org/10.1145/2382196.2382238
http://tools.ietf.org/html/draft-zyp-json-schema-04
http://tools.ietf.org/html/draft-zyp-json-schema-04

	Introduction
	Background
	OAuth
	Roles
	Client Registration
	Client Profiles
	Protocol Flow
	Authorization Grant Types
	Security Considerations
	Summary

	Web Service
	Simple Object Access Protocol
	Representational State Transfer
	Summary

	HTML 5 Web Messaging
	Workflow
	Security Considerations
	Summary

	Same-Origin Policy
	Security Considerations
	Summary

	Cross-Origin Resource Sharing
	Concept
	Security Considerations
	Summary

	Summary

	Related Cryptographic Hardware and Web-based Solutions
	Standard Cryptographic Key Storage Solutions
	Smart Card
	Security Tokens
	Hardware Security Module (HSM)
	Summary

	Web-based Solutions
	Amazon Cloud HSM
	Austrian Mobile Phone Signature
	SigningHub
	Cryptomathic
	Dictao

	Analysis
	Criteria
	Comparison
	Summary

	Skytrust System Design
	Basic Concept
	Skytrust Element
	Receivers
	Actors
	Gatekeeper
	Authentication
	Packetizer
	Router
	Summary

	Skytrust Transport Protocol
	Header
	Payload
	Summary

	Skytrust Environments
	Skytrust Server Environment
	Skytrust Client Browser Environment
	Summary

	Basic Prototype
	Prototype Structure
	Control Flow

	Application Permission System Concept
	Basic Idea
	Derived Permission System
	Permission Concept - Example

	Summary

	Security Analysis
	Scenario
	Workflow
	Assumptions

	Assets
	Primary Cryptographic Keys – Core Asset
	Credentials – Related Asset
	Cryptographic Operation – Related Asset
	Temporary Cryptographic Keys – Related Asset
	Web application code – Related Asset
	Data – Related Asset
	Communication – Utilized Asset
	Skytrust Element – Utilized Asset
	Summary

	Attack Scenarios
	Scenario 1 – Local Attack
	Scenario 2 – Web Attack
	Scenario 3 – Communication Attack
	Scenario 4 – Server attack
	Scenario 5 – Operator attack

	Securing HTML5 Communication
	Summary

	Conclusion and Outlook
	Bibliography

