
Graz, University of Technology
Institute for Theoretical Computer Science (IGI),

Graz University of Technology

A-8010 Graz, Austria

Master’s Thesis

Temporally correlated
exploration noise for

reward-modulated learning of
reservoir models

Submitted by:

Michael Steinegger

Supervisor:

Assoc. Prof. Dr. DI. Robert Legenstein
Graz University of Technology, Austria

4. January 2014

Technische Universität Graz
Institut für Grundlagen der Informationsverarbeitung (IGI),

Technische Universität Graz

A-8010 Graz

Masterarbeit

Zeitlich korreliertes
Explorations Rauschen für

Reservoir Modelle

Vorgelegt von:

Michael Steinegger

Betreuer:

Assoc. Prof. Dr. DI. Robert Legenstein
Technische Universität Graz, Österreich

4. Januar 2014

Abstract

In humans and monkeys, projection neurons in primary motor cortex

act as the main signal source for spinal networks and thus act as the out-

put stage of cortical motor control circuits. Recently computational models

- called liquid state machines or reservoir computing - have emerged that

mimic this structure through the use of readout neurons. Synaptic plastic-

ity of such readout neurons can be achieved through reward-based learning

strategies, such as the Exploratory Hebb (EH) Rule. In the EH-rule, changes

in synaptic efficacies are driven by correlations between stochastic neuronal

responses (neuronal noise) and a global reward signal that measures system

performance on the task at hand. These measurements require the noise

to have an immediate impact upon system behaviour. This thesis investi-

gates the ability of such reservoir computing models to perform motor control

tasks. In systems bound by physical mass constraints, inertia and friction

effects might delay or filter rapidly changing noise. We employ temporal

correlation of neuronal noise signals to mitigate these filtering effects. Our

results show that movement of an agent can be successfully directed by us-

ing temporally correlated exploration noise for optimizing the weights of the

readout neurons of a reservoir driven controller.

Kurzfassung

In Menschen und Affen agieren Projektions Neuronen des primären Mo-

tor Cortex als Hauptsignalquelle für spinale Netzwerke und agieren so als

Ausgangsstufe für kortikale Motor-Regelkreise. Neuartige neuronale Rechen-

modelle - genannt liquid state machines oder Reservoir Computing - imitieren

diese Struktur durch die Benutzung von Readout Neuronen. Synaptische Pla-

stizität solcher Readout Neuronen kann durch verstärkende Lernstrategien

erreicht werden, wie die explorative Hebb (EH) Regel. In der EH-Regel wer-

den Änderungen in synaptischer Verbindungsstärke durch Korrelationen zwi-

schen stochastischen neuronalen Ausgangssignalen (neuronalem Rauschen)

und einem globalen Belohnungssignal, welches den Systemerfolg misst, be-

wirkt. Diese Strategie erfordert, dass das Rauschen unmittelbare Wirkung

auf das Systemverhalten hat. Diese Arbeit untersucht die Fähigkeit eines sol-

chen Reservoir computing Modells, Motorkontrollaufgaben zu bewältigen. In

Systemen in denen Massen bewegt werden müssen (z.b. Roboterarme), ver-

zögern und filtern Trägheits- und Reibungseffekte schnell variierendes Rau-

schen. In dieser Arbeit werden zeitliche Korrelation von neuronalen Rauschsi-

gnalen benutzt um diese Filter Effekte zu schwächen. Unsere Resultate zeigen

dass die Bewegung eines Agenten erfolgreich durch ein reservoir computing

System gesteuert werden kann wenn zeitlich korreliertes Explorationsrau-

schen verwendet wird um die Gewichte der Readout Neurone zu optimieren.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not

used other than the declared sources / resources, and that I have explicitly

marked all material which has been quoted either literally or by content

from the used sources.

......................................

(Place, Date) (Signature)

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig

verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und

die den benutzten Quellen wörtlich und inhaltlich entnommene Stellen als

solche kenntlich gemacht habe.

......................................

(Ort, Datum) (Unterschrift)

Contents

Contents ii

List of Figures iii

1 Introduction 1

2 Background 4

2.1 Liquid Computing . 4
2.2 Reward modulated learning 10
2.3 Reward based learning of readouts 12

3 Model 15

3.1 Reservoir model . 17
3.2 Exploration noise . 19
3.3 Physical model . 19

4 Results 29

4.1 Simulation results for 1D model 29
4.2 Simulation results for 2D model 34
4.3 Simulation results for robot arm 42

5 Discussion 46

5.1 Future work . 48
5.2 Conclusion . 48

i

A Time-discrete Formulas 49

B Matlab Code 51

Bibliography 57

ii

List of Figures

2.1 Reservoir . 7
2.2 Reservoir with Feedback . 8

3.1 Basic Model . 16
3.2 Model of a 2-link robotic arm 21
3.3 Motor Control System . 23
3.4 Robot Arm Feedback Kernels 28

4.1 Noise Amplitude Histograms 30
4.2 Noise Output . 31
4.3 1D System Output . 32
4.4 1D Targets reached during Training 33
4.5 1D System neuron activity . 34
4.6 2D System . 35
4.7 2D neuron activity . 36
4.8 2D Targets reached during Training 37
4.9 Reconstruction of exploration noise zξ 39
4.10 Noise reconstruction with large τc 40
4.11 Performance of different τc . 41
4.12 Robot arm movement trajectories during training 42
4.13 Robot arm movement trajectories during testing 43
4.14 Feedback and neuron activity during training 44
4.15 Target positions reached during training 45

iii

iv

Chapter 1

Introduction

Ever since the basic principles of computation in biological neurons have
been known, there have been attempts to emulate it. Many different
architectures based on networks of neural elements have been devised
over time. The first computational model of a neuron was the "linear
threshold unit (TLU)" or McCulloch-Pitts neuron named after its creators
[McCulloch and Pitts, 1943]. Other models like the influential perceptron
[Rosenblatt, 1962] soon followed, fuelling a surge of optimism about the
capabilities of simple networks consisting of these models. In analytical
work it was soon shown [Minsky and Papert, 1988] that the computational
power of single layers of these neurons was severely limited in scope and
the optimism faded. To overcome these inherent limitations, complexity of
the network had to be increased, resulting in multi-layered neural networks
[Rumelhart et al., 1986]. Another promising step that increased complex-
ity was the introduction of recurrent connections between units in a neural
network by [Hopfield, 1982]. Hopfield networks provided a model for as-
sociative memory by utilising point attractors. Such models opened up a
whole field of attractor networks not only for modelling memory, but other
biologically inspired processes like motor behaviour and classification tasks
[Amit, 1989, Pearlmutter, 1995]. Increasingly difficult tasks forced system
dynamics to become more complex, which in turn needed to be controlled

1

2 1. Introduction

more rigorously to maintain system stability. Models were constructed to cir-
cumvent these complex dynamics issues [Maass et al., 2002, Jäger, 2001]. In
these so-called Liquid Computing or Reservoir Computing models, a recur-
rently connected reservoir holds a high dimensional state, and a readout layer
extracts desired information. In order to achieve this extraction by readout
neurons, their weights are modulated by synaptic plasticity rules which try
to approximate a desired output signal. This usage of prior knowledge about
the desired output is referred to as supervised learning. In the context of
biological systems it might prove problematical to assume prior knowledge
about optimal output of a given network, especially in motor-control tasks
where translation of desired movement trajectory into actual control signals
plays a significant part.
Alternatively, weight modulation can be achieved through reward-based
learning [Hoerzer et al., 2011]. The prior knowledge of desirable output is
replaced by a measure of success in form of a reward function. The signal
generated by this function indicates progress towards a desired state. It was
shown by [Hoerzer et al., 2011] that such a reward modulated network is able
to carry out a variety of quite complex computational tasks. However when
considering motor control tasks, a significant problem arises through princi-
pal system behaviour. The learning rule employed by [Hoerzer et al., 2011]
utilizes a temporally uncorrelated noise signal to perform a local search
around the slowly changing control signal. This requires the noise signal
to have immediate impact upon performance of the system. Real-world me-
chanical systems are however bound by inertia and as such tend to filter such
noise through low-pass characteristics.
In the work presented here we show that this problem pertaining to motor
control problems can be overcome by applying temporally correlated noise.
By correlating the noise signal over time a lasting motor control impulse is
able to overcome low-pass filtering and generate movement on which perfor-
mance measurement by a reward mechanism can be made. This is shown
in the simulation of an abstract two-dimensional (2D) motor control task.
Varying degrees of noise correlation and their impact on performance are
examined before we move on to a more realistic simulation of a 2-joint robot

3

arm.
This thesis is organized in the following way:
In Chapter 2 we will explore the concepts of reservoir computing and reward
based learning in more detail. We will also take a look at the concept of su-
pervised and unsupervised learning and how it relates to rewards and reward
signals.
Chapter 3 gives a definition of our basic model which is used in our simula-
tions. Two representations of physical objects, moving point masses and a 2
joint robot arm, are used and those are also presented.
Throughout Chapter 4 simulations based on this model are laid out and their
results presented. The influence of time correlation on exploration noise is
demonstrated. It is then tested in two tasks containing increasingly complex
internal dynamics.
Chapter 5 concludes with a discussion of our results and the problems en-
countered.

Chapter 2

Background

2.1 Liquid Computing

In the process of modelling computational abilities of neural pathways, many
network architectures and neuron models have been developed and tested.
Artificial neural networks have come a long way in simulating finite state ma-
chines. But as one moves to more biologically plausible neuron models like
spiking neurons, these approaches seize to work. It was shown that this can
be achieved by introducing recurrent connections into networks of spiking
neurons [Maass, 1996]. But the requirement of a synchronizing mechanism
for all neurons weakens their relevance in simulating neural microcircuits.
Another problem is the high dimensionality of recurrent networks formed by
neural microcircuits. Through recurrent connections the internal dynamics
of a system can become very difficult to control. So we want to explore a
model for neural computing which does not rely on controlling these internal
dynamics and is still able to operate with high dimensional states.
Consider a pool of liquid in motion. It consists of particles flowing around in-
teracting with each other. The entirety of all particle movement vectors can
be thought of the internal state of the liquid. By dropping an object into it
all particles will change their flow accordingly. Thus the internal state of the
liquid as a whole while it is not reverted to a resting state can be thought of

4

2.1. Liquid Computing 5

conserving memory about the input object. If we consider rapidly changing
input, the internal state of the liquid will probably fluctuate and flow freely in
a large state space that is not fixed to finite defined states but more in a liquid
state. The goal in this liquid state model is not to extract information about
the input from the attractors of the resting state, but rather from the flow
through the state space of the liquid state [Maass et al., 2002]. This has the
added benefit of preserving the temporal dimensions of the input. In natural
occurring signals information about the temporal structure naturally plays a
big role and can be crucial in a number of tasks . By using integrate-and-fire
neurons which operate in the continuous time domain it can be shown that
such an aforementioned liquid state model can effectively encode temporal
features of complex input signals [Buonomano and Maass, 2009].
The final task of such a liquid computing model is to extract relevant data
from the trajectory of changes in the internal state of the liquid. It can
be shown that this data through a high dimensional state space can be
separated linearly and processed by networks of readout neurons if their
synaptic weights are subject to adaptation [Buonomano and Maass, 2009,
Hoerzer et al., 2011].

2.1.1 Liquid State Machine

In this model a single layer of readout neurons z is employed to interpret the
internal state s of a randomly interconnected network of neurons which we
will call reservoir R (see Figure 2.1). This internal state is generated at time
t by all the neurons in R through a filter F in response to an continuous
input signal u:

s(t) = (Fu)(t) (2.1)

Commonly called operators in mathematics, F maps a temporal input stream
u(•) onto the output stream s(•). The internal state s(t) is dependent on
preceding inputs u(s) for s ≤ t. When R is implemented by a neural circuit
this filter can be realised by recurrently connecting some or all of the neurons,
providing the capability of fading memory [Maass et al., 2002].

6 2. Background

In contrast to finite state machines these liquid states do not have defined
discrete transitions between them and are not constructed for a specific task.
Rather, the resulting state at time t emerges as a product of the previous
state and the input at that time. To obtain desirable output a memoryless
readout function z is used. This readout maps the observed internal state
s(t) at time t onto the output y(t):

yj(t) = zj (s(t)) (2.2)

In a neural circuit this can be implemented by a single layer of L readout
neurons. In some cases this can even be reduced to a single neuron. These
readout neurons zj look as follows:

zj(t) = σ

(∑
i

wj,isi(t)
)

(2.3)

The transfer function σ is typically linear, but may sometimes be chosen as
a sigmoid function(usually the tanh function). While the reservoir R can
be generic or randomly chosen, the readout layer z has to be specifically
constructed for the given task. Multiple readout units can be used in paral-
lel on the same reservoir for different tasks which require information about
the same input sequence [Hoerzer et al., 2011]. The basis of computational
power for these liquid state machines can be found within 2 properties pre-
sented in [Maass et al., 2002].
The separation property of a liquid filter F addresses the amount of separa-
tion between the trajectories of internal liquid states s(t) that are caused by
two different input streams u(•). The ability to distinguish between different
input streams and represent them accordingly in the internal state is essen-
tial for computation and a good separation capability enables to differentiate
between input streams at time t with significant differences lying further in
the past before t.
The approximation property of a readout z addresses its capability to distin-
guish between different internal states and transform them into given target
outputs.

2.1. Liquid Computing 7

u(•)

R

z y(t)

s(t)

Figure 2.1: Liquid computing model with a reservoir R consisting
of recurrently connected neurons, and a layer of readout
units z. At every point in time t an internal state s(t)
is created by R from the input u(•) and recurrent con-
nections. s(t) is then transformed by z into the output
y(t).

On the basis of these properties a universal approximation theorem for liq-
uid state machines was formulated by [Maass et al., 2002]. According to the
theorem, if a liquid state machine possesses both separation and approxima-
tion property it can approximate any time invariant fading memory filter.
Providing the reservoir with feedback from the readout as shown in Figure
2.2 overcomes the limitation of fading memory [Maass et al., 2007]. In the
absence of noise the resulting computational model is capable of any conceiv-
able digital or analogue computation on time-varying inputs, and still has
significant computing power in noisy conditions.

8 2. Background

u(•)

R

z y(t)

s(t)

Figure 2.2: Liquid computing model like in Figure 2.1 but with a feed-
back loop. In addition to the input stream u(•) the reser-
voir R is provided with the output y(t). Every internal
neuron of R might be connected with the output from
every readout unit in z to create complex feedback dy-
namics.

2.1.2 Echo State Network

Another approach for computing with reservoirs is the Echo State Network
(ESN) proposed by [Jäger, 2001]. The model basically consists of a discrete-
time recurrent neural network with K input units u, N internal network units
s and L output units y. Looking back at the liquid computing model in Fig.
2.1 the internal units together can be thought of the reservoir R and the
output units as the readout z. The term "Echo State" refers to the internal
state s[n] being viewed as an echo of previous inputs.

s[n] = E [n, n− 1, n− 2, ...] (2.4)

2.1. Liquid Computing 9

with the discrete function E being equivalent to the continuous liquid filter F
introduced earlier. The update of each internal unit sj is computed according
to

sj[n+ 1] = f(
∑
k

win
j,kuk[n+ 1] +

∑
i

wj,isi[n] +
∑
l

wback
j,l yl[n])) (2.5)

where f is the output function of the unit which is typically sigmoid. W
here is the weight matrix for connections between the internal network units,
Win a matrix collecting the input weights and Wback is the matrix containing
weights for feedback connections from the output units. The output is given
by

y[n+ 1] = f out
(
〈wj

out,x[n+ 1]〉
)

(2.6)

with x[n] being a concatenation of input, internal state and output vectors:

x[n] =

u[n]
s[n]

y[n− 1]

 (2.7)

f out describes the output function of the output units and Wout is a matrix
containing all weights that lead to the output unit. The vector x is used in
the inner product 〈wout

j ,x[n+1]〉. Note that with this definition even output
units may be recurrently connected as well as there being direct connections
from input to output units. For the network to be able to being used in
a reservoir computing sense it is required to have the echo state property
defined and examined extensively by [Jäger, 2001]. Furthermore a range of
corresponding properties are defined which are uniformly state contracting,
state forgetting and input forgetting. Possessing any of these properties leads
to the network being able to have echo states. From these properties it can be
intuitively stated that a reservoir possesses the echo state property if it is able
to wash out any information pertaining to initial condition asymptotically.

10 2. Background

2.2 Reward modulated learning

In modelling the behaviour of animals and humans, the concept of reward
and reward based learning methods play a crucial role. Conditioning exper-
iments rely on pairing a possible action of the subject to a specific reward
or punishment. In Psychology this is known as Thorndike’s Law of Effect
[Thorndike, 1911]. The concept of reward is also used in machine learning
and economic decision making [Sutton and Barto, 1998]. Rewards are typi-
cally objects or states which attain positive or negative value by some kind of
evaluating system or process. These can be used to increase the likelihood of
behaviour leading to the same or similar reward inducing states. Usually this
takes the form of some kind of learning procedure, where multiple trials of the
same or similar problem are faced with varying behaviour. A reward signal
then acts as a kind of teacher influence in determining the most favourable
behaviour over the course of the trials. The reward can be induced manu-
ally, like giving out money by an experimenter for each question correctly
answered. It can also come naturally like the sensation of a full stomach after
having eaten.
There are also fundamental problems regarding using such reward signals to
facilitate learning. One is known as the "credit assignment problem". With
more complex tasks and behavioural variety, it becomes unclear which part
of a specific behavioural pattern triggers a reward response. Especially in
a natural environment, not every object or movement is relevant for solving
a problem, and therefore subject to adjustment for reward attainment. An-
other related problem evolves around temporal delay. Typically there is a
time window between the required behaviour and the reward response. The
length of this time period and the nature of the task in producing distracting
elements may strongly interfere with the ability to map a specific behaviour
to the corresponding reward response.
In some reward based learning methods the information about the learning
process is obtained in a reward prediction error signal. This error signal
naturally requires a prediction to be made about occurring reward impulses
and thus an estimate of the state of the environment. As any action taken

2.2. Reward modulated learning 11

will likely result in a change in the environment, these too have to be esti-
mated and accounted for. The exploration and selection of effective actions
is therefore critical to learning success. The resulting difference between pre-
diction of the evolved environmental state and the obtained reward can then
be used as performance measure to make future predictions more accurate
with respect to the environmental data on which the prediction was based.
Research suggests that this form of learning behaviour based on predict-
ing reward stimuli takes place in the human brain (see [Schultz, 2007] for a
review). Various neuromodulators influence synaptic plasticity. Especially
the function of dopaminergic neurons is often likened to generating reward
signals for the human brain [Schultz, 2007]. Dopaminergic neurons located
in the mid-brain not only seem to activate in bursts after food and liquid
rewards, but also encode a prediction error in the form of:

Dopamine Response = reward occurred− reward predicted (2.8)

Other research about synaptic plasticity has postulated Spike Timing De-
pendent Plasticity (STDP) as a plausible model about how single presy-
naptic and postsynaptic neurons influence each other [Bi and Poo, 1998,
Markram et al., 1998]. STDP models a spiking-neuron specific form of Heb-
bian Learning [Hebb, 1949], where the fundamental principle is the temporal
correlation of neuronal firing times. Specifically the weight of a synapse be-
tween 2 neurons changes according to the timing difference of presynaptic
spike arrivals and postsynaptic spikes. Although it is difficult to show this
theoretical concept in practical studies there are signs that suggest involve-
ment of dopamine signals in synaptic plasticity [Pawlak et al., 2010]. Be-
cause as discussed above dopamine is a strong candidate for supplying some
form of reward signal, this leads to the consideration of a global reward signal
as a gating or modulation mechanism for synaptic plasticity rules (see e.g.
[Legenstein et al., 2008] for models). This is often called reward-modulated
Hebbian Learning. The corresponding learning rules can be called 3 factor
learning rules after their dependence on pre- and postsynaptic activity x(t)

12 2. Background

and y(t) as well as modulation M(t) (e.g. by a reward signal):

∆w(t) = ηx(t)y(t)M(t) (2.9)

In the following experiments we will use one of these rules, the Exploratory
Hebb Rule (EH) from [Legenstein et al., 2010b]. The 3 factors here are the
output of the readout neurons, an exploratory noise signal ξ(t) and the mod-
ulatory reward signal M(t). The output of the readout neurons is perturbed
by the exploration signal. The exploration noise establishes a search space
around the input, which is considered to be changing much more slowly so
it can be considered constant (in contrast to STDP). The resulting correla-
tion between ξ(t) and M(t) provides a performance measure on which the
learning of the readout weights can be based.

2.3 Reward based learning of readouts

For a reservoir in order to successfully compute its task, suitable connection
weights have to be found. We have established previously that the con-
nections of the reservoir units themselves can be randomly generated. The
question is now how to obtain readout weights suitable for a given task.
Along with the definition of echo state networks, [Jäger, 2001] provided a
training method consisting of 3 steps.
In Step 1 the reservoir is constructed and all connections are established ran-
domly.
During Step 2 the network is driven by input of a training set. The training
set consists of a input sequence u[1], u[2],... ,u[N] and corresponding tar-
get outputs y∗[1],y∗[2],...,y∗[n]. If there are feedback connections from the
output back into the reservoir, the target outputs have to be injected back
into the reservoir, called "teacher forcing". During this training the resulting
network states s[1], s[2],...,s[N] are collected. Lastly in Step 3 the optimal
output weights are computed by finding weights which minimize the error
between output gained from the collected states s[n] and the desired output
y∗[n]. Due to the simple nature of the readout this can be done with using

2.3. Reward based learning of readouts 13

linear regression.
For this method it is necessary to acquire and provide a suitable training set.
For some problems this might become cumbersome or outright impossible.
Also while in the context of artificial neural networks this type of super-
vised learning poses no problem, in the context of biological systems and
neuroscience more plausible methods of obtaining readout weights might be
desirable. Thus we try to apply reward based learning. In a reward based
approach, only a reward signal and a final target state have to be chosen.
Thus there is no teacher-provided data on optimal output the network should
give, and no solution to reach the target has to be known beforehand.
The amount of supervision is determined by the complexity and information
the modulating reward signal M(t) provides. As an example consider a 2-
dimensional plane on which an agent moves towards a target point. A reward
signal for the agent could consist of only the Euclidean distance between its
momentary position. Alternatively it could incorporate the angle between its
movement vector and the direction to the target, providing the agent with
much more spatial information.
With the EH Rule it can be shown [Hoerzer et al., 2011] that learn-
ing is possible even with the most basic signal. In contrast to e.g.
[Sussillo and Abbott, 2009] who use similar network models and experiments
with fully supervised learning rules, [Hoerzer et al., 2011] use only following
reward

M(t) =

1 if P (t) > P̄ (t)

0 if P (t) ≤ P̄ (t)
(2.10)

with P (t) as a measure of system performance as follows

P (t) = −
L∑
i=1

(
ziξ(t)− fi(t)

)2
(2.11)

and P̄ a low-pass filtered moving average of P (t). ziξ(t) is the output of neuron
i and fi(t) the target value for ziξ(t). The target values themselves are not
known to the network. The only information accessible for the learning rule
is whether the overall output of all readout neurons was an improvement over

14 2. Background

the recent performance or not. This is arguably the least possible information
under which goal directed learning is still possible. However the target still
consists of a complete trajectory with every point in time being assigned an
optimal value. During large stages of the simulation it requires only small
corrections accounting for small changes of the target, assuming a grade
of continuity. In our experiments we will use similar learning and reward
procedures, but with the target being a distant end state which the model
must reach. In a 2 or more dimensional space this target state is reachable by
many trajectories which the readout has to construct on its own. A reward
that is based only on the achievement of a relatively long-fetched goal is a
further step of removing teacher influence on the learning process. In the
following chapters we want to demonstrate how this might be achieved.

Chapter 3

Model

In this chapter we will present a basic model on which our simulations are
based. The model consists of 3 major components, as shown in Figure 3.1.
The first component is a reservoir of recurrently connected neurons with a
single layer of linear readout units. As discussed in the previous chapter its
purpose is to collect information about the dynamics of the second compo-
nent, a model of a moving physical mass, inside its state space. The readout
units then generate a control signal which drives the physical object, gener-
ating movement. The information provided by the object is its own position
state, which is fed back into the reservoir. The third component generates
temporally correlated noise and adds it to the readout signal from the reser-
voir. This noise is essential for the learning process.
As already stated, the task of every simulation is for the reservoir to lead
the equation system to a specific target state. In our simulations the target
state always represents a specific position for the modelled physical object
and no demands are made for specific velocity values. The desired control
signal that drives the model on a trajectory leading from the initial position
to that target is unknown throughout the simulation. It must be found by
the model by moving around and receiving a reward signal. This reward
changes proportionally with the distance of the object to the target, essen-
tially telling the model how far away it is from its goal.

15

16 3. Model

A

B+

+

+
z

z
ξ

ξ

uReservoir y

Model

correlated Noise

p

τc

Figure 3.1: The System diagram consists of three main components.
(blue) The reservoir of non-linear functions stores infor-
mation about the model dynamics which it gains from the
feedback signal p(t). Its readout units create the output
signal z(t) to control the model. (green) The recurrent
loop constructs the time-correlated noise signal zξ from
the uncorrelated source noise ξ and the noise correlation
time constant τc. Together with the output of the reser-
voir readout z(t),zξ forms the control signal u. (red): The
physical model is driven by the noisy reservoir output u(t).
Generally it consists of a system of differential equations
modelling a device we want to control like an electric mo-
tor or a moving physical object. The position of the model
is returned to the reservoir as feedback signal p(t).

Typically the control signal is interpreted as acceleration value, manipulat-
ing position through changing the velocity of the physical model. Thus the
model can be viewed as integrating the control signal before feeding it back
to the reservoir. As the movement of the modelled mass is subject to inertia
and friction, the velocity can be considered to have a low-pass characteristic.
The goal of these simulations is to demonstrate the ability of time correlated
noise to overcome the difficulties of low-pass filtering and integration of the

3.1. Reservoir model 17

control signal. It must be able to effect changes in the position of the ob-
ject so the reward signal can give meaningful information about the target
and inject it into the weights of the readouts. With these weight changes
the reservoir has to create a control signal strong enough to overcome the
random travelling of the noise to guide the model to the target. This also
places constraints on the noise amplitude.
Throughout the rest of the chapter we want to provide a more precise math-
ematical definition of the model. All definitions here are stated in continuous
time as we still perceive the model in a biological context. The simulation
results presented in the next chapter are obtained using discretized models.
The equations for these discrete models can be found in Appendix A.

3.1 Reservoir model

The reservoir is implemented as an array of fully connected neurons. The
internal dynamics is given by

τ ẋi(t) = −xi(t) + λ
N∑
j=1

wrec
ij rj(t) +

M∑
j=1

wfb
ij yj(t) (3.1)

where τ is the membrane constant. The state xj(t) of the j-th neuron repre-
sents its membrane potential at the soma at time t. Parameters wrec

ij and wfb
ij

denote the weights for recurrent connections within the reservoir and feed-
back connections from the model to the network neurons respectively. Their
values were randomly chosen to be between −1 and 1. The firing rate of the
j-th reservoir neuron rj at time t is given by

rj(t) = tanh(xj(t)) + ξstate
j (t), (3.2)

where ξstate
j (t) models zero mean noise on the firing rate of the neuron. This

noise is uniformly distributed between −0.05 and 0.05. As further on we will
use multiple readout neurons, the following formulas are used for a generic
number of readouts. The signal from the readout neurons z(t) is computed

18 3. Model

by a simple sum of the weighted firing rates of all reservoir neurons rj at
time t.

zi(t) =
N∑
j=1

woijrj(t) (3.3)

woij are the readout weights for the i-th output unit from the j-th reservoir
unit. The control signal u(t) is obtained by adding correlated noise zξ(t) to
z(t):

u(t) = z(t) + zξ(t) (3.4)

The exploration noise zξ(t) is detailed further below in Equation 3.8. The
readout weights woij were initialized to very small values drawn from a uniform
distribution with zero mean, and then adapted throughout training with a
variation of the Exploratory Hebb (EH) rule [Legenstein et al., 2010a]. The
distribution was ranged between −0.01 and 0.01.

∆wo,ij(t) = η (R(t)− R̄)(t) (ui(t)− ūi(t))rj(t) (3.5)

where R is a reward function for measuring momentary system performance.
The term ui− ūi tries to reconstruct the correlated noise zξ from the control
signal u. The readout weights are thus changed according to the momentary
change of the reward function R−R̄ that results from the momentary change
of the control signal by the exploration noise. η denotes the learning rate.
The two running average values R̄(t) and ū(t) are computed by

τz
d

dt
ū(t) = (u(t)− ū(t)) (3.6)

for the control signal u(t) and

τα
d

dt
R̄(t) = (R(t)− R̄(t)) (3.7)

for the reward signal R(t). τα and the readout output filter time constant τz
are suitably chosen constant values.

3.2. Exploration noise 19

3.2 Exploration noise

The generator of the exploratory noise is the second component. Because
of the low-pass characteristic of the inertia model,temporally uncorrelated
noise is expected to be ineffective for usage with the learning rule. There-
fore temporally correlated exploration noise zξ is introduced into the control
signal.

d

dt
zξ(t) = −zξ(t)

τc
+ ξ (3.8)

where ξ is a vector of uniformly distributed random variables with zero mean.
The range was set between −a and a, with a referred to as the noise ampli-
tude. The value of a is dependent on the experiment. zξ(t) is of the same
dimension as the control signal u(t) so the noise signals for each dimension
of the model, while temporally correlated, are independent of each other.
The noise correlation time constant τc governs the time over which the noise
remains correlated. It has significant influence on the effect of the noise on
the system and on training success.

3.3 Physical model

Throughout the simulation 2 different architectures are used. The first model
represents a moving object with a position in an environment and a velocity.
All its mass which is set to 1 kg is concentrated in a single point. The
influence of inertia gives it a low-pass filter characteristic for the control
signal z(t). Its dynamics are based on a set of differential equations

d

dt
y(t) = Ay(t) +Bu(t) (3.9)

where the state vector y models both position p and velocity v.

y(t) =
p(t)

v(t)

 (3.10)

20 3. Model

At first we use this model in one-dimensional space to show the difference
between correlated and uncorrelated noise. In a second experiment we add
a second spatial dimension. On a single axis, a reward signal based on
direction always points straight at the target or away from it. A point mass
moving on a plane has much more margin of error as it can move towards the
target on a trajectory which does not actually lead to the target. As such at
least 2 dimensions are needed here to accurately test the performance of the
architecture.
After this 2 simulations we use the model of a robot arm with 2 joints to
simulate a physical model with more complex internal dynamics (shown in
Figure 3.2). The robot arm consists of 2 joints with motors inside the end
points. Here the control signal from the reservoir acts as torque for the 2
motors inside the joints. The goal is for the endpoint of the arm to reach a
target point on a 2 dimensional plane. Although the dimensionality is the
same as in the previous simulation, the influence of the two mass points of
the joints on each other require internal states of much more complexity. For
the rest of this chapter we will present the internal dynamics of the physical
models in the three simulations in detail.

3.3.1 1D Model

In the one-dimensional model the reservoir has to control the velocity of a
mass point on a infinite line so that the position assumes a specific target
value on the line. The dynamics parameter matrices A and B are given as

A =
0 1

0 τf

 , B =
0

1

 (3.11)

with τf being the friction coefficient. The reward function was chosen as a
simple measure of distance between the target and the momentary position
of the model. Thus it looks as follows

R(t) = − |p(t)− ptarget| (3.12)

3.3. Physical model 21

m
1

2

φ

ω
φ

1

2

1

ω2

X

Y
m

l

l

1

2

Figure 3.2: Model of a 2-link robotic arm. The mass is concentrated in
2 points for simplicity. The points for this masses m1,m2
are located in the 2 joints of the links. Movement is con-
trolled by motors in the joints at m1 and m2. They act
on the acceleration δω1, δω2 on the two angles φ1, φ2.

where ptarget was the target position value of the model. The function is
always negative with its highest value of zero reached when the model has
reached the target. This is to ensure that the momentary change in the
reward signal given by R(t)− R̄(t) is always positive when the model moves
towards the target and the distance lessens, and negative otherwise. The
weights are then updated according to this momentary change as shown in
Equation 3.5. The feedback signal back into the reservoir consists of the
model position p(t) and was connected randomly to all reservoir neurons.

22 3. Model

3.3.2 2D Model

The system was then expanded by a second dimension with separate noise
and input. It still represents a mass point where the velocity is controlled by
the reservoir to reach a given target point on a plane. The control signal for
each dimension is held separately, so u1(t) controls v1(t) and u2(t) controls
v2(t). Two separate readout units with distinct weights are used to construct
z(t). A and B are given as

A =

0 0 1 0
0 0 0 1
0 0 −τf 0
0 0 0 −τf

 , B =

0
0
1
1

 (3.13)

while the reward function R stays the same as in Equation 3.12 but with
2-dimensional points p(t) and ptarget.The weights for both readouts are up-
dated using this global R. Again as feedback into the reservoir both di-
mensions of p(t) were used as separate signals with own connections and
weights.

3.3.3 Model of a robot arm

After exploring the boundaries of the system parameters with the two-
dimensional model a last simulation with a completely different model ar-
chitecture was made. This time the simulation of a 2-joint robot arm was
chosen for its realistic dynamics of different masses influencing each other
establishing a bigger state space. Also guiding a robot arm is a straightfor-
ward application and it’s use is easily understood. Thus the last simulation
task was to try to guide this robot arm to a target endpoint.
The arm is modelled like a double inverted pendulum with 2 links joined
together at one end as shown in Figure 3.3. The first link is joined to the
ground. The end of the second link acts as the reference point for reach-
ing the goal. The links 1 and 2 have lengths l1 = l2 = 1m and masses
m1 = m2 = 1kg. For simplicity m1 and m2 are considered to be concen-

3.3. Physical model 23

+

+

z

z
ξ

ξ

uReservoir

Model

correlated Noise

τc

Feedback

S

φ

Arm

Figure 3.3: The system was modified from Figure 3.1. (violet) A feed-
back component was added that sparsely encodes the 2
dimensional feedback signal into 20 dimensions via radial
basis functions. (red) The controlled system was changed
to the simulation of a 2-link robotic arm with a 4 dimen-
sional internal state S(See Equation 3.14).

trated in the joints. The two motors in the joints of the arm create a torque
for the angular movement of the 2 links of the pendulum to each other and
to the ground. The robotic arm was modelled with 4 internal variables,
the 2 angles φ1(t), φ2(t) of the joints and the angular velocities ω1(t), ω2(t).
For simplicity the values for both angles were restricted to φmin = 0 and
φmax = 1π without taking into account link width or physical joint limits.
Figure 3.2 shows how they relate to the model. Together they form the

24 3. Model

internal state s of the model defined as follows:

s(t) =

φ1(t)
ω1(t)
φ2(t)
ω2(t)

 (3.14)

The activation function of the readout neurons was also changed because of
the sensibility of the model. Because of the radial nature of the problem
space continuously strong control signals could cause the arm to strongly
push against the maximum angles. Therefore a scaling factor was suitably
chosen to adjust the reservoir output strength. Also the maximal torque
that the 2 motors generate is limited to Fmax = 20Nm. To avoid saturation
effects that could severely affect the function of the exploration noise zξ this
maximum torque was accounted for in a limiting function applied to the
control signal u(t). Thus a tangens hyperbolicus function was chosen to
limit the signal while preserving continuity of the function.

ui(t) = tanh
β∑

j

wi,jxj(t) + zξ(t)
Fmax (3.15)

β denotes a scaling constant which was empirically chosen to keep the reser-
voir output from saturating the tanh function. The signal u from the reservoir
acts as control signal for the motor torques, thus generating the angular ac-
celeration ω̇1, ω̇2. The Formula for the acceleration can be derived from the
kinematics of the robot arm. The points p1, p2 denote the x and y coordinates

3.3. Physical model 25

of the 2 masses m1,m2.

p1 =
l1 cosφ1

l1 sinφ1

p2 = p1 +

l2 cos (φ1 + φ2)
l2 sin (φ1 + φ2)

ṗ1 =

− l1ω̇1 sinφ1

l1ω̇1 cosφ1

ṗ2 = ṗ1 +

−l2 (ω1 + ω2) sin (φ1 + φ2)
l2 (ω1 + ω2) cos (φ1 + φ2)

(3.16)

For simplicity of the simulation the gravitational force was omitted. Thus
the kinetic energy T and the potential energy U resolve to

T = 1
2
(
m1l

2
1 +m2l

2
1 +m1l

2 +m2l1l2 cos (φ2)
)
ω2

1+
1
2m2l

2
2ω

2
2 +

(
m2l

2
2 + 1

2m2l1l2 cosφ2ω1ω2

)
U = 0

(3.17)

Using the method of Lagrange we arrive at the following equation for the
acceleration ω̇(t) from the input signal u.

ω̇(t) = H−1(t) (u− Cω) (t)− fω (3.18)

with

H(t) =
1

3 l
2
1m1 + 1

3 l
2
2m2 +m2l

2
1 + 1

2 l1l2m2cos (φ2(t)) 1
3 l

2
2m2 + 1

2 l1l2m2cos (φ2(t))
1
3 l

2
2m2 + 1

2 l1l2m2
1
3 l

2
2m2

C(t) =

−l1l2 sin (φ2(t)) ˙ω2(t) −1
2 l1l2 sin (φ2(t)) ω̇2(t)

1
2 l1l2 sin (φ2(t)) ω̇1(t) 0

(3.19)

A generic friction term f was introduced in Equation 3.18, acting on the
current acceleration in each time step. This limitation of acceleration should
act as discouragement of high velocities like the friction terms in Equations

26 3. Model

3.11 and 3.13. Without it the joint velocities would quickly outgrow the
influence of the exploration noise zξ on the direction of movement. The
target was a circle with a radius of 0.1m around a target point defined by
φtarget. The reward function was chosen to be the normalized product

R(t) = v∗(t) v(t)
|v∗(t)| |v(t)| (3.20)

of current speed v(t) and the distance to the target v∗(t). Both had to be
transformed into cartesian vectors from the angles φ1(t), φ2(t) and angular
velocities ω1(t), ω2(t).

v∗(t) = φtarget − l1

cos(φ1)(t)
sin(φ1)(t)

+ l2

cos(φ1(t) + φ2(t)
sin(φ1(t) + φ2(t)

 (3.21)

v(t) = ω1(t)
cos(φ1(t) + π

2)
sin(φ1(t) + π

2)

+ ω2(t)
 cos(φ1(t) + φ2(t+ π

2)
sin(φ1(t) + φ2(t) + π

2)

 (3.22)

The weight update also changed from Equation 3.5 to

∆wo,ij(t) = η R∗(t) (ziξ(t))rj(t) (3.23)

where R∗(t) was determined by

R∗(t) =

1 if R(t) ≥ R̄(t)

−1 if R(t) < R̄(t)
(3.24)

which is similar to the reward used by [Hoerzer et al., 2011] shown in Equa-
tion 2.11. There is an additional reason for using R∗(t) rather than R(t).
With shrinking distance between the end effector of the arm and the target
also R(t) may diminish by several magnitudes. This has a scaling effect on
the weight change which can, in concert with low values of η lead to no sig-
nificant weight updates at all if the arm is already near the target. At every
time step the joint angles φ(t) where fed back into the reservoir. Because
of the sensibility of the system with regard to the control signal one has to

3.3. Physical model 27

be careful with feedback signal shaping. In this model we used radial basis
functions to sparsely encode the feedback signal. Each of the 2 feedback
signals were fed to 10 function kernels. The centres of the kernels µi were
uniformly distributed between 0 and 2π to match the restriction of the joint
angles. The following kernel function was used

oi(t) = exp
(φ(t)−µi)

2

2ρ2 (3.25)

and the standard deviation ρ was set to 0.5. The resulting feature vectors
o(t) were then fed back to the reservoir neurons x(t) by the weight matrix
W fb as in Equation 3.1. Like before the weights had values randomly assigned
between −1 and 1, but this time only 25% of the weights were allowed to
have values different from zero. The distribution of these non zero values
was also random.

28 3. Model

0 45 90 135 180 225 270 315 360
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

o(
t)

θ
1
(t),θ

2
(t)

Figure 3.4: Radial basis function kernels for the Feedback signal o(t).
As the angles of the two joints were constrained the 10 ker-
nels that were used are evenly spread out over the interval
0 to 2π radians or 0◦ to 360◦ as shown in this figure.

Chapter 4

Results

4.1 Simulation results for 1D model

4.1.1 Correlation of exploration noise

The simulation of the first model, the 1-dimensional mass, was divided into
two parts. In the first part the readout output z was set to zero. To show
the difference between time-correlated and uncorrelated noise, the system
position p(t) and velocity v(t) were recorded over a time of 100 seconds
and then compared. The system state s(t) was recorded at first without
correlated noise, then with noise correlation time constant τc set to 5 s. The
amplitude of the uncorrelated source noise ξ was fixed differently so that the
noise signal zξ would have the same variance both with and without time-
correlation as seen in Figure 4.1. For the simulation time step ∆t = 1ms
the amplitudes were fixed at 0.5 for the correlated signal and 24 for the
uncorrelated one. As seen in Figure 4.1 the width of the distribution of v(t)
doubles for correlated input noise. The standard deviations behave in the
same way. The more significant difference lies in the position values p(t) as
seen in Figure 4.2. The non-zero mean value of local velocity spikes causes
the position to vary significantly. In the absence of other input only the
correlated noise generates the movement necessary for the reward function

29

30 4. Results

−30 −20 −10 0 10 20 30
0

500

1000

1500

2000

2500

3000

correlatedpnoisepz
ξ
,pτ

c
=p5s

A

−30 −20 −10 0 10 20 30
0

200

400

600

800

1000

1200

uncorrelatedpnoisepz
ξ
,pτ

c
=p0s

B

−0.4 −0.2 0 0.2 0.4
0

500

1000

1500

2000

2500

3000

velocitypwithpcorrelatedpinput

C

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

500

1000

1500

2000

2500

3000

3500

velocitypwithoutpcorrelatedpinput

D

Figure 4.1: Histograms of noise and velocity amplitudes with and
without time correlation. A and B show the amplitude
distribution of noise that is either temporally correlated
with a τc of 0.5s in A or completely uncorrelated in B over
the course of 100s (or 100000 timesteps). The amplitude
for the noise source was set 48 times higher in case of
the uncorrelated noise to reach the same maximum am-
plitudes. In C and D the respective velocity distributions
for the 1D model with correlated (in C) and uncorrelated
noise (D) as input is shown. The maximum velocity driven
by correlated noise more than doubles, and the distribu-
tion loses its symmetry which allows the possibility of long
term movement of a low-pass filtered model and thus ex-
ploration.

4.1. Simulation results for 1D model 31

to return meaningful values to update the readout weights with respect to
the position change generated by the noise. If we take a look back at the
weight update function in Equation 3.5 this reflects the desired behaviour
on the condition that the input from the reservoir changes so slow as to be
nearly constant in nature.

0 20 40 60 80 100

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time(s)

ve
lo

ci
ty

 x
2

0 20 40 60 80 100
0

1

2

3

4

5

6

time(s)

po
si

tio
n

x 1

Figure 4.2: Recorded output shows the advantage of using time cor-
related noise. Left: Velocity recorded over 100 seconds.
Right: Position values during the same time. With-
out using temporally correlated noise (red) position of
the model remains constant. Using temporally correlated
noise yields not only higher velocities, but also stable ve-
locity values over enough time to change the position sig-
nificantly over the course of the simulation.

4.1.2 System Feedback

With these values for correlation time and noise amplitude the full system was
simulated to show the impact of noise correlation on learning performance.
Also this simulation should prove that the reservoir was capable of producing
a readout signal smooth enough to satisfy the "nearly constant" condition in
the time frame of the noise correlation time constant. The averaging time

32 4. Results

0 50 100 150 200
−2

0

2

4

time(s)

po
si

tio
n

x 1

0 50 100 150 200
1

2

3

4

5

time(s)

po
si

tio
n

x 1

0 10 20 30 40 50
−3

−2

−1

0

1

2

time(s)

po
si

tio
n

x 1

0 10 20 30 40 50
1

1.5

2

2.5

3

time(s)

po
si

tio
n

x 1

Figure 4.3: Simulation of position (p1) over time. Top: Training phase
for the model. Bottom: Testing phase. Left: Simulation
with temporally correlated noise zξ. Right: noise corre-
lation time constant τc was set to 0s. On the Left side
the testing phase shows much progress during the whole
period resulting in very stable performance in the training
phase. On the right side the weak correlation of the noise
does not have much effect on the monotonous noiseless
readout signal z. This results in simple acceleration in an
arbitrary direction.

constant τz was set to 0.1995s and the averaging constant τα in Equation
3.7 at 0.0045s for the running average for the reward function R̄. The noise
correlation time constant τc remained at 5s. The time constant for the friction
τf was set to 0.012s. This provided significant resistance to movement like a
rough or soft surface. The learning rate η was fixed at 0.0005. The noise ξ
was set to 0 during the testing period to see if the network could reach the
target without aiding movement generation of the noise signal. As a strong
noise signal could eventually reach the target without the readout signal and
thus inhibit learning, this was necessary to measure the performance of the
reservoir readout. The internal state y was initiated with a random value

4.1. Simulation results for 1D model 33

between -1 and +1 for the position p(t) and 0 for the velocity v(t). The
value chosen for ptarget was 0. If the distance between ptarget and p(t) would
be under 0.1 during the simulation, it would reset y(t).During training the
number of resets in a given time frame provided a good indicator for learning
progress (For a typical progression see Figure 4.4). The total number of resets
during testing could be taken as abstract performance measure. To show the

0 50 100 150 200
0

2

4

6

8

10

12

14

16

18

time(ms)

N
um

be
r

of
 T

ar
ge

ts
 r

ea
ch

ed

Figure 4.4: Number of Times the target was reached by the simu-
lated object over the course of training. The influence of
learning can be clearly seen towards the end.

importance of time correlated noise, the system was allowed to learn for 200
s before a 50 s testing period. In Figure 4.3 sample resulting behaviour of
typical simulated systems during training and testing is shown. In Figure 4.5
activity of random neurons inside the reservoir during this training is shown.
The average number of resets over 20 simulation was 12.25 with standard
deviation of approximately 4 resets. Only 1 in 20 tests failed to produce any
target approaching behaviour. Without correlated noise there was no success

34 4. Results

0 10 20 30
−1
0
1

time(sec)

−1
0
1

−1
0
1

−1
0
1

−1
0
1

Neurons

170 180 190 200
−1
0
1

time(sec)

−1
0
1

−1
0
1

−1
0
1

−1
0
1

−5

0

5
Feedback

−5

0

5

Figure 4.5: Activity of feedback signal and 5 different reservoir neu-
rons over time during training. (Left) Activity in the first
30 seconds of training. (Right) Activity of the same neu-
rons after 170 seconds of training in the last 30 second
period. The feedback signal back to the reservoir con-
sisted of the position of the object on a one dimensional
line over time.

of reproducing any directed movement of the object. Adjusting η in this case
showed no significant success. Either the system became unstable with high
noise driving velocity in random directions, or the input amplitude became
to weak to induce meaningful learning feedback. Either way the weights
could not adapt significantly to reproduce target directed movement with or
without noise present during testing.

4.2 Simulation results for 2D model

As the significance of the one-dimensional model is relatively limited we
tried to show that the same conclusions are true with a more complex set-
up. Additionally, we then examined the effects of different length of time

4.2. Simulation results for 2D model 35

correlation of noise on learning performance. After that we took a look at
the reconstruction mechanism of the noise signal zξ for learning to see if it
still holds under different noise correlation conditions.

−6 −4 −2 0 2
−5

0

position x

po
si

tio
n

y

(a)

−6 −4 −2 0 2 4
−5

0

5

position x

po
si

tio
n

y

(b)

0 20 40 60 80 100
−5

0

5

time(s)

po
si

tio
n

x

(c)

0 20 40 60 80 100
−5

0

5

time(s)

po
si

tio
n

x

(d)

0 20 40 60 80 100
−5

0

5

time(s)

po
si

tio
n

y

(e)

0 20 40 60 80 100
−5

0

5

time(s)

po
si

tio
n

y

(f)

0 20 40 60 80 100
0

0.5

1

time(s)

ve
lo

ci
ty

 (
m

/s
)

(g)

0 20 40 60 80 100
0

0.5

1

time(s)

ve
lo

ci
ty

 (
m

/s
)

(h)

Figure 4.6: Simulation of a 2-dimensional system. Left/Right: Train-
ing/Testing. (a) and (b) show the position trajectories
of the system vector y(t). The little red circles show the
randomly generated starting point, from which the sys-
tem tries to reach the target zone marked with a green
circle. Blue x markers show where the trajectories reach
the zone. Below, (c) (d) (e) and (f) show the x and y
trajectories separately over time. The discontinuous steps
show where the position is being reset after the system
reaches the target zone. (g) and (h) show the absolute
value of the velocity of the system.

In the second simulation the physical model explained in Section 3.3.1 was

36 4. Results

0 5 10 15 20
−5
0
5

time(sec)

−5
0
5
−5
0
5
−5
0
5
−5
0
5

Neurons

70 75 80 85 90
−5
0
5

time(sec)

−5
0
5
−5
0
5
−5
0
5
−5
0
5

−5
0
5

y

−5
0
5

x
Feedback

−5
0
5
−5
0
5

Figure 4.7: Activity of feedback signals and 5 different reservoir neu-
rons over time during training. (Left) Activity in the first
20 seconds of training. (Right) Activity of the same neu-
rons after 70 seconds of training. Feedback consisted of
the two dimensions of the object position over time.

expanded with a second dimension (see Section 3.3.2). It was then tested
with various noise settings to show the difference in performance with in-
creasing noise correlation times. As in the first simulation the test consisted
of setting the model to a random position on a flat plane. The noise induced
into the control signal z(t) should then be able generate movement. The
resulting feedback had to excite the reservoir as well as provide the reward
function with enough position changes to be able to affect the weight update.
The weights of the readout would then be adapted so that the control signal
would guide the model towards a predetermined target position. This time
the initial values for the model position variables p1 and p2 were chosen be-
tween 10m and −10m and the goal area was set up between 0.5m and −0.5m
in both axes. Thus it was possible for the model to start inside the target
area, as well as up to 14m away from it. This also meant the direction from

4.2. Simulation results for 2D model 37

the initial position to the target area was not constrained in any way to avoid
imprinting a specific direction into the readout weights. The learn rate was
kept at 0.0005 and the noise amplitude was fixed at 0.5 for the correlated
signal. The friction constant τf in Equation 3.13 was set to 0.0195s to again
provide the model with significant resistance comparable to a rough surface.
At first we established a basis for the parameters that produced stable and
preferable behaviour like in the one dimensional model. The noise correla-
tion time constant τc was set to 0.5s while τz was set to 5s. τα was left at
0.0045s. With this settings the model was trained for 100 seconds before
undergoing testing for another 100 seconds. Like in the one dimensional case
the noise ξ(t) was set to zero during testing. Initial positions during testing
were again randomly determined as they were during training. In Figure

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time(ms)

N
um

be
r

of
 T

ar
ge

ts
 r

ea
ch

ed

Figure 4.8: Number of Times the target was reached by the simulated
object over the course of training. As in the one dimen-
sional case learning progress is visible by a sharp increase
in successes towards the end.

4.6 the resulting trajectories of one such simulation can be seen. The two
dimensional object moved much more slowly, in part due to the higher fric-
tion. This is also reflected in reservoir activity, shown in Figure 4.7. As the

38 4. Results

reward R remained a single global signal averaging over the distance to the
target in both dimensions, the weights of each of the two readouts got less
information about their specific dimensional distance to the target.
With higher values of the noise correlation time constant τc there is a high
chance of weight distribution becoming unbalanced. This typically results
in fast divergence of the control signal z. To counter this either the weights
would have to be normalized, or the control signal would have to be limited.
Another issue of high values of τc is the reconstruction of the temporally
correlated noise zξ from the filtering of the readout output u− ū in Equation
3.5. Figure 4.9 shows that for a given value of τc a corresponding value of the
filtering time constant τz must be chosen. It also shows the behaviour of z as
limiting factor. A higher τc with respect to a given z leaves a narrower band
of values for τz. As seen in Figure 4.10, reconstruction might even become
impossible with high enough τc. Additionally the behaviour of z is dependent
on the circumstances of the simulation environment and initial parameters,
success in learning meaningful behaviour of the model may become very cir-
cumstantial. Performance of the simulated model were measured in two ways.
The first was integrating the root mean square error (RMSE) of the distance
between the position of the moving mass and the target over the whole test-
ing period. This is useful to obtain a single value for a whole simulation, but
is only comparable between simulations with the same τc. A second value
is the numbers of times the target was reached during testing. Still differ-
ent parameters cause objects to move faster, reaching the target more often
during a given testing period despite using similar trajectories. Performance
values for reconstructing zξ with different values of τc and τz are shown in
figure 4.11. As expected, the RMSE values rise with the rising amplitudes of
the time correlated noise zξ. The average successes reaches a maximum at
the value of τc which is still small enough to be able to reconstruct zξ, but
large enough for the system to be able to explore the environment quickly.
Above this value additionally the deviation of the Success Rate climbs, as the
learning success of the model increasingly dependent on good starting con-
ditions of initial system values p̄ and weight distributions. Another question
stemmed from the reservoir output u(t) itself as it had to react smoothly

4.2. Simulation results for 2D model 39

0 20 40 60 80 100
−50

0

50

time(s)

(a) τ
z
 = 0.5

0 20 40 60 80 100
−50

0

50

time(s)

0 20 40 60 80 100

0

time(s)

(b) τ
z
 = 1

0 20 40 60 80 100
−50

0

50

time(s)

0 20 40 60 80 100
−50

0

50

time(s)

(c) τ
z
 = 10

0 20 40 60 80 100
−50

0

50

time(s)

Figure 4.9: Reconstruction of exploration noise zξ, depends on read-
out output filter time constant τz. Shown are reconstruc-
tions for τz = 0.5s (a), τz = 1s (b), and τz = 10s (c) with
constant noise correlation time constant τc = 1s. Left:
Reconstruction u − ū (red) and original noise signal zξ
(blue). Right: Filtered readout output ū (red), noiseless
readout output z (green), and noise zξ (blue). In (a) the
filter time constant τz is too low, so the filtered readout
output ū follows the noisy readout output u. In (b) the
filtered readout output ū is mostly influenced by the noise-
less readout output z resulting in a good reconstruction of
the exploration noise z. (c) shows that a filter time con-
stant τz set too high also filters changes of the noiseless
readout output z and fails to reconstruct any signal.

enough that the "nearly constant" condition for the noisy position change
would not be affected, yet react fast enough to correct higher velocities to-
wards wrong directions. In the one dimensional case this was relatively easy

40 4. Results

0 20 40 60 80 100
−60

−40

−20

0

20

40

time(s)

(a) τ
z
 = 1s

0 20 40 60 80 100
−60

−40

−20

0

20

40

time(s)

0 20 40 60 80 100
−100

−50

0

50

100

time(s)

(b) τ
z
 = 10s

0 20 40 60 80 100
−100

−50

0

50

100

time(s)

Figure 4.10: Reconstruction of zξ(red) for 2 different values of the
readout output filter time constant τz with a higher value
of the noise correlation time constant τc = 50s. Shown
are reconstructions for τz = 1s and τz = 10s. (a) In this
case the high τc makes the slope of zξ much slower, and
on the right side ū(blue) is influenced by it as much as
by z (green). The effect causes u − ū (blue) on the left
to differ significantly from zξ. (b) Below is shown that a
higher value of τz filters both signals.

as the simulated object either moved towards the target or away from it. In
the expanded model there was the possibility to pass by the target where the
reward function could change from positive to negative value in a short time
frame. The model had to be able to reverse the velocity completely in very
short time as to not move away much further, or move very slowly in the first
place. The maximum velocity of the object was only limited indirectly by

4.2. Simulation results for 2D model 41

10−1 100 101
0

5

10

15

20

Tc(s)

R
M

S
 E

rr
or

(a)

10−1 100 101
0

2

4

6

8

10

Tc(s)

av
er

ag
e

S
uc

ce
ss

es

(b)

10−2 10−1 100 101
0

2

4

6

8

10

Tc(s)

T
z(

s)

(c)

Figure 4.11: Performance measures for a range of noise correlation
time constant values τc. (a) shows RMS Error, (b) aver-
aged Numbers of the Simulation finding the target area
and (c) shows the corresponding values of the readout
output filter time constant τz for (a) (blue) and (b) (red)
for each value of τc which produced the shown result.
Success rate peak at the largest value of τc able to reli-
ably reconstruct zξ. The values were averaged over 20
simulations, with both testing and training phase dura-
tions of 100s.

the friction. These considerations formed the constraints of distance values
between initial and target position as well as friction coefficients and source
noise amplitude strength. The question remains how these constraints could
be possibly loosened or completely overcome.

42 4. Results

4.3 Simulation results for robot arm

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

(a)

position x

po
si

tio
n

y

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

(b)

position x

po
si

tio
n

y

0 50 100 150 200
0

0.05

0.1

(c)

time(s)

ve
lo

ci
ty

 (
m

/s
)

7400 7500 7600 7700 7800
0

0.05

0.1

0.15

0.2

(d)

time(s)

ve
lo

ci
ty

 (
m

/s
)

Figure 4.12: Movement trajectories and velocity during beginning and
ending of training period. On the left side (a) trajec-
tory of end point movement and (c) corresponding ve-
locity during the first 200s of training. On the right side
(b) trajectories and(d) velocity is shown later during the
training period. Of note is the considerably higher ve-
locity later during the training. The blue circle denotes
the area around the target and red circles show Initial
Positions.

For a more plausible motor control experiment, the 2D model was re-
placed with the simulation of a 2-link robotic arm presented in Chapter
3.3.3. A schematic of the arm is shown in Figure 3.2. Feedback into the
reservoir was encoded by an additional module consisting of several radial
basis kernels as discussed in Chapter 3.3.3. The goal of the experiment is for

4.3. Simulation results for robot arm 43

the endpoint m2 of the robot arm to reach a defined target point pt within
reach of the arm. As pt was defined in cartesian space, the reward function
was computed in a similar way as distance between the end point of the arm
and the target point(see Equation 3.20). This allowed for ambiguity in target
angles for the arm as 2 very different points φ(t) in angular space could result
in the same reward value. The simulation was discretized with time steps of

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5
(a)

position x

po
si

tio
n

y

0 50 100 150 200
0

0.05

0.1

0.15

0.2

(b)

time(s)

ve
lo

ci
ty

 (
m

/s
)

Figure 4.13: Movement trajectories and velocity during testing. (a)
The arm reaches the target repeatedly and is set back
to another random initial position several times. (b) Ve-
locity values during the 200s testing period. The model
was trained for 8000s with τc = 0.05s before testing.

∆t = 0.0005s. The time constant τ of the reservoir (from Equation 3.1) was
also set to τ = 0.0005s to avoid problems with different discretization times

44 4. Results

between model and simulation. The friction constant f was set to 0.5 which
was thought to be slightly higher than normal for such a robot arm but still
plausible. The initial position of the arm is determined by 2 uniformly dis-
tributed random variables determining the angles. This random variation of
each angle was limited between 0◦ and 80◦ to reduce training time and sta-
bility issues. Because these angles are linked together, the initial positions of
the end point of the arm are distributed along a circular ring with declining
density towards the boundaries of the ring. Figure 4.12 shows movement of

Figure 4.14: Feedback Signal and Activity of Reservoir Neurons dur-
ing Training. (Left) Activity during the first 200s of
training. (Right) Activity during the last 200s of train-
ing period. The feedback signal consists of the x and
y cartesian dimensions of the end-point position p(t) of
the arm model before being transformed by radial basis
functions.

4.3. Simulation results for robot arm 45

the arm end-point in two different time periods during training where this
distribution is visible. The model was trained for 8000s with τc of 0.05s and
a noise amplitude ξmax of 0.0001. The constant β used in Equation 3.15 to
scale the readout outputs was set to 0.01. Movement during testing of the
trained model is shown in Figure 4.13. Neural activity inside the reservoir
differs from the simple models, as seen in Figure 4.14. Performance during
training of the model remained relatively constant after some time. The
whole progress of targets reached during training is presented in Figure 4.15.
It also shows that during some periods it took the model particularly long
to reach the target. This could mean outlying initial position values were
chosen.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60

80

100

120

140

time(s)

N
um

be
r

of
 T

ar
ge

ts
 r

ea
ch

ed

Figure 4.15: Performance measured in number of times the target po-
sition was reached over time during the training of 8000s.

Chapter 5

Discussion

In this work we successfully utilized a learning rule that uses exploration
noise as an exploratory signal for parameter adaptation to solve motor control
tasks. It has already been shown that this learning rule, the EH-rule proposed
by [Legenstein et al., 2010b], is able to simulate experimental results from
[Jarosiewicz et al., 2008]. It is also able to perform a variety of specialized
computational functions [Hoerzer et al., 2011]. Since the main driving force
of weight changes is the correlation between network performance and noise,
it is critical that noise can lead to virtually immediate changes in the perfor-
mance signal. Additionally, it was assumed in [Legenstein et al., 2010b] and
[Hoerzer et al., 2011] that the noise is temporally uncorrelated. In combi-
nation, these two assumptions are problematic for real-world motor control.
Since all mechanical systems have some inertia, fast varying readout noise
may be filtered out by the effectors. As a result, performance improve-
ments cannot be estimated and communicated to plasticity mechanisms. We
show through simulations that this problem can be overcome by readouts
with temporally correlated noise statistics. Temporally correlated explo-
ration noise lead to long-lasting perturbations of motor commands and in
turn to clearly visible perturbations of effector trajectories in space. The
effectiveness of these perturbations with regard to performance can be esti-
mated e.g. through visual feedback and signalled via the reward signal R(t).

46

47

This principle works very well in the case of our simulation of a simple 2D
motor control task, which can be viewed as an agent traversing rough ter-
rain to reach a certain target. High kinetic friction stemming from a surface
acts as an additional inhibition to changes made by the exploration noise.
Adding temporally correlated noise overcame this inhibition and enabled the
performance signal to enact useful changes in readout weights.
In the case of a simulated robot arm this proved to be much more difficult
as high maximum torques and low friction values allowed for very fast move-
ment. This in turn necessitated very fine tuning of control signal and noise
amplitudes to avoid issues with stability and very high velocities from which
the system could not recover. Additionally the interconnection of the two
joints generates an additional velocity correlated perturbation whose inter-
nal dynamics are completely unknown to the network. This not only acts
as additional noise on the control signal, it may also weaken the correlation
between any movement generated by the exploration noise and the result-
ing reward signal. Despite these complex issues, controlling the arm model
proved to be possible, as long as arm velocity remained fairly low. In general
motor control of a complex object might be influenced by many different
factors, of which inertia and friction related effects are only part. For some
tasks these two effects might not even have significant influence. Thus, the
usefulness of temporal correlation of exploration noise depends heavily on
the actual task and model constraints.
When taking into consideration a reconstruction of the exploration noise from
the control signal for use in the EH-rule, an upper limit for the correlation
constant τc becomes apparent. This was done by [Legenstein et al., 2010b]
so the system wouldn’t need specific knowledge of the noise. We believe this
limit to be specific to the dynamics of a given system which might pose a
problem when simulating some models. It might be possible for the lowest τc
to be higher then the upper limit, making noise reconstruction impossible.

48 5. Discussion

5.1 Future work

Motor control tasks can take on diverse forms of which we only considered
the most generalized models. When pertaining to practical use, there are still
several issues that need to be addressed. One challenging issue concerns the
environment, which can often consist of various different obstacles and areas
with varying friction and elevation. This leads to the question whether a sin-
gle static time correlation coefficient τc value is sufficient for the exploration
noise to be effective in changing surroundings. One could easily imagine a
separate readout layer controlling the value of τc , but that would leave the
question of how the weights of this layer would be found. Such mechanism
would also alleviate the need of finding a suitable τc manually.
Other issues arise from the internal dynamics of the controlled object which
need to be countered by the control signal. Depending on the physical model
of the agent a separate phase in the learning process might be needed, where
specific prearranged impulses of motor activity allow the model to experi-
ence the reaction of the object. Another solution might be to separate the
reservoir into one part encoding the environment and one part which only
counteracts the model.

5.2 Conclusion

Real-world motor control often places many restrictions on learning mech-
anisms and underlying models. This intensifies if one takes into account
models of biological computation such as neural networks and unsupervised
learning paradigm. In this work we provide first proof of principle that
generic cortical networks can attain functions essential for motor control
through a biologically plausible reward-modulated Hebbian learning rule.
We employ noise with temporal correlations, as opposed to previous mod-
els [Hoerzer et al., 2011, Legenstein et al., 2010b], which is used to overcome
restrictions inherent in physical models. Using this noise, we show that it is
difficult but possible to control a model of a multi-joint arm.

Appendix A

Time-discrete Formulas

While the model was constructed in a continuous time space, the the actual
computer simulations had to be conducted with a discrete abstraction. The
discretized equations that were used are given here. For the 1D and 2D
models of a moving singular mass a discretization time step of ∆t = 1ms
was used. In the simulation of the robot arm a time step of ∆t = 0.5ms was
chosen. In all simulations both the reservoir and the physical model were
simulated with the same time step. The internal state of the reservoir thus
updated in the following way instead of Equation 3.1:

xi[n+ 1] =
(

1−∆t
τ

)
xi[n] + λ

N∑
j=1

wrec
ij rj[n] +

M∑
j=1

wfb
ij yj[n] (A.1)

For the two moving averages ū and R̄ this amounted to

ū[n] = exp− ∆t
τz ū[n− 1] + (1− exp− ∆t

τz)u[n] (A.2)

in place of Equation 3.6 and

R̄[n] = exp− ∆t
τα R̄[n− 1] +

(
1− exp− ∆t

τα

)
R[n] (A.3)

for Equation 3.7. In case of the exploration noise the random variable vector

49

50 A. Time-discrete Formulas

ξ was discretely drawn at each time step and added up.

zξ[n] = exp− ∆t
τc zξ[n− 1] + ξ (A.4)

Like the reservoir states, the states of the physical models also had to be
discretized. For the simple 1D and 2D models Equation 3.9 was replaced by

y[n+ 1] = Ay[n] +Bu[n] (A.5)

with the following parameter matrices A and B for the one-dimensional
model:

A =
1 ∆t

0 exp− ∆t
τf

 , B =
 0

∆t

 (A.6)

For the two-dimensional model the matrices A and B look the following way:

A =

1 0 ∆t 0
0 1 0 ∆t
0 0 exp− ∆t

τf 0
0 0 0 exp− ∆t

τf

 , B =

0
0

∆t
∆t

 (A.7)

In case of the robot arm model this allowed us to bypass numerical integra-
tion methods and compute the positions and velocities strictly from travel
distances and acceleration ω̇ which was computed by

ω̇[n] = H−1[n] (u[n]− Cω[n− 1])− fω[n] (A.8)

Appendix B

Matlab Code

This appendix contains code used for the Simulation of the two dimensional
model. Code for the 1D model is the same except for dimensions. For the
simulation of the robot arm, the reward function and model computation
was changed accordingly, as documented in chapter 3.

1 f unc t i on [M , wo , wf , zt , ztempt , z_t , rew , rew_ , zxit , pos , pos_test ,
vel , vel_test , trials_pos , trials_pos_test , wo_norm ,
trials_time , trials_time_test , res_units] = regler2D_script (
corr , rec , eta , velmax , avgrew , traintime , testtime , dt , Tc , Tz)

2 use_testing_noise = 0 ; %no i s e during t e s t i n g
3 use_correlation = corr ; %Use c o r r e l a t i n g no i s e or not [0 , 1]
4 use_random_init = 0 ; %Output Weights s t a r t random or 0
5 use_real_noise = rec ; %r e con s t ru c t no i s e
6 r e s e t = 1 ; %Reset s t a t e i f t a r g e t reached
7 %Simulat ion Time
8 nsecs_train = traintime ;
9 nsecs_test = testtime ;

10 simtime = 0 : dt : nsecs_train−dt ;
11 simtime_len = length (simtime) ;
12 simtime2 = nsecs_train : dt : nsecs_train+nsecs_test−dt ;
13 simtime2_len = length (simtime2) ;
14 %Reservo i r I n i t i a l i z a t i o n
15 tau = 0 . 0 5 ;
16 N = 1000 ; %Rese rvo i r S i z e

51

52 B. Matlab Code

17 p = 0 . 1 ;
18 g = 1 . 5 ; % g g r e a t e r than 1 l e ad s to chao t i c networks .
19 scale = 1.0/ sq r t (p∗N) ;
20 M = sprandn (N , N , p) ∗g∗scale ;
21 M = f u l l (M) ;
22 nRec2Out = N ;
23 state_noise = 0 . 0 5 ; % s t a t e no i s e l e v e l
24 init_noise = 1e−2;
25 i f (use_random_init == 0)
26 wo = ze ro s (nRec2Out+1 ,2) ; %readout weights
27 e l s e
28 wo = init_noise ∗2 . 0∗ (rand (nRec2Out+1 ,2) − 0 . 5) ;
29 end
30 dw = ze ro s (nRec2Out+1 ,2) ; %d i f f e r e n t i a l weight change
31 wf = 2 .0∗ (rand (N , 4) −0.5) ; % feedback weights
32 %Memory A l l o ca t i on
33 zt = ze ro s (2 , simtime_len) ;
34 z_t = ze ro s (2 , simtime_len) ;
35 zxit = zero s (2 , simtime_len) ;
36 ztempt = ze ro s (2 , simtime_len) ;
37 pos = ze ro s (2 , simtime_len) ;
38 vel = ze ro s (2 , simtime_len) ;
39 rew = ze ro s (1 , simtime_len) ;
40 rew_ = zero s (1 , simtime_len) ;
41 wo_norm = zero s (1 , simtime_len) ;
42 realrew = zero s (1 , simtime_len) ;
43 zt_test = zero s (2 , simtime2_len) ;
44 pos_test = ze ro s (2 , simtime2_len) ;
45 vel_test = ze ro s (2 , simtime2_len) ;
46 zxit_test = ze ro s (2 , simtime2_len) ;
47 trials_time = ze ro s (1 ,100) ;
48 trials_time_test = ze ro s (1 ,100) ;
49 trials_time (1) = 1 ;
50 trials_time_test (1) = 1 ;
51 %system va r i ab l e i n i t i a l i z a t i o n
52 pos_spread = 10 ;
53 initpos = pos_spread ∗ (2 . 0∗ rand (2 , 1) − 0 . 5) ;
54 y0 = [initpos ; 0 ; 0] ;
55 x0 = 0.5∗ randn (N , 1) ;

53

56 z0 = 0.5∗ randn (2 , 1) ;
57 y = y0 ; x = x0 ;
58 r = tanh (x) ;
59 z_ = z0 ;
60 zxi = [0 ; 0] ;
61 R_ = − s q r t ((y (1)−pt (1)) ^2 + (y (2)−pt (2)) ^2) ;
62 %System
63 Tr_ = −0.001/ log (avgrew) ;
64 Tr = −0.001/ log (1−avgrew) ;
65 Tz_ = Tz ;
66 pt = [0 , 0] ; %Target
67 i f (use_correlation == 1)
68 noise = 0 . 5 ; %no i s e amplitude
69 c = exp(−dt/Tc) ; %Time dependence o f no i s e
70 e l s e
71 noise = 24 . 0 ;
72 c = 0 ;
73 end
74 A = [1 , 0 , dt , 0 ;
75 0 , 1 , 0 , dt ;
76 0 , 0 , exp(−dt/velmax) , 0 ;
77 0 , 0 , 0 , exp(−dt/velmax)] ;
78 B = [0 ; 0 ; dt ; 0] ;
79 C = [0 ; 0 ; 0 ; dt] ;
80 %te s t v a r i ab l e i n i t i a l i z a t i o n
81 trials_pos = 0 ;
82 ti = 0 ; tj = 0 ;
83 f o r t = simtime
84 ti = ti+1; tj = tj+1;
85 %Compute r e s e r v o i r output
86 x = (1.0−dt/tau) ∗x + M ∗(r∗dt/tau) +wf ∗ ([y (1) ; y (2) ; 0 ; 0] ∗ dt/

tau) ; %feedback o f p o s i t i o n only
87 r = tanh (x) +2.0∗ state_noise ∗(rand (s i z e (r)) −0.5) ;
88 ztemp = wo ’ ∗ [r ; 1] ;
89 %Add Noise
90 xi = noise ∗2 . 0∗ (rand (2 , 1) −0.5) ;
91 zxi = c∗zxi + xi ;
92 z = ztemp + zxi ;
93 %Compute model output

54 B. Matlab Code

94 y = A∗y + B∗z (1) + C∗z (2) ;
95 %Compute reward func t i on and moving averages
96 R = − s q r t ((y (1)−pt (1)) ^2 + (y (2)−pt (2)) ^2) ;
97 R_ = exp(−dt/Tr_) ∗R_ + exp(−dt/Tr) ∗R ;
98 fR = R−R_ ;
99 i f (z_ == [0 ; 0])

100 z_ = z ;
101 e l s e
102 z_ = exp(−dt/Tz_) ∗z_ + (1− exp(−dt/Tz_)) ∗z ;
103 end
104 %Update weights
105 i f (use_real_noise == 1)
106 dw = fR∗eta ∗ [r ; 1] ∗ (zxi) ’ ;
107 e l s e
108 dw = fR∗eta ∗ [r ; 1] ∗ (z−z_) ’ ;
109 end
110 wo = wo + dw ;
111 % Store the output o f the system
112 ztempt (: , ti) = ztemp ;
113 zt (: , ti) = z ;
114 z_t (: , ti) = z_ ;
115 pos (: , ti) = y (1 : 2) ;
116 vel (: , ti) = y (3 : 4) ;
117 zxit (: , ti) = zxi ;
118 rew (ti) = R ;
119 rew_ (ti) = R_ ;
120 realrew (ti) = fR ;
121 wo_norm (ti) = norm(wo) ;
122 res_units (: , ti) = x (1 : 1 0) ;
123 %Reset model reached the t a r g e t
124 err = sqr t ((y (1)−pt (1)) ^2 + (y (2)−pt (2)) ^2) ;
125 i f (err < 0 . 5)
126 trials_pos = trials_pos + 1 ;
127 trials_time (trials_pos+1) = ti ;
128 tj = 0 ;
129 i f (r e s e t)
130 initpos = pos_spread ∗(rand (2 , 1) − 0 . 5) ;
131 y = [initpos ; 0 ; 0] ;
132 R_ = − s q r t ((y (1)−pt (1)) ^2 + (y (2)−pt (2)) ^2) ;

55

133 z_ = [0 ; 0] ;
134 x = x0 ;
135 r = tanh (x) ;
136 end
137 end
138 end
139

140 %% Test ing
141 ti = 0 ; tj = 0 ;
142 trials_pos_test = 0 ;
143 i f (r e s e t)
144 initpos = pos_spread ∗(rand (2 , 1) − 0 . 5) ;
145 y = [initpos ; 0 ; 0] ;
146 x = x0 ;
147 r = tanh (x) ;
148 end
149 f o r t = simtime2
150 ti = ti+1; tj = tj+1;
151 % Simulate Rese rvo i r
152 x = (1.0−(dt/tau)) ∗x + M ∗(r ∗(dt/tau)) + wf ∗ ([y (1) ; y (2)

; 0 ; 0] ∗ dt/tau) ;
153 r = tanh (x) ;
154 zopt = wo ’ ∗ [r ; 1] ;
155 %Add no i s e
156 xi = noise ∗2 . 0∗ (rand (2 , 1) −0.5) ;
157 zxi = c∗zxi + xi ;
158 i f (use_testing_noise)
159 z = zopt + zxi ;
160 e l s e
161 z = zopt ;
162 end
163 %Compute System output
164 y = A∗y + B∗z (1) + C∗z (2) ;
165 %Check i f t a r g e t i s reached
166 i f (s q r t ((y (1)−pt (1)) ^2 + (y (2)−pt (2)) ^2) < 0 . 5)
167 trials_pos_test = trials_pos_test + 1 ;
168 trials_time_test (trials_pos_test+1) = ti ;
169 tj = 0 ;
170 %re s e t model and r e s e r v o i r p o s i t i o n and s t a t e

56 B. Matlab Code

171 i f (r e s e t)
172 initpos = pos_spread ∗(rand (2 , 1) − 0 . 5) ;
173 y = [initpos ; 0 ; 0] ;
174 x = x0 ;
175 r = tanh (x) ;
176 end
177 end
178

179 zt_test (: , ti) = z ;
180 pos_test (: , ti) = y (1 : 2) ;
181 vel_test (: , ti) = y (3 : 4) ;
182 zxit_test (: , ti) = zxi ;
183 end

Bibliography

[Amit, 1989] Amit, D. J. (1989). Modeling brain function: the world of at-
tractor neural networks. Cambridge University Press. (Cited on page 1.)

[Bi and Poo, 1998] Bi, G. and Poo, M. (1998). Synaptic modifications in
cultured hippocampal neurons: dependence on spike timing, synaptic
strength, and postsynaptic cell type. J Neuroscience, 18(24):10464–10472.
(Cited on page 11.)

[Buonomano and Maass, 2009] Buonomano, D. and Maass, W. (2009).
State-dependent computations: Spatiotemporal processing in cortical net-
works. Nature Reviews in Neuroscience, 10(2):113–125. (Cited on page 5.)

[Hebb, 1949] Hebb, D. O. (1949). The Organization of Behavior. Wiley, New
York. (Cited on page 11.)

[Hoerzer et al., 2011] Hoerzer, G., Legenstein, R., and Maass, W. (2011).
Emergence of complex computational structures from chaotic neural net-
works through reward-modulated hebbian learning. none. (Cited on
pages 2, 5, 6, 13, 26, 46 and 48.)

[Hopfield, 1982] Hopfield, J. J. (1982). Neural networks and physical systems
with emergent collective computational abilities. Proc. Nat. Acad. Sci.
USA, 79:2554–2558. (Cited on page 1.)

[Jäger, 2001] Jäger, H. (2001). The "echo state" approach to analyzing and
training recurrent neural networks. GMD Report 148, German National
Research Center for Information Technology. (Cited on pages 2, 8, 9
and 12.)

[Jarosiewicz et al., 2008] Jarosiewicz, B., Chase, S. M., Fraser, G. W., Vel-
liste, M., Kass, R. E., and Schwartz, A. B. (2008). Functional network
reorganization during learning in a brain-computer interface paradigm.
Proc. Nat. Acad. Sci. USA. in press. (Cited on page 46.)

57

58 Bibliography

[Legenstein et al., 2010a] Legenstein, R., Chase, S., Schwartz, A., and
Maass, W. (2010a). A reward-modulated hebbian learning rule can ex-
plain experimentally observed network reorganization in a brain control
task. J Neurosci, 30(25):8400–8410. (Cited on page 18.)

[Legenstein et al., 2008] Legenstein, R., Pecevski, D., and Maass, W. (2008).
A learning theory for reward-modulated spike-timing-dependent plasticity
with application to biofeedback. PLoS Computational Biology, 4(10):1–27.
(Cited on page 11.)

[Legenstein et al., 2010b] Legenstein, R., Wilbert, N., and Wiskott, L.
(2010b). Reinforcement learning on slow features of high-dimensional input
streams. PLoS Computational Biology, 6(8):e1000894. (Cited on pages 12,
46, 47 and 48.)

[Maass, 1996] Maass, W. (1996). Lower bounds for the computational power
of networks of spiking neurons. Neural Computation, 8(1):1–40. (Cited on
page 4.)

[Maass et al., 2007] Maass, W., Joshi, P., and Sontag, E. D. (2007). Com-
putational aspects of feedback in neural circuits. PLoS Computational
Biology, 3(1):e165, 1–20. (Cited on page 7.)

[Maass et al., 2002] Maass, W., Natschlaeger, T., and Markram, H. (2002).
Real-time computing without stable states: A new framework for neural
computation based on perturbations. Neural Computation, 14(11):2531–
2560. (Cited on pages 2, 5, 6 and 7.)

[Markram et al., 1998] Markram, H., Wang, Y., and Tsodyks, M. (1998).
Differential signaling via the same axon of neocortical pyramidal neurons.
PNAS, 95:5323–5328. (Cited on page 11.)

[McCulloch and Pitts, 1943] McCulloch, W. S. and Pitts, W. (1943). A log-
ical calculus of ideas immanent in nervous activity. Bulletin of Mathemat-
ical Biophysics, 5:115–133. (Cited on page 1.)

[Minsky and Papert, 1988] Minsky, M. and Papert, S. (1988). Perceptrons:
An Introduction to Computational Geometry. MIT Press, Cambridge, MA.
(Cited on page 1.)

[Pawlak et al., 2010] Pawlak, V., Wickens, J. R., Kirkwood, A., and Kerr,
J. N. (2010). Timing is not everything: Neuromodulation opens the STDP
gate. Frontiers in Synaptic Neuroscience, 2:146. (Cited on page 11.)

Bibliography 59

[Pearlmutter, 1995] Pearlmutter, B. A. (1995). Gradient calculation for dy-
namic recurrent neural networks: a survey. IEEE Trans. on Neural Net-
works, 6(5):1212–1228. (Cited on page 1.)

[Rosenblatt, 1962] Rosenblatt, J. F. (1962). Principles of Neurodynamics.
Spartan Books, New York. (Cited on page 1.)

[Rumelhart et al., 1986] Rumelhart, D., Hinton, G., and Williams, R.
(1986). Learning representations by back-propagating errors. Nature,
323:533–536. (Cited on page 1.)

[Schultz, 2007] Schultz, W. (2007). Behavioral dopamine signals. Trends in
Neuroscience, 30:203–210. (Cited on page 11.)

[Sussillo and Abbott, 2009] Sussillo, D. and Abbott, L. F. (2009). Generat-
ing coherent patterns of activity from chaotic neural networks. Neuron,
63(4):544–557. (Cited on page 13.)

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforce-
ment Learning: An Introduction. MIT Press, Cambridge, MA. (Cited on
page 10.)

[Thorndike, 1911] Thorndike, E. L. (1911). Animal intelligence: Experimen-
tal Studies. Macmillan. (Cited on page 10.)

	Contents
	List of Figures
	1 Introduction
	2 Background
	2.1 Liquid Computing
	2.2 Reward modulated learning
	2.3 Reward based learning of readouts

	3 Model
	3.1 Reservoir model
	3.2 Exploration noise
	3.3 Physical model

	4 Results
	4.1 Simulation results for 1D model
	4.2 Simulation results for 2D model
	4.3 Simulation results for robot arm

	5 Discussion
	5.1 Future work
	5.2 Conclusion

	A Time-discrete Formulas
	B Matlab Code
	Bibliography

