
Institute for Computer Graphics and Vision

Graz University of Technology

Graz

Visual Links
to

Hidden Content
Master’s Thesis

Thomas Geymayer, BSc

tomgey@gmail.com

February 2013

Supervision:

Prof. Dr. Dieter Schmalstieg

Dr. Alexander Lex

DI Markus Steinberger

Dr. Marc Streit

2

Abstract

Visual links are lines drawn on top of an existing visualization to create connections
and guidance between related regions. With modern operating systems, information is
often distributed across multiple applications. As screen space is limited and applications
may overlap, regions containing important information are prone to being invisible to the
user.

In this thesis we present two new visualization techniques that help users finding and
exploring important information hidden somewhere on the desktop. Visual cues and in-
teraction methods allow for a fast identification and navigation to such hidden con-
tent.

Keywords: visual links, off-screen, hidden content, preview pop-up

Zusammenfassung

Visual Links sind Linien, die über eine existierende Visualiserung gezeichnet werden kön-
nen um zusammengehörige Regionen visuell zu verbinden. Bei der Verwendung moderner
Betriebssysteme sind Informationen meist über mehrere Anwendungen verteilt. Durch die
beschränkte Größe der Bildschirme und auch durch überlappende Fenster sind Regionen
mit gesuchter Information für den Benutzer oft nicht sichtbar.

In dieser Arbeit präsentieren wir zwei neue Ansätze, um dem Benutzer beim Finden
verdeckter Inhalte auf dem Desktop zu helfen. Visuelle Hinweise und interaktive Visu-
alisierungen ermöglichen es dem Benutzer, rasch versteckte Informationen zu finden und
diese auch anzuzeigen.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources / resources, and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich
und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Ort Datum Unterschrift

5

Contents

1 Introduction 8
1.1 Problem Analysis . 8
1.2 Challenges . 9
1.3 Contribution . 10

2 Related Work 11
2.1 Focus+Context . 11

2.1.1 Distortion-Oriented F+C Methods 11
2.1.2 Overview Methods . 12
2.1.3 Filtering . 14
2.1.4 In-Place F+C . 14

2.2 Gestalt Connectedness . 15
2.2.1 Visual Linking . 15
2.2.2 Edge Bundling . 17
2.2.3 Visual Links across applications . 19

2.3 Hidden Content . 21
2.3.1 Off-screen Content . 22

2.4 Discussion . 23

3 Concept of Visual Links to Hidden Regions 25
3.1 Visual Links . 25

3.1.1 Region highlights . 26
3.1.2 Link Bundling . 27
3.1.3 Link-Region Transition . 29

3.2 Hidden information . 29
3.2.1 Covered regions . 29
3.2.2 Regions outside a viewport . 31

3.2.2.1 Preview Pop-Up . 32

4 Design and Implementation 35
4.1 Visual Links Server . 35

4.1.1 Inter Process Communication . 36
4.1.2 Routing . 36
4.1.3 Renderer . 36
4.1.4 Client Hierarchic Tile Map . 37
4.1.5 Window Monitor . 37
4.1.6 Configuration . 37

4.2 Visual Link Protocol . 38
4.3 Application Integration . 41

Contents 6

4.3.1 Browser Add-On . 41
4.3.2 Google Maps Mash-up . 43
4.3.3 Search Widget . 44

5 Results 45
5.1 Usage Scenarios . 45

5.1.1 Single Window . 45
5.1.2 Multiple Windows . 48

5.2 Performance . 49
5.2.1 Core System . 49
5.2.2 Client Applications . 51

5.2.2.1 Browser Add-on . 51
5.2.2.2 Google Maps Mash-up . 53

6 Conclusions and Future Work 54

Acknowledgements 56

A Performance Data 57

Acronyms 58

List of Figures 59

List of Tables 62

List of Listings 63

Bibliography 64

Contents 7

Chapter 1

Introduction

In modern information analysis and exploration relevant pieces of information are of-
ten spread across large areas of screen space. Additionally, they can also be available in
different applications, all visible at the same time. To help the user quickly identifying
related information, Waldner et al. [WPL+10] have proposed a system which uses visual
links to connect the related pieces of information distributed among multiple applica-
tions.

Although plenty of display space is available on today’s computer setups, often some im-
portant parts of information are hidden. There are various reasons for this, like minimized
or covered application windows and also parts of applications, which can only be seen if
scrolling the applications viewport. In this thesis we present a visualization for such hidden
regions embedded into a visual links system.

1.1 Problem Analysis

To the knowledge of the author, no such system exists yet. In order to realize an effective
hidden content visualization, the following requirements need to be satisfied:

1. Show location or direction
To help the user in building a mental map of the explored documents and applications
and to allow identifying pieces of information already inspected, it is needed to show
the exact location or at least the approximate direction in which the information can
be found.

2. Show amount of hidden information
Often information is accumulated in small areas, whereas little information is spread
among the remaining parts of the active documents and applications. A possible
strategy for exploring such data sets is to prioritize large build-ups of information
over small pieces of individual information. For supporting such a strategy visual
clues should indicate the amount of information available at a specific location or in
a certain direction.

3. Guidance to reveal hidden information
After the user has selected a piece of hidden information for further exploration, it
should be possible to quickly navigate there without requiring much manual inter-
action. Fast navigation between all available chunks of information is essentially for
an efficient exploration.

Chapter 1 Introduction 8

1.2 Challenges

Aside from addressing the proposed requirements, building an interactive tool to realize
a visualization for such off-screen contents raises several challenges which need to be
met:

1. Rearranging Windows
The arrangement of windows visible on the desktop can change at any time. Windows
can be moved around, resized and also minimized or closed. The visual links system
not only needs to detect such changes but also needs to react on them and adapt or
recalculate all links as required.
As most operating systems do not allow user applications to be notified about changes
in the window arrangement, it is required to monitor the list of opened windows and
detect any changes. The system needs to check for changes in geometry as well
as whether new windows have been opened or existing windows have been closed.
Special care needs to be taken as different operating systems have different ideas
of what exactly a window is. For example, if using Windows every opened tool-tip
or menu is reported as being a window, whereas Linux just reports conventional
windows as being windows.

2. Changing Content
Another source of possibly changed linked regions is the change of actual contents
inside any available window. For example, scrolling a web page opened in a browser
translates every linked region along the scrolling direction. The user can also open
a new web page or browser tab, which requires to completely remove all existing
regions found in the old document and search again in the new page.
To detect changes inside an applications window it is possible to use an image
based method and periodically compare captured images of each windows area. This
method though would not detect any changes inside hidden regions, which leads to
the requirement for every application to report changes in its contents by itself –
visible as well as hidden.

3. Application Integration
The visual links system just draws links and does not provide or visualize any other
information. Instead, already available applications and visualization frameworks are
used. This requires to communicate with those applications, either by creating plug-
ins or if that is not possible by directly modifying the application. A protocol is
needed to exchange data between the visual links system and all connected applica-
tions.

4. Interactivity
Investigating available information requires interacting with the visualization. Visible
as well as invisible information changes, and the user wants to get more information
on demand or inspect certain areas in detail. Thus the visual links system should
not only react on changes but also run at a reasonable speed. With large base rep-
resentation this can be hard to achieve. To still keep the visualization responsive,
the user should be provided with a partial visualization or at least an indication for
some work being still in progress.

Chapter 1 Introduction 9

5. Multi-platform Support
To avoid limiting the choice of operating system by the used technologies, the vi-
sual links system should be usable with all major operating systems. Using cross-
platform frameworks allows using a single implementation for multiple platforms,
though meeting this challenge is not always straight forward, as specific features
might not be available on all platforms.

In the following sections we will first have a look at related work and afterwards describe
how we address the identified requirements and challenges by extending the ideas of a
visual links system with some simple but effective visualizations and interaction meth-
ods.

1.3 Contribution

The aim of this thesis is to create a multi-platform implementation of the visual links
techniques introduced by Waldner et al. [WPL+10] and develop methods to also cope with
hidden content. The main contributions are two visualization techniques for covered regions
(see Section 3.2.1) and off-screen content (see Section 3.2.2) respectively.

Chapter 1 Introduction 10

Chapter 2

Related Work

Our research is mainly based on the field of information visualization. To assist users
in the process of exploring related pieces of information spread across multiple screens,
techniques like Focus+Context (F+C) (cf. Section 2.1) can be beneficial. Incorporating the
principles of Gestalt psychology, visual links (cf. Section 2.2.1) have been shown to provide
an efficient technique for visualizing connections between related pieces of information, also
spread across multiple applications.

2.1 Focus+Context

Often one is only interested into certain parts of the whole visualization (Focus) but still
wants to be able to perceive the location inside the whole context. F+C methods address
this in different ways [KHG03]:

2.1.1 Distortion-Oriented F+C Methods

Probably the most prominent instance of distortion-oriented F+C methods [LA94] is the
fisheye view. No content is removed but instead the whole view is distorted, such that
important parts are magnified while the remaining content is compressed to make space
available for the focused region(s).

In 1976 Saul Steinberg created a cover image for the The New Yorker magazine illustrating
a possible view of new yorker inhabitants onto the rest of the world (see Figure 2.1(a)).
Analogous to a wide-angle fisheye lens, which captures objects around the focal point in
high detail, but the rest of the surrounding area strongly distorted with just low details,
he has drawn important streets and houses of Manhattan, bounded by the Hudson river
whereas on the other riverside, the rest of the United States continues as a quadrilateral
shape bounded by Canada, Mexico and the Pacific Ocean and containing an area called
Jersey and some other large towns like Los Angeles or Las Vegas. On the other side
of the Ocean there are just three regions depicting the existence of China, Japan, and
Russia.

Inspired by Steinbergs drawing, George Furnas [Fur81][Fur86] has analyzed several implic-
itly used natural fisheye strategies and formalized ”generalized fisheye views”by introducing
a ”Degree of Interest” (DOI) function, which rates each piece of information according to
certain criteria. For creating a fisheye view simply the n best elements are used, where the
DOI is typically calculated using a combination of global importance and distance to the
focal point.

Chapter 2 Related Work 11

(a) View of the World from
9th Avenue [Ste76]

(b) Textual Fisheye Tree View [SB94] (c) Fisheye Tree
View [TAvHS06]

Figure 2.1: Fisheye View of a Graph [TAvHS06] and Saul Steinbergs illustration ”View of
the World from 9th Avenue”[Ste76]

Another visualization having fisheye properties is the Perspective Wall developed by
Mackinlay et al. [MRC91], which shows details on a 2D region, whereas the context is
distorted using a 3D projection allowing for a fast implementation through the use of
hardware acceleration. The same authors developed also another 3D visualization called
Cone Trees [RMC91], which allows users to interact and explore hierarchically structured
data by moving around the tree using a virtual camera which magnifies nodes in front
of the camera leading to a fisheye effect. For large numbers of nodes (more than 1000)
though, Tree-Maps as described by Johnson and Shneiderman [JS91] are probably the
better visualization of choice.

Later Sarkar and Brown [SB94] apply fisheye based techniques to graphs and maps by
applying different levels of distortion. This allows the focal node to be shown in high
detail, while the other nodes are distorted to provide space for the magnified node (see
Figure 2.1(b)). The amount of detail shown for a vertex of the graph and its size are
proportional to the distance of each individual node to the center of the imaginary fisheye
lens.

More recently Tominski et al. [TAvHS06] have created a Textual Fisheye Tree View which
uses the ideas of a fisheye approach and applies different scales to the vertices of a tree
structure similar to the directory tree as used in many operating systems file browsers (see
Figure 2.1(c)).

Other examples of distortion based F+C methods are stretched rubber sheets [SSTR93],
hyperbolic trees [LRP95] and the Magic-Eye-View [KLS00].

2.1.2 Overview Methods

Overview Methods show focus and context in different regions or windows not directly
interconnected. Usually an overview of the whole visualized content is displayed in a small

Chapter 2 Related Work 12

Figure 2.2: Browsing code or other textual data at different levels of detail. From left to
right the same focus area is shown inside an increasing large context whereby
the first the font size is reduced and afterwards the text replaced by simple
lines. Different color denote the date a line has been modified last. [BE96]

window, whereas the small focus area is displayed magnified into a larger window. Often the
viewport of the focus area is highlighted in the overview window. This type of visualization
is quite common for document and image viewers but also used by many file browsers which
show an overview of the directory hierarchy in one panel and more details and contents
of a single directory in another panel. Another application area are digital cameras, which
typically show an outline of the whole image area while zooming into an image to keep
track of the current location.

The same idea is used also to visualize large amounts of textual data like code, by using
smaller fonts for intermediate zoom levels, and replacing text by simple straight, geometric
lines for low levels of detail. This allows visualizing a lot of code at the same time, while
still preserving structure like indentations and empty lines.

An early example of such a tool is Seesoft developed by Eick et al. [ESS92], which can
simultaneously cope with up to 50.000 lines of code showing files in columns and the
individual lines as rows. Dependent on the current task, the color of each row is determined
by one of several statistical properties, like for example the date of last change of each
individual line.

In 1996 Ball and Eick [BE96] described different approaches for visualizing code structure.
Besides a Line Representation (see Figure 2.2) similar to the one used in Seesoft, they even
went a step further and reduced each line to a single pixel, which allows them to analyze
over a million lines of code at once.

Another similar visualization has been used by Eagan et al. [EHJS01] to assist in finding
faults in software. They use a line representation of the code where different colors en-
code how often lines have been executed during failed, succeeded and both types of tests
respectively.

Chapter 2 Related Work 13

2.1.3 Filtering

In photography filters are used to enhance or alter the way pictures are captured. The
same idea is imitated by filtering F+C methods where the user can place an arbitrary
shape resembling a filter over the visualization and provide more detailed or otherwise
enhanced information inside the area covered by the filter.

Magic Lenses are introduced as a see-through interface by Bier et al. [BSP+93]. They are
examples of F+C filters with 2d shapes. Extending the idea to the third dimension, three-
dimensional lenses have also been successfully used [VCWP96].

Figure 2.3: Two 2d Magic Lenses applied to a 3d model of a bridge. A rectangular lens
reveals a wire-frame model and a circular lens magnifies its area. Within the
intersection of the lenses, both filters are applied simultaneously. [BSP+93]

A more recent filtering F+C method is the ClearView lens developed by Krüger and Fo-
gal [KF09], which applies a special rendering mode to volumetric data to allow the focal
parts getting clearly visible even while being covered by surrounding context.

2.1.4 In-Place F+C

Instead of distorting or changing the amount of visibleinformation, one can also modify the
way it is visualized. Such in-place F+C methods are sometimes categorized as cue-based
techniques [CKB09]. Generating visual cues is achieved for example by changing colors or
applying blur to the base representation [ZWSK97].

In optics the Depth Of Field (DOF) describes a distance interval between where all objects
appear sharp in a captured image. This effect is often used in photography and cinematog-
raphy to direct the users attention to a certain object or area which is inside the focal area
of the used lens. The same idea has been used by Kosara et al. [KMH01][KMH+02] to cre-
ate a F+C technique called Semantic Depth of Field (SDOF). Instead of using the depth of
objects they use semantic properties to discriminate important object from less important
context information. After this classification unimportant objects are blurred and combined
with the focal objects left unchanged. The SDOF can be applied to textual data as well as
two- or three-dimensional environments as shown in Figure 2.4.

A similar method has later been developed by Khan et al. [KMFK05]. Instead of blur-
ring they darken the whole screen and only leave a circular region around the focal point

Chapter 2 Related Work 14

(a) Text (b) Chess 2d (c) Chess 3d

Figure 2.4: Semanitc Depth of Field [KMH01](SDOF) used to highlight text areas 2.4(a)
and chessmen on a two- 2.4(b) or three- 2.4(c) dimensional chessboard.

unchanged. The idea behind this visualization is an analogy to the spotlights used in
theatric productions to direct the audiences attention. A user study has shown that
especially on large displays their spotlight technique leads to a large gain in perfor-
mance if compared to simply using the cursor for pointing the audience to a certain
position.

2.2 Gestalt Connectedness

Initially postulated by Wertheimer in 1923, the Gestalt principles [Wer23] incorporate men-
tal laws on how humans perceive scenes they can see. For example, objects of a similar color,
shape or size are usually perceived as forming a group, which often leads to perceiving more
information then the sum of the individual objects. Objects being in close proximity or con-
nected by lines are also instances of the grouping principles.

Several user studies have shown that connectedness is a very strong grouping princi-
ple [PR94][ZK10], often outperforming other grouping principles like similarity or prox-
imity. Especially in a cluttered environment, searching for highlighted objects, which are
not connected, can lead to a severly degraded search performance, as one has to perform
a serial search[TG80]. This requires scanning through the whole visible area and looking
for relevant elements without missing any of them. Motivated by the Gestalt principles,
many visualizations connecting elements using lines or enclosing shapes have been devel-
oped.

2.2.1 Visual Linking

To reduce distances one has to move around in a pen- or touch-controlled environment,
Baudisch et al. [BCR+03] have an alternative Drag-and-Drop technique called Drag-and-
Pop, which upon dragging a file around moves all launch icons for compatible applications
towards the dragged file while still maintaining a connection to their original locations
using a rubber band (see Figure 2.5).

Chapter 2 Related Work 15

Figure 2.5: Drag-and-Pop [BCR+03]: The Word file can either be deleted by moving it
over the recycle bin or opened by dragging it onto one of the two supported
applications.

Semantic Substrates [SA06][AS07] categorize nodes of a network based on the values of
certain attributes and arrange them in different regions. Afterwards the user dynamically
modifies some selection criteria where the relations between matching nodes are visualized
by drawing links (see Figure 2.6(a)).

(a) Semantic Substrates [SA06] (b) ConnectedCharts [VM12]

Figure 2.6: 2D Links

ConnectedCharts uses a very similar layout of links recently proposed by Viau and McGuf-
fin [VM12] to connect data entries occurring in multiple charts (see Figure 2.6(b)).

Still showing relations between multiple views of the same or related data in 2d visualiza-
tions, Collins and Carpendale with their VisLink [CC07] technique and Streit et al. with
their connections between pathways [SLK+09] project the separate data views into a three
dimensional space and draw links between selected items to allow the user quickly exploring
the relations among multiple views (see Figure 2.7).

Bubble Sets, another way of visually connecting objects, have been proposed by Collins et
al. [CPC09] to show on top of existing visualizations the relations of elements belonging

Chapter 2 Related Work 16

(a) VisLink [CC07] (b) Caleydo Bucket [SLK+09]

Figure 2.7: 3D Visual Links

to different sets. Instead of links they use bubble like shapes, each enclosing all elements
belonging to a specific set.

2.2.2 Edge Bundling

Without taking any actions a visualization can quickly get cluttered while showing too
much information with just limited space available. Several techniques are being used for
reducing such visual clutter [ED07]. As it is not feasible to remove or move any nodes of
the visual link graph, we will focus on techniques trying to reduce clutter by optimizing
the way edges between linked nodes are drawn. Edges are regarded as being flexible lines
similar to electrical wires which are then bundled together at parts of their routes where
they are installed in close proximity.

With confluent diagrams Dickerson et al. [DEGM04] draw non-planar graphs with possibly
many crossings in a crossing-free manner. This is achieved by combining crossing edges
into a common edge bundle and let them fan-out towards the nodes they are connected
to.

Flow maps [PXY+05] visualize hierarchical flows by merging flows along common routes
into a single larger flow. The idea of edge bundling is also used by Holten [Hol06] to visualize
relations inside a set of hierarchical data using a hierarchical tree layout and applying an
edge bundling algorithm to it (see Figure 2.8).

For general graphs Geometry-Based Edge Clustering can be used. Inspired by the way
road maps are drawn Cui et al. [CZQ+08] developed a method which first creates a control
mesh based on the distribution of edges and afterwards uses this superior structure to bias
the edge bundling process.

As using geometry-based edge clustering often leads to edge bundles hard to follow [HVW09],

Chapter 2 Related Work 17

Figure 2.8: Drag-and-Pop [BCR+03]: The Word file can either be deleted by moving it
over the recycle bin or opened by dragging it onto one of the two supported
applications.

Holten et al. introduced a Force-Directed Edge Bundling algorithm [HVW09] for visualiz-
ing general graphs. They do not rely on creating a control mesh, but instead subdivide the
underlying straight-line node-link graph and simulate applying spring and electrostatic
forces to the subdivision points. An iterative approach is used to find an approximate
solution within feasible time.

Figure 2.9: Multilevel agglomerative bundling [GHNS11]: Iteratively applying the bundling
algorithm results in an increasing number of edges being merged together into
bundles.

Recently Gansner et al. [GHNS11] presented an approach inspired by the way a human
would bundle electrical wires. In an iterative process lines with similar routes are identified
and grouped together (see Figure 2.9), either be adding to an existing bundles or by
forming new ones. The objective function of this optimization problem is the sum of
the lengths of all edges, whereas a group of bundled edges only counts once. Additional
constraints like limiting the turning angles may be added to get a more visual pleasant
result.

Chapter 2 Related Work 18

2.2.3 Visual Links across applications

For investigating into different aspects of analyzed data, often multiple applications are
used, each providing a highly specialized visualization technique. To increase the efficiency
of such an analyzing strategy North and Shneiderman have developed Snap-Together Vi-
sualization [NS00], an API for coordinating and synchronizing data and highlights across
multiple visualization applications.

As the human eye has a very small field of view [War04] but currently used screens are often
very large, information especially in peripheral regions is easily overlooked [HS04][BB09].
Especially if multiple regions of interest exist, very strong visual cues are needed to direct
the users attention.

Figure 2.10: Exploring results of a biomedical experiment connecting regions of interest
spread among multiple applications using visual links. [WPL+10]

Using connectedness as strong visual cue, Waldner et al. [WPL+10] have created Visual
links across applications, a program visualizing relations between locations of interests
spread around multiple applications. Applications can connect to a background process
and report regions of interest and an associated identifier, either initiated by the user
or automatically. All connected applications receive the identifier and can in turn report
matching regions on their own. After collecting all regions they are connected by visual
links drawn on top of the desktop as shown in Figure 2.10.

Steinberger et al. [SWS+11] have conducted a user study to show the improved perfor-
mance of visual links. Several users were instructed to count highlighted regions, either just

Chapter 2 Related Work 19

highlighted by frames drawn around them or additionally also connected with visual links.
Results confirmed the expected performance gain. Using an eye tracker the search strategy
of the users has been analyzed. With simple highlights users need to scan through large
parts of the image to find all regions (see Figure 2.11(a)) whereas visual links strongly
guide the user towards all regions by just following the lines as can be clearly seen in
Figure 2.11(b).

(a) Highlight

(b) Visual Links

Figure 2.11: Gaze plots showing how users scan through an image to count highlighted re-
gions. Simple highlights (a) are compared to straight visual links (b). Compar-
ing the result shows clearly the strong guidance effect of visual links. [SWS+11]

Encouraged by the performance of visual links they have been further improved by Wald-
ner et al. to extend the links also across multiple computers operated by multiple users
at the same time [WS11]. As simple straight links are vulnerable to obscure important in-
formation, Steinberger et al. [SWS+11] also take the base representation into account
for creating optimal link routes preserving as much information as possible (see Fig-
ure 2.12).

Chapter 2 Related Work 20

Figure 2.12: Context-Preserving visual links try to avoid routing links across salient re-
gions. [SWS+11]

2.3 Hidden Content

Only a limited amount of content can be shown to the user at the same time. Conse-
quently always some content is not visible to the user. A trivial reason for content being
invisible is a document available somewhere, but currently not opened in any program. If
content is available inside an application on the desktop, it may still not be visible to the
user.

Figure 2.13: Users can not see content covered by another window (a), outside a virtual
viewport (b) or inside a minimized application (c). If content is available on
the screen it may still be invisible to the user due to physical occlusion (c) or
being outside the focus of attention (d)(e) [BDB06].

Chapter 2 Related Work 21

According to Berzerianos et al. [BDB06] two main reasons cause content being invisible to
the user. Either content is not displayed, as for example it is covered by another window, or
the user does not see it, because his attention is focused somewhere else (see Figure 2.13).
In this thesis we concentrate on off-screen content – content available on the desktop but
currently not displayed.

While relating pieces of information using visual links, little attention has been spent
on how to visualize information currently not visible, for example due to being cov-
ered by other windows or scrolled out of the visible viewport of an application. Wald-
ner et al. [WPL+10] indicate information scrolled outside a windows region by draw-
ing arrows pointing into the according directions. Information hidden by overlapping
windows is not considered at all, but was mentioned as being important for future re-
search.

2.3.1 Off-screen Content

In the context of small screens like found on mobile devices, several techniques have
been proposed to indicate the locations of points of interest on pan- and zoom-able
maps [BCG06]. As the typical task in such an environment is to exactly locate points,
usually direction and distance are encoded in the visualization. A well know approach
consist of arrows pointing into the direction of hidden positions possibly encoding the
direction by scaling or simply adding a textual label.

(a) Arrows (b) City Lights [ZMG+03] (c) Halo [BR03]

Figure 2.14: Using arrows (a), City Lights (b) and Halos (c) to visualize distance and
direction to locations on a map outside the visible screen space. [BCG06]

Using bars at the borders of window regions, city lights [ZMG+03] indicate direction and
width or height of hidden regions. Encoding distance and directions instead, Baudisch et
al. have developed a technique called Halo [BR03] where circles are drawn around the
hidden locations. The size of these circles are chosen such that they are just large enough
to intersect with the visible region of the screen. Now the curvature of the resulting arcs
encodes both distance and direction.

Chapter 2 Related Work 22

Figure 2.15: Wedges use culled triangles to encode direction and distance to offscreen
locations. Compared to Halos (as shown on the small image) Wedges can
create much better cues guiding to the hidden locations. [GBGI08]

To overcome visual clutter possibly occurring with methods like city lights, Gustafson et
al. [GBGI08] use wedges to encode direction and distance. Instead of circles, isosceles
triangles are placed, such that the apex is at the location of the hidden object, and the
triangle intersects with the visible region.

2.4 Discussion

F+C techniques are used to emphasize a focal region while still showing some or all
contextual information around. Methods like fisheye views [Fur86] distort the image to
enlarge the focal region whereas other methods just highlight the focus or darken the
context [ZWSK97].

Visual Links have been used for creating strong visual cues between related pieces of
information inside and across applications by Waldner et al. [WPL+10][WS11] and Stein-
berger et al. [SWS+11]. To reduce visual clutter introduced by drawing visual links, in-
dividual links are bundled together similar to edge bundling already applied to general
graphs and trees. The discussed visual links systems use a hierarchical bundling algorithm
similar to the multilevel agglomerative bundling algorithm of Gansner et al. [GHNS11].
For bundling visual links the algorithm can be simplified because the links always appear
in a known hierarchic structure.

Chapter 2 Related Work 23

Information not visible to the user but still present on the desktop has hardly been con-
sidered, but identified as fruitful direction for future research [ET08]. Regions covered by
other windows are completely ignored by all implementations of visual links. Due to the
limited display space available on mobile devices research has been done to investigate on
how to guide the users to locations on a map outside the display. Different visualizations
like simple arrows [BCG06], city lights [ZMG+03] or wedges [GBGI08] are used to encode
distance and direction to locations outside the viewport.

Chapter 2 Related Work 24

Chapter 3

Concept of Visual Links to Hidden Regions

Similar to the architecture of the system presented by Waldner et al. in ”Visual Links across
Applications” [WPL+10], our prototype consists of a central Visual Links Server which
communicates with different client applications (see Figure 3.1). Each client application
needs to register itself to the server and can afterwards send linking requests to the server.
Clients can offer arbitrary methods to their users for creating a new linking request. For
example, the user can highlight a word or enter a word into a textbox and use it as an
identifier for starting a new linking process.

Renderer

Server

Visual Links Server Client Applications

BrowserMapSearch Widget

Figure 3.1: Basic architecture of the visual links system. The visual links server commu-
nicates with different client applications and creates visual links according to
the received data.

After the server has received a linking request, it forwards it to every connected client,
enabling each application to add links to information inside their viewport. Upon receiving
a linking request, a client should search its contents for instances of the requested identifier
and report back the bounding boxes of each found occurrence. For simple selection types
like single words, bounding boxes already provide an accurate approximation of the relevant
region. To highlight and link more complex shapes, a client is free to use any arbitrary
shaped polygon for representing its regions.

3.1 Visual Links

Every client containing information relevant to the user, sends a list of polygons – each
enclosing a piece of information – to the server. The visual links renderer now draws the
outlines of the polygons on top of the desktop, using a different color for each group of
regions belonging to the same linking identifier. To make the highlights more prominent,

Chapter 3 Concept of Visual Links to Hidden Regions 25

the polygons are filled with a slightly transparent variant of the outline color. Afterwards
the individual regions are connected using visual links.

Figure 3.2 shows our basic visual links system being used to connect various locations of
information between different types of applications.

Figure 3.2: Using our Visual Links system connecting information relating to the geo-
graphic location of our university (City of Graz) occurring in multiple browser
windows and a Google Maps mash-up. The used visualization is basically the
same as presented by Waldner et al. [WPL+10].

3.1.1 Region highlights

The browser add-on, we will describe in more detail in Section 4.3.1, searches for individual
words or text passages matching the requested link identifier, and reports their bounding
boxes (see Figure 3.3(a)) to the server.

Our maps mash-up, we will also describe later in Section 4.3.2, can be used to create
highlights on maps. It reports circles centered around geographic locations of interest
(see Figure 3.3(b)), like for example, cities, districts or countries, to the visual links
server.

Chapter 3 Concept of Visual Links to Hidden Regions 26

If clients report regions, which are currently invisible but can be reached through scrolling,
these regions are not drawn. Instead an arrow is drawn, pointing towards the next edge
of the applications viewport, into the direction of the target (see Figure 3.3(c)). We will dis-
cuss the visualization of regions outside a viewport in more detail in Section 3.2.2.

(a) Text (b) Location (c) Scroll

Figure 3.3: Symbology for highlighting text (a), geographic locations (b) and directions to
occurrences outside the viewport of a scrollable region (c)

3.1.2 Link Bundling

Motivated by the strong visual guidance of Gestalt connectedness (cf. Section 2.2), the
individual region highlights are connected using straight visual links. Connecting all regions
to a common center, as shown in Figure 3.4(a), results in a cluttered visualization with
much display space occluded by the visual links.

For this reason we bundle together links with proximate routes, using an iterative algo-
rithm – similar to the Multilevel agglomerative edge bundling by Gansner et al. [GHNS11].
In contrast to multilevel agglomerative edge bundling, we do not construct an edge prox-
imity graph, but instead use the hierarchy created by the fact, that each region belongs to
a certain application. First all links are bundled together at the individual centers of each
application, and afterwards connected to the common center of all participating applica-
tions. A possible visualization using the described method can be seen in Figure 3.4(b).
To reduce clutter and keep the total length of all links low, we bias the centers of each
separate application towards the common center.

Combining this principles results in the following steps, required to calculate the bundle
points:

1. Client bundle points The bundle points for each client application are calculated
by taking a weighted average of all regions belonging to a single application. Visible
regions have a much higher influence than hidden regions.

2. Global bundle point The geometric center of all client bundle points is calculated
and used as global bundle point.

3. Biasing client bundle points Every client bundle point is moved into the direction
of the global bundle point (see Figure 3.4(c) for an example of two bundle points
being biased towards the common center).

Afterwards straight lines are draw from the common center to each bundle point, continued
by forking a link to every region, and finally ending in a smooth transition to the regions
highlight.

Chapter 3 Concept of Visual Links to Hidden Regions 27

(a) No bundling

(b) Per application bundling

(c) Per application bundling with center bias

Figure 3.4: Connecting regions with visual links connected to a central point (a), using per
application bundle points (b) and with biasing the bundle points towards the
center (c).

Chapter 3 Concept of Visual Links to Hidden Regions 28

3.1.3 Link-Region Transition

Figure 3.5 shows how a transition from a link to a connected region is drawn. First the
link is expanded to smoothly fade into the region (see Figure 3.5(a)) and afterwards the
inner part of the region is cleared to not occlude the information being highlighted (see
Figure 3.5(b)).

Information

(a) Expand link

Information

(b) Clear region (c) Gaussian blur

Figure 3.5: A transition from a link to a highlighted region. First the link is expanded
(a) and afterwards the inner part of the the region is cleared (b). Finally a
Gaussian blur filter is used to further smooth the whole visualization (c).

All rendering output is directed to an off-screen buffer first. After everything has been
drawn, a Gaussian blur filter is applied to the whole buffer image to further smooth links,
highlights and transitions (see Figure 3.5(c)).

Finally, to make the visualization visible to the user, the contents of the off-screen buffer
are copied on top of the desktop. Regions on the screen not covered by the visualization
are marked with a mask, to allow mouse events passing through. This enables the user
interacting with all parts of currently visible applications not covered by our visualiza-
tion.

3.2 Hidden information

There exist several reasons for information being hidden (cf. Section 2.3). In this thesis we
concentrate on information covered by other windows on the desktop, or outside the visible
part of a viewport. To address the requirements identified in Section 1.1, we use two main
visualization techniques helping the user efficiently exploring the available information
– an X-ray visualization for covered regions, and preview pop-ups for regions outside a
viewport.

3.2.1 Covered regions

Todays desktop environments allow users to run multiple applications concurrently and
position and resize the applications windows in any imaginable combination. On the one
hand users get the freedom to arrange the used applications according to the individual
preferences, but on the other hand it vastly increases the chance of regions showing required
information being covered by windows of other applications. To show the user where such

Chapter 3 Concept of Visual Links to Hidden Regions 29

Figure 3.6: We have opened a text editor which hides one occurrence of ”Graz” inside the
currently browsed document. The hidden region and its link are drawn using
a reduced intensity and opacity color. At the border of the covering window a
tunnel portal like icon shows the link is going to continue below the text editor.

hidden regions are located we use a simple version of an X-ray visualization, a technique
commonly used in augmented reality systems to make hidden objects visible. We draw
the highlight of the region and its connecting link the same way as if the covered region
would be visible, but with reduced intensity and opacity of the used color to depict it is
not. To intensify the perception of a link being covered by a window, we show an icon
symbolizing a tunnel portal (see Figure 3.6) where the link pretends to continue inside a
”tunnel” somewhere below the topmost window.

Figure 3.7: Hovering with the mouse above a hidden region triggers rendering an outline
of the window the region belongs to.

As all covered regions are still visible to the user but only visualized using a different style,

Chapter 3 Concept of Visual Links to Hidden Regions 30

our visualization satisfies Requirements 1 and 2 as postulated in Section 1.1. To address
the last requirement - guiding the user to the hidden regions - a click action with the
mouse on the hidden region moves the window containing the very same region to the
top of the window stack, which effectively reveals the hidden information. Additionally, if
just hovering with the mouse above a hidden region, we show an outline of the window
this region belongs to (see Figure 3.7). This helps the user in recognizing which window
is about to become visible upon a click, which can get hard to realize at a glance with
complex window arrangements.

3.2.2 Regions outside a viewport

Most applications available on todays desktop systems provide the user access to much
more information at the same time than there is display space available on the monitors.
To still be able to view, for example, large documents in a text editor or whole web pages
in a browser, just a small excerpt of the available contents is shown. Such a viewport can
be moved around through scrolling vertically or horizontally. If searching for information
in such applications large parts of the viewed document are usually outside the viewport
and therefore not visible to the user. To address Requirements 1 and 2 – showing the
the user direction and number of potentially relevant parts inside a document – we use
simple arrows pointing into the according direction (see Figure 3.3(c)) and place text
labels showing the number of interesting regions in their direction (see Figure 3.8) next to
them.

Figure 3.8: Next to the basic scroll indicator as shown in Figure 3.3(c), we additionally
place a text box indicating the number of hidden occurrences located in the
direction of the arrow.

To not cover too much additional display space, no more than four arrows – one for each
edge – per viewport are shown at the same time. All hidden regions are assigned to one

Chapter 3 Concept of Visual Links to Hidden Regions 31

of the four edges, and for each of the resulting groups of regions, the center of gravity is
calculated. Afterwards, for each group an arrow is drawn inside the applications viewport,
as close as possible to the corresponding center of gravity.

3.2.2.1 Preview Pop-Up

As scrollable regions often exceed display dimensions by far, we can not use a see-through
visualization analogous to the visualization of regions covered by other windows (cf. Sec-
tion 3.2.1). Most of the time the highlights of hidden regions would be located outside the
desktops area. Instead, upon hovering with the mouse above the text label showing the
number of hidden regions (as described in the previous Section 3.2.2), we show a pop-up
window (see Figure 3.9(a)). This pop-up window displays a preview of the whole scrollable
area and can be navigated using keyboard shortcuts or mouse gestures. The user can zoom
and pan the view to explore all available content (see Figure 3.9(b)). Regions of interest are
highlighted using simple bounding boxes. To make the bounding boxes more prominent,
especially if zoomed out of the preview, the width of the lines used to draw them does not
change with the zoom level.

(a) Preview pop-up (b) Zoom/Scroll

Figure 3.9: The preview pop-up (a) displays an outline of the whole document with all
occurrences of the requested information being highlighted. The large red rect-
angle visualizes the location of the viewport inside the actual application. Once
zooming into a more detailed view (b), regions can be selected with higher pre-
cision. The orange scrollbar at the right side of the window indicates the current
vertical location inside the whole applications area.

For a fast correlation of the preview window and the actual document, the current viewport
of the application is highlighted by an accordingly sized rectangle. Increasing the zoom
level again hides some parts of the preview image. To indicate this fact scrollbars depict

Chapter 3 Concept of Visual Links to Hidden Regions 32

the current location inside the whole preview image. Once an interesting region has been
identified by the user, a mouse click at that location hides the pop-up window and scrolls
the document to the location of the requested information.

Partitioning

Most of the time, users are only interested in certain parts of documents containing rele-
vant information. Similar to the fisheye techniques discussed in Section 2.1.1 we compress
unimportant regions to gain space for the relevant parts. As documents are typically much
higher than wide, we only remove rectangular regions of the same width than the docu-
ment.

To decide which regions should be considered unimportant we perform the following steps,
while walking vertically through the document:

1. Calculate bounding boxes of all region highlights.

2. Loop through all bounding boxes and mark region with a certain margin above and
below as important (see Figure 3.11).

3. Hide or compress all unmarked and therefore unimportant regions as shown in Fig-
ures 3.10(b) and 3.10(c).

(a) Preview pop-up (b) Partitions (c) Compressed

Figure 3.10: Showing a whole web page at once inside a preview pop-up often requires
scaling the image down to a size where it is not possible to detect much
information any more (a). After marking regions containing no relevant infor-
mation (b), they can be compressed and free additional space for enlarging
the remaining important regions (c).

To prevent marking too small regions as unimportant – possibly even smaller than the gap
it will be replaced with – we extend all bounding boxes with a large margin below and
above, as shown in Figure 3.11. After marking all regions as described before, the height
of the important regions is reduced again to get tighter bounds, but still include small
uninteresting regions in between.

Chapter 3 Concept of Visual Links to Hidden Regions 33

Information

margin

Information

margin

Information

margin

margin

Document

Enlarged
Boundingbox

Important
Region

Figure 3.11: Partitioning a document containing three instances of the search identifier.
The enlarged bounding boxes are first intersected and afterwards made smaller
by reducing the previously introduced margins. Finally the resulting two re-
gions are marked as important.

Chapter 3 Concept of Visual Links to Hidden Regions 34

Chapter 4

Design and Implementation

The software prototype of the presented visual links system consists of multiple com-
ponents working together in a client-server fashion. A central management application
communicates with registered applications via a special Visual Link Protocol (VLP),
processes the collected data and draws an according visualization on top of the desk-
top.

Routing

IPC Server

Renderer

Data Slots

Client
Tile Maps

Visual Links Server Client Applications

Visual Link
Protocol

Browser

Map

Search Widget

Window
Monitor

Configuration

Figure 4.1: Primary components of the visual links system. The visual links server com-
municates with different client applications and creates visual links according
to the received data.

4.1 Visual Links Server

The central server application is written in the C++1 programming language using the Qt
framework2, which allows the application to support various platforms3. Multiple compo-
nents are communicating via a generic data exchange system using so called Data Slots. All
components are initially completely independent of each other and are connected with data
slots during the initialization phase of the visual links server.

1http://isocpp.org/
2http://qt-project.org/
3Linux and Windows have been tested

Chapter 4 Design and Implementation 35

http://isocpp.org/
http://qt-project.org/

4.1.1 Inter Process Communication

Serving as a gateway between the visual links server and its client applications, the IPC-

Server is a crucial part of the system. Using a special protocol, as described in more
detail in Section 4.2, textual as well as binary data is exchanged between the server and
its clients. Upon initiating a new routing process – usually through a message from a client
– the server requests information related to the received search identifier from all registered
clients. The received data – locations and shapes of regions of interest, as well as images
containing snapshots of hidden areas – is processed by the IPCServer and stored in data
slots to be further processed by other components.

Clients are also able to request and change settings of the visual links server or abort ex-
isting routes. Upon changes inside their applications content, they should notify the server
about it to initiate updating the affected parts of the visualization.

4.1.2 Routing

After the IPCServer has collected all available data from each connected client, the Rout-

ing component uses this data to connect the separate highlighted regions with visual links
as discussed in Section 3.1. Additionally to the linked regions and window geometries,
periodically the contents on the screen are captured into an image with all links removed.
This image can be used by routing components creating context sensitive links like for
example described in [SWS+11].

Our prototype though just includes a simple CPURouting component, which performs all
calculations inside the computers main processing unit. Regions are connect with straight
lines, without trying to avoid important content. Links are bundled, as described in Sec-
tion 3.1.2, to reduce visual clutter.

4.1.3 Renderer

Using the data created by the routing component – vertices connected with straight lines
– the GLRenderer draws extruded lines and region highlights using the OpenGL4 API.
Afterwards the whole output is blurred using a shader written in the OpenGL Shading
Language (GLSL). This leads to smooth edges and corners, nicely blended over the desktop.
For platforms, as for example Windows, which do not supporting drawing on top of the
desktop using alpha-blending, before drawing the blurred output on top of the desktop,
it is blended with an image of the desktop using another GLSL shader to imitate real
alpha-blending.

If a preview pop-up (see Section 3.2.2.1) should be shown, the pop-up frame is drawn using
standard OpenGL primitives. After applying a Gaussian blur, the preview is drawn using
the according tiles of the Hierarchic Tile Map, which will be discussed in the next section.
Highlights are added using simple lines, as shown for example in Figure 3.9.

4http://www.opengl.org/

Chapter 4 Design and Implementation 36

http://www.opengl.org/

4.1.4 Client Hierarchic Tile Map

For rendering a preview pop-up the respective client has to send an image of its contents
to the server. To allow inspecting the preview at different levels of zoom, a high resolution
image is needed. Creating and transferring such large images would be very slow and
inefficient, as the user probably will not inspect the whole region at the highest available
zoom level.

To accommodate for this we use a Hierarchic Tile Map, where each level consists of a single
or multiple tiles which add up to a full preview image of the client applications region at a
specific zoom level. Using different resolution images for the individual zoom levels allows
creating tiles in a resolution sufficient for a single level of zoom. As the user zooms into the
preview or moves the viewport around, missing tiles are requested asynchronously from
the corresponding client application.

Because of rendering and loading only relevant parts on demand, much smaller images
are created and subsequently far less data has to be transfered. This also improves the
responsiveness of the visualization, as it allows displaying parts of the preview while waiting
for missing tiles being received.

4.1.5 Window Monitor

While working in a desktop environment the arrangement of opened windows can change
at any time (cf. Challenge 1 in Section 1.2). As this possibly also affects the position
and occlusion of regions, we need to check for such changes. Current operating systems
usually do not allow receiving notifications for changes in windows of other applications.
To work around this limitation the WindowMonitor periodically request a list of all opened
windows, including its geometry and stacking order, and compares them with the stored
previous state. If there are any changes detected, it notifies the IPCServer such that it
can perform the required action, for example trigger recreating routes for active visual
links.

4.1.6 Configuration

The used routing algorithm, color scheme, search history and other settings which should
be persistent throughout multiple runs of the visual links system, are stored in files on the
hard disk. Using TinyXML5, a library for handling Extensible Markup Language (XML)
encoded files, the XMLConfig component is responsible for saving and restoring all config-
uration values.

As modern operating systems are multi-user systems, using at least two configuration files
– one stored in a location readable for all users, and further ones accessible to each user
– allows providing global default settings, while at the same time allowing each user to
override settings persistent across multiple sessions.

5http://www.grinninglizard.com/tinyxml/

Chapter 4 Design and Implementation 37

http://www.grinninglizard.com/tinyxml/

4.2 Visual Link Protocol

As not all data needed by the server can be gathered through monitoring application
windows the IPCServer (cf. Section 4.1.1) is responsible for exchanging data between the
different client applications and the core system. It provides a TCP server and accepts
incoming WebSocket [FM11] connections, which are used to exchange basic properties
about the client, like the size of its scrollable region, and requesting locations of information
inside the clients window. As the WebSocket protocol is a bidirectional protocol a client
itself can also request data and settings from the server or trigger a linking process for a
new search id.

Messages exchanged between the Visual Links Server and its clients are transfered using
VLP. The VLP is a simple, text based data exchange format using JavaScript Object
Notation (JSON) [Cro06] encoded objects. Such an object consists of keys and associated
values or list of values.

Every message object consists of a mandatory field ’task’, which identifies the type of mes-
sage being transfered, and depending on the actual message type, several other fields. The
following example shows a message used to initiate a linking process:
{

’ t a s k ’ : ’ I N I T I A T E ’ ,
’ id ’ : ’ s e a r c h i d e n t i f i e r ’ ,
’ s t a m p ’ : 123456789 ,
’ r e g i o n s ’ : [

[[12 , 34] , [112 , 34] , [112 , 64] , [12 , 64]] ,
[[40 , 100] , [100 , 200] , [10 , 200]]

] ,
’ scroll - r e g i o n ’ : [0 , 0 , 780 , 550]

}

Listing 4.1: VLP sample message

In the subsequent sections we will describe all messages specified by VLP.

REGISTER
The first task a client has to do after connecting to the Visual Links Server
is sending a registration message. It has to contain the coordinates of a
position (’pos’) inside the clients window and the dimensions of the ap-
plications content viewport (’region’) excluding any window decoration
and menus.

Sending a visible position inside the clients window allows to identify
the window in the window stack, by checking the visible window at that
location. This information is needed by the window monitor described in
Section 4.1.5.

The bounding box of the content region is used for determining whether a
received region of interest is visible or hidden due to being scrolled outside
the viewport.
{

’ t a s k ’ : ’ R E G I S T E R ’ ,
’ n a m e ’ : ’ O p t i o n a l N a m e ’ ,
’ pos ’ : [px , py] ,
’ r e g i o n ’ : [x , y , width , he ight]

}

Listing 4.2: VLP message: register an application

Chapter 4 Design and Implementation 38

RESIZE
Whenever the viewport geometry of an application changes, the client
should notify the server using a resize message. The ’region’ parameter
should contain the same data as used withing the REGISTER message.
{

’ t a s k ’ : ’ R E S I Z E ’ ,
’ r e g i o n ’ : [x , y , width , he ight]

}

Listing 4.3: VLP message: report application resized

INITIATE
Initiates a new routing and linking process by sending the identifier (’id’)
to search to the server. Locations inside the clients region can be added
in the optional ’regions’ field.

If the document is scrollable the dimensions and offset of the whole doc-
uments region are included in the ’scroll-region’ field.

The following example shows a message to initiate a search for the string
’test’ with two occurrences bounded by one rectangular and one triangular
region:
{

’ t a s k ’ : ’ I N I T I A T E ’ ,
’ id ’ : ’ t e s t ’ ,
’ s t a m p ’ : 123456789 ,
’ r e g i o n s ’ : [

[[12 , 34] , [112 , 34] , [112 , 64] , [12 , 64]] ,
[[40 , 100] , [100 , 200] , [10 , 200]]

] ,
’ scroll - r e g i o n ’ : [x−o f f s e t , y−o f f s e t , width , he ight]

}

Listing 4.4: VLP message: initiate routing

REQUEST
After the client has issued an INITIATE to the server, the server sends
a REQUEST message to all clients with the new search id (’id’) and
timestamp (’stamp’). Every client should send back a FOUND message
with all occurrences of the requested id inside their region.

The client which sent the corresponding INITIATE also gets a REQUEST.
If matching regions have already been included in the INITIATE, this
message can be ignored.

The following example shows the REQUEST the server would send upon
receiving the example from INITIATE:
{

’ t a s k ’ : ’ R E Q U E S T ’ ,
’ id ’ : ’ t e s t ’ ,
’ s t a m p ’ : 123456789

}

Listing 4.5: VLP message: request regions of interest

FOUND
Upon receiving a REQUEST message a client shall search for occurrences
of the requested identifier (’id’) within its content region and report all
found regions of interest (’regions’).

Chapter 4 Design and Implementation 39

The parameters have the same meaning as used within an INITIATE
message.
{

’ t a s k ’ : ’ F O U N D ’ ,
’ id ’ : ’ t e s t ’ ,
’ s t a m p ’ : 123456789 ,
’ r e g i o n s ’ : [

[[12 , 34] , [112 , 34] , [112 , 64] , [12 , 64]] ,
[[40 , 100] , [100 , 200] , [10 , 200]]

] ,
’ scroll - r e g i o n ’ : [x−o f f s e t , y−o f f s e t , width , he ight]

}

Listing 4.6: VLP message: report regions of interest

ABORT
If a client sends an ABORT to the server then the server forwards the
message to all clients and removes every displayed route for the given link
’id’.

If all routes should be aborted set id to the empty string and ’stamp’ to
-1.
{

’ t a s k ’ : ’ A B O R T ’ ,
’ id ’ : ’ t e s t ’ ,
’ s t a m p ’ : 123456789

}

Listing 4.7: VLP message: stop linking

GET
A client can request currently set configuration values and parameters
by issuing a GET request. The ’id’ contains a string identifying the
requested parameter.
{

’ t a s k ’ : ’ GET ’ ,
’ id ’ : ’ / r o u t i n g ’

}

Listing 4.8: VLP message: request current routing algorithm

The same mechanism can also be used the other way round by the server
to request data from the client. The following command is used to request
a single image for a clients tile map as described in Section 4.1.4.
{

’ t a s k ’ : ’ GET ’ ,
’ id ’ : ’ preview - t i l e ’ ,
’ s i z e ’ : [256 , 256] ,
’ s e c t i o n s ’ : [[10 , 100] , [150 , 800] , [1200 , 2000]] ,
’ src ’ : {

’ x ’ : 0 ,
’ y ’ : 0 ,
’ w i d t h ’ : 200 ,
’ h e i g h t ’ : 400

} ,
’ r e q _ i d ’ : 5

}

Listing 4.9: VLP message: request tile image from a client

In contrast to all other messages, the client has to answer a request for a
tile image with a binary message. The first two bytes denote the message
type and request identifier respectively, whereas all following bytes build
up the raw image data.

Chapter 4 Design and Implementation 40

GET-FOUND
Upon receiving a GET request the server or client respectively answers
with a GET-FOUND message containing the requested ’id’ and it’s
value(s) (’val’). In the case binary data needs to be transfered no GET-
FOUND is sent but only the binary data instead.

{
’ t a s k ’ : ’ GET - F O U N D ’ ,
’ id ’ : ’ / r o u t i n g ’ ,
’ val ’ : {

’ a c t i v e : ’ : ’ C P U R o u t i n g ’ ,
’ a v a i l a b l e ’ : [[’ G P U R o u t i n g ’ , 1] ,

[’ C P U R o u t i n g ’ , 1]]
}

}

Listing 4.10: VLP message: answer indicating current routing algorithm

SET
Setting a server configuration value can be requested by a client through
sending a SET request to the server. The parameter named ’id’ will be
set to the given value (’val’).

{
’ t a s k ’ : ’ SET ’ ,
’ id ’ : ’ / r o u t i n g ’ ,
’ val ’ : ’ C P U R o u t i n g ’

}

Listing 4.11: VLP message: request changing routing algorithm

4.3 Application Integration

All applications on the desktop can potentially cover important information. As discussed
in Section 4.1.5 the WindowMonitor is able to monitor all windows opened on the desktop.
If an application wants to actively participate to the linking process though it has to
communicate with the visual links server using VLP as described in Section 4.2. We have
created and extended three different applications now being able to be communicate with
the visual links server.

4.3.1 Browser Add-On

Mozilla Firefox6 is an open-source web browser available for most common operating sys-
tems. It can be extended with add-ons using the XML User Interface Language (XUL),
Cascading Style Sheets (CSS) and the JavaScript [Int11] programming language. Recent
versions of Firefox have integrated a WebSocket API which allows our extension to easily
communicate with the visual links server. As shown in Figure 4.2 a button is added to
the browsers toolbar which has multiple functions. The color indicates the status of the
connection to the visual links server. If no connection has been established, pressing the
button creates a new connection, otherwise the current mouse selection is sent as new
linking request to the visual links server. Using the drop-down menu active links can be
aborted and several settings be changed.

6http://www.mozilla.org/

Chapter 4 Design and Implementation 41

http://www.mozilla.org/

Web browsers usually show HyperText Markup Language (HTML) 7 encoded documents.
The structure of such HTML documents is specified by the Document Object Model
(DOM) 8. Using the JavaScript implementation of the specified interface we scan through
the whole document and calculate bounding boxes for all elements containing a specific
search identifier. The bounding boxes of all found occurrences, visible as well as outside the
current viewport, are sent back to the server for further processing.

Figure 4.2: Mozilla Firefox with the Visual Links Add-on activated. Currently a linking
process for ”university” is active. Upon clicking on the according entry in the
linking menu the linking process is aborted.

A search process is triggered either upon receiving a REQUEST message (see Section 4.2)
from the visual links server or if the user marks a word or phrase and clicks on the
linking button inside the toolbar. Also if the user scrolls or resizes the browser window the
search processes is performed again, as it potentially changes the locations of the found
regions.

Using the linking menu it is also possible to open a settings dialog. It can be used to change
for example the behavior upon starting a new linking process. Either just a new link tree
is added or all existing linking process are aborted before starting the new one. Another
setting is the algorithm used for routing the links. If available, instead of the CPURouting

as described in Section 4.1.2 for example a GPU based, context-preserving algorithm could
be selected.

7www.w3.org/html/
8http://www.w3.org/DOM/

Chapter 4 Design and Implementation 42

www.w3.org/html/
http://www.w3.org/DOM/

4.3.2 Google Maps Mash-up

Showing geographic locations is not possible by just matching textual data. Using Google
Maps we have created a mash-up, a local web site embedding a Google Map instance.
With the Google Maps JavaScript API 9 it is possible to search for geographic locations
by a search string and retrieve the according screen coordinates on the shown map. The
reverse task – retrieving the name of nearby locations for a given screen position – is also
supported by the API, which we have used for showing a context menu upon clicking onto
the map. As shown in Figure 4.3 this menu can be used to create new links to locations
around the cursor.

Figure 4.3: Google Maps Mash-up. A link is drawn to the location of Andritz, a district in
the city of Graz. The context menu shows that the mouse has been clicked next
to the district of Mariatrost. Using the context menu the user can create a new
link to the selected location or alternatively to a higher-order administrative
level, like city, state or country.

Similar to the browser add-on described in the previous Section 4.3.1, the button labeled
”VisLinks” shows the status of the connection with the visual links server and is used to
create a new connection. Again we use the JavaScript WebSocket API for communicating
with the visual links server.

9https://developers.google.com/maps/documentation/javascript/tutorial

Chapter 4 Design and Implementation 43

https://developers.google.com/maps/documentation/javascript/tutorial

4.3.3 Search Widget

The search widget is a small window allowing the user to create new or abort exist-
ing linking processes. A textbox allows initiating a new linking process by either en-
tering a new search term or selecting from a list of previously used words (see Fig-
ure 4.4(a)).

(a) History drop-down (b) Abort active routes

Figure 4.4: The search widget allows initiating new linking processes (a) as well as aborting
existing ones (b).

A drop-down list, as shown in Figure 4.4(b), provides a list of currently active links.
Clicking on an entry in this list sends a request to the visual links server to remove all
links for the according search term.

Implemented using the C++ programming language and the Qt framework, the search
widget uses the same library as the core visual links server for creating WebSocket connec-
tions. Settings and other data, like for example the search history, are handled by the core
visual links system and exchanged using the VLP SET and GET commands as described
in Section 4.2.

Chapter 4 Design and Implementation 44

Chapter 5

Results

This chapter discusses the outcome of our work. First we show the implemented methods
within different usage scenarios. Afterwards we will analyze the performance of our proto-
type to show it is able to provide feedback to the user within reasonable time.

5.1 Usage Scenarios

The implementation of our methods discussed in Chapter 3 can be used in a variety of
scenarios. It provides an enhanced search and navigation functionality usable inside single
applications, but unveils its full potential while interacting with multiple applications at
the same time.

5.1.1 Single Window

Figure 5.1: Using the built-in search function of Mozilla Firefox to find information about
universities in Graz. One single region is highlighted with a green background
whereas no indication for any further region is present.

Chapter 5 Results 45

For searching information inside single windows of applications like web browsers or text
editors, often a simple search functionality is provided. Initiated by either just typing or
pressing a keyboard shortcut, the viewport jumps to the first matching word. Sometimes
also all occurrences of the search term are highlighted (see Figure 5.1) – an in-place F+C
technique as described in Section 2.1.4. By scrolling through the document all occurrences
of the search term can be inspected. Alternatively by pressing a key or button one can
jump to the location of the next occurrence. This can be a tedious process, especially if
the number of elements found is large. For reducing the mental load of this task and at the
same time increasing the efficiency, visual links can be used.

Visual Links

Figure 5.2: Using the same setup as in Figure 5.1, but using visual links to connect search
results instead of the built-in search function. Again a single region is high-
lighted, but additionally a visual link guides the user towards the 74 hidden
regions further down inside the web site. This indication strongly motivates
the user to scroll down where he can expect to find more occurrences of the
requested search term.

As discussed in Section 2.2.3, motivated by the Gestalt law of connectedness, visual links
provide strong visual guidance. Using visual links to search for information – for exam-
ple inside a web browser as shown in Figure 5.2 – helps the user efficiently navigating
to every highlighted region (cf. Steinberger et al. [SWS+11]). The user only needs to fol-
low the visual links towards all found occurrences. If a region is not connected with a
visual link it is not considered relevant. This eliminates the need for scanning through

Chapter 5 Results 46

the whole document searching for highlighted regions, as needed with most built-in search
functions.

Preview Pop-Up

In Section 3.2.2 we have identified documents or web pages larger than the viewports they
are displayed withing, as cause for regions being hidden. By scrolling and zooming the
user can still navigate through the whole document and search for such regions. But on
the one hand, without exploring the whole content it is not possible to realize if important
information is available, and on the other hand, for searching information it is cumbersome
to only use zooming and scrolling.

Our visualization technique uses arrows pointing into the directions of such hidden regions
to indicate their existence to the user. At the bottom of Figure 5.2 such an arrow is shown.
Additionally we have introduced preview pop-ups (see Section 3.2.2.1), which shows an
outline of the whole document to the user on demand.

Figure 5.3: The preview pop-up shows a compressed view of the whole document with all
regions of interest being highlighted. Darker horizontal bars indicate unrelated
regions being filtered, resulting in more space available for drawing the remain-
ing parts of the document. In this image a bit below the center of the preview
pop-up a larger region containing many highlights can be seen – likely a region
containing lots of relevant information.

Regions containing no relevant information are not rendered, yielding space to enlarge
regions of interest (see Figure 5.3). Using a compressed view of the document allows for
a fast identification of regions containing lots of information, without being disturbed by

Chapter 5 Results 47

unrelated content. In contrast to simply zooming out of the document it is possible to
show the relevant information at a higher zoom level but still using the same amount of
screen space.

Upon first opening a preview pop-up a scaled image of the whole document is shown. Using
the mouse or keyboard shortcuts the user can zoom into the preview and drag it around.
After finding an interesting region, with a mouse click the document is scrolled to the
according position and the preview pop-up is hidden again.

5.1.2 Multiple Windows

(a) Use-Case Multiple Applications - Traveling to New York

(b) Outside Regions - Preview Pop-up (c) Covered Region

Figure 5.4: Using visual links to connect related information shown in two browser windows
and one map mash-up (a). Information is hidden outside the viewports of the
web browsers as well as covered by a simultaneously opened instance of a word
processor. Two different search terms are connected at the same time, with one
covered region (c) (cf. Section 3.2.1) and several regions outside their according
viewports with a preview pop-up opened, showing a compressed view of the
whole document (b).

Chapter 5 Results 48

In contrast to the default search functionality of many applications, our visual links system
uses a client-server architecture (see Chapter 4). This allows creating links not only inside
a single application but also between multiple applications. Figure 5.4 shows a possible
use-case for such a multi-application visual links setup.

Covered Regions

Most of the time more than one application is opened at once. As soon as this happens
regions are prone to being covered by other windows. As described in Section 3.2.1, such
covered regions are rendered using a transparent color providing the user a see-through view
through the covering windows to the hidden regions (see Figure 5.4).

Upon moving the mouse over a covered region, a colored frame is drawn to depict the
window the region belongs to (see Figure 5.5). With a click the according window is
moved on top of all open windows to allow the user inspecting the now visible region. This
requires much less input by the user than for example cycling through all opened windows
until finding the correct window.

Figure 5.5: Using the same setup as in Figure 5.4(a). Hovering above the covered region
highlights the frame of the applications viewport – the red rectangle on the
right side – the covered region belongs to.

5.2 Performance

In an interactive system performance plays a crucial role. To identify possible performance
bottlenecks we have conducted benchmarks for the different parts of our visual links sys-
tem.

5.2.1 Core System

The core system (see Section 4.1) communicates with client applications, calculates routes
for visual links and finally renders them onto the desktop. The diagram in Figure 5.6 shows
the times needed by major parts of the core system.

Chapter 5 Results 49

 0

 50

 100

 150

 200

Core Rendering setMask Total 1_Monitor 2_Monitors

Ti
m

e
 (

m
s)

Figure 5.6: Visual Links Server - Benchmark

Times have been measured during multiple test runs on a consumer computer containing
an Intel Core i5-3570K quad-core processor with 3.4 GHz clock frequency and a Nvidia
GTX 275 graphics card. A single pass of calculations has to be performed every time the
links may change upon recalculating. Major reasons for this are moved or resized windows
and creating new links or removing existing ones.

With a time of almost always below three milliseconds, the delay caused by the routing
algorithm and commands (Core) being sent to the graphics card is barely noticeable.
Afterwards the system has to wait for the graphics card to finish it works (Rendering)
which leads to a delay with its median value at about 10 milliseconds. Subsequently the
rendered links have to be read back from the graphics card to the processor and a mask,
marking all pixels not containing any visible part of the visualization, has to be applied
(setMask) to the window of the visual links system. Due to the large amount of data being
transfered through the computers buses this is the slowest part of the core system, taking
a median time of about 16 milliseconds. Together all parts of the core system (Total) need
about 35 milliseconds on average.

If using a context-aware routing algorithm or running on platforms not supporting direct
blending with the desktop, an image of the base representation without any links is re-
quired. To achieve this an image of the screen is capture which unfortunately also contains
the links currently displayed. To get rid of this links upon rendering they are always drawn
with reduced opacity. This allows to remove the links from the image by subtracting the
color values of each rendered pixel from the according pixel in the screen capture and
scaling it up to the full color range. About one bit of precision is lost on each color chan-
nel, which is barely noticeable to the unaided eye and context aware routing algorithms.
The time needed to calculate a clean screen-shot is highly dependent on the screen reso-
lution and is shown in the diagram in Figure 5.6 for a single monitor (1_Monitor) with
a resolution of 1920x1080 pixels, and two monitors (2_Monitors) with a combined reso-

Chapter 5 Results 50

lution of 3600x1080 pixels. As the diagram shows this adds a significant delay of about
120 or 200 milliseconds respectively to the time already needed for the core system. As
the delay of the context aware routing algorithm is not included, further delays have to be
expected.

5.2.2 Client Applications

Before the core system is able to create any routes a client application needs to search
for relevant regions and send their locations to the core. Initiating a new routing process
using the search widget, as described in Section 4.3.3, only requires entering a string. As
this will not lead to any user noticeable delay we have only performed benchmarks for the
browser add-on and the map mash-up.

5.2.2.1 Browser Add-on

Figure 5.7 shows some performance measurements for the Mozilla Firefox extension de-
scribed in Section 4.3.1. It shows the time the add-on needs for finding all occurrences of a
search term and calculating their bounding boxes. As can be seen the time directly depends
on the number of occurrences a document contains. This is due to the fact that calculating
the bounding box of an element requires modifying the DOM tree, a potentially slow oper-
ation. The exact delay is also strongly affected by the complexity of the page, which is not
necessarily directly related to the file size of the document.

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300

Ti
m

e
 (

m
s)

Number of occurrences

QWidget Class Reference (337,5KB)
Wikipedia - University (45,6 KB)

Wikipedia - Information visualization (16,2 KB)

Figure 5.7: Firefox Plug-in Performance: The time it takes the Firefox plug-in to get all
bounding boxes of a single search term depends approximately linear on the
number of occurrences. (see A.1, A.2 and A.3 for the used search terms and
their according times).

Chapter 5 Results 51

For processing 100 occurrences of a single term, depending on the complexity of the website,
between 50ms and 220ms have been measured. In the worst case this is about the same
delay as introduced by the whole core system creating cleaned screenshots of two monitors.
As most of the time probably few occurrences are present, the average delay is much lower
and hardly noticeable.

Preview Tile Rendering

On demand of the user a preview pop-up is shown (see Section 3.2.2.1). To show the
contents of the pop-up the core system requests image tiles from its client applications.
Currently only the browser add-on is able to create such tiles. Upon receiving a tile request
(cf. Section 4.2) the according part of the web site is rendered into a memory buffer and
send back to the visual links server. The diagram in Figure 5.8 shows the total delay from
requesting a tile until receiving the according image.

 0

 100

 200

 300

 400

 500

 600

 700

 800

1st_tile 2nd_tile 3rd_tile 4th_tile

Ti
m

e
 (

m
s)

Figure 5.8: Tile Rendering Performance: The Firefox plug-in can receive up to four tile
requests at the same time. The plot of the times needed to handle each of the
four requests show clearly that they are handled sequentially.

In the worst case up to four tiles are requested at the same time. The first requested tile
(1st_tile) is always the fastest because all subsequent request can only be completed
after the previous ones have been completely processed. Once a tile has been received it
is immediately send to the graphics card to be shown to the user. After receiving the first
tile an additional delay can be observed, caused by the core system uploading the image
to the graphics card and updating the preview popup.

Chapter 5 Results 52

5.2.2.2 Google Maps Mash-up

The Google Maps mash-up, as discussed in Section 4.3.2, uses an API provided by Google
to lookup geographic locations for textual search identifiers. The delay highly depends
on the quality of the connection to the servers of Google. For us it always took about 80
milliseconds to retrieve a result. If subsequently looking up an already known location, even
after panning or zooming the map, results are cached which results in a reduction of the
delay to a total time needed of less than three milliseconds.

Chapter 5 Results 53

Chapter 6

Conclusions and Future Work

Visual links create strong visual connections between related content visible on the screen.
We have extended this idea to also create guidance towards hidden content. Integrated in
a visual links system two new visualization methods create visual cues towards content
covered by other windows as well as content outside the visible viewport of applications.
Preview pop-ups allow efficiently exploring content outside visible areas by providing an
content sensitive, space conserving, compressed preview of a whole documents virtual
area (See Figure 6.1(a)), whereas a see-through interface using transparent links with
a click-to-show functionality allows for a fast navigation to covered content (See Fig-
ure 6.1(b)).

(a) Preview Pop-up (b) Covered Region

Figure 6.1: Using our visual links system to connect related information. A preview pop-
up (a) shows a compressed view of content hidden outside the viewport of an
application. If a region is covered by a window, upon moving the mouse over
the visualization of the covered region, the vieport of the according application
is depicted by drawing its outline (b).

A prototype of the proposed techniques is available for multiple platforms. Provided plug-
ins allow using a web browser and a searchable map mash-up with the visual links system.
A search widget is available to initiate linking processes between content matching entered
search strings inside all connected applications.

Chapter 6 Conclusions and Future Work 54

Future Work

Once reaching a certain number of regions connected at the same time, the visualization
gets cluttered and distracts from actual content. To reduce this unintended effects of the
visual links more sophisticated bundling algorithms and context aware routing algorithms
could be used – for example Context-preserving visual links as developed by Steinberger et
al. [SWS+11].

Another problem worth further investigation are overlapping regions. If regions – indepen-
dent whether they belong to the same or different search terms – inside multiple windows
overlap (See Figure 6.2), the coinciding regions make it hard to identify to which windows
they belong to.

Figure 6.2: Overlapping regions (see arrow) can be hard to distinguish. Also it can make
it impossible to directly navigate to the window the lower regions belongs to,
as the mouse over event is captured by the upper region.

Chapter 6 Conclusions and Future Work 55

Acknowledgements

First, I want to thank my supervisors Markus Steinberger, Marc Streit and Alexander Lex
for their continuous support and feedback over the course of this thesis. I also want to
thank Dieter Schmalstieg for enabling me to work at the Institute for Computer Graphics
and Vision.

Furthermore, I want to thank my family and friends, who have enriched my life in many
ways.

Finally, I want to specially thank my parents for supporting me throughout my studies
and every other part of my whole life.

Chapter 6 Conclusions and Future Work 56

Appendix A

Performance Data

Search term # of occurrences Search time
QWidget 299 380ms
bool 129 250ms
class 61 185ms
QEvent 36 165ms
QFont 12 150ms
#include 1 140ms

Table A.1: Firefox http://doc.qt.digia.com/4.7-snapshot/qwidget.html (337,5KB)

Search term # of occurrences Search time
university 219 455ms
human 128 270ms
by 64 163ms
student 28 87ms
learn 13 78ms
bachelor 2 45ms

Table A.2: Firefox http://en.wikipedia.org/wiki/University (45,6KB)

Search term # of occurrences Search time
is 275 145ms
visual 106 65ms
visualization 83 53ms
information 38 30ms
human 14 17ms
numerical 2 11ms

Table A.3: Firefox http://en.wikipedia.org/wiki/Information visualization (16,2 KB)

Appendix A Performance Data 57

Acronyms

CSS Cascading Style Sheets. 41

DOM Document Object Model. 42, 51

F+C Focus+Context. 11, 12, 14, 23, 46

GLSL OpenGL Shading Language. 36

HTML HyperText Markup Language. 42

JSON JavaScript Object Notation. 38

VLP Visual Link Protocol. 35, 38, 41, 44

XML Extensible Markup Language. 37

XUL XML User Interface Language. 41

Acronyms 58

List of Figures

2.1 Fisheye Views . 12

(a) View of the World from 9th Avenue [Ste76] 12

(b) Textual Fisheye Tree View [SB94] . 12

(c) Fisheye Tree View [TAvHS06] . 12

2.2 Line Representation [BE96] . 13

2.3 Magic Lenses [BSP+93] . 14

2.4 Semanitc Depth of Field [KMH01] . 15

(a) Text . 15

(b) Chess 2d . 15

(c) Chess 3d . 15

2.5 Drag-and-Pop [BCR+03] . 16

2.6 2D Links . 16

(a) Semantic Substrates [SA06] . 16

(b) ConnectedCharts [VM12] . 16

2.7 3D Visual Links . 17

(a) VisLink [CC07] . 17

(b) Caleydo Bucket [SLK+09] . 17

2.8 Drag-and-Pop [BCR+03] . 18

2.9 Multilevel Agglomerative Edge Bundling [GHNS11] 18

2.10 Visual links across applications [WPL+10] 19

2.11 Gaze Plots [SWS+11] . 20

(a) Highlight . 20

(b) Visual Links . 20

2.12 Context-Preserving Visual Links [SWS+11] 21

2.13 Invisible Pixels [BDB06] . 21

2.14 Off-Screen Objects on Mobile Devices [BCG06] 22

(a) Arrows . 22

(b) City Lights [ZMG+03] . 22

(c) Halo [BR03] . 22

LIST OF FIGURES 59

2.15 Wedges [GBGI08] . 23

3.1 Visual Links System - Basic Architecture 25

3.2 Basic VisLinks Setup . 26

3.3 Basic symbology . 27

(a) Text . 27

(b) Location . 27

(c) Scroll . 27

3.4 Link Bundling . 28

(a) No bundling . 28

(b) Per application bundling . 28

(c) Per application bundling with center bias 28

3.5 Link-Region Transition . 29

(a) Expand link . 29

(b) Clear region . 29

(c) Gaussian blur . 29

3.6 Covered Region . 30

3.7 Covered Region Hover . 30

3.8 Extended scroll indicator . 31

3.9 Preview pop-up . 32

(a) Preview pop-up . 32

(b) Zoom/Scroll . 32

3.10 Preview pop-up partitioning . 33

(a) Preview pop-up . 33

(b) Partitions . 33

(c) Compressed . 33

3.11 Partitioning . 34

4.1 Visual Links System - Component Diagram 35

4.2 Firefox Add-on . 42

4.3 Google Maps Mash-up . 43

4.4 Search Widget . 44

(a) History drop-down . 44

(b) Abort active routes . 44

LIST OF FIGURES 60

5.1 Mozilla Firefox - Search Function . 45

5.2 Mozilla Firefox - Visual Links . 46

5.3 Mozilla Firefox - Preview Pop-Up . 47

5.4 Use-Case Multiple Applications . 48

(a) Use-Case Multiple Applications - Traveling to New York 48

(b) Outside Regions - Preview Pop-up 48

(c) Covered Region . 48

5.5 Use-Case Multiple Applications - Hover . 49

5.6 Visual Links Server - Benchmark . 50

5.7 Firefox Plug-in Performance . 51

5.8 Firefox Plug-in - Render Preview Performance 52

6.1 Usecases . 54

(a) Preview Pop-up . 54

(b) Covered Region . 54

6.2 Overlapping Regions . 55

LIST OF FIGURES 61

List of Tables

A.1 Firefox Search Performance - QtDocs - QWidget 57

A.2 Firefox Search Performance - Wikipedia - University 57

A.3 Firefox Search Performance - Wikipedia - Information Visualization 57

LIST OF TABLES 62

Listings

4.1 VLP sample message . 38
4.2 VLP message: register an application . 38
4.3 VLP message: report application resized 39
4.4 VLP message: initiate routing . 39
4.5 VLP message: request regions of interest 39
4.6 VLP message: report regions of interest . 40
4.7 VLP message: stop linking . 40
4.8 VLP message: request current routing algorithm 40
4.9 VLP message: request tile image from a client 40
4.10 VLP message: answer indicating current routing algorithm 41
4.11 VLP message: request changing routing algorithm 41

Listings 63

Bibliography

[AS07] Aleks Aris and Ben Shneiderman. Designing semantic substrates for visual
network exploration. Information Visualization, 6(4):281–300, December 2007.

[BB09] Xiaojun Bi and Ravin Balakrishnan. Comparing usage of a large high-
resolution display to single or dual desktop displays for daily work. page
1005. ACM Press, 2009.

[BCG06] Stefano Burigat, Luca Chittaro, and Silvia Gabrielli. Visualizing locations of
off-screen objects on mobile devices. page 239. ACM Press, 2006.

[BCR+03] Patrick Baudisch, Edward Cutrell, Dan Robbins, Mary Czerwinski, Peter Tan-
dler, Peter T, Benjamin Bederson, and Alex Zierlinger. Drag-and-pop and
drag-and-pick: techniques for accessing remote screen content on touch- and
pen-operated systems. pages 57–64, 2003.

[BDB06] Anastasia Bezerianos, Pierre Dragicevic, and Ravin Balakrishnan. Mnemonic
rendering: an image-based approach for exposing hidden changes in dynamic
displays. In Proceedings of the 19th annual ACM symposium on User interface
software and technology, UIST ’06, page 159–168, New York, NY, USA, 2006.
ACM.

[BE96] Thomas Ball and Stephen G Eick. Software visualization in the large. Com-
puter, 29(4):33–43, 1996.

[Bec87] Richard A. Becker. Dynamic graphics for data analysis. Statistical Science,
2(4):355–383, November 1987.

[BR03] Patrick Baudisch and Ruth Rosenholtz. Halo: a technique for visualizing off-
screen objects. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’03, pages 481–488, New York, NY, USA, 2003.
ACM.

[BSP+93] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D.
DeRose. Toolglass and magic lenses: the see-through interface. In SIGGRAPH
’93: Proceedings of the 20th annual conference on Computer graphics and in-
teractive techniques, pages 73–80, New York, NY, USA, 1993. ACM Press.

[CC07] C. Collins and S. Carpendale. Vislink: Revealing relationships amongst vi-
sualizations. Visualization and Computer Graphics, IEEE Transactions on,
13(6):1192–1199, nov.-dec. 2007.

[CKB09] Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. A review of
overview+detail, zooming, and focus+context interfaces. ACM Comput. Surv.,
41(1):2:1–2:31, January 2009.

[CPC09] Christopher Collins, Gerald Penn, and Sheelagh Carpendale. Bubble sets: Re-

BIBLIOGRAPHY 64

vealing set relations with isocontours over existing visualizations. IEEE Trans-
actions on Visualization and Computer Graphics (InfoVis ’09), 15(6):1009–
1016, 2009.

[Cro06] D. Crockford. The application/json Media Type for JavaScript Object Nota-
tion (JSON). RFC 4627 (Informational), July 2006.

[CZQ+08] Weiwei Cui, Hong Zhou, Huamin Qu, Pak Chung Wong, and Xiaoming Li.
Geometry-based edge clustering for graph visualization. Visualization and
Computer Graphics, IEEE Transactions on, 14(6):1277–1284, December 2008.

[DEGM04] Matthew Dickerson, David Eppstein, Michael T. Goodrich, and Jeremy Yu
Meng. Confluent drawings: Visualizing non-planar diagrams in a planar way.
pages 1–12, January 2004.

[ED07] Geoffrey Ellis and Alan Dix. A taxonomy of clutter reduction for information
visualisation. IEEE Transactions on Visualization and Computer Graphics,
13(6):1216–1223, 2007.

[EHJS01] James Robinson Eagan, Mary Jean Harrold, James Arthur Jones, and John T.
Stasko. Visually encoding program test information to find faults in software.
http://smartech.gatech.edu/handle/1853/3324, 2001.

[ESS92] S.C. Eick, J.L. Steffen, and Jr. Sumner, E.E. Seesoft-a tool for visualizing
line oriented software statistics. IEEE Transactions on Software Engineering,
18(11):957 –968, November 1992.

[ET08] N. Elmqvist and P. Tsigas. A taxonomy of 3D occlusion management for
visualization. IEEE Transactions on Visualization and Computer Graphics,
14(5):1095–1109, September 2008.

[FM11] I. Fette and A. Melnikov. The WebSocket Protocol. RFC 6455 (Proposed
Standard), December 2011.

[Fur81] George W. Furnas. The FISHEYE view: A new look at structured files. Bell
Laboratories Technical Memorandum, (81-11221-9), October 1981.

[Fur86] George W. Furnas. Generalized fisheye views. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’86), pages 16–23,
New York, NY, USA, 1986. ACM Press.

[GBGI08] Sean Gustafson, Patrick Baudisch, Carl Gutwin, and Pourang Irani. Wedge.
page 787. ACM Press, 2008.

[GHNS11] E.R. Gansner, Yifan Hu, S. North, and C. Scheidegger. Multilevel agglom-
erative edge bundling for visualizing large graphs. In Pacific Visualization
Symposium (PacificVis), 2011 IEEE, pages 187–194, march 2011.

[HF01] Kasper Hornbaek and Erik Frøkjær. Reading of electronic documents: The
usability of linear, fisheye, and overview+detail interfaces. In In CHI ’01:
Proceedings of the SIGCHI conference on Human factors in computing sys-
tems, pages 293–300. ACM Press, 2001.

[Hol06] Danny Holten. Hierarchical edge bundles: Visualization of adjacency rela-
tions in hierarchical data. IEEE Transactions on Visualization and Computer

BIBLIOGRAPHY 65

Graphics (InfoVis ’06), 12(5):741–748, 2006.

[HS04] Dugald Ralph Hutchings and John Stasko. Revisiting display space manage-
ment: understanding current practice to inform next-generation design. pages
127–134. Canadian Human-Computer Communications Society, May 2004.

[HVW09] Danny Holten and Jarke J. Van Wijk. Force-directed edge bundling for graph
visualization. Computer Graphics Forum, 28(3):983–990, 2009.

[Int11] Ecma International. Standard ECMA-262: ECMAScript Language Specifica-
tion. ECMA (European Association for Standardizing Information and Com-
munication Systems), Geneva, Switzerland, 5.1 edition, 2011.

[JS91] B. Johnson and B. Shneiderman. Tree-maps: a space-filling approach to the
visualization of hierarchical information structures. In Proceedings of the IEEE
Conference on Visualization (Vis ’91), page 284–291, 1991.

[KF09] J. Krüger and T. Fogal. Focus and context-visualization without the com-
plexity. In Ratko Magjarevic, Olaf Dössel, and Wolfgang C. Schlegel, editors,
World Congress on Medical Physics and Biomedical Engineering, September
7 - 12, 2009, Munich, Germany, volume 25/13, pages 45–48. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[KHG03] Robert Kosara, Helwig Hauser, and Donna L. Gresh. An interaction view on
information visualization. In State-of-the-Art Proceedings of EUROGRAPH-
ICS 2003 (EG 2003), pages 123–137, 2003.

[KLS00] M. Kreuseler, N. Lopez, and H. Schumann. A scalable framework for informa-
tion visualization. In IEEE Symposium on Information Visualization, 2000.
INFOVIS 2000, pages 27–36, Salt Lake City, UT, USA, 2000. IEEE Computer
Society.

[KMFK05] Azam Khan, Justin Matejka, George Fitzmaurice, and Gordon Kurtenbach.
Spotlight: directing users’ attention on large displays. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’05, pages
791–798, New York, NY, USA, 2005. ACM.

[KMH01] Robert Kosara, Silvia Miksch, and Helwig Hauser. Semantic depth of field.
Information Visualization, IEEE Symposium on, 0:97, 2001.

[KMH+02] Robert Kosara, Silvia Miksch, Helwig Hauser, Johann Schrammel, Verena
Giller, and Manfred Tscheligi. Useful properties of semantic depth of field
for better f+c visualization. In Proceedings of the symposium on Data Visual-
isation 2002, VISSYM ’02, pages 205–210, Aire-la-Ville, Switzerland, Switzer-
land, 2002. Eurographics Association.

[LA94] Y. K. Leung and M. D. Apperley. A review and taxonomy of distortion-
oriented presentation techniques. ACM Transactions on Computer-Human
Interaction (TOCHI), 1(2):126–160, January 1994.

[LRP95] John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique
based on hyperbolic geometry for visualizing large hierarchies. In Proceedings
of the SIGCHI conference on Human factors in computing systems, pages

BIBLIOGRAPHY 66

401–408, Denver, Colorado, United States, 1995. ACM Press/Addison-Wesley
Publishing Co.

[MRC91] Jock D. Mackinlay, George G. Robertson, and Stuart K. Card. The perspective
wall: detail and context smoothly integrated. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’91), pages 173–
176. ACM Press, 1991.

[MW95] Allen R. Martin and Matthew O. Ward. High dimensional brushing for inter-
active exploration of multivariate data. In Proceedings of the 6th conference
on Visualization ’95, VIS ’95, pages 271–, Washington, DC, USA, 1995. IEEE
Computer Society.

[NS00] Chris North and Ben Shneiderman. Snap-together visualization: A user inter-
face for coordinating visualizations via relational schemata. In Proceedings of
the ACM Conference on Advanced Visual Interfaces (AVI ’00), pages 128–135.
ACM, 2000.

[PR94] Stephen Palmer and Irvin Rock. Rethinking perceptual organization: the role
of uniform connectedness. Psychonomic Bulletin and Review, 1(1):29–55, 1994.

[PXY+05] Doantam Phan, Ling Xiao, Ron Yeh, Pat Hanrahan, and Terry Winograd.
Flow map layout. In Proceedings of the Proceedings of the 2005 IEEE Sym-
posium on Information Visualization, pages 219–224, Washington, DC, USA,
2005. IEEE Computer Society.

[RMC91] George G Robertson, Jock D Mackinlay, and Stuart K Card. Cone trees:
animated 3D visualizations of hierarchical information. In Proceedings of the
SIGCHI Conference on Human factors in Computing systems (CHI ’91), pages
189–194. ACM Press, 1991.

[SA06] B. Shneiderman and A. Aris. Network visualization by semantic substrates.
Visualization and Computer Graphics, IEEE Transactions on, 12(5):733–740,
sept.-oct. 2006.

[SB94] Manojit Sarkar and Marc H. Brown. Graphical fisheye views. Commun. ACM,
37(12):73–83, 1994.

[SLK+09] Marc Streit, Alexander Lex, Michael Kalkusch, Kurt Zatloukal, and Dieter
Schmalstieg. Caleydo: Connecting pathways and gene expression. Bioinfor-
matics, 25(20):2760–2761, 2009.

[SSTR93] Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky, and Steven P. Reiss. Stretch-
ing the rubber sheet: a metaphor for viewing large layouts on small screens.
In Proceedings of the ACM Symposium on User Interface Software and Tech-
nology (UIST ’ 93), pages 81–91. ACM Press, 1993.

[Ste76] Saul Steinberg. View of the world from 9th avenue. The New Yorker, page 1,
March 1976.

[SWS+11] Markus Steinberger, Manuela Waldner, Marc Streit, Alexander Lex, and Di-
eter Schmalstieg. Context-preserving visual links. Visualization and Computer
Graphics, IEEE Transactions on, 17(12):2249 –2258, dec. 2011.

BIBLIOGRAPHY 67

[TAvHS06] C. Tominski, J. Abello, F. van Ham, and H. Schumann. Fisheye tree views
and lenses for graph visualization. In Proc. Tenth International Conference
on Information Visualization IV 2006, page 17–24, July 2006.

[TG80] A M Treisman and G Gelade. A feature-integration theory of attention. Cog-
nitive Psychology, 12(1):97–136, 1980.

[VCWP96] John Viega, Matthew J. Conway, George Williams, and Randy Pausch. 3D
magic lenses. In Proceedings of the 9th annual ACM symposium on User
interface software and technology, UIST ’96, page 51–58, New York, NY, USA,
1996. ACM.

[VM12] C. Viau and M. J. McGuffin. ConnectedCharts: explicit visualiza-
tion of relationships between data graphics. Computer Graphics Forum,
31(3pt4):1285–1294, 2012.

[War04] Colin Ware. Information visualization: Perception for design. Morgan Kauf-
man, San Francisco CA, second edition, 2004.

[Wer23] Max Wertheimer. Untersuchungen zur Lehre von der Gestalt. II. Psychologis-
che Forschung, 4(1):301–350, 1923.

[WPL+10] Manuela Waldner, Werner Puff, Alexander Lex, Marc Streit, and Dieter
Schmalstieg. Visual links across applications. In Proceedings of Graphics
Interface 2010, GI ’10, pages 129–136, Toronto, Ont., Canada, Canada, 2010.
Canadian Information Processing Society.

[WS11] M. Waldner and D. Schmalstieg. Collaborative information linking: Bridging
knowledge gaps between users by linking across applications. In Pacific Visu-
alization Symposium (PacificVis), 2011 IEEE, pages 115 –122, march 2011.

[ZK10] Caroline Ziemkiewicz and Robert Kosara. Laws of attraction: From percep-
tual forces to conceptual similarity. IEEE Transactions on Visualization and
Computer Graphics (InfoVis ’10), 16(6):1009–1016, 2010.

[ZMG+03] Polle T. Zellweger, Jock D. Mackinlay, Lance Good, Mark Stefik, and Patrick
Baudisch. City lights: contextual views in minimal space. In CHI ’03 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’03, pages 838–
839, New York, NY, USA, 2003. ACM.

[ZWSK97] Shumin Zhai, Julie Wright, Ted Selker, and Sabra-Anne Kelin. Graphical
means of directing user’s attention in the visual interface. In Proceedings of
the IFIP TC13 Interantional Conference on Human-Computer Interaction,
INTERACT ’97, pages 59–66, London, UK, UK, 1997. Chapman & Hall, Ltd.

BIBLIOGRAPHY 68

	Introduction
	Problem Analysis
	Challenges
	Contribution

	Related Work
	Focus+Context
	Distortion-Oriented F+C Methods
	Overview Methods
	Filtering
	In-Place F+C

	Gestalt Connectedness
	Visual Linking
	Edge Bundling
	Visual Links across applications

	Hidden Content
	Off-screen Content

	Discussion

	Concept of Visual Links to Hidden Regions
	Visual Links
	Region highlights
	Link Bundling
	Link-Region Transition

	Hidden information
	Covered regions
	Regions outside a viewport
	Preview Pop-Up

	Design and Implementation
	Visual Links Server
	Inter Process Communication
	Routing
	Renderer
	Client Hierarchic Tile Map
	Window Monitor
	Configuration

	Visual Link Protocol
	Application Integration
	Browser Add-On
	Google Maps Mash-up
	Search Widget

	Results
	Usage Scenarios
	Single Window
	Multiple Windows

	Performance
	Core System
	Client Applications
	Browser Add-on
	Google Maps Mash-up

	Conclusions and Future Work
	Acknowledgements
	Performance Data
	Acronyms
	List of Figures
	List of Tables
	List of Listings
	Bibliography

