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1. Introduction

The motivation of this work was to estimate the mean of the daily maximum gas flow
provided by the Open Grid Europe GmbH (OGE) depending on the mean daily tem-
perature, see Friedl, Mirkov, and Steinkamp (2012). The data contains gas flow maxima
per day of one knot of the German gas transmission network from January 2004 to the
end of June in 2009, in total 2008 data points. In addition, the daily mean temperature
is also included in the dataset. Later on we will see that the gas flow is dependent on
the mean temperature but in a nonlinear sigmoid shaped way.

To estimate the nonlinear relationship between mean temperature and daily maximal
gas flow we have two options:

• a nonlinear mean model,

• a generalized additive model (GAM).

The first option is addressed in Friedl et al. (2012) by considering sigmoidal models and
assuming normally distributed responses, while this work concentrates on generalized
additive models.

The advantage of GAMs lies in the fact that they can describe any nonlinear relation-
ship very well but can also be reduced to generalized linear models, which makes them
easy to handle. Moreover, since we will be looking at daily maxima, the normal distribu-
tion might not be appropriate. Another advantage of GAMs is the possibility to choose
different distributions from the exponential family. For example, a gamma distribution
could be the better option in this case than a normal distribution. More information
on GAMs can be found for example in Wood (2006a), Eilers and Marx (1996) or Hastie
and Tibshirani (1990).

In addition, the issue of how to estimate the mean at temperatures below −10◦ Celsius
is addressed. This is a major issue for the OGE because they have to guarantee sufficient
gas flow as far as −12◦C to −16◦C depending on the area in Germany. Therefore one
aspect of this work will concentrate on how to estimate the mean and how to construct
confidence and prediction intervals.

For this work the software R, see R Development Core Team (2011), is used, especially
the package mgcv, which is discussed in Wood (2006a). The plots in this work were
produced with the R package ggplot2, whose options and functions are discussed in
Wickham (2009). In addition, the code to estimate the model parameters and the code
to produce the plots of this work is added in the various chapters or in the appendix.

After this part we start with an introduction to linear models in Chapter 2. There
we assume normally distributed responses and a linear relationship between the mean
and the predictor variable. Thereafter, we continue with generalized linear models in
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1. Introduction

Chapter 3, where a function of the mean is described by a linear predictor and the
distribution of the response variable is a member of the exponential family. In a next
step we look at possibilities to estimate a nonlinear relationship with additive models
assuming a normal distribution, see Chapter 4. Finally, we change the assumption of a
normal distribution to any other distribution from the exponential family and consider
generalized additive models in Chapter 5. The theory of these chapters is then applied
to the gas flow data in Chapter 6. Finally, in Chapter 7 the results of the previous
chapters are summarized.
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2. Linear Models

The purpose of this first chapter is to give a brief introduction to Linear Models, so
that later on more complex models can be established. For further information see for
example Wood (2006a).

In a linear model

y = X β+ ε (2.1)

the response variable y = (y1, . . . , yn)T is described by p predictor variables. At each
observation i the vector of the explanatory variables is xi = (1, xi1, . . . , xip−1)

T for

i = 1, . . . , n, which summarizes to the model matrix X = (x1, . . . ,xn)T . The vector
β = (β0, β1, . . . , βp−1)

T stands for the parameters that need to be estimated, while
ε ∼ N (0, σ2 In) is normally distributed with zero mean and variance matrix σ2 In.
Therefore, y ∼ N (X β, σ2 In) is normally distributed with E(y) = µ = X β. In
addition, n refers to the number of observations and p − 1 to the number of covariates
included.

In the following sections different issues regarding linear models will be discussed.
First of all, the estimation of β is addressed.

2.1. Parameter Estimation

2.1.1. Least Squares Estimation

One common approach to estimate the parameters in model equation (2.1) is by least
squares estimation. In this case, β̂ is solution of the minimization of

SSE(β) = ‖y−X β ‖2 =
n∑
i=1

(yi − µi)2,

where µi = xTi β.
To get an estimator of β we take a look at the first derivative of SSE(β)

∂ SSE(β)

∂β
= −2XT (y−X β) .

Setting the first derivative to zero leads to

XT y = XT X β̂ .

3



2. Linear Models

If the inverse exists, the estimator of β is given by

β̂ =
(
XT X

)−1
XT y . (2.2)

Since β̂ is a linear combination of y, the assumption that y is normally distributed
implies that β̂ is normally distributed too. Furthermore, it can be shown that β̂ is an

unbiased estimator with variance σ2
(
XT X

)−1
, i.e.

E(β̂) =
(
XT X

)−1
XT E(y) =

(
XT X

)−1
XT X β = β,

var(β̂) = var
((
XT X

)−1
XT y

)
=
(
XT X

)−1
XT var(y) X

(
XT X

)−1
= σ2

(
XT X

)−1
.

Together we get

β̂ ∼ N
(
β, σ2

(
XT X

)−1)
. (2.3)

An estimator of µ is constructed as

µ̂ = X β̂ = X
(
XT X

)−1
XT y = H y,

where H = X
(
XT X

)−1
XT is the so called hat matrix. Before some properties of the

hat matrix like symmetry, idempotence and projection are discussed in the course of this
chapter, the mean and variance of µ̂ are illustrated. Since β̂ is an unbiased estimator of
β, it follows that µ̂ is also unbiased, since

E (µ̂) = X E(β̂) = X β = µ,

var (µ̂) = X var(β̂)XT = σ2X
(
XT X

)−1
XT = σ2H .

Three properties of the hat matrix will be used in the sequel:

• H = HT (symmetry)

HT =
(
X
(
XT X

)−1
XT
)T

= X
(
XT X

)−1
XT = H ,

• HH = H (idempotence)

HH = X
(
XT X

)−1
XT X

(
XT X

)−1
XT

= X
(
XT X

)−1
XT = H ,

• HX = X (projection)

HX = X
(
XT X

)−1
XT X = X .

4



2.1. Parameter Estimation

The residuals r describe the difference between the observed response values y and
the fitted values µ̂

r = y− µ̂ = y−H y = (I −H)y .

As a consequence of the normal distribution of y, r is also normally distributed with
mean

E (r) = (I −H)E (y) = (I −H)X β = X β−HX β = 0

and variance

var(r) = (I −H) var(y) (I −H)T = σ2 (I −H) .

The last result is due to the fact that (I −H) is idempotent, since

(I −H) (I −H) = I −2H +HH = I −2H +H = I −H ,

because H is idempotent.

2.1.2. Maximum Likelihood Estimation

Another possible approach to estimate the model parameters is to consider maximum
likelihood estimation. Under the assumption of a normal distribution the likelihood
function is given by

L
(
y,β, σ2

)
=
(
2πσ2

)−n
2 exp

{
− 1

2σ2
(y−X β)T (y−X β)

}
,

while the log-likelihood is

l(y,β, σ2) = logL
(
y,β, σ2

)
= −n

2
log(2π)− n

2
log(σ2)− 1

2σ2
(y−X β)T (y−X β) .

To obtain an estimate for β and σ2 the partial derivatives are calculated

∂l

∂ β
=

1

σ2
XT (y−X β) ,

∂l

∂σ2
= −n

2

1

σ2
+

1

2σ4
‖y−X β ‖2.

Setting these first derivatives to zero, we get the estimators

β̂ =
(
XT X

)−1
XT y,

σ̂2 =
1

n
‖y−X β̂ ‖2.

One may notice that the estimator β̂ equals the least squares estimator in (2.2). In fact
in case of normally distributed responses the least squares and the maximum likelihood
estimation yield the same results.

5



2. Linear Models

2.2. Hypothesis Testing

2.2.1. t Test

While the last section concentrated on the estimation of the model parameters, this
section answers the question if every single covariate xj is needed, where xj denotes the
j-th column of of the model matrix X. Therefore, we test the hypothesis

H0 : βj = 0 vs. H1 : βj 6= 0 (2.4)

for any j = 1, . . . , p− 1.
Since the normal distribution of β̂ was shown in (2.3) , it follows that

1

σ

(
β̂−β

) (
XT X

)1/2 ∼ N (0, Ip) , (2.5)

where β is the true parameter and β̂ its estimator. Now we show that for normal
responses, β̂ and r or β̂ and rT r = SSE(β̂) are independent. On that account we write
β̂ and r in terms of ε and get

β̂ =
(
XT X

)−1
XT y =

(
XT X

)−1
XT (X β+ ε) = β+

(
XT X

)−1
XT ε,

r = (I −H)y = (I −H) (X β+ ε) = X β−X β+(I −H) ε

= (I −H) ε .

By analysing the covariance between β̂ and r one gets

cov(β̂, r) = cov
(
β+

(
XT X

)−1
XT ε, (I −H) ε

)
= cov

((
XT X

)−1
XT ε, (I −H) ε

)
=
(
XT X

)−1
XT cov (ε, ε) (I −H)

= σ2
((
XT X

)−1
XT −

(
XT X

)−1
XT H

)
= σ2

((
XT X

)−1
XT −

(
XT X

)−1
XT X

(
XT X

)−1
XT
)

= 0 . (2.6)

In the next step we point out that SSE(β̂)/σ2 ∼ χ2
n−p. To show this we use

εT ε = (y−X β)T (y−X β)

=
(
y−X β̂+X β̂−X β

)T (
y−X β̂+X β̂−X β

)
=
(
r+X

(
β̂−β

))T (
r+X

(
β̂−β

))
.

Since r = (I −H)y and HX = X, it follows that the mixed term in the above
equation is zero, i.e.

rT X
(
β̂−β

)
= yT (I −H)X

(
β̂−β

)
= 0 .

6



2.2. Hypothesis Testing

Therefore,

εT ε = rT r+
(
β̂−β

)T
XT X

(
β̂−β

)
. (2.7)

Because ε is normally distributed with zero mean and variance σ2 In, it follows that

εT ε

σ2
=

1

σ2

n∑
i=1

ε2i ∼ χ2
n.

In the same way, the normal distribution of β̂ (see (2.5)) ensures that(
β̂−β

)T
XT X

(
β̂−β

) 1

σ2
∼ χ2

p.

Taking the moment-generating function of the χ2-distribution with n degrees of free-
dom

M(t) = (1− 2t)−n/2 , t <
1

2

and the independence of β̂ and r into account, we get from equation (2.7) that

(1− 2t)−n/2 = E
(
et r

T r /σ2
)

(1− 2t)−p/2 .

Therefore,

E
(
et r

T r /σ2
)

= (1− 2t)−(n−p)/2

and rT r /σ2 = 1
σ2 SSE(β̂) ∼ χ2

n−p. Regarding that information, it follows that

1

σ2
E
(

SSE(β̂)
)

= n− p,
1

σ4
var
(

SSE(β̂)
)

= 2(n− p).

In this way we also found an unbiased estimator of σ2, namely

σ̂2 =
1

n− p
SSE(β̂).

As a result one is able to test the hypothesis (2.4) by computing the test statistic

T =
β̂j√
σ̂2djj

,

where djj stands for the respective diagonal element of
(
XT X

)−1
, and rejecting H0 and

thereby favouring H1 if |T | > tn−p,1−α/2. Therefore, the two sided confidence interval for
βj is given by (

β̂j − σ̂d1/2jj tn−p,1−α/2, β̂j + σ̂d
1/2
jj tn−p,1−α/2

)
.

7



2. Linear Models

2.2.2. F Test

By partitioning the design matrixX into two matricesX1,X2, one can test if a group of
covariates is unnecessary instead of testing for one parameter βj. Therefore, we rewrite
the model as

y = X β+ ε = (X1,X2)

(
β1

β2

)
+ ε = X1 β1 +X2 β2 + ε,

where β1 and β2 describe the disjoint subsets of β which correspond to the n× q matrix
X1 and the n× (p− q) matrix X2 (p > q).

In the following, we test the hypothesis that

H0 : β2 = 0 vs. H1 : β2 6= 0,

where the alternative hypothesis H1 states that any components in β2 are nonzero. In
other words we want to know if the model y = X1 β1 + ε suffices.

Therefore, we look at the orthogonal projection of y on X1

µ̂1 = X1

(
XT

1 X1

)−1
XT

1 y .

The residuals y− µ̂1 can be divided in two orthogonal parts

y− µ̂1 = (y− µ̂) + (µ̂− µ̂1) .

Because of the Pythagorean theorem it follows that

(y− µ̂1)
T (y− µ̂1) = (y− µ̂)T (y− µ̂) + (µ̂− µ̂1)

T (µ̂− µ̂1)

or equivalently

SSE(β̂1) = SSE(β̂) +
(

SSE(β̂1)− SSE(β̂)
)
.

From the previous subsection we already know that SSE(β̂1) ∼ σ2χ2
n−q and SSE(β̂) ∼

σ2χ2
n−p. In consequence of the independence of SSE(β̂1)−SSE(β̂) and SSE(β̂) it results

that

SSE(β̂1)− SSE(β̂) ∼ σ2χ2
p−q.

Therefore, we know that

F =

(
SSE(β̂1)− SSE(β̂)

)
/(p− q)

SSE(β̂)/(n− p)
∼ Fp−q,n−p,

and the null hypothesis is rejected if F > Fp−q,n−p;1−α.

8



2.3. Confidence and Prediction Intervals

2.3. Confidence and Prediction Intervals

If a new vector x∗ =
(
1, x∗1, . . . , x

∗
p−1
)T

is available, we are interested where µ∗ and y∗

will probably lie. Since µ∗ = x∗T β, this mean can be estimated by µ̂∗ = x∗T β̂. From
(2.3) we know that β̂ is normally distributed and since µ̂∗ is a linear combination of β̂
it is normally distributed, too. The mean and variance are given by

E (µ̂∗) = E
(
x∗T β̂

)
= x∗T β, (2.8)

var (µ̂∗) = var
(
x∗T β̂

)
= x∗T var

(
β̂
)
x∗ = σ2 x∗T

(
XT X

)−1
x∗, (2.9)

respectively.
As a result of the normal distribution of µ̂∗ and since β̂ and r are independent, see

(2.6), we know that

x∗T β̂−x∗T β√
σ̂2 x∗T

(
XT X

)−1
x∗
∼ tn−p.

Therefore, the two sided (1 − α) confidence interval for the true parameter µ∗ is given
by (

x∗T β̂−
√
σ̂2h∗ tn−p,1−α/2,x

∗T β̂+
√
σ̂2h∗ tn−p,1−α/2

)
,

where h∗ = x∗T
(
XT X

)−1
x∗.

Next a prediction interval for the new observation y∗ is deduced. Because of (2.8) and
(2.9), we know that

E
(
y∗ − x∗T β̂

)
= x∗T β − x∗T β = 0,

var
(
y∗ − x∗T β̂

)
= σ2

(
1 + x∗T

(
XT X

)−1
x∗
)

= σ2 (1 + h∗) .

This yields to

y∗ − x∗T β̂√
σ̂2
(

1 + x∗T
(
XT X

)−1
x∗
) ∼ tn−p.

In this way we get a two sided (1− α) prediction interval for y∗, that is(
x∗T β̂−

√
σ̂2 (1 + h∗) tn−p,1−α/2,x

∗T β̂+
√
σ̂2 (1 + h∗) tn−p,1−α/2

)
.

9





3. Generalized Linear Models

Although linear models are very useful, they have some shortcomings. For instance, the
assumption of a normal distribution is not always supported by the data. Especially
count data is usually troublesome. Another drawback is the assumption of constant
variance σ2. An example for a violation of this assumption is a variance which increases
proportional to the mean.

Therefore, we summarize in this chapter another model class which is not restricted by
these assumptions. Further information on this model class can be found in Mc Cullagh
and Nelder (1989), Friedl (2011) and Wood (2006a), on which this chapter is based upon.

A model that manages without the above mentioned restrictions is a generalized linear
model given by

g (µi) = xTi β = ηi, i = 1, . . . , n,

where g(·) is a smooth monotonic link function, xi the i-th row of the design matrix
X, µi = E (yi), β the parameter vector and η the linear predictor. In addition, y is
assumed to be independent distributed with a distribution from the exponential family.
The definition of the exponential family can be found in the following section.

3.1. Exponential Family

Here we define the exponential family as used in GLMs. Further, we will discuss some
important properties that will be useful for latter considerations.

Definition. Exponential Family
A probability mass or density function of a random variable y belongs to the one param-
eter, linear exponential family with canonical parameter θ, if it can be written as

f (y|θ) = exp

{
yθ − b(θ)
a(φ)

+ c (y, φ)

}
,

where a(·), b(·) and c(·) are some known functions and φ is the dispersion parameter.

Among others the normal distribution, the binomial and the Poisson distribution as
well as the gamma distribution are members of the exponential family. In these cases
the functions a(·), b(·) and c(·) are defined as (or see Friedl (2011)):

• Normal distribution:

a(φ) = φ, b(θ) =
θ2

2
, c(y, φ) = − y

2

2φ
− 1

2
log(2πφ),

11



3. Generalized Linear Models

because for y ∼ N (µ, σ2) the density function is given by

f(y, µ, σ2) =
1√

2πσ2
exp

{
−(y − µ)2

2σ2

}

= exp

{
yµ− µ2/2

σ2
− y2

2σ2
− 1

2
log
(
2πσ2

)}
,

where y ∈ R. Setting θ = µ and φ = σ2, leads to the above definition of a(·), b(·)
and c(·).

• Binomial distribution:

a(φ) = φ =
1

k
, b(θ) = log

(
1

1− π

)
, c(y, φ) = log

( 1
φ
y
φ

)
,

since the probability mass function of the binomial distribution (ky ∼ B(k, π)) is
defined as

f(y, k, π) =

(
k

ky

)
πky (1− π)k−ky

= exp

{
log

(
k

ky

)
+ ky log(π) + k(1− y) log(1− π)

}
= exp

{
y log

(
π

1−π

)
− log

(
1

1−π

)
1/k

+ log

(
k

ky

)}
,

where y = 0, 1
k
, 2
k
, . . . , 1. Using θ = log

(
π

1−π

)
and φ = 1/k, the above functions

follow.

• Poisson distribution:

a(φ) = φ = 1, b(θ) = exp(θ), c(y, φ) = − log(y!),

because the probability mass function of a Poisson distribution is specified as

f(y, µ) =
µy

y!
exp {−µ} = exp {y log(µ)− µ− log(y!)} ,

where y = 0, 1, 2, . . . . Including θ = log(µ) and φ = 1, the definition of the above
functions ensues.

• Gamma distribution:

a(φ) = φ, b(θ) = − log(−θ),

c(y, φ) =
1

φ
log

(
1

φ

)
+

(
1

φ
− 1

)
log(y)− log

(
Γ

(
1

φ

))
,

12



3.1. Exponential Family

since the gamma density function for y ∼ G(ν, ν
µ
) is

f(y, µ, ν) = exp

{
−ν
µ
y

}(
ν

µ

)ν
yν−1

1

Γ(µ)

= exp

{
−ν
µ
y + ν log(ν)− ν log(µ) + (ν − 1) log(y)− log(Γ(ν))

}

= exp

−
y
µ

+ log
(

1
µ

)
1/ν

+ ν log(ν) + (ν − 1) log(y)− log(Γ(ν))

 ,

where µ, ν, y > 0. Assuming that θ = − 1
µ

and φ = 1
ν

the definitions of a(·), b(·)
and c(·) follow.

The binomial and the Poisson distribution are often used in practice because of their
usefulness regarding frequencies and count data, respectively. In addition, one might
notice that in all examples above a(φ) = φ.

Next some properties of the score function, which is the derivative of the log-likelihood
l(y, θ) = log f(y, θ), are pointed out. For any f(y|θ) from the exponential family, we
have

E
(
∂l(y, θ)

∂θ

)
= 0, (3.1)

E
(
−∂

2l(y, θ)

∂θ2

)
= E

((
∂l(y, θ)

∂θ

)2
)
. (3.2)

The following proof is taken from Friedl (2011).

E
(
∂l(y, θ)

∂θ

)
= E

(
1

f(y, θ)

∂f(y, θ)

∂θ

)
=

∫
1

f(y, θ)

∂f(y, θ)

∂θ
f(y, θ) dy

=

∫
∂

∂θ
f(y, θ) dy =

∂

∂θ

∫
f(y, θ) dy

Since
∫
f(y, θ) dy = 1, it follows that

E
(
∂l(y, θ)

∂θ

)
=

∂

∂θ
1 = 0.

To prove (3.2), we take a look at the second derivative

∂2l(y, θ)

∂θ2
=
∂2f(y, θ)

∂θ2
1

f(y, θ)
− 1

f 2(y, θ)

(
∂f(y, θ)

∂θ

)2

,

13



3. Generalized Linear Models

and its negative mean

E
(
−∂

2l(y, θ)

∂θ2

)
= −

∫
∂2l(y, θ)

∂θ2
f(y, θ) dy

= −
∫
∂2f(y, θ)

∂θ2
1

f(y, θ)
f(y, θ) dy +

∫
1

f 2(y, θ)

(
∂f(y, θ)

∂θ

)2

f(y, θ) dy

= − ∂2

∂θ2

∫
f(y, θ) dy +

∫ (
∂l(y, θ)

∂θ

)2

f(y, θ) dy

=

∫ (
∂l(y, θ)

∂θ

)2

f(y, θ) dy = E

((
∂l(y, θ)

∂θ

)2
)
.

If the density function belongs to the exponential family, the above properties lead to
the following results

E
(
∂l(y, θ)

∂θ

)
=

1

a(φ)
E (y − b′(θ)) = 0,

and therefore

E (y) = b′(θ) = µ. (3.3)

Furthermore, the second property gives

E
(
∂2l(y, θ)

∂θ2

)
+ E

((
∂l(y, θ)

∂θ

)2
)

= − 1

a(φ)
b′′(θ) +

1

a(φ)2
var(y) = 0,

and as a consequence we get

var(y) = a(φ)b′′(θ) = a(φ)V (µ), (3.4)

where V (µ) = ∂µ
∂θ

= b′′(θ) is the so called variance function and a(φ) describes the
dispersion.

3.2. Model Estimation

The aim of this section is to derive the maximum likelihood estimator β̂ of the model
parameter β. Thereafter, some properties of the estimate will be analysed.

From now on we assume that the responses yi are independent and from the same
member of the exponential family with parameter θi. In addition, the resulting expres-
sion for the variance, see (3.4), is now simplified to

var(yi) = φV (µi),

where a(φ) = φ. Since in all the above examples of the exponential family this assump-
tion holds, it constitutes no restriction for them.

14



3.2. Model Estimation

The sample log-likelihood is therefore given by

l(y,θ) =
n∑
i=1

(
yiθi − b(θi)

φ
+ c(yi, φ)

)
.

To get the score function, we first take a look at

∂l(y,θ(β))

∂µi
=
∂l(y,θ(β))

∂θi

∂θi
∂µi

=
1

φ
(yi − b′(θi))

∂θi
∂µi

.

Since

∂µi
∂θi

=
∂b′(θi)

∂θi
= b′′(θi) = V (µi),

it follows that

∂l(y,θ(β))

∂µi
=

1

φ

yi − µi
V (µi)

, (3.5)

where b′(θi) = µi, because of (3.3).

Since µi = µi(β), we need to calculate

∂µi
∂ β

=
∂µi
∂ηi

∂ηi
∂ β

=
∂µi
∂g(µi)

xi = xi
1

g′(µi)
,

and get the desired result. Using the chain rule and the result in (3.5), the score function
takes the form

∂l(y,θ(β))

∂βj
=

1

φ

n∑
i=1

yi − µi
V (µi)

xij
g′(µi)

= 0, j = 0, . . . , p− 1, (3.6)

where the sum over i = 1, . . . , n is due to the fact that µi = µi(β).

Since (3.6) can not be solved analytically, we settle for an iterative approach. In this
case we use the Newton Raphson method and get

β(t+1) = β(t) +

(
−∂

2l(y,θ(β))

∂ β ∂ βT

)−1
∂l(y,θ(β))

∂ β
,

where all terms on the right-hand side are evaluated in β(t), the result of the t-th
iteration.

As one can see, the negative second derivative of the log-likelihood sample is necessary

15



3. Generalized Linear Models

for this iterative method. In our case it is given by

−∂
2l(y,θ(β))

∂βj∂βk
=−

n∑
i=1

− xik
g′(µi)

V (µi)− (yi − µi)V ′(µi) xik
g′(µi)

φV (µi)2
xij
g′(µi)

−
n∑
i=1

yi − µi
φV (µi)

−xij
g′(µi)2

g′′(µi)
xik
g′(µi)

=
n∑
i=1

(
xij

φV (µi)g′(µi)2
+
xij (yi − µi)V ′(µi)
φV (µi)2g′(µi)2

)
xik

+
n∑
i=1

xij (yi − µi) g′′(µi)
φV (µi)g′(µi)3

xik,

where

∂V (µi)

∂ηi
=
∂V (µi)

∂µi

∂µi
∂ηi

= V ′(µi)
1

g′(µi)
.

If we define

1

wi
= V (µi)g

′(µi)
2,

di = g′(µi),

then the negative Hessian matrix can be written as

−∂
2l(y,θ(β))

∂βj∂βk
=

1

φ

n∑
i=1

xij

(
wi + (yi − µi)wi

(
V ′(µi)

V (µi)
+
g′′(µi)

g′(µi)

))
xik. (3.7)

By defining D and W as diagonal matrices with entries di and wi, respectively, the
score function in (3.6) can be written as

∂l(y,θ(β))

∂ β
=

1

φ
XT DW (y−µ) .

Next we define W ∗ as diagonal matrix with elements

w∗i = wi + (yi − µi)wi
(
V ′(µi)

V (µi)
+
g′′(µi)

g′(µi)

)
.

It is easy to see that E (W ∗) = W . As a consequence, the negative second derivative in
(3.7) takes the form

−∂
2l(y,θ(β))

∂ β ∂ βT
=

1

φ
XT W ∗X,

and the iterative method summarizes to

β(t+1) = β(t) +
(
XT W ∗X

)−1
XT DW (y−µ) .
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3.2. Model Estimation

Including some pseudo-observations

z = X β+W ∗−1DW (y−µ) , (3.8)

the iteration changes to

β(t+1) =
(
XT W ∗X

)−1
XT W ∗ z . (3.9)

This method is called iterative weighed least squares or IWLS, since in each iteration
a weighed least squares problem needs to be solved. In addition, one might notice that
in the final version of the iteration φ is cancelled, indicating that φ is of no importance
regarding the estimation of β. This conclusion is supported by (3.6), where φ can already
be neglected.

Definition. Fisher Scoring Technique
It is customary to use E (W ∗) = W instead of W ∗ in (3.9) and thereby get the simpler
iteration relation

β(t+1) =
(
XT W X

)−1
XT W z,

where

z = X β+D (y−µ) .

This approach is called the Fisher scoring technique.

A justification of the Fisher scoring technique will be given now. To do so, we introduce
an alternative way to find the estimator β̂ of β, and in the end we show that this method
is equivalent to the Fisher scoring technique.

The now presented alternative way to get the estimator β̂ can be found in Wood
(2006a). We introduce it at this point because it will be used later to estimate the
parameters of a generalized additive model. Earlier, we defined β̂ as the solution of the
estimating equation

1

φ

n∑
i=1

(yi − µi)
V (µi)

∂µi
∂βj

= 0, (3.10)

or see (3.6).
Looking at the first derivative of

Sg =
1

φ

n∑
i=1

(yi − µi(β))2

V (µi)
,

namely

∂Sg
∂βj

=
2

φ

n∑
i=1

(yi − µi(β))

V (µi)

∂µi
∂βj

,

17



3. Generalized Linear Models

where V (µi) is treated as fixed, one notices that setting the first derivative of Sg to zero,
and therefore minimizing Sg, is equivalent to solving (3.10). In addition, we observe
that φ is not important to the estimation process and can therefore be disregarded.

If we define V as diagonal matrix with entries vii = V (µi) and neglect φ, then Sg can
be written as

Sg = ‖V −1/2(y−µ(β))‖2.

The minimization of Sg is achieved by exerting the methods of Chapter 2 in an iterative

way. Starting with β(0), η(0) = X β(0) and µ(0) = g−1(η(0)), where g−1(·) describes the
inverse link function, the iteration method is summarized in the following three steps:

• η(k) and µ(k) are calculated by means of β(k). Thereafter, V (k) = V (µ(k)) can also
be computed.

• Sg can be minimized like the sum of squares of a linear model. As a result of the

minimization we obtain β(k+1).

• k → k + 1

According to Wood (2006a) this method sometimes poses a problem because β(k) can
converge a lot faster than V (µ(k)). This makes sense, if we consider that V (µ(k)) is
always calculated with β(k), while in the same iteration β(k+1) is computed. As a result,
V (µ(k)) is always one step behind. Therefore, we need to slow down the process for β(k)

by introducing a Taylor expansion of µ(β) in β(k). As a result, Sg is approximately

Sg ≈

∥∥∥∥∥(V (k)
)−1/2(

y−µ(k)−∂ µ
∂ β

∣∣∣∣
β(k)

(
β−β(k)

))∥∥∥∥∥
2

≈
∥∥∥∥(V (k)

)−1/2(
y−µ(k)−

(
D(k)

)−1
X
(
β−β(k)

))∥∥∥∥2 ,
where D(k) is a diagonal matrix with elements dii = g′(µ

(k)
i ) and β denotes the true

parameter. Next, we can summarize the approximation of Sg as follows

Sg ≈ ‖
(
V (k)

)−1/2 (
D(k)

)−1 (
D(k)

(
y−µ(k)

)
+X β(k)−X β

)
‖2

≈ ‖
(
W (k)

)1/2 (
z(k)−X β

)
‖2, (3.11)

where W (k) and z(k) are defined as

w
(k)
ii =

1

V (µ
(k)
i )g′(µ

(k)
i )2

,

z
(k)
i = g′(µ

(k)
i )
(
yi − µ(k)

i

)
+ xTi β

(k) .

Taking the approximation above into account, the iteration method is now given by:
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3.3. Asymptotic Behaviour

• Given a current β(k), we calculate η(k), µ(k) and V (k).

• Minimize (3.11) like a linear model and obtain β(k+1).

• k → k + 1

Now we take a closer look at the second step of this iteration method. If we assume
that W (k) and z(k) in (3.11) are independent of the true parameter β, then the first
derivative of Sg with respect to β takes the form

∂Sg
∂ β
≈ 2XT W (k)

(
z(k)−X β

)
= 0 .

By setting this first derivative to zero, we get the following equation as solution of the
minimization problem

XT W (k)X β(k+1) = XT W (k) z(k) .

Therefore, the estimate β(k+1) is again given by

β(k+1) =
(
XT W (k)X

)−1
XT W (k) z(k),

where W (k) and z(k) are defined as above.

The derivation of the estimate above shows that this iteration method is the same as
the Fisher scoring technique. Thereby, this method is also similar to the iterative method
introduced previously, if we replace W ∗ by its mean E [W ∗] = W . This alternative way
to get the estimator β̂ also justifies the use of the Fisher Scoring Technique and allows
for a better understanding what changes if we replace W ∗ by W . It is the difference
between minimizing Sg or minimizing Sg in respect to a Taylor expansion of µ(β).

3.3. Asymptotic Behaviour

As in Chapter 2 we are interested in some distributional results of the estimator β̂.
For linear models it was possible to derive those results explicitly, while in the case of
generalized linear models we get them only asymptotically by using the Taylor expansion
in the true parameter value β, i.e.

0 =
∂l(y,θ(β))

∂ β

∣∣∣∣
β̂

≈ ∂l(y,θ(β))

∂ β

∣∣∣∣
β

+
∂2l(y,θ(β))

∂ β ∂ βT

∣∣∣∣
β

(
β̂−β

)
.

It follows that

β̂−β ≈
(
XT W X

)−1
XT DW (y−µ) ,
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3. Generalized Linear Models

where W , D and µ are evaluated in the true parameter β. As a result, the mean and
the variance of β̂ are approximately

E
[
β̂
]
≈ β,

var(β̂) ≈
(
XT W X

)−1
XT DW var(y)W DX

(
XT W X

)−1
≈ φ

(
XT W X

)−1
,

since var(y) = φ (DW D)−1. Fahrmeir and Kaufmann (1985) did even show that

√
n
(
β̂−β

)
n→∞
∼ N

(
0, n

(
XT W X

)−1)
.

3.4. Pearson Statistic

Since in the last sectionW was evaluated in the true parameter β, we deduce an estimate
for var(β̂) by using the estimate β̂ instead, i.e.

v̂ar
(
β̂
)

= φ
(
XT W (β̂)X

)−1
.

But still in this expression the parameter φ is not always known. Therefore, an estimator
for φ needs to be established. We already know that the dispersion parameter can be
written as φ = var(yi)/V (µi) and therefore if β is known we get the unbiased estimator

φ̂ =
1

n

n∑
i=1

(yi − µ̂i)2

V (µ̂i)
.

For β unknown the bias corrected form of this estimator is

φ̂ =
1

n− p

n∑
i=1

(yi − µ̂i)2

V (µ̂i)
=

1

n− p
X2,

where X2 is called the Pearson statistic.

In the same way the Pearson residuals are given by

ri =
yi − µ̂i√
V (µ̂i)

.

The Pearson residuals are one possibility to standardize the residuals. According to
Wood (2006a) they should have approximately zero mean and variance φ, if the model
is correct.
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3.5. Deviance

3.5. Deviance

The scaled deviance is a measurement of goodness of fit and defined by

1

φ
D (y, µ̂) = −2 (l(y, µ̂)− l(y,y)) . (3.12)

One may observe that the deviance is the difference between the log-likelihood of the
fitted model and the log-likelihood of a saturated model. Since in a saturated model
there are as many parameters included as observations, namely n, the fitted values µ̂i are
equal to yi, i = 1, . . . , n. Furthermore, because of the independence of l(y,y) in (3.12)
from µ̂ and thereby from the estimated model, l(y,y) is constant if y is given. As a
result, the maximum likelihood estimate µ̂ maximizes the likelihood function l(y, µ̂)
and, thus, minimizes the deviance.

On the other hand, the deviance is some sort of a generalisation of the residual sum
of squares in a linear model. If we assume normally distributed responses as in a linear
regression model, yi ∼ N (µi, σ

2), then the log-likelihood is

l(y, µ̂) = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(yi − µ̂i)2 .

As a result, the scaled deviance takes the form

1

φ
D(y, µ̂)) = −2

(
−n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(yi − µ̂i)2

+
n

2
log(2πσ2) +

1

2σ2

n∑
i=1

(yi − yi)2
)

=
1

σ2

n∑
i=1

(yi − µ̂i)2 ,

where φ ≡ σ2 and the last result is equivalent to the residual sum of squares.

In addition, from the definition of the scaled deviance and the approximate χ2
n−p

distribution thereof, see Mc Cullagh and Nelder (1989), another unbiased estimator for
φ follows, i.e.

φ̂ =
1

n− p
D(y, µ̂).

Since the mean of 1
φ
D(y, µ̂) is n−p, the unbiased estimator above results. For normally

distributed values the χ2 distribution is true, but for other distributions this only holds
approximately.
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3. Generalized Linear Models

3.6. Hypothesis Testing

As in the case of linear models we want to test if all p explanatory variables are necessary
in the predictor or if a subset p− q suffices. Therefore, we test the following hypothesis

H0 : β1 = · · · = βq = 0,

H1 : β1, . . . , βq 6= 0.

Let µ̂0 and µ̂1 denote the fitted values under both these hypotheses, respectively.
Then the likelihood ratio test statistic is given by

−2 (l(y, µ̂0)− l(y, µ̂1)) = −2
(
l(y, µ̂0)− l(y,y)− l(y, µ̂1) + l(y,y)

)
=

1

φ

(
D (y, µ̂0)−D (y, µ̂1)

)
.

If φ is known than we can test the hypothesis by calculating

1

φ
(D (y, µ̂0)−D (y, µ̂1)) ∼ χ2

q,

which only holds approximately and in the large sample limit. Mc Cullagh and Nelder
(1989) state that in this case the χ2 distribution holds for not normally distributed
responses better than in the last section above. Otherwise we use the statistic

(D(y, µ̂0)−D(y, µ̂1)) /q

D(y, µ̂1)/ (n− p)
∼ Fq,n−p,

i.e. we replace φ by its estimator 1
n−pD (y, µ̂1), which then tends to a statistic that might

be approximated by a F distribution.
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4. Additive Models

In the same way as linear models have their restrictions, generalized linear models
(GLMs) sometimes lack some necessary flexibility to adequately describe the structure of
the data. Before we introduce generalized additive models (GAMs) in the next chapter,
we want to talk about additive models. This model class is similar to linear regression
models, in fact we will show that certain additive models can be reduced to linear mod-
els. But contrary to the linear models in Chapter 2 the mean of the response y is now
not a linear function of a continuous explanatory variable x but nonlinear in x, i.e.

y = f(x) + ε, (4.1)

where (x, y) represents one observation of a dataset, y ∼ N (µ, σ2) and f(·) is a smooth
function. A function is called smooth if the requirements of continuity and of continuous
first and second derivatives are fulfilled.

During this chapter we will introduce different possibilities of how to estimate f(·).
But all possibilities have in common that we demand that f(·) can be written as

f(x) =

q−1∑
j=0

γjbj(x), (4.2)

where γ = (γ0, . . . , γq−1)
T describes the parameters and bj(x) stands for a basis function.

In a function space basis functions build a basis similar to vectors in a vector space by
linear independence and the spanning property. Therefore, we search functions that form
a basis in our function space by fulfilling these properties. Since we want to estimate
the smooth function f(·) by polynomial functions, our function space is the polynomial
function space. In the following, we will introduce different bases and will discuss their
various properties.

As a consequence of (4.2) model (4.1) is linear in the parameters and is therefore
equivalent to a linear regression model. Consequently model estimation is similar as in
Chapter 2, but before we illustrate the issue by various examples of basis functions, we
want to introduce the data which is used in the following.

The dataset is obtained from the Open Grid Europe GmbH (OGE), a leading German
gas transmission operator. For more details about this project we refer to Friedl et al.
(2012). The dataset contains the information of one knot of the German gas network
and combines several variables, some of which are

• temp . . . the daily mean temperature in degree Celsius, and

• max.flow . . . the daily maximal gas flow in KWh per hour.
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4. Additive Models

Since the German gas transmission operators have to guarantee sufficient gas flow as
low as −12 degree Celsius, they are interested in the mean behaviour the maximum gas
flow takes with decreasing temperature. As daily mean temperatures as lows as −12◦C
have not been observed in the past, one part of Chapter 5 will concentrate on the theory
how to extrapolate a given model. The application of the theory on the data can be
found in Chapter 6.

To get a first impression of the structure of the data the analysed data is shown
in Figure 4.1. We can observe that with increasing temperature the maximum gas
flow continuously decreases and that above 15◦C the decrease lessens until it is almost
constant. Next we will try to estimate this relationship through additive models using
different basis functions.

Figure 4.1.: Daily maximum gas flow plotted against the daily mean temperature.
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4.1. Basis Functions

4.1. Basis Functions

It is the aim of this section to present possible choices of basis functions bj(x) for the
function in (4.2) and to discuss their various advantages and disadvantages. We start
by estimating a polynomial over the whole data range and continue with splines. For
every choice of basis functions besides their definition the R-code to calculate them and
to estimate the fit is given. In addition, plots of the basis functions and the resulting
fits are added.

4.1.1. Polynomial Basis

The initial choice for the basis functions bj(x) in (4.2) is a set of q polynomials. In that
sense the first basis we want to discuss is

b0(x) = 1, b1(x) = x, b2(x) = x2,

b3(x) = x3, b4(x) = x4, . . . ,

and therefore

f(x) =

q−1∑
j=0

γjx
j. (4.3)

The first four of these basis functions can be observed in Figure 4.2 for x ∈ [0, 1].
To get the smooth function f(·) resulting from this choice of basis functions, the

parameters γj in (4.3) need to be estimated. In addition, the maximal number of poly-
nomials q, or the maximal polynomial degree m = q− 1 needs to be chosen. For q fixed
the parameters γj can be easily estimated using the statistical software R (see R-code
below).

If we assume normally distributed responses and a model as in (4.1), where f(·) is
defined as in (4.3), then f(·) is linear in the parameters γj. Therefore, we are able to
reduce model (4.1) to a linear regression model. As a consequence, the theory of Chapter
2 applies and the parameters γj can be estimated through

q<-4

X1<-outer(temp,0:(q-1),"^") #model matrix

mod.poly1<-lm(max.flow~X1-1) #fit model

p<-ggplot(pday_small,aes(temp,max.flow)) +geom_point(shape=1) #plot

p+geom_line(aes(x=temp,y=X1%*%coef(mod.poly1)),colour="red") # +fit

In the above R-code the command lm estimates the parameters of a linear model with
model matrix X1. Since the intercept is already included in X1 as the polynomial of
degree zero, it does not need to be added, hence -1. The last two lines of the R-code
above generate the plots shown in Figure 4.3. For the remaining part of this chapter in
the R-code the plot p describes the basis plot including only the data points, while the
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4. Additive Models

Figure 4.2.: Plot of the first four polynomial basis functions for x ∈ [0, 1].

fits are usually added using the command geom line. Since all plots in this work have
been produced by the R package ggplot2, it needs to be loaded before these plots can
be generated. More information about the package ggplot2 can be found in Wickham
(2009).

One advantage of this approach is that it is very simple. The task to estimate for
example the parameters of such a cubic function of the form

f(x) = γ1 + γ2x+ γ3x
2 + γ4x

3

is not really challenging for most people with a mathematical background and the knowl-
edge of a statistical or mathematical software. Another advantage to other choices of
basis functions is that it is possible to explicitly write down in full the resulting function.
Although this approach performs well for polynomial functions, in general it sometimes
lacks the necessary flexibility to describe the mean of a response variable.

If we apply this R-code to the gas flow dataset assuming m = q − 1 = 3, then the
upper left plot in Figure 4.3 results. Especially in the upper left corner of this plot it
seems as if the model is not flexible enough to describe the data properly.
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4.1. Basis Functions

Figure 4.3.: Smooth fits resulting from polynomial basis functions with degree m =
3, 5, 10, 15.

Since a higher polynomial degree adds flexibility to the model, we estimate the same
model for m = 5 and m = 10. The results are displayed in Figure 4.3 in the upper
right and lower left plot. In the lower right plot in Figure 4.3 a polynomial with degree
m = 15 is shown. One might notice that in the upper left corner where few observations
are found the fit is very wiggly. All in all, it seems as if this approach is not able to
catch the structure of the data in a satisfying way.

4.1.2. Splines

Splines are the logical extension of polynomial basis functions. While in the last section
one polynomial was fitted over the whole data range, now the idea is to gain flexibility by
using polynomials of degree m in subintervals of the explanatory variable x. Therefore,

27



4. Additive Models

a set of knots (κ1, . . . , κK) is chosen, which partitions the range [a, b] of the covariate
into intervals [a, κ1], [κ1, κ2], . . . , [κK , b], where a and b stand for the left and right end
of the x range, respectively. For the j-th interval a polynomial of degree m, further
referred to as f[j](x) can now be estimated. To ensure a certain degree of continuity and
differentiability, continuous derivatives up to order m − 1 are required at all points of
adjoining intervals.

For example if m = 3 and f[j](x) = f(x)|κjκj−1
, therefore describing a cubic polynomial

on the interval [κj−1, κj], then we demand that

f[j](κj) = f[j+1](κj), j = 1, . . . , K,

f ′[j](κj) = f ′[j+1](κj), j = 1, . . . , K,

f ′′[j](κj) = f ′′[j+1](κj), j = 1, . . . , K.

As a result, we gain a smooth function f(x).
In the following, three different possibilities for spline basis functions will be discussed.

Truncated Power Series Basis

The first approach, which is also closest to the polynomial approach of the last subsec-
tion, are truncated power (TP) series.

For a given set of knots (κ1, . . . , κK) a TP-series of degree m has the form

f(x) =
m∑
k=0

γkx
k +

K∑
k=1

γk+m(x− κk)m+ , (4.4)

where

(x− κk)+ =

{
x− κk if x > κk,

0 otherwise.

It follows from (4.4) that each interval [κk, κk+1] has its own polynomial of degree m.
For example on the first two intervals f(·) is given by

f[1](x) =
m∑
k=0

γkx
k, x ∈ [a, κ1],

f[2](x) =
m∑
k=0

γkx
k + γ1+m(x− κ1)m, x ∈ [κ1, κ2].

If we evaluate f[j](x) and f[j+1](x) in κj, then

f[j](κj) =
m∑
k=0

γk(κj)
k +

j−1∑
k=1

γk+m (κj − κk)m ,

f[j+1](κj) =
m∑
k=0

γk(κj)
k +

j∑
k=1

γk+m (κj − κk)m ,
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4.1. Basis Functions

and the last term of the second sum of f[j+1](κj), namely γj+m (κj − κj)m, is zero. There-
fore, f[j](κj) = f[j+1](κj), j = 1, . . . , K, and the continuity of f(x) over the entire x range
follows. In the same way, the continuity of the first m− 1 derivatives ensues, while the
m-th derivative takes the form of a step function. As a result, the above requirements
for splines are satisfied.

The first q (= m+1) basis functions of the TP-series are the same as in the polynomial
approach, while the last K basis functions are added in this method. Therefore, in Figure
4.4 only the five new basis functions resulting from m = 3 and K = 5 are shown. While
the black lines in Figure 4.4 represent the basis functions, the dashed grey lines mark
the position of the knots and a and b, respectively.

If we assume the same model as in the polynomial case (see (4.1)) with normally
distributed responses, then the following R-code estimates the parameters γ.

m<-3; K<-5

Xtp1<-outer(temp,0:m,"^") #first part of model matrix

knots<-seq(min(temp),max(temp),length.out=(K+2))

Xtp2<-matrix(NA,length(temp),K) #second part of model matrix

for(k in 2:(K+1)) { #K+1 = number of intervals

knot_k<-knots[k]

Xtp2[,k-1]<-(pmax((temp-knot_k),rep(0,length(temp))))^m

}

Xtp<-cbind(Xtp1,Xtp2) #model matrix

mod.tp1<-lm(max.flow ~ Xtp -1) #fit model

line_knots<-geom_vline(xintercept=knots,linetype=2,alpha=1/3)

p + line_knots # plot data, knots and fit

+ geom_line(aes(x=temp,y=Xtp%*%coef(mod.tp1)),colour="red")

In this R-code the first half of the model matrix (Xtp1) is defined in the same way as
the model matrix in the polynomial case. Thereafter, the knots including a and b are set
equidistantly and the remaining basis functions (x−κk)m+ are calculated and summarized
in Xtp2. The model matrix of the TP-series results from the combination of Xtp1 and
Xtp2 in Xtp. Finally, we are able to estimate the parameters γ by using the R-function
lm. At last the R-code for the plots of the fitted values is added. While line knots

describes the vertical lines for the knots, p is defined as before and geom line draws the
red line for the fitted values.

The fits that result from applying this code to the gas flow dataset are shown in Figure
4.5 for m = 3 and K = 1, 5, 10, 15. The red lines represent the different fits, while the
grey dashed lines again show the position of the knots.
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4. Additive Models

Figure 4.4.: Plot of the last five basis functions of a TP-series with m = 3 and K = 5.
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4.1. Basis Functions

Figure 4.5.: Smooth fit resulting from TP-series basis functions with m = 3 and K =
1, 5, 10, 15.

We observe that while the fit in the upper left plot (K = 1) lacks the necessary
flexibility to describe the data properly, the fits from the lower charts (K = 10, 15) are
in our opinion too wiggly. Especially in the upper left corner of these plots where little
data is found a higher number of knots leads to a fit that is far too fluctuating (see lower
right plot). All in all the upper right plot (K = 5) seems to describe the data best.

This example demonstrates very well one of the disadvantages of this choice of basis
functions. We have to choose the number of knots and as one could see in Figure 4.5
this choice greatly influences the fit.

On the other hand, the simplicity of the TP-series rates among their advantages and
makes them easy to handle and easy to understand. Again we are also able to explicitly
write down the resulting function f(x) and its estimate, which is in many cases very
useful since it makes interpretation a lot easier.
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4. Additive Models

Cubic Splines

A favoured choice of polynomials are cubic polynomials, and therefore cubic splines.
Later in Theorem 1 a reason for this choice of polynomial degree is given. However,
the aim of this part is to introduce another possible choice of basis functions for cubic
splines Wood (2006a).

For any x in the interval [κj, κj+1], we define

f[j+1](x) =
κj+1 − x

hj
γj +

x− κj
hj

γj+1 +
1

6
δj

(
(κj+1 − x)3

hj
− hj(κj+1 − x)

)
(4.5)

+
1

6
δj+1

(
(x− κj)3

hj
− hj(x− κj)

)
, j = 0, . . . , K,

with κ0 = a and κK+1 = b and where hj = κj+1 − κj, j = 0, . . . , K. In (4.5) the
parameters γj and δj need to be estimated, but we will show that by satisfying the
restrictions of a spline function δ = (δ0, . . . , δK+1)

T can be expressed in terms of γ =
(γ0, . . . , γK+1)

T . Therefore, we will finally only need to estimate the parameters γ.
Hereafter, we show that f(x) is continuous and has a continuous second derivative. In
addition, from the definition of f[j+1](x) in (4.5), its first and second derivative ensue

f ′[j+1](x) =
1

hj
(γj+1 − γj) +

1

6
δj

(
− 3

hj
(κj+1 − x)2 + hj

)
(4.6)

+
1

6
δj+1

(
3

hj
(x− κj)2 − hj

)
,

f ′′[j+1](x) =
δj
hj

(κj+1 − x) +
δj+1

hj
(x− κj), (4.7)

with x ∈ [κj, κj+1] and j = 0, . . . , K.
By evaluating f(x) at the inner knots (κ1, . . . , κK), the continuity of f follows. For

example if we analyse f[j+1](x) in κj, we get

f[j+1](κj) =
κj+1 − κj

hj
γj +

1

6
δj

(
(κj+1 − κj)3

hj
− hj(κj+1 − κj)

)
.

Since hj = κj+1 − κj, it follows that

f(κj) = f[j+1](κj) = γj +
1

6
δj
(
h2j − h2j

)
= γj,

where the first result is due to the definition of f[j](x) = f(x)|κjκj−1
. If we evaluate f[j](x)

in κj, we get

f[j](κj) =
κj − κj−1
hj−1

γj +
1

6
δj

(
(κj − κj−1)3

hj−1
− hj−1(κj − κj−1)

)
= γj +

1

6
δj
(
h2j−1 − h2j−1

)
= γj = f(κj),
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4.1. Basis Functions

and therefore f[j+1](κj) = f[j](κj) = f(κj), j = 1, . . . , K. We also found that γj = f(κj),
meaning that the j-th parameter can be interpreted as the function value at κj.

In the same way we can show that the second derivative f ′′(x) is continuous. From
the definition of the second derivative on the interval [κj, κj+1] in (4.7), the continuity
of the second derivative ensues if we evaluate f ′′[j+1](x) and f ′′[j](x) in κj, i.e.

f ′′(κj) = f ′′[j+1](κj) =
δj
hj

(κj+1 − κj) = δj,

f ′′(κj) = f ′′[j](κj) =
δj
hj−1

(κj − κj−1) = δj,

where the first result is again due to the definition of f[j](x), and therefore f ′′[j+1](κj) =

f ′′[j](κj) = f ′′(κj), j = 1, . . . , K. Furthermore, δj = f ′′(κj) and can therefore be inter-

preted as the second derivative of f(x) in κj.

Now the only missing restriction for a cubic spline is the continuity of the first deriva-
tive, which is defined in (4.6). By evaluating f ′[j](x) and f ′[j+1](x) in κj, we get

f ′[j+1](κj) =
1

hj
(γj+1 − γj)−

1

3
hjδj −

1

6
hjδj+1,

f ′[j](κj) =
1

hj−1
(γj − γj−1) +

1

6
hj−1δj−1 +

1

3
hj−1δj.

From the claim of f ′[j+1](κj) = f ′[j](κj), it follows that

1

hj
γj+1 +

(
− 1

hj
− 1

hj−1

)
γj +

1

hj−1
γj−1 =

1

6
hjδj+1 +

1

3
(hj + hj−1) δj +

1

6
hj−1δj−1,

j = 1, . . . , K. The restriction above can also be written in matrix representation as

Gγ = B δ∗, (4.8)

with γ = (γ0, . . . , γK+1)
T and δ = (δ0, . . . , δK+1)

T = (0, δ∗, 0)T , where δ∗ = (δ1, . . . , δK)T .
Since the second derivative of a natural cubic spline is taken to be zero at the boundaries,
f ′′(a) = δ0 = 0 and f ′′(b) = δK+1 = 0. As a consequence, the elements in the matrices
B and G in (4.8) are defined by

Gj,j =
1

hj
,

Gj,j+1 = − 1

hj+1

− 1

hj
,

Gj,,j+2 =
1

hj+1

,
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4. Additive Models

for j = 1, . . . , K and

Bj,j =
1

3
(hj + hj+1), j = 1, . . . , K,

Bj,j+1 =
1

6
hj+1, j = 1, . . . , K − 1,

Bj+1,j =
1

6
hj+1, j = 1, . . . , K − 1.

If the symmetric K×K matrix B is invertible then δ∗ = (δ1, . . . , δK)T can be written
in terms of γ as

δ∗ = B−1G γ .

Therefore, δj and δj+1 in model (4.5) can be written in terms of γ. As a result,
the only remaining parameters that need to be estimated to get a cubic spline are the
γj’s, j = 0, . . . , K + 1, which can be interpreted as the function value at the knots κj.
Therefore, the new representation of model (4.5) is

f[j+1](x) =
κj+1 − x

hj
γj +

x− κj
hj

γj+1 +
1

6
f j γ

(
(κj+1 − x)3

hj
− hj(κj+1 − x)

)
(4.9)

+
1

6
f j+1 γ

(
(x− κj)3

hj
− hj(x− κj)

)
,

where F =

 0 · · · 0
B−1G
0 · · · 0

 is a (K + 2)× (K + 2) matrix and f j denotes the j-th row of F .

Since in (4.9) f[j+1](x) is linear in γ, f(x) is linear in γ and can be written as f(x) =∑K+1
k=0 γkbk(x). In addition, the basis functions can be derived from (4.9) and can thereby

be computed. In Figure 4.6 the basis functions of a cubic spline (m = 3) for K = 2 are
plotted. The position of the two inner knots and the border is represented by dashed
grey lines, while the basis functions are shown as continuous black lines. In the following
R-code the code to generate the plots in Figure 4.6 is added.

The assumption of an additive model of the form (4.1) with normally distributed
responses is equivalent to a linear regression model. Therefore, it can be easily estimated
with the use of the R command lm. The following R-code illustrates the generation of
the model matrix and the estimation of the parameters. At first the matrices G, B and
F are build. Thereafter, in two loops the model matrix X can be generated. While
in the first loop the index i represents the current interval [κi−1, κi], the index k in the
second loop stands for the index of the parameter γk corresponding to the basis function
bk(temp). In other words, the index i of the first loop corresponds to a set of rows of
X, while the index k denotes the current column of X. Finally, the parameters can be
estimated using lm. In the last lines of the R-code below the code to generate the plots
in Figure 4.6 and Figure 4.7 is given.
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4.1. Basis Functions

Figure 4.6.: Plot of the four basis functions of the cubic spline (m = 3) resulting from
K = 2.

K<-5

knots<-seq(min(temp),max(temp),length.out=(K+2))

h<-knots[-1]-knots[-(K+2)] #difference between knots

G<-matrix(0,K,K+2)

B<-matrix(0,K,K)

for(i in 1:(K)) {

G[i,i]<-1/h[i]

G[i,i+1]<--1/h[i+1]-1/h[i]

G[i,i+2]<-1/h[i+1]

B[i,i]<-1/3*(h[i]+h[i+1])

if(K+2-3-i>=0) {

B[i,i+1]<-1/6*h[i+1]
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B[i+1,i]<-1/6*h[i+1] }

}

F<-rbind(rep(0,K+2),solve(B)%*%G,rep(0,K+2))

X<-matrix(0,length(temp),K+2); count<-1

for(i in 1:(K+1)) { #define model matrix; i... current interval

tempi<-temp[temp>=knots[i] & temp<knots[i+1]]

if(i==(K+1)) tempi<-temp[temp>=knots[i] & temp<=knots[i+1]]

Xi<-matrix(NA,length(tempi),K+2)

for(k in 1:(K+2)) { # k... current column of X

Xi[,k]<-1/6*F[i,k]*((knots[i+1]-tempi)^3/h[i] -

h[i]*(knots[i+1]-tempi))+

1/6*F[i+1,k]*((tempi-knots[i])^3/h[i] -

h[i]*(tempi-knots[i]))

if(i==k) Xi[,k]<-Xi[,k]+(knots[i+1]-tempi)/h[i]

if((i+1)==k) Xi[,k]<-Xi[,k]+(tempi-knots[i])/h[i]

}

X[count:(count+length(tempi)-1),]<-Xi

count<-count+length(tempi)

}

mod.cubic<-lm(max.flow~X-1)

#plot basis functions

data_cubic<-data.frame(temp, X)

colnames(data_cubic)<-c("temp",paste("b",1:(K+2),sep=""))

knots<-seq(min(temp),max(temp),length.out=(K+2))

line_knots<-geom_vline(xintercept=knots,linetype=2,alpha=1/3)

qplot(temp,b1,data=data_cubic,geom="line") +line_knots

#plot fit

p +geom_line(aes(x=temp,y=X%*%coef(mod.cubic)),colour="red")

+line_knots

The fits resulting from this model for K = 1, 5, 10, 15 are shown in Figure 4.7. Again
the number of knots K strongly influences the fit. One can observe that a large number
of knots leads to a wiggly fit (lower right plot) while a too small number results in an
unsatisfying fit (upper left plot).

The fact that we have to choose again the number of knots and thereby the degree

36



4.1. Basis Functions

Figure 4.7.: Smooth fit resulting from cubic spline basis functions for K = 1, 5, 10, 15
(m = 3).

of smoothness turns out to be a disadvantage of this method. On the other hand, the
choice of the parameters as γj = f(κj) is useful because it allows for an interpretation
of them.

B-Splines

Another possible choice of basis functions are B-splines. They will turn out to be very
useful in the context of penalized splines, which we will discuss later in Section 4.2. But
first of all we need to define them, which is easily done in a recursive manner. Starting
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with a B-spline of order m = 0

B0
j (x) =

{
1 κj ≤ x ≤ κj+1

0 otherwise
j = 0, . . . , K,

B-splines of higher order are defined by

Bm
j (x) =

x− κj
κj+m − κj

Bm−1
j (x) +

κj+m+1 − x
κj+m+1 − κj+1

Bm−1
j+1 (x),

where j = −m, . . . ,K. This index is a little bit peculiar because we also need B-splines
which start outside of the x range but are partially in the observed interval.

Similar as before the smooth function f(x) with basis functions Bm
j (x) is given by

f(x) =
K∑

j=−m

γjB
m
j (x).

For a better understanding B-splines of order m = 0, 1, 2, 3 are shown in Figure 4.8.
While the basis functions with m = 0 are step functions on the intervals [κj, κj+1],
higher order B-splines are linear, quadratic or cubic functions for example. The knots
κj, j = 0, . . . , K+1, in Figure 4.8 are again represented by dashed grey lines. We observe
that a B-spline of order m is nonzero over an interval of m + 2 knots. In addition, the
number of B-splines on the data range is given by q = K +m+ 1, while the number of
needed knots is K + 2m + 2. This last number is larger than K because knots outside
the data range are needed to construct the B-splines which are only partially inside
the observed x-range and partially beyond. Therefore, to construct B-splines Bm

j (x),
j = −m, . . . ,K, of degree m on [a, b] a vector of knots κ = (κ−m, . . . , κK+m+1) is used.

Another useful attribute of B-splines is that their derivatives can be written in form
of differences. We can show that the first derivative of a B-spline of order m is

∂Bm
j (x)

∂x
= m

(
1

κj+m − κj
Bm−1
j (x)− 1

κj+m+1 − κj+1

Bm−1
j+1 (x)

)
.

The proof is given in Appendix A. As a result,

∂

∂x

K∑
j=−m

γjB
m
j (x) = m

K∑
j=−m

γj − γj−1
κj+m − κj

Bm−1
j (x). (4.10)

In the command splineDesign of the package splines in R the number of coefficients
in each piecewise polynomial segment defines the degree of a spline. This definition of the
degree of a spline differs from our definition (degree of the highest polynomial) by one.
For example, in our definition a cubic spline has degree three, while in splineDesign

it has degree four. As a consequence in the following R-code ord= m + 1 = 4 to get a
cubic spline.
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4.1. Basis Functions

Figure 4.8.: Plot of the B-spline functions resulting from K = 4 and m = 0, 1, 2, 3.

In the R-code below at first the order of the B-splines and the number of inner knots are
defined. Thereafter the length of the distance between the equidistant knots is calculated
and later used by the function knots to calculate them. A definition of this function
is given at the end of the R-code. The function splineDesign of the package splines

constructs the model matrix consisting of B-spline basis functions. As arguments of this
function we provide the knots we want to use, the values x at which we want to evaluate
the B-splines and the order of the B-spline functions, which differs from m by one.

Assuming an additive model of the form (4.1) with normally distributed responses,
we can again reduce our model to a linear regression model. Therefore, we are able to
estimate it with the R-function lm. Thereafter, the code for the plots of the fitted values
is added and its result shown in Figure 4.9.

m<-3; K<-4

Bs<-splineDesign(knots((-m):(K+m+1),temp,K),temp,ord=m+1)
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Figure 4.9.: Smooth fit resulting from cubic B-splines for K = 1, 5, 10, 15.

mod.bspline<-lm(max.flow~Bs-1)

line_knots<-geom_vline(xintercept=knots(0:(K+1),temp,K),

linetype=2,alpha=1/3)

p +geom_line(aes(x=temp,y=Bs%*%coef(mod.bspline)),colour="red")

+line_knots #plot of data, knots, fit

#function knots

knots<-function(i,x,K) {

s<-(max(x)-min(x))/(K+1)

k<-min(x)+i*s

k

}
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4.2. Penalized Splines

The fits in Figure 4.9 show a similar behaviour as the fits resulting from the basis
functions which we discussed previously. For K = 1 the fit lacks flexibility and is not
able to describe the data properly. While the fit for K = 5 seems fairly okay, the fits for
K = 10 and K = 15 are too flexible and do not represent the overall trend, especially
at intervals with less observations.

The disadvantage of B-splines turns out to be the same as we had before. The influence
of the choice of knots on the fit proofs to be a problem. Therefore, in the next subsection
a solution of this problem is discussed.

The greatest advantage of B-splines is their use for P-splines, which will be introduced
in the next subsection. In addition, they are easy to understand, flexible and the pa-
rameters can be interpreted as the function values at the apex of a basis function. More
information on B-splines can be found in Eilers and Marx (1996).

4.2. Penalized Splines

The issue how to choose the number of knots and thereby the degree of smoothness
addressed in the last subsection is picked up now and a possible solution is discussed.
The idea is to allow a high number of knots and thereby a high degree of flexibility but
to control the degree of smoothness with a penalty term.

If we use B-splines as basis functions and a penalized approach as will be discussed
in this subsection, then one talks of penalized splines, or P-splines in short. As a result,
P-splines are basically B-splines but their parameters γj, j = 0, . . . , q− 1, are estimated
using a penalized least squares approach. While Wood (2006a) uses the integral of the
squared second derivative of f(x) as a penalty, Eilers and Marx (1996) suggest to use
parameter differences as penalty. The differences between these two penalties will be
addressed and a comparison of the resulting fits based on these penalties is provided.

4.2.1. Model Estimation

In the following, a penalized least squares approach is introduced and discussed. During
this subsection we consider an additive model as in (4.1) with normally distributed
responses. But contrary to the methods in Chapter 2, we now estimate the model using
the penalized least squares approach

n∑
i=1

(yi − f(xi))
2 − λ

∫ b

a

f ′′(x)2dx, (4.11)

where λ ≥ 0 controls the degree of smoothness.

While the first part is a usual sum of squares, the second part constitutes a penalty to
assure a certain degree of smoothness. All in all, in a penalized least squares approach
we want to find f that minimizes (4.11) for a given value of λ.

If we assume that f can be written as proposed in model (4.2), then the second
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4. Additive Models

derivative of f has the form

f ′′(x) =

q−1∑
j=0

γjb
′′
j (x) = γT a(x),

where aj(x) = b′′j (x), and we get∫ b

a

f ′′(x)2dx =

∫ b

a

γT a(x)aT (x)γ dx = γT S γ, (4.12)

where S =
∫ b
a

a(x)aT (x)dx.
Therefore, (4.11) can be written as

Sq = ‖y−X γ ‖2 + λγT S γ,

where

xTi γ =

q−1∑
j=0

γjbj(xi) = f(xi) for i = 1, . . . , n,

with xi = (b0(xi), . . . , bq−1(xi))
T and X = (x1, . . . ,xn)T .

To minimize Sq with respect to γ, we calculate the first derivative

∂Sq
∂ γ

= −2XT (y−X γ) + 2λS γ .

Setting it equal to zero leads to

−XT y+XT X γ̂ + λS γ̂ = 0 .

As a consequence, the least squares estimator of γ is explicitly given by

γ̂ =
(
XT X +λS

)−1
XT y . (4.13)

Note that the estimator in (4.13) is similar to the estimator β̂ of β in a linear regres-
sion model, see (2.2). The only difference is the extra term λS, which is due to the
penalization.

As a result, an estimator of the mean µ is given by

µ̂ = X γ̂ = X
(
XT X +λS

)−1
XT y = Ay,

where the so called influence matrix A is defined as

A = X
(
XT X +λS

)−1
XT . (4.14)

This influence matrix is similar to the hat matrix H in Chapter 2. The only difference
lies again in the term λS. Thus, the influence matrix is usually not idempotent, in
contrast to the hat matrix for linear models.

The integral of the squared second derivative of f(·) is a common penalty, see Hastie
and Tibshirani (1990) or Wood (2006a). One advantage of this choice of penalty is that
the function f(x) which minimizes (4.11) is known, see Theorem 1.
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4.2. Penalized Splines

Theorem 1. For all continuous functions with continuous first and integrable second
derivative on the x range [a, b] the cubic spline g(x) is the function minimizing

n∑
i=1

(yi − g(xi))
2 + λ

∫ b

a

g′′(x)2dx, (4.15)

where λ ≥ 0 is fixed.

Proof. This proof is taken from Wood (2006a). If any other continuous function h(x)
with continuous first and integrable second derivative minimizes equation (4.15), it is
possible to choose a cubic spline g(x) which interpolates h(x) in the points (xi, h(xi)).
Therefore, the first part of (4.15) is the same for h(x) and g(x), i.e.

n∑
i=1

(yi − h(xi))
2 =

n∑
i=1

(yi − g(xi))
2 .

In regard of the second part, a new function d(x) = h(x)− g(x) is considered∫ b

a

h′′(x)2dx =

∫ b

a

(d′′(x) + g′′(x))
2

dx

=

∫ b

a

d′′(x)2dx+ 2

∫ b

a

d′′(x)g′′(x)dx+

∫ b

a

g′′(x)2dx.

For the second term of the last result partial integration and the assumption g′′(a) =
g′′(b) = 0 ensure that∫ b

a

d′′(x)g′′(x)dx = g′′(x)d′(x)|ba︸ ︷︷ ︸
=0

−
∫ b

a

g′′′(x)d′(x)dx

= −
∫ b

a

g′′′(x)d′(x)dx.

Since the third derivative of the cubic spline g(x) is a step function, it follows that

−
∫ b

a

g′′′(x)d′(x)dx = −
n−1∑
i=1

g′′′(x∗i )

∫ xi+1

xi

d′(x)dx

= −
n−1∑
i=1

g′′′(x∗i ) (d(xi+1)− d(xi)) = 0,

where x∗i is an element in the interval (xi, xi+1), and the last result is due to the fact
that for each xi the functions h(x) and g(x) are the same, since g(x) interpolates h(x)
in (a, . . . , b), and therefore d(xi) is zero for i = 1, . . . , n.
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4. Additive Models

In total, for the second part of (4.15) it follows that∫ b

a

h′′(x)2dx =

∫ b

a

d′′(x)2dx+

∫ b

a

g′′(x)2dx

≥
∫ b

a

g′′(x)2dx.

Summarizing, the first term in (4.15) is equal for h and g, while the second term,

namely λ
∫ b
a
(g′′(x))2dx, is smaller or equal for g compared to h. Therefore, if h minimizes

(4.15), g minimizes it too.

4.2.2. Effective Degrees of Freedom and Residual Variance

Now the question how many degrees of freedom an additive model has is addressed. The
effective degrees of freedom are a measure for the flexibility of a model or the wiggliness of
the fit. For example, if λ = 0, then the penalized least squares criterion (4.11) is minimal
if f(xi) = yi and therefore the fit interpolates the data points. This is only the case if q
is sufficiently large as it is assumed in case of P-splines. On the other hand, if λ tends
towards infinity, then the second part of (4.11) gets large unless f ′′(x) = 0, resulting in
a linear fit. As a result, the maximal effective degrees of freedom corresponding to the
maximal degree of flexibility are equal to the number of parameters. While the effective
degrees of freedom corresponding to a linear fit and thereby little flexibility constitute
the minimum.

Taking the linear model case as an example, the degrees of freedom can be defined as
the trace of the hat matrix H or in this case the influence matrix A

p = tr(A),

while the resiudal degrees of freedom are n− p = n− tr(A).
If we are interested in the degrees of freedom of the parameter γ, then we define

P =
(
XT X +λS

)−1
XT ,

where γ̂ = P y and A = XP . As a result, the trace of A can be written as

tr(A) = tr(XP ) =
n∑
i=1

(P X)i,i.

As a consequence, the diagonal element (P X)i,i describes the effective degrees of free-
dom of the i-th parameter. In other words, the diagonal elements of the matrix

P X =
(
XT X +λS

)−1
XT X

are the effective degrees of freedom of the respective parameters in the additive model
case.
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4.2. Penalized Splines

Next, we want to introduce an estimator for the response variance σ2. As in case of a
linear model an estimator for σ2 is given by the residual sum of squares divided by the
residual degrees of freedom. Adapting this approach to an additive model leads to

σ̂2 =
‖y−Ay ‖2

n− tr(A)
. (4.16)

Unfortunately, the estimator (4.16) is not unbiased. This can be easily shown by
looking at

E
[
‖y−Ay ‖2

]
= E

[
‖(µ+ ε)−A(µ+ ε)‖2

]
= E

[
‖(µ−Aµ) + (ε−Aε)‖2

]
= ‖µ−Aµ ‖2 + E

[
(ε−Aε)T (ε−Aε) + 2(µ−Aµ)T (ε−Aε)

]
= ‖µ−Aµ ‖2 + E

[
εT ε−2 εT Aε+ εT AT Aε

]
= ‖µ−Aµ ‖2 + nσ2 − 2E

[
tr(εT Aε)

]
+ E

[
tr(εT AT Aε)

]
= ‖µ−Aµ ‖2 + σ2

(
n− 2tr(A) + tr(AT A)

)
,

where we assume that y = µ+ ε with E [ε] = 0 and var(ε) = σ2 I and where we use

E
[
εT µ

]
= E

[
εT
]
µ = 0,

E
[
εT Aµ

]
= E

[
εT
]
Aµ = 0,

E
[
tr(εT Aε)

]
= E

[
tr(AεεT )

]
= tr

(
AE

[
ε εT

])
= tr(AI)σ2 = tr(A)σ2.

4.2.3. Difference Penalty

The aim of this part is to introduce a different penalty term than the integral of the
squared second derivative. The difference penalty is proposed in Eilers and Marx (1996).
In the following we will show that this penalty is similar to the penalty we have used in
(4.11), but is computationally more efficient and simpler.

While until now the penalty was given by

P1 = λ

∫ b

a

f ′′(x)2dx, (4.17)

where λ is the respective smoothing parameter, Eilers and Marx (1996) propose a dif-
ference penalty of the form

P2 = λ

q−1∑
j=k+1

(
∆kγj

)2
, (4.18)

where ∆k describes the k-th difference of the parameter vector γ. For example the first
and second order differences of γj are

∆γj = γj − γj−1,
∆2γj = ∆(∆γj) = ∆γj −∆γj−1

= γj − γj−1 − (γj−1 − γj−2) = γj − 2γj−1 + γj−2.
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4. Additive Models

In addition to the smoothing parameter λ now the order of the difference k needs to
be chosen too.

As Eilers and Marx (1996) show, if we consider B-splines of order three as our basis
functions, then there is not a big difference between P1 and P2 if in the second penalty
differences of order k = 2 are considered. If f(x) =

∑q−1
j=0 γjB

3
j (x), then P1 can be

written as

P1 = λ

∫ b

a

(
∂2

∂x2

q−1∑
j=0

γjB
3
j (x)

)2

dx.

Since we did already mention in (4.10) that the sum of derivatives of B-splines can be
written as a sum of differences of the B-spline parameters, it follows that

P1 = λ

∫ b

a

(
q−1∑
j=0

∆2γjB
1
j (x)

)2

dx,

= λ

∫ b

a

q−1∑
j=0

q−1∑
i=0

∆2γj∆
2γiB

1
j (x)B1

i (x)dx.

Another useful property of B-splines of order m = 1 is that they only overlap with
their direct neighbours. As a result, all cross products in the equation above are zero
except for j = i− 1 and j = i+ 1. Therefore,

P1 = λ

∫ b

a

(
q−1∑
j=0

(
∆2γjB

1
j (x)

)2
+ 2

q−1∑
j=0

∆2γj∆
2γj−1B

1
j (x)B1

j−1(x)

)
dx

= λ

q−1∑
j=0

(
∆2γj

)2 ∫ b

a

(
B1
j (x)

)2
dx+ 2λ

q−1∑
j=0

∆2γj∆
2γj−1

∫ b

a

B1
j (x)B1

j−1(x)dx.

While the first term of P1 is equivalent to P2, the second term is the product of second
order differences of neighbouring B-splines. Therefore, P1 would yield to a more complex
penalty than P2, which can get problematic if higher orders of B-splines are considered.
As a consequence, a difference penalty could yield to similar results as P1 while it is
computationally less expensive. An application of this theory on the gas flow data can
be observed later in Chapter 5, where the two fits which result from these two penalties
are compared.

Another way to write the penalty P2 in (4.18) is

P2 = λ

q−1∑
j=k+1

(
∆kγj

)2
= λγT DT

k Dk γ,

where Dk is a (q − k) × q difference matrix. For example, a difference matrix of order
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4.3. Smoothing Parameter λ

k = 2 has the form

D2 =


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

 .

As a result, we are able to write P2 as

P2 = λγT DT
k Dk γ

= λγT S γ, (4.19)

where S = DT
k Dk. Since this representation of P2 is similar to the penalty in Subsection

4.2, the theory introduced there applies in case of the difference penalty too.

4.3. Smoothing Parameter λ

In Section 4.2 we could transform the problem of the choice of the number of knots to
the problem of choosing the smoothing parameter λ. This section introduces criteria as
to how λ could be chosen.

In Figure 4.10 four different P-splines with four different λ values are visualised. While
the fit in the first plot is the most wiggly one, the following fits are a lot smoother. In
addition, one can observe how with an increasing penalty the fit converges to a linear
function.

In case of a large penalty value, a P-spline is dominated by the penalty term and
therefore converges to a polynomial function of degree k − 1, where k describes the
difference order. This is similar to the case of a derivative penalty, where a large value
of λ forces f ′′(x) = 0, and therefore f(x) results in a linear function. In that sense,
a large value of λ ensures that ∆kγj tends towards zero for all j and the result is a
polynomial of degree k − 1. In Figure 4.11 one can observe the same plots if the order
of the differences is k = 3.

Figure 4.11 shows the same behaviour as Figure 4.10. But with increasing λ the fit
now converges to a quadratic polynomial function, because k − 1 = 2.

4.3.1. Unbiased Risk Estimator

The first criterion for the choice of λ which we discuss is the unbiased risk estimator or
UBRE. The idea is to choose λ so that µ̂ is close to the true parameter µ. Therefore,
we take a look at the mean squared error MSE to derive the UBRE score.

In case of an additive model the mean squared error takes the form

MSE = E
[

1

n
‖µ−X γ̂ ‖2

]
=

1

n
E
[
‖y−Ay ‖2

]
− σ2 +

2σ2

n
tr(A), (4.20)
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Figure 4.10.: P-splines with difference order k = 2, q = 20 and smoothing parameter
λ = 0.001, 0.1515, 100, 500.

where the last result follows from

‖µ−X γ̂ ‖2 = ‖µ−Ay ‖2

= ‖y−Ay− ε ‖2

= ‖y−Ay ‖2 + εT ε−2 εT (y−Ay)

= ‖y−Ay ‖2 + εT ε−2 εT ((µ+ ε)−A(µ+ ε))

= ‖y−Ay ‖2 − εT ε−2 εT µ+ 2 εT Aµ+2 εT Aε,

48



4.3. Smoothing Parameter λ

Figure 4.11.: P-splines with difference order k = 3, q = 20 and smoothing parameter
λ = 0.001, 0.1515, 100, 500.

where y = µ+ ε with E [ε] = 0 and var(ε) = σ2 I. Taking the mean leads to

E
[
‖µ−X γ̂ ‖2

]
= E

[
‖y−Ay ‖2

]
− E

[
εT ε

]
− 2E

[
εT µ

]
+ 2E

[
εT Aµ

]
+ 2E

[
εT Aε

]
= E

[
‖y−Ay ‖2

]
− nσ2 + 2E

[
tr(εT Aε)

]
= E

[
‖y−Ay ‖2

]
− nσ2 + 2tr(A)σ2,
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where

E
[
εT µ

]
= E

[
εT
]
µ = 0,

E
[
εT Aµ

]
= E

[
εT
]
Aµ = 0,

E
[
tr(εT Aε)

]
= E

[
tr(AεεT )

]
= tr

(
AE

[
ε εT

])
= tr(AI)σ2 = tr(A)σ2.

The UBRE criterion is then defined as

Vu(λ) =
1

n
‖y−Ay‖2 − σ2 +

2σ2

n
tr(A), (4.21)

where the right side depends on λ through A. As a consequence of (4.21) the minimiza-
tion of Vu with respect to λ, minimizes the MSE too.

This criterion works well if σ2 is known. On the other hand, if σ2 is unknown, (4.16)
ensues that ‖y−Ay ‖2 = σ̂2(n− tr(A)) and therefore

M̂SE =
1

n
σ̂2tr(A),

which turns out to be problematic. Wood (2006a) illustrates this issue by comparing a
model with one parameter to one with a second parameter. Since tr(A) describes the

degrees of freedom, the second model would have to cut σ̂2 in half to improve the M̂SE.
As a result, models with additional parameters would seldom improve the criterion and
thus get excluded. Therefore, if σ2 is unknown, one might consider using one of the
criteria from the following subsections.

4.3.2. Cross Validation

Since the UBRE criterion turned out to be problematic if σ2 is unknown, in this subsec-
tion another criterion is introduced. The problem of the MSE is that the true parameter
µ is unknown, therefore we now minimize the prediction error. The now presented ap-
proach to estimate the prediction error is called cross validation. For this method one
observation yi is omitted in turns. After estimating the parameters without this obser-
vation, one is able to predict yi. Thereby, we can get an estimate for the prediction error
by calculating

Vo(λ) =
1

n

n∑
i=1

(
yi − µ̂[−i]

i

)2
, (4.22)

where µ̂i
[−i] is the fit resulting if the i-th observation yi is omitted.

If in (4.22) we substitute yi by µi + εi, we get

Vo(λ) =
1

n

n∑
i=1

(
µi + εi − µ̂[−i]

i

)2
=

1

n

n∑
i=1

((
µi − µ̂[−i]

i

)2
− 2εi

(
µi − µ̂[−i]

i

)
+ ε2i

)
.
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From E [εi] = 0 and var (εi) = σ2 it follows that

E [Vo] =
1

n
E

[
n∑
i=1

(
µi − µ̂[−i]

i

)2]
+ σ2, (4.23)

and since in the large sample limit µ̂
[−i]
i → µ̂i, i = 1, . . . , n, it follows that the mean of

the estimator of the prediction error Vo in (4.22) is

E [Vo] ≈MSE + σ2. (4.24)

Therefore, the minimization of Vo defined by (4.22) minimizes the mean squared error
too. But even without this justification minimizing the prediction error turns out to
be a good approach. Because if one searches a model that fits the data best, more
complicated models are chosen over simpler ones. On the other hand, if we minimize
the prediction error, less complicated models are chosen.

One might observe that estimating n models, where in turn one observation is left
out, could get computationally expensive. Fortunately, there is another way to calculate
Vo, where only one model including all n observations needs to be estimated, i.e.

Vo(λ) =
1

n

n∑
i=1

(yi − µ̂i)2

(1−Aii)2
. (4.25)

The equivalence of the two representations of Vo can be shown by minimizing

n∑
k=1
k 6=i

(
yk − µ̂[−i]

k

)2
+ λγT S γ .

If we add µ̂
[−i]
i − µ̂[−i]

i = 0 to the sum, we get

n∑
k=1

(
y∗k − µ̂

[−i]
k

)2
+ λγT S γ (4.26)

with y∗ = y− ỹ[i] + µ̃[i], where ỹ[i] and µ̃[i] are vectors whose i-th entries are yi and µ̂
[−i]
i

respectively while all remaining elements are zero.
If the model is estimated by minimizing (4.26), the i-th fitted value is µ̂

[−i]
i . Further-

more, from the definition of the influence matrix A the following equation ensues for
the i-th fitted value:

µ̂
[−i]
i = aTi y

∗ = aTi y−Aii yi +Aii µ̂
[−i]
i

= µ̂i −Aii yi +Aii µ̂
[−i]
i ,

where aTi denotes the i-th row of A.
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Therefore,

yi − µ̂[−i]
i = yi − µ̂i +Aii yi −Aii µ̂

[−i]
i ,

(1−Aii)
(
yi − µ̂[−i]

i

)
= yi − µ̂i,

yi − µ̂[−i]
i =

yi − µ̂i
1−Aii

.

As a result, the two definitions of Vo in (4.22) and in (4.25) are equivalent.

4.3.3. Generalized Cross Validation

Although we found a way to estimate Vo without estimating n models, the cross valida-
tion criterion can still get computationally expensive if more than one smooth function
(see Chapter 5) is considered in the model. In addition, the lack of invariance of this
criterion turns out to be a little disturbing. By the absence of invariance we mean that
while minimizing

‖y−X γ ‖2 + λγT S γ

or minimizing

‖Q (y−X γ) ‖2 + λγT S γ

result in the same parameter estimate γ̂ for any orthogonal matrix Q, different cross
validation scores (CV) ensue. The solution of this problem is a new criterion, namely
generalized cross validation or GCV.

Since ‖y− µ̂ ‖2 is in this sense invariant but the elements Aii in (4.25) are not, it
makes sense to substitute eachAii with its mean 1

n
tr(A). As a consequence, the resulting

GCV score is invariant to rotation and given by

Vg(λ) =
n ‖y− µ̂ ‖2

(n− tr(A))2
. (4.27)

In addition to the advantage of invariance, the GCV criterion is also computationally
more efficient than the CV score. Furthermore, one can show that (γ̂, λ̂) minimizing
GCV also minimize the mean squared error MSE.

4.4. Distributional Results

Since the response vector y is assumed to be normally distributed, from (4.13) for λ
fixed the normal distribution of γ̂ follows, and γ̂ ∼ N (E[γ̂],V a) with variance matrix

V a = var
((
XT X +λS

)−1
XT y

)
=
(
XT X +λS

)−1
XT var(y)X

(
XT X +λS

)−1
= σ2

(
XT X +λS

)−1
XT X

(
XT X +λS

)−1
.
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If we consider an approach without a penalty term (λ = 0), then E[γ̂] = γ and the

variance matrix is V a = σ2
(
XT X

)−1
. This results from the fact that without a penalty

an additive model is equivalent to a linear regression model and therefore the theory in
Chapter 2 including hypothesis testing and confidence and prediction intervals applies
here too.

However, if a penalty is considered then the estimator γ̂ can be biased. In addition,
there is no information of how the choice of λ influences the distributional results. This
is especially important for hypothesis testing. As a consequence, Wood (2006a) did
simulations to analyse the context further. Overall the simulations showed good results,
although it turned out that for single components confidence intervals can be unreliable.

On the other hand, Wood (2006a) argues that for each value of λ one can find a
number of basis functions q for an unpenalized additive model so that the resulting fits
are the same. Since we did already establish that an unpenalized additive model is
equivalent to a linear regression model, the theory in Chapter 2 applies.
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5. Generalized Additive Models

Generalized additive models or GAMs are to additive models as generalized linear models
are to linear models. While in the last chapter y was described by a smooth function of
an explanatory variable x, now a link function of the mean µ is characterized by f(x).
Therefore, for an observation (x, y) a GAM takes the form

g(µ) = f(x), (5.1)

where E[y] = µ, y ∼ Exponential family(θ) and f(x) is a smooth function in the sense
of a continuous function with continuous first and second derivatives of an explanatory
variable x, and g(·) represents a monotone link function.

The structure of this chapter is similar as in Chapter 4, but now the theory is ex-
tended to the case of generalized additive models. Therefore, we will introduce similar
smoothing techniques to get f(·) as in the last chapter. In addition, we again demand
that f(·) can be written as

f (x) =

q−1∑
j=0

γjbj(x) (5.2)

with basis functions bj(x) and parameters γj, j = 0, . . . , q − 1. The definition of the
basis functions is the same as in Chapter 4. Therefore, all the basis functions introduced
in the last chapter can be used for generalized additive models.

While in case of additive models the consequence of (5.2) was that they are equivalent
to linear regression models, it ensures that GAMs are equivalent to GLMs. This means
that if we regard the section about basis functions in the last chapter, then by changing
lm to glm in the R-code we get a GAM instead of an additive model. Furthermore, by
specifying family as a member of the exponential family, we can extend the assumption
of a normal distribution to any other distribution which is a member of the exponential
family.

But first we want to mention that we will illustrate the theory by using the gas flow
dataset obtained from the Open Grid Europe GmbH (OGE), a leading German gas
transmission operator. More information about this dataset is available in Chapter 4,
Chapter 6 or in Friedl et al. (2012).

Further information on generalized additive models can be found in Hastie and Tib-
shirani (1990), in Wood (2006a) or in Marx and Eilers (1998).
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5. Generalized Additive Models

5.1. Penalized Splines

Similar as in Chapter 4 we want to shift the problem of choosing the number of knots to
choosing a smoothing parameter λ. In that sense we start with a large number of basis
functions q, which assures much flexibility, and then diminish the degree of flexibility by
a penalty term to gain a certain degree of smoothness.

Here the method to estimate such a model, the resulting degrees of freedom and an
estimator for the dispersion parameter φ are discussed. Thereafter in the next part the
choice of λ is addressed.

5.1.1. Model Estimation

If we are interested in a generalized additive model instead of an additive model, we
proceed similar as in Chapter 3 and maximize the log-likelihood instead of minimizing
the sum of squares. Regarding n observations x = (x1, . . . , xn)T , y = (y1, . . . , yn)T and
assuming a model of the form

g(µ) = f(x) = X γ, (5.3)

where µ = E [y] with y ∼ Exponential family(θ) and the last result is due to the
definition of f(·) in (5.2). The penalized log-likelihood function can be written as

lp(y,γ) = l(y,γ)− 1

2
λγT S γ, (5.4)

where l(y,γ) stands for the sample log-likelihood, see Chapter 3, and the penalty term
γT S γ is the same as in the additive model case before. To maximize (5.4), we compute

∂lp(y,γ)

∂γj
=
∂l(y,γ)

∂γj
− λ sTj γ

=
n∑
i=1

yi − µi
φV (µi)

xij
g′(µi)

− λ sTj γ, j = 0, . . . , q − 1,

where sTj describes the j-th row of S, xij the respective element of X, and the last
expression is due to (3.6).

We will show that the minimization of

Sp =
n∑
i=1

(yi − µi(γ))2

var(yi)
+ λγT S γ, (5.5)

where var(yi) is assumed to be fixed and ∂µi
∂γj

=
xij
g′(µi)

, leads to the same solution as

maximizing lp(y,γ), because

∂Sp
∂γj

= −2
n∑
i=1

yi − µi
var(yi)

xij
g′(µi)

+ 2λ sTj γ .
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5.1. Penalized Splines

The first part of this estimating function equals the score function under a gener-
alized linear model and therefore the theory of Chapter 3 can be applied here. As
a consequence, we can use the findings of Section 3.2 and thereby get the equivalent
minimization problem

Sp ≈ ‖
√
W (t)

(
z(t)−X γ

)
‖2 + λγT S γ, (5.6)

where W (t) is a diagonal matrix and z(t) a vector defined by

w
(t)
ii =

1

V (µ
(t)
i )g′(µ

(t)
i )2

,

z
(t)
i = g′(µ

(t)
i )
(
yi − µ(t)

i

)
+ xTi γ

(t) .

Therefore, the estimator γ̂ is the result of the following iteration:

• Given a current γ(t), we calculate µ(t),η(t), z(t) and W (t).

• Minimize (5.6) with respect to γ to obtain γ(t+1).

• t→ t+ 1

After the final step of the iteration at convergence we can compute the so called
influence matrix A, which we will use to calculate the effective degrees of freedom, the
residual variance and an estimator of the dispersion parameter,

A = X(XT W X +λS)−1XT W . (5.7)

This definition of A is due to the penalized likelihood estimation of GAMs. Taking the
first derivative of (5.4) with respect to γ and inserting the results of Chapter 3 leads to

∂lp(y,γ)

∂ γ
=
∂l(y,γ)

∂ γ
− λS γ = XT DW (y−µ)− λS γ, (5.8)

where D is a matrix with diagonal elements dii = g′(µi). To maximize the penalized
likelihood (5.4), we at first rearrange this score function

XT DW (y−µ)− λS γ = XT W z−XT W X γ−λS γ,

where z = X γ +D (y−µ), and then set the last term above equal to zero

XT W z−XT W X γ−λS γ = 0,

and thereby derive

γ(t+1) =
(
XT W X +λS

)−1
XT W z, (5.9)

where the right side is evaluated in γ(t) and t represents the current iteration number.
At convergence the estimator γ̂ results from γ(t+1).

Furthermore,

η = X γ = X
(
XT W X +λS

)−1
XT W z

= Az,

where A is defined as in (5.7).
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5. Generalized Additive Models

5.1.2. Effective Degrees of Freedom and Dispersion Parameter

Similarly as in Chapter 4 now the question how many degrees of freedom a GAM has is
addressed. If λ = 0 the degrees of freedom are composed of the number of parameters.
On the other hand, if λ is large, the model gets very inflexible and has less degrees of
freedom. In the following the matrices W and A are the matrices resulting at conver-
gence from the iterative weighed least squares approach described earlier. Similarly ẑ
and γ̂ result from γ(t) and z(t) at convergence.

Again the effective degrees of freedom are defined as the trace of the hat matrix or in
this case the influence matrix A, i.e.

p = tr(A).

If we are interested in the degrees of freedom of the parameter γ, then in the gener-
alized additive model case we define

P =
(
XT W X +λS

)−1
XT W .

Thus, γ̂ = P ẑ and A = XP , and the trace of A can be written as

tr(A) = tr(XP ) =
n∑
i=1

(P X)ii.

In other words, the sum of the diagonal elements of the matrix

P X =
(
XT W X +λS

)−1
XT W X

describes the effective degrees of freedom.

Next an estimator of the dispersion parameter is introduced. Similar as in Chapter 4
the residual degrees of freedom of a GLM, n−p, are substituted by the residual effective
degrees of freedom, namely n − tr(A), and as a result the Pearson estimator for the
dispersion parameter in a generalized additive model is given by

φ̂ =
1

n− tr(A)

n∑
i=1

(yi − µ̂i)2

V (µ̂i)
.

5.1.3. Penalized Splines in R

If one wants to estimate P-splines with a difference penalty as described in Chapter 4
or cubic splines with a penalty on the second derivative in R, the function gam of the
package mgcv turns out to be useful. Below we describe how a generalized additive model
can be fitted in R based on the example of the gas flow data.
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5.1. Penalized Splines

P-splines

We consider an additive or a generalized additive model with B-splines as basis functions.
In addition, a difference penalty as defined in (4.18) is used. The estimation of such a
P-spline for the gas flow data can be achieved in R with the following R-code:

library(mgcv)

gam(max.flow~s(temp,bs="ps",m=c(2,2)))

After loading the package mgcv, we can set up and estimate the generalized additive
model with the function gam. The maximal gas flow is estimated as a smooth function
of the temperature. Therefore, the model formula is

max.flow ~ s(temp)

where s() indicates the smooth function. The rest of the arguments in the R-code above
define which basis functions should be used and the degree of the spline and the penalty,
respectively. In our example,

bs="ps"

defines that P-splines with a penalty on the parameter differences are used like they
were introduced by Eilers and Marx (1996). While in

m=c(2,2)

the first number in the argument defines the degree of the spline, the second number
corresponds to the order of the differences in the penalty. In our example m[1]=2,
which corresponds to a cubic spline. Furthermore m[2]=2, meaning that second order
differences are used for the penalty. One might notice inconsistencies to the previous
definition of the degree of a spline regarding the command splineDesign in R. Therefore,
we recommend to look in the various help pages of R to check the current definition of
the degree of a spline for the used command.

The choice of cubic B-splines and second order differences is the default setting for
P-splines. If only one value is determined like m=2, the function gam assumes that the
degree of the spline and the difference order of the penalty are the same, in this case
two.

By default, the function gam automatically chooses the dimension of the basis q as the
maximum of 10 and m[1]+1. If one prefers a different number of basis functions for the
smooth function this can be arranged by specifying k in

gam(max.flow~s(temp,bs="ps",m=c(2,2),k=5))

As a consequence of the number of basis functions q, a total number of q+m[1]+2

knots are used to construct the smooth fit. Therefore, if one wants to use specific knots
for the fit, there need to be q+m[1]+2 of them and they can be set by

gam(max.flow~s(temp,bs="ps",m=2,k=5),knots=list(temp=knots(-3:5)))
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5. Generalized Additive Models

Since we chose a number of k=5 basis functions and cubic splines m[1]=2, we need to
specify 9 knots to set up the B-splines. The knots in the R-code above are in a list. This
is required by gam, so that if the model contains more smooth functions, each smooth
function has its own specified set of knots.

Further specifications used in the function gam are for example the used dataset
data=... or the exponential family family=.... In the former R-code the default
setting for the exponential family is gaussian with an identity link, which is equivalent
to an additive model. Everyone who has already estimated GLMs in R will find that
the implemented exponential families for gam are the same as in glm. In the course of
this chapter and in Chapter 6 we use a gamma distribution with a log link.

Figure 5.1.: Cubic P-spline with difference order k = 2 estimated by gam with q = 10
and λ = 0.1038.

In Figure 5.1 the fit resulting from the R-code

mod1<-gam(max.flow~s(temp,bs="ps",m=c(2,2)),family=Gamma(link=log))

is shown. One can observe that the fit describes the overall trend of the data well while
it is not overly wiggly. Therefore, the estimated smoothing parameter λ seems to be
well-chosen. In this case the smoothing parameter λ is estimated to be 0.1038 and can
be derived from the model as

mod1$sp

where sp stands for smoothing parameter. The theory how to estimate λ will be dis-
cussed later in 5.2.

60



5.1. Penalized Splines

Penalized Cubic Splines

If one wants to use cubic splines with a penalty on the second derivative like in 5.1.1,
the R-code can be adapted to

gam(max.flow~s(temp,bs="cr"),family=Gamma(link=log))

One might observe that instead of bs="ps" the basis is now chosen to be bs="cr", which
results in a cubic spline with a penalty equal to the penalty in (4.11).

By specifying k, it is again possible to influence the number of basis functions that
are considered for the fit. In contrast to P-splines in this case cubic splines are selected
automatically and it is therefore not possible to change the degree of the spline. In
addition, the penalty is always the integral of the squared second derivative and can
only be changed by choosing a different basis.

The fit resulting from this choice of basis functions and penalty is presented in Fig-
ure 5.2. Similar to P-splines the fit describes the data well without showing over- or
undersmoothing, which is due to the optimal choice of λ. The smoothing parameter λ
determined by gam is now 2.133.

Figure 5.2.: Cubic spline with a penalty on the squared second derivative estimated by
gam with q = 10 and λ = 2.133.

Next, a comparison between the two fits is regarded. In Figure 5.3 the P-spline fit is
represented by a blue line while the red line stands for the penalized cubic spline. One
might notice that they are almost indistinguishable except at the left and right margin,
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5. Generalized Additive Models

where less observations are found. Therefore, the reasoning in 4.2.3 that there is no
big difference between a penalty on the second derivative and a penalty on the second
differences of the parameters seems coherent.

Figure 5.3.: Comparison of a cubic P-spline with difference order k = 2 and a penalized
cubic spline with a penalty on the squared second derivative, where both
are fitted using gam and q = 10.

5.2. Smoothing Parameter λ

In Section 5.1 we could shift the problem of choosing the number of knots to the problem
of choosing the smoothing parameter λ. This section introduces criteria as to how λ
should be chosen.
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5.2. Smoothing Parameter λ

5.2.1. Unbiased Risk Estimator

The first criterion for the choice of λ which we discuss is the unbiased risk estimator or
UBRE. Similar as in Chapter 4 the idea is to choose λ so that µ̂ is close to the true
parameter µ. By regarding the mean squared error MSE, we did deduce the UBRE
score for the additive model case in Chapter 4. In the following, the UBRE criterion is
defined for a generalized additive model similarly as in the additive model case.

While in Chapter 4 the UBRE score for an additive model is defined as (see (4.21))

Vu(λ) =
1

n
‖y− µ̂‖2 − σ2 +

2σ2

n
tr(A),

with µ̂ = Ay for a GAM the UBRE criterion can be written as

Vdu(λ) =
1

n
D(y, γ̂)− σ2 +

2σ2

n
tr(A),

where D(y, γ̂) stands for the deviance as defined in Chapter 3. In the following we will
also use the penalized deviance Dp(y, γ̂), which is similarly defined as the deviance but
the log-likelihood l(y, µ̂) is replaced by the penalized log-likelihood lp(y, µ̂), i.e.

Dp(y, γ̂) = −2 (lp(y, µ̂)− l(y,y)) . (5.10)

The difference between Vdu(λ) and Vu(λ) is a direct result from the difference in esti-
mation between an additive and a generalized additive model. Since in case of a GAM
a log-likelihood approach is pursued instead of a least squares method as in the addi-
tive model case, the definition of the UBRE criterion changes likewise. In addition, the
maximization of the penalized log-likelihood lp(y,µ) is equivalent to the minimization
of the penalized deviance

Dp(y,γ) = −2 (lp(y,µ)− l(y,y)) = −2 (l(y,µ)− l(y,y)) + λγT S γ

= D(y,γ) + λγT S γ,

which is a result of the definition of the deviance above.
As a consequence of the change from minimizing the sum of squares to minimizing

the deviance, the first term of Vu(λ) can be substituted by its analogon - the deviance.
Therefore, the definition of Vdu above follows.

One might also notice that Vdu is a linear transformation of the Akaike Information
Criterion or AIC, which is

AIC = −2 lp(y, γ̂) + k tr(A)

= −2 (lp(y, γ̂)− l(y,y))− 2l(y,y) + k tr(A),

where k > 0. Usually k is taken to be two, which is for example the default setting in
R. As the AIC is often used to choose between different models, its equivalence to the
UBRE criterion is welcome.
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Another similar representation of this criterion in case of a GAM is given by

Vwu (λ) =
1

n
‖
√
W (z−X γ̂) ‖2 − σ2 +

2σ2

n
tr(A).

This definition is due to the approximation of a penalized log-likelihood as an iterative
reweighed least squares approach, see (5.6). In 5.1.1 we showed that maximizing the pe-
nalized log-likelihood leads approximately to the same result as minimizing the iterative
reweighed least squares approach. As a result, the definition of Vwu above ensues.

As in the additive model case the UBRE criterion performs well if the variance σ2 is
known but gets problematic if it is unknown. Therefore, in the next part the generalized
cross validation score (GCV) is introduced.

5.2.2. Generalized Cross Validation

Similarly as for the UBRE criterion the GCV criterion can be derived from the analogue
in the additive model case, i.e.

Vg(λ) =
n ‖y− µ̂ ‖2

(n− tr(A))2
.

But instead of minimizing the penalized sum of squares, here we minimize

D(y,γ) + λγT S γ,

where D(y,γ) describes the deviance similar to the definition in Chapter 3 (see (3.12)).
One might notice that according to the definition of the penalized deviance in (5.10)
there is no difference whether the penalized log-likelihood is maximized or the penalized
deviance minimized with respect to γ.

Similar as in case of the UBRE criterion the deviance or the iterative re-weighed least
squares method substitute their analogue in the additive case. Thereby we receive the
GCV score for a GAM. In accordance with the definition of the GCV score Vg(λ) above,
the score is now defined by

Vdg (λ) =
nD (y, γ̂)

(n− tr(A))2
. (5.11)

In the same way the approximation of the maximization problem of the penalized
log-likelihood as an iterative reweighed least squares approach leads to the definition of

Vwg (λ) =
n ‖
√
W (z−X γ̂) ‖2

(n− tr(A))2
,

where Vwg is only locally valid since W and z depend on the current λ.
More information on GCV can be found in Hastie and Tibshirani (1990) or in Wood

(2006a).
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5.2.3. Realisation in R

In R the parameter method, which can be specified in gam, selects the criterion which
shall be used for the smoothing parameter estimation. Among others the UBRE and
GCV criteria are also implemented. By default GCV is used in case of an unknown
dispersion parameter φ, while the UBRE criterion is used if the dispersion parameter is
known.

5.3. Distributional Results

In this section we derive a variance matrix for the estimator γ̂ and some distributional
results. In case of the variance matrix of γ̂ we use a similar approach as for GLMs in
Section 3.3.

Performing a Taylor expansion of the score function in the true parameter γ yields to

0 =
∂lp(y,γ)

∂ γ

∣∣∣∣
γ̂

≈ ∂lp(y,γ)

∂ γ

∣∣∣∣
γ

+
∂2lp(y,γ)

∂ γ ∂ γT

∣∣∣∣
γ

(γ̂−γ) .

We did already establish in equation (5.8) that the first derivative of the penalized
log-likelihood takes the form

∂lp(y,γ)

∂ γ
= XT DW (y−µ)− λS γ .

Since the first term of the score function above is the same as in case of a GLM, we can
use the result of Chapter 3 for the first term of the second derivative, i.e.

−∂
2lp(y,γ)

∂ γ ∂ γT
= XT W X +λS .

Therefore, the approximation above can be written as

0 ≈XT DW (y−µ)− λS γ−
(
XT W X +λS

)
(γ̂−γ) ,

resulting in

γ̂−γ ≈
(
XT W X +λS

)−1 (
XT DW (y−µ)− λS γ

)
.

The bias of γ̂ resulting from this approximation is therefore

E [γ̂]− γ ≈ −
(
XT W X +λS

)−1
λS γ .

For λ = 0 it follows that E [γ̂] = γ, while for λ 6= 0 this is not necessarily true.
In addition to the bias we can also derive a variance matrix for γ̂, i.e.

var(γ̂) = V e =
(
XT W X +λS

)−1
XT DW var(y)W DX

(
XT W X +λS

)−1
.
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Since

var(y) = φV (µ) = φD−1W−1D−1,

it follows that

V e = φ
(
XT W X +λS

)−1
XT W X

(
XT W X +λS

)−1
. (5.12)

Next we want to derive some distributional results for γ̂. Since the estimator

γ̂ =
(
XT W X +λS

)−1
XT W z

in (5.9) depends on z, where z = X γ +D(y−µ), a distributional result for z is needed.
Later in Theorem 2 we will show that approximately

XT W z
d−→ N

(
XT W X γ, φXT W X

)
.

For this result the following equivalence and Theorem 2 are used: If v = XT W z is
multivariate normally distributed, then cTv is also multivariate normally distributed for
any vector of constants c 6= 0 and the other way round.

Theorem 2. Under certain regularity conditions the random variable cT XT W z, for
any vector c 6= 0, converges in distribution towards a multivariate normal distribution.

The proof can be found in Appendix B or in Wood (2006a).
The large sample multivariate normality of XT W z and (5.9) ensue that approxi-

mately

γ̂
d−→ N (E [γ̂] ,V e) , (5.13)

where usually E [γ̂] 6= γ, as shown before.

5.3.1. Confidence and Prediction Intervals

The variance matrix of µ̂ can be derived from the variance matrix V e of γ̂ using the
so called delta method, see proof of Theorem 3. The following theorem is available in
Casella and Berger (2002).

Theorem 3. If a series of random variables γ̂n with variance matrix Σ satisfies

√
n (γ̂n−E [γ̂n])

d−→ N (0,Σ),

then for any real-valued function h(·) with ∇h(E [γ̂n]) 6= 0

√
n (h (γ̂n)− h (E [γ̂n]))

d−→ N
(
0,∇h (E [γ̂n])T Σ∇h (E [γ̂n])

)
.
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Proof. This theorem can be proven by considering a Taylor approximation of h(·) in
E [γ̂n]

h (γ̂n) ≈ h (E [γ̂n]) +∇h (E [γ̂n])T (γ̂n−E [γ̂n]) .

Rearranging the Taylor approximation above and multiplying it with
√
n leads to

√
n (h(γ̂n)− h(E [γ̂n])) ≈ ∇h(E [γ̂n])T

√
n (γ̂n−E [γ̂n]) .

While ∇h(E [γ̂n]) on the right side is constant,
√
n (γ̂n−E [γ̂n]) is assumed to tend to

N (0,Σ), and therefore the convergence of
√
n (h(γ̂n)− h(E [γ̂n])) follows, where the

variance matrix is given by

√
n var (h (γ̂n)) ≈

√
n var

(
∇h (E [γ̂n])T (γ̂n−E [γ̂n])

)
≈ ∇h (E [γ̂n])T

√
n var (γ̂n)∇h (E [γ̂n])

≈ ∇h (E [γ̂n])T Σ∇h (E [γ̂n]) .

Confidence Interval

Together Theorem 2 and Theorem 3 yield to an approximate confidence interval. From
the approximate normal distribution of γ̂ in Theorem 2, the variance matrix V e as
defined in (5.12) and Theorem 3 it follows that

√
n (µ̂−E [µ̂])

d−→ N
(
0, n

(
∇g−1 (E [γ̂])

)T
V e∇g−1 (E [γ̂])

)
, (5.14)

since

µ̂ = g−1(X γ̂),

where g−1(·) describes the inverse link function. As a result of (5.14) we know that
approximately((

∇g−1 (E [γ̂])
)T
V e∇g−1 (E [γ̂])

)− 1
2

(µ̂−E [µ̂])
d−→ N (0, I)

and therefore the (1− α) confidence interval for E [µ̂i] if φ is known is given by(
µ̂i −

√
viz1−α/2, µ̂i +

√
viz1−α/2

)
,

where vi is the i-th diagonal element of (∇g−1 (E [γ̂]))
T
V e∇g−1 (E [γ̂]).

However, if the dispersion parameter φ in V e is unknown (see (5.12)) then replacing
φ by φ̂ results in a confidence interval of the form(

µ̂i −
√
vitn−p,1−α/2, µ̂i +

√
vitn−p,1−α/2

)
,
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where vi is the i-th diagonal element of (∇g−1 (E [γ̂]))
T
V̂ e∇g−1 (E [γ̂]) and V̂ e results

from V e by replacing φ with φ̂.
Another possibility to calculate var (µ̂) is by considering var (µ̂) = E

[
µ̂2
]
− E [µ̂]2.

Since the two expectations are basically integrals, we can compute them by calculating

E [µ̂] = E
[
g−1 (X γ̂)

]
=

∫ ∞
−∞

g−1 (X γ̂) f (γ̂) d γ̂,

E
[
µ̂2
]

= E
[(
g−1 (X γ̂)

)2]
=

∫ ∞
−∞

(
g−1 (X γ̂)

)2
f (γ̂) d γ̂,

where f (γ̂) is the density function of γ̂. Since we did show in Theorem 2 that γ̂ is
in the large sample limit approximately normally distributed, the means above can be
approximated using the density function of the normal distribution for f (γ̂).

During this section we discussed distributional results of γ̂ and µ̂ under the assumption
that λ is fixed. However, in reality λ is estimated by the data through various criteria,
see Section 5.2. Since the effect the choice of λ has on the distributional results is
not clear, Wood (2006a) did simulations to further analyse the context. While Wood
(2006a) concludes that the distributional results cover the results from the simulations
fair enough for the whole model, single components exposed quite unreliable results. To
receive better results Wood (2006a) includes the uncertainty that is connected with λ
in a Bayesian approach. Further information on confidence intervals of GAMs can be
found in Wood (2006b) or in Marra and Wood (2012).

Prediction Interval

We now want to derive a prediction interval for a new response y∗ to be observed at
x = x∗. In this context we consider the new values of the explanatory variables and

evaluate the basis functions bi(·) in them, and thereby we get x∗ =
(
b∗0, . . . , b

∗
q−1
)T

. As a
result from our previous findings and the independence of the new observation y∗ from
the previous observations and the estimation process, we know that

var (y∗ − µ̂∗) = φV (µ∗) +
((
g−1

(
x∗T E [γ̂]

))′)2
V ∗e,

where V ∗e derives from V e by substituting X by x∗. Since the distribution of y is
assumed to be a member of the exponential family, var(y∗) = φV (µ∗).

If y is from the normal distribution or at least symmetrically distributed around the
mean (

µ∗ − z1−α/2 (φV (µ∗) + var(µ̂∗))
1
2 , µ∗ + z1−α/2 (φV (µ∗) + var(µ̂∗))

1
2

)
is considered for a prediction interval if φ is known with

var(µ̂∗) =
((
g−1

(
x∗T E [γ̂]

))′)2
V ∗e .
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If however φ is unknown, we consider a t-distribution instead of a normal distribution
for the prediction interval, i.e.(

µ∗ − tn−p,1−α/2 (φV (µ∗) + var(µ̂∗))
1
2 , µ∗ + tn−p,1−α/2 (φV (µ∗) + var(µ̂∗))

1
2

)
.

Since the response variable which we will analyse in Chapter 6 consists of daily max-
ima, we will consider a gamma distribution there. A gamma distribution also allows
the data to be asymmetrically shaped. As a result the prediction intervals introduced
above might not be appropriate. In this case we will use the following approach: Us-
ing the estimated mean and variance we will calculate (1 − α)-quantiles of the gamma
distribution. Thereby we get approximate prediction intervals, which can be compared
to prediction intervals based on the symmetric assumption above. However, we want
to note that the prediction intervals resulting from these quantiles do not consider the
variability of the estimate of the mean, which can result in prediction intervals that are
too narrow. For the application of this strategy we refer to Chapter 6.

5.3.2. Hypothesis Testing

Since GAMs are similar to GLMs, it makes sense to use the likelihood ratio statistic as
test statistic for nested models. In context of a GAM the likelihood ratio statistic takes
the form

1

φ
(D(y, µ̂0)−D(y, µ̂1)) ,

where µ̂0 and µ̂1 denote the fitted values under the null and alternative hypothesis,
respectively, see Section 3.6. In addition, in the definition of the deviance in case of a
GAM the log-likelihood l(y, µ̂) is replaced by the penalized log-likelihood lp(y, µ̂) if a
penalized approach is considered for the parameter estimation.

The problem of this approach is that in case of P-splines the distribution of the
likelihood ratio is unknown. Wood (2006a) suggests that under the assumption of a
known smoothing parameter λ, the likelihood ratio should approximately be distributed
as in case of a GLM, and therefore

1

φ
(D(y, µ̂0)−D(y, µ̂1)) ∼ χ2

p0−p1 , (5.15)

where p0 and p1 describe the effective degrees of freedom under the null and alternative
hypothesis, respectively.

Wood (2006a) reinforces this assumption by illustrating that every estimate resulting
from a P-splines approach can also be generated by usual regression splines (without
a penalty), if the same degrees of freedom are ensured. Since a GAM with regression
splines is the same as a GLM, the theory in Chapter 3 applies and (5.15) is approximately
true. Finally, Wood (2006a) concludes that since P-splines and regression splines with
the same degrees of freedom lead to a nearly equal fit, the deviance depending on the fit
should be nearly the same too. As a result, the test statistic should be similar in both
cases and (5.15) might hold approximately true for P-splines.
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5.4. Extrapolation

Since in the practical example in Chapter 6 we will be interested in the behaviour of the
mean outside the observed range of the explanatory variable, this section deals with the
topic of extrapolation. In Currie and Durban (2002) a GAM using P-splines is estimated
for mortality rates. Later in Currie, Durban, and Eilers (2003) they address the problem
of forecasting future mortality rates. In this part we introduce a similar approach for
extrapolation as they used for forecasting.

If we want to extrapolate P-splines or GAMs on a data range [a∗, b∗] adjoining the
original data range [a, b], we add basis functions bl(x), l = 0, . . . , q∗ − 1 on [a∗, b∗] and
estimate the function f ∗(·) on [a∗, b∗], which is an extrapolation of f(x) on [a, b], as

f ∗(x) =

q∗−1∑
l=0

γ∗l bl(x),

where the basis functions bl(x) are chosen similarly as in the model f(x) =
∑q−1

j=0 γjbj(x).
The only remaining problem lies in the fact that for the new basis functions new param-
eters need to be estimated.

To solve the problem of how to estimate the new parameters γ∗ = (γ∗0 , . . . , γ
∗
q∗−1)

T , we
remember that the penalized log-likelihood was used to estimate the model, see (5.4).
Since no additional observations are added, the first part of the penalized log-likelihood,
namely the log-likelihood, stays the same. On the other hand, the penalty term can be
extended to the new parameters. By keeping the already estimated parameters fixed
and minimizing the penalty with respect to the new parameters, we ensure that the new
parameters are a continuous extension of the already estimated model parameters.

For example, if we are interested in a continuation of the smooth function on the left
side of [a, b], therefore assuming that b∗ = a, then γ∗ is estimated by minimizing

λ
(
γ∗T ,γT

)
S∗
(
γ∗

γ

)
(5.16)

with respect to γ∗, where γ is fixed and S∗ is defined as S in (4.12) or in (4.19) with
additional rows and columns for the additional parameters γ∗l , l = 0, . . . , q∗ − 1.

The continuous extension of the parameters, which is a consequence of (5.16), is in the
case of a difference penalty greatly influenced by the difference order k. For the difference
order k the continuous extension of the parameters takes the form of a polynomial with
degree k − 1.

This can be illustrated for the example of a difference order of k = 2. In this case the
matrix S∗ takes the form DT

2 D2, where

D2 =


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
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and therefore (5.16) is minimal if

∆2γ∗l+1 = γ∗l+1 − 2γ∗l + γ∗l−1 = 0, l = 1, . . . , q∗ − 2.

This is the case if a linear relation of the parameters like γ∗l = s + tl is considered,
because

∆2γ∗l+1 = s+ t(l + 1)− 2s− 2tl + s+ t(l − 1) = 0.

This corresponds to a continuous linear extension of the model parameters or a poly-
nomial of degree k − 1 = 1. But if we would consider a difference order of k = 3, a
continuous quadratic extension of the model parameters would ensue and so on.

Finally, we want to note that there is no overall criterion which difference order should
be used. While for example a difference order of two is the default in R for cubic B-
splines, for some data a different difference order could yield to better results. In this
context we encourage to try different difference orders and to choose the one which
represents the mean behaviour of the data best.

5.5. Extensions to multiple Cases

Here we want to address the issue how the model changes if more than one smooth
function is considered. For a set of observations y = (y1, . . . , yn)T , x1 = (x11, . . . , x

1
n)T

and x2 = (x21, . . . , x
2
n)T a generalized additive model with two smooth functions can be

written as

g(µ) = f1(x
1) + f2(x

2), (5.17)

where f1(·) and f2(·) are smooth functions in the sense of continuous functions with
continuous first and second derivatives, µ = E [y] and g(·) represents a monotone link
function.

From the claim that the smooth functions f1(·) and f2(·) can be written as

fk(x
k) =

qk−1∑
j=0

γkj bj(x
k), k = 1, 2,

it follows that they are linear in the parameters and can therefore be represented by

fk(x
k) = Xk γ

k, k = 1, 2,

where γk = (γk0 , . . . , γ
k
qk−1)

T .
As a result, the model formula takes the form

g (µ) = X1 γ
1 +X2 γ

2 =
(
X1,X2

)(γ1

γ2

)
,

= X γ,
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5. Generalized Additive Models

where X = (X1,X2) and γ = (γ1T ,γ2T )T .
While the model formula can, thus, be written similar as before, the question how

the penalty changes with additional smooth functions arises. Until now all penalties,
derivative or difference, could be written as

λγT S γ,

where λ describes the smoothing parameter. Since the penalty assures that the smooth
function is not too wiggly we need a penalty for each smooth functions, i.e.

λ1 γ
1T S̃1 γ

1 +λ2 γ
2T S̃2 γ

2,

where S̃1 is a q1 × q1 matrix while S̃2 has dimension q2 × q2. By adding zeros to the
matrices, we get two q × q matrices S1 and S2, where q = q1 + q2, and the resulting
penalty is

λ1 γ
T S1 γ +λ2 γ

T S2 γ = γT (λ1 S1 +λ2 S2)γ .

In the literature, for example in Wood (2006a), the weighted sum of the penalty matrices
is often represented by one penalty matrix, meaning

λ1 S1 +λ2 S2 = S∗,

and the penalty therefore reduces to

γT S∗ γ .

Therefore, if the smoothing parameter λ is included in the penalty matrix S∗, we get
the same penalty as before. In addition, the estimation of λ1 and λ2 works as described
in 5.2 by minimizing the UBRE or the GCV criterion.

Next, we want to discuss a model with an additional parametric term, i.e

g(µ) = x0 γ0 + f1(x
1) + f2(x

2),

where x0 = (x01, . . . , x
0
n)T represents another explanatory variable. Since we did already

establish that f1(x
1) + f2(x

2) can be written as (X1,X2)

(
γ1

γ2

)
, it follows that

g(µ) = x0 γ0 + (X1,X2)

(
γ1

γ2

)

= (x0,X1,X2)

γ0γ1

γ2

 = X γ .

Therefore, by adding the column x0 to X and including γ0 in γ, a parametric term can
be added to the model. Since the parametric term is equivalent to a linear fit, we do
not need a penalty for this part (no wiggliness). Then the penalty matrix corresponding
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to this model is given by S∗ = λ1 S1 +λ2 S2 and by adding one row and one column of
zeros to S∗ because of the additional parameter in γ.

Summarizing, for each additional predictor xk a new column is added to the model
matrix X, while the penalty matrix S is extended by a row and a column of zeros.
On the other hand, an additional smooth function fk(·) adds the number of the basis
functions qk as columns to the model matrix X, while the penalty is extended for λk Sk.

We want to note that here no interaction between different smooth functions is consid-
ered. If one wants to allow for interactions, instead of one dimensional basis functions
two dimensional basis functions need to be considered and a smooth surface is esti-
mated instead of two smooth functions. More information on this topic can be found
for example in Wood (2006a) or in Currie and Durban (2002).
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6. Practical Example: The Gas Flow
Data

In this chapter we want to apply the theory of the last chapters to a practical example.
For this case we use the gas flow dataset provided by Open Grid Europe GmbH (OGE),
see Friedl et al. (2012), which was already mentioned earlier. While until now we have
only considered the variables temp and max.flow of the dataset pday, describing the
mean temperature on one day and the daily maximal gas flow, respectively, now the
binary indicator day distinguishing between working days and weekends and holidays
will be used additionally. Thus we have

• temp . . . the daily mean temperature in degree Celsius,

• max.flow . . . the daily maximal gas flow in KWh per hour, and

• day . . . the type of day defined as the binary factor

dayi =

{
1 if the i-th day is a working day

0 if the i-th day is a weekend or holiday
, i = 1, . . . , n.

For a better understanding the data is plotted in Figure 6.1. While on the x-axis
the temperature is shown, the y-axis represents the maximal gas flow. In addition, the
colour of the data points corresponds to the type of day. In other words, the blue colour
describes working days, while red stands for weekends and holidays. One can observe
that the two groups of data show a similar mean behaviour on working days as on
weekends and holidays.

In the following sections models are fitted to the data and confidence and prediction
intervals are provided. Finally, the issue of extrapolation is addressed and discussed for
the example of the gas flow data.

6.1. Working Days versus Weekends and Holidays

In this part we want to estimate a generalized additive model for the gas flow data.
While we can observe in Figure 6.1 that the data behaves similar on working days and
on weekends and holidays, the question arises which model should be considered. Is
it best to disregard the variable day and estimate one smooth function or to consider
the difference between working days and weekends and holidays by a constant shift?
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6. Practical Example: The Gas Flow Data

Figure 6.1.: Daily maximum gas flow depending on the respective daily mean temper-
ature and on the type of day (blue - working days, red - weekends and
holidays).

On the other hand, we can estimate separate smooth functions for working days and
for weekends and holidays. In the following, we will address these different options and
discuss them. But before we start by defining the different models which will be discussed
in the course of this chapter, we want to call attention to the fact that our responses are
maxima. Therefore, a normal distribution might not be appropriate. Nonetheless we at
first discuss the respective models under the assumption of a normal distribution and
compare the results later on to the fits resulting under a gamma distribution, which is
more suited in this case.

In detail the models we will consider for yi ∼ N (µi, φ) are:
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6.1. Working Days versus Weekends and Holidays

• m1: The first mean model consists of one smooth function of the temperature.

E [yi] = s(tempi)

var(yi) = φ

• m2: In addition to the variable in the first model the second includes the factor
day.

E [yi] = dayi + s(tempi)

var(yi) = φ

• m3: In the third model the smooth function interacts with the type of day, which
results in two smooth functions.

E [yi] = dayi ∗ s(tempi)

var(yi) = φ

• m4: Finally, two separate models each including one smooth function of the tem-
perature are fitted.

E [yi] = dayi ∗ s(tempi)

var(yi) = φdayi

Since m3 and m4 both estimate a separate smooth function on working days and on
weekends and holidays, the mean models are the same. They only differ in the fact that
m4 allows for two different variances, while in m3 only one global variance is considered.

Next we start by estimating one smooth function for the whole data and therefore
neglecting the variable day (m1). The resulting fit is shown in Figure 6.2, while in the
following R-code the estimation of the model is presented. The R-code necessary to
produce the plots which are presented in this chapter can be found in Appendix C.

After estimating the model with the command gam from the package mgcv, the output
resulting from the command summary is presented. At first the used member of the
exponential family is stated, then the link function and the model formula are described.
Thereafter, the estimated coefficients and their p-values first for the parametric terms
and then for the smooth terms are specified. Although in m1 no parametric term is
specified, we note that an intercept is automatically added. Here the intercept represents
the mean of the response variable y, i.e.

β̂0 = ȳ.

This adds numerical stability. In addition, the smooth function now describes the de-
viation from the mean. Finally, the R-squared, the GCV score, the estimate of the
dispersion parameter φ and the number of observations are stated.
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6. Practical Example: The Gas Flow Data

Figure 6.2.: One smooth function resulting from cubic P-splines with difference order
two and q = 10 (m1).

m1<-gam(max.flow~s(temp,bs="ps",m=c(2,2),k=10))

summary(m1)

Family: gaussian

Link function: identity

Formula:

max.flow ~ s(temp, bs = "ps", m = c(2, 2), k = 10)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18192.01 52.43 347 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(temp) 5.98 6.69 3526 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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R-sq.(adj) = 0.922 Deviance explained = 92.2%

GCV score = 5.5394e+06 Scale est. = 5.5202e+06 n = 2008

The p-values in the R-code correspond to the hypothesis tests that the intercept is
zero and that the smooth function in the temperature is zero, respectively, i.e.

H0 : β0 = 0,

H0 : s(temp) = 0.

Since we did already establish that the intercept is estimated by the mean of the response
variable, testing if the intercept is zero is equivalent to testing if the overall mean is zero.
On the other hand, testing if the smooth function is equal to zero is equivalent to testing
if all γ are zero. If all parameters of the smooth function are zero, the smooth function is
a constant function. Since the smooth function describes the deviation from the mean,
γ = 0 means that there is no deviation from the global mean and therefore the smooth
function is not needed.

While the fit resulting from this model (see Figure 6.2) seems to describe the data well,
the question how the type of day affects it needs to be further discussed. Therefore, in
the next model the parametric explanatory factor day is included. The following R-code
shows the command for model estimation and the output of the resulting model.

m2<-gam(max.flow~factor(day)+s(temp,bs="ps",m=c(2,2),k=10))

summary(m2)

Family: gaussian

Link function: identity

Formula:

max.flow ~ factor(day) + s(temp, bs = "ps", m = c(2, 2), k = 10)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17229.8 90.1 191.24 <2e-16 ***

factor(day)1 1401.1 108.8 12.88 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(temp) 6.112 6.792 3758 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.928 Deviance explained = 92.8%

GCV score = 5.1197e+06 Scale est. = 5.099e+06 n = 2008
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In the R output above the factor day is highly significant, indicating that there is a
relevant difference between working days and weekends and holidays. Furthermore, in
comparison to the previous model the GCV score and the estimate of the dispersion
parameter could be reduced, while also the R-squared is a slightly larger value now.

The two parallel smooth functions resulting from this model are shown in Figure 6.3.
As in the previous plots the blue colour represents the working days, while red indicates
weekends and holidays. Although the two fits seem to represent the data well enough,
on the right margin the red function seems to be too low.

Figure 6.3.: Two smooth functions resulting from cubic P-splines (difference order two,
q = 10) and from a constant shift parameter (m2).

For a better understanding in a next step one smooth function for working days and a
separate one for weekends and holidays are fitted to the data (m3). This can be achieved
by using the property by, which allows to multiply an explanatory variable with another
in the context of smooth functions, see the R-code below.

m3<-gam(max.flow~factor(day)

+s(temp,bs="ps",m=c(2,2),k=10,by=factor(day)))

summary(m3)

Family: gaussian

Link function: identity

80



6.1. Working Days versus Weekends and Holidays

Formula:

max.flow ~ factor(day) + s(temp, bs = "ps", m = c(2, 2), k = 10,

by = factor(day))

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17231.23 89.05 193.51 <2e-16 ***

factor(day)1 1399.09 107.37 13.03 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(temp):factor(day)0 5.407 6.197 1137 <2e-16 ***

s(temp):factor(day)1 5.821 6.554 2937 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.93 Deviance explained = 93%

GCV score = 4.9929e+06 Scale est. = 4.96e+06 n = 2008

In addition to the factor day the summary of the model is now based on two different
smooth functions one for each type of day. One might also notice that each smooth
function is significantly different from zero. Moreover, the GCV score and the estimate
for the single constant dispersion parameter could be further reduced while the R-squared
is slightly higher. The two smooth functions resulting from this model are shown in
Figure 6.4. While they seem parallel for the most part, they approach each other on the
right margin until they overlap.

Finally, we are interested in a comparison of the resulting fits of the last two models.
Especially the difference between a shift parameter and two separate fits seems intrigu-
ing. In Figure 6.5 the respective fits of these models are plotted. While the solid lines
represent the model using a shift parameter, the dashed lines correspond to the model
estimating two separate smooth functions. One can observe that while the fits show a
similar behaviour on the left end of the plot, on the right end the separate fits some-
how tend towards each other, while the shift parameter forces the solid lines to keep a
constant distance.

As in m3 we now consider a model with two smooth functions, one for working days
and one for weekends and holidays - m4. While there is no difference to m3 regarding the
model fits, now the two models have different variances while in m3 only one parameter
φ is allowed for the entire data. In the R-code below the estimation of m4 and the output
of the command summary are presented.

#Data

pday0<-subset(pday,day==0) #weekends and holidays
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Figure 6.4.: One smooth function for each type of day resulting from cubic P-splines
(difference order two, q = 10), see m3.

pday1<-subset(pday,day==1) #working days

#weekends and holidays

m40<-gam(max.flow~s(temp,bs="ps",m=c(2,2),k=10),data=pday0)

summary(m40)

Family: gaussian

Link function: identity

Formula:

max.flow ~ s(temp, bs = "ps", m = c(2, 2), k = 10)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17177.50 92.56 185.6 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

edf Ref.df F p-value
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Figure 6.5.: Comparison of the smooth functions resulting from using one shift parameter
(solid lines - m2) or estimating two separate functions (dashed lines - m3)
with cubic P-splines (difference order two, q = 10).

s(temp) 5.387 6.198 1046 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.912 Deviance explained = 91.2%

GCV score = 5.4442e+06 Scale est. = 5.389e+06 n = 629

#working days

m41<-gam(max.flow~s(temp,bs="ps",m=c(2,2),k=10),data=pday1)

summary(m41)

Family: gaussian

Link function: identity

Formula:

max.flow ~ s(temp, bs = "ps", m = c(2, 2), k = 10)

Parametric coefficients:
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 18654.75 58.77 317.4 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(temp) 5.856 6.583 3045 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.936 Deviance explained = 93.6%

GCV score = 4.7867e+06 Scale est. = 4.7629e+06 n = 1379

Since m3 and m4 estimate the same smooth functions and therefore result in the same
fits, a comparison of the fits is useless. In addition, the fact that m4 consists of two
models makes model comparison rather difficult (no nested models). However, in Table
6.1 the AIC of the different models is stated for model comparison. The respective AIC
values were calculated in R with the command AIC(), i.e.

AIC(m1)

[1] 36879.46

While for the first three models this approach is straight forward, for the fourth model
the AIC is calculated by summing the AIC values of the two models m40 and m41. The
additivity of the AIC ensures that the resulting AIC values are comparable. From m1 to
m3 we can observe a gradual improvement of the AIC, while the difference between m3

and m4 is very small, which is supported by our previous findings.

AIC

m1 36 879.46
m2 36 721.22
m3 36 670.81
m4 36 669.09

Table 6.1.: Comparison of the AIC for the models m1 to m4 under the assumption of a
normal distribution.

We want to note that all models in this part were estimated under the assumption of
a normal distribution. As to the adequacy of this assumption we want to refer to the
next section were the approach based on a normal distribution is compared to using the
gamma distribution instead.
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6.2. Normal versus gamma distribution

While all models in the last part were estimated under the assumption of a normal
distribution and an identity link, we now want to consider an alternative model, namely
the gamma distribution with a log link. As we did already illustrate at the start of this
chapter, a gamma distribution is more appropriate than a normal distribution since we
consider maxima. The log link is not the canonical link of the gamma distribution (see
Chapter 3). However, it definitely makes more sense in this case, since our responses
are positive and a log link ensures this property. Therefore, the option family of the
command gam is now set to Gamma(link=log).

First of all, we take a look at the model using a shift parameter and assuming a
gamma distribution. While the following R-code summarizes the output of the command
summary for this model, the fit is shown in Figure 6.6. In addition to the solid lines
representing the current model, the previous model using a shift parameter and assuming
a normal distribution is represented by two dotted lines. While the shift parameter in
combination with the normal distribution ensures that the fits are parallel, the log link
in the current model guarantees positive means and allows them to get closer to each
other on the right end (as suggested by m3 before).

Figure 6.6.: Smooth functions resulting from m2 using cubic P-splines (difference order
two, q = 10), where the shape of the lines corresponds to the distribution,
i.e. gamma distribution (solid lines) and normal distribution (dotted lines).
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Family<-"Gamma(link=log)"

m2_g<-gam(max.flow~ factor(day)

+s(temp,bs="ps",m=c(2,2),k=10),family=Family)

summary(m2_g)

Family: Gamma

Link function: log

Formula:

max.flow ~ factor(day) + s(temp, bs = "ps", m = c(2, 2), k = 10)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.657974 0.005246 1841.11 <2e-16 ***

factor(day)1 0.071059 0.006332 11.22 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(temp) 6.499 7.076 3383 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.929 Deviance explained = 92.2%

GCV score = 0.017358 Scale est. = 0.017285 n = 2008

In the R output above we notice that for the first time the R-squared and the explained
deviance differ. This is a result from the definition of the two terms which is according
to the corresponding R help page as follows: The R-squared is defined as the proportion
of variance explained, where the variance and the residual variance are calculated using
unbiased estimators. To be more precise the adjusted R-squared is defined as

R2
adj = 1−

∑n
i=1(yi − µ̂i)2/(n− tr(A))∑n

i=1(yi − ȳ)2/(n− 1)
, (6.1)

where the only difference to the adjusted R-squared in the linear model case is that now
the number of parameters p is replaced by the trace of the influence matrix A. The
computation of the adjusted R-squared in R is described in the R code below, where
object stands for a model estimated by gam.

radj<-function(object){

1-(sum((object$y-object$fitted)^2)/(object$df.res))/

(sum((object$y-mean(object$y))^2)/object$df.null)

}
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6.2. Normal versus gamma distribution

However, the explained deviance is defined as the proportion of the null deviance
explained by the deviance of the respective model. Therefore, the explained deviance
can be calculated as

Dexplained =
D(y, ȳ)−D(y, µ̂)

D(y, ȳ)
, (6.2)

where D(y, ȳ) describes the null deviance, which is the deviance of a model including
only an intercept. The R-code to calculate the explained deviance is given below. As
before the term object represents any model estimated by gam.

dvex<-function(object){

(object$null.deviance - object$deviance)/object$null.deviance

}

In case of a normal distribution the R-squared and the null deviance are nearly the
same while for other distributions they do not necessarily need to be. This is the reason
why in the last section no difference between the adjusted R-squared and the explained
deviance was observed, while they differ now.

Next we consider the model allowing for separate smooth functions for working days
and weekends and holidays (m3). While the R-code below summarizes the results of this
model considering a gamma distribution, the corresponding fit is represented in Figure
6.7. Again the model resulting from the assumption of normal distribution is illustrated
by dotted lines, while the solid lines represent the current model assuming a gamma
distribution with log link. One might observe that there is practically no difference
between the fits of the two models.

m3_g<-gam(max.flow~ factor(day)

+s(temp,bs="ps",m=c(2,2),k=10,by=factor(day)),family=Family)

summary(m3_g)

Family: Gamma

Link function: log

Formula:

max.flow ~ factor(day) + s(temp, bs = "ps", m = c(2, 2), k = 10,

by = factor(day))

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.658207 0.005234 1845.44 <2e-16 ***

factor(day)1 0.070825 0.006310 11.22 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Figure 6.7.: Smooth functions for each type of day resulting from m3 using cubic P-splines
(difference order two, q = 10), where the shape of the lines corresponds to
the distribution, i.e. gamma distribution (solid lines) and normal distribu-
tion (dotted lines).

Approximate significance of smooth terms:

edf Ref.df F p-value

s(temp):factor(day)0 5.766 6.499 1074 <2e-16 ***

s(temp):factor(day)1 6.306 6.944 2479 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.93 Deviance explained = 92.3%

GCV score = 0.017244 Scale est. = 0.017123 n = 2008

While the difference between the shift parameter model (m2) and the model with two
separate fits (m3) is the same as in the last section, the difference seems to be smaller
than before. This can be observed for example in Figure 6.8, where the solid lines
correspond to the model using a shift parameter, while the dashed lines represent the
model with two smooth functions. In both cases the fits are closer to each other at the
right margin than before, but in case of the two separate smooth functions the fits at
some point overlap each other, while the shift parameter forces the solid lines to stay
apart.
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6.2. Normal versus gamma distribution

Figure 6.8.: Comparison of the smooth functions resulting from using one shift parameter
(solid lines - m2) or estimating two separate functions (dashed lines - m3)
with cubic P-splines (difference order two, q = 10) and assuming a gamma
distribution with log link.

To evaluate which of the two models should be chosen one can consider the respective
analysis of deviance (anova). For GAMs in R the command anova.gam can achieve such
a task. In the following code the command for an F-test and its results are shown, first
for the models assuming a normal distribution then for the models based on a gamma
distribution. In both cases the model using two smooth functions is chosen over the
model using a shift parameter.

anova.gam(m2,m3,test="F")

Analysis of Deviance Table

Model 1: max.flow ~ factor(day) + s(temp, bs = "ps",

m = c(2, 2), k = 10)

Model 2: max.flow ~ factor(day) + s(temp, bs = "ps",

m = c(2, 2), k = 10, by = factor(day))

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 1999.9 1.0197e+10

2 1994.8 9.8941e+09 5.1158 303341706 11.955 1.242e-11 ***

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

anova.gam(m2_g,m3_g,test="F")

Analysis of Deviance Table

Model 1: max.flow ~ factor(day) + s(temp, bs = "ps",

m = c(2, 2), k = 10)

Model 2: max.flow ~ factor(day) + s(temp, bs = "ps",

m = c(2, 2), k = 10,

by = factor(day))

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 1999.5 34.561

2 1993.9 34.143 5.5729 0.4178 4.3782 0.0003233 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Models m2 and m3 only differ in the smooth terms, since the parametric term is included
in both cases by the factor day. While in m2 only one smooth function of the temperature
is considered, in m3 one smooth function is estimated for each type of day. Therefore,
the anova tests if the two smooth functions in m3 significantly differ from the smooth
function in m2. Although the p-values result from approximations and should therefore
be considered carefully, it seems as if m3 should be preferred to m2.

Since m4 consists of two models, an analysis of deviance like before is not possible
with it. But we did already establish that m3 and m4 are basically the same. While
they both fit two smooth functions and therefore produce the same fits, m3 estimates
one dispersion parameter and m4 two. Naturally, m4 can also be estimated assuming a
gamma distribution with log link instead of a normal distribution, see R-code.

#working days

m41_g<-gam(max.flow~s(temp,bs="ps",m=c(2,2),k=10),data=pday1,

family=Family)

summary(m41_g)

Family: Gamma

Link function: log

Formula:

max.flow ~ s(temp, bs = "ps", m = c(2, 2), k = 10)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.729523 0.003394 2867 <2e-16 ***

---
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6.2. Normal versus gamma distribution

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(temp) 6.35 6.978 2659 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.936 Deviance explained = 93%

GCV score = 0.015971 Scale est. = 0.015886 n = 1379

#weekends and holidays

m40_g<-gam(max.flow~s(temp,bs="ps",m=c(2,2),k=10),data=pday0,

family=Family)

summary(m40_g)

Family: Gamma

Link function: log

Formula:

max.flow ~ s(temp, bs = "ps", m = c(2, 2), k = 10)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.656548 0.005612 1721 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(temp) 5.687 6.461 934.3 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.912 Deviance explained = 90.6%

GCV score = 0.020022 Scale est. = 0.019809 n = 629

Comparing the AIC of the models in Table 6.2 yields to similar results as in case of
a normal distribution earlier. While an improvement is observable from m1 to m3, the
difference between m3 and m4 is rather small. Furthermore, the best AIC value under
the assumption of a normal distribution is worse than the worst AIC value under the
assumption of a gamma distribution. Indicating that a gamma distribution should be
clearly preferred to a normal distribution.
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AIC

m1 g 36 634.32
m2 g 36 514.20
m3 g 36 500.86
m4 g 36 490.98

Table 6.2.: Comparison of the AIC for the models m1 to m4 under the assumption of a
gamma distribution with log link.

Nonetheless, the question remains if m3 or m4 should be preferred. Since we will
address confidence and prediction intervals next, we favour m4 over m3. In addition,
the calculation of the model matrix X is easier for m4 which will be favourable for
extrapolation later.

6.2.1. Confidence and Prediction Intervals

Now the confidence and prediction intervals for m4 are generated and compared depen-
dent on the assumed response distribution.

Confidence Intervals

In order to start we provide the R-code necessary to calculate confidence intervals.
Results are shown in Figure 6.9. The confidence intervals are calculated using the
command predict.gam and the findings of Chapter 5 regarding the delta method. But
before we estimate the model m40, we set up the model m40 s. It is the same model as
m40 but the option fit=FALSE allows us to set up the model only but not to fit it. As
a consequence, we can derive useful information from m40 s like for example the model
matrix X. If we want to estimate the model m40 s in a next step, we specify G=m40 s

in gam, which performs the estimation and we thereby get m40.
The rest of the R-code is pretty straight forward. Using predict.gam we estimate

the standard deviation of the mean µ̂ and summarize it and the fit in P0. Thereafter,
we calculate the upper and lower bound of the confidence interval and combine them in
the variable rib10, where 0 is due to the used data, namely pday0. In a next step we
calculate the variance of the mean with the delta method. On that account we define
the first derivative of the inverse link function for our choice of distribution and call it
d linkinv. Then we calculate the variance of the mean Vf0 using the delta method and
the upper and lower bound of the confidence interval, which we summarize in rib20.

Family<-"Gamma(link=log)" #Family<-"gaussian"

pday0<-subset(pday,day==0) #Weekends and holidays

pday1<-subset(pday,day==1) #working days

alpha<-0.05
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m40_s<-gam(max.flow~s(temp,bs="ps",m=c(2,2),k=10),data=pday0,

family=Family,fit=FALSE)

m40<-gam(G=m40_s)

#gam-predict

P0<-predict.gam(m40,type="response",se.fit=TRUE)

up<-P0$fit - qt(1-alpha/2,m40$df.residual)*P0$se.fit

low<-P0$fit + qt(1-alpha/2,m40$df.residual)*P0$se.fit

rib10<-data.frame(pday0,up,low,fit1=P0$fit)

#delta method

if(Family=="gaussian") d_linkinv<-function(eta) {rep(1,length(eta))}

else d_linkinv<-function(eta) {as.numeric(exp(eta))}

Vf0<-diag(d_linkinv(m40_s$X %*% m40$coef)) %*%

(m40_s$X %*% m40$Ve %*% t(m40_s$X)) %*%

diag(d_linkinv(m40_s$X %*% m40$coef))

up<-m40$fitted - qt(1-alpha/2,m40$df.residual)*sqrt(diag(Vf0))

low<-m40$fitted + qt(1-alpha/2,m40$df.residual)*sqrt(diag(Vf0))

rib20<-data.frame(pday0,up,low,fit1=m40$fitted)

Using the R-code above but substituting pday0 by pday1 leads to m41 and its fitted
values and confidence intervals respectively. Hence we get rib11 and rib21 by substi-
tuting pday0 by pday1 and m40 by m41. After combining the data in the R-code below
the code to generate the plots in Figure 6.9 is given.

#combine data

rib1<-rbind(rib10,rib11)

rib2<-rbind(rib20,rib21)

#plot

ggplot(rib1,aes(temp,fit1,colour=as.factor(day),group=factor(day))) +

geom_line(size=1) +

geom_ribbon(aes(ymin=low,ymax=up,fill=as.factor(day)),data=rib1,

alpha=1/3) +

geom_ribbon(aes(ymin=low,ymax=up,fill=as.factor(day)),data=rib2,

alpha=1/3,linetype=2)

In Figure 6.9 two plots showing the confidence intervals under the normal and un-
der the gamma distribution, respectively, are included. One might observe that the
confidence intervals resulting from the command predict.gam (solid lines) and the con-
fidence intervals resulting form the delta method (dashed lines) are very similar but not
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Figure 6.9.: Confidence intervals (α = 0.05) using predict.gam (solid lines) or using
the delta method (dashed lines) for cubic P-splines (difference order two,
q = 10) and assuming a normal distribution, identity link model (left plot)
or a gamma distribution, log link model (right plot).

the same. A noticeable difference is only distinguishable in the upper left corner of the
plots, where the confidence intervals grow wide. In addition, we notice the difference
between the normal and the gamma distribution. While previously concerning the fit
there was no noticeable difference, the confidence intervals show differences especially in
the upper left corner. In this case one can observe that the gamma distribution allows
for a higher variance as the normal distribution.

Prediction Intervals

Next we want to take a look at prediction intervals for new observations. As shown in
Chapter 5 the variance of the difference between a new observation y∗ and its mean is
given as

var (y∗ − µ̂∗) = φV (µ∗) + var(µ̂∗),

where the variance of µ̂∗ can be obtained from a call of the command predict.gam

or through the delta method. In the following R-code the variance of the residual is
calculated using one of the already mentioned methods for the variance of µ∗ and then
adding the variance of y∗. To calculate the variance of y∗ we need the function V (·),
which can be derived from the model for example by m40$family$variance. Thereafter,
the already calculated variances of the mean are used to derive the upper and lower
bound of the prediction intervals.
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Finally, the R-code to plot the prediction intervals is added. In the left plot of Figure
6.10 the prediction interval can be observed for working days if normally distributed
responses are considered, while in the right plot the prediction interval assuming a
gamma distribution is shown. The same plots for weekends and holidays are shown in
Figure 6.11.

Figure 6.10.: Prediction intervals (α = 0.05) for working days using predict.gam (blue
solid lines) or using the delta method (blue dashed lines) for cubic P-
splines (difference order two, q = 10) and assuming a normal distribution
(left plot) or a gamma distribution (right plot), while the black dashed
lines divide the temperature range in three thirds.

var_y0<-m40$sig2 * m40$family$variance(rib10$fit)

alpha<-0.05

#gam-predict

rib10$pred_low<-rib10$fit1 - qt(1-alpha/2,m40$df.residual)*

sqrt(P0$se.fit^2 + var_y0)

rib10$pred_up<-rib10$fit1 + qt(1-alpha/2,m40$df.residual)*

sqrt(P0$se.fit^2 + var_y0)

#delta method

rib20$pred_low<-rib20$fit - qt(1-alpha/2,m40$df.residual)*

sqrt(diag(Vf0) + var_y0)

rib20$pred_up<-rib20$fit + qt(1-alpha/2,m40$df.residual)*

sqrt(diag(Vf0) + var_y0)
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#plot

col<-"#E41A1C"

p0<-ggplot(pday0,aes(temp,max.flow))

points<-geom_point(colour=col,shape=1)

p0+points +geom_line(aes(y=fit1),data=rib20,size=1,colour=col) +

geom_ribbon(aes(ymin=pred_low,ymax=pred_up),data=rib10,fill=col,

alpha=1/3,colour=col) +

geom_ribbon(aes(ymin=pred_low,ymax=pred_up),data=rib20,fill=col,

alpha=1/3,colour=col,linetype=2)

Normal distribution Gamma distribution

Whole data 0.949 0.943
First third 0.940 0.974

Second third 0.920 0.926
Last third 0.994 0.953

Table 6.3.: Percentage of the data inside the prediction interval for α = 0.05 on working
days.

Normal distribution Gamma distribution

Whole data 0.948 0.957
First third 0.872 0.989

Second third 0.935 0.945
Last third 0.992 0.959

Table 6.4.: Percentage of the data inside the prediction interval for α = 0.05 on weekends
and holidays.

While in the left plot of Figure 6.10 the prediction interval is smallest around 10◦C,
in the right plot the variance is proportional to the mean and therefore increases with
larger mean values and is smallest between 20◦C and 25◦C, which is due to the choice of a
gamma model. In addition, we want to mention that the difference between predict.gam

(solid lines) and the delta method (dashed lines) is rather small. These observations can
also be made in Figure 6.11.

In Table 6.3 the coverage percentage of the prediction interval on working days for the
whole data range and for the first third (left end), the second third and the last third
(right end) is given. The thirds are construed by dividing the temperature range evenly
in three parts and can be observed in Figure 6.10 and in Figure 6.11 (black dashed lines).
While the overall coverage probability is good, it looks as if the normal distribution is
better in the first third and the gamma distribution is more appropriate in the last third.
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Figure 6.11.: Prediction intervals (α = 0.05) for weekends using predict.gam (red solid
lines) or using the delta method (red dashed lines) for cubic P-splines
(difference order two, q = 10) and assuming a normal distribution (left
plot) or a gamma distribution (right plot), while the black dashed lines
divide the temperature range in three thirds.

This is due to the fact that in case of a normal distribution we assume that var(y) = φ,
the variance stays constant, which results in an underestimation of the variance in the
first third and an overestimation in the last third. On the other hand, the assumption
of a gamma distribution with var(y) = φµ2 results in an overestimation of the variance
in the first third, while the performance in the second and last third is okay.

The coverage percentage of the prediction interval on weekends and holidays is sum-
marized in Table 6.4. It is possible to make the same observation as for working days:
We notice a good overall coverage but also a difference between the three thirds. In
addition, the gamma distribution performs well in the last third while the normal dis-
tribution results in a too narrow prediction interval in the first third and a too wide one
in the last third.

The assumption of a gamma model seems reasonable since we are looking at daily
maxima and it therefore might seem appropriate to assume that the variance increases
with higher observed values rather than staying constant. On the other hand, the
gamma distribution clearly (see Figure 6.10 and Figure 6.11 as well as Table 6.3 and 6.4)
overestimates the variance in the first third. Furthermore, the data shows no increase
of the variance proportional to the mean. To the contrary it makes much more sense
that at a certain level saturation is reached, meaning that the use of gas for heating
has reached its maximum and no further increase in dependence of the temperature is
possible, which results in comparatively little variance for low temperatures.

While the assumption of an increasing variance might not be appropriate, there is still
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Figure 6.12.: Prediction intervals (α = 0.05) for working days (left plot) and weekends
and holidays (right plot) using predict.gam (solid lines) or using quantiles
of the gamma distribution (dashed lines) for cubic P-splines (difference
order two, q = 10) and assuming a gamma distribution.

the possibility that the data is not symmetrically distributed. Since we did assume a
symmetrical distribution around the mean for our previous prediction intervals, we need
to address this issue now. Therefore, we calculate prediction intervals as quantiles of a
gamma distribution using the estimated mean and variance. Thereby we allow this new
prediction intervals to be asymmetric, which would be observable in comparison to the
previous symmetric prediction intervals.

In the R-code below we define the function gamma q, which returns the quantile of a
gamma distribution using the estimated model and α as input parameters. With this
function new prediction intervals can be calculated and compared to the previous ones.
In Figure 6.12 this comparison can be observed. A real difference between the prediction
intervals can only be noticed in the first third, where the prediction interval using the
assumption of a symmetrical distribution around the mean is larger. This is due to the
fact that this prediction interval includes the variance resulting from the estimation of
the mean, while the prediction interval based on quantiles of the gamma distribution
is not factoring that in. Especially in the first third where the variance of the mean is
higher due to fewer observations, this leads to a difference between the two intervals. In
regard of symmetry no great deviation from it can be observed. Therefore, we conclude
that our symmetric prediction intervals are valid.

gamma_q<-function(alpha,object){

mu<-object$fitted

var<-object$sig2 * object$family$variance(mu)

98



6.3. Extrapolation

a<-mu^2/var #shape

s<-var/mu #scale

qgamma(alpha,shape=a,scale=s) #quantile

}

#weekends and holidays

rib10$pred_lows<-gamma_q(alpha/2,m40)

rib10$pred_ups<-gamma_q(1-alpha/2,m40)

#working days

rib11$pred_lows<-gamma_q(alpha/2,m41)

rib11$pred_ups<-gamma_q(1-alpha/2,m41)

#plot

col<-"#E41A1C"

p0<-ggplot(pday0,aes(temp,max.flow))

points<-geom_point(colour=col,shape=1)

p0+points +geom_line(aes(y=fit1),data=rib10,size=1,colour=col) +

geom_ribbon(aes(ymin=pred_low,ymax=pred_up),data=rib10,

fill=col,alpha=1/3,colour=col) +

geom_ribbon(aes(ymin=pred_lows,ymax=pred_ups),data=rib10,

fill=col,alpha=1/3,colour=col,linetype=2)

Summarizing we note that while the gamma distribution performs well especially in the
last third, the prediction intervals under the assumption of a normal distribution seem
to represent the data (see Figure 6.3 and Figure 6.4) better. Especially the assumption
of a quadratic increase of the variance in respect of the mean is not supported by the
data. On the contrary it seems more plausible that for high temperatures and for low
temperatures the smallest variance should be observed due to the fact that at a certain
state either all radiators are on or off. Therefore, in the following section only a normal
distribution will be considered.

6.3. Extrapolation

Finally, we want to address the problem of predicting a mean response if the temperature
is as low as −15◦C. To answer this we need to extrapolate the estimated fit, which
is accomplished by using the information of Section 5.4. Similar as in Currie et al.
(2003) we minimize the difference between the new parameters resulting from the new
basis functions and the already estimated model parameters, although in our case gam

performs the minimization.
In the following R-code we describe one way to extrapolate the fit. Later we will show

an easier way to do it with predict.gam, but since both ways yield to the same result,
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the first way helps to understand the process. The code starts by defining the extended
dataset, which includes temperatures as low as −15◦C. Since we intend to extrapolate
from model m4, two datasets are defined - one for working days and one for weekends
and holidays. Below the R-code to extrapolate the mean behaviour on weekends and
holidays is added. But changing pday0 to pday1 leads to the extrapolated mean on
working days.

Next we define the number of inner knots K, the degree of the B-splines m (m=3 for cubic
B-splines) and the used member of the exponential family. Thereafter, the B-splines are
provided. In a next step we compute the penalty matrix S and get everything we need
to estimate the model. To do that we use the option paraPen, which allows us to
penalize a parametric variable. Since the columns of Bs f denote the B-splines and
each column is equivalent to a parametric variable, the option ensures that the B-splines
are penalized. Although for the first B-spline no responses are available, the model
estimates the corresponding parameter. Since this is a consequence of the minimization
of the penalty, we will see later that in case of a difference order of two this corresponds
to a continuous linear extension of the parameters like showed in Section 5.4.

Finally, the extrapolation and the prediction interval are calculated using the already
estimated parameters and the delta method for the variance of the mean. The derivation
of the prediction intervals is the same as in Section 6.2.1.

#new data

pday_ex<-data.frame(flow.date=rep(NA,2*6),temp=rep(-15:-10,2),

max.flow=rep(NA,2*6),day=rep(0:1,each=6))

pday_n<-rbind(pday_ex,pday) #new dataset

pday0<-subset(pday_n,day==0) #weekends and holidays

pday1<-subset(pday_n,day==1) #working days

attach(pday0) #alternativ: attach(pday1)

K<-6;m<-3

Family<-"gaussian"

Bs_f<-splineDesign(knots((-m):(K+m+1),K,temp),temp,ord=m+1) #B-splines

q<-dim(Bs_f)[2] #number of B-splines

d<-2 #difference order

P<-diff(diag(q),differences=d) #d order differences

S<-t(P)%*%P # Penalty matrix

#estimate model

m4t<-gam(max.flow ~ Bs_f,paraPen=list(Bs_f=list(S)),family=Family)

#extrapolation

X_f<-cbind(rep(1,length(Bs_f[,1])),Bs_f)
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6.3. Extrapolation

B$fit<-X_f %*% m4t$coefficients #for normal distribution

B$se.fit<-sqrt(rowSums((X_f %*% m4t$Vp) * X_f))*

abs(m4t$family$mu.eta(X_f %*% m4t$coefficients)) # sd

#prediction interval

var_y<-m4t$sig2 * m4t$family$variance(B$fit)

B$up<-B$fit + qt(1-alpha/2,m4t$df.residual)*sqrt(B$se.fit^2 + var_y)

B$down<-B$fit - qt(1-alpha/2,m4t$df.residual)*sqrt(B$se.fit^2 + var_y)

In Section 5.4 we did already show that in case of P-splines with difference order two,
the penalty is minimized by a linear extension of the parameters. In the R-code below we
analyse this context at the current example. One can observe that the parameter of the
first B-spline can be deduced by a linear extension of the second and third parameter.

#coef[1] if d=2 on working days

par<-m4t$coefficients[-1]

par[1]

Bs_f1

28684.92

par[2] + (par[2]-par[3])

28684.84

An alternative way to extrapolate the mean is illustrated in the next R-code. Here
we start by defining the same knots as we used previously to construct the B-splines
and then estimate the model with this information. With predict.gam we will be able
to extrapolate the mean and estimate the standard deviation. Finally, the prediction
interval can be deduced in the same way as before. At this point we want to mention
that the prediction interval calculated earlier and the prediction interval calculated with
predict.gam below are identical.

Next we call attention to the knots. For the extrapolation to work we need to specify
the knots in gam which are used to construct all the B-splines, including the B-splines
used for extrapolation. This point is crucial because otherwise the extrapolation as
introduced here will not work.

#knots

kn<-data.frame(temp=knots((-m):(K+m+1),K,temp)) #define knots

#estimate model

m4<-gam(max.flow~ s(temp,bs="ps",k=q),data=pday0,knots=kn,family=Family)

#extrapolation

A<-predict.gam(m4,newdata=data.frame(temp=pday0$temp),se=TRUE,

type="response")
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6. Practical Example: The Gas Flow Data

Figure 6.13.: Extrapolation of the mean for working days (left plot) and weekends and
holidays (right plot) using cubic P-splines with difference order k = 1, 2, 3,
q = 10 and assuming a normal distribution.

#prediction interval

var_y<-m4$sig2 * m4$family$variance(A$fit)

A$up<-A$fit + qt(1-alpha/2,m4$df.residual)*sqrt(A$se.fit^2 + var_y)

A$down<-A$fit - qt(1-alpha/2,m4$df.residual)*sqrt(A$se.fit^2 + var_y)

Finally, the results of this extrapolation can be observed in Figure 6.13, where the
extrapolation is represented by solid lines while the dashed lines correspond to the
smoothly estimated mean. The colour of the lines describes which difference order was
used for model estimation and to get the extrapolation. Therefore, slight changes in
the mean are also possible if we consider different difference orders. In our case they
only seem to occur in the upper left corner of the plots. In addition, there seems to
be practically no difference between the extrapolations on working days (left plot) and
weekends and holidays (right plot).

Depending on the difference order the extrapolation is a constant, linear or quadratic
continuous extension of the mean. Therefore, the mean behaviour of the extrapolated
mean is strongly influenced by the choice of the difference order. In our case the most
likely continuation of the mean could be between the difference orders one and two.

The prediction intervals resulting from the previous findings can be observed in the
left plot of Figure 6.14 for working days and in the right plot for weekends and holidays.
In both figures the lighter ribbons on the left side stand for the extrapolation while the
ribbon on the right side of the plots describes the prediction interval of the fit.

102



6.3. Extrapolation

Figure 6.14.: Prediction interval (α = 0.05) for the fit and the extrapolation using
predict.gam for cubic P-splines (difference order one, q = 10) on work-
ing days (left plot) and on weekends and holidays (right plot), assuming a
normal distribution.

The difference order one is selected for this final figure because it seems in our case
the best choice. A linear or quadratic increase of the gas flow is very unlikely, since at
some point no further increase is technically possible (network limitations). Therefore
an asymptote as used in Friedl et al. (2012) makes sense. As a result, the best GAM in
our opinion is the one with difference order one shown in Figure 6.14
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7. Summary

The challenge of this work was to estimate the mean of the daily gas flows and to
extrapolate it for colder temperatures. Since the daily maximal gas flow depends in
a nonlinear way on the daily mean temperature, first additive models and thereafter
generalized additive models were applied. In Chapter 6 we did conclude that a normal
distribution is better suited to the data than a gamma distribution with a log link, which
would have overestimated the variance for higher response values.

In addition, the influence of the factor day, which distinguishes between working days
and weekends and holidays, was analysed in Chapter 6. While a constant shift parameter
performs quite well, a difference in the mean behaviour on working days and on weekends
and holidays turned out to be significant. As a result, the mean was estimated separately
on working days and on weekends and holidays.

In a final step the mean was extrapolated to temperatures below −10◦C. Since no
observations are available there, the fit is greatly dependent on the selected difference
order (in case of P-splines with a difference order penalty). To mark these uncertainties
confidence and prediction intervals where calculated and shown in plots.
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A. First derivative of B-splines

Here we want to proof that the first derivative of a B-spline defined by

Bm
j (x) =

x− κj
κj+m − κj

Bm−1
j (x) +

κj+m+1 − x
κj+m+1 − κj+1

Bm−1
j+1 (x),

where j = −m, . . . ,K, and

B0
j (x) =

{
1 κj ≤ x ≤ κj+1

0 otherwise
j = 0, . . . , K,

can be written as

∂Bm
j (x)

∂x
= m

(
1

κj+m − κj
Bm−1
j (x)− 1

κj+m+1 − κj+1

Bm−1
j+1 (x)

)
,

where m describes the degree of the spline and K the number of inner knots and x ∈
[κj, κj+1].

The proof is done by induction on m. For m = 1 the first derivative for x ∈ [κj, κj+1]
is

∂B1
j (x)

∂x
=

1

κj+1 − κj
B0
j (x) +

x− κj
κj+1 − κj

∂B0
j (x)

∂x

− 1

κj+2 − κj+1

B0
j+1(x) +

κj+2 − x
κj+2 − κj+1

∂B0
j+1(x)

∂x
.

From the definition of B0
j (x) above it follows that the first derivative of B0

j (x) is zero
for x ∈ [κj, κj+1] and

∂B1
j (x)

∂x
=

1

κj+1 − κj
B0
j (x)− 1

κj+2 − κj+1

B0
j+1(x),

which is our induction basis.
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A. First derivative of B-splines

In the induction step from m− 1 to m we get that

∂Bm
j (x)

∂x
=

1

κj+m − κj
Bm−1
j (x) +

x− κj
κj+m − κj

∂Bm−1
j (x)

∂x

− 1

κj+m+1 − κj+1

Bm−1
j+1 (x) +

κj+m+1 − x
κj+m+1 − κj+1

∂Bm−1
j+1 (x)

∂x

=
1

κj+m − κj
Bm−1
j (x)

+
x− κj

κj+m − κj
(m− 1)

(
1

κj+m+1 − κj
Bm−2
j (x)− 1

κj+m − κj+1

Bm−2
j+1 (x)

)
− 1

κj+m+1 − κj+1

Bm−1
j+1 (x)

+
κj+m+1 − x

κj+m+1 − κj+1

(m− 1)

(
1

κj+m − κj+1

Bm−2
j+1 (x)− 1

κj+m+1 − κj+2

Bm−2
j+2 (x)

)
In the equation above the term Bm−2

j+1 (x) appears two times. Before we continue we
need to rearrange the parameters of this term, therefore

− x− κj
κj+m − κj

1

κj+m − κj+1

+
κj+m+1 − x

κj+m+1 − κj+1

1

κj+m − κj+1

=
−(x− κj)(κj+m+1 − κj+1) + (κj+m+1 − x)(κj+m − κj)

(κj+m − κj)(κj+m − κj+1)(κj+m+1 − κj+1)

=
−xκj+m+1 + xκj+1 + κjκj+m+1 − κjκj+1 + κj+m+1κj+m − κj+m+1κj − xκj+m + xκj

(κj+m − κj)(κj+m − κj+1)(κj+m+1 − κj+1)

=
−xκj+m+1 + xκj+1 + κj+m+1κj+m − κj+mκj+1 + κj+mκj+1 − κjκj+1 − xκj+m + xκj

(κj+m − κj)(κj+m − κj+1)(κj+m+1 − κj+1)

=
(κj+m+1 − κj+1)(κj+m − x)− (κj+m − κj)(x− κj+1)

(κj+m − κj)(κj+m − κj+1)(κj+m+1 − κj+1)

=
1

κj+m − κj
κj+m − x

κj+m − κj+1

− 1

κj+m+1 − κj+1

x− κj+1

κj+m − κj+1

.

As a result, we get

∂Bm
j (x)

∂x
=

1

κj+m − κj
Bm−1
j (x)

+
1

κj+m − κj
(m− 1)

(
x− κj

κj+m+1 − κj
Bm−2
j (x) +

κj+m − x
κj+m − κj+1

Bm−2
j+1 (x)

)
− 1

κj+m+1 − κj+1

Bm−1
j+1 (x)

− 1

κj+m+1 − κj+1

(m− 1)

(
x− κj+1

κj+m − κj+1

Bm−2
j+1 (x) +

κj+m+1 − x
κj+m+1 − κj+2

Bm−2
j+2 (x)

)
.
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Therefore, the derivative of a B-spline for x ∈ [κj, κj+1] is given by

∂Bm
j (x)

∂x
=

1

κj+m − κj
Bm−1
j (x) + (m− 1)

1

κj+m − κj
Bm−1
j (x)

− 1

κj+m+1 − κj+1

Bm−1
j+1 (x)− (m− 1)

1

κj+m+1 − κj+1

Bm−1
j+1 (x)

= m

(
1

κj+m − κj
Bm−1
j (x)− 1

κj+m+1 − κj+1

Bm−1
j+1 (x)

)
.
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B. Proof of Theorem 2

Proof. This proof is taken from Wood (2006a) and is based on the Central Limit Theorem
of Lindberg and the Chebyshev inequality.

First of all, we define

ai =
∑
j

cjxijwi,

where xij stands for the respective element of X and wi describes the i-th row of W ,
therefore

cTv =
n∑
i=1

aizi,

where v = XT W z.
Next, we set

s2n =
n∑
i=1

a2i
φ

wii
,

where wii describe the i-th diagonal element of W . Next we define

Ui =

{
aizi − aiµi if |aizi − aiµi| ≤ εsn

0 if |aizi − aiµi| > εsn
, i = 1, . . . , n ∀ε > 0.

The Central Limit Theorem of Lindberg states that if

lim
n→∞

1

s2n

n∑
i=1

E
[
U2
i

]
= 1, (B.1)

and sn →∞ as n→∞, then

1

sn

n∑
i=1

ai (zi − µi)

converges to the standard normal distribution N (0, I).
Provided that sn →∞ as n→∞ and boundedness of the ai’s, then (B.1) is satisfied,

if

P [Ui = 0]
n→∞−−−→ 0.
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B. Proof of Theorem 2

Since c is a vector of length q and does not change with increasing n, the boundedness
of the ai’s is given by the boundedness of xijwi. Therefore, the condition above is met,
if

∀ε lim
n→∞

P

[
|aizi − aiµi| > ε

n∑
i=1

a2iφ

wii

]
= 0.

Taking the Chebyshev inequality into account, it follows that

P

[
|aizi − aiµi| > ε

n∑
i=1

a2iφ

wii

]
<

a2iφ/wii

(
∑n

i=1 a
2
iφ/wii)

2
ε2
.

Therefore, for condition (B.1) to hold, we need

a2i /wii

(
∑n

i=1 a
2
i /wii)

2

n→∞−−−→ 0.

Since c is the result of weighed sums over columns of X, to fulfil the requirement above
it suffices if (

xijw
1/2
i

)2
(∑n

i=1

(
xijw

1/2
i

)2)2 → 0 ∀i, j.

Wood (2006a) offers an interpretation for this last condition: If no element of X
dominates the fit as n→∞, then cTv converges to a multivariate normal distribution.
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C. R-code of plots

In the following the R-code for the figures in Chapter 6 is added.

farbe<-scale_colour_brewer("day",palette="Set1")

p<-ggplot(pday,aes(temp,max.flow)) +xlab("Temperature [C]") +

ylab("Daily maximum gas flow [KWh/h]") +farbe

points<-geom_point(aes(colour=factor(day)),shape=1,alpha=I(1/2))

temp_10<-seq(min(temp),max(temp),by=1/10)

fit_p1<-predict.gam(m1,newdata=list(temp=temp_10),

type="response")

#one smooth function

p +points +geom_line(aes(x=temp_10,y=fit_p1))

#shift parameter

newdata1<-data.frame(temp=rep(temp_10,2),day=c(rep(0,length(temp_10)),

rep(1,length(temp_10))))

fit_p2<-predict.gam(m2,newdata=newdata1,type="response")

p +points +geom_line(aes(x=temp,y=fit_p2,colour=factor(day)),

data=newdata1,size=1)

#two separate fits

fit_p3<-predict.gam(m3,newdata=newdata1,type="response")

p +points +geom_line(aes(x=temp,y=fit_p3,colour=factor(day)),

data=newdata1,size=1)

#shift parameter norm +gamma

fit_shift2<-geom_line(aes(x=temp,y=fit_p2,colour=factor(day)),

data=newdata1,size=1,linetype=3)

p +points +geom_line(aes(x=temp,y=fit_p2_gamma,colour=factor(day)),
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C. R-code of plots

data=newdata1,size=1) +fit_shift2

#separate fits norm +gamma

fit_sepfits<-geom_line(aes(x=temp,y=fit_p3,colour=factor(day)),

data=newdata1,size=1,linetype=3)

p +points +geom_line(aes(x=temp,y=fit_p3_gamma,colour=factor(day)),

data=newdata1,size=1) +fit_sepfits

#shift vs separate fits gamma

fit_shift_gamma<-geom_line(aes(x=temp,y=fit_p2_gamma,

colour=factor(day)),data=newdata1,size=1,linetype=1)

fit_sepfits_gamma<-geom_line(aes(x=temp,y=fit_p3_gamma,

colour=factor(day)),data=newdata1,size=1,linetype=2)

p + fit_shift_gamma +fit_sepfits_gamma

#extrapolation

pl<-qplot(temp,max.flow,data=B_d,shape=1)

pl +geom_line(aes(y=fit,linetype=typ,color=factor(d)))

#extrapolation + prediction interval

A<-data.frame(A)

ggplot(A,aes(temp,fit,colour=as.factor(day))) +geom_line(size=1) +

geom_point(aes(y=max.flow),shape=1) +

geom_ribbon(aes(ymin=down,ymax=up,fill=as.factor(day)),alpha=1/3)
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