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ABSTRACT

Most current dialog systems employ very simple strategies when dealing with misrecogni-

tions (i.e., “please repeat/rephrase”). This causes problems for the user, as it is not known

which exact part of an utterance was misrecognized. This thesis addresses the problem of

localized error detection in Automatic Speech Recognition (ASR) output and aims at devel-

oping methods to identify which particular word(s) in an utterance has been misrecognized.

Identifying misrecognized words permits the creation of targeted clarification strategies for

spoken dialogue systems, allowing the system to ask clarification questions targeting the

particular type of misrecognition. This thesis presents results from machine learning experi-

ments using ASR confidence scores, together with prosodic and syntactic features to predict

(1) whether an utterance contains an error, and (2) what exact word(s) in a misrecognized

utterance is misrecognized. Experiments conducted using different classification techniques

on the TRANSTAC database showed that by adding prosodic and syntactic features to

the ASR features, prediction of misrecognized utterances improves compared to using ASR

features alone. This means that an interactive system with clarification capabilities using

the proposed error detection method would attempt to correct over 50% of misrecognized

words with a clarification subdialogue. These findings are used to build a classifier for an

error detection module in a Spoken Dialog System (SDS).

Keywords: Localized error detection, Automatic Speech Recognition, ASR, Spoken Di-

alog System (SDS)



Kurzfassung

Die meisten Dialogsysteme verwenden derzeit sehr einfache Strategien um mit Fehlern in

der Spracherkennung umzugehen (z.B.: ”Bitte wiederholen”). Dies führt oft zu Miss-

verständnissen beim Benutzer, welcher oft nicht weiß, welcher Teil des Gesprochenen nicht

verstanden wurde. Die vorliegende Arbeit beschäftigt sich mit diesem Problem der so-

genannten lokalen Fehlerdetektion in der automatischen Spracherkennung und hat zum

Ziel, Methoden zu entwickeln, mit denen man identifizieren kann, welche Wörter der je-

weiligen Benutzereingabe genau zu einem Fehler geführt haben. Diese Identifikation lokaler

Fehlerquellen erlaubt es Dialogsystemen, gezielte Fragen abhängig vom Fehlertyp zu stellen.

Die vorliegende Arbeit präsentiert Ergebnisse von Experimenten, bei denen verschiedene

Methoden des maschinellen Lernens verglichen wurden, um zu klassifizieren (1) ob ein

Fehler gemacht wurde bzw. (2) welche Wörter genau den Fehler verursacht haben. Unter

Verwendung der Sprachdatenbank TRANSTAC wurde gezeigt, dass durch das Hinzufügen

von prosodischer und syntaktischer Information zu den sonst alleinig verwendeten Konfiden-

zen (die der Spracherkenner selbst ausgibt), die Genauigkeit der Klassifikation signifikant

steigt. Die gewonnenen Erkenntnisse wurden bei der Entwicklung eines Dialogsystems ins

Fehlerdetektionsmodul integriert. Ein derartiges System, in das die hier präsentierten Meth-

oden integriert sind, versucht bei mehr als der Hälfte der missverstandenen Worte diese

mittels einer gezielten Nachfrage zu korrigieren.

Schlagwörter: Lokale Fehlerdetektion, Automatische Spracherkennung, Dialogsysteme
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Chapter 1

Introduction

1.1 Motivation

The ability to clarify information is important for successful dialog communication. Hu-

mans ask clarification questions in every-day communication whenever they believe they

have misunderstood their interlocutor. Automatic Spoken Dialog Systems (SDS) also must

use clarification questions to recover from Automatic Speech Recognition (ASR) errors.

However, while humans are able to target their clarification questions to address the par-

ticular source of their confusion, current SDS typically do not. They make use of simple

statements to indicate their lack of understanding followed by requests to the user to repeat

or rephrase their input. While this behavior is generally enough to be applied to any type

of hypothesized ASR error, it fails to provide the user with information about the source

of that error. Such information is useful to humans in formulating responses to human

misunderstandings and should be equally helpful to SDS in resolving recognition errors.

One critical requirement for producing reprise clarification questions is the detection of

just which part of a user’s utterance has been recognized correctly and which part or parts

contain an error (localized error detection). Previous research on error detection in ASR

in general and in SDS applications in particular has focused on identifying how likely an

utterance is to have been recognized correctly or incorrectly by using ASR confidence scores,

sometimes combined with acoustic and prosodic information. Such information may be used

to choose another path through the ASR lattice or to request repetition or rephrasing of

the utterance by the user.

Goals A Speech-to-Speech (S2S) system takes speech input, recognizes it automatically,

translates the recognized input into text in another language, and produces synthesized

speech output from the translation for the conversational partner. The S2S application we

target, allows speakers to converse freely about topics that are not specified in advance. In

the case of a hypothesized ASR error, the clarification component of the system seeks to
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clarify errors with the speaker before passing a corrected ASR transcription on to the MT

component. In this way, the clarification component attempts to identify and correct speech

recognition errors early in the dialog to avoid translating poorly recognized utterances.

The work presented here, aims at (1) identifying which utterances have been misrecog-

nized and (2) which portions of utterances have been incorrectly transcribed by the recog-

nizer. This information is used to formulate targeted reprise questions.

1.2 Related Work

1.2.1 Reprise vs non-reprise questions

In his study of human clarification strategies, Purver [2004] distinguishes two types of clar-

ification questions: reprise and non-reprise questions. He defines a reprise clarification

question as one that asks a targeted question about the part of an utterance that was

misheard or misunderstood, including portions of the misunderstood utterance which are

thought to be correctly recognized. A non-reprise question, on the other hand, is a generic

request for repetition, which does not contain contextual information from the misunder-

stood utterance. Both are illustrated in the example below:

Speaker: Do you have anything other

than these XXX plans?

Reprise: What kind of plans?

Non-Reprise: What did you say?/Please repeat.

While clarification questions in informal human conversations contain only about 12%

non-reprise clarification questions [Purver, 2004], most SDS use only non-reprise clarification

strategies, asking users to repeat or rephrase when the system hypothesizes a recognition

error. Non-reprise clarification questions are easy to construct and are well-suited to simple

slot-filling dialog systems where speakers are required to specify values for a fixed number

of predefined attributes and concepts. However, other researchers have found that the nat-

uralness of system prompts have an important effect on a user’s perception of the system’s

behaviour and performance [Lopes et al., 2011; Stoyanchev and Stent, 2009]. As we move

towards systems that support mixed initiative and eventually user initiative, such as tutor-

ing systems [Litman and Silliman, 2004] and speech to speech translation systems [Akbacak

and others, 2009], it becomes more and more relevant to develope SDS which can request

more specific information about hypothesized ASR errors.
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1.2.2 Detection of erroneous utterances

Handling errors in SDS involves to first determine whether an error has probably occurred

and then choosing an appropriate dialog strategy to correct it. There has been consid-

erable work on detecting erroneous utterances in ASR systems and, more specifically, in

SDS. Bohis and Rudnicky [2005] analyse tradeoffs between misunderstandings and false

rejections in a dialog system. The authors optimize rejection thresholds using data-driven

methods. Lopes et al.[2011] also analyse different feature sets for improving confidence

score estimation in a dialog system. Komatani and Okuno [2010] use a user’s utterance

history to determine whether a barge-in user utterance has been correctly recognized. The

usage of prosodic features in this thesis is motivated by Hirschberg et al.[2004] who found

that prosodic features alone and in combination with other automatically available features

improve significantly over simple acoustic confidence scores alone in identifying misrecog-

nized utterances. However, these authors did not address the problem of identifying which

word(s) in the utterance were misrecognized. Goldwater et al. [2010] found evidence that

some words are harder to recognize than others due to their prosodic characteristics, the

position they occur in in a turn, their use as discourse markers, their location preceding

disfluencies, or their confusability with words having similar language model probabilities

and similar phonetic make-up. They also found that speaker variability was a consider-

able source of recognition error. However, these authors do not address the question of

how to use these characteristics to predict which words are misrecognized. This thesis ad-

dresses this problem: how can we identify misrecognized words accurately in an SDS using

automatically extracted, speaker independent features.

There has also been considerable research on determining dialog strategies for error

recovery. For example, Dzikovska et al. [2009] describe an approach to dealing with errors

in tutoring dialog systems (a dialog system used top provide instructions to the user). Bohus

et al. [2006] use supervised learning to determine the optimal error recovery policy in a

dialog system, such as providing a help message, repeating a previous prompt, or moving

on to the next prompt. This thesis is a study towards introducing a new policy type in a

dialog system: asking a targeted clarification questions.

1.3 BOLT

This thesis was carried out as part of the ’Broad Operational Language Translation’ (BOLT)

program, funded by the ’Defense Advanced Research Projects Agency’ (DARPA) of the

’United States Department of Defense’. BOLT’s goals are the translation of informal lan-

guage genres and Bilingual, multi-turn conversation (both on text and speech level).

To achieve flexibility with regard to conversational topics, handling dialectal variations

and being able to handle more than single sentences while also guaranteeing reliability in

translation accuracy, the program is organized by:
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� Three Technical Areas 1. Algorithmic Development and Integrated Systems 2. Data

Collection 3. Evaluation

� Six Activities per Technical Area (Except Data) A. Translation and Information Re-

trieval B. Human-Machine Dialog Systems C. Human-Human Dialog Systems D. Ara-

bic Dialect Translation E. Grounded Language Acquisition F. Basic Technologies

This thesis represents parts of the work carried out by a multi-institutional team lead by

SRI International and is concerned with technical area 1, activity B of the BOLT program.

All participating sites had as a baseline for data to train on both the TRANSTAC (TRANS-

lation system for TACtical use) and GALE (Global Autonomous Language Exploitation)

data sets.

1.4 Outline

This thesis is organized as follows: in chapter 2, an overview of used materials will be given.

In chapter 3, all explored features for error detection are presented as well as the final set of

features used in the subsequently presented experiments. Chapter 4 presents the machine

learning algorithms employed as well as the results from using these different algorithms

with the feature sets presented in chapter 3. Chapter 5 provides a design overview of

both the overall system as well as the implementation of the error-detection component

(utilizing classifiers built in chapter 4) into this system. Parts of this thesis have been

published in Stoyanchev et al. [2012] and they appear throughout the chapters in re-

formatted paragraphs.
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Chapter 2

Materials and ASR system

This chapter presents an overview of materials used in the thesis with regards to speech

data sets abailable for system development (TRANSTAC) and research experiments as well

as the ASR system (Dynaspeak) used to process the audio data.

2.1 TRANSTAC

The Spoken Language Communication and Translation System for Tactical Use (TRANSTAC)

program was the predecessor to today’s BOLT program. Data collected by the National

Institute of Standards and Technology (NIST) during seven months of evaluation exercises

performed between 2005 and 2008 form the basis for the development done under BOLT

[Weiss and others, 2008]. The data was collected using SRI’s IraqComm speech-to-speech

translation system [Akbacak and others, 2009]. The corpus contains simulated dialogues

between English military personnel and Arabic interviewees. Thus, the audio is clean of

noise and was recorded using high-performance audio equipment to ensure highest possible

usability for context dependent experiments. When an English speaker speaks, the system’s

ASR component recognizes the utterance, performs machine translation to translate it into

(Iraqi) Arabic, and uses a text-to-speech synthesis (TTS) system to produce the Arabic ver-

sion. When the Arabic speaker replies, the procedure is reversed. Table 2.1 shows a sample

dialogue from the dataset, with correct English translations for the Arabic utterances.
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English: good morning

Arabic: good morning

English: may i speak to the head of the household

Arabic: i’m the owner of the family and i can

speak with you

English: may i speak to you about problems with

your utilities

Arabic: yes i have problems with the utilities

Table 2.1: Example dialogue from the IraqComm Corpus.

For experiments and development, two different subsets were provided by NIST. These

subsets will be referred to as January release and May release. Both releases feature only

male speakers in an optimal, laboratory style environment. This ensures absolutely noise-

free recordings.

The January release includes English and Arabic speech with manual transcriptions.

We use only the audio and manually annotated transcript (as the reference) of the En-

glish utterances for the experiments presented in this thesis. We removed utterances in

which a user directed a command to the computer, such as Computer, repeat. We also

removed instances with a difference in ASR and transcript due to annotation, (e.g., such as

contractions we’re and we are) in order to avoid difficulties in string matching.

The resulting corpus contains a total of 3.7K utterances and 26K words. 28.6% of

utterances and 9.1% of words contain an ASR error (Table 2.2). These numbers are based

on ASR results obtained by running the Dynaspeak ASR system (see section2.2) release

provided with the January release of TRANSTAC data.

The May release is again divided into two subsets, forming a development set and a test

set. Similarly to the January release, both English and Arabic transcriptions were available,

where only the English ones were used. Due to ongoing development and tuning of the

BOLT System, multiple versions of the Dynaspeak ASR were used. Table 2.3 represents

numbers obtained by running the latest (as of June 2012) available Dynaspeak version. As

the names suggest, the development set was used for training and tuning purposes across

BOLT sites while the test set served as means of obtaining realistic performance numbers.
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Overall Correct ASR Error in ASR

All Utter-

ances

3.729 2.664 (71.4%) 1.065 (28.6%)

All Words 26.098 23.720(90.9%) 2.378(9.1%)

Words in er-

roneous Ut-

terances.

7.48 5.45 (72.8%) 2.03 (27.2%)

Table 2.2: Data composition for January release.

Total Words Correct Words Erroneous Words

Development

Set

41.801 39.033 (93,4 %) 2.768 (6,6%)

Test Set 37.354 34.927(93,5%) 2.427 (6,5%)

Table 2.3: Data composition for May release.

2.2 Dynaspeak

Dynaspeak is an ASR engine developed and distributed by SRI International [Franco

and others, 2002]. It is currently used in industrial, consumer, and military products and

systems. It serves as the ASR component deployed in current field units of the IraqComm

system which forms the conclusion of the TRANSTAC program. Core features are:

� Hidden Markov Model (HMM)-based speech recognizer. HMMs form a statistical

approach to speech recognition. The core functionality is to predict the most probable

meaning of speech based on previously observed patterns.

� Supports continuous speech. This enables the user to talk freely without having to

provide any indication of beginning and ending of the input.

� Dynamic grammar compilation. The grammar used by the recognizer can be changed

and adapted on the fly, during run-time. This allows for quick adaptations to the

recognition engine.

� Speaker independent. The ASR does not discriminate between types of users (male/fe-

male, young/old, ...) and accuracy is similar for all users.

� Speaker adaptation. The more the ASR is subject to input by a user, the more it will

adapt internal modeling to improve accuracy.

� Dynamic noise compensation. The ASR is able to distinguish between user issued

speech and environment noise and will compensate for the latter to improve accuracy.
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Dynaspeak was used as an as-is application for this thesis as other than providing

input for new features to the development team at SRI, no possibility of changing the

functionality of components was available. Thus, no modifications to the ASR system

were made by the author, but suggestions were made to the responsible development team

which then partly were implemented in future releases. The basic usage of Dynaspeak was in

providing an input script (part of the application) with a list of audio files and corresponding

transcriptions. After the successful recognition process, a log file with following information

was available (listed are only fields containing information relevant for this thesis, bolded

names represent the field names in the log file):

� Utterance ID (field SENTENCE)

� File ID (field FILENAME)

� Start and end time of word (field INFO: Alignment)

� Final ASR hypothesis (field HYP)

� Reference text (field REF)

� Prescinded information for misrecognitions (insertions, deletions, word swaps) (in both

REF and HYP)

� Per-word ASR confidence/posterior (field WORD POSTERIORS)

� Start time for each word (field TIMES)

An example for such a log file can be seen in table 2.4

SENTENCE: 21

FILENAME: /proj/speech/projects/bolt/.../scen01 oovnne 009.wav

INFO: Alignment ’(-pau- 0 1 pr:-448 gp:-280 cf:0)....((us 266

291)..

REF: that TRAFFICKER CREPT INTO THE

city without us knowing

HYP: that ********** TRAFFICKERS CRYP-

TOGRAPHY TO city without us know-

ing

ERROR: 0 ins 1 del 3 sub 9 wds 44.44% err

TOTAL: 29 ins 2 del 38 sub 173 wds 39.88% err

100.00% sent

WORD POSTERIORS: that|0.909795 traffickers|0.186832 cryp-

tography|1 to|1 city|0.856397 without|1
us|1 knowing|1

Table 2.4: Example entry for an utterance in Dynaspeak log file.
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Chapter 3

Feature Extraction

In the following chapter, all features used in the machine-learning experiments in chapter

4 will be explained as well as how these features were extracted from available data (see

chapter 2).

3.1 Features

For experiments, features were available (through extraction presented in sections 3.4, 3.2,

3.3) for both utterance- and word level. A summary of features is presented in Table 3.1.

Also denoted in this table are the feature subset affiliations for the acronyms ASR, PROS

and SYN which will be used to refer to these subsets. ASR represents posteriors as calcu-

lated by the speech recognizer. PROS represents prosodic features which are measurable

physical attributes of an audio signal such as frequency and energy their derivatives. SYN

refers to syntactic features such as parts-of-speech (see section 3.3). An extensive list of

explored features including descriptions can be seen in table 3.2.
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Feature type Description Utterance-correctness

classification experi-

ment

Word-correctness clas-

sification experiment

ASR log of posterior probability average over all words in

hypothesis

in current word; avg over

3 words; avg of all words

Prosodic F0(MAX/MIN/MEAN/STDEV) for whole utterance for word

features RMS(MAX/MIN/MEAN/STDEV) for whole utterance for word

(PROS) proportion of voiced segments in whole utterance in current word

duration of an utterance of current word

timestamp of beginning of first word used not used

speech rate over all utterance not used

Syntactic POS tags count of unigram/bigram this/previous/next word

features (SYN) word type (content/function) not used this/previous/next word

Table 3.1: Overview of all features used in the experiments for section 4.3
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3.2 Prosodic Features

For the January released data (see section 2.1), we extracted prosodic features from the

audio file of each utterance using Praat scripts [Boersma, 2001]. These scripts were based on

existing scripts with slight modifications. Features from both scripts offered redundancy for

some features (e.g., duration) as well as different measurement methods for other features

(e.g., smoothed values versus non-smoothed values). This redundancy was designed on

purpose in order to test as many features as possible concerning their information gain.

Functionality of both scripts as well as an example output for one script are presented in

tables 3.4 and 3.5. Both scripts are called simultaneously. They use information regarding

start and end time of words extracted by another script, which analyzes Dynspeak logfiles

and extracts information. Among others, this script delivers start and end times for each

word. Table 3.3 shows an example for such word alignment, which serves as input for both

prosodic scripts.

evalTranstac-0508-live-004.wav 0.01 0.66 who

evalTranstac-0508-live-004.wav 0.67 1.52 places

evalTranstac-0508-live-004.wav 1.53 1.78 the

evalTranstac-0508-live-004.wav 1.79 2.4 roadside

evalTranstac-0508-live-004.wav 2.41 2.89 bombs

Table 3.3: Example of input for feature extraction.

Script name Function and output format

extract acoustics.pl

-runs a Praat script to extract pitch and energy.

-results are saved in 1 FILE PER WORD.

-filenames are composed as ’UtterancefileidWordnumber.txt’

with Wordnumber beginning at ’0’ (thus ’evalTranstac-0603-

online-1401.txt’ is the SECOND word in evalTranstac-0603-

online-140.wav).

voice-report.praat

-runs a praat script to extract pitch, energy, shimmer, jitter.

-results are saved in 1 FILE FOR ALL WORDS.

-filename is ’info-wid.txt’.

-each line in ’info-wid.txt’ contains the same information

as the Praat’s standard voice-report PLUS the word ID for

each file, starting with 0 for the first word in each utterance.

Table 3.4: Script functionality and description.
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F0 MIN: 397.045

F0 MAX: 484.536

F0 MEAN: 451.015

F0 STDV: 34.865

ENG MAX: 37.689

ENG MIN: 21.995

ENG MEAN: 31.060

ENG STDV: 4.801

VCD2TOT FRAMES:0.325

WORD:who

Table 3.5: Example of output for extract acoustics.pl script.

For the May released data (see section 2.1) the task of prosodic feature extraction was

carried out by SRI via a modification to the Dynaspeak recognizer which allowed for the

needed information to be presented directly in Dynaspeak logfiles (see table 3.6).

FINAL RESULT: is it couldn’t be anywhere near five hun-

dred

is frames 0-15

F0 mean=118.404515 min=107.349098

max=143.991821 stdev=10.409563

RMS mean=231.864628 min=0.000000

max=595.293701 stdev=189.380846

Voiced proportion 0.687500

Table 3.6: Snippet of Dynaspeak logfile modified to output prosodic features.

3.3 Syntactic Tagging

Syntactic Tagging for both part-of-speech (POS ) as well as content-/noncontent-words

(CNT ) was done by another project using the Stanford POS Tagger [Toutanova et al.,

2003]. On the utterance level, both syntactic features were represented as unigrams (how

often a tag occurs in the utterance) and bigrams (how often a certain pair of tags occurs in

the utterance). Table 3.7 shows an example of the tagged output for the word level. The

table shows POS as well CNT tags for current, previous and next words. NULL meaning

the information is not available (e.g., there was no previous/next word in the utterance).

The CNT tag can either be FNC (for function words) or CNT (for content words). POS

tags can be any part of speech tag (e.g., VBZ - Verb, 3rd person singular present).
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evalTranstac-0508-live-004.wav, 0, who, WP, CNT, NULL, NULL, VBZ, CNT

evalTranstac-0508-live-004.wav, 1, emplaces, VBZ, CNT, WP, CNT, DT, FNC

evalTranstac-0508-live-004.wav, 2, the, DT, FNC, VBZ, CNT, NN, CNT

evalTranstac-0508-live-004.wav, 3, roadside, NN, CNT, DT, FNC, NNS, CNT

evalTranstac-0508-live-004.wav, 4, bombs, NNS, CNT, NN, CNT, NULL, NULL

Table 3.7: Example of syntactic tagging.

3.4 Recognition Tagging

Recall the basic goal of this thesis: the development of methods for reliable classification of

ASR output as either correct (recognition is equal to what was said) or incorrect (recognition

is not equal to what was said i.e. word substitution). To be able to train and test such

classifiers, the available data has to be pre-tagged as being part of either class in order to

provide a measure as to how well a classifier actually performs.

As mentioned in chapter 2, Dynaspeak output files contained two lines presenting both

final ASR hypotheses as well as the actual transcription. Already encoded in this repre-

sentation are misfits in the form of capitalized letters as well as ’*’ characters. To take

advantage of this information, a script was created (see appendix B.1) to tag a word in

the final hypothesis as either correct or incorrect. Tables 3.8 and 3.9 present an example

as to how words would be classified based on logfile information. Note that the deletion

of words occurring in the transcript is not accounted for since such information would not

be available in a live-system. The utterances’ tag depend on to the tags of the words they

contain. An utterance is classified as incorrect, if one or more words in the utterance are

also tagged as such.

REF: that TRAFFICKER CREPT INTO THE

city without us knowing

HYP: that ********** TRAFFICKERS CRYP-

TOGRAPHY TO city without us know-

ing

Table 3.8: Example for the marking of differences in reference text (REF) and hypotheses

(HYP).
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Word Tag

that correct

TRAFFICKERS incorrect

CRYPTOGRAPHY incorrect

TO incorrect

city correct

without correct

us correct

knowing correct

Table 3.9: Example for tagging of an utterance.

3.5 Feature Exploration

3.5.1 Procedure

Analyzing the available set of features and choosing the most significant of those was done

using a simple ’Hill-climbing’ algorithm. The idea behind the algorithm was to find signifi-

cant features by eliminating insignificant or even harmful ones. This was done by calculating

the overall error of the entire dataset and then eliminating one feature at a time and re-

measuring the error. The second method for testing features was starting with one feature

and step-wise adding other features to the inspected list.

Both approaches were done by both starting the algorithm once from the top of the

list of features as well as once from the bottom. The error can go in one of the following

directions:

� The error increases/accuracy decreases, implicating that the feature removed was

actually significant towards a better classification. In this case, the feature will be

retained in following iterations.

� The error does not change. In case the error does not change, the feature is deemed

insignificant and will be excluded for all future runs.

� If the error decreases, the feature seems to have hurt the performance of the classifi-

cator and will thus be exluded in all future runs. Also, future performances will be

measured against the decreased error.

The error of the entire dataset and any given subset of features was measured using

three different scores: F-measure (see section 4.3) for both ’correct’ and ’incorrect’ labeled

words (thus providing two scores) and accuracy representing the percentage of correctly

classified instances in the dataset.
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3.5.2 Results and Discussion

Interestingly the final set of relevant features was the same for all three evaluated scores,

thus presenting a stable and robust set of features independent of the evaluation method.

The scores for this dataset show an accuracy of 0.845, F-measure for correct of 0.885 and

F-measure for incorrect of 0.669. As expected, prosodic features helped in improving clas-

sification performance as well as POS tags as both present a natural extension of acoustic

models and language models used in ASR. Slightly surprising though was the complete

lack of impact of fine-grained features like shimmer and jitter. A possible explanation may

be found when taking into account the fact that data presented in experiments represented

multiple speakers. So, while it may be possible to find shimmer and jitter patterns influence

misrecognition rate for a single speaker, a general pattern true for multiple speakers could

not be found though. For later experiments, the features nPeriods, meanPeriod, sdPeriod,

jitterloc and NHR where dropped from further evaluation due to minimal improvements

(ranging in the �area), and difficulty of extraction using the built-in mechanisms of Dy-

naspeak ASR.
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Chapter 4

Modeling

This chapter is concerned with the creation of a classifier to predict whether or not ASR

output is correct or not. First, three different machine-learning algorithms are explored

and applied to the data and to the features gathered in chapters 2 and 3. Then, different

performance measure method are used to determine the most useful classifier.

4.1 WEKA Framework

The Waikato Environment for Knowledge Analysis (WEKA) is a collection of machine

learning algorithms for data mining tasks developed at the Machine Learning Group at the

University of Waikato, New Zealand. The algorithms can either be applied directly to a

dataset or called from your own Java code. Weka contains tools for data pre-processing (e.g.,

for value editing), classification, regression (e.g., for finding dependant feature in a dataset),

clustering (e.g., for associating data values with different statistical distributions), associ-

ation rules, and visualization (e.g., for visualizing data arrangement in an N-dimensional

space) [Witten and Eibe, 2005].

WEKA was chosen as the framework basis for all experiments as well as the tool with

which the final classifiers were built, among other reason, due to the ease of implementation

into existing software given the Java based base package. Also, for experimental purposes,

the built-in GUI provides the possibility of quickly visualizing, evaluating and comparing

different types of classifiers or parameter sets.

4.2 Algorithms

4.2.1 Decision Trees

Decision Trees form the simplest way of building a classifier. The tree starts from a central

node, the root, which also forms the top layer of the tree. Starting from the root, every
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following node underneath it leads to two child nodes. The only exception to this rules are

terminating nodes - or leafs, which represent a final outcome or decision. The connection

from one node to another is made via branches. Branches represent values upon which the

path to the next node is determined. In the application of machine learning, decision trees

are often referred to as classification trees and are built by mapping observations onto how

final states were achieved in a given machine learning problem to paths in the tree. And

example of a decision tree can be seen in figure 4.1].

Figure 4.1: Example for a simple DT

Several training algorithms exist as to how such mapping should be done- the simplest

being a straight mapping of observed paths given multiple iterations through a problem.

This however, is not feasible since such an approach will result in a robust classifier only

for the most mundane tasks. WEKA offers a set of established algorithms to generate

decision trees (DTs). The most common and well established of those, and also the one

which will be used for experiments throughout this thesis, is the J48 or C4.5 algorithm.

This algorithm is based on step-wise minimization of entropy or uncertainty in the tree by

adding high-information (low-entropy) attributes of the presented data set as nodes to the

tree.

In case of the J48 algorithm, this is done by first analyzing the set of training data

available, which is represented as classified examples of feature or attribute vectors. At

each node of the tree, J48 chooses one attribute of the data- which most effectively (highest

information gain) splits its training set into subsets of classes - as the node attribute. This is

also an implementation of the divide and conquer principle in machine learning. In addition

to this basic principle, the algorithm has three base cases [Quinlan, 1993]:

1. All the (remaining) samples belong to the same class. In this case, J48 simply creates

a leaf choosing that class.

2. None of the available/remaining features provide any information gain. In this case,

J48 creates a node higher up the tree using the expected value of the class.

3. The same step is taken in the case of encountering a previously unseen class.
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In this thesis, decision trees are used for both feature exploration (see chapter 3) as well

as for error detection.

4.2.2 Multiboost Decision Trees

Boosting refers to a technique which proposes the use of not just one single classifier to solve

a classification problem, but the use of an ensemble or committee of such classifiers, where

each classifier is to be considered ”weaker” (i.e. not as accurate) than an otherwise used

single classifier. This is done by using a base learning algorithm (like J48) and providing it

with a sequence of training sets which the boosting algorithm synthesizes from the original

training set. The resulting classifiers become members of a decision committee, where, in

the simplest case, the class with the most votes will be the outcome. A graphical example

can be seen in figure 4.2.

For this thesis, a more sophisticated boosting algorithm was chosen, which was also

easily available in the WEKA framework - the MultiBoostAB method. MultiBoostAB is

an extension to the highly successful adaptive boosting or AdaBoost [Freund and Schapire,

1995] technique for forming decision committees by combining the AdaBoost algorithm with

wagging [Bauer and Kohavi, 1999].

Wagging is a variant of bagging [Breiman, 1996]. Bagging is an ensemble method that

creates individual training sets for its ensemble members by random redistribution of the

training set. Each classifier’s training set is generated by randomly drawing examples of

the original training set. One disadvantage of this method is that many of the original

examples may be repeated in the resulting training set while others may be left out because

each set has to contain the same number of examples as the original. Wagging differs from

bagging in that it does not draw random samples but instead assigns a random weight to

each example in the training set. Hence, the original name weighted bagging, then shortened

to wagging. Both wagging and bagging do not use weights for their classification decision,

but each classifier has equal influence on the output.

AdaBoost, similar to wagging, assigns weights to each of the examples contained in an

original training set. With AdaBoost, however, the probability of picking each example is

initially set to be 1/N, where N is the total number of samples available in the training set.

These probabilities are recalculated after each trained classifier is added to the ensemble,

based on the performance of the newly added classifier. AdaBoost combines classifiers using

weighted voting, allowing AdaBoost to discount the predictions of classifiers that are not

very accurate on the overall problem.

MultiBoost’s motivation to combine both methods is based on observations, showing

that wagging is effective in reducing the variance of resulting classifiers while AdaBoost

succeeds in reducing the bias of classifications [WEBB, 2000]. To benefit from both char-

acteristics, finding a way of combining both algorithms seemed desirable. However, while

AdaBoost weights the votes of its committee members, bagging does not, thus making the
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votes of members of each committee incompatible. An alternative way was found by bagging

a set of sub-committees, each formed by application of AdaBoost. Thus, MultiBoosting can

be considered as wagging committees formed by AdaBoost.

Throughout this thesis, when referring to classifiers trained with MultiBoost, J48 deci-

sion trees were used as a base classifier for the MultiBoost algorithm.

Figure 4.2: Example of a weighted decision committee

4.2.3 Support Vector Machines

The third method for building binary classifers were Support Vector Machines (SVM)

[Cortes and Vapnik, 1995]. In its most basic form, an SVM solves a 2-dimensional problem

of linearly separable classes by positioning a linear separator such that each distance d,

measured as the length of a normal drawn from the separator to a data point i, minimizes

the overall distance

D =
∑

di. (4.1)

The resulting separator is called a hyperplane. The overall distance D is called the

margin. Thus, the result of any SVM is the maximum margin hyperplane separating any

two classes in a feature vector with dimensionality higher than one. An example of such a

separator can be seen in figure 4.3.
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Figure 4.3: Simple linear SVM example

To train SVMs for error detection, the sequential minimal optimization (SMO) [Platt,

1998] is used in this thesis. SMO splits the potentially very large optimization problem

for finding a suitable maximum margin into a series of smaller problems (divide and con-

quer algorithm). This avoids a quadratic programming problem and makes the solution

analytically computable.

A core feature of SVMs is the Kernel trick, which allows the algorithm to obtain results in

high-dimensional spaces without having to explicitly compute such results. This is achieved

by using a Kernel to map results from a low-dimensional space into higher-dimensional

space. For this thesis, a polynomial Kernel as shown in formula 4.2 was used. The exponent

p = 3 was empirically chosen to allow for reasonable training and re-training times in case

of short-notice data changes.

K(x, y) = 〈x, y〉p (4.2)

4.3 Experiments

4.3.1 Statistical measures

In order to identify the best performing feature set for each of the classifiers we separately

evaluate performance of (1) misrecognized utterance prediction and (2) misrecognized word

prediction. To be able to measure the quality of a classifiers, several indicators will be used:

� Accuracy; depicts the overall percentage of correctly classified instances. An accuracy

of 80% means, that the classifier has correctly classified 80 samples out of 100. As

simple as that may be, it is very dangerous to rely on just accuracy for measuring the

quality of a classifier if the number of instances of classes in a dataset is highly skewed

toward one. For instance, a dataset contains 100 samples of class ”X” but only 5

samples of class ”Y”. If every sample in the dataset is classified as being part of ”X”,

the accuracy would be quite high at 95% but the classifier would have misclassified

every single instance of class ”Y”.
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� Precision; a classifiers precision measures the amount of samples, that were correctly

assigned to a class versus those that were incorrectly assigned the same class. For

instance, if a classifiers predicts 100 samples of a dataset as being part of class ”X”,

but 20 of those samples actually belong to class ”Y”, the precision for that class would

be 0.8.

� Recall; this measure represents the fraction of samples of a certain class in a dataset

that were correctly classified as such by the classifier. For instance, if a dataset

contains 100 samples of class ”X” and a classifier recognizes 80 of those samples as

part of class ”X”, the recall for this class would be 0.8.

� F-measure; also known as F1-measure. F-measure is a simple way of combining both

precision and recall of a class into one measure (see formula refform:fmes).

F1 =
2 ∗ recall ∗ precision
(recall + precision)

(4.3)

� Matthews Correlation Coefficient; similar to F-measure, the MCC combines different

results into one compact measure. However, contrary to F-measure (and even more

so contrary to accuracy), the MCC is specifically designed to deal with highly skewed

datasets. The MCC is calculated as seen in formula 4.4. TP stands for True Positives

or samples correctly classified as being part of class ”X”, TN stands for True Negatives

or samples correctly classified as NOT being part of class ”X” (and thus are indeed

part of class ”Y”). FN and FP stand for False Positives/Negatives and are thus

incorrectly classified samples.

MC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)
(4.4)

4.3.2 Utterances

To evaluate a 2-stage approach to error detection, where in a first classification run poten-

tially misrecognized utterances are identified to be later on checked by a word level error

detector, first we have to evaluate how well different feature sets will perform on the utter-

ance level. These experiments were run on the entire January release data (see chapter 2)

using 10-fold cross-validation with a J48 classifier. Table 4.1 shows precision, recall, and

F-measure for predicting correctly recognized and misrecognized utterances; improvement

in F-measure of our classifier over a classifier using only ASR confidence scores; and overall

prediction accuracy.

The majority class baseline (always predicting correct recognition) achieves 71.4% over-

all accuracy — i.e., failing to detect any incorrectly recognized utterances. Using ASR

confidence features alone, we increase overall accuracy to 79.4% with an F-measure for

predicting correctly recognized/misrecognized instances of .86/.60, respectively. Contrary
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to our expectation, a combination of ASR confidence and prosodic features (ASR+PROS)

does not improve this performance. However, syntactic features in combination with ASR

confidence (ASR+SYN) is the highest performing predictor across all measures. A classifier

trained with (ASR+SYN) achieves 83.8% accuracy with F-measures of .89 for correcto and

.68 for incorrect words. Since one of the aims was to create targeted clarification questions,

of particular interest was to increase the F-measure for detection of misrecognized utter-

ances. We observed that by adding syntactic features to ASR features, the F-measure for

detecting misrecognized utterances increases by 13.3%.

Feature Utt Correctly Rec. Utt Misrec F1 incorrect Overall

P R F P R F compared to ASR Accuracy

Maj. Base. .71 1 .83 - 0 0 -100% 71.4%

ASR .83 .90 .86 .68 .53 .60 0 79.4%

ASR+RROS .82 .89 .85 .65 .51 .57 -.05 78.1%

ASR+SYN .86 .93 .89 .77 .61 .68 +13.3 83.8%

Table 4.1: Precision, Recall, F-measure, overall accuracy, and % accuracy improvement

over majority baseline for predicting misrecognition in an utterance. The highest value in

each column is highlighted in bold.

4.3.3 Words

This experiment is run on a subset of the data with the words from misrecognized utterances

known from the reference transcription of the January release data (see chapter 2) to contain

errors. In this dataset, 27.2% of words are misrecognized. We perform a 10-fold cross-

validation experiment on this subset of the data. Table 4.2 shows precision, recall, and

F-measure for predicting correctly recognized and misrecognized words in utterances known

to be misrecognized, improvement in F-measure of misrecognized word prediction over a

classifier that uses only ASR features, and overall accuracy of prediction.

The majority class baseline (predict correct recognition) achieves 72.8% overall accuracy,

failing to detect any of the incorrectly recognized words. Using the ASR confidence features

alone achieves an F-measure for predicting correctly recognized/misrecognized words of

.86/.50 respectively. ASR confidence scores together with prosodic features (ASR+PROS)

improve the F-measure for predicting misrecognized words to .54. We observe that prosodic

features are very useful in predicting misrecognized words, raising F-measure by 8%. A

combination of all features (ASR+PROS+SYN) is the highest performing predictor across

all measures except for recall on correctly recognized words. The performance of a classifier

trained on ASR+PROS+SYN features reaches an F-measure of .90/.70 and overall accuracy

of 84.7%. Prosodic and syntactic features account for an increase of 40% for predicting
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Feature correct incorrect F1 incorrect Overall

P R F P R F compared to ASR Accuracy

Maj. Base .73 1 .84 - 0 0 -100% 72.8%

ASR .81 .93 .86 .69 .40 .50 0% 78.7%

ASR+PROS .82 .92 .86 .67 .46 .54 +8% 79.0%

ASR+PROS+SYN .87 .93 .90 .76 .64 .70 +40% 84.7%

Table 4.2: Precision, Recall, F-measure, for predicting correctly recognized/misrecognized

words, change in F-measure for predicting misrecognized words, and overall accuracy. The

highest value in each column is highlighted in bold.

misrecognized words compared to the classifier that uses only ASR features.

In sum, the experiments presented in this section show, that the best performing

feature combination for predicting misrecognized utterances is ASR+SYN and for words

ASR+PROS+SYN.

4.3.4 Classifier evaluation

With information gathered during utterance- and word level experiments, we evaluated

which of different classifiers (see section 4.2) is the best for the later system implementation

when using the full feature set (ASR+PROS+SYN) for word prediction. Each classifier was

evaluated with the May release of Transtac data (see chapter 2), which is a very large set

of samples for both training and testing. Table 4.3 presents the results for this experiment.

Looking at this data we find that in addition to being vastly superior with regards to

training time (several hours vs. less than an hour), MultiBoosted decision trees outperform

SVM by quite a margin (69% increased performance). This may be caused both by the

unbalanced nature of training data (7% of all training samples are of class incorrect) as

well as by difficulties in the normalization of the discrete valued syntactic features with the

continuous valued confidence and prosodic measures. According to this result, all further

experiments were performed using MultiBoost J48 decision trees.

Classifier Accuracy Precision(c) Recall(c) Precision(ic) Recall(ic) F1(ic) MC

DT 96.04 % 0.971 0.987 0.76 0.57 0.651 0.6381

SVM 95.41 % 0.957 0.996 0.86 0.35 0.497 0.5316

MultiBoost 94.78 % 0.966 0.977 0.757 0.679 0.716 0.6882

Table 4.3: Classifier performance for training and test split. (c) depicts measurements

on the correct class while (ic) depicts measurements on the incorrect class. MC column

presents the Matthews Correlation Coefficient as an auxiliary measure of performance.
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4.3.5 1-stage and 2-stage error recognition

Taking into account results in utterance level, word level and classifier evaluation, we eval-

uated 1-stage and 2-stage approaches to misrecognized word prediction. In a 1-stage ap-

proach, we predicted misrecognition on all words in the test set in a single stage (i.e., is this

word correctly recognized or not?). A word is misrecognized if it represents an insertion or a

substitution. In the first stage of the 2-stage approach, we predict utterance misrecognition

for each utterance in an ASR hypothesis. We considered an utterance to be misrecognized

if the word error rate (WER) of the utterance was > 0. In the second stage, we predicted

whether each word in the ASR hypothesis is misrecognized or not.

Method Misrec. words correct incorrect Overall Improvement

in train./test set P R F P R F accuracy over Base.

1 Maj. Base - / 8.5% .91 1.0 .95 - 0.0 - 91.5 % -

2 1-stage original 8.7% / 8.5% .95 .99 .97 .77 .49 .60 94.4% 3.2%

3 1-stage upsampled 35% / 8.5% .96 .97 .97 .64 .60 .62 93.7% 2.4%

4 2-stage original 8.7% / 8.5% .95 .99 .97 .85 .43 .57 94.5% 3.3%

5 2-stage upsampled 35% / 8.5% .96 .98 .97 .76 .52 .63 94.5% 3.3%

Table 4.4: Precision, Recall, F-measure, and overall accuracy for correctly recognized/mis-

recognized words, overall accuracy, and accuracy improvement compared to the baseline

method. The highest values of each column are highlighted in bold.

We evaluated word-correctness prediction on the complete dataset using the 1-stage and

2-stage approaches. We split the dataset into 80% training and 20% test sets, maintaining

a similar distribution for correct and incorrect utterances of 8.7%/8.5% in each. We trained

the utterance classifiers using all utterances in the training set. We trained the misrecog-

nized word classifiers using all words in the training set. In order to improve performance

of the classifier, we experimented with upsampling instances of misrecognized words in the

training set to 35%(this value was derived empirically) . Upsampling of an unbalanced

dataset is a common procedure discussed in [Shriberg and Stolcke, 2002].

We evaluated each of the methods on the same test set, where 8.5% of words are misrec-

ognized. Misrecognized utterance prediction in the 2-stage method uses a combination of

ASR confidence and syntactic features (ASR+SYN) which was the highest performing fea-

ture combination reported in Table 4.1. Table 4.4 compares the majority baseline, 1-stage,

and 2-stage methods for predicting misrecognized words in the test set. Line 1 shows the ma-

jority baseline prediction which achieves 91.5% overall accuracy by classifying all instances

as ‘correct’. Lines 2 and 3 show results for the 1-stage method trained on the original and

upsampled datasets. Although the 1-stage method trained on the original dataset achieved

higher overall accuracy (94.4%) than the 1-stage method trained on the upsampled dataset
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(93.7%), the upsampled training set achieved higher recall and F-measure (.60/.62) for pre-

dicting misrecognized words compared to the original training set methods (.49/.60). Lines

4 and 5 show results for the 2-stage method trained on original and upsampled datasets.

Both of the 2-stage methods achieved higher overall accuracies (94.5%) compared to the

1-stage methods. The 2-stage method trained on the original dataset achieved the highest

precision for detecting misrecognized words of .85, while the 2-stage method trained on the

upsampled dataset achieved the highest F-measure of .63.

All of the experimental methods improve overall accuracy performance by between 2.4%

up to 3.3% compared to the majority baseline. The highest performance improvement is

achieved by the 2-stage predicting methods. On the upsampled dataset, the 2-stage method

achieved 52% recall and 76% precision in identifying misrecognized words. This means

that an interactive system with clarification capabilities using the proposed error detection

method would attempt to correct over half of misrecognized words with a clarification

subdialogue. A quarter of clarification attempts in such a system would be made for a word

that is actually correct. Unnecessary clarification may lead to a longer dialogue but would

not necessarily deteriorate the system’s recognition since an answer to a clarification for a

correct word is likely to support the original hypothesis.
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Chapter 5

Implementation

This chapter presents the software design of both the overall system and the error-detection

module featuring classifiers built in chapter 4 as well as the implementation of the design

for the error-detection module.

5.1 The system

5.1.1 Goals and limitations of the system

As addressed in 1.3, the BOLT system is designed to work as both a Human-Machine

Communication System as well as a Human-Human Dialog System. The confidence scoring

module is a part of a subsystem of which of the Human-Machine communication system.

The goal of this system is to make sure, that the human input as understood by the

machine is as close to the actual input as possible. For this purpose, the system starts with

a confirmation dialog: The user is asked questions with regards to the input as understood by

the machine and confirms whether this was the intended meaning or not. Given the greater

context of an actual human to human dialog, this clarification dialog has to conform to

standards ensuring maximum fluidity of the dialog as perceived by the interacting humans.

This standard is reached by allowing for only a maximum of four turns before the input has

to be accepted and post-processed. An example for such a maximum-length dialog can be

seen in table 5.1.
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User (Turn 1) Hi, my name is Captain Pierce.

System Could you please spell <audio-for-Pierce

>?

User (Turn 2) Papa,India, Echo, Romeo, Charlie, Echo.

System You said P. I. E. R. C. E. Is that right?

User (Turn 3) Yes, that is right.

Table 5.1: Example clarification dialog.

5.1.2 System overview

The proposed system was designed as a pipeline based on a central, multi-layered data

structure (see 5.2). The different components of the system add and modify the content

of this structure. This has to be done such that current data is available in time for

any components down the pipeline. A diagram of the most recent version (as of August

2012) of the pipeline can be seen in figure5.1. The pipeline starts with a new speech input

being recognized. During the recognition process, the ASR component saves both the final

confusion network as well as the lattice generated to the data structure and also generates

the 1-best transcription of the input. This information is used by the second component to

re-score the lattice, i.e. to find a better 1-best solution. This step, however, was skipped

in the final version of the system (August 2012) and just the original 1-best was used. The

third component detects and marks (out of vocabulary-OOV, words which are not covered

by the ASR vocabulary). During these computations the component also creates part-of-

speech (POS) tags and writes the ASR confidence for each word given the information in

the lattice to the data structure.

In the next step, the ASR runs in forced-alignment mode, using the 1-best transcription

of the audio. This step is also used to compute prosodic information for each word. The

fifth component is the word-confidence scorer based on the classifier built in chapter 4,

adding word level confidences to the stored information. The following component ”Answer

Extraction & Merging” is only called if the ASR input is the answer to a previously issued

reprise question. ”ASR Error Annotation”, however, is called for every input and denotes

regions in the recognition string that may contain an error. These regions are finally used by

the ”Dialog Manager” (DM) to determine whether or not (further) clarification questions

are needed before the (combined) result is forwarded to the machine translation (MT). Note,

that everything from the Dialog Manager component onward is subject to DM internal logic

and will thus not be explained in greater detail.
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Figure 5.1: SRI’s system pipeline. After the original ASR is rescored and labeled by two

components labeled with (UW), the new hypothesis is force aligned to obtain new times-

tamps before the error prediction can start.

5.2 Google Protocol Buffers

Google Protocol Buffers presented a viable platform when choosing a central, multi-layered

data structure serving as the foundation for the pipeline used in the system. Google Pro-

tocol Buffers are a language-neutral, platform-neutral, extensible mechanism for serializing

structured data. Their structure is similar to that of XML based databases, however more

specialized around ease of use in software projects of any size. Several circumstances led to

the choice of implementing Google Protocol Buffers:

� The use of multiple programming and scripting languages throughout the different

sites involved in the project made it necessary to find a container supported with sup-

port for all languages used and would also be easy to adapt. Google Protocol Buffers
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primarily support C++, Java, and Python but community built support packages for

different languages are available.

� When compared to something like XML, Google Protocol Buffers are more compact

and the objects themselves are directly populated as opposed to pulling from the XML

fields to populate an object, saving both CPU time and memory as well as minimizing

sources for errors.

� New fields can be easily introduced from one revision to the next without causing

errors in modules not using those fields.

Creating multiple layers in the context of the BOLT system means that we categorize

and save data at the following levels ( A detailed design of the used buffer structure can be

seen in appendix A. ):

� Session level: one session represents one starting utterance plus up to three clarifica-

tion turns. The entire history of these up to four turns is saved.

� Utterance level: represents the information gathered for a single utterance. Lattices,

confusion networks as well as error segments are saved as well as the dialog manager

action.

� Word level: represents data for every word in an utterance. Classification features like

prosodic information is stored together with spelling information in case of an OOV

word etc.

5.3 Code Setup

5.3.1 The Confidence Scorer

This code structure is built to first translate data retrieved via the internally used infor-

mation structure (see section 5.3.2) to a format usable by the classifier built in chapter 4.

Figure 5.2 shows a UML diagram presenting the major components.
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5.3.1.1 ConfidenceInterface

The class ConfidenceInterface is a singleton responsible for handling all in- and output with

regards to confidence scoring as well as setting up and calling the actual scoring. The only

publicly callable method is process which is calling the methodgetWordConfidenceCorrect,

responsible for calling the actual scoring mechanism.

process process is being called by an external controller (the pipeline controller) and is

responsible for both initializing the ProsodicScorer and the structure responsible for aligning

incoming data in such a way that it is readable by the scorer, the InstanceBuilder. Both

components are initialized according to information saved in a central configuration file

(ConfigurationParameters). Data is transferred to the method as a copy of the content of

the Google Protocol Buffer (protobuffer) SessionData structure.

The data is then converted to the Columbia-internally used information structure (see

5.3.2) and if this conversion was successful, the method for processing the data is called.

After the classification is finished, the data structure is again converted back into protobuffer

type information and saved to the protobuffer structure (see code snippet 5.1).

Code 5.1: Setting values in the data structure and writing back to the Protocol Buffer

.

.

data.setcfConfidence(Arrays.asList((getWordConfidenceCorrect(data))));

.

.

return wrapper.encode(sessiondata, data);

getWordConfidenceCorrect In this method, data in the Columbia structure is again

converted to a structure readable by the WEKA classifier. After creating an array of

sufficient size to hold confidence scores for every word in the currently processed utterance,

the classifier is then called once for each word, returning confidence values for this word

being correctly recognized. The returned information is then the array containing the

confidence values (see code snippet 5.2).

Code 5.2: The getWordConfidenceCorrect method

private Double[] getWordConfidenceCorrect(SentenceData input) throws Exception{

//build instance from InputData

Instances data = m_instancebuilder.buildInstance(input);

//Double uttconf = uttclassifier.classify(data)[0];

Double[] wordconf = new Double[input.getWordsCurrentUtt().size()];

//run classifiers and get confidence score for the word being 'correct'

for (int i = 0; i < input.getWordsCurrentUtt().size(); i++) {
wordconf[i] = m_wordclassifier.classify(data,i)[0];
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//index '0' refers to the confidence of the word/utterance being 'correct'.

//index '1' would refer to the confidence being incorrect. both scores sum up to 1

}

//return confidences (words only in this case)

return wordconf;

}

5.3.1.2 InstanceBuilder

The InstanceBuilder structure consists of both a central wrapper with which multiple differ-

ent set-ups of data converters can be called. Which one of the converters is called depends

on a central configuration file specifying which version of the classifier has to be called

depending on the feature set available (see chapter 4).

The structure built is an instances file, which is usable by WEKA (see section 4.1) and

contains a set of features defined in chapter 4. This is done by first defining the data entries

(the header of the instances file) and then creating one instance per word, filling in values

as available to the applicable fields as shown in code snippet 5.3.

Code 5.3: Snippets from the buildInstance method

public Instances buildInstance(SentenceData input){
.

.

.

//create all the attributes and add them to the vector

Attribute total_dur = new Attribute (”total dur”); //numeric\n”;

attributes.addElement(total_dur);

Attribute f0mean = new Attribute (”F0MEAN”);// numeric\n”;

attributes.addElement(f0mean);

Attribute f0min = new Attribute (”F0MIN”);//numeric\n”;

attributes.addElement(f0min);

.

m_Data = new Instances(nameOfDataset, attributes, 0);

.

for (int i = 0; i < input.getWordsCurrentUtt().size(); i++) {
Instance inst = new Instance(22);

.

.

inst.setValue(f0mean, input.getF0meanWords().get(i));

inst.setValue(f0min, input.getF0minWords().get(i));

inst.setValue(f0max, input.getF0maxWords().get(i));

.

.

}

return m_Data;

}
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5.3.1.3 ProsodicScorer

The ProsodicScorer, upon creation, loads a classifier according to a central configuration file

specifying which features are available for classification. The only method available in this

class is responsible for calling the classifier with the current instances dataset and the ID

of which instance has to be classified. After the classification was successful, the confidence

measure of the word being correctly classified by the ASR is returned to the caller (see code

snippet 5.4).

Code 5.4: The classify method

public double[] classify(Instances data, int instanceid) throws Exception{

data.setClassIndex(data.numAttributes()−1);

//get confidence score

return m_classifier.distributionForInstance(data.instance(instanceid));

}

5.3.2 Information Structure

Due to the relatively late incorporation of Google Protocol Buffers in to the project, manual

solutions were developed for the data transfer problem, especially for early software tests.

An attempt to solve this problem was done at Columbia University in the form of a Java

structure responsible for both holding as well as distributing information. A UML diagram

showing the major components is shown in figure 5.3.
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5.3.2.1 MessageWrapper

This class was originally responsible for the transfer of data between the two modules devel-

oped at Columbia (the Dialog Manager and the Confidence Scorer) and was later modified

to work as the link between those modules and the Google Protocol Buffer structure.

The two most important methods of MessageWrapper are decode and encode. These

methods are responsible for accurately moving information both from (decode) and also

back to (encode) the protobuffer structure.

decode The heart of the decoding method is a for-loop which iterates through every

word (protoWord) in the currently processed utterance (protoUtt) and extracts word level

features saved for these words WordLevelAnnotations. The information is extracted by

getter-methods which are automatically created in the protobuffer package for each field

held within it. Finally, the extracted values are assigned to a corresponding List (see code

snippet 5.5).

Code 5.5: The decode method

protected SentenceData decodeSentenceDataForUtterance(DialogueHistory history, UtteranceData protoUtt)

throws SentenceDataException

{
.

.

List<Double> oovConf = new ArrayList<Double>();

List<Double> asrConf = new ArrayList<Double>();

List<Double> parseConf = new ArrayList<Double>();

List<Double> neConf = new ArrayList<Double>();

.

.

for (WordAnnotation protoWord: protoUtt.getWordLevelAnnotationsList()) {
wordcount = protoWord.getWordIndex();

words.add(wordasr[wordcount]);

starttime = protoWord.getStartOffsetSeconds();

endtime = protoWord.getEndOffsetSeconds();

duration.add((endtime − starttime)+1);

asrConf.add(protoWord.getAsrPosterior().getValue());

parseConf.add(protoWord.getParserConfidence().getValue());

.

.

.

}

encode Inverse to the decode method, encode changes an entry in the protobuffer. This

is done by first calling the information stored in the structure so there can be data saved to

it. This is called invoking the builder of the structure subject to change. Due to the layered

structure of the protobuffer used, this invoke call has to be done in hierarchical order down

to the applicable layer, which in this case is the WordAnnotation layer, the computed word

confidence is written to the field reserved for this information (see code snippet 5.6).
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Code 5.6: The encode method
public SessionData encode(SessionData sessionData, SentenceData sentData){

SessionData.Builder sessionBuilder = sessionData.toBuilder();

//update the last utterance only

UtteranceData.Builder utteranceBuilder = sessionBuilder.getUtterancesBuilder(

sessionBuilder.getUtterancesCount()−1);

if (sentData.getcfConfidence() != null) {
//set CU confidence values

int wid = 0;

for (WordAnnotation.Builder word: utteranceBuilder.getWordLevelAnnotationsBuilderList()){
word.setCuConfidence(word.getCuConfidence().toBuilder().setValue((sentData.

getcfConfidence().get(wid))));

wid++;

}
}

//set DM output

DialogueEntry dmEntry = sentData.getDmEntry();

if(dmEntry!=null)

utteranceBuilder = encodeDMentry(utteranceBuilder, dmEntry, sentData.

getM_addressErrorSegmentIndex());

sessionBuilder.setUtterances(sessionBuilder.getUtterancesCount()−1, utteranceBuilder );

return sessionBuilder.build();

}

5.3.2.2 SentenceData

SentenceData is an internally used information structure consisting of Lists holding infor-

mation about the words contained in an utterance. Every word is represented by a certain

index, which stays the same for all those list objects. The only information which is not

saved internally in lists is prosodic information (held by a child-class called Prosodics). Also

implemented in these structures are the getter and setter methods used to access the saved

data (see code snippet 5.7).

Code 5.7: The SentenceData class
public class SentenceData {

.

.

//asr confidence for each word

List<Double> m_asrConfidence;

//parse confidence for each word

List<Double> m_parseConfidence;

.

.

//prosodic features for each words

Prosodics m_prosodicswords = new Prosodics();

.
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.

public void setAsrConfidence(List<Double> asrConfidence) throws SentenceDataException {
checkSize(asrConfidence);

this.m_asrConfidence = asrConfidence;

}

public List<Double> getAsrConfidence() {
return m_asrConfidence;

}
.

.

5.3.3 Results

By replacing the originally planned 2-stage approach with a 1-stage approach as described

in section 4.3.5, the error detection module proved to be working within the constraints

of the overall dialog system. Due to difficulties to implement the error score in a timely

manner into the error annotation module (see figure 5.1) those scores were not used for

evaluation tests done by DARPA. However, the methods proposed in chapter 4 were instead

successfully integrated directly into the error annotation module, rendering a separate error

prediction module obsolete.
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Chapter 6

Conclusion

6.1 Summary

The aims of this thesis were to examine if the usage of prosodic and syntactic features could

lead to building a classifier able to (1) identify utterances that have been misrecognized by

an Automatic Speech Recognizer and (2) to identify which portions of utterances have been

incorrectly transcribed by the recognizer. Furthermore, the developed classification methods

were to be implemented into a Spoken Dialog System (developed as part of the ’Broad

Operational Language Translation’ (BOLT) program, funded by the ’Defense Advanced

Research Projects Agency’ (DARPA) of the ’United States Department of Defense’) to

allow for targeted clarification questions in case of misrecognitions. It was found that a

classification system which in additon to standard ASR posteriors also makes use of prosodic

and syntactic information, performed superior compared to systems using ASR posteriors

only.

Feature Exploration A broad set of features, which was extracted using audio processing

scripts, was tested for classification significance. Testing and evaluation of features yielded a

stable set of features independent of the evaluation method. As expected, prosodic features

helped to improve classification performance as well as POS tags, since both present natural

extensions of acoustic models and language models used in today’s ASR systems. Slightly

surprising though was the complete lack of impact of fine-grained features like shimmer and

jitter. A possible explanation may be found when taking into account the fact that data

presented in experiments represented multiple speakers. While it may be possible to find

shimmer and jitter values that increase misrecognition rate for a single speaker, a general

pattern could not be found.

Modeling After testing three different machine learning algorithms (Decision Trees, Multi-

Boost, Support Vector Machines) for performance, it was determined that MultiBoost Deci-
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sion Trees yielded the best performance values. Taking this into account, 1-stage and 2-stage

approaches to misrecognized word prediction were evaluated. In a 1-stage approach, we pre-

dicted misrecognition on all words in the test set in a single stage (i.e., is this word correctly

recognized or not?). In the first stage of the 2-stage approach, misrecognitions were pre-

dicted for each utterance in the test set. In the second stage, it was predicted whether

each word in the ASR hypothesis for these utterances was misrecognized or not. Each of

the methods was evaluated on the same test set. The highest performance improvement

over a simple majority-voter (e.g., classifying every word as being correctly recognized)

was achieved by the 2-stage predicting method. An interactive system utilizing the 2-stage

prediction approach would attempt to correct over half of misrecognized words with a clar-

ification subdialogue thus decreasing the WER by 50% assuming perfect error correction.

Implementation To implement the proposed error detection into an SDS, the classifier

had to be packed into a module fit to be part of the SDS design. To achieve this, the

2-stage approach was replaced by a 1-stage approach as there was no utterance information

available. Also, a data structure was built to make incoming data readable by the classifier

and also allow prediction results to be accessible to the SDS data structure. The final

classification module proved to be working within the design constraints of the SDS.

6.2 Outlook

Although this thesis proved that error prediction on the word level of ASR output is possible,

the scope was also rather limited. All experiments were performed using only data from

a single, high-quality dataset and only one ASR system was used in the process. Possible

directions for future work may include:

� Adding datapoints. By using different datasets as well as ASR systems, future

research may test the robustness of the feature set developed in this thesis. Such

research may also lead to additional features or eventual substraction of an entire

feature group.

� Speaker dependence. Several features (e.g., shimmer, jitter) were found to have no

or even harmful impact on error detection in this thesis. However, this may not prove

true in a single speaker environment and thus lead to even higher performance when

a system is able to adapt to a single user. Speaker dependent weighting of features

may also provide additional performance.

� Error analysis. Due to time constraints in this thesis, little to no time was spent

on analyzing which feature values (e.g., POS tag, F0 value) were especially good

indicators for misrecognitions. Such analysis may provide information with regards to
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adaptation of acoustic models and language models used in ASR to achieve decreases

in word error rate (WER).

� OOV prediction. Being able to predict and identify words which are not part of

the ASR vocabulary is of great importance in speech processing. Error prediction as

presented in this thesis does not distinguish between different sources of errors and

thus may form a first level of OOV prediction.

6.3 Conclusion

All in all, it has been shown that error prediction on the word level of ASR output is

possible and also capable of high performance with negligible impact on overall system

performance/computation time. However, to be fully able to take advantage the predictions,

the recognizer and/or the dialog system have to be able to perform sophisticated error

correction. This may be done either by finding higher confidence hypotheses automatically

(recognition) and/or by offering simple and understandable correction options to the user

(dialog system). Dialog systems specifically have to be able to handle different kinds of

user clarification attempts which may require natural language understanding algorithms

not (yet) available.
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Appendix A

Google Protocol Buffers Structure
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Appendix B

Information Extraction Scripts

B.1 Recognition Tagging



gettable
#! /usr/bin/python

import os
import sys
import re

tf = open('C:/Users/phisa/Desktop/BOLT/Transdac/IA_live_eval_0508/logs.rec.log')
w = open('C:/Users/phisa/Desktop/BOLT/Transdac/confidences_utterance.txt', 'w')

data = tf.read()
start = 0
end = len(data)

i = data.count("SENTENCE:")

while(i > 0):
    sendex = data.index("SENTENCE:",start,end)
    fildex = data.index("FILENAME:",sendex,end)
    fnamdex = data.index(".wav",fildex,end)
    filename = data[fnamdex-26:fnamdex+4]
    refdex = data.index("REF:",fnamdex,end)
    hypdex = data.index("HYP:",refdex,end)
    ref = data[refdex+4:hypdex-2]
    correct = "correct"
    for letter in ref:
            if letter.isupper():
                correct = "incorrect"
                break
            if (letter == '*'):
                correct = "incorrect"
                break
    postdex = data.index("POSTERIORS:",hypdex,end)
    postend = data.index('\n',postdex,end)
    confidence = data[postdex+11:postend]
    regex = re.compile(r'([\d.]*\d+)')
    sum = 0
    j = 0
    for match in regex.finditer(confidence):
            sum = sum + float(match.group(1))
            j = j + 1
    confdence = sum/j
    finalconfidence = str(confdence)
    w.write(filename + ", " + correct + ", " + finalconfidence + "\n")
    i = i-1
    start = postend
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B.2 Confidence Tagging



gettable_wcns_avg
#! /usr/bin/python

import os
import sys
import re
import math

#Scans a textfile containing information taken out of .wcn files and
# returns average between this, previous, and consecutive values
def  getavg3valueLog(arr, i):
   total = arr[i];
   cnt = 1;
   if i>0: total= total+arr[i-1]; cnt = cnt+1
   if i<len(arr)-1: total= total+arr[i+1]; cnt = cnt+1
   return float(total)/float(cnt)

path = 'C:/Users/phisa/Desktop/BOLT/Transtac/20120703/'

ww = open(path + 'wcns_avg_log.txt', 'w')
tf = open(path + 'wcns.txt')

words = []
postag = []
oovconf = []
asrconf = []
parseconf = []
correct = []
oldfileid = ""
for line in tf:
    data = line.split(',')
    fileid = data[0]
    if(fileid == oldfileid):
        words.append(data[2])
        oovconf.append(math.log(float(data[6])))
        postag.append(data[5])
        parseconf.append(math.log(float(data[4])))
        asrconf.append(math.log(float(data[3])))
        correct.append(data[7].strip('\n'))        
    else:
        for i in range(len(asrconf)):
            asrconfavg3 = str(getavg3valueLog(asrconf, i))
            parseconfavg3 = str(getavg3valueLog(parseconf, i))
            oovconfavg3 = str(getavg3valueLog(oovconf, i))
            if(i>0):
                postagprev = postag[i-1]
            else:
                postagprev = "Null"
            if(i<len(asrconf)-1):
                postagnext = postag[i+1]
            else:
                postagnext = "Null"
            ww.write(oldfileid + "," + str(i)  + ",\'" + words[i].strip('\'') + 
"\'," +
                     str(asrconf[i]) + "," + asrconfavg3 + "," +
                     str(parseconf[i]) + "," + parseconfavg3 + "," +
                     postagprev + "," + postag[i] + "," + postagnext + "," +
                     str(oovconf[i]) + "," + oovconfavg3 + "," +
                     correct[i] + "\n")
        words = []
        postag = []
        oovconf = []
        asrconf = []
        parseconf = []
        correct = []
        words.append(data[2])
        oovconf.append(math.log(float(data[6])))
        postag.append(data[5])
        parseconf.append(math.log(float(data[4])))
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        asrconf.append(math.log(float(data[3])))
        correct.append(data[7].strip('\n')) 
        oldfileid = fileid

for i in range(len(asrconf)):
            asrconfavg3 = str(getavg3valueLog(asrconf, i))
            parseconfavg3 = str(getavg3valueLog(parseconf, i))
            if(i>0):
                postagprev = postag[i-1]
            else:
                postagprev = "Null"
            if(i<len(asrconf)-1):
                postagnext = postag[i+1]
            else:
                postagnext = "Null"
            ww.write(oldfileid + "," + str(i)  + ",\'" + words[i].strip('\'') + 
"\'," +
                     str(asrconf[i]) + "," + asrconfavg3 + "," +
                     str(parseconf[i]) + "," + parseconfavg3 + "," +
                     postagprev + "," + postag[i] + "," + postagnext + "," +
                     str(oovconf[i]) + "," + oovconfavg3 + "," +
                     correct[i] + "\n")
ww.close()
tf.close()
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