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Abstract

In the evaluation of information systems, simulating the behavior of different user
groups is a useful activity to understand the implication of design decisions. This the-
sis presents ontology-based Decentralized Search (OBDS), a novel method to model
the navigation behavior of users equipped with different types of background knowl-
edge. Ontology-based Decentralized Search combines decentralized search, an estab-
lished method for navigation in social networks, and ontologies to model navigation
behavior in information networks. OBDS uses ontologies as an explicit representa-
tion of background knowledge to inform the navigation process and guide it towards
navigation targets. By using different ontologies, users equipped with different types
of background knowledge can be represented. This thesis demonstrates the method
using four ontologies from the biomedical domain and their associated Wikipedia ar-
ticles. The obtained simulation results are compared with random walks, randomly
generated ontologies and optimal solutions as base lines. To further verify the use-
fulness of the results, this thesis juxtaposes the simulation results with a user study.
In conclusion, the findings of this thesis supports that Ontology-based decentralized
search produces click paths similar to those originating from human navigators. These
results indicate that the method can be used to model human navigation behavior in
systems that are based on information networks (such as Wikipedia).
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Kurzfassung

Die Simulation des Verhaltens unterschiedlicher Benutzergruppen stellt ein hilfre-
iches Werkzeug in der Evaluierung von Informationssystemen dar, und hilft dabei,
die Auswirkungen von Designadaptionen besser zu verstehen. Diese Masterarbeit
stellt Ontologiebasierte Dezentrale Suche (OBDS), einen neuen Ansatz zur Simu-
lation von Benutzerverhalten vor. OBDS kombiniert Dezentrale Suche, eine etablierte
Navigationsmethode in sozialen Netzwerken, und Ontologien zur Modellierung von
Navigationsverhalten in Informationsnetzwerken. Die Methode verwendet Ontolo-
gien als eine explizite Repräsentation von Hintergrundwissen um die Navigation zu
steuern und zum Ziel zu leiten. Durch die Verwendung von unterschiedlichen On-
tologien können Benutzer mit verschiedene Arten von Hintergrundwissen repräsen-
tiert werden. Im Anschluss an die Vorstellung der Methode wird in dieser Arbeit
Ontologiebasierte Dezentrale Suche anhand des Beispiels von vier Ontologien aus der
biomedizinischen Domäne und deren zugehörigen Wikipediaartikeln demonstriert. Die
resultierenden Simulationsergebnisse werden mit Irrfahrten (Random-Walks), zufällig
erstellten Ontologien und der jeweils bestmöglichen Lösung verglichen. Um den Sim-
ulationsanspruch zu untermauern, werden in einer Benutzerstudie die Ergebnisse der
Simulationen mit menschlichen Klickdaten verglichen. Die Resultate dieser Master-
arbeit zeigen, dass Ontologiebasierte Dezentrale Suche Klickpfade produziert, die de-
nen von menschlichen Benutzern sehr ähnlich sind. Diese Ergebnisse legen nahe, dass
OBDS für die Modellierung menschlichen Navigationsverhaltens in Informationssys-
temen (wie beispielsweise Wikipedia) eine geeignete Methode ist.
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1. Introduction

1.1. Motivation

With the advent of the World Wide Web, navigating information networks has become
an important factor in everyday human life. Being able to effectively search and
navigate on the Web is now as important as using a car or a telephone. Due to
its vast number of web pages, tools such as search engines are often needed to aid
in exploring the Web. Users generally only know a small portion of the Web, and
as such navigation becomes an important factor in cases when search engines cannot
help with tasks such as exploration or finding the concept on the tip of one’s tongue.

The Web has become increasingly popular with humans of all ages and backgrounds.
As a result, one of the key challenges of building information systems is the need to
develop interfaces suited to a range of different types of users. Different types of users,
such as novices, experts, generalists or specialists will, in general, display considerably
different knowledge about a given domain. This specific knowledge in turn influences
their interactions with an information system. Gaining insight into human navigation
behavior supports the construction of easy to use software and information systems
that are ready to accommodate a broad range of user types.

This master’s thesis investigates ways of modeling navigational behavior of human
users in information networks. Humans navigating an information network (such as
Wikipedia) are generally not familiar with the global network structure but navigate
based on assumptions, intentions and locally available information only. Experiments
by Stanley Milgram and others [TMTM69] [Mil67] have shown that humans are very
effective at finding short paths based on local information in offline as well as online
social networks.

One of the motivating factors driving this thesis was the curiosity gain insight into
the details of similar Wikipedia navigation sessions. Figure 1.1 is an excerpt from the
popular web comic XKCD1 addressing this topic.

1http://www.xkcd.com
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1. Introduction

Figure 1.1.: The problem with Wikipedia (CC BY-NC 2.5 from http://xkcd.com/214/)

This thesis presents a novel method (ontology-based decentralized search) for sim-
ulating human navigational click behavior in information networks and examine its
suitability to model actual human navigation behavior. The method, called Ontology-
based decentralized search (OBDS), builds on decentralized search, a well-established
navigation method in social networks, which is based on local information only. Decen-
tralized search is applied to navigation in information networks to model the behavior
of users with varying levels of domain knowledge and produce simulated click data.
OBDS uses decentralized search with existing well-established ontologies as back-
ground knowledge to inform the search process and point it towards the direction of
the target.

This method is new in that it uses an explicit representation of background knowledge
in the form of an ontology. Previous research in psychology suggests that humans store
concepts in their minds hierarchically [FE07], similar to ontologies. Ontology-based
Decentralized Search models different groups of users by using different ontologies as
background knowledge.

2
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1. Introduction

1.2. Research Questions and Contributions

The following lists the three main research questions that drove this thesis, as well as
summarized answers to each of them. All of the research questions are addressed in
Chapters 5 and 6 and discussed in Chapter 7.1.

Research Question 1 Can existing ontologies contribute useful information
to navigation in information networks? If yes, how do existing ontolo-
gies perform in comparison to randomly generated ontologies and random
walks?

The results show that ontologies can indeed inform navigation in information net-
works. Their performance depends on the specific domain and the quality of the
mappings to the information network. In the evaluations, OBDS works well for the
data set containing diseases and less well for the the data set containing genes and
gene products.

Research Question 2 Does ontology-based decentralized search (OBDS)
produce valid results, i.e., are the simulated navigation paths similar to
those produced by human navigation?

This question is addressed by comparing the resulting navigation paths of the simu-
lations to a user study. The results show that that the click paths produce by OBDS
perform well above pure random walks. For one of the data sets, OBDS perform
substantially better than randomly generated ontologies as well.

Research Question 3 When using OBDS, what ontology is bested suited
to produce human-like navigation results?

From the results, ICD-10 and MeSH seem to be best suited to be used as a replacement
for human behavior when navigating in an information network (all used ontologies
are described in detail in the following sections). However, the overall differences be-
tween the ontologies are not very strong, and it is subject of ongoing research to
further identify differences in the performances of different ontologies.

To demonstrate Ontology-based Decentralized Search, this thesis makes use of the
information network formed by a set of Wikipedia articles from the biomedical domain

3



1. Introduction

and the connections (hyperlinks) between them. The research presented in this thesis
shows that several different ontologies from the biomedical domain can be used as
background knowledge to inform navigation simulations, much as humans can use
their acquired knowledge for navigation on the encyclopedia.

The main contribution of this thesis is the demonstration of the general suitability of
existing real-world ontologies to inform decentralized search on information networks
such as Wikipedia. By comparing the navigational paths generated by the simula-
tion with several baseline approaches and with data obtained from a user study, the
outcome shows that the method yields results similar to those produced by actual hu-
man users. These results suggest that OBDS can indeed be used to simulate human
navigational behavior in information networks. This might be useful for addressing
issues arising in the development of systems that are based on networked information.
These findings are relevant for new methods of applying ontologies and for modeling
navigation in information networks using ontologies as background knowledge.

1.3. Thesis Outline

This thesis consists of eight chapters. The introductory chapter is followed by Chapter
2, in which the context of previous related work to this thesis is discussed in the
context of navigation models and ontologies. Chapter 3 presents Decentralized Search
and its extension Ontology-based Search, the main algorithm of this thesis. Chapter
4 describes the materials and methods and discusses the general setup, the used
Ontologies, the Wikipedia articles, the navigation scenarios and the setup of the
user study. Chapter 5 details the results of the case study of applying OBDS to a
dataset of Wikipedia articles and ontologies in the biomedical domain. Chapter 6
further expands on the results and compares them with the findings of the user study.
Chapter 7 discusses the results. Finally, Chapter 8 concludes the thesis and proposes
future work in relation to the research discussed in this thesis. The attached Appendix
provides supplementary material used in the course of this thesis (Appendix A B C).

Parts of this thesis are in the process of being submitted to a journal for publication.

4



2. Related Work

In the context of this thesis, the areas of Navigation Models and Ontologies are of
particular importance. This chapter gives an overview of the related work in these
fields. Navigation models are first discussed in the domain of social networks, fol-
lowed by navigation models in information networks. The second part of this chapter
introduces ontologies as instruments for knowledge representation and reviews the
developments in the fields of ontology languages, ontologies in the biomedical domain
and ontologies used for navigational purposes.

2.1. Navigation Models

This thesis studies navigation in the field information networks, more specifically using
the example of Wikipedia. As much of the theory of network navigation is based on
social networks, this chapter starts with an overview over this field first, followed by
a section on navigation in information networks.

2.1.1. Navigation in social networks

This thesis particularly addresses navigation in social networks via decentralized
search algorithms. Fundamentally, decentralized search describes a way of solving
a pathfinding problem in a social network. Starting from an arbitrary start node (i.e.,
a person) within the network, the objective of decentralized search is to find a way
to a given target node. The algorithm, however, does not possess global knowledge
of the network and can therefore only take local decisions. The term ”decentralized”
stems from the fact that the search proceeds by forwarding the search problem from
one node to another, which, in a social network, involves a different person taking the
decisions at every node.

The idea of decentralized search, as used in the navigation simulations of this the-
sis, was made popular by Stanley Milgram’s widely discussed small-world experiment

5



2. Related Work

[TMTM69] [Mil67] in the 1960s. In the experiment, participants in Boston and Ne-
braska received a letter containing information about a specific target person. This
target person was a stock broker in Boston, Massachusetts. The participants were then
asked to forward the letter to one of their friends, which, in the experiment, were de-
fined as an acquaintance known on a first-name basis. The objective of forwarding the
letter was to bring it to someone closer to the target person, who would then forward
it to another person believed to be yet closer to the Boston stock broker.

The results showed a median chain length of six intermediates for successful chains
of letters and coined the term of ”six degrees of separation”. Letters from both par-
ticipants in both Nebraska and Boston reached the target person via only very few
intermediates, demonstrating that geographic distance showed only little influence.
Shortly before the target, multiple letters were forwarded through a small number
of intermediaries acting as channels towards the target person. This is depicted in
Figure 2.1. By taking only the limited knowledge of each participant into account at
each step, the search effectively constituted a form of decentralized search. The result
illustrated the so-called small world phenomenon, as it seemed possible to connect two
arbitrary persons across the United States through a very small number of hops.

The experiment has been criticized for a number of methodological flaws such as
selection bias, as participants were solicited through newspaper advertisements, and
a bias towards shorter successful chains, as longer chains were more difficultly obtained
with participation relying on volunteers [Sch09] [Eri79]. However, subsequent studies
successfully repeated the experiment. Dodds et al. [DMW03] were able to repeat the
experiment using e-mail in 2002, connecting individuals across continents with similar
results.

In 2011, Backstrom et al. [BBR+11] reported the average distance between pairs of
worldwide Facebook users to be between four and five hops, and the average distance
between Facebook users within a single country as around three. However, unlike in
the original Milgram experiment, the study of the Facebook graph did not rely on
user participation but instead calculated the shortest distances between all pairs of
users in the graph (i.e., always chose the optimal person to forward the search problem
to).

In 1998, Watts and Strogatz [WS98] formally characterized networks exhibiting small-
world characteristics as having a high clustering coefficient and a low characteristic
path length (i.e., a low average path length between pairs of nodes in the graph).
In contrast to pure random graphs, real-world networks exhibiting the small-world
phenomenon showed these two characteristics for a range of examples. Graphs created
by randomly connecting nodes on the other hand typically showed a low clustering
coefficient and a high characteristic path length. The idea of these properties was to

6



2. Related Work

Figure 2.1.: Common channels before the target in the Milgram experiment The figure
shows the successful letter chains converged to the target person through relatively
few channels, i.e., intermediaries who forwarded multiple letters. This image originally
appeared in [TMTM69, p. 439].

model the high clustering in social networks together with the typically short paths
connecting any two individuals, which were modeled by a few random connections.
Watts and Strogatz introduced a process of automatically creating networks for which
these properties occurred by starting from a regular ring lattice graph and rewiring

7
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a small fraction (0.5% - 5%) of the edges to randomly chosen nodes. The resulting
graph was shown to fulfill the postulated requirements for a small world network.
Furthermore, Watts and Strogatz [WS98] demonstrated the actual existence of this
type of small-world networks in a film actor collaboration network, the power grid of
the western United States and the neural network of Caenorhabditis elegans, a small
roundworm.

In 2000, Jon Kleinberg proved that for the type of small-world networks proposed by
Watts and Strogatz [Kle00], no effective decentralized search algorithm could exist
that always found a path connecting two arbitrary two nodes in subpolynomial time.
However, Kleinberg presented a more specialized version of the model that, instead
of rewiring uniformly at random, chose the random node to attach to following an
inverse power distribution based on the distance from that node. This meant that the
probability of rewiring to a distance of 1 was 0.5, to a distance of 2 it was 0.25 and so
forth. By rewiring according to a distribution, the network model allowed for more ef-
fective decentralized search, as it permitted a decentralized search algorithm to reduce
the distance to the target by an order of magnitude every few steps, independently
of the total distance. Kleinberg consequently proved that a decentralized algorithm
capable of finding short paths existed for this and only this class of networks.

One year later, Kleinberg extended his model of decentralized search to include hierar-
chies [Kle01], where the term hierarchy denotes a tree that includes all network nodes.
He showed that when the network nodes were embedded as the leaf nodes of a hier-
archy and links in a network were formed proportional to distances in this hierarchy,
the resulting network was also efficiently searchable by making use of the hierarchy
as a background knowledge. To form an effectively searchable graph, nodes were con-
nected with a probability proportional to their distance in the tree, i.e., the height of
their closest common ancestor. Provided the hierarchy information, the search could
then proceed to the target effectively. This thesis makes use of ontologies as this type
of background knowledge.

Miao et al. [MTC+12] have studied decentralized search in collaboration networks.
Collaboration networks differ from information or social networks in that the infor-
mation flow in them is driven by tasks. This means that the edges in the network are
formed by collaboration on tasks. In their study, the tasks were software bugs. Devel-
opers who were assigned a bug they could not eliminate themselves forwarded it to
another developer who they believed could handle it. By establishing several forwards
in a row, this of work flow consisted a type of decentralized search, as all decisions
about the next hop were taken independently by multiple participants. Miao et al.
studied this in the context of the development networks of the Eclipse and Netbeans

8



2. Related Work

software, as well as in an IT service management system and developed algorithms
to simulate both the network creation and the information flow.

Adamic and Adar [AA04] studied decentralized search in the e-mail network of HP
labs. They constructed a network of 436 company employees from the e-mail com-
munication log and examined three different decentralized search strategies: a) best
connected, b) according to organizational hierarchy and c) physical proximity in the
office (cubicle distance). While strategy a) proved unsuccessful, strategies b) and c)
were shown to be a good approach to navigating the e-mail network.

Decentralized search is also used in peer-to-peer file sharing protocols such as Gnutella
or KaZaA. The Gnutella network displayed small-world characteristics in 2003 [LZHH03],
with a low characteristic path length and a high cluster coefficient.

2.1.2. Navigation in information networks

In this thesis, decentralized search, a navigation model originally developed for social
networks, is applied to information networks. The procedures and methods of this are
described in detail in section 3. This section provides an overview of previous work
related to navigating information networks.

One of the most prominent related model to search in information networks is infor-
mation foraging [Pir07]. Information foraging is based on foraging theory in biology.
In order to survive, animals have adopted methods which maximize the energy gained
from food sources. In the theory of information foraging, search in information net-
works is not guided by background knowledge but by information scent. Information
is assumed to be available in patches, just as food is often available in larger quan-
tities (e.g., a bush providing berries). Search in information networks is viewed as
being guided by information scent, with each article and link emanating a distinct
scent, which is dependent on the target of the search. For instance, when searching for
information on penguins, a link leading to an article about Antarctica would provide
more scent than a link leading to an article about the Sahara desert.

In this thesis, information networks are studied using the example of Wikipedia.
However, real navigation paths from Wikipedia are very hard to obtain, as the goals
of users navigating are often hidden and not explicitly visible and logs of click trails
are difficult to obtain. Furthemore, recent research [GCFG10] has shown that when
visiting a Wikipedia page, users have a mere 30 - 40% chance of following a link on
that page. Users are hence more likely to jump to some other page directly. Jumping
to another page is referred to as teleporting, e.g., by using the search function or
typing in another address manually. In general, users on the web are estimated to

9



2. Related Work

follow a hyperlink on the current page in about 60 - 70% of their clicks [GCFG10]. In
the original page rank formula and calculations, teleportation was assumed to occur
in 15% of all clicks [PBMW98]. With 60 − 70%, the fraction of teleports is hence
significantly higher on Wikipedia than on general web sites. This might be due to the
fact that users visit Wikipedia to satisfy specific information demands rather than to
browse articles. However, there exist valid reasons to navigate Wikipedia, which will
be detailed in the description of the navigation scenarios in Chapter 4.4.

As a consequence of the high teleportation factor, navigation paths are often short in
nature. Due to this and the difficulty of obtaining Wikipedia navigation paths, wiki
games have been a popular replacement for Wikipedia navigation paths in recent
research. Wiki games, such as Wikispeedia1, WikipediaMaze2 or Wiki Game3 allow
users to play games on the network formed by the Wikipedia articles and links. In
their most simple versions, games consist of finding a path between two given articles,
e.g., from Dik-dik (a small antelope) to Albert Einstein. An example for this is shown in
figure 2.2. Click trails from wiki games have enabled researchers to gain insight into
navigational behavior on Wikipedia. In 2009, West et al. [WPP09] used wiki game
data to infer semantic distances between concepts by studying game click paths. In
2012, West and Leskovec [WL12b] found that in wiki games, players tend to navigate
to hubs (articles with a large number of outlinks) first, and subsequently home in on
targets node.

In the research group at the Institute of Knowledge Management (where this thesis
was written), decentralized search with non-ontological background knowledge has
already been studied in different contexts. The work presented in the course of this
thesis builds on a navigation simulation framework that permits the simulation of
decentralized search. The framework is currently being extended in the course of three
master’s theses and is based on the SNAP [sna12] framework developed at Stanford
University.

In 2011, research at the Institute of Knowledge Management compared the navi-
gability of different tag hierarchy generation algorithms on data from Bibsonomy,
CiteULike, Delicious, Flickr and LastFm [HS11]. The paper evaluated the suitabil-
ity of tag hierarchies for navigation on tagging networks and proposed a novel tag
hierarchy generation algorithm.

In 2012, Strohmaier, Helic et al. compared different folksonomy induction algorithms
through decentralized search [SHB+12] . They showed that, based on evaluation

1www.wikispeedia.net
2www.wikipediamaze.com
3www.thewikigame.com
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Figure 2.2.: Example for a wiki game. Wiki games allow users to play games on the network
formed by the Wikipedia articles and links. In their most simple versions, games consist
of finding a path between two given articles, e.g., from Dik-dik (a small antelope) to Albert
Einstein. Figure reprinted from [WL12b]

through navigation, clustering algorithms developed for social tagging systems per-
formed better than standard hierarchical clustering algorithms.

Helic et al. applied decentralized search to broad and narrow folksonomies on data
from Mendeley [HKG+12] and found broad folksonomies better suited to supporting
navigation.

Trattner et al [TSHS12] compared decentralized search and human navigation behav-
ior in information networks and showed that the simulation of decentralized search
yielded very similar results to actual human navigation data on Wikipedia. In their
work, Trattner et al. investigated different types of hierarchies as background knowl-
edge and found that decentralized search based on a hierarchy generated from network
features such as in- and outdegree simulated human navigation better than compara-
ble hierarchies generated from external knowledge.

In ongoing research, Helic, Strohmaier et al. are studying the influence of stochasticity
and different methods of selecting the next hop in decentralized search [HSGS13].

The previous work did not tap into existing ontologies as background knowledge, but
used other approaches (such as automated methods) for this purpose. This thesis goes
beyond previous research by extending the simulation framework with ontologies and
by applying Ontology-based Decentralized Search to the case of Wikipedia and for
concrete ontologies for the biomedical domain.
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2.2. Ontologies

The second part of this chapter on related work is concerned with ontologies. The
term ontology originally stems from philosophy, where it denotes the study of ”what
is, of the kinds and structures of objects, properties, events, processes, and relations
in every area of reality” [Smi08]. In philosophy, the word ontology is uncountable and
is used to represent an entire branch of philosophy.

In computer science on the contrary, ontologies are countable and an ontology is
”a formal, explicit specification of a shared conceptualization” [SBF98]. This defini-
tion states that an ontology should be machine-readable (formal), explicitly specified,
commonly agreed upon by its user base (shared) and a conceptualization. A con-
ceptualization is ”an abstract, simplified view of the world that I wish to represent
for some purpose” [GN87]. Strictly speaking, an ontology only defines the schema,
and an ontology with instances of concepts forms a knowledge base (though this is
rarely rigorously separated) [NM+01]. In this thesis, the ensemble of the scheme and
instances are referred to as an ontology.

Ontologies met the desire to formalize a common view of the world to be used in
artificial intelligence and knowledge systems. Other reasons for their development
included the reuse of domain knowledge, the separation of domain knowledge and
operational knowledge, the easier analysis of domain knowledge [NM+01] and the
unification of different views of the world [UG+96]. An ontology consists of a set of
”concepts, their definitions and their inter-relationships” [UG+96].

In 2001, Tim Berners-Lee proposed the semantic web as a new version of the Web,
accessible to and improved by automated agents [BLHL+01]. The semantic web relies
on the so-called semantic web pyramid of languages in order to exchange machine-
processable data. It uses XML for data exchange and to ”provide a serialized syntax
for tree structures” [FVHH+01]. Building on XML, the Resource Descriptor Frame-
work (RDF) is used for assertions [DFVH03] . RDF is ”a [...] W3C recommenda-
tion designed to standardize the definition and use of meta-data descriptions of web-
based resources” [DFVH03, p. 12] and defines a simple, machine-readable data format
[FVHH+01]. RDF consists of (subject, predicate, object) triples. The sentence ”Daniel
reads his thesis”, for instance, would be represented as ”(Daniel, read, thesis”) in the
logic of RDF. These triples, when added together, make up the so-called RDF graph.
RDF may be serialized to XML or a variety of other data formats. RDF Schema
(RDFS) extends RDF with a basic system that supports the creation of simple on-
tologies [DFVH03].
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The desire to remedy some of the shortcomings of RDFS provided the foundations
for the development of the Ontology Inference Layer (OIL), a more capable ontology
language for the web. OIL was funded by the European Union, provided ”the full
power of an expressive description logic” [DFVH03, p. 18] and consists of several
different complexity levels. In its most simple form (Core OIL), the language is almost
the same as RDFS [DFVH03].

OIL was subsequently unified with the DARPA Agent Markup Language (DAML),
a similar-purpose language for the description of ontologies developed at the United
States Defense Advanced Research Projects Agency. The unification of the two lan-
guages was called DAML+OIL. This markup language was ”more tightly integrated
with RDFS” [DFVH03, p. 26]. DAML+OIL is only serializable to RDFS and defined
a more formal semantic, enabling better automated reasoning [Zäc03].

In 2001, the W3C started working on a new ontology language named Web Ontology
Language and abbreviated as OWL. The objective of OWL was none less than to
become the standard ontology language used on the Web. OWL built on DAML+OIL
and RDF [Stu09] and became a formal W3C recommendation in 2004 [w3c04]. OWL
is specified in three variants (OWL Lite, OWL DL and OWL Full), where OWL Lite
is a subset of OWL DL, which in turn is a subset of OWL Full [w3c04].

While not strictly a superset of RDF and RDFS, OWL makes large use of them
[AH09]. The most important components of an OWL ontology are classes and prop-
erties4. Classes define the basic concepts in an ontology. Classes may have properties
specifying attributes and relations to other classes [AH09]. Since 2004, OWL has be-
come a widely-used standard for ontologies. All four ontologies studied in this thesis
are available in OWL.

Besides ontologies, similar knowledge systems are controlled vocabularies, taxonomies
and thesauri. Rubin et al. define a controlled vocabulary (which is also called a termi-
nology) as consisting of a list of concepts, their descriptions and lexical terms [RSN08].
The entries in a controlled vocabulary should be unambiguous, and synonyms should
be aggregated. A taxonomy is a hierarchically organized controlled vocabulary [Pid03].
A thesaurus is a collection of controlled vocabulary terms which ”uses associative rela-
tionships in addition to parent-child relationships” [Pid03]. In the literature, however,
definitions for ontologies and related concepts often contradict each other or are not
used in the strict sense of the word (e.g., controlled vocabularies are often denoted as
ontologies).

Uschold et al. define three application areas for ontologies: Communication, Inter-
Operability and Systems engineering as follows [UG+96, p. 7-13]:

4http://www.w3.org/TR/owl-guide/
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1. Communication Ontologies provide a unified view of a shared domain and can
help to settle different viewpoints. They also define unambiguous definitions of
concepts and keep track of the connections between them.

2. Inter-Operability Ontologies can help with exchanging different data formats
and act as Inter-Lingua, providing an intermediate view of the world to which
other views can be translated.

3. Systems engineering Ontologies can serve as the basis for specifications in engi-
neering and simplify automated checking of the implementation of specifications
and facilitate reuse.

Evaluating ontologies and estimating the suitability of an ontology for a specific task
remain open problems in computer science. Different ontologies may be best suited
for different purposes, and the assessment of an ontology as ”good” or ”fit” may not
hold in general. Often, ontology evaluation cannot be done automatically and human
support is required.

In 2005, Brank et al. [BGM] surveyed ontology evaluation techniques and identified
four main methods:

1. Comparison to a gold standard by lexical comparison to an ontology considered
a good representation

2. Data-driven evaluation by measuring the fit of an ontology to data, e.g., a set
of documents

3. Manual assessment by humans, who analyze the ontology with regard to re-
quirements and standards.

4. Task-based evaluation by measuring the fitness of an ontology for a given task
or application

2.2.1. Ontologies in the biomedical domain

In the biomedical domain, ontologies have been adapted more frequently than in
other disciplines [NT08]. Biomedical ontologies play an important role in biomedical
research [B+08] and are used for a range of purposes.

Aggregated by their function, ontologies in this domain can be grouped in six classes
[RSN08]:

1. Search and query of biomedical data Ontologies such as the GeneOntology, Med-
ical Subject Headings or the NCI Thesaurus act as controlled vocabularies to
facilitate information retrieval.
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2. Data exchange Ontologies can specify data exchange formats between applica-
tions. Examples for this are MAGE-ML and MAGE-OM, which define informa-
tion models for microarrays.

3. Information integration Ontologies can simplify relating multiple databases by
providing ontological descriptions for their content.

4. Natural language processing NLP methods in combination with ontologies facil-
itate information extraction.

5. Representation of encyclopedic knowledge Encyclopedic information can be com-
bined with ontological structure to enable automated access.

6. Computer reasoning Knowledge systems may permit automated reasoning over
their contents and derive new facts.

Bodenreider et al [B+08] functionally surveyed ontologies in the biomedical domain
according to three classes:

Knowledge Management Ontologies in the biomedical domain provide a controlled
vocabulary. Ontologies such as Medical Subject Headings (MeSH) and the Gene On-
tology (GO) are applied to annotate data, thus enabling better access to medical
documents. The International Classification of Diseases (ICD) and SNOMED CT are
used to index clinical documents and make use of codes for diseases. The Unified
Medical Languages System (UMLS) provides mappings between multiple ontologies
of the same domain.

Data Integration, Exchange and Semantic Interoperability Ontologies support
data integration by either providing a common data format or mappings. UMLS,
SNOMED CT and Logical Observation Identifiers Names and Codes (LOINC) are
used for these purposes.

Decision Support and Reasoning Ontologies help in research to select groups of
patients in medical trials and to identify common characteristics according to different
treatments. These methods are often based on ICD. Ontologies also play a supporting
role in clinical decision support by providing a controlled vocabulary and a formal,
machine-accessible knowledge base. Furthermore, ontologies back up natural language
processing tasks and knowledge discovery.

BioPortal [WNS+11], developed by the National Center for Biomedical Ontology
(NCBO) of the United States, is a web portal which provides access to a range of
ontologies. BioPortal permits access to its ontologies in a number of data formats and
supports searching in ontologies as well as API access.
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2.2.2. Ontologies and Navigation

Ontologies have been used in previous research to facilitate navigation in digital li-
braries. For example, Papazoglou and Hoppenbrouwers [PH99] have used ontologies
to retrieve related works when searching digital libraries.

The research of Rajapakse et al. [RKA+08] shows efforts to navigate the digitally
available literature related to dengue fever. The dengue domain consists of hetero-
geneous data and is, in general, difficult to search. The authors created an ontology
text-mining techniques and were able to simplified information-retrieval on the do-
main.

Villela Dantes et al. [VDMF10] have studied the ontology-guided insertion of links
into web pages. In their work, they classified web pages according to an ontology and
subsequently inserted links to related topics into web pages to facilitate navigation.

Mohanraj et al. [MCS+11] have examined self-adapting ontologies in the case of rec-
ommendation systems. Their objective was to predict the next step in a user’s navi-
gation. The first step of their approach consisted of a genetic algorithm (following the
honey bee foraging behavior) and was used to find recommendation candidates for
the user’s next click. In a second step, they selected one recommendation among the
candidates using an adaptive ontology, which they updated according to the user’s
previous navigation steps.

These research papers share the effort to use ontologies to aid navigation. The objec-
tive of this thesis lies in explaining and modeling user behavior by using ontologies as
background knowledge. The ontologies are hence not used to guide human users but
to simulate and possibly explain their behavior.
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3.1. Introduction

Decentralized search is a method of solving a pathfinding problem in a network with-
out a central control unit. Starting from an arbitrary start node within the network,
the objective of decentralized search is to find a way to a given target node. The term
decentralized stems from the fact that the search proceeds by forwarding the search
problem from one node to the next, until the target is reached. In Stanley Milgram’s
small world experiment [TMTM69], decentralized search was established through hu-
mans forwarding letters to acquaintances in order to find a target person. Each human
along the chain of letters acted independently of all others and thus made the search
decentralized, i.e., acting without a central control unit involved in the decisions at
every step. Further examples for decentralized search include bug forwarding in a
developer network, where software bugs are assigned to a starting person, and then
forwarded to other developers until it is fixed [MTC+12], or job recommendations in
social networks [AA04].

In the theory of network navigability, Jon Kleinberg showed that networks that are
formed according to a background hierarchy (i.e., a tree) are efficiently navigable
[Kle01], provided the search agent has access to that background hierarchy dur-
ing the search. Some sort of background knowledge about the network however, is
a general necessity for efficient navigability when searching a network. In Stanley
Milgram’s small-world experiment, participants were provided with certain pieces of
background information about the target person, such as geographic location and
profession [Mil67] and were able to exploit these facts when forwarding letters.

According to Jon Kleinberg’s work [Kle01], Decentralized Search uses a second net-
work as the background knowledge. This background knowledge is called a hierarchy
because of its tree structure. The actual navigation takes place on the network N
and uses distance information from the background knowledge H, which contains all
nodes from N but, in general, different connections between them. While the network
N is a directed graph, the hierarchy H is undirected.
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This thesis applies decentralized search, which was originally developed for social
networks, and apply it to information networks. There exist substantial differences
between navigation in these networks, as described in [HSGS13]: In a social network,
navigation is executed by multiple agents that are a part of the network (search prob-
lems are forwarded to another person), and the search is hence genuinely decentralized.
In an information network on the contrary, the navigation is performed by a single
agent that is generally not a part of the network. Furthermore, the cost of consulting
candidate nodes is expensive in social networks (meaning that the process of con-
tacting social entities is time-consuming), while it is comparatively cheap to consult
candidates (e.g., web sites) in an information network [HSGS13]. These changes are
summarized in Table 3.1.

Nevertheless, Decentralized Search is still an interesting and scientifically rewarding
method to apply to information networks: While the method becomes less decentral-
ized in a certain sense, the study of Decentralized Search reveals intriguing aspects
of information networks such as their navigability, an aspect often neglected in the
presence of powerful search engines. Moreover, Decentralized Search can be applied to
simulate user behavior in information networks, an aspect which makes it attractive
to automatically examine the ramifications of network structure changes to navigation
behavior.

In a social network, the decision of where to forward the problem to is generally based
on the expected knowledge and capability of that particular next node (person).
For the simulations in this thesis, it is assumed that all nodes shared a common
background knowledge. This assumption made the algorithm less decentralized in a
certain sense, because all the decisions are now made by one and the same entity (the
simulation). Just like in the original decentralized search algorithm however, at each
node the simulation could only access information about that particular node’s local

Social Networks Information Networks

Agents per search multiple agents single agent

Type of routing decentralized (with local
knowledge)

centralized (with local
knowledge)

Searcher part of the network (en-
dogenous)

not part of the network
(exogenous)

Routing decisions social intuitions topical intuitions

Local knowledge rich limited

Consultation of candidates costly cheap

Table 3.1.: Potential differences and commonalities between navigation in social and
information networks This table originally appeared in [HSGS13]
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network neighborhood. The background knowledge represented additional knowledge
about the network necessary to effectively find a short path to the target.

To provide an example: When looking for an employee in a company for instance,
the employees and their acquaintance relations could form the network, and the back-
ground knowledge could be represented by the organizational hierarchy, i.e. managers,
team members and so forth. In this case, the restriction for the navigation would be
that it could only be forwarded to acquainted employees. This reflects the reality of
personal recommendations when searching for employment.

The following section discusses design parameters of Decentralized Search, followed
by a section on Hierarchical Decentralized Search, which is directly based on Jon
Kleinberg’s work of hierarchies and navigability. After that follows a description of
Ontology-based Decentralized Search, the new algorithm presented by this thesis.

3.2. Design Parameters of Decentralized Search

This chapter gives an overview of the possible design choices in concrete implemen-
tations of the Decentralized Search algorithm and discusses their implications. Any
version of Decentralized Search is bound to make a choice for each of these design
parameters.

3.2.1. Background knowledge utilization

At every step, Decentralized Search queries the background knowledge graph to obtain
the next node to proceed to.

Ranking The background knowledge is used to establish a ranking of potential suc-
cessor nodes at each step. There exist several measures for this: The most straightfor-
ward measure is the calculation and ranking of the nodes by their geodesic distance
to the target on the background knowledge. In case the background knowledge forms
a tree, another possible measure is the height of the lowest common ancestor between
the current node and the target node. This ranking represents the intuitions of the
agent navigating on the network, provided by the background knowledge. In the Mil-
gram experiment, this could for instance be the geographic distance to the target
person.
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Completeness A background knowledge is called complete, if it contains information
about all the nodes present in the network. A complete background knowledge contains
every node of the network but does not necessarily provide the correct information,
as it generally contains different edges. In general, the background knowledge does
not need to contain information about any node (in which case the search becomes a
random walk) or may contain perfect knowledge (in which case the search follows the
shortest path). In case of a target node not in the background knowledge, the search
can either abort or proceed randomly.

3.2.2. Node selection

Given a ranking of nodes provided by the background knowledge, the next step for
the Decentralized Search algorithm is the selection of the successor node. In addition
to the ranking, the selection process may include further restrictions or additional
information about the potential successor nodes.

Selection strategy Generally, nodes may be selected either deterministically or
stochastically [HSGS13]:

• A deterministic greedy selection always opts for the top-ranked node as provided
by the background knowledge.
• A stochastic node selection may be implemented in a variety of ways, such as

– ε-greedy or variants thereof, such as ε-beginning or ε-decreasing [BBG12]
– with probabilities proportional to the ranking, e.g., softmax [HSGS13]

The most simple node selection strategy (deterministically greedy) is to always follow
the information provided by the background knowledge and pick the top-ranked node.
However, the search strategy may also take several further aspects of the network into
account. In general, Decentralized Search also has access to information about some
properties of the potential successor nodes, such some measure of textual similarity to
the current node or in- and outdegree. This may be applied to form a node-selection
strategy which considers only nodes with certain properties, such as high degree or
high textual similarity to the current node.

Search strategies may also combine several strategies, such as initially navigating to a
well-ranked high-degree node first and subsequently selecting successor nodes based on
textual similarity to the target node. [WL12a] lists several potential search strategies
for the information network of Wikipedia.
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Node revisitation Another crucial aspect is the revisitation of nodes. If network
nodes can be visited an unlimited number of times, this may lead to looping behavior.
In order to avoid this, implementations of Decentralized Search may restrict nodes to
be visited only a predetermined number of times (e.g., a maximum of two visits) or
only once.

Handling of multiple targets The case of Decentralized Search with multiple targets
raises the question of how the navigation handles them. With an increasing number of
targets, finding an optimal way of visiting multiple targets (based on the information
provided by the background knowledge) becomes increasingly hard, as it constitutes
an instance of a traveling salesman problem (TSP). There exist several possibilities,
such as

• Determining the search order beforehand via the information provided by the
background knowledge (i.e., solving the TSP or approximating it).
• Determining the next node to navigate to at every step, i.e., calculating the

distances to all target nodes and subsequently taking one step towards the
closest target.

3.2.3. Termination Condition

Depending on the search strategy, Decentralized Search may run until it has explored
all nodes in the network, or loop indefinitely. As this may not always be the desired
behavior, a termination condition is often useful. The most simple version is the
termination after a maximum number of steps, if no target has been found. Another
interesting aspect is the implementation of an attrition rate which assigns a certain
probability of termination at every step (just as human participants had a chance of
dropping out at every step in the Milgram experiment). The attrition rate can be
modeled following a certain function, e.g., linear, quadratic or hyperbolic.

3.2.4. Backtracking

A further essential design parameter is backtracking during the navigation. Back-
tracking models the back button functionality of a web browser, and can be useful to
escape dead ends and unknown network areas. As a design choice, backtracking may
be limited to a certain number of uses by the algorithm.
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3.3. Hierarchical Decentralized Search

This section presents Hierarchical Decentralized Search, one possible implementation
of Decentralized Search out of the design space described in the previous chapter.
What makes this particular implementation interesting is that it has found widespread
use in research (e.g., [TSHS12] [HSGS13]) and directly follows Jon Kleinberg’s work.
For these reasons and to provide a concrete example before going into the details of
Ontology-based Decentralized Search, the algorithm is described in this section.

Generally speaking, Hierarchical Decentralized Search is a decentralized search algo-
rithm in a network and uses a tree-shaped hierarchy as its background knowledge.
Table 3.2 describes the chosen design parameters.

Background knowledge complete
ranking geodesic distance

Node selection deterministically greedy
Node revisitation no

multiple targets not supported
Termination condition maximum number of steps

Backtracking yes (unlimited)

Table 3.2.: Design parameters of Hierachical Decentralize Search. The table shows the design
parameters used in the implementation of HDS, as described in Chapter 3.2.

Algorithm 1 shows the basic algorithm for hierarchical decentralized search. The algo-
rithm is initially started as HDS(N, H, s, NULL, t), where N is the network, H the
background hierarchy, s the starting node, NULL the parameter for the parent node
(of which there is none, initially), and t the target node. The function then proceeds
by selecting a successor node, which is chosen among the links pointing away from
the starting node s. The background knowledge is used to gage the fitness of each
link and estimates a distance for each potential successor node. As the distance, the
geodesic graph distance on the background knowledge H between the nodes s and
t is used (written as dH(s, t)). The function then recursively proceeds to the best
successor node. This process is repeated as long as there are unexplored nodes in the
network that the background knowledge estimates to be more profitable to explore
than backtracking.

To avoid loops, each node in the network is explored only once. However, the algorithm
may backtrack to the last visited nodes (up until the starting node, if desired). This
is used in case of dead ends (articles with no unvisited outgoing links) or at articles
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providing only links leading further away from the target according to the background
hierarchy information.

Algorithm 1 is adapted from [TSHS12] and the standard recursive implementation
of depth-first search. In fact, if the selection of the successor node is simplified to
always choose the next unmarked node in the list of neighbors without considering the
background hierarchy, the algorithm becomes the standard recursive implementation
of depth-first search. As for depth-first search, a non-recursive implementation using
a stack is evidently also achievable as a similar implementation.

Algorithm 1 Hierarchical Decentralized search. The basic algorithm for hier-
archical decentralized search with backtracking. The algorithm is initially called as
HDS(N, H, s, NULL, t) and recursively calls itself until the target is found or no
more exploration is deemed useful by the hierarchy. dH(s, t) is the geodesic graph
distance on the background knowledge H between the nodes s and t. This algorithm
is adapted from [TSHS12] and the basic algorithm for depth-first search.

Input: network N , hierarchy H, start node s, predecessor node p, target node t
1: function HDS(N, s, p, t)
2: mark s in N
3: if s = t then
4: return True

5: repeat
6: successor ← p
7: dmin ←∞
8: for n ∈ Γ(s) ∪ {p} do . Γ(s) are the neighbors of s in N
9: if n unmarked and dH(n, t) < dmin then

10: dmin ← dH(n, t)
11: successor ← n
12: if successor 6= p then
13: if DecentralizedSearch(N , H, successor, p, t) = True then
14: return True

15: until s = t
16: return False

17: end function

The algorithm described in Algorithm 1 requires the following prerequisites:

1. The hierarchy H is complete, i.e., it possesses knowledge about the entire net-
work N , that is it contains all nodes from the network N .

2. The hierarchy H is connected undirected simple graph.
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(a) Network

(b) Background knowledge (hierarchy)

Figure 3.1.: Example for Hierarchical Decentralized Search Figure a) shows the graph of an
example network, where Hierarchical Decentralized Search is started at node 13 and
progresses to node 33. Figure b) shows the corresponding background knowledge. HDS
proceeds along the links which seem most profitable (i.e., that are closest to the target
node) according to the background knowledge. Figures reprinted from [TSHS12].
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3. The network N is a directed simple graph to which no connectivity constraints
are imposed.

4. For all node pairs (s, t), where s is the start node and t the target node, the
network N contains a path from s to t.

The hierarchy H may also contain additional nodes not present in the hierarchy.

In order to actually obtain a path from this algorithm, a log procedure or a print
statement at each step would be required. The pseudo-code for this has been left out
for the sake of simplicity.

Figure 3.1 provides an example of Hierarchical Decentralized Search for a small net-
work and a corresponding hierarchy. In the figures, the navigation starts at the node
labeled 13 and proceeds to the target node labeled 33. During the navigation, the
next hop to select is determined by the information provided by the hierarchy.

In comparison to previous work with the decentralized search framework such as
[HSGS13] and [TSHS12], Algorithm 1 has been improved by the inclusion of back-
tracking. Backtracking potentially leads to longer paths (because the search does not
easily abort) and a higher number of found targets.

Algorithm 1 evidently does not yield optimal solutions, as the value of its information
to the navigation process depends on the fitness of the hierarchy. For a hierarchy in
tree-form with n nodes and n − 1 edges, this is in general also not possible, as a
directed simple graph can contain up to n(n− 1) edges. In other words, the hierarchy
contains only information about Θ(n) edges, while the network contains O(n2) edges,
where n is the number of nodes in both the hierarchy and the network.

3.4. Ontology-based Decentralized Search

Ontology-based decentralized search (OBDS) represents a different, more general ap-
proach to Decentralized Search. This section provides a general description and mo-
tivation of Ontology-based Decentralized Search, while the specific version of OBDS
used by this thesis and its chosen design parameters are described in detail in Chapter
4 in the context of the experimental setup.

As the name indicates, Ontology-based Decentralized Search uses ontologies as back-
ground knowledge. In contrast to Hierarchical Decentralized Search, the background
ontology need not be strictly hierarchical (i.e., not in tree form), but a regular undi-
rected graph is also acceptable. However, all of the ontologies used in this thesis
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retained a structure similar to a tree, with a clear root concept but a number of
concepts with multiple parents.

The use of existing ontologies represents a substantial change in the motivation of
the background knowledge: As opposed to previous work in this area, the background
knowledge is now exogenous to the network. What this implies is that the hierarchy is
based on knowledge independent of the network that the agent navigates on. In pre-
vious HDS experiments, the background hierarchy was often calculated from network
features (such as node degree or centrality). This worked well for simulations but had
the inherent drawback of using ”unfair” knowledge in the sense that it used parts of
the global network topology to calculate the background knowledge. With the use of
existing ontologies created without explicit knowledge of the network, this issue can
be overcome.

All ontologies used in the application of Ontology-based Decentralized Search in this
thesis play a key role for their corresponding domain in their research fields. They
are hence representative for a good part of the knowledge in these domains (the
ontologies are discussed in Chapter 4.2). This permits OBDS with a foundation to
more accurately represent the intuitions of human navigation behavior.

The use of ontologies and the associated semantic information open up a range of
new possibilities for the application of the background knowledge. The following para-
graphs describe the key ideas.

Filtering by relations and properties Because of its use of a background knowledge
enriched by semantic information, Ontology-based Decentralized Search is a more
general version of the original Decentralized Search approach. In addition to the in-
formation conveyed by the nodes and edges of the background knowledge, ontologies
add substantially more information to the background knowledge: Ontologies are (in
general) made up of different types of relations (such as is-a or part-of ), which can
be used to extract different varieties of background knowledge from one and the same
ontology. For example, a hierarchical version of the ontology could be extracted by
following only the is-a relations. Furthermore, ontologies may assign properties to
their concepts. A background knowledge can hence also be restricted to ontology con-
cepts with a certain property. For example, an ontology could be filtered to contain
only contain concepts related to geography, thus providing a background knowledge
limited to a single domain. This could then be compared with other filtered versions
of the ontology. In conclusion, this approach leads to a variety of new and interesting
ways to calculate distances and rank the potential successor nodes.
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Filtering of important concepts As many ontologies used in real life contain a large
number of concepts and relations, OBDS could also be used to establish the most
important relations or relation types in an ontology. This could be accomplished
by extracting and comparing different versions of an ontology via navigation, and
extracting the most frequently used concepts and relations. One application of this
could be the generation of a condensed representation of an ontology, providing a
more simple overview and introduction into the domain.

Modeling different user groups Ontologies could also be used to model different
types of users. A good example for this is the case of the ICD-10 ontology, which
provides a classification of diseases. In the ontology, the depth of a disease (i.e., its
distance from the root node) corresponds to its specificity. This could be used to model
the knowledge of different hospital personnel. For instance, a medical specialist could
be modeled by the entire depth of knowledge of one section of the ontology, and a
depth-limitation in the other sections. A nurse could be modeled by having a certain
depth-limitation in all areas, which would still be less limited than the version of the
ontology used to represent a layperson. This could be effectively used to simulate
different user groups in medical information systems, without having to carry out
actual human user studies which are often expensive and difficult to conduct.

Inference Furthermore, ontologies permit inference on their entities. For hierarchi-
cal relations this could mean for instance, that subconcepts could be assigned the
type of their superconcepts (e.g., the perhaps unfamiliar Supraventricular tachycardia is
a subconcept of Heart Disease in ICD-10, which is a more familiar disease). In the
case of the cut-off background knowledge, more specific ontology concepts could then
be substituted by their inferred superconcepts and provide more information to the
navigation process than a pure random guess.
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This chapter describes the materials and methods used in the case study of applying
Ontology-based Decentralized Search to Wikipedia and biomedical ontologies. Section
4.1 introduces the design parameters and the setup for Ontology-based Decentralized
Search. Section 4.2 introduces the four ontologies used. Section 4.3 provides the de-
tails for the Wikipedia articles as well as information about the mapping between
Wikipedia articles and the ontology concepts. Section 4.4 describes the navigation
scenarios simulated in this thesis, followed by Section 4.5 describing the setup of the
user study used to evaluate the results.

4.1. Ontology-based Decentralized Search

4.1.1. Design Parameters

The concrete parameters for the Ontology-based Decentralized Search algorithm used
in the experimental phase of this thesis are again chosen from the parameter space
described in Chapter 3.2. Its parameters are similar to those of Hierarchical Decen-
tralized Search, but include the support for multiple targets. The design parameters
are summarized in Table 4.1.

Handling of multiple targets The version of OBDS used in the experiments sup-
ports multiple targets as follows: At each step during the navigation, OBDS decides
what target is currently estimated to be the closest and then takes a step into that
target’s direction. This process continues until all targets are found. Note that while
this could lead to looping behavior in general, loops are prevented in the algorithm
by the marking of nodes as visited and further excluding visited nodes from the ex-
ploration.
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Background knowledge complete
ranking geodesic distance

Node selection deterministically greedy
Node revisitation no

multiple targets decide at each step
Termination condition maximum number of steps

Backtracking yes (unlimited)

Table 4.1.: Design parameters of Ontology-based Decentralized Search. The table shows the
design parameters used in the implementation of OBDS, as introduced in Chapter 3.2.

4.1.2. Further adaptions

Moreover, OBDS, as used in the experiments, additionally includes a starting portal
and a home button.

Starting portal OBDS always starts from the same starting portal in the graph.
This starting portal is an artificially introduced network node containing links to
multiple other network nodes and serving as an entry point into different areas of
the network. The concrete portals in association with the search scenarios used are
discussed in section 4.4.

Home Button OBDS contains a home button that leads back to the starting portal.
In the simulation, this button is available at all times, and the algorithm decides at
each step whether to continue the search or to return back to the portal.

4.1.3. Ontology-based design decision

Ontology-based Decentralized Search was applied using four established ontologies
from the biomedical domain as background knowledge (these ontologies are discussed
in the next section).

In the experiments, Ontology-based Decentralized Search was used with both filtered
and unfiltered ontologies. First, OBDS was applied to three different ontologies that
were not filtered. This meant, that all concepts and relation types present in the
ontologies (and mapping to the data sets) were used as the background knowledge.
The results of the simulations were then compared on the same information network,
which meant that the three ontologies effectively modeled different user groups on
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the same set of data. Second, OBDS was applied to three filtered versions of one and
the same ontology. These version were filtered by concept properties and formed a
partition of the ontology (i.e., no concept was part of more than one subontology).
This was then used to compare the performance of these subontologies.

4.1.4. Algorithm

The exact algorithm for Ontology-based Decentralized Search, as used in this thesis,
is detailed in Algorithm 2.

Algorithm 2 Ontology-based Decentralized search. The algorithm for ontology-
based decentralized search with backtracking. In addition to hierarchical decentralized
search, this algorithm starts from a starting portal and searches for multiple targets.
The algorithm is initially called as OBDS(N, O, s, NULL, t) and recursively calls
itself until all the targets are found or no more exploration is deemed useful by the
background ontology.

Input: network N , background ontology O, start node s, predecessor node p, target
node t

1: function OBDS(N, O, s, p, t)
2: mark s in N
3: if s ∈ t then
4: remove s from t
5: if s = ∅ then
6: return True

7: repeat
8: successor ← p
9: dmin ←∞

10: for n ∈ Γ(s) ∪ {p, portal} do . Γ(s) are the neighbors of s in N
11: for target ∈ t do
12: if n unmarked and dH(n,target) < dmin then
13: dmin ← dH(n,target)
14: successor ← n
15: if successor 6= p then
16: if DecentralizedSearch(N , successor, p, t) = True then
17: return True

18: until s = t
19: return False

20: end function
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The basic structure of Algorithm 2 is the same as the one of Algorithm 1. The algo-
rithm is initially called as OBDS(N, O, s, NULL, t), where N is the network, O is
the background ontology, s the starting node, NULL is the parameter for the parent
node (initially not set) and t the set of target nodes. Like HDS, the algorithm calls
itself recursively. The major changes to the basic algorithm for Hierachical Decentral-
ized Search lie in the multiple targets, which are now evaluated at every call of the
function, and the inclusion of the starting portal in the list of potential successors at
each step during navigation.

Figure 4.1 presents an example of the application of Ontology-based Decentralized
Search. The example is taken from the application of the method to the data set of a
network of biomedical Wikipedia articles and the ICD-10 ontology, which is described
in the following section. The search agent in the examples starts from a hypothetical
portal containing links to a number of common diseases. The algorithm then proceeds
towards the target, making use of ICD-10 as its background ontology.

4.2. Ontologies in the biomedical domain

In this thesis, the the following four ontologies are used as background knowledge (all
from the biomedical domain) :

The International Classification of Diseases, tenth revision (ICD-10) is a
classification of diseases, signs and symptoms first published in 1992 and maintained
by the World Health Organization (WHO). The ICD-10 had its origins in the classi-
fication of causes of deaths and has become the standard for diagnostic classification,
presently used by over a hundred countries to report mortality statistics. It is also
widely used for epidemiology, health management as well as clinical purposes and is
available in 46 languages [ICD12]. It enables the exchange of data between countries
and languages. The version used in this thesis contained 12,417 concepts (see Ta-
ble 4.2 for an overview of the ontologies used in this thesis). ICD-10 consists of 22
top-level nodes1 termed chapters and assigns a code (or a range of codes) to every
disease in its domain. Every code starts with a letter indicating the chapter, followed
by numbers further specifying the disease. For example, the code I47.1 denotes the
disease Supraventricular tachycardia and E66 denotes Obesity.

Medical Subject Headings (MeSH) is a controlled vocabulary thesaurus for jour-
nal articles in the medical domain. MeSH is maintained by the U.S. National Library of
Medicine. The ontology forms a tree-structure with 16 top-level concepts and contains

1Top-level nodes are the direct neighbors of the root node in the ontology.
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(a) Wikipedia graph

(b) Background knowledge (ICD-10)

Figure 4.1.: Example for Ontology-based decentralized search OBDS starts from a hypo-
thetical portal containing links to a number of common diseases. The algorithm then
proceeds towards the target, making use of the background ontology. In this figure, the
network is represented by Wikipedia articles and the background knowledge is repre-
sented by the ICD-10 ontology containing diseases. A possible navigation path in the
graph (green, solid) is guided by ICD-10, which differs from the shortest path (red, dot-
ted). The numbers along the ICD-10 path show the distance to the target, according to
ICD-10.
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26,142 terms (called descriptors) [MeS12] . Descriptors are graph leaves and attached
to one or more tree nodes (which are not descriptors). As such, the complete ontology
graph used in this thesis contained 80,689 nodes. MeSH extends beyond biomedical
concepts and comprises terms from other domains such as Geography, Technology or
Publication Characteristics. However, only the biomedical terms were used in this the-
sis. MeSH assigns unique identification strings of the form D0136170 to its concepts,
but also denotes each concept via a code that references the tree structure. For exam-
ple, C14.280.067.845.880 denotes Tachycardia, Supraventricular and C18.654.726.500

denotes Obesity.

Systematized Nomenclature of Medicine–Clinical Terms (SNOMED CT)
[PS00] is a clinical health care terminology used in electronic health record systems.
SNOMED CT had its origins in the merge of SNOMED RT (developed in the United
States) and Clinical Terms Version (developed in the United Kingdom). The revision
used in this thesis contained 295,482 concepts, which made it by far the largest on-
tology examined in the simulations. SNOMED CT consists of 19 top-level concepts
and assigns numeric identifiers to its concepts. For example, Supraventricular Tachycardia
is identified with code 6456007 and Obesity with 414916001.

The Gene Ontology (GO) [Ash00] is a controlled vocabulary of terms used for the
annotation of genes and gene products. It is part of the Open Biomedical Ontologies
(OBO) effort to create controlled vocabularies in biology and medicine. The Gene
Ontology consists of 37,779 concepts divided among three different subontologies,
which cover the cellular component, the molecular function and the biological process,
respectively. In its filtered form used in this thesis, the three subontologies take the
form of disjoint trees. In general, genes and gene products are annotated with entries
stemming from all three subontologies. Entries in the Gene Ontology are assigned a
numeric identification code such as GO:0000016 for the entry lactase activity.

Figures 4.2 and 4.3 depict aspects of the examined ontology graphically. The figures
were created based on the root node of the ontology (which is explicitly specified in
the ontology descriptions) and following links to neighbor concepts up until a depth of
four. These figures permit the visual inspection of the ontology structures and reveal
information about the densities and the number of top-level concepts. For the Gene
Ontology (Figure 4.3), it is clearly visible that the biological process subontology
includes far more concepts than the other two subontologies.

Table 4.2 displays statistics about the data sets used for this thesis (the Wikipedia
statistics in this table are explained in the next section). Given the undirected graph
G = (V,E), the density was calculated as
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(a) ICD-10 (b) MeSH

(c) SNOMED CT

Figure 4.2.: Structure of the four top levels of ICD-10, MeSH and SNOMED CT. The
root node is displayed in the middle of each plot. The figures show all ontology concepts
up until a distance of four from the root node. Color indicates distance, with red being
close to the root and blue being farther away. SNOMED CT (depth 16) is clearly broader
than MeSH (depth 14), which stems from the fact that the latter contains roughly four
times as many concepts as the former.
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(a) GO (bio) (b) GO (cel)

(c) GO (mol)

Figure 4.3.: Structure of the four top levels of the Gene Ontology The figure shows the
structure for the three subontologies making up the GeneOntology (biological process,
cellular component and molecular function). The root node is displayed in the middle of
each plot. The figures show all ontology concepts up until a distance of four from the root
node. Color indicates distance, with red being close to the root and blue being farther
away. The biological process subontology is visibly broader than its sibling ontologies.
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Description ICD-10 MeSH SNOMED CT
Ontology concepts 12,417 80,689 295,482

top-level 22 16 19
links 12,416 112,463 440,408

density 8.05× 10−5 1.73× 10−5 5.04× 10−6

depth 4 14 16
relation is-a is-a, part-of is-a

Wikipedia articles 2,673 2,584 1,594
links 31,863 27,350 14,539

density 4.46× 10−3 4.10× 10−3 5.73× 10−3

Description Gene Ontology bio cel mol
Ontology concepts 37,779 23,691 3,020 9,413

top-level 25 19 21
links 67,991 51,397 5,617 10,977

density 4.76× 10−5 9.16× 10−5 6.16× 10−4 1.24× 10−4

depth 10 7 10
relation is-a, part-of,

regulates

Wikipedia articles 3,445
links 15,643

density 1.32× 10−3

Table 4.2.: Characteristics of the data sets used for this thesis The tables display statistics
about the examined ontologies as well as the sets of Wikipedia articles mapped to those
articles. As SNOMED CT was only used in conjuction with MeSH and SNOMED CT,
the column shows the information for the intersection of Wikipedia articles mapping to
all three ontologies. This thesis used data from the four ontologies listed, all of which
were in the biomedical domain. For the GeneOntology, the triples (bio - cel - mol) list
statistics for the three subontologies making up the GeneOntology.

D =
|E|

|V |(|V | − 1)
,

where |E| is the number of edges in the graph and |V |(|V | − 1) is the maximum
number of edges in an undirected graph. For the directed Wikipedia network, the
density was calculated as

D =
2|E|

|V |(|V | − 1)
,

as an undirected graph has a maximum of 2
|V |(|V |−1) edges.
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Although SNOMED CT has a larger amount of edges than ICD-10 and MeSH in
absolute terms and is denser for its first levels away from the root node (see Figure 4.2),
its density is actually lower because of its relatively low number of edges compared to
its nodes. The same is the case with the biological process subontology of the Gene
Ontology (see Figure 4.3).

4.3. Wikipedia Articles

The English Wikipedia was chosen as the information network to base the investi-
gations of this thesis on. The idea behind this was to use a widely used information
network with data available and accessible for research purposes.

Wikipedia is authored and edited by millions of users world-wide. The investigation
of navigation on Wikipedia represents a stepping stone towards verifying the results
of Ontology-based decentralized search on general information systems or the Web as
a whole.

To investigate the ontologies described in the previous section, matching Wikipedia
articles from the biomedical domain are required. The Wikipedia articles used in this
thesis were obtained from a dump of the English Wikipedia and represent the articles
of the encyclopedia as of December 1, 20112.

To extract articles from the biomedical domain corresponding to ontology concepts,
the articles were mapped to the ontologies by parsing the articles’ info boxes.

Disease articles on Wikipedia commonly make use of a Template:Infobox disease3,
which offers several options to reference medical ontologies such as ICD-10 or MeSH
(see Figure 4.4 for an example). These template fields in the Infobox disease, as
well as two other infobox templates, were then used to map Wikipedia articles to their
ontology counterparts in ICD-10 and MeSH for their use in this thesis. All infoboxes
used are listed in Appendix A.

SNOMED CT is proprietary and as such not present in Wikipedia info boxes. As a
consequence, its articles could not directly used to relate Wikipedia articles to the
ontology concepts. As an alternative, semantic mappings from BioPortal [WNS+11]
were used to map Wikipedia articles to SNOMED CT. In total, 1,594 Wikipedia
articles occuring in both ICD-10 and MeSH were mapped to SNOMED CT with this

2http://dumps.wikimedia.org/enwiki/20111201/
3http://en.wikipedia.org/wiki/Template:Infobox_disease
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method. Hence, all of the ICD-10, MeSH and SNOMED-CT ontologies were used in
the experiments, and the ontologies were not filtered by properties or relations.

The Gene Ontology is different in that it is not used for 1:1 mappings but for the
annotation of Wikipedia articles. Articles are assigned different annotations from the
three subontologies making up the controlled vocabulary of the GeneOntology. For
instance, Insulin is annotated with protease binding, hormon activity and protein binding,
stemming from the Molecular function part of the GeneOntology. This was taken as a
motivation for the split of the Gene Ontology into three subontologies in the experi-
ments of this thesis. Hence, the Gene Ontology was filtered by concept properties into
three different ontologies, which still used all of the available relation types.

Figure 4.4.: Example for an infobox template used in disease articles on Wikipedia. Dis-
ease articles commonly make use of an Infobox disease template, which offers fields for
ontology codes. The template fields in the infoboxes were used to map Wikipedia articles
to their ontology counterparts.

As a result, the Wikipedia articles were linked to all (up until 50 or more) related
concepts from all three subontologies of the Gene Ontology. For this, the correspond-
ing fields in templates created by the ProteinBoxBot4 were inspected in order to

4http://en.wikipedia.org/wiki/User:ProteinBoxBot
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Figure 4.5.: Example for Gene Ontology infobox template used in disease articles on
Wikipedia. Gene articles commonly make use of a Gene Ontology template, which
offers fields for ontology codes. The template fields in the infoboxes were used to map
Wikipedia articles to their ontology counterparts.

extract the relevant mappings to the Gene Ontology. The Portal: Gene Wiki page
on Wikipedia contains around 10,000 articles on human genes and proteins. Articles
in this domain are usually either created or annotated by the ProteinBoxBot, using
information from the Gene Ontology and other projects. An example for a template
can be seen in Figure 4.5.

As a great number of these articles are very domain-specific and only very few editors
are knowledgeable enough to add to them, there is a large number of stubs (very
short articles) and orphans (articles not linked to by any other Wikipedia article).
This is also reflected in the low number of links between the articles in this data set,
as compared to the other data sets (see the density information in Table 4.2).

Further information about the Wikipedia articles used in this thesis is provided in
Table 4.2.

Figure 4.6 shows the degree distribution for the two graphs extracted from the Wikipedia
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(a) Gene Ontology (b) ICD-10/MeSH/SNOMED CT

Figure 4.6.: Wikipedia graph degree distributions The figure shows the degree distribution for
the two graphs extracted from the Wikipedia article network via the Gene Ontology and
the intersection of the articles mapping to ICD-10/MeSH/SNOMED CT. Compared to
the ICD-10/MeSH/SNOMED CT data set, the Gene Ontology data set contained a
higher number of articles with only very few or no links. This is likely due to the higher
number of stubs and orphans in the Gene Ontology-related Wikipedia articles.

article network via the Gene Ontology and the intersection of the articles mapping to
ICD-10/MeSH/SNOMED CT. Compared to the ICD-10/MeSH/SNOMED CT data
set, the Gene Ontology data set contained a higher number of articles with only very
few or no links. This is likely due to the higher number of stubs and orphans in the
Gene Ontology-related Wikipedia articles.

As they are created and maintained by a large number of editors without a central
control institution, the mappings from Wikipedia articles to ontology concepts ob-
tained this way are not necessarily complete or even correct. However, this thesis
does not claim to represent perfect data but instead investigates to what extent a hu-
man created information network can be explained and modeled via methods relating
to decentralized search.

4.4. Navigation Scenarios

For the following investigations and the application of Ontology-based decentralized
search in this thesis, two navigation scenarios were considered. Both scenarios started
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Figure 4.7.: WebMD portal Starting portal used for ICD-10, MeSH and SNOMED CT. The portal
was obtained by mapping navigation bar articles from WebMD.com to Wikipedia articles.

from a hypothetical starting portal, which is described in the first section, followed
by two sections describing the search scenarios themselves.

A point of criticism in HDS was the artificiality of the navigation scenarios. While
there are valid scenarios for point to point navigation in a network, it may not be
the most frequent scenario in real information networks. The introduction of a com-
bination of a starting portal and multiple targets addresses this by simulating search
starting from an artificially introduced portal. The home button was implemented
with the intention of helping users lost in an unknown area of the network to get back
to the portal directly.
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Figure 4.8.: Gene Wiki portal] Starting portal used for the Gene Ontology. The portal uses the
longest and most frequently visited Wikipedia articles as listed on the Gene Wiki Portal
http://en.wikipedia.org/wiki/Portal:Gene_Wiki.

Starting Portal The hypothetical Wikipedia portal included links pointing to a
selection of suitable articles.

For ICD-10, MeSH and SNOMED CT, the 25 health conditions listed in the main
navigation toolbar of WebMD.com were taken as the portal links. WebMD is a pop-
ular health information web portal, providing information about a range of medical
conditions. The links in the navigation toolbar are a pointing to common diseases
and conditions. The intention behind selecting these links was to model a navigation
scenario where a user is looking to obtain information about a disease, starting from
a web portal providing entry links towards different medical areas. Medical websites,
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such as WebMD are frequently [LTSM03] used to obtain information about diseases
or as a first information before consulting a medical doctor. Each one of these con-
ditions was manually mapped to a Wikipedia article from the dataset. These articles
were then used as the outgoing links from the artificial portal.

For the Gene Ontology, the articles listed in the two top 10 lists (ranked by article word
and view count) as shown on the Portal: Gene Wiki5 were used. The idea behind
choosing these two lists was that users interested in gene-related articles might start
their navigation from the Gene Wiki portal on Wikipedia, which provides an overview
and an introduction into the domain.

The portals are displayed in Figure 4.7 and Figure 4.8.

Single-target Search The single-target search scenario consisted of navigation to
one target article. This was intended to model the scenario of having a concept on
the tip of one’s tongue, and navigating to rediscover it.

To provide an example, imagine that Alice accompanied her mother to a physician,
who diagnosed her mother with a certain disease. Back at home, Alice realizes that
she forgot the exact name of the condition. However, she remembers that the disease
was somehow related to heart rhythm problems. Trying to recover the exact name, she
goes to Wikipedia and navigates from a (hypothetical) starting portal. She first clicks
the link on Cardiovascular Disease and navigates her way towards the lost disease. This
example is presented in detail in Figure 4.1, where the search agent is assumed to
navigate based on OBDS with ICD-10 background knowledge.

Multiple-target Search For multiple-target search, the difference to the single-
target scenario was in the targets, which consisted of target sets of 2 to 10 articles. The
other parameters of the simulation (the starting portal, decentralized search and the
ontology as background knowledge) were set up in the same way as the single-target
search.

Multiple-target search was used to model a scenario of exploratory search. In ex-
ploratory search, users explore a space of resources rather than trying to find one
specific target [Mar06]. In analogy to Alice’s example, her mother might navigate
Wikipedia to learn about several potential diseases, causes or secondary effects.

Multiple-target search used clusters of semantically similar Wikipedia articles as the
target sets. These clusters were obtained automatically through k-means clustering.

5http://en.wikipedia.org/wiki/Portal:Gene_Wiki
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The features used to cluster the articles were calculated via TF-IDF (using scikit-learn
[PVG+11]).

TF-IDF is a metric that states the importance of a term relative to a collection of
documents. Let D be a collection of documents. The term frequency tf for a term
t in a document d is then defined as the number of occurrences of the term in the
document. The inverse document frequency idf is then defined as the

idf(t, d) = log
N

n
,

for a term t, a document d, the number of documents N and n the number of docu-
ments containing term t. The term frequency-inverse document frequency (TF-IDF)
is then

tf(t)× idf(t,D).

Out of the created clusters, those clusters containing two to fifteen articles were used in
in the simulations. Several examples for clusters are given in Table 4.3 (with headings
added manually).

In both scenarios, the target article or the set of target articles was directly known
to the simulation. This was used to model the somewhat familiar article Alice was
trying to reach. Although Alice did not know the exact name of her target, she could
roughly place it in a category, to which she then navigated using her own background
knowledge. The simulations modeled this by calculating distance directly to the target
node on the background knowledge to determine the best link to click.

These clusters were used in all simulations except in the human subject study where
manual clusters were developed.

4.5. User Study

To evaluate the simulations and compare the results to human click data, a user study
on Wikipedia navigation was carried out. Eight participants without any particular
background in medicine were recruited for this study. All of them were graduate
students at Stanford University at the time of the user study and were native speakers
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Nausea-related Stomach-related

Vomiting Linitis plastica
Nausea Stomach cancer
Motion sickness Gastritis
Morning sickness Atrophic gastritis
Drooling Ménétrier’s disease
Hyperemesis gravidarum Achlorhydria

Gastroparesis
Duodenal cancer
Gastric dumping syndrome
Stomach disease

Sleep-related Nails-related

Delayed sleep phase syndrome Leukonychia
Shift work sleep disorder Psoriatic nails
Sleep disorder Beau’s lines
Rhythmic movement disorder Nail biting
Night terror Nail disease
Parasomnia Ingrown nail
Irregular sleep–wake rhythm Subungual hematoma
Hypersomnia
Night sweats
Excessive daytime sleepiness

Cough-related Obesity-related

Bronchitis Childhood obesity
Chronic bronchitis Adiposogenital dystrophy
Acute bronchitis Obesity
Cough Overweight
Sputum

Table 4.3.: Examples for clusters of Wikipedia articles used in exploratory search. The
table shows three examples of clusters used in the simulations. TF-IDF features and k-
means clustering was used to automatically group Wikipedia articles into semantically
related groups of two to ten articles.
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of English6. The participants were asked to navigate Wikipedia, modeling the scenario
of navigating to find diseases.

The study used the intersection data set of ICD-10, SNOMED CT and MeSH, con-
taining 1,594 Wikipedia articles. Howereve, a large share of these articles turned out
to be too specialized for test subjects not particularly familiar with the medical do-
main (with article names such as Halitosis, Aniseikonia or Milroy’s disease, which left users
puzzled in a pilot study). As a result, the user study relied on 100 manually selected
generally better known targets (such as Pneumonia, Stomach cancer or Asthma), out of
which 20 clusters of four articles each were arranged manually. The 100 single targets
and the 20 clusters are listed in Appendix C.

Each participant completed a total of 15 navigation tasks. A navigation task consisted
of finding a given target node in the subset of the Wikipedia network. The starting
point for a task was always the portal, and participants could only click links to
move forward. As a starting point, the hypothetical WebMD Wikipedia portal also
used by the simulations (see Figure 4.7) was set. To deal with potential frustration,
participants were given the possibility to abort the current task if they had not found
the target(s) after half of the maximum number of steps (20 for single targets and 40
for multiple targets). As in the simulations, backtracking (using the back button in
the browser) and jumping back to the portal by clicking a home link were enabled at
all times.

Participants volunteered for participation and received no payment in return, but
were offered free food and beverages. The tasks were given without a time limit.

Instructions given to participants The verbatim copy of the instructions given to
the participants of the user study is detailed in the Appendix in Section B. Each
participant was briefed about these instructions beforehand. Specific attention was
paid to use the same briefing structure and words for every participant.

6Since many biomedical terms may be hard to understand for users who speak English as a second
language, the study of native English speakers represents a more accurate image of the obtained user
behavior
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Decentralized Search

Based on the ontologies, the Wikipedia articles, the starting portals and the two
navigation scenarios described in the previous chapter, Ontology-based Decentralized
Search was then simulated and evaluated. This chapter starts with a discussion of
the evaluation metrics used to assess the methods, followed by the description of the
upper and lower bounds used to compare the results against. In the third section, the
results are detailed and discussed.

5.1. Evaluation Metrics

Building upon [KPK+10] and previous related research [HSGS13] [TSHS12], three
main metrics are used to evaluate the resulting navigation paths.

5.1.1. Success Ratio

In accordance with [HSGS13], the success ratio s is defined as the fraction of target
nodes found by the navigator. Let P be the set of of target nodes and W be the set
of target nodes that were successfully navigated to by the simulations. The success
ratio s is then defined as

s =
|W |
|P |

.

The success ratio measures the extent to which an agent is successful in finding a
target. For instance, a success ratio of 0.9 or 90% states that 90% of the targets have
been found.
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5.1.2. Stretch

The stretch is the average ratio of found path lengths to shortest path lengths [HSGS13].
Let l(t) be the length of the shortest path from the portal to the target node t and
let h(t) be the length of the path to the target found by the agent. The stretch τ is
then defined as

τ =
1

|W |
∑
t∈W

h(t)

l(t)
.

The stretch measures the efficiency of search. For example, a stretch of 1.2 states that
the paths an agent was able to find are - on average - 20% longer than the shortest
paths for these targets.

In order to allow for a more granular application of these metrics, the paths resulting
from the simulations are split according to the underlying actual shortest path length
to the target node. This approach follows the work of [HS11] and [TSHS12].

5.1.3. Accumulated Success Ratio

In addition to these two established metrics, a further extension to them was the
accumulated success ratio as, which is the fraction of nodes found up until a certain
number n of steps.

as(n) =
|Wn|
|P |

,

where Wn is the set of target nodes reached by the simulation in n steps or less.

These metrics give a means of analyzing what paths were found by the simulations and
how much longer than the shortest paths they were. For all evaluations, a maximum
number of 20 clicks for the single-target scenario and 40 clicks for the multiple-target
scenario were assumed. While these limits are certainly variable in the setting of
navigation, the chosen numbers represent a reasonable limit of potential clicks that a
user might undergo in order to find the target article on an information network such
as Wikipedia.
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5.2. Upper and Lower Bounds

In order to place the results within boundaries, the comparison with upper and lower
bounds was useful. These boundaries were established by including a random walk
and randomly generated ontologies as lower bounds and a shortest-path solution as
an upper bound. All three of them are described in the following sections.

5.2.1. Random Walk

The random walk consisted of following a random link or tracking back to the previous
node at each step, where each link and the backtrack had a uniform probability.
The random walk did not take already visited nodes or potential targets among the
neighboring nodes into account. This comparison showed how much more information
the OBDS approach provided to the navigation in comparison to a complete random
behavior.

5.2.2. Randomly generated Ontologies

For comparing with a randomly generated ontology, a randomly generated ontology
counterpart for every ontology used in the simulations was constructed. To this end,
the number of nodes and edges was used as input for the configuration model ap-
proach of generating a random graph. The configuration model takes the number of
nodes and the degree sequence of a given graph as inputs, and produces a randomly
connected graph with the same number of nodes and edges as output [New03, p. 200].
As the resulting graph is not necessarily connected, it was subsequently necessary
to randomly connected all graph components and then remove the number of edges
created in this process from other parts of the resulting graph (without deconnecting
it).

This comparison allowed to assess how much information the OBDS approach gained
by taking the structure of the ontologies into account, but not yet the correct mappings
to the Wikipedia articles. Furthermore, evaluating with randomly generated ontologies
took the structured search behavior of decentralized search into account: Decentralized
search, in the implementation used in this thesis, did not re-explore already visited
nodes, could backtrack and always recognized links leading to a target node among
the current node’s neighbors. This gave the comparison with randomly generated
ontologies a distinct advantage over the pure random walk.
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5.2.3. Shortest-path solution

For the upper bound, a solution using the shortest paths from the portal to the
target nodes was computed. In the single-target scenario, this meant that the shortest
possible path in the graph for connecting the portal to the target node was used to
simulate and evaluate the results.

For the multiple-target scenario, an exact solution would have required solving an
instance of the traveling-salesman problem - which is computationally expensive, even
for small input sizes. To circumvent this issue, a solution was approximated with a
nearest-neighbor approach. This approach always took the shortest possible path to
the currently nearest neighbor and hence required only a quadratic number of distance
calculations.

This upper bound showed the (approximately) best possible solution. It is impor-
tant to note that the best solution was only possible with global knowledge of the
graph topology, which search agents generally do not posses in a decentralized search
scenario.

5.3. Results

5.3.1. Evaluation Approaches

The results are presented in two different evaluation approaches.

1. Firstly, for the domain-specific evaluation each ontology was mapped to the
maximum number of articles available on Wikipedia. Subsequently, the per-
formance for each ontology on its domain-specific set of articles (that is, each
ontology on a different set of articles) was evaluated.

2. Secondly, the cross-domain performance of several ontologies was evaluated.
For this, the set of Wikipedia articles was reduced to the intersection, i.e., the set
of articles mapping to all examined ontologies. This allowed a direct comparison
of the performance of the different ontologies.

5.3.2. Domain-specific Evaluation

For the domain-specific evaluation, ICD-10 was compared to MeSH. The data for this
consisted of two different sets of Wikipedia articles, namely the whole sets of 2, 673
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(a) Success Ratio for ICD-10/MeSH (b) Stretch for for ICD-10/MeSH

(c) Accumulated Success Ratio (single-target)
for ICD-10/MeSH

(d) Accumulated Success Ratio (multiple-target)
for ICD-10/MeSH

Figure 5.1.: Domain-specific evaluation: Success ratio, stretch and accumulated success
ratio for ICD-10 and MeSH. The columns show stretch, success ratio and accumu-
lated success ratio, respectively. The numbers in parentheses display the overall values
for the success ratio. The legend displayed in Subfigure a) is valid for all four Subfigures.
Note that the stretch plots do not include lower bounds, as this measure can only be use-
fully applied to compare simulations with a similar number of found paths. The figures
show that the results produced by Ontology-based Decentralized Search are noticeably
better than the results for randomly generated ontologies and the random walk.
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(a) Success Ratio for the GeneOntology (b) Stretch for the GeneOntology

(c) Accumulated Success Ratio (single-target)
for the GeneOntology

(d) Accumulated Success Ratio (multiple-target)
for the GeneOntology

Figure 5.2.: Cross-domain evaluation: Success ratio, stretch and accumulated success ra-
tio for the GeneOntology. The columns show stretch, success ratio and accumulated
success ratio, respectively. The numbers in parentheses display the overall values for the
success ratio. The legend displayed in Subfigure a) is valid for all four Subfigures. Note
that the stretch plots do not include lower bounds, as this measure can only be usefully
applied to compare simulations with a similar number of found paths. The figures show
that the results produced by Ontology-based Decentralized Search are as least as good
as the results for randomly generated ontologies.
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articles mapping to ICD-10 and the 2, 584 articles mapping to MeSH. The results are
displayed in Figure 5.1.

For the single-target scenario, OBDS displayed about the same performance for both
ICD-10 and MeSH. The results also show that OBDS was able to guide the decen-
tralized search towards a little over half of the targets, which was significantly above
the performance of both the random walk and the randomly generated ontologies.

For the multiple-target scenario, the outcomes for both ontologies were again side by
side, with ICD-10 performing slightly better (68% found targets after the maximum
number of steps) than MeSH (62% found targets).

The results of this domain-specific evaluation shows that both ICD-10 and MeSH are
well-suited to guide navigation on the set of their corresponding data sets. Although
the ontologies serve different purposes (ICD-10 is a disease classification and MeSH
is a controlled vocabulary for journal indexing), both produce the same results in the
evaluation metrics concerned.

5.3.3. Cross-domain Evaluation

For the cross-domain evaluation, multiple ontologies were evaluated on the same set
of Wikipedia articles. Cross-domain evaluation permitted the inspection of multiple
ontologies side by side, facilitating comparisons.

The data sets used for this were

i) the set of articles mapping to all three subontologies of the GeneOntology.
ii) the set of the articles mapping to ICD-10, MeSH and SNOMED CT

Figure 5.2 shows the results for i). Comparing the success ratio and accumulated
success ratio with the upper and lower bounds, it becomes apparent that all three
subontologies of the GeneOntology performed only slightly better than randomly gen-
erated ontologies. Overall, the success ratios were fairly low, and the ontologies were
able to guide the navigation only towards finding between 4 and 7% of the target
nodes for the single-target scenario and between 10 and 18% for the multiple-target
scenario. However, the ontologies did lead the OBDS to a better performance than
pure random walks, illustrating that the basic algorithm of Ontology-based decentral-
ized search contains an inherent improvement over random search behavior.

Figure 5.3 displays the results for ii). In this case, the ontologies were able to inform
the navigation better than for i). The results show that the success ratios were well
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above both the random walk and the randomly generated ontologies, and the same is
the case for the accumulated success ratios.

When comparing the performance of the ontologies, the results show that ICD-10
performed best overall, followed by MeSH and SNOMED CT for the success ratios.
For the stretch, SNOMED CT fared slightly better than MeSH (with an average
stretch of 2.45 resp. 2.49).

5.4. Distance distribution on the background
ontologies

Another interesting aspect of the simulation results was the distance distribution on
the background ontologies. For these distributions, all ontology concepts mapping to
a Wikipedia article in the data set were considered, and then the pairwise distance
between all of them was calculated. As such, the resulting distribution covers only
a part of the distance distribution of the ontology concepts, namely the fraction of
distances relevant to the results. Figure 5.4 shows the resulting distribution of these
distances.

The results show that the distances were distributed more evenly and over a larger
range of distances for the ICD-10/MeSH/SNOMED CT data set. This can be ex-
plained by the large number of mappings to the GeneOntology that each of the
gene-related Wikipedia articles had, which increases the probability of shorter paths.
However, finding these exact shortest paths might be difficult, as the simulation would
need precise information from the ontology to exploit them. This might explain why
the GeneOntology data set fared worse than the ICD-10/MeSH/SNOMED CT data
set.
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(a) Success Ratio for ICD-10/MeSH/SNOMED
CT

(b) Stretch for for ICD-10/MeSH/SNOMED CT

(c) Accumulated Success Ratio (single-target)
for ICD-10/MeSH/SNOMED CT

(d) Accumulated Success Ratio (multiple-target)
for ICD-10/MeSH/SNOMED CT

Figure 5.3.: Cross-domain evaluation: Success ratio, stretch and accumulated success ra-
tio for ICD-10/MeSH/SNOMED CT. The columns show stretch, success ratio and
accumulated success ratio, respectively. The numbers in parentheses display the overall
values for the success ratio. The legend displayed in Subfigure a) is valid for all four
Subfigures. Note that the stretch plots do not include lower bounds, as this measure can
only be usefully applied to compare simulations with a similar number of found paths.
The figures show that the results produced by Ontology-based Decentralized Search are
noticeably better than the results for randomly generated ontologies.
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(a) Ontology distance distribution (Gene Ontology)

(b) Ontology distance distribution (ICD-10/MeSH/SNOMED CT)

Figure 5.4.: Distance distribution of ontology concepts that are represented in Wikipedia
The distances were calculated between all pairs of Wikipedia articles in our data sets. To
this end, the distances on the corresponding ontology concepts for each pair of Wikipedia
articles was computed. The results show that the distances were distributed more evenly
and over a larger range of distances for the ICD-10/MeSH/SNOMED CT data set.
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This chapter describes the results of the user study and its comparison to the simula-
tion results. The user study was conducted in order to evaluate the simulations and
compare the results to human click data. Eight participants were asked to navigate
Wikipedia, modeling the scenario of navigating to find diseases.

For the user study, the performance of human participants was compared with OBDS
on the same data set used for the evaluation of ICD-10, MeSH and SNOMED CT. The
targets were 100 manually selected target pages and 20 manually selected clusters.
This limitation of targets meant that targets were a maximum distance of three hops
away from the portal. The evaluations hence do not include any data points for longer
shortest paths. This was a practical constraint of the study.

Figure 6.1 shows the results of the user study in comparison to the simulation results.
For the single-target scenario, the overall success ratio was 92% for the user study
and ranged from 79 - 91% for the ontologies. With an overall stretch of 1.74 the user
study performed slightly better but still very close to the ontologies, which displayed
stretches between 1.78 and 1.84. For the accumulated success ratio in the single-target
scenario, the user study performed again slightly better than the ontologies.

For the multiple-target scenario, the accumulated success ratio shows that the user
study fell within or just below the range of the three ontologies, performing slightly
worse than the ontologies after the maximum number of 40 steps.

It is worth noting that for the multiple-target scenario after 20 steps, the users in
the study did not find any more targets. This coincides with the point from where
on users where given the possibility to abort a search task if they could not find the
target. For the single-target scenario, this point was reached at 10 steps. However,
users did still find targets after that point.

To further obtain qualitative insight into the navigation process, the following com-
pares the produced path lengths of the user study and the simulations with regard to
several aspects.
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(a) Success Ratio for the User Study (b) Stretch for the User Study

(c) Accumulated Success Ratio (single-target)
for the User Study

(d) Accumulated Success Ratio (multiple target)
for the User Study

Figure 6.1.: Cross-domain evaluation: Success ratio, stretch and accumulated success ra-
tio for the user study. The figure shows the results for the user study, which was
carried out on a subset of the targets of the ICD-10, MeSH and SNOMED CT data set).
The columns show stretch, success ratio and accumulated success ratio, respectively.
The numbers in parentheses display the overall values for the success ratio. The legend
displayed in Subfigure a) is valid for all four Subfigures. Note that the stretch plots
do not include lower bounds, as this measure can only be usefully applied to compare
simulations with a similar number of found paths.
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6.1. Comparison of path length distributions

The distribution of path lengths produced by both the user study and the simulations
is a particularly interesting aspect for the validity of the simulations. This distribution
can be seen in Figure 6.2.

To gain more insight into the path length distributions, the Kullback-Leibler diver-
gence from the user study distribution to the other distributions was computed. The
Kullback-Leibler divergence measures the number of additional bits needed to encode
the path length distribution, if the other distribution is used in place of the original
(user study) path length distribution.

For two discrete probability distributions p(x) and q(x) on X , the Kullback-Leibler
divergence or relative entropy is defined as [CT06, p. 19]

D(p||q) =
∑
x∈X

p(x) log2

p(x)

q(x)

= Ep log2

p(x)

q(x)
.

The Kullback-Leibler divergence is zero if and only if the probability distributions
are equal. To circumvent computational problems when one of the distributions was
nonzero and the other zero, a Laplace Smoothing was applied prior to calculating the
values.

The resulting values can be seen in Table 6.1. For the single-target search scenario,
it is clearly visible that only the ontologies produced path length distributions close
to the user study: All three ontology path length distributions had a very small
Kullback-Leibler divergence (ranging from 0.08 to 0.18 bits) to the user study.

This means that it is reasonable to replace human navigation data with data produced
by Ontology-based decentralized Search and a fitting ontology (as far as produced
path lengths are considered). The same cannot be said about randomly generated
ontologies, the random walk or the optimal solution, which cannot be easily taken in
lieu of the ontologies to obtain similar results.

For the multiple-target search scenario, this assertion cannot be made this clearly.
However, the path length distribution for the multiple-target scenario was rather
sparse, as the data consisted of a mere 20 search scenarios, all of which were very
likely to produce a path of a different total length. This meant that a single path
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(a) Path lengths produced by the simulations and the user
study (single-target scenario)

(b) Path lengths produced by the simulations and the user
study (multiple-target scenario)

Figure 6.2.: Path lengths produced by the user study and the simulations. The figures
show the resulting path lengths for the single-target (a) and multiple-target (b) search
scenarios. Navigation was limited at 20 resp. 40 steps, hence the high number of paths
for these lengths (i.e., not all targets were found). The path distributions for the random
walk and the randomly generated ontologies were left out for reasons of clarity.
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accounted for five percent of the path lengths, which is also reflected in Figure 6.2 b).
In subsequent research, it might be desirable to repeat the study with domain experts
(thus enlarging the possible targets) or to replicate the study on a second, larger data
set.

6.2. Further comparisons

In addition to the path lengths, several further aspects of the user study in comparison
with the ontologies were investigated. The data for the results is displayed in Table
6.2 and Table 6.3 .

First, the visited Wikipedia pages and the found targets were inspected. To compare
these, the nodes were arranged into vectors, which were then used computed cosine
similarities.

The cosine similarity is a similarity measure frequently used in information retrieval.
For two vectors a and b, the cosine similarity is defined as the cosine of the angle
between them, or as

ICD-10 MeSH SNOMED
CT

single-target 0.12 0.08 0.18
multiple-target 1.01 0.74 0.84

Optimal Randomly
Generated
Ontology

Random
Walk

single-target 0.46 0.97 2.56
multiple-target 1.63 0.55 1.29

Table 6.1.: Kullback-Leibler divergence for the path length distributions produced by the
simulations and the user study. The table shows the KL divergence from the user
study to the ontologies and the upper and lower bounds. The KL divergence measures
the number of additional bits required to encode the original distribution, if another
distribution is used in its place. The randomly generated ontology column was computed
using an average over the three randomly generated ontologies considered. The table
shows, that the user study was more similar to the ontologies than to the base lines for
the single-target scenario.
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cosine similarity(a, b) =
a · b
‖a‖ ‖b‖

.

The cosine similarity is always between -1 and +1. In the case of vector entries greater
or equal to zero, as in the following evaluations, the cosine similarity is always between
0 and 1 (where 1 denotes identical vectors).

Found Targets For the targets found, all three ontologies displayed high cosine
similarity values. This is caused by high success ratios for the limited target set used
in the user study which leads to the majority of the vectors containing ones at the
same positions and reflects the results from Figure 6.1. The targets found by the user
study were most similar to those found by OBDS with the support of MeSH, followed
closely by ICD-10.

First Hops The term first hop refers to the very first click on a link on the portal at
the beginning of each search scenario. For the first hops, the clicks were distributed
rather evenly. A truly random distribution would see each link clicked with an ex-
pected value of 3.7%. The results showed distributions ranging from 1 to 17% and
were thus fairly evenly distributed, explaining the values of the cosine similarity being
close together. For the first hops, ICD-10 displayed the most similar values to the user
study. The results for the first hops are displayed in graphic form in Figure 6.3. Again,
due to the limited nature of the multiple-target search in the conducted user study,
the outcome for the first hop distribution appears with only four values (0, 5, 10 and
15).

Backtracking and Home Button Uses In addition to calculating similarities, the
average per-step probability of backtracking or clicking the home button was also
further investigated.

Both the simulation and the users had access to a back button (leading to the pre-
viously visited page) and a home button (leading back to the portal) at all times.
However, the computer-generated simulations used the home button only immedi-
ately after having found a target in multiple-target search. In all other cases, the
best strategy given by the simulation constraints turned out to be backtracking. Fur-
thermore, to avoid jumping back and forth from and to the portal, the portal was
always set as the last available options in the case of ties (between the selection of a
node, backtracking and jumping to the portal) in the decision process of the OBDS
algorithm.
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(a) First hops (single-target)

(b) First hops (multiple target)

Figure 6.3.: First hops produced by the user study and the simulations. The figures show the
distribution of clicks on links pointing away from the starting portal for the single-target
(a) and multiple-target (b) search scenarios. The article names are the links users and
the simulation could click on, as taken from the WebMD portal described in Chapter
4.4
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The user study showed different behavior from the simulations in several aspects: For
single-target search, users backtracked less frequently (9% of clicks were back button
clicks, versus 11-13% for the simulations) but used the home button in 2% of clicks.
For the multiple-target search, users backtracked more frequently (27% versus 17-18%
for the simulations) and used the home button less frequently (1% versus 2-3%).

In conclusion, backtracking was the most widely applied strategy for navigating out
of dead ends and backtrack from less promising areas of the network. The intuitions
that the simulations and the users would make frequents use of the home button to
return from an unknown area of the network were hence not met. This was especially
true for the user study.

ICD-
10

MeSH SNOMED
CT

Optimal Randomly
Gen. Ont.

Rand.
Walk

Found Single 0.93 0.95 0.89 0.95 0.78 0.72
targets Multiple 0.94 0.94 0.91 0.94 0.90 0.67

First Single 0.89 0.85 0.69 0.88 0.77 0.80
Hops Multiple 0.64 0.62 0.56 0.68 0.64 0.71

Table 6.2.: Details of the found targets and first hops of the user study in comparison to
the other data sets The table displays the cosine similarity values of the user study and
the ontologies. The most similar values to the user study are displayed in bold face.The
information about found targets and first hops were viewed as a vector of values, for
which the angle to the vector containing the information for the user study (i.e., the
cosine similarity) was calculated. For the random walk, the average over 1000 random
walks for each portal-target pair was used. The randomly generated ontology column was
computed using an average over the three randomly generated ontologies considered. The
results confirm that what has appeared somewhat apparent from the success ratios and
the stretch, i.e., that ICD-10 and MeSH displayed the most similar behavior to the user
study.
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User
Study

ICD-
10

MeSH SNOMED
CT

Optimal Randomly
Gen. Ont.

Rand.
Walk

Back Single 0.09 0.13 0.11 0.13 0.00 0.26 0.07
Multiple 0.27 0.17 0.18 0.18 0.01 0.21 0.09

Home Single 0.02 0.00 0.00 0.00 0.00 0.01 0.00
Multiple 0.01 0.03 0.02 0.03 0.00 0.05 0.00

Table 6.3.: Details of the back and home button uses of the user study in comparison to
the other data sets The table displays the averaged per-step clicks of these buttons in
the user study and the ontologies. The most similar values to the user study are displayed
in bold face. For the random walk, the average over 1000 random walks for each portal-
target pair was used. The randomly generated ontology column was computed using
an average over the three randomly generated ontologies considered. In summary, the
results confirm that what has appeared somewhat apparent from the success ratios and
the stretch, i.e., that ICD-10 and MeSH displayed the most similar behavior to the user
study.
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This thesis studied simulated user navigation behavior via decentralized search. As
one of the contributions, this thesis presented ontology-based decentralized search
(OBDS), a novel navigation simulation method based on decentralized search and
using ontologies as background knowledge. This thesis showed that the method can
be successfully applied to navigation in information networks, and demonstrated that
it can be applied to the information network of Wikipedia and ontologies from the
biomedical domain.

7.1. Research Questions

This thesis addressed the research question presented in the introduction (see Section
1.2) as follows.

Research Question 1 Can ontologies contribute useful information to nav-
igation in information networks? How is their performance in comparison
to randomly generated ontologies and random walks?

This thesis found that ontologies can indeed inform navigation in information net-
works. The specific performance depends on the given domain and the quality of the
mappings to the information network. In the evaluations, OBDS worked well for the
ICD-10, MeSH and SNOMED CT data set and less well for the GeneOntology data
set. In comparison to lower bounds, OBDS always performed better than random
walks and, depending on the domain, for some data sets also better than randomly
generated ontologies. For the ICD-10, MeSH and SNOMED CT data set, OBDS per-
formed substantially better than randomly generated ontologies.
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Research Question 2 Does ontology-based decentralized search (OBDS)
produce valid results, i.e., are the simulated navigation paths similar to
those produced by human navigation?

This thesis addressed this question by comparing the resulting navigation paths of the
simulations to a user study. The click paths produce by OBDS performed well above
pure random walks. The results from the Kullback-Leibler divergence, an information-
theoretic measure of distance between probability distributions, showed that the re-
sulting path lengths from OBDS were best suited to model human behavior for the
single-target search scenario.

Research Question 3 When using OBDS, what ontology is bested suited
to produce human-like navigation results?

From the results, it shows that ICD-10 and MeSH are best suited to be used as a
replacement for human behavior when navigating in an information network with
the specific settings and the algorithmic navigation behavior presented in the setup
section of this thesis. However, the overall differences between the ontologies were
not very strong, and it is subject of ongoing research to further identify differences
in the performances of different ontologies. SNOMED CT as well as all subontologies
of the Gene Ontology turned out to be less suited to represent human navigation
behavior.

7.2. Further Comments

Gene Ontology The significantly lower performance of the GeneOntology data set
was very noticeable in the results. By closely inspecting the data, it turned out that
the Wikipedia articles annotated by the GeneOntology were characterized by different
properties than the other data sets: They contained a large number of stubs (very
short articles) and orphans (articles not linked to by any other article). In addition, the
Wikipedia article network was sparser than the other data sets, i.e., it contained fewer
links (the density was 0.0013, compared to 0.0057 for the ICD-10/MeSH/SNOMED
CT data set). Furthermore, each Wikipedia article referenced a greater number (up
to fifty, in comparison to usually one or two for the other ontologies) of ontology
concepts. It was hence significantly harder to discover a correct link by making an
educated guess. This made navigating the graph more difficult.
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7. Discussion

User Study In comparison to the ontologies’ performance, participants in the user
study performed better for single-target search and worse for multiple-target search.
This is also influenced by the fact that users aborted 30% of their multiple-target
navigation tasks before having found all of the targets, while the simulations ran for
whole number of possible steps (40).

Building User Models Using different ontologies as background knowledge, the re-
sults presented in this thesis could help researchers and engineers build and evaluate
user interfaces with different user types. The ontologies compared in the results were
rather similar and mostly shared a domain. In future work, it could be possible to
use ontologies that do not cover the entire domain, modeling specialist users, or com-
bining ontologies to form a complete coverage of the domain. Another idea might be
to prune the ontologies at a certain depth, modeling broad generalist knowledge that
does not extend beyond a certain depth.

Action Selection The simulations in the form presented in this thesis followed a
deterministic greedy action selection model, in that it always selected the most prof-
itable link according to the background knowledge. Related research has shown that
users might rather use epsilon-greedy action selection mechanisms with dynamically
changing epsilon [HSGS13]. In follow-up research, this thesis could be extended with
stochastic action selection mechanism such as epsilon-greedy. This would also lead
to another potentially crucial aspect of the present simulations, namely the need to
evaluate games multiple times with potentially varying results. One could expect that
these adaptations would bring the simulations even closer to modeling human behav-
ior in information networks. However, the task of the concrete adaptation of these
changes is left to future research.

Influence of ICD-10 The International Classification of Diseases (ICD-10) has found
widespread use and has, without doubt, also influenced and inspired Wikipedia edi-
tors. On Wikipedia, disease articles are almost in all cases indexed by ICD-10 as the
first entry in the articles infobox. Furthermore, the category system for the disease
articles of the English Wikipedia is organized according to ICD-10. These two facts
and the wide use of ICD-10 have possibly also influenced the link creation behavior
on the encyclopedia as well as the general knowledge of the test subjects. This might
be an explanation of why ICD-10 seems to be best suited to model human navigation
behavior in the case study presented in this thesis.
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8.1. Conclusions

This work presented a novel, ontology-based method (Ontology-Based Decentralized
Search) for simulating human behavior in information networks such as Wikipedia.
The results provide technical answers to several questions regarding the use of ontolo-
gies in decentralized search: This thesis has not only presented a method to integrate
ontological background knowledge into decentralized search, but also found that on-
tologies can serve as an efficient background knowledge to support navigation. With
appropriate ontologies and Wikipedia link networks, the simulations using OBDS i)
found targets more efficiently than two baseline approaches (random walks or ran-
domly generated ontologies) and ii) produced navigational paths that are more similar
to actual human navigational paths than to the baseline approaches.

While the human subject study was limited in terms of size, the results reported in this
thesis are encouraging in several ways. First, the method opens up ways to explore the
effects of assuming different kinds of background knowledge of users in a navigation
task. For example, swapping different kinds of ontologies in future work could allow to
explore their impact on the efficiency of decentralized search in information networks.
Second, the results can be seen as additional corroboration that ontologies indeed
capture useful knowledge about a domain. In some of the experiments, the investigated
medical ontologies were able to outperform baseline approaches significantly.

Summarizing, the findings are relevant for researchers interested in new applications
for ontologies or interested in modeling navigation in information networks using
ontologies as background knowledge.

8.2. Future Work

The user study presented in this thesis was limited in that it was restricted to a subset
of target nodes because of the requirement to be familiar to test subjects without a

69



8. Conclusions and Outlook

medical background. Since the simulation behavior for these targets was very close to
the test subjects, it can be hypothesized that the user behavior for the whole set of
targets is likewise similar. It is up to to future research to show more details of the
comparison of human users and decentralized search.

The chosen portals (based on WebMD.com and the Wikipedia GeneWiki portal)
undoubtedly influenced the navigation results. It is up to future work to compare
different portals and shine a light on possible differences.

Another important question are the potential differences when applying Ontology-
based Decentralized Search to information networks outside the biomedical domain.
In the biomedical domain, ontologies have been adapted more frequently than in other
disciplines [NT08] and constitute an important factor in research [B+08]. Other do-
mains have not seen such eager adoption rates. In related research by Helic, Strohmaier
et al. (e.g., [HSGS13]), Hierarchical Decentralized Search was applied with hierarchies
generated from network features (such as node in- and outdegree), a process that has
led to promising results and might be interesting to further pursue in following work.

The idea to navigate to one single predefined target might seem somewhat artificial in
the case of user behavior concerning explorative tasks. However, one idea to improve
on this might be calculate the TF-IDF features of the target node beforehand and
subsequently navigate until a page (or a number of pages) similar enough to the TF-
IDF features has been found (which does not need to be the predefined target page).
This could model the case of users exploring areas of the network.

Other potential research questions might include the limitation of visible links to links
in the upper part of Wikipedia articles, comparing the results on non-English editions
of the encyclopedia and the study of different methods of extracting background
knowledge from the actual network used for navigation.
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Appendix A.

Wikipedia templates used for
extraction

Infobox Symptom
Infobox Disease
Signsymptom Infobox

Table A.1.: Infobox templates used for the extraction of ICD-10 and MeSH Wikipedia articles

PBB

Table A.2.: Templates used for the extraction of GO Wikipedia articles
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Appendix B.

User Study Briefing

Imagine you wake up one day and discover an itchy, bright red rash on your fore-
arms. What do you do? You fire up Wikipedia, look at the article of itch or rash, and
click around a couple of articles to see what it could be.

In this task we’re trying to evaluate this scenario. Starting from an entry portal, your
task is to find one or several target articles by only following links in the article texts.
In order to define a target, we explicitly tell you what article to look for - but we
pretend you don’t know that beforehand and so you can’t use the search function
to directly jump to it.

You may:

• jump back to the portal at any time by clicking the link or the Wikipedia logo
in the upper left corner
• use the in-page search (CTRL + F) (occurrences of target article names are

displayed in parenthesis)
• use the back and forward button of the browser

But please make sure to observe the following:

• Please do not modify the address bar.
• Please do not visit any external web sites.
• Do not jump several steps forward or backward at once

You will be given 15 tasks, consisting either of finding a single target article (e.g.,
”Excessive daytime sleepiness”), or a set of semantically related targets articles (e.g.,
”Excessive daytime sleepiness, Non-24-hour sleep-wake syndrome, Irregular sleep–wake
rhythm”). Please note that links might not necessarily have the same title as the tar-
get page (e.g., a link entitled “Autistic disorder” can link to the “Autism” page). If
you’re desperate and unable to find the target page, you may click an abort link
(that appears after you’ve tried for a while).

73



Appendix B. User Study Briefing

Figure B.1.: The problem with Wikipedia (CC BY-NC 2.5 from http://xkcd.com/214/) This
figure was included on the sheet of instructions presented to participants as a motivation
for the study.
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Appendix C.

Clusters and targets used in the user
study

Allergy Asthma Food allergy Peanut allergy
Attention deficit hy-
peractivity disorder

Panic attack Bipolar disorder Schizophrenia

Obsessive–compulsive
disorder

Panic disorder Social anxiety disorder Separation anxiety dis-
order

Arthritis Rheumatoid arthritis Osteoarthritis Gout
Back Pain Low back pain Osteoporosis Whiplash (medicine)
Cancer Myeloid leukemia Leukemia Uterine cancer
Ovarian cancer Thyroid cancer Stomach cancer Testicular cancer
Common Cold Influenza Pneumonia Viral pneumonia
Chronic obstructive
pulmonary disease

Chronic bronchitis Asthma Bronchitis

Common Cold Influenza Tuberculosis Sinusitis
Diabetes mellitus Prediabetes Diabetes mellitus type

2
Hypoglycemia

Conjunctivitis Glaucoma Myopia Retinal detachment
Fibromyalgia Chronic fatigue syn-

drome
Irritable bowel syn-
drome

Sleep disorder

Hypertension Hypotension Hypercholesterolemia Cardiovascular disease
Urinary incontinence Urinary tract infection Urinary bladder dis-

ease
Urinary retention

Migraine Cluster headache Tension headache Vascular headache
Sexually transmitted
disease

Chlamydia infection Erectile dysfunction Herpes genitalis

Hepatitis Hepatitis A Hepatitis B Hepatitis C
Itch Insect bites and stings Sunburn Eczema
Sleep disorder Circadian rhythm

sleep disorder
Insomnia Non-24-hour sleep-

wake syndrome

Table C.1.: Target clusters used in the user study
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Bronchitis Pneumonia
Bipolar disorder Eczema
Myeloid leukemia Panic attack
Thyroid cancer Osteoarthritis
Cancer Circadian rhythm sleep disorder
Schizophrenia Boil
Prediabetes Sinusitis
Stomach cancer Mood disorder
Testicular cancer Whiplash (medicine)
Erectile dysfunction Angina pectoris
Posttraumatic stress disorder Diabetes mellitus
Major depressive disorder Syphilis
Retinal detachment Common Cold
Peanut allergy Obsessive–compulsive disorder
Glaucoma Urinary tract infection
AIDS dementia complex Hypoglycemia
Bone disease Bladder cancer
AIDS Insect bites and stings
Tuberculosis Myopia
Rheumatoid arthritis Leukemia
Gastroesophageal reflux disease Osteoporosis
Ovarian cancer Urinary incontinence
Diabetes mellitus type 2 Allergy
Back Pain Delayed sleep phase syndrome
Hepatitis B Chronic obstructive pulmonary disease
Chronic bronchitis Hypotension
Gout Stroke
Urinary bladder disease Hypertension
Urinary retention Migraine
Measles Asthma
Sleep disorder Heart failure
Hepatitis A Vascular headache
Food allergy Non-24-hour sleep-wake syndrome
Cluster headache Sexually transmitted disease
Chlamydia infection Schizoid personality disorder
Tension headache Influenza
Low back pain Conjunctivitis
Social anxiety disorder Hepatitis
Esophageal cancer Chronic fatigue syndrome
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Fibromyalgia Arthritis
Hepatitis C Sunburn
Alcoholism Herpes genitalis
Separation anxiety disorder Genital wart
Insomnia Panic disorder
Irritable bowel syndrome Cardiac arrest
Viral pneumonia Cardiovascular disease
Multiple sclerosis Uterine cancer
Obsessive–compulsive personality dis-
order

Hypercholesterolemia

Itch Hypersomnia
Attention deficit hyperactivity disorder Lung cancer

Table C.2.: Single targets used in the user study
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