
Master’s thesis

ultrasonic sensor based self localization for autonomous
vehicles within mapped environments

Graz, University of Technology

Institute for Software Technology

Audi Electronics Venture GmbH
Author: Altinger, Harald, Bsc.

Accessor: Wotawa, Franz, Univ.-Prof. Dipl.-Ing. Dr.techn.
Graz, University of Technology

Supervisor: Steinbauer, Gerald, Ass.Prof. Dipl.-Ing. Dr.techn.
Graz, University of Technology

Supervisor: Stümper, Stefan, Dipl.-Inf.
AUDI AG

Graz, February 14, 2013

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Contents

1 Introduction 3
1.1 motivation . 3
1.2 project objectives . 4
1.3 thesis objectives . 5

2 prerequisite 7
2.1 Mathematical overview . 7

2.1.1 coordinate systems . 7
2.1.2 homogeneous coordinate transformation 8
2.1.3 basics in probability . 13
2.1.4 Markov chains . 14

2.2 maps and grid based world representation 15
2.2.1 Occupancy Grid Maps 17
2.2.2 inverse sensor model . 17
2.2.3 forward sensor model . 18

2.3 Bayesian filters . 19
2.3.1 general introduction to Bayes filters 19
2.3.2 Kalman filter . 23
2.3.3 particle filter . 25
2.3.4 Comparison and decision advices 33

2.4 furthers localization approaches from literature 34
2.4.1 Extended Kalman filter localization 35
2.4.2 Unscented Kalman filter localization 36
2.4.3 Triangulation . 36
2.4.4 Satellite based Navigation 37

2.5 literature discussion . 39
2.5.1 related work . 40
2.5.2 general outlook on autonomous driving 42
2.5.3 similar scenarios . 43
2.5.4 autonomous cars tested on public roads 46
2.5.5 ultrasonic sensors . 47
2.5.6 sensor problems . 48

3 solution 51
3.1 System overview . 51

3.1.1 architectural overview 54

i

ii Contents

3.1.2 Synchronisation . 59
3.2 Monte Carlo particle filter . 59

3.2.1 ultrasonic sensor models 60
3.2.2 motion model . 66
3.2.3 resampling process . 70
3.2.4 resampling methods . 71

3.3 Kalman filter . 72

4 experiments 75
4.1 the environment . 75

4.1.1 building . 75
4.1.2 the car . 77

4.2 ground truth . 79
4.3 parameter estimation for sensor model 79
4.4 results . 82

4.4.1 simulation . 83
4.4.2 real environment . 92

5 Conclusion 97

6 further work 99

Bibliography 101

List of Figures 109

List of Tables 111

A ADTF - Environment 113

B acronyms 115

Contents 1

H. Altinger NOTE: short overview about work
G. Steinbauer NOTE: give a short intro to solution

Abstract
Localization is one of the key tasks within robotic applications. The ” Monte

Carlo Localization (MCL)” approach, as suggested by [1], has been
implemented in combination with the ”beam model for range finders”, see [2],

and a new resampling approach, ”Slot Resample”.
Modern day vehicles are equipped with a wide range of sensors, e.g. odometry,
sonar, radar, etc. Various experiments were conducted to determine the sensor
parameters. To estimate the best parameters for this sensors and methods a
simulation has been implemented. The identified parameters have been tested
under real conditions within a mapped parking garage. A system overview will
be given and the resulting localization performance will be presented and

discussed.

Zusammenfassung
Ein Lebensgrosses Fahrzeug soll innerhalb einer realen Umgebung lokalisiert
werden. Das Fahrzeug verfügt über Seriensensorik, in der Umgebung wurden
keine künstlichen Landmarken verbaut. Basierend auf dem ”Monte Carlo
Localization (MCL)” Ansatz von [1] wird ein Modul zur Lokalisierung

innerhalb eines geschlossenen Gebädes entwickelt. Es werden unterschiedliche
Ultraschallsensoren und mathematische Beschreibungsmodelle untersucht.
Faktoren die den möglichen Operationsbereiche bestimmt werden ermittelt.

Simulierte Daten werden mit realen Ergebnissen eines Standardserienfahrzeuges
in zwei unterschiedlichen Umgebungen verglichen. Das Kapitel Ausblick

schlägt Parameter und Komponenten vor um den möglichen Operationsbereich
zu vergrössern. Ein Geamtüberglick des Systemes wird dargestellt, dieser

beinhaltet weitere Module die für das komplexe Gesamtsystem darzustellen.

1 Introduction

1.1 motivation
According to World Health Organization (WHO) Global Health Risks, see [3],
lethal crashes can be reduced up to 61% by engineering measurements, e.g.
seat belts. Within the EU-27 zone the number of death people (caused by road
accidents) per million inhabitants decreased 131 in 1995 to 78 in 2008, see
Statistical Office of the European Communities (EUROSTAT) care database [4].
Statistik Austria lists a total number of 45.858 accidents with injured people
on Austrian roads, see [5]. According to various police reports, e.g. [6], the
number of accidents only causing car body damage is much higher and caused
by carelessly drivers. All those statistical data share a common factor, a human
as the driver! Since the early days of automotive, when Nicolaus August Otto
invented the petrol engine in 1876 and Henry Ford released his T-Model in
1908 there has always been the need for a driver.

”Stanley”, Stanford University’s robotic car, showed an autonomous cars
ability to make its way by winning Defense Advanced Research Projects
Agency (DARPA) Grand Challenge in 2005. A good collection of publica-
tion can be seen within [7] and [8]. ”Boss”, the Tartan Racings robotics car,
overall winner of the 2007 DARPA urban challenge, demonstrated the ability
to get rid of a human driver, even within urban areas. See [9], [10] and [11] for
a medley on this topic.

Various surveys showed that first of all the market requests safety assistance
systems, e.g. emergency braking. Drivers are willing to accept fully automated
systems to take over in emergency situations, see [12], or if the car is driving
on its own when there is no passenger on board the car.

Considering these aspects it is reasonable to develop advanced driver assis-
tance systems that can prevent accidents and assist the driver or to take over.
The overall aim will be to develop cars that still look and behave like normal
street cars (they do not carry 10 laser scanners and 4 computers like Stanley).
Those cars should reduce the number of accidents and release the human from
the duties as the driver.

The ”Wiener Weltabkommen” from 1968 states: ”Every driver shall at all

3

4 1 Introduction

times be able to control his vehicle or to guide his animals”, see [13]. This
convention limits the ability for autonomous functions on public roads. Therefor
every driver assistance system has to be initialized and supervised by the driver
or has to act on private ground.

1.2 project objectives
G. Steinbauer NOTE: motivation for project, tasks to solve

Looking back to previous autonomous systems ([14], [9]) this vehicles look
like robots and carry sensors worth more than the vehicle itself. Taking in
account market rules, advanced driver assistance systems need to be reliable
and cheap. So the first step will be to determine which ”in production” sensors,
a modern day car is equipped with, can be used.

When looking forward to fully autonomous systems a second step will be to
find use cases on private ground, to reduce conflicts with law. Demonstrating
such systems that can handle simple tasks, a human driver likes to avoid, e.g.
park and pull out a car, maybe increases the acceptance rate.
Never the less it is necessary to develop common modules e.g. a localization
system or map representing the actual surrounding. Such a module will be
usable for a wide band of driver assistance and autonomous systems.

The overall aim is to use as much as possible already existing infrastructure
(blueprints, ground markings, etc.) and components (ultrasonic sensors, Inertial
Measurement Unit (IMU), etc.), but to avoid external dependencies (building
mounted LIght Detection And Ranging (LIDAR), Radio Frequency IDentifica-
tion (RFID), etc.).

Figure 1.1 gives a short overview to the target test area. The vehicle should
be able to fully autonomous travel along a path with a maximum speed of 4km

h
.

The scene will be static, but not all obstacles need to be mapped.

1.3 thesis objectives 5

Figure 1.1: The used garage at the first underground level. The car starts at
the start position and knows the parking lot to target.

1.3 thesis objectives
G. Steinbauer NOTE: part of project to be solved within this thesis

One core requirement of an autonomous system is to determine its position.
Determining a vehicles position with Global Positioning System (GPS) (mostly
Differential Global Positioning System (DGPS)) and odometry is a rather good
solved task, see [15],[16] and [17], but only applicable when there is a clear line
of sight to the sky.

Within this project the application will be indoor. So the receivables of this
thesis is to develop a localization module that can be used without GPS support
and deals with already standard production ”in vehicle” sensors. To enhance
the localization already existing maps, e.g. blue prints from the architect,
needed to be integrated. The system needs to runable within a fully sized real
environment and a state of the art standard production vehicle.

Dealing with sensor means dealing with uncertainty and noise. The im-
plemented system has to cope with this problem. Not every sensor work all
conditions, therefor the system has to fusion position hypothesis from different
sources to enhance the quality of the resulting position hypothesis.

2 prerequisite
H. Altinger NOTE: using chapter to give literature overview

G. Steinbauer NOTE: give short summary to available literature

2.1 Mathematical overview
This section will give a short overview about the math required for the topic
of localization. The following subsections will give a short introduction and
explain the required ”working tools”. References to further literature will be
given fore those who are interested in mathematical derivations and proves.
H. Altinger NOTE: using section to give overview about coordinate

systems used, transformations, ...

2.1.1 coordinate systems
To make sure everyone is talking about the same point a common description is
required, a coordinate system. Within a mathematical definition every vector
basis is a coordinate system. It consists of a start point, the origin, and a
definition how to reach every point (a number and unity). This can be done
by vectors e.g.

(
x y z

)
, grid elements, e.g. A10, distance and bearing, etc.

Figure 2.1 shows the coordinate system according to Deutsche Industrie Norm,
engl. german industrial norm (DIN) 70.000, see [18], which is generally used
within automotive engineering.

7

8 2 prerequisite

Figure 2.1: the coordinate system according to DIN 70.000

2.1.2 homogeneous coordinate transformation
H. Altinger NOTE: is a short introduction (e.g. this style represents
the ”working tools”) enough or do I need a more detailed description
of the theory behind?

In general there is more than one coordinate system, e.g. a sensor measures a
distance, the sensor is mounted within a mobile platform which travels through
a room. Within this simple case one can see 3 Coordinate systems (sensor,
platform, world) with one fixed transformation (the sensor is mounted at a
fixed position at the platform) and a dynamic transformation (the platform
moves through the world). See Figure 2.4 for visualization.

As known from literature1 this thesis requires 2 types of coordinate transfor-
mations:

• translation

• rotation

1 for more deep mathematical derivations and proves, see [19]

2.1 Mathematical overview 9

A general object within the plane-world (2D) can be represented by its position
(x,y) and its orientation (ϕ), see equation 2.1. Any kind of transformation can
be expressed with a matrix multiplication. The Cartesian coordinates extend
by a 4th dimension, the homogeneous 1. In comparison to none homogeneous
coordinates every translation and rotation can be described with a matrix
multiplication in a similar way. As dealing with complete matrices, the result
can be countermand by multiplication with the inverse transformation. If there
are multiple constant coordinate transformations, they can be combined within
one matrix due to their associative attribute, which enhances performance.
The 4th dimension can be used to normalize the coordinates, which enhances
homogeneous coordinate transformations to be independent of the used value
unit.

#»x =
(
x y ϕ 1

)T
(2.1)

A plane translation is shown in Figure 2.2 and can be expressed with a
translation matrix, see equation 2.2. In general, those transformation matrices
sourced by the unit matrix, extended by their transformation values.

Figure 2.2: The blue arrow moves from position 1 to 2. The x, y and z co-
ordinates changes, but the orientation stays the same. If there is only 2D
movement, δ z can be 1.

Ttrans =

1 0 0 ∆x
0 1 0 ∆y
0 0 1 ∆z
0 0 0 1

 (2.2)

A plane rotation is shown in Figure 2.3 and can be expressed with a rotation

10 2 prerequisite

matrix, see equation 2.3. Knowing from literature there exists 3 kindes of
rotation matrices, T xrot to describe a rotation around the x-axis, T yrot to describe
a rotation around the y-axis, T zrot to describe a rotation around the z-axis. As
this thesis deals with plane transformations, Ttrans will refer to T zrot.

Figure 2.3: The blue arrow rotates around the z-axis from 1 to 2. The ϕ
angle changes, the position stays steady.

Trot =

cos(ϕ) −sin(ϕ) 0 0
sin(ϕ) cos(ϕ) 0 0

0 0 1 0
0 0 0 1

 (2.3)

In reality there are combinations of translation and rotation. As equation
2.2 and 2.3 describe regular matrices (associative and commutative law apply),
they can be combined in any way.
A typical scenario has been described at the beginning of the section. Figure
2.4 explains derivation 2.5 - 2.8

Within Figure 2.4 the blue arrow represents a mobile platform traveling
through the world coordinate system. At time T its position is known as xwp ,
ywp and ϕwp . The transformation from world to platform can be expressed by
T1 and will change at every T. The sensors coordinate system will be fixed
within the platforms system. Its position is known as xps, yps , ϕps. T2 transforms
sensor coordinates into platform coordinates. As the sensor is assumed to be
mounted at a fixed position, T2 will stay constant over time. T3 describes the
transformation between a measured point within the sensors coordinate system
into the world coordinate system. This transformation consists of T1 and T2
and will change over time.

2.1 Mathematical overview 11

Figure 2.4: coordinate transformation, combining multiple coordinate sys-
tems to transform coordinates to base.

12 2 prerequisite

T
1

=
T

1 t
r
a
n
s
·T

1 r
o
t

(2
.4
)

T
2

=
T

2 t
r
a
n
s
·T

2 r
o
t

(2
.5
)

T
3

=
T

1
·T

2
(2
.6
)

=

 co
s(
ϕ
w p

)
−
si
n

(ϕ
w p

)
0

x
w p

si
n

(ϕ
w p

)
co
s(
ϕ
w p

)
0

y
w p

0
0

ϕ
w p

0
0

0
0

1

 · co
s(
ϕ
p s
)
−
si
n

(ϕ
p s
)

0
x
p s

si
n

(ϕ
p s
)

co
s(
ϕ
p s
)

0
y
p s

0
0

ϕ
p s

0
0

0
0

1

(2
.7
)

=

 co
s(
ϕ
w p

)c
os

(ϕ
p s
)−

si
n

(ϕ
w p

)s
in

(ϕ
p s
)
−
co
s(
ϕ
w p

)s
in

(ϕ
p s
)−

si
n

(ϕ
w p

)c
os

(ϕ
p s
)

0
co
s(
ϕ
w p

)x
p s
−
si
n

(ϕ
w p

)y
p s

+
x
w p

si
n

(ϕ
w p

)c
os

(ϕ
p s
)+

co
s(
ϕ
w p

)s
in

(ϕ
p s
)
−
si
n

(ϕ
w p

)s
in

(ϕ
p s
)+

co
s(
ϕ
w p

)c
os

(ϕ
p s
)

0
si
n

(ϕ
w p

)x
p s

+
co
s(
ϕ
w p

)y
p s

+
y
w p

0
0

1
ϕ
p s

+
ϕ
w p

0
0

0
1

 (2
.8
)

2.1 Mathematical overview 13

2.1.3 basics in probability
The following section gives a short introduction to basics in probability which is
used to explain later on sections. The content is based on literature, see [2] chap-
ter 2. Random variables can assign any value within a defined range, according
to specific probabilistic laws. Within robotics random variables can be measure-
ment data (e.g. sensor data) and control update (e.g. desired distance to travel).

When solving localization problems normal distributed noise is assumed. To
model this random variables posses Probability Density Function (PDF), an
example is given in equation 2.9 the commonly known one dimensional Gauss
function. Similar to other Gaussian functions, the parameter σ2 represents the
variance and µ the mean. This is used to model a belief, e.g. a position.

p(x) = 1√
2πσ2

e−
1
2

(x−µ2)
σ2 (2.9)

In comparison to equation 2.9 equation 2.10 is called multivariate, due to
the fact that the modeled variable #»x consist of more than one dimension. Σ is
called the ”covariance matrix”. In general terms equation 2.9 is the generalized
of equation 2.10 which describes a density function.

p(#»x) = det(1√
2πΣ

)e− 1
2 (#»x−µ)TΣ−1(#»x−µ) (2.10)

Equation 2.11 states that a PDF always integrates to 1, but the value of a
PDF is not upper limited to 1.

∫
p(x) dx = 1 (2.11)

The notation p(x,y) denotes a variable X has got the value x AND at the
same time variable Y ’s value is y. In contrast the notation p(x|y) represents
the probability of X ’s value is x IF Y ’s value is y. This is the case if X depends
on Y. If two variables are independent, their joint probability can be expressed
using equation 2.12. If X and Y are independent1 equation 2.14 can be used.

p(x,y) = p(x) · p(y) (2.12)

1 e.g. throwing a dice does not have an influence on the value if throwing it a second time,
this is called independence

14 2 prerequisite

p(x|y) = p(X = x|Y = y) (2.13)

p(x|y) = p(x,y)
p(y) = p(x) (2.14)

The Bayes rule can be used to relate p(x|y) to its inverse p(y|x), see equation
2.15 and 2.16 for a third variable Z, representing X ’s value is x IF Y ’s value is
y and Z ’s value is z (conditional probability 1).

p(x|y) = p(y|x)p(x)
p(y) (2.15)

p(x|y,z) = p(y|x,z)p(x|z)
p(y|z) (2.16)

The Markov Assumption postulates that posteriori and a priori sensor data
are independent of each other or the current state. Literature, see [2], this can
be achieved in reality if the state variable has been chosen appropriate.

2.1.4 Markov chains
A Markov chain describes the transition from one (finite) state to another state,
out of a finite number of possible states. The basic assumption states that one
state change only depends on the actual state, not on the history before. This
is known as memoryless or Markov property. Figure 2.5 shows a typical Markov
chain. A simple example of such a Markov chain is rolling a dice (assuming the
dice is not cheated).

1 e.g. extracting a ball out of a hut filled with two different colored balls has got an influence
on the next extraction, this is called conditional probability

2.2 maps and grid based world representation 15

Figure 2.5: Every state A,B,C has got probabilities for a state change. All
leaving probability per state sum up to 1. The probability does not depend
on the previous state. The number of states and possible state changes is
countable.

2.2 maps and grid based world representation
A Map can be seen as an a priori information about the world. This assumption
can be valid, because e.g. every building has got a construction permit which
requires a permission drawing. But even if such a ”map” exists, they do not
need to comply with reality, so there is always the need to update the world
information. This leads to a ”Hen and Egg” Problem: need a map to localize,
need to localize to draw a map. Within literature, see [2], this is known as
Simultaneous Localization And Mapping (SLAM) or ”concurent mapping and
localization”. They define 4 core problems when building maps:

• size: the larger the world, the bigger the map, the hard to maintain,
match features and to store it

• noise: no sensor is perfect, so no information is 100 % accurate, otherwise
map-building would be too easy

• perceptual ambiguity: some places look similar to others, some change
over time, but they are always hard to differ or recognize

16 2 prerequisite

• cycles: when moving the same path away and back, noise can be corrected,
but if a different way is used a cycle will be created and it is hard to
match the start- to the endpoint.

Figure 2.6 addresses these problems. Clearly one can differ the bad influences
and results within the above maps.

Figure 2.6: (a)Shows the result of raw sensor and odometry data. Clearly
visible orientation and matching errors, because measurement data is not
matched. (b)shows a post processed occupancy grid map where odometry data
got corrected. Black dark symbols occupied cells, white free cells and gray
marks cells which have never been updated, therefor the state is unknown.
The figure has been taken from [2].

2.2 maps and grid based world representation 17

2.2.1 Occupancy Grid Maps
Originally introduced by [20], occupancy grid maps are a discrete representation
of the world. They represent the posterior p(m|z1:t,x1:t) = ∏n

i p(mi|z1:t,x1:t) of
the map m (consisting of small, discrete cells mi) based on measurements z1:t
and pose (aka. a followed path) x1:t (1 : t denotes the time from origin to now).

Essentially an ”Occupancy Grid Map” is a binary Bayes filter. It distinguishes
between 2 (3) states:

• occupied: the cell represents e.g. a solid wall

• free: the cell represents e.g. a drivable surface

• (unknown): the cell has never been updated

These 2 (3) states can be maintained using ”Log Odd Ratios” as shown in
equation 2.17. Commonly this is used to find associations between two variables,
within this case occupied/free and actual measurement value. Every time a
sensor senses over a cell (logarithmic occupancy lt), it gets updates with the
sensors belief if the cell is free or occupied (p(x|zt)). If there is an a priori
information about the cell, e.g. from a blue print, p(x) can be used. lt ranges
from negative to positive values. Depending on the reliability of the used sensor
one has tho define thresholds to distinguish between occupied and free cells.

lt = lt−1 + log(p(x|zt))
(1− p(x|zt))

− log(p(x))
(1− p(x)) (2.17)

Based on the fact that every cell has got a finite size, an occupancy grid
map becomes a discrete assumption of the world. Depending on the required
accuracy of the map (indirect proportional to the cells size) and the area to
cover, those maps can lead to a very high memory consumption and a high
computation when updating with sensor data.

2.2.2 inverse sensor model
The inverse sensor model approach, see [2], uses the information given by the
sensor and its model. The obtained measurement value is used to determine
which cell within the sensor range will be free or occupied. This description
will be added to the map where every cell gets updated. Figure 2.7 shows cells
occupied or free per one measurement update (based on the sensor model).
Figure 2.8 shows how maps are build from multiple inverse measurements from
sensors.

18 2 prerequisite

Figure 2.7: Two examples of sensor updates. The number of cells to update
differs between (a) and (b) due to the different sensed distance. White cells
symbol free, dark black occupied and gray is unknown. The figure has been
taken from [2].

Figure 2.8: The left upper shows the initial map, the right lower the result-
ing. In between single measurement cones have been used to show the process
of inverse sensor models. A single cone like in Figure 2.7 is used to map the
whole measurement area for the used ultrasonic sensor to the map. The figure
has been taken from [2].

2.2.3 forward sensor model
[21] discusses a sensor model which describes the measured value based on
obstacles. Ray casting is used to determine which cell inside the sensors coverage

2.3 Bayesian filters 19

is likely to cause this measurement result, compare Figure 2.9. The cells log
odd ratio will be calculated, as given within equation 2.18.

Figure 2.9: (a) shows a scene where the black squares mark obstacles. The
outer left and the center are likely to cause a measurement, the outer right not.
(b) shows the probability to obtain a measurement. The first peak is caused by
the center square (which is highly likely to cause the reflection of e.g. a sound
wave from ultrasonic sensors). The second peak corresponds to the left outer
square. Both obstacles will be denoted with the phit. The right outer may
causes a random measurement which gets modeled with prand Source: [21]

pct =

prand ifct,∗ = 1
(1− prand)(1− phit)Kt ifct,0 = 1
(1− prand)(1− phit)k−1phit ifct,k = 1fork ≥ 1

(2.18)

prand and phit are obtained in the same way as for the beam model within
Section 3.2.1.

2.3 Bayesian filters
H. Altinger NOTE: using section to give mathematical backgrounds

H. Altinger NOTE: maybe enhance by G:\ds-9_save\harald\Tu_
Graz\DA\Literatur\ungelesen\various_PF_filters_DA.pdf

2.3.1 general introduction to Bayes filters
The following section will give a short introduction to Bayes filter in general.
Unless otherwise this section is based on literature, see [2] chapter 2.4.

A very good summary of the filters task has been given in [22]: ”Bayes filters
probabilistically estimate a dynamic system’s state from noisy observations”.
Bayes filter can give a probability about ones pose according to the history of

G:\ds-9_save\harald\Tu_Graz\DA\Literatur\ungelesen\various_PF_filters_DA.pdf
G:\ds-9_save\harald\Tu_Graz\DA\Literatur\ungelesen\various_PF_filters_DA.pdf

20 2 prerequisite

sensor measurements; if you tell them, what you have seen so fare (through
sensor measurements), they can tell you how likely you are at a specific position
(valid for any position within your world).
A very popular graphical visualization demonstrating this fact can be seen
within Figure 2.10. The robot can measure its traveled distance and sens a
Door, but can not difference between those 3 doors. (a) shows the initial belief,
where every position is equally possible. (b)Senses one door, and increases
bel(x) at all 3 doors positions. (c)The robot has continued its path (it predicts
the position by its odometry updates, moves and decreases the bel(x) to model
uncertainties.) and senses another door. (d)The situation only fits on location,
therefor the bel(x) increases at the second door (which is the most likely position)
Denote, p(z|x) it the same for all 3 doors, but the bel(x) represents the fact
that two doors are closer than a third and the predicted odometry only fits to
one position observations. (e)Predicting its position based on odometry slightly
decreases its position belief (due to required modeled uncertainties), but there
is still a high likely position. The next measurement update will occur when
the robots senses the 3rd door, which will be similar to (d). The figure has been
taken from [2].

2.3 Bayesian filters 21

Figure 2.10: A simple illustration of Bayes process. A robot is traveling
along a path an senses a door. This event is used to update the robots posi-
tion belief.

The Bayesian filter is the most general approach to calculate a belief (belt = xt)
based on measurement zt and control data1 ut. A Bayesian filter processes the
following stages:

• prediction or control update2, by processing ut

• measurement update3, by processing zt

• normalization of the belief to 1 using η

1 control data can be anything that changes (or represents a change in) the environment,
e.g. an odometer measures the robots change of position when moving through the world

2 control update can be a drive command, e.g. 1 m straight line
3 measurement update can be a sensor reading

22 2 prerequisite

Bayes filter relies on the Markov assumption, that the current measurement
only depends on the actual state (e.g. a position) and the past event (xt−1).
Older events do not add any kind of information.

Figure 2.11: A general Bayes network: the actual belief xt consists of the
previous belief xt−1, the actual control input ut and the latest measurement
data zt. Every belief calculation is recursive. Therefor xt will be an input for
xt+1. To start the network an initial belief x0 is required (due to the recursive
update rule).

The belief for state xt at time t defines the probability that all past measure-
ments z1:t and controls u1:t are likely at state xt, refer to equation 2.19. This
belief can only be calculated after handling the data (zt,ut).

bel(xt) = p(xt|z1:t,u1:t) (2.19)

It is more practicaly to calculate the belief befor the last data (zt,ut) is
available (or can be processed). Equation 2.20 expresses bel this.

bel(xt) = p(xt|z1:t−1,u1:t) (2.20)

Literature knows equation 2.20 as ”prediction”, due to the fact that it predicts
the belief by processing the past measurement data. Calculating bel(xt) from
bel(xt) is known a ”correction” or ”measurement update”. Knowing probabilities
for every random variable, conditional probability can be calculated using Bayes
theorem. When considering [2] this calculation leads to equation 2.22.

bel(xt) =
∫
p(xt|ut,xt−1,)bel(xt−1)dxt−1 (2.21)

bel(xt) = ηp(zt|xt)bel(xt) (2.22)

Commonly known representatives of Bayes filters are Kalman or particle
filters, see the following sections.

2.3 Bayesian filters 23

2.3.2 Kalman filter
This section gives a short introduction to Kalman filter in general. It is based
on literature, see [2] chapter 3.2 for a more detailed breakdown.

The Kalman filter, as introduced by [23], is an optimal filter. It is designed to
work within environments with normal distributed noise, so Gaussian functions
can be used to model. It assumes a continues state with linear system dynamics.
The Kalman filter is often refers as a linear optimal filter. Its belief describes
the probability for a state change. As being linearized and optimized, the filter
is computational efficient (O(k2.4)) k is zt dimension.
In many applications the Kalman filter is used to merge different measurement
data. The belief consists of a state variable (#»x) and a covariance matrix (Σ)
to represent the probabilistic dependencies between the data. Equation 2.23
shows the linear system equation the Kalman filter is based on. At is the
state change transition matrix, which describes the state change based on the
state variables. Bt is used to handle the influence of the control data ut, e.g.
odometry represents controlled movement through the world. εt is used to
model the error within state change. Equation 2.24 is the multivariate1 form
of Kalman filters state transition probability. Literature refers to Rt as the
covariance in case of p(xt|ut,xt−1) and Qt in case of p(zt|xt).

xt = Atxt−1 +Btut + εt (2.23)

p(#»x t| #»u t, #»x t−1) = det(1√
2πRt

)e− 1
2 (#»x t−At #»x t−1−Bt #»u t)TR−1

t (#»x t−At #»x t−1−Bt #»u t)

(2.24)

Like other Bayes filters the Kalman filter uses a prediction and a correction
of measurement data. Equation 2.25 shows the linear system equation of the
update step. Ct describes the transition between state and measurement, δt
the measurement errors. Equation 2.26 describes the multivariate measurement
probability for the update step.

zt = Ctxt + δt (2.25)

1 the state variable #»x consists of more than on dimension

24 2 prerequisite

p(#»z t| #»x t) = #»z t = det(1√
(2πQt)

)e− 1
2 (#»z t−Ct #»x t)TQ−1

t (#»z t−Ct #»x t) (2.26)

The Kalman filter requires an initial state, which can be expressed by equation
2.27, where µt is the mean, Σt is the covariance.

bel(x0) = p(x0) = det(1√
2πΣ0

e−
1
2 (x0−µ0)TΣ−

0 1(x0−µ0)) (2.27)

The whole Kalman filter process, for a simple 1D scenario, is visualized within
Figure 2.12. Moving along a straight line the initial position belief is shown
in (a). Due to a real system, which is amused to be influenced by normal
distributed noise (system and measurement), the curve has got the shape bell,
in contrast to the plane line of an ideal system. After the first measurement
update (bold line in (b); µ and σ cause the width and height of the update, the
peaks position differs slightly from the initial position at (a)). The Kalman filter
combines those two distributions at (c) which reduces the uncertainty. Moving
to the right (d) is modeled by the prediction and increases the uncertainty. A
measurement update (bold (e)) can correct the position belief to (f). Comparing
(a) and (f) the uncertainty is significant smaller.

2.3 Bayesian filters 25

Figure 2.12: ”Illustration of Kalman filters: (a) initial belief, (b) a measure-
ment (in bold) with the associated uncertainty, (c) belief after integrating the
measurement into the belief using the Kalman filter algorithm, (d) belief after
motion to the right (which introduces uncertainty), (e) a new measurement
with associated uncertainty, and (f) the resulting belief.” The captions text
and figure has been taken from [2] as granted on the authors website

2.3.3 particle filter
The following section gives a short introduction to the topic of particle filter in
general. It is based on [2] and explicit referenced literature.

”Any realistic model of a real-world phenomena must take into account the
possibility of randomness.”, quoted from Sheldon M. Ross.

In some cases the assumed linearity, when using a Kalman filter, is to far
away from reality and can cause divergence. As shown by [24] even an Exended
Kalman Filter (EKF) fails if the world is highly nonlinear (or the modeled
linearization contains too much assumptions) and contains normal (Gaussian)
distributed noise, which is the case for a more complex systems.

A particle filter is a nonlinear and nonparametric Bayes filter and can address

26 2 prerequisite

Markov chains. The posterior bel(xt) is represented by a random number of state
samples (drawn from this posterior) and a normalized weight wi (

∑iwi = 1),
representing the importance of the linked sample. The (exact) exponential
function would describe such a distribution the best, but would be parametric.
Therefor an approximation via drawn samples is used. This represents much
more types of distributions (compared to exponential closed form), due to its
nonparametric nature.
Particle filters are limited by the available computation power. Within a higher
state space (aka. a higher dimension), an exponential higher number of parti-
cles is required, see [25]. Thus successful applications are limited to nonlinear,
nonparametric low dimensional problems, like the localization problem. (e.g. 4
dimension state: Cartesian coordinates + heading: < x,y,z,ϕ >)

A very common illustration of this process is shown within Figure 2.14, which
is the same problem domain as described within 2.10.

The particle filter use M numbers of state hypothesis, see equation 2.28. But
this is also the cause of its biggest limitation. A sufficient number of samples
per dimension is required, which can cause high computation O(N2) (N beeing
the number of particles), see [26]. Therefor a particle filter is practical not
applicable for high dimensional spaces.

Xt = x1
t ,x

2
t , · · · , xMt (2.28)

In general, a particle filter follows a procedure very similar to the general
Bayes ansatz.

1. sample all hypothesis, see equation 2.29

2. predict the new state based on control input ut

3. weight all samples (see equation 2.30), based on measurement update zt

4. add samples to state space

5. draw a number of samples (probability is proportional to their weight)

6. resample (if required) and add good hypothesis to the state space, replace
all others with new ones

xmt ∼ p(xt|ut,xmt−1) (2.29)

wmt = p(zt|xmt) (2.30)

2.3 Bayesian filters 27

As any other Bayes filter, the particle filter calculates its bel(xt) based on
its bel(xt−1). As shown in [2] and [27] the approximation through the samples
convergences against the real state for an infinite number of samples. The most
important step is the resampling. It changes the distribution from proportional
to bel(xt) to ηp(zt|xmt)bel(xt). Any good hypothesis will be copied and pursued,
others will be replaced by new ones. This step is most important to prevent
degeneration of the sample set.

Particle filter can solve global localization problems1. [28] introduced this as
the ”kidnapped robot problem”2.

As stated within [22] the particle filter is a very accurate and robust approach
to localization problems. In addition it has got other benefits (simple imple-
mentation, Sensor variety, etc.) too. Therefor a particle filter is a good choice
to estimate a robots position. Two types of particle filters will be explained
within the next sections.

representation of localization

The position bel(x) of a robot can be expressed in different ways. This section
briefly introduces 3 common representation based on literature, see [2].

The closed form representation is used within the Markov localization
algorithm. For every position the initial belief bel(x) is uniform and represented
using p(xt|zt,ut). Figure 2.10 shows the propagation of the belief when the
robot moves. The result is a closed form containing an explicit value for the
belief, e.g. the Kalman filter uses such a representation. This can only be done
for specialized cases with some assumptions.

The grid form representation divides the possible positions into discrete
divisions, called grids. As seen in Figure 2.13 the robots position belief can be
analyzed using histograms above all subdivisions. This method can be used
in more general causes than the closed form representation and generates less
computational costs. But the achievable accuracy strongly depends on the
granularity of the grids which is related to the amount of memory required.

The sample form representation uses nonparametric samples. Those are
sampled uniform at possible positions. If the robot moves the samples will be
assigned importance factors if the sensed data fits the samples. Based on this
good samples will stay, low weights samples will be redrawn. The height of the

1 The robot is placed elsewhere in the world. There is no information about its a priori
position or any external reference. The robot needs to localize its self.

2 The robots gets kidnapped and placed somewere else.

28 2 prerequisite

importance weight and the density of samples represents the position belief
bel(x). Figure 2.14 shows such a process. This representation is nonparamet-
ric, but its computation requirements strongly depend on the number of samples.

Figure 2.13: Basically the process is the same as described within Figure
2.10. The figure has been taken from [2].

2.3 Bayesian filters 29

Figure 2.14: Basically the process is the same as described within Figure
2.10. The figure has been taken from [2].

Monte Carlo Particle Filter

Monte Carlo Localization (MCL) has been introduced by [1] and according to
[28] it is a simple, but in practice, a very useful filter. In comparison to grid
based filters it requires by far less memory, it is more accurate than Markov
based (which the MCL is based on) localization approaches and it is able to
represent multi-modal distributions (in contrast to Kalman filters).

As beeing a sampling / importance resampling methode, the key idea is to
represent the posterior bel(l), which is the robots belief to be at position l, by
N weighted samples. If the state can be represented with < x,y,ϕ > the MCL

30 2 prerequisite

extend this with a weight w to << x,y,ϕ > ,w > (∑N
i=1 wi = 1). At every

processing step a (new) set of samples is distributed according to motion models
(compare Chapter 3.2.2) to predict the possible robots location. If nothing gets
corrected (e.g. using measurement data to rank and correct those samples),
Figure 2.14 shows the propagation of the sample distribution. The area this
distribution covers increases because of uncertainties the motion model has to
map. After every prediction step a correction step (called measurement update)
follows.
Equation 2.31 describes the likelihood of sample n at time t, which relates

to the bel(l) of the sample. p(xt|z1:t,u1:t) is the probability function, α is the
normalization factor, to ensure ∑N

i=1 pi = 1. z1:t represents the measurements
from 1 to actual time t, and u1:t the control update.

xnt = α · p(xt|z1:t,u1:t) (2.31)

Equation 2.32 is used during the measurement update step. wnt represents
the weight a particle is assigned. p is again the probability function taking
in account the latest (at time t) measured data zt and the particle n’s actual
position xnt (at time t).

wnt = p(zt|xnt) (2.32)

Altogether these basics are very similar to particle filters in general, see
Section 2.3.3. Figure 2.14 shows a general procedure of a particle filter. The
MCL difference is to implement equations 2.31 (aka. 2.29) and 2.32 (aka. 2.30)
with models approximating the reality. The chosen motion model (refer Section
3.2.2, equation 3.27) will be extended by a random distribution according to
equation 2.33, see [2], which results in equation 2.34.

Equation 2.33 represents a normal distribution with µ as the mean and σ2 as
the variance.

sample(µ,σ) = 1√
(2πσ2)

e−
1
2
µ2

σ2 (2.33)

Equation 2.34 extends the Constant Turn Rate and Velocity (CTRV) model
with a normal distribution. As the velocity v and the rotation rate ω are

2.3 Bayesian filters 31

measurement the sample distribution uses them.

#»x t+T =

x(t) + sample(v,σv)
sample(ω,σω)sin(ϕt + ωT)− sin(ϕ)

y(t) − sample(v,σv)
sample(ω,σω)cos(ϕt + ωT)− cos(ϕt)

ϕt + sample(ω,σω)T
v
ω

T

(2.34)

The ”beam rangefinder model” has been used as an measurement update
model, refer to Section 3.2.1 and [2]. The parameters have been obtained with
experiments described within Section 4.3.

As being a nonparametric filter the MCL can approximate any distribution
and is not limited to linear systems like, e.g. the Kalman filter. The accuracy
strongly depends on the number of samples. In general the higher the number
the more a particle filter becomes an ”optimal Bayes Filter”. Therefor a working
solution is to choose a very high (e.g. 200.000, see [2]) number of particles (see
[29]) at the cost of long computation time. On the other side of computation, [30]
demonstrated a successful localization with 50 particles. [31] derives equation
2.35 to determine the minimum number N of samples for a given border of
accuracy (ε and δ) and number of bins b. This whole particle filter with
adaptive number of particles is known as ”Kullback-Leibler distance (KLD)”.
[2] demonstrates KLD particle filters number of samples varies for different
kind of used sensors and changes over time.

N = b− 1
2ε (1− 2

9− (b− 1) +
√

2
9(b− 1)z1−δ)3 (2.35)

If the number of particles is to low, or the weight distribution decreases,
degeneracy can occur. [32] demonstrates the usage of equation 2.38 to determine
if the weight of all particles is degenerated. A low Neff is an indicator for
degeneracy.

Neff = Ns

1 + V ar(ω∗ik) (2.36)

ω∗ik = p(xik|z1:k

q(xik|xik−1),zk
) (2.37)

Although equation 2.37 can not be calculated, equation 2.38 is used to
approximate. Ns is the total number of particles, ωik the normalized weight of
particle i at time k.

32 2 prerequisite

Neff = 1∑Ns
i=1(ωik)2

(2.38)

If Neff falls below a certain level countermeasurements are recommended,
e.g. resampling, change number of particles, reinitialize the filter, etc.

MCL may also known as Sample Importance Resampling (SIR)- or boot-
strapfilter or condensation algorithm or survival of the fittest.

An open source MCL implementation is the ”Adaptive Monte Carlo Localiza-
tion (AMCL)” package for Robot Operating System [89] (ROS). It implements
the KLD algorithm and a map to determine the robots position. Another free
implementation is known as ”CMonteCarloLocalization2D” which is part of the
SLAM package of Mobile Robot Programming Toolkit, see [88] (MRPT).

Some publications, e.g. [33], uses MCL with a very high number of particles
(> 3.5 · 106) as reference implementation to measure the performance of their
approaches.

Rao Blackwellized Particle Filter

The Rao-Blackwell Theorem, as introduced by [34], defines δrbf (θ) as an observ-
able estimator of an unobservable variable θ. δ(θ) will be the true estimator,
and E the function of expectation, compare equation 2.39. A more detailed
mathematical derivations can be found at [35].

E(δrbf (θ)− θ)2 ≤ E(δ(θ)− θ)2 (2.39)

As state in [36] and [2] the number of Markov states grow exponential with
the dimension of the state space. Analog the computational complexity grows
with the number of states for classical particle filters, e.g. MCL, because they
are based on these Markov Models. In many cases MCL (or similar particle
filters) require much more computation time than e.g. Kalman filters, see [37].
[38] uses Rao-Blackwellization and Kalman filters to increase the efficiency and
accuracy achieved by a particle filter.

Within literature Rao-Blackwellized particle filters are used to solve the SLAM
problem. [2] describes the ”FastSLAM” algorithm. Every particle consists of
its own movement (state and history) and map. [39] defines this combination
between particle filter for simple (3 dimensions) state and a Kalman filter for
higher state (n dimensions) with equation 2.40. #»x t+1 is the state-vector (index
pf refers to particle filter, kf refers to Kalman filter). A is the state transition
matrix, B the control matrix, ut the control update.

2.3 Bayesian filters 33

(
#»x pft+1
#»x kft+1

)
=
(
I Apf
0 Akf

)(
xpf
xkf

)
+
(
Bu
pf

Bu
kf

)
ut +

(
Bf
pf

Bf
kf

)
ft (2.40)

SLAM posterior p(y1:t|z1:t,u1:t) can be calculated within factorized form, see
equation 2.41. xt is the location belief, zt the measurement update, ut the
control update, yt the particles, mn the map of a single particle and ct the
identity, see [2]. The subindex t denotes the time stemp.

p(y1:t|z1:t,u1:t,c1:t) = p(x1:t|z1:t,u1:t,c1:t)
N∏
n=1

p(mn|x1:t,z1:t,c1:t) (2.41)

[38] gives a more detailed mathematical derivation and a generic algorithm
to Rao Blackwellized Particle Filter (RBPF). The procedure itself is rather
similar to other particle filters. First the particles are sampled according to
the chosen distribution, the particles prediction step is performed, followed
by a weight calculation and normalization. To prepare for the next round
low weighted samples will be suppressed (high weights will be multiply) and a
Markov transition will be performed.
In addition they can ensure for bounded weights wt and their selection schemes
(resample step) the RBPF convergences independent the total number of parti-
cles.

Compared to MCL the RBPF is much more complex to implement. Its main
target is to address the SLAM problem and building maps.

An open source MCL implementation is the ”gmapping” package for ROS. It
implements the RBPF algorithm and a map to determine the robots position.
A detailed description is given at [40] and [41].

2.3.4 Comparison and decision advices
Due to their various qualities there is no ”Golden Bayes Filter” to solve a
localization problem. Depending on the available sensors, sourroundings, up-
daterates, computational power, etc. one kind of filter has to be chosen. [22]
compares the most common filters and can give hints which one to choose.
Table 2.1 gives a short overview.

In general terms, the Kalman filter is the most efficient in terms of computa-
tional power, but it requires accurate sensors with a rather high update rate.
The nonparametric particle filter uses a discrete belief, its accuracy strongly
depends on available computation power (aca. the maximum number of parti-
cles), but it is a rather robust approach that can deal with uncertainties and

34 2 prerequisite

less accurate sensors.
Both filter techniques can be used to merge sensor information and to enhance
a position calculation compared to single sensor systems.

Kalman Particle
Belief Unimodal Discrete

Accuracy + +
Robustness 0 +

Sensor variety - +
Efficiency + 0

Implementation 0 +

Table 2.1: Comparison between Kalman and particle filter. 0 represents neu-
tral, + good and - weak. Source: [22] which includes the additional methods
Grid, Topology and Multi-hypothesis tracking

[37] compares Kalman filters against particle filters and demonstrates a better
accuracy for particle filters in case of nonlinear and non-gaussian environments,
but at the cost of higher computation time for particle filters.
Within [42] and [43] various localization approaches are compared. They can
show that simple Kalman filters are outperformed by MCL in terms of accuracy
and robustness. Combining a particle filter with adaptive particle set sizes and
resetting approaches, the high computation cumbersome disadvantage can be
reduced.

[44] demonstrates a new approach to address the particle filters performance
issue with higher dimensional state spaces. Rather similar to RBPF they
combine multiple filters. A set of connected particle filters which acts on subsets
of the computation space is used, which avoids the usual exponential grow with
the dimension of the state space.
[45] compares different resampling methods for particle filters. Multinomial

is compared against residual and stratifed. The authors give a good overview
to the methods and mathematical boundaries. They also prove the variance of
the particle estimator almost can be independent of the previous step.

2.4 furthers localization approaches from literature
The following section will give a brief overview about further localization ap-
proaches not considered within this thesis.

Some of these methods are improvements to well known techniques, e.g. the
EKF and Unscented Kalman Filter (UKF) are based on the Kalman Filter.
Other methods are already commercial applicable like the GPS system or a

2.4 furthers localization approaches from literature 35

trivial geometric ansatz like the triangulation.
H. Altinger NOTE: using section to give an overview about other

state of the art localization approaches and links to implementation

2.4.1 Extended Kalman filter localization
The EKF is an extended version of the well known Kalman filter to address
nonlinear problems. In contrast to the Kalman filter (as described within
Section 2.3.2) the EKF uses linearization with results in the following differing
equation:

Atµt−1 +BtUt −→ g(ut, µt−1) (2.42)

Ctµt −→ h(µt) (2.43)

The two functions g(ut, µt−1) and h(µt) are linearized functions to approx-
imate the nonlinear world. On the left hand side of equations 2.42 (state
prediction) and 2.43 (measurement update prediction) the classical Kalman
filter is shown. On the right hand side the EKFs equivalent is presented. Equa-
tion 2.44 shows the whole EKF calculation which is rather similar (expect for
the noted differences within equations 2.42 and 2.43; the Matrices At and Ct
are replaced) to the classical Kalman filter as listed within equation 3.40.

µt = g(ut,µt−1)
Σt = GtΣt−1G

T
t +Rt

Kt = ΣtH
T
t (HtΣtH

T
t +Qt)−1

µt = µt +Kt(zt − h(µt))
Σt = (I −KtHt)Σt (2.44)

Due to the fact that the EKF uses linearization through Taylor approxima-
tion, it can not be used with any kind of nonlinear problem. Depending on
the degree of uncertainty and the degree of local nonlinearity the quality of
the approximation is better or worse. It is rather hard to find good suiting
functions for g and h, but the computational complexity stays rather low ([2]
gives them with O(k2.4 + n2), k as the dimension of the measurement vector.).
Compared to the linear Kalman filter, the EKF is not an optimal estimator.
If its process is modeled in an inaccurate way or the initial estimated state is
wrong, the filter can diverge rather fast. [46] gives a detailed description of this
divergence problem due to too optimistic estimations about the real uncertainty

36 2 prerequisite

in position heading.

A detailed mathematical derivation can be found within [2] and [47]. For
performance analysis between the Kalman filter and EKF refer to [48].

2.4.2 Unscented Kalman filter localization
The UKF has been introduced as an improvement to the EKF by [33].

It is aimed to be more robust than EKF (because it is not using linearization),
but less computational complex than a Particle Filter (PF).

The basic idea is rather similar the EKFs approach. Find an approximation
to nonlinear functions h and f but still satisfy Bayesian transitions. A group
of sample points with known mean and covariance will be transformed by a
nonlinear transformation. The resulting distribution needs to be approximated.
Monte Carlo methods, e.g. MCL, will draw samples randomly. The unscented
transformation will use a deterministic algorithm. The source of noise is not
only limited to Gaussian. Figure 2.15 shows the basic architecture (and process)
of the UKF.

Figure 2.15: Known distribution mean x and covariance Px will be scaled
y
√

(L+ λ) and merge to sigma vectors Xi. The time and measurement update
will be used calculate the weight posterior distribution y and Py ; Source [49]-
Chapter 7

A detailed mathematical derivation can be found within [33] and [49]. For
performance analysis between the Kalman filter and UKF refer to [48].

2.4.3 Triangulation
A rather simple approach is triangulation. With a known pose and distance
measurements one can determine the position. Figure 2.16 visualizes these
geometric considerations. Depending on the accuracy of the measurement
system the position can be determined with a very high precision.

2.4 furthers localization approaches from literature 37

Figure 2.16: With two known measurement bases (a and b), measured dis-
tances (ri) and a bearings (αi) the position. With at least 2 measurements a
Cartesian 2D position (x,y) can be determined, with a third measurement a
Position < x,y,ϕ > with orientation can be obtained.

2.4.4 Satellite based Navigation
The most popular representative, the Navigational Satellite Timing and Ranging
- Global Positioning System (NAVSTAR GPS)1 has been developed by the
United States Department of Defense and became fully operational around
1990. It uses 24 satellites with known orbits and positions to determine the
position of a receiver back on earth. Every satellite transmits a time signal and
its position. When receiving at least 4 satellites the receiver is able to determine
its position through triangulation. Figure 2.17 demonstrates this basic principle.
For a general triangulation at least 3 distances are required. GPS determines
distances based on the time difference when the beacon signal arrives at the
receiver. Therefor 3 distances can be calculated out from 4 received timestamps,
see [50].
Other satellite based global navigations systems are GALILEO2, GLONASS3

and COMPASS4

1 commonly known as GPS
2 developed by the European Union, operational around 2014
3 engl. global navigation system, developed and operated by the Russian military, became

fully operational in 1996
4 developed and operated by the Peoples Republic of China, became fully operational in

2020

38 2 prerequisite

Figure 2.17: Every satellite transmits a time signal which the receiver can
use to determine the distance to the satellite. Every satellite can be seen as a
sphere (purple,orange,green) with the measured distance as the radius. The
receivers position on earth is at the intersection (red circle).

According to [51] the original GPS system could achieve an average accuracy
around 100m. To enhance this, DGPS could be used to obtain a more precise
position between 3 and 5m. Figure 2.18 explains the principle idea. A fixed
base station with known coordinates monitors the received GPS signals. The
difference between the known position and the actual measured can be used
to derive correction parameters. Assuming the same error1 sources at the
mobile units site, the raw data can be corrected and the positions quality
can be enhanced. [51] mentions the commercial Wide Area Augmentation
System (WAAS) to reach an accuracy below 3m.

1 possible error sources: ionospheric disturbances, timing, the errors in the satellites orbit
and the local weather conditions

2.5 literature discussion 39

Figure 2.18: The fixed base (orange) and the mobile unit (blue) will receive
the satellites signal (red and green) with the same interferences (e.g. caused by
the gray cloud). With the known position of the base station a correction data
can be calculated which will be transmitted to the mobile unit via some sort
of data link (purple), e.g. cell phone network. The correction data can be used
to enhance the mobile units position up to 3m accuracy, according to [50].

Further mathematical derivations and explanations can be found within [50]
and [52].

2.5 literature discussion
H. Altinger NOTE: using section to introduce the general domain of
autonomous cars
G. Steinbauer NOTE: comparison with others; what are the main
differences, reason for differences

This section will start with a short overview to autonomous driving vehicles.
There will be a short summary which sensors and methods were used to fulfill
the various tasks. Afterwards seven papers will be discussed in details to give
an overview to topics covered by other authors.

• [53]: ”Autonomous Ground Vehicles – Concepts and a Path to
the Future”

40 2 prerequisite

• [54]: ”Semi-autonomous virtual valet parking”

• [55]: ”Stadtpilot: Driving Autonomously on Braunschweig’s In-
ner Ring Road”

• [56]: ”Digital Time of Flight Measurement for Ultrasonic Sen-
sor”

• [57]: ”Robuste Navigation autonomer mobiler Systeme”

• [58]: ”New Resampling Algorithm for Particle Filter Localiza-
tion for Mobile Robot with 3 Ultrasonic Sonar Sensor”

• [30]: ”Sensor Resetting Localization for Poorly Modelled Mobile
Robots”

2.5.1 related work
B. Müller-Bessler NOTE: short intro to other autonomous cars

Within the last decades numerous autonomous cars where developed to solve
various tasks. In cooperation Figure 2.19 and Table 2.2 give a short time-lined
overview enriched with literature references.

Multiple of these cars uses high resolution, e.g. LIDAR, and absolute position
sensors, e.g GPS to define their actual location. Some (compare [54],[59]) of
them uses SLAM to build up a map to localize and one (compare [60]) uses a
generic approach to determine its relative position within an expected environ-
ment.

In contrast to LIDAR and video ultrasonic sensors do not require high
computational power and are known to be very robust (in terms of mechanical
stress). Those sensors are used within automotive environments since the
last two decades. Standard robotics literature did use ultrasonic sensors until
late 1980 for in-building applications. In comparison to the listed cars this
thesis focuses on ultrasonic sensors and relies on a mapped environment. Using
enhanced sensor models and enriched maps a refined localization approach with
ultrasonic sensors may lead to reduced computational power.

2.5 literature discussion 41

Figure 2.19: Short history of selected autonomous cars. For sensor configura-
tions and literature references see Table 2.2

Robot odometry GPS vision LIDAR sonar terrein literatur

VaMP ! % stereo % % Autobahn [60]
APiSG IMU % mono 2D & 3D % parking garage [61]
Stanley IMU ! mono 2D & 3D % offroad [62]
Boss IMU ! mono 2D & 3D % urban [14]

Navlab11 IMU % mono 2D % parking garage [54]
Junior IMU ! mono 2D & 3D % parking garage multilevel [59]
Junior3 IMU ! mono 2D % parking spot [63]

Table 2.2: sensor configuration of selected autonomous vehicles including
literature references

Comparing Table 2.2 with 2.3 one can see a much simpler sensor set on the
car used within this thesis ([54],[59],[63]). In contrast to other sonar based local-
ization approach, this system needs to work in a full sized outdoor environment
instead of an office environment ([20]). The car will operate on private ground
and the scene will be static, so no fast object detection and tracing is required
([55]).

Robot odometry GPS vision LIDAR sonar terrein literatur

Audi A7 ! % % % % parking garage this
thesis

Table 2.3: sensor configuration of this thesis

42 2 prerequisite

2.5.2 general outlook on autonomous driving
”Autonomous Ground Vehicles – Concepts and a Path to the Future”, see
[53], gives an overview about autonomous vehicles. The authors give a short
historical introduction, continue with actual and common sensors and conclude
with an outlook to future development.

The authors identified the following common sensors for autonomous vehicles:
Velodyne 3D Laser scanner, 2D LIDAR, mono and stereo cameras and maybe
radar sensors to relative determine velocity of obstacles. Wheel encoders and
Inertial Measurement System (INS) for ego motion, mostly (if operated in
coverage areas) supported by GPS. In general sensordata need to be merged,
therefor reference frames are required and calibration is mandatory. Sensorfu-
sion extracts more information than from a single sensors raw data. Redundancy
in sensors and actuators is required when performing the step from research
to production. The main task to be solved with this sensors is environmental
modeling, the (robotic) car needs to sense its world.

Obstacle (detection and) recognition is mostly done with a grid map. When
updating the map with measurement data, a good ego-position is required.
The authors identified that grid maps often not larger than 200 x 200 m and
each cells side length from 0.1 to 0.5 m. Participating in road traffic requires
obstacle detection, segmentation, e.g. cars (Ackerman steered cars move on
clothoids paths) vs. pedestrians (can move in every direction) and tracking1 to
avoid collisions. Road lane recognition and tracking is required to work within
a human suited environment. Lanes can be detected using vision or LIDAR
sensors. Road network maps can be used to enhance localization.

Behavior control is commonly solved with hierarchical state machines. The
task of navigation is more diverse. For parking related domain global navigation
uses metric maps and pre calculates path to be followed. The planing algorithm
operates on the map, independent from the sensors constructing the map. Main
task is to maintain the map. Problems occur if map changes over time, maybe
re planing is required.

Further development will be miniaturized sensors, e.g. LIDAR sensors.
Position sensors will enhance their accuracy, e.g. Galileo should perform 10
times better than GPS or improve cost to performance ratio, e.g. mono vs.
stereo cameras becoming cheaper.

Technologies from autonomous vehicles became available for production cars,
e.g. lane keeping assists tracking the road lanes and keep the car within the
boarders. Due to legal issues the driver still needs to be in the control loop.

1 a popular system is EKF

2.5 literature discussion 43

”Precise Farming” capable to perform autonomous mowing or lane keeping.
Nowadays tractors only need a driver for obstacle avoidance or to guide a
second vehicle.

Driver less cars are still legally vague, because who (supervising driver,
manufacture, etc.) has to pay in case of an accidents. The state of Nevada1

released a bill to allow autonomous cars for research on public roads, after
Google lobby within their ”driverless car” project.
Rich enhanced maps will be available in near future, e.g. Geographic Infor-

mation System (GIS). This can be used to guide vehicles and support them
when detecting static obstacles. To conclude, the authors state Autonomous
vehicles maybe on the road in around 10 - 15 years. The big challenge will be
the interaction between computer and manual driven cars.

2.5.3 similar scenarios
The following section briefly reviews 4 publications from different authors deal-
ing with indoor navigation where there is no GPS coverage. They are all related
to the problem domain of indoor navigation and parking vehicles.

Within ”Semi-autonomous virtual valet parking”, see [54], the authors
present an use case scenario for an automatic parking system. They argue that
disabled people, e.g. wheelchair users, can not park in every parking lot. A
robotic car2 equipped with Sick LMS2003 sensors, odometry, INS and GPS is
used.
The system is using a SLAM approach with an a priori teach in path and
marked drop off points. The authors define obstacle detection and collision
avoidance as a key feature to ensure a secure and reliable system.
Additionally they present a mobile interface to operator. If an obstacle is
detected, the driver needs to be notified. Their aim is not force the driver to
enable remote control, but just to ask if it is save to continue.

”Autonomous driving in a multi-level parking structure”, see [59],
demonstrates a complete solution to autonomous driving within a multi level
building. The authors mention that GPS can be used to localize oneself rather
good, as long as there is clear sight to the sky. The described scenario is a large
scaled, multi level, garage park which is indoor with no ability to use GPS.
Even INS do have problems due to the large scales of the building. Figure 2.20
shows the difference between INS and the authors localization approach.

1 part of United states of America
2 Navlab 11
3 manual see [64]

44 2 prerequisite

Figure 2.20: Top view of a large scaled garage parking house. The red trajec-
tory is pure INS, the blue uses the authors approach. Clearly one can see the
INS even beliefs to ”leave” the building. The plot has been taken from [59].

The used robotics car is ”Junior”, which already participated at the 2007
DARPA urban-challenge. The authors use the top mounted 3D 1 and two
side mounted laser scanner2. As the spatial resolution is very high, the
6-DOF¸ (< x,y,z,φ,θ,ψ >) localization can be reduced to 3-Degree Of Free-
dom (DOF)< x,y,z >. The position is determined with using a 1.000 particles
MCL and odometry at 200Hz. The prediction is based on INS and odometry,
the correction on laser and (if it is possible) GPS, e.g. on the top level of the
garage park. The initial start position is given by GPS.

The authors use the ”GraphSLAM”, see [66], algorithm to localize. To repre-
sent the world, the authors use a multi-level surface map. It consits of a 2D grid
which contains height of surface patch and its variance. The implementation is
very efficient with 128MB of size for a 20x20cm grid dimension. The map is

1 Velodyne HDL-64E, see [65]
2 Sick LMS200, see [64]

2.5 literature discussion 45

updated by adding new nodes containing the actual pose.
The problem of ”closing loops”1 is solved using 3D scan matching, which can
identify previously visited positions. The same cell can be visited at different
heights. To determine if the car has moved to another floor the number of
updated cells is counted. If exceeding a threshold, the grid map will be cleared
and prepared for the next level.

A∗ with a cost function is used to plan the path. The overall system is able
to drive through the multi level garage house with 6.6 to 9.5 km/h.

”Range sensor based outdoor vehicle Navigation, collision avoid-
ance and parallel parking”, see [67], examines the usage of sonar sensors
for fast obstacle detection.
The used robotics car is equipped with a color camera and a 3D ERIM

laser2. Booth sensors deliver reliable distance information but lack a long data
processing time. Back in 1995 this meant too slow for fast obstacle detection.
Based on this, the authors suggest to use sonar sensors.

Due to wavelength limitations only rough surfaces or edges reflect sonar
echo, but outdoor environment often consists of them. To be used in outdoor
environment sonar sensors need to be robust against moisture and dust, and spe-
cially robust against other vehicle noise sources, e.g. vibrations from the engines.

A 9 Hz trigger rate is used, which results in 50 ms traveling (again 50 ms
echo) time which enables the sensor to measure distances up to 8 m. To reduce
the probability of mis-measurement only the first echo is used. Compared to
indoor usage the sonar sensor is more reliable because generally objects are
bigger. Therefor reflections are more likely to occur due to objects than to false
positives. When mounted on cars a main error source are reflections from the
ground. To avoid this, sonar sensors should be mounted high enough and point
upwards, as suggested by the authors. During their experiments they could
achieve an average accuracy up to ±1cm. The drawback of sonar sensors is
their low update rate (due to their measurement principle and the low traveling
speed of sound). This can be bypassed when traveling slow, as the authors
suggest when trying to detect parking lots.

To find gaps when passing by parallel parked vehicles the authors uses a
local grid map which contains an occupied or free flag, the position and the
cells history. If an obstacle has been seen before, a value will be added. The
obstacle disappear from the map if it has not been seen for a while.

1 reentering an already visited area
2 a late 1980 3D laser scanner

46 2 prerequisite

”Autonomous parking in subterranean garages-a look at the posi-
tion estimation”, see [61], introduces a production near car capable to find a
parking lot on its own.
The authors state that modern x-by-wire driver assistance system already

enable autonomous driving. For their experiments they require sensors with
high spatial resolution. Based on this their are using a production like Mercedes
Benz S500 series equipped with side mounted Sick LMS2001. A blueprint of
the garage house will be used as priori information represented within a 2D
gridmap. To determine the initial start position a gateway at the entry is used.

The measurement data from the laser scanners is evaluated using least square
error scan matching against the map. This procedure is presented as very
efficient and capable of real time procession (around 40 ms duration time). To
reduce computation the scan is matched only to potential visible areas based
on the last known good position. For every scan the variance and curvature is
calculated. Based on this a weight for every scan is calculated. An EKF fusions
the scan data with the odometry.

The authors determined for short parking manuevers (<20 m) the odometry
error can be ignored. Therefor the system can relay only on odometry data for
the actual parking manuever. The experiments showed no position losing up
to a speed of 8 m/s. Those were done for a parking garage up to 90% taken
parking lots.

2.5.4 autonomous cars tested on public roads
The following section gives a brief overview to actual existing robotic cars out
on public roads.
Google street car project uses 7 cars (6 Toyota Prius and 1 Audi TT). Un-

til 2010 1.609 km were driven without human interaction and 225.308 km with
occasional intervention on public roads. A Velodyne HDL-64E, see [65] has been
used as the main sensor. GPS and odometry to predict the movement. Cameras
are used for obstacle detection. H. Altinger NOTE: there are no papers
available, just online sources like http://www.techradar.com/news/
world-of-tech/car-tech/google-granted-driverless-car-patent-1048313

”Stadtpilot: Driving Autonomously on Braunschweig’s Inner Ring
Road”, see [55], the authors present a successor of a DARPA urban challenge
participant. In contrast to simulated traffic in a rather controlled environment,

1 manual see [64]

http://www.techradar.com/news/world-of-tech/car-tech/google-granted-driverless-car-patent-1048313
http://www.techradar.com/news/world-of-tech/car-tech/google-granted-driverless-car-patent-1048313

2.5 literature discussion 47

Leoni, a robotics car of TU Braunschweig, drove through city of Braunschweig
during normal working hours. The car has to move up to 60 km/h, merge into
moving traffic, behave correctly at traffic signs and master intersections.
The car is build rather straight forward, Velodyne on the top, LIDAR on the
front and side, grid map to represent the world and global path planing to
navigate. The difference is a real surrounding and a different approach to
decision making. The teams regulary operating on the inner road ring of the
City of Braunschweig.
Within this publication the authors strident the topic of law related to au-
tonomous driving. They state that a robotics car can drive on its own, but
there must be a drained driver able to take over at any time.

2.5.5 ultrasonic sensors
G. Steinbauer NOTE: are there any papers dealing with ultrasonic
sensors and low update rates; are there any tricks that can be used

The following section reviews 3 papers examining processes with ultrasonic
sensors. The principle of data acquisition is discussed as the application of using
ultrasonic sensors with Markov Localization and a new approach to resampling.
”Digital Time of Flight Measurement for Ultrasonic Sensor”, see

[56], describes a digital pulse echo measurement system with the aid of cross-
correlation functions to determine the Time of Flight (which is directional
proportional to the distance) of an ultrasonic signal.
If measuring distances beyond 1m a long signal sequence needs to be recorded,
which increases processing time. The authors state a finite duration signal,
e.g. a sin-function, a shorter period needs to be recorded. First the received
signal needs to be demodulated and low-pass filtered. This benefits not to
require a high accurate carrier frequency sensing, therefor the system can be
much simpler. Low-pass filtering reduces spectral disturbances and noise. The
reduced frequency can be oversampled, which reduces conversation errors.
The authors present experimental results with an achievable accuracy up to
0.7 mm with a linear relationship between measured data and set up distances.
They used the same module as transmitter and receive, as it is common to
automotive systems. The presented algorithm can be implemented on Digital
Signal Processor (DSP) with rather low performance due to only 256 point data
sequences to be computed.

Within the PhD Thesis ”Robuste Navigation autonomer mobiler Sys-
teme”, see [57], the author compare different localization methods. In terms
of absolute position error Markov Localization with sonar sensors performs
worse compared to Markov Localization with LIDAR or laser scan matching
approaches. It is states that Markov Localization is very good in terms of

48 2 prerequisite

global position and recovery after a position lose occur. Additional Markov
Localization is demonstrated as a very robust localization system against high
noise if the probability values are tunes correct. But in all compared cases
methods based on LIDAR perform better than the same method based on
sonar, due to the higher spatial resolution of the laser and the multi reflection
problem of the sonar.

”New Resampling Algorithm for Particle Filter Localization for
Mobile Robot with 3 Ultrasonic Sonar Sensor”, see [58]. A LEGO NXT
mindstorm robotic set is used to build the real robot. It only carries 3 ultrasonic
sensors. With this stint the authors state traditional MCL divergence very
fast and need long time until convergence. Initial pose of robot needs to be
known and solving the kidnapped robot problem is not always possible. Due to
this limitations a new resampling algorithm is proposed. Instead of copy good
particles, new particles are drawn from the initial distribution. 90 % will be
placed near good particles, 10 % will be sampled within the whole world. The
particles weight will be normalized after estimation and afterwards adding the
new particles. The authors expect to solve the kidnapped robot problem based
on this.
During their experiments three different resampling algorithms were bench-
marked, Linear Time Resampling (LTR), Select With Replacement (SWR) and
the new proposed. The results show a significant faster convergence (60 time
stamps compared to 150 steps) and a lower position error (5 cm instead of 20
cm) for the new algorithm. The source of ground truth is not given.

2.5.6 sensor problems
”Sensor Resetting Localization for Poorly Modelled Mobile Robots”,
see [30], presents an extension of MCL which performs better when the robot
is delocalized. The used robot is a Sony 4 Leg AIBO within the RoboCup1

standard platform league 1998. Previously they used particles with prediction
(robot locomotion) and update (landmark based vision sensor). Even with 400
samples they got problems within computation and missed sensor update cycles.
MCL can not recover from systematic errors in movement.

The authors present Sensor Resetting Localization (SRL), which usees smaller
sample sets, but more robust to systematic error and unmodeld movements.
The key idea is to replace under weighted samples by new samples drawn from
the actual sensor distribution. In comparison to MCL the authors use the
same prediction steps but when performing the sensor update they calculate a
number of new samples to replace old ones.

1 www.robocup.org

2.5 literature discussion 49

Within the experiment section a detailed performance comparison with MCL
is given. SRL is able to deliver similar results, but with less samples, which
reduces computation requirements. The authors present simulation results with
different levels of noise and systematic errors. SRL is able to reset itself before
errors accumulate.

3 solution
H. Altinger NOTE: using chapter to give basics in self localization
and used methods

G. Steinbauer NOTE: give hints which papers were used

3.1 System overview
G. Steinbauer NOTE: define/introduce every formula symbol here

This section will give a short overview about the implemented system. Figure
3.1 shows a schematic representation of the systems process cycle which is
required to calcualte a position hypothesis. As it is a development system, the
evaluation path is sketched too. The output of the system need to be compared
with a reference to determine the position hypothesis performance.
G. Steinbauer NOTE: explain why one need Figure 3.1 –> to solve

localization!

51

52 3 solution

Figure 3.1: Red rectangles symbol inputs and outputs to the system, green
rectangles the systems calculation steps. Purple rectangles represent the refer-
ence system.

Within the Automotive Data and Time-triggered Framework (ADTF) frame-
work, refer to Section A, every module is realized within so called filters. During
this thesis there is a general terminology: software modules ending with ”Server”
realize such a filter. Those modules are used to receive and send data, acquire
user setting, etc. Software modules ending with ”Lib” hosts the functionality.
They are compiled as Windows static libraries and linked against the filter
modules. All units follow the ”international system of units”, distances are
measured in [m], time in [s], angles in [rad].

Figure 3.2 shows a schematic representation of all involved modules. The
system can be the real world, where the car has to move and the walls are made
up from concrete. Blueprints will be used as an a priori information for the map.
When the world is simulated the care moves along a path, and the walls from the
blueprint will feed the range sensors. The Data AcQuisition (DAQ) contains two
sensor types, range sensors (ultrasonic) and motion sensors (accelerometer and
wheel encoders). Their driver modules can not difference between simulation
and real world data. Distance sensors will be used to update the occupancy
grid map. Motion sensors will be used to calculate the odometry based on
Egomotion Master, see [68] (EgoMaster) approach, refer to [68].

3.1 System overview 53

Figure 3.2: schematic module overview

The real filter architecture will be shown within figures 3.3 to 3.7. The
following (none self developed) filters were used in addition to the system filters:

• HPUSData1

• EgoMaster2

• CSIOdometryServer3

• Autopark_filter4

1 Sensor driver for Valeo High Performance Ultrasonic Sensors, which is an external module
developed by Manuel Geiger (I/EF-56).

2 Drivers for wheel-encoders and accelerometers and the dead Reckoning for the odometry
are called EgoMaster, which is an external module developed by Christopher Demiral
(I/EF-56).

3 the CSIOdometryServer is an external module developed by Patrick Gläßer (I/AEV-3).
4 the Autopark_Filter is an external module developed by fortiss GmbH - An-Institut der

Technischen Universit”at M”unchen. For documentation consolidate the manual [69].

54 3 solution

Figure 3.3: The system is realized within ADTF an split into 4 parts. The
outer left VECTOR_CAN_XL_DEVICE is a system driver to the com-
puters CAN interface. Below the Harddisk_Player is another system mod-
ule, which can be used to replay recorded raw data. a7_rohdaten_php is a
so called sub configuration. It is responsible to extract the information from
the raw CAN messages, see Figure 3.5. a7_localisation_all is another sub
configuration used to fulfill the localisation task, see Figure 3.7. On the right
outer side the PfvisualizationOpenCvServer module hosts the and can be
used to record video sequences. The representation will be updated if a trigger
signal is received via repaint_trigger_in input-pin.

3.1.1 architectural overview
As sketched within Section 3.1 Figures 3.4, 3.5, 3.6 and 3.7 will give a more
detailed view of the implemented system. Detailed explanation will be given
within the figures caption. Nitty-gritty details to the core filter, hosting the
particle localization, can be found within Chapter 3.2.

3.1 System overview 55

Figure 3.4: The filter ConfigProvider can be used to distribute configura-
tion parameters to all modules. Every filter can access an interface to get the
struct tCarconfig. The beneath filter CadMapServer will be used to parse a
.obj files. Those should be CAD blueprints of the building. The filter will ex-
tract a specific volume and converts it into 2D lines. These lines can be access
via an interface.

56 3 solution

Figure 3.5: ADTF contains a module called CAN_Config_Codec which
can be used to extract specific CAN messages from the raw data stream (com-
ing from the input-pin CAN_raw). The upper path is used to acquire data
necessary for the EgoMaster. The module EgoMaster2 is an odometry imple-
mentation following the EgoMaster approach as explained by [68]. The output-
pin EgoMaster_out will transmit the tEgoMasterData struct. The lower
path extracts the ultrasonic range measurement data. The filter PlaUsDat-
aCollector3 collects the raw data, converts the measurement and transmit
the data via an output-pin hpus_collector_out, according to the tHPUsData
struct.

3.1 System overview 57

Figure 3.6: The upper path is used to calculate a path. The filter Bahn-
PlanerTest can be used to parametrize the Autopark_Filter. The Cad-
PathServer can be used to store the calculated path.

All modules requried to estimate a position are shown within Figure 3.7.
The odometry data via the input-pin EgoMaster_in (needs to be connected to
EgoMaster_out, see Figure 3.5) will be used to trigger the particle filter update
(triggerGenerator. Every nth odometry sample will initialize a particle filter
step). The particleFilterSimulationModule can be used to exchange real
motion and distance data with simulated values. (If the simulation is disabled,
the data via the input-pins will be passed through). The filter HPUSDat-
aCollector will assemble single range measurements from ultrasonic senors
and will forward them if all sensor have reported, or a timeout has occurred.
The ParticleFilterServer is a MonteCarlo implementation, see Section 3.2 for
a detailed description. The SensorFusionServer will collect all sensor data
(including the particle filter) and serve them via an interface. At the moment
only odometry and particle position will be fused with a Kalman-filter. If this
filter detects a jump within position, it will reset the particle filter at the last
known good position.) The actual position will be transmited via the output-pin
Pos_Hypothesis_out according to the tPose struct. If a Filter requires histori-
cal position data, the CSIOdometryServer can be accessed, it will store the
position bind with a timestamp. The OcypancygridMapServer represents a
grid map. When triggered via an input-pin it queries the SensorFusionServer
and updates the map. This map can be accessed via an interface.

58 3 solution

F
ig
ur
e
3.
7:

A
D
T
F
pa

rt
lo
ca
liz

at
io
n:

M
od

ul
es

re
qu

ire
d
to

es
tim

at
e
a
po

sit
io
n.

3.2 Monte Carlo particle filter 59

3.1.2 Synchronisation
G. Steinbauer NOTE: explain sync between data (odo, hpus, ...) –>
timestamps, sync via memory (CSIodometry)

The ADTF framework supports the usage of so called timestamps. At ac-
quisition every message is assigned a time based on a realtime hardware clock.
When receiving position samples from the EgoMaster they are stored within the
CSIodometryServer. This module uses a ring buffer to store data. Every module
can request a position at a specific time. It there is no position stored for the
requested time, an interpolated position between the two nearest stored values
will be returned. The base time to request a position are the sonar sensor time,
because they trigger the particle filter to update is state. The Kalman filter uses
the position from the EgoMaster or the particle filter. Compare Figure 3.8. The
ADTF framework uses a hardware clock to generate the timestamps. If using
multiple instances a time synchronization protocol like Reference Broadcast
Synchronization (RBS), see [70], is used.

Figure 3.8: Short overview to data synchronization via memory and times-
tamps.

3.2 Monte Carlo particle filter
H. Altinger NOTE: using section to describe Monte Carlo particle
filter; basics; advantages; disadvantages, ...

H. Altinger NOTE: basics of implementation; focus on implemented
sensor models
G. Steinbauer NOTE: try to show evolution of solution; give reasons
for next step

The used implementation follows straight forward the described method
from Chapter 2.3.3. It consists of a sensor model, see Section 3.2.1, a motion
model, see Section 3.2.2 and a resampling strategy, see Section 3.2.4. Those
implementation can be combined by selection at system startup.

60 3 solution

3.2.1 ultrasonic sensor models
Ultrasonic transducers are used to measure distances. The sensors principle is
based on traveling ultrasonic1 sound waves. One transducer transmit a short
burst which is reflected by an obstacle. The sensor measures the time difference
between transmit and receive. Based on equation 3.2 the distance can be
calculated.

C = 331.45 + 0.607 · T (3.1)

x = t

C
· 1

2 (3.2)

T represents the actual Temperature in [◦C], t the measured time in [s] and x
represents the distance in [m]. The factor 1

2 is required, because the wave has
to travels forward and back.
Compared to a LIDAR sensor, which operates with small beams enabling

the sensor to report a distance and an angle to the nearest object, an ultrasonic
sensor can only report a distance to the next source of reflection.

1 for automotive applications 70 kHz are common

3.2 Monte Carlo particle filter 61

Figure 3.9: Transmitted sound bursts (blue) will be reflected at an obstacle
(orange) and travel back (red) to the receiver. Based on the shape and used
frequencies there is a characteristic horizontal and vertical opening angle. In
automotive applications the transmit and receive uses the same membrane.
The necessary time to switching between transmit and receive causes the blind
range. The maximum range depends on the sound intensity and the maximum
receive time.

For real parameters and setup within the experimental car, see Figure 4.3.

Based on Figure 3.9, where one can see the cone the sensor covers, the
implemented models splits the area into n equal beams. Every single beam
can be approximated with a probabilistic model. Figure 3.10 visualizes this
approach. The whole sensor model is designed to always report the shortest
distance for all beams.

62 3 solution

Figure 3.10: The sensors horizontal cone is split up into n equal beams (blue
lines). For every single beam (green line) can be approximated with a prob-
ability model (red line). The implemented model uses zmax, the maximum
range of the sensor and zt, the measured distance. Within [20] a more detailed
model is explained.

Thrun, Burgard and Fox refer to this as ”Beam Models of Range Finders”,
see [2]. The model itself is split up into 4 parts (see Figure 3.11):

• Gaussian distribution phit to model the reported distances uncertainty,
see equation 3.3

• Exponential distribution pshort to model a surface reflection or a random
object, causing shorter distance, see equation 3.6

• Uniform distribution pmax to model a sensor reading a maximum distance,
see equation 3.8

• Uniform distribution prand to model a random measurement error, see
equation 3.9

3.2 Monte Carlo particle filter 63

Figure 3.11: 4 basic components the ”beam model for range finders” consists
of. The figure has been taken from [2] as granted on the authors website

The source of the following parameters are described within Section 4.3.
Values can be taken from Table 4.2.

phit(zkt |xt,m) =
ηℵ(zkt ; zkt ∗ ,σ2

hit) if 0 ≤ zkt ≤ zmax

0 otherwise
(3.3)

ℵ(zkt ; zkt ∗ ,σ2
hit) = 1√

2πσ2
hit

· e
− 1

2
(zkt −zkt ∗)2

σ2
hit (3.4)

η =
zmax∫
0

ℵ(zkt ; zkt ∗ ,σ2
hit) dkzt (3.5)

pshort(zkt |xt,m) =
ηλshorte−λshortz

k
t if 0 ≤ zkt ≤ zkt ∗

0 otherwise
(3.6)

64 3 solution

η = 1
1− e−λshortzkt

(3.7)

pmax(zkt |xt,m) =
1 if z = zmax

0 otherwise
(3.8)

prand(zkt |xt,m) =

1
zmax

if z ≤ zkt ≤ zmax

0 otherwise
(3.9)

When using this 4 components, the probability for a measurement to take
place at the given position zkt will be:

p(zkt |xt,m) =

zhit
zshort
zmax
zrand

T

·

phit(zkt |xt,m)
pshort(zkt |xt,m)
pmax(zkt |xt,m)
prand(zkt |xt,m)

 (3.10)

The virtual measured distance will be determined using the occupancy grid
map (see Section 2.2.1) and Bresenham’s algorithm, see [71]. Figure 3.12
sketches the process. The sensor cone is split into multiple equidistant beams
(purple lines). The blue obstacle occupies the red grid cells. Following every
purple line with Bresenham’s algorithm the green squares are visited. The first
visited square marked as occupied will report the virtual measured distance.

3.2 Monte Carlo particle filter 65

Figure 3.12: determine virtual measurement with occupancy grid map and
Bresenham

The sensor model is used to weight the (virtual) particles sensor measurements
(dparticle) against the (cars) real measurements (dcar). Every particle is calculated
separate. The sum of all sensors per particle represent the particles calculated
weight. All following description compare the actual particles sensor to the
equivalent sensor at the real car.
There following two methods are implemented:

Simple Model

• If both measure free range, the particle gets award a point

• If one measures a distance, the particle loses a point

• If car measures a shorter distance than the particle, the particle gets
award 1

|dparticle−dcar|
point

• If car measures a longer distance than the particle, the particle loses
1

|dparticle−dcar|
points

This model is based on a rough draft and the most easy to understand. It
can be adjusted by adding percentage weights to the awarded points.

66 3 solution

Beam Model1

If both (car and particle) measure something, the particle gets award points,
according to equation 3.12 to 3.15. Otherwise there is no weight gain, but also
no weight degeneration.

dist = |dparticle − dcar| (3.11)

pnoise = zhit · ∗e
− 1

2 ·
dist2
σ2
hit (3.12)

pshort = zshort · λshort · eλshort·zrealmess ∨ dist < 0 (3.13)

prandom = zrand ·
1

rangemax
∨ dist > max(sensor − coverage)

(3.14)
weightsensor = pnoise + pshort + prandom (3.15)

This model fits the the model visualized with Figure 3.10 the best. It considers
noisy environment, falls readings caused by, e.g. surface reflections, none map
obstacles, and random sensor readings.
The beam model parameter estimation is described within [2]. The experi-

ments are exemplified within Section 4.3.

3.2.2 motion model
Derived from Figure 3.13, a new position in general can be obtained by equation
3.16.

1 consolidate [2] for further details

3.2 Monte Carlo particle filter 67

Figure 3.13: The object gets displaced along the path by d(purple line) and
rotates by α

xn+1
yn+1
ωn+1

 =

xnyn
ωn

+

d · cos(α)
d · sin(α)

α

 (3.16)

Standard production cars can be modeled by ”Ackerman-steering” if speed is
low and steering angle is constant (as assumed during this thesis). As shown in
[72] equation 3.17 can be used to derive the turn angle from the steering angle.
Compare with Figure 3.14 for dimensions.

cot(β)− cot(α) = d

l
= const. (3.17)

68 3 solution

Figure 3.14: If a car turns, there is always the ICC which stays steady. For
a classic Ackerman-steering 4 wheels (orange lines) are used (Note: β > α),
for single track model only one wheel (purple line) is approximated (Note:
β > ω > α).

The single-track model simplifies the Ackerman-steering by reducing two
wheels to one at the center. The new position according to equation 3.16
notation can be obtained by Figure 3.15, see equation 3.24 and 3.25.

3.2 Monte Carlo particle filter 69

Figure 3.15: The single track model moves from step n to n+1 (during time
T). It travels along the a path (orange doted line) constitute by the steering
angles radius R and covers the distance B (red doted line) and turns by the
angle ω (green).

B = v · T (3.18)
ω = B ·R (3.19)

ωv · T ⇒ R = v

ω
(3.20)

ω = ωT (3.21)
∆xv = R(1− cos(ωT)) (3.22)
∆yv = Rsin(ωT) (3.23)

(3.24)

xn+1
yn+1
Ωn+1

 =

xnyn
Ωn

+

v
ω
· [sin(Ωn + ωT)− sin(Ωn)]

− v
ω
· [cos(Ωn + ωT)− cos(Ωn)]

ωT

 (3.25)

The CTRV model, as introduced by [73], is a reasonable good method to

70 3 solution

model a cars motion1. During the experiments a steady acceleration will
be assumed, therefor the car moves with a constant velocity, which satisfies
the requirements by the CTRV model. Our sensors are able to deliver T,
v, and ω, therefor the CTRV model can be used. [74] and [75] shows that
the CTRV is a comprehensive motion model with a better error performance
compared to Constant Acceleration (CA), Constant Velocity (CV), Constant
Turn Rate (CTR), Constant Turn Rate and Acceleration (CTRA) or an other
linearized model. The model expands the state space by the cars velocity v and
rotation rate ω, see equation 3.26. x and y represents the position [m], ϕ the
heading in [rad], v the velocity [m

s
] and ω turn rate [rad

s
].

#»x t =
(
x y ϕ

)T
(3.26)

G. Steinbauer NOTE: eq 3.26 needs to fit formular 3.33

The next time step (T represents time [s] since last update) can be calculated
with equation 3.27.

#»x t+T =

x(t) + v
ω

[sin(ϕt + ωT)− sin(ϕt)]
y(t) − v

ω
[cos(ϕt + ωT)− cos(ϕt)]

ωT + ϕt

T

(3.27)

Equation 3.27 looks partial similar to equation 3.25. A much more detailed
model of a cars motion, including considerations for acceleration and sideslip,
can be derived using Maggi2 equations, refer to [77]. Within this thesis the car
will operate at constant low speed and therefor higher dynamics like sideslip,
acceleration drift, etc. do not need to be considered.

3.2.3 resampling process
As suggested by [78], equations 3.28 and 3.29 are used to decide if the particle
set (number of particles is M) set is degenerated and need to resample, wit being
the weight of particle i at time t. If necessary (if Effective Sample Size (ESS)
drops below a parameterizable threshold). the method described within Section
3.2.4 issued to determine which particle to resample. The process will copy
the best particles state (depending on resampling method) and replace bad
particles.

1 the Ackerman model is assumed
2 see [76]

3.2 Monte Carlo particle filter 71

cv2
t = var(wit)

E2(wit)
= 1
M

M∑
i=1

(M · wi − 1)2 (3.28)

dist = M

1 + cv2
t

(3.29)

Which particles will be resampled is decided by the resampling methode, see
Section 3.2.4.

3.2.4 resampling methods
H. Altinger NOTE: describe different aproaches; advantages; disad-
vantages; focus on reason for slot-strategy
G. Steinbauer NOTE: try to show evolution of solution; give reasons
for next step

In general therms, a particle may be judged by it’s weight p. A particle
described as ”good” satisfies the condition and will sustain its state. A ”bad”
particle is the opposite and will be set to a new state (weight, position, etc.)
within the next execution-step t+ 1.

Stratified

Follows the formulas suggested by [32] to calculate the number of good particles,
see equation 3.30.

dist = 1
particles∑
n=1

(w2
n)

(3.30)

If the number of effective good particles is too small, the filter has degenerated.
Within the next step only particles above a desired threshold βeff will stay, all
others will be resampled global.

slot strategy

This methde has been designed to be able to use and support good particles. As
suggested by [32], if pfess ≤ βresample resample is required. pfess see equation
3.31.

pfess = numvalideParticle

1 +∑Ns
i=1 p

2
particle

(3.31)

72 3 solution

The highest weighed particle will serve as the reference. All particles between
p = 1 to p = pselect (see equation 3.32) will be good particle (ngood). All others
(nresample) will be resampled, but at least nglobalresample to prevent degeneration
of the filter. All nresample particle will be equally distributed around each ngood.
A sampling area around each good particle can be defined with ζx and ζy, see
Figure 3.16.

pselect = maxNsi=1pparticle · βthreshold (3.32)

βresample, βthreshold, ζx, ζy, nglobalresample are the methodes adjustable parame-
ters.

Figure 3.16: nresample particle (red cross) will be spread around (green circle)
ngood particles (green arrow), nglobalresample particles will be spread globaly
(blue circle)

3.3 Kalman filter
H. Altinger NOTE: basics of implementation
H. Altinger NOTE: used models and derived matrix

Based on the mathematical basics presented within Section 2.3.2 a Kalman
filter has been implemented to merge the odometry position with the particle
filters position. Equation 3.33 shows the state change; the current internal state
will be exchanged with the new odometry data. Based on equation 2.23 this
causes the transition matrix At to be zero and Bt to be the unity matrix.
G. Steinbauer NOTE: formal correct introduction: A = one, odo

3.3 Kalman filter 73

and pf as measurement update
G. Steinbauer NOTE: dimensions need to fit definition at 3.26

xt+1
yt+1
ϕt+1

 =

xodoyodo
ϕodo

 (3.33)

At =

1 0 0
0 1 0
0 0 1

 (3.34)

Bt =

1 0 0
0 1 0
0 0 1

 (3.35)

The measurement update is defined as 3.36, based on equation 2.25 this
causes the matrix Ct to be the unity matrix.

#»z t =

xpfypf
ϕpf

 (3.36)

Ct =

1 0 0
0 1 0
0 0 1

 (3.37)

Leftover are the system noise and the measurement update error. Equation
3.38 and 3.39 define the derived form of Rt and Qt.

Rt =

σ
odo
x 0 0
0 σodoy 0
0 0 σodoϕ

 (3.38)

Qt =

σ
pf
x 0 0
0 σpfy 0
0 0 σpfϕ

 (3.39)

Based on [2], Table 3.1 the Kalman filter has been implemented. The filters

74 3 solution

state can be calculated according to equation 3.40 and is represented by µt and
the covariance Σt

µt = Atµt−1 +Btut

Σt = AtΣt−1A
T
t +Rt

Kt = ΣtC
T
t (CtΣtC

T
t +Qt)−1

µt = Kt(zt − Ctµt)
Σt = (I −KtCt)Σt (3.40)

4 experiments

4.1 the environment
The following section will give a brief overview to the used environment. This
will contain the building to be tested within, the car as the sensor carrier and
the ground truth to get reference data to evaluate the system. The building is
the same for real data and for the simulation.

4.1.1 building
Various tests have bin done within the presented garage, which is one of the
target areas for the whole project. Figure 1.1 shows a sketch of the environment.
It is a typical subterranean garage house beneath an office building. The entry
is a narrow ramp with concrete walls to the left and right. As common for
many subterranean garage houses there are some pillars between the parking
lots. During the tests some of the parking lots have been blocked by other cars,
some workshop tools, etc. similar to some private garage houses.
The 3D model shown within Figure 1.1 is originated from the architects

blue print. To keep the model as simple as possible, all details have been
removed, e.g. water tubes, electrical installation cables, etc. Elements like fire
extinguisher, electrical switches, etc. have never been mapped, therefore they
are note part of the blueprint. The softwaremodule Cad map server reduces
this 3D information and generates a 2D map. This is used to initially load the
occupancy grid map. Figure 4.1 visualizes this map.

75

76 4 experiments

Figure 4.1: 2D blueprint generated from a 3D CAD model. Red lines mark
the extracted wall lines (all 3D elements have been triangulated), the green
surfaces the drivable areas, withe regions are not drivable. This represents the
initial loaded map for the used subterranean garage house. The ramp is longer
than in the 3D model to portrait the total length of the ramp.

As marked in Figure 4.1 the garage house is very narrow. The ramps width is
around 2.5m, the parking lots 5m x 2.4m. The car has to move turning circles
of 90 degree and 4m in diameter.

Occupancy grid map

As seen within Figure 4.1 the world is represented using an occupancy grid map,
see Section 2.2.1. The discretization of the world has got a direct influence
to the achievable accuracy to position quality. All obstacles will be entered
into the grid, and all data can only be gained within the discrete world. The
grid cells size can be adjusted, but is indirection quadratic proportional to
the consumed memory. During all experiments the cell size has been set to
10x10cm due to computational limits.

Updating the map is realized by logodds, see equation 2.17. The updating
sensors probability will increase or decrease the cells occupancy. The initial
believe and an a-priori information for every grid can be initialized with data
from a blueprint.

4.1 the environment 77

4.1.2 the car
H. Altinger NOTE: describe the basic sensors of normal A7(C7)
The car is a production like Audi A7, compare datasheet [79], model-year 2012.
The standard sensors can be seen within Figure 4.2. During all tests the car
has been equipped with the built in ultrasonic sensors, see Section 4.1.2.

Figure 4.2: The Audi A7 is equipped with different kinds of sensors: cameras
(monocular daylight and infrared), radar (short and long range), IMU and
ultrasonic. Due to their mounting position and sensor principles they can
cover different areas and ranges. Source: Audi AG, Self-study program

SARA

H. Altinger NOTE: basics about accelerometer, gyros

A modified Sensor Array Audi (SARA) unit is located at the cars center of
mass. It uses its own build in 6 DOF accelerometers & gyros and the Electronic
Stability Control (ESC) wheel encoders to calculate an odometry position. A
detailed description of the implemented position calculation is described by [68].
The system is able to deliver position updates at 100 Hz. It can be seen as an
odometry with the support of an IMU. Both sensor types are merged with an
EKF.

Compared against a ground truth the system delivers a position accuracy up
to xxx cm and a standard error of xxx cm, see [80].

78 4 experiments

ultrasonic sensors

H. Altinger NOTE: principle of ultrasonic distance measurement,
update rates, multi reflections, ...

A standard production A7 is equipped with up to 12 ultrasonic sensors, see
[81]. The operational frequency is around 70 kHz. 4 sensors are mounted inside
the front bumper and 4 at the back. Two sensors are mounted on each side of
the car. See Figure 4.3 for position, sensor id and coverage area. Table 4.1 lists
the maximum range and opening angles for the sensors.

Figure 4.3: The car is equipped with 12 ultrasonic sensors. This picture
shows each sensor with its ID to be used within the system. The naming con-
vention as follows: First letter for Rrear or Front, second for Middle, Outer
or Side and third for Right or Left (olways seen when looking into driving
direction ot the vehicle). E.g. RML addresses the rear middle left sensor (id
3). For sensors parameters see Table 4.1

sensor max. range horizontal opening
[m] [◦]

front 2.550 75
rear 2.550 75

side-front 5.000 45
side-rear 4.400 45

Table 4.1: operational parameters of 12 ultrasonic sensors

The used sensors are analog systems, which are connected to the Park Lenk
Assistent (PLA) controller unit. The software has been modified to transmit
the measured distances via CAN. As described within Section 4.3 the sensors
achieve an average accuracy of 20 cm and need to be modeled with an average
error of 20 cm.
The methode to model the sensor values within simulation and the particle
filter is described within Section 3.2.1, the required parameter estimation within
Section 4.3.

4.2 ground truth 79

4.2 ground truth
To reference the estimated position a ground truth, named as OutsideIn, system
has been used. It is based on environment fix LIDAR sensors, see [82]. A
detailed analysis can be found within [83], a manual within [84]. The number
of LIDAR sensors varies depending on the size and structural design of the test
area.

The system is based on the triangulation principle described within Section
2.4.3. LIDAR sensor measures one plane surface, where a cars wheels can be
identified. A RANdom Sample Consensus (RANSAC) algorithm tries to find
3 to 4 wheels of the car. With them the center of the car can be calculated.
Assuming the car drives into the same direction for the first seconds a full
heading can be extracted.

According to [82] the SICK LMS500-20.000pro archives an accuracy of 300mm
for distances 65m. As described within [83] the OutsideIn achieves an average
accuracy up to xxcm. This is mainly caused by the implemented discretization.
According to [85] the overall system achieves a repeatable accuracy of 20cm.
Within this application the OutsideIn is fusioned with the cars odometry via a
Kalmanfilter.

4.3 parameter estimation for sensor model
G. Steinbauer NOTE: explain the experiment in detail! –> parame-
ters determined via linear optimization (algo from Thrun)

G. Steinbauer NOTE: one plot of the used sensor model similar to
probabilistic robotics, Figure 6.6 and 6.5

Section 3.2.1 introduces the the beam model for distance measuring sensors.
This model is defined by 6 intrinsic parameters. As suggested by [2] the algo-
rithm ”Algorithm learn intrinsic parameters” has been used to determine
the intrinsic parameters. The implemented methode uses a linear optimization.
Figure 4.4 shows the measurement setup & process to obtain the data. The
car is moving forward and backward against a solid wall. A LIDAR (blue
cylinder) is mounted at the bonnet and measures the distance to the wall (red
beam). Approximated ultrasonic sensing area (each between two purple lines)
with its real beam cone (black line). The car is moved forward and backward
to acquire static and dynamic distance measurements. Table 4.2 shows the
optained parameters, Figure 4.7 visualize the model.

80 4 experiments

Figure 4.4: sketch ultrasonic sensor parameter estimation

Both ultrasonic sensor types have been analyzed due to their operational bor-
ders, reliability and standard error in measurement. Figure 4.5 shows raw data
with standard production ultrasonic sensors, Figure 4.6 with high performance
ultrasonic sensors. As the tested high performance ultrasonic sensor is within a
very early development the high noise influence need to be reduced in further
development released.
Figure 4.7 shows the obtained sensor model for the standard production and
high performance sensors. At a compareable distance the high performance
sensor delivers a less accurate real distance than the standard production. The
high performance sensor has got less random, short and maximum measure-
ments which can be seen in comparison within Figure 4.7.

Within Figure 4.5 Rear Middle Left (RML) addresses the rear center sensor
on the left side, ref. is the reference distance acquired by the laser, diff =
|ref − rml| The ultrasonic sensor has got a max. distance around 2.5 m and a
minimum distance of 0.1 m. Clearly one can see false ultrasonic readings if the
true distance is outside this borders. Within its operational borders there is a
standard measurement error between 0.1 m and 0.2 m with an average update
frequency of 7.69 Hz, which fits the manufactures specifications, see [81].

4.3 parameter estimation for sensor model 81

Figure 4.5: sensor test standard production ultrasonic sensor

Within Figure 4.6 RML addresses the rear center sensor on the left side,
ref. is the reference distance acquired by the laser, diff = |ref − rml| The
ultrasonic sensor has got a max. distance around 4 m and a minimum distance
of 0.15 m. Within its operational borders there is a standard measurement error
between 0.1 m and 0.2 m (but with peaks up to 1.5 m) with an average update
frequency of 15.1 Hz, which fits the manufactures specifications, see [86]. The
High performance ultrasonic sensors are much more noisy than the standard
production sensors (see Figure 4.5), but with a higher measuring distance and
update frequency.

Figure 4.6: sensor test high performance ultrasonic sensor

82 4 experiments

Figure 4.7: With the obtained beam model parameters a real distance of 3m
can be model according to the plot.

parameter standard ultra sonic sensor high performance ultra sonic sensor

zhit 0.2564 0.3008
zshort 0.1614 0.0211
zmax 0.1686 0.0763
zrand 0.1245 0.1055
σhit 0.0992 0.1525
λshort 1.5020 0.3559

weightedaverage 0.7110 0.8223

Table 4.2: determined ultrasonic intrinsic parameters

4.4 results
The following section is separated into two parts, one for simulation one for
real data. The simulation is used to determine the best parametrization for the
particle filter. During the real data runs only the good parameters from the
simulation are used. Both parts will present their results with tables (4.3 and
4.5) at the end of the subsection.

4.4 results 83

4.4.1 simulation
To determine, test and verify optimal parameters for the particle filter a
simulation module has been written. The module uses an occupancy grid map,
see Section 2.2.1, preloaded with an a priori CAD map to generate reference
data. Any valide trajectory within the boarders of the map can be used as
an input. A virtual vehicle will move along this trajectory and generates the
following data:

• ground truth data

• odometry data

• ultrasonic measurement data

Section 4.4.1 will give an overview about possible simulation parameters.
Simulated trajectories can be seen within Section 4.4.1.

parameters

The ground truth data will along the given trajectory without any noise. The
main parameter for the temporal resolution is the step size, meaning movement
per time base. Velocity and angular rotation will be calculated according
this. Accuracy and update frequency can be adjusted. The simulation area
is assumed to be plain, no change in height (e.g. a ramp) is simulated. The
speed of the car is assumed to be low, therefor no occurrence of slip and drift is
assumed.

The odometry data is based on the ground truth, but with the add of Gaussian
distributed noise:

• σx · · · position error in x direction

• σy · · · position error in y direction

• σϕ · · · orientation error

• σv · · · jitter for velocity

• σ$ · · · jitter for angular velocity

In addition the simulated odometry data can be modeled with an increasing
drift in x and y direction to simulate adding motion error via time. A constant
adding drift is assumed, this error values will not decrease or compensate during
one simulation run. Due to an assumed planar environment no environmental
caused side effect the the sensors, e.g. changing drift when moving up a ramp,

84 4 experiments

is modeled.

To simulate ultrasonic data the CAD map is used. Every mapped object
will generate an ultrasonic echo if within range of a sensor. The ground truth
position of the virtual vehicle is used to calculate the true distance to the
nearest object for every sensor. Random Gaussian noise (σerr) will be add to
this distance. To model device failures specific sensors can be deactivated during
the whole simulation or random sensor reading will be suppressed temporary.
The number of false readings per update cycle can be specified. Within the
simulation the sensors physic nature is amused to behave according to the
beam model, compare Section 3.2.1. During every update cycle the simulated
response quality will be adjusted according to the beam models probability for
the true distance.
H. Altinger NOTE: discuss about error parameters

H. Altinger NOTE: discussion (reference to sensors sensor models)
about chosen values

G. Steinbauer NOTE: assumptions?

G. Steinbauer NOTE: any papers to simulation?

G. Steinbauer NOTE: use simplified beam model to simulate; –>
Gaussian distribution already done; set various sensor measurements
to random values (similar to pshort and pmax)

obtained trajectories

The following section will give an exemplary overview to obtained trajectories
from simulation runs. . All data have been simulated within the environment
shown in Figure 4.1. The same plots can be compared to real data, refer to
Section 4.4.2. For figures 4.8 to 4.13 the following parameters have been used
according to known mean and standard deviation by the odometry sensor,
which has been determined by experiments, see [80].

• sensor model: beam model

• resampling: slot resample methode

• distribution: odo

• σx = 0.001 m

• σy = 0.001 m

4.4 results 85

• σϕ = 0.00873 ◦

• σv = 0.5 m
s

• σ$ = 0.005 rad
s

• driftx = 0.01 m
s

• drifty = 0.01 m
s

• blind sensors: one per update cycle

A complete list of parameters used during simulation runs can be found within
Table 4.3

Comparing the ultrasonic sensor responses within Figure 4.8 between the
obtained (simulated) measurement data (listed as real) and the true distances
(listed as virtual). Clearly one can see higher distances and less readings at min-
imum range. This is caused by the simulation because similar behavior could be
observed with real data. This has got a significant influence to the sensor model.

As described within Section 4.4.1 the simulated odometry has got a drift in
x and y which can be seen within Figure 4.9 and compared against real data
within Figure 4.15.

Figure 4.11 compares the resulting position from a Kalman merged odometry
with the particle filters position to the ground truth, Figure 4.11 shows the
same data as an overlay. Clearly one can see a good lateral position. The scene,
as known from the blueprint (see Figure 4.1) shows a very narrow ramp which
causes this good lateral, but unclear longitudinal position. There are too many
good particles with similar readings, because only the side sensors can add
measurement data to be weighted. By mischance a lot of particles will deliver
such data. After the first curve the scene is unique enough to fix the position.

Figures 4.12 and 4.13 shows the position quality analysis. Two criteria are
used, quadratic distances error and orientation error between the systems posi-
tion and the ground truth at the same time. According to the explanation above
the lateral position can not be determined which causes the high displacement
error. After the first unique scene the quadratic distance error decreases down
to less than 1m.

When analyzing the weight of every particle Figure 4.13 a random weight
distribution over the whole particle set. Good particles will survive more than
one resampling step, but will not live forever.

86 4 experiments

(a) (b)

Figure 4.8: Comparing sensor distance responses. The bars show the min,
average and max reported distance from simulated data (real, subFigure
4.8(a)) and virtual (true distance, subFigure 4.8(b)) measurements during
a simulation run.

Figure 4.9: simulated odometry compared to ground truth during a simula-
tion run

The resulting plain position from the particle filter can be seen within Figure
4.10. Clearly one can see a wide area of position hypothesis around the ground
truth position due to uncertanties (mainly caused by the noisy sensor data)
the particle filter has got. Using a Kalmanfilter to fusion odometry with this
positon will result in a smaller band around the true position, compare Figure
4.11.

4.4 results 87

Figure 4.10: particle filter position during a simulation run

Figure 4.11: overlay particlefilter and odometry kalman vs. groundtruth -
simulation

88 4 experiments

(a) (b)

Figure 4.12: distance and orientation error from particlefilter and odometry
via kalman - simulation

Figure 4.13: weightanalysis - simulation. For better visibility the value for
weight and age have been scaled by 10 duo to the hight summed weight over
fall particles. This weight has been extracted before the normalization step.

G. Steinbauer NOTE: add plot: simulation generates ground truth
for odo & sonar measurements; vertical: bins for expected distances;
horizontal: bins for real measurements; every row should contain
similar results to beam models graph; create this plot for simulated
data and real data (for real data use LMS as ground truth)

4.4 results 89

Table 4.3 shows a representation of used parameters and archived position
accuracy during simulation runs. Comparing the various parameters one can
see a decreasing position accuracy whit an increasing number of particles. The
best results can be achieved with the slot resample strategy (see Section 3.2.4).

All data where aquisitated at the same simulated environment.

90 4 experiments

particles

¯err

ϕerr

simpleModel

beamModel

slotresample

residualresample

globaldistribution

odometrydistribution

ζxdistribution1

ζydistribution

ζϕdistribution2

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

m
m

m
◦

◦
◦

m
m

◦

10
0

0
0.
47
91

3.
03
11

-0
.1
10
6

-0
.0
34
9

0.
00
44

!
%

!
%

%
!

0.
2

0.
2

0.
17
5

20
0

0
1.
05
34

7.
29
54

-0
.1
34
4

-0
.0
35
5

0.
00
41

!
%

!
%

%
!

0.
2

0.
2

0.
17
5

50
0

0
3.
93
83

44
.2
01
3

-0
.1
13
1

-0
.0
31
2

0.
07
63

!
%

!
%

%
!

0.
2

0.
2

0.
17
5

10
0

0
0.
24

3.
16
16

-0
.1
15
1

-0
.0
33
3

0.
04
97

%
!

!
%

%
!

0.
2

0.
2

0.
17
5

20
0

0
1.
51
1

9.
37
07

-0
.1
35
5

-0
.0
36
1

0.
04
62

%
!

!
%

%
!

0.
2

0.
2

0.
17
5

50
0

0
3.
28
3

16
.1
63
8

-0
.1
16
6

-0
.0
36
8

0.
04
84

%
!

!
%

%
!

0.
2

0.
2

0.
17
5

10
0

0
5.
85
01

32
.5
43
9

-0
.1
17
8

-0
.0
35
1

0.
00
37

!
%

!
%

!
%

0.
2

0.
2

0.
17
5

20
0

0
6.
10
17

31
.2
62
1

-0
.1
12
1

-0
.0
34
7

0.
01
34

!
%

!
%

!
%

0.
2

0.
2

0.
17
5

50
0

0
6.
94
13

34
.9
36
6

-0
.1
61
2

-0
.0
34

0.
07
42

!
%

!
%

!
%

0.
2

0.
2

0.
17
5

T
ab

le
4.
3:

pa
rt
ic
le
-fi
lte

r
pa

ra
m
et
er
s
an

d
re
su
lti
ng

pe
rf
or
m
an

ce
fr
om

sim
ul
at
io
n
da

ta
,p

ar
t
I,
fo
r
pa

rt
II

se
e
Ta

bl
e
4.
4

1
ζ x
,ζ

y
ar
e
se
t
ac
co
rd
in
g
to

th
e
gr
id

ce
ll
siz

e
us
ed
,s

ee
Se
ct
io
n
4.
1.
1

2
ζ ϕ

is
se
t
ac
co
rd
in
g
to

m
ea
n
an

d
st
an

da
rd

de
vi
at
io
n
fr
om

od
om

et
ry
,s

ee
[8
0]

4.4 results 91

particles

¯err

ϕerr

simpleModel

beamModel

slotresample

residualresample

globaldistribution

odometrydistribution

ζxdistribution1

ζydistribution

ζϕdistribution2

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

m
m

m
◦

◦
◦

m
m

◦

10
0

0
14
.8
45
5

58
.3
99
6

-0
.0
81
7

-0
.0
11
5

0.
06
14

%
!

%
!

%
!

0.
2

0.
2

0.
17
5

20
0

0
12
.5
26
9

38
.9
47

-0
.1
41
5

-0
.0
41
1

0.
01
03

%
!

%
!

%
!

0.
2

0.
2

0.
17
5

50
0

0
11
.2
28
3

28
.3
31
5

-0
.1
52
7

-0
.0
30
5

0.
06
75

%
!

%
!

%
!

0.
2

0.
2

0.
17
5

10
0

0
2.
52
76

29
.5
52
8

-0
.1
13
2

-0
.0
35
1

0.
00
39

%
!

!
%

!
%

0.
2

0.
2

0.
17
5

20
0

0
1.
47
55

27
.6
01
2

-0
.1
13
2

-0
.0
35
8

0.
02
47

%
!

!
%

!
%

0.
2

0.
2

0.
17
5

50
0

0
1.
00
42

35
.4
30
1

-0
.1
10
8

-0
.0
39
9

0.
00
06

%
!

!
%

!
%

0.
2

0.
2

0.
17
5

T
ab

le
4.
4:

pa
rt
ic
le
-fi
lte

r
pa

ra
m
et
er
s
an

d
re
su
lti
ng

pe
rf
or
m
an

ce
fr
om

sim
ul
at
io
n
da

ta
,p

ar
t
II
,f
or

pa
rt

I
se
e
Ta

bl
e
4.
3

1
ζ x
,ζ

y
ar
e
se
t
ac
co
rd
in
g
to

th
e
gr
id

ce
ll
siz

e
us
ed
,s

ee
Se
ct
io
n
4.
1.
1

2
ζ ϕ

is
se
t
ac
co
rd
in
g
to

m
ea
n
an

d
st
an

da
rd

de
vi
at
io
n
fr
om

od
om

et
ry
,s

ee
[8
0]

92 4 experiments

4.4.2 real environment
This section will show results from experiments with real data. The vehicle
has been driven manually through the environment presented within Figure
4.1. Odometry and ultrasonic measurement data are on-board. Ground-truth
data is generated off-board, see Section 4.2. Figures 4.14 to 4.19 are exemplary
plots from one run. The used parameters can be seen within Table 4.5, last
entry for 2.000 particles. Table 4.5 shows resulting performance data with good
parameters known from simulation, compare Section 4.4.1.

Comparing real ultrasonic data with true distance data, see Figure 4.14, one
can see typical problems. e.g. one sensor is dirty and does not report any
data. The mean reported distance (from all measurements during the whole
run) is short due to short readings, misreadings, etc. The same causes the
difference within the minimum distances between real and true distances. This
behavior need to be considered within the sensor model, compare Section 3.2.1.
As known from Table 4.3 an enhanced sensor model delivers a higher position
accuracy.

Figure 4.15 shows an overlay between real odometry data and ground truth
position. Clearly one can see an error in rotation which causes a quadratic posi-
tion error of up to 2.1m. Using the particle filter with a Kalman filter and the
odometry Figure 4.16 can be achieved. The fusioned data (as described within
Section 3.1 the data represent a Kalman fusion between odometry and particle
filter position) is slightly better (mean quadratic error of 0.228m compared to
0.72m, max. quadratic error of 1.435m compared to 1.8712m) than odometry
only. Quadratic error values within Table 4.5 are based on data from Figure
4.18. In contrast Figure 4.17 shows the same data only from odometry.

Analyzing the particle weights one can see within Figure 4.19 some dominant
particles. This fits the implemented slot resample strategy.

4.4 results 93

(a) (b)

Figure 4.14: Comparing sensor distance responses. The bars show the min,
average and max reported distance from real data (b) and virtual (true dis-
tance (b)) measurements during on run.

Figure 4.15: real odometry compared to ground truth during one run

94 4 experiments

Figure 4.16: Kalman filtered position from odometry and particle filter posi-
tion during one run

(a) (b)

Figure 4.17: distance and orientation error from particlefilter and odometry
via kalman - real data

4.4 results 95

(a) (b)

Figure 4.18: distance and orientation error from particlefilter and odometry
via kalman - real data

Figure 4.19: weightanalysis - real data. For better visibility the value for
weight has been scaled by 2000 due to the normalized weight.

Analyzing Table 4.5 one can see an increasing accuracy (quadratic position
error) with a higher number of particles. All data within this table where
acquired using the last good position as center for resampling. This method can
be used to enhance odometry position. In combination with the slot resample
method and the beam model this is known from simulation to achieve the best
results, compare Section 4.4.1.

96 4 experiments

particles

¯err

ϕerr

simpleModel

beamModel

slotresample

residualresample

globaldistribution

ododistribution

ζxdistribution1

ζydistribution

ζϕdistribution2

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

m
m

m
◦

◦
◦

m
m

◦

10
0

0
0.
29
73

6.
47
18

-0
.0
51
8

-0
.0
00
9

0.
05
33

%
!

!
%

%
!

0.
2

0.
2

0.
17
5

20
0

0
0.
25
59

3.
20
56

-0
.0
00
9

0.
00
06

0.
03
45

%
!

!
%

%
!

0.
2

0.
2

0.
17
5

50
0

0
0.
18
46

2.
11
4

-0
.0
31
9

0
0.
00
14

%
!

!
%

%
!

0.
2

0.
2

0.
17
5

10
00

0
0.
18
84

1.
45

-0
.0
20
7

0
0.
00
14

%
!

!
%

%
!

0.
2

0.
2

0.
17
5

20
00

0
0.
22
79

1.
43
5

-0
.0
00
9

0
0.
00
08

%
!

!
%

%
!

0.
2

0.
2

0.
17
5

T
ab

le
4.
5:

pa
rt
ic
le
fil
te
r
pa

ra
m
et
er
s
an

d
re
su
lti
ng

pe
rf
or
m
an

ce
fr
om

re
al

da
ta

1
ζ x
,ζ

y
ar
e
se
t
ac
co
rd
in
g
to

th
e
gr
id

ce
ll
siz

e
us
ed
,s

ee
Se
ct
io
n
4.
1.
1

2
ζ ϕ

is
se
t
ac
co
rd
in
g
to

m
ea
n
an

d
st
an

da
rd

de
vi
at
io
n
fr
om

od
om

et
ry
,s

ee
[8
0]

5 Conclusion
Knowing from literature, see [20], sonar sensors can be used to navigate within
mapped environments. Later literature ([2] and [25]) suggest particle filter to
solve a global localization problem, even within unmapped environments when
using SLAM. Starting with results from Table 4.3 it is possible to use sonar
sensors in combination with a particle filter to calculate a position hypothesis.
The system described within Section 3 is able calculate such a position hypoth-
esis based on odometry and sonar distance readings.

Comparing results from simulation, see Section 4.4.1, with real world data,
see Section 4.4.2, the real hypothesis is not as accurate and reliable as the
simulated. Partially this result is caused by the nature of ultrasonic sensors,
like low spatial resolution, high noise and false readings. Using a simple or
an enhanced sensor model like the beam model has got a big impact on the
resulting position accuracy, compare Table 4.3.

The used sensor set, as described within Section 4.1.2, has got too short
maximum reading distances and too wide horizontal opening. This results
within a low spatial resolution and a short sensing distances. As a result it is
only possible to generate position hypothesis within small environments. Small
is hereby defined as enough obstacles, e.g. walls or other mapped objects, within
the sensor range. In such a case the sensor is always able to read a distance
which can be used to gauge position hypothesis (the particles).

97

6 further work
The enhancement when moving from the simple sensor model to the ”Beam
Models of Range Finders”, as described within [2], is promising. Further work
should be done do refine this model. In addition a way to calibrate the sonar
sensors to prevent false readings and reduce the noisy readings would be inter-
esting. Another approach would be to determine the sensor models parameters
for every single sensor and use it to calculate the position hypothesis probability.

The sensor model can be enhanced to better approximate the physical propaga-
tion of the ultrasonic sound wave and the resulting sensitivity area of the sensor.

Precisely looking at Figure 4.6 one can see a positive distance error when
moving toward an obstacle, and a negative distance error when moving away.
May this is caused by the Doppler Effect, which can be handled by a specialized
filter. A adjustable band-pass filter can be used to reduce the distance outliers.
This can lead to an enhanced sensor preprocessing system.

The sensor set itself can be changed. If using more sensors with smaller hori-
zontal opening and longer maximum distance readings the position hypothesis
can be improved. The High Performance Ultrasonic Sensor (HPUS) shows less
false readings than the Standard Production Ultrasonic Sensor (SPUS) and
delivers a better reading quality. As seen within Figure 4.7 the sensor can be
more accurate.

To reduce false position hypothesis in case of multi hypothesis a weighted
and history based combination of good particles can be used instead of the
implemented average sum.

A total different approach could be to use location based informations. When
moving along the long narrow ramp, compare Figure 4.1, the particle filter
delivers a good lateral position, but a bad longitudinal position. Embedding
this information into the map an enhanced sensor fusion filter could adopt its
state transitions and updates.

99

Bibliography
[1] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Particle filters for mo-

bile robot localization.” Proc. of the Sixteenth National Conference on
Artificial Intelligence, pp. 470–498, 1999.

[2] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). MIT Press, 2005.

[3] WHO, “Global health risks,” WHO Library Cataloguing-in-Publication
Data, 2009.

[4] EUSTAT, “Road safety evolution in the eu,” 2010.
[5] S. Austria, “Straßenverkehrsunfälle 2010,” Statistik Austria, 2011.
[6] Gleitsmann, “Verkehrsbericht 2010,” Polizeipräsidium Osthesse, 2010.
[7] various, “Special issue: Special issue on the darpa grand challenge, part 1,”

Journal of Field Robotics, vol. 23, no. 8, pp. 461 – 652, 2006.
[8] ——, “Special issue: Special issue on the darpa grand challenge, part 2,”

Journal of Field Robotics, vol. 23, no. 8, pp. 655 – 835, 2006.
[9] ——, “Special issue on the 2007 darpa urban challenge, part i,” Journal of

Field Robotics, vol. 25, no. 8, 2008.
[10] ——, “Special issue on the 2007 darpa urban challenge, part ii,” Journal

of Field Robotics, vol. 25, no. 9, 2008.
[11] ——, “Special issue on the 2007 darpa urban challenge, part iii,” Journal

of Field Robotics, vol. 25, no. 10, 2008.
[12] K. Mak, “Advanced driver assistance systems: Assessing opportunities and

challenges,” Strategy Analytics, 2007.
[13] E. commission for europe, “Convention on road traffic,” United Nations,

1968.
[14] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark,

J. Dolan, D. Duggins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh,
M. Hebert, T. M. Howard, S. Kolski, A. Kelly, M. Likhachev, M. Mc-
Naughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski,
B. Salesky, Y.-W. Seo, S. Singh, J. Snider, A. Stentz, W. R. Whittaker,
Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown, D. Demitrish, B. Litkouhi,
J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms,
and D. Ferguson, “Autonomous driving in urban environments: Boss

101

102 Bibliography

and the urban challenge,” Journal of Field Robotics, vol. 25, no. 8, pp.
425 – 466, 2008.

[15] K. OHNO, T. TSUBOUCHI, B. SHIGEMATSU, and S. YUTA, “Differ-
ential gps and odometry-based outdoor navigation of a mobile robot,”
Advanced Robotics, vol. 18, no. 6, pp. 611–635, 2004.

[16] P. Waldmann and D. Diehues, “der bmw tracktrainer - automatisiertes
fahren im grenzbereich auf der nürnburgring nordschleife,” TÜV SÜD
Tagungen, 2013.

[17] J. Funke, P. Theodosis, R. Hindiyeh, G. Stanek, K. Kritatakirana,
C. Gerdes, D. L. M., Hernandez, B. Muller-Bessler, B., and Huhnke,
“Up to the limits: Autonomous audi tts,” in Intelligent Vehicles Sympo-
sium (IV), 2012 IEEE, june 2012, pp. 541 –547.

[18] Berlin, DIN 70000: Road vehicles: Veicle dynamics and road-holding
ability., 1994.

[19] J. Bloomenthal and J. Rokne, “Homogenouse corrdinates,” The University
of Calagary, Tech. Rep., 2003.

[20] A. Elfes, “Sonar-based real-world mapping and navigation,” Robotics and
Automation, IEEE Journal of, vol. 3, no. 3, pp. 249 –265, june 1987.

[21] S. Thrun, “Learning occupancy grid maps with forward sensor models,”
Autonomous Robots, vol. 15, pp. 111–127, 2003.

[22] D. Fox, J. Hightower, D. S. L. Liao, and G. Borriello, “Bayesian filters
for location estimation,” IEEE Pervasive Compting, vol. 03, pp. 24–33,
2003.

[23] R. Kalman, “A new approach to linear filtering and prediction problmes,”
Transactions of the ASME Journal of Basic Engineering, 1960.

[24] A Comparison between Extended Kalman Filtering and Sequential Monte
Carlo Techniques for Simultaneous Localisation and Map-building.
ARAA, 2002.

[25] S. Thrun, “Particle filters in robotics,” in Proceedings of the 17th Annual
Conference on Uncertainty in AI (UAI). UAI 2002, 2002, pp. 511–518.

[26] F. Gustafsson, “Particle filter theory and practice with positioning appli-
cations,” Aerospace and Electronic Systems Magazine, IEEE, vol. 25,
no. 7, pp. 53 –82, july 2010.

[27] D. Crisan and A. Doucet, “A survey of convergence results on particle filter-
ing methods for practitioners,” Signal Processing, IEEE Transactions
on, vol. 50, no. 3, pp. 736 –746, mar 2002.

[28] A. Doucet, N. de Fretias, and N. Gordon, Sequential Monte Carlo Methods
in Practice. Springer, 2001.

Bibliography 103

[29] F. Daum and J. Huang, “Curse of dimensionality and particle filters,” in
Aerospace Conference, 2003. Proceedings. 2003 IEEE, vol. 4, 3 2003,
pp. 1979 – 1993.

[30] S. Lenser and M. Veloso, “Sensor resetting localization for poorly modelled
mobile robots,” in In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA. IEEE, 2000, pp. 1225 – 1232.

[31] D. Fox, “Kld-sampling: Adaptive particle filters,” in In Advances in Neural
Information Processing Systems 14. MIT Press, 2001, pp. 713–720.

[32] N. G. M. Sanjeev Arulampalam, Simon Maskell and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking,”
Transactions on Signal processing, vol. 50, pp. 174–188, February 2002.

[33] S. Julier and J. Uhlmann, “A new extension of the kalman filter to nonlinear
systems,” in Proceedings of SPIE, ser. 3, vol. 3, 1997, pp. 182 – 193.

[34] D. Blackwell, “Conditional expectation and unbiased sequential estimation,”
The Annals of Mathematical Statistics, vol. 18, pp. 105–110, 1947.

[35] M. H. D. Groot, Probability and Statistics, ser. 3rd edition. Addison-
Wesley, 2001.

[36] T. Dean and K. Kanazawa, “A model for reasoning about persistence and
causation,” Rown University, Tech. Rep., 1989.

[37] W. Shu and Z. Zheng, “Performance analysis of kalman-based filters and
particle filters for non-linear non-gaussian bayesian tracking,” Proceed-
ings of the 16th IFAC World Congress, 2005, 2005.

[38] K. M. A. Doucet, N. Freitags and S. Russell, “Rao-blackwellised particle fil-
tering for dynamic bayesian networks,” in In Conference on Uncertainty
in Artificial Intelligence (2000), 2000, pp. 176 – 183.

[39] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Janssonm R.
Karlsson and P.J. Nordlund, “Particle filters for positioning, navigation,
and tracking,” Signal Processing, IEEE Transactions on, vol. 50, no. 2,
pp. 425 –437, feb 2002.

[40] C. S. G. Grisettiyz and W. Burgard, “Improving grid-based slam with
rao-blackwellized particle filters by adaptive proposals and selective re-
sampling,” in Robotics and Automation, 2005. ICRA 2005. Proceedings
of the 2005 IEEE International Conference on, 2005, pp. 2432 – 2437.

[41] C. S. G. Grisetti and W. Burgard, “Improved techniques for grid mapping
with rao-blackwellized particle filters,” IEEE Transactions on Robotics,
pp. 34–46, 2006.

[42] D. F. J.s. Gutmann, W. Burgard and K. Konoliege, “An experimental
comparison of localization methods,” in Intelligent Robots and Systems,
1998. Proceedings., 1998 IEEE/RSJ International Conference on, vol. 2.
IEEE, 1998, pp. 736–743.

104 Bibliography

[43] J. Gutmann and D. Fox, “An experimental comparison of localization meth-
ods continued,” in Intelligent Robots and Systems, 2002. IEEE/RSJ
International Conference on, vol. 1. Digital Creatures Lab., Sony
Corp., Tokyo, Japan, 2002, pp. 454–459.

[44] M. Bugallo and P. Djuric, “Complex systems and particle filtering,” in
Signals, Systems and Computers, 2008 42nd Asilomar Conference on,
oct. 2008, pp. 1183 – 1187.

[45] O. C. R. Douc and E. Moulines, “Comparison of resampling schemes for
particle filtering,” in Proceedings of the 4th International Symposium
on Image and Signal Processing and Analysis (2005), 2005, pp. 64 – 69.

[46] T. Bailey, J. Nieto, J. Guivant, M. Stevens, M. and E. Nebot, “Consistency
of the ekf-slam algorithm,” in Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, 2006, pp. 3562 –3568.

[47] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics. Springer,
2008.

[48] S. Konatowski and A. Pieniezny, “A comparision of estimtaion accuracy
by the use of kf, ekf and ukf filters,” Computational Methods and
Experimental Measurements, vol. XIII, pp. 779 – 789, 2007.

[49] S. Haykin, Kalman filtering and neural networks, ser. chapter 7. John
Wiley and Sons, 2001.

[50] K. L. B. Hoffman-Wellenhof and M. Wieser, Principles of Positioning and
Guidance. Springer, Wien, 2003.

[51] G. Inc., Garmin Wide Area Augmentation System, 2012.
[52] T. Inc., How GPS Works, 2012.
[53] M. H. T. Luettel and H. Wuensche, “Autonomous Ground Vehicles –

Concepts and a Path to the Future,” Proceedings of the IEEE, 2012.
[54] L. N.-S. A. Suppe and A. Steinfeld, “Semi-autonomous virtual valet park-

ing,” in AutomotiveUI. ACM, 2010, pp. 139–145.
[55] F. S. J.M. Wille and M. Maurer, “Stadtpilot: Driving autonomously on

braunschweig’s inner ring road,” in Intelligent Vehicles Symposium
(IV), 2010 IEEE, june 2010, pp. 506 –511.

[56] D. Marioli, C. Narduzzi, C. Offelli, D. Petri, E. Sardini and A.Taroni, “Digi-
tal time of flight measurement for ultrasonic sensor,” IEEE Transactions
of instrumentation and measurement, vol. 41, pp. 93–97, 1992.

[57] J. Gutmann, “Robuste navigation autonomer mobiler systeme,” Ph.D.
dissertation, Universität Freiburg, 2000.

[58] J. S. W. Adiprawita, A.S. Ahmad and B. Trilaksono, “New resampling al-
gorithm for particle filter localization for mobile robot with 3 ultrasonic

Bibliography 105

sonar sensor,” in In Proceedings of the 2011 internationla converence
on electrical engineering and informatics, 2011, pp. 1–6.

[59] R. Kümmerle, D. Hähnel, D. Dolgov, S. Thrun and W. Burgard, “Au-
tonomous driving in a multi-level parking structure,” in Proceedings of
the 2009 IEEE International Conference on Robotics and Automation
(ICRA-09), 2009, pp. 3395–3400.

[60] Kognitive Fahrzeuge der UniBWM: Von VaMoRs zu MuCAR-3. Munic
Network, 2008.

[61] A. S. A. Schanz and K. Kuhnert, “Autonomous parking in subterranean
garages-a look at the position estimation,” in Intelligent Vehicles Sym-
posium, 2003. Proceedings. IEEE, june 2003, pp. 253 – 258.

[62] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley,
M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jen-
drossek, C. Koelen, C. Markey, C. Rummel, J. Niekerk, E. Jensen,
P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Ne-
fian, and P. Mahoney, “Stanley: The robot that won the darpa grand
challenge,” Journal of Field Robotics, vol. 23, no. 9, pp. 661 – 692,
2006.

[63] B. M.-B. G. Stanek, D. Langer and B. Huhnke, “Junior 3: A test plat-
form for advanced driver assistance systems,” in Intelligent Vehicles
Symposium (IV), 2010 IEEE. IEEE, 2010, pp. 143–149.

[64] S. A. Waldkirchen, LMS200/211/221/291 Laser Measurement Systems,
2006.

[65] I. Velodyne Acoustics, HDL-64E users Manual, 03 2008.
[66] S. Thrun and M. Montemerlo, “The GraphSLAM algorithm with applica-

tions to large-scale mapping of urban structures,” International Journal
on Robotics Research, vol. 25, no. 5/6, pp. 403–430, 2005.

[67] D. Langer and C. Thorpe, “Range sensor based outdoor vehicle navigation,
collision avoidance and parallel parking,” Autonomous Robots, vol. 2,
pp. 147–161, 1995.

[68] M. Baer and M.E. Bouzouraa and C.Demiral and U. Hofmann and S.Gies
and K. Diepold, “Egomaster: A central ego motion estimation for driver
assist systems,” in Control and Automation, 2009. ICCA 2009. IEEE
International Conference on. IEEE, 2009, pp. 1708–1715.

[69] C. Chen and M. Rickert, Automatic Parking Garage - ADTF Path-planning
Filter, FORTISS, 2011.

[70] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks: a
survey,” Network, IEEE, vol. 18, no. 4, pp. 45 – 50, july-aug. 2004.

106 Bibliography

[71] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Systems Journal, vol. 4, no. 1, pp. 25 – 30, 1965.

[72] H.-H. Braess and U. Seifert, Handbuch Kraftfahrzeugtechnik. Vieweg,
2000.

[73] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking
Systems. Artech House Boston London, 1999.

[74] R. Schubert, E. Richter, and G. Wanielik, “Comparison and evaluation of
advanced motion models for vehicle tracking,” in Information Fusion,
2008 11th International Conference on, IEEE. 2008 IEEE, 2008, pp.
730–735.

[75] H. C. U. Scheunert and G. Wanielik, “Precise vehicle localization using
multiple sensors and natural landmarks,” in Proceedings of the Seventh
International Conference on Information Fusion. International Society
of Information Fusion, 2004, pp. 649–656.

[76] A. Bychkov and V. Suslonov, “Maggi’s equations in terms of quasi-
coordinates,” REGULAR AND CHAOTIC DYNAMICS, vol. 7, no. 3,
pp. 269–279, 2002.

[77] E. N. A.B. Bychakov, C. Cattani and M. Yushkov, “The simplest model of
the turning movement of a car with its possible sideslip,” Technische
Mechanik, vol. 1, no. 29, pp. 1–12, 2007.

[78] I. Rekleitis, “A particle filter tutorial for mobiel robot localization,” Centre
for Intelligent machines, McGill University, Tech. Rep., 2004.

[79] A. AG, Audi A7/S7 datasheet, 2010.
[80] C. Demiral, “Fahrversuche im pgn mit c7(a7),” Audi AG, EF-56, Tech.

Rep., 2012.
[81] A. AG, 4H0 919 275 - Ultrasonic Sensor, personal communication, 2011.
[82] S. A. Waldkirchen, Laser Measurement Systems of the LMS500 Product

Family, 2010.
[83] A. Ibisch, S. Stümper, H. Altinger, M. Neuhausen, M.-P. Tschentscher,

M. Schlipsing, J. Salmen, and A. Knoll, “Autonomous driving in a
parking garage: Vehicle-localization and tracking using environment-
embedded lidar sensors,” 2013, contributed to IV 2013.

[84] A. Ibisch, OutsideIn LIDAR ground truth system, Institut für Neuroinfor-
matik, Ruhr-Universität Bochum, 2012.

[85] A. AG, Parking Pilote - reproduceable parking accuracy during automated
driving, personal communication, 2012.

[86] V. AG, High performance ultrasonic sensors - mark B2, personal commu-
nication, 2010.

Bibliography 107

[87] Elektrobit, ADTF advertising folder, 10 2011.
[88] T. M. R. P. Toolkit, “Mrptk,” 2012. [Online]. Available: http:

//www.mrpt.org/Particle_Filters
[89] R. O. System, “Ros,” 2012. [Online]. Available: http://www.ros.org

http://www.mrpt.org/Particle_Filters
http://www.mrpt.org/Particle_Filters
http://www.ros.org

List of Figures

1.1 schematic of the used garage . 5

2.1 coordinate system definition DIN 70000 8
2.2 coordinate transformation: translation 9
2.3 coordinate transformation: rotation 10
2.4 coordinate transformation: combination 11
2.5 Markov chain transitions . 15
2.6 occupancy grid map core problems 16
2.7 update for inverse sensor model 18
2.8 building an occupancy map from incremental sensor updates . . 18
2.9 forward sensor model . 19
2.10 Bayes position estimation . 21
2.11 general Bayes network . 22
2.12 Kalman filter illustration . 25
2.13 grid based position approximation 28
2.14 sample based position approximation 29
2.15 blockdiagram UKF . 36
2.16 localization with triangulation 37
2.17 GPS triangulation . 38
2.18 DGPS . 39
2.19 short history of selected autonomous cars 41
2.20 INS compared to laser navigation 44

3.1 short overview to proposed solution 52
3.2 schematic module overview . 53
3.3 adtf: module overview . 54
3.4 ADTF part: configuration modules 55
3.5 ADTF part: raw data extraction 56
3.6 ADTF part: path planing and configuration 57
3.7 ADTF part: localization . 58
3.8 short overview to data synchronization 59
3.9 ultrasonic sensor schematic ranges 61
3.10 ultrasonic sensor beam model 62
3.11 ultrasonic sensor beam model probabilistic components 63
3.12 virtual measurement based on occupancy grid map 65
3.13 motion model general . 67
3.14 Ackerman-steering and single track model 68

109

110 List of Figures

3.15 single track model motion . 69
3.16 slot resample methode . 72

4.1 2D map of garage house . 76
4.2 Audi A7 sensors . 77
4.3 ultrasonic sensors positions . 78
4.4 sketch ultrasonic sensor parameter estimation 80
4.5 sensor test standard production ultrasonic sensor 81
4.6 sensor test high performance ultrasonic sensor 81
4.7 obtained beam model comparision 82
4.8 ultrasonic distance compare simulated vs. true distance 86
4.9 odometry vs. groundtruth - simulation 86
4.10 partilce filter position vs. groundtruth - simulation 87
4.11 overlay particlefilter and odometry kalman vs. groundtruth -

simulation . 87
4.12 distance and orientation error - simulation 88
4.13 weightanalysis - simulation . 88
4.14 ultrasonic distance compare real data vs. true distance 93
4.15 odometry vs. groundtruth - real data 93
4.16 odometry and partilce filter position kalmanfiltered vs. groundtruth

- real data overlay . 94
4.17 distance and orientation error - real data 94
4.18 distance and orientation error - real data 95
4.19 weightanalysis - real data . 95

A.1 The Logo of the used ADTF 2.8.1 113

List of Tables

2.1 comparison of Kalman and particle filter 34
2.2 sensor configuration of selected autonomous cars 41
2.3 sensor configuration of this thesis 41

4.1 ultrasonic senors operational parameters 78
4.2 determined ultrasonic intrinsic parameters 82
4.3 particle-filter performance overview, simulation part I 90
4.4 particle-filter performance overview, simulation part II 91
4.5 particlefilter performance overview, real data 96

111

A ADTF - Environment

Figure A.1: The Logo of
the used ADTF 2.8.1

The ADTF is a commercial time triggered mes-
sage passing framework. It features hardware
access such as Bus-systems for modern cars.
It is possible to record data at any point to
be reused with a replay feature. The play-
back speed can be adjusted to simulate re-
altime behavior even when processing time is
high.

The vendor, see [87], describes it the follows:
”ADTF is able to capture asynchronous data from
different sensor sources and provides standard com-
ponents for data recording and interpretation of LIN,

MOST, CAN and FlexRay bus systems.”

It supports a simple interface to program so called filters to connect with the
message passing system. Every filter will be triggered if new data arrives, can
handle its own data procession methods and pass or transmit new data. The
framework ensures time synchronous execution of developed modules neverthe-
less if working on-line or off-line.

The framework comes with an C++ Application Programming Interface (API)
and runs on Windows or Linux.
Within the automotive development of driver assistance systems ADTF can be
seen as an industrial standard supported by all mayor European car manufac-
tures and suppliers.

113

B acronyms
ADTF Automotive Data and Time-triggered Framework

AMCL Adaptive Monte Carlo Localization

API Application Programming Interface

CAD Computer Aided Design

CAN Controller Area Network

CA Constant Acceleration

CTR Constant Turn Rate

CTRA Constant Turn Rate and Acceleration

CTRV Constant Turn Rate and Velocity

CV Constant Velocity

DARPA Defense Advanced Research Projects Agency

DAQ Data AcQuisition

DGPS Differential Global Positioning System

DIN Deutsche Industrie Norm, engl. german industrial norm

DOF Degree Of Freedom

DSP Digital Signal Processor

EgoMaster Egomotion Master, see [68]

EKF Exended Kalman Filter

ESC Electronic Stability Control

ESS Effective Sample Size

EUROSTAT Statistical Office of the European Communities

GIS Geographic Information System

115

116 B acronyms

GPS Global Positioning System

HPUS High Performance Ultrasonic Sensor

ICC Instantaneous Centre of Curvature

IMU Inertial Measurement Unit

INS Inertial Measurement System

KLD Kullback-Leibler distance

LIDAR LIght Detection And Ranging

LTR Linear Time Resampling

MCL Monte Carlo Localization

MRPT Mobile Robot Programming Toolkit, see [88]

PLA Park Lenk Assistent

PDF Probability Density Function

PF Particle Filter

RBS Reference Broadcast Synchronization

RANSAC RANdom Sample Consensus

RBPF Rao Blackwellized Particle Filter

RFID Radio Frequency IDentification

RML Rear Middle Left

ROS Robot Operating System [89]

SARA Sensor Array Audi

SIR Sample Importance Resampling

SLAM Simultaneous Localization And Mapping

SPUS Standard Production Ultrasonic Sensor

SRL Sensor Resetting Localization

SWR Select With Replacement

UKF Unscented Kalman Filter

WAAS Wide Area Augmentation System

WHO World Health Organization

Thanks

117

	Abstract
	Zusammenfassung
	Introduction
	motivation
	project objectives
	thesis objectives

	prerequisite
	Mathematical overview
	coordinate systems
	homogeneous coordinate transformation
	basics in probability
	Markov chains

	maps and grid based world representation
	Occupancy Grid Maps
	inverse sensor model
	forward sensor model

	Bayesian filters
	general introduction to Bayes filters
	Kalman filter
	particle filter
	Comparison and decision advices

	furthers localization approaches from literature
	Extended Kalman filter localization
	Unscented Kalman filter localization
	Triangulation
	Satellite based Navigation

	literature discussion
	related work
	general outlook on autonomous driving
	similar scenarios
	autonomous cars tested on public roads
	ultrasonic sensors
	sensor problems

	solution
	System overview
	architectural overview
	Synchronisation

	Monte Carlo particle filter
	ultrasonic sensor models
	motion model
	resampling process
	resampling methods

	Kalman filter

	experiments
	the environment
	building
	the car

	ground truth
	parameter estimation for sensor model
	results
	simulation
	real environment

	Conclusion
	further work
	Bibliography
	List of Figures
	List of Tables
	ADTF - Environment
	acronyms

