
Probabilistic Models for Learning the

Dynamics Model of Robots

Gsenger Othmar, BSc.

othmar@sbox.tugraz.at

Institute for Theoretical Computer Science (IGI)

Graz University of Technology

Inffeldgasse 16b

8010 Graz, Austria

Master Thesis

Supervisor: o.Univ.-Prof.Dr.Wolfgang Maass

Assessor: o.Univ.-Prof.Dr.Wolfgang Maass

May, 2013

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have
not used other than the declared sources / resources, and that I have
explicitly marked all material which has been quoted either literally or by
content from the used sources.

..
(date) (signature)

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt,
und die den benutzten Quellen wörtlich und inhaltlich entnommenen
Stellen als solche kenntlich gemacht habe.

Graz, am
(Unterschrift)

i

Acknowledgements

I would like to thank my family for supporting me all the time during my studies. I want
to thank my mother especially for her generous financial support, despite the fact that
everything took much longer than expected.

I also want to thank DI Elmar Rückert and DI Gerhard Neumann for supervising me
while writing this master thesis and o. Univ.-Prof. Dr. Wolfgang Maass for being my
mentor.

ii

Abstract

In this thesis I investigate three probabilistic regression models from the literature and try
to use them for learning the dynamics model of robots, i.e. the function that describes the
transition between two states when executing a certain action. I add regularization terms
to the error function where necessary to address the problem of overfitting and numerical
instability and derive the corresponding learning rules. Then I evaluate these models on
four simulated robotic tasks using my MATLAB implementation of the models. A simple
one-dimensional toy task is used to analyze and visualize the characteristics of the ap-
proaches. In a second and third experiment I test these models on multi-link arms and
analyze their robustness to noise. Finally, in the most complex experiment I use an existing
simplified model of a humanoid robot in a balancing task. The learned dynamics model is
used in combination with a well-known movement planning algorithm to solve a balancing
problem, where the robot gets pushed with different forces. The results demonstrate that
it is possible to predict and plan movement using these models. The Hierarchical Mixtures
of Experts model shows the worst performance, against the expectation to work best on
high dimensional data because it has the least number of model parameters. However, this
can be improved using different initialization approaches. The Gated Linear Regression
with Gaussian Noise Model and Conditioned Mixture of Gaussian show good performance
on small datasets. Additionally, the Conditioned Mixture of Gaussian has the advantage
of training both the kinematics and inverse kinematic model at the same time, without
overhead compared to the other models.

Keywords: model learning, probabilistic models, movement, dynamics, robots

iii

Kurzfassung

In dieser Arbeit beschäftige ich mich mit drei bekannten wahrscheinlichkeitstheoretischen
Regressionsmodellen und versuche Sie zum Lernen von Dynamik-Modellen von Robo-
tern, z.B. der Funktion, die die Änderung durch Ausführen von Aktionen zwischen zwei
Zuständen beschreibt, zu benutzen. Die Fehlerfunktion dieser Modelle ergänze ich um
Regularisierungs-Ausdrücke, wo das durch Probleme mit Overfitting und numerischer In-
stabilität erforderlich ist. Daraus leite ich die zugehörigen Lernregeln für die Modelle ab.
Ich vergleiche diese Modelle anhand von vier Aufgaben aus der Robotik mittels meiner
MATLAB Implementierung der Modelle. Zunächst visualisiere ich die Modelle und analy-
sieren ihr Grundverhalten anhand einer einfachen eindimensionalen Funktion. Im zweiten
und dritten Experiment teste ich die Modelle an Armen mit mehreren Gelenken. Dabei
untersuche ich auch das Verhalten bei Rauschen. Abschließend und als schwierigstes Ex-
periment versuche ich mit einem vereinfachten Modell eines humanoiden Roboters das
Gleichgewicht zu halten. Dazu nutze ich die gelernten Modelle in Kombination mit einem
bekannten Algorithmus zur Bewegungsplanung. Ich zeige, dass mit Hilfe der gelernten Mo-
delle Bewegungen in der Robotik geplant und durchgeführt werden können. Im Vergleich
verschiedener Modelle schneidet das Hierarchical Mixtures of Experts Modell überraschend
am schlechtesten ab. Ich erwartete hier einen Vorteil bei hochdimensionalen Problemen,
da es am wenigsten Modellparameter benötigt. Der Grund für das schlechte Abschneiden
liegt an der schwierigen Initialisierung dieses Modells, hier können durch andere Initiali-
sierungsverfahren noch Verbesserungen erreicht werden. Die anderen beiden Modelle, Ga-
ted Linear Regression with Gaussian Noise Model und Conditioned Mixture of Gaussian,
zeigten sehr gute Resultate schon bei kleinen Datensätzen. Das Conditioned Mixture of
Gaussian Modell bietet darüber hinaus den Vorteil das Umkehrmodell ohne zusätzlichen
Rechenaufwand mitzulernen.

Stichwörter: Modelllernen, Wahrscheinlichkeitsmodelle, Bewegung, Dynamic, Robotik

iv

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Dynamics Model of Robots . 2
1.3 Model Learning as Probabilistic Regression Problem 2
1.4 Necessary work . 3
1.5 Notation . 4

1.5.1 Matrix and vector notations . 4
1.5.2 Functions . 4
1.5.3 Constants and recurring symbols . 5

2 Related work 6

3 Gated Linear Regression with Gaussian Noise Model 8

3.1 Model . 8
3.2 Learning . 10

3.2.1 E-Step . 11
3.2.2 M-Step . 11
3.2.3 Regularization . 13
3.2.4 Initialization . 14

4 Conditioned Mixture of Gaussian 15

4.1 Model . 16
4.2 Learning . 16

4.2.1 E-Step . 16
4.2.2 M-Step . 17
4.2.3 Regularization . 17
4.2.4 Initialisation . 17

4.3 Conditioning . 18
4.4 Comparison to the previous model . 19

v

5 Hierarchical Mixtures of Experts 21

5.1 Model . 22
5.2 Learning . 23

5.2.1 E-Step . 23
5.2.2 M-Step . 24
5.2.3 Regularization of gates . 25
5.2.4 Initialization . 27

6 Experiments 28

6.1 Toy data set . 29
6.2 Two link arm . 33
6.3 Five link arm . 35
6.4 Four-Link Dynamic with Movement Planning 37

7 Conclusions 42

A Abbreviations 44

Bibliography 45

vi

List of Figures

1.1 The humanoid robot . 1

3.1 Gated Linear Regression with Gaussian Noise Model: example with three
experts . 8

3.2 Gated Linear Regression with Gaussian Noise Model: illustration of the
gating network . 9

3.3 Gated Linear Regression with Gaussian Noise Model: simulation results . . 13

4.1 Conditioned Mixture of Gaussian: Example with three experts 15

5.1 Hierarchical Mixtures of Experts: Illustration of the gating network 21
5.2 Hierarchical Mixtures of Experts: Example with four experts 26

6.1 Toy data task: model and MSE . 29
6.2 Toy data task: comparison of model parameters 30
6.3 Toy data task: Comparison of model simulation results 31
6.4 Toy data task: Comparison of model cluster probabilities 32
6.5 Two link arm task: geometry and model performance 33
6.6 Two link arm task: Clustering of the input 34
6.7 Five link arm: model and MSE . 35
6.8 Five link arm: Noise influence on MSE . 36
6.9 Five link arm: Training time . 36
6.10 Four-link arm with dynamic: Model . 37
6.11 Four link arm with dynamic: MSE . 37
6.12 Four link arm with dynamic: AICO with analytic and Conditioned Mixture

of Gaussian model . 38
6.13 Four link arm with dynamic: AICO with analytic and Conditioned Mixture

of Gaussian model on an unseen trajectory 39
6.14 Four link arm with dynamic: Training time, active clusters and percentage

of successful simualtions . 40

vii

Chapter 1

Introduction

1.1 Motivation

Figure 1.1: Picture of a humanoid
robot [8].

Movement planning is a central topic in robotics.
Recent work has introduced the idea that plan-
ning is accomplished through probabilistic infer-
ence [5]. Although relatively little work has been
done to specify the computational principles in-
volved in goal-directed decision making (planning),
portraying it as probabilistic inference fits into a
broad movement within both psychology and neu-
roscience [20]. Model predictive control also known
as stochastic optimal control (SOC) has been shown
to work in robotic tasks such as legged locomotion,
hand manipulation and ball bouncing, not only in
simulations, but also in real life applications [9].

Movement planning with SOC depends on a
known model of the robot’s dynamics. This model
specifies a transition function from a current state
and an applied action to the next state. Having
a dynamics model comes with the following advan-
tages:

� Only executable trajectories can be learned.

� Noise can be modeled.

� Constraints for control, joint, obstacles and other desired features can be added.

Therefore I want to investigate model based approaches. However, these approaches de-
pend on having a dynamics model. As dynamics models are often very complex and

1

CHAPTER 1. INTRODUCTION 2

unknown, this thesis aims to find and evaluate models that can automatically learn such
models. To achieve this, methods from the field of Machine Learning will be used to
automatically learn such models based on observed data.

I want to evaluate standard methods and compare their performance on dynamic
problems of different complexity. Mathematically inspired models are used, rather than
biologically inspired ones. As observations and predictions always include some uncer-
tainty, this brings us to the field of Probability Theory. Standard probabilistic models will
be evaluated and slightly modified if necessary.

1.2 Dynamics Model of Robots

The dynamics model of a robot defines the mapping of a state and an action to a new
state. The state is the position and velocity of the robot’s elements and the actions might
be forces applied by muscles or the input of a motor controller.

Humanoid robots as shown in Figure 1.1 often consist of many links and even more
artificial muscles, leading to a high dimensional action and state space. In real live appli-
cations noise gets added to the signal that controls the action, as well as to the sensors
that measure the state of the robot. As the state and action space are non-discrete, there
exists an infinite number of possible movement trajectories. It is only possible to use a
limited number of movement trajectories that have already been observed to learn the
dynamics model. This leads to the problem that new, unobserved trajectories have to be
predicted. Thus a model that shows a good generalization of the model function without
overfitting the training data is needed.

1.3 Model Learning as Probabilistic Regression Problem

I observe data generated by a function

f : x → y,

with the input x ∈ RDx and the output y ∈ RDy . The function f is unknown and should
be approximated by the used model. This is done by observing multiple samples xn → yn,
giving us the training dataset

X =


x1

x2

...
xn

 , Y =


y1

y2

...
yn

 .

CHAPTER 1. INTRODUCTION 3

I try to model a probability function p(y|x) that I use for function approximation

f̃(x) = arg max
y

p(y|x),

and assume that the observation is produced by a Gaussian process.
All used models are based on the idea that the mean of the Gaussian process can be

approximated by a piecewise linear regression consisting of K pieces. It is also possible
to replace the input x with a feature vector φ(x) ∈ RDφ [4], but for easier notation I will
skip this in the rest of the document.

1.4 Necessary work

In this thesis I investigate three probabilistic regression models from the literature and
try to use them for learning the dynamics model of robots. The Gated Linear Regression
with Gaussian Noise Model (GLR) and Conditioned Mixture of Gaussian (CMG) are
well documented [4] and learning rules are known. Thus I implemented the models in
MATLAB. As computation is limited by the floating point precision of the implementation,
additional regularization terms had to be added. I show how the learning rules can be
derived from a modified error function that addresses problems with numerical instability
and overfitting. As for the Hierarchical Mixtures of Experts (HME) model, no learning
rules or details are included in the publication [3]. Therefore I introduce my own error
functions and derive learning rules, that differ from the original implementation of the
author. I test these three models on four tasks. The toy task, the two and five link robot
and all regression models are implemented by myself. For movement planning and the
simulation of the simplified humanoid robot I use an existing implementation [17]. Finally
I present all simulation results and interpret their meaning.

CHAPTER 1. INTRODUCTION 4

1.5 Notation

1.5.1 Matrix and vector notations

x = (x1, x2, . . . , xD) . . . a row vector
xT . . . transpose of vector x

xi . . . i-th element of vector x

X . . . a matrix
xi . . . i-th row of matrix X

xi
T . . . i-th row of matrix X as a column vector

(xT)j . . . j-th column of matrix X as a row vector
xi,j . . . j-th element of xi

1.5.2 Functions

diag(x) =


x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xdx


|Σ| · · · determinant of Σ

N (x|µ,Σ) = 1

(2π)
D
2 |Σ|

1
2

exp
(
−1

2(x− µ)Σ−1(x− µ)T
)

CHAPTER 1. INTRODUCTION 5

1.5.3 Constants and recurring symbols

N . . . Number of samples,
Number of rows of the matrix

n ∈ [1, . . . , N] . . . Index of the sample
D . . . Number of columns of the matrix
Dx . . . Dimension of samples,

Number of columns of the matrix X

dx ∈ [1, . . . , Dx] . . . Index of the dimension
Dy . . . Dimension of output,

Number of columns of the output matrix Y

dy ∈ [1, . . . , Dy] . . . Index of the output dimension
K . . . Number of Clusters,

Number of Experts
k ∈ [1, . . . ,K] . . . Index of the cluster
G . . . Number of gates,

Number of gating nodes
g ∈ [1, . . . ,K] . . . Index of the gate

I =



1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1


. . . The unity matrix

I0 =



1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 0


. . . The unity matrix with iD,D being 0

Chapter 2

Related work

Movement generation for high-dimensional stochastic robots is challenging. Movement
Primitive (MP)s are introduced to reduce the dimensionality of the learning problem
[19, 7, 1, 6, 13, 17]. MPs are elementary parts of a movement which can be sequenced
or superimposed in time [11, 12, 17]. In robotics, model-free and model-based move-
ment primitives are used. As model learning is challenging, most movement generation
applications on real robots are model free [19, 1].

Another approach is model-predictive control, which uses the model’s dynamic in the
process of planning. With known model dynamics these approaches can be used to learn
a movement policy [10]. There are well performing methods based on optimal control
theory using a local linearization of the dynamics model and a quadratic cost function like
Iterative Linear Quadratic Regulator (ILQR) [10] or Iterative Linear-Quadratic-Gaussian
(ILQG) [22]. Stochastic Dynamic Programming is another approach from the area of SOC
theory, but it uses a second order approximation of the dynamics model [21]. Approximate
inference control (AICO) is an extension to ILQG through a model for which the maximum
likelihood (ML) trajectory coincides with the optimal trajectory and which reproduces
the classical SOC solution in the Linear-Quadratic-Gaussian (LQG) case. The algorithm
then utilizes approximate inference methods (similar to expectation propagation), that
efficiently generalize to non-LQG systems [23]. It is also possible to combine the idea of
MP with methods from SOC leading to Planning Movement Primitive (PMP) [18].

However, all these models rely on a known dynamics model. In this work I use three
simple models to formulate a dynamics model. An example for successful work in this area
are Locally Weighted Regression (LWR) [2], its enhancement Locally Weighted Projection
Regression (LWPR) [24] and Gaussian process regression [16]. It has been shown that all
these methods provide usable models for robot dynamics [15, 14]. These methods basically
differ in the choice of the kernel function φ(x).

In contrast to these model learning methods, this work concentrates on a probabilistic
regression approach, leaving the question for an adequate kernel function out of the scope.
I decided to evaluate the Hierarchical Mixtures of Experts (HME) [3] model as it has

6

CHAPTER 2. RELATED WORK 7

been proposed to fit high dimensional data well. It will be compared to the Gated Linear
Regression with Gaussian Noise Model (GLR), that is a modified version of the HME with
a simpler gating network and the Conditioned Mixture of Gaussian (CMG) [4] model, that
is a reformulation of the GLR with a different learning approach.

Chapter 3

Gated Linear Regression with

Gaussian Noise Model

The Gated Linear Regression with Gaussian Noise Model is a mixture of linear regression
models. Mixtures are used to represent an arbitrary multi-dimensional function f : x →
y. This is done by partitioning the input space into separate regions and applying an
independent linear regression model to each region. The partitioning of the input space is
performed by the gating distributions and the regression is done by so-called experts [3].
Figure 3.1 shows an one dimensional function and the linear regression model of three
experts. I discuss model details in subsection 3.1.

3.1 Model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(a) Training data gets assigned to an expert and the
experts learn the linear model.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

p(
k|

x)

(b) Probability p(zn = ck|xn) of each expert being
active. This is determined by the gates.

Figure 3.1: Gated Linear Regression with Gaussian Noise Model performing linear regres-
sion with three experts: The function is colored in the color of the expert k.

The Gaussian Gating separates the input into several clusters. The number of clusters
is given by the parameter K. The latent variable Z ∈ RK×N determines the cluster that
is active for a given sample. Z is a binary latent variable. Each line corresponds to a

8

CHAPTER 3. Gated Linear Regression with Gaussian Noise Model 9

training sample given by the index n and each column corresponds to a cluster k. In every
row exactly one value is one and all others are zero, viz only one cluster can be active at
a given time.

For each cluster k two Gaussian distributions are used, one to model the output for
the given cluster and one to determine the probability of the cluster being active given
the input. Figure 3.2 shows the graphical representation of this model.

Figure 3.2: Schematic representation of the Gated Linear Regression with Gaussian Noise
Model. Grey boxes are the gating distributions N (xn|µk,Σk) and the red boxes are the
output distributions N (yn|xnWk,diag(sk)).

To simplify the notation, I introduce the matrix C = I being the unity matrix of size
K×K. The k ’th row vector is given by ck. This row vector is all zero except for the k’th
value, which means I can use the notation zn = ck to describe that for the n’th sample
the k’th cluster is being active.

The probability of a gating node producing the observed input sample xn is given by

pgate(xn|zn = ck) = N (xn|µk,Σk).

For the prior probability of a cluster being active I use a constant

pgate(zn = ck) =
1
K

.

This leads to the mixing coefficient

CHAPTER 3. Gated Linear Regression with Gaussian Noise Model 10

πk(xn) = pgate(zn = ck|xn),

πk(xn) =
pgate(xn|zn = ck)pgate(zn = ck)

p(xn)
,

πk(xn) =
pgate(xn|zn = ck)

Kp(xn)
,

πk(xn) =
pgate(xn|zn = ck)

K∑
k=1

pgate(xn|zn = ck̃)
.

An expert produces an output yn with the probability given by

pexpert(yn|zn = ck,xn) = N (yn|xnWk,diag(sk)),

where xWk represents the linear model. This results in a piecewise linear regression with
Gaussian noise represented by diag(sk).

The complete model is given by

p(Y|X) =
N∏

n=1

K∑
k=1

pexpert(yn|zn = ck,xn)πk(xn).

The joined probability of gate and expert producing both xn and yn is

p(xn,yn|zn = ck) = pexpert(yn,xn|zn = ck)pgate(xn|zn = ck).

3.2 Learning

I want to learn the model parameters

θ =


Σ ∈ RK×Dx×Dx

µ ∈ RK×Dx

S ∈ RK×Dy

W ∈ RK×Dx×Dy

 .

Unfortunately, there exists no closed form solution for this problem. However I can use an
iterative approach such as the Expectation Maximisation (EM) algorithm. There are also
alternative ways to solve this problem, like variational inference or Markov-Chain-Monte-
Carlo (MCMC). The EM algorithm consists of the following two steps.

CHAPTER 3. Gated Linear Regression with Gaussian Noise Model 11

3.2.1 E-Step

The first step, also known as Expectation (E)-step, is used to determine the probabilities
for the latent variable Z. The responsibility is given by the probability of a cluster being
responsible for producing the sample

p(zn = ck|xn,yn) =
pexpert(yn,xn|zn = ck)pgate(xn|zn = ck)p(zn = ck)

K∑̃
k=1

pexpert(yn,xn|zn = ck̃)pgate(xn|zn = ck̃)p(zn = ck̃)
.

The prior probability p(zn = ck) is independent of k and constant for the model, so the
responsibility can be reduced to

γn,k = p(zn = ck|xn,yn) =
pexpert(yn,xn|zn = ck)pgate(xn|zn = ck)

K∑̃
k=1

pexpert(yn,xn|zn = ck̃)pgate(xn|zn = ck̃)
.

I also introduce the expectation for the number of samples generated by the cluster k

Nk = E
Z

{
N∑

n=1

zn,k

}
=

N∑
n=1

γn,k.

3.2.2 M-Step

The second step, called Maximisation (M)-step, is applied to optimize the model param-
eters, while keeping the probabilities of the latent variable Z constant.

The M-step maximizes the log-likelihood. The log-likelihood of the model is calculated
by marginalizing the latent variable z out and joining the probabilities over all samples n.
This can be written as

ln p(Y|θ) = ln
N∏

n=1

K∑
k=1

p(yn|xn, zn = ck)p(zn = ck),

ln p(Y|θ) =
N∑

n=1

ln
K∑

k=1

p(yn|xn, zn = ck)πk(xn).

The complete log-likelihood including the latent variable Z takes the form

ln p(Y,Z|θ) =
N∑

n=1

K∑
k=1

zn,k ln (p(yn|xn, zn = ck)πk(xn)) .

CHAPTER 3. Gated Linear Regression with Gaussian Noise Model 12

Now I can use the expectation of the latent variable as determined in the E-step

E
Z
{ln p(Y,Z|θ)} =

N∑
n=1

K∑
k=1

γn,k ln (p(yn|xn, zn = ck)πk(xn)) ,

E
Z
{ln p(Y,Z|θ)} =

N∑
n=1

K∑
k=1

γn,k ln (N (yn|xnWk,diag(sk))πk(xn)) .

Differentiating the log-likelihood by a model parameter and setting the result to zero
leads to an equation for the corresponding model parameter that maximizes the likelihood
function

0 = ∇Wk

N∑
n=1

K∑
k=1

γn,k ln
(
N (yn|xnWk,diag(sk))N (xn|µk,Σk)

1
Kp(xn)

)
,

0 = ∇Wk

N∑
n=1

γn,k ln
(
N
(
yn|xnWk,diag(sk)

))
,

0 = ∇Wk

N∑
n=1

γn,k ln

(
1

(2π)
Dy
2 |diag(sk)|

1
2

exp
(
−1

2
(yn − xnWk) diag(sk)−1(yn − xnWk)T

))
,

0 = ∇Wk

N∑
n=1

γn,k

(
−1

2
(yn − xnWk) diag(sk)−1(yn − xnWk)T

)
.

This leads to the update rule for the weights for the linear regression of the output

Wk =
N∑

n=1

(xT
nγn,kxn)−1xT

nγn,kyn.

By differentiating the log-likelihood by the other parameters as presented above, I can
derive the update rules. The noise on the output:

sk =
1

Nk

N∑
n=1

(γn,k(yn − xnWk)2)T .

The center of an input cluster cluster:

µk =
1

Nk

N∑
n=1

γn,kxn.

To calculate the covariance matrix Σk of an input cluster it is necessary to first subtract

CHAPTER 3. Gated Linear Regression with Gaussian Noise Model 13

the mean given by

x̄ =
1
N

N∑
n=1

xn,

from the original input. This gives the mean-free input x̃n = xn−x̄. Finally, the covariance
can be determined by the weighted summed squares of x̃n

Σk =
1

Nk

N∑
n=1

x̃nγn,kx̃T
n .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(a) Random solution

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(b) Most probable solution.

Figure 3.3: This shows the output of the trained Gated Linear Regression with Gaussian
Noise Model working on a test set. The data points are colored in the color of the expert
generating the point. The original function is shown in magenta.

3.2.3 Regularization

To avoid numerical problems with probabilities very close to zero it is necessary to keep
the weights Wk small and the covariance Σk greater than zero.

Keeping the weights small was done by adding a regularization term that contributes
to the error function

E = E
Z
{ln p(Y,Z|θ)}+

∑
k

α2W2
k.

Optimizing this error function instead of the log-likelihood results in the new update
rule

Wk =
N∑

n=1

(xT
nγn,kxn + α2I)−1xT

n diag(γn)yn.

Keeping Σk greater than zero is done by adding αgate samples with a covariance of
σgateI to each cluster. This results in the modified update rule

Σk =
1

Nk + αgate
(αgateσgateI +

1
Nk

N∑
n=1

x̃nγn,kx̃T
n).

CHAPTER 3. Gated Linear Regression with Gaussian Noise Model 14

3.2.4 Initialization

Initialization is done by splitting the data into K clusters using K-means. For each cluster
an expert gets trained using standard linear regression on that data slice. The gates are
initialised with the mean and variance of the data assigned to the cluster.

Chapter 4

Conditioned Mixture of Gaussian

The Conditioned Mixture of Gaussian model is based on a simple Mixture of Gaussian
model [4]. Both the input data X and the output Y are concatenated into one data matrix
U. Then a Mixture of Gaussian model is trained based on this data. After learning,
the model can be transformed into a gated linear regression model by conditioning onto
arbitrary dimensions of the data matrix, e.g. conditioning on the original input data X.
Therefore it is possible to determine which dimensions are treated as input and which are
treated as output after learning has finished. This has the advantage that there is no need
to train different models for different input/output combinations. For example, an inverse
dynamics model can easily be determined by conditioning on the output instead of the
input. Figure 4.1 shows a simple example for the mixture of three Gaussian distributions.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(a) Training data and the trained Gaussian distri-
butions are shown. Ellipses represent the standard
deviation.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(b) Simulation of the model, using x as input.

Figure 4.1: Gaussian mixture with three experts. The function’s color corresponds to the
data point’s expert k . Simulation is done by choosing the most probable expert first and
then calculating the expected output y of that expert.

15

CHAPTER 4. CONDITIONED MIXTURE OF GAUSSIAN 16

4.1 Model

The model does not treat input and output differently. I define a new matrix U containing
both the input and the output

U = (X,Y).

The model is based on a Gaussian mixture model. Like in the previous model I
introduce a binary latent variable Z. The overall probability for observing a data point
un is given as a sum over multiple Gaussian distributions, also called clusters

p(un) =
K∑

k=1

p(zn = ck)N (un|µk,Σk).

The mixing coefficients πk represent the prior probabilities for the latent variable

p(zn = ck) = πk. Those coefficients have to fulfill the condition
K∑

k=1

πk = 1 . Note that the

sum of all probabilities has to be equal to one, which can be seen by marginalizing out un∫
un∈RDu

p(un)dun =
K∑

k=1

p(zn = ck) = 1.

Combining the above, the complete model reads

p(U) =
N∏

n=1

p(un) =
N∏

n=1

K∑
k=1

πkN (un|µk,Σk).

4.2 Learning

I want to learn the model parameters

θ =


Σ ∈ RK×Du×Du

µ ∈ RK×Du

π ∈ RK

 .

Again there exists no closed form solution for this problem, so the EM algorithm is used.

4.2.1 E-Step

The responsibility is given by the probability of a cluster being responsible for producing
the sample

γn,k = p(zn = ck|un) =
p(un|zn = ck)p(zn = ck)

K∑̃
k=1

p(un|zn = ck̃)p(zn = ck̃)
=

N (un|µk,Σk)πk

K∑̃
k=1

N (un|µk̃,Σk̃)πk̃

.

CHAPTER 4. CONDITIONED MIXTURE OF GAUSSIAN 17

To simplify the notation, I introduce the expectation of the number of samples gener-
ated by the cluster k

Nk = E
Z

{
N∑

n=1

zn,k

}
=

N∑
n=1

γn,k.

4.2.2 M-Step

The maximum likelihood solution for a Gaussian cluster k can now be calculated indepen-
dently from the other clusters by weighting the samples with the cluster’s responsibility.
This results in an update rule for the center µk as weighted sum over all samples

µk =
1

Nk

N∑
n=1

γn,kun.

To calculate the covariance matrix it is necessary to first subtract the mean

ū =
1
N

N∑
n=1

un

from all samples, yielding the new data vector ũn = un − ū. The covariance again is
calculated as a weighted sum over the mean free samples

Σk =
1

Nk

N∑
n=1

γn,kũiũT
n .

The prior probability of a cluster is the fraction of the number of samples expected to be
produced by the cluster over the overall number of samples

πk =
Nk

N
.

4.2.3 Regularization

Very small variance can lead to clusters specializing on few samples, which can result in
overfitting. To reduce this effect I add α samples with a variance of σ0 to each cluster.
This results in the altered update rule

Σk =
1

Nk + α

(
ασ0I +

N∑
n=1

γn,kũnũT
n

)
.

4.2.4 Initialisation

Initialisation is done by using K-means to split the data into multiple clusters and calcu-
lating the distribution of each cluster independently. All mixing coefficients are initialized

CHAPTER 4. CONDITIONED MIXTURE OF GAUSSIAN 18

to the same value
πk =

1
K

.

4.3 Conditioning

For learning it was not necessary to distinguish between input and output data. I used the
combined matrix U. When simulating the network it is often more interesting to specify
some dimensions of the data as input, that is they are known a priori. To represent the
fact that these inputs do not have to be equal to the original inputs X I will denote them
as B. The corresponding outputs will be denoted as A.

Now I can split all samples U into input samples Ub and output samples Ua

U =
(
A B

)
.

Next I have to split the learned distribution parameters µ and Σ as well. The mean µ

is easily split into the corresponding dimensions of the sample data

µk =
(
µA,k µB,k

)
.

When splitting the covariance matrix I not only get the covariance matrices of the
input and output data, but also the cross-covariance between input and output

Σk =

(
ΣAA,k ΣAB,k

ΣBA,k ΣBB,k

)
.

To calculate the output I am interested in the output probability conditioned on the
input p(an|bn). This probability is composed of the probability of a cluster being active
and the probability of the cluster producing the output

p(an|bn) =
K∑

k=1

p(an|bn, zn = ck)p(zn = ck|bn).

Let’s have a look at the probability of the cluster producing the output p(an|bn, zn =
ck) first. It can be calculated by the conditional Gaussian distribution as in [4]

p(an|bn, zn = ck) = N (an|µA|B,k,ΣA|B,k).

The covariance matrix of the conditional distribution is calculated from the parts of
the original covariance matrix

ΣA|B,k = ΣAB,kΣ−1
BB,kΣBA,k.

The mean is a linear function of the input parameter zb

CHAPTER 4. CONDITIONED MIXTURE OF GAUSSIAN 19

µA|B,k = µA,k +
(
ΣAB,kΣ−1

BB,k(bn − µB,k)T
)T

.

Therefore the conditional distribution of one cluster takes the form of a linear regression
with a Gaussian noise model.

Now let’s look at the probability of the cluster being active p(zn = ck|bn) .

p(zn = ck|bn) =
p(bn|zn = ck)p(zn = ck)

p(bn)
=

p(bn|zn = ck)p(zn = ck)
K∑

k̃=1

p(bn|zn = ck̃)p(zn = ck̃)

.

The probability p(bn|zn = ck) is a marginal distribution of p(bn,an|zn = ck). It can
be calculated as shown in [4] by

p(bn|zn = ck) = N (bn|µB,k,ΣBB,k).

The posterior is derived using Bayes’s theorem

p(zn = ck|bn) =
p(bn|zn = ck)p(zn = ck)

K∑̃
k=1

p(bn|zn = ck̃)p(zn = ck̃)
=

N (bn|µB,k,ΣBB,k)πk

K∑̃
k=1

N (bn|µB,k̃,ΣBB,k̃)πk̃

.

Finally the conditional distribution I am interested in reads

p(an|bn) =
K∑

k=1

p(an|bn, zn = ck)p(zn = ck|bn),

p(an|bn) =
K∑

k=1

N (an|µA|B,k,ΣA|B,k)N (bn|µB,k,ΣBB,k)πk

K∑̃
k=1

N (bn|µB,k̃,ΣBB,k̃)πk̃

.

Please note that inputs and outputs can be chosen arbitrary and no relearning is re-
quired for different input/output combinations. This is extremely convenient when both
a forward and an inverse kinematic have to be learned. A simulation using such a condi-
tioned distribution is shown in Figure 4.1.

4.4 Comparison to the previous model

The conditioned model can be interpreted as a mixture of experts model, with p(zn =
ck|bn) representing the gates and p(zn = ck|bn) representing the experts. This gives a
result very similar to the previous model. Table 4.1 shows a comparison between GLR
and CMG using X as conditioned input B.

CHAPTER 4. CONDITIONED MIXTURE OF GAUSSIAN 20

GLR CMG

pgate(zn = ck|xn) :
1
K
N (xn|µk,Σk)

KP̃
k=1

1
K
N (xn|µk̃,Σildek)

πkN (xn|µX,k,ΣXX,k)
KP̃

k=1

πk̃N (xn|µX,k̃,ΣXX,k̃)

pexpert(yn|zn = ck,xn) : N (yn|xnWk,diag(sk)) N (xn|µY |X,k,ΣY |X,k)

Table 4.1: Comparison between GLR and CMG using X as conditioned input B

The difference between the two models are only the additional mixing parameter πk

that has to be learned, and that the covariance matrix ΣXX,k may have a non-diagonal
form compared to diag(sk) . This shows that the advantage of being able to determine
input and output dimensions after learning comes with the disadvantage of additional
model parameters.

Chapter 5

Hierarchical Mixtures of Experts

The HME model [3] consists of a sigmoid gating network and multiple experts performing
linear regression. Figure 5.1 shows the gating network (gray boxes) and the experts for
linear regression with a Gaussian noise model (red boxes). The input X is used for all
gating nodes or gates. These gates are organized in form of a tree. A sigmoid function on
X determines the probability of the gate to choose the left or right subtree. All leaves of
the tree have to be experts. The single expert chosen by the gating network produces the
output Y.

Figure 5.1: Illustration of Hierarchical Mixtures of Experts in form of a binary tree.

21

CHAPTER 5. Hierarchical Mixtures of Experts 22

5.1 Model

The model is given by an input-dependant mixing coefficient and a regression model

p(yn|xn) =
∑

k

p(zn ∈ Pk|xn)p(yn|zn ∈ Pk,xn).

I introduce the binary latent variable Z ∈ {0, 1}G×N . For all samples n the vector zn

contains the state of all G gates. A value of one means that the left path is chosen, and a
value of zero activates the right path. Following the active path from the root of the tree
to its leaves, one arrives at the active expert k as seen in Figure 5.1. The set Pk contains
all possible combinations for zn that result in an active expert k. For my example of a
binary tree with depth two, the set P2 contains all possible paths to expert two (green in
figure 5.1), expressed by the values of zn ,

P2 = {(1, 0, 0), (1, 0, 1)} .

I use the notation
zn ∈ Pk

to state the fact that the path to the expert k is active, i.e. that expert is responsible for
creating the output. I specify the linear regression model for an expert as

p(yn|zn ∈ Pk,xn) = N (yn|xnWk,diag(sk)).

The mixing coefficient is determined by the gating network. For each gate I define its
probability to chose a certain path zn,g as

p(zn,g|xn) = σ(xnvT
g)zn,g [1− σ(xnvT

g)1−zn,g],

with
σ(a) =

1
1 + exp(−a)

,

being the logsig function.
For easier notation I introduce the set path(k) containing the indexes of all gates on

the path from the root of the tree to the expert k. The function

z̃g(k) =

{
1 if k is in the left sub-tree of g
0 otherwise

is used to succinctly describe the states of all gates along the path to k to activate that

CHAPTER 5. Hierarchical Mixtures of Experts 23

path. Now I can calculate the mixing coefficient

πk(xn) = p(zn ∈ Pk|xn) =
∏

s∈path(k)

p(zn,g = z̃g(k)|xn).

5.2 Learning

I want to learn the model parameters

θ =


V ∈ RK×Dx

S ∈ RK×Dy

W ∈ RK×Dx×Dy

 .

Unfortunately there exists no closed form solution for this problem. However I can use an
iterative approach such as the EM algorithm. There are also alternative ways to solve this
problem like variational inference or MCMC. The EM algorithm consists of the following
two steps.

5.2.1 E-Step

The log-likelihood reads

L =
N∑

n=1

ln(p(yn|xn, θ)),

and the responsibility reads

γn,k = p(zn ∈ Pk|xn,yn),

γn,k =
p(yn|xn, zn ∈ Pk)p(zn ∈ Pk|xn)

p(yn|xn)
,

γn,k = =
p(yn|xn, zn ∈ Pk)p(zn ∈ Pk|xn)∑̃

k

p(yn|xn, zn ∈ Pk̃)p(zn ∈ Pk̃|xn)
.

For easier notation I also introduce the expectation for the number of samples generated
by the cluster k

Nk =
N∑

n=1

γn,k.

G denotes the total number of gates. I introduce a new index variable ĝ ∈ {1, · · · , G+C}
referring to the gate g = ĝ for values up to G and referring to the expert k = ĝ − G for
values above. Therefore the gate’s responsibility can be written as

γ̂n,ĝ =

{
γ̂n,left(ĝ) + γ̂n,right(ĝ) if 1 ≤ ĝ ≤ G

γn,ĝ−G if G < ĝ ≤ G + C

CHAPTER 5. Hierarchical Mixtures of Experts 24

With left(ĝ) being the index of the left child of ĝ and right(ĝ) being the index of the child
leave of ĝ. Indexes 1 ≤ ĝ ≤ G are reserved for gates and G < ĝ ≤ G + C are leaves. An
example for a full binary tree with gate depth u ∈ N+ and one layer of C = 2u expert
leaves result in the functions

left(ĝ) = 2ĝ,

right(ĝ) = 2ĝ + 1,

with the total number of gates reading

G = C − 1.

In Figure 5.1 such a binary tree of gate depth two is shown. The grey squares represent
the sigmoid gates. For a sample n the gate g is chosen to take the left path if zn,g = 1,
or the right path otherwise (zn,g = 0). The red squares represent the Gaussian clusters
or experts with the higher number being the index in the tree ĝ and the lower number in
brackets being the real index of the cluster k = ĝ −G. The green lines show the path to
the currently active expert. This corresponds to the state zn,1 = 1, zn,2 = 0. The output
is taken from expert two, meaning yn = N (yn|xnW2,diag(s2)) or E {yn} = xnW2.

5.2.2 M-Step

In this step I maximize the likelihood of the model while keeping the probabilities of the
hidden variable p(Z) constant.

Experts

Again the update rule of the expert takes the form of a weighted linear regression (compare
with GLR)

Wk =
N∑

n=1

(xT
nγn,kxn)−1xT

nyn,

sk =
1

Nk

N∑
n=1

γn,k(yn − xnWk)2.

Gates

The gate target tn,g reads

tn,g =
γ̂n,left(s)

γ̂n,g
.

CHAPTER 5. Hierarchical Mixtures of Experts 25

Gate learning is done with the iteratively reweighted least squares (IRLS) algorithm: The
log-likelihood reads

p((tT)s|vg) =
N∏

n=1

(ŷn,g)tn,g(1− ŷn,g)1−tn,g ,

as in [4] with
ŷn,g = p(zn,g = 1|xn) = σ(xnvT

g).

I define the error as the weighted negative log-likelihood. This results in the weighted
cross-entropy error E

E(vg) = − ln p((tT)s|vn) = −
N∑

n=1

γ̂n,g {ŷn,gtn,g + (1− ŷn,g)(1− tn,g)} ,

As this function is concave, I am allowed to use the Newton-Raphson update by calculating
the gradient

∇vgE(vg) =
N∑

n=1

γ̂n,g(ŷn,g − tn,g)xT
n ,

and the Hessian matrix

H = ∇vg∇vgE(vg) = γ̂n,gŷn,g(1− ŷn,g)xnxT
n ,

and using them in a local quadratic approximation

v(new)
g = v(old)

g −H−1∇vgE(vg).

5.2.3 Regularization of gates

The HME model learns a gating network with high values for vg, viz it separates the data
very sharply. To avoid this effect, as it is considered overfitting, I want to regularize the
weights of the gates vg. Figure 5.2 shows the probability of an expert being active for
the regularized gating network. Optimizing only the log-likelihood [4] of a gate

p((tT)s|vg) =
N∏

n=1

(ŷn,g)tn,g(1− ŷn,g)1−tn,g ,

results in overfitting. Therefore I define the error as the weighted negative log-likelihood
plus the weighted norm of the weight vector vg. This will result in a trade-off solution,
between the best possible solution and the solution with the smallest weights. This trade-
off can be adjusted with the α parameter.

I introduce a vector ṽg being equal to vg for all elements, but the element corresponding
to the bias term being zero. Thus I have no regularization on the bias weight.

CHAPTER 5. Hierarchical Mixtures of Experts 26

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(a) Training data and the trained experts are shown.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

p(
k|

x)

(b) Probability of an expert being active in simula-
tion for given input.

Figure 5.2: HME with four experts (one inactive). The function is colored in the color of
the expert k corresponding to the data point.

The error function reads

E(vg) = αṽgṽT
g − ln p((tT)s|vg) = αṽgṽT

g −
N∑

n=1

γ̂n,g {ŷn,gtn,g + (1− ŷn,g)(1− tn,g)} .

The optimization can be done in the same way as without the regularization using gradient
descent. I calculate the gradient

∇vgE(vg) = αṽT
s

N∑
n=1

γ̂n,g(ŷn,g − tn,g)xT
n ,

and use the Hessian matrix

H = ∇vg∇vgE(vg) = αI0 + γ̂n,gŷn,g(1− ŷn,g)xnxT
n ,

as learn rate, resulting in the local quadratic approximation

v(new) = v(old) −H−1∇vgE(vg).

CHAPTER 5. Hierarchical Mixtures of Experts 27

5.2.4 Initialization

K-means is used recursively to split the data into multiple clusters. At the beginning the
data gets separated into two clusters using K-means. These two clusters are used to train
the first gate. Each of these two clusters is split again, using K-means with two clusters
on that slice of the dataset. Those two new clusters are used to train the gates at depth
two. These steps are repeated until the desired depth of the tree is reached. The final
clusters are used to initialize the experts using standard linear regression for the weights.

The initialization of the gating network is essential for the model performance, as
learning will only find a locally optimal solution. Different initialization techniques for
HME are outside the scope of this work, but might significantly improve the overall model
performance.

Chapter 6

Experiments

I evaluate three probabilistic methods for model learning on four tasks. In all tasks I
contrast their performance. The tasks have different complexity. With each task I add
more dimensions to the training data. In the third task I also check for robustness to noise
and in the final task I test the models in combination with robotic movement planning.

28

CHAPTER 6. EXPERIMENTS 29

6.1 Toy data set

This is one of the simplest possible tasks. It has only one input and one output dimension.
I used this task to see the basic input/output behavior of the evaluated models. The one
dimensional data gives us the possibility to have a look at the internal probabilities of the
models using two dimensional plots.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(a) Toy dataset: The figure shows the task without
noise.

0 0.5 1 1.5 2 2.5

x 10
4

0.02

0.03

0.04

0.05

0.06

0.07

train set size
m

se

GLR
HME
CMG

(b) The figure compares the mean squared error on
the toy task for the evaluated models. Simulations
were done ten times. The bars represent the stan-
dard deviation on the results.

Figure 6.1: toy data task and model performance

The toy data set is given by

x = y + 0.3 sin(2πy) + noise

as in [3]. A minimal Gaussian noise with standard deviation 0.001 is used. Figure 6.1(b)
shows the mean squared error (MSE). Figure 6.1(a) shows the data set. Please note that
there is no unique solution for y(x), which means that such a solution for the problem
cannot be learned. However, it is possible to learn the probability function p(y|x) which
can account for the fact that one value of x might lead to one of multiple possible values
of y. This means p(y|x) is a multi modal distribution (i.e. for x = 0.5).

Using standard linear regression would lead to a solution like x = y. That solution
would show a MSE of 0.09 on the used test set.

CHAPTER 6. EXPERIMENTS 30

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(a) Gated Linear Regression with Gaussian Noise
Model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(b) Conditioned Mixture of Gaussian

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(c) Hierarchical Mixtures of Experts

Figure 6.2: This figure shows the training data and a representation of the models’ experts.
The training data is colored in the color of the expert k with the highest probability
p(z = ck|x) being responsible for producing the data point. As the experts perform a
weighted linear repression, their output is mainly dependent on the training data of same
color. The straight lines show the linear regressions representing the experts. For the
CMG the Gaussian mixture before conditioning is shown. After conditioning this will also
result in a linear regression in the direction of the covariance.

I tried to learn the toy dataset with the all three models. For this dataset I decided to
use only three experts. Figure 6.2 shows how the training data is split into three clusters.
Each cluster is represented by a different color. Please note that I used an HME with four
clusters, because I only implemented full binary trees for gating. However, Figure 6.4
shows that one cluster of the HME becomes inactive, so I am allowed to compare it with
the other three cluster simulations. The straight lines show the linear regression function
for a cluster’s data. The CMG is shown before conditioning. So the covariance matrix is
visible. After conditioning, the CMG will also perform a linear regression (compare with
simulation results shown in Figure 6.3).

CHAPTER 6. EXPERIMENTS 31

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(a) Gated Linear Regression with Gaussian Noise
Model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(b) Conditioned Mixture of Gaussian

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(c) Hierarchical Mixtures of Experts

Figure 6.3: The output of a simulation using the trained models is shown. x ∈ [0, 1]
is given as input to the models and y is the output of the models. The simulation was
done using the most probable solution and therefore is fully deterministic. This means I
chose the solution with the highest probability p(y|x) for the output y. The results’s color
correspond to the expert which yielded the data point.

I generated different sizes of test and training sets and ran ten simulations. Figure
6.1(b) shows the mean squared error (MSE). The mean of the MSE and its standard
deviation are plotted. As expected the MSE gets better and its standard deviation gets
lower for higher number of training samples. The HME shows signs of overfitting as the
MSE rises again for large training sets.

The calculation of the mean squared error is done by comparing the training and
test data to the output of the simulated model. The simulation was done completely
deterministic, i.e. I always used the solution with the highest probability. Figure 6.3
shows the output of the models with the highest probability.

CHAPTER 6. EXPERIMENTS 32

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

p(
k|

x)

(a) Gated Linear Regression with Gaussian Noise
Model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

p(
k|

x)

(b) Conditioned Mixture of Gaussian

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

p(
k|

x)

(c) Hierarchical Mixtures of Experts: The blue ex-
pert has a constant probability of zero, that is to say
this model only uses three experts.

Figure 6.4: The probability of an expert being active is shown. The active expert produces
the output of the simulation. The probabilities are colored in the color of the corresponding
expert.

The output with highest probability was determined by choosing the most probable
cluster and calculating the linear regression for the cluster. For simulations, I maximize
the probability of the hidden variable Z dependant on the input p(zn = ck|xn) Figure 6.4
shows the probability p(zn = ck|xn) for all clusters k of being active for an arbitrary input
xn.

As you can see, the Conditioned Mixture of Gaussian acts very similar to the Gated
Linear Regression with Gaussian Noise Model. When learning the same covariance and
mixing coefficient both models would behave identically. However, the Conditioned Mix-
ture of Gaussian has the important advantage that learning does not distinguish between
input and output dimensions, offering more flexibility.

CHAPTER 6. EXPERIMENTS 33

6.2 Two link arm

To evaluate the discussed methods on a multi-dimensional task I analyze their performance
on a two link kinematic arm. Using a two dimensional input enables use to have a closer
look on the input clustering of the models using two dimensional plots.

(a) The geometry of two dimensional arm with two
links. This task uses the angles x as input and the
Cartesian coordinates y as output.

0 0.5 1 1.5 2 2.5

x 10
4

0

1

2

3

4

5
x 10

−3

train set size
m

se

GLR
HME
CMG

(b) The figure compares the mean squared error on
the two link arm task for the evaluated models. Sim-
ulations were done ten times. The bars represent the
standard deviation on the results.

Figure 6.5: Two link arm task: geometry and model performance

The arm can only move in two dimensions, and I ignore the dynamics. I am interested
in the angles between the links and the position of the tip of the arm. The vector xs

contains all the samples of the s-th angle and the vector xd contains the samples for the
tip’s position in the d-th dimension. See Figure 6.5(a) for model details.

Also considering the length ln of the two link elements the position of the tip is given
by the equations

y1 = l1 · cos(x1)− l2 · cos(x1 + x2),

y2 = l1 · sin(x1)− l2 · sin(x1 + x2).

For the experiments I use identical lengths for all arm segments l1 = l2 = 1 . I learn
the function p(y|x) .

I evaluated all three models using 64 experts. Figure 6.5(b) shows the MSE for the
test set. The GLR performs best. As expected the CMG shows a similar performance
to the GLR. All three models’ performance improves with the size of the training set.
The improvement diminishes with larger training sets, and I don’t expect a significantly
reduced MSE for training sets larger than 20000 samples.

CHAPTER 6. EXPERIMENTS 34

0 1 2 3 4 5 6 7
0

2

4

6

8

x1

x2

(a) Gated Linear Regression with Gaussian Noise
Model

0 1 2 3 4 5 6 7
0

2

4

6

8

x1

x2

(b) Conditioned Mixture of Gaussian

0 1 2 3 4 5 6 7
0

2

4

6

8

x1

x2

(c) Hierarchical Mixtures of Experts

Figure 6.6: The clustering of the input is shown. The input’s color corresponds to the
expert that it activates. This means presenting the input x leads to the expert k being
active and therefore creating the output y. For this figure I only trained 16 experts to
keep the plot more readable.

Figure 6.6 shows how training data gets fragmented into multiple clusters. For this
plot I used models with only 16 experts to make the plots more readable. As the input is
represented by multiple Gaussian clusters, the GLR and CMG tend to split the input space
into rhombi. The HME uses the sigmoid function to split the input space, this separates
the input space by a combination of straight lines (for higher dimensions hyperplanes).
So it seems the HME should theoretically allow for a better split of the input space, and
due to the similar experts the HME result in better overall performance. However, in
the simulation it shows worse performance than the other approaches. This might be
caused by poor initialization. Different initialization techniques might result in better
performance, which is part of further studies.

CHAPTER 6. EXPERIMENTS 35

6.3 Five link arm

This task is an extended version of the previous task. I add three more segments to
the arm. In this task I also test for the influence of higher noise. A Gaussian shaped
noise of 0.1 is added to y-dimension of the training set. Figure 6.7 shows a graphical
representation of the model.

(a) Picture of a five link arm: The model consists of
five links moving in a two dimensional pane.

1 1.5 2 2.5 3 3.5 4

x 10
4

2

4

6

8
x 10

−3

train set size

m
se

GLR
HME
CMG

(b) The plots show the MSE on the test set for
the evaluated models. The simulation was done ten
times. The bars represent the standard deviation of
the results.

Figure 6.7: Five link arm: model and MSE

The Cartesian coordinates of the arm’s tip can be calculated as sum over the projections
of the arm’s segments. A segment’s projection can easily be determined by the cosine or
sine function of its angle to the axis of the coordinate system. The angle is given by
the sum of the angle of the previous segment and the angle between the segment and
the previous segment (assuming all link lengths being one). Therefore the angle is the
cumulated sum over all previous angles. Adding the projections of all segments leads to
the position of the arm’s tip

y1,n =
5∑

i=1

cos

 i∑
j=1

xj,n

+ noise, y2,n =
5∑

i=1
sin

(
i∑

j=1
xj,n

)
+ noise.

Figure 6.7(a) shows a graphical representation of the model. In Figure 6.7(b) I contrast
the models’ performance.

To investigate the robustness to noise I compare two scenarios. Figure 6.8(a) shows
the MSE on the test set, where no noise was added. As expected the MSE gets lower with
raising number of training samples. GLR and CMG show a similar performance. The
HME reaches nearly the same performance for large training sets as the other two models.
This is surprising, because the HME has less model parameters and therefore is expected
to require less training data. In Figure 6.8(b) I applied Gaussian noise with a standard
deviation of 0.1 . All models show worse performance compared to the noise-free task.
With higher number of training data the influence of noise gets reduced. The HME suffers
the most from the noise for small training sets.

CHAPTER 6. EXPERIMENTS 36

0 1 2 3 4 5

x 10
4

0

0.005

0.01

0.015

0.02

train set size

m
se

GLR
HME
CMG

(a) MSE without noise

0 1 2 3 4 5

x 10
4

0

0.005

0.01

0.015

0.02

train set size

m
se

GLR
HME
CMG

(b) MSE with Gaussian noise using 0.1 as standard
deviation

Figure 6.8: The plots show the MSE on the test set for the evaluated models. The
simulation was done ten times. The bars represent the standard deviation of the results.
Simulations without noise show better results. The influence of noise shrinks with rising
number of training samples.

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

train set size

tr
ai

ni
ng

 ti
m

e[
s]

GLR
HME
CMG

Figure 6.9: This plot shows the necessary time for training of the five link task. The
simulation was done ten times. The bars represent the standard deviation of the results.

Figure 6.9 shows the computation time in seconds for training on my test computer
(12x3.3Ghz, 94GB Ram). These values are highly dependent on the used hardware and
implementation techniques. Implementation was done mainly by using the model formulas
in a MATLAB simulation. The CMG is the fastest, as it has the simplest training algo-
rithm. Everything is learned by a mixture of Gaussian. There is no extra gating network
to train. Next comes the GLR with one gating layer. Finally, the HME has the highest
training time, because of its multiple gating layers where each require a separate training
step.

CHAPTER 6. EXPERIMENTS 37

6.4 Four-Link Dynamic with Movement Planning

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

x−axis [m]

y−
ax

is
 [m

]

(a) Intermediate state while movement.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

x−axis [m]

y−
ax

is
 [m

]
(b) Our target position is a upright stand with hand
down.

Figure 6.10: In this experiment I use a model of a simplified humanoid robot. It consists
of four link connected by knee, hip and shoulder. The robot is 2m tall and has a weight
of 70kg. It can only move in a two dimensional pane. The Figures show the robot in two
different positions.

In this experiment I use the models to approximate the dynamic model (state transition
model, when applying an action) of a humanoid robot. The task consists of a four link
robot that can move in a two dimensional plane. The angles represent knee, hip and
shoulders of the humanoid robot. My goal is to reach the stable position as shown in
Figure 6.10(b) starting from different initial states. As initial states I use the same
upright position, but I apply a force to the robot’s shoulder that tries to knock it over.
The robot has to keep its balance and not to fall over.

5 10 15 20 25

0

5

10

train set size

m
se

GLR
HME
CMG

(a) MSE

10 12 14 16 18 20
0

2

4

6
x 10

−5

train set size

m
se

GLR
HME
CMG

(b) MSE zoomed

Figure 6.11: The plots show the MSE on the test set for the evaluated models. The
simulation was done ten times. The bars represent the standard deviation of the results.
The HME shows bad performance and overfitting for large training sets. The other two
models perform well, with CMG and GLR showing similar performance.

CHAPTER 6. EXPERIMENTS 38

To achieve this I use AICO [23, 17] for movement planning combined with the learned
CMG model for the robot’s dynamics. Figure 6.10(a) shows an intermediate position
(after 200ms) that was reached while performing the movement planned by AICO. This
task can also be considered a reverse pendulum task.

As I use a simulated robot, the analytic function of the dynamic is known. However,
for a real robot this function might not be known. Thus learning it is necessary. I try
to approximate the function with all three models by training them on data generated by
the analytic function.

0 50 100 150 200 250 300 350 400
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

AICO belief joint velocities

(a) AICO belief joint velocities with analytic model

0 50 100 150 200 250 300 350 400
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

simulated joint velocities

(b) Simulated joint velocities with analytic model

0 50 100 150 200 250 300 350 400
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

AICO belief joint velocities

(c) AICO belief joint velocities with CMG

0 50 100 150 200 250 300 350 400
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

simulated joint velocities

(d) Simulated joint velocities with CMG

Figure 6.12: Comparison of velocities using AICO with the analytic and CMG model:
The robot starts with an upright stand and an impulse of 10Ns as an initial state. The
trajectories show the link’s velocities used to keep balance and end in an upright stand.
The successful trajectories generated by AICO using the analytic model were used as
training data for the CMG. Although the trajectories using the analytic model and the
learned CMG differ, the number of time steps necessary to solve the task is similar.

In this experiment a trajectory set is a list of 400 × 3 = 1200 samples 1. Three
1Training samples are tuples of a current state, an action and the next state when applying that action.

CHAPTER 6. EXPERIMENTS 39

trajectories for the impules F = {8, 10, 12}Ns with 400 discrete steps a generated using
the analytic model with added noise. Figure 6.11(a) shows the MSE on a test set of
the evaluated models. To better compare the performance of GLR and CMG, a zoomed
version is shown in Figure 6.11(b). As one can see the HME has a far worse performance
compared to the other two models. The GLR and CMG show similar performance. Both
models are mathematically similar, so it is to be expected for them to show nearly identical
performance on the data. The HME is expected to need less training data, because it has
less model parameters. However, it performs worse. The reason probably lies in the
difficult initialization of the HME that is relevant for model performance.

0 50 100 150 200 250 300 350 400
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

AICO belief joint velocities

(a) AICO belief joint velocities with analytic model

0 50 100 150 200 250 300 350 400
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

simulated joint velocities

(b) Simulated joint velocities with analytic model

0 50 100 150 200 250 300 350 400
−1.5

−1

−0.5

0

0.5

1

1.5

AICO belief joint velocities

(c) AICO belief joint velocities with CMG

0 50 100 150 200 250 300 350 400
−1.5

−1

−0.5

0

0.5

1

1.5

simulated joint velocities

(d) Simulated joint velocities with CMG

Figure 6.13: Comparison of velocities using AICO with the analytic and CMG model on
an unseen trajectory with initial impulse of 9Ns: The robot starts with an upright stand
and an impulse of 9Ns as an initial state. The trajectories show the link’s velocities used
to keep balance and end in an upright stand. The successful trajectories generated by
AICO using the analytic model with initial forces of 8,10 and 12Ns were used as training
data for the CMG. Although the trajectories using the analytic model and the learned
CMG differ, the number of time steps necessary to solve the task is similar.

Figure 6.12 shows the necessary velocities of the robot links. Here I compare two runs

CHAPTER 6. EXPERIMENTS 40

of AICO. First I test AICO with the known analytic function. Figure 6.12(a) shows the
links’ velocities believed to keep balance by AICO using the analytic model. As AICO
internally works with a linear approximation to model dynamics, the simulation results
using the true analytic dynamic function differs from AICO’s belief in Figure 6.12(b).
The velocity profiles have a complex curved form indicating that this is a hard task to
master. I repeat this experiment using the learned dynamics function as given by the
CMG model. Although the believe shown in Figure 6.12(c) and the actual movement in
Figure 6.12(d) differ from the analytic example, the CMG model is able to solve the task
within approximately the same number of simulation time steps. Thus the robot manages
to keep balance. In the example shown in Figure 6.12 I trained the CMG with successful
movement trajectories generated by AICO using the analytic model. To generate the
training data I used impulses of 8, 10 and 12Ns as initial states. The model was tested on
an impulse of 10Ns. Now I test the outcome of using a unseen impulse of 9Ns on the robot
with the same model. Figure 6.13 shows that the CMG can predict the unseen trajectory
with sufficient small error.

0 5 10 15 20 25
80

100

120

140

train set size

of

 a
ct

iv
e

ex
pe

rt
s

GLR
HME
CMG

(a) This plot contrasts the number of active clusters
or experts for the evaluated models. Empty clusters
get dropped during training. All models use most of
their experts.

0 5 10 15 20
−20

0

20

40

60

80

train set size

si
m

 ti
m

e[
m

in
]

GLR
HME
CMG

(b) This plot shows the needed computational time
for learning the model using the training set.

0 5 10 15 20

0

0.5

1

train set size

su
cc

es
sf

ul
 s

im
ul

at
io

ns

GLR
HME
CMG

(c) This plot shows the ratio of mathematically suc-
cessful simulations, i.e. where I did not run into
numerical problems while training the models.

Figure 6.14: four link training statistics

In Figure 6.14(a) I illustrate the number of active experts. The computational time
is contrasted in In Figure 6.14(b), which also scales linearly with the number of samples

CHAPTER 6. EXPERIMENTS 41

as in the previous five link task. Figure 6.14(c) shows the ratio of successful simulations,
i.e. where I did not run into numerical problems while training the models. Numerical
operations failed due to covariance matrices being close to singular. These problems
could most likely be solved by including additional regularization terms or adding prior
distributions for model parameters. The HME is more robust because it has less covariance
matrices. However I encountered problems with the gating network specializing on too few
samples and clusters getting empty. I solved this by adding some regularization terms.
With a similar approach it should be possible to increase the robustness of CMG and
GLR, which is part of future research.

Chapter 7

Conclusions

I addressed the problem of learning highly nonlinear dynamic models of robot movement
by using probabilistic regression methods. Three different models were implemented: the
Gated Linear Regression with Gaussian Noise Model (GLR), the Conditioned Mixture of
Gaussian (CMG) and the Hierarchical Mixtures of Experts (HME). I tested these models
on multiple tasks, which ranged from a simple one dimensional problem to a simulated
humanoid robot performing a reverse pendulum task. The CMG and GLR where able
to solve all tasks. The HME always had the worst performance, being more sensitive to
overfitting with an increasing number of training samples. However, as the HME has far
less model parameters than the other two models, it remains very interesting for modeling
high dimensional data. The question for optimal initializations of the HME leaves room
for further research. I believe that the gap between HME and the other models could be
closed by improving the initialization.

The CMG and GLR always showed very similar results, with each of them being
slightly better than the other for half of the tasks. Thus I could not see a significant
difference of performance of those two models. However the CMG has one big advantage
over the GLR. It does not need to know which dimensions are input or output for the
training process. The conditioning on one or multiple dimensions of the model happens
after learning is done. Therefore the CMG can learn the dynamics and inverse dynamics
model at the same time, where GLR would need an additional training cycle.

The CMG showes more robustness on small training sets. The GLR catches up with
a rising number of training samples. Problems with robustness are mainly in cases of too
small training sets, where the models are not capable of finding a good approximation
of the dynamics function. The HME showed no robustness problems at all. However
I invested much time to address numerical problems in the training process. I believe
that the other two models’ robustness could be improved in the same way. All of the
tested models use most of their experts in solving the tasks. This means that only a small
percentage of experts get inactive respectively only a few clusters get empty. Also the
models show similar computational time on all the tasks.

42

CHAPTER 7. CONCLUSIONS 43

Overall the CMG model is the mathematically simplest model. It is easy to use and
shows good performance. The HME leaves the most room for improvements and further
research and might be important for even higher dimensional problems.

In robotic tasks the models might benefit from the usage of a different feature vector
φ(x), where I only investigated the identity, i.e. φ(x) = x. For instance, adding a squared
version of the data would lead to a second order regression. Finally the tested models
not only generate a prediction for the output, but also a measure of uncertainty. Using
this additional information in the planning algorithm might also be interesting for further
work. In this manuscript I focused on batch learning, however it is straight forward to
extend the used methods to online learning.

Appendix A

Abbreviations

HME Hierarchical Mixtures of Experts

GLR Gated Linear Regression with Gaussian Noise Model

CMG Conditioned Mixture of Gaussian

MSE mean squared error

MCMC Markov-Chain-Monte-Carlo

EM Expectation Maximisation

E Expectation

M Maximisation

IRLS iteratively reweighted least squares

ILQR Iterative Linear Quadratic Regulator

LQG Linear-Quadratic-Gaussian

ILQG Iterative Linear-Quadratic-Gaussian

AICO Approximate inference control

SOC stochastic optimal control

PMP Planning Movement Primitive

MP Movement Primitive

LWPR Locally Weighted Projection Regression

LWR Locally Weighted Regression

44

Bibliography

[1] M. Ajallooeian, S. Pouya, A. Sproewitz, and A. Ijspeert. Central pattern generators
augmented with virtual model control for quadruped rough terrain locomotion. 2013.

[2] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally Weighted Learning for Control.
Artificial Intelligence Review, 11:75–113, 1997.

[3] C. M. Bishop. Bayesian Hierarchical Mixture of Experts. In Uncwertainty in Artificial
Intelligence: Proceesings of the Nineteenth Conference, 2003.

[4] C. M. Bishop. Pattern Recognition and Machine Learning . Springer Science +
Business Media LCC, 2006.

[5] M. Botvinick and M. Toussaint. Planning as inference. Trends in Cognitive Sciences,
2012.

[6] A. d’Avella, P. Saltiel, and E. Bizzi. Combinations of Muscle Synergies in the Con-
struction of a Natural Motor Behavior. Nature, 6(3):300–308, March 2003.

[7] A. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann, and S. Schaal. Dynamical move-
ment primitives: Learning attractor models for motor behaviors. Neural Computation,
25(2):328–373, 2013.

[8] S. Kotosaka and S. Schaal. synchronized robot drumming by neural oscillator.
(1):116–123, 2001.

[9] P. Kulchenko and E. Todorov. First-exit model predictive control of fast discontinuous
dynamics: Application to ball bouncing. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 2144–2151. IEEE, 2011.

[10] W. Li and E. Todorov. Iterative linear quadratic regulator design for nonlinear bi-
ological movement systems. In Proceedings of the 1st International Conference on
Informatics in Control, Automation and Robotics, (ICINCO 2004), pages 222–229,
Setúbal, Portugal, 2004.

[11] F. Meier, E. Theodorou, F. Stulp, and S. Schaal. Movement segmentation using a
primitive library. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, (IROS 2011), pages 3407–3412, San Francisco, CA, USA, 2011.

45

BIBLIOGRAPHY 46

[12] K. Mülling, J. Kober, O. Kroemer, and J. Peters. Learning to select and generalize
striking movements in robot table tennis. The International Journal of Robotics
Research, 32(3):263–279, 2013.

[13] G. Neumann, W. Maass, and J. Peters. Learning Complex Motions by Sequencing
Simpler Motion Templates. In Proceedings of the 26th International Conference on
Machine Learning, (ICML 2009), pages 753–760, Montreal, Canada, 2009.

[14] D. Nguyen-Tuong and J. Peters. Model learning for robot control: a survey. Cognitive
Processing, 12(4):319–340, 2011.

[15] D. Nguyen-Tuong, J. Peters, M. Seeger, and B. Schölkopf. Learning Inverse Dynamics:
A Comparison. In 16th European Symposium on Artificial Neural Networks, (ESANN
2008), pages 13–18, Bruges, Belgium, 2008.

[16] D. Nguyen-Tuong, M. Seeger, and J. Peters. Local Gaussian Process Regression
for Real Time Online Model Learning and Control. In Proceedings of 22nd Annual
Conference on Neural Information Processing Systems, (NIPS 2008), pages 1193–
1200, Vancouver, BC, Canada, 2008.

[17] E. Rückert, G. Neumann, M. Toussaint, and W. Maass. Learned graphical Models
for probabilistic Planning provide a new Class of Movement Primitives. In .

[18] E. A. Rückert, G. Neumann, M. Toussaint, and W. Maass. Learned graphical models
for probabilistic planning provide a new class of movement primitives. Frontiers in
Computational Neuroscience, 6(97), 2013.

[19] S. Schaal, J. Peters, J. Nakanishi, and A. J. Ijspeert. Learning Movement Primi-
tives. In International Symposium on Robotics Research, (ISRR 2003), pages 561–572,
Lucerne, Switzerland, 2003.

[20] A. Solway and M. M. Botvinick. Goal-directed decision making as probabilistic in-
ference: a computational framework and potential neural correlates. Psychological
review, 119(1):120, 2012.

[21] E. Theodorou, Y. Tassa, and E. Todorov. Stochastic Differential Dynamic Program-
ming. In Proceedings of the 29th American Control Conference, (ACC 2010), Balti-
more, Maryland, USA, 2010.

[22] E. Todorov and W. Li. A generalized Iterative LQG Method for Locally-Optimal
Feedback Control of Constrained Nonlinear Stochastic Systems. In Proceedings of
the 24th American Control Conference, volume 1 of (ACC 2005), pages 300 – 306,
Portland, Oregon, USA, 2005.

BIBLIOGRAPHY 47

[23] M. Toussaint. Robot Trajectory Optimization using Approximate Inference. In Pro-
ceedings of the 26th International Conference on Machine Learning, (ICML 2009),
pages 1049–1056, Montreal, Canada, 2009.

[24] S. Vijayakumar, A. D’Souza, and S. Schaal. Incremental Online Learning in High
Dimensions. Neural Computation, 17(12):2602–2634, dec 2005.

	Introduction
	Motivation
	Dynamics Model of Robots
	Model Learning as Probabilistic Regression Problem
	Necessary work
	Notation
	Matrix and vector notations
	Functions
	Constants and recurring symbols

	Related work
	Gated Linear Regression with Gaussian Noise Model
	Model
	Learning
	E-Step
	M-Step
	Regularization
	Initialization

	Conditioned Mixture of Gaussian
	Model
	Learning
	E-Step
	M-Step
	Regularization
	Initialisation

	Conditioning
	Comparison to the previous model

	Hierarchical Mixtures of Experts
	Model
	Learning
	E-Step
	M-Step
	Regularization of gates
	Initialization

	Experiments
	Toy data set
	Two link arm
	Five link arm
	Four-Link Dynamic with Movement Planning

	Conclusions
	Abbreviations
	Bibliography

