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Abstract

In this thesis we consider pointed pseudo-triangulations of point sets in the plane

in certain degree-bounded settings. The main focus lies on pointed pseudo-triangu-

lations with face degree four (4-PPT) in combination with so called edge flip oper-

ations that allow to locally transform a 4-PPT into a different one. We investigate

the flip graphs of all 4-PPTs of special point sets like the single chain, the reverse

single chain, and the double circle and show that their flip graphs of 4-PPTs are

connected. We introduce a new special set of points, the muffin set, and prove the

connectivity of its flip graph of 4-PPTs. To investigate flip graphs of 4-PPTs for

arbitrary point sets we introduce the concept of a dual graph. Applied to 4-PPTs of

point sets with three points on the convex hull this concept aims to move the single

triangle in such a pseudo-triangulation. The dual approach was also implemented

to extend a flip software tool. Experiments with this software have been performed

and are discussed.



Zusammenfassung

In dieser Arbeit betrachten wir pointed Pseudotriangulierungen von Punktemengen

in der Ebene unter gewissen Gradrestriktionen. Das Hauptaugenmerk liegt hier-

bei auf sogenannten 4-PPTs, pointed Pseudotriangulierungen deren geschlossene

Flächen durch maximal vier Kanten begrenzt werden. Eine lokale Operation, Kan-

tenflip, erlaubt es, eine Pseudotriangulierung in eine andere zu transformieren. Wir

untersuchen Flipgraphen von 4-PPTs von verschiedenen speziellen Punktemengen,

wie das single chain set, reverse single chain set oder auch den double circle und

beweisen, dass diese Flipgraphen zusammenhängend sind. Weiters führen wir eine

neue spezielle Punktemenge, das muffin set, ein und beweisen auch hier den Zusam-

menhang des Flipgraphen aller 4-PPTs dieser Menge. Für die Untersuchung von

Flipgraphen von 4-PPTs beliebiger Punktemengen wird das Konzept eines dualen

Flipgraphen eingeführt. Dieser Ansatz vereinfacht das Verschieben eines Dreieckes

in einer 4-PPT einer Punktemenge. Der Ansatz wurde implementiert um ein bereits

existierendes Flip-Software Tool zu erweitern. Versuche mit dieser Software wurden

durchgeführt und Ergebnisse werden in dieser Arbeit diskutiert.
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1 Introduction

The first records of humans studying geometry aims back to 3000BC in ancient India

and Babylonia. Since then a tremendous amount of research has made geometry to

a well-studied branch of mathematics. In the 3rd century BC Euclid set standards

that define the branch of Euclidean Geometry. Especially triangles are geometric

objects that have been studied from early time on. Compared to that, the field of

pseudo-triangulations is a young branch of computational geometry. In 1993 the

terms pseudo-triangle and pseudo-triangulation were first stated by Pocchiola and

Vegter [29]. Back then a pseudo-triangle was defined as : “. . . a simply connected

subset R of F [the complement of a collection of pairwise disjoint convex obstacles,

K.R.] such that (i) the boundary ∂R is a sequence of three convex chains, that

are tangent at their endpoints, and (ii) R is contained in the triangle formed by

the three endpoints of these convex chains”. Pocchiola and Vegter used pseudo-

triangles and pseudo-triangulations as tool for computing the visibility complex of

a set of pairwise disjoint convex obstacles. In the early 1990’s pseudo-triangulations

were also called geodesic triangulations and found to be a helpful tool as a kinetic

data structure for visibility problems of polygonal obstacles. A decade later Streinu

associated pseudo-triangulations with rigidity theory to solve the Carpenter’s Rule

Problem [36]. In 2008 Rote, Santos, and Streinu published a survey [32] on pseudo-

triangulations to outline the results on pseudo-triangulations in until then current

literature. Definitions and nomenclature in this master’s thesis are mainly based on

this survey.

1.1 Thesis Overview

The main focus of this master’s thesis lies on pointed pseudo-triangulations with

maximum face degree four, so called 4-PPTs, and edge flips in 4-PPTs, local trans-

formations that changes one 4-PPT into a different one. Each 4-PPT of a point set

can be represented by a vertex in a so called flip graph, where two vertices share
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an edge if their corresponding 4-PPTs can be transformed into each other with ex-

actly one edge flip. Chapter 2 presents the terminology and basic definitions on

pseudo-triangulations.

There are a lot of different well known applications for triangulations. The field of

applications for pseudo-triangulations is smaller, but nevertheless they are a useful

data structure that is used for visibility graph algorithms as well as for different

problems in the field of robotics (robot arms as bar-and-joint frameworks, collision

detection) or as tool for proofs in terms of illumination and guarding problems. An

overview on this can be found in Chapter 2.5.

Since a lot of research has been done in the last few years Chapter 3 gives an

overview on the state of the art results. We further focus on the question whether the

flip graph of 4-PPTs of a set of points is connected or not. Just recently (May 2012)

a group of researchers proved the connectedness of the flip graph of combinatorial

4-PPTs, a class of 4-PPTs that is described in Chapter 3.3.

Chapter 4 focuses on recent results on 4-PPTs of different point sets. We elabo-

rate proofs and disproofs of connectedness of the flip graphs of all 4-PPTs of simple

polygons, and special point sets like the single chain sets, the double circle and

describe them in this chapter. Additionally we introduce a new special point set,

a combination of two parallel single circles, and the number of 4-PPTs of selected

sets will be studied. Finally, we developed a dual approach to prove the connect-

edness of the flip graph of a set of points in the plain, that will be explained. The

dual idea was also implemented by the author to extend Reisner’s flip-software [31]

by an automated flip algorithm. We applied this extended software tool and re-

sults of experiments and conclusions drawn out of this results will be explained in

Chapter 5.3.
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2 Background on

Pseudo-Triangulations

This chapter gives a basic introduction of the fields of pseudo-triangulations. We

will define pseudo-triangles and pseudo-triangulations and take a look at special

types of pseudo-triangulations. A local operation called edge flip will be introduced

to transform a pseudo-triangulation into a different one and motivates the investi-

gation of the so-called flip graphs of pseudo-triangulations. An interesting aspect

of those flip graphs is the investigation of their connectivity. If the flip graph of all

pseudo-triangulations of a geometric figure or a point set is connected, each pseudo-

triangulation of this figure or set can be transformed into every other by applying

the edge flip operation.

2.1 Basic Definitions

Before we introduce pseudo-triangles some definitions are necessary. In the context

of this thesis all considered point sets S in the plane are in general position, i.e., no

three points of S are collinear. A polygon with n points is a plane figure where n

non-crossing edges connect n points to a closed path. We call a polygon simple if

there are only non-crossing edges on the path and exactly one inner face exists that

is bounded by the closed path. Whereas a simple polygon does not have any interior

points, a pointgon is a simple polygon with additional points inside the interior face.

A simple polygon is convex if each inner angle of the bounded face is < π. The

convex hull CH(S) of a point set S is the smallest convex polygon that contains S.

We denote a pseudo-k-gon as a polygon with exactly k convex points, i.e., the

angle outside the border of the polygon is > π at these points. These convex points

are called corners of the pseudo-k-gon. A pseudo-triangle is a pseudo-3-gon, a simple

polygon with exactly three corners. All other points are characterized as reflex points

and have an outer angle < π. To clearly differentiate between these two types of
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points, the postulation that a set S of points in the plane is in general position is

necessary. Figure 2.1 shows two examples for pseudo-triangles.

a b

c

a b

c

p

q

(1) (2)

Figure 2.1: (1) A triangle which is a special case of a pseudo-triangle with corners

a, b, c and no reflex points. (2) A pseudo-triangle with two reflex points

p and q.

At the beginning pseudo-triangulations were also called geodesic triangulation,

because they can be constructed by inserting non-crossing geodesic paths into a

polygon P . A geodesic path is the shortest path between two points of P that can

consist of diagonals and polygon edges. An edge is called a diagonal of a polygon

if it is an edge between two vertices of the border of P that crosses the inner area

of P . A geodesic path (consisting of ≥ 2 edges) between two consecutive corners (in

a cyclic order of all corners) of a polygon is called side-chain. We will later mainly

deal with pseudo-triangles that have one reflex point, i.e., they have exactly one

side chain consisting of two edges. A diagonal of a polygon is defined as tangent if

one of its endpoints is either a corner of the polygon and the diagonal lies inside

the convex angle of this corner or if it is a reflex point of the polygon and the two

edges of this reflex point lie on the same side of the supporting line of the diagonal

edge. A geodesic-path between two corners always preserves the pointedness (see

Section 2.2) of the affected points. Further, a diagonal of a polygon that is part of a

geodesic path is always tangent in both of its endpoints (see Figure 2.2) and is also

called bitangent.
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a

b

c

Figure 2.2: The two grey line segments form a geodesic path between the corner a

and the corner b. The dashed line segment is a bitangent, since it is

tangent to both end points.

We shall now define a pseudo-triangulation on three different geometric struc-

tures: on simple polygons, on pointgons, and sets of points. A pseudo-triangulation

of a simple polygon is a partition of the polygon into pseudo-triangles using only the

points of the polygon, whereas a pseudo-triangulation of a pointgon is a tiling of the

surrounding simple polygon using all interior points as well. A pseudo-triangulation

of an arbitrary point set S in the plane is a pseudo-triangulation of the pointgon

that is formed by S and its convex hull CH(S). A triangulation is a special case of a

pseudo-triangulation, since a triangle is a pseudo-triangle with no reflex points. Of-

ten bounds for the number of reflex points per pseudo-triangle are given; for example

pseudo-triangulations of point sets, where only pseudo-triangles with at most one

reflex point are allowed. If there are no special restrictions, a pseudo-triangulation

can consist of pseudo-triangles with different numbers of reflex points. We will later

see that the number of triangles in a special type of pseudo-triangulations (so-called

pointed pseudo-triangulations with face degree ≤ 4) depends on the number of points

of the convex hull.
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: A simple polygon (a), a pointgon (b) and a set of points (c). (d)-(f)

show pseudo-triangulations of those sets.

2.2 Pointed Pseudo-Triangulation

A special type of pseudo-triangulations are pointed pseudo-triangulation. A point

of a pseudo-triangulation is called pointed if two edges share an endpoint and form

an angle > π and no other edge lies inside this angle. Consider a point set S of

n points in the plane, let CH(S) be the set of points on the convex hull of S. In

every pseudo-triangulation all points of CH(S) are convex, i.e., they are pointed to

the outer face of the convex hull of S. In a pointed pseudo-triangulation all points

need to be pointed. Pointed pseudo-triangulations minimize the number of edges

in a pseudo-triangulation and are therefore also often named minimum pseudo-

triangulation [36]. In the next sections we will take a closer look on the number

of points, edges and faces of a pseudo-triangulation as well as on special types of

pseudo-triangulations that result from the restriction of the degree of points and

faces.
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Figure 2.4: A pointed pseudo-triangulation of a set of points. The vertices are

pointed into the faces incident to the red marks.

2.2.1 Counting Vertices, Edges and Faces

A pseudo-triangulation of a point set S with n points can be seen as a planar graph,

since we do not allow crossing edges. Hence, Euler’s formula for planar graphs holds

for the number of points n, the number of edges m, and the number of inner faces

f of a pseudo-triangulation:

n −m + f = 1 (2.1)

Using this equation, the number of edges and pseudo-triangles of a pseudo-tri-

angulation of a pointgon P can be determined depending on the number of non-

pointed points in the interior of P and the number of reflex points on the surrounding

polygon.

Theorem 2.1 (Vertex and face counts in pseudo-triangulations of pointgons [32]).

Let PT be a pseudo-triangulation of a pointgon with n points, nX of which are non-

pointed, and r points of the surrounding polygon are reflex. Then PT consists of

n − 2 + nX − r pseudo-triangles and 2n − 3 + nX − r edges.

Proof. In a pseudo-triangulation with m edges, these edges form 2m angles, n − nX

of them are > π (one at each pointed vertex). The number of angles < π equals r,

the number of reflex points of the surrounding polygon, plus one for each corner of

each pseudo-triangle. Let f be the number of inner faces, then we get

2m = n − nX + 3f + r (2.2)
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The combination of Equations 2.1 and 2.2 leads to the stated number of edges

and inner faces, i.e., pseudo-triangles.

The number of non-pointed points, nX , is the maximum in triangulations because

a triangulation of a pointgon or a point set cannot have any pointed points in the

interior of the convex hull. Therefore, the number of edges in a triangulation is

2n−3+nI since nX = r+nI for nI , the number of interior points. For triangulations

of point sets, this equals the well-known relation m = 3n−3−h for h = n−nI points on

the convex hull and the triangulation consists of 2n − 2 − h triangles. By definition

nX = r = 0 in pointed pseudo-triangulations of point sets. This leads to 2n − 3

edges and n − 2 pseudo-triangles and minimizes the number of edges. Therefore,

pointed pseudo-triangulations are often also called minimum-pseudo-triangulations.

The following theorem gives a characterization of pointed pseudo-triangulations.

Theorem 2.2 (Characterization of pointed pseudo-triangulations [32]). Let S be a

set of n points in the plane, and PT a graph embedded on S. Then the following

properties are equivalent:

1. PT is a pseudo-triangulation with a minimal number of non-crossing edges.

2. PT is a pointed pseudo-triangulation of S.

3. PT is a pseudo-triangulation of S, consisting of 2n − 3 edges and n − 2 faces.

4. PT is non-crossing, pointed and has 2n − 3 edges.

5. PT is pointed, non-crossing and maximal among the pointed non-crossing

graphs embedded on S.

Proof. The equivalence of the first three points (1)⇔ (2)⇔ (3) follow from Theo-

rem 2.1: the pseudo-triangulation of the point set S is a pseudo-triangulation of the

pointgon that consists of CH(S) and its inner points. CH(S) does not have any

reflex vertices, hence r = 0. The remaining number of edges is then 2n−3+nX , where

nX is the number of non-pointed vertices. The number of edges becomes minimal for

nX = 0. Also, (2)⇒ (4) follows then from Theorem 2.1. From (4), it follows from

Theorem 2.1 that PT is pointed and vice versa. PT is maximal among the pointed

non-crossing graphs on S since PT is a pseudo-triangulation of a point set. Every

additional edge would be an inner edge, i.e., an edge inside a pseudo-triangle. Since

pseudo-triangles do not have any interior bitangents, an additional edge would turn

a pointed vertex into a non-pointed one. This proves the implication (4) ⇒ (5).
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The implication (2)⇒ (5) follow by the argument mentioned above. For the impli-

cation (5)⇒ (2), we want to show that the graph PT , which is maximal among all

non crossing graphs embedded on S and whose vertices are all pointed, is a pointed

pseudo-triangulation (Theorem 2.6 in [32]). Since PT is maximal and pointed and a

convex hull point always stays pointed when an edges is added, the convex hull edges

of S are part of PT . To prove that every interior face of PT is a pseudo-triangle, we

consider an interior face F and enumerate its corners from p1 to pk, k ≥ 3. Consider

further two paths α+ and α− from v1 to v3 through the inner of F near to the border

and from v3 to v3 respectively the other way round. Shortening these paths will

result into two geodesic paths. Adding the edges of a geodesic path to PT would

not change a pointed vertex into a non-pointed, but since PT is already a maximal

graph, the geodesic paths coincide and consist of a border edge of F ; hence, p1 and

p3 are neighbored corners and F is a pseudo-triangle.

2.2.2 Constructing Pointed Pseudo-Triangulations

Now we know how to characterize pointed pseudo-triangulations. Using their pro-

perties it is possible to specify an iterative procedure to construct a pointed pseudo-

triangulation of a point set. This procedure was presented in a survey on pseudo-

triangulations [32] and is based on the Henneberg-Construction, an algorithm for

constructing minimal rigid graphs [24]. An algorithm for constructing special pointed

pseudo-triangulations, so-called 4-PPTs, will be presented in Chapter 3.2.1.

Theorem 2.3. (Streinu [32]) Let S be a set of n points and P a pseudo-triangulation

of S. Then there exists an ordering of the points p1, p2, . . . , pn of S such that Pi is

a pseudo-triangulation of the points p1, p2, . . . , pi for i = 3, . . . , n and Pi+1 results by

inserting pi+1 to Pi in either one of those two ways:

1. pi+1 becomes a vertex of degree 2 in Pi+1. If pi+1 has been inserted into the outer

face of Pi the two new edges are tangent to the boundary of Pi, otherwise the

two edges are on the geodesic between two arbitrary corners of the pseudo-

triangle in which pi+1 was inserted.

2. pi+1 becomes a vertex of degree 3 in Pi+1, by adding pi+1 and two edges like

above, but then flip one edge of the side-chain opposite to pi+1 in the unique

triangle that has pi+1 as a corner.

Proof. First, we show that in every pointed pseudo-triangulation there exists at

least one point of degree two or three. Then we show that removing such a point

16



pi pi

pi pi

(1) (2)

e e′

e

e′

Figure 2.5: Two ways of inserting the new point either into the outer face or into an

inner face of Pi.

according to (1) or (2) from above leads again to a pointed pseudo-triangulation.

Figure 2.5 represents the two ways of inserting a point into either an inner or outer

face of a pointed pseudo-triangulation. Let d(pi) be the vertex degree of point pi.

A pointed pseudo-triangulation P of a set S with n points has 2n−3 edges and each

edge affects two vertices. This leads to

∑
pi∈S,

i=1,...n

d(pi) = 4n − 6 (2.3)

Assuming every point in P has a vertex degree ≥ 4 would lead to a contradiction.

Therefore, there exists at least one point of vertex degree two or three. Assume first

we have a vertex of degree two and let it be the last point pn in the ordering of the

points of S. Removing this vertex and its two incident edges results in a pseudo-

triangulation Pn−1 with 2n − 3 − 2 = 2(n − 1) − 3 edges. This pseudo-triangulation

is still pointed, since removing edges cannot turn the incident pointed vertex into a

reflex one. Hence, we can construct the pointed pseudo-triangulation P by inserting

another point accordingly to the type 1 stated in the theorem.

Consider now that no point exists with vertex degree two; therefore, we have at

least one point with vertex degree three. Let this point again be the last point pn

in the ordering of the points of S. Since pn is pointed, one of its three incident
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edges e lies inside an angle α of the two other edges and α < π. It is obvious that e

is an inner edge; therefore it can be flipped in a new edge e′. Let P ′ be the pointed

pseudo-triangulation that results from flipping e in P. In P ′ the vertex p′n has now

degree two and can be removed as mentioned above. This results again in a pointed

pseudo-triangulation Pn−1 with 2(n − 1) − 3 edges. Hence P can be constructed by

inserting a point into Pn−1 and flipping the edge e′ into e, which corresponds to part

two of the theorem.

2.3 Flip Graphs of Pseudo-Triangulations

We shall now introduce a local operation that allows us to transform a pseudo-

triangulation into another by modifying one edge, i.e., the two adjacent pseudo-

triangles. This operation is called edge flip. An edge flip allows us to remove one

edge of a pseudo-triangulation PT and insert a different one, resulting in a new

pseudo-triangulation PT ′. In general, one can differentiate between three types

of flips. The deletion flip removes one edge e ∈ PT and results in a new pseudo-

triangulation with one edge less than PT . In contrast the insertion flip inserts a

new edge e ∉ PT and results in a new pseudo-triangulation with one edge more than

PT (Figure 2.6).

e

Figure 2.6: Removing or inserting the edge e results again in a valid pseudo-

triangulation.

The third, and the most important type for the following sections, is the diagonal

flip: in [32] it is shown that if removing an edge e ∈ P does not result in a new pseudo-

triangulation, a unique edge e′ ∉ P exists different from e such that replacing e by

18



e′ produces a new pseudo-triangulation. Such a diagonal flip always affects two

adjacent pseudo-triangles that share the edge e. We assume now that removing e

results in a face with four corners which is no longer a pseudo-triangle (otherwise

it would be an edge-removing flip). Let a, b, c, d be the corners of this pseudo-

quadrilateral in counter-clockwise order and let e be the edge that connects the

corners a and c, i.e., e forms a diagonal of this pseudo-quadrilateral. After removing

e we insert the other diagonal edge e′ that connects the other two corners b and d

(see Figure 2.7 left). This is only possible if we can insert the new diagonal without

e

e′

a

b

cd

e

e′

a

b

cd

Figure 2.7: Two diagonal flips removing e and inserting e′.

intersecting existing edges. If the new diagonal causes an intersection, we insert e′

instead in a way that the geodesic path between the two corners b and d is completed

(see Figure 2.7 right).

A diagonal flip neither decreases or increases the number of faces in a pseudo-

triangulation, but it can change the degree of the affected faces. In Figure 2.7 (right),

the diagonal flip transforms two quadrilaterals into one triangle and a pentagon. It

is shown in [32] that an insertion flip always turns one pointed vertex into a non-

pointed one, and the inverse operation, the deletion flip, does the reverse. This plays

an important role in terms of pointed pseudo-triangulations of point sets. Since all

points need to be pointed, only diagonal flips are allowed. In [32] it is further proven

that in a pseudo-triangulation of a pointgon P , there exists one flip for each interior

edge that is n − 3 + nX − r + nI and a flip for each of the n − nX − k pointed vertices

that is not a convex point on the surrounding polygon of P . This leads to n+2nI −3

possible flips in each pseudo-triangulation in a pointgon. We will now see that this

will be the degree of the so-called flip graph of pseudo-triangulations of pointgons.

19



Let S be either a simple polygon, a pointgon or a set of points. The flip graph of

the pseudo-triangulations of S is a graph G where each vertex represents a unique

pseudo-triangulation of S. Two vertices of G are connected if the two corresponding

pseudo-triangulations can be transformed into each other by one edge flip. There

are still many open questions on properties of these flip graphs starting with the

most basic ones: is the flip graph of pseudo-triangulations of S connected? Is it

still connected if we claim all pseudo-triangulations to be pointed or if we introduce

restrictions for the face or vertex degree?

Theorem 2.4 (Properties of the graph of pseudo-triangulations of a pointgon [32]).

Let P be a pointgon with n points in the plane, nI of which are interior points. The

flip graph G of all pseudo-triangulations of P has the following properties:

1. G is connected.

2. G is an undirected regular graph of degree n + 2nI − 3.

3. The subgraph G′, induced by the pointed pseudo-triangulations of P is con-

nected.

4. G′ is regular of degree k + 2nI − 3, where k is the number of convex points of

P .

For pseudo-triangulations of a point set S with n points, we have r = 0, hence

the number of flippable edges, i.e., the degree of the flip graph in a pointed pseudo-

triangulation of S is n + nI − 3.

In Chapter 4 we will show that the flip graph of pointed pseudo-triangulations

with special degree limitations are connected for certain special point sets but not

for others. Chapter 4 gives an approach to prove the connectedness of the flip graph

of such a special face-degree-bounded pointed pseudo-triangulation of a point set.

2.4 Degree Limitation

In many cases it is not easy to formulate general statements about pseudo-triangu-

lations of a point set or about their flip graphs. Setting boundaries for either face or

vertex degrees reduces the number of pseudo-triangulations, which can be helpful.

In a pseudo-triangulation, we can limit either the degree of a point, i.e., the number

of edges incident to one point or the degree of a face, i.e., the number of points
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that form a pseudo-triangle. Introducing degree limitations raises new questions,

for example is a flip graph still connected if we allow only a vertex degree smaller

than k, k ∈ N, in its pseudo-triangulations? In Chapter 3 an overview on results on

degree bounded triangulations is given.

As mentioned before it is also possible to limit the face degree, i.e., to restrict the

number of reflex points in a pseudo-triangle. In Chapter 4 we will focus on pointed

pseudo-triangulations with a maximum face degree of four, also called 4-PPTs. In a

4-PPT all pseudo-triangles are allowed to have one reflex point at the most, so the

bounded faces are either triangles or quadrilaterals. A special property of 4-PPTs of

a point set S is that the number d of triangles depends on the number k of points on

the convex hull of S, i.e., d = k − 2. This can be proven easily by induction, and will

be shown in Chapter 3.2 together with the algorithm for constructing 4-PPTs. In

that chapter we will present also an algorithm by Kettner et al. [27] that constructs

a 4-PPT of a point set that starts with the convex hull and then iteratively inserts

the inner points and updates the 4-PPT in parallel.

2.5 Application of Pseudo-Triangulations

One class of application for pseudo-triangulations in computational geometry are

so-called visibility-problems. Given a set of objects in the plane, two objects are

visible to each other if a straight line segment exists between them and does not

intersect any other object. A special problem is the so-called Art Gallery Problem

or Museum Problem. The problem was first stated by Klee as a question to

Chvátal [16]: How many guards are necessary to monitor an art gallery room with n

walls? In the original problem, a guard can survey 360° around his fixed position. In

1975 Chvátal [16] proved that ⌊n3 ⌋ guards are always sufficient to guard a polygon of

n vertices and three years later Fisk [19] gave a very short proof for the upper bound

by using triangulations. The art gallery room is a simple polygon with n vertices

that can be triangulated. There further exists a three coloring of this triangulation.

Placing the guards at the vertices of the polygon that are colored in the least com-

mon color leads to a number of necessary guards of ≤ ⌊n3 ⌋. When using so-called

π-guards, guards that have a field of view of 180°, Tóth [37] showed in 2000 that ⌊n3 ⌋
guards are sufficient if the location of the guards is not restricted to vertices. Con-

sidering vertex-π-guards, i.e., π-guards who are located at e vertex of the polygon,

upper bounds for the number of necessary guards were ⌊3n−54 ⌋ and then ⌊5n6 ⌋, proved
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by Tóth [37] using a special composition of polygons and by Brumberg et al. [15]

respectively in 2005. These bounds were improved by Speckmann and Tóth [35]

using pseudo-triangulations. They showed that a pseudo-triangle with m vertices

can be surveyed by ⌊2m−3
3 ⌋ vertex-π-guards. Based on this result, Speckmann and

Tóth proved a new upper bound for the number of edge-aligned vertex-π-guards,

vertex-π-guards whose one border of field of view coincides with a polygon edge.

The introduction of three different allocations for edge-aligned vertex-π-guards in a

pseudo-triangulation of the polygon that sum up to a total number of 2n−k guards,

leads to a maximum of ⌊2n−k3 ⌋ edge-aligned vertex-π-guards that are necessary to

guard a simple polygon with n vertices, k of them convex. A second result us-

ing pseudo-triangulations for solving the art gallery problem is ⌊n2 ⌋ as tight upper

bound for the number of general vertex-π-guards (no edge-alignment required) to

guard a simple polygon with n points. Again, the proof is based on the number of

vertex-π-guards that are necessary to monitor one pseudo-triangle.

Another application of pseudo-triangulations is a so-called kinetic data structure

for collision detection [32] of moving objects. Consider a set of simple polygons in the

plane and a pseudo-triangulation of the space between the objects. The movement

of the objects changes the location of the vertices of the pseudo-triangulation and

the pseudo-triangulation changes. In a certain range, the objects can move and the

pseudo-triangulation gets distorted, but it still stays a valid pseudo-triangulation.

In [32] a set of easy checkable properties, which ensure that a pseudo-triangulation

stays valid while its points are moving in the plain, is mentioned. A pseudo-triangle

whose vertices are moving in the plane stay a valid pseudo-triangle as long as

• no two adjacent vertices coincide;

• the three corner angles remain positive;

• all other angles remain larger than π.

Consider a pseudo-triangulation of a set of convex polygons whose vertices move. It

will be a valid pseudo-triangulation as long as

• all pseudo-triangles remain valid;

• all obstacles remain convex polygons;

• and all exterior angles at the convex hull vertices remain larger than π.
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If one of these points is violated, the pseudo-triangulation needs to be updated

by a flip. Compared to triangulations, pseudo-triangulations have the advantage

that they can consist out of fewer faces, i.e., the update-process is less expensive.

Agarwal et al. [1] described an algorithm for maintaining pseudo-triangulations of

the space between moving or deforming polygons and analyzed the performance of

pseudo-triangulations as kinetic data structure.

A related problem is a specification of the carpenter’s ruler problem [32, 11].

Consider a carpenter’s ruler, i.e., a polygonal linkage of n segments in the plane,

that is bent in a complicated way. One question that arises is, whether it is possible

to straighten the ruler by moving the segments while avoiding self-intersections.

Connelly et al. [18] proved that it is possible to straighten polygonial arcs and to

convexify polygonial cycles, by continuously moving their vertices but preserving the

length of their edges and avoiding self-intersection of their edges. Streinu [36] used

pseudo-triangulations as a tool for a convexification algorithm for simple polygons

as follows.

Algorithm 1 The Convexification Algorithm by Streinu [36].

1. Initialization: Pseudo-triangulate the polygon. Remove a convex hull

edge to obtain a pseudo-triangulation expansive mechanism.

2. Repeat until the polygon becomes convex:

• (Next Event) Pin down an arbitrary edge and move the mechanism

until an alignment events occurs: two extreme edges at a vertex align.

• (Freeze or Flip) If the aligned edges were polygon edges, freeze them

into a single edge by eliminating the common vertex, and recompute

a compatible pseudo-triangulation mechanism. If one of the aligned

edges is an added edge, drop it and replace it by the edge extending

over the two aligned edges.

Consider a simple (not convex) polygon with n points on the hull and a pointed

pseudo-triangulation of the set of corners of the polygon that is created by adding

n − 4 non-crossing edges to the polygon, such that each vertex is pointed and one

convex hull edge is missing. The additional edges behave like the polygon edges, i.e.,

they cannot bend or stretch. The resulting mechanism can now be used to convexify

the polygon by pinning one edge and rotating two other edges around the endpoints

of the pinned edge. The additional edges ensure an expanding non-crossing motion,

which is possible until two edges align. If this happens, the pseudo-triangulation
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needs to be updated either by an edge flip or by freezing the joint of the two aligned

edges and treat them as one edge.
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3 Overview on related research

results

This chapter gives a brief overview on the state-of-the-art knowledge about con-

nectivity of flip graphs of triangulations and pseudo-triangulations in general and

upper bounds for counting pseudo-triangulations. A closer look is taken on minimum

pseudo-triangulations and an introduction to degree limited pseudo-triangulations

will then lead to the research question of this theses.

3.1 Connectivity and Counting

As already mentioned in Chapter 2, every point set S has a corresponding flip graph,

a graph where each vertex represents a unique pseudo-triangulation of S. Two

vertices are connected with an edge if the two corresponding pseudo-triangulations

can be transformed into the other with one edge flip.

In 2001 Brönniman et al. [14] showed that the flip graph of pointed pseudo-triangu-

lations (PPT) of a set S of n points in the plane is connected and stated O(n2) as

upper bound for the diameter of the graph. In a flip graph, this means that it

is the maximum of all shortest flip sequences between two distinct PPTs. In [14]

Brönniman et al. introduce a canonical sorted pseudo−triangulation and show that

with at most O(n2) flips, every PPT of S can be transformed into this canonical

form. By reversability of flip seuwences, the flip graph of all PPTs of an arbitrary

point set is connected. Furthermore, they give an algorithm for determining the

number of different PPTs of a point set using a total order on the set of edges and

the greedy flip algorithm by Pocchiola and Vegter [30] in O(n2) time per pseudo-

triangle. Experimental applications of this algorithm on the point sets of Aichholzer

et al. [4] showed that for n ≤ 10, the number of triangulations of a point set S is

less than the number of PPTs of S. Both quantities are equal if the points in S are
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in convex position. It has also been shown that the number of PPTs is minimal for

point sets in convex position. [4, 5].

In 2002 Bereg [13, 12] published an algorithm, based on Avis’ and Fukuda’s reverse

search technique, which enumerates PPTs in O(logn) time per pseudo-triangle and

needs linear space. He further shows that the diameter of a flip graph of all PPTs

of a point set S with n points is at most (n − 1)(n − 4).
In 2004 Singh and Mehta [34] were able to generalize Beregs algorithm for enu-

merating all pseudo-triangulations. They showed that the flip graph of pseudo-

triangulations of a point set S including nX non-pointed points is connected for

fixed nX , i.e., in that flip graph no edge exists between two pseudo-triangulations

with different number of non-pointed points.

The upper bound for the diameter of the flip graph of PPTs of a set S of n points

was improved by Bereg [12] to O(n logn), which is even smaller than the diameter

of the flip graph of triangulations of S.

In [9] Aichholzer et al. studied the number of PPTs on special point sets, such as

the double circle, the double chain or the single chain1. In [2] a table of extremal

sets for triangulations is given and it shows that the double circle actually minimizes

the number of triangulations for 5 ≤ n ≤ 11 using the results of [8]. For 12 ≤ n ≤
20 the double circle is still the best known example for a set of n points with

a number of triangulations closest to the calculated lower bounds. The double

chain was believed to maximize the number of triangulations until the double zig-

zag chain was found to deliver an asymptotically bigger number of triangulations.

Since pseudo-triangulations are a generalization of triangulations; these sets can

also deliver interesting results for the number of pseudo-triangulations and pointed

pseudo-triangulations.

The double circle with n points has asymptotically Θ(
√

12
n
n−

3
2 ) triangulations [33].

In [9] the asymptotical numbers of pseudo-triangulations and pointed pseudo-tri-

angulations of the double circle are presented, Θ∗(
√

40
n) and Θ∗(

√
28

n) respec-

tively2. In Chapter 4 we will present a closed formula for the number of 4-PPTs of

the single chain. In comparison, the number of pseudo-triangulations of the single

chain with n points is approximately 3n−2Cn−3
2

and the number of pointed pseudo-

triangulations is 2n−2Cn−3, with an error of 12.5% and 4% respectively, for n → ∞
and Cn being the n-th Catalan number [9]. Consider now the double chain with

1Detailed definitions of the single chain, the reverse single chain and the double circle are given

in Chapter 4.3 and 4.4
2The asterisk indicates the neglect of polynomial factors.
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n = l+m+4 points, where l+m inner points form two disjoint chains of length l and

m. The average number of pseudo-triangulations and pointed pseudo-triangulations

of that point set is given by Θ(20nn−
7
2 ) and Θ(12nn−

7
2 ) respectively. Those numbers

might be interesting to be compared with the number of 4-PPTs of the muffin set

(see Chapter 4).

3.2 Degree Limitation

In terms of triangulation Aichholzer et al. [7] and Hackl [21] investigated flip graphs

of degree bounded triangulations. Restricting the vertex degree of a triangulation

by k means that all allowed flip operations result in a triangulation where all points

have a degree of at most k. It has been shown that for a maximum vertex degree

of k ≤ 6, the flip graph of triangulations of a set S of n points in convex position

is not connected. For k ≥ 6 it was further shown in [7] that the flip graph is

connected and has a diameter of O(n2). It was further shown that the flip graph of

triangulations of arbitrary point sets is not necessarily connected for any k. If we

allow a more relaxed vertex degree bound during intermediate steps of a sequence of

flips between two degree-bounded triangulations, (i.e., an intermediate flip results

always in a triangulation where all vertices have a degree ≤ k + 4) then a diameter

of O(n logn) can be reached [7].

For pseudo-triangulations it is known that there exists a pointed pseudo-triangu-

lation for every set of n points in the plane, where all points have a vertex degree

of at most 5 [27]. This result was proven by describing a recursive algorithm to

generate a pointed pseudo-triangulation of a given point set. It is possible to report

such a pseudo-triangulation in O(n logn) time. An example for a set that enforces

a vertex degree of 5 was given by [27] as any completion of Figure 3.1 to a pseudo-

triangulation. What is not yet know is if there exists any vertex degree limitation

k such that the flip graph of pointed pseudo-triangulations with maximum vertex

degree k is connected. Hackl [21] introduced a special point set and gave an example

for a pseudo-triangulation with a maximal vertex degree of 9, that is a singleton in

the flip graph of pseudo-triangulations with maximal face degree 9 of this set.

3.2.1 Constructing 4-PPTs

In terms of pseudo-triangulations we cannot only bound the vertex degree but

also the face degree. In Chapter 2 we introduced 4-PPTs, i.e., pointed pseudo-
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Figure 3.1: Any pseudo-triangulation completing this figure enforces a maximum

vertex degree ≥ 5

triangulations with maximum face degree 4. In [27] Kettner et al. showed that for

every set S of n points in plane, there exists a 4-PPT which can be constructed in

O(n) time. The proof is given by an iterative algorithm that starts with the convex

hull of the point set S. This construction algorithm was implemented by Reisner

[31] in an edge flip software tool, which was later extended to investigate the dual

approach on proving the connectivity of the flip graph of 4-PPTs (see Chapter 5).

As mentioned before, the algorithm starts with constructing the convex hull of the

point set S. After triangulating the convex hull, we iteratively insert the inner

points. Such a new interior point can be inserted either into an already existing

triangle or into a 4-gon. In the first case, the new point will be connected to two

arbitrary corners of the triangle. This results in a new (smaller) triangle and an

additional 4-gon (see Figure 3.2). If we insert a new inner point into a 4-gon, we

have to distinguish between three different situations (Figure 3.3).

In the first case (Figure 3.4 left), the new point lies in the intersection of four half-

planes: the extension of the two edges of the side-chain and the supporting lines of

the two edges of the 4-gon. In this first situation, the point will be connected with

the two corners of the 4-gon which are adjacent to the reflex point and we form two

new 4-gons. In the other two cases the new point lies in the intersection of three half-

planes: again the extensions of the two edges of the side-chain and the supporting

line of only one of the edges (Figure 3.4, right). Both cases are equivalent, because

of the symmetry. Two new edges are drawn from the new point to the reflex point
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Figure 3.2: Inserting a point into a triangle, new edges are dashed.

1

2 3

Figure 3.3: Three areas for inserting a point into a 4-gon.

of the 4-gon and the corner opposite of the reflex point, respectively. This results

again in two new 4-gons.

As mentioned in Section 2.4, the number of triangles ft in a 4-PPT of a point set S,

depends on the number of points of CH(S). If we take a look at the construction

algorithm above, it is easy to count the number of triangles. Let k = ∣CH(S)∣ be

the number of points on the convex hull of S. The triangulation of the convex

hull leads to k − 2 triangles. During the whole constructing process, the number of

triangles remains the same. A new triangle is only created by inserting a point into

an existing triangle and splitting it into a triangle and a 4-gon; hence, ft = k − 2.

Accordingly, we can determine the number of 4-gons fq. With each new inserted

point, we create a new 4-gon; hence, fq = nI = n − k.
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Figure 3.4: Two ways of inserting a point into a four sided pseudo-triangle. New

edges are dashed.

In Chapter 5 we will refer to this construction as Super-Easy-Construction and

will use it to prove a first conjecture about the existence of so-called alternating

paths in the dual graph of a 4-PPT.

3.3 Abstract Pseudo-Triangulations

Until now, we studied pseudo-triangulations as a geometric graph with noncrossing

straight-line edges that are embedded in the plane. We will further refer to this

as geometric pseudo-triangulation. A lot of interesting results have been ob-

tained by studying the combinatorial analogs of pseudo-triangulations, so-called

abstract pseudo-triangulation or combinatorial pseudo-triangulation. To specify a

combinatorial pseudo-triangulation, the combinatorial pseudo-triangulation label-

ing (CPT − labeling) was introduced [28]. Consider a plane graph G, where each

angle that is induced by the edges of G is labeled either small or big. We call such

a labeling a CPT-labeling if the following requirements are fulfilled:

• Every bounded face of G has exactly three angles labeled with small.

• All angles of the unbounded face of G are labeled big.

• No vertex of G is incident to more than one angle that is labeled big.

A combinatorial (or abstract) pseudo-triangulation is now defined as the (not

necessarily straight-line) embedding of a graph G in the plane together with a CPT-

labeling. For combinatorial pointed pseudo-triangulations, we further require that

every vertex in G has exactly one angle labeled big. For graphic representation of
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Figure 3.5: A CPT (a), an embedding of (a) as geometric pseudo-triangulation (b),

a non-stretchable CPT

combinatorial pseudo-triangulations it is common to mark the big angle with an

extra dot. Note that it is not always possible to find a straight-line embedding of a

combinatorial pseudo-triangulation or an embedding that draws big angles > π and

small angles < π. Such CPTs are called non − stretchable. Figure 3.5 (c) shows

such a non-stretchable CPT. In a corresponding geometric pseudo-triangulation the

points a, c and d need to be pointed into the same face. Since a, c and d form a

triangle they can only be pointed into the exterior face. If we draw the triangle

a, c, d we can either place the point b inside this triangle, which would turn b into

an unpointed vertex, or we can place b outside the triangle, which would then turn

one of the vertices a, c or d into an unpointed one. Hence it ist not possible to

find a geometric pseudo-triangulation that is equivalent to the CPT in Figure 3.5

(c). Nevertheless, every geometric pseudo-triangulation is always a combinatorial

pseudo-triangulation.

3.3.1 Flips in Abstract Pointed Pseudo-Triangulations

As in terms of geometric pseudo-triangulations the edge-flip operation is defined

for combinatorial pseudo-triangulations, since they are a generalization of geomet-

ric pseudo-triangulations. The removing, insertion and diagonal flips are defined

the same way as for pseudo-triangulations (see Chapter 2.3). Figure 3.6 shows an

abstract pointed pseudo-triangulation of a 5-gon where a triangle and a 4-gon share

one edge e. The possibilities for flipping e in the degree-bounded setting (face degree

≤ 4) are indicated by dashed lines.

Taking a closer look at this diagonal flip, we can see that this type of flip can
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e

e1

e2

e3

e4

Figure 3.6: A diagonal flip of edge e can result in either e1, e2 or e3. Flipping e to

e4 would no longer result in an CPT.

result in different graphs and the pseudo-triangulations before and after the flipping

may not exist in the same embedding (Figure 3.7c).

e

e1

e

e2

e
e3

(a)

(b)

(c)

Figure 3.7: (a) and (b) show flips that exist in one embedding, (c) represents a flip

that results in a valid CPT, that cannot be embedded the same way as

it could be before the flip.

In [32], [28] and [20] the interested reader will find more information on ab-
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stract pseudo-triangulations with regard to rigidity aspects and the so-called Laman

Graphs.

3.3.2 Coloring of 4-PPTs

In Chapter 5.1.1 the dual graph of a pseudo-triangulation will be introduced. A

combined embedding of a pseudo-triangulation and its dual graph allows to visualize

the three colorability of a 4-PPT. Graph coloring is a big branch of graph theory. A

coloring of a graph assigns a color to each vertex or edge. A proper vertex coloring

of a graph is the assignment of colors to the vertices in a way that no two adjacent

vertices have the same color. A proper k−coloring uses at most k colors to color the

graph. The decision whether a given graph can be colored with k colors in a proper

way is NP-complete (for k > 2). Nevertheless, the Four Color Theorem states

that for every planar graph, there exists a proper k-coloring with k ≤ 4. Aichholzer

et al. [3] showed that 4-PPTs are 3-colorable. The proof of the theorem uses the

concept of abstract pseudo-triangulations.

Theorem 3.1. [3] For every pointed pseudo-triangulation with maximum face degree

four there exists a proper coloring with three colors, that can be found in linear time.

Proof. Since every geometric 4-PPT is also a combinatorial 4-PPT, we introduce a

merge operation to shrink the given geometric 4-PPT to a combinatorial triangu-

lation that can be colored with three colors in linear time. The merge operation

merges a reflex point of a 4-gon with its opposite corner by identifying them (see

Figure 3.8).

The remaining graph is still a valid CPT. Repeating this merge operation for

each of the remaining four-sided pseudo-triangles leads finally to a combinatorial

triangulation. In order to avoid degenerated cases, it is necessary to first merge inner

vertices of vertex degree two before merging other vertices. Once the triangulation

is build, the remaining vertices can be colored with 3-colors in linear time. Finally

each merge step is retracted again and every new vertex gets the color of the merged

vertex. In this manner, the coloring remains a proper 3-coloring, since the two

vertices that were merged before do not share an edge in the 4-PPT.

3.3.3 Recent research results on CPPTs

In the previous sections we gave a short introduction to abstract or combinatorial

pseudo-triangulations. During the Pseudo-Triangulation week in Alcalá (Spain) in
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r

p r = p

Figure 3.8: Merging step: the reflex point r of a pseudo-triangle is merged with its

opposite corner.

Figure 3.9: A valid 3-coloring of a 4-PPT due to the algorithm presented in Theo-

rem 3.1.

May 2012 [6] a proof that the flip graph of abstract pointed pseudo-triangulations

with a facedegree of at most 4 (4-CPPT) of point sets with three points on their

convex hull is connected, was accomplished. The flip graph is even connected if

we allow only edges incident to a triangle to be flipped. Unfortunately, this result

does not prove the connectedness of the flip graph of geometric pointed pseudo-

triangulations with a facedegree ≤ 4 (4-PPT), since a sequence of 4-CPPTs that

differ by one flip may not exist in the same embedding.

34



3.4 Research Question

There are still a lot of open questions in the field of pseudo-triangulations, especially

when we introduce conditions and restrictions such as vertex or face degree bounds.

The main question that is outlined in the next chapters is, whether the flip graph

of all 4-PPTs of a point set is connected or not. Even if we know that the flip graph

is connected for abstract 4-PPTs, it has not been possible to prove it for geometric

4-PPTs until now. The answer depends obviously on the point sets on which we

construct our 4-PPTs. First, we show that the flip graph of 4-PPTs of simple

polygons is not connected. Looking at 4-PPTs of point sets, we will first prove

connectedness of the flip graphs for special point sets. Those proofs use symmetries

of the point set that allow an inductive construction of the flip graph. Then a dual

approach will be introduced to investigate the connectedness of flip graphs of 4-PPTs

of arbitrary point sets with exactly three points on the convex hull. This dual idea

was further implemented to extend Reisner’s flip software [31]. An approach for an

automated flip algorithm brought some interesting results, which will be discussed

in Chapter 5.2.
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4 Special Point Sets And Their Flip

Graph

This chapter presents results of investigations on the connectedness of flip graphs of

pseudo-triangulations on special point sets. We first take a look at 4-PPTs of simple

polygons and ≥5-PPTs of point sets and show that for both examples exist whose

flip graphs are not connected. Then we prove that the flip graphs of all 4-PPTs of

the single chain set and the reverse single chain set with n points are connected for

all n ∈ N. For the single chain we also present a closed formula for the number of

4-PPTs that exist on that set. Another special set whose flip graph of all 4-PPTs

is connected is the double circle, a set that also appeared to be special in terms of

minimizing the number of triangulations. Finally, the connectedness of 4-PPTs of a

set formed by two parallel circular arcs, called muffin set, will be shown.

4.1 Simple Polygons

A 4-PPT of a simple convex polygon of n points in the plane is equivalent to a

triangulation of the polygon, since there are no points inside the convex hull. It

is well known that the flip graph of all triangulations of a simple convex polygon

is connected [26]. When the convexity is disregarded, the connectedness of the flip

graph is not maintained and leads to the following theorem:

Theorem 4.1. The flip graph of all 4-PPTs of a simple polygon of n points in the

plane can be disconnected.

Proof. Figure 4.1 shows two different 4-PPTs of the same simple polygon with 10

points. Obviously no inner edge of these 4-PPTs can be flipped; hence, they repre-

sent two singletons in the flip graph of this polygon.
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Figure 4.1: Two singletons in the flip graph of 4-PPTs of a simple polygon with 10

points.

4.2 Flip graph of ≥5-PPTs

Given a set of n points in the plane, we define a ≥5-PPT as a pointed pseudo--

triangulation with at least one five-sided pseudo-triangle. We can show now that

the flip graph of all ≥5-PPTs of a set of points can be disconnected [10].

Theorem 4.2. The flip graph of all ≥5-PPTs of a set of points can be disconnected.

Proof. We prove this theorem by constructing a counterexample with 8 points.

Therefor we consider a hexagon with two points inside the convex hull (see Fig-

ure 4.2).

Figure 4.2: Constructing a counter example with 8 points

A ≥5-PPT of this set has exactly one pseudo-triangle with 5 points and 5 triangles,
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because 6 points of the set are on the convex hull. There are two ways to draw such a

pentagon with the two adjacent reflex points, and six ways to draw a pentagon where

the two reflex points are not adjacent. The eight ways to draw those pentagons in

our special set are showed in Figure 4.3. Once the pentagon is fixed, only convex

Figure 4.3: Eight ways to draw a pseudo-5-gon on this special set. Note that each

pseudo-5-gon and its symmetric equivalent are plotted in the same figure.

polygons remain to be pseudo-triangulated. Therefore, all other faces in the ≥5-

PPT of this set must be triangles. Since we only have one pentagon in our PPT,

we need to ensure that no flip of an edge incident to this pentagon and a triangle,

transforms these faces into two 4-gons. Observing Figure 4.3 and considering all

possible triangles to complete the figures to a ≥5-PPT it can be seen that only flips

of edges incident to two triangles are possible. Therefore, no flip sequence that

changes the position of the pentagon exists. The flip graph of all ≥5-PPT of a set of

n points, which includes one of the examples of Figure 4.3 as a subgraph and whose

other faces are triangles is not connected.

4.3 The Single Chain

4.3.1 Connectivity of the Flip Graph

A special set of points is the so-called single chain. Consider a set S of n > 3 points

in the plane, such that ∣CH(S)∣ = 3, n − 1 points form a convex polygon and one

point t, outside the polygon, sees all edges of the polygon but one. In terms of
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visibility, a point p1 sees another point p2, i.e., p2 is visible for p1, if it is possible

to draw an edge p1p2 without crossing any other edge, especially the edge of the

polygon. We further define that a point p1 sees an edge p2p3 if the triangle p1p2p3

is empty, i.e., no other point lies inside and no edge is separating one corner of the

triangle from the other two. The reverse single chain is another special set S′ of n

t

p q

t

p q

Figure 4.4: Example for a single chain set (left) and a reverse single chain set(right)

for n = 8.

points in the plane, such that ∣CH(S′)∣ = 3 and n − 3 interior points together with

one convex hull point t form a convex polygon and all points of this polygon are

visible by the two other exterior points p and q. An example of each set is given in

Figure 4.4. Hackl and Pilz [23] proved, that the flip graphs of the single chain set

and the reverse singles chain set are connected (Theorem 4.3 and Theorem 4.4).

Theorem 4.3. Given a single chain set S with n ≥ 3 points. Then the flip graph G

of all 4-PPTs of S is connected, even if we allow only to flip edges incident to an

triangle.

Proof. Hackl and Pilz [23] proved Theorem 4.3 with the inductive construction of

the flip graph. The case n = 3 is trivial, so n = 4 will be the basis for further steps

(Figure 4.5). We will now show that we can split the flip graph G into three disjoint

and connected subgraphs r(G), l(G) and m(G), and show that these subgraphs are

also connected with each other. Let {t, p, q} ∈ S be the points on the convex hull

of S and S ∖ {t} is the convex set (as in Figure 4.5). The left side of G, l(G) is

the set of all 4-PPTs of S in which q is only adjacent to t and p. In the same way

1Figures 4.5, 4.6 and 4.9 in this section were provided by Hackl and Pilz [23].
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’left’ side

’middle’

’right’ side

p q q

qp

p

t t

t

Figure 4.5: Flip graph for the single chain with n = 4.1

we define the right side of G, r(G) to be the set of all 4-PPTs where p is only

adjacent to t and q and not to any interior point. The middle of G, m(G) are all

4-PPTs in which q as well as p are adjacent to at least one interior point. Assume

p = p′ q

q′
n− 4

p q = q′

n− 4
p′

q

qp

p

t t

t t

Figure 4.6: Each 4-PPT in m(G) is connected to one in r(G) or l(G)

now that the flip graph G′ of a single chain set S′ with n − 1 points is connected

and CH(S′) = {t′, p′, q′}. By adding a new point q to all 4-PPTs of G′ such that

q′ becomes an interior point and q is only connected to t′ and p′ we create a new

left side of G, the flip graph of the new set S = S′ ∪ {q} with ∣CH(S)∣ = 3. Since G′
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was connected, l(G) is now also connected. Analogous we can create a new right

side of G by adding a new point p to all 4-PPTs in G′ and with the same argument

as before, r(G) is connected. Since ∣CH(S)∣ = 3, Theorem 2.1 verifies that we have

exactly one triangle among the pseudo-triangles in each 4-PPT of S. The special

point set enforces that in all 4-PPTs in m(G) the baseline pq is part of this triangle.

Additionally there exists exactly one 4-PPT for each of the n−3 triangles including

the edge pq. Flipping a triangle edge incident to either p or q results in a 4-PPT that

is part of r(G) or l(G), respectively (Figure 4.6). Therefore, G is connected.

Figure 4.7 shows the flip graph of the single chain set for ∣S∣ = 6 points. Inter-

estingly only two of the three different flip types that are described in section 5.1.2

occur here. Next, we will show, that the flip graph of the very similar point set, the

Figure 4.7: Flip graph of the single chain set for n = 6.
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reverse single chain, is also connected.

Theorem 4.4. Let S be a reverse single chain set with n ≥ 3 points. Then the flip

graph G of all 4-PPTs of S is connected, even if we allow only to flip edges incident

to an triangle.

Proof. This proof by Hackl and Pilz [23] follows the general idea of the proof of

Theorem 4.3 but needs to be explained in more detail. Let G be the flip graph

where each vertex corresponds to one 4-PPTs of S. We again define the left, right

and middle of G, l(G), r(G) and m(G) as above. Let G′ be the flip graph of the

reverse single chain set S′ with n−1 points and we assume G′ is a connected graph.

We will create now r(G) by adding another vertex to the chain and show that r(G)
is a connected graph. Figure 4.8a represents the set S′ with n − 1 points, i.e., n − 4

of them are part of the interior chain.

p q

t

p q

t

q′

p

tq′

(a) (b) (c)

Figure 4.8: (a) Representation of a reverse single chain set S′ with n− 1 points. (b)

Extending the chain by q′. (c) This pointgon is a single chain set, its flip

graph of 4-PPTs is connected.

We extend the interior chain by adding a vertex q′ to the right end of the chain of

S′ in way that the resulting set S is again a valid reverse single chain set. Drawing the

edges q′t and q′p has the consequence that every 4-PPT of the pointgon P = S ∖{q}
that is bounded by the triangle q′tp is part of r(G) (Figure 4.8b). Hence, if the flip

graph of 4-PPTs of P is connected, r(G) is connected. Taking a closer look at P ,

we see that this set fulfills all the requirements for being a single chain set with n−1

points and the baseline q′t (Figure 4.8c). From Theorem 4.3 it follows that the flip

graph of 4-PPTs of P is connected and hence, r(G) is connected. Equivalently it can

be shown that l(G) is connected by adding the point p′ to the left side of the interior

chain. To prove that the whole graph G is connected, we will show that all 4-PPTs
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in m(G) are connected in chains, that finally result in a 4-PPT that is either part

of r(G) or l(G). Let now a and b be the leftmost and rightmost point of the inner

chain, respectively (see Figure 4.9). Consider the 4-PPT P ∈m(G) with the triangle

p q

t

ba v v′

Figure 4.9: Flipping the edge pv or vq of the triangle pvq results again in an 4-PPT

in m(G) unless v = b or v = a.

paq. Flipping the edge pa results in a 4-PPT P ′ ∈ l(G). Due to symmetry reasons

flipping the edge bq in the 4-PPT P ′′ ∈m(G) with the triangle pbq results in a 4-PPT

P ′′′ ∈ r(G). Therefor consider a 4-PPT in m(G)∖{P,P ′′} with the triangle qvp and

v ∈ S ∖{q, p, t, a, b}. W.l.o.g. flipping pv and qv is symmetric, so assume now we flip

the edge qv. This flip produces a new triangle edge pv′, with v′ being a neighbor of

v in the chain, closer to b than v was before. If v′ = b, the resultant 4-PPT is part of

r(G). So consecutive flipping of the edge qv, v representing the current corner (top)

of the triangle opposite the baseline, moves the top of the triangle along the chain of

interior points, finally resulting in a 4-PPT in r(G). On the other hand, flipping the

edge pv will move the top of the triangle into the other direction, finally resulting

in a 4-PPT in l(G). Hence, starting with any 4-PPT in the subgraph m(G), there

exists always two flip sequences, one resulting in a 4-PPT in the subgraphs r(G)
and the other resulting in a 4-PPT in l(G). We can conclude that G is connected.

Note that the subgraph m(G) is not a connected graph in this case, i.e., m(G) exists

of several disjoint chains (see Figure 4.10). Consequently there exist more than one

4-PPT per fixed triangle that has pq as baseline.

4.3.2 Counting 4-PPTs of The Single Chain

Consider the single chain set S of n ≥ 3 points in the plane with ∣CH(S)∣ = 3 as

defined in the previous section 4.3. Following the idea of the proof of Theorem 4.3,
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p q

t

p q

t

p q

t

p q

t

p q

t

p q

t

p q

t

p q

m(G) r(G)l(G)

Figure 4.10: Two subgraphs of m(G) that are not connected in m(G).

we can count the number of different 4-PPTs of such a set. Let N(n) be the number

of all 4-PPTs of S, G the flip graph of the 4-PPTs of S, i.e., N(n) is the number

of vertices of G. As seen before, the left side of G, l(G), is connected and since the

number of vertices in l(G) is the number of all 4-PPTs of the single chain set S′

with ∣S′∣ = n − 1, we have N(n − 1) vertices in l(G). Analogously, we have N(n − 1)
vertices in r(G), the right side of G. In the middle of G, m(G), we have all 4-PPTs

with the triangle incident to the baseline of S. This means for each of the (n − 3)
choices of the third point of the triangle, we have one 4-PPT. Since

{l(G) ∩ r(G)} ∪ {l(G) ∩m(G)} ∪ {r(G) ∩m(G)} = {}
and l(G) ∪ r(G) ∪m(G) = G
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we have

N(n) =2N(n − 1) + n − 3, n ≥ 3 (4.1)

N(1) =N(2) = 0

N(3) =1

This recursion can be solved by consecutive substitution.

N(n) =2N(n − 1) + n − 3

=2(2N(n − 2) + n − 1 − 3) + n − 3

=22N(n − 2) + (2n + n) − 2 − (2 ⋅ 3 + 3)
= . . .

=2kN(n − k) + n
k−1
∑
i=0

2i −
k−1
∑
i=1

2ii − 3
k−1
∑
i=0

2i

Using N(n − k) = 1 for k = n − 3 leads to

N(n) =2n−3 ⋅ 1 + n
n−4
∑
i=0

2i −
n−4
∑
i=1

2ii − 3
n−4
∑
i=0

2i

=2n−3 ⋅ 1 + (n − 3)
n−4
∑
i=0

2i −
n−4
∑
i=1

2ii (4.2)

The sums that appear in Equation 4.2 can be replaced by their explicit expressions.

m

∑
j=0

2j =2m+1 − 1 (4.3)

m

∑
j=1

2jj =2m+1(m − 1) + 2 (4.4)
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Equation 4.2 combined with the adapted properties 4.3 and 4.4 leads to the fol-

lowing result.

N(n) = 2n−3 + (n − 3)(2n−3 − 1) − (2n−3(n − 5) + 2) (4.5)

Simplifying Equation 4.5 leads to the following closed formula for the recursion 4.1:

N(n) = 3 ⋅ 2n−3 − n + 1, n ≥ 3 (4.6)

The first values of this integer series are displayed in Table 4.1. The sequence

is listed in “The On-Line Encyclopedia of Integer Sequences” with the composite

number A079583 [17]. This sequence, i.e., the corresponding formula, can also be

obtained by studying the infinite sequence of strings. x(1) = a, x(2) = aba, x(3) =
ababbaba, . . . where x(n + 1) = x(n) ⊕ ”b”n−1 ⊕ x(n), for n ≥ 1, and none of the

borders x(1), x(2), . . . , x(n−1) of a string x(n) covers x(n) for n ≥ 2. This means

that the string x(n + 1) consists of the concatenation of two times the string x(n)
and n − 1 times the string ”b” inbetween. Then the length of x(n + 1) is given by

N(n + 3) = 3 ⋅ 2n − n − 2 [17].

n 1 2 3 4 5 6 7 8 9 10 ⋯ 50

N(n) 0 0 1 3 8 19 42 89 184 375 ⋯ ∼ 4.22 × 1014

Table 4.1: The number N(n) of vertices in the flip graph of all 4-PPTs of the single

chain set with n points.

4.3.3 Counting 4-PPTs of The Reverse Single Chain

Let S now be the reverse single chain set with n points, N ′(n) be the number of

4-PPTs of S and G the flip graph of 4-PPTs of S. Furthermore, let N ′
r(n) and

N ′
l (n) be the number of 4-PPTs in r(G) and l(G), respectively. In the proof of

Theorem 4.4 we have seen that the number of 4-PPTs in r(G) equals the number
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of 4-PPTs of a single chains set P = S ∖ {q} that consists of n − 1 points. With

Equation 4.6 we get

N ′
r(n) = N ′

l (n) = N(n − 1) = 3 ⋅ 2n−4 − n + 2, n ≥ 4

For revealing the number of 4-PPTs in m(G) we follow the idea of the disjoint

chains in m(G). In the proof of Theorem 4.4 we stated that for each 4-PPT in m(G)
two flip sequences can be found that form a chain in m(G) that has its ends in r(G)
and l(G), respectively. Such a chain in m(G) consists of n − 4 vertices since in a

4-PPT in m(G) the triangle with the baseline pq has one of the interior points of S

as its third corner. There exist n−3 interior vertices in S but only n−4 of them are

candidates for the third point. Due to the special configuration of the reverse single

chain set one is ’blocked’ by an edge that ends in the corner t of S and will always

be omitted in those flip sequences (see Figure 4.11a-b). Consider Figure 4.11c, if

the edge vt exists in a 4-PPT of a single chain set in which the triangle pvq exists

too, completing the two triangles ptv and vtq to a 4-PPT would lead two too more

triangles in the whole 4-PPT, which contradicts with the fact that we only have one

triangle in a 4-PPT of a reverse single chain set.

t

p q

t

p q

t

p q

(a) (b) (c)

a v v′v′ b v ba
v

Figure 4.11: (a)-(b) Flipping edge qa results in a new edge pv′. Point v is omitted.

(c) This case cannot occur in a 4-PPT of a reverse single chain set.

To count the number of chains we can easily count their ends in r(G) or l(G),
respectively. W.l.o.g. we count the number of possible ends of such chains in r(G).
That are all 4-PPTs in r(G) in which the triangle is incident to the edge tb. Consider

now the single chain set P = S ∖{q}. We have (n−4) 4-PPTs of P with the triangle
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incident to the baseline tb. Hence, this equals the number of 4-PPTs of S in r(G)
that can be transformed by one flip into a 4-PPT in m(G). Consequently we get

N ′
m(n) = (n − 4) ⋅ (n − 3), n > 4

Summing all up yields to

N ′(n) = 2 ⋅ (3 ⋅ 2n−4 − n + 2) + (n − 4) ⋅ (n − 3), n > 4

n 1 2 3 4 5 6 7 8 9 10 ⋯ 50

N ′(n) 0 0 1 3 8 22 50 104 208 410 ⋯ ∼ 4.22 × 1014

Table 4.2: The number N ′(n) of vertices in the flip graph of all 4-PPTs of the reverse

single chain set with n points.

4.4 The Double Circle

Figure 4.12: Example of a 4-PPT of the double circle with n = 16 points.

In terms of triangulations, the double circle is a very interesting set, since for

5 ≤ n ≤ 11, it is known to be the set of n points in the plane that minimizes the
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number of triangulations [2] and for 12 ≤ n ≤ 20 it is still the best known example

for a set of n points with the smallest number of triangulations. This special set is

defined the following way. Let n = 2m, m > 2 be the cardinality of S, a set of points

in the plane. S is called double circle if the convex hull consists of m points and

each of the m inner points is set sufficiently close to exactly one edge of the convex

hull (see Figure 4.12). A point p is said to be sufficiently close to an edge e, if no

edge between any two points of S ∖ {p} can separate p and e [9].

Theorem 4.5. Let S be the double circle set with n = 2m points and m > 2. Then

the flip graph G of all 4-PPTs of S is connected, even if we allow only to flip

edges adjacent to a triangle. The following proof was provided by Aichholzer and

Hackl [22].

Proof. First we will define a special type of 4-PPTs of S, the lense shutter (Fig-

ure 4.13). There exists one edge each between a convex hull point and an interior

point. We call these edges shutter edges and they are marked in bold in Figure 4.13.

Let G be the flip graph of all 4-PPTs of S. We first show that there exists a path in

T T

(1) (2)

Figure 4.13: The clockwise (1) and counterclockwise (2) lens shutter.2

G that connects the clockwise lens shutter with the counterclockwise lens shutter,

i.e., there exists a sequence of flips of triangle edges that changes the orientation of

the lens shutter. Then, we will prove that we can allocate one shutter edge to each

point of the interior circle and that we can easily change the orientation of a single

shutter edge. Finally, we show that we can remove disturbing edges that start with

a convex hull point but are not shutter edges and that would destroy a lens shutter

4-PPT.

2The Figures 4.13-4.16 were provided by Aichholzer and Hackl [22].

49



Claim 1. There exists a sequence of flips to change the orientation of a lense shutter

4-PPT.

Let p be an interior point of S, then ep is the sufficient close convex hull edge that

correspond to p. An edge between p and one end point of ep is called shutter edge

of p. In the two lens shutter 4-PPTs, each point of the convex hull has exactly one

shutter edge. If we consider the clockwise lens shutter, we have m pseudo-triangles

incident to the convex hull and a triangulation T of the convex polygon P of the

interior points (Figure 4.13 (1)). Since we allow only to flip edges adjacent to a

triangle, all flipable edges are either part of T or the edges of P. Flipping an edge of

P results in an triangle that is adjacent to a shutter edge and a flip of this shutter

edge results in a new reverse oriented shutter edge. This leads to a sequence of m+1

flips, which changes the orientation of the shutter edges (see Figure 4.14).◽
Claim 2. The flip graph of triangulations of P is connected. Hence, the 4-PPTs

that include P form a connected subgraph of G.

The flip graph of all triangulations of a convex polygon is connected. Hence, the

flip graph of triangulations of P is connected.◽

1

2

n
2 − 1

⇒

⇒ ⇒

Figure 4.14: Flip sequence to change the orientation of the shutter lense.

Now we want to show that every 4-PPT can be flipped into a lens shutter.

Claim 3. It is possible to achieve that each interior point has exactly one shutter

edge.

Therefore, we consider a 4-PPT where at least one interior point p is incident to

both its shutter edges sp and s′p. Then these two edges form a triangle together with
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the convex hull edge ep. Hence, either sp or s′p can be flipped such that only one

shutter edge remains.◽
Now we look at the case where each interior point has exactly one shutter edge,

but not all shutter edges are yet oriented in the same direction.

Claim 4. There always exists a sequence of flips to change the orientation of a single

shutter edge.

Consider Figure 4.15(a), the orientation of the shutter edge of the interior point

p shall be changed, i.e., edge pb should be flipped to pa, such that we achieve a

4-PPT with all shutter edges orientated counter clockwise. If, like in Figure 4.15

(a), pb is incident to a triangle, a flip of pb results in the new edge pa (note that

v′ = v′′ is possible). If pb is not incident to a triangle, we only have one other option,

Figure 4.15 (b), because we excluded the case in Figure 4.15 (c) by only considering

4-PPTs with one shutter edge per interior point. Consider now the situation in

Figure 4.15b; the edge e′ can either be incident to a triangle (Figure 4.15 (d)) or to

a pseudo-triangle. The latter can only occur in situation 4.15 (e). If e′ is incident

to a triangle, we need to differentiate between two situations, v′ ≠ c and v′ = c. In

the first case, we can flip e′ to receive a triangle having pb as edge. In the second

case, we can flip qc, which results in a 4-PPT where pb is incident to a triangle.

In addition the also wrongly orientated shutter edge of point c has been corrected.

If the edge e′ is incident to a pseudo-triangle, then e′′ = qa can be incident to a

triangle, Figure 4.15 (e). In this case e′′ can be flipped and consequently e′ becomes

incident to a triangle, as we had in Figure 4.15 (d). The situation when e′′ is not

incident to a triangle is shown in Figure 4.15 (f). In this unique local situation, one

can clearly see that the edge e′′′ needs to be a flipable edge. For v′ ≠ d, flipping

e′ results again in the situation sketched in Figure 4.15(e). If v′ = d five flips are

necessary to change the orientation of the shutter edge of p. Those flips are sketched

in Figure 4.15 (g)-(k). The sequence starts with the flip of the correctly oriented

edge rd, since this is necessary to get the triangle incident to e′′. The last flip fixes

then the edge rd again.◽
So far we have shown that the orientation of single shutter edges can be changed

and we can find a flip sequence to assimilate their orientation.

Claim 5. There always exists a sequence of flips that removes edges which start in

a convex hull point but are not shutter edges, to achieve a lense shutter 4-PPT.

In the right illustration in Figure 4.16, the green colored edges are the edges to

be gained, the red ones are forbidden to flip in. Assume at least one green edge
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Figure 4.15: Flip sequence to change the orientation of the shutter lense.

T

e

q

p

b

v′

Figure 4.16: Creating the inner polygon edges to finally achieve a lense shutter 4-

PPT.

52



pq (in Figure 4.16 right) needs to be flipped into the 4-PPT. Since it does not yet

exist, there exists a fan of (at least one) disturbing edges. Let e = bv be an edge that

we want to remove without creating a red edge. Since the red and the green edge

incident to p are not yet part of the 4-PPT, e is an edge of the triangle v′pb and can

be flipped. We can proceed in the same way with all other edges of this fan, until

the last flip results in the green edge. With this final claim, we have shown that

every 4-PPT of the double circle can be transformed into a lense shutter 4-PPT. ◽
Together, Claim 1 - Claim 5 combined proved that the flip graph of all 4-PPTs

of the double circle is connected.

4.5 The Muffin Set

Let S be a single chain set with k+3 points, further let q and r be the end points of

its baseline and t the third corner (top) on the convex hull. We introduce now a new

special set Mk,m, called the muffin set, with n = k+m+4 ≥ 4 points in the plane. We

define the muffin set by extending the convex hull of S by m+1 points, such that all

new points see all edges of the convex polygon in S formed by q, r and all the interior

points of S. Let p and s be the leftmost and the rightmost point, respectively, of

the set of new points including t. We dub the points p, q, r and s corners of the

muffin. Further, we call the set of k interior points the lower chain and the set

p

q r

s

Figure 4.17: The special set M5,6.

CH(Mk,m) ∖ {p, q, r, s} of m points the upper chain. By definition the lower chain

lies below the supporting lines of pr and sq, respectively (see Figure 4.17).
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Theorem 4.6. The flip graph of the set Mk,m is connected ∀ k,m ∈ N, even with

the restriction that only edges incident to a triangle are allowed to be flipped.

Proof. The flip graph of M0,0 and M1,0 is clearly connected, since M0,0 forms a simple

4-gon and M1,0 forms a 4-gon with one point inside the convex hull (see Figure 4.18

and Figure 4.19). Likewise the flip graph of M0,m is connected, since M0,m is a simple

Figure 4.18: The flip graph of M0,0 is connected.

convex polygon with (m+4) points on the convex hull. In order to show that the flip

graph of Mk,m is connected, we first show that this holds for the flip graph of M1,m

and use this result as basis for proving it for Mk,m. Let G1,m now be the flip graph

of all 4-PPTs of M1,m. As ∣CH(M1,m)∣ = m + 4 the 4-PPT consists out of (m + 2)
triangles and one 4-gon q. Similar to the proof of the connectivity of the flip graph

of the single chain sets, we can separate the flip graph G1,m into three connected

and disjoint subgraphs r(G1,m), l(G1,m), m(G1,m), depending on the position of

the single 4-gon q. Let r(G1,m) be the subgraph of G1,m with all 4-PPTs in which q

has the single inner point t as its reflex point and qr, tq are fixed edges of q, call it

the right side of G1,m. The left side, l(G1,m), is defined analogously. Let m(G1,m)
be all 4-PPTs with one triangle that has the points q, r and t as its fixed corners.

Figure 4.20 shows the three classes of 4-PPTs of M1,5. Again we have

{l(G1,m) ∩ r(G1,m)} ∪ {l(G1,m) ∩m(G1,m)} ∪ {r(G1,m) ∩m(G1,m)} = {}
and l(G1,m) ∪ r(G1,m) ∪m(G1,m) = G1,m.

Claim 1. The subgraphs l(G1,m), r(G1,m) and m(G1,m) themselves are connected

graphs.

Let u be the corner of q that is part of the upper chain. It takes one flip (with

an adjacent triangle) to move the upper corner of q to one neighbored point on the

upper chain. Once the 4-gon is fixed, the remaining points form one or two convex

polygons which need to be triangulated. The subgraph of G1,m where q is fixed
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Figure 4.19: The flip graph of M1,0 is connected.

p

q rt

∈ l(G1,5)

q r

s

t

∈ m(G1,5)

p p

q r

s

t

∈ r(G1,5)

s

Figure 4.20: Representatives for vertices of r(G1,5), l(G1,5) and m(G1,5). The gray

lines correspond to other possibilities for q.
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is then connected, because the flip graph of a triangulation of a convex polygon is

connected.◽
Claim 2. The flip graph G1,m is connected.

To connect l(G1,m) with m(G1,m) and r(G1,m), consider the 4-PPT with q having

the corners (p, q, r), the reflex point t and a triangle spanned by (p, t, r). Flipping

the edge pt results in a 4-PPT that is part of m(G), whereas flipping the edge tr

results in a 4-PPT that is part of r(G) (see Figure 4.21). Hence, G1,m is connected.◽
Now we show by induction that the flip graph of the set Mk,m is connected. But

p

q rt

p

q r
t

p

q r
t

∈ l(G1,5) ∈ m(G1,5) ∈ r(G1,5)

Figure 4.21: Part of the flip graph G1,5 that show a connection between the con-

nected subgraphs r(G1,5), l(G1,5) and m(G1,5).

first we state some properties of the set Mk,m.

Claim 3 (Properties of Mk,m). Let Mk,m be the muffin set with k+m+4 points with

4 corners, k points on the lower chain and m points on the upper chain. A 4-PPT

P of Mk,m has the following properties:

1. P has (k +m + 2) faces.

2. P consists of (m + 2) triangles and k 4-gons.

3. Exactly one triangle exists that is not incident to any edge of the upper chain.

We designate this the lower triangle.

Property 1 follows directly from Theorem 2.2. Since ∣CH(Mk,m)∣ = (m+4) and the

number of triangles in a 4-PPT always equals the number of points on the convex

hull minus two, we get (m + 2) triangles. Since we have (k +m + 2) faces in all, the

remaining k faces are 4-gons and this proves property 2. Property 3 is based on the

characteristics of the special set Mk,m that all edges on the upper chain (including
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corners (p, s)) are incident to a triangle; therefore, we have (m+ 1) upper triangles
and one which is not incident to any edge of the upper chain.◽

As we have seen above ∀m the flip graph of M1,m is connected. Assume now that

the flip graph of Mk−1,m is connected ∀m. We divide the graph of Mk−1,m similar

to the previous example into disjoint subgraphs r(Gk−1,m), l(Gk−1,m), m(Gk−1,m),
ml(Gk−1,m) and mr(Gk−1,m). Let r(Gk−1,m) be all 4-PPTs of the point set with no

inner edge incident to the corner q and l(Gk−1,m) all 4-PPTs of the set with no

inner edge incident to the corner r. Then we have three subgraphs with inner edges

incident to q and r, m(Gk−1,m), ml(Gk−1,m) and mr(Gk−1,m). m(Gk−1,m) includes all

4-PPTs with the lower triangle tqr where t is a point of the lower chain. ml(Gk−1,m)
includes all 4-PPTs with one 4-gon p that has the baseline qr of the muffin as edge

between its two corners q and r, the third corner on the upper chain and its reflex

point being the leftmost point of the lower chain. We define mr(Gk−1,m) analogously

(see Figure 4.22). Now we want to construct the flip graph Gk,m and show that it

p

q r

s

∈ r(G5,6)

p

q r

s

∈ mr(G5,6)

p

q r

s

t

∈ m(G5,6)

Figure 4.22: Scheme of representative 4-PPTs of m(G5,6), mr(G5,6) and r(G5,6).
Gray lines correspond to other possibilities for q

is a connected graph. Therefore, we construct r(Gk,m) out of Gk−1,m by adding to

each 4-PPT of Mk−1,m a new corner r′ such that the original corner r becomes part

of the lower chain. In the same way, l(Gk,m) can be constructed by adding a new

corner q′ to all 4-PPTs of Mk−1,m.

Claim 4. r(Gk,m) and l(Gk,m) are each connected graphs.

The flip graph of Mk−1,m is connected, adding one point to each 4-PPT represent-

ing a vertex in Gk−1,m obtains the connectedness. Analogously l(Gk,m) is connected.◽
To show that mr(Gk,m) is a connected graph, we first show that we can move the

corner of q which lies on the upper chain to any other point of this chain. We
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will then see that for q fixed, the subgraph of mr(Gk,m) consisting of all 4-PPTs

mr(Gk,m) including q is connected as well.

Claim 5. The upper corner of the special 4-gon q can be moved easily along the

upper chain.

Consider the 4-gon q with its reflex point t and the corner u on the upper chain.

To simplify matters call this corner the upper corner of q. Let x be the left neighbor

of u on the upper chain and y the right neighbor. To move the upper corner along

the upper chain, one needs either an upper triangle with the points (u, t, x) to move

the upper corner of q with one flip to x, or the upper triangle (u, r, y) to move it

with one flip to y (see Figure 4.23 (a)).◽

p

q r

s

u
x

y

t

p

q r

s

u

(a) (b)

Figure 4.23: (a) Illustrating Claim 5. (b) q separating M5,6 into a simple convex

polygon with 6 points and the set M4,2

Claim 6. Each subgraph of mr(Gk,m) with fixed 4-gon q is connected.

Given a 4-PPT in mr(Gk,m) with the fixed 4-gon q consisting of the edge qr and

a corner u leaving j points of the upper chain to the right of u and i points to the

left of u, q separates the set Mk,m into a simple convex polygon with (j + 3) points

and a muffin set Mk−1,i whose 4-PPTs lie in r(G(k−1,i)) (see Figure 4.23 (b)). In the

subgraph of Gk,m, all edges are fixed but the inner edges of the mentioned polygon

are connected, since the flip graph of a simple convex polygon is connected. By

assumption, the flip graph of Mk−1,i is also connected.◽
Note 5 and Note 6 prove that mr(Gk,m) is a connected graph. Due to the sym-

metry of Mk,m the same arguments hold for ml(Gk,m). Now we know that four of
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the five previous defined subgraphs of Gk,m are connected graphs. We can further

show that they are also connected with each other.

Claim 7. The subgraph l(Gk,m) is connected with both subgraphs mr(Gk,m) and

m(Gk,m), and the subgraph r(Gk,m) is connected with both subgraphs ml(Gk,m)
and m(Gk,m).

Consider a 4-PPT in mr(Gk,m) where the 4-gon q has its upper corner in the

corner p of Mk,m (see Figure 4.24). The points (p, q, r) are now the convex hull of

a single chain set with (k + 3) points. Since the flip graph of a single chain set is

connected (Theorem 4.3) we can flip into 4-PPTs which lie either in l(Gk,m) or in

m(Gk,m) (see Figure 4.24). Due to the symmetry of the muffin set the same idea

can be used to show that ml(Gk,m) is connected with r(Gk,m) and m(Gk,m).◽

p

q r

s p

q r

s p

q r

s

Figure 4.24: Starting with a 4-PPTs in mr(G5,6) (left) and flipping inner edges of a

cheerless set leads to 4-PPTs in l(G5,6) (middle) and m(G5,6).

To finally prove that Gk,m is a connected graph, it remains to show that m(Gk,m)
is connected. We will do this by first showing that the subgraphs of m(Gk,m) where

the lower triangle t is fixed form a connected graph (Claim 8). Then we present a

sequence of flips to change the corner of t that lies on the upper chain (Claim 9).

Claim 8. If the lower triangle t is fixed, the position of the k 4-gons is defined except

for their corners on the upper chain.

Consider the situation in Figure 4.25. The yellow areas represent triangulations

of simple convex polygons. Flipping inner edges of this polygons does not change

the positions of the 4-gons. In contrast flipping a triangle edge incident to a 4-gon

can only effect the position of the upper corner of the 4-gon. If we do not want to

change the position of the lower triangle, there is no other flip affecting the other

vertices of the 4-gons.◽
From note 8 we can conclude that the subgraphs of m(Gk,m) where t is fixed form

a connected graph.
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p

q r

s

t

Figure 4.25: Illustration of Claim 8.

Claim 9. Starting with a 4-PPT in m(Gk,m) there exists a sequence of flips to move

the corner t of the triangle t on the lower chain.

Consider a 4-PPT P in m(Gk,m). W.l.o.g. we assume t is the i− th vertex on the

lower chain and we want to move it to any other point on the this chain. According

to note 8 there exists a sequence of flips of upper triangle edges that results in a

4-PPT P ′ that includes a 4-gon with the corners p, t and r. A part P ′ is a 4-PPT

P ′ of a single chain set with k + 3 points. According to Theorem 4.3 the flip graph

of all 4-PPTs of a single chain set is connected. Hence, P ′ can be transformed in a

way that the corner t of the triangle t gets its designated place.◽
Finally, we can conclude that the flip graph of the muffin set Mk,m is connected

∀k,m ∈ N.

4.5.1 Counting 4-PPTs of M1,m

As we have already counted the number of 4-PPTs of the single chain we shall now

describe an approach to obtain the number of 4-PPTs of M1,m. A nice property of

the set M1,m is that any 4-PPT of this set has only one 4-gon, all other faces are

triangles. Let G be the flip graph of M1,m, P a 4-PPT in r(G) and q the single

4-gon. In P the 4-gon separates the 4-PPT of M1,m into either two convex polygons

(Figure 4.26 (a)) or in only one case into one convex polygon Figure 4.26 (b)), if q

is incident to the corner s of the muffin.
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p

q r

s p

q r

s

(a) (b)

Figure 4.26: The single 4-gon divides the 4-PPT either in one or two convex

polygons.

The number of triangulations of a convex polygon with n point is the Catalan

Number Cn−2 [25] where the n − th Catalan Number is defined by

Cn =
1

n + 1
(2n

n
), n ≥ 0.

Let Nr(M1,m) and Nl(M1,m) be the number of 4-PPTs in r(G) and l(G), respec-

tively. There are m + 2 possibilities for 4-gon q in a 4-PPT in r(G). Counting the

number of triangulations of the resulting polygons leads to

Nr(M1,m) =
m+1
∑
j=0

Cj ⋅Cm+2−j =
m+2
∑
j=0

Cj ⋅Cm+2−j −Cm+2C0 = Cm+3 −Cm+2

Because of the symmetry, we can obtain Nl(M1,m) in exactly the same way.

Nl(M1,m) = Nr(M1,m) = Cm+3 −Cm+2

Let now Nmid(M1,m) be the number of 4-PPTs in m(G). As mentioned above,
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q splits a 4-PPT in m(G) into one or two convex polygons. Due to the possible

positions of q we derive

Nmid(M1,m) =
m+1
∑
j=0

Cj ⋅Cm+1−j = Cm+2

All together, the total number N(M1,m) of 4-PPTs of the set M1,m is

N(M1,m) = 2Cm+3 −Cm+2 ≈ 4m+2 ⎛
⎝

8

(m + 4)
√
π(m + 3)

− 1

(m + 3)
√
π(m + 2)

⎞
⎠

single chain

reverse single chain

muffin M1,n

Figure 4.27: The rapidly increasing number of 4-PPTs of three special point sets.
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5 A Dual Approach

5.1 Introduction and Definitions

In Chapter 4 we have shown that the flip graph of all 4-PPTs is connected for

some special sets. Although it is already proven that the flip graph of all abstract

4-PPTs of any set of points S with ∣CH(S)∣ = 3 is connected, it is not yet proven

that this holds for geometric 4-PPTs as well. This chapter introduces a method

for investigating flip sequences in 4-PPTs, especially for moving a triangle along a

special path. Therefore the so-called dual graph of a pseudo-triangulation will be

introduced (Section 5.1). In terms of the dual graphs a closer look on edge flips

will be taken. They will be classified and their effects on the dual graph is studied.

Section 5.2 deals with a graphical user interface that allows to perform edge flips in

pseudo-triangulations. This software was the outcome of a bachelor project by W.

Reisner [31]. A closer look is taken on moving triangles along special alternating

dual paths and the flip software was then extended by the implementation of this

dual approach (Section 5.3). Finally, experiments with the flip software on different

point sets lead to some interesting results, which are discussed in Section 5.3.3.

5.1.1 The Dual Graph

In this section we define the dual graph of a 4-PPT P of a set S of n points in

general position, i.e., we do not allow any three points to be collinear. Let k be the

number of points on the convex hull of S. According to Theorem 2.2, P consists of

(k − 2) triangles and (n − k) pseudo-4-gons. Every 4-PPT can be transformed into

a triangulation T (P) by inserting one edge into each pseudo-triangle, connecting

the reflex point with its opposite corner. These new edges divide each pseudo-4-gon

into two triangles.

Let V be a set of vertices and E a set of edges. We define the dual graph GP(V,E)
to be a simple plane graph which has one vertex for each face in T (P). The outer

face of the triangulation can be treated as additional vertex in GP , but in the scope
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of this thesis, we consider only vertices corresponding to triangles in T (P). We

will show below in Proposition 5.1 that the number of vertices in the dual graph

is 2n − k − 2. Let {t1, t2, . . . , t2n−k−2} be the triangles in T (P) and v(ti) ∈ V the

vertex in the dual graph that corresponds to the triangle ti. GP(V,E) has an edge

between two vertices v(ti), v(tj) if the corresponding faces ti, tj share a common

edge in T (P).

Proposition 5.1 (Properties of the Dual Graph). Let GP(V,E) be the dual graph

of a 4-PPT P of a point set S with n points, k of them on the convex hull. The dual

graph has the following properties:

• GP(V,E) is a connected graph.

• ∣V ∣ = 2n − k − 2

• ∣E∣ = 3n − 2k − 3

• GP (V,E) is an at most 3 − regular graph.

Proof. Let d(v) be the vertex degree of a vertex v, i.e., the number of edges that

have one end point in v. Since a triangulation of a point set is a connected graph

and each triangle in such a triangulation has as least one neighbored face, each

corresponding vertex v ∈ V in the dual graph has a vertex degree d(v) ≥ 1.

As mentioned above a 4-PPT of a point set consists out of (k−2) triangles and (n−k)
pseudo-4-gons. Each pseudo-4-gon corresponds to two triangles in the underlying

triangulation, hence the number of vertices in the dual graph is ∣V ∣ = (k−2)+2(n−k) =
2n− k − 2. To count the edges of the dual graph, let h be the number of triangles in

P that are incident to two convex hull edges. The vertices of GP that correspond

to those triangles are incident to one edge. All other (k − h) triangles that are

incident to the convex hull correspond to vertices, whose vertex degree equals two.

All remaining triangles contribute each the value of three to the sum s of all vertex

degrees. Hence,

s = ∑
v∈V

= h + 2(k − 2h) + 3((2n − k − 2) − (k − 2h) − h) = 6n − 4k − 6

Using the Handshake-Lemma, which states that in every graph the sum of all vertex

degrees equals two times the number of edges, leads to ∣E∣ = 3n − 2k − 3.

Let now {v1, . . . , vk−h} be the vertices of the dual graph that corresponds to triangles
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incident to the convex hull. These vertices have a vertex degree 1 ≤ d(vi) ≤ 2 for

1 ≤ i ≤ k − h, for i > k − h the vertex degree is d(vi) = 3. One can say that for

large point sets with few points on the convex hull the corresponding dual graph

is almost 3-regular.

Taking a closer look at the edges of GP , we can divide them into two classes.

On the one hand, there are edges that correspond to edges that exists in T (P) as

well as in the original 4-PPT P. On the other hand, GP has also some edges that

correspond to edges that only exists in T (P), because they were inserted to split

a pseudo-4-gon into two triangles. We call the latter auxiliary edge and represent

them in the following figures with dotted green lines in the pseudo-triangulation and

as green edges in the dual graph. See Figure 5.1 for an example of a 4-PPT with

n = 11 points, four of them on the convex hull and its corresponding dual graph.

Note that a vertex of the dual graph which corresponds to one half of a pseudo-4-gon

in P that is not incident to the outer face, is always incident to two edges and one

auxiliary edge.

Figure 5.1: A 4-PPT of a set of n = 11 points and its corresponding dual graph.

Proposition 5.2. Let G(V,E) be the dual graph of a 4-PPT P of a point set S

with n points and ∣CH(S)∣ = 3. Ea ⊂ E is the set of all auxiliary edges of GP (V,E).
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The graph G(V,E ∖ Ea) is a tree with one root vertex (corresponding to the one

triangle in P) and three branches.

Proof. The vertex that represents the single triangle in the dual graph is incident

to three edges, we let this vertex be the root of the tree. Let {v1, v2, v3} be the

vertices of the dual graph that correspond to triangles incident to the convex hull.

All these vertices vi with 1 ≤ i ≤ 3 have a vertex degree of d(vi) = 2. Since we have

only one triangle in the 4-PPT, those dual vertices correspond to half pseudo-4-gons

and are adjacent to one auxiliary edge. Removing these auxiliary edges leads to

d(vi) = 1 for 1 ≤ i ≤ 3. These vertices form the three leaves of the tree. All other

vertices are adjacent to three edges, one of them an auxiliary edge. Removing the

auxiliary edges remains a vertex degree of two. Therefore, the remaining dual graph

is a tree.

The dual graph also helps to visualize the three colorability (Theorem 3.1) of 4-

PPTs by drawing the dual graph into the 4-PPT in a way such that all points of the

point set lie in their corresponding faces in the dual graph. The tree of dual edges

omitting the auxiliary edges separates the primal graph into areas, such that all

primal vertices lying in the same area can be colored with the same color to obtain

a 3-coloring according to the idea of Theorem 3.1 (see Figure 5.2).

In order to identify the effects of an edge flip in P on its dual graph we introduce

a labeling of the faces and vertices of P, i.e., the vertices in GP . Therefore, we will

enumerate the points of our underlying point set S and assign each face a unique

letter. In the dual graph every vertex corresponds to a triangle in T (P). We assign

to every vertex of the dual graph a corresponding letter and a 3-dimensional index

vector (i, j, k) where i, j and k are the vertices of the corresponding triangle in

T (P) starting with the smallest index i, followed by j, k, in counterclockwise order

(Figure 5.3).

5.1.2 Definition and Classification of Flip Operations

To transform one pseudo-triangulation into another, we will use edge flipping. The

different types of edge flips were already described in Section 2.3. Considering a

4-PPT P of a point set S, the deletion flip as well as the insertion flip would no

longer result in an 4-PPT. Hence we allow only diagonal flips. To reduce the number

of possible flips we take an additional restriction into account: only edges incident

to a triangle are allowed to be flipped. Taking a closer look at such a diagonal flip of
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Figure 5.2: Coloring a 4-PPT of a set of n = 11 points with the help of the dual

graph.

1 2

3

4 5

b(1,2,3)

c(3,5,4)

a(1,3,4)a

b

c

Figure 5.3: Labeling a 4-PPT and the corresponding dual graph.

an edge incident to a triangle, one can classify four types of these flips. We will see

that each type has different effects on the dual graph of the 4-PPT. In the following

let q and t be the pseudo-4-gon and the triangle, respectively, that are affected by

the flip.
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Type Ia

The first two types (Ia and Ib) are so-called edge sliding flips, because the removed

edge e and the new edge e′ share a common point. In Type Ia two edges of the

triangle t are incident to the pseudo-4-gon q. Flipping one of those edges slides it

to the point of q which was not incident to a triangle edge so far and changes the

position of the triangle in the 4-PPT and in the corresponding dual graph. However,

it does not change the indices of the effected vertices in the dual graph (Figure 5.4).

1 2

3

4

1 2

3

4

b(1,3,2)

c(4,3,2)a(1,4,3)

b(1,3,2)

c(4,3,2)a(1,4,3)

a

b

c a

b

c

flip edge 1-3

Figure 5.4: Flip type Ia: The corresponding dual graph is shown below the 4-PPT.

Type Ib

In this case the triangle is adjacent to only one edge of the side-chain of q. The

corner of the triangle which is not incident to q lies inside the angle spanned by

the reflex point of q, its opposite corner and the corner which is not incident to the

triangle. The flip of the common edge of t and q is again an edge slide to the corner

of q which was not incident to t and does not change any index in the dual graph.
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Figure 5.5: Flip type Ib.
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Figure 5.6: Flip type II, the dotted circles represent other components of the graph

that gets reallocated.
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Type II

Flips of type II and III are called crossing flips because the removed edge e ∈ P and

the new inserted edge e′ ∉ P would intersect each other, if they would exist in the

same pseudo-triangulation. The edges e and e′ do not share a common point.

Type II occurs when the triangle is incident to one edge (but not a pseudo edge)

of q and its third corner lies in the angle which is spanned by the reflex point of q,

its corner which is not incident to the triangle and the corner opposite to the reflex

point. Flipping the common edge of q and t means removing it and inserting the

diagonal between the corner of the triangle not incident to q and the corner of q,

not incident to the triangle. Note that the indices of all three affected vertices in

the dual graph change.

In all three flip types mentioned above, there is a path of length two in the dual

graph. This path leads from the vertex where the triangle is before the flip (a in

Figure 5.4, 5.5 and 5.6) via an auxiliary edge to the vertex where the triangle is

after flipping (c in Figure 5.4, 5.5 and 5.6). These flips can be seen as moving the

triangle in the dual graph along this short path. This approach can be very helpful

for determining flip directions and will be discussed in greater detail in Section 5.3.

Type III

Flip type III is again a crossing flip. The triangle is adjacent to either one normal

edge or one edge of the side-chain of q. Its third point lies either in the angle spanned

by the reflex point of q, its opposite corner and the corner of q which is incident

to t or in the angle spanned by the corner of q which is incident to t, the reflex

point of q and its opposite corner. This flip deletes the common edge of t and q and

we connect the point of the triangle which was not incident to q and the corner of

q which was not incident to the triangle with a new edge. If this insertion is not

possible without intersecting other edges, we insert the edge such that it becomes

part of the geodesic path between the two mentioned points.

Unfortunately, this flip type does not follow the observations from above about

moving the triangle along a path of length two ending with an auxiliary edge, so the

triangle does not change its position in the dual graph; however the indices of both

vertices affected by the flip change.
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Figure 5.7: Flip type III.

5.2 Implementation of the Dual Graph

In his bachelor project, W. Reisner [31] implemented a software tool to visualize

4-PPTs of point sets and flips in such 4-PPTs.

This tool motivates the conjecture that the triangle in a 4-PPT of a point set S

with ∣CH(S)∣ = 3 can be moved by flipping to any three points whose convex hull

do not contain any other point. The idea of moving the triangle in a 4-PPT will

be explained in the next section. The implementational preliminary work was to

include the dual graph into the software tool.

Therefore we assigned two dual points to each pseudo-4-gon and one dual point

to each triangle. The dual points are displayed in the balance point of each half

pseudo-4-gon. Each dual point has pointers to its neighbors and is able to differ if a

neighbor lies in the same pseudo-4-gon or in a different one. The original tool built up

a starting 4-PPT of a point set using the Super-Easy-Construction and inserting the

inner points sorted by the angles of their polar coordinates. For the implementation

of the dual graph, it was necessary to order the inner points of the point set by their

x-coordinates and then insert them following the Super-Easy-Construction. In the

following we shall mark a pseudo-triangulation that was constructed this way with

the index X, i.e., PX .
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Figure 5.8: The graphical output of Reisner’s flip GUI for pointed pseudo-

triangulations.

The idea of moving the triangle along so-called alternating paths in the dual

graph, described in the next section, was then implemented as well. The extension

of the flip software helped to understand the dual graph of special pointed pseudo-

triangulations and these results will be discussed later.
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Figure 5.9: The graphical output of the dual extension of Reisner’s flip software.

5.3 Moving the Triangle in 4-PPTs

For simplicity we shall deal in this section with point sets in general position and

with only three points on the convex hull. This means we have only one triangle

in any 4-PPT of such a set, i.e., the maximum number of possible flips in a given

4-PPT is three and there are only two flips possible when one of the triangle edges

is part of the convex hull. In this section, the dual extension of the flip software [31]

will be described and the results of testing the implemented algorithms on different

point sets will be discussed.
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5.3.1 Moving the Triangle along Alternating Paths

Consider a set of n points in the plain, a 4-PPT P of this set and its dual graph

GP(V,E). As shown in Section 5.1.2, every edge flip also changes the dual graph

and in three out of four cases, the triangle moves to a different place in the 4-PPT,

i.e., to a different vertex in the dual graph. Now the following questions arises: Is it

possible to find a flip sequence such that we can move the triangle to any vertex of

GP that is not corresponding to the triangle in P? To move the triangle to a specific

place in the 4-PPT, experiments have shown that it is helpful to follow paths in the

dual graph. Therefor we introduce so-called alternating paths. An alternating path

is a sequence of an even number of consecutive edges ei ∈ E, i = 1 . . .m where ei

is an auxiliary edge ∀i with i ≡ 0 mod 2. Let t be the unique triangle in P, i.e., t

is also a vertex in GP . Using the extended version of the flip tool [31] leads to the

assumption that for all vertices v ≠ t in GP , there is a dual path starting in t and

ending with an auxiliary edge in v. Unfortunately, this is not generally the case, but

we can show that for 4-PPTs produced by the x-sorted version of the Super-Easy-

Construction, we can find such alternating dual paths except for one special point

configuration. We shall now explain this special case and prove that it is the only

one. Therefore we take a closer look at the super easy construction, i.e., how the

dual graph changes while inserting new inner points. As described in Chapter 3.2,

we can either insert a point into the triangle or into a pseudo-4-gon. Depending

on the area of the pseudo-4-gon where a point is inserted, we have to differentiate

between three cases. The insertion of a new point is a very local operation, hence

the changes on the dual graph are very local.

Let P be a pseudo-triangulation of a set S of ≥ 3 points in the plane with ∣CH ∣ = 3,

t the triangle and q a pseudo-4-gon in P. Further, G(P) is the dual graph of this

pseudo-triangulation. Figure 3.3 in Chapter 3.2 shows the three possible areas for

inserting a new point.

Proposition 5.3. Inserting a point into the triangle or into area 2 or 3 of a pseudo-

4-gon (Figure 3.3) maintains all alternating dual paths that start in t and have

previously existed.

Proof. In the first case, we insert the new point into the triangle, connect it with

two of its three corners and result in the 4-PPT P ′. The new dual graph GP ′ has

two new vertices adjacent to the vertex that corresponds to the new triangle t′ and

adjacent to the two vertices that were neighbors of t in GP (see Figure 5.10). It is
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easy to see that in this case, all alternating paths that existed in GP and started in t

were extended by the two new vertices. Additionally, there are two new alternating

paths of length two reaching the two new dual vertices.

t
t′

a

b

t t

a

b

Figure 5.10: Inserting the new point inside the triangle maintains all alternating

paths in the dual graph.

Inserting a point in area 2 or 3 of a pseudo-4-gon has the same (symmetric) effect

on the dual graph. W.l.o.g. we consider now the case of inserting the point into

area 3. Before the insertion of the point, we have four alternating paths segments

(h, b, a, e), (h, b, a, f), (g, b, a, e) and (g, b, a, f) using the vertices a and b. Every

alternating path that involves the vertices a and b includes one of this sequences.

W.l.o.g. let the vertex sequence (e, a, b, h) be part of an alternating path in GP

between t and a vertex v ∈ GP . Inserting the new point into the half pseudo-4-gon

b creates two new vertices c, d in the dual graph GP ′ . The sequence (e, a, b, h) in

GP can now be extended to (e, a, b, d, c, h) and is again part of an alternating path

between t and v in GP . Equivalently, inserting the new point into the half pseudo-

4-gon a (area 2) leads to the same result. In both cases, the two new faces c and d

can also be reached by a dual path in GP ′ , if b has been reached in GP .

Inserting a point in area 1 of a pseudo-4-gon might not necessarily maintain all
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Figure 5.11: One possibility to insert the new point into a pseudo-4-gon.

alternating dual paths. Consider therefore the situation in Figure 5.12. For example,

an alternating dual path in GP , starting with the triangle t and ending in a dual

vertex v using the sequence (h, b, a, f) no longer exists in GP ′ . If there is no other

alternating path in GP that is avoiding the mentioned sequence, the vertex v cannot

be reached via an alternating path.

If we construct a 4-PPT with the x-sorted version of super easy construction,

the triangle will be incident to the leftmost points of the convex hull. During the

construction the insertion of a new point into a triangle or area 2 or 3 of a pseudo-

4-gon guarantees that in the current dual graph each vertex can be reached by an

alternating path starting with the triangle. Only the insertion of a point in area 1

can cause difficulties. The application of the flip software showed that pseudo-

triangulation in which not all vertices of the dual graph can be reached by alternating

paths have a common structure. We now introduce two geometric gadgets and show

that their combined appearance creates a class of 4-PPTs in which not all dual

vertices can be reached by alternating paths.
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Figure 5.12: Inserting a point into area 1 of a pseudo-4-gon.

5.3.2 Implementation of the Alternating Path Idea and

Experimental Results

Reisinger’s flip software was not only extended by the dual graph, but also by an

automatic flip algorithm. The aim was to test if it is possible to flip the triangle,

i.e., the corresponding dual vertex, to any other (already existing) dual vertex in

the graph. This leads to two points of interest: if it is possible, can we formulate

an algorithm that always delivers a sequence of flips to reach the goal, or if it is not

possible, what are the critical situations, counter examples where it does not work?

The general idea of an automatic flip algorithm is to choose a target vertex in the

dual graph and perform the necessary flips along alternating dual paths to move the

triangle to the target. The following algorithm describes this idea. The function

flip(path) flips the edge incident to the triangle and the first half pseudo-4-gon in

the list of the vertices of path whereas findAlternatingPath(triangle,target) tries, if

possible, to avoid that the first flip is of type 3, since this type would not move the

triangle along the aimed path. The path search is an adapted version of the depth-

first search in graphs. In each step two vertices (corresponding to the two halves

of the same pseudo-triangle) are added. If no vertex can be added and the target
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Algorithm 2 flipalg(target)

Require: triangle

Ensure: target ≠ triangle
while triangle ≠ target do
path = findAlternatingPath(triangle, target)
triangle = flip(path)
end while

was not reached yet, the algorithm tracks back to the last branch and continues the

search.

As mentioned in Chapter 5.1.1, the different flip types have different effects on

the dual graph. Flips of type 1 and 2 can be interpreted as moving the triangle

along an alternating dual path, whereas flips of type 3 do not behave this way.

To avoid circling of the algorithm, an edge that was produced by a flip of type 3

gets a special mark. Such marked edges are not allowed to be flipped anymore,

unless the mark is removed. If one of the two adjacent halves of pseudo-triangles

changes, i.e., at least one of their vertices changes, the edge gets unmarked and is

allowed to be flipped again. On the one hand, this avoids flipping the same edge

continuously, but on the other hand, the marking can decrease the number of flipable

edges strongly. Unfortunately, this leads to situations where the algorithm stopped

before the triangle has reached the target. Two ideas were then implemented for first

tests, either to choose the shortest alternating path, or the longest. Both concepts

were tested on different sets and lead to interesting results. A short overview on

some representative results shall be given here. The point set in Figure 5.13 is an

example where both algorithms are needed to move the triangle to all dual vertices,

always starting with the pseudo-triangulation produced by the x-sorted version of

the Super-Easy-Construction. The triangle can be moved to vertex a in Figure 5.13

always following the shortest alternating dual path, whereas vertex b requires that

in each step, the first flip of the longest alternating dual path is done. Following the

shortest paths would stop before the target is reached.

An interesting effect was that for some point sets, both algorithms would stop

before the target was reached, because there was no flipable edge left. Nevertheless

in any of these situations it was possible to solve it by hand, i.e., flipping a marked

edge and in some cases ignoring the rule to avoid a Type III flip, if possible. Of

course this does not prove anything yet, but it encourages the assumption that the

flip graph of 4-PPTs is connected for all point sets in the plane.
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a

b

Figure 5.13: A set that claims two different algorithms for moving the triangle.

Another important point is that the mentioned flipping algorithms were always

started in a canonical 4-PPT PX , i.e., the 4-PPT that results by applying the x-

sorted version of the super easy construction. Unfortunately, sets exist where not all

vertices of the dual graph of the 4-PPT PX of this set can be reached by alternating

dual paths in the first place. The 4-PPTs in this case showed a similar structure.

This structure inspired the idea of special geometric gadgets that can be crossed by

alternating dual paths in limited ways. A detailed description of these gadgets will

be given in the next chapter.

5.3.3 Describing Special Geometric Gadgets

The geometric gadgets we want to introduce, are 4-PPTs of a special pointgon,

a four sided pseudo-triangle with inner points. These gadgets might be part of a

4-PPT of a point set and since we are interested in the system of alternating dual

paths, we shall study the possibilities to cross such a gadget following the alternating

dual path idea [22]. Figure 5.14 shows the hull of such a gadget and a scheme of the

six possibilities to cross the gadget with alternating dual paths. Depending on the
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Figure 5.14: Scheme for alternating dual paths that cross the gadget.

4-PPT inside this gadget not all of these options might exist. Two gadgets with only

four possible ways to cross are described in the following paragraphs. Remember

A B

Figure 5.15: Two special gadgets in which, after entering the gadget, the exit is

given.

that we deal here with parts of 4-PPTs of a point set in the plane, which has exactly

three points on the convex hull. To simplify matters, we consider embeddings of

those 4-PPTs where the longest edge of the convex hull lies parallel to the x-axes.

Let gadget A be a four sided pseudo-triangle with a 4-PPT of nA inner points,

such that in its dual graph, entering the gadget in one edge forces us to leave it

in the diagonal edge on the side-chain and vice versa (see Figure 5.15 left). The

second one, gadget B, is a 4-pseudo-triangle with a 4-PPT of nB inner points, such

that in its dual graph, entering the gadget in one edge forces us to leave it in the

opposite edge on the side-chain and vice versa (see Figure 5.15 right). An example
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for gadget A would be any 4-pseudo-triangle in which an even number of vertices

has been inserted in area one, as an odd number would be an example for gadget B

(Figure 5.16).

A B

Figure 5.16: Examples for gadget A and gadget B

We define a gadget C as the biggest pointgon that has a 4-pseudo-triangle as its

hull and that can be separated into two smaller gadgets C1 and C2 such that the

reflex point of the hull of gadget C1 coincides with the corner of the hull of gadget

C2 that comes in clockwise order after the reflex point of C1 (p4 in Figure 5.17).

The same holds for the reflex point of the hull of gadget C2 and the corresponding

corner of gadget C1 (p2 in Figure 5.17). Furthermore, the corner of the hull of

gadget C2 that is opposite its reflex coincides with the second corner of gadget C1

that is adjacent to the reflex of gadget C1 (p5 in Figure 5.17). Now we will see that

for gadget C1 = A and gadget C2 = B not all points in a 4-PPT might be reached

by a dual path. These gadgets can bring up a situation in a 4-PPT PX where no

alternating dual paths exist from the dual vertex that corresponds to the triangle

to all other vertices when we additionaly have the restriction that it is not possible

to enter the gadget via the edges p3p5 and p3p5. This is, of course, the case if these

edges are part of the convex hull. The following proposition shows that this will be

the only case where this gadget exists.
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Figure 5.17: The combination of gadgets A and B, and the possible ways to cross

those gadgets via alternating dual paths.

Proposition 5.4. Let PX be a pseudo-triangulation of a point set S, that was built

with the x-sorted version of the super easy construction. If the special gadget C

as defined above consists of the combination of gadget A and gadget B with the

additional restriction that it is not possible to enter the gadget via the edges p3p5

and p3p5 (Figure5.17), and it appears in PX , then the three corners of the hull of

the gadget are points on the convex hull.

Proof. For simplicity reasons we do not allow two points to have the same x-co-

ordinate. First we show that either the corner p3 or the corner p5 is the rightmost

point of the gadget AB. Let x(p) be the x-coordinate of a point p. Since PX was

constructed by the x-sorted version of the super easy construction, the gadget AB

is also built up that way. Note that gadget B has at least one inner point pi, which

has been inserted after p4, so x(p4) < x(pi).
If p1 would be the rightmost corner of gadget AB, we get x(p3) < x(p4) < x(p2).

The reflex point p2 cannot be part of the convex hull. Since p4 was connected

with p5 and p2 after its insertion, this would mean that x(p2) < x(p4) but this is a

contradiction to the structure of the gadget. Next we want to show that the corners

of the gadget need to be points of the convex hull of our underlying point set. We

look first at the case where x(p3) < x(p5).
Assume now that p5 is not part of the convex hull. Since p5 is the rightmost point

of all points of the gadget AB, all points that are incident to p5 have been inserted
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before p5. Inserting a point produces only two new edges. Since p5 is incident to

three other vertices that have been inserted before, we can conclude that p5 has not

become part of the gadget via insertion, hence it was already part of the convex hull

of S. Assume now that p1 is not part of the convex hull, hence it was inserted in

a way that it became the left corner (the corner next to the reflex point in counter

clockwise direction) of a four-sided pseudo-triangle. This is only possible if p1 was

inserted into area 2 of a four sided pseudo-triangle (see Figure 5.18). But this means

that p2, which cannot be part of the convex hull, has been inserted before, hence

x(p2) < x(p1). In order to construct the gadget AB, p4 has to be inserted into

area 3 of the pseudo-triangle with the corners p1, p3 and p5. A point in area 3 of

this pseudo-triangle that has been constructed by inserting p1 would always have a

smaller x-coordinate than p2, hence x(p4) < x(p2) (Figure 5.18), which cannot be

the case if we want to insert p4 after p2. So if p1 is not part of the convex hull,

we cannot construct the gadget AB. Finally, we need to show that p3 is part of the

p1

p2

p3

p5

Figure 5.18: If p1 is not part of the convex hull, the gadget AB cannot be constructed.

The area 3, where p4 should be inserted is shaded gray.

convex hull. As stated before, x(p3) < x(p5). If we assume now that p3 is not part

of the convex hull, but was inserted in the interior, the edge between p3 and p5 can

only have been created by inserting p3, since p5 is part of the convex hull. First we

consider the case that x(p3) < x(p4). That p3 is connected to the rightmost convex

hull point means that p3 was inserted either into area 2 or area 3 of a four sided

pseudo-triangle (Figure 5.19). In the first case, we would not get a gadget C as we

have defined it above. In the second case, we would get a bigger gadget that has

a vertex p′3 as its corner and consists of two gadgets of type B. If x(p4) < x(p3),
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Figure 5.19: If x(p3) < x(p5) then p3 can be inserted in these two ways, since we

want to get the edge p3p5.

then p3 was inserted into area 1 of an pseudo-triangle with p4 as its reflex point.

Then we would get again a bigger gadget that has p′3 as its corner, and consists of

two gadgets of type B. In the case that x(p5) < x(p3) (Figure 5.20), we will now

show that p5 will be again a convex hull point. Assume again that p5 is an inner

p1 p5

p3

p′5

p4

p1 p5

p3

p4

Figure 5.20: The cases x(p5) < x(p4) (left) leads to a bigger gadget and in the case

x(p4) < x(p5) we could not insert p4 anymore.

point, which was inserted either before or after p4. In the first case, this would mean

that p5 was inserted into area 1 of pseudo-triangle with the corners p1, p3 and p′5.

This would result in a bigger gadget, that allows a dual path to leave the original

gadget via the edge p3, p5 and reenter it via p1, p5, a situation we excluded in the

beginning. To construct our gadget, p4 needs to be inserted after p5, hence, the case

x(p4) < x(p5) would not lead to our gadget. The arguments from above that p1 and
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p3 must be part of the convex hull of the underlying point set hold also for the case

x(p5) < x(p3).

Figure 5.21: Example for an AB gadget. The grey triangles cannot be reached by

alternating dual paths.

Figure 5.21 shows an example of an AB gadget. The grey shaded triangles, i.e.,

their corresponding vertices in the dual graph cannot be reached by alternating dual

paths. It is also important to mention that once this special gadget is constructed,

the further insertion of points according to the x-sorted version of the Super-Easy-

Construction will not change its properties concerning dual paths as long as they

are insertions into the areas 2 and 3. Insertions into area 1 of a pseudo-triangle will

lead to gadgets that do not fall into the definition of gadget A or B. Proposition 5.4

shows that this unfortunate combination of gadget A and B can only appear in

4-PPTs that were constructed by the x-sorted easy construction algorithm when

the gadgets corners are the three convex hull points. So the arguments of the proof

will not help to prove the general case. The investigation of the general case, i.e.,

finding gadgets that prohibit dual paths from the dual vertex that corresponds to

the triangle to all other vertices in the dual graph would go beyond the scope of this

thesis.
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6 Conclusion

6.1 Summary

The aim of this thesis was to investigate the connectedness of flip graphs of pointed

pseudo-triangulations with maximum face degree four (4-PPT). We presented a

local operation, the edge flip, which allows to transform a pseudo-triangulation into

a different one. All pseudo-triangulations of a point set can be represented in a

so-called flip graph, whose connectedness was of special interest for this thesis.

In Chapter 3 we pointed out the difference between geometric and abstract pseudo-

triangulations. While it was recently achieved to proof the connectedness of the flip

graph of all abstract pseudo-triangulations of a set of point, this cannot be shown

for geometric ones so far. Nevertheless, focusing on special sets of points simplifies

matters. We presented proofs for the connectedness of the flip graph of 4-PPTs on

the known single chain set, the reverse single chain set, and the double circle, even

if we allowed only to flip edges incident to a triangle. Furthermore, we introduced a

new special set, the muffin set, and showed that its flip graph of 4-PPTs is connected,

again with the restriction that only edges incident to a triangle were allowed to be

flipped. Due to the inductive structure of these proofs, we further were able to

derive the number of 4-PPTs of the single chain set, the reverse single chain set,

and a special type of the muffin set. It can be seen that the number of 4-PPTs of

these sets increases exponentially with the number of vertices.

In parallel to this thesis a flip software tool was developed by W. Reisner [31].

This tool helped greatly to study the behavior of 4-PPTs while flipping edges. To

approach a proof of connectedness of the flip graph of all 4-PPTs of general point

sets the concept of investigating dual graphs was elaborated. The study of effects of

edge flips on the dual graph motivated the concept of alternating dual paths. This

approach was intended to automate moving a triangle in a 4-PPT by following a

sequence of edge flips. An extension of the flip software by the dual graph idea lead

to new experimental results. These results were presented in Chapter 5.2 and led
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further to the investigation of special geometric gadgets. To simplify matters, only

4-PPTs with three points on the convex hull were considered. We described how the

idea of the dual path can help to move the triangle inside the 4-PPT. Nevertheless,

experiments revealed that there are classes of 4-PPTs for which it is not possible to

reach every vertex in the dual graph by an alternating dual path that starts in the

dual vertex corresponding to the triangle in the 4-PPT.

6.2 Future Research

The thesis showed that for special point sets it is very helpful to use the symmetry

in those sets for proving the connectedness of the flip graphs of their 4-PPTs. For

the general case, i.e., any arbitrary set of points in the plane this is not that easy. In

a 4-PPT of a point set with three points on the convex hull, the dual approach can

help to prove that it is possible to move the triangle to any three adequate points of

the set. If this is possible, the impact of moving the triangle can be studied to gain

statements if and how the movement of the triangle can be used to enforce local

changes on the 4-PPT. This could finally prove the conjecture that the flip graph

of all 4-PPTs of an arbitrary set of points with three points on the convex hull is

connected even if we only allow to flip edges incident to the triangle. When the

last requirement is disregarded, the number of flips clearly increases. This might

be helpful, especially for the investigation of very local transformations in a 4-PPT.

Recently the connectedness of the flip graph of combinatorial 4-PPTs was proven

by a group of researchers at a research week on pseudo-triangulations in May 2012

in Alcalá de Henares [6]. The investigation of pseudo-triangulations is a current

research topic and many interesting results can be expected in the future.
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Glossary

≥5-PPT a pointed pseudo-triangulation with at least one five-sided pseudo-triangle.

37

π-guards guards who have a field of view of π. 21

4-PPT a pointed pseudo-triangulation with a maximum face degree 4. 21

abstract pseudo-triangulation also combinatorial pseudo triangulation, a plane graph

combined with a special labeling of the angles formed by its edges. 30

alternating path a path of edges in a dual graph that consists of normal edges and

auxiliary edges. 74

auxiliary edge specific type of edge in the dual graph of a 4-PPT. 65

bitangent a diagonal, that is a tangent in both its endpoints. 11

combinatorial pseudo-triangulation see abstract pseudo-triangulation. 30

convex hull of a point set S is the smallest convex polygon that contains S. 10

convex point of a polygon is a point whose angle outside the border of the polygon

is > π. 10

corner convex point of a pseudo-k-gon. 10

crossing flip a diagonal flip, where the deleted edge and the new inserted edge

intersect. 70

deletion flip special type of an edge flip, where the flipped edge is removed and the

result is still a valid pseudo-triangulation. 18

diagonal an edge between two vertices of the border of a polygon that crosses the

inner area of the polygon. 11
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diagonal flip a deletion flip, merging two pseudo-triangles to one pseudo-4-gon,

followed by an insertion flip, connecting the corners of the pseudo-4-gon that

have not been incident to the deleted edge. 18

double circle a special set of 2m points in the plane, m of them on the convex hull,

while the other m points are each sufficiently close to one of the convex hull

edges. 49

dual graph a graph whose vertices correspond to faces of pseudo-triangulation. 63

edge flip a local operation transforming a pseudo-triangulation into a different one

by deleting and/or inserting one edge. 18

edge sliding flip a special type of a diagonal flip, where the removed and the in-

serted edge have one endpoint in common. 68

face degree number of edges that bound the face. 12

flip graph a graph whose vertices represents a unique pseudo-triangulation of a

point set and two vertices are connected if there exists an edge flip that trans-

forms the two corresponding pseudo-triangulations into each other. 20

general position a pointset S is in g.p. if no three points of S are collinear. 10

geodesic path the shortest path between two points of a polygon. 11

geodesic triangulation alternative (old) term for pseudo-triangulation. 11

geometric gadget specified pesudo-triangulation of special pointgons. 79

Henneberg-Construction an algorithm for constructing minimal rigid graphs. 16

insertion flip special type of an edge flip, where an additional edge is inserted. 18

lense shutter a specific 4-PPT of the double circle set. 49

minimum pseudo-triangulation other term for pointed pseudo-triangulation. 13

muffin set a set of points in the plane, very similar to the single chain set, but with

more points on the convex hull. 53
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pointed pseudo-triangulation pseudo-triangulation whose points are pointed. 13

pointgon a polygon with additional points inside the interior face. 10

polygon a geometric figure whose non-crossing edges connect n vertices to a closed

path. 10

pseudo-k-gon a polygon with exactly k convex points. 10

pseudo-triangle a pseudo-3-gon. 10

pseudo-triangulation partition of a region into pseudo-triangles. 12

reflex points that have an outer angle < π. 10

reverse single chain a set of n points in the plane, such that ∣CH(S′)∣ = 3 and n−3

interior points together with one convex hull point t form a convex polygon

and all points of this polygon are visible by the two other convex hull points

p and q.. 39

shutter edge a specific edge in the lense shutter. 49

side-chain a geodesic path with ≥ 2 edges between two consecutive corners of a

polygon. 11

simple polygon polygon with exactly one inner face that is bounded by the closed

path. 10

single chain a set with n > 3 points in the plane, such that ∣CH(S)∣ = 3, n−1 points

form a convex polygon and one point t, outside the polygon, sees all edges of

the polygon but one.. 38

Super-Easy-Construction an algorithm to construct a 4-PPT of a point set. 71

tangent a special diagonal of a polygon. 11

triangle a convex simple polygon with 3 corners. 12

triangulation partition of a region into triangles. 12
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[19] S. Fisk. A short proof of chvátal’s watchman theorem. Journal of Combinatorial

Theory, Series B, 24:374, 1978.

95



[20] R. Haas, D. Orden, G. Rote, F. Santos, B. Servatius, H. Servatius, D. Sou-

vaine, I. Streinu, and W. Whiteley. Planar minimally rigid graphs and pseudo-

triangulations. Comput. Geom. Theory Appl., 31(1-2):31–614, 2005.

[21] T. Hackl. Relaxing and lifting triangulations. PhD thesis, Graz University of

Technology, 2010.

[22] T. Hackl and O. Aichholzer. Personal communication. 2011.

[23] T. Hackl and A. Pilz. Personal communication. 2011.

[24] L. Henneberg. Die graphische Statik der starren Systeme. Johnson Reprint

Corp, 1968., New York, 1911. in German.

[25] F. Hurtado and M. Noy. Counting triangulations of almost-convex polygons.

Ars Combinatoria, 45:169–179, 1997.

[26] F. Hurtado and M. Noy. Graph of triangulations of a convex polygon and tree

of triangulations. Comput. Geom. Theory Appl., 13:179–188, 1999.

[27] L. Kettner, D. Kirjpatrick, A. Mantler, J. Snoeyink, B. Speckmann, and

F. Takeuchi. Tight degree bounds for pseudo-triangulations of points. Comput.

Geom. Theory Appl., 25:3–12, 2003.

[28] D. Orden, F. Santos, B. Servatius, and H. Servatius. Combinatorial pseudo-

triangulations. Discrete Mathematics, 307:554–566, 2007.

[29] M. Pocchiola and G. Vegter. The visibility complex. 9th Annual Symposium

Computational Geometry, pages 328–337, 1993.

[30] M. Pocchiola and G. Vegter. Topologically sweeping visibility complexes via

pseudo-triangulations. Descrete and Computational Geometry, 16:419–453,

1996.

[31] W. Reisner. Ein Programm zur Veranschaulichung von Kantenflips in pointed

Pseudo-Triangulierungen. Bachelor Thesis, in German, Graz University of

Technology, 2012.

[32] G. Rote, F. Santos, and I. Streinu. Pseudo-triangulations – a survey. In Surveys

on discrete and computational geometry, volume 453 of Contemp. Math., pages

343–410. Amer. Math. Soc., Providence, RI, 2008.

96



[33] F. Santos and R. Seidel. A better upper bound on the number of triangulations

of a planar point set. Journal of Combinatorial Theory, 102:186–193, 2003.

[34] V. K. Singh and S. Mehta. Flip graph of pseudo triangulation with a fixed set

of pointed vertices. Technical report, Indian Institute of Technology, Kanpur,

India, 2004.
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