
Master Thesis

Evaluation, Simulation and
Implementation of a Multi-Channel

Speech Enhancement System

using the Generalized Sidelobe Canceler and recent Multi-Channel
Postfilter algorithms

conducted at the
Signal Processing and Speech Communications Laboratory

Graz University of Technology, Austria

in co-operation with
Commend International

Salzburg, Austria

by
Lukas Pfeifenberger, 0831870

Supervisors:
Assoc.Prof. Dipl.-Ing. Dr. Franz Pernkopf

Univ.-Prof. Dipl.-Ing. Dr.techn. Gernot Kubin

Assessors/Examiners:
Assoc.Prof. Dipl.-Ing. Dr. Franz Pernkopf

Graz, May 7, 2013

This work was funded by the Austrian Research Promotion Agency (FFG) under grant 839587.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly marked all material which has been quoted
either literally or by content from the used sources.

date (signature)

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und
inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Graz, am (Unterschrift)

Acknowledgement

First and foremost, I would like to thank the founding father of the company Commend, Peter

Pablik, for believing in my work and providing me with the necessary support to conduct this

project. I gratefully thank Franz Pernkopf for his guidance and motivation, and most importantly

for supporting me with enthusiasm throughout my thesis. I appreciatively acknowledge Univ.-

Prof. Dipl.-Ing. Dr.techn. Gernot Kubin for his immense knowledge about speech processing,

and for pointing me towards the fruitful direction of multichannel speech enhancement in the

very early stages of this work. My sincere thanks go to Franz Zotter for providing me with some

nifty Matlab scripts, which proved to be valuable for daily use. Finally, I am obliged to Christian

Feldbauer for all the time he spent with constructive and excessive discussions about my scientific

interests during my course of studies.

Abstract

Speech intelligibility is a paramount issue in modern telecommunication systems. In many ap-
plications, background noise is the primary source of speech degradation. For this reason, noise
reduction algorithms have been studied during the last three decades. However, when using a
single microphone, the problem of achieving a sufficient level of noise reduction while maintain-
ing speech quality still exists. It is well known that beamformers can surpass this limitation by
exploiting the spatial information of the sound field. Superdirective beamformers, like the Gen-
eralized Sidelobe Canceler (GSC), combined with a multichannel postfilter gained significance in
the application area of speech enhancement due to their robustness under real-world conditions.
With the advent of both affordable and powerful embedded systems, using these structures also
became economically feasible. For this reason, the company Commend International conducted
a research project with the goal to implement a four channel speech enhancement system. The
project covers three phases: Phase one introduces the GSC, several source location algorithms
and multichannel postfilters. In the second phase, the performance of these algorithms is eval-
uated by using psychoacoustic measures like PESQ and PEASS. These experiments are done
in Matlab, using three speech databases and a variety of different noise types. The third phase
covers the implementation of the resulting multichannel speech enhancement system in C++
and a live demonstration of the resulting prototype. This thesis documents each phase and its
results. Therefore, it focuses not only the theory of beamforming and multichannel postfilters,
but also the necessary steps to build a prototype using state of the art software development
tools.

Kurzfassung

Sprachverständlichkeit ist in modernen Telekommunikationssystemen von hoher Bedeutung. Da
Hintergrundgeräusche die Hauptursache einer verminderten Sprachverständlichkeit darstellen,
wird an Algorithmen zur Störgeräusch-Unterdrückung bereits seit drei Jahrzehnten geforscht.
Besonders im einkanaligen Fall ist das Problem der Störgeräusch-Reduktion bei gleichbleibend
hoher Sprachqualität noch immer ungelöst. Beamformer können dieses Limit umgehen, indem
auch die räumliche Information des Schallfeldes genutzt wird. Der Generalized Sidelobe Can-
celer (GSC) erlangt dabei unter Verwendung eines mehrkanaligen Postfilters aufgrund seiner
Robustheit erhöhte Aufmerksamkeit in diesem Anwendungsgebiet. Die heutige Verfügbarkeit
von preisgünstigen und leistungsstarken embedded systems ermöglicht den ökonomisch sin-
nvollen Einsatz dieser Algorithmen. Aus diesem Grund wurde bei Commend International ein
Forschungsprojekt gestartet, dessen Ziel die Umsetzung eines vierkanaligen Beamformers ist.
Das Forschungsprojekt umfasst drei Phasen: Eine Theoriephase, in welcher die Grundlagen des
GSC, sowie Algorithmen zur Quellenlokalisation und Postfilterung erläutert werden. Phase zwei
umfasst die psychoakustische Bewertung dieser Algorithmen unter Verwendung von PESQ und
PEASS. Diese Experimente wurden in Matlab unter Verwendung von drei Sprachdatenbanken
und verschiedener Hintergrundgeräusche durchgeführt. In Phase drei wird die Implementation
dieser Algorithmen in Form eines Prototypen in C++, sowie dessen Demonstration in Echtzeit
beschrieben. Die vorliegende Arbeit dokumentiert den Verlauf und die Ergebnisse dieser drei
Phasen. Daher liegt das Hauptaugenmerk nicht nur auf der Theorie von Beamformern und
mehrkanaligen Postfiltern, sondern auch auf dem Entstehungsprozess des Prototypen unter Ver-
wendung moderner Software-Entwurfsmuster.

Multi-channel Speech Enhancement

Contents

1 Introduction 11
1.1 Single-Channel Speech Enhancement Methods . 11
1.2 Multi-Channel Speech Enhancement Methods . 12
1.3 Motivation and Problem Statement . 13
1.4 Organization and Aim of this Work . 14

2 Sound fields 16
2.1 Wave Propagation . 16
2.2 Spatial Sampling of Sound Fields . 18
2.3 Signal Model . 19
2.4 Acoustic Transfer Function . 21
2.5 Relative Transfer Function . 21
2.6 Spatial Coherence . 22
2.7 ATF Measurement . 23
2.8 MIMO Systems . 28

3 Beamforming Techniques 34
3.1 Basic Principle . 34
3.2 Performance Measures . 36

3.2.1 Array Gain . 36
3.2.2 Directivity Pattern . 37
3.2.3 Directivity Index . 37

3.3 Delay-and-Sum Beamformer . 38
3.4 Filter-and-sum Beamformer . 40
3.5 Generalized Sidelobe Canceler . 44
3.6 Constructing a Blocking Matrix . 47

3.6.1 Eigenspace Blocking Matrix . 48
3.6.2 Generalized Eigenvector Blocking Matrix 48
3.6.3 Adaptive Blocking Matrix . 49
3.6.4 Sparse Blocking Matrix . 50

3.7 Design Considerations . 51

4 Acoustic Source Localization 53
4.1 Problem Formulation . 53
4.2 Estimating the Relative Transfer Function . 53

4.2.1 Weighted Least Squares . 53
4.2.2 Independent Component Analysis . 55

4.3 Estimating the Direction Of Arrival . 58
4.3.1 Smoothed Coherence Transform . 59
4.3.2 Phase Transform . 61
4.3.3 Multiple Signal Classification . 61
4.3.4 Magnitude Estimation . 63

May 7, 2013 – ix –

Contents

4.4 Voice Activity Detection . 64

5 Multichannel Postfiltering 66
5.1 Postfiltering Concepts . 66
5.2 Single-Channel Speech Enhancement . 67

5.2.1 Minimum Statistics . 67
5.2.2 Improved Minima-Controlled Recursive Averaging 68
5.2.3 Minimum Mean Squared Error Log-Spectral Amplitude estimator 69
5.2.4 Optimally-Modified Log-Spectral Amplitude estimator 71

5.3 Multi-Channel Postfilter . 71
5.3.1 Transient Beam to Reference Ratio . 71
5.3.2 Direct to Diffuse Ratio . 72
5.3.3 Multichannel Speech Presence Probability 74

5.4 Psychoacoustics . 76
5.4.1 Auditory Masking . 76
5.4.2 Simplified Gammatone Filterbank . 77

6 Matlab Experiments 80
6.1 Quality Assessment . 80

6.1.1 Signal Blocking Factor . 80
6.1.2 Perceptual Evaluation of Speech Quality 81
6.1.3 PEASS . 81

6.2 Experimental Setup . 82
6.2.1 Acquiring Speech Data . 82
6.2.2 Acquiring Noise Data . 82

6.3 Matlab Implementation . 83
6.4 Simulation Testbench . 84
6.5 Simulation Scenarios . 85

6.5.1 Scenario 1: RTF Estimation . 85
6.5.2 Scenario 2: BM and AIC Structure . 86
6.5.3 Scenario 3: Postfilter Algorithm . 86
6.5.4 Scenario 4: Effect of the Filterbank . 86
6.5.5 Scenario 5: Number of Microphones . 86

6.6 Simulation Results . 87
6.7 Performance of the best Combination . 93

7 Realtime Implementation 102
7.1 Prototype Implementation . 102

7.1.1 Hardware Requirements . 102
7.1.2 Software Requirements . 103

7.2 Rapid Prototyping . 104
7.2.1 C++ Implementation . 104
7.2.2 Code verification Against the Simulation using the Matlab Engine 106
7.2.3 Live Performance of the MCSE algorithm 108

7.3 Porting to an embedded platform . 114

8 Conclusion and Future Work 116

9 Listings 118

– x – May 7, 2013

Multi-channel Speech Enhancement

1
Introduction

Today, the transmission of human speech is done in a vast number of applications ranging from
telecommunication devices to human-machine interfaces. Applications like mobile phones, VoIP
systems, intercoms, speech recognition systems or hearing aids can be found almost everywhere.
Since we live in a noisy world, these systems are exposed to all kinds of environmental noise.

Speech enhancement is concerned with improving the intelligibility and the perceptual quality
of a speech signal that has been degraded by additive noise. For example, using a cellular phone
inside a car or at a shopping mall imposes all kinds of background noise on the voice communi-
cation. Therefore, an improvement in both intelligibility and quality is highly desired in almost
every application. Also, speech recognition systems greatly benefit from speech enhancement,
as additive noise causes the word error rate to increase. Speech enhancement in telecommu-
nication systems improves the quality of speech at the receiving end, leaving the transmitting
side unaffected. Thereby, the user at the receiving end experiences the speech quality of the
transmitting device. This concept still puzzles some of the most prestigious companies.

In general terms, speech enhancement methods can be classified into two main categories.
The first focuses on the utilization of a single microphone while the second deals with multiple
microphones. Both rely on statistical properties of human speech production, while the latter
also exploits the spatial information of the sound field. Therefore, both categories are treated
as separate fields throughout literature [1], [2], [3]. However, the latter can be viewed as a
generalized case of the former.

1.1 Single-Channel Speech Enhancement Methods

Most speech-related applications pick up sounds using only a single microphone. Therefore, the
problem of single-channel speech enhancement attracted the most interest amongst researchers
for the last three decades. However, the problem is still not solved satisfactory, as the mixing
process of speech and noise cannot be easily undone.

A rich universe of algorithms has been conceived over the years: adaptive filtering using
spectral subtraction or the Wiener filter, statistical-model based methods using the ML, MAP,
MMSE or Bayesian estimators, or subspace methods using SVD or EVD, to mention just a few

May 7, 2013 – 11 –

1 Introduction

examples. A good overview can be found in [3] and [4].

Due to its relatively low complexity, spectral subtraction is by far the most widely used
approach. This method relies on the fact that human speech is sparse in both time and frequency.
The noise spectrum can be estimated during periods where the speech signal is absent. A central
assumption made is that the noise spectrum is more or less stationary or at least slowly changing
compared to the speech spectrum. The noise spectrum estimate is then subtracted from the
spectrum of the corrupted speech signal. Only the magnitude spectrum is affected by this
process, the phase information is left unchanged. Some papers in the past claimed that the
phase information has little influence on the speech quality [5], while more recent ones state the
opposite [6], [7].

However, the phase influence is marginal and increases the SNR by less than 2dB [7]. Estima-
tion errors of the noise spectrum have a more severe impact on speech quality. If the noisefloor
estimate is too small, some parts of the noise fail to be subtracted. These noise remnants tend
to be randomly distributed over time and frequency, causing a phenomenon known as musical
artifacts. If the noise floor estimate is too big in the other hand, spectral components of the
speech might get canceled with the noise. This results in a severely deteriorated speech quality,
typical to almost every commercial implementation of this algorithm. It has already been shown
that noise reduction and speech quality cannot be maintained at the same time using spectral
subtraction [4]. There is rather a trade-off to be chosen, which may depend on the type of noise
encoutered by the application.

Figure 1.1: General form of the spectral subtraction algorithm. [8]

1.2 Multi-Channel Speech Enhancement Methods

When more than one microphone is available, not only the temporal information, but also the
spatial features of the sound field can be utilized. This allows for richer speech enhancement con-
cepts like beamforming and source separation. A beamformer exploits the fact that the speech
and noise signals originate from different locations, which can be distinguished by the direction
of the impinging sound waves. In source separation, the concept of statistical independence is
used to distinguish between speech and noise, which are statistically independent in general.
Both methods are addressed in this thesis, although the former attains more attention.

– 12 – May 7, 2013

1.3 Motivation and Problem Statement

A beamformer can be thought of a spatial filter, which achieves speech enhancement by
attenuating signals which do not originate from the same direction as the desired speech signal.
Figure 1.2 illustrates this idea in form of a beam pattern. Because of the spatial information being
used in this process, beamforming allows for a performance which surpasses the limitations of
single channel speech enhancement methods. Conventional beamformers such as the delay-and-
sum structure are designed to operate on a narrow frequency band, like in a radar application
[9]. For speech signals, broadband or superdirective beamformers are used instead. They allow
for two basic concepts: The first is used for blocking a signal that originates from a certain
direction using the null steering technique. And the second one prefers a certain direction while
suppressing all other directions at the same time using the adaptive filter-and-sum beamformer.
Examples for such structures are the Minimum Variance Distortionless Response filter or the
Frost beamformer. A comprehensive overview can be found in [9], [1], [10].

While these beamformers delivers excellent results in theory, in a practical implementation
several robustness issues arise. Successfully steering the beam or mainlobe towards the desired
speech source greatly depends on both the sensitivity and placement of the microphones being
used. Implementations like the generalized sidelobe canceler alleviate these problems. However,
spatial filtering alone cannot deliver sufficient noise suppression especially in diffuse noise fields.
Therefore, a post-processing stage is used to further enhance the beamformer output. These
so-called postfilters attracted a lot of scientific interest during the last decade. The earliest
postfilters have been derived from the single-channel Wiener filter and operate as noise canceler
on the output of a beamformer [2], [11]. Recent approaches also use the spatial information made
available by the beamformer, and are therefore termed multi-channel postfilters. Examples are
the Transient Beam to Reference Ratio [12], the Direct to Diffuse Ratio [13] or the Multichannel
Speech Presence Probability [14].

Figure 1.2: Beam pattern for a filter-and-sum beamformer. The desired speech signal is located at 90°,
the mainlobe points toward this direction. Also, a noise source is located at 60°, for which the
beampattern shows a great attenutation due to null steering [9].

1.3 Motivation and Problem Statement

During the last years embedded systems experienced a substantial increase in processing power
combined with a decline in prices. As of today, the ARM Cortex-A9 MCU provides well over
4000Mflops, while complete single-board computers employing this chip start at around $40.

May 7, 2013 – 13 –

1 Introduction

Therefore, multi-microphone approaches for speech enhancement gained an increasing interest
in industrial and commercial applications. To advance their technological lead, the company
Commend asked for an implementation of a multichannel speech enhancement algorithm run-
ning on such an embedded system. The task was defined as a research project funded by the
Austrian Research Promotion Agency (FFG) for a year, yielding a prototype and this thesis as
its final result. Therefore, this work not only illuminates the scientific aspects of multichannel
speech enhancement systems, but also the design and implementation processes along the way.

The speech enhancement application at Commend requires a microphone array that is built
into an intercom device. The physical dimensions of such a device allow for a linear array with a
maximum aperture of 15cm. The array consists of up to four ECM or MEMS microphones, thus
the microphones are spaced 5cm apart. A typical use case for such a device is an emergency
telephone in a subway train station. Hence, the speaker is located close to the device while the
ambient noise originates from farther away. For the prototype implementation, the WandBoard
[15] using the Freescale i.MX6 Solo processor has been chosen as state of the art embedded
system. It comprises a fully-featured single-board computer equipped with Gigabit LAN, USB
OTG, SATA, HDMI and camera interfaces, and an audio codec. The four microphones are
connected to the WandBoard using an USB soundcard.

Since the prototype is intended for a live demonstration, the vast range of speech enhancement
algorithms is somewhat narrowed to the ones that operate in near real-time, which means using
only small blocks of audio data at a time. Further, the used algorithms are constrained to a
limited numerical complexity which allows them to be implemented on an embedded system.
For its robustness and moderate complexity, the generalized sidelobe canceler has been chosen
as broadband beamformer. To form a complete multichannel speech enhancement system, a
postfilter and a source location algorithm are needed. Out of this field, the best algorithms in
terms of performance, robustness and numerical complexity are evaluated and used for the final
implementation.

1.4 Organization and Aim of this Work

According to the three phases of the research project, the thesis is organized in three main
blocks, as shown in figure 1.3: In the Theory part, all concepts used in this work are presented
in detail. In the Experiments part, the matlab experiments of the implemented methods are
documented. In the Prototype part, the performance of C++ implementation is demonstrated.

The Theory phase spans the first four chapters, where chapter 2 introduces the sound wave
propagation model, which is used to derive the basic principles of direct sound fields and diffuse
sound fields. Their properties are used to define the signal model of the application, where the
desired speech is located in the near field and the noise components are located in the far field.
The signal model serves as a basis for the beamforming methods introduced in chapter 3. There,
the GSC beamformer and its building blocks are described. Four different blocking matrix (BM)
algorithms, and two adaption algorithms for the adaptive interference canceler (AIC) are intro-
duced in this chapter. The beamformer needs to be steered towards the desired source. This
task is termed source location and is covered in chapter 4. Five different source location algo-
rithms are characterized. In an actual application, using a beamformer alone yields only a small
amount of noise reduction. Additional performance is gained by using a multichannel postfilter.
This relatively new field is illuminated in chapter 5 by presenting three recent approaches. In

– 14 – May 7, 2013

1.4 Organization and Aim of this Work

Figure 1.3: Organization of this thesis.

order to gain some savings in computational complexity, the principle and successful application
of a gammatone filterbank is also shown.

The Simulation phase is covered in chapter 6. It deals with the evaluation of all these algo-
rithms using three speech databases. This evaluation is done as a series of Matlab ®experiments,
where the optimal combination of the algorithms is found by using two psychoacoustic quality
measures. The first is the well-known PESQ score, which delivers a MOS-like score. The second
one is the Perceptual Evaluation Methods for Audio Source Separation (PEASS) score, recently
presented in [16] and [17].

The Prototype phase covers the real-time implementation of the optimal combination of the
algorithms, documented in chapter 7. A C++ prototype has been implemented using open
source tools. The verification and validation steps of the implementation compared to the
Matlab simulation are shown. Finally, some performance results are presented for testing the
prototype in a live scenario using noise and speech signals at the testing site at Commend
headquarters.

May 7, 2013 – 15 –

Multi-channel Speech Enhancement

2
Sound fields

In this chapter, wave propagation and sound fields are introduced to provide a basis for the
challenges of the upcoming sections. Further, the process of measuring the relative room impulse
response between two microphones is described in detail. And finally, a quick introduction to
MIMO signal processing is given as a prerequisite for beamforming.

2.1 Wave Propagation

Sound waves are mechanical vibrations propagating through matter. They can be described
in terms of a sound pressure field p(~r, t) and a sound velocity vector field ~v(~r, t). The sound
pressure in pascals describes the pressure exerted at the medium, which is air in this case. And
the sound velocity describes the velocity, at which air particles move as they transmit the sound
wave. Both are functions of a spatial vector ~r = [x, y, z]T and time t.

A microphone can be thought of as a sensor, which measures sound pressure at a distinct
location in space. To construct an accurate model for sound wave propagation, it is necessary
to describe the sound pressure at any given point in space for a specific sound source.

Euler’s equation describes the connection between sound pressure and sound velocity. The
gradient of the sound pressure is proportional to the time derivative of the sound velocity [18],
i.e.

~∇p = −ρ0
∂~v

∂t
. (2.1)

By using

~∇~v = − 1

ρ0c2

∂p

∂t
(2.2)

– 16 – May 7, 2013

2.1 Wave Propagation

a second order differential equation, known as the acoustic wave equation, can be formulated

∆p = ~∇T ~∇p =
1

c2

∂2p

∂t2
. (2.3)

Where ρ0 is the density of the medium at rest, and c denotes the speed of sound. In cartesian
coordinates, the Laplacian represents

∆ ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.4)

A homogeneous solution for the differential equation in 2.3 can be found to be [18]

p(~r, t) = p̂ej
~kT ~r−jωt, (2.5)

where ~k = [kx, ky, kz]
T is the wave number for each dimension, and p̂ is the amplitude. The

wave number or propagation constant [19] measures wavelengths per meter, and is defined as

k =
ω

c
=

2π

λ
,

where ω = 2πf , λ is the wavelength, and c is the speed of sound in air, being approximately
343ms at 20°C.

Equation 2.5 can be recognized as a harmonic plane wave [19], traveling into the direction of
~r. Clearly, the source of such a plane wave is located infinitely far away. Therefore, this mode
is only sufficient if the distance from the sound source to the microphone is large enough. Then,
the microphone is said to be in the farfield of the source. For the nearfield however, a spherical
wave model might be used instead. Spherical waves imply spherical surfaces of constant sound
pressure. This means, that the wave fronts are concentric spheres originating from a very small
point source, where this sound pressure is generated.

Using polar coordinates, equation 2.3 can be written as

∂2p

∂r2
+

2

r

∂p

∂r
=

1

c2

∂2p

∂t2
, (2.6)

with r being the radius from the origin. For the sound pressure of a spherical wave field, a
simple solution to equation 2.6 is given in [19], i.e.

p(r, t) =
jωρ0

4πr
Q̂ejωt−jkr, (2.7)

where Q̂ in
[
m3

s

]
is the peak volume velocity of the point source, at which matter (air) is

expelled in order to generate the sound pressure p(r, t). It is worth noting that the sound
pressure diminishes with increasing distance from the source r in a linear manner. Further, the

May 7, 2013 – 17 –

2 Sound fields

sound velocity (or particle velocity) is given as

v(r, t) =
p(r, t)

ρ0c

(
1 +

1

jkr

)
. (2.8)

The ratio between p(r, t) and v(r, t) is known as the impedance of the medium (air), and equates
to

p(r, t)

v(r, t)
=

ρ0c

1 + 1
jkr

. (2.9)

In the farfield of the sound source, where kr � this ratio tends asymptotically to ρ0c. This
value is known as the characteristic impedance. For air at 20°C, it is 416

[
Pa
ms−1

]
.

In the nearfield of the sound source, when either the distance r or the wave number k is small,
the ratio is complex, meaning that sound pressure and sound velocity are not in phase any more.

2.2 Spatial Sampling of Sound Fields

The most general scenario, where spherical sound waves apply is given in figure 2.1. Here, M
microphones are located in the nearfield of a single point sound source sm. For simplicity, the
microphones are considered to be omnidirectional sound pressure receivers with perfect linearity
and no additive system noise. In this scenario, each microphone is located at a distance ‖rm‖
from an arbitrary coordinate origin [ex, ey, ez]T . The point source is located at ‖rs‖.

Figure 2.1: Spatial sampling of one source with M microphones, taken from [2].

According to the result from equation 2.7, the sound pressure at distance r is attenuated by
1
r , and delayed in time by kr. Using s(t) for the signal at the source, the output zm of the m-th

– 18 – May 7, 2013

2.3 Signal Model

microphone can be written as

zm(t) =
1

‖rm − rs‖
s
(
t− ‖rm − rs‖

c

)
(2.10)

If the Fourier transform of s(t) exists, equation 2.10 can be written as

Zm(jΩ) =
1

‖rm − rs‖
S(jΩ)ej2πf

‖rm−rs‖
c . (2.11)

By combining the attenuation and the time delay into the frequency-dependent factor Am(jΩ),
equation 2.11 simplifies to

Zm(jΩ) = Am(jΩ)S(jΩ). (2.12)

Furthermore, introducing vector notation all M microphone signals can be expressed as

Z(jΩ) = A(jΩ)S(jΩ), (2.13)

with

Z(jΩ) =
[
Z1(jΩ) Z2(jΩ) · · · ZM (jΩ)

]T
,

and

A(jΩ) =
[
A1(jΩ) A2(jΩ) · · · AM (jΩ)

]T
.

Thereby, the vector Z(jΩ) denotes the spatial images of the source signal S(jΩ). It contains
the source signal, spatially sampled at the locations r1 · · · rM for each frequency jΩ.
For a real-world scenario although, this propagation model is too simple as it does not consider
more complicated acoustic phenomena like reverberation and noise. Therefore, the model is
modified to include these effects in the next chapter.

2.3 Signal Model

The given speech enhancement application assumes a microphone array that is built into an
intercom device. Based on existing requirements, the following three restrictions are defined:

� The speaker is located close to the microphones when speaking, usually less than 0.5m.

� Due to the physical dimensions of an intercom device, the array aperture is small. Based
on aforementioned constraints, the inter-microphone distance is 5cm.

� The ambient noise originates from outside the critical distance [19] of the enclosing room,
i.e. the noise is modeled as diffuse sound.

Based on these conditions, the spherical wave propagation model from section 2.1 is extended to
the following signal model: The user or speaker is modeled as the source signal s(t), and is located

May 7, 2013 – 19 –

2 Sound fields

in a noisy and reverberant environment. Further, a microphone array of m = 1 . . .M sensors
is located close to the source. For simplicity, the array consists of linearly spaced microphones.
Each microphone is modeled as omnidirectional sound pressure receiver with equal sensitivity
over its entire frequency range. Each microphone picks up a signal zm(t) which contains a
reverberated image of the source s(t), and an additive noise component. Both the source and
the noise signals are of non-stationary nature, since their content is unknown. Due to the small
distance to the source origin, the microphones pick up mainly direct sound from the source
signal with only little reverberation. On the contrary, the noise picked up by each microphone
is mainly a diffuse sound, since we assume that its source is located outside the critical distance
of the setup. Therefore, there is no distinct noise origin in this signal model [19]. The complete
signal model is shown in figure 2.2.

Figure 2.2: Signal model.

The acoustic path from the source to each microphone is known as Acoustic Transfer Function
(ATF). It models the filter am(t) which specifies the reverberated source signal received by the
m-th microphone. The signal zm(t) received at each microphone is an additive mixture of the
reverberated source signal and the interfering noise. The source and the interfering noise signals
are assumed to be uncorrelated. This results in the following signal model

zm(t) = am(t) ∗ s(t) + nm(t),

which can be expressed in the fourier-domain as

Zm(jΩ) = Am(jΩ)S(jΩ) +Nm(jΩ),

or in a more compact vector notation, covering all M microphones:

Z(jΩ) = A(jΩ)S(jΩ) +N(jΩ). (2.14)

The vector A contains the acoustic transfer function from the source towards the m-th micro-
phone. Therefore it fully describes both the spatial layout and the frequency response from the
source towards the array. The elements of A depict a spatial filter, while the dependency on jΩ
indicates a frequency filter.

– 20 – May 7, 2013

2.4 Acoustic Transfer Function

2.4 Acoustic Transfer Function

In the presented signal model, the acoustic paths from the source to the microphones are de-
scribed as linear, time-invariant FIR filters

A(jΩ) =
[
A1(jΩ) A2(jΩ) · · · AM (jΩ)

]T
.

Each filter Am(jΩ) depicts the room impulse response measured from the source’s location to
the m-th microphone. In this work, the room impulse response is referred to as acoustic transfer
function (ATF).

A typical ATF can be quite long if the enclosing room has a long reverberation time. An
example taken from [1] is shown in figure 2.3.

Figure 2.3: Typical ATF, taken from [1].

It can be seen that the ATF consists of two parts: The leftmost, highest spikes represent the
direct sound propagation path along with early reflections from nearby objects. The second
part consists of random reflections and late arrivals, which overlap to the so-called tail. Clearly,
a long ATF consisting of thousands of taps is hard to estimate, especially when the excitation
signal s(t) is unknown.

2.5 Relative Transfer Function

A practical method to overcome the problem of estimating a long ATF is to use the Relative
Transfer Function (RTF) between two microphones. According to [20], RTFs are much shorter
than ATFs and hence easier to estimate. The RTFs Ã(jΩ) are defined as the ratio between the
ATFs and a reference ATF

Ã(jΩ) =
[
1 A2(jΩ)

A1(jΩ)
A3(jΩ)
A1(jΩ) · · · AM (jΩ)

A1(jΩ)

]T
. (2.15)

May 7, 2013 – 21 –

2 Sound fields

Here, the propagation path to the first microphone has been used as reference ATF.
There are two things to be considered when using RTFs: First, the ATFs may have zeros outside
the unit circle, since they are not necessarily minimum phase. Hence, the RTFs are non-causal
filters which have to be modeled with negative time delays to ensure stability. And this time
delay needs to be long enough to allow the FIR assumption to be met.

Second, the RTFs do not model the propagation path to the source, but rather to the reference
microphone. This means that a beamformer which uses the RTFs cannot estimate the source
signal s(t), but rather the reverberated source image at the first microphone s1(t) = a1(t) ∗ s(t).
However, if the reverberation time of the setup is small, this is not a problem.

2.6 Spatial Coherence

The intended use case for this multichannel speech enhancement project is hands-free communi-
cation. Target applications would be emergency telephones, ticket booths and office intercoms,
as well as toll stations or help points. In virtually all of these situations, the speaker is located in
the direct vicinity of the device, whereas the interfering noise source is more remote. Therefore,
the microphone array almost certainly encounters a directional sound field for the speaker, and
a diffuse noise field. Directional sound impings only from a single direction or point source,
whereas diffuse sound arrives from all directions equally strong, and has therefore no distinct
origin. For applications such as car interiors or offices, the noise field can even be modeled by
an ideal spherically isotropic noise field [21] [13] [1].

The spatial correlation of a sound field is characterized by the complex cross-coherence func-
tion. Between the ith and jth microphone, the coherence is given as

γZiZj (jΩ) =
ΦZiZj (jΩ)√

ΦZiZi(jΩ)ΦZjZj (jΩ)
, (2.16)

where ΦZiZj (jΩ) denotes the cross-spectrum of Zi(jΩ) and Zj(jΩ). Assuming equal power levels
at each microphone, the ideal spherical diffuse noise sound field features a purely real coherence
function [19], determined as

γNiNj (jΩ) =
sin(kdij)

kdij
, (2.17)

where k = ω
c is the wave number and dij the distance between microphone i and j. In contrast,

an ideal directional sound field is fully coherent towards the direction of the impinging sound
waves. Hence, the coherence contains the direction of the source as phase information Θs, and
is given as

γSiSj (jΩ) = ejΘsΩ. (2.18)

Assuming an ideal spherical diffuse sound field for noise and an ideal directional sound field for
speech has the advantage of known spatial coherence functions for both cases. Otherwise the
underlying correlation matrices for noise ΦNN (jΩ) and speech ΦSS(jΩ) have to be estimated,
which is cumbersome in practice.

Another useful measure in spatial signal processing is the squared coherence [10]. It is a real

– 22 – May 7, 2013

2.7 ATF Measurement

number between 0 and 1 and indicates the normalized correlation between the i-th and j-th
microphone. It is given as

|γZiZj (jΩ)|2 =
|ΦZiZj (jΩ)|2

ΦZiZi(jΩ)ΦZjZj (jΩ)
. (2.19)

Inserting into equations 2.17 and 2.18, the squared coherence of the ideal diffuse and the ideal
directional sound fields turn out to be

|γNiNj |2(jΩ) =
sin(kdij)

2

k2d2
ij

, (2.20)

and

|γSiSj |2(jΩ) = 1, (2.21)

respectively. Especially the result of equation 2.21 is expected, because an ideal directional
sound field is also fully coherent.

2.7 ATF Measurement

Even though the assumptions made in section 2.3 are already experimentally proven in [20] and
[19], it is advantageous to know to which extent they apply to a real-world scenario. Further,
it is necessary to ensure that the simplifications made for the spatial coherence of the noise and
speech sound fields in section 2.6 are valid for the given application. Therefore, the ATFs, RTFs
and spatial coherences have been measured using the following setup: A linear microphone array
and a measurement loudspeaker have been placed in a typical office room of about 4x6m. Hence
the ATFs can be measured from the loudspeaker’s position to the microphone array’s position.
The array consists of four Audix TM1 Plus measurement microphones, each 5cm apart. To
measure the speaker’s ATFs, the loudspeaker is placed at a distance of 0.5m in front of the
array to attain mainly direct sound. To measure the noise ATFs, the speaker is placed outside
the critical distance of 3m to get mainly diffuse sound. Figure 2.4 shows the measurement setup
in detail. Green arrows depict direct sound, red ones diffuse sound.

Measuring the ATF is identical to measuring the room impulse response, which is a common
task in acoustics engineering. A good overview is given in [22] and [23]. Most methods use a mea-
surement pulse or waveform to excite the unknown system. The measured signal is the impulse
response of the unknown system convoluted with the excitation waveform. By using a matched
filter, the impulse response can be obtained through deconvolution. Commonly used excitation
signals are linear or exponential sine sweeps, dirac-like pulses or pseudo-random sequences. For
this task, a maximum length sequence (MLS) has been chosen as excitation waveform for the
following reasons:

� The matched filter for the MLS is easily found, it is the time-reversed MLS.

� No additional low-pass or band-pass filtering is needed after deconvolution, since all fre-
quencies are equally well excited.

May 7, 2013 – 23 –

2 Sound fields

� The crest factor for an MLS is 3dB lower than for a sine, hence a better SNR can be
achieved.

� Generating an MLS is extremely simple using a linear feedback shift register (LFSR).

Figure 2.4: ATF measurement setup: The loudspeaker at the 3m position produces a diffuse sound field at
the array, while the loudspeaker in the 0.5m position produces an almost ideal directional sound
field with only little reverberation.

Measuring the impulse response of an unknown system with an MLS is described in [24]. The
measuring procedure works as follows: The loudspeaker plays the MLS S(jΩ), the microphones
pick up the signals

Zm(jΩ) = Am(jΩ)S(jΩ).

Side effects of measurement noise are intentionally omitted, for simplicity. The recorded signal
Zm(jΩ) is then convolved with the time-reversed MLS to obtain an estimate of the ATF Am(jΩ),
which simplifies to a multiplication with the conjugated MLS in the frequency domain

Âm(jΩ) = Zm(jΩ)S∗(jΩ).

One of the remarkable features of an MLS is the fact that its magnitude spectrum is 1 over the
entire frequency range, and its phase spectrum is pseudo-random. Therefore, a convolution of
the MLS S(jΩ) with its own time-reverse S∗(jΩ) yields a dirac pulse δ(0) at time-lag zero. This
relation renders the estimate of the ATF to

Âm(jΩ) = Am(jΩ)S(jΩ)S∗(jΩ) = Am(jΩ).

For this experiment, a sampling frequency of 48kHz has been used. The echo tail is expected to
be no longer than 0.5s, which requires the MLS to run for at least 1s in order to circumvent the

– 24 – May 7, 2013

2.7 ATF Measurement

convolution effects of the FFT. Valid lengths of MLSs are 2n − 1. At the sampling frequency
given, the nearest n would be 16. The generator polynomial used for the MLS is: p16(x) =
x12 + x3 + x+ 1.

Since this method requires a fully linear system, nonlinearities in the loudspeaker or the mi-
crophones distort the measured impulse response. The same is true for measurement noise. To
avoid this, a highly linear measurement equipment has been used. For replaying the MLS, a
Geithain RL906 measurement loudspeaker is used. The ATFs are recorded using the four Audix
TM1 Plus measurement microphones in a linear array.

Using the setup in figure 2.4, two sets of ATFs have been measured: First, the loudspeaker
has been placed 3m away from the array. This setup simulates an ambient noise source located
outside of the critical distance of the room. We obtain mainly a diffuse sound. Second, the
loudspeaker has been placed 0.5m away from the array. This setup simulates a speaker close to
the array, providing mainly directional sound. Figure 2.5 shows the measured ATF for the noise
setup. Panel (a) shows the ATF in the time domain. It can be seen that the echo tail is almost
0.5s long. Panel (b) and (c) show the magnitude and phase spectra, respectively. Figure 2.6
shows the measured ATF for the directional sound setup. It can be seen that the ATF is shorter
if the loudspeaker is placed closer to the array. This behavior is expected. It is interesting to
note that the phase spectrum shown in panel (c) is almost linear, while the phase was randomly
distributed for the noise ATF. This indicates that a single peak dominates the ATF. In fact, only
little reverberation can be identified in this ATF. Figure 2.7 shows the calculated RTF between
microphone 1 and 2 for the noise setup. The FFT length has been set to 100ms, leaving a 50ms
window for both the causal and non-causal part of the RTF. Even though this is already a large
window size the RTF does not decay, and thereby violates the FIR assumption. Since there is
no distinct peak visible, this RTF contains mainly diffuse sound. Figure 2.8 shows the calcu-
lated RTF between microphone 1 and 2 for the directional sound setup. Here, the RTF quickly
decays, as mentioned in [20]. There is a dominant peak observable at time lag 0s, indicating
mainly directional sound in this ATF. The small peak at about 0.004s indicates an obstacle
at about 1m distance. However, this peak is small enough to model the RTF as a delay-only
filter. Figure 2.9 shows the squared coherence between microphone 1 and 2 for the noise setup.
The squared coherence is similar to the squared coherence of the ideal diffuse sound field in
equation 2.20. Especially for frequencies below 2000Hz a high coherence (and thus correlation)
between the microphones can be observed. It can be concluded that this room can produce
an almost ideal diffuse sound field. Figure 2.10 shows the squared coherence between micro-
phone 1 and 2 for the directional sound setup. The squared coherence is strong throughout all
frequencies. Again, this coincides with the ideal case of a directional sound field in equation 2.21.

This experiment has been repeated with two other office rooms of about 2.5x4m and 6x8m
in size. Furthermore, the distance for the noise setup has been varied in the range of 2 to 6m.
The results are similar to the ones presented above. From the shape of the observed RTFs and
squared coherences it can be concluded, that modeling the speech signal as direct sound and
the ambient noise as diffuse sound is valid for this scenario.

May 7, 2013 – 25 –

2 Sound fields

Figure 2.5: ATF measurement for mic1 from 3m distance. The EIR is over 0.3s long. (a) time domain, (b)
magnitude spectrum, (c) phase spectrum.

Figure 2.6: ATF measurement for mic1 from 0.5m distance. The small peaks at about 0.04s indicate some
reverberation. (a) time domain, (b) magnitude spectrum, (c) phase spectrum.

– 26 – May 7, 2013

2.7 ATF Measurement

Figure 2.7: RTF between mic1 and 2 from 3m distance. The FIR constraint is clearly not met for this
observation window. (a) time domain, (b) magnitude spectrum, (c) phase spectrum.

Figure 2.8: RTF between mic1 and 2 from 0.5m distance. The single, dominant peak indicates an almost
perfect directional sound field. (a) time domain, (b) magnitude spectrum, (c) phase spectrum.

May 7, 2013 – 27 –

2 Sound fields

Figure 2.9: Coherence between mic1 and 2 from 3m distance.

Figure 2.10: Coherence between mic1 and 2 from 0.5m distance.

2.8 MIMO Systems

Sound fields are both time and space dependent. With a single sensor, only temporal sampling
can be done. When multiple sensors are available, also spatial sampling is possible. A beam-
former can be thought of a digital filter which operates in both domains. The most general
model for such a filter is a multiple input – multiple output or MIMO system. It models M ′

inputs sm′(t) and M outputs zm(t), where each input is connected with each output via a simple
FIR filter hmm′ with L taps. Also, an uncorrelated interference noise nm(t) is added to each
of the outputs, as shown in figure 2.11. In this example, the system of coupled ATFs hmm′

builds the MIMO system. The ATFs are the acoustic paths between the loudspeakers and the
microphones. Therefore, the inputs of the MIMO system are the loudspeaker signals sm′(t) and
its outputs are the microphone signals zm(t). This might sound confusing, but it is correct from
the MIMO system’s perspective.

– 28 – May 7, 2013

2.8 MIMO Systems

Figure 2.11: Acoustical MIMO system.

The interferences nm(t) could be ambient noise or sensor noise. To estimate the filters in this
scenario, the well-known Wiener filter can be extended from the single input – single output or
SISO case to the MIMO case [25]. By defining the filter coefficients of the ATFs hmm′ and the
sampled signal sm′(k) of the m-th sensor as vectors

hmm′ =
[
hmm′,0 hmm′,1 · · · hmm′,L−1

]T
sm′(k) =

[
sm′(k) sm′(k − 1) · · · sm′(k − L+ 1)

]T
,

a single output zm(k) can be written as a MISO system

zm(k) =
M ′∑
m′=1

hTmm′sm′(k) + nm(k) = hTm:s(k) + nm(k), (2.22)

where the notation in hm: is borrowed from Matlab and denotes a M ′L × 1 stacked column
vector

hm: =
[
hTm1′ hTm2′ · · · hTmM ′

]T
.

Also, all M ′ blocks of input signals sm′ are concatenated to a M ′L× 1 column vector

s =
[
sT1 sT2 · · · sTM ′

]T
.

By further combination of the filters hmm′ into a compact M ×M ′ matrix

May 7, 2013 – 29 –

2 Sound fields

H =

hT11 hT12 · · · hT1M ′

hT21 hT22 · · · hT2M ′
...

...
. . .

...

hTM1 hTM2 · · · hTMM ′

 =

hT1:

hT2:

...

hTM :

 ,
N MISO systems can be written as a single MIMO system

z(k) = Hs(k) + n(k). (2.23)

With the system estimate Ĥ, an error signal vector e(k) can be defined as

e(k) = z(k)− Ĥs(k) =
M∑
m=1

em(k), (2.24)

consisting of M error signals

em(k) = zm(k)− ĥTm:s(k). (2.25)

The MIMO mean squared error (MSE) or cost function is then defined as

J(Ĥ) = E{eT (k)e(k)} =
M∑
m=1

E{e2
m(k)} =

M∑
m=1

Jm(ĥm:), (2.26)

i.e. it can be decomposed into M independent cost functions [25]

Jm(ĥm:) = E{[zm(k)− ĥTm:s(k)][zm(k)− ĥTm:s(k)]T }
= E{zm(k)zTm(k)− zm(k)sT (k)ĥm: − ĥTm:s(k)zTm(k) + ĥTm:s(k)s(k)T ĥm:}
= σ2

zm − 2ĥTm:pszm + ĥTm:Rssĥm: ,

(2.27)

where Rss is the M ′L×M ′L input signal covariance matrix

Rss = E{s(k)s(k)T } =

Rs1s1 Rs1s2 · · · Rs1sM′

Rs2s1 Rs2s2 · · · Rs2sM′

...
...

. . .
...

RsM′s1 RsM′s2 · · · RsM′sM′

 , (2.28)

which has a block Toeplitz structure. The symbol σ2
zm denotes the variance of the output signal

zm(k), and pszm is the cross-correlation vector between all inputs s(k) and zn(k)

pszm = E{s(k)z(k)T }. (2.29)

The optimal system estimate Ĥopt with respect to the mean squared error (MSE) criterion is

– 30 – May 7, 2013

2.8 MIMO Systems

found by evaluating the minimum of the cost function in equation 2.26 as shown in [26]. Taking
the gradient of the convex cost function J(·) with respect to all ĥTmm′ and equating the result
to zero yields

∇J =
∂J(Ĥ)

∂ĤT
=

M∑
m=1

∂Jm(ĥm:)

∂ĥTm:

=

M∑
m=1

[−2pszm + 2Rssĥm:]
!

= 0, (2.30)

which can easily be identified as the sum of M independent MISO Wiener-Hopf equations.
Thus, any MIMO Wiener filter can be decomposed into M independent MISO Wiener filters.
The MSE-optimal MISO Wiener filter is given by solving equation 2.30, leading to

ĥm:,opt = R−1
ss pszm . (2.31)

This solution is not very practical, because it requires the inverse of Rss. Since this matrix is
of size size M ′L ×M ′L, its inversion has a computational complexity of O(M ′3L3). For long
filters, where L reaches several thousand taps, this inversion virtually impossible. Therefore,
adaptive algorithms like the normalized least mean squares (NLMS) algorithm or one of its
many variants presented in [25] are used in general. This well-known SISO NLMS algorithm can
easily be extended to the MISO case. The only difference is that M ′ filters ĥm:,opt are adapted
simultaneously by using the common error signal em(k) from equation 2.25. In [25], the MISO
NLMS algorithm is given as

ĥm:(k) = ĥm:(k − 1) + µ
s(k)em(k)

sT (k)s(k) + δ
(2.32)

where em(k) is the sum of the error signals from all M ′ filter estimates ĥm:′ defined in equation
2.25. The learning rate µ and the regularization constant δ have to be chosen according to
0 < µ < 2, and δ > 0.

The NLMS algorithm minimizes the MISO cost function Jm(ĥm:), and thereby identifies
M ′ filters ĥm: simultaneously. As shown, applying the algorithm to all M independent MISO
systems independently is equivalent to minimizing the MIMO cost function J(Ĥ).
Because of the filter operations in equation 2.25 this algorithm has a quadratic complexity of
O(M ′2L2). While this is already much better than cubic complexity, it can even be further
reduced when using the frequency domain representation of the MISO NLMS algorithm.

In the following, we examine the frequency domain (FD) solution of the MISO Wiener filter for
two reasons: First, using the FD representation of FIR filters reduces the numerical complexity
from O(M ′2L2) to O(M ′Llog(M ′L)). Second, non-causal filter structures are required when
using RTFs, as shown. Basically, filters with negative time delays could also be designed using
bulk delays, as shown in [27]. But then an extra delay is necessary each time a non-causal
filter is used, and these delays sum up quickly when there are many signal processing stages like
beamformer, postfilter, echo canceler and noise canceler.
Since low processing delays are important in real-time applications like hands-free telephony,
recent approaches like the Subband Feedback Controlled Generalized Sidelobe Canceler [28] are
using noncausal filters for all stages, i.e. the same delay is reused.

The signal model for a MISO system from equation 2.22 can easily be transformed into the
frequency domain by using the overlap-add method and windowing. By defining a stride of L
samples and an overlap factor of 50% (for simplicity) we obtain frames of length 2L. A windowed

May 7, 2013 – 31 –

2 Sound fields

block of the output signal zm is given as

z̃m(k − l) = zm(k − l)w(l), (2.33)

where the window function

w =
[
w0 w1 · · · w2L−1

]T
minimizes aliasing which would otherwise occur due to circular

convolution effects of the FFT. Most implementations use the hanning window. In vector nota-
tion, the 2L× 2L DFT matrix F defines the frequency domain representation of a block of the
output signal zm

Zm(jΩ) = F z̃m. (2.34)

The MISO system from equation 2.22 is transformed to the frequency domain as

Zm(jΩ) =

M ′∑
m′=1

HH
mm′(jΩ)Sm′(jΩ) +Nm(jΩ)

= HH
m:(jΩ)S(jΩ) +Nm(jΩ).

(2.35)

With the frequency-domain representation of the error signal in equation 2.25

Em(jΩ) = Zm(jΩ)−HH
m:(jΩ)S(jΩ),

the cost function evaluates to

Jm(ĤH
m:(jΩ)) = E{|Em(jΩ)|2}

= E{[Zm(jΩ)− ĤH
m:(jΩ)S(jΩ)][Zm(jΩ)− ĤH

m:(jΩ)S(jΩ)]H}
= Φzmzm(jΩ)− 2ĤH

m:(jΩ)Φszm(jΩ) + ĤH
m:(jΩ)Φss(jΩ)Ĥm:(jΩ),

(2.36)

where Φss(jΩ) is the M ′ ×M ′ input signal power-spectral density matrix, and Φszm(jΩ) is the
cross-spectral density vector between all inputs and the output signal Zm(jΩ). And Φzmzm(jΩ)
is the power spectrum estimate of the output signal Zm(jΩ). Taking the derivative of the above
cost function and equating it to zero gives

∇Jm =
∂Jm(Ĥm:,opt(jΩ))

∂ĤH
m:,opt(jΩ)

= −2Φszm(jΩ) + 2Φss(jΩ)Ĥm:,opt(jΩ)
!

= 0. (2.37)

The MSE-optimal solution for the noncausal MISO Wiener filter is

Ĥm:,opt(jΩ) = Φ−1
ss (jΩ)Φszm(jΩ). (2.38)

Similar as in the time domain approach, M ′ filters are optimized in a single step. The complexity
for inverting the matrix Φss is significantly reduced as its size is only M ′×M ′. While equation
2.38 provides a direct solution for the filters Ĥm:(jΩ) there is also an adaptive approach in form

– 32 – May 7, 2013

2.8 MIMO Systems

of the frequency domain multichannel NLMS algorithm [25], i.e.

Ĥm:(jΩ, k) = Ĥm:(jΩ, k − 1) + µ
S(jΩ, k)Em(jΩ, k)

S(jΩ, k)HS(jΩ, k) + δ
, (2.39)

where k denotes the signal frame, and the parameters µ and δ are selected as for the time domain
MISO NLMS in equation 2.32. The term S(jΩ, k)HS(jΩ, k) in the denominator represents the
combined energy of all input signal frames Sm′(jΩ, k) and can be easily computed using the
Frobenius norm S(jΩ, k)HS(jΩ, k) = ‖S(jΩ, k)‖22.

When the inputs of a MIMO system are microphones in an array structure like in figure
2.11, a remarkable observation can be made: While each single filter Ĥmm′(jΩ) represents the
frequency response of that channel, the M ×M ′ filter coefficients for a single frequency jΩ form
a spatial filter. Hence, both a frequency filter and a spatial filter are defined by the multichannel
Wiener filter H. Shaping the spatial response independently of the frequency response of that
filter is the main goal of adaptive beamforming.

May 7, 2013 – 33 –

Multi-channel Speech Enhancement

3
Beamforming Techniques

The reception of a specific signal under the presence of interfering noise can be greatly enhanced
by exploiting the spatial properties of the sound field. A beamformer can be thought of as
a multivariate filter that operates on the outputs of a sensor array. Originally, beamforming
was developed for radar and sonar systems. While these systems only deal with narrowband
signals, speech signals span several octaves. Further, the impinging speech signal is often highly
reverberated due to reflections from obstacles such as walls. Then the speech signal seemingly
originates from multiple directions at once.
Hence, the most important design goal of a beamformer is to ”listen” into a specific direction
with a given tolerance or beamwidth for all frequencies in the speech band. The spatial response
of a beamformer is termed beam pattern or directivity pattern. The shape of the beam pattern
is determined by the physical alignment of the array, which is measured in wavelengths [9].
To obtain the same beam pattern for each frequency, the array would have to be rescaled if
the wavelength changes. Since this is physically impossible, the beam pattern greatly varies
with frequency, depending on the beamformer architecture. In this chapter, the most important
architectures, such as the delay-and-sum and the filter-and-sum beamformer are derived as a
basis for the general sidelobe canceler.

3.1 Basic Principle

The aim of acoustic beamforming in general and multichannel speech enhancement in particular
is to estimate a desired source signal which is corrupted by reverberation, additive noise or other
unwanted sound sources. To accomplish this, the beamformer builds a spatial filter which listens
into the general direction of the desired source, and thereby masks out the unwanted sounds.
This basic principle is depicted in figure 3.1.

In the lower part of figure 3.1 a beamforming filter is shown in its most general form. In its
frequency domain representation, the output y(k) of the beamforming filter can be written as

Y (jΩ) =

M∑
m=1

Wm(jΩ)Zm(jΩ). (3.1)

where Zm(jΩ) is the signal received at the m-th microphone. It contains the reverberated source

– 34 – May 7, 2013

3.1 Basic Principle

Figure 3.1: Basic principle of acoustic beamforming taken from [9].

signal S(jΩ) and the summation of all the unwanted signals denoted as Nm(jΩ)

Zm(jΩ) = Am(jΩ)S(jΩ) +Nm(jΩ), (3.2)

where Am(jΩ) represents the ATF from the source signal to the m-th microphone. In vector
notation, the microphone signals can be written as

Z(jΩ) = A(jΩ)S(jΩ) +N(jΩ). (3.3)

The beamformer output Y (jΩ) in Equation 3.1 is

Y (jΩ) = WH(jΩ)Z(jΩ), (3.4)

using vector notation, where the beamforming filter is

W (jΩ) =
[
W1(jΩ) W2(jΩ) · · · WM (jΩ)

]T
.

This beamforming filter hast to perform two tasks: First, it has to point the so-called looking
direction of the beamformer towards the source signal S(jΩ), in order to let it pass. Second, it
should suppress the unwanted noises Nm(jΩ) as good as possible.

May 7, 2013 – 35 –

3 Beamforming Techniques

3.2 Performance Measures

3.2.1 Array Gain

The performance of a microphone array is often expressed as improvement of the SNR towards
the desired source signal. This improvement is measured as the ratio of the SNR at the array
output to the average SNR at the microphone signals. To evaluate the array gain of an arbitrary
beamformer, the following procedure introduced in [2] may be used: Assuming that the desired
speech and the interfering noise in equation 3.3 are mutually uncorrelated, the power spectral
density of the input signals Z(jΩ) evaluates to

ΦZZ(jΩ) = E{Z(jΩ)ZH(jΩ)}
= E{[A(jΩ)S(jΩ) +N(jΩ)][A(jΩ)S(jΩ) +N(jΩ)]H}
= A(jΩ)ΦSS(jΩ)AH(jΩ) + ΦNN (jΩ).

(3.5)

The input SNR is defined as the ratio of the average power of the speech and the average power
of the noise components

iSNR =
1
M Tr(A(jΩ)ΦSS(jΩ)AH(jΩ))

1
M Tr(ΦNN (jΩ))

, (3.6)

where Tr() is the trace operator. The SNR at the output Y (jΩ) can be derived by inspecting
equation 3.4

ΦY Y (jΩ) = E{Y (jΩ)Y ∗(jΩ)}
= E{WH(jΩ)Z(jΩ)ZH(jΩ)W (jΩ)}
= WH(jΩ)A(jΩ)ΦSSA

H(jΩ)W (jΩ) +WH(jΩ)ΦNNW (jΩ).

(3.7)

The output SNR is defined as the ratio of the speech power and the noise power at the beam-
former output

oSNR =
WH(jΩ)A(jΩ)ΦSSA

H(jΩ)W (jΩ)

WH(jΩ)ΦNNW (jΩ)
. (3.8)

The array gain is defined as the ratio of the output SNR and the input SNR [2]. It is given as

G(jΩ) =
WH(jΩ)A(jΩ)ΦSSA

H(jΩ)W (jΩ)

WH(jΩ)ΦNNW (jΩ)

Tr(ΦNN (jΩ))

Tr(A(jΩ)ΦSSAH(jΩ))
. (3.9)

If the noise signals at the microphones are completely uncorrelated, the cross-power spectra
matrix ΦNN (jΩ) turns out to be the diagonal matrix ΦNN (jΩ) = σ2

nIM×M , where IM×M is
the identity matrix. In this case, the array gain turn out to be

G(jΩ) =
ΦSSA(jΩ)AH(jΩ)W (jΩ)WH(jΩ)

σ2
nW

H(jΩ)W (jΩ)

σ2
nM

ΦSSA(jΩ)AH(jΩ))
= M. (3.10)

This result is the theoretical best-case scenario, where the noise signals at the microphones are
completely uncorrelated. As already seen from the coherence measurements in section 2.7 the

– 36 – May 7, 2013

3.2 Performance Measures

correlation between the noise signals increases drastically towards lower frequencies. Hence, the
array gain will be much lower than M for a real beamformer.

3.2.2 Directivity Pattern

In general the array gain depends on both frequency and looking direction of the beamformer,
therefore the directivity pattern is a more practical tool for examining the performance of a
beamformer. The directivity pattern is obtained by evaluating the spatial selectivity of the
beamformer for each looking direction Θ over the entire frequency range. The directional impulse
response power [2] of the beamforming filter W (jΩ) is calculated as

Ψ(jΩ,Θ) = WH(jΩ)aaHW (jΩ) =
∣∣WH(jΩ)a

∣∣2 , (3.11)

where vector a resembles the looking direction of the beamformer

a =
[
e−j∆τ0Ωfs e−j∆τ1Ωfs · · · e−j∆τMΩfs

]T
, (3.12)

and

∆τm = ∆dm
c cos(∆α−Θ) is the relative time delay between an arbitrary reference point and

the m-th microphone. The distance ∆dm and the corresponding angle ∆α are measured from
that reference point. In practice, this reference point is chosen to be one of the microphones.
The sample rate of the discrete system is denoted as fs. In this work, microphone 1 has been
selected to be the reference. Θ is the looking direction of the array and c is the speed of sound,
which is approximately 343ms at 20°C.

3.2.3 Directivity Index

The directivity pattern characterizes the performance of the beamformer depending on a certain
looking direction. If a more general measure is needed, it is advantageous to omit this angular
dependency. This can be achieved by using the Directivity Index. D(jΩ) is defined as the
ratio of the directivity pattern in looking direction and the directivity pattern averaged over all
directions [2]

D(jΩ) =
Ψ(jΩ,Θ)

1
2π

∫
A Ψ(jΩ,Θa)da

. (3.13)

For a flat geometry like a linear microphone array, A denotes the path along the unit circle, so
that each possible looking direction is covered by the integral. For a three-dimensional array
structure, A would have to be the surface of a unit sphere. According to [2], for an arbitrary
beamforming filter W (jΩ) and an ideal diffuse noise field the directivity index can be expressed
as

D(jΩ) =

∣∣WH(jΩ)a
∣∣2∑M

m=1

∑M
m′=1Wm(jΩ)W ∗m′(jΩ)γnmnm′ (jΩ)

, (3.14)

where γnmnm′ (jΩ) is the spatial coherence function between microphone m and m′ in the ideal
diffuse noise field, which is already given in equation 2.17.

May 7, 2013 – 37 –

3 Beamforming Techniques

3.3 Delay-and-Sum Beamformer

The Delay-and-Sum beamformer (DS-BF) is one of the simplest beamformer structures. As the
name suggests, all microphone signals are time-shifted such that the signal of interest is coherent
in all channels. After the summation stage, the signal of interest is constructively added, and
the noise signals are destructively added. This holds, as long as the noise is non-coherent and
does not originate from the same direction than the desired speech signal.

Figure 3.2: Structure of a delay-and-sum beamformer, taken from [29]. The frequency argument jΩfs in the
delay lines has been omitted for readability.

With the signal model defined in section 2.3, the output of the DS-BF with M sensors can be
written as

Y (jΩ) =
M∑
m=1

gme−jΩfsτmZm(jΩ), (3.15)

where fs is the sampling rate of the system. The delays τm and the weighing factors gm form
the spatial filter. The factor 1

M is incorporated into the weights to account for an unwanted
amplification of the target signal. If equation 3.15 is expressed in vector notation, the delays
and the weighing factors can be combined to form the spatial filter W (jΩ)

Y (jΩ) = WH(jΩ)Z(jΩ). (3.16)

With the signal model defined in equation 2.14 the beamformer output Y (jΩ) becomes

Y (jΩ) = WH(jΩ)A(jΩ)S(jΩ) +WH(jΩ)N(jΩ)

= Ŝ(jΩ) + N̂(jΩ).
(3.17)

The beamformer delivers an estimate of the desired source signal as Ŝ(jΩ), accompanied by
the modified noise signal N̂(jΩ). If the spatial filter W (jΩ) matches the ATFs A(jΩ) exactly,
all source signals Ŝ(jΩ) are constructively aligned and the estimate of the speech signal be-
comes Ŝ(jΩ) = S(jΩ), because then WH(jΩ)A(jΩ) = AH(jΩ)A(jΩ) = 1. For the delay-and-
sum beamformer, this condition can only be fulfilled if the ATFs consist of pure time delays.
Physically, this is only possible in a perfect anechoic environment. Since W (jΩ) points the
beamformer into the direction of the desired signal, it is often called a steering vector [9]. Other

– 38 – May 7, 2013

3.3 Delay-and-Sum Beamformer

directions, especially those with strong interfering noise signals, should be suppressed as much as
possible. These properties are best illustrated by the directivity pattern and the directivity index.

For simulation, a linear delay-and-sum beamforming array with M = 4 equally spaced mi-
crophones has been used. The inter-microphone distance d = 5cm. The desired signal impings
from 0°, or broadside direction, and the noise signal has been simulated with an ideal diffuse
sound field. The steering vector points at 0° and the sampling rate fs = 32kHz.

Figure 3.3 shows the directivity pattern in (a) and the directivity index in (b). The directivity
pattern has been calculated according to equation 3.11. The array gain Ψ(jΩ,Θ) is plotted in
decibels, encoded by the colorbar to the right hand side of the plot in (a). The mainlobe at 0°
is visible. However, the beamwidth varies greatly with frequency. While the beam only spans
about 10° for high frequencies, there is no spatial selectivity for frequencies below 2kHz, since
signals from all directions pass the beamformer unattenuated. For wavelengths smaller than
the inter-microphone distance, spatial aliasing in the form of sidelobes occurs. For the given
geometry, this happens for frequencies above f = c

λ = 6860Hz. In analogy to the sampling
theorem, this form of aliasing is caused by spatial undersampling.

Making the array aperture (the biggest distance between any two microphones in the array)
larger, the selectivity becomes better for lower frequencies. But the same time the sidelobes
reduce towards lower frequencies as well, because the inter-microphone distance grows with the
aperture. Hence, a careful tradeoff between these two phenomena has to be chosen for this
beamformer structure.

Figure 3.3 (b) shows the directivity index for the same array according to equation 3.14 As
already observable in the directivity pattern, the selectivity of this beamformer is poor for low
frequencies. For higher frequencies, it converges to 6dB, which is in accordance to the array gain
from equation 3.10 with M = 4 microphones.

Figure 3.3: (a) Directivity pattern Ψ(jΩ,Θ) of a delay-and-sum beamformer with 4 microphones, all spaced
5cm apart, from broadside direction. (b) Directivity index D(jΩ) for the same array.

It is obvious that the delay-and-sum beamformer cannot completely remove interfering noise

May 7, 2013 – 39 –

3 Beamforming Techniques

signals. It rather low-pass filters the noise. Therefore it is of limited use in a practical application.

3.4 Filter-and-sum Beamformer

The filter-and-sum beamformer allows for a more flexible shaping of the directivity pattern. As
shown in figure 3.4, each microphone signal is filtered before the summation. Thereby, for each
frequency bin an independent narrowband beamformer is designed. With this structure the
spatial response can be shaped for each frequency independently. Especially for low frequencies,
where the wavelength is much larger than the array aperture, the directivity can be greatly
improved.

Figure 3.4: Structure of a filter-and-sum beamformer, taken from [29]. The FFT produces L non-redundant
frequency bins.

The output of the filter-and-sum beamformer can be written as

Y (jΩ) = WH(jΩ)Z(jΩ), (3.18)

where the matrix WH(jΩ) now represents M FIR filters instead of simple delays. By using this
structure, the following design goal can be formulated: The output power of the noise should
be minimized while preserving the desired signal without any distortions. This design is termed
the minimum variance distortionless response (MVDR) beamformer [2]. The power spectral
density of the output Y (jΩ) has the same structure as shown in equation 3.7. The noise power
of the output equates to

ΦN̂N̂ (jΩ) = WH(jΩ)ΦNN (jΩ)W (jΩ), (3.19)

and is minimized by the MVDR beamformer. The distortionless response requirement is formu-

– 40 – May 7, 2013

3.4 Filter-and-sum Beamformer

lated as unit gain in looking direction

WH(jΩ)A(jΩ) = 1. (3.20)

This constrained minimization problem is solved by using the method of Lagrange multipliers,
with the Lagrange function given as

L(W (jΩ), λ) = ΦN̂N̂ (jΩ) + λ(WH(jΩ)A(jΩ)− 1). (3.21)

Computing the gradient with respect to WH(jΩ) and λ and setting the result to zero gives the
necessary conditions

(i): 2Φnn(jΩ)W (jΩ) + λA(jΩ) = 0 , and

(ii): WH(jΩ)A(jΩ) = F (jΩ) = 1.

The optimal solution for W (jΩ) is obtained by solving for λ and substituting into the first
condition

WMVDR(jΩ) =
Φ−1
NN (jΩ)A(jΩ)

AH(jΩ)Φ−1
NN (jΩ)A(jΩ)

. (3.22)

For the case of M = 2 microphones, a geometric interpretation of this constrained optimization
problem is provided in figure 3.5. The noise power of the beamformer outputWH(jΩ)ΦNN (jΩ)W (jΩ)
from equation 3.19 is shown as ellipse around the origin, and the line touching it represents the
constraint WH(jΩ)A(jΩ) from equation 3.20. The point where the two intersect minimizes the
output power and meets the design constraint at the same time. Hence it depicts the optimal
MVDR solution.

Figure 3.5: Constrained minimization, taken from [1].

To compare the performance of this beamformer to the delay-and-sum structure, the same
array geometry with M = 4 equally spaced microphones has been used for simulation. Again,
the noise is an ideal diffuse sound field. Figure 3.6 shows the directivity pattern in (a) and the

May 7, 2013 – 41 –

3 Beamforming Techniques

directivity index in (b). The directivity pattern shows an improved spatial selectivity for lower
frequencies, and the directivity index is greater than 3.5dB for all frequencies.

Figure 3.6: (a) Directivity pattern Ψ(jΩ,Θ) of a MVDR beamformer with 4 microphones, all spaced 5cm
apart, with speech impinging from 0°, and an ideal diffuse noise field. (b) Directivity index D(jΩ)
for the same array.

However, the capabilities of this beamformer can be best demonstrated using a directional
noise field. Suppose there is a distinct noise source located at 20°, and the speech signal impings
from 0°, as before. Then, equation 3.22 produces a beamformer that shows no distortion for the
speech signal, i.e. the gain is 1 for all frequencies at 0°. The noise source on the other hand,
is perfectly suppressed for all frequencies. This suppression can be regarded as a null in the
response of the spatial filter WMVDR(jΩ). Therefore, the MVDR filter automatically steers a
null towards the noise source. With M microphones, a maximum of M − 1 spatial nulls can be
constructed. The directivity pattern in figure 3.7 (a) demonstrates this null steering.

It can be seen that the MVDR beamformer perfectly suppresses the noise signal originating
from 20°, while keeping the desired signal located at 0°. However, sounds from other directions
do not seem to be suppressed, but amplified for frequencies below 2kHz, as the directivity index
in panel (b) indicates. This is because there is no other constraint given except for the speech
at 0° and the noise at 20°.

In an actual implementation, several problems arise when using the MVDR beamformer:

� The ATFs A(jΩ) need to be known or estimated. Since the ATFs may be long FIR filters,
it is advantageous to estimate the RTFs Â(jΩ) instead. If there is not much reverberation,
it may even be sufficient to estimate the general direction of the source signal. This task
is known as direction of arrival (DOA) estimation.

� The cross-power spectral density matrix ΦNN (jΩ) of the noise signals at the microphones
is not known a priori and its estimation is not trivial.

� The matrix ΦNN (jΩ) must be invertible and well-conditioned. For low frequencies, this
is generally not the case because the correlation between the noise signals is high. As a

– 42 – May 7, 2013

3.4 Filter-and-sum Beamformer

Figure 3.7: (a) Directivity pattern Ψ(jΩ,Θ) of a MVDR beamformer with 4 microphones, all spaced 5cm
apart, with speech impinging from 0°, and noise impinging from 20°. (b) Directivity index D(jΩ)
for the same array.

consequence, low-frequency filter coefficients can get arbitrarily large. This also implies
an arbitrarily high amplification of sensor noise or ambient low-frequency sounds.

To overcome the estimation and inversion of ΦNN (jΩ), an adaptive algorithm has been
proposed by Frost [9]. Its frequency domain realization is presented in [1] and is given as

W (k + 1, jΩ) = P (jΩ)[W (k, jΩ)− µZ(k, jΩ)Y ∗(k, jΩ)] + F (jΩ), (3.23)

where k denotes the frame index, µ is the learning rate, and P (jΩ) is the projection matrix to
the null space of A(jΩ) [30], i.e.

PH(jΩ)A(jΩ)
!

= 0M×1.

This is fulfilled when

P (jΩ) = I − A
H(jΩ)A(jΩ)

‖A(jΩ)‖22
. (3.24)

As shown in figure 3.5, the vector F (jΩ) is perpendicular to the unity gain constraint defined in
equation 3.20. It resembles a fixed filter-and-sum beamformer where the output is normalized
to 1

F (jΩ) =
A(jΩ)

‖A(jΩ)‖22
. (3.25)

While the estimation of ΦNN (jΩ) is avoided with Frost’s algorithm, the susceptibility to
sensor noise still remains. Additionally, the width of the mainlobe is small for higher frequencies
and cannot be controlled, which makes the beamformer sensitive to positioning errors of the

May 7, 2013 – 43 –

3 Beamforming Techniques

microphones and estimation errors of the source location. These robustness issues make the
Frost algorithm unsuitable for practical applications.

3.5 Generalized Sidelobe Canceler

To increase the robustness of the Frost beamformer, Griffiths and Jim [9] considered to split the
optimal MVDR filter WMVDR(jΩ) from equation 3.22 into two independent filters operating in
mutually orthogonal subspaces [30]. The first filter coherently aligns the desired speech signal,
and the second filter constructs a reference of the noise signals, which is then subtracted to
obtain a good speech estimate. This design is termed the generalized sidelobe canceler (GSC).
It is defined as

WMVDR(jΩ) = F (jΩ)−B(jΩ)H(jΩ). (3.26)

It consists of three main blocks: THe Fixed Beamformer F (jΩ), the Blocking Matrix B(jΩ)
and the Adaptive Interference Canceler H(jΩ). An overview of the GSC structure is given by
the block diagram in figure 3.8.

Figure 3.8: Structure of the generalized sidelobe canceler [1].

The fixed beamformer F (jΩ) in equation 3.26 is essentially a filter-and-sum beamforming
structure, and has already been defined in equation 3.25. As F (jΩ) relies on the ATFs of the
desired speech source, the fixed beamformer aligns the desired speech signal of each microphone
so that they are constructively added. Its output is given as

YFBF (jΩ) = FH(jΩ)Z(jΩ). (3.27)

The ATFs used for the fixed beamformer can often replaced by simple delays, that represent
the direction of the desired sound source [1]. This is possible, if the direct path to the source’s
location is stronger than the more complex reflection paths. ATFs that represent pure time

– 44 – May 7, 2013

3.5 Generalized Sidelobe Canceler

delays are given as

A(jΩ) =
[
e−jΩfsτ1 e−jΩfsτ2 · · · e−jΩfsτM

]T
. (3.28)

Using these ATFs, the fixed beamformer F (jΩ) turns into a delay-and-sum beamformer

F (jΩ) = AH(jΩ). (3.29)

Like the other beamforming structures, the fixed beamformer has a low spatial selectivity for low
frequencies. Hence it contains much of the unwanted signals in lower frequencies. At higher fre-
quencies, the sidelobes of the beamformer causes some of the unwanted signals to leak through,
as explained in figure 3.3. Since it is cumbersome to eliminate all of these noise sources, the
GSC rather masks out the desired source signal to get a good reference of all unwanted signals.
This is done by the second term B(jΩ)H(jΩ) in equation 3.26. This noise-only signal is then
subtracted from the fixed beamformer’s output, as equation 3.26 already suggests.

The M ×M matrix B(jΩ) has the same structure as the projection matrix in equation 3.24.
Its columns span the null space of A(jΩ), so that

BH(jΩ)A(jΩ)
!

= 01×M . (3.30)

Geometrically, this constraint can be interpreted as follows: A signal that propagates along the
acoustic paths described by A(jΩ) gets completely canceled when filtered with B(jΩ). And
since A(jΩ) describes the ATFs to the desired speech source location, the matrix B(jΩ) blocks
the speech signal. Hence, it is called blocking matrix (BM).

The output of the blocking matrix is termed the noise references U(jΩ), as all speech com-
ponents get effectively canceled and only noise components remain as

U(jΩ) = BH(jΩ)Z(jΩ) =
[
U1(jΩ) U2(jΩ) · · · UM (jΩ)

]T
. (3.31)

The vector H(jΩ) contains M adaptive filters, whose purpose is to align the noise references
U(jΩ) to the noise components in the fixed beamformer’s output YFBF (jΩ). The filters in
H(jΩ) are termed the Adaptive Interference Canceler (AIC). Using the noise references, the
output of the AIC equates to

YAIC(jΩ) = HH(jΩ)U(jΩ) = HH(jΩ)BH(jΩ)Z(jΩ). (3.32)

Combining the fixed beamformer from equation 3.27, the blocking matrix and the adaptive
interference canceler in equation 3.32, the structure of the generalized sidelobe canceler emerges
as

Y (jΩ) = YFBF (jΩ)− YAIC(jΩ) =
[
FH(jΩ)−HH(jΩ)BH(jΩ)

]
Z(jΩ). (3.33)

While this beamformer cannot surpass the performance of the MVDR beamformer, it avoids
most of the robustness problems as it splits the task effectively in three parts:

May 7, 2013 – 45 –

3 Beamforming Techniques

� The fixed beamformer F (jΩ) coherently aligns the desired signal.

� The blocking matrix B(jΩ) blocks the desired signal resulting in the noise references
U(jΩ).

� The adaptive interference canceler H(jΩ) eliminates the noise components that leak
through the sidelobes of the fixed beamformer.

The adaptive AIC filters in H(jΩ) are determined by minimizing the noise power at the
beamformer output. This minimization task can be regarded as a multichannel Wiener filter
optimization problem, which has been introduced in section 2.8. In the following, the instanta-
neous Wiener solution and the adaptive version using the NLMS algorithm is specified.

Using equation 3.33 and 3.32, the power-spectral density (PSD) at the beamformer output
calculates as

ΦY Y (jΩ) = E
{[
YFBF (jΩ)−HH(jΩ)U(jΩ)

] [
YFBF (jΩ)−HH(jΩ)U(jΩ)

]H}
= ΦYFBFYFBF

(jΩ)−ΦYFBFU (jΩ)H(jΩ)−HH(jΩ)ΦUYFBF
(jΩ)

+HH(jΩ)ΦUU (jΩ)H(jΩ).

(3.34)

It is used as multichannel cost function of the multichannel Wiener filter problem. The optimal
result in a MSE sense is found by taking the first derivative with respect toHH(jΩ) and equating
the result to zero

∂ΦY Y (jΩ)

∂HH(jΩ)
= −2ΦUYFBF

(jΩ) + 2ΦUU (jΩ)H(jΩ)
!

= 0. (3.35)

Solving for H(jΩ) yields the AIC filters

H(jΩ) = Φ−1
UU (jΩ)ΦUYFBF

(jΩ). (3.36)

These filters are generally non-causal. They model the spatial correlation of the noise signal
amongst the microphones, and therefore contain both positive and negative time delays. The
matrices ΦUU (jΩ) and ΦUYFBF

(jΩ) represent the PSD of the noise references and the cross-
PSD between the noise references and the fixed beamformer output, respectively. Both terms
are given as

ΦUU (jΩ) = E{U(jΩ)UH(jΩ)}
ΦUYFBF

(jΩ) = E{U(jΩ)Y ∗FBF (jΩ)}.
(3.37)

In an actual implementation, they can be estimated by using first-order recursive averaging, i.e.

ΦUU (k, jΩ) = ΦUU (k − 1, jΩ)α+ (1− α)U(k, jΩ)UH(k, jΩ)

ΦUYFBF
(k, jΩ) = ΦUYFBF

(k − 1, jΩ)α+ (1− α)U(k, jΩ)Y ∗FBF (k, jΩ),
(3.38)

where k is the frame index, and α is a smoothing parameter, chosen to be in the range of
0 < α < 1. Considering equation 3.36, a problem arises with the inversion of ΦUU (jΩ). Its
estimate using equation 3.37 can be ill-conditioned, thus imposing numerical instability to the

– 46 – May 7, 2013

3.6 Constructing a Blocking Matrix

matrix inversion. As a countermeasure, a diagonal loading term εIM×M with a small constant
ε may be added. But this decreases the quality of the inverse when the matrix only has small
elements, and thus distract the AIC filters when the input signal power is low.

The matrix inverse can also be replaced by 1
ΦUU (k,jΩ) , which is given by

ΦUU (k, jΩ) = ΦUU (k − 1, jΩ)α+ (1− α)‖U(k, jΩ)‖22. (3.39)

Equation 3.39 is the time-averaged normalization term of the multichannel NLMS algorithm
given in equation 2.39. By incorporating this term, equation 3.36 changes into

H(jΩ) =
ΦUYFBF

(jΩ)

ΦUU (k, jΩ)
. (3.40)

Stable AIC filter are guaranteed, if the normalization term is larger than the largest eigenvalue
λmax of ΦUU (jΩ) [26]. A proof can be found by

‖U(k, jΩ)‖22 = trace (ΦUU (jΩ)) =

M∑
m=1

λm > λmax. (3.41)

With equation 3.40 an instantaneous estimate of the AIC filters is given, it only depends of
the PSD estimates in equation 3.38 and 3.39. By using the multichannel NLMS algorithm
introduced in chapter 2.8, the filters H(jΩ) can also be determined adaptively [20] with

H(k + 1, jΩ) = H(k, jΩ) +
µ

Pest(k, jΩ)
U(k, jΩ)Y ∗(k, jΩ), (3.42)

where k is the frame number and µ the learning rate of the NLMS algorithm. The normalization
term Pest(k, jΩ) of the summed power spectral density of the inputs Z(jΩ) is determined by
recursive averaging, similar to equation 3.39

Pest(k, jΩ) = Pest(k − 1, jΩ)α+ (1− α)‖Z(k, jΩ)‖22. (3.43)

Basically, the calculation of the filters H(jΩ) can only be performed in the absence of the
desired speech signal. Therefore, a voice activity detector (VAD) is needed. Obtaining an
accurate VAD is a non-trivial task, and still subject to research. Fortunately, the VAD for this
application does not require high accuracy, as the cross-power spectral densities are long-term
averages. In the experiments section, both the instantaneous and the adaptive AIC filters are
used for comparison.

3.6 Constructing a Blocking Matrix

What remains to be defined is the blocking matrix B(jΩ). Its purpose is to remove the speech
signal to get an estimate of the noise signals. Only if the blocking matrix perfectly blocks
all speech components, U(jΩ) contains clean noise estimates. In practice, some leakage of the
desired signal into the noise reference branch is unavoidable. This so-called target leakage causes
the AIC to cancel out some desired speech components. This immediately degrades the overall

May 7, 2013 – 47 –

3 Beamforming Techniques

performance of the GSC structure. Building a good blocking matrix has been the subject of
numerous papers. The most influential ones are presented in the following.

3.6.1 Eigenspace Blocking Matrix

The blocking matrix spans the null space [31] of A(jΩ) in order to generate noise references
U(jΩ) that are orthogonal to the output of the fixed beamformer F (jΩ). The simplest blocking
matrix which fullfils that condition was already given as projection matrix in equation 3.24 for
the Frost beamformer. This M ×M blocking matrix is

BH(jΩ) = I − A
H(jΩ)A(jΩ)

‖A(jΩ)‖22
, (3.44)

where I is the M ×M identity matrix. It can be easily verified that this blocking matrix fulfills

the constraint BH(jΩ)A(jΩ)
!

= 01×M , and forms a null space of A(jΩ).
Using this blocking matrix involves M2 complex multiplications per frequency bin. This is by
far the most complex part of the GSC. Further, the full ATFs A(jΩ) need to be estimated.

3.6.2 Generalized Eigenvector Blocking Matrix

A more sophisticated blocking matrix is based on a beamforming filter, which tries to maximize
the output SNR as presented in [32]. According to the signal model defined in equation 2.14,
the power spectral density at the microphones calculates to

ΦZZ(jΩ) = A(jΩ)ΦSS(jΩ)AH(jΩ) + ΦNN (jΩ).

Then, the SNR at the output of an arbitrary beamforming filter W (jΩ) is given as

oSNR(jΩ) =
W (jΩ)HΦZZ(jΩ)W (jΩ)

W (jΩ)HΦNN (jΩ)W (jΩ)
− 1. (3.45)

The beamforming filter W (jΩ) maximizing this SNR is equivalent to the eigenvector corre-
sponding to the largest eigenvalue of Φ−1

NN (jΩ)ΦZZ(jΩ). In [32], this principal eigenvector is
further derived as

W (jΩ) = ζ(jΩ) ·Φ−1
NN (jΩ)A(jΩ), (3.46)

where ζ(jΩ) is an arbitrary complex constant. The same authors use this result in [33] to
construct a projection into the orthogonal complement of A(jΩ). This projection has already
been defined in equation 3.30, it ensures the orthogonality between the noise references U(jΩ)
and the beamformer output Y (jΩ)

E{U(jΩ)Y (jΩ)} !
= 01×M , (3.47)

with

U(jΩ) = BH(jΩ)Z(jΩ),

– 48 – May 7, 2013

3.6 Constructing a Blocking Matrix

and

Y (jΩ) = WH(jΩ)Z(jΩ).

Using 3.30 and 3.47, the generalized eigenvector blocking matrix B(jΩ) equates to [33]

B(jΩ) = I −
A(jΩ)AH(jΩ)Φ−1

NN (jΩ)

Ah(jΩ)Φ−1
NN (jΩ)A(jΩ)

. (3.48)

It can be easily verified that this blocking matrix fulfills the constraint BH(jΩ)A(jΩ)
!

= 01×M ,
and forms a null space of A(jΩ). Also, its performance is good when used on real-world data.
The drawback is, that the noise correlation matrix ΦNN (jΩ) has to be known, which is hard to
estimate in a real-time application.

3.6.3 Adaptive Blocking Matrix

The main goal of the blocking matrix is to block the desired speech signal as good as possible.
This can also be achieved with an adaptive filter or adaptive blocking matrix (ABM) instead of a
fixed blocking matrix. This concept has first been presented in [27], and has the advantage that
the ATFs are found adaptively and do not need to be separately estimated. Also, the numerical
complexity reduces from M2 filter operations to M filter operations. The basic principle is
shown in figure 3.9.

Figure 3.9: Structure of an adaptive blocking matrix.

Each filter Bm(jΩ) is a SISO Wiener filter [34], and found by minimizing the energy at each
noise reference Um(jΩ). This energy is given as

ΦUmUm(jΩ) = E{Um(jΩ)U∗m(jΩ)}

=
[
Zm(jΩ)− YFBF (jΩ)Bm(jΩ)

][
Zm(jΩ)− YFBF (jΩ)Bm(jΩ)

]∗
= ΦZmZm(jΩ)− ΦZmYFBF

(jΩ)B∗m(jΩ)− ΦYFBFZm(jΩ)Bm(jΩ)

+Bm(jΩ)ΦYFBFYFBF
(jΩ)B∗m(jΩ).

(3.49)

May 7, 2013 – 49 –

3 Beamforming Techniques

Taking the derivative of ΦUmUm(jΩ) with respect to B∗m(jΩ) and equating it to zero

∂ΦUmUm(jΩ)

∂B∗m(jΩ)
= −2ΦZmYFBF

(jΩ) + 2Bm(jΩ)ΦYFBFYFBF
(jΩ)

!
= 0, (3.50)

gives the Wiener solution for the optimal adaptive filters Bm,OPT (jΩ)

Bm,OPT (jΩ) =
ΦZmYFBF

(jΩ)

ΦYFBFYFBF
(jΩ)

. (3.51)

These filters can also be found recursively using the SISO NLMS algorithm

Bm(k + 1, jΩ)
FIR←− Bm(k, jΩ) +

µYFBF (jΩ)Um(jΩ)

ΦYFBFYFBF
(jΩ) + δ

. (3.52)

Again, k denotes the frame index, µ the NLMS learning rate and δ a small regularization
constant.
While this ABM might be a good solution in theory, in practice several problems arise: The
adaption algorithm can only be executed in the presence of a desired speech signal, while at the
same time there must not be any interfering noise. This may be practically impossible for an
application in a noisy environment. Also, reverberation in the ATFs might divert the adaptive
filters Bm(jΩ) from the speaker’s location, which is why several constraints have been imposed
on the NLMS algorithm in the original paper [27].
Despite the theoretical benefits of this solution, simulations using real-world data showed a bad
performance with this type of blocking matrix. This may be due to the contrary adaption scheme
of the BM and the AIC: The AIC filters may only be updated during speech absence, and the
BM filters only during speech presence. This way, the noise references U(jΩ) keep changing,
but the AIC cannot react in time to that change.

3.6.4 Sparse Blocking Matrix

The authors in [31] try to reduce the complexity of the eigenspace blocking matrix while main-

taining its performance at the same time. First, it is shown that the constraint BH(jΩ)A(jΩ)
!

=
01×M limits the rank of the blocking matrix to

rank{B(jΩ)} ≤M − 1.

This means that the size of the blocking matrix can be reduced to M ×M − 1. This has a
great impact on the complexity of the entire GSC beamformer, since both the number of noise
references in U(jΩ) and the number of AIC filters in H(jΩ) are reduced to M − 1 as well.

When using RTFs A(jΩ)
A1(jΩ) instead of ATFsA(jΩ), the blocking matrix can be further simplified

to a sparse matrix. It is shown, that a sparse blocking matrix performs equally well as the

– 50 – May 7, 2013

3.7 Design Considerations

eigenspace blocking matrix. The sparse BM is defined as [31]

B(jΩ) =

−A∗2
A∗1

−A∗3
A∗1

· · · −A∗M
A∗1

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 . (3.53)

It can be easily verified that this blocking matrix also fulfills the constraint BH(jΩ)A(jΩ)
!

=
01×M−1, and forms a null space of A(jΩ). Hence, orthogonality between F (jΩ) and B(jΩ)
is also ensured. In a graphical interpretation, this blocking matrix steers M − 1 spatial nulls
towards the direction of the speech signal [9].

When using simple time delays instead of the RTFs, the blocking matrix becomes even simpler

B(jΩ) =

−e−jΩfsτ2 −e−jΩfsτ3 · · · −e−jΩfsτM

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 , (3.54)

but then the risk of undermodelling the acoustic paths from the source to the microphones arises,
causing reverberations of the desired speech signal to leak through the blocking matrix. On the
other hand, estimation errors in the RTFs may cause more leakage than this undermodelling.
Whether it is preferable to estimate the RTFs, or to use delay-only models is experimentally
verified in section 6.

3.7 Design Considerations

The MVDR beamforming filter provides good noise suppression and low speech distortions at
the same time. In contrast to direct approaches like the Frost algorithm, the GSC is robust
enough for a practical implementation. This is possible because it splits the MVDR constraint
into a fixed beamformer, and a blocking matrix with an AIC. This allows for separate target
tracking and noise removal, and hence a greater stability. However, the GSC cannot exceed the
performance of the MVDR filter, as it is merely another formulation.

In a real application scenario, the GSC shows some deficiencies:

(i): Since the GSC belongs to the class of MVDR beamformers, it also has a poor spatial
selectivity for low frequencies, especially when the array aperture is small. This effect can be
seen in figure 3.6. As a result, the noise reduction performance is bad for low frequencies and
has to be compensated by a postprocessing stage. This topic is covered in chapter 5.

(ii): The RTFs need to be estimated, and estimation errors cause a phenomenon known as
target leakage in the blocking matrix. This causes speech components to appear in the noise
references, which are then subtracted by the AIC. Hence the overall speech quality decreases.

May 7, 2013 – 51 –

3 Beamforming Techniques

(iii): Simple mechanical problems can also cause target leakage. If the blocking matrix is
built upon a predefined array geometry, sensor misalignment due to assembly tolerances cannot
be neglected. Also, the speed of sound c is temperature dependent. To avoid this, both the
fixed beamformer and the blocking matrix need to be adaptive in a certain sense, otherwise the
overall performance greatly depends on assembly accuracy of the microphone array.

However, the GSC produces a non-distorted and enhanced estimate of the speech signal, and
also provides a good estimate of the interfering noise in case of low target leakage. Since the
user’s distance to the microphone array is assumed to be low in this application, the sound field
will be mostly directional. Therefore target leakage is expected to be minimal once the general
direction of the speaker is known. The same assumption was made for other multichannel speech
enhancement systems like [35], [36] or [12].

To be able to deal with these problems, the following conditions need to be fulfilled:

� The mainlobe of the fixed beamformer is aligned towards the desired speech source, so that
the largest part of the speech energy passes the fixed beamformer, and not the blocking
matrix.

� The speaker is close enough to the array to attain a low target leakage, so that the GSC
does not cancel out the speech signal.

� The AIC adapts quickly enough to provide an accurate estimate YAIC(jΩ) of the unwanted
signals. This estimate can then be used in the postprocessing stage.

� The postprocessing stage has to compensate for the poor spatial selectivity of the GSC at
low frequencies.

The first condition is subject to source location, which is covered in chapter 4. The second
condition has to be ensured by the application. The third condition is dependent of the spatial
characteristics of the noise field. For example, the AIC has to adapt quickly enough to cancel
out moving noise sources like passing-by cars. The adaption speed can be controlled with the
NLMS algorithm. And the fourth condition is subject to multichannel postfiltering, which is
covered in chapter 5.

– 52 – May 7, 2013

Multi-channel Speech Enhancement

4
Acoustic Source Localization

4.1 Problem Formulation

As a basis for the fixed beamformer and the blocking matrix of the GSC, the ATFs or RTFs of
the source location are needed. Another option is to use delay-only paths to the source. Both
possibilities are investigated in this section.

As explained in chapter 2, the ATFs contain the acoustic path to the true location of the
desired source, whilst the RTFs contain this path with respect to a reference microphone. Using
the latter has the benefit of having shorter FIR-filters, which makes the estimation task easier.
Furthermore, estimating the true ATFs requires to use a dereverberation algorithm algorithm,
which introduces additional complexity. From a practical viewpoint, removing the reverberation
of the user’s voice is not necessary in this application.

4.2 Estimating the Relative Transfer Function

4.2.1 Weighted Least Squares

One of the earliest RTF estimation techniques was proposed by Shalvi and Weinstein [37]. It is
basically a system identification method that assumes stationary noise signals, an instationary
speech signal, and slowly time-varying RTFs being subject to the FIR assumption. As mentioned
previously, the FIR assumption is valid for the given setup, despite the fact that a RTF is the
ratio of two ATFs.

According to the system model from equation 2.14, the cross-PSD between the first and the
m-th microphone can be written as

ΦZ1Zm(jΩ) = Ãm(jΩ)ΦZmZm(jΩ) + ΦNmZm(jΩ) + ε(jΩ), (4.1)

where ε(jΩ) represents the error between the real cross-PSD ΦNmZm(jΩ) and its estimate

ε(jΩ) = Φ̂NmZm(jΩ)− ΦNmZm(jΩ),

May 7, 2013 – 53 –

4 Acoustic Source Localization

and the RTF Ãm(jΩ) between the m-th and the first microphone. By using an observation
window of K frames, equation 4.1 can be expressed as

Φ1
Z1Zm

(jΩ)

Φ2
Z1Zm

(jΩ)
...

ΦK
Z1Zm

(jΩ)

 =

Φ1
ZmZm

(jΩ) 1

Φ2
ZmZm

(jΩ) 1
...

...

ΦK
ZmZm

(jΩ) 1

[

Ãm(jΩ)

ΦNmZm(jΩ)

]
+

ε1(jΩ)

ε2(jΩ)
...

εK(jΩ)

 . (4.2)

The weighted least squares (WLS) solution of Ãm(jΩ) [37] is obtained by

ˆ̃Am(jΩ) =

〈
Φ̂NmZm(jΩ)Φ̂ZmZm(jΩ)

〉
−
〈

Φ̂NmZm(jΩ)
〉〈

Φ̂ZmZm(jΩ)
〉

〈
Φ̂2
ZmZm

(jΩ)
〉
−
〈

Φ̂ZmZm(jΩ)
〉2 , (4.3)

with the averaging function

〈
Φ(jΩ)

〉
=

∑K
k=1WkΦ

k∑K
k=1Wk

, (4.4)

where Wk is the k-th value of a weighing function. In [37], a window function that minimizes
the covariance of the solution is used. However, the method has several drawbacks when speech

is used as excitation signal for the estimation of ˆ̃Am(jΩ):

Speech is sparse in both time and frequency, resulting in a lot of observations Φ̂ZmZm(jΩ) and
Φ̂NmZm(jΩ) not contributing new information to the averaging process defined in equation 4.4.
Therefore, the observation interval has to be very long in order to produce good results. But

the RTFs ˆ̃Am(jΩ) are assumed to be constant over this entire observation interval. This is not
be the case when the speaker is moving. Hence, the tracking capabilityis limited and unusable
in a real-time application.
To overcome these problems, Cohen modified this approach in [38], where only frames containing
speech are used in a real-time algorithm. Therefore, a speech presence probability estimator,
presented in [39], is used.

First, the cross-PSD of the noisy observations are calculated recursively with

Φ̂Z1Zm(k, jΩ) = αsΦ̂Z1Zm(k − 1, jΩ) + (1− αs)Z1(k, jΩ)Z∗m(k, jΩ), (4.5)

where αs is a smoothing time-constant with 0 ≤ αs < 1. The periodogram of the desired speech
signal at each microphone m is estimated as

Φ̂SmSm(k, jΩ) = αsΦ̂SmSm(k − 1, jΩ) + (1− αs)
[
Gp(k,jΩ)(k, jΩ)|Zm(k, jΩ)|

]2
, (4.6)

where p(k, jΩ) is a time and frequency-dependent speech probability factor, and G(k, jΩ) is
a real-valued gain factor for suppressing bins containing only noise. Both are obtained using
the improved minima-controlled recursive averaging (IMCRA) noise power estimation method

– 54 – May 7, 2013

4.2 Estimating the Relative Transfer Function

in [39]. Next, the cross-PSD of the noise-only signals are estimated with

Φ̂N1Nm(k, jΩ) = α̃n(k, jΩ)Φ̂N1Nm(k − 1, jΩ) + (1− α̃n(k, jΩ))Z1(k, jΩ)Z∗m(k, jΩ). (4.7)

The smoothing constant α̃n(k, jΩ) is given as

α̃n(k, jΩ) = αn + (1− αn)p(k, jΩ). (4.8)

With these PSDs, the RTFs are recursively estimated using

ˆ̃Am(k, jΩ) = ˆ̃Am(k − 1, jΩ) + µÎ(k, jΩ)Φ̂−1
SmSm

(k, jΩ)ε̂(k, jΩ), (4.9)

where

Î(k, jΩ) =

{
1, if p(k, jΩ) ≥ p0

0, otherwise
(4.10)

represents a frequency-dependent voice activity detector (VAD), returning a binary decision
whether a frequency bin contains speech or noise. The value p0 is a predetermined constant
0 ≤ p0 < 1 and controls the trade-off between speech detection and false alarm probabilities.
The estimation error ε̂(k, jΩ) is given by

ε̂(k, jΩ) = Φ̂Z1Zm(k, jΩ)− Φ̂N1Nm(k, jΩ)− ˆ̃Am(k − 1, jΩ)Φ̂SmSm(k, jΩ). (4.11)

The update of the RTF ˆ̃Am(k, jΩ) is only carried out if a desired signal energy is present,
indicated by Î(k, jΩ) 6= 0. This update procedure has to be carried out for all M microphones.
Experimentally obtained values for αs and αn are given by αs = αn = 0.85 [40].

4.2.2 Independent Component Analysis

The RTFs are used to construct the blocking matrix, whose purpose it is to produce the noise
references U(jΩ) of the GSC. As shown, they should be free of the desired speech signal and
only contain the noise components. Therefore, generating these noise references can also be
regarded as a blind source separation (BSS) task. In [41], the blocking matrix is replaced by
an Independent Component Analysis (ICA), which generates the noise references based on the
principle of mutual statistical independence.

The least-squares optimization algorithms used so far (NLMS and WLS) rely on correlations.
For example, uncorrelatedness between speech and noise has been assumed so far. Considering
random variables, correlations can easily be recognized as second order moments. The k-th
moment of a random variable x is defined as [42]

m′k(x) = E{xk} =

∫ ∞
−∞

ξkpx(ξ)dξ. (4.12)

For Gaussian distributions, only the first and second order moments exist, i.e. all moments
m′k = 0 for k > 2. However, speech is usually modeled as Laplace distribution [1], therefore it is

May 7, 2013 – 55 –

4 Acoustic Source Localization

beneficial to exploit the higher order moments as well. Instead of relying only on correlations,
the independent component analysis (ICA) uses the richer concept of statistical independence.
A set of random variables x1, · · · , xM is said to be independent, iff their joint density is equal
to the product of their marginal densities

px1,x2,··· ,xm(x1, x2, · · · , xm) =

M∏
m=1

pxm(xm). (4.13)

For separating M sources, at least M sensors are needed. In the context of BSS, both the
speech and the unwanted noise signals are regarded as sources. For simplicity, assume M sources
Sm(jΩ) and M observations (microphone signals) Zm(jΩ), both considered as random variables.
All sources are said to be latent variables, as they cannot be observed directly. In accordance
with the signal model defined in section 2.3, only convoluted mixtures of the sources can be
observed at the microphones. In the frequency domain, these convolutions can be written as
multiplications in form of a MIMO system

Z(jΩ) = A(jΩ)S(jΩ), (4.14)

where A(jΩ) is an unknown M ×M mixing matrix, containing the ATFs from all sources to all
microphones. The source vector S(jΩ) = [S1(jΩ), · · · , SM (jΩ)]T contains the M sources and
Z(jΩ) = [Z1(jΩ), · · · , ZM (jΩ)]T is the observation vector. In contrast to the signal model used
so far, this definition assumes more than one source signal S(jΩ). That is because the ICA
cannot distinguish between noise and speech sources, therefore the noise is also regarded as a
source. A straightforward approach in blind source separation to undo the mixing process is
using an unmixing matrix W = A−1 to obtain Y (jΩ) estimates of the sources

Y (jΩ) = W (jΩ)Z(jΩ). (4.15)

In [43], the unmixing matrix is estimated in the frequency domain by an ICA algorithm, as
illustrated in figure 4.1 for M = 2 components. The unmiximg matrix W (jΩ) is optimized so
that the outputs Y1(jΩ) and Y2(jΩ) are mutually independent.

Figure 4.1: Schematic principle of the FD-based ICA, taken from [43].

In the following, the frequency argument jΩ is omitted for better readability. A very basic

– 56 – May 7, 2013

4.2 Estimating the Relative Transfer Function

approach for maximizing independence between the outputs Ym is given by the concept of
maximum likelihood estimation (MLE) [42]. Inserting equation 4.14 into 4.13 gives the joint
density of the observations

pZ(Z) = |detW |
M∏
m=1

pm(Sm) = | detW |
M∏
m=1

pm(wTmZ), (4.16)

where [w1, · · · , wM]T are the columns of the unmixing matrix W . Assuming Z(1), · · · ,Z(K)
i.i.d. samples of the observation vector, the likelihood function is obtained as the product
evaluated at these K points

L(W) =

K∏
k=1

M∏
m=1

pm(wTmZ(k))|detW |. (4.17)

For a large sample size K, numerical stability is ensured by taking the logarithm of the likelihood
function, which turns the products into sums. The MLE-optimal solution maximizes equation
4.17 and is found by

∂

∂W
ln(pZ(Z|W))

∣∣∣
W=WMLE

!
= 0. (4.18)

In [41], a natural gradient algorithm to iteratively solve equation 4.18 is used. It is given by

Wt = Wt−1 + µ
[
I −

〈
Φ(Z)ZH

〉
K

]
Wt−1, (4.19)

where µ is the learning rate, 〈·〉K denotes the averaging operator over K samples, and Φ(·) is a
nonlinear contrast function, given as

Φ(Z) = tanh(Re{Z}) + j tanh(Im{Z}). (4.20)

Apart from the MLE approach, many other ICA algorithms exist [42]. Inherent to all of them
is the permutation and scaling ambiguity on the columns of the unmixing matrix W . Since
the ICA is performed on frequency domain data Z(jΩ), the permutation and scaling problem
applies to each frequency bin. The scaling problem has been solved in [41] by normalizing the
unmixing matrix to

Wt = diag(W−1
t)Wt, (4.21)

where diag denotes the diagonal matrix. When each source S1 · · ·SM originates from a different
direction, the outputs of the ICA Y1 · · ·YM can be reordered according to their Direction Of
Arrival (DOA), which effectively solves the permutation problem [43]. The DOA estimation is
introduced in the next chapter. The numerical complexity of the MLE search and the potentially
long observation window K are the most challenging issues in successfully applying the ICA.
Also, a VAD might be necessary in order to adapt W only during speech presence.

May 7, 2013 – 57 –

4 Acoustic Source Localization

4.3 Estimating the Direction Of Arrival

The most simple means to model a RTF is to use a single delay and magnitude instead of a
full FIR filter. This way, the complexity of estimating the entire RTF boils down to a much
simpler Direction Of Arrival (DOA) estimation. Also, estimating a single number from lots
of input data is generally more robust, as measurement errors may level out. As a downside,
reverberations cannot be modeled anymore. A single delay is tantamount to imposing an ideal
direct sound field on the impinging speech signal. As seen in section 2.7 this constraint is only
valid if the distance of the speaker to the microphone array is small.
The basic principle of DOA estimation is illustrated in figure 4.2 for a linear array with an
inter-microphone distance d. For the assumed near-field scenario, it can be seen that the DOA
angle Θ is different for each microphone.

Figure 4.2: DOA principle, taken from [9]. The distance from the source S(jΩ) to the mth microphone is
given as rm = cτm, with c being the speed of sound.

Remembering equation 3.28 from chapter 3.5, ATFs using pure delays are given as

A(jΩ) =
[
e−jΩfsτ1 e−jΩfsτ2 · · · e−jΩfsτM

]T
. (4.22)

As mentioned, only RTFs can be estimated. When using the first microphone as reference again,
the RTFs are obtained by dividing each element of equation 4.22 by the first element e−jΩfsτ1 ,
resulting in

Ã(jΩ) =
[
1 e−jΩfs(τ2−τ1) · · · e−jΩfs(τM−τ1)

]T
=
[
1 e−jΩfs∆τ2 · · · e−jΩfs∆τM

]T
.

(4.23)

Using these RTFs, the the signal model defined in equation 2.14 simplifies to

Zm(jΩ) = S(jΩ)e−jΩfs∆τm +Nm(jΩ). (4.24)

Benesty mentions a variety of DOA estimation techniques in [9], all being based on equation

– 58 – May 7, 2013

4.3 Estimating the Direction Of Arrival

4.24. In the following, principles using generalized cross correlation (GCC) and Eigenvectors of
the input PSD matrix are introduced.

4.3.1 Smoothed Coherence Transform

The Smoothed Coherence Transform (SCOT) is based upon the cross-correlation between the
microphone input signal Zm(jΩ) and the reference microphone Z1(jΩ). Using the simplified
signal model from equation 4.24, the cross-correlation can be written as

ΦZmZ1(jΩ) = E{Zm(jΩ)Z∗1 (jΩ)} = ΦSS(jΩ)e−jΩfs∆τm , (4.25)

where uncorrelated speech and noise signals are assumed. Also, the noise signals at the first and
the m-th microphone are assumed to be uncorrelated. For low frequencies, this assumption does
not hold in reality, as observed from the ATF measurements in section 2.7. There is a strong
correlation ΦNmN1(jΩ) for low frequencies, shadowing the desired phase information in equation
4.25. Therefore, low frequencies contribute no information to the DOA estimation process.
However, this is not a problem since the DOA is estimated using correlations throughout all
frequencies.
In order to overcome fluctuating power levels ΦSS(jΩ) of the desired speech signal, the SCOT
pre-whitens the microphone signals before their cross-spectrum is computed [9]. It is given as

ΦSCOT
ZmZ1

(jΩ) =
E{Zm(jΩ)Z∗1 (jΩ)}√

E{|Zm(jΩ)|2}E{|Z1(jΩ)|2}

=
ΦSS(jΩ)e−jΩfs∆τm√

(ΦSS(jΩ) + ΦNmNm(jΩ))(ΦSS(jΩ) + ΦN1N1(jΩ))
.

(4.26)

Assuming the same noise power level ΦNN (jΩ) at each microphone, equation 4.26 simplifies to

ΦSCOT
ZmZ1

(jΩ) = e−jΩfs∆τm
[iSNR

1 + iSNR

]
, (4.27)

with the input SNR

iSNR =
ΦSS(jΩ)

ΦNN (jΩ)

at each microphone. Obviously the cross-spectrum is scaled with the input SNR. If it is large,
ΦSCOT
ZmZ1

(jΩ) can be approximated as

ΦSCOT
ZmZ1

(jΩ) ≈ e−jΩfs∆τm . (4.28)

This simplification is identified as a Dirac pulse in time domain, occurring at time lag ∆τm

rSCOTzmz1 (t) = δ(t−∆τm). (4.29)

The time lag ∆τm resembles the relative time difference of arrival of the speech signal between
the m-th and the first microphone. Using a finite sampling rate fs, the inverse FFT of equation

May 7, 2013 – 59 –

4 Acoustic Source Localization

4.28 yields a sinc-pulse due to the sampling theorem

rSCOTzmz1 (k) =
sin(π(k − fs∆τm))

π(k − fs∆τm)
, (4.30)

where k is the sample index. For a sampling rate of fs = 16kHz and an inter-microphone
distance d = 5cm, the maximum possible time lag is given by K = dfs dc e = 3 samples. A
resolution of only 3 integer samples allows for 2K + 1 = 7 DOA values, which might be too
coarse for speaker tracking. Therefore, ∆τm has to be estimated in sub-sample space. This can
be done by fitting a parabola or a Gaussian to the measured data points rSCOTzmz1 (k). However, for
small array apertures a sinc kernel is recommended for greater accuracy [44]. This sinc kernel
is given as

r̃SCOTzmz1 (k) =
sin(π(k − fs∆τ̃m))

π(k − fs∆τ̃m)
, (4.31)

where ∆τ̃m denotes a predefined delay. The optimal delay in a MSE sense is determined by a
quadratic cost function

J(∆τ̃m) =
1

1
2K

∑K
k=−K

∣∣∣rSCOTzmz1 (k)− r̃SCOTzmz1 (k)
∣∣∣2 . (4.32)

The sum from −K to K samples covers all possible DOAs from −90° to +90°, as shown in figure
4.2. Maximizing this cost function identifys the most accurate ∆τ̃m by using

∆ˆ̃τm = arg max
∆τ̃m

J(∆τ̃m). (4.33)

Once the optimal time lag has been determined, the corresponding DOA angle Θm for the linear
array shown in figure 4.2 can be computed with

Θm = sin−1
(∆ˆ̃τm · c

(m− 1)d

)
, (4.34)

where (m − 1)d may be recognized as the absolute distance between the first and the m-th
microphone. Obviously, the valid range for ∆τ̃m extends from −(m−1)d to (m−1)d. Equation
4.33 can be realized by dividing this range into a linear grid of I time delays. Then, the i-th
time delay is given as ∆τ̃m,i = (m−1)d

c

(
2i
I − 1

)
.

For the array in figure 4.2, where d = 5cm and the search grid is divided into I = 50
equidistant chunks, the grid size for the second microphone (m = 2) is given as dgrid = 2(m−1)d

I =
2mm. With mechanical tolerances like microphone placing in mind, this value appears to be
a reasonable choice. Also, the computational cost for this grid search over 50 elements is still
relatively small. Further, the delay values ∆τ̃m,i can be precomputed and stored in a table, and
the grid search does not have to be executed for every frame of data. A few times per second
is fairly enough, depending on the expected movement of the speaker in front of the array. A
practical example using real speech data is given in figure 4.3. The cost function of equation
4.33 is plotted over a search grid of I = 50 possible time delays. In accordance to the speech
arriving at Θm = 45° at the array, the cost function shows a maximum at the corresponding

– 60 – May 7, 2013

4.3 Estimating the Direction Of Arrival

angle. The speech data was generated using one of the ATFs measured in chapter 2.7. Using
proper scaling, J(∆τ̃m) can be used as Speech Presence Probability (SPP) for plotting.

Figure 4.3: Cost function of equation 4.33 for speech arriving at Θm = 45°, d = 5cm and I = 50.

4.3.2 Phase Transform

Considering equation 4.27, it becomes clear that the DOA information is merely contained in
the phase term rather than in the amplitude. The Phase Transform (PHAT) [9] modifies the
cross correlation in equation 4.26 to

ΦPHAT
ZmZ1

(jΩ) =
ΦZmZ1(jΩ)

|ΦZmZ1(jΩ)|
=

ΦSS(jΩ)e−jΩfs∆τm

|ΦSS(jΩ)|
= e−jΩfs∆τm . (4.35)

Unlike the SCOT, the PHAT does not rely on the input SNR, as may be seen from equation
4.35. Therefore, the PHAT performs better in low SNR conditions [9]. The remaining DOA
estimation procedure is the same as for the SCOT, from equation 4.29 onwards.

4.3.3 Multiple Signal Classification

Another means to estimate the DOA is to use the eigenvectors of the spatial correlation matrix
ΦZZ(jΩ). These types of algorithms are known as Multiple Signal Classification (MUSIC) [9].
Again, each time delay between the m-th and the first microphone is estimated separately.

By writing the signal model of equation 4.24 for the first and the m-th microphone in vector
notation, we get

Zm(jΩ) = ς(jΩ,∆τm)S(jΩ) +Nm(jΩ), (4.36)

where

May 7, 2013 – 61 –

4 Acoustic Source Localization

Zm(jΩ) =
[
Zm(jΩ) Z1(jΩ)

]T
ς(jΩ,∆τm) =

[
e−jΩfs∆τm 1

]T
Nm(jΩ) =

[
Nm(jΩ) N1(jΩ)

]T
.

The spatial correlation matrix of Zm(jΩ) can be written as

ΦZmZ1 = ΦSSς(∆τm)ςH(∆τm) + ΦNNI2×2, (4.37)

where the frequency argument jΩ has been omitted for enhanced readability. The noise is
assumed to be uncorrelated between the microphones and of same power ΦNN , similar to the
PHAT and SCOT algorithms. An eigenvalue decomposition of ΦZmZ1 gives

ΦZmZ1 = EΛEH , (4.38)

where Λ = diag [λ1 λ2] are the eigenvalues of ΦZmZ1 . λ1 = 2ΦSS + ΦNN and λ2 = ΦNN . It is
worth noting that λ1 > λ2. The associated eigenvectors are given as E = [e1 e2].

From equation 4.36 it can be easily seen that the matrix ΦSSς(∆τm)ςH(∆τm) is positive semi-
definite and of rank 1. Its only non-zero eigenvalue is 2ΦSS . Therefore, the second eigenvector
e2 is subject to

ΦZmZ1e2 = λ2e2 = ΦNNe2. (4.39)

Inserting into equation 4.37 gives

ΦZmZ1e2 =
[
ΦSSς(∆τm)ςH(∆τm) + ΦNNI2×2

]
e2. (4.40)

Considering both equations 4.39 and 4.40, it is obvious that

ΦSSς(∆τm)ςH(∆τm)e2 = 01×2 (4.41)

must hold. This result can be further simplified to

eH2 ς(∆τm) = 0. (4.42)

This equation indicates that the eigenvector associated with the smaller eigenvalue of ΦZmZ1 is
orthogonal to the vector ς(∆τm) [9], which contains the actual DOA information. Exploiting
this observation, the MUSIC cost function can be written as

J(∆τ̃m) =

2πfs∑
Ω=0

1∣∣eH2 (jΩ)ς(∆τ̃m, jΩ)
∣∣2 , (4.43)

where averaging over all frequencies ensures that the global, optimal time lag ∆ˆ̃τm is detected,

– 62 – May 7, 2013

4.3 Estimating the Direction Of Arrival

i.e.

∆ˆ̃τm = arg max
∆τ̃m

J(∆τ̃m). (4.44)

Similar to SCOT and PHAT, a search range containing possible realizations of ς(∆τ̃m, jΩ) has
to be defined. The computational cost for MUSIC is significantly larger than for the other
two, since an eigenvector decomposition of ΦZmZ1(jΩ) needs to be done for each frequency. By
averaging the cost function over all frequencies, the peak occuring for the optimal delay might
be less well-defined [9]. Therefore, also a wideband modification of the MUSIC algorithm is
presented in [9]. But it is performed in time domain, which clearly results in an even higher
computational cost.

Similar to the SCOT algorithm, an example showing the cost function of equation 4.43 over a
set of 50 possible angles Θm is given in figure 4.4. Again, the speech signal arrives at Θm = 45°
at the microphone array. The highest peak in the cost function correctly identifies the true DOA
angle. The peak is sharper than for the SCOT algorithm, yet also a local maximum appears at
about 25°.

Figure 4.4: Cost function of equation 4.43 visualized for speech arriving at Θm = 45°, d = 5cm and I = 50.

4.3.4 Magnitude Estimation

When using DOAs for RTF approximation, the main direction of the source signal can be esti-
mated using one of the three algorithms above. However, the amplitude spectrum of the DOA
is modeled as 1, since |e−jΩfsτm | = 1 for all frequencies. This imposes that the signals at the
microphones have equal power at all frequencies at all times. In a practical implementation,
this constraint can never be fulfilled since the microphone sensitivity varies depending on man-
ufacturing tolerances. Low-cost electret microphones show a variance of about 6dB throughout
the usable frequency range. Even when using measurement-grade equipment, the variance is
still several dB. Furthermore, when the speaker is close to the array, the nearest microphone
receives the loudest portion of the sound. According to equation 2.7, sound pressure increases

May 7, 2013 – 63 –

4 Acoustic Source Localization

linearly with decreasing distance, therefore the true magnitude spectrum of the RTFs cannot
be neglected.

According the definition of RTFs from equation 2.15, the magnitude ratio between the ATFs
of the m-th and the first microphone has to be determined. A good approximation has been
found experimentally by taking the square root the ratio of the PSD estimates of the microphone
signals, i.e.

|Ãm(jΩ)| ≈

√
ΦZmZm(jΩ)

ΦZ1Z1(jΩ)
=

√
ΦSS(jΩ)|Am(jΩ)|2 + ΦNmNm(jΩ)

ΦSS(jΩ)|A1(jΩ)|2 + ΦN1N1(jΩ)
. (4.45)

If the additive noise PSDs in equation 4.45 are small, this estimate is close to the true ATF
magnitude ratio. Otherwise, the result has to be clamped to stay within meaningful bounds, for
example ±12dB. Further, this magnitude estimation procedure is restricted to the presence of
a speech signal. This can be detected using a VAD. The final estimate for the RTF is obtained
by combining the magnitude estimate with the DOA estimate from one of the above algorithms,
i.e.

Ãm(jΩ) = e−jΩfs∆τ̂m

√
ΦZmZm(jΩ)

ΦZ1Z1(jΩ)
. (4.46)

This type of RTF combines the robustness of a DOA as single number criterion with the simplic-
ity of a RTF magnitude estimation. It has a clear advantage over the more complex estimation
of the full RTFs from chapter 4.2.2.

4.4 Voice Activity Detection

All of the RTF and DOA algorithms introduced so far may only be carried out in the presence of
the desired speech signal. Clearly, without the speech signal the location of the speaker cannot
be estimated. Therefore, a Voice Activity Detector (VAD) may be used to decide whether the
desires speech signal is present or not. Using a VAD in speech enhancement applications is still a
controversy, as false decisions have a devastating impact on the overall speech quality. However,
using a VAD for the source location task has no direct influence on speech quality. Therefore, a
certain percentage of false decisions of the VAD is negligible.

Utilizing the results from the ATF measurements in chapter 2.7, a good VAD can be built
based upon spatial coherence [10]: The mean squared coherence is large during speech activity,
and low during speech absence. This is especially true for high frequencies, as shown in figures
2.10 and 2.9, respectively.

Using the definition of the squared coherence in equation 2.19, the average over an entire
frequency range can be formulated as

ΓZiZj =
1

Ω1 − Ω0

Ω1∑
Ω=Ω0

|γZiZj (jΩ)|2, (4.47)

which is known as Mean Squared Coherence (MSC). Especially the lower bound Ω0 = 2πf0

has to be chosen carefully, in order to avoid frequencies that also have a high coherence in the

– 64 – May 7, 2013

4.4 Voice Activity Detection

absence of speech. A good choice for Ω0 is determined by locating the first zero of the MSC for
the ideal diffuse noise sound field from equation 2.20, illustrated in figure 2.9. It is found by
Ω0 = f0

fs
= c

2d·fs . For the given array geometry in figure 2.9 of d = 5cm, this lower frequency is
at f0 = 3430Hz. The upper bound Ω1 is only limited by the frequency range of human speech
production. Any two microphones i and j of the microphone array can be used to evaluate
equation 4.47.

May 7, 2013 – 65 –

Multi-channel Speech Enhancement

5
Multichannel Postfiltering

5.1 Postfiltering Concepts

Unlike traditional speech enhancement methods, beamforming imposes only little distortion
on the speech signal. Therefore, a significant improvement in speech quality can be achieved.
However, when the noise field is spatially incoherent or diffuse the noise reduction capabilities
of a beamformer are insufficient. An example has been given for the MVDR beamformer in
section 3.4. In illustration 3.6, it can be seen that the noise reduction performance is poor for
low frequencies. Therefore, additional noise canceling is required. Usually, this is done in form
of a postfilter, which operates on the output of the beamformer. The earliest postfilters have
been derived by multichannel Wiener filtering. The optimal MISO Wiener solution for the signal
model given in section 2.3 is derived in [2] and [11]. It is given as

W =
Φ−1
NNA

AHΦ−1
NNA

· ΦSS

ΦSS +
[
AHΦ−1

NNA
]−1 , (5.1)

where the frequency dependency jΩ has been omitted. The first term can be recognized as the
MVDR beamformer from section 3.4, and the second term resembles a single channel Wiener
filter for noise suppression. Based on this result, a single channel Wiener filter seems to be
sufficient to enhance the overall performance. However, after a decade of research in the field of
acoustic beamforming, a multichannel postfilter has shown to be superior: Single channel noise
reduction filters exhibit a low performance when the noise is highly non-stationary, but this type
of noise dominates in most practical use cases. Multichannel noise reduction filters surpass this
limit by using the spatial information made available by the beamformer. Thereby the postfilter
does not depend on the statistics of the noise signal, but rather on the spatial selectivity of the
beamformer.

In this chapter, three of the most prominent multichannel postfilters are introduced: The
Transient Beam to Reference Ratio presented by Cohen [36], the Direct to Diffuse Ratio method
from [13] and Benesty’s Multichannel Speech Presence Probability presented in [14]. Some of the
methods are based on single channel noise suppression. Therefore, single channel methods are
introduced first.

– 66 – May 7, 2013

5.2 Single-Channel Speech Enhancement

5.2 Single-Channel Speech Enhancement

Single channel speech enhancement algorithms have a rich history for almost thirty years. Most
methods are based on the estimation of the noise power, followed by spectral subtraction. The
most prominent concepts for estimating the noise power are the Minimum Statistics approach
[45] and the Improved Minima Controlled Recursive Averaging (IMCRA) [40]. Ephraim and
Malah proposed the minimum mean-squared error logarithmic spectral-amplitude (MMSE-LSA)
estimator for spectral enhancement [46]. Many speech enhancement algorithms are based on
this work or one of its many modifications. In the following, these noise estimation and spectral
subtraction concepts are briefly introduced.

5.2.1 Minimum Statistics

In [45], Martin introduced the Minimum Statistics noise spectrum estimator. It uses optimal
smoothing of the noisy input signal power to estimate its noisefloor. As a benefit, it does not
need a VAD, but relies completely on the signal statistics instead.

The signal model for most single channel speech enhancement algorithms assumes an additive
superposition of a speech signal S(jΩ) and a noise signal N(jΩ), i.e.

Y (jΩ) = S(jΩ) +N(jΩ). (5.2)

Again, speech and noise are assumed to be uncorrelated. Thus, the power spectrum density
(PSD) of the noisy input calculates to

σ2
y(jΩ) = σ2

s(jΩ) + σ2
n(jΩ). (5.3)

Using the signal model in equation 5.2, an estimate for the true noise PSD σ2
n(jΩ) is given by

the following smoothing operation

P (k, jΩ) = P (k − 1, jΩ)α(k, jΩ) + (1− α(k, jΩ))|Y (k, jΩ)|2, (5.4)

where k denotes the frame number. The main idea of the minimum statistics approach is to
derive an optimal smoothing parameter α(k, jΩ), so that P (k, jΩ) is as close as possible to the
true noise PSD σ2

n(jΩ). This is achieved by minimizing the conditional MSE

E
{(
P (k, jΩ)− σ2

n(k, jΩ)
)2∣∣∣P (k − 1, jΩ)

}
. (5.5)

Setting the first derivative with respect to α(k, jΩ) to zero yields the optimal time and frequency
dependent smoothing parameter

αOPT (k, jΩ) =
1

1 +
(
P (k−1,jΩ)
σ2
n(k,jΩ)

− 1
)2 . (5.6)

Since P (k, jΩ) is a smoothed version of the input |Y (jΩ)|2, the actual noisefloor σ2
n(jΩ) is

smaller during speech activity. Hence, the estimator P (k, jΩ) is biased. An unbiased estimator

May 7, 2013 – 67 –

5 Multichannel Postfiltering

is given by

σ̂2
n(k, jΩ) = Pmin(k, jΩ)Bmin(D,Qeq(k, jΩ)), (5.7)

where Pmin(k, jΩ) denotes the smallest value within a window of D recent values of P (k, jΩ).
The function Bmin(D,Qeq(k, jΩ)) depends on this window length and the inverse normalized
variance of P (k, jΩ), given as

Qeq(k, jΩ) =
2σ4

n(jΩ)

var{P (k, jΩ)}
. (5.8)

Due to the minimum search in equation 5.7, the noise estimate σ̂2
n(k, jΩ) lags D frames behind

P (k, jΩ). Therefore, the estimation accuracy heavily depends on D. Making it too small causes
σ̂2
n(k, jΩ) to closely follow P (k, jΩ), and thereby speech components may be recognized as noise.

Making it too large on the other hand prevents σ̂2
n(k, jΩ) to follow the true noise PSD quickly

enough, hence transient noises may not be suppressed anymore. The overall computational
complexity is rather large, therefore the minimum search can also be done iteratively. Further
implementation details can be found in [45].

5.2.2 Improved Minima-Controlled Recursive Averaging

In [40], Cohen proposed the Improved Minima Controlled Recursive Averaging or IMCRA noise
spectrum estimator. Like with the Minimum Statistics approach, an explicit VAD to distin-
guish noise from speech is not needed. Instead, a time and frequency dependent speech presence
probability is employed to control a smoothing factor. This factor is used to estimate the noise
power from the noisy input signal. The speech presence probability itself is estimated using two
recursive averaging stages.

Using the same signal model as in equation 5.2, the first stage is given by

P (k, jΩ) = P (k − 1, jΩ)αs + (1− αs)|Y (k, jΩ)|2. (5.9)

From P (k, jΩ), the following two SNRs are calculated

γmin(k, jΩ) =
|Y (k, jΩ)|2

BminPmin(k, jΩ)
; ζ(k, jΩ) =

P (k, jΩ)

BminPmin(k, jΩ)
, (5.10)

where Pmin(k, jΩ) is the minimum of the recent D frames of P (k, jΩ), similar to Minimum
Statistics. Bmin is a predefined constant depending on D. The second recursive averaging stage
is defined similar to the first one

P̃ (k, jΩ) = P̃ (k − 1, jΩ)αs + (1− αs)|Y (k, jΩ)|2, (5.11)

but it is only updated if γmin(k, jΩ) < γ0 and ζ(k, jΩ) < ζ0. This way, frequency bins that may
contain speech are excluded from the second smoothing stage. Again, two SNRs are calculated

– 68 – May 7, 2013

5.2 Single-Channel Speech Enhancement

from the result

γ̃min(k, jΩ) =
|Y (k, jΩ)|2

BminP̃min(k, jΩ)
; ζ̃(k, jΩ) =

P (k, jΩ)

BminP̃min(k, jΩ)
, (5.12)

where P̃min(k, jΩ) is the minimum of the recent D frames of P̃ (k, jΩ), similar to the first
smoothing stage. Next, the a-priori speech absence probability estimator is defined as

q(k, jΩ) =

1, if γ̃min(k, jΩ) ≤ 1 and ζ̃(k, jΩ) < ζ0

γ1−γ̃min(k,jΩ)
γ1−1 , if 1 < γ̃min(k, jΩ) < γ1 and ζ̃(k, jΩ) < ζ0

0, otherwise

(5.13)

Based on a Gaussian statistical model [40], the speech presence probability is derived

p(k, jΩ) =

[
1 +

q(k, jΩ)

1− q(k, jΩ)

(
1 + ξ(k, jΩ)

)
e−ν(k,jΩ)

]−1

, (5.14)

with the a-priori SNR and the a-posteriori SNR, respectively

ξ(k, jΩ) =
σ2
s(k, jΩ)

σ2
n(k, jΩ)

; γ(k, jΩ) =
|Y (k, jΩ)|2

σ2
n(k, jΩ)

, (5.15)

and

ν(k, jΩ) = γ(k, jΩ)
ξ(k, jΩ)

1 + ξ(k, jΩ)
. (5.16)

Finally, a recursive averaging operation is used to estimate the noise PSD

σ̂2
n(k, jΩ) = σ̂2

n(k − 1, jΩ)α̃(k, jΩ) + (1− α̃(k, jΩ))|Y (k, jΩ)|2, (5.17)

where the smoothing factor α̃(k, jΩ) is controlled by the speech presence probability using

α̃(k, jΩ) = α+ (1− α)p(k, jΩ). (5.18)

Both the IMCRA and Minimum Statistics noise estimators have a similar performance and
numerical complexity. The window length D can be halved for the IMCRA, as the minimum
search of the first averaging stage serves as input for the second one. Even though, the same
considerations on D apply. In [40], the recursive averaging stages also employ smoothing over
frequency to improve the estimation accuracy. In the experiments this has been found to be
unnecessary. To reduce the computational cost, this smoothing has been removed. Further
implementation details can be found in [40].

5.2.3 Minimum Mean Squared Error Log-Spectral Amplitude estimator

The estimated noise PSD is used for subtracting the noise amplitude from the amplitude spec-
trum of the input signal, thereby leaving the phase spectrum unmodified. This technique is

May 7, 2013 – 69 –

5 Multichannel Postfiltering

known as Spectral Subtraction, using a non-causal Wiener filter. Numerous modifications to
this Wiener filter have been prepared, probably the most influential one is the Minimum Mean-
Squared Error Logarithmic Spectral-Amplitude (MMSE-LSA) estimator [46].
First, the algorithm calculates an a-priori SNR from the power of the k-th noisy input signal
frame |Y (k, jΩ)|2 and the estimate of the noise power σ̂2

n(k, jΩ)

γ(k, jΩ) =
|Y (k, jΩ)|2

σ̂2
n(k, jΩ)

. (5.19)

Then, a decision directed a-priori SNR is calculated recursively by using

ξ(k, jΩ) = G2(k − 1, jΩ)γ(k − 1, jΩ)α+ (1− α)max
(
γ(k, jΩ)− 1, 0

)
, (5.20)

where α is a smoothing factor which controls the trade-off between noise removal and speech
quality. The MMSE-LSA gain function is given as

G(k, jΩ) =
ξ(k, jΩ)

1 + ξ(k, jΩ)
exp

(
1

2

∫ ∞
ν(k,jΩ)

e−x

x
dx

)
, (5.21)

with

ν(k, jΩ) = γ(k, jΩ)
ξ(k, jΩ)

1 + ξ(k, jΩ)
. (5.22)

Finally, the enhanced output signal is obtained by filtering the input signal Y (k, jΩ) with the
gain function

X(k, jΩ) = G(k, jΩ)Y (k, jΩ). (5.23)

Since the gain function in equation 5.21 is real-valued, it represents a non-causal Wiener filter.
In real-time applications, such filters can only be used with windowing and overlap-adding the
consecutive signal frames. This technique has already been used for realizing the beamforming
filters, as described in detail in section 2.8. Therefore, no additional FFT operations are neces-
sary when using a single-channel postfilter.

A major problem of spectral subtraction is a phenomenon known as musical noise. Caused
by estimation errors in the noisefloor energy, the noise is not attenuated equally over frequency
and time. Depending on the statistics of the noise, this effect produces audible tones which are
randomly distributed over all frequencies. In order to alleviate this problem, several modifica-
tions to the decision-directed a-priori SNR formula in 5.20 exist, like exploiting the correlation
properties of speech [47], averaging the a-priori SNR over multiple frames [48], or averaging it
over frequency [49].

However, there is a drawback when using Wiener filtering for noise removal; improving the
noise reduction performance results in decreasing speech quality, and vice versa [3].

– 70 – May 7, 2013

5.3 Multi-Channel Postfilter

5.2.4 Optimally-Modified Log-Spectral Amplitude estimator

Another widely used improvement of the MMSE-LSA algorithm is its Optimally Modified ex-
tension (OM-MMSE-LSA) proposed by Cohen in [49]. The MMSE-LSA gain function from
equation 5.21 is modified to

G1(k, jΩ) = Gp(k,jΩ)(k, jΩ)G
1−p(k,jΩ)
min . (5.24)

This modification prevents speech components from being eliminated, if they have a low gain
value G(k, jΩ) and a high speech presence probability p(k, jΩ) at the same time. This happens
especially for frequencies with a low SNR. The factor Gmin allows for a lower limit on signal
attenuation. It avoids a complete removal of the output signal during the absence of speech,
and thereby increases the perceptive signal quality [3]. Usually it is set to around -15dB.

5.3 Multi-Channel Postfilter

Even though single channel speech enhancement methods prevail for decades, their performance
is still poor when the SNR is low, or the interfering noise is non-stationary. Multichannel post-
filters surpass these limits by using the spatial information made available by the beamformer.
Thereby, the performance of multichannel speech enhancement systems does not rely on noise
statistics, but rather on spatial selectivity. In this chapter, three recently published postfilter
concepts are introduced: The Transient Beam to Reference Ratio [12], the Direct to Diffuse
Ratio [13] and the Multichannel Speech Presence Probability [14].

5.3.1 Transient Beam to Reference Ratio

In [12], the IMCRA noise estimator benefits from incorporating the noise reference provided by
the generalized sidelobe canceler from section 3.5. The postfilter algorithm is known as Transient
Beam to Reference Ratio (TBRR), which indicates whether a transient component is related to
the desired speech or the interfering noise. Figure 5.1 shows the block diagram of the proposed
multichannel postfilter.

Figure 5.1: Block diagram of the TBRR postfilter, as presented in [12].

The postfilter performs the following tasks: First, two operators for estimating the peaks and
the noise floor of a signal are defined. The TBRR is given as their ratio. Then, this ratio is
used to derive a-priori speech absence probability q(k, jΩ), which serves as input for the IMCRA
algorithm.

The ratio between the transient power at the beamformer output Y (k, jΩ) and the noise refer-
ences U(k, jΩ) is expressed as the Transient Beam to Reference Ratio (TBRR). It is calculated

May 7, 2013 – 71 –

5 Multichannel Postfiltering

as follows

ψ(k, jΩ) =
max{SY (k, jΩ)−MY (k, jΩ), 0}

max
{
{S
(
Um(k, jΩ)

)
−M

(
Um(k, jΩ)

)
}Mm=1, ε

} , (5.25)

where the operator S(·) smoothes the PSD, and provides an estimate of the power-envelope
of that signal [12]. It is equivalent to the first-order recursive averaging filter from equation
5.9, used in the IMCRA algorithm. The operator M(·) estimates the noise floor PSD by us-
ing either one of the single-channel noisefloor estimation methods presented in chapter 5.2. The
symbol ε is a small positive constant to avoid a division by zero in the absence of instationarities.

When the beamformer is steered towards the desired signal, and the noise is uncorrelated
with the speech, then the TBRR is greater than one for speech transients and smaller than one
for noise transients. While a transient in the speech signal is desired, a noise transient should
be suppressed as much as possible. To accomplish this, the a-priori speech absence probability
q(k, jΩ) has been heuristically defined as

q(k, jΩ) =

1 if γ(k, jΩ) ≤ γlow or ψ(k, jΩ) ≤ ψlow
max

{
γhigh−γ(k,jΩ)
γhigh−γlow ,

ψhigh−ψ(k,jΩ)
ψhigh−ψlow

, 0
}

otherwise.

(5.26)

The a-posteriori SNR γ(k, jΩ) has already been defined in equation 5.15. The constants
γlow, γhigh and ψlow, ψhigh define the endpoints of a linear function to map ψ(k, jΩ) and γ(k, jΩ)
to the range [0, · · · , 1]. They are defined in [36] and [35]. Note that the denominator of equation
5.25 requires M instances of the IMCRA algorithm to be executed on each of the noise references
Um(k, jΩ). Therefore, the computational load is excessive when many microphones are used.
However, instead of using the IMCRA algorithm for M(·), Minimum Statistics or any other
noisefloor estimation algorithm can be used as well.

The noise canceler consists of the last two blocks appearing in figure 5.1: The noisefloor PSD
σ̂2
n(k, jΩ) at the beamformer output is estimated using equations 5.14 - 5.18 from the IMCRA

algorithm, which is then used for the OM-MMSE-LSA filter presented in chapter 5.2.4.

5.3.2 Direct to Diffuse Ratio

The Direct to Diffuse Ratio (DDR) [13] uses the complex spatial coherence function to distin-
guish between direct and diffuse sound components. Therefore, this approach perfectly qualifies
as a postfilter given the acoustic conditions described in section 2.3.
If we assume a perfectly directional sound field for the desired speaker signal, the signal model
defined in equation 2.14 simplifies to

Zm(jΩ) = S(jΩ)e−jΩfs∆τm +Nm(jΩ). (5.27)

Hence, the speech-ATFs simply turn into time delays. The same model has been used for the
DOA estimation in section 4.3. Based on this model, the direct to diffuse sound ratio is derived
in [50]. However, in this paper the DDR is termed Signal to Reverberation Ratio or (SRR).

– 72 – May 7, 2013

5.3 Multi-Channel Postfilter

Using the signal model in equation 5.27, the PSD of the mth microphone is given as

ΦZmZm(jΩ) = E
{
|Zm(jΩ)|2

}
= ΦSS(jΩ) + ΦNN (jΩ), (5.28)

where ΦSS(jΩ) and ΦNN (jΩ) are the PSDs of the signal and the noise, which are assumed to
be equal at all microphones [50]. If we further assume a perfect diffuse noise sound field, the
spatial PSD between the m-th and the m′-th microphone is given as

ΦZmZm′ (jΩ) = E
{
Zm(jΩ)Z∗m′(jΩ)

}
= ΦSS(jΩ)e−jΩfs∆τmm′ + ΦNN (jΩ)γNmNm′ (jΩ),

(5.29)

where γNmNm′ (jΩ) may be recognized as the spatial coherence of the ideal diffuse sound field
given in equation 2.17. The relative time delay between the mth and the m′th microphone is
denoted as ∆τmm′ . This quantity can be determined using one of the DOA estimation algorithms
presented in chapter 4.3. Since the speech is assumed to be directional, and the noise to be
diffuse, the ratio of their PSDs gives the DDR

ΓDDR(jΩ) =
ΦSS(jΩ)

ΦNN (jΩ)
. (5.30)

Using the definition of the coherence in equation 2.16, the spatial coherence between the m-th
and the m′-th microphone can be directly measured from the microphone signals. It is given as

γZmZm′ (jΩ) =
ΦZmZm′ (jΩ)√

ΦZmZm(jΩ)ΦZm′Zm′ (jΩ)
. (5.31)

By inserting equation 5.28 and 5.29 into 5.31, the coherence can be expressed as

γZmZm′ (jΩ) =
ΦSS(jΩ)e−jΩfs∆τmm′ + ΦNN (jΩ)γNmNm′ (jΩ)

ΦSS(jΩ) + ΦNN (jΩ)

=
ΓDDR(jΩ)e−jΩfs∆τmm′ + γNmNm′ (jΩ)

ΓDDR(jΩ) + 1
.

(5.32)

Solving for the DDR gives

ΓDDR(jΩ) = Re

{
γNmNm′ (jΩ)− γZmZm′ (jΩ)

γZmZm′ (jΩ)− e−jΩfs∆τmm′

}
, (5.33)

where only the real part contains the desired information [50]. In [13], the DDR is converted
into a speech absence probability using the following mapping function

q(k, jΩ) =
10γ0γs/10

10γ0γs/10 + ΓγsDDR(jΩ)
, (5.34)

where γ0 controls the offset along the ΓDDR axis, and γs defines the steepness of the transition
between speech absence and presence. When using more than 2 microphones, the average of the

May 7, 2013 – 73 –

5 Multichannel Postfiltering

DDRs between each pair can be used before calculating the speech absence probability. This
makes the algorithm less prone to estimation errors. Similar to the TBRR, the noisefloor PSD
at the beamformer output σ̂2

n(k, jΩ) is estimated using equations 5.14 - 5.18 from the IMCRA
algorithm, which is then used for the OM-MMSE-LSA filter presented in chapter 5.2.4. Com-
pared to TBRR, the computational cost is fairly small. A similar approach to the DDR can be
found in [21].

While the assumption of a diffuse noise sound field holds for most real application scenarios,
the sound field from the speech signal might not be perfectly directional due to reverberations.
Therefore the DDR might be wrong for frequencies containing strong speaker echoes. As a
result, the estimated noisefloor PSD σ̂2

n(k, jΩ) might be underestimated for these frequencies.
A straightforward approach to fix this issue is to run an additional single channel noise PSD
estimation algorithm like IMCRA or Minimum Statistics on the beamformer output. Then, the
greater noise estimate can simply be selected by

σ̂2
n(k, jΩ) = max

(
σ̂2
n,DDR(k, jΩ), σ̂2

n,IMCRA(k, jΩ)
)
. (5.35)

However, this fix has to be used with great care. If the noise estimator removes too much
information from the desired speech signal, the primary benefit from the beamformer might be
lost again. In the experiments, the bias compensation factor Bmin of both noise estimators has
been lowered to avoid this from happening.

5.3.3 Multichannel Speech Presence Probability

The last postfilter concept is based on a Multichannel Speech Presence Probability (MCSPP),
presented in [14]. The motivation is to generalize the already optimal single channel noise re-
duction Wiener filter from chapter 5.2 to the multichannel case. Basically, the algorithm is very
similar to IMCRA, except for being extended to operate with multiple microphones.

Considering the original signal in equation 2.14, the spatial PSDs at the microphones is given
by:

ΦZZ(jΩ) = ΦSS(jΩ) + ΦNN (jΩ), (5.36)

where ΦSS and ΦNN are the unknown speech and noise PSDs at the microphones, respectively.
In [51], the single-channel a posteriori SNR from equation 5.15 is defined in a multi-channel
fashion as

γ̃(k, jΩ) = trace
[
Φ−1
NN (k, jΩ)ΦZZ(jΩ)

]
. (5.37)

The multichannel a priori SNR is calculated analogously with

ξ(k, jΩ) = trace
[
Φ−1
NN (k, jΩ)ΦSS(jΩ)

]
= γ̃(k, jΩ)−M. (5.38)

By using the PSDs a long-term average is obtained. An instantaneous a posteriori SNR is
obtained by using

γ(k, jΩ) = ZH(k, jΩ)Φ−1
NN (k, jΩ)Z(k, jΩ). (5.39)

– 74 – May 7, 2013

5.3 Multi-Channel Postfilter

Moreover, a third quantity β(k, jΩ) = γ(k, jΩ)ξ(k, jΩ) is defined by using the matrix inversion
lemma[51]. It is given as

β(k, jΩ) = ZH(k, jΩ)Φ−1
NN (k, jΩ)ΦSS(jΩ)Φ−1

NN (k, jΩ)Z(k, jΩ). (5.40)

In chapter 5.2.2, the IMCRA algorithm uses a single-channel speech presence probability p(k, jΩ).
A straightforward generalization to the multi-channel case can be found by inserting equations
5.38 and 5.40 into 5.14, i.e.

p(k, jΩ) =

[
1 +

q(k, jΩ)

1− q(k, jΩ)
[1 + ξ(k, jΩ)] exp

[
− β(k, jΩ)

1 + ξ(k, jΩ)

]]−1

. (5.41)

Similar to the IMCRA algorithm, the speech absence probability q(k, jΩ) is defined as

q(k, jΩ) =

1, if γ̃(k, jΩ) < M and γ(k, jΩ) < γ0

γ̃0−γ̃(k,jΩ)
γ̃0−M , if M ≤ γ̃(k, jΩ) < γ̃0 and γ(k, jΩ) < γ0

0, otherwise

(5.42)

Also, smoothing in frequency is performed to increase the robustness against outliers. So far,
the MCSPP solely depends on the noise PSD at the microphones ΦNN (jΩ). As this matrix is
generally unknown, a two-stage iterative estimation by using the speech presence probability is
suggested by [14].

If the MCSPP is used as a postfilter, this iterative estimation of ΦNN (jΩ) is not necessary.
A good noise estimate for this noise PSD can be obtained by using the output Y (k, jω) of the
GSC beamformer from equation 3.33: The beamformer’s output is an estimate of the speech
component at the reference microphone. By using the RTFs, this estimate can be back-projected
to each of the microphones with A(k, jΩ)Y (k, jω). According to the signal model from equation
2.14, the noise component at each microphone is then found by subtraction

N̂(k, jΩ) = Z(k, jΩ)−A(k, jΩ)Y (k, jω), (5.43)

An estimate of the noise PSD can be obtained by recursive averaging

ΦN̂N̂ (k, jΩ) = ΦN̂N̂ (k − 1, jΩ)α+ (1− α)N̂(k, jΩ)N̂H(k, jΩ). (5.44)

As for the TBRR and the DDR, the noisefloor PSD at the beamformer output σ̂2
n(k, jΩ) is

estimated using equations 5.14 - 5.18 from the IMCRA algorithm, which is then used for the OM-
MMSE-LSA filter presented in chapter 5.2.4. The computational cost of MCSPP is the smallest
of these three postfilters, as no additional noisefloor estimator such as IMCRA is needed. Even
though, using equations 5.37 and 5.40 requires matrix multiplications and inversions, which
might be more complex than the entire GSC beamformer if many microphones M are used. In
the Matlab experiments, the matrix inversion of equation 5.38 has been heuristically replaced
with the inverse of the trace of ΦN̂N̂ (k, jΩ). The performance of all three postfilters is compared
in section 6.

May 7, 2013 – 75 –

5 Multichannel Postfiltering

5.4 Psychoacoustics

The multichannel speech enhancement system (MCSE) consists of the GSC beamformer and
a postfilter. Usually, the postfilter involves either matrix inversions or several instances of a
noisefloor estimation algorithm, therefore it has a higher computational complexity than the
GSC. In the context of a real-time application scnario, the aim is to reduce the computational
cost of the postfilter.

5.4.1 Auditory Masking

A widely used method to reduce the computational complexity of speech enhancement algo-
rithms is to exploit the properties of the human auditory system. A remarkable property is
knwown as auditory masking. Masking is described as the loudness of a test sound necessary to
be barely audible in the presence of a masking sound [52]. This masking sound can either be a
pure sinusodial tone, or a narrow-band noise signal. Given a masking signal, the so-called mask-
ing curves are obtained by sweeping the test-tone over the entire frequency range, measuring its
necessary loudness to be audible to human listeners. Figure 5.2 shows these masking patterns for
a sinusodial masker at 1kHz at five different volumes. It can be seen that the masking threshold
is both frequency and volume dependent. From this observation it can be concluded, that a
residual noise signal from the postfilter is inaudible if a louder speech component is present at
nearby frequency. The figure uses a frequency scale which has been converted to the equivalent
rectangular bandwidth (ERB).

Figure 5.2: Masking curves for a pure test tone of 1kHz, taken from [53]. The dashed line denotes the
hearing threshold.

Masking also occurs in time domain. For example, if a loud and a soft signal are played
shortly one after another, the soft one is masked because the ear’s sensitivity is still adjusted
to the loud one. This effect even works the other way around, where the loud signal appears
after the soft one. This is possible because the human brain needs a certain amount of time to
perceive and process the acoustic information. In [52], masking effects are described in detail.

Another observation can be made when measuring the perceived loudness as function of the
number of simultaneously played test-tones. The test-tones are equally spaced in frequency,
usually very close to each other. The tones are also played at the same volume, so that the

– 76 – May 7, 2013

5.4 Psychoacoustics

perceived loudness increases with the number of tones being played. Using human listeners, it
can be observed that the overall loudness does not increase, once a certain number of test-tones
is exceeded. The frequency span covered by these test-tones is known as the Critical Bandwidth
[52].

As with the masking curves, the critical bandwidth is frequency dependent and rises semi-
logarithmically with frequency. An approximation for the critical bandwidth as function of
frequency has been given in [54]. It is given as equivalent rectangular bandwidth (ERB), which
can be thought of bandwidth of a bandpass filter used by the human auditory system to group
the perceived loudness. The formula is given as

fERB = 11.17268log

(
1 + 46.06538fHz
14678.49 + fHz

)
. (5.45)

In figure 5.3 the ERB scale is illustrated over a linear frequency range. Due to the logarithm
in equation 5.45, the ERB increases slowly at higher frequencies, allowing to map the entire
frequency range up to 16kHz into only 36 bands.

Figure 5.3: Equivalent rectangular bandwidth, as per equation 5.45.

When using a filterbank, where the bandwidths of the single filters are adjusted according to
equation 5.45, a linear frequency scale can be converted to much less ERB bands. If for example
a window length of 32ms at fs = 16kHz is used, the FFT would produce 257 non-redundant
linearly spaced frequency bands, which can be converted into 32 ERB bands. Thereby the
numerical complexity for algorithms operating in the frequency domain can be reduced by a
factor of 8.

5.4.2 Simplified Gammatone Filterbank

In order to exploit the properties of the human auditory system, a filterbank is used where the
filters model the frequency response of the basilar membrane to a certain extent. They have to
account for both the critical bandwidth and the masking phenomenon [52]. A widely used type
of filterbank for that purpose is the gammatone filterbank. It allows to control the steepness

May 7, 2013 – 77 –

5 Multichannel Postfiltering

and bandwidth by using the following formula [55]

g(t) = a · tn−1e−2πb·t cos(2πfc · t+ φ), (5.46)

where the parameters a is the filter amplitude, n the filter order which controls the steepness,
fc the center frequency, b the filter bandwidth and φ the phase of the carrier. A design goal in
using a gammatone filterbank is the reconstruction of the original signal. This is simply done
by adding the output of the filters. To avoid unwanted gaps or bumps in the overall frequency
response, the parameters of the filters must be chosen such that the sum of all filters exhibits a
smooth frequency response. An example is shown in figure 5.4.

Figure 5.4: Frequency response of a gammatone filterbank with 14 filters, using a = 1, n = 2, b = 1.5ERB
and a spacing of 2 ERB between the filters. The dashed line in black shows the frequency response
of the sum of all filters.

Approaches such as [56] suggest to put the filterbank in front of the entire GSC beamformer
and postfilter, in order to gain the largest benefit in computational cost. However, reconstruct-
ing the signal phase by inverse gammatone filters is not trivial. The phase has to be estimated
after applying filter operations such as the GSC filters. To avoid this problem, the filterbank
is only used in the postfilter. All three presented postfilter algorithms only use the magnitude
spectrum of the beamformer output Y (jΩ) or the noise references U(jΩ). It is therefore suffi-
cient to apply the magnitude of the gammatone filterbank to the magnitude of the postfilter’s
input signals and simply dropping the phase. As a result, the postfilter does not modify the
phase of the enhanced speech signal. Hence, both the decomposition and synthesis using the
gammatone filterbank can be done efficiently in magnitude domain.

Furthermore, we observed that the steepness of the gammatone filters can be increased with-
out noticeable loss in perceived quality. This allows for a drastic simplification of the entire
filterbank: Instead of applying the filter transfer function shown in figure 5.4, it is sufficient to
simply add the magnitudes of the FFT bins falling within the bandwidth b. Decomposition of

– 78 – May 7, 2013

5.4 Psychoacoustics

a signal Y (jΩ) into the k-th ERB band then becomes

YERB(k) =

Ω1∑
Ω=Ω0

YHz(jΩ), (5.47)

where Ω0 and Ω1 mark the boundaries of the ERB band. Synthesis is performed by dividing
the ERB bin to all FFT bins that fall within that band, i.e.

YHz(jΩ) =
1

Ω1 − Ω0
YERB(k) (5.48)

This mapping is shown in figure 5.5. It transforms 257 FFT bins to the ERB scale using 24
bands. A filled rectangle denotes a set of frequency bins combined into the kth ERB bin used
in equation 5.47.

Figure 5.5: Mapping of the simplified gammatone filterbank for 24 bands, a sampling rate of fs = 16kHz
and 32ms FFT length.

While this simplified filterbank saves about 90% of the computational cost of the entire post-
filter, its effect on the perceived speech quality is negligible. This is empirically shown in the
experiments in section 6.

May 7, 2013 – 79 –

Multi-channel Speech Enhancement

6
Matlab Experiments

In the previous chapters, the main building blocks of a multichannel speech enhancement
(MCSE) system based on a beamformer and a multichannel postfilter have been introduced.
Many different algorithms were presented to solve the problems in each domain. In this chap-
ter, the optimal combination of the algorithms is determined using the given microphone array
setup, based on different speech quality measures.

6.1 Quality Assessment

To evaluate the overall speech quality of the enhanced signal after the beamformer and the
postfilter, a technical measure such as the SNR is insufficient. More sophisticated measures are
advantageous. While using the Mean Optinion Score (MOS) is adequate, its evaluation requires
a full-fledged listening test. This requires a lot of time and dozens of test persons, being trained
for the listening tests. Therefore, automated measures that mimic the human impression of
speech quality and noise annoyance are used instead.

6.1.1 Signal Blocking Factor

With the means of estimating both the RTF and the DOA, it is advantageous to have some
performance measures in order to evaluate and compare the different algorithms. The most
intuitive measure would be the output SNR of the GSC beamformer. If the estimated RTF is
close to the true RTF, the SNR is maximized. However, this measure is impractical as the SNR
improvement of the beamformer alone can be very small, depending on the spatial correlation
of noise sound field.

A more sophisticated measure evaluates the accuracy of the DOA and RTF estimates by
examining the noise references U(jΩ) of the blocking matrix [57]. It is known as Signal Blocking
Factor (SBF), and it evaluates the target leakage in the blocking matrix. Using target leakage as
a performance measure is valid, since the accuracy of the RTFs directly influences the blocking

– 80 – May 7, 2013

6.1 Quality Assessment

matrix. The SBF is given as

SBF = 10log10

E
{∑M

m=1 |Sm(jΩ)|2
}

E
{∑M

m=1 |Um(jΩ)|2
} , (6.1)

where Sm(jΩ) is the speech component at the m-th microphone, and Um(jΩ) is the m-th noise
reference at the output of the blocking matrix. Clearly, measuring the signal blocking factor
is only useful in the absence of additive noise at the microphones. In this case, Um(jΩ) only
carries the portion of the speech signal, which is leaking through the blocking matrix. In the
experiments section, this measure is used to determine the optimal DOA and RTF estimation
algorithm.

6.1.2 Perceptual Evaluation of Speech Quality

Probably the most widely used measure for speech quality is the Perceptual Evaluation of Speech
Quality (PESQ). It is standardized as ITU-T recommendation P.862 released in 2001. The al-
gorithm takes a degraded signal and compares it to the noise-free reference of that signal. Both
signals must be time-aligned to ensure proper operation. The PESQ algorithm allows for two
filter options. Narrow-band and Wide-band, which can be chosen depending on the application.
After filtering the signals are split into frames which are time-aligned to account for jitter that
may occur in VoIP networks. Then, an auditory transform is applied to the signal to convert it
from frequency domain to loudness domain. To account for the distortions that may be perceived
by a human listener, the frequency and loudness representation of the signals are subtracted and
accumulated over time. These distortions are weighed depending on whether it was caused by
additive noise or missing speech components. Finally, the result is converted into a MOS score,
where a score of 1 denotes bad quality and 5 excellent quality.

While PESQ was never explicitly intended to evaluate speech enhancement algorithms, it is
used in most publications in that field. The PESQ score for speech enhancement algorithms is
generally too low, especially when the algorithm only modifies the magnitude spectrum of the
speech signal. Therefore the PESQ score does not reflect the perceived impression of speech
quality.

6.1.3 PEASS

A more elaborated means to evaluate the quality of a speech enhancement algorithm has been
provided by the Perceptual Evaluation methods for Audio Source Separation Toolkit in [16] and
[17]. It was developed for quality assessment of audio source separation algorithms. The mul-
tichannel speech enhancement algorithm depicted by the beamformer and the postfilter can be
seen as a source separation task, i.e. the enhanced speech signal at the output is an estimate of
the speech source at the reference microphone.

PEASS takes the enhanced speech signal X(jΩ), and the clean speech and noise components
A(jΩ)S(jΩ) and N(jΩ) as inputs. After applying a filterbank, the signals are decomposed
into a target component ŝj and three distortion components corresponding to target distortion

etargetj , additive interferences einterfj , and processing artifacts eartifj such as musical noise.

Then, a perceptual salience measure (PEMO-Q) is used to predict a feature vector consisting

of four terms: a global feature qglobalj that estimates the overall quality of the speech estimate,

May 7, 2013 – 81 –

6 Matlab Experiments

and the features qtargetj , qinterfj and qartifj that estimate the quality with respect to the distortion
components. Each feature is in the range from 0 to 1. By using a neural network trained on
a large set of test sounds, these feature are then mapped into four scores, the Overall Percep-
tual Score (OPS), the Target Perceptual Score (TPS), the Interference Perceptual Score (IPS)
and the Artifact Perceptual Score (APS). Each score ranges from 0 to 100 for improved human
readability, where a larger number indicates a higher perceived quality.

PEASS has been provided as a Toolbox for Matlab ®. Because of its complexity, it is rather
slow. Therefore some of its functionality has been written as MEX-functions for the sake of speed.
Both PEASS and PESQ are used to evaluate the perceptual speech quality of the beamformer
and the postfilter in the experiments.

6.2 Experimental Setup

The multichannel speech enhancement system composed of the GSC and the postfilter are
evaluated under realistic conditions, therefore actual multichannel speech and noise recordings
are used. All three performance measures (PEASS, PESQ, SBF) require the ground truth of all
components in order to produce results. Therefore, both the speech and the noise signals have
been recorded separately. Before being presented to the algorithms, the recordings are added to
produce the noisy speech inputs Z(jΩ).

6.2.1 Acquiring Speech Data

In order to test the multichannel speech enhancement system against a significant amount of
speech data, both English and German speech databases have been used. For American English,
the TIMIT speech corpus [58] is often used for the evaluation of speech enhancement algorithms.
For German, both the Kiel Corpus of Read Speech (KCORS) [59] and the Kiel Corpus of
Spontaneous Speech (KCOSS) [60] are employed. All three databases provide 16kHz speech
recordings from both male and female speakers. Apart from short read sentences in TIMIT
and KCORS, the KCOSS corpus also provides longer sentences containing fluent speech from
conversations. Therefore, the latter also provides a richer dynamic in volume and duration of
the different utterances.
Since all the speech data is recorded in mono, they have to be converted to multichannel signals in
order to be useful for the beamformer. In section 2.7, the measurement of the ATFs for typical
office rooms is described in detail. This procedure is repeated in three different office rooms
of about 2.5x4m and 6x8m in size, with the measurement loudspeaker located approximately
0.5m away from the microphone array. The angle of the loudspeaker is set to four different
positions: 0°, 20°45°and 70°relative to the broadside of the array. As described in chapter 2.7,
the linear array consisting of 4 microphones with an inter-microphone distance of 5cm is used
for recording of the ATFs. From these 3 rooms and 4 positions, 12 different ATFs are available.
The multichannel speech data is generated by convolving the speech files with the ATFs using
Matlab ®[61]. All three speech databases provide approximately 9hrs of spoken speech that can
be used with the ATFs. For comparing the results of the RTF estimation methods presented in
chapter 4, the RTFs are constructed from the measured ATFs by using equation 2.15.

6.2.2 Acquiring Noise Data

To obtain useful noise data the approach of convolving mono files with ATFs is not very practical
because the noise sound field is diffuse and hence the ATFs are very long and hard to measure.
A better way is to use stereo noise samples and replay them in the aforementioned office rooms.

– 82 – May 7, 2013

6.3 Matlab Implementation

The microphone array is used to record the noise with four channels. Hence, the noise recordings
are more or less diffuse, depending on the location of the loudspeaker and the microphone array
in the room. As noise data 56 recordings have been used from various sources. The complete
list is provided in section 9.

6.3 Matlab Implementation

In the previus chapters, several algorithms for RTF and DOA estimation, BM construction and
multichannel postfiltering have been presented. To compare all approaches, they have been
implemented in Matlab as MCSE framework. To simulate the same real-time conditions as in
chapter 7, the code has been designed to work with consecutive frames of data. Doing so, the
Matlab implementation shows the same behavior as the C++ implementation, which allows for
easy validation and verification of the C++ code against the Matlab implementation.

In figure 6.1 an overview of the MCSE system is given. Orange blocks denote the generation
of the simulation data, which is constructed from the speech databases, the ATF measurements
and the noise recordings as described in chapter 6.2. Using the signal model from equation 2.14,
the simulation data can be generated by convolving the speech data with the ATFs, followed
by adding the noise data. Since the array used for the recordings consists of four microphones,
a maximum of four channels can be used as test data. The performance of the multichannel
speech enhancement system should be evaluated for different noise levels, therefore the volume
of the noise is adjusted prior to the addition. The Signal to Interference Ratio (SIR) controls
the power ratio between the Speech and Noise samples. It can be adjusted in decibel as a
simulation parameter. The blue block denotes the source localization task, where four RTF
estimation algorithms of chapter 4 have been implemented. The ICA algorithm has not been
included in the simulation framework for a number of reasons: First, it did not converge to a
useful solution in approximately 25 % of all cases. Also, solving the permutation problem based
on the DOA proved to be unreliable because the coherence is also high for the noise component
at low frequencies. Further, the ICA only works in batch mode, meaning that a block of several
seconds of audio is processed at a time. Thus, changes in the RTF are only recognized after a
delay of several seconds. The green blocks depict the GSC beamformer. It consists of a fixed
beamformer, a blocking matrix and an adaptive interference canceler. The fixed beamformer
has been implemented as shown in chapter 3.5. For the BM, four structures have been men-
tioned in section 3.6. Although, the Adaptive Blocking Matrix and the Generalied Eigenvector
Blocking Matrix structures are not used due to their lack of robustness for low SNRs. The other
two structures (Eigenspace and Sparse) are more robust because they rely only on the DOA
estimation. Furthermore, the numerical complexity is fairly negligible. For the AIC, two differ-
ent structures are specified in chapter 3.5. Both the Wiener solution and the NLMS algorithm
have been implemented. The purple block shows the multichannel postfilter. All three differ-
ent multichannel postfilters (MCPF) from chapter 5 have been implemented. The TBRR and
DDR based postfilter require a noisefloor estimator (NE). Therefore, the IMCRA and Minimum
Statistics algorithms from chapter 5.2 have been implemented. The third postfilter, the MCSPP
does not need a noisefloor estimator at all. The yellow blocks in figure 6.1 denote the evaluation
of the results, based on the PEASS and PESQ speech quality measures, as well as on the SBF,
introduced in chapter 6.1.

The execution of a specific combination of all algorithms depends on a set of simulation
parameters, stored in a Matlab-struct. An example of this setup struct is given by the following
lines of code:

May 7, 2013 – 83 –

6 Matlab Experiments

doa_type: {SCOT|PHAT|MUSIC}

rtf_type: {DOA|real|CohenWLS}

bm_type: {sparse|eigenspace}

aic_type: {Wiener|NLMS}

ne_type: {Minimum Statistics|IMCRA}

mcpf_type: {TBRR|DDR|MCSPP}

speech_database: {KCORS|KCOSS|TIMIT}

speech_ATF: {B208_0deg.wav|B208_20deg.wav|B208_45deg.wav|B208_70deg.wav}

noisefile: Noise Samples\Roadnoise_4ch.wav

Nbands: {0,48,36,24,12}

Nmics: {1,2,3,4}

use_filterbank: {yes|no}

target_SIR: {-20,-15,-10,-5,0,5,10,15,20}

Prior to an experiment, a combination of the parameters in the brackets has to be selected.

Figure 6.1: Matlab implementation of the entire MCSE system.

6.4 Simulation Testbench

To be able to automatically execute all of the simulation scenarios described in the previous
section, a simulation testbench has been written using Matlab. By using object oriented pro-
gramming with Matlab-structs, the MCSE implementation in figure 6.1 can also be re-used
for this testbench. It simulates all meaningful combinations of parameters shown in the setup
struct. A specific combination of simulation parameters is termed a simulation scenario. Each
simulation scenario is tested against a fixed SIR setting ranging from -20dB to +20dB in 5dB

– 84 – May 7, 2013

6.5 Simulation Scenarios

steps, resulting in 9 different SIR levels. For each SIR, 1 hour of audio data is used. The audio
material consists of a predefined combination of speech data, ATFs and noise data. Hence, each
combination of algorithms is tested against the same set of input data, which allows for an easy
comparison. This simulation data is divided into 60 small chunks of 1 minute duration, other-
wise the PEASS algorithm would run out of memory. Each of these small simulations is called
an episode. 60 episodes are are combined as batch. In figure 6.2 an overview of the simulation
testbench is given in form of an UML activity diagram.

Figure 6.2: Activity diagram of the MCSE testbench.

6.5 Simulation Scenarios

To reduce the vast combinatorial space of all simulation parameters, a set of 24 meaningful
simulation scenarios has been conceived. A single scenario simulates 9 hours of audio, which
requires approximately 32 hours to complete on a Core i7 CPU @ 3.4Ghz and 8Gbyte of main
memory, depending on the algorithms being tested. This accounts for a total simulation time of
768 hours or 24 days. To speed up this process, a second identical machine was used in parallel.
For a better overview, these 24 simulation scenarios have been grouped into the following five
blocks:

6.5.1 Scenario 1: RTF Estimation

The blue block in figure 6.1 lists one RTF algorithm and three DOA algorithms. These four
algorithms are compared against the true RTF, which is constructed from the ATFs used for
generating the multichannel speech signals in chapter 6.2.1. These five simulation scenarios are
evaluated against each other using the SBF as performance measure:

May 7, 2013 – 85 –

6 Matlab Experiments

RTF estimation method

RTF: Cohen WLS
DOA: SCOT
DOA: PHAT
DOA: MUSIC
true RTF

6.5.2 Scenario 2: BM and AIC Structure

The beamformer in figure 6.1 shows four algorithms, two for constructing a BM and two for the
AIC. Based on the optimal RTF estimation method from the first scenario, each of the two BM
structures is evaluated against the two AIC structures. As performance measure the PEASS
and PESQ algorithms are used:

BM and AIC structure

BM: Sparse + AIC: Wiener
BM: Sparse + AIC: NLMS
BM: Eigenspace + AIC: Wiener
BM: Eigenspace + AIC: NLMS

6.5.3 Scenario 3: Postfilter Algorithm

Three multichannel postfilters (MCPF) in figure 6.1 are compared against the two available
noisefloor estimation methods (NE): IMCRA and Minimum Statistics. The MCSPP postfilter
algorithm does not need a noisefloor estimation, thus five combinations remain. Evaluation is
based on the outcome of the second test scenario and on the PEASS and PESQ speech quality
measures:

Postfilter algorithm

NE: Minimum Statistics, PF:TBRR
NE: IMCRA, PF:TBRR
NE: Minimum Statistics, PF:DDR
NE: IMCRA, PF:DDR
MCSPP

6.5.4 Scenario 4: Effect of the Filterbank

In chapter 5.4, the concept of using a filterbank in order to reduce the numerical complexity of
the postfilter is presented. In this simulation scenario, the simplified gammatone filterbank is
applied to the best postfilter determined in the third scenario. The influence of the filterbank
in terms of PEASS and PESQ is evaluated as a function of the number of bands:

Effecto of the Filterbank

none used
12 bands
24 bands
36 bands
48 bands

6.5.5 Scenario 5: Number of Microphones

The last test is done to empirically demonstrate that multichannel speech enhancement has a
significant advantage over single channel speech enhancement in terms of speech quality. Again,

– 86 – May 7, 2013

6.6 Simulation Results

PEASS and PESQ are used as performance measures. In this last test scenario, the number of
microphones is varied from 1 to 4. For using one microphone, the Minimum Statistics noisefloor
estimation method, combined with the OM-MMSE-LSA algorithm from chapter 5.2 is used as
a standard single channel speech enhancement algorithm. For comparison, the theoretical per-
formance maximum of using the true RTFs from all four microphones is also evaluated:

Number of Microphones

1
2
3
4
true RTF

6.6 Simulation Results

The first simulation scenario, the RTF estimation, leads to the following results. In figure 6.3
the SBF is plotted against the 9 SIR levels. It can be seen that the estimation of the full RTFs
using Cohen’s WLS method from section 4.2.1 has a rather low performance in terms of the
SBF. The same result can be observed for the MUSIC algorithm. Better results are obtained
by the SCOT or PHAT DOA estimation methods, which are almost equally well suited for this
task. Another benefit is that these two methods have a much smaller computational cost than
the other two. The brown plot is obtained when the RTF estimation module is bypassed and
the FBF and the BM are constructed using the real RTFs, as explained for the first scenario
and illustrated in figure 6.1. It gives the upper performance limit for the algorithms. From this
plot, it can be seen that the SCOT method is slightly better than PHAT for low SIR levels.
Hence, the SCOT method is chosen as DOA estimation algorithm in the final MCSE system.

Figure 6.3: SBF results for the first simulation scenario.

Using the SCOT method from the first scenario, the two blocking matrices have been evaluated
against the two AIC algorithms in the second scenario. The resulting PEASS plots are shown
in figure 6.4. Panel (a) shows the overall perceptual score (OPS), as explained in section 6.1.3.
It can be observed that the combination of an eigenspace BM and the NLMS algorithm for

May 7, 2013 – 87 –

6 Matlab Experiments

the AIC filters gives the highest score. Panel (b) shows the target-related perceptual score
(TPS), which is also the highest for this combination. Panel (c) shows the interference-related
perceptual score (IPS), where all four methods are more or less equal. Panel (d) shows the
artifact-related perceptual score (APS), where again the combination of the sparse BM and the
NLMS algorithm is performing best for large SNR conditions. Hence, this setting is used for
the GSC beamformer in the final MCSE system.

Figure 6.4: PEASS results for the second simulation scenario. (a) OPS, (b) TPS, (c) IPS, (d) APS.

Figure 6.5 shows the PESQ results for the second scenario. Again, the aforementioned com-
bination achieves the highest MOS. For an unknown reason, the MOS rises below SIR levels of
-10dB, where it should go further towards a score of 1. This rather unexpected behavior could
not be resolved and may be another indicator that the PESQ measure is not well suited for
evaluating speech enhancement algorithms.

The simulation results for the third scenario are shown in figure 6.6. Here, the best multi-
channel postfilter depending on two noisefloor estimation methods has to be determined. The
MCSPP postfilter has the highest score in the OPS, TPS and APS categories. Only the IPS
appears to be larger when using the TBRR method. For SIR levels above 5dB, the MCSPP
is even the worst method. The influence on whether choosing the IMCRA or the Minimum
Statistics noisefloor estimator is rather negligible. However, since the MCSPP postfilter is also
the one with the least computational cost, it is chosen as postfilter method for the final MCSE
algorithm.

– 88 – May 7, 2013

6.6 Simulation Results

Figure 6.5: PESQ results for the second simulation scenario.

Figure 6.6: PEASS results for the third simulation scenario. (a) OPS, (b) TPS, (c) IPS, (d) APS.

May 7, 2013 – 89 –

6 Matlab Experiments

Figure 6.7 shows the PESQ results for the third simulation scenario. The MCSPP multichan-
nel postfilter also has the highest MOS score. But again, the MOS rises below -10dB for an
unknown reason.

Figure 6.7: PESQ results for the third simulation scenario.

In the fourth simulation scenario, the influence of using the filterbank from chapter 5.4.2 is
examined in terms of the PEASS scores. The best performing algorithms of the first three
scenarios are used for the fourth one. From observing the PEASS results in figure 6.8 it can be
learned that the influence is rather minimal compared to using no filterbank at all. As expected,
the more bands used the better the overall score (OPS) gets. The other three scores do not
give a distinct discrimination criterion. Even though the benefit of using more bands is almost
vanishing, 48 bands are used for the final MCSE system, just to be on the safe side. Moreover,
using 48 bands instead of 257 FFT bins when using fs = 16kHz and a framelength of 32ms
already gives a fivefold reduced computational cost.

Also the PEQS results for the fourth simulation scenario in figure 6.9 are very close together,
thereby not allowing for a unique conclusion to be drawn.

The last simulation scenario compares the influence of the number of microphones used in
the speech enhancement system. Figure 6.10 gives the PEASS scores as a function of the input
SIR. The multichannel speech enhancement system performs better in terms of the OPS than
the single channel speech enhancement system throughout all SIR levels. This is expected, since
the multichannel system can also use the spatial information, while the single channel system
only relies on signal statistics. From the OPS it can also be seen that using more than two
microphones is only of benefit when the SIR is low. For higher SIRs it is not important whether
two or four microphones are used. This finding is of great importance for the implementation,
since using more microphones also means higher cost both in hardware and software terms.
While these costs clearly double, the benefit in terms of achievable speech quality is rather
negligible. For SIRs above 10dB, using 2 or 3 microphones gives better results than using 4 or
the true RTF information, which is probably an error. The TPS is rather similar for a different
number of microphones, even for the single channel algorithm. The IPS follows smoothly the
expected behavior: The more microphones are used, the more interfering noise components can
be removed. For the true RTF information, this score is high throughout all SIR levels. The
APS is somewhat difficult to interpret: The true RTF features the worst score while using a
single microphone gives the highest score for low SIR levels, followed by two microphones. It
seems as if this score was somehow inverted. However, listening to the resulting enhanced speech

– 90 – May 7, 2013

6.6 Simulation Results

Figure 6.8: PEASS results for the fourth simulation scenario. (a) OPS, (b) TPS, (c) IPS, (d) APS.

Figure 6.9: PESQ results for the fourth simulation scenario.

May 7, 2013 – 91 –

6 Matlab Experiments

signals gives the correct impression of less musical artifacts when using more microphones.

Figure 6.10: PEASS results for the fifth simulation scenario.

The PESQ results for the fifth simulation scenario shows the expected behavior of a rising
MOS when using more microphones. Still, the MOS rises for SIR levels below -10dB. It seems
that the PESQ measure is inaccurate for low SNR levels.

– 92 – May 7, 2013

6.7 Performance of the best Combination

Figure 6.11: PESQ results for the fifth simulation scenario.

6.7 Performance of the best Combination

Based on the performance results of the five test scenarios, the optimal combination of RTF
estimation, blocking matrix structure, AIC structure and postfilter algorithm has been deter-
mined. This combination provides the building blocks of the final MCSE algorithm, illustrated
in figure 6.12. The RTF estimation is performed by a DOA estimate using the SCOT algorithm,
combined with the magnitude estimation from section 4.3.4. As blocking matrix the sparse
structure from chapter 3.6.4 is used. The AIC filters are adapted by the NLMS algorithm, as
presented in chapter 3.5. And the best postfilter is the MCSPP from section 5.3.3, which has
been combined with a simplified filterbank using 48 bands. This reduces the computational cost
by a factor of 5 while maintaining the performance of the postfilter.

Figure 6.12: Final MCSE algorithm.

May 7, 2013 – 93 –

6 Matlab Experiments

The performance of the final MCSE system is presented by observing the most important
signals of the RTF estimation module, the GSC beamformer and the MCSPP postfilter. Apart
from the determined parameters of the simulation scenarios, the following settings have been
chosen to give a representative testcase for the MCSE algorithm:

doa_type: PHAT

rtf_type: DOA

bm_type: sparse

aic_type: NLMS

mcpf_type: MCSPP

speech_database: KCOSS

speech_ATF: B208_20deg.wav

noisefile: Noise Samples\Roadnoise_4ch.wav

Nbands: 48

Nmics: 4

use_filterbank: yes

target_SIR: 0

fs: 16000

samples: 240000

This setup uses 15 seconds of audio using the KCOSS speech database and a set of ATFs
recorded from an impinging speech signal angle of 20°, together with a multichannel noise sample
recorded at a busy street. The SIR is set to 0dB, hence speech and noise are of equal power.

Figure 6.13: (a) DOA estimate of the RTF Ã2(jΩ) by using the SCOT algorithm. (b) phase spectrum. (c)
magnitude spectrum

First, the performance of the RTF estimate is studied. In figure 6.13 the resulting RTF from
the DOA estimate achieved by the SCOT algorithm is shown. In panel (b) the estimated delay

– 94 – May 7, 2013

6.7 Performance of the best Combination

e−jΩfs∆τ̂m is plotted as a function of the frequency. The red line indicates the estimate, and the
blue one the true unwrapped angle of the RTF to be estimated. Panel (c) shows the magnitude
which has been estimated using the algorithm of section 4.3.4. Estimation errors occur mainly
in low frequencies, due to the high content of additive noise components. Magnitude and phase
together give the RTF estimate. Panel (a) shows its IFFT. It may be observed that the RTF
forms a non-causal FIR filter. Due to the frame length of 32ms, delays up to ±16ms can be
measured. This is more than sufficient for a speaker standing at a distance of 0.5m to the array.
It can be seen that this RTF estimate adequately matches the true RTF.

Figure 6.14 presents the speech presence probability (SPP) of the SCOT algorithm evaluated
for 50 different target angles over time, calculated from the coherence between the first two
microphones. The SPP is obtained by taking the inverse of the cost function defined in equation
4.32. It can be seen that the correct DOA is found to be at about +20°. However, some
outliers do exist around -30°. They can be easily rejected by defining a maximal speed of target
movement. In other words, the speaker cannot move from +20°to -30°within less than 1 second.

Figure 6.14: Speech presence probability of the SCOT algorithm, calculated from the coherence between mi-
crophone 1 and 2, drawn for impinging speech angles from -90 °to +90 °. The lower plot shows
the waveform of z1(t).

From the RTF estimate, the fixed beamformer (FBF) and the blocking matrix (BM) are
calculated. Then, the GSC adapts the AIC filters using the NLMS algorithm to produce the
beamformer output. The following figures show the input signal Z1(jΩ), the signal after the
FBF YFBF (jΩ) and the output signal of the beamformer Y (jΩ) in figures 6.15, 6.16 and 6.17,
respectively. It can be seen that the FBF mainly reduces the noise at higher frequencies. This
is in accordance to the directivity pattern of the delay-and-sum beamformer illustrated in figure
3.3, where a noteworthy directivity can only be observed for higher frequencies. At the output
of the GSC, the signal Y (jΩ) also features some noise reduction at low frequencies, according

May 7, 2013 – 95 –

6 Matlab Experiments

to the MVDR constraint.
The beamformer output also depends on the AIC and the BM, whose output signals are

studied in the following. Figure 6.18 shows the first noise reference U1(jΩ) at the output of
the blocking matrix. It can be seen, that the noise reference is almost entirely free of the
speech signal, hence leakage is low. This is due to the close vicinity of the speaker to the array.
This is a mandatory condition for this MCSE system. In figure 6.19 the output of the adaptive
interference canceler YAIC(jΩ) is shown. The multichannel NLMS algorithm matches the output
of the BM to the noise components of YFBF (jΩ), as explained in section 3.5.

To further enhance the beamformer output shown in figure 6.17, the MCSPP postfilter is
employed. It estimates the noisefloor PSD at the beamformer output as explained in chapter
5.3.3. This PSD is shown as spectrogram in figure 6.20. Clearly visible is the logarithmic layout
of the 48 filterbank bands being used. Based on this signal, the multichannel speech presence
probability p(k, jΩ) is calculated and shown in figure 6.21. It is used to obtain the OM-MMSE-
LSA gain function G(k, jΩ) from chapter 5.2.4. This gain function is illustrated in figure 6.22.
It is limited to a maximal attenuation of Gmin = −15dB, to keep the signal from being canceled
down to zero in the case of speech absence. The gain is applied to the magnitude spectrum of
the beamformer output Y (jΩ) to achieve further reduction of the unwanted noise signal. This
enhanced signal is the final output of the MCSE system and termed X(jΩ). It is shown in figure
6.23. It can be seen that the transient noise components visible in the noise reference U1(jΩ)
in figure 6.18 have almost completely vanished. Such a performance cannot be achieved by the
single-channel methods. This is possible because of the exploitation of the spatial information
of the noise sound field by the beamformer. For comparison, the ground truth of the speech
component S1(jΩ) of the first microphone is shown in figure 6.24.

Figure 6.15: Spectrogram and waveform of the input signal Z1(jΩ).

– 96 – May 7, 2013

6.7 Performance of the best Combination

Figure 6.16: Spectrogram and waveform after the fixed beamformer YFBF (jΩ).

Figure 6.17: Spectrogram and waveform at the beamformer output Y (jΩ).

May 7, 2013 – 97 –

6 Matlab Experiments

Figure 6.18: Spectrogram and waveform at the blocking matrix U1(jΩ).

Figure 6.19: Spectrogram and waveform at the adaptive interference canceler YAIC(jΩ).

– 98 – May 7, 2013

6.7 Performance of the best Combination

Figure 6.20: Spectrogram of the estimated noisefloor PSD σ̂2
n(k, jΩ) at the beamformer output. The lower

plot shows the waveform of the corresponding noise component at the first microphone n̂(t),
calculated with equation 5.43.

Figure 6.21: Spectrogram of the multichannel speech probability p(k, jΩ). The waveform below shows the
output of the beamformer y(t).

May 7, 2013 – 99 –

6 Matlab Experiments

Figure 6.22: Spectrogram of the gain function G(k, jΩ). The waveform below shows the output of the post-
filter x(t).

Figure 6.23: Spectrogram and waveform at the output of the MCSPP postfilter X(jΩ).

– 100 – May 7, 2013

6.7 Performance of the best Combination

Figure 6.24: Spectrogram and waveform of the speech component at the first microphone S1(jΩ).

Figure 6.25: All relevant signals of the MCSE system combined in a single plot. (a) input signal z1(t) in
blue, the beamformer output y(t) in green, the output of the multichannel postfilter x(t) in red
and the speech presence probability (SPP) obtained from the VAD using equation 4.47 in black.
(b) SNR per frame of the beamformer output in blue, and the SNR of the postfilter output in
green.

May 7, 2013 – 101 –

Multi-channel Speech Enhancement

7
Realtime Implementation

In this chapter, the process of building a real-time capable prototype of the final MCSE algorithm
is documented. First, both the hardware and software prerequisites are going to be defined.
Then, the implementation is described by using rapid prototyping. And finally, further steps on
how to port this implementation to an embedded target are presented.

7.1 Prototype Implementation

All the building blocks of the final MCSE algorithm in figure 6.12 have been written in Matlab,
as described in section 6.4. This code can only operate on offline audio data, due to the slow
execution speed of Matlab scripts. Therefore, a fast and real-time capable implementation has
to be performed, which serves as a proof of concept for the MCSE algorithm under realistic
conditions. As programming language for the prototype C++ has been chosen for a number of
reasons: It is about 1000 times faster than Matlab code. Also, numerous libraries exist for cal-
culating the FFT or performing matrix operations with complex numbers. Further, frameworks
for connecting audio hardware and passing audio data to and from a sound device is readily
available and well tested. And finally, the code can be developed on a PC and ported to a
different hardware platform, like the WandBoard featuring the state of the art ARM Cortex A9
CPU [15].

7.1.1 Hardware Requirements

For the prototype implementation, four microphone signals are required. Built-in soundcards
have at most two line inputs and a single microphone preamp. Therefore an external sound inter-
face is employed. The MOTU 4pre interface has four digitally adjustable microphone preamps
and an ASIO interface, which allows for both a small and constant hardware delay. As mi-
crophones, the four Audix TM1 Plus measurement microphones from the ATF measurements
in section 2.7 have been re-used. These microphones definitely have a much smaller variance
in sensitivity compared to low-cost electret condenser microphones (ECMs). However, that is
secondary because the magnitude estimation from chapter 4.3.4 takes care of these variances
anyway. In an actual embedded system micro-electromechanical (MEMS) microphones are used,
which also have low manufacturing tolerances. The hardware setup being used can be seen in
figure 7.1

– 102 – May 7, 2013

7.1 Prototype Implementation

Figure 7.1: Hardware used for the prototype: The four Audix TM1 Plus microphones can be recognized in a
linear array combination. In the lower left corner is the MOTU 4pre ASIO interface. The lower
right corner shows the Geithain RL906 measurement loudspeaker used for recording the ATFs.

7.1.2 Software Requirements

To cut the implementation complexity of the prototype to a bare minimum, available software
packages should be used wherever possible. Further, the code is be written in plain C++ in
order to run on all kinds of operating systems and platforms. However, the ASIO interface is
only available for Windows, therefore the prototype has been compiled for Windows. Apart from
the audio driver, the complete MCSE implementation is required to be fully interchangeable be-
tween underlying operating systems and processor architectures. Therefore, only cross-platform
libraries and frameworks have been used:

� The PortAudio framework [62] is used for simultaneous playback and recording of multiple
audio streams, using ALSA, ASIO or DirectSound sound drivers. In order to work with
the MOTU interface, ASIO support has been compiled into PortAudio using the ASIO
Software Development Kit [63] provided by Steinberg Media Technologies.

� The FFTW library is used for the efficient calculation of the real-valued, single dimension
FFTs and IFFTs needed for the MCSE algorithm. FFTW has been developed by Matteo
Frigo and Steven G. Johnson at the MIT [64], and is available for many different platforms.

� The Eigen Matrix Library [65] simplifies all kinds of matrix operations using complex
elements to a huge extent. Employing Eigen allows for a Matlab-like programming style
when working with matrices of arbitrary sizes and data types.

May 7, 2013 – 103 –

7 Realtime Implementation

� The RTF estimation task does not need to be executed in realtime, unlike the GSC and
the postfilter. In fact, it is sufficient to estimate the RTF once every 0.10s, since the
speaker is not expected to move very fast in front of the microphone array. Therefore,
the RTF estimation is executed in a separate thread. To make threading fully compatible
amongst Windows and Linux, the Posix standard has been used. For Windows, a wrapper
is available; the Posix Threads for Windows API [66].

7.2 Rapid Prototyping

The effort for the C++ implementation should be as small as possible, and the verification and
validation phases needs to be fast and efficient. Usually, software testing consumes about 80 %
of the entire implementation time and requires comprehensive unit tests to be conceived and
written. This step can be dramatically reduced in time by using the concept of Rapid Prototyp-
ing in Matlab.

Since a Matlab implementation of the entire MCSE code is readily available and tested, it is
unnecessary to freshly implement everything from scratch in C++, including the tests. The code
is re-written with the Eigen library and verified against the Matlab simulations which are known
to work correctly. This verification phase is done using the Matlab Engine, an extension which
allows to call Matlab functions within C-code. It works like the well known MEX-functions.
Using these mechanisms, the entire porting to C++ took only about two weeks.

7.2.1 C++ Implementation

In figure 7.2 an activity diagram of the MCSE system has been created using UML. The code
consists of three main blocks: An audio callback, the GSC and postfilter code and the source
location thread. The audio callback is provided by the sound hardware and delivers frames of
16ms of audio data in near real-time. That is, with a delay of 15-25ms depending on the ASIO
driver. The 16ms frames are concatenated to 32ms blocks with 50% overlap. These blocks are
weighted with a hanning window and then converted to the frequency domain, before being
passed to the algorithms. The GSC and postfilter block depicts the main part of the implemen-
tation, and does the exact same calculations as their pendants in Matlab, only in real-time at
the same rate at which the audio frames from the soundcard arrive. Even though the MCSPP
postfilter method showed to be superior, all three postfilters have been implemented in C++
in order to be able to listen to the output signal they generate. The third block does the RTF
estimation in a separate thread. Its execution is triggered by the speech presence probability,
which is calculated by the VAD. The RTF estimation is done once every 100ms to reduce the
computational load on the system.

Since the implementation can handle up to four microphone inputs, the DOA estimation has
to be done up to three times in parallel. This is because the DOA is estimated between the first
and all other microphones, as explained. Also, the noisefloor estimation has to be done up to
five times, depending on the postfilter method being used. Therefore, the Minimum Statistics
method has been implemented. Because of these multiple instances, each module used in the
MCSE implementation has been defined as a class with multiple methods. All classes, their
methods and their mutual dependencies have been illustrated in figure 7.3 as class diagram in
UML. The red block depicts the PortAudio API, which provides a callback function named
Pa AudioCallback(). It serves as entry point for processing the audio frames received from and

– 104 – May 7, 2013

7.2 Rapid Prototyping

Figure 7.2: Activity diagram of the real-time MCSE implementation.

Figure 7.3: Class diagram of the real-time MCSE implementation.

May 7, 2013 – 105 –

7 Realtime Implementation

sent back to the audio interface. This callback has an instance of the MCSE core class, which
instantiates of the following modules:

� The MCSE rtf class instantiates multiple MCSE doa modules, which are used to construct
the M − 1 RTFs Ãm(jΩ).

� The MCSE gsc class depends on the MCSE anc and MCSE mcpf instances.

� The MCSE anc class subtracts the noise PSD estimate obtained by the MCSE mcpf mod-
ule. This module has one or more MCSE ne instances, depending on the postfilter method
being used.

� A FFT wrapper is used to calculate the FFT and IFFT from the audio frames, using the
FFTW library.

� A MatlabReporter instance is used to verify the C++ implementation against the Matlab
simulations from chapter 6, and for viewing information about the algorithm in realtime
using the Matlab Engine.

As indicated in the activity diagram in figure 7.2, the MCSE rtf and MCSE doa instances
run inside a thread, being executed every 100ms. All blue instances are executed at the same
rate at which the audio frames are handed over by PortAudio. The timing is the same as for
the Matlab experiments; frames of 32ms length are processed at a time. They overlap by 50 %,
hence every 16ms a new data set is to be processed. All coding has been done using Microsoft
Visual C++ 2010 Express.

7.2.2 Code verification Against the Simulation using the Matlab Engine

Verification of the C++ code is performed against the Matlab simulations from chapter 6 using
the Matlab Engine ®[67]. The engine provides a modest but powerful set of functions to open
a Matlab console within a C program at runtime, to exchange variables between Matlab and
the C program and to execute Matlab commands and scripts from the C program. The most
important functions are:

1 Engine *engOpen (const char * startcmd) ;
2 i n t engClose (Engine *ep) ;
3 mxArray * engGetVariable (Engine *ep , const char *name) ;
4 i n t engPutVariable (Engine *ep , const char *name , const mxArray *pm) ;
5 i n t engEvalStr ing (Engine *ep , const char * s t r i n g) ;

They are used by the yellow instance shown in figure 7.3, the MatlabReporter class. It handles
the conversion from C++ floating point arrays to MEX-Structures and does all the communi-
cation with Matlab that is needed to compare each module with the Matlab simulation.

The MCSE core instance shown in figure 7.3 depicts the base class of the MCSE implemen-
tation. Analogous to the Matlab code, it accepts 16ms frames of audio data as inputs. These
frames can either originate from the soundcard, or from any other source. In the verification
phase, the audio frames are received from Matlab via the MatlabReporter instance. This class
communicates with Matlab using the Matlab Engine. Verification of the C++ code is thus done
by receiving a frame of the microphone signals, calculating the MCSE algorithms in C++ and
Matlab, sending the results from the C++ implementation back to Matlab and compare them
against the simulation results. All this is done via the following code snippet:

– 106 – May 7, 2013

7.2 Rapid Prototyping

1 whi le (ac−>isRunning)
2 {
3 // pick up audio frames from matlab
4 mr−>EvalStr ing (” MCSE testbench s ing lestep ”) ;
5 mr−>GetRealMatrix (ac−>ptrBUFz () , ”BUFz”) ;
6

7 // run the DOA est imat ion , GSC, MCPF and ANC modules
8 ac−>run () ;
9

10 // send v a r i a b l e s back to matlab f o r comparison
11 mr−>PutCplxVector (ac−>gsc−>pt rFy a i c () , ” Fy a ic ”) ;
12 mr−>EvalStr ing (” MCSE testbench viewresult (GSC. Fy aic , Fy a ic) ”) ;
13 }

The argument MCSE_testbench_singlestep() of the EvalString() command is a small
Matlab script that invokes the Matlab simulation from the chapter 6.4. This way, the code
being written for simulation can be re-used for verification of the C++ implementation without
any changes. The simulation is done on a frame by frame basis. The current frame containing
the four microphone signals is named BUFz. This block is downloaded to the C++ implementa-
tion using the command GetRealMatrix(), and stored into a floating point array. By calling the
run() method of the MCSE core instance, the RTF estimation, GSC beamformer and postfilter
calculations are performed for that data frame, just as it is done in the Matlab simulation being
executed in parallel. The results for each frame are then sent back to Matlab using the function
PutCplxVector(). In the example above, the current frame of YAIC(jΩ) is being sent. The call
to EvalString() invokes a small Matlab script named MCSE_testbench_viewresult() which
compares the C++ data against the Matlab simulation.

Figure 7.4: Code verification by comparing the results for YAIC(jΩ) from the C++ implementation with the
Matlab simulation.

For the current frame of YAIC(jΩ), this plot is given in figure 7.4. In panel (a) the Matlab and
C++ output of the IFFT of YAIC(jΩ) for the current frame are plotted on top of each other.
Panel (b) shows the absolute error between the two, plotted on a binary log scale to get the
error in bits. Since floating point numbers are used in the C++ implementation, the mantissa

May 7, 2013 – 107 –

7 Realtime Implementation

is 23bits long. Since the ADCs in the sound interface deliver 16 bit audio data, an absolute
error of 15 bits at any point in the processing chain is tolerable. This can be easily checked
automatically for every signal.

Using this mechanism, an automated test was generated for each and every signal in the
implementation, for a total of 60 minutes of audio data taken from a batch run from the sim-
ulation scenarios described in chapter 6.5. This way, the entire implementation can be verified
with practically no effort.

7.2.3 Live Performance of the MCSE algorithm

After completion of the verification stage, the implementation is known to produce the same
result as the Matlab simulation. Testing the implementation with live audio data from the
soundcard is easily done by switching the audio source from the Matlab simulation data to the
PortAudio driver, which provides a convenient callback function to deliver the audio frames:

1 // This r ou t in e w i l l be c a l l e d by PortAudio when audio i s needed .
2 s t a t i c i n t Pa AudioCallback (const void * inputBuf fer , void * outputBuffer ,

unsigned long framesPerBuf fer , const PaStreamCallbackTimeInfo* t imeInfo ,
PaStreamCallbackFlags s ta tusF lags , void *userData)

3 {
4 MCSE core *ac = (MCSE core *) userData ;
5 Map<ArrayXXf> inp ((f l o a t *) inputBuf fer , NIN ,BLOCKSIZE) ;
6 Map<ArrayXXf> out ((f l o a t *) outputBuffer ,NOUT,BLOCKSIZE) ;
7

8 // read four mic channe l s
9 ac−>ptrBUFin () = inp ;

10

11 // run the DOA est imat ion , GSC, MCPF and ANC modules
12 ac−>run () ;
13

14 // play r e s u l t as s t e r e o s i g n a l
15 out . row (0) = ac−>ptrBUFout () ;
16 out . row (1) = ac−>ptrBUFout () ;
17

18 mr−>LiveP lo t Co l l e c tData () ;
19 r e turn paContinue ;
20 }

The callback passes the audio frames over to the implementation, and passes the result back
to the sound driver. Hence, the enhanced speech signal can be listened to via the soundcard’s
output channels. Also, the MatlabReporter instance shown in figure 7.3 is used to view some
performance plots in real-time. This is done by collecting relevant data from the algorithms
with the function LivePlot_CollectData(). This data is sent to Matlab for displaying with
the following code:

1 ac−>isRunning = true ;
2 do
3 {
4 mr−>LivePlot Update () ;
5 }
6 whi le (ac−>isRunning) ;

The function LivePlot_Update() continuously updates the LivePlot Matlab script. This
script invokes a figure with two plots being refreshed in real-time. The figure is accompanied by
Matlab-based User Interface Control Objects (uicontrol) which allow for simple user interactions
like selecting which data set is being displayed, or selecting the number of microphones being
used by the C++ implementation.

The first live scenario in figure 7.5 displays the Speech Presence Probability (SPP) between
the first and the second microphone, obtained by the SCOT algorithm in the DOA estimation

– 108 – May 7, 2013

7.2 Rapid Prototyping

module. The upper plot in figure 7.5 displays the last 10 seconds of the SPP over the possible
range of impinging angles from -90°to +90°. The range of the SPP is color-coded so that blue
corresponds to 0 and red corresponds to 1. The shape of the SPP was produced by uttering a
constant sibilant sound while moving sideways in front of the microphone array in figure 7.1.
The lower plot in figure 7.5 shows the maximum of the SPP amongst all possible angles. The
user controls at the right allow to select the output signal being played by the soundcard. This
way, the user can listen to the unmodified signal of the first microphone Fz, the output of the
AIC Fyaic, the output of the postfilter Fx, or the difference Fn = Fz − Fx. Also, the number
of microphones being used can be selected during run-time. If one microphone is selected, the
beamformer and postfilter code is bypassed and a standard single-channel speech enhancement
algorithm is used instead. This algorithm uses the Minimum Statistics noisefloor estimator
combined with the OM-MMSE-LSA spectral subtraction method from the simulations.

Figure 7.5: Speech Presence Probability for a speaker uttering a constant sibilant sound while moving side-
ways in front of the microphone array.

The next scenario in figure 7.6 shows the same plot, but this time music is played from two
speakers located approximately 2m to the left of the microphone array in a standard office room.
It can be seen that there is no distinct maximum in the SPP plot. In fact, the highest values do
not exceed 0.5. Caused by the reverberations of the room, there is almost no direct sound field
anymore. Thus there is no clear direction that can be identified. This observation confirms the
initial assumption of direct and diffuse sound fields for the speaker and the noise, respectively.

As outlined in the Activity Diagram in figure 7.2, the RTFs are estimated once every 100ms.
If the VAD detects a directional sound over a significant frequency range, the DOA information
is updated. Each microphone estimates its own DOA with respect to the first one. Strictly
speaking, the DOA is no direction, but rather a time delay between impinging sound waves at
the first and at the m-th microphone. Hence, the possible location of the sound source lies on
a hyperbola. The asymptote of this hyperbola depicts the actual DOA. Figure 7.7 shows these

May 7, 2013 – 109 –

7 Realtime Implementation

Figure 7.6: Speech Presence Probability for a set of speakers located 2m to the left of the microphone array.

hyperbolas for m = 4 microphones. Their intersect point is the most probable location of the
sound source. According to the figure, the speaker was located approx. 35cm in front of the
array. At the very top of the figure, the DOA angles are given as numeric values. The plot
located at the bottom shows the SBF from equation 6.1. Since the true speech signal Sm(jΩ)
is not available, the following approximation using the enhanced signal at the postfilter output

X(jΩ), and the RTF estimate ˆ̃Am(jΩ) is used instead.

ˆSBF = 10log10

E
{∑M

m=1 |Zm(jΩ)|2
}

E
{∑M

m=1 |Zm(jΩ)− ˆ̃Am(jΩ)X(jΩ)|2
} , (7.1)

The peak in the SBF of figure 7.7 is caused by a short utterance to trigger the VAD.

– 110 – May 7, 2013

7.2 Rapid Prototyping

Figure 7.7: DOA hyperbolas drawn for the four-element microphone array with d = 5cm and impinging
angles Θ2 = 18°, Θ3 = 13°, Θ4 = 8°. The intersect point is the actual location of the speaker.
The lower plot shows the Signal Blocking Factor.

The next live scenario involves speaking into the array from a distance of 30cm, while the
pair of loudspeakers located 2m to the left of the microphone array is playing music. The upper
plot in figure 7.8 shows the spectrogram of the first microphone signal Z1(jΩ). The utterance is
”das ist ein test - eins - zwei - drei”. The lower plot shows the SBF. The fact that the SBF rises
to about 15dB indicates that the blocking matrix successfully suppresses the speech signal. As
pointed out, this is a mandatory condition for the GSC to successfully suppress the noise while
leaving the speech signal undistorted.

Figure 7.9 shows the spectrogram of the enhanced signal X(jΩ) at the output of the mul-
tichannel postfilter. From the SNR plotted below, it can be seen that the background noise
is reduced by approximately 20dB. Furthermore, the amount of noise reduction is equal over
the entire frequency range. This is one reason why the MCSPP postfilter received the highest
PEASS score. The other postfilters showed low performance towards lower frequencies. One
reason for this behavior is the high correlation of the noise signal at low frequencies. The speech
pattern in figure 7.8 and 7.9 is almost identical, indicating that the speech signal is preserved
during the entire processing chain. If the user moves further away from the microphone array,
the sound waves from the speech signal turn from a direct sound field into a diffuse sound field.
Then, the speech signal starts getting attenuated for distances greater than approximately 50cm.
Interestingly, the speech does not get distorted in any way, it sounds more distant and damped
until it subsides into the background noise.

Figure 7.10 shows the difference between the signal at the reference microphone and the output
of the multichannel postfilter N̂(jΩ) = Z1(jΩ) −X(jΩ). This differential signal contains only
the noise, and eventually some of the desired speech signal leaking through the blocking matrix.

May 7, 2013 – 111 –

7 Realtime Implementation

The less speech this differential signal contains, the higher the quality of the speech estimate at
the postfilter output. This is also the reason why the user can chose to listen to this signal with
the radio button labeled ”play Fn”. The human auditory system perceives even the faintest
fragments of speech, which cannot be recognized by looking at the spectrogram. For example,
the typical pattern of speech is almost invisible in the spectrogram of N̂(jΩ). However, listening
to this signal reveals very faint and distant speech. This is due to the fact that the beamformer
extracts only the direct sound, which is the speech impinging at the array via the direct path.
The speech that arrives as reverberation at the array is part of the diffuse sound field, and hence
audible in the differential signal. The fact that the speech in the differential signal is so faint
indicates that the prototype achieves a high speech quality and noise reduction at the same time.

Figure 7.11 shows the real-valued gain function G(jΩ), which is calculated by the multichannel
postfilter to obtain the enhanced signal X(jΩ). The postfilter operates on a filterbank with 48
bands, like the simulation. The upper figure in this plot shows the gain over time and frequency,
where blue corresponds to a value of 0 and red to a value of 1. It can be seen that there is no
musical noise or other artifacts produced by the postfilter. Also, from listening to the signal
one may find the speech quality to be quite high and without noticeable distortions. In contrast
to most single channel speech enhancement methods, both the attenuation of the background
noise and the speech quality are good at the same time. The lower plot shows the SNR again.

Figure 7.8: Spectrogram of the first microphone signal Z1(jΩ). The lower plot shows the Signal Blocking
Factor.

– 112 – May 7, 2013

7.2 Rapid Prototyping

Figure 7.9: Spectrogram of the output of the multichannel postfilter X(jΩ). The lower plot shows the Signal-
to-Noise Ratio.

Figure 7.10: Spectrogram of the difference signal N̂(jΩ) = Z1(jΩ)−X(jΩ). The lower plot shows the Signal
Blocking Factor.

May 7, 2013 – 113 –

7 Realtime Implementation

Figure 7.11: Gain function G(jΩ) of the postfilter drawn over time and frequency. The lower plot shows the
Signal-to-Noise Ratio.

7.3 Porting to an embedded platform

The final objective of this multichannel speech enhancement project is to port the prototype
implementation to an embedded platform. While this process is not part of the thesis anymore,
the most important steps in doing so are sketched in the following.

The technology roadmap of the company Commend includes a new series of intercom devices
using state of the art embedded systems. Today, such systems are affordable even on a low
budget, and therefore the prototype should be able to run on such a device. For example, full-
featured evaluation Kits including the ARM Cortex-A9 MCU, Ethernet and USB ports as well
as an on-board sound chip are already available for $40. Thanks to well-established standards
in modern software development, all of the libraries and frameworks used for the prototype can
also be compiled for the ARM target. For example, the FFTW library supports the NEON FPU
of the ARM Corex devices. The NEON feature allows four FPU operations to be executed in
parallel, thereby yielding a fourfold floating-point performance. On the WandBoard, which has
an ARM Cortex-A9 CPU being clocked at 800MHz, FFTW achieves the following performance
when executing a one dimensional 512 point FFT and IFFT:

Problem : or f512 , setup : 15 .77 s , time : 16 .93 us , ’ ’ mflops ’ ’ : 680 .54
Problem : orb512 , setup : 16 .31 s , time : 19 .19 us , ’ ’ mflops ’ ’ : 600 .24

When using four microphones, four FFTs and one IFFT are required for each 16ms frame.
Hence, FFTW achieves the 184-fold performance required. Also, the Eigen framework has built-
in NEON support. This makes cross-compilation of the prototype fairly easy. The following
CFLAGS have been used with GCC 4.6.3:

CFLAGS=”−O3 −mfpu=neon −f t r e e−v e c t o r i z e −mfloat−abi=s o f t f p − f f a s t−math
−funsa f e−math−opt im i za t i on s − f s i n g l e−p r e c i s i o n−constant ”

– 114 – May 7, 2013

7.3 Porting to an embedded platform

A small benchmark program has been written, which uses a multichannel WAV-file instead of
the soundcard as input. This way, the performance of the code can be evaluated by comparing
its execution time against the duration of the WAV-file. Executing the benchmark on the
BeagleBoard XM gives the following output for 2 microphones:

Reading f i l e : MCSE test 2ch . wav
Fs = 16000Hz
channe l s = 2
samples = 240000 per channel
durat ion = 15 s
frame s i z e = 256 samples
Using 937 frames f o r s imu la t i on

c rea ted MCSE core with f s =16000 , BlockLength =0.016 , Nmics=2
created plan f o r a 512 po int DFT

CPU time = 3.17 seconds .
CPU load = 21.1333%.

And with 4 microphones:

Reading f i l e : MCSE test 4ch . wav
Fs = 16000Hz
channe l s = 4
samples = 240000 per channel
durat ion = 15 s
frame s i z e = 256 samples
Using 937 frames f o r s imu la t i on

c rea ted MCSE core with f s =16000 , BlockLength =0.016 , Nmics=4
created plan f o r a 512 po int DFT

CPU time = 5.27 seconds .
CPU load = 35.1333%.

Without any further optimization, the code achieves almost three times the required perfor-
mance when using four microphones. Although, when considering real-time operation of the
code, some delays caused by the audio driver (ALSA) are to be considered. Also, the surround-
ing framework for audio compression and transmission to another client has to be considered.
And finally, for the sake of stability of the entire embedded system, it is a good idea to keep the
total CPU load below 50%. Therefore it might be advantageous to optimize the code by hand
a bit further, though.

May 7, 2013 – 115 –

Multi-channel Speech Enhancement

8
Conclusion and Future Work

In this thesis, an in-depth overview of state of the art multichannel speech enhancement (MCSE)
systems based on acoustic beamforming and multichannel postfilters has been given. The first
part of the work focused on the mathematical framework of superdirective beamformers with
special attention to the GSC beamformer, followed by four different blocking matrices. Then,
five algorithms for source locating have been characterized, where it was shown that estimating
the DOA alone is more robust than estimating the entire RTF towards the speech source. Also,
three different multichannel postfilter algorithms have been introduced.

Part two of this thesis focused on the selection of a subset of these algorithms used for im-
plementation. The selection process was based upon the psychoacoustic motivated performance
measures PESQ and PEASS, but also on implementation issues like real-time capability and of
course numerical complexity. For this selection process, an extensive set of Matlab experiments
using the TIMIT, KCOSS and KCORS speech databases has been created. Based on the out-
come of these experiments, the following algorithms are used for the prototype implementation:

Due to its robustness and performance, the GSC has been chosen as beamformer. The speaker-
dependent RTFs are modeled as simple time delays because the speaker is always close to the
array. Therefore, a simple DOA estimation using the SCOT algorithm is sufficient for this pur-
pose. Further, the magnitude estimation from section 4.3.4 is used to account for the amplitude
differences between the microphone signals. The AIC filters in the GSC are adapted by the
NLMS algorithm. As multichannel postfilter, the MCSPP is used for both its simplicity and
outstanding speech quality. Finally, the postfilter is combined with the simplified filterbank from
chapter 5.4.2 using 48 bands. The filterbank reduces the computational cost in the postfilter by
a factor of 5 while maintaining its performance.

The last part of this work, is devoted to the real-time implementation of the Matlab-code, us-
ing the optimal combination of algorithms identified in part two. Here, implementation-related
issues have been documented to provide an insight into the basic concepts of rapid prototyping
and modern software development. Finally, the thesis concludes with a performance demon-
stration of the prototype running on a standard PC. The achieved performance approves the
initial assumption of the diffuse noise sound field and the direct sound field for speech. Even
in a standard office room, the background noise is almost an ideal diffuse sound field, while the
speech signal is mostly directional when the user is speaking from a distance shorter than 50cm

– 116 – May 7, 2013

into the array. The initial statement, that multichannel speech enhancement is superior to the
well-established single channel methods has been verified in both theory and practice.

Further steps at the company Commend include the casting of the prototype into a product.
Therefore, the Austrian Research Promotion Agency extended this research project to a second
year. Within this time, the following steps should be accomplished:

� Continue research on the Direct to Diffuse Ratio (DDR) from chapter 5.3.2. The algorithm
is a promising candidate for a robust DOA estimator that does not need a VAD.

� Continue research on the Multichannel Speech Presence Probability (MCSPP) from chap-
ter 5.3.3. The modifications made so far can further be optimized to increase the perfor-
mance in low SNR conditions.

� Incorporate an Acoustic Echo Canceler (AEC) into the MCSE system, so that it can be
used for bidirectional communication. In [68], three basic concepts are mentioned: A
cascade of a multichannel AEC and the GSC, the GSC followed by a single-channel AEC,
and a merged AEC and GSC design. All three concepts have pros and cons regarding
performance and numerical complexity. Thus, the integration of an AEC into the prototype
is a future research topic.

� Incorporate Digital Audio Watermarking techniques into the MCSE system. Research
on this topic has already been concluded and allows for numerous applications in VoIP
telephony.

� Port the implementation to an embedded platform using a state of the art MCU, like the
ARM Cortex-A9.

� Select a suited embedded platform, microphones, loudspeakers and a housing to build a
stand-alone prototype.

� Use an audio server like the Jack Audio Connection Kit to use the MCSE system in
conjunction with standard VoIP software.

� Merge the business strategies of the company with the new capabilities of this device, and
develop a roadmap for its applications.

May 7, 2013 – 117 –

Multi-channel Speech Enhancement

9
Listings

In this chapter, the most relevant code snippets from the Matlab experiments and the prototype
implementation are presented for documentation:

Noise Samples used in the simulations:

[0 1] ” Noise Samples\Abf ü l l an lage2 4ch . wav”
[0 2] ” Noise Samples\Abf ü l l an lage3 4ch . wav”
[0 3] ” Noise Samples\Abf ü l l an l age 4ch . wav”
[0 4] ” Noise Samples\Abr i s s3 4ch . wav”
[0 5] ” Noise Samples\Abr i s s 4ch . wav”
[0 6] ” Noise Samples\Autobahn 4ch . wav”
[0 7] ” Noise Samples\Bagger 4ch . wav”
[0 8] ” Noise Samples\Barcelona a i r p o r t gate 39 3 4ch . wav”
[0 9] ” Noise Samples\Barcelona a i r p o r t gate 39 4ch . wav”
[1 0] ” Noise Samples\B o i l e r 4 c h . wav”
[1 1] ” Noise Samples\Cross ing Hankyu 4ch . wav”
[1 2] ” Noise Samples\Cygnus X − The Orange Theme3 4ch . wav”
[1 3] ” Noise Samples\Destroyer Operat ions Room 4ch . wav”
[1 4] ” Noise Samples\D i f f u s e s p e e c h 1 4 c h . wav”
[1 5] ” Noise Samples\D i f f u s e s p e e c h 2 4 c h . wav”
[1 6] ” Noise Samples\D i f f u s e s p e e c h 3 4 c h . wav”
[1 7] ” Noise Samples\D i f f u s e s p e e c h 4 4 c h . wav”
[1 8] ” Noise Samples\D i f f u s e s p e e c h 5 4 c h . wav”
[1 9] ” Noise Samples\D i f f u s e s p e e c h 6 4 c h . wav”
[2 0] ” Noise Samples\Factory3 4ch . wav”
[2 1] ” Noise Samples\Factory 4ch . wav”
[2 2] ” Noise Samples\Flugl ärm 4ch . wav”
[2 3] ” Noise Samples\Güterzüge 4ch . wav”
[2 4] ” Noise Samples\Kiev t r a i n s t a t i o n 4 c h . wav”
[2 5] ” Noise Samples\Kompressor 4ch . wav”
[2 6] ” Noise Samples\London Tube3 4ch . wav”
[2 7] ” Noise Samples\London Tube 4ch . wav”
[2 8] ” Noise Samples\Manhattan 4ch . wav”
[2 9] ” Noise Samples\Narita Ai rport 4ch . wav”
[3 0] ” Noise Samples\New York City r e s cue van on Times Square3 4ch . wav”
[3 1] ” Noise Samples\Pendulum − Blood Sugar3 4ch . wav”
[3 2] ” Noise Samples\Pendulum − Tarantula3 4ch . wav”
[3 3] ” Noise Samples\Penn s t a t i o n newark 4ch . wav”
[3 4] ” Noise Samples\Roadnoise2 4ch . wav”
[3 5] ” Noise Samples\Roadnoise3 4ch . wav”
[3 6] ” Noise Samples\Roadnoise 4ch . wav”
[3 7] ” Noise Samples\ Sch i f f smoto r 4ch . wav”
[3 8] ” Noise Samples\Shinkansen2 4ch . wav”
[3 9] ” Noise Samples\Shinkansen3 4ch . wav”
[4 0] ” Noise Samples\Shinkansen 4ch . wav”
[4 1] ” Noise Samples\ Stadtverkehr2 4ch . wav”

– 118 – May 7, 2013

[4 2] ” Noise Samples\ Stadtverkehr3 4ch . wav”
[4 3] ” Noise Samples\ Stadtverkehr 4ch . wav”
[4 4] ” Noise Samples\Stahlwerk 4ch . wav”
[4 5] ” Noise Samples\Staubsauger 4ch . wav”
[4 6] ” Noise Samples\Toronto Hi l ton lounge3 4ch . wav”
[4 7] ” Noise Samples\Toronto Hi l ton lounge 4ch . wav”
[4 8] ” Noise Samples\T r a f f i c Chaos 4ch . wav”
[4 9] ” Noise Samples\T r a f f i c Noise in Ind ia3 4ch . wav”
[5 0] ” Noise Samples\T r a f f i c Noise in Ind ia 4ch . wav”
[5 1] ” Noise Samples\Tsurumai 4ch . wav”
[5 2] ” Noise Samples\Vintage Cars 4ch . wav”
[5 3] ” Noise Samples\Yamanote Line Shinjuku3 4ch . wav”
[5 4] ” Noise Samples\Yamanote Line Shinjuku 4ch . wav”
[5 5] ” Noise Samples\ lg−j f k−a i r p o r t 4 c h . wav”
[5 6] ” Noise Samples\ tottenhamcourtroad 4ch . wav”

Calculation of the directivity pattern in Matlab:

1 %c a l c d i r e c t i v i t y pattern
2 f o r j =1: Nangles
3 x = micpos (: , 1) − micpos (1 , 1) ; %mic 1 = r e f e r e n c e mic
4 y = micpos (: , 2) − micpos (1 , 2) ;
5 d = s q r t (x.ˆ2+y . ˆ 2) ; %d i s t ance mic (1) to a l l o the r s
6 a = atan2 (y , x) ;
7 tau = d .* cos (a−avect (j) * pi /180) . / c ;
8 f o r k=1: Nbins
9 A = exp(− s q r t (−1)* tau *2* pi * f v e c t (k)) ;

10 Psi (j , k) = W(: , k) ’*A;
11 end
12 end
13

14 HH = 20* l og10 (abs (Psi)) ;
15 HH = min (max(HH,−20) ,0) ;

Calculation of the directivity index in Matlab:

1 %c a l c d i r e c t i v i t y index
2 DI = ze ro s (1 , Nbins) ;
3 f o r i =1:Nmics
4 f o r j =1:Nmics
5 DI = DI + W(i , :) .* conj (W(j , :)) .* squeeze (C nn (i , j , :)) . ’ ;
6 end
7 end
8 f o r k=1: Nbins
9 DI(k) = abs (W(: , k) ’*As (: , k)) . ˆ2 . / max(r e a l (DI (k)) , 1e−6) ;

10 end

Calculation of the coherence of an ideal diffuse sound field in Matlab:

1 %c a l c coherence f o r an i d e a l d i f f u s e sound f i e l d
2 C nn = ze ro s (Nmics , Nmics , Nbins) ;
3 f o r i =1:Nmics
4 f o r j =1:Nmics
5 x = micpos (i , 1) − micpos (j , 1) ;
6 y = micpos (i , 2) − micpos (j , 2) ;
7 md = s q r t (x.ˆ2+y . ˆ 2) ;
8 tau = md/c ;
9 C nn (i , j , :) = s i n c (2* f v e c t * tau) ;

10 end
11 end

Calculation of the MVDR filter weights for the directional sound field in figure 3.7:

1 %c a l c Phi nn f o r a d i r e c t i o n a l sound f i e l d
2 theta n = 20 ;
3 f o r k=1: Nbins
4 x = micpos (: , 1) − micpos (1 , 1) ; %mic 1 = r e f e r e n c e mic
5 y = micpos (: , 2) − micpos (1 , 2) ;
6 d = s q r t (x.ˆ2+y . ˆ 2) ; %d i s t ance mic (1) to a l l other mics

May 7, 2013 – 119 –

9 Listings

7 a = atan2 (y , x) ;
8 tau = d .* cos (a−theta n * pi /180) /c ;
9 An(: , k) = exp(− s q r t (−1)* tau *2* pi * f v e c t (k)) ;

10 Phi nn (: , : , k) = An(: , k) *An(: , k) ’ ;
11 end
12

13 %c a l c MVDR f i l t e r weights W
14 f o r k=1: Nbins
15 ni = inv (Phi nn (: , : , k) + I *1e−6) ;
16 W(: , k) = ni *As (: , k) / (As (: , k) ’* ni *As (: , k)) ;
17 end

Calculation of the GSC beamformer in Matlab:

1 f o r k=1:AC. Nbins
2 %f i x e d beamformer FBF
3 GSC.F (: , k) = RTF. As (: , k) / norm(RTF. As (: , k)) ˆ2 ;
4

5 %apply FBF
6 GSC. Fy fb f (k) = GSC.F (: , k) ’*AC. Fz (: , k) ;
7

8 %apply BM
9 GSC. Fu (: , k) = GSC.B(: , : , k) ’*AC. Fz (: , k) ;

10

11 %apply AIC f i l t e r s
12 GSC. Fy aic (k) = GSC.H(: , k) ’*GSC. Fu (: , k) ;
13

14 %c a l c GSC output
15 GSC. Fy(k) = GSC. Fy fb f (k) − GSC. Fy aic (k) ;
16

17 %c a l c o v e r a l l GSC f i l t e r weights
18 GSC.W(: , k) = GSC.F (: , k) − GSC.B(: , : , k) *GSC.H(: , k) ;
19

20 %AIC update as per NLMS
21 GSC. Szz (k) = GSC. Szz (k) *GSC. alpha + (1−GSC. alpha) *norm(AC. Fz (: , k)) ˆ2 ;
22 GSC.H(: , k) = GSC.H(: , k) + 0 .1*GSC. Fu (: , k) * conj (GSC. Fy(k)) /max(GSC. Szz (k) ,

0 . 1) ;
23 end

SCOT Algorithm for estimating the DOA in Matlab:

1 %s i z e o f the DOA search range
2 DOA. Nangles = 50 ;
3 %provide search range tau in [s] f o r the d i s t ance from mic 1 to mic <DOA.m>
4 DOA. tau range = l i n s p a c e (−AC. m i c d i s t (DOA.m) ,AC. m i c d i s t (DOA.m) ,DOA. Nangles) /

AC. c ;
5 %c a l c cor re spond ing theta range
6 DOA. the ta range = as in (DOA. tau range *AC. c /(AC. m i c d i s t (DOA.m) + 1e−6)) ;
7

8 DOA. p s i = ze ro s (1 ,AC. Nbins) ;
9 %max search range f o r tau in i n t e g e r samples

10 DOA. samples max = c e i l (max(DOA. tau range *AC. f s)) ;
11 %tau search range in i n t e g e r samples
12 DOA. samples index = (−DOA. samples max :DOA. samples max) ’ ;
13

14 %r e c u r s i v e c ros s−PSD es t imat ion
15 f o r k=1:AC. Nbins
16 RTF. Phi zz (: , : , k) = RTF. Phi zz (: , : , k) *RTF. alpha +

(1−RTF. alpha) *AC. Fz (: , k) *AC. Fz (: , k) ’ ;
17 end
18

19 %get PSDs from the RTF module
20 Szmz1 = squeeze (RTF. Phi zz (DOA.m, 1 , :)) . ’ ;
21 Szmzm = r e a l (squeeze (RTF. Phi zz (DOA.m,DOA.m, :))) . ’ ;
22 Sz1z1 = r e a l (squeeze (RTF. Phi zz (1 , 1 , :))) . ’ ;
23

24 %SCOT func t i on
25 DOA. p s i = Szmz1 . / (s q r t (Szmzm.* Sz1z1) + 1e−6) ;
26

27 r = r i f f t (DOA. p s i) . ’ ;
28 %crop r to range −samples max . . . + samples max

– 120 – May 7, 2013

29 r = c i r c s h i f t (r , [DOA. samples max 0]) ;
30 r = r (1 :DOA. samples max*2+1) ;
31

32 %search tau v ia MSE
33 f o r a=1:DOA. Nangles
34 r r e f = s i n c (DOA. samples index+DOA. tau range (a) *AC. f s) ;
35 DOA. J (a) = 1 ./max(mean ((r−r r e f) . ˆ 2) , 1e−6) ;
36 end
37 [va l DOA. index] = max(DOA. J) ;
38

39 %get tau and theta
40 tau = DOA. tau range (DOA. index) ;
41 theta = DOA. the ta range (DOA. index) ;

MUSIC Algorithm for estimating the DOA in Matlab:

1 %narrowband MUSIC as in Microphone Array S igna l Proce s s ing Jacob Benesty 2008
2 DOA. J = ze ro s (DOA. Nangles , 1) ;
3 f o r a=1:DOA. Nangles
4 f o r k=1:AC. Nbins
5 Phi = [Sz1z1 (k) , Szmz1 (k) ’ ; Szmz1 (k) , Szmzm(k)] ;
6 [V,D] = e i g (Phi) ;
7 [va l index] = min (diag (D)) ;
8 %e i g e n v e c t o r (2) ’* sigma
9 DOA. J (a) = DOA. J (a) + 1/ abs (V(: , index) ’ * [1 ; DOA. sigma (a , k)]) . ˆ 2 ;

10 end
11 end
12 [va l DOA. index] = max(DOA. J) ;

TBRR Postfilter in Matlab:

1 %c a l c n o i s e f l o o r s
2 MCPF.NE{1} = calc NE (AC,MCPF.NE{1} , Fs hat) ;
3 f o r m=1:AC. Nmics
4 MCPF.NE{m+1} = calc NE (AC,MCPF.NE{m+1} ,MCPF. Fn(m, :)) ;
5 end
6

7 %c a l c TBRR
8 tmp1 = max(MCPF.NE{1} . S − MCPF.NE{1} . lambda , 0) ;
9 tmp2 = ze ro s (1 ,AC. Nbands) ;

10 f o r m=1:AC. Nmics ;
11 tmp2 = max(MCPF.NE{m+1}.S − MCPF.NE{m+1}. lambda , tmp2) ;
12 end
13 MCPF. p s i = tmp1 . / (tmp2 + 1e−6) ;
14

15 %speech absence p r o b a b i l i t y
16 index = (MCPF. p s i < MCPF. p s i l ow) ;
17 tmp2 = (MCPF. p s i h i g h − MCPF. p s i) / (MCPF. ps i h i gh−MCPF. p s i l ow) ;
18 MCPF. q = max(tmp2 , 0) ;
19 MCPF. q (index) = 1 ;
20

21 %n o i s e f l o o r e s t imat i on
22 MCPF. lambda = MCPF.Y .* MCPF. q ;

MCSPP Postfilter in Matlab

1 f o r k=1:AC. Nbins
2

3 AW = RTF. As (: , k) *GSC.W(: , k) ’ ;
4 I = eye (AC. Nmics) ;
5 Cnn = MCPF. Cnn (: , : , k) ;
6 tmps0 = r e a l (t r a c e (AW*Cnn*AW’)) ;
7 tmpn0 = r e a l (t r a c e ((I−AW) *Cnn*(I−AW) ’)) ;
8 MCPF. Ph i s s0 (k) = MCPF. Ph i s s0 (k) *MCPF. alpha0 + (1−MCPF. alpha0) *tmps0 ;
9 MCPF. Phi nn0 (k) = MCPF. Phi nn0 (k) *MCPF. alpha0 + (1−MCPF. alpha0) *tmpn0 ;

10

11 tmps = sum(abs (MCPF. Fs (: , k)) . ˆ 2) ;
12 tmpn = sum(abs (MCPF. Fn (: , k)) . ˆ 2) ;
13 MCPF. Ph i s s (k) = MCPF. Ph i s s (k) *MCPF. alpha + (1−MCPF. alpha) *tmps ;
14 MCPF. Phi nn (k) = MCPF. Phi nn (k) *MCPF. alpha + (1−MCPF. alpha) *tmpn ;

May 7, 2013 – 121 –

9 Listings

15

16 end
17

18 tmps = MCPF. Ph i s s .*MCPF. Phi nn0 ;
19 tmpn = MCPF. Phi nn .*MCPF. Ph i s s0 ;
20 gamma = tmps . / (tmpn + 1e−6) ;
21

22 MCPF. zeta = max(gamma−1 ,0) ;
23 MCPF. q = 1./(1+MCPF. zeta) ;
24 MCPF. lambda = MCPF.Y.*MCPF. q ;

DDR Postfilter in Matlab:

1 MCPF. Sz1z1 = MCPF. Sz1z1*MCPF. alpha + (1−MCPF. alpha) * abs (AC. Fz (1 , :)) . ˆ 2 ;
2 MCPF. Sz2z2 = MCPF. Sz2z2*MCPF. alpha + (1−MCPF. alpha) * abs (AC. Fz (2 , :)) . ˆ 2 ;
3 MCPF. Sz1z2 = MCPF. Sz1z2*MCPF. alpha + (1−MCPF. alpha) *

AC. Fz (1 , :) .* conj (AC. Fz (2 , :)) ;
4 MCPF. Cz1z2 = MCPF. Sz1z2 . / s q r t (MCPF. Sz1z1 .*MCPF. Sz2z2 + 1e−6) ;
5

6 tau = AC. m i c d i s t (2) /AC. c ;
7 MCPF. Cn1n2 = s i n c (2*AC. f v e c t * tau) ;
8

9 sigma = conj (RTF. As (2 , :)) . / abs (RTF. As (2 , :)) ;
10 ddr = (MCPF. Cn1n2 − MCPF. Cz1z2) . / (MCPF. Cz1z2 − sigma) ;
11 ddr = max(r e a l (ddr) ,0) ;
12 q = 1./(1+ ddr) ;
13

14 %speech absence p r o b a b i l i t y
15 MCPF. q = f i l t e r b a n k a n a l y s i s (AC, q) ;
16

17 %n o i s e f l o o r e s t imat i on
18 MCPF. lambda = MCPF.Y .* MCPF. q ;
19 MCPF.NE = calc NE (AC,MCPF.NE, Fs hat) ;
20 MCPF. lambda = max(MCPF. lambda ,MCPF.NE. lambda) ;

OM-MMSE-LSA spectral subtraction algorithm in Matlab:

1 %input PSD
2 ANC.Y = f i l t e r b a n k a n a l y s i s (AC, abs (Fy) . ˆ2) ;
3 ANC. lambda = f i l t e r b a n k a n a l y s i s (AC, lambda) ;
4

5 ANC.gamma = ANC.Y. / (ANC. lambda + 1e−6) ;
6 ANC. zeta = ANC. zeta *ANC. a lpha ze ta + (1−ANC. a lpha ze ta) *max(ANC.gamma−1 ,0) ;
7

8 %zeta smoothing , l o c a l l y
9 ANC. z e t a l o c a l = 10* l og10 (ro l l i ng mean (ANC. zeta ,ANC. b l o c a l)) ;

10 ANC. P l o c a l = (ANC. z e t a l o c a l−ANC. z e t a l o) . / (ANC. z e ta h i−ANC. z e t a l o) ;
11 ANC. P l o c a l (ANC. z e t a l o c a l < ANC. z e t a l o) = 0 ;
12 ANC. P l o c a l (ANC. z e t a l o c a l > ANC. z e t a h i) = 1 ;
13

14 %zeta smoothing , g l o b a l l y
15 ANC. z e t a g l o b a l = 10* l og10 (ro l l i ng mean (ANC. zeta ,ANC. b g l o b a l)) ;
16 ANC. P g loba l = (ANC. z e t a g l o b a l−ANC. z e t a l o) . / (ANC. z e ta h i−ANC. z e t a l o) ;
17 ANC. P g loba l (ANC. z e t a g l o b a l < ANC. z e t a l o) = 0 ;
18 ANC. P g loba l (ANC. z e t a g l o b a l > ANC. z e t a h i) = 1 ;
19

20 %speech absence p r o b a b i l i t y
21 ANC. q = 1−ANC. P g loba l .*ANC. P l o c a l ;
22

23 %speech presence p r o b a b i l i t y
24 ANC. p = (1 + (ANC. q./(1−ANC. q)) .* (1+ANC. x i) .* exp(−ANC. nu)) .ˆ−1;
25

26 %d e c i s i o n d i r e c t e d a−p r i o r i SNR es t imat ion
27 ANC. x i = ANC. x i o l d .*ANC. alpha + (1−ANC. alpha) .*max(ANC.gamma−1 ,0) ;
28

29 %MMSE−LSA
30 tmp = ANC. x i ./(1+ANC. x i) ;
31 ANC. nu = tmp .*ANC.gamma + 1e−6;
32 ANC.G0 = tmp .* exp (0 . 5* exp int (ANC. nu)) ;
33 ANC. x i o l d = ANC.G0 . ˆ 2 . *ANC.gamma;
34

– 122 – May 7, 2013

35 %speech presence p r o b a b i l i t y
36 ANC. p = (1 + (ANC. q./(1−ANC. q)) .* (1+ANC. x i) .* exp(−ANC. nu)) .ˆ−1;
37

38 %OM−LSA
39 ANC.G = ANC.G0. ˆANC. p .* ANC. G min.ˆ(1−ANC. p) ;
40

41 %c a l c output s i g n a l
42 ANC. Fx = f i l t e r b a n k s y n t h e s i s (AC,ANC.G) .*Fy ;

Main function of the realtime-implementation in C++:

1 i n t main (void)
2 {
3 // i n i t MCSE core
4 aSetup . f s = FS ;
5 aSetup . BlockLength = BLOCKLENGTH;
6 aSetup . Nmics = NIN ;
7 aSetup . micpos = ArrayXXf : : Zero (4 , 2) ;
8 aSetup . micpos << 0 , 0 . 000 ,
9 0 , 0 . 053 ,

10 0 , 0 . 117 ,
11 0 , 0 . 1 6 9 ;
12 ac = new MCSE core(&aSetup) ;
13 ac−>isRunning = true ;
14

15 mr = new MatlabReporter () ;
16 mr−>EvalStr ing (” c l e a r a l l ; c l o s e a l l ; c l c ”) ;
17 mr−>L i v e P l o t I n i t (ac) ;
18

19 pthr ead c r ea t e (&threadID core , NULL, core thread , (void *) ac) ;
20 cout << ” s t a r t i n g core thread .\n” ;
21 pthr ead c r ea t e (& threadID rt f , NULL, r t f t h r e a d , (void *) ac) ;
22 cout << ” s t a r t i n g r t f thread .\n” ;
23

24 cout << ” s t a r t i n g PortAudio\n” ;
25 t ry
26 {
27 P a I n i t i a l i z e () ;
28 cout << ”PortAudio ve r s i on number = ” << Pa GetVersion () << ”PortAudio

ve r s i o n text = ” << Pa GetVersionText () << endl ;
29

30 i n t numDevices = Pa GetDeviceCount () ;
31 i n t motu devicenum = −1; // dev i ce number o f the MOTU i n t e r f a c e
32 i f (numDevices < 0)
33 {
34 cout << ”ERROR: Pa GetDeviceCount returned : ” << numDevices << endl ;
35 throw paDeviceUnavai lable ;
36 }
37

38 cout << ”Number o f d e v i c e s = ” << numDevices << endl ;
39 f o r (i n t i =0; i<numDevices ; i++)
40 {
41 s t r i n g dev i ce (Pa GetDeviceInfo (i)−>name) ;
42 cout << ”\nDevice #” << i << ” : ” << dev i ce . data () << endl ;
43 s t r i n g motu(”MOTU”) ;
44 i f (dev i c e . f i n d (motu) != s t r i n g : : npos)
45 {
46 motu devicenum = i ;
47 cout << ”\nFound MOTU Device : ” << dev i ce . data () << endl ;
48 }
49 }
50 i f (motu devicenum == −1)
51 {
52 cout << ”ERROR: MOTU dev i ce was not found\n” ;
53 throw paDeviceUnavai lable ;
54 }
55

56 inputParameters . channelCount = NIN ; // record NIN channe l s
57 inputParameters . dev i c e = motu devicenum ;
58 inputParameters . ho s tAp iSpec i f i cS t r eamIn fo = NULL;
59 inputParameters . sampleFormat = paFloat32 ;

May 7, 2013 – 123 –

9 Listings

60 inputParameters . suggestedLatency =
Pa GetDeviceInfo (motu devicenum)−>defaultLowInputLatency ;

61 inputParameters . ho s tAp iSpec i f i cS t r eamIn fo = NULL; // See your s p e c i f i c
host ’ s API docs f o r i n f o on us ing t h i s f i e l d

62

63 outputParameters . channelCount = NOUT; // output channe l s
64 outputParameters . dev i c e = motu devicenum ;
65 outputParameters . ho s tAp iSpec i f i cS t r eamIn fo = NULL;
66 outputParameters . sampleFormat = paFloat32 ;
67 outputParameters . suggestedLatency =

Pa GetDeviceInfo (motu devicenum)−>defaultLowOutputLatency ;
68 outputParameters . ho s tAp iSpec i f i cS t r eamIn fo = NULL; // See your s p e c i f i c

host ’ s API docs f o r i n f o on us ing t h i s f i e l d
69

70 e r r = Pa OpenStream (&stream , &inputParameters , &outputParameters ,
FS SYSTEM, BLOCKSIZE SYSTEM, paNoFlag , Pa AudioCallback , ac) ;

71 i f (e r r != paNoError) throw e r r ;
72

73 e r r = Pa StartStream (stream) ;
74 i f (e r r != paNoError) throw e r r ;
75 ac−>startTime = Pa GetStreamTime (stream) ;
76 ac−>isRunning = true ;
77 do
78 {
79 mr−>LivePlot Update () ;
80 }
81 whi le (ac−>isRunning) ;
82

83 e r r = Pa CloseStream (stream) ;
84 i f (e r r != paNoError) throw e r r ;
85 }
86 catch (PaError e r r)
87 {
88 Pa Terminate () ;
89 cout << ”An e r r o r occured whi l e us ing the portaudio stream\n” ;
90 cout << ” Error number : ” << e r r << endl ;
91 cout << ” Error message : ” << Pa GetErrorText (e r r) << endl ;
92 system (” pause ”) ;
93 r e turn e r r ;
94 }
95

96 pthread mutex lock(&mut core) ;
97 pth r ead cond s i gna l (&cond core) ;
98 pthread mutex unlock(&mut core) ;
99 p t h r e a d j o i n (threadID core , NULL) ;

100 p r i n t f (”Waiting f o r co r e th r ead to j o i n .\n”) ;
101

102 pthread mutex lock(&mut rt f) ;
103 pth r ead cond s i gna l (& c o n d r t f) ;
104 pthread mutex unlock(&mut rt f) ;
105 p t h r e a d j o i n (threadID rt f , NULL) ;
106 p r i n t f (”Waiting f o r r t f t h r e a d to j o i n .\n”) ;
107

108 Pa Terminate () ;
109 d e l e t e ac ;
110 p r i n t f (” Test f i n i s h e d .\n”) ;
111 f i l e p t r . c l o s e () ;
112 r e turn 0 ;
113 }

– 124 – May 7, 2013

Multi-channel Speech Enhancement

Bibliography

[1] J. Benesty, M. M. Sondhi, and Y. Huang, Springer Handbook of Speech Processing. Berlin–
Heidelberg–New York: Springer, 2008.

[2] P. Vary and R. Martin, Digital Speech Transmission. West Sussex: Wiley, 2006.

[3] P. C. Loizou, Speech Enhancement: Theory and Practice. Boca Raton: CRC Press, 2007.

[4] J. Benesty, S. Makino, and J. Chen, Speech Enhancement. Berlin–Heidelberg–New York:
Springer, 2005.

[5] D. L. Wang and J. S. Lim, “The unimportance of phase in speech enhancement,” IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. 30, no. 4, Aug. 1982.

[6] P. Mowlaee and R. Martin, “On phase importance in parameter estimation for single-
channel source separation,” International Workshop on Acoustic Signal Enhancement in
Aachen, Sep. 2012.

[7] T. Gerkmann, M. Krawczyk, and R. Rehr, “Phase estimation in speech enhancement -
unimportant important or impossible?” IEEE 27-th Convention of Electrical and Electron-
ics Engineers in Israel, Nov. 2012.

[8] S. Schmitt, M. Sandrock, and J. Cronemeyer, “Single channel noise reduction for hands
free operation in automotive environments,” AES 112-th Convention, Munich, Germany,
May 2002.

[9] J. Benesty, J. Chen, and Y. Huang, Microphone Array Signal Processing. Berlin–
Heidelberg–New York: Springer, 2008.

[10] Y. A. Huang and J. Benesty, Audio Signal Processing For Next-Generation Multimedia
Communication Systems. Boston: Kluwer Academic Publishers, 2004.

[11] R. Zelinski, “A microphone array with adaptive post-filtering for noise reduction in re-
verberant rooms,” International Conference on Acoustics, Speech, and Signal Processing,
vol. 5, pp. 2578–2581, Apr. 1988.

[12] S. Gannot and I. Cohen, “Speech enhancement based on the general transfer function gsc
and postfiltering,” IEEE Transactions on Speech and Audio Processing, vol. 12, no. 6, Nov.
2004.

[13] M. Taseska and E. A. Habets, “Mmse-based blind source extraction in diffuse noise fields us-
ing a complex coherence-based a priori sap estimator,” International Workshop on Acoustic
Signal Enhancement, Sep. 2012.

[14] M. Souden, J. Chen, J. Benesty, and S. Affes, “An integrated solution for online multi-
channel noise tracking and reduction,” IEEE Transactions on Audio, Speech and Language
Processing, vol. 19, no. 7, Sep. 2011.

May 7, 2013 – 125 –

Bibliography

[15] “Wandboard,” Website, available online at http://http://www.wandboard.org/; visited on
November 19th 2012.

[16] E. Vincent, “Improved perceptual metrics for the evaluation of audio source separation,”
INRIA, Centre de Rennes, Bretange Atlantique, Campus de Beaulieu, 35042 Rennes Cedex,
France, Tech. Rep., 2011.

[17] V. Emiya, E. Vincent, N. Harlander, and V. Hohmann, “Subjective and objective quality
assessment of audio source separation,” IEEE Transactions on Audio, Speech and Language
Processing, vol. 19, no. 7, Sep. 2011.

[18] E. G. Williams, Fourier acoustics - sound radiation and nearfield acoustical holography.
London: Academic Press, 1999.

[19] H. Kuttruff, Room Acoustics, 5th ed. London–New York: Spoon Press, 2009.

[20] S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhancement using beamforming and
nonstationarity with applications to speech,” IEEE Transactions on Signal Processing,
vol. 49, no. 8, Aug. 2001.

[21] I. A. McCowan and H. Bourlard, “Microphone array post-filter based on noise field coher-
ence,” IEEE Transactions on Audio, Speech and Language Processing, vol. 11, no. 6, Nov.
2003.

[22] G. Stan, J. Embrechts, and D. Archambeau, “Comparison of different impulse response
measurement techniques,” Sound and Image Department, University of Liege, Belgium,
Tech. Rep., 2002.

[23] M. Holters, T. Corbach, and U. Zölzer, “Impulse response measurement techniques and
their applicability in the real world,” Proceedings of the 12th Int. Conference on Digital
Audio Effects, Como, Italy, Sep. 2009.

[24] T. D. Rossing, Springer Handbook of Acoustics. Berlin–Heidelberg–New York: Springer,
2007.

[25] Y. Huang, J. Benesty, and J. Chen, Acoustic MIMO Signal Processing. Berlin–Heidelberg–
New York: Springer, 2006.

[26] S. Haykin, Adaptive Filter Theory, 4th ed. New Jersey: Prentice Hall, 2002.

[27] O. Hoshuyama, A. Sugiyama, and A. Hirano, “A robust adaptive beamformer for micro-
phone arrays with a blocking matrix using constrained adaptive filters,” IEEE Transactions
on Signal Processing, vol. 47, no. 10, Oct. 1999.

[28] K. Li, Q. Fu, and Y. Yan, “A subband feedback controlled generalized sidelobe canceller in
frequency domain with multi-channel postfilter,” 2nd International Workshop on Intelligent
Systems and Applications, pp. 1–4, May 2010.

[29] J. Benesty, J. Chen, Y. Huang, and J. Dmochowski, “On microphone-array beamforming
from a mimo acoustic signal processing perspective,” IEEE Transactions on Audio, Speech
and Language Processing, vol. 15, no. 3, Mar. 2007.

[30] S. Gannot, “Array processing of nonstationary signals with application to speech,” Tel-Aviv
University, Tech. Rep., 2000.

– 126 – May 7, 2013

http://http://www.wandboard.org/

Bibliography

[31] M. G. Shmulik, S. Gannot, and I. Cohen, “A sparse blocking matrix for multiple con-
straints gsc beamformer,” IEEE International Conference on Acoustics, Speech and Signal
Processing, Mar. 2012.

[32] E. Warsitz and R. Haeb-Umbach, “Blind acoustic beamforming based on generalized
eigenvalue decomposition,” IEEE Transactions on audio, speech, and language processing,
vol. 15, no. 5, Jul. 2007.

[33] E. Warsitz, A. Krueger, and R. Haeb-Umbach, “Speech enhancement with a new general-
ized eigenvector blocking matrix for application in a generalized sidelobe canceller,” IEEE
International Conference on Acoustics, Speech and Signal Processing, pp. 73–76, May 2008.

[34] W. Herbordt and W. Kellermann, “Analysis of blocking matrices for generalized sidelobe
cancellers for non-stationary broadband signals,” IEEE International Conference on Acous-
tics, Speech, and Signal Processing, vol. 4, May 2002.

[35] I. Cohen, “Analysis of two-channel generalized sidelobe canceller (gsc) with post-filtering,”
IEEE Transactions on Speech and Audio Processing, vol. 11, no. 6, Nov. 2003.

[36] I.Cohen, “Multichannel post-filtering in nonstationary noise environments,” IEEE Trans-
actions on Signal Processing, vol. 52, no. 5, May 2004.

[37] E. Weinstein and O. Shalvi, “System identification using nonstationary signals,” IEEE
Transactions on Signal Processing, vol. 44, no. 8, Aug. 1996.

[38] I. Cohen, “Relative transfer function identification using speech signals,” IEEE Transactions
on Speech and Audio Processing, vol. 12, no. 5, Sep. 2004.

[39] I. Cohen and B. Berdugo, “Speech enhancement for non-stationary noise environments,”
Lamar Signal Processing Ltd., Israel, Tech. Rep., 2001.

[40] I. Cohen, “Noise spectrum estimation in adverse environments: Improved minima controlled
recursive averaging,” IEEE Transactions on Speech and Audio Processing, vol. 11, no. 5,
Sep. 2003.

[41] J. Li, Q. Fu, and Y. Yan, “An approach of adaptive blocking matrix based on frequency
domain independent component analysis in generalized sidelobe canceller,” IEEE 10th In-
ternational Conference on Signal Processing, pp. 231–234, Oct. 2010.

[42] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis. New York:
John Wiley, 2001.

[43] H.Saruwatari, T. Kawamura, T. Nishikawa, A. Lee, and K. Shikano, “Blind source sep-
aration based on a fast-convergence algorithm combining ica and beamforming,” IEEE
Transactions on Audio, Speech and Language processing, vol. 14, no. 2, Mar. 2006.

[44] B. Qin, H. Zhang, Q. Fu, and Y. Yan, “Subsample time delay estimation via improved gcc
phat algorithm,” 9th International Conference on Signal Processing, pp. 2579–2582, Dec.
2008.

[45] R. Martin, “Noise power spectral density estimation based on optimal smoothing and min-
imum statistics,” IEEE Transactions on Speech and Audio Processing, vol. 9, no. 5, Jul.
2001.

[46] Y. Ephraim and D. Malah, “Speech enhancement using a minimum mean-square error log-
spectral amplitude estimator,” IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing, vol. 33, no. 2, Apr. 1985.

May 7, 2013 – 127 –

Bibliography

[47] Y. A. Huang and J. Benesty, “A multi-frame approach to the frequency-domain single-
channel noise reduction problem,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 20, no. 4, May 2012.

[48] I. Cohen, “Relaxed statistical model for speech enhancement and a priori snr estimation,”
IEEE Transactions on Speech and Audio Processing, vol. 13, no. 5, Sep. 2005.

[49] ——, “Optimal speech enhancement under signal presence uncertainty using log-spectral
amplitude estimator,” IEEE Signal Processing Letters, vol. 9, no. 4, Apr. 2002.

[50] O. Thiergart, G. D. Galdo, and E. A. P. Habets, “Signal-to-reverberant ratio estimation
based on the complex spatial coherence between omnidirectional microphones,” Int. Audio
Labs. Erlangen, Erlangen, Germany, Tech. Rep., 2012.

[51] M. Souden, J. Chen, J. Benesty, and S. Affes, “Gaussian model-based multichannel speech
presence probability,” IEEE Transactions on Audio, Speech and Language Processing,
vol. 18, no. 5, Jul. 2010.

[52] H. Fastl and E. Zwicker, Psychoacoustics: Facts and Models. Berlin–Heidelberg–New York:
Springer, 1999.

[53] L. Lin, E. Ambikairajah, and W. Holmes, “Auditory filter bank design using masking
curves,” School of Electrical Engineering and Telecommunications, University of New South
Wales, Australia, Tech. Rep., 2003.

[54] B.C.J.Moore and B.R.Glasberg, “Suggested formula for calculating auditory-filter band-
width and excitation patterns,” Department of Experimental Psychology, University of
Cambridge, Cambridge CB2 3EB, Tech. Rep., 1983.

[55] J. Holdsworth, I. Nimmo-Smith, R. Patterson, and P. Rice, “Implementing a gamamtone
filterbank,” Cambridge Electronic Design, Science Park, Cambridge, Tech. Rep., 1988.

[56] B. Huang, C. Zhu, W. Fan, Y. Tao, and Q. Zeng, “Microphone array speech enhancement
based on filter bank generalized sidelobe canceller,” College of Information and Communi-
cations, Guilin University of Electronic Technology, Tech. Rep., 2009.

[57] R. Talmon, I. Cohen, and S. Gannot, “Relative transfer function identification using convo-
lutive transfer function approximation,” IEEE Transactions on audio, speech, and language
processing, vol. 17, no. 4, May 2009.

[58] “Timit acoustic-phonetic continuous speech corpus,” Website, available online at http:
//www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1; visited on January
16th 2013.

[59] “The kiel corpus of read speech vol. 1,” Website, available online at http://www.ipds.
uni-kiel.de/forschung/kielcorpus.en.html; visited on January 16th 2013.

[60] “The kiel corpus of spontaneous speech vol. 1-3,” Website, available online at http://www.
ipds.uni-kiel.de/forschung/kielcorpus.en.html; visited on January 16th 2013.

[61] “Matlab r2010b,” Website, available online at http://www.mathworks.de/products/
matlab/; visited on January 16th 2013.

[62] R. Bencina and P. Burk, “Portaudio v19,” Website, available online at http://www.
portaudio.com; visited on November 19th 2012.

– 128 – May 7, 2013

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1
http://www.ipds.uni-kiel.de/forschung/kielcorpus.en.html
http://www.ipds.uni-kiel.de/forschung/kielcorpus.en.html
http://www.ipds.uni-kiel.de/forschung/kielcorpus.en.html
http://www.ipds.uni-kiel.de/forschung/kielcorpus.en.html
http://www.mathworks.de/products/matlab/
http://www.mathworks.de/products/matlab/
http://www.portaudio.com
http://www.portaudio.com

Bibliography

[63] “Asio sdk 2.2,” Website, available online at http://www.steinberg.net/en/company/
developer.html; visited on November 19th 2012.

[64] M. Frigo and S. G. Johnson, “Fftw 3.3.2,” Website, available online at http://www.fftw.org;
visited on November 19th 2012.

[65] G. Guennebaud, B. Jacob et al., “Eigen 3.1.2,” Website, available online at http://eigen.
tuxfamily.org; visited on November 19th 2012.

[66] R. Johnson, “Pthreads win32 2.9.1,” Website, available online at http://www.sourceware.
org/pthreads-win32; visited on November 19th 2012.

[67] “Matlab engine,” Website, available online at http://www.mathworks.de/de/help/matlab/
calling-matlab-engine-from-c-c-and-fortran-programs.html; visited on November 19th
2012.

[68] G. Reuven, S. Gannot, and I. Cohen, “Joint noise reduction and acoustic echo cancella-
tion using the transfer-function generalized sidelobe canceller,” Department of Electrical
Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel, Tech. Rep., Jan.
2006.

[69] A. Marti, M. Cobos, and J. J. Lopez, “A real-time sound source localization and enhance-
ment system using distributed microphones,” 130th Audio Engineering Society Convention,
May 2011.

[70] D. N. Zotkin and R. Duraiswami, “Accelerated speech source localization via a hierarchical
search of steered response power,” IEEE Transactions on Speech and Audio Processing,
vol. 12, no. 5, Sep. 2004.

[71] E. Warsitz and R. Haeb-Umbach, “Acoustic filter-and-sum beamforming by adaptive prin-
cipal component analysis,” IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 4, Mar. 2005.

[72] I. Cohen, “Identification of speech source coupling between sensors in reverberant noisy
environments,” IEEE Signal Processing Letters, vol. 11, no. 7, Jul. 2004.

[73] L. Ying, L. Jianping, and Z. Yiwen, “Minimum entropy-based acoustic source localization
with laplace distribution,” 10th International Conference on Signal Processing, pp. 498–501,
Oct. 2010.

[74] C. Jingdong, J. Benesty, and H. Yiteng, “Robust time delay estimation exploiting redun-
dancy among multiple microphones,” IEEE Transactions on Speech and Audio Processing,
pp. 549–557, Nov. 2003.

[75] D. L. Maskell and G. S. Woods, “The estimation of subsample time delay of arrival in the
discrete-time measurement of phase delay,” IEEE Transactions on Instrumentation and
Measurement, vol. 48, no. 6, Dec. 1999.

[76] N. Yousefian and P. C. Loizou, “A dual-microphone speech enhancement algorithm based
on the coherence function,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 20, no. 2, pp. 599–609, Dec. 2011.

[77] H. Sawada, R. Mukai, S. Araki, and S. Makino, “A robust and precise method for solving
the permutation problem of frequency-domain blind source separation,” IEEE Transactions
on Speech and Audio Processing, vol. 12, no. 5, Sep. 2004.

May 7, 2013 – 129 –

http://www.steinberg.net/en/company/developer.html
http://www.steinberg.net/en/company/developer.html
http://www.fftw.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://www.sourceware.org/pthreads-win32
http://www.sourceware.org/pthreads-win32
http://www.mathworks.de/de/help/matlab/calling-matlab-engine-from-c-c-and-fortran-programs.html
http://www.mathworks.de/de/help/matlab/calling-matlab-engine-from-c-c-and-fortran-programs.html

Bibliography

[78] S. Y. Low and S. Nordholm, “A robust multichannel speech enhancement method based
on decorrelation,” IEEE International Symposium on Circuits and Systems, pp. 2875–2878,
Jul. 2005.

[79] J. Benesty, J. Chen, and Y. Huang, “Binaural noise reduction in the time domain with
a stereo setup,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19,
no. 8, Nov. 2011.

[80] S. G. Osgouei and M. Geravanchizadeh, “Dual-channel speech enhancement based on a
hybrid particle swarm optimization algorithm,” 5th International Symposium on Telecom-
munications, pp. 873–877, Mar. 2011.

[81] E. Weinstein, M. Feder, and A. V. Oppenheim, “Multi-channel signal separation by decor-
relation,” IEEE Transactions on Speech and Audio Processing, vol. 1, no. 4, Oct. 1993.

[82] B. Zamani, M. Rahmani, and A. Akbari, “Residual noise control for coherence based dual
microphone speech enhancement,” IEEE International Conference on Computer and Elec-
trical Engineering, pp. 601–605, Dec. 2008.

[83] R. Talmon, I. Cohen, and S. Gannot, “Convolutive transfer function generalized sidelobe
canceler,” IEEE Transactions on Audio, Speech and Language Processing, vol. 17, no. 7,
Sep. 2009.

[84] T. Lotter and P. Vary, “Dual-channel speech enhancement by superdirective beamforming,”
Institute of Communication Systems and Data Processing, RWTH Aachen University, Tech.
Rep., 2005.

[85] W. Herbordt and W. Kellermann, “Efficient frequency-domain realization of robust gener-
alized, sidelobe cancellers,” IEEE Fourth Workshop on Multimedia Signal Processing, pp.
377–382, Aug. 2002.

[86] W. Herbordt, H. Buchner, S. Nakamura, and W. Kellermann, “Multichannel bin-wise robust
frequency-domain adaptive filtering and its application to adaptive beamforming,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 15, no. 4, May 2007.

[87] J. Bitzer, K. U. Simmer, and K. Kammeyer, “Multi-microphone noise reduction by post-
filter and superdirective beamformer,” University of Bremen, FB-1, Dept. of Telecommu-
nications, Tech. Rep., 1999.

[88] K. Lae-Hoon, M. Hasegawa-Johnson, and S. Koeng-Mo, “Generalized optimal multi-
microphone speech enhancement using sequential minimum variance distortionless re-
sponse(mvdr) beamforming and postfiltering,” IEEE International Conference on Acous-
tics, Speech and Signal Processing, vol. 3, May 2006.

[89] S. Y. Jeong, K. Kim, and J. H. Jeong, “Adaptive noise power spectrum estimation for
compact dual channel speech enhancement,” IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 1630–1633, Mar. 2010.

[90] C. S. Lin and C. Kyriakakis, “Multi-frequency noise removal based on reinforcement learn-
ing,” 115th Audio Engineering Society Convention, Oct. 2003.

[91] I. Cohen, “On speech enhancement under signal presence uncertainty,” IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 661–664, Aug. 2002.

[92] ——, “On the decision-directed estimation approach of ephraim and malah,” IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, vol. 1, May 2004.

– 130 – May 7, 2013

Bibliography

[93] A. Petrovsky, M. Parfieniuk, and K. Bielawski, “Psychoacoustically motivated nonuniform
cosine modulated polyphase filter bank,” Department of Real Time Systems, Bialystok
Technical University, Poland, Tech. Rep., 2002.

[94] Y. Hu and P. C. Loizou, “Evaluation of objective quality measures for speech enhancement,”
IEEE Transactions on Audio, Speech and Language Processing, vol. 16, no. 1, Jan. 2008.

[95] ——, “Subjective comparison and evaluation of speech enhancement algorithms,” Depart-
ment of Electrical Engineering, The University of Texas at Dallas, USA, Tech. Rep., 2006.

[96] M. Brandstein and D. Ward, Microphone Arrays. Berlin–Heidelberg–New York: Springer,
2001.

May 7, 2013 – 131 –

	Introduction
	Single-Channel Speech Enhancement Methods
	Multi-Channel Speech Enhancement Methods
	Motivation and Problem Statement
	Organization and Aim of this Work

	Sound fields
	Wave Propagation
	Spatial Sampling of Sound Fields
	Signal Model
	Acoustic Transfer Function
	Relative Transfer Function
	Spatial Coherence
	ATF Measurement
	MIMO Systems

	Beamforming Techniques
	Basic Principle
	Performance Measures
	Array Gain
	Directivity Pattern
	Directivity Index

	Delay-and-Sum Beamformer
	Filter-and-sum Beamformer
	Generalized Sidelobe Canceler
	Constructing a Blocking Matrix
	Eigenspace Blocking Matrix
	Generalized Eigenvector Blocking Matrix
	Adaptive Blocking Matrix
	Sparse Blocking Matrix

	Design Considerations

	Acoustic Source Localization
	Problem Formulation
	Estimating the Relative Transfer Function
	Weighted Least Squares
	Independent Component Analysis

	Estimating the Direction Of Arrival
	Smoothed Coherence Transform
	Phase Transform
	Multiple Signal Classification
	Magnitude Estimation

	Voice Activity Detection

	Multichannel Postfiltering
	Postfiltering Concepts
	Single-Channel Speech Enhancement
	Minimum Statistics
	Improved Minima-Controlled Recursive Averaging
	Minimum Mean Squared Error Log-Spectral Amplitude estimator
	Optimally-Modified Log-Spectral Amplitude estimator

	Multi-Channel Postfilter
	Transient Beam to Reference Ratio
	Direct to Diffuse Ratio
	Multichannel Speech Presence Probability

	Psychoacoustics
	Auditory Masking
	Simplified Gammatone Filterbank

	Matlab Experiments
	Quality Assessment
	Signal Blocking Factor
	Perceptual Evaluation of Speech Quality
	PEASS

	Experimental Setup
	Acquiring Speech Data
	Acquiring Noise Data

	Matlab Implementation
	Simulation Testbench
	Simulation Scenarios
	Scenario 1: RTF Estimation
	Scenario 2: BM and AIC Structure
	Scenario 3: Postfilter Algorithm
	Scenario 4: Effect of the Filterbank
	Scenario 5: Number of Microphones

	Simulation Results
	Performance of the best Combination

	Realtime Implementation
	Prototype Implementation
	Hardware Requirements
	Software Requirements

	Rapid Prototyping
	C++ Implementation
	Code verification Against the Simulation using the Matlab Engine
	Live Performance of the MCSE algorithm

	Porting to an embedded platform

	Conclusion and Future Work
	Listings

