
Master’s Thesis

A flexible autonomous order picking
robot

Lechner Dominik, BSc

————————————–

Institute for Software Technology
Graz University of Technology

Head: Slany, Wolfgang, Univ.-Prof. Dipl.-Ing. Dr.techn.

Reviewer: Wotawa, Franz, Univ.-Prof. Dipl.-Ing. Dr.techn.
Supervisor: Wotawa, Franz, Univ.-Prof. Dipl.-Ing. Dr.techn.

Co-supervisor: Steinbauer, Gerald, Ass.Prof. Dipl.-Ing. Dr.techn.

Salzburg, May 2013

Abstract

An increasing number of industrial processes are being automated. On the one hand to
unburden the employees because most of these processes are monotonously, stressful, often
also really hard physical work and sometimes quite dangerous. On the other hand these
processes are automated to improve efficiency and to reduce costs.

This thesis focuses on the process of order picking in warehouses. Although there is a lot
of automation already present in large warehouses for high- and medium-volume items, in
smaller warehouses order picking of low-volume goods is barely automated. The reason is
that conventional automation concepts are customer-specific special purpose solutions and
therefore really cost-intensive so that they are usually unsuitable under such conditions.

The goal of this thesis is a concept for a flexible autonomous mobile order picking robot
which can operate in a standard warehouse without major modifications to the warehouse
infrastructure. This robot should be able to do the whole order picking from receiving
the customers order to the delivery of the order to a drop-off point. Therefore the robot
has to be able to move through the warehouse autonomously, to fetch containers from
shelves, transfer the required items from the containers to the order bin. To prove the
concept a prototype robot, equipped with an omnidirectional drive for a maximum of
mobility, different sensor for perceiving its environment, a container manipulation unit
and a robotic arm to grasp the goods, is built.

A paper, giving a short overview about the concept and presenting preliminary results,
has already been released [5]. This thesis reports the concept details, the implementa-
tion details of a prototype implementing parts of the concept as well as the results of
experiments to prove the concept.

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Contents

1. Introduction 1
1.1. Motivation . 1

1.2. Goals and challenges . 2

1.3. Outline & contributions . 3

2. Basics 5
2.1. Robot Operating System (ROS) . 5

2.1.1. The Robot Operating System actionlib 6

2.2. Point Cloud Library (PCL) . 7

2.2.1. Point clouds . 7

2.2.2. Plane segmentation . 9

2.2.3. Euclidean clustering . 10

2.2.4. Iterative Closest Point (ICP) algorithm 10

2.3. Path planning . 12

2.3.1. Probabilistic Roadmap planning . 13

2.3.2. Tree-based planning . 13

3. Related research 15
3.1. ”Little Helper” and the AIMM concept . 15

3.2. Mobile manipulator systems . 16

3.2.1. ”HERB” . 16

3.2.2. ”EL-E” . 17

3.3. Box detection in point clouds . 19

4. System description 21
4.1. Concept . 21

4.1.1. Hardware concept . 22

4.1.1.1. Mobile platform . 23

4.1.1.2. Navigation sensors . 23

4.1.1.3. Container manipulation . 23

4.1.1.4. Item manipulation . 24

4.1.1.5. Computing & communication 24

4.1.1.6. Power supply . 24

4.1.2. Software concept . 24

4.1.2.1. Warehouse management . 25

4.1.2.2. Hardware abstraction layer 26

4.1.2.3. Services & actions layer . 26

4.1.2.4. Overall robot control . 27

i

Contents

4.2. Hardware implementation . 27

4.2.1. Mobile base . 28

4.2.2. Navigation sensors . 30

4.2.3. Container manipulation . 30

4.2.4. Item manipulation . 32

4.2.5. Computing & communication . 34

4.2.6. Power supply . 34

4.3. Software implementation . 36

4.3.1. Mobile platform . 36

4.3.1.1. ODO CAN krikkit node . 37

4.3.1.1.1. Receiving new motion commands 37

4.3.1.1.2. Sending motion commands to the drive 38

4.3.1.1.3. Forwarding messages to the CAN bus 38

4.3.1.1.4. Receiving and forwarding of CAN bus messages . 38

4.3.1.1.5. Odometry calculations 39

4.3.1.1.6. Publishing odometry 39

4.3.1.2. teleop krikkit node . 42

4.3.2. Sensors . 42

4.3.2.1. Navigation sensor . 42

4.3.2.2. Object recognition sensor 42

4.3.3. Container manipulation . 43

4.3.3.1. nanotecContr node . 43

4.3.3.2. mechatronicsContr node . 44

4.3.4. Navigation & localization . 49

4.3.4.1. Autonomous navigation . 49

4.3.4.1.1. Problems with autonomous navigation 51

4.3.4.2. Fine positioning . 51

4.3.4.2.1. Landmark tracker 52

4.3.4.2.2. Position controller 57

4.3.5. Arm navigation . 61

4.3.5.1. Arm navigation pipeline . 61

4.3.5.2. Problems with the arm navigation 66

4.3.5.3. Arm movement sequence 67

4.3.6. Object detection . 69

4.3.6.1. MedboxDetector class . 69

4.3.7. Item manipulation . 77

4.3.7.1. katana medbox picking action server node 79

4.3.7.1.1. MoveArm class . 79

4.3.7.1.2. MedboxPicking class 82

4.3.7.2. Katana inverse kinematics workaround 87

4.3.7.2.1. ik katana server node 87

4.3.7.2.2. katana openrave trafo server node 89

4.3.7.2.3. katana openrave jointtrafo server node 91

4.3.8. Robot control . 94

4.3.9. Warehouse management . 98

ii

Contents

5. Experiments 101
5.1. Autonomous navigation . 101

5.1.1. Setup . 101
5.1.2. Execution . 102
5.1.3. Results and evaluation . 104

5.2. Fine positioning . 107
5.2.1. Setup . 107
5.2.2. Execution . 108
5.2.3. Results and evaluation . 109

5.3. Container manipulation . 111
5.4. Object detection . 112

5.4.1. Setup & execution . 112
5.4.2. Results and evaluation . 113

5.4.2.1. Variable light conditions 113
5.4.2.2. Multiple boxes . 115

5.4.2.2.1. Partially occluded but detectable boxes 115
5.4.2.2.2. Detection preventing occlusion 116
5.4.2.2.3. False positive detection 117

5.4.2.3. Mixed container content . 119
5.5. Item manipulation . 122

5.5.1. Setup & execution . 122
5.5.2. Results and evaluation . 124

6. Conclusion and future work 127

A. Abbreviations 133

Bibliography 135

iii

List of Figures

1.1. Manual order picking (Photo courtesy of KBS Industrieelektronik GmbH) . 1

2.1. ROS actions client-server structure . 6

2.2. Real world scene and its representing point cloud 8

2.3. Euclidean clustering of a point cloud . 9

2.4. Iterative Closest Point alignment . 11

2.5. Steps during path planning with PRM . 14

2.6. Steps during path planning using a tree-based strategy 14

3.1. ”Little Helper” concept overview . 16

3.2. Picture showing the HERB platform . 17

3.3. The mobile manipulator, EL-E . 18

4.1. Order picking work cycle overview . 21

4.2. Schematic layout of the warehouse environment 22

4.3. Hardware concept overview . 23

4.4. Software concept overview . 25

4.5. Prototype component overview and photo 28

4.6. Mobile base components . 29

4.7. Navigation sensor . 30

4.8. Container manipulation . 31

4.9. Stepper motor control unit . 31

4.10. Item manipulation system . 32

4.11. Schematic of the vacuum system . 33

4.12. Computing & communication . 34

4.13. Power supply . 35

4.14. Simple example showing ODO CAN krikkit node 36

4.15. Krikkit odometry model . 40

4.16. Class diagram for nanotecContr node . 44

4.17. Sequence diagram of the container placing process 46

4.18. Class diagram for mechatronicsContr node 48

4.19. ROS navigation stack configuration overview 50

4.20. Landmark for fine positioning . 51

4.21. Landmark image and laser scan . 52

4.22. Landmark positioning overview . 52

4.23. Class diagram: LandmarkTracker class . 54

4.24. Class diagram: LandmarkPositioningController class 58

4.25. Algorithm sketch for fine positioning . 59

4.26. Prototype URDF model . 62

v

List of Figures

4.27. Arm navigation configuration . 63
4.28. Sequence diagram for detection goal execution 69
4.29. Class diagram: MedboxDetector class . 70
4.30. RGB and input point cloud images for detection 72
4.31. Sequence diagram of preparing steps for box detection 72
4.32. Point cloud images of detection preparation steps 73
4.33. Sequence diagram of the detection loop . 74
4.34. Point cloud images of different surface detection steps 74
4.35. Sequence diagram of the box detection evaluation process 75
4.36. Point cloud images of the detection result 76
4.37. Item manipulation configuration . 79
4.38. Class diagram for katana medbox picking action server node 80
4.39. Arm poses during the item manipulation process 83
4.40. OpenRave inverse kinematics . 88
4.41. Katanas URDF model and two related frames 88
4.42. Katana end-effector frames for IK . 90
4.43. Joint angle format of Katana OpenRAVE and URDF description 91
4.44. Comparison of Katana configurations . 93
4.45. Diagram of the robot control state machine 95
4.46. Picture of the warehouse management GUI 99

5.1. Auto navigation experiment map . 102
5.2. Distance measuring method for the auto navigation experiment 103
5.3. Shelf and distance measuring method for the fine positioning experiment . . 108
5.4. Start positions for the fine positioning experiment 109
5.5. Setup for the object detection experiment 112
5.6. Object detection light condition experiment 114
5.7. Standard detection scenario with two detectable boxes 116
5.8. Standard detection scenario with one detectable box 117
5.9. False positive detection scenario . 118
5.10. False positive detection scenario caused by ICP separation 120
5.11. Box detection selectivity experiment . 121
5.12. Robot setting for the object manipulation experiment 122
5.13. Object manipulation real world scene and goals inside the container 123

vi

List of Tables

4.1. ROS parameters read by the MedboxPicking class 82
4.2. Commads to read/write to the I/Os of the Nanotec control units 84

5.1. Goal poses for the auto navigation experiment 102
5.2. Measurement results of the auto navigation experiment 105
5.3. Evaluation of the auto navigation experiment 106
5.4. Goal poses for the fine positioning experiment 107
5.5. Evaluation of the fine positioning experiment 110
5.6. Target parameters for box detection experiment 113
5.7. Detection properties of the false positive detection scenario 119

vii

Listings

4.1. ROS message type for CAN messages . 36
4.2. ROS message type for motion commands 38
4.3. ROS message type for odometry information 41
4.4. ROS message type for 2D laser data . 43
4.5. ROS service for sending commands to a Nanotec controller 44
4.6. ROS action for container manipulation . 45
4.7. ROS parameters for the mechatronics controller action server 47
4.8. ROS message type for joint state messages 48
4.9. Error codes of the mechatronics controller action server 48
4.10. ROS action for landmark tracking . 53
4.11. ROS action for positioning relative to a landmark 59
4.12. ROS action for box detection . 71
4.13. ROS action for item manipulation . 78
4.14. ROS action for box detection . 87
4.15. ROS action for box detection . 87
4.16. ROS action for box detection . 89
4.17. ROS action for box detection . 90
4.18. ROS action for box detection . 91
4.19. ROS action for sending a new order to the robot 94
4.20. ROS message with article information for the robot 96

ix

Chapter 1.

Introduction

1.1. Motivation

What is the motivation for constantly increasing automation of order picking?

Today more and more goods have to be commissioned and delivered in shorter times. In
order to achieve this, goods are stored in containers which in turn are stored in increasingly
large and automated warehouses. Commissioning or order picking is a basic warehouse
process to collect all goods with the correct amount which are needed for a customers order.
In large warehouses, especially for goods with high and medium throughput, order picking
is more and more automated. Fully automated picking uses automatic dispensers or vision
based robot systems implementing the goods-to-robot method like the Schäfer Robo-Pick
(SRP). Semi-automated picking implements the so-called goods-to-person method where
the picking is done manually by an employee with a throughput up to 1000 pieces/hour.
The employee is guided through the whole picking process by an assistance system which
also continuously checks for picking errors. Whether picking is done fully automatic or
semi-automatic, standard conveyor technique is used to bring the containers to the picking
station.

Figure 1.1.: Manual order picking (Photo courtesy of KBS Industrieelektronik GmbH)

If such automation is economically unviable or unfeasible for some reason, picking has to
be done manually according to the person-to-goods method (see Figure 1.1). This means
an employee usually has to walk through the warehouse and for each article has to fetch

1

Chapter 1. Introduction

the right container from the shelf, take out the correct number of pieces, put the container
back and continue with the next article. Similar to the goods-to-person method there are
also different assistance and control systems for this kind of order picking like Pick-by-
Voice, RF-picking, Pick-by-Light [26] and so on. These assistance and control systems are
not only there to unburden the employees. They are necessary to keep picking errors in
an acceptable range.

There are two main motivations for automating the process of order picking. Manual
order picking is a very monotonous and - especially in the case of the goods-to-person
method - a very stressful kind of work. The throughput of the person-to-goods method is
much lower than in case of the goods-to-person method but therefore not the less strenuous.
For this reason the first motivation for automation is to unburden the employees so that
they can focus on more important things like the customer needs and their satisfaction.
The second motivation for automation is an economical one. In order to be competitive,
it is very important that warehouses work as efficient as possible. This means that a
customers order has to be processed and delivered as fast as possible with a minimum of
wrong deliveries. It is also important that the costs per order are kept as low as possible.
In combination this can only be achieved through an effective fully automated process.

What is the motivation for developing an autonomous mobile order picking robot?

Today a lot of solutions are already available to automate warehouses. These are usually
special purpose solutions, individually designed for a given warehouse or consist of a
completely new warehouse with all the necessary infrastructure. Such solutions require
a lot of money, time and work and especially in case of adapting an existing warehouse
will interrupt normal business operation. Similar to the manual person-to-goods method
an autonomous mobile order picking robot would implement a kind of robot-to-goods
method. The robot could either assist human employees or replace them without major
modifications to the warehouse infrastructure. These few necessary changes could be
done without interruption in operation why this solution would be a good compromise
for warehouses where a fully automation is economically unviable or unfeasible for some
reason.

1.2. Goals and challenges

One goal of this thesis is to develop a hard- and software concept for an autonomous
mobile robot which is able to do the order picking of small boxlike goods, drug boxes for
instance, according to the robot-to-goods method in a standard non automated warehouse.
A prototype robot has to be build according to this concept using present and, wherever
possible, off-the-shelf hardware. The software concept as well as the implementation have
to be based on ROS (Robot Operating System) and use up-to-date software packages and
tools to reduce time and effort for software development. It is also part of this thesis to
prove concept, prototype design and implementation by performing experiments using the
prototype which will identify possible improvements and fields for future work.

Challenges to achieve these goals:

• Manipulation of containers

2

1.3. Outline & contributions

• 3D object recognition
• Automated grasping of goods
• Autonomous navigation
• Electrical autonomy

All of these points are challenging for a number of reasons. The most important chal-
lenge for manipulating containers is to find a simple but still robust method to fetch and
respectively place containers. For detecting the boxes in the container, the 3D object
recognition part, the problem is similar. The detection method has to be simple to save
computing power and time but it still has to be robust with respect to several factors
like sensor noise or ambient light, to name just two. Automated grasping as well as au-
tonomous navigation are complex as they combine the problems of path planning and
execution, collision detection and avoidance and in case of autonomous navigation also
localization. Due to the fact that the picking system is implemented as an autonomous
mobile robot the whole system has to be electrical autonomous which means that all the
energy needed to power the hardware has to be provided by batteries. Therefore all the
systems have to be as energy-saving as possible to increase operating time.

1.3. Outline & contributions

The contributions of this thesis to the logistics problem of automated order picking using
an autonomous mobile robot, consist in a hardware and software concept as well as in ideas
for its implementation. Divided into different parts the thesis starts with an overview about
software modules, basic concepts and algorithms used to solve common robotic problems
appearing during this work. This overview is presented in chapter 2.

In the next chapter (chapter 3) some interesting related projects, being part of the
background for this work, and also their relevance for this work are presented. The
chapter addresses relations to the presented concept as well as to the presented prototype
implementation.

The system description presented in chapter 4 is again divided into three sections. The
first section (section 4.1) describes more detailed the challenges as well as the developed
hardware and software concept for a system being able to solve the problem of order picking
using a mobile robot. The hardware and software concept is described separately in the
subsections 4.1.1 and 4.1.2. The other two contained sections (section 4.2 and section 4.3)
go into the implementation details, hardware and software, of the developed and built
prototype robot called ”Kombot”. An intermediate state of the prototype implementation
has already been described and presented in [5].

Chapter 5 is about the experiments performed with the prototype robot. These experi-
ments have the goal to test the built prototype but also allow to evaluate the used systems
and methods for their potential to solve particular subproblems within the overall logistics
problem mentioned at the beginning.

The mentioned evaluation of systems and methods and the resulting conclusions and
suggestions for future work, contained in chapter 6, are also a big part of the thesis’
contributions.

3

Chapter 2.

Basics

For the sake of clarity and a better understanding this chapter shortly introduces the two
most important software modules used in this thesis as well as some of their contained
components with underlying concepts and algorithms. It also addresses the problem of
path planning because it appears twice during this work and is one of the basic problems
in robotics. The chapters section about the Robot Operating System is mainly based on
[21] and the ROS WIKI documentation (ros.org) while the biggest part of the infor-
mation about the Point Cloud Library and its components is from Radu Bogdan Rusu’s
dissertation [22] and the projects website (http://pointclouds.org). The section about
path planning is based on the book ”Principles of Robot Motion” [11] and the article ”The
Open Motion Planning Library” [4].

2.1. Robot Operating System (ROS)

ROS (Robot Operating System) is a meta-operating system for robotics from ”Willow
Garage” (http://www.willowgarage.com) designed for use on Unix-based platforms.
The primary goal of ROS is to provide a robotics framework making reuse of code easier
for researchers and developers. Therefore ROS provides tools and libraries for develop-
ing programs and also to run them distributed on multiple computers. These tools and
libraries are usable with different programming languages, especially C++ and Python,
which makes developing of robotic software much easier. One of the main concepts of ROS
is to divide the whole problem of controlling a robot into smaller problems which are more
easy to solve. These smaller problems can be solved in separate processes (executables)
called nodes which can be distributed over different computers connected via a network
in a peer-to-peer topology.

Another important feature of ROS is the integrated package management allowing to
group source code and binaries of related nodes into packages. In turn related packages
can then be grouped into so-called stacks containing packages with nodes required to solve
a particular problem. The ROS navigation stack for instance, contains packages and nodes
to solve the problem of 2D navigation for a mobile robot.

For the communication between the distributed nodes the framework offers different
communication options. The first one is a centralized data storage and sharing system
called parameter server. The data is globally viewable and editable by all nodes and
usually only used to store configuration parameters because the system is not designed for
high performance. The second communication option is an asynchronous streaming of data
over so-called topics in either common messages predefined by ROS or another package or

5

ros.org
http://pointclouds.org
http://www.willowgarage.com

Chapter 2. Basics

in a complete new defined message type. Defining of new messages is very easy possible
via simple structured text files and an integrated tool that automatically generates the
required C++ and Python code. The third communication option is a synchronous one
called ROS services implementing a RPC (Remote Procedure Call) like communication
briefly described in the following subsection 2.1.1. The following subsection also describes
a library called Robot Operating System (ROS) actionlib offering another communication
option, used several times during this thesis. For more details about the basic concept
of ROS have a look at [21] and the ROS documentation WIKI at http://www.ros.org/

wiki/ROS/Overview (2012). The WIKI also provides more or less valuable documentation
for common packages and stacks.

2.1.1. The Robot Operating System actionlib

For a correct behaviour of the robot some tasks have to be executed continuously such
as low level communication with the hardware. Due to limited computing power on
autonomous systems this does not make sense for all tasks. One solution for this problem
are so-called ROS services. One task, called service client, can send a request to a ROS
service provided by another node called service server. After processing the request the
service server node will send a response message containing the solution and possibly
additional information to the requesting client. In case of ROS services, processing of the
request can not be interrupted by the requesting task.

For interruptible tasks ROS actions are a possible solution. Similar to ROS services,
ROS actions have a server-client-architecture but a more complex communication between
server and client node (see Figure 2.1) to keep the client informed about the actual state
of running process. This is achieved via so-called feedback messages which can be sent
from the server to the client to keep it informed. In contrast to ROS services, in case
of ROS actions the request is called goal and the response is called result. The actionlib
package contains tools for automatic message generation as well as the C++ and Python
versions of the library containing implementations for action client and action server.

Figure 2.1.: ROS actions client-server structure

The data structure for information passed between client and server task is specified via
an action definition file (.action). This file combines the definition of the three message
types (goal, feedback and result) which are generated automatically while the package,
containing the action definition file, is built. The first of these three messages is the goal
message. It contains information necessary for the action server to complete its task.

6

http://www.ros.org/wiki/ROS/Overview
http://www.ros.org/wiki/ROS/Overview

2.2. Point Cloud Library (PCL)

In case of a 2D navigation goal this would be the robot’s goal pose, for instance. The
second message defined in the action definition file, is the feedback message. This message
enables the server task to inform the client task about the actual working progress but
is optional and not implemented in all action server nodes. Usually this message type is
sent periodically until the process has finished. In case of a 2D navigation goal a good
example for a feedback message could be the robot’s actual pose. The third message is the
result message which is sent from the server to the client task when the task has finished.
This message can contain possible outcomes of the servers task. In case of an error during
processing it could for instance contain additional information about the problem causing
the error. In contrast to the feedback message the goal and result messages are non-
optional but can be empty.

Due to the fact that more than one action client can connect to a single action server
and action goals can be sent asynchronously, the action server follows a strict policy for
handling received goals. Only one goal can be processed (active) while a second one is
pending. If a third goal is received the pending goal is cancelled. The action server holds
a state machine for each goal to track its state until the goal has been finished. The
action client also holds a state machine for the goal that was sent to the action server
and receives status updates at a rate of about 10 Hz over the status topic to keep the
two state machines synchronised. To identify the messages corresponding to a specific
goal the original goal, feedback and result message are wrapped into a new message before
publishing it. The wrapping message contains the original message and adds a unique goal
ID and a time stamp which is generated from the service client when the goal is sent. All
following messages corresponding to this goal contain these additional information. As
long as a goal is pending or active the action client can cancel this goal via publishing a
message with the goal ID on the cancel topic.

The interaction between user code and the library uses function calls and callbacks.
Callbacks can be registered to be automatically informed about new goals, goal status
changes and so on. Another way to get informed about this things is to poll them via
function calls which is not really convenient but can have advantages in some special cases.
Usually function calls are used to trigger actions like sending or cancelling a goal (client
side), sending a feedback or a result message (server side).

2.2. Point Cloud Library (PCL)

This section will give a short overview of some of the Point Cloud Library’s (PCL) com-
ponents and their underlying methods and algorithms. The PCL is the most important
software component for processing and analysing point clouds during this thesis.

2.2.1. Point clouds

In general the term point cloud only means a collection P of m points p which have a set
of n common properties, also often called features f or more formal:

P = {p1, p2, . . . , pm−1, pm} with pi = {f1, f2, . . . , fn−1, fn}

Nowadays, especially in the field of robotics, this term is usually used for collections of 3D

7

Chapter 2. Basics

points which represent a part of the real world. In this case the properties are just the
coordinates of the points with the origin of the coordinate frame at the sensing device. So
the formal notation changes to:

P = {p1, p2, . . . , pm−1, pm} with pi = {xi, yi, zi}

Depending on the acquisition technique (stereo cameras, time-of-flight cameras, laser mea-
surement units,...) the points can have additional properties like the distance d from the
sensing device, RGB-values, surface remission values r and so on, which leads to the
following formal notation:

P = {p1, p2, . . . , pm−1, pm} with pi = {xi, yi, zi, di, Ri, Gi, Bi, ri, . . .}

Figure 2.2 shows an example of a real scene and its representing point cloud coloured
according to different properties. Processing of the point cloud can also produce new
properties. So this changes the concept of 3D points to a nD point concept and leads
back to the notation at the beginning. Besides the simple way of storing points in a list,
different methods of organising the points in tree structures (octree, bd-tree) exist which
provide fast access to point locations and their neighbours. (cf. [22, page 17 ff])

Figure 2.2.: Left: Image of a real world scene; Center: Point cloud top and side view,
colour shows distance on z-axis (red close, blue far away), Right: Point cloud
top view, coloured with RGB values from the cloud

In the context of the Point Cloud Library (PCL) the term point cloud means a special
data structure to store these points with their coordinates as well as their additional
properties. Therefore the PCL defines a point cloud template class with the point type
as template parameter containing a simple vector of points, a header (containing frame,
time stamp and a sequence number) and some other information about the point cloud.
The PCL also defines different point types with different additional properties. The list
below contains some of them.

• PointXYZ, normal 3D point without addiotional properties

• PointXYZI, 3D point plus intensity value

• PointXYZINormal, PointXYZI plus coordinates of a surface normal

• PointXYZL, 3D point plus a class label

• PointXYZRGB, PointXYZHSV, 3D point plus colour information

8

2.2. Point Cloud Library (PCL)

• and some more combinations of the additional properties

2.2.2. Plane segmentation

This thesis focuses on picking of small boxlike goods. One of the basic steps of the im-
plemented approach for detecting these objects is the plane segmentation, used to find
surfaces of these boxes inside a point cloud. This subsection will only give a short intro-
duction to the corresponding PCL module used during this work. For further information
on the concept of this module have a look at [22, ”Fitting Simplified Geometric Models”,
page 86 ff].

The PCL module used during this work, providing the feature mentioned above, is
called SACSegmentation. The output of the module are the model coefficients, defining
the fitted plane, and a set of indices indicating points within an user defined maximum
distance to the plane. Such points are called inliers. The model coefficients a, b, c, d are
the coefficients of the plane equation:

a · x+ b · y + c · z + d = 0

In addition to the maximum plane distance, an axis can be defined, forcing the module
to search for a plane perpendicular to this axis. It is also possible to define a maximum
allowed difference angle between the given axis and the plane normal. Given this limiting
parameters, the module tries to fit the plane into the point cloud in such a manner that
the number of inliers is maximized. The left part of Figure 2.3 shows the point cloud of
a scene with an object on a table. Plane segmentation was used to extract the points
corresponding to the table and the floor and visualize them in different colours.

Figure 2.3.: Left: Point cloud with table (green) and floor (red) marked us-
ing plane segmentation (screen shot from video ”Extracting sets of
indices”, http://youtu.be/ZTK7NR1Xx4c, 21.09.2012); Right: Same
point cloud after extracting table and floor and clustering the remaining
points (http://pointclouds.org/documentation/tutorials/cluster_
extraction.php#cluster-extraction, 21.09.2012); cf. [22]

9

http://youtu.be/ZTK7NR1Xx4c
http://pointclouds.org/documentation/tutorials/cluster_extraction.php#cluster-extraction
http://pointclouds.org/documentation/tutorials/cluster_extraction.php#cluster-extraction

Chapter 2. Basics

2.2.3. Euclidean clustering

One important step in detecting objects in a point cloud is to decide which points belong
to an object and which do not. Assuming that the objects are spatially separated, a simple
method to do this using the PCL is euclidean clustering provided via the EuclideanClus-
terExtraction module. The basic idea is that two points pi and pj belong to the same
cluster if the euclidean distance is less than an user defined threshold (||pi − pj ||2 < dth).
The module uses a special tree structure (kd-tree) for the point cloud which provides fast
queries for either the k nearest neighbours or a radius search for the neighbours within a
defined radius around a search point. Using the radius search, a cluster can be found very
easy by executing the following steps which are similar to a flood fill algorithm.

Create empty cluster list C1

Create queue list Q for points to be checked2

forall pi ∈ P do3

repeat4

add pi to the current queue Q5

forall pi ∈ Q do6

get neighbour set P ki of pi within radius r < dth7

add all neighbours pki ∈ P ki but pki /∈ Q to Q8

add Q to the list of clusters C9

reset Q10

end11

until all pi ∈ P are also ∈ C12

end13

Algorithm 1: PCL euclidean clustering algorithm (cf. [22])

For more information about the ideas behind this module have a look at [22, ”Basic
Clustering Techniques”, page 88 ff]. Figure 2.3 shows the point cloud of a scene with
an object lying on a table. After removing the points corresponding to the tabletop and
the floor via plane segmentation, euclidean clustering was used to cluster the remaining
points. Different clusters are shown in different colours.

2.2.4. Iterative Closest Point (ICP) algorithm

The Iterative Closest Point (ICP) algorithm is used for geometric alignment or registration
of 2D or 3D shapes. In the field of robotics it is often used for registering laser scans or other
point clouds. The problem is to find the transformation, rotation (R) and translation (t),
for the best alignment between the two sets of points which are usually not fully congruent
and only partially overlapping. In the context of the PCL IterativeClosestPoint module this
transformation rotates and translates the so-called input point cloud, sometimes also called
template, into the pose of best alignment with the so called target point cloud. Therefore
the algorithm consists of two main steps which are iterated until an error metric reaches
its minimum. Starting with an initial guess or user input for the aligning transformation,
the first iteration step is to find the corresponding (closest) points (pi from the input
cloud corresponds to qi in the target cloud, N is the number of corresponding points) of

10

2.2. Point Cloud Library (PCL)

the input and the target cloud using the nearest neighbour search via a kd-tree (already
mentioned in subsection 2.2.3). The second step is the error minimization which in case
of the PCL module uses Singular Value Decomposition (SVD) to find the transformation
parameters minimizing the least square error function.

Error =
∑N

i=1 ||pj − (Rpi + t)||2

The biggest problem with the Iterative Closest Point (ICP) algorithm is the fact that
it only converges to a local minimum. Therefore a good initial transformation is needed
for a successful alignment. If there is no good initial guess a common approach is to
repeat the algorithm with different initial transformations and take the alignment with
the lowest resulting error as a solution. Another problem, especially when trying to align
high resolution point clouds, is the runtime. Therefore it is recommended to use input
filters to reduce the number of points. (cf. [19, page 2 f])

Figure 2.4.: This figure shows aligning of a template to a target point cloud via ICP
Left: Input point cloud (black dots) and two initial poses for the template
(blue wedge) to align via ICP; Right, top: Properly aligned; global error
minimum; Right, bottom: Misaligned; local error minimum

Figure 2.4 shows a schematic example of such a point cloud alignment via ICP. The
top left image shows an input point cloud (black dots) and the template (blue wedge) at
a good initial position. The bottom left image shows the same point cloud but with a bad
initial position for the template. Now ICP is used to find the transformation T for the
best alignment, minimizing the error function mentioned above. The resulting alignment
shown in the top right image is perfect. This means that the global minimum of the error
function is found. In case of a bad initial position, the above mentioned problems with
ICP approach lead to a misalignment. This means that the algorithm only converges to a
local minimum of the error function.

11

Chapter 2. Basics

2.3. Path planning

The problem of path planning appears twice during this work. Therefore a short overview
of the problem will be given at this point. This section is mainly base on [11] and [4].
Given a known environment with some obstacles, the task of path planning, whether for
a mobile robot (2D), a robot arm (3D) or whatever, is to find an obstacle avoiding path
from a start to a goal configuration. For a better understanding of the problem some
related terms are defined in the following.

”The configuration of a robot system is a complete specification of the position of every
point of that system.” [11, page 40] A really simple planar scenario assumes a circular
mobile robot (radius r) which can only perform translational movements (no rotation).
Its position relative to a world coordinate frame is fully specified by the location of its
center (x, y). Knowing its radius all the points occupied by the robot can be found easily.
For a more complex system, for instance a robotic arm, with a number of N joints a
single configuration q is defined by its ”N” joint parameters. The most common joints are
revolute ones with the joint angle α as parameter. This leads to the following notation for
a configuration:

q = {α1, α2, . . . , αN−1, αN}

The definition of a configuration leads to the definition of the configuration space (C-
space). The sum of all possible configurations forms the configuration space Q. In case of
a system with continuous (stepless) joints the number of possible configurations is in fact
infinite. The dimension of this abstract space is the same as the Degrees Of Freedome
(DOF) of the robot and each point in the C-space represents a single configuration specified
by its ”N” parameters. This means that a robot with six degrees of freedom has a six-
dimensional C-space.

The configuration space Q must not be mistaken with the workspace W of the robot
which can be defined as the sum of real world points reachable by the end effector. This is
one definition for the workspace but other definitions also exist. For instance the following
definition which is more precise: The workspace is the set of end effector poses (position
and orientation) in the real world for which at least one valid configuration exists. Using
the former definition the C-space is more complex than the workspace. The workspace
is usually 2D for mobile robots and 3D for robot arms while the C-space has a higher
dimension because most of the points in the workspace are reachable via more than one
configuration each represented by a different point in the C-space.

In this connection also appears the term configuration space obstacle QOi which means
a point set in the C-space, a set of configurations, at which the robot intersects a real
world obstacle WOi. Unreachable areas (e.g. outside the workspace) and configurations,
forbidden due to motion constraints, also appear as C-space obstacles. In the following
notation R(q) defines the set of points in the real world occupied by the robot while having
the configuration q.

QOI = {q ∈ Q| (R(q)
⋂
WOi) 6= ∅}

So the free configuration space Qfree is the part of the C-space Q with no obstacle
intersecting configurations.

12

2.3. Path planning

Qfree = Q \ (
⋃
iQOi)

A path is now a continuous curve in the C-space Q, means an infinite sequence of
configurations, connecting the points representing the start and goal configuration. A
given path is collision free if it is element of the free C-space Qfree.

Especially for systems with many degrees of freedom the C-space with all its C-space
obstacles is very complex. Therefore it is not possible to use the entire continuous C-
space for finding a path, so sampling-based planning is the solution of choice. Most of the
sampling-based planners are based on either the concept of Probabilistic Roadmap (PRM)
or tree-based planners which are briefly described below.

2.3.1. Probabilistic Roadmap planning

The PRM algorithm uses a roadmap like graph of the free C-space to find collision free
paths. To generate this graph it starts with the search for a defined number of collision
free sample configurations which are the vertices of the graph. Therefore random samples
are taken from the C-space and checked for collision until enough samples in the free
C-space are found. A local planner tries to connect each configuration to the k nearest
configurations by interpolating short paths between them which are checked for collisions
with a defined resolution. If the interpolated path is collision free an edge is inserted
into the graph. It is assumed that the interpolated path is collision free if none of the
interpolated configurations is in collision. A plan from any start to any goal configuration
can now be found by connecting them to the roadmap via the local planner and a simple
graph search to find the shortest path from the start to the goal. The same roadmap
graph can be used for multiple plans with different start and goal configurations as long
as the environment (obstacles) has not changed. Figure 2.5 shows an example how the
PRM algorithm works in an simple 2D case.

2.3.2. Tree-based planning

Another strategy for sample-based planning is to use a tree structure instead of roadmap
graphs. Tree-based planners use the start configuration as a root for a tree. A special
expansion heuristic is used to find new valid configuration samples and connect them to
the tree via short collision free paths similar to the PRM. It is also checked if the goal
configuration can be reached from the new sample which terminates the tree expansion.
Figure 2.6 shows the same example as for the PRM but with a tree-based strategy used
to find a valid path.

There are a lot of tree-based planners differing in the expansion heuristic which usually
gives the algorithm its name. In contrast to PRM, tree-based planners are often single-
query planners because they use the start configuration as a root for a tree. One example
are Rapidly-Exploring Random Trees (RRT) which try to explore the state space rapidly
and uniformly [16]. Another approach for tree-based planners is to use a heuristic that
tries to expand the tree towards the goal as fast as possible. In this case the sample
configurations are heterogeneously distributed compared to the configurations in a graph
coming from a PRM algorithm or a tree using the RRT approach. Furthermore a PRM
graph usually contains loops while a tree does not.

13

Chapter 2. Basics

Figure 2.5.: Steps during path planning with PRM; Left: Uniformly distributed config-
uration samples in the free C-space; Center: Roadmap after connecting the
sample configurations via the local planner; Right: Example path from a start
to a goal configuration (cf. [4])

Figure 2.6.: Steps during path planning using a tree-based strategy; Left: Tree after con-
necting the first samples; Center: Goal can not be connected - continue tree
expansion; Right: Goal is connected to the tree; path complete (cf. [4])

14

Chapter 3.

Related research

This chapter presents some other interesting projects and their relation to this work. The
first section is about the ”Little Helper” system and its underlying concept presented in
[18]. This project was taken as a base to identify important capabilities and possible
solutions for a mobile logistics system as developed during this work. The second sections
is about two interesting mobile manipulators called ”HERB” and ”EL-E” while the third
sections focuses on the problem of detecting boxlike objects in 3D point cloud data as
used during this work.

3.1. ”Little Helper” and the AIMM concept

The paper in [18] presents the Autonomous Industrial Mobile Manipulation (AIMM) con-
cept for developing flexible robotic assistants for manufacturing processes and a robotic
system called ”Little Helper” implementing this concept. The aim is that systems following
the AIMM concept can be built and modified in a cheap and easy way using off-the-shelf
components and are able to perform various tasks in semi-structured industrial environ-
ments. These tasks consist of transportation, pick-and-place operations, classification and
so on which are similar to several steps of the automated order picking process discussed
in this thesis and therefore the AIMM concept and the presented prototype are taken as
a base and adapted according to the special needs of automated order picking.

Under the AIMM concept, the robotic system is fully integrated into the industrial
manufacturing process and can carry out different tasks at different workstations or trans-
port objects between them. Therefore the system concept consists of four main modules
as shown in Figure 3.1. The platform of the ”LittleHelper” prototype is non-holonomic
(Neobotix MP-L655) equipped with sensors for safe navigation in an industrial environ-
ment alongside people and a Windows computer with all the software for the system
components. The environment is slightly modified by placing reflector marks and calibra-
tion targets to achieve acceptable localization tolerances especially at the workstations.
The manipulator is a 6 DOF robotic arm (Adept Viper s650) equipped with a tool changer
system, so depending on the task the end effector can be changed between a vacuum device
and a parallel gripper. The vision system consists of a controllable light source for optimal
illumination and a monochrome high resolution fire wire camera with adjustable iris and
focus to recognize calibration targets or identification patterns on graspable objects. The
software has a three layer architecture abstracting the hardware via services provided to a
Graphical User Interface (GUI). The GUI provides all functions needed for programming
tasks and controlling the ”Little Helper” using a specially language developed for AIMM.

15

Chapter 3. Related research

Figure 3.1.: ”Little Helper”, Aalborg University; prototype implementing the AIMM con-
cept consisting of the four main modules: Platform, Manipulator, Vision and
Tooling” (source [18, page2])

3.2. Mobile manipulator systems

Two interesting related research projects with mobile manipulators have been found and
will be discussed in brief. They are of special interest for this project as they are using
ROS as basic framework which is also intended to be the base for the system developed
during this work.

3.2.1. ”HERB”

In [28] a mobile manipulator, called ”HERB” (see Figure 3.2), is presented which is able
to perform manipulation tasks in the home. The project was from interest for this thesis
because it uses ROS for controlling the robot and it includes autonomous navigation as
well as object recognition and manipulation but has the problematical basic assumption
of unlimited computing power which reduces the value for real applications.

The project uses the ROS navigation stack for navigation and localization while moving
in the environment. For a more accurate localization while manipulating objects a vision
based checkerboard localization is used. This localization method has a positioning error
of only 5mm but takes often 10-30 seconds for a pose estimate and also has a lot of
disadvantages in the setup phase. Therefore checkerboard localization it is not suitable
for this thesis.

Object recognition via a standard extrinsically calibrated camera uses a training stage
to generate 3D models with local feature descriptors extracted from the object. The 3D
model is generated from several images using structure from motion in combination with
SIFT features. For the recognition and pose estimation a single image is used to extract
SIFT features and match them with the known models. This algorithm only works well on
textured objects containing enough SIFT features. Due to the fact that each new object
type has to be learned separately and the algorithm requires textured objects it also not

16

3.2. Mobile manipulator systems

Figure 3.2.: HERB: a platform for personal robotics developed jointly by Intel Research
Pittsburgh and Carnegie Mellon University [28]

suitable for this thesis.

The ”HERB” project also includes a 6 DOF robotic arm with a very flexible 3 finger
gripper for manipulating objects in the environment. The presented framework is not
taken into account during this thesis as it seems to be complicated to implement and
there is no evidence that it would work with a 5 DOF arm as it is used in this thesis.

3.2.2. ”EL-E”

The project presented in [12] is about a mobile manipulator called ”EL-E” (see Figure 3.3),
developed to assist people with motor impairments because they usually have problems
to retrieve objects from different heights. Especially objects lying on the floor or higher
shelves are very difficult to fetch. Therefore EL-E is able to pick up from or place objects
on flat (horizontal) surfaces at a place highlighted with a laser pointer.

To do this the robot consists of several parts as shown in Figure 3.3. The first part is
a differential drive mobile base which carries all the other parts. A tilting laser scanner,
used for navigation as well as for object and surface detection during grasping tasks, and
a 5 DOF robotic arm with a two finger gripper are mounted on a vertical linear actuator
to enable the robot to perform on different height levels. To detect collisions between
the arm and the environment the whole arm rests on a force sensor plate. The gripper
fingers contain force sensors to detect a successful grasp and contacts with the surface. An
omnidirectional camera system with a color filter in combination with a pan- and tiltable
stereo camera is mounted on top of the robot. This vision system is used to detect and

17

Chapter 3. Related research

Figure 3.3.: The mobile manipulator, EL-E [12]

localize laser points, indicating regions of interest.

After a point of interest was selected via the laser pointer and the robot has reached
a position near to this point the object detection uses a 3D point cloud from the tilting
laser scanner representing the area around the point of interest as an input. The object
detection starts by detecting and extracting the surface points and all points beneath.
Therefore the z-axis is divided into levels and the level containing the most points is taken
as the surface level. After removing the surface points and all points beneath, the point
cloud is converted into an occupancy grid and clustered. It is assumed that each cluster
represents an object. Now the robot tries to grasp the object near to the point of interest.
To decide how to grasp the object a 2D projection of the objects point cloud is used. In the
normal case, means the object is small enough for the gripper, the object will be grasped
with the gripper above the centroid and the gripper fingers oriented perpendicular to the
direction with maximum dimensions in the 2D projection. In a case with an object to big
for a standard grasp a special method is used to find a higher grasping point near to the
manipulator.

Grasping objects is done by performing an overhead grasp which means that the gripper
is oriented downwards, placed above the object and then lowered until the force sensors
indicate a contact. Then the gripper is closed and lifted. The grasp is assumed to be
successful if the gripper is lifted up by defined distance and both fingers measure a contact
pressure above a defined threshold.

The object detection method is not suitable for this thesis because there is usually no
detectable surface when detecting objects in a logistics container. Furthermore usually the
objects in the container will be close to each other so a simple clustering will not work. The

18

3.3. Box detection in point clouds

described overhead grasp seams to be a good method to grasp objects lying in a container
and therefore a similar approach is used during this thesis. Nevertheless grasping objects
in a container with a gripper is difficult and therefore the standard gripper is replaced by
a vacuum gripper which makes it much easier to grasp boxlike objects lying close to each
other as it is the case in logistic containers.

3.3. Box detection in point clouds

This thesis focuses on grasping boxlike (cuboid) goods lying in a container and therefore a
method to recognize these boxes is needed. As it will be mentioned later, 3D point cloud
data shell be used for the detection process.

In the last years a lot of new approaches for analysing of, and object recognition in point
clouds, coming from various sensing devices have been presented. A lot of these approaches
deal with object recognition in table-like scenes, having objects on a flat surface. The
approach presented in [24] uses structured light and a stereo camera system to get dense
point clouds of the environment which are processed to find graspable objects. The paper
[10] also presents an approach for segmenting graspable objects and obstacles from point
clouds fetched with a Microsoft Kinect camera as it will be used during this work. Both
approaches are not suitable for this work because their basic assumption, that the objects
are standing on a supporting plane, does not hold for objects lying in a storage container.
Other approaches, like those in [17], try to detect complex objects by segmenting geometric
primitives like cylinders, cones, spheres and so on, belonging to these objects and matching
them against a known CAD model. Some of these approaches such as the approach
mentioned below use also planes as basic geometric primitive.

A possible approach for detecting boxlike objects is to find the bounding surfaces and
one possible way to do this in sparse point clouds is presented in [15]. The presented
method calculates plane normals for each point by finding two neighbour points assuming
that they belong to the same surface plane. Then points with similar normals are grouped
together and a least-squares approach is used to fit a plane into this point cluster. It is
assumed that three planes belonging to three surfaces of the cuboid can be identified. For
these three planes the lines of intersection are calculated and a first vertex is obtained.
The size of the cuboid is estimated by finding those points on the detected planes that
have a maximum normal distance to the already detected edges. A weak point of this
approach is the assumption that two or better three surfaces of the object are fully visible
in the point cloud which can not be assumed in this work. It seams also that the presented
approach requires a point cloud with very low noise which is not really true for the sensor
used in this work. Nevertheless this approach inspired the used approach described later
in this work.

Another interesting approach for finding such surfaces in dense point clouds is presented
in [22](page 90 ff, chapters 6.3, 6.4 and 6.5). This approach uses curvature analysis ([22,
chapter 4.3, page 45 ff]) and a region growing like algorithm to find all points belonging to
the same bounded surface. This approach can not be used in this work as the sensor’s noise
level is to high in relation to the size of the objects to be detected so that the curvature
analysis does not work.

19

Chapter 4.

System description

4.1. Concept

To overcome the challenges and reach the goals presented in section 1.2 the concept pre-
sented in this section was developed. The concept is based on the ”Little Helper” concept
which has already been presented in section 3.1. For a better understanding the whole
process of order picking following the robot-to-goods method can be split into smaller
subtasks as shown in Figure 4.1. These subtasks, to be executed by the mobile picking
robot, can be assigned more or less directly to the mentioned challenges.

Figure 4.1.: Order picking work cycle overview

The three shown subtasks ”move to shelf place”, ”fine positioning” and ”deliver order
bin” for instance correspond with the challenge ”Autonomous navigation” because the
robot has to be able to navigate autonomously through the environment. The environment
is assumed to be a standard non automated warehouse with slight modifications like
artificial landmarks assisting the robot with precise positioning in front of the shelves
or other points requiring precise positioning. A schematic layout of such a warehouse is
shown in Figure 4.2.

The subtasks ”fetch container” and ”put container back” belong to the ”Container
manipulation” challenge. One problem in this regard is that the container manipulation
system has to be as simple and cheap as possible but must also be flexible enough to deal
with the positional inaccuracy of the robot relative to the shelf, the tolerances for the
position of the container in the shelf and many other things.

The challenge ”3D object recognition” is represented by the ”detect objects in container”
subtask and very important as without a detection of objects in the fetched container the
following grasping step can not take place.

”Automated grasping” is connected with the ”transfer item to order bin” subtask. The
goal here is to grasp one of the items in the fetched container and put it into the order
bin. This is done by a robotic arm equipped with a vacuum gripper. Important hereby is
collision avoidance because the grasped goods must not be damaged or lost during transfer.

21

Chapter 4. System description

4

4

2

2

1

1

1

3

3

2

1

1

1

1

1
1

1

1

1
S

he
lf

1

1

S
he

lf
2

5

5

5

5

6

6
6

6 6

1

6

6

6

6

6 6

6
6

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

S
he

lf
N

Figure 4.2.: The figure shows a schematic layout of a possible warehouse environment with
picking robots (1), charging stations (2), order bin retrieval points (3), order
bin drop of points (4), N shelves with containers (5) and order bins (6). Also
shown the wedge like landmarks at 2,3,4 and at the shelves

As a last challenge there is ”Electrical autonomy” which belongs to the whole system
because all the needed energy has to be provided by batteries. Therefore both, hard- and
software parts, must be developed with regard to a maximum of energy efficiency to meet
this challenge.

The mentioned subtasks and challenges have different requirements on hard- and soft-
ware and therefore the following concept description is split into separate subsections for
hardware and software.

4.1.1. Hardware concept

The work cycle subtasks as shown in Figure 4.1 in combination with the goals and chal-
lenges presented in section 1.2 lead more ore less directly to the hardware modules shown
in Figure 4.3. The modularization in combination with the usage of standard, off the
shelf hardware allows a quick, cheap and qualitative development of mobile order picking
robots. For the challenge of electrical autonomy one of the most important requirements
for all hardware parts is electrical efficiency. Therefore it should be ensured that parts
provide a low power stand by mode for times when they are not actively used. Robot

22

4.1. Concept

arms for example should have joints with mechanical breaks to reduce power consumption
while standing still.

Figure 4.3.: Hardware concept overview

The mechanical and pneumatic concept was developed in cooperation with a project
team from the ”Institute of Logistics Engineering” at the University of Technology in
Graz. During their work, documented in [3], the given problem as well as some possible
solutions for the mobile base, container and item manipulation have been analysed and
evaluated. Under the given conditions the reported concept was found to be the optimal
trade-off between flexibility, complexity and costs.

4.1.1.1. Mobile platform

The task of navigating in a warehouse, maybe alongside human workers, requires a base
with a maximum of mobility and flexibility which provides odometry information. De-
pending on the system used for container manipulation a more ore less precise positioning
in front of the shelves is necessary but other places can also require precise positioning like
automatic charging stations for instance. To meet these requirements the base module for
the hardware concept is a omnidirectional platform. From the mechanical point of view
the mobile base must have a payload sufficient for carrying all the other hardware modules
as well as the order bin but has to be as small as possible because greater dimensions have
a negative effect on mobility.

4.1.1.2. Navigation sensors

The ”Navigation sensors” module contains all sensors required for autonomous navigation,
including localization and collision avoidance, in the warehouse environment and landmark
based fine positioning in front of the shelves. Typically these sensors are 2D or 3D lasers or
sonar sensors. For a maximum of safety these sensors should cover the whole area around
the robot to detect possible collisions with the environment or humans. As these sensors
are possibly safety critical it is advised to use industry certified scanners. An example
environment layout is shown in Figure 4.2.

4.1.1.3. Container manipulation

The ”Container manipulation system” module consists of a forklift like manipulation unit
which is capable of handling containers in standard warehouse shelves and placing it on

23

Chapter 4. System description

a defined place within the workspace of the item manipulation system for the picking
operation. Similar to a forklift the system consists of two linear actuator (horizontal and
vertical) for positioning the fork under the container and lifting it up. This solution is
considered to be the best trade-off between flexibility, price and complexity.

4.1.1.4. Item manipulation

The ”Item manipulation” module consists of a 3D sensor for detecting the objects in
the container. Different sensing devices are possible but this concept uses the Microsoft
Kinect because it is rather cheap, off the shelf hardware and is well integrated into the
used software framework (ROS). The actual item manipulation is done by a robot arm
equipped with a strong vacuum gripper performing an overhead grasp as described in
subsection 3.2.2. This combination allows for a good grasp even if the goods are not
lying flat in the container or in case of slight touches between the grasped good and the
environment during the transfer to the order bin. The vacuum system includes the gripper,
the vacuum generator and a pressure sensor to detect if a grasp was successful or if an
item was lost during the transfer operation.

4.1.1.5. Computing & communication

The ”Computing & communication” module includes all the hardware necessary for run-
ning the software as well as communication modules connecting the different hardware
modules to the computing devices and a wireless connection to the warehouse manage-
ment system. The hardware modules offer different interfaces for communication. Com-
mon interfaces are Ethernet, CAN, USB, RS485, RS232, to name just a few. Laptops
with SSD drives are a good and cheap alternative to industrial PCs as modern notebooks
are electrical efficient and come up with built in WLAN hardware which can be used for
a cheap and easy connection to the warehouse management system. They also provide a
display and keyboard for possible error outputs, diagnostics or maintenance operations.

4.1.1.6. Power supply

The last module is the ”Power supply” which contains battery packs providing the electri-
cal power and converters necessary to generate the different voltage levels for the several
hardware parts. Most of the industrial hardware requires 24-48V with a relative good ac-
ceptance of voltage swing while other off the shelf hardware usually requires well stabilized
voltage levels of 5, 7, 9 or 12V. It is recommended to use short-circuit proof converters
to avoid damages caused by hardware problems. The system should provide information
about the actual battery state so that recharging can be scheduled in time. For efficient
usage the system should also provide possibilities for either automatic recharging on a
charging station or easy changing of the battery packs without the need to shut the robot
down.

4.1.2. Software concept

The software concept for the robot is based on ROS (see also section 2.1) and other software
tools and packages available for this basic framework. ROS comes up with a lot of packages

24

4.1. Concept

and tools dealing with common robotic problems like autonomous navigation, localization
and many more as well as with development tools for logging and debugging etc. The
framework also provides easy and comfortable solutions for Inter-Process Communication
(IPC). This easy to use communications paths allow for splitting of the whole software
into an on-board and an off-board part (see Figure 4.4).

Figure 4.4.: Software concept overview

4.1.2.1. Warehouse management

The concept envisages that all the computation, necessary for performing the task of order
picking, will be done on-board so the only off-board part is the warehouse management
system. The main parts of this system are a database, a order management software and
a warehouse management software. For managing customers orders the order manage-
ment software has to provide interfaces, a Graphical User Interface (GUI) for instance, to
place, modify and cancel orders, to check their state, etc. The database usually holds all
the necessary information about orders, customers, inventory etc. For the picking robot
additional information about map coordinates for shelf places and dimensions of the item
boxes and containers will be needed. The warehouse management software is usually a
very complex piece of software with a lot of functionalities. For instance it takes orders and
decides when to pick, pack and ship which order, tries to find the most effective picking
sequence, etc. In the actual scenario it also has to decide when, which robot should pick
a certain order, when a robot should be recharged and in case of a huge robot fleet it has
to optimize the picking and recharge sequences to avoid jams in front of shelves, container

25

Chapter 4. System description

transfer points and charging stations. Furthermore the warehouse management software
needs an interface to send orders to the robot and receive its responses.

4.1.2.2. Hardware abstraction layer

The on-board part of the software consists of three layers as shown in Figure 4.4. On the
bottom is the so-called ”Hardware abstraction” layer. It consists of ROS nodes responsible
for the communication with the different hardware devices via the different communication
interfaces like Ethernet, CAN, USB, etc. This layer is necessary because data coming from
the hardware has to be converted from the hardware specific format into ROS messages and
vice versa. If possible, especially in case of standard data like sensor readings, odometry
information, etc., existing ROS standard message types should be used.

4.1.2.3. Services & actions layer

In the middle of the three layers is the ”Services & actions” layer. It consists of modules
that process and generate data to perform more complex tasks like autonomous navigation,
object detection, etc. as necessary to perform the overall task of order picking. To trigger
and control the tasks implemented by these modules, the modules offer ROS service and
actions (see section 2.1) that can be called from either the top level robot control or
another module in the ”Services & actions” layer.

Navigation & localization
The ”Navigation & localization” module provides the ability of map based autonomous
navigation and localization. This is achieved through the ROS navigation stack. It is used
because it is a widely used, state of the art software module providing all features necessary
to solve this task. The stack uses the data from the navigation sensors and drive odometry
to localize the robot on a map of the environment. It also generates motion commands
for the drive to reach a certain point on the map as defined by the calling task. The
”Navigation & localization” module also provides the ability of fine positioning, relative
to artificial landmarks, in front of the shelves or other places requiring precise positioning
like order bin drop of points for instance. Figure 4.2 show a schematic example warehouse
layout. This task is assisted by the ”Landmark detection” module.

Landmark detection
The ”Landmark detection” module uses laser range data, coming from the main navigation
sensor, to detect and track the pose of an artificial landmark. This is used to provide a
highly accurate localization relative to the shelves or other important points, necessary
for precise positioning at these places. In Figure 4.2 such places are the order bin retrieval
an drop off points, charging stations and shelves. The base for this module is the Point
Cloud Library (PCL), described in section 2.2, used for converting and analysing the data
from the navigation sensor.

Container manipulation
The container manipulation module provides the functionality for fetching a container from
the shelf, placing it in front of the robot arm for picking and to put the container back in

26

4.2. Hardware implementation

the shelf. When triggering the action the only provided information is the operation to be
executed and the shelf level. All other necessary information are provided via configuration
files.

Object detection
The object detection modules is also based on the functionality of the PCL. It analyses
the 3D point clouds from the 3D object recognition sensor, which is a Microsoft Kinect
camera, to detect the goods to be fetched lying in the container. It also identifies and
reports possible grasp points for the item manipulation.

Arm navigation
The arm navigation module uses the ROS arm navigation stack in combination with other
software packages. The task of the module is motion planning for the robot arm. It
also uses a 3D model of the robot and data from the 3D recognition sensor for collision
avoidance.

Item manipulation
The item manipulation module uses data from the object recognition, calls to the arm
navigation module and commands to the vacuum gripper system to perform the task of
item manipulation. It uses the robot arm to pick an item from the container and transfer
it to the order bin.

4.1.2.4. Overall robot control

The top level of the on-board software is the Overall robot control. It receives order
information from the warehouse management system and, as illustrated in Figure 4.1,
sequentially calls all the necessary services and actions, provided by the different modules
in the ”Services & actions” layer, to perform the task of order picking. In case of failure
recovery actions will be triggered or human assistance will be requested if no recovery
action can be performed.

4.2. Hardware implementation

To prove the concept presented in section 4.1 a prototype robot called ”Kombot” was
built. It implements the most important parts of the concept to prove it and to identify
possible weaknesses as well as fields for improvements and future work. The left part of
Figure 4.5 shows a schematic overview of the prototype hardware components and their
planned positions on the main frame while the right part shows a real image of the actual
prototype which slightly differs from the schematic. This subsection will report the hard-
ware implementation of the prototype following the concept described in subsection 4.1.1.
Wherever possible, hardware parts already present in the lab where used to keep the costs
for the prototype as low as possible.

The hardware components listed below were developed and built during a cooperative
project at the ”Institute of Logistics Engineering” of the University of Technology in Graz
documented in [3].

27

Chapter 4. System description

Figure 4.5.: Left: Prototype component overview; Right: Prototype photo without Kinect

• The main frame including the connection to the Krikkit drive

• The container manipulation unit including the fork and both linear axes

• The vacuum gripper system including the gripper itself, the vacuum pump, a mag-
netic valve, a pressure sensor and the flexible piping system for the robot arm (all
parts shown in Figure 4.10)

4.2.1. Mobile base

The mobile base consists of a self supporting main frame (Figure 4.6, top left) and a drive
part. The used drive (Figure 4.6, center) is the base-platform of an old RoboCup Middle
Size soccer robot (”Krikkit” generation) as desribed in [29]. It provides the requested
omnidirectionality, as it uses omnidirectional mecanum wheels (Figure 4.6, top right), but
the small dimensions and the low possible load of the ”Krikkit” drive force the use of a
self supporting frame to carry the other components. This frame bears the whole load and
guarantees for a high tipping stability. To ensure a minimum of rolling friction the frame
rests on four ball casters (Figure 4.6, bottom left).

A special adaptor (Figure 4.6, bottom right) is used to connect the center of the drive to
the center of the main frame. The adaptor is able to compensate hight differences between
frame and drive but can also transfer shearing and rotatory forces. This adaptor allows a
quick change of the drive in case of failure.

The frame is build using standard aluminium profiles and brackets which is cheap and
allows for quick mounting, changing and aligning of the other components. The drive uses
CAN at a transfer rate of 1MBit/s to receive motion commands and to periodically send
velocity information. For proper operation the drive needs a supply between 26 and 30V

28

4.2. Hardware implementation

Figure 4.6.: This figure show different components of the mobile base;
1st row: Self-supporting base frame and ball casters it is resting on;
2nd row: Inner life of ”Krikkit” omni drive and Mechanum omni wheel [29];
3rd row: ”Krikkit” omni drive and connector between drive and base frame

29

Chapter 4. System description

which is provided by two internal battery packs.

4.2.2. Navigation sensors

The sensor for autonomous navigation and localization of the robot is a standard Sick
LMS100 with a field of view of 270◦ and a maximum range of 20m. It has an adjustable
angular resolution of either 0.5◦ with a scanning frequency of 50Hz or 0.25◦ with 25Hz
and a 100Mbit Ethernet interface and can be powered with a voltage between 11V and
30V . This sensor is also used to find and track artificial landmarks, designed as a wedge
with a defined angle of about 134◦ between the two front surfaces, for exact positioning
in front of the shelves.

Robot main frame

Sick Laser Scanner,
LMS100

Field of view: 270°,
up to 20m

Figure 4.7.: Left: Navigation sensor scan area;
Right: Picture of the sensor mounted on the robot

The scanner is mounted upside down at the front of the robot as shown in the left part
of Figure 4.7 with the sensing plane about 11 cm above the ground so that it has a free
view of 180◦ and is able to detect smaller obstacles. To use the whole scanning range of
270◦ the areas containing the feet of the frame (Figure 4.7, right) have to be filtered out
so that they are not identified as obstacles. The fact that this single sensor does not cover
the whole area around the robot is contrary to the concept but is sufficient for testing the
main functions necessary for order picking and can be scaled up easily to cover the whole
area.

4.2.3. Container manipulation

The container manipulation unit is a forklift like apparatus, shown in Figure 4.8 consisting
of two standard linear actuators of the company Igus (www.igus.de) and a simple lifting
fork. The lifting fork hast two screws at its end so that the container can be pulled out
of the shelf instead of lifting it. This ensures that the container is oriented correctly
which means that its broadside is exactly parallel to the horizontal axis because this is
one condition for correct object recognition.

30

www.igus.de

4.2. Hardware implementation

Figure 4.8.: Container manipulation unit with horizontal and vertical linear actuators and
lifting fork

The vertical actuator is a spindle axis because of the higher self-locking so that no
mechanical break is needed to hold a certain position while reducing the holding current.
The horizontal actuator is a toothed belt axis mounted on bottom of the vertical axis and
an additional sliding bar mounted on the top of the vertical axis to prevent blocking in case
of heavy loads. A toothed belt axis is used for the horizontal axis because it can move faster
than a spindle axis but can also be positioned very precise. For exact positioning of the
axes, stepper motors in combination with encoders are used for motorization. The motors
are controlled via two stepper motor control units of the type SMCI47-S-2 (Figure 4.9)
from Nanotec (www.nanotec.com).

Figure 4.9.: Stepper motor control unit for linear actuators

31

www.nanotec.com

Chapter 4. System description

These control units provide a RS485 interface for connection to a computer and a huge
set of control commands to control the motors as well as six input ports with optocouplers
and three open-drain outputs. These additional ports can be used to control relays or
valves or to read in switch states or other signals. Via the encoders and an integrated
position error correction the control units ensure very exact positioning also in case of fast
moves and heavy loads and can also detect and report if an axis is in collision. Each axis
has a reference position switch indicating the final position where the fetched container has
to be placed for the picking process. More information about the container manipulation
unit and the used controls can be found in [20].

4.2.4. Item manipulation

The item manipulation concept consists of three hardware modules as shown in Figure 4.3.
Figure 4.10 shows the hardware parts used for these three modules.

Figure 4.10.: Left: Microsoft Kinect, vacuum pump with valve and pressure sensor;
Right: Robot arm with vacuum gripper and arm control box

32

4.2. Hardware implementation

The Microsoft Kinect camera is used as 3D object recognition sensor as already men-
tioned in subsection 4.1.1. It is mounted directly above the place where the container,
fetched from the shelf, has to be put for the picking operation (see also Figure 4.5, left
part).

The robot arm is a 5 DOF arm from Neuronics of the type Katana 450 6M180 (Fig-
ure 4.10, center), controlled and powered via its own control box (Figure 4.10, bottom
right) which is connected to the network via a 100Mbit Ethernet interface.

The vacuum gripper system consists of the gripper itself, replacing the original two
finger gripper of the Katana arm, the vacuum pump (type EVE-TR-M 2.3 24V-DC 24V-
DC from Schmalz, www.schmalz.com), a pressure sensor (type ZSE30AF-01-B from SMC,
www.smc.at), a valve and a relay (Figure 4.10, bottom left). The pressure sensor is
connected to an input ports of the stepper motor control unit for the horizontal axis of
the container manipulation system to detect if a grasp was successful, indicated by a state
change of the output signal when the measured pressure (under-pressure) is less than
−50mbar. Typically the pressure values for a successful grasp are about −70mbar. The
relay is controlled via an output port of the same motor control unit and switches the valve
and the power for the vacuum pump in a way that the vacuum pressure is released when
the pump is switched of. This effects that the grasped object is dropped immediately.
Figure 4.11 shows a schematic of the vacuum system.

Pressure sensor
SMC, ZSE30AF-01-B

Stepper motor control unit
Nanotec, SMCI47-S-2

GND

+24V

Pump

Figure 4.11.: Schematic of the vacuum system, including pump, pressure sensor, relay and
control unit inputs and outputs

33

www.schmalz.com
www.smc.at

Chapter 4. System description

4.2.5. Computing & communication

Figure 4.12 shows the hardware components and the communication paths between them.

Figure 4.12.: Communication paths between computers and hardware modules

For the tests all the necessary software runs locally on two laptops connect over Eth-
ernet. A Lenovo x60 is used to handle the communication with the navigation sensor,
the mobile platform and the two stepper motor control units and is also used to run
some computationally less intensive tasks. A more powerful Lenovo T420 is used as ROS
master and to handle the Microsoft Kinect, the robot arm and other computationally
intensive tasks. To connect the mobile platform a USB-to-CAN converter ot the type
PCAN-USB from PEAK-System (http://www.peak-system.com) is used because of its
excellent Linux support and good experiences in our lab. For the connection of the step-
per motor control units a cheap USB-to-RS232 converter present in the lab and a special
RS232-to-RS485 convert from Nanotec is used.

4.2.6. Power supply

While the mobile base and the laptops are powered by its own battery packs the whole
electrical power for the other hardware parts is provided by two 12V lead acid batteries
and a chain of voltage converters as shown in Figure 4.13.

34

http://www.peak-system.com

4.2. Hardware implementation

Figure 4.13.: Power supply for hardware modules

The batteries are connected in parallel to get a combined voltage between 22V and
28V depending on the batteries state of charge. The stepper motor control units can be
powered with a voltage between 21V and 48V and are therefore connected directly to the
unstabilized battery voltage but have a charging condenser of 10000µF connect near to
their power inputs as it is advised in the user manual. The vacuum pump, valve, pressure
sensor and the relay are also directly connected because voltage fluctuations within the
expected range have no effect on their operation.

To generate the stabilized voltage of 24V for the robot arm a DC-DC converter of
type ”UQQ-24/4-Q12P-C” from Murata (www.murata.com) is used. This converter has
an input voltage range between 10V and 36V and an output power of 96W which is
required because the arm has an average power consumption of 50W .

The Sick laser scanner and the Kinect camera are powered with 12V generated using
a DC-DC converter of the type SDS-060B12 from Sunpower (http://www.sunpower-uk.
com). To power the network switch these 12V in turn are converted to 8V using a simple
linear regulator.

All of the used converters are short-circuit-proof and internally protected against over-
heating to reduce the effects of possible short circuits or electrical overload. In contrast
to the concept this power supply does not provide information about the batteries charge
state to the control system. Therefore and because of missing charging connectors auto-
matic recharging can not be implemented with this system.

35

www.murata.com
http://www.sunpower-uk.com
http://www.sunpower-uk.com

Chapter 4. System description

4.3. Software implementation

The software for the prototype robot, called”Kombot”, uses the Robot Operating System
(ROS) from ”Willow Garage” as basic software framework. At project start the version C
Turtle was chosen even though the newer version Diamondback has already been released
but at this time it did not support the used robot arm. At a later time the version was
changed to Diamondback as the arm drivers were updated and some important features of
the PCL (Point Cloud Library) were not available in the C Turtle version of the library.

4.3.1. Mobile platform

In the software the mobile platform is represented via the krikkit driver package which
contains two nodes. One node for the connection to the Krikkit drive via CAN (Controller
Area Network) and one for remote control of the platform. It also defines a new ROS mes-
sage to send CAN messages over ROS topics (see Listing 4.1). Figure 4.14 shows a simple
example using the teleop krikkit node to directly control the Krikkit drive. The figure also
shows all possible topic names and message types from and to the ODO CAN krikkit node
which handles the CAN connection to the drive.

k r i k k i t d r i v e r /CAN msg
time time
uint32 id
uint32 msgtype
u int8 l en
u int8 [8] data

Listing 4.1: ROS message type for CAN messages

Figure 4.14.: Simple example showing message paths (topic names and message types)
from and to the ODO CAN krikkit node; the teleop krikkit node is used to
control the Krikkit drive

36

4.3. Software implementation

4.3.1.1. ODO CAN krikkit node

This node is responsible for the hardware connecting to the drive via the CAN bus. It is
the hardware abstraction for the mobile platform as shown in Figure 4.4 and has several
tasks as shown below:

• Receiving motion commands over the ”/cmd vel” topic

• Forward the motion commands to the drive via CAN

• Receive velocity information from the drive

• Calculate and publish odometry information on ”/odom” and ”/tf” topic

• Forward CAN messages from the ”/CAN send msg” topic over the CAN interface

• Receive messages over the interface and publish it to the ”/CAN rec msg” topic

The base for this node is the PCAN Linux library from PEAK-System (http://www.
peak-system.com) which provides a software interface for different CAN adapters. A
package containing the library, drivers and documentation can be found on the ”PEAK-
System LINUX Website” under:

http://www.peak-system.com/fileadmin/media/linux/index.htm, 2013

To fulfil the tasks mentioned above the ODO CAN krikkit node has:

• three threads (can read, can send, odo publish) doing most of the work

• two subscribers on the topics ”/cmd vel” and ”/CAN send msg” for receiving mes-
sages from the ROS framework

• two publishers on the topics ”/odom” and ”/CAN rec msg” for sending messages to
the framework

• one transform broadcaster to send coordinate transformations over the ”/tf” topic,
to be used by the ROS internal transform management system

The node globally stores the arrival time and velocities from the last motion command
as well as the latest linear and angular velocity information received from the drive. It
also globally stores the latest time-stamp and calculated robot pose. These information
are stored globally so that they are accessible for all threads. The pose of the robot at a
time ti is the position (xi, yi . . . coordinates) and orientation (Θi . . . rotationangle) of the
robot’s attached coordinate frame relative to another certain coordinate frame, usually
called world or odometry frame (see Figure 4.15).

Position:
−→
Xi = [xi, yi]

T , Orientation: Θi . . . rotationangle

At program start the connection to the CAN device is established and the publishers,
subscribers and the threads are started. The CAN connection is initialized for a transfer
rate of 1MBit/s and to use extended identifiers as it is necessary for communication with
the Krikkit platform.

4.3.1.1.1. Receiving new motion commands
Whenever a message of type ”geometry msgs/Twist” as shown in Listing 4.2 is received on
the ”/cmd vel” topic the subscriber invokes a callback function which extracts the needed
velocity information, stores it and calls the can send vel msg function to immediately send
the new velocity command to the drive. The received message contains two vectors for

37

http://www.peak-system.com
http://www.peak-system.com
http://www.peak-system.com/fileadmin/media/linux/index.htm

Chapter 4. System description

3D linear and angular velocities. Due to the fact that the Krikkit drive is a planar robot,
only the linear velocities along the x- and y-axis, the angular velocity around the z-axis
and the arrival time of the message are from interest.

geometry msgs /Twist
geometry msgs / Vector3 l i n e a r

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Vector3 angular
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

Listing 4.2: ROS message type for motion commands

4.3.1.1.2. Sending motion commands to the drive
The can send thread periodically sends the last received motion command to the drive via
the can send vel msg function at a rate of approximately 100Hz. This is necessary as the
drive expects to receive motion commands at a higher rate as they are typically sent by
navigation modules like the ROS navigation stack. If no new motion command is received
the drive will stop until a new command arrives and this behaviour would lead to jerky
motions.

The can send vel msg function fetches the velocity information from the last motion
command, constructs a PCAN CAN message and sends it. This PCAN message is a
special data struct of type TPCANMsg, coming from the PCAN library. The motion
command CAN message uses an extended identifier (motion command ID 0x0700004) and
6 Bytes payload, containing the three velocities as 2 Byte integers in the following order:

CAN motion command data field: [vx, vy, ω]

The Krikkit drive expects the linear velocities (vx, vy) to be in [mm/s] and the angular
velocity around the z-axis (ω) in [mrad/s]. For security reasons the function will send
stop commands if the last received motion command is older than 500ms.

4.3.1.1.3. Forwarding messages to the CAN bus
When receiving a message of type ”krikkit driver/CAN msg” as shown in Listing 4.1 on
the ”/CAN send msg” topic the subscriber invokes a callback function which only copies
the contained data into a PCAN CAN message and sends it over the interface.

4.3.1.1.4. Receiving and forwarding of CAN bus messages
The can read thread uses a blocking function with time-out to wait for incoming messages
on the CAN bus. The blocking wait preserves system resources and the time-out of one
second allows periodically checking if the thread should terminate. If a new message
is received over the CAN interface, in every case the message arrival time ti is saved,

38

4.3. Software implementation

the data field is copied into a ”krikkit driver/CAN msg” message and published on the
”/CAN rec msg” topic. In case of a drive velocity message, indicated by the message ID
0x0620001, the actual position, according to the last velocity information, is calculated and
saved as new reference position until a new message arrives. After this the message arrival
time ti and the new velocity information (−→vi , ωi) are stored. Finally the new odometry
information is immediately published to the system via the publish odom function which
is also periodically called by the odo publish thread at a rate of approximately 100Hz.
The drive velocity message data field looks the same as the one of the velocity command
message mentioned above but the units are different. In this message the linear velocity
unit is [mm/2s] and [◦/2s] for the angular velocity.

4.3.1.1.5. Odometry calculations
Odometry is the estimation of a moving systems actual pose from sensor information, like

wheel rotations or something similar, relative to its starting pose. The poses are measured
in a reference coordinate frame, in this context called World frame (see Figure 4.15). This
estimation is done by integrating the velocities of the system over time. Therefore the new
pose at the moment ti is always calculated relative to a previous pose at a moment ti−1
assuming that the velocities have not changed. In case of the used Krikkit drive the used
information are the linear and angular velocity, internally calculated by the drive from
wheel rotations.

Linear: −→v = [vx, vy]
T ; Angular: ω

Figure 4.15 shows a typical scenario for the Krikkit drive, represented as black triangle.
The actual pose for the moment ti is calculated relative to the last pose at ti−1, assuming
that the velocities have not changed since ti−1, using the following formulas:

∆t = ti − ti−1

−−→
∆X =

[
∆x
∆y

]
=

[
cos(Θi−1) −sin(Θi−1)
sin(Θi−1) cos(Θi−1)

]
·
[
vxi−1

vyi−1

]
·∆t

∆Θ = ωi−1 ·∆t

−→
Xi =

[
xi
yi

]
=

[
xi−1
yi−1

]
+

[
∆x
∆y

]
=
−−−→
Xi−1 +

−−→
∆X

Θi = Θi−1 + ∆Θ

4.3.1.1.6. Publishing odometry
This is done via the publish odom function, periodically called by the odo publish thread
at a rate of approximately 100Hz. The function is similar to that from the odometry
tutorial shown in the ROS wiki:

http://www.ros.org/wiki/navigation/Tutorials/RobotSetup/Odom, 2012

It generates and publishes a nav msgs/Odometry message (shown in Listing 4.3) filled

with the actual odometry and velocity information. The actual odometry (ti,
−→
Xi,Θi)

39

http://www.ros.org/wiki/navigation/Tutorials/RobotSetup/Odom

Chapter 4. System description

X
World

Y
World

X
R

Y
R

x
i-1

y
i-1 Θ

i-1

X i

X
R

Y
R

v i−1
 i−1

Θ
i

y
i

x
i

Δy

Δx

ΔΘ

X i−1

v i  i

Figure 4.15.: This figure shows two poses of the robot (black rectangle), its attached co-
ordinate frame and actual velocities at two moments ti−1 and ti relative to
a world coordinate frame as used for odometry calculations

40

4.3. Software implementation

is calculated via the formulas above (see paragraph 4.3.1.1.5) and the latest odometry
and velocity information from time ti−1. The generated odometry message also contains
covariances for the pose and velocity data which is set to neutral, known good values
as no real covariance values are available. Pose information are also used to publish a
transformation to the ROS internal transform management system over the ”/tf” topic.
The ROS transform system handles all the available coordinate transformations and allows
for easy coordinate transformations between the different coordinate frames. The frame
for the odometry information is called ”/odom” and the corresponding robot frame is
called ”/base link” which is located at the robot’s center with the x-axis pointing to the
robots front and the z-axis pointing upwards which fully defines the coordinate system.

nav msgs/Odometry
Header header

u int32 seq
time stamp
s t r i n g f rame id

s t r i n g c h i l d f r a m e i d
geometry msgs /PoseWithCovariance pose

geometry msgs /Pose pose
geometry msgs / Point p o s i t i o n

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

f l o a t 6 4 [3 6] covar iance
geometry msgs / TwistWithCovariance tw i s t

geometry msgs /Twist tw i s t
geometry msgs / Vector3 l i n e a r

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs / Vector3 angular
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

f l o a t 6 4 [3 6] covar iance

Listing 4.3: ROS message type for odometry information

41

Chapter 4. System description

4.3.1.2. teleop krikkit node

This is a node for remote controlling the krikkit drive using the keyboard as input device.
The linear speed can be varied in 10% steps up to a maximum of 2m/s while the angular
speed can be varied in 5% steps up to 90 ◦/s. Depending on the actual selected speed
and the pressed key a ”geometry msgs/Twist” message (see Listing 4.2) is filled with the
chosen velocities and sent on the ”/cmd vel” topic. In contrast to many other remote
control nodes this node offers additional commands for lateral movements.

4.3.2. Sensors

4.3.2.1. Navigation sensor

To get data from the navigation sensor which is a laser scanner (Sick LMS100), connected
via Ethernet, slightly modified versions of the LMS1xx and libLMS1xx packages from
Konrad Banachowicz are used. The project can be found at the web address below (last
checked April 2013).

https://github.com/konradb3/RCPRG-ros-pkg/tree/master/RCPRG_laser_drivers

These two packages are the first part in the hardware abstraction for sensors as shown
in Figure 4.4. The libLMS1xx package contains a library for connecting the scanner and
receiving measurements via Ethernet. The laser sends the measurements in plain text
which led to problems as the original version of the library uses a buffer with fixed size for
storing the incoming data. So the library function for receiving data from the laser was
modified to use dynamic memory for the buffer, to resize the buffer if it is full and to give
a return value indicating the memory problem.

The LMS1xx package contains the node LMS100 to fetch data from the laser scanner,
to convert it to a ROS LaserScan message (see Listing 4.4) and to publish it to the ”/scan”
topic. The IP address for connecting the laser and the frame name used in the published
message can be defined via ROS parameters (”host”, ”frame id”). By default these values
are set to ”192.168.1.2” for the lasers IP address and ”/laser” for the laser frame name.
The node has been changed to evaluate the return value from the function for receiving
scan data and if the return value indicates a problem while fetching the data no message
is published. Another change was a bug-fix in the calculation of the number of scan values
which depends on the scanning resolution.

4.3.2.2. Object recognition sensor

The 3D object recognition sensor is a Microsoft Kinect camera which is represented in
the software via the kinect camera package. This package is included in the ROS kinect
stack and contains the kinect node for handling the kinect camera as second part of the
hardware abstraction for sensors as shown in Figure 4.4. The node fetches RGB, infra-
red and depth images from the camera and publishes them on different topics. Depth
images are published twice as sensor msgs/PointCloud (an older message type) and sen-
sor msgs/PointCloud2 (the newer message type) for compatibility reasons. The package
documentation can be found here:

http://www.ros.org/wiki/kinect_camera, (2012)

42

https://github.com/konradb3/RCPRG-ros-pkg/tree/master/RCPRG_laser_drivers
http://www.ros.org/wiki/kinect_camera

4.3. Software implementation

sensor msgs / LaserScan
Header header

u int32 seq
time stamp
s t r i n g f rame id

f l o a t 3 2 angle min
f l o a t 3 2 angle max
f l o a t 3 2 ang l e inc rement
f l o a t 3 2 t ime increment
f l o a t 3 2 scan t ime
f l o a t 3 2 range min
f l o a t 3 2 range max
f l o a t 3 2 [] ranges
f l o a t 3 2 [] i n t e n s i t i e s

Listing 4.4: ROS message type for 2D laser data

4.3.3. Container manipulation

The container manipulation part, including the ”Container manipulation” module from
the ”Services & actions” layer and the ”Container manipulation system” module from
the ”Hardware abstraction” layer as shown in Figure 4.4, is implemented in the package
mechatronics contr. This package is part of the work described in [20] and is here only
described briefly as the original work is in German. The package contains two important
nodes (nanotecContr and mechatronicsContr) as well as service and action definitions
used by these nodes.

4.3.3.1. nanotecContr node

The nanotecContr node uses a serial port for the connection to the Nanotec devices and
implements a ROS service server with the name ”NanotecContr” (definition shown in
Listing 4.5) for sending commands to them. It represents the ”Vacuum gripper system”
module as well as the ”Container manipulation system” module in the ”Hardware abstrac-
tion” layer shown in Figure 4.4.

At start up the node tries to fetch parameters ”/baudrate” (default 115200) and ”/dev -
name” (default ”/dev/ttyUSB0”) from the ROS parameter sever. These are then used
for the serial connection. The default values represent the values used during this work.
The node holds an object of class NanoContr shown in Figure 4.16 which opens the serial
connection in its constructor. The method sendCommand(...) is the callback function
for the ”NanotecContr” service. It constructs the command string which is sent to the
Nanotec device, using the makeString(...) method, according to the Nanotec command
protocol and the received request data, sends it to the device via the writeString(...)
method and waits for response from the Nanotec device for a maximum period of time
as defined by the ROS parameter ”/timeout time” (default 2 seconds). If no response is
received before time-out, the service call returns ”False” which indicates an error while
processing the call, and that the data contained in the response message are invalid. If

43

Chapter 4. System description

NanotecContr . s rv
r eque s t d e f i n i t i o n
in t16 motor number
s t r i n g command
int64 value
bool with va lue
−−−
re sponse d e f i n i t i o n
bool command ok
int64 value

Listing 4.5: ROS service for sending commands to a Nanotec controller

a response is received from the Nanotec device the response is parsed and it is checked if
the command was recognized correctly from the device. The service response is filled and
the service call returns with ”True” to indicate that the response data are valid.

Figure 4.16.: Class diagram of the classes used in the nanotecContr node (source [20])

4.3.3.2. mechatronicsContr node

The mechatronicsContr node is the implementation of the ”Container manipulation” mod-
ule in the ”Services & actions” layer shown in Figure 4.4. It implements a ROS action
server of the name ”mechatronics controller” with the definition shown in Listing 4.6.
Therefore it holds an object of class MechatronicsContrAction implementing all the func-
tionality of the action server necessary for container manipulation. This class in turn
holds two objects of class MotorMove, as shown in Figure 4.18, which control the two
linear actuators of the container manipulation system by simply sending commands via
the NanotecContr service described above.

An object of class MotorMove only communicates with the device having the address
(motor number) specified in the constructor. The important methods for executing motion
commands are moveRef() and movePos(...). The method moveRef() has to be called at

44

4.3. Software implementation

MechatronicsContr . a c t i on
goa l d e f i n i t i o n
u int8 command
uint8 REFPOS = 0 # move actuator to r e f e r e n c e p o s i t i o n
u int8 EINLAG = 1 # f e t c h conta ine r from stock
uint8 AUSLAG = 2 # put conta ine r to s tock

u int8 ebene # l e v e l number
−−−
r e s u l t d e f i n i t i o n
u int8 command
uint8 REFPOS = 0
uint8 EINLAG = 1
uint8 AUSLAG = 2

uint8 ebene # l e v e l number
u int8 f e h l e r # e r r o r code
−−−
f eedback d e f i n i t i o n

Listing 4.6: ROS action for container manipulation

the beginning because it executes a calibration run which is necessary as all positions
are measured incremental relative to the reference position. First the method sends a
command to the device to load the profile for the calibration run followed by the command
to start the motor and finally it polls the actual position of the linear actuator until the
movement is finished. The method movePos(const long pos) loads the profile for absolute
positioning relative to the reference position, sets the desired position given in motor steps
by the parameter ”pos”, starts the motor and polls the actual position until the desired
position is reached. Possible errors during the process are reported via the return value
of these two methods and can have the values shown in Listing 4.9.

In the constructor of the MechatronicsContrAction class the necessary ROS parame-
ters (see Listing 4.7) are fetched from the parameter sever, the two MotorMove objects
are created and the two actuators are moved to their reference positions. Additionally a
publisher on the topic ”/kombot joint states” of type ”sensor msgs/JointState” (see List-
ing 4.8) is created which is used by the method publishPosition() to publish the actual
position of the linear actuators at a rate of 5Hz. This method is executed in a separate
thread which is also created in the constructor. Finally the action server is started af-
ter it has been initialized with the method executeCB(...) as a goal call back and the
preemptCB() method as preempt callback. The goal call back only calls the method ex-
ecuteAction(...) with the right parameters fetched from the goal message The preempt
call back only signals the MotorMove objects to stop the motors. From now on a received
goal triggers a sequence of motion commands to fulfil the requested task. The actions
goal definition (see Listing 4.6) defines three possible motion commands. The command
REFPOS performs a configuration run. AUSLAG performs a sequence of movements to

45

Chapter 4. System description

Action-Client Mech-Contr

Action-Server

Motor 1

MotorMove Object 1

Motor 2

MotorMove Object 2

NanotecContr

Service

Put to stock
at level 3 MovePos

Load drive profile 1

Profile 1 loaded

Set goal position

Goal position set

Start profile

Profile started

Actual position?

Actual position
Goal position
not reached

Goal position
reached

MovePos

Set goal position

Goal position set

Start profile

Profile started

Actual position?

Actual position

MovePos
Profile 1 loaded

Goal position set

Zielposition gesetzt

Start profile

Profile started

Actual position?

Actual position
Goal position
not reached

Goal position
reached

MovePos

Profile 1 loaded

Set goal position

Goal position set

Start profile

Profile started

Actual position?

Actual position

Goal position
reached

Goal position
reached

Container placed
at level 3

L
ift

in
g

 c
o

n
ta

in
e

r
M

o
ve

 c
o

n
ta

in
e

r
to

w
a

rd
s

sh
e

lf
P

la
ce

 c
o

n
ta

in
e

r
M

o
ve

 f
o

rk
 b

a
ck

Goal position
not reached

Goal position
not reached

Load drive profile 1

Load drive profile 1

Load drive profile 1

Profile 1 loaded

Figure 4.17.: Sequence diagram of the container placing process from the calling action
client (left) down to the NanotecContr service (right) which is connected to
the different Nanotec devices (diagram source [20])

46

4.3. Software implementation

fetch a container from the level given by ebene in the goal message while the command
EINLAG performs a sequence to put the container to the shelf place at the given level.
After the execution the action server returns the response containing the received goal
information as well as an error code (fehler) with possible values as shown in Listing 4.9.
Figure 4.17 shows the whole sequence of the container placing process, invoked by sending
a goal with the ”EINLAG” command (see Listing 4.6) to the ”mechatronics controller”
action server. The action server then sends the necessary movement commands down to
the NanotecContr service connected to the Nanotec devices.

parameters f o r the m e c h a t r o n i c s c o n t r o l l e r a c t i on s e r v e r
/ r e f e r e n c e h e i g h t . . . v e r t i c a l d i s t anc e from the f l o o r to

the r e f e r e n c e p o s i t i o n o f the
v e r t i c a l a x i s

/ l e v e l h e i g h t s . . . l i s t conta in ing the he i gh t s o f the
d i f f e r e n t s h e l f l e v e l s

/ endpos v . . . v e r t i c a l end p o s i t i o n a f t e r f e t c h i n g
the conta ine r

/ endpos h . . . h o r i z o n t a l end p o s i t i o n
/ l i f t h e i g h t a u s l a g . . . he ight to l i f t the f o rk a f t e r moving

i t under the conta ine r
/ l i f t h e i g h t e i n l a g . . . he ight above l e v e l he ight to put the

conta ine r back in to the s h e l f
/ f o rward l enght aus l ag . . . l ength to move the f o rk forward to

f e t c h the conta ine r
/ f o r w a r d l e n g h t e i n l a g . . . l ength to move the f o rk forward to

put the conta ine r back
/ stepsperm v . . . conver s i on f a c t o r f o r the v e r t i c a l

l i n e a r actuator (s t ep s /meter)
/ stepsperm h . . . conver s i on f a c t o r f o r the h o r i z o n t a l

l i n e a r actuator (s t ep s /meter)

Listing 4.7: ROS parameters for the mechatronics controller action server

47

Chapter 4. System description

sensor msgs / Jo in tS ta t e
Header header

u int32 seq
time stamp
s t r i n g f rame id

s t r i n g [] name
f l o a t 6 4 [] p o s i t i o n
f l o a t 6 4 [] v e l o c i t y
f l o a t 6 4 [] e f f o r t

Listing 4.8: ROS message type for joint state messages

p o s s i b l e error codes o f the
m e c h a t r o n i c s c o n t r o l l e r a c t i on s e r v e r
0 . . . no e r r o r
1 . . . i n v a l i d command detec ted by the dev i ce
2 . . . e r r o r during communicate with Nanotec c o n t r o l l e r
3 . . . motor stopped unexpectedly
4 . . . a c t i on preempted (aborted)

Listing 4.9: Error codes of the mechatronics controller action server

Figure 4.18.: Class diagram of the classes used in the mechatronicsContr node (source
[20])

48

4.3. Software implementation

4.3.4. Navigation & localization

The ”navigation & localization” block as shown in Figure 4.4 is split into two parts to solve
the two navigation tasks indicated in Figure 4.1. The first task (”move to shelf place”) is
the autonomous navigation of the robot to a way point on a map using the functionality
of the ROS navigation stack. The following second task is the ”fine positioning” of the
robot using the navigation sensors and artificial landmarks. The two software parts, used
to fulfil these tasks, will be described in the following.

4.3.4.1. Autonomous navigation

As already mentioned, the ROS navigation stack and its functionality is used for navi-
gation and localization of the robot using a static map, representing the place of action
(warehouse), and a laser scanner as navigation sensor. This navigation task also includes
the 2D version of the path planning problem described in section 2.3. The basic book
addressing common problems of autonomous robotics is [11].

The static map is built in a prior preparation step using the functionality of the
slam gmapping node from the ROS gmapping package (see also http://www.ros.org/

wiki/gmapping, 2012). for building a map the robot, equipped with the navigation sensor,
has to be driven around remotely and the slam gmapping node, which uses Simultaneous
Localization and Mapping (SLAM) techniques to combine odometry data coming from the
robot and data from the navigation sensors, builds a occupancy grid map (message type
nav msgs/OccupancyGrid). This map is saved to a file for later use, using the map saver
node from the map server package. For information about the techniques used in the
slam gmapping node have a look at [8].

The navigation stack has a simple concept but has to be configured for each robot type
separately. Because this configuration can be very difficult its recommended to follow the
tutorial provided under:

http://www.ros.org/wiki/navigation/Tutorials/RobotSetup, (2012)

To use the navigation stack some configuration requirements must be met by the robot.
A configuration overview is shown in Figure 4.19. The blocks amcl, move base and map -
server in this figure are part of the ROS naviation stack. In case of the Kombot the
blocks base controller and odometry source are implemented by the ODO CAN krikkit -
node already described in subsubsection 4.3.1.1. The block sensor sources is implemented
by the LMS100 node described in subsubsection 4.3.2.1 as it is the only navigation sensor
of the Kombot. Finally the coordinate transformation, bringing the laser sensor data
from the laser frame to the robot base frame, are published. This is actually done by the
static transform publisher nodes from the tf package.

For localization in the map the amcl node is used. Its name amcl is only the acronym
for Adaptive Monte Carlo Localization which is the implemented localization approach. It
takes a laser based occupancy grid map provided by the map server and uses laser scans
from the navigation sensor and the transformations between the robot and odometry
frame to estimate the robot’s pose in the map frame. As result the estimated pose and a
transformation between odometry and map frame are published. So the full transformation
between robot and map is the combination of the transformation ”robot to odometry” and

49

http://www.ros.org/wiki/gmapping
http://www.ros.org/wiki/gmapping
http://www.ros.org/wiki/navigation/Tutorials/RobotSetup

Chapter 4. System description

Figure 4.19.: ROS navigation stack configuration overview (source: http://www.ros.

org/wiki/move_base, 2012)

”odometry to map”. For more information about amcl and its configuration parameters
have a look at http://www.ros.org/wiki/amcl (2012).

The actual navigation task is done by the move base which consists of several compo-
nents (see Figure 4.19). It implements an action server for the MoveBase action (definition
in package move base msgs) and uses special interfaces, defined in the nav core package, to
link a global and a local planner together. Using these interfaces the default planners can
be easily replaced with a custom planner but for the Kombot the default planners from the
ROS navigation stack are used. These planners are implemented as plugins (more infor-
mation about plugins in ROS can be found here: http://www.ros.org/wiki/pluginlib
(2012)) and use two different cost maps for motion planning which are generated using
the map published by the map server as a base and modifying it using the data from the
sensor sources. The global cost map represents the whole map and all known obstacles,
while in contrast the local cost map usually only represents a local area around the robot.
The default global planner is the NavfnROS planner from the navfn package which uses
the global cost map and the Dijkstra algorithm to find a global path from the actual
position to the goal position received via the action server. The basic concept behind this
global planner is described in [14]. This global plan is sent to the local planner which
utilizes the local cost map to generate motion commands (velocities vx, vy, vth) for the
mobile base. The motion commands are published as ”geometry msgs/Twist” message on
the ”/cmd vel” topic and then, in case of the Kombot, sent to the mobile base via the
krikkit driver as described in subsubsection 4.3.1.1. When the local planner can not find
a path it triggers recovery behaviours to solve the problem and aborts the received goal
if no solution is found within some retries. Possible recovery behaviours are in-place rota-
tions or clearing and rebuilding of the cost maps to remove obstacles which are no longer
present, usually called dynamic moveable obstacles. The used default local planner is the
”base local planner/TrajectoryPlannerROS” configured to make use of the implemented
Dynamic Window approach, based on [6].

50

http://www.ros.org/wiki/move_base
http://www.ros.org/wiki/move_base
http://www.ros.org/wiki/amcl
http://www.ros.org/wiki/pluginlib

4.3. Software implementation

4.3.4.1.1. Problems with autonomous navigation
As it will be reported later on, the autonomous navigation works fine for the Krikkit

drive alone but this is not true for the whole robot. The problem appears directly at
start up when the robot tries to localize itself on the map by executing a sequence of
standard recovery behaviours which are normally executed when the robot perceives itself
as stuck. The most common recovery behaviour of the robot is to perform a few in-place
rotations. This usually helps the robot to clear out space by removing no longer present
dynamic obstacles from the used cost maps but also helps to relocalise itself. The problem
now lies in the small drive in relation to the relatively big and heavy frame carrying all
the other components. This combination leads to spinning wheels when the robot starts
turning and also prevents the robot from reaching the desired rotational speed. These
two things increase the problem because the expected motion and the received odometry
is more and more in conflict with the data received from the navigation sensor. Thus,
the position estimation is getting worse and worse and in almost all cases leads to fatal
collisions during the rotations. So autonomous navigation using the ROS navigation stack
does not work for the prototype robot described in this work.

4.3.4.2. Fine positioning

In the given scenario only the container manipulation unit requires highly accurate po-
sitioning in front of the shelves but under real circumstances other places with similar
strict positioning constraints may exist. Such places could be order bin transfer points
or charging stations as shown in Figure 4.2, to only name just two. The linear position
tolerance is less than 3cm and the angular tolerance is about 3◦ (see [20]). To achieve
such a precise positioning a landmark based positioning system has been developed for
the Kombot (shelf fine positioning package). The system uses data from the navigation
sensors, for the prototype a single Sick LMS100 laser scanner, as input for detecting the
landmarks. The used landmarks are wedges with a side length of 255mm and an enclosed
angle of αWg ≈ 134◦ between the front surfaces (see Figure 4.20, left). An image of such
a wedge, made of cardboard and used for testing, is shown in the first row of Figure 4.21.
They are positioned under the shelf in the middle of two vertical rows of shelf places so
that the front surfaces are visible for the robot’s navigation sensor and the landmark can
be used as position reference for both rows.

α
Wg
~134°255mm

α
Ws
~46°

Figure 4.20.: Left: Shape and dimensions of the landmarks used for fine positioning;
Right: Landmark point cloud template (red dotted wedge) and its according
coordinate frame ([red, green, blue] → [x, y, z])

As shown in Figure 4.22, two action server nodes are used for fine positioning. One for

51

Chapter 4. System description

Figure 4.21.: First row: Images of the cardboard wedge used as landmark for testing;
Second row: Laser scans of the landmark wedge during some early tests

tracking the robot’s 2D pose relative to the landmark using the navigation sensor and one
controlling the robots motion to reach a desired goal pose relative to the landmark within
a specified tolerance. The two action servers will be described in the following.

Figure 4.22.: Overview of the nodes and communication paths for landmark positioning

4.3.4.2.1. Landmark tracker
The node landmark tracker action server implements an ROS action server with the ac-

tion definition shown in Listing 4.10. Its task is to estimate the robot’s pose relative
to a landmark with the shape shown in Figure 4.20 using the data from the navigation
sensor which in case of the Kombot is a Sick laser scanner of type LMS100 (see also

52

4.3. Software implementation

subsection 4.2.2 and subsubsection 4.3.2.1). The second row of Figure 4.21 shows laser
scans of such landmarks used for testing. The goal defines the topic (”scan topic”) for
the sensor data which is expected to be of type ”sensor msgs/LaserScan” (see Listing 4.4
for message definition) and the name given to the frame defined by the tracked land-
mark (landmark frame). While a received goal is processed the action server regularly
sends feedback messages containing the actual tracking status. Possible values are ”INI-
TAL ALIGNMENT”, which means that no position can be estimated at this time, or
TRACKING, which means that an estimated position is published as coordinate trans-
formation to the ”tf” topic and can be used by all nodes via the ROS transform system.
The published coordinate transformation is the pose of the ”landmark” frame measured
in the ”laser” frame which also means that this is the transformation to bring points from
the ”landmark” frame into the ”laser” frame. As there is no actual goal which can be
reached, the task is executed until the goal gets cancelled.

ShelfLandmarkTracking . a c t i on
goa l d e f i n i t i o n
s t r i n g s c a n t o p i c
s t r i n g landmark frame
−−−
#r e s u l t d e f i n i t i o n
−−−
#f eedback
uint8 s t a t u s
u int8 INITAL ALIGNMENT = 0
uint8 TRACKING = 1

Listing 4.10: ROS action for landmark tracking

The node landmark tracker action server only defines the execute function and starts
the action server which calls this function whenever a new goal is received. The execute
function creates an object of class LandmarkTracker (Figure 4.23) and uses the corre-
sponding methods to provide it with a pointer to the action server object and the name
for the landmark frame. It also opens a subscriber to the scan topic with the Landmark-
Tracker ’s ”laserScanCallback(...)” method as callback which is executed whenever a new
laser scan arrives until the goal is cancelled.

When a new laser scan arrives the ”laserScanCallback(...)” method is called and if there
is no valid previous pose estimation for the landmark a method for finding an initial pose
(initialAlignment LineSegmentation(...)) is called. If there is a valid previous estimation
a simplified method (track landmark(...)) is called to find the relative transformation
between the last pose and the actual one. In both cases the methods return if a valid
pose was estimated and if this is true the action server feedback is set to TRACKING
otherwise to INITAL ALIGNMENT.

The whole process of estimating the robot’s pose, relative to the landmark, is based on
the functionalities of the PCL already described in section 2.2. In both possible states,
INITAL ALIGNMENT or TRACKING, a received laser scan is converted into a PCL

53

Chapter 4. System description

Figure 4.23.: Class diagram of the LandmarkTracker class used for the land-
mark tracker action server node

54

4.3. Software implementation

point cloud P using the convert(...) method from the LaserScan2PointCloud class as
shown in Figure 4.23. This class is an adapted and simplified version of the LaserProjection
class, defined in the laser geometry package, which converts the laser scan messages into
messages of type sensor msgs/PointCloud or sensor msgs/PointCloud2 instead of PCL
point clouds. For each pair of distance value (di) and scanning angle (βi) this convert
method calculates the point coordinates xi and yi (zi is always zeros because this is planar
laser scan) with the following formula:[

xi
yi

]
= di ·

[
cos(βi)
sin(βi)

]
The values for cos(βi) and sin(βi) are stored in a lookup table for performance reasons

and are only calculated at the first conversion or if the scan parameters (number of scans,
min and max angle, angle increment) are different, compared to the last conversion. The
points are then inserted into the output point cloud if the corresponding distance value
is within the valid range as defined in the laser scan message. The method also returns
the points clouds extreme values Pextr (x min, y min, x max and y max) because this
information will be needed for the initial alignment. The actual process of pose estimation
is realized using the ICP algorithm from the PCL described in subsection 2.2.4. Therefore
a point cloud template PTemp of the landmarks front surface (see Figure 4.20, right), with a
distance of 5mm between neighbouring points, is generated via the genTemplateCloud(...)
method and saved for later use. The angle αWs is the smaller intersection angle between
the lines defined by the landmarks front surfaces (see Figure 4.20, left).

Initial alignment
The initial alignment is done by the method initialAlignment LineSegmentation(...) im-
plementing algorithm 2. The implemented approach uses PCL line segmentation, similar
to the plane segmentation described in subsection 2.2.2, to extract all lines Li having a
sufficient number of inlier points (Ninlier > Nmin). For all extracted lines the intersection
points and angles are calculated. All intersection points within the point clouds border
defined by it extreme points Pextr having an intersection angle close to the desired wedge
angle αWs are possible candidates for a front edge of a landmark and used for the next
steps. All candidate intersection points are now used to generate initial transformations
Tinit for the following ICP step trying to align the landmarks template cloud PTemp to
the input cloud from the laser scanner. If the best alignment has a fitness score less
than a defined threshold (the smaller the better), it is assumed that the landmark was
detected properly and the tracking of the landmark is started otherwise the initial align-
ment is restarted with the next received laser scan. For the tracking step the resulting
transformation TI is published, velocity data is reset and a time-stamp is saved.

Two other approaches for initial alignment are implemented in the methods initialAlign-
ment(...) and initialAlignment fitness threshold(...). The first approach generates an user
defined number (Np) of random initial points within the point clouds borders used to create
initial transformations Tinit for the following ICP step. The remaining steps are the same
as above. The approach implemented in the method initialAlignment fitness threshold(...)
also generates random initial transformations but in contrast takes the first final transfor-
mation Ti with a fitness score below the threshold fth and aborts if no one has been found

55

Chapter 4. System description

convert the laser scan into a PCL point cloud P1

get extreme points Pextr of point cloud P2

get all lines Li with Ninliers ≥ Nmin using PCL line segmentation3

calculate all line intersection angles αi4

calculate all line intersection points pi5

forall pi within Pextr and αi ≈ αWs (±∆α, user defined tolerance) do6

generate initial transform Tinit with x = xpi , y = ypi , θ = atan2(xpi , ypi)7

use PCL ICP with Tinit to align PTemp to P8

get fitness score fi and final transform Ticp from ICP9

calculate final transform Ti = Ticp · Tinit10

end11

find alignment with best fitness score fI having the final transform TI12

if fI > fth (user defined threshold) then13

report a misalignment14

else15

publish TI16

set vel x = vel y = vel theta = 017

save the laser scans time-stamp and TI (as TIlast) for the tracking step18

start tracking19

end20

Algorithm 2: Landmark detection: initial alignment algorithm

until an user defined number (Nt) of tries. During some early tests both approaches per-
formed much worse compared to the line segmentation approach. For the test Np = 100
initial points have been used for the first approach and the second approach had Nt = 500
tries to find an alignment with a fitness score below fth.

In these tests a typical initial alignment with the line segmentation approach took less
than 100ms and almost always found an alignment with fi < fth at the first arriving laser
scan. It also almost always aligned the template at the right place in the point cloud,
means at the real position of the landmark. A typical run with the initialAlignment(...)
approach took about 9 seconds and in about 40% of the test cases it took two laser scans to
find an alignment with fI < fth. Similar to the line segmentation approach almost all test
cases found the real landmark place. In case of the initialAlignment fitness threshold(...)
approach the average runtime was 1.3 seconds with an average of 16 tries for an alignment
with fI < fth, which is not too bad, but in about 30% of the test cases the resulting
landmark position was wrong placed.

Landmark tracking
The actual landmark tracking after initial alignment is done by the track landmark(...)
method, implementing algorithm 3. After converting the received point cloud into a PCL
compatible format the robot’s relative motion from the last known position to the actual
one is estimated using the saved velocity information and the laser scan time stamp differ-
ence. Using the last landmark transformation TIlast and the motion transformation a new
initial transformation Tinit is calculated for the ICP step aligning the landmark template

56

4.3. Software implementation

cloud PTemp to the received laser scan. If the alignment fits well enough, which means
that the resulting fitness score is below the threshold, the new resulting transformation is
published and saved as well as the new calculated velocities the new time-stamp. If the
alignment does not fit well enough the landmark tracker is reset to initial alignment.

convert the laser scan into a PCL point cloud P1

estimate robot motion using vel x, vel y, vel theta and ∆t2

// ∆t...laser scans time-stamp difference3

use motion estimation to calculate a transform Tmotion4

calculate initial transform Tinit = Tmotion · TIlast5

use PCL ICP with Tinit to align PTemp to P6

get the fitness score fI and transform Ticp7

calculate final transform TI = Ticp · Tinit8

if fI > fth (user defined threshold) then9

report a misalignment10

restart with initial alignment11

else12

publish TI13

calculate and save vel x, vel y and vel theta from TI , TIlast and ∆t14

save the the laser scans time-stamp15

save TI as TIlast16

end17

Algorithm 3: Landmark detection: landmark tracking algorithm

4.3.4.2.2. Position controller
The landmark positioning action server node implements an ROS action server with the

action definition shown in Listing 4.11. Via the action goal the user defines a 2D goal pose
relative to the landmark frame for a new frame with the name given by pose target frame.
The task for the position controller is to move the robot in a way that the robot’s,
frame given by robot frame for target, reaches the given pose within the tolerances given
by goal lin tolerance and goal rot tolerance. Therefore the node creates an object of
the class LandmarkPositionController as shown in Figure 4.24 and executes its run(...)
method where everything is initialized. The LandmarkPositionController object holds a
tf::TransformListener handling coordinate transformations, a LandmarkTransformFilter
(also shown in Figure 4.24), an action client connected to the action server for tracking
the landmark (see paragraph 4.3.4.2.1), a publisher for sending the motion commands,
a subscriber to the odometry topic for checking the actual robot motion and the actual
action server as mentioned above.

The LandmarkTransformFilter mentioned above is nothing more than a mean filter
for the transformation between given target and source frame. It autonomously fetches
the transformation from the ROS transform system at the given rate using a separate
thread and stores the transformation values (translation and rotation) in a queue of the
given length. When called the getTransform(...) method calculates the resulting average
transformation from the queued values and returns it. The class also offers a method

57

Chapter 4. System description

Figure 4.24.: Class diagram of the LandmarkPositioningController class used for the land-
mark positioning action server node

58

4.3. Software implementation

called isFilterFull() for checking if the queue is already filled which can be from interest
after a reset (resetFilter() method) for instance.

LandmarkPosit ioning . a c t i on
goa l d e f i n i t i o n
s t r i n g landmark frame
s t r i n g p o s e t a r g e t f r a m e
s t r i n g r o b o t f r a m e f o r t a r g e t

geometry msgs /Pose2D goa l po s e

f l o a t 3 2 g o a l l i n t o l e r a n c e
f l o a t 3 2 g o a l r o t t o l e r a n c e
−−−
#r e s u l t d e f i n i t i o n
−−−
#f eedback

Listing 4.11: ROS action for positioning relative to a landmark

Figure 4.25.: Algorithm sketch of the positioning loop used for fine positioning

When a new goal is received the action server invokes the execute method. This method
first sends an action goal to the landmark tracker action server (see paragraph 4.3.4.2.1)
to start the tracking process. Then a thread with a static transform publisher is started
which periodically publishes a transformation that defines the frame of the positioning goal
(pose target frame) relative to the landmark (landmark frame). The values for this trans-
formation are given by goal pose. The next step is to calculate the goal pose for the robot’s
drive which is given by the ROS parameter ”DRIVE FRAME” and to start a transform
publisher thread, publishing this position (DRIVE FRAME goal frame) relative to the
landmark frame. Then the LandmarkTransformFilter is initialized for the transformation
DRIVE FRAME to DRIVE FRAME goal frame. The task is now to move the robot in
a way that the translation and rotation of this transformation become zero. The filter is
necessary as the position transformation coming from the landmark tracker is very noisy
and therefore needs to be filtered before utilization. Now the positioning loop which is
a simple state machine, running at a rate of 10Hz, is started with state ”POSITION-

59

Chapter 4. System description

ING”. Figure 4.25 shows a sequence diagram of this loop. In every cycle it is checked
if the positioning goal has been cancelled. If this is the case the loop is aborted and
the action server sets the goal to status ”cancelled”. It is also checked if the sate of the
landmark tracker is ”TRACKING” which means that the transformation, indicating the
robot’s position relative to the landmark, is valid. Next the position relative to the goal,
tracked by the LandmarkTransformFilter, is fetched and the linear and angular distance
to the goal pose is calculated. The next steps depend on the actual state. In the state
”POSITIONING” the next step is checking of the distance and if it is within the toler-
ance a stop command is sent to the drive and the state is changed to ”WAIT TO STOP”
otherwise a velocity command is generated and sent via the sendVelCmd(...) method.
The state ”WAIT TO STOP” checks the received odometry and waits until the robot has
stopped. If this is true the LandmarkTransformFilter is cleared and the state is changed
to ”CHECK POS”. If the state is ”CHECK POS” and the LandmarkTransformFilter is
refilled, the distance is checked again and if its within the tolerance the goal is reached
(goal ”SUCCEEDED”) and then the action is finished. If the distance is outside the
tolerance the state is changed back to ”POSITIONING”.

The velocities which are sent to the drive are calculated according to the linear and an-
gular distance to the goal and some ROS parameters. Two ROS parameters ”MAX LIN -
VEL” and ”MAX ROT VEL” define the maximum linear and angular velocities which
are only applied if the distance to the goal is more than ”MAX VEL DIST” for the linear
and ”MAX VEL ANGLE” for angular distance. If the distance is less than this limit
the according velocity is linearly reduced until it reaches a lower limit given by the pa-
rameters ”MIN LIN VEL FACTOR” and ”MIN ROT VEL FACTOR” respectively. The
actual velocities are calculated via the scheme described in algorithm 4.

flin = min(1, |linear distance|MAX V EL DIST)1

frot = min(1, |angular distance|MAX V EL ANGLE)2

tlin = |linear distance|
flin·MAX LIN V EL3

trot = |angular distance|
frot·MAX ROT V EL4

if tlin > trot then5

flin = max(flin,MIN LIN V EL FACTOR)6

tuse = |linear distance|
flin·MAX LIN V EL7

else8

frot = max(frot,MIN ROT V EL FACTOR)9

tuse = |angular distance|
frot·MAX ROT V EL10

end11

vel linear.x = linear distance.x/tuse12

vel linear.y = linear distance.y/tuse13

vel angular = angular distance/tuse14

Algorithm 4: Landmark positioning algorithm

60

4.3. Software implementation

These calculations ensure that the robot uses a higher velocity for the greater (more
important) distance (linear or angular) to reach the goal faster, but keeps the motion
smooth.

4.3.5. Arm navigation

The task of arm navigation, represented via the ”Arm navigation” module in Figure 4.4, is
to move the arm from its actual position to a goal pose along a collision free path, also called
trajectory. To achieve this, several problems like inverse kinematics, forward kinematics,
motion planning and collision checking have to be solved. To solve these problems for the
Katana arm the the ROS Diamondback versions of the ROS arm navigation stack ([13])
and the katana driver stack ([9]) from the University Osnabrück are used.

The version of the katana driver stack contains, among other things, the package
katana arm navigation with a full configuration of the arm navigation pipeline for three
different types of Katana arms but not for the used Katana 450 6M180. So this pack-
age and its contained configuration as well as the depending package katana description
have been taken as a base and adapted for the needs of the Katana 450 6M180. The
adaptations concerned the robot’s description in the katana description package which
defines the shape of the robot parts and how they are mounted together. This is done by
using a URDF (Unified Robot Description Format) configuration file. The original files
coming from the katana driver stack only contained the arm and so the rest of the robot
parts (main frame, container manipulation units, etc.) had to be added and the original
two-finger gripper was replaced with a simple cylinder representing the vacuum gripper.
Figure 4.26 shows the resulting robot model used during this work.

Another adaption concerned some configuration and ROS launch files containing hard-
ware parameters for the katana node which physically connects the arm control box via
Ethernet and therefore needs information about the connected hardware like the IP ad-
dress of the control box or joint limits (angle, speed, acceleration, etc.) of the arm. The
mentioned katana node represents the ”Robot arm” module in the ”Hardware abstraction”
layer as shown in Figure 4.4. A simplified diagram of the used arm navigation pipeline
configuration, containing the most important nodes and communication paths, is shown
in Figure 4.27 and a typical arm movement sequence is described in subsubsection 4.3.5.3.

4.3.5.1. Arm navigation pipeline

In the following paragraphs the most important modules of the arm navigation pipeline
are described briefly. They are arranged by their appearance in a typical arm movement
sequence as described in the following subsubsection 4.3.5.3.

Collision map
For saving computing power the scene in the robot’s workspace, or in this case rather the
robot arm’s workspace, is assumed to be static as long as the arm is moving. Therefore
the node collision map self occ node (Figure 4.27, left) is called, before the arm starts
its operation and the created collision map is used for the whole task like moving an

61

Chapter 4. System description

Figure 4.26.: URDF model of the Kombot prototype

item from the container to the order bin. When called via its action interface the colli-
sion map self occ node creates and publishes a collision map constructed from point cloud
data periodically received over the corresponding ROS topic. The collision map is called
static because it is only updated when the node is called to do so in contrast to the dy-
namic one, that is automatically updated periodically or each time a new point cloud is
received.

In the used configuration the used point cloud data comes from the Microsoft Kinect
camera and is filtered before provided to the collision map self occ node. In the first step
this data is filtered by the clear known objects node which removes points belonging to
”known” objects that have been published on the topics ”/collision object” and ”/at-
tached collision object” (not displayed). In the second step the self filter node removes
points belonging to the robot itself as defined by the URDF description file. The final
filtered point cloud is then passed to the collision map self occ node which then creates
and publishes the new collision map.

The collision map self occ node groups the remaining points in the point cloud and
represents them by a set of oriented bounding boxes. In the collision map message these
boxes are represented by its center point, defined in an also given frame and their extents.
The message also contains a rotation axis and a rotation angle for each bounding box
make them ”oriented”.

Move arm
The move arm simple action node (Figure 4.27, centre) receives an action goal containing
an arm goal, defined by many parameters. For instance the goal position for the arm’s

62

4.3. Software implementation

Figure 4.27.: Arm navigation configuration (simplified); oval shapes represent ROS nodes,
rectangles are placeholders for topics, the katana group on the bottom com-
bines different functionalities in one node for technical reasons, arrows rep-
resent communication paths between nodes (message topics, service- and
action- interfaces)

63

Chapter 4. System description

end effector, which usually will be the most important one, but other constrains can also
be given like special orientations for robot links during the motion or at the goal. When
receiving a new goal this node handles all required steps for moving the arm to the desired
goal by calling the right modules like inverse kinmatics, motion planning and so on in the
right order. The modules for the several steps (environment server, trajectory filter, etc.)
are ”connected” to the node by setting the corresponding ROS parameters defining the
according service and action interfaces for communication. The move arm simple action
node’s internal sequence, executed for each received goal, is described more detailed in
subsubsection 4.3.5.3.

Environment server
The environment server is the central authority for checking of states and trajectories
for collisions as well as constraint or joint limit violations. Therefore it holds the robot
model from an URDF description and information about other known objects within the
environment, uses joint information to get the robot’s actual state and uses range sensor
data received in form of collision maps. The functionality of the node is offered via different
services as shown in Figure 4.27. Most important are the services for checking robot states
(get state validity service) and trajectories (get trajectory validity service). These services
can be used to check if the contained robot state, or in case of a trajectory all contained
intermediate states, mostly defined by their joint angles and velocities, are valid. In this
context ”valid” means that:

• the arm does not collide with the environment or with itself

• the state does not violate joint, velocities or acceleration limits

• the trajectory does not violate path or goal constraints like a special orientation of
the end effector during movement, etc.

Such constraints can be set via another service called set constraints which is not shown
in Figure 4.27 because it was not used during this work. Some of the other services,
important for arm navigation, are mentioned in subsubsection 4.3.5.3.

Inverse kinematics
One of the first steps in planning for arm movements (see also algorithm 5) is the calcu-
lation of joint angles for given poses which is called inverse kinematics”. Therefore the
arm navigation stack uses the arm ik service to this problem. Different modules providing
this service are available. Some of them are more general and provide IK solving for any
arm by simply using its URDF description, like those in the ROS package arm kinematics.
Others are specialized for a specific type of arm, like the Katana robot arm or those from
PR2, the research robot from ”Willow Garage”. IK modules can also be categorised in
constraint aware and none constrained aware IK solvers also having different service inter-
faces. Constraint aware means that additional constraints, like special link and end effector
orientations for instance, can be given, that have to be considered when calculating the
IK. A ROS module for generic constraint aware kinematics based on the ”Kinematics and
Dynamics Library” (KDL) is provided by the package arm kinematics constraint aware
contained in the ROS kinematics stack. The KDL is part of the Orocos (Open Robot
Control Software) project described in [27]. The KDL is providing a powerful framework

64

4.3. Software implementation

for modelling and solving kinematic problems.

As reported later on in subsubsection 4.3.5.2, this part of the arm navigation stack does
not work in the given configuration which was one of the major problems during this work.

Motion planner
For finding the actually needed movements to bring the arm from its starting pose to
the goal pose, the motion planning problem has to be solved. The problem is to find
a collision free path to the goal. This is called path planning, already mentioned in
section 2.3. Additionally appropriate motions have to be found, bringing the arm collision
free from one intermediate configuration to another.

To achieve this, the motion planner node is used. For the used arm navigation configu-
ration this is the ompl ros node, also shown in Figure 4.27. This node offers a service to
receive a motion plan request containing goal and possible path constraints. The request
can also contain a start configuration and additional information about the workspace to
simulate movements from a future pose for instance. Also contained are information about
allowed contacts and allowed collisions which is important if an object shell be touched
for grasping. A motion planner node can offer more than one planner by including them
like a plugin. Different planners are selectable via the request message. In case of the
used motion planner configuration the ompl ros node offers two planners from the Open
Motion Planning Library (OMPL) called SBL (see [25]) and LBKPIECE (see [2]) with
SBL used by default. For the planning process the node uses the URDF robot model,
published joint states and the collision map, for finding the free configuration space.

If a solution is found, the response contains a full trajectory consisting of a set of
trajectory points. Each trajectory point is defined by a time-stamp, a joint angle, velocity
and acceleration for all joints. The given time-stamp defines when the point should be
reached relative to the trajectory starting time.

Trajectory filter
As the name already indicates, the trajectory filtering server node provides a filter chain
for filtering the trajectory returned by the motion planner. This is necessary to satisfy
the special needs of the actually used arm and to get smoother motions. The filter chain
is configurable via the ROS parameter server, defining the filter plugins to be used as well
as their order.

For the Katana arm two filters are used in the standard configuration. The first one
called ”CubicSplineShortCutterFilterJointTrajectoryWithConstraints” is used to smooth
the trajectory by interpolating extra states if needed and deleting states if a short cut is
possible. The approach is similar to those described in [1]. Following the comments in the
configuration, it is important that the ”discretization” parameter of the filter is not set
to high because otherwise the filter will generate to much extra trajectory segments. The
second filter is of type

”katana trajectory filter/KatanaTrajectoryFilterFilterJointTrajectoryWithConstraints”

having the only purpose of removing the smallest segments of the trajectory until only 16
are left. This special filter is needed because the trajectory controller for the Katana arm
can not process trajectories with more than about 16 trajectory segments.

65

Chapter 4. System description

Katana node
The katana node, on the bottom of Figure 4.27 visualized as dashed rectangle, is a col-
lection of four functionalities which are implemented together in one node because only
one process can connect to the Katana’s control box. This node and the kinect node
(Figure 4.27, bottom left) are part of the ”Hardware abstraction” layer while the rest of
the nodes belong to the ”Arm navigation” module in the ”Services & actions” layer (see
Figure 4.4). The katana node is specially designed for the Katana robot arms to deal with
their special needs. One important thing is the fact that the Katana control interface does
not offer a comfortable way to execute trajectories as described later in this paragraph.

The joint movement action controller can be used to move one or more joints to specific
angles. The gripper grasp controller can be used to open or close the gripper or to move
it to an arbitrary state between. Due to the fact that both functionalities are not used
during this work, they are not described in more detail.

The joint state publisher has to fulfil the simple but important task of regularly fetching
joint angle information from the arm’s control box and publishing it on the according
message topic. This data is then used by other nodes, the environment server for instance,
to update their internal robot model according to the new joint states. If more than one
node is publishing joint states, it can be necessary to use an additional node to merge the
different information into one message published on a new topic which is then passed into
all nodes requiring a complete set of joint states to update the robot’s actual configuration.
In the used robot configuration the mechatronicsContr node (see subsubsection 4.3.3.2)
of the ”Container manipulation” module is such an additional joint state publisher.

Finally there is the joint trajectory action controller, offering an action interface to re-
ceive trajectories for execution. When receiving a new trajectory, the joint trajectory action
controller is responsible for sending the right commands at the right time to the control
box to exactly follow the planned trajectory. This is a special problem with the Katana
arm because it does not offer a simple way to send a complete trajectory. It is also not
possible to send a new set of goal joint angles and joint velocities to reach the next inter-
mediate configuration. Instead the joint velocity limits have to be set and only the goal
joint angles can be given. This is problematic as it can not be guaranteed that the joints
will move on the set velocity limit because the control box does its own planning and
smoothing for the motions. Therefore it can not be guaranteed that the arm will exactly
follow the trajectory which could cause unforeseeable events. For this reason greater safety
distances should be set for planning.

4.3.5.2. Problems with the arm navigation

Due to the poor documentation of the used stacks, packages and nodes some problems
have not been resolved. The most important problem is the fact that with the given
set up (arm with only 5 DOF) it is not possible to execute pose goals. This is a great
problem for the item manipulation process as therefore a full pose (position and orien-
tation) for the end effector has to be defined in order to grasp the item safely. During
some early tests it appeared that the problem is in the IK (Inverse Kinematic) step (see
subsubsection 4.3.5.3, step 2). the received action result always reported that no solu-
tion could be found. As to see in Figure 4.27 three different inverse kinematic nodes

66

4.3. Software implementation

are launched but it could not be discovered which one, ik openrave.py, arm kinematics or
arm kinematics constraint aware, is actually called. However, the displayed error messages
suggest that it is the arm kinematics constraint aware node. After several unsuccessful
attempts finding a solution for this problem a workaround was developed. The workaround
shifts the inverse kinematic step to the calling node. This means that the node sending
the arm navigation goal calculates the IK and only sends a joint goal instead of a pose
goal. The whole workaround will be described in subsection 4.3.7.

Another unsolved problem is collision avoidance for objects attached to the robot arm
which should be easy according to a ROS tutorial about this problem (”Attaching ob-
jects to the robot’s body”, http://www.ros.org/wiki/motion_planning_environment/
Tutorials/Attaching%20objects%20to%20the%20robot%27s%20body, 2011). Tests fol-
lowing the tutorial did not lead to success. Either absolutely nothing happened, or in
some few cases the environment server received the objects but following movements pro-
duced fatal collisions anyway. Therefore other approaches are needed to avoid collisions
for attached objects.

4.3.5.3. Arm movement sequence

As shown in Figure 4.27 everything is triggered by the node ”Node A” displayed top
left. At the beginning ”Node A” calls the node collision map self occ node which then
creates and publishes a new static collision map. This collision map represents parts of the
environment, which are sensed by the Kinect camera but not included in the robot’s URDF
model. For the prototype the container fetched from the shelf is such an environment part.

Now the actual movement is triggered by sending a goal via the MoveArmAction inter-
face to the move arm node which executes the steps shown in algorithm 5.

The state validity check on line 1 of the presented algorithm is performed via the
get state validity service provided by the environment server. A state is valid if the arm
is not in collision with an environment object or with itself. The arm ik service inter-
face, used for the conversion mentioned in line 3, is not displayed in Figure 4.27 because
the actual connection could not be identified unambiguously. The underlying problem
is described in more detail in subsubsection 4.3.5.2. Environment safety checks (line 6)
are performed via a service call to the environment server ’s get environment safety service
which checks whether the environment is safe for operation or it is not. Reasons for an un-
safe environment could for instance be outdated sensor information. The motion planning
service, to be called in line 7, is defined in the goal message via the field planner id. In the
used arm navigation configuration the node providing this service is the ompl ros node.
For the trajectory check in line 9 the environment server ’s get trajectory validity service
is used. The execution safety check (line 19) is done by calling the environment server ’s
get execution safety service. If one of the checks or service calls in lines 1, 3 and 6 fail,
the goal will be aborted. A failure in lines 6, 7, 8 and 9 in contrast would only lead to
a planning restart (line 1) as long as the maximum number of planning attempts is not
reached. In this case the goal will be aborted too. The maximum number of planning
attempts, also used in line 24, is defined in the goal message field num planning attempts.

67

http://www.ros.org/wiki/motion_planning_environment/Tutorials/Attaching%20objects%20to%20the%20robot%27s%20body
http://www.ros.org/wiki/motion_planning_environment/Tutorials/Attaching%20objects%20to%20the%20robot%27s%20body

Chapter 4. System description

Check actual robot’s state (joint state) validity1

if received goal is a pose goal then2

Convert goal into a joint goal via arm ik service3

end4

Check goal validity via the get state validity service5

Check environment safety6

Call planning service to get a motion plan (trajectory)7

Check trajectories end position matches goal position via get state validity service8

Check if trajectory is collision free over the full path and satisfies path constraints9

Call trajectory filter service to get a filtered version of the trajectory10

if got filtered trajectory then11

check filtered trajectory like in lines 8 and 912

else13

continue with unfiltered trajectory14

end15

Send trajectory to the joint trajectory action controller for execution16

// monitor loop17

while joint trajectory action controller not finished trajectory execution do18

Check if trajectory execution is safe19

if True then20

continue // monitoring loop21

else22

stop trajectory by cancelling the joint trajectory action controller ’s goal23

if maximum number of planning attempts reached then24

return goal aborted25

else26

GoTo line 127

end28

end29

end30

Check if end position is reached via get state validity service31

if True then32

return goal succeeded33

else34

return goal aborted35

end36

Algorithm 5: Arm navigation algorithm

68

4.3. Software implementation

4.3.6. Object detection

The intention of this work, already mentioned in section 1.2, is to develop a concept and
a prototype robot capable of performing order picking of small boxlike goods which are
stored unmixed in containers of known size. One important part in this order picking
process, shown in Figure 4.1, is the detection of the items in the container. In the software
concept this part is represented by the object detection module as shown in Figure 4.4.
Due to the used test objects the package is called medbox detector. This package contains
the simple medbox detector action server node which implements an action server with the
action definition given in Listing 4.12. The package also contains the MedboxDetector class
(see Figure 4.29) which uses a single point cloud as input and a surface detection approach
for the actual detection process. One basic assumption for this detection approach is that
the dimensions of the storage container as well as the dimensions of the cuboid objects,
which shell be detected inside the container, are known and provided to the detector
module. A more detailed description about the MedboxDetector class is given below in
subsubsection 4.3.6.1.

The medbox detector action server node is very simple. It only constructs a detector
object (class MedboxDetector), which does the actual work, starts the action server and
waits for incoming goal messages. When a new goal is received the execute function is
called which triggers a sequence of steps as shown in Figure 4.28.

Figure 4.28.: Sequence diagram for goal execution of the medbox detector action server

As a first step the execute function opens a subscriber to the input topic, given by the
goal message, and waits until a message arrives. Every 3D sensor, producing a dense
point cloud of the container storing the goods, can be used but the message type of the
subscribed input topic has to be sensor msgs/PointCloud2. In the next steps the detector
is initialized and the input point cloud as well as the given medbox dimensions are passed
in. The medbox dimensions array in the goal message has to contain the dimensions of
the objects to be detected in the order:

[length, width, height] with length ≤ width ≤ height

The goal message values container dimensions and container border width are currently
not used. Now the detector is launched and after fishing, the detection result is fetched,
wrapped into a result message and sent to the calling action client.

4.3.6.1. MedboxDetector class

As already mentioned above, this class (class diagram shown in Figure 4.29) does the
actual detection of the objects in the container before grasping.

The used approach has been inspired by the detection and reconstruction method pre-
sented in [15] which has already been described briefly in section 3.3. The method in
[15] tries to detect a minimum of two or for a better result three surfaces of the cuboid.

69

Chapter 4. System description

Figure 4.29.: Class diagram of the MedboxDetector class used for the med-
box detector action server node

70

4.3. Software implementation

MedboxDetection . a c t i on
goa l d e f i n i t i o n
s t r i n g i n p u t t o p i c
f l o a t 6 4 [] medbox dimensions
f l o a t 6 4 [] c onta ine r d imens i ons
f l o a t 6 4 conta ine r bo rde r w id th
−−−
r e s u l t d e f i n i t i o n
geometry msgs /PointStamped [] p l a n e c e n t e r p o i n t s
f l o a t 6 4 [] p l ane d iamete r s
f l o a t 6 4 [] p l a n e a r e a s
u int64 [] num plane points
u int64 [] s o r t e d b y c l o u d s i z e
−−−
f eedback

Listing 4.12: ROS action for box detection

Using these surface it then tries to reconstruct the real object including its dimensions.
In opposite, the approach in this work is to detect only one surface, or more precisely
the largest surface, of an object and to use the additional given information about the
object’s size to decide if the detection is successful or not. The reason for only detecting
a single surface is the fact that only one single sensor is used and mounted straight above
the scene. This setting causes that in most cases only one surface is fully visible and rep-
resented by a sufficient number of points in the resulting point cloud. The largest surface
is used for detection because the greater dimension should make the detection easier and
more reliable. Furthermore larger surfaces are a much better contact area for the following
grasping step with the vacuum gripper. The implementation uses functionality from the
PCL (Point Cloud Library) for all necessary point cloud manipulation and analysis steps.
For compatibility reasons the ROS Diamondback built in version of the PCL (version
0.10.0) is used. In the following the used approach and the implemented functions are
described in detail.

The fist step necessary for the detection after creating and initializing the detector object
is setting the input point cloud via the setInputCloud(...) method. Given a ROS point
cloud message (type sensor msgs/PointCloud2), this method first converts it into the PCL
point cloud format. Then the ROS transform functionality is used to bring the point cloud
into the coordinate frame which is given by the ROS parameter ”cloud working frame”
and saved for later use by the detect() method. All following steps are performed in this
coordinate frame defined by the ”cloud working frame” parameter. To allow for a valid
detection of the storage container and its content, this frame has to be oriented and placed
in a manner that the containers bottom is in the frame’s x-y plane and the container is
aligned parallel to the its axes. Figure 4.30 shows an example.

The left column shows RGB images of the example scene. The middle column shows
different views of the original (unmodified) input point cloud coming from a Microsoft

71

Chapter 4. System description

Figure 4.30.: RGB and point cloud images for detection; Left: RGB images of the scene;
Centre: original point cloud; Right: point cloud after coordinate transfor-
mation; (coordinate system [red, green, blue] → [x, y, z])

Kinect camera as used during this work. The right column shows the same point cloud
but transformed from the Kinects ”/kinect depth” frame into the frame defined by the
”cloud working frame” parameter.

The next step is setting the dimensions of the box (meaning the cuboid objects inside the
container) to be detected. This is done via the setBoxDimensions(...) method requiring
the box dimensions in the form:

[length, width, height] with length ≤ width ≤ height

Alternatively the ROS parameter ”BOX DIMENSIONS” can be used which is read
during the detectors initialization via the initDetector() method.

Figure 4.31.: Sequence diagram of preparing steps before performing the actual box de-
tection

Now the detection can be started by calling the detectors detect() method. This function
uses the point cloud previously saved by the setInputCloud(...) method (see right column
of Figure 4.30) as input for a couple of preparing steps before the actual box detection is
performed. Figure 4.31 shows a sequence diagram of these preparation steps.

At the beginning the point cloud is clipped according to the values given by the ROS

72

4.3. Software implementation

parameter ”CONTAINER AREA” which defines an area in the ”cloud working frame”
with its borders at:

[xmin, xmax, ymin, ymax, zmin, zmax]

All points outside this area are clipped, using the PCL’s passThroughFilter functionality,
to save computational resources and to facilitate the detection of the container itself which
is the next step. The clipped version of the cloud from the example scene mentioned above
is shown in the left column of Figure 4.32.

Figure 4.32.: Point cloud images of detection preparation steps
Left: input point cloud after clipping; Centre: real world image and the
extracted container border point cloud; Right: extracted container content;
(coordinate system [red, green, blue] → [x, y, z])

The container detection now tries to detect the containers top border. Therefore an area
between 0.8 and 1.2 times the containers height on the z-axis is extracted. The height is
given via the ROS ”CONTAINER DIMENSION” parameter defining the containers di-
mensions along the axes of the ”cloud working frame”. Then PCL plane segmentation and
euclidean clustering, as described in subsection 2.2.2 and subsection 2.2.3, are used to seg-
ment the containers top border as shown in the middle column of Figure 4.32. It is assumed
that the biggest cluster obtained by the euclidean clustering represents the containers top
border. The extreme points of this cluster are used as representation of the containers top
border. Using this information and the ROS ”CONTAINER BORDER DIMENSIONS”
parameter, defining the border respectively bottom thickness along the x-, y- and z-axis,
the points belonging to the container are removed using the PCL’s passThroughFilter so
that the remaining points are only those representing the containers content (see Fig-
ure 4.32, right column). This is the input cloud, from now called container content cloud,

73

Chapter 4. System description

for the actual box detection process which is implemented in the detectMedboxPlanes(...)
method which is called inside the detectors detect() method.

Figure 4.33.: Sequence diagram of the box detection loop

In the detectMedboxPlanes(...) method the steps shown in Figure 4.33 are executed until
no new plane can be segmented from the container content cloud which is also the first step
in the loop. It is implemented using the PCL plane segmentation (see subsection 2.2.2)
which returns the coefficients nx, ny, nz, d of the segmented plane, as defined by the
Hessian Normal form, and a set of indices referencing the plane inlier points. For more
details about the Hessian Normal form have a look at [7] or:

http://mathworld.wolfram.com/HessianNormalForm.html, 2012

Figure 4.34.: Point cloud images of different surface detection steps; each row shows a
different surface belonging to one of three different boxes;
first column: plane segmentation result; second column: biggest cluster, used
as potential detection candidate; third column: cluster projected into the
plane; fourth column: convex hull of projected cluster; (coordinate system
[red, green, blue] → [x, y, z])

74

http://mathworld.wolfram.com/HessianNormalForm.html

4.3. Software implementation

For the plane segmentation only points within a given maximum distance to the plane
are taken into account and only planes with more inlier points than a given threshold
are accepted. The maximum distance is in the range of the Kinects measurement noise
which is about ±5mm. For the number of inliers a threshold value of hundred points
turned out to be a good choice. The first column in Figure 4.34 shows the segmented
planes for the the three box surfaces from the example. If a plane with enough points
has been segmented these segment is clustered using the PCL’s euclidean clustering (see
subsection 2.2.3) to remove points, accidentally lying in the same plane but not belonging
to the desired surface. So only more or less fully visible surfaces will be taken into account.
As a result the clustering returns all clusters with more than hundred points and the biggest
cluster is chosen as a possible detection. The second column in Figure 4.34 shows these
clusters corresponding to the segmented planes from the first column in this figure. If this
biggest cluster is smaller than the threshold of hundred points its points are removed from
the container content cloud and the loop is continued, otherwise its points are extracted
(copied) into a new cloud and projected into the segmented plane using the functionality
of the PCL’s ProjectInliers class which is shown in the third column of Figure 4.34.
This projected cloud is now called surface candidate cloud and is the input cloud for
the decisionAndSegmentationMethod(...) which evaluates whether the detection is valid
or not. A sequence diagram of the steps in the decisionAndSegmentationMethod(...) is
shown in Figure 4.35.

Figure 4.35.: Sequence diagram of the box detection evaluation process

The decisionAndSegmentationMethod(...) starts with the construction of the convex
hull of the given surface candidate cloud which is used for evaluating the detection. The
convex hull is constructed using the PCL’s ConvexHull class which returns a point cloud
containing the points defining the hull. For the given example these hulls are shown in
the fourth column in Figure 4.34.

The convex hull is then used to find the diameter, or rather the diagonal, of the cloud
which in this special case is simply defined as the greatest distance between points in the
hull. The convex hulls area is also calculated. Therefore the hull is triangulated, which is
easy as it was found out that the returned points are already sequentially ordered around
the hull. Then the triangle areas are calculated and summed up. The area of a triangle
given by its vertices A,B,C can be simply calculated via the following formula:

1
2 | ~AB × ~AC|

Using the dimension information about the boxes which shell be detected the reference

75

Chapter 4. System description

values for diameter and area and their ratios (hull value/reference value) are calculated
and used for evaluating the detection.

If the calculated diameter or area ratios are less than 1−ε, with ε = 0.15 as known good
value, the candidate is too small. Its points are removed from the container content cloud
and the whole process is continued with the plane segmentation step shown in Figure 4.33.

In the case that one or both ratios exceed 1 + ε the candidate is too big which is usually
the case if the euclidean clustering step was not able to separate the points belonging to
the surface from the rest of the points accidentally lying in the segmented plane. In this
case the PCL’s ICP module, described in subsection 2.2.4, is used to try a separation.

The ICP module is used to align a surface template to the surface candidate cloud and
the intersection of the aligned template with the container content cloud is calculated
using the PCL’s nearest neighbour search (see subsection 2.2.3). Hereby for each point of
the aligned template cloud the nearest neighbours within a radius of 10mm are assumed
to belong to the intersection. The intersecting points from the container content cloud are
extracted (copied) and projected into the plane as before and now used as new candidate
for a recursive call to the decisionAndSegmentationMethod(...).

Figure 4.36.: Point cloud images of the detection result; first row: different views show-
ing the detected surface points projected into their planes and their center
points; second row: the clipped input cloud and the aligned surface tem-
plates; (coordinate system [red, green, blue] → [x, y, z])

If the candidates diameter and area ratios are in the expected range for a valid detection

1− ε ≤ ratio ≤ 1 + epsilon

its points are removed from the container content cloud. The surface center point, which
is later used as grasp point, is calculated by simply taking the coordinates mean of all
points form the surface candidate cloud. Then ICP is used to align a surface template to

76

4.3. Software implementation

get the surfaces pose. The idea for this step was to use the surfaces pose for attaching
a collision model of the box to the robot arm. This is currently not implemented as this
feature does not work for a unknown reason as already mentioned in subsubsection 4.3.5.2.
So in the current software this step is actually unnecessary. The first row of Figure 4.36
shows different views of the detected surfaces and their center points while the second row
shows the clipped input cloud and the aligned templates.

As a last step, before continuing with the next loop pass, all the interesting data con-
cerning this surface are saved. Among some other less important things, these are:

• the projected version of the surface candidate cloud

• the plane coefficients of the segmented plane

• the calculated surface center point

• the resulting transformation returned from the ICP alignment

• the aligned template point cloud

• the convex hull point cloud

• the calculated diameter and area values of the surface

The final step for finishing the goal execution as shown in Figure 4.28 is fetching the
result message from the detector and sending it to the action client. For fetching the result
message the detector offers the getDetectionResult() method which fills and returns the
result message which then can be directly sent to the action client. The result message
(definition in Listing 4.12) contains arrays with the center points, diameters, areas and
the number of points of the detected surfaces. The sorted by cloudsize array contains the
indices of the detected surfaces ordered according to their number of points. The basic
assumption is that clouds with more points are detected more reliably and therefore are
preferred in the following grasping process.

4.3.7. Item manipulation

The item manipulation step, in the work cycle overview (see Figure 4.1) represented by
the block ”transfer item to order bin”, is implemented in the ”Item manipulation” module
in the ”Services & actions” layer shown Figure 4.4. It uses the result of the ”Object
detection” module (described in subsection 4.3.6), the ”Arm navigation” module (see
subsection 4.3.5) and the ”Vacuum gripper system” to grasp one of the items in the
storage container and put it into the order bin. An overview of the module with its
contained nodes and its connections to other modules is shown in Figure 4.37. It should
be mentioned that the shown ”Vacuum gripper system” module is part of the ”Hardware
abstraction” layer while the shown modules ”Arm Navigation” and ”Item Manipulation”
are part of the ”Services & actions” layer.

As it can be seen in Figure 4.37, the implementation of the ”Item manipulation” mod-
ule consists of four nodes. The main node is the katana medbox picking action server
node, implementing an ROS action server with the action definition shown in Listing 4.13,
which triggers all the necessary steps for grasping the item and putting it into the order
bin. The three nodes on the right are assisting nodes for the workaround to solve the
problem, concerning the inverse kinematics, already mentioned in subsubsection 4.3.5.2.
This workaround, described in subsubsection 4.3.7.2, uses the ik katana server.py node for

77

Chapter 4. System description

MedboxPicking . a c t i on
goa l d e f i n i t i o n
medbox detector / MedboxDetectionResult de tec t ed boxes
−−−
r e s u l t d e f i n i t i o n
bool box picked
bool box placed
bool b a c k t o i n i t p o s

u int8 e r r o r c o d e
u int8 NO ERROR = 0
uint8 COL MAP ERROR = 1
uint8 PICKING INIT POS ERROR = 2
uint8 TOUCH BOX ERROR = 3
uint8 MECH CONTR ERROR = 4
uint8 BOX NOT PICKED ERROR = 5
uint8 PRE DROP POINT ERROR = 6
uint8 DROP POINT ERROR = 7
uint8 BOX LOST ERROR = 8
uint8 INIT POS ERROR = 9
uint8 NO GRASP POINTS = 10
uint8 TRANSFORM ERROR = 11
−−−
f eedback

Listing 4.13: ROS action for item manipulation

78

4.3. Software implementation

Figure 4.37.: Item manipulation configuration with involved ROS nodes (oval shapes) and
their communication paths (service- and action- interfaces); dashed rectan-
gles indicate the correspondence to modules as shown in Figure 4.4

calculating the inverse kinematics via OpenRAVE (Open Robotics Automation Virtual
Environment). More information about OpenRAVE can be found at www.openrave.org.
In the following, the nodes and their implemented approaches are described in detail.

4.3.7.1. katana medbox picking action server node

This node only creates an object of class MedboxPicking and calls its run() method which
then executes all the steps necessary for item manipulation. As shown in the class diagram
(see Figure 4.38) this class in turn holds an object of class MoveArm which is created in
the constructor and handles the arm movements for the task of item manipulation. In the
following these two classes and their methods will be described.

4.3.7.1.1. MoveArm class
As already mentioned, this class handles the arm movements necessary for item manipu-
lation. It also holds the connection to the two action servers from the ”Arm navigation”
module shown in Figure 4.37 which are necessary for executing the actual movements.The
connection is established in the classes constructor. It also holds the connection to the
three services, in Figure 4.37 shown on the right side inside in the ”Item manipulation”
module, which are part of the inverse kinematics workaround. The class offers, among
other things, the methods listed below:

• makeStaticCollisionMap()

• addAllowedContactSpec(...)

• addCollisionOperation(...)

79

www.openrave.org

Chapter 4. System description

Figure 4.38.: Class diagram of the classes MedboxPicking and MoveArm used for the
katana medbox picking action server node

80

4.3. Software implementation

• clearAllowedContactSpecs()

• clearCollisionOperations()

• moveToJointGoal(...)

• moveToPointGoal(...)

The first method is used to trigger an action call to the collision map self occ map node
(Figure 4.37, bottom center) to create a new static collision map which then will be used
for all following arm planning steps. This is used as the scene for the process of item
manipulation is assumed to be static and therefore using this function can ensure that
the collision map is constructed when all the important parts of the scene are fully visible
by the Kinect camera which is the sensor source for the collision map self occ map node.
Important in this context means everything that is not part of the URDF robot model.
The most important thing is the container in front of the robot arm, resting on the fork
of the container manipulation unit.

The methods addAllowedContactSpec(...) and addCollisionOperation(...) are used to
store AllowedContactSpecification and CollisionOperation message objects in a list. This
list will be added to every goal sent to the ”Arm navigation” module. As the names of
the messages already suggest, they can be used to define regions where collisions between
the arm and the environment are allowed. In case of item manipulation this is used to
define a region around the grasp point on the box surface where collisions with the gripper
are allowed which is necessary as otherwise the final move for picking the box would be
detected as invalid during the path planning process.

The following executed methods, clearAllowedContactSpecs() and clearCollisionOpera-
tions(), will clear the two previously mentioned lists so that no collisions will be allowed
for the following moves.

With the method moveToJointGoal(...) it is possible to send a goal to the ”Arm navi-
gation” module. This goal message defines the arm’s goal pose by a full set of joint angles.
This is useful for fixed poses, like the used INIT POSITION (see paragraph 4.3.7.1.2),
as no inverse kinematic has to be solved which reduces the time for the path planning
process.

Finally there is the moveToPointGoal(...) method. This method is more complex than
the others as it takes a single point as input and then makes three additional service
calls to solve the inverse kinematics for an overhead grasp pose with the vacuum gripper’s
tip at this point. The solution from the inverse kinematic step is a joint goal which is
then sent to the ”Arm navigation” module to execute the move. A overhead grasp means
that the vacuum gripper is oriented downwards and positioned above the object to be
grasped and then lowered until the dedicated grasp point, which in this context is one
of the detected surface center points, is reached. An example with typical poses during
the grasping process is shown in Figure 4.39. A more detailed description about the used
service calls to solve inverse kinematics can be found in subsubsection 4.3.7.2.

All the move methods have the goal as first parameter, followed by a planning time-out
and a movement time-out (type ros::Duration) which, if exceeded, will lead to a abort of
the goal. The last parameter is of type bool for disabling the collision monitoring during
the movement. This parameter is set to ”False” by default. This parameter should be

81

Chapter 4. System description

used with care because setting to ”True” involves the risk of collisions between the arm
and the environment if the arm does not exactly follow the planned trajectory. In some
cases, especially when the arm gets stuck near to some obstacles because the distance has
fallen below the threshold, this can help to move the arm away from the obstacle and
bring it back to work. The methods return ”True” if the goal is reached, or rather if the
action call to the ”Arm navigation” module returns ”SUCCEEDED”, and otherwise they
return ”False”.

4.3.7.1.2. MedboxPicking class
In the run() method several ROS parameters are fetched which are necessary for the ser-

vice connection to the ”Vacuum gripper system” and one parameter defining the reference
frame for pose goals during the item manipulation. A list of the parameters with their
types and meanings is given in Table 4.1.

Parameter Type Description

PUMP CONTR NR integer hardware address of the Nanotec device control-
ling the vacuum pump

PUMP BIT integer command bit referencing the output for the vac-
uum pump

SENSOR CONTR NR integer hardware address of the Nanotec device con-
nected to the pressure sensor

SENSOR BIT integer command bit referencing the input for the pres-
sure sensor

SENSOR UPDATE TIME double defines a number of seconds to wait before check-
ing the pressure sensor of the vacuum gripper
system

NANOTEC CONTR string service name for the connection to the ”Vacuum
gripper system”

SERVER NAME string name to use for the action server

KATANA BASE string reference frame for pose goals

Table 4.1.: ROS parameters read by the MedboxPicking class

The next step in the run() method is to establish the service connection to the nanotec-
Contr node representing the ”Vacuum gripper system” (see Figure 4.37) via the NAN-
OTEC CONTR service with the service definition given in Listing 4.5. For more infor-
mation about this service have a look at subsubsection 4.3.3.1. After that, the robot arm
is moved to an initial position (INIT POSITION, see Figure 4.39, first column) near to
its calibration position without collision monitoring. Collision monitoring is disabled to
increase the likelihood of reaching the goal but also increasing the danger of collisions
with the environment. If this fails notwithstanding five retries the node reports an error
and terminates because this initial position is a precondition for the item and container
manipulation processes as well as for the box detection process as it guaranties a collision
free operation of the container manipulation unit and also that the Object detection sensor
has a clear view of the container. By the way it should be mentioned that this position
is a stable one. This is good for the case of power loss which otherwise always carries the

82

4.3. Software implementation

risk of damage of the robot arm as the Katana arm has no mechanical joint breaks. At the
end of the run() method the action server, with the name given by the ”SERVER NAME”
parameter, the action definition given in Listing 4.13 and the classes execute(...) method
as goal callback, is started.

Figure 4.39.: The figures show typical arm poses during the item manipulation process;
column by column, left to right: initial position (INIT POSITION) be-
fore grasping; initial point for the overhead grasp (PRE PICK POINT);
an example for a possible grasp point (GRASP POINT); pre drop point
(PRE DROP POINT), drop point (DROP POINT)

From now on the execute(...) method is called whenever a new goal message is received.
This method then runs a sequence of actions to pick an item in the container with an
overhead grasp and to transfer it to the order bin. As it can be seen in the goal message
definition (Listing 4.13) the received goal message contains the result message from the
previous detection step. This detection result also includes the detected surface center
points which are now used as possible grasp points for the vacuum gripper. The executed
sequence contains different steps like arm movements or sending commands to the ”Vac-
uum gripper system” and so on. Because all these steps need to be finished successfully
for a successful picking operation the goal is aborted if one of the steps fails. In the result
message, which is sent to the calling node, the error code is set to the corresponding value
(see Listing 4.13). If the arm has already been moved to a different position than the
already mentioned INIT POSITION an attempt is being made to move the arm back to
this position for safety reasons. The result’s back to init pos value is used to report the
success or fail of the attempt to the calling node. If the attempt fails it is not safe to move
the container manipulation unit which has to be handled in the robot control. There are
two more fields in the result. The box picked value indicates if a box has been successfully
grasped while the value box placed indicates if the box has been successfully placed inside
the order bin. This information can be from interest for fault handling implemented in

83

Chapter 4. System description

the calling node or at a higher level.

For arm movements the execute method makes use of different class methods:

• goToInitPos()

• goToPickingInitPos()

• tryToTouchObject(...)

• tryToMoveArmToPointGoal(...)

The method tryToTouchObject(...) for instance, taking a geometry msgs/PointStamped
message as input, will create regions around the goal point where contacts between arm
and environment are allowed (allowed contact regions), before moving the arm. This is
done by using the class methods addCollisionOperation(...) and addAllowedContactRe-
gionge(...) which in turn are making use of the corresponding methods provided by the
MoveArm object as described in paragraph 4.3.7.1.2. For moving the arm the meth-
ods goToPickingInitPos() and tryToTouchObject(...), mentioned in the list above, make
use of two similar versions of the tryToMoveArmToPointGoal(...) method. Both ver-
sions internally use the MoveArm’s moveToPointGoal(...) method to perform the move
and, if the move fails, make a number of retries as given by the first function parameter.
Both versions are taking two different time-out parameters which are forwarded to the
MoveArm’s moveToPointGoal(...) method. The only difference is the goal point parame-
ter’s data type. One version takes an array of doubles defining the goal point coordinates
and a string defining the goal point’s coordinate frame and internally generates the ge-
ometry msgs/PointStamped message for the MoveArm’s moveToPointGoal(...) method.
The second version directly takes the goal as geometry msgs/PointStamped message and
only forwards it to the MoveArm’s method.

The MedboxPicking class defines three methods for the communication with the ”Vacuum
gripper system”:

• startPump()

• stopPump()

• checkPressureSensor()

These methods use the above mentioned NANOTEC CONTR service to communicate
with the nanotecContr node (see Figure 4.37) which establishes the connection to the
Nanotec control units. The vacuum pump and the pressure sensor are both connected to
the I/O ports of control unit two as shown in Figure 4.12. To set the output ports or
to read the state of the output and input ports the commands shown Table 4.2 are used.
It is only possible to read/write a full 32bit register corresponding to the control units
I/Os. Hereby the registers bits 0-5 correspond to the inputs 1-6 and the bits 16 and 17
correspond to output 1 and 2.

Command Data type Description

’Y’ uint, 32bit Command to set the output register

’ZY’ uint, 32bit Command to read the I/O register

Table 4.2.: Commads to read/write to the I/Os of the Nanotec control units

84

4.3. Software implementation

To start or stop the vacuum pump a service request, containing the ’Y’ command, the
value from the ”PUMP CONTR NR” parameter for the motor number field, is made.
The contained value is a 32bit unsigned integer with the bit, given by ”PUMP BIT”
parameter, set to 0/1 to set/reset the corresponding output. The methods will return
”False” if either the service call returned an error or the received response indicates a
problem with the command. To read the pressure sensor the ’ZY’ command is sent to the
device with the address given by the ”SENSOR CONTR NR” parameter and the response
then contains a 32bit value with the ”SENSOR BIT” representing the pressure sensors
state. If the bit is ’1’ this means that something has been grasped while ’0’ means that
nothing has been grasped or that the pump is not running (see also subsection 4.2.4). The
checkPressureSensor() method returns a SensorReturnValue which can be READ ERROR
if there is a problem with the service call or the command or depending on the pressure
sensors state GRASPED or NOT GRASPED.

As already mentioned above the MedboxPicking::execute(...) method runs a sequence
of actions using the described methods to pick an item and to put it into the order bin.
At the beginning of the method the goal is checked and in the case of a goal with an
empty set of grasp points the goal is aborted, setting the result’s error code (see List-
ing 4.13) to NO GRASP POINTS. If the goal message is valid the grasp points from the
goal message are transformed into the coordinate frame given by the ”KATANA BASE”
parameter using the transformPoints(...) method which uses the ROS transformation
system to bring the points into the correct coordinate frame. All the point goals to be
used with the moveToPointGoal(...) method from the MoveArm class are defined in this
frame for reasons of simplicity. If the transformation fails, the returned error code is
TRANSFORMATION ERROR.

This transformation is followed by an action call to the collision map self occ map node
using the MoveArm objects makeStaticCollisionMap() method to create a new static col-
lision map which then will be used for path planning for the following arm movements. On
failure, the goal is set as aborted and the result’s error code is set to COL MAP ERROR
which indicates a problem with the collision map.

Now the goToPickingInitPos() method is called to move the arm to the PRE PICK -
POINT. The method internally uses the MoveArm’s moveToPointGoal(...) method which
moves the arm in a way that the vacuum gripper is pointing downwards with its end at this
given point so that an overhead grasp can be performed. The point is directly in front of
the arm, several centimetres above the center of the containers optimal position. Column
two in Figure 4.39 shows pictures of this arm pose. On failure the result’s error code is
set to PICKING INIT POS ERROR and the result’s back to init pos value reports the
success or failure of the recovery attempt, implemented in the goToInitPos() method.
This method uses the tryToMoveArmToJointGoal(...) method which is already used in
the run() method to move the arm back to the INIT POSITION.

The next step is to grasp an item. As grasp point, the surface center point corresponding
to the surface with the most point cloud points is used, because more points usually make
the detection more reliable. Using this point the tryToTouchObject(...) method is called
which first adds an allowed contact region around the grasp point and also adds allowed
collision operations for the vacuum gripper with objects near this point. Without these

85

Chapter 4. System description

regions and allowed collisions, possible collisions between the gripper and for instance
the container will be detected during the planning process as the distances possibly will
underrun the defined safety distance and this would lead to a planning error. Then the
arm will be moved to a pre grasp point a few centimetres above the actual grasp point
before the object is actually touched by moving the arm to the grasp point. An example
pose for a possible grasp point is shown in the third column of Figure 4.39. On failure,
an attempt is made to move the arm back to the PRE PICK POINT. The corresponding
method is called goToPickingInitPos(). For a new grasping attempt the next grasp point
is chosen from the goal message. If none of the possible grasp points can be reached the
goal is aborted, reporting a TOUCH BOX ERROR.

After starting the pump via the startPump() method, possibly reporting a MECH -
CONTR ERROR, the checkPressureSensor() method is called. If the method returns a
READ ERROR an attempt is made to stop the pump and to bring the arm back to the
INIT POSITION. In such cases the result’s error code will be MECH CONTR ERROR,
indicating a possible hardware problem with the Nanotec control units. If the check-
PressureSensor() method returns NOT GRASPED, the same operations will be per-
formed but the result’s error code will be BOX NOT PICKED ERROR. In contrast to the
MECH CONTR ERROR the BOX NOT PICKED ERROR only indicates that no item
has been grasped. This may be the case, for example, if the item has moved since the
detection, maybe as a consequence of the gripper’s touch. In case the checkPressureSen-
sor() method returns GRASPED the result’s box picked value is set to ”True” and the
manipulation process will be continued by a new call of the goToPickingInitPos() method
to bring the arm back to a safe position above the container followed by the deletion of
the allowed contact region and the collision operations.

The next steps are movements to a PRE DROP POINT above the order bin and to
the DROP POINT followed by new check of the pressure sensor to be sure that the
grasped item was not lost during the movements which would lead to an abort reporting
a BOX LOST ERROR. The DROP POINT is centred, close above the order bin to avoid
misplacement or damage of the item when falling into the bin. Smooth placing of the
grasped item inside the order bin is actual not possible as there is no information about
positions and orientations of already contained items but it is not important for this work
because it focuses on non fragile goods. The intermediate movement from the pose above
the container to the PRE DROP POINT, before moving to the actual DROP POINT
above the order bin is needed to avoid collisions between the grasped item and the con-
tainers because collision avoidance for the carried object does not work. This problem
has already been mentioned in subsubsection 4.3.5.2. In case of a successful transfer the
vacuum pump is stopped, the result’s box placed value is set to ”True” and the arm is
moved back to its INIT POSITION.

If all steps are finished successfully, the action result’s error code is set to NO ERROR
and the action server’s goal state is set to SUCCEEDED. This means that an item has
been transferred successfully from the storage container to the order bin and that the
action server is ready for the next goal.

86

4.3. Software implementation

4.3.7.2. Katana inverse kinematics workaround

As already mentioned repeatedly, the used arm navigation configuration can not plan for
pose goals due to problems with the computation of the inverse kinematics (IK). For this
reason a workaround was developed that shifts the inverse kinematic step to the calling
node, which in the case of item manipulation is the katana medbox picking action server
node. This node, or more precisely the MoveArm class, uses three services to solve the
inverse kinematics for the problem of item manipulation so that only a joint goal has to
be sent to the ”Arm navigation” module, which then can be executed without the need
of inverse kinematic calculations. The workaround consists of three nodes, implementing
three services. These nodes are described in the following paragraphs.

4.3.7.2.1. ik katana server node
The core of the workaround is the ik katana server.py node implementing a ROS service

named ik katana, with the service definition given in Listing 4.14. It uses the OpenRAVE
framework to solve the IK (Inverse Kinematic) for the Katana arm. More precisely, it uses
an adaptation of the OpenRAVE ”tutorial ik5d.py” example which generates random goal
points and orientations for the arm’s end-effector and uses a special 5D IK module to
find possible configurations for the arm. The first row in Figure 4.40 shows the example
environment with some goal poses and corresponding arm configurations. The goals are
marked by a line strip between the gripper fingers. Row two of the figure shows the cleared
environment with the arm at its origin. This setting is used for the ik katana server.py
node.

g e t k a t a n a i k . s rv
r eque s t
katana medbox picking /KatanaGoal g o a l i n p u t
−−−
re sponse
katana medbox picking / KatanaSolut ions s o l u t i o n s

Listing 4.14: ROS action for box detection

katana medbox picking /KatanaGoal
u int64 seq
s t r i n g frame
f l o a t 6 4 [6] data

Listing 4.15: ROS action for box detection

On start up the node loads the environment file, only containing the Katana’s Open-
RAVE model, and starts the OpenRAVE planning framework, but in contrast to the
example it also starts a ROS service server with the definition from Listing 4.14. The
service request contains a KatanaGoal message (see Listing 4.15). This message has a
data field holding the goal position (pos) and orientation (or) in the following form:

87

Chapter 4. System description

Figure 4.40.: The pictures show different arm goals, marked by a line strip, and configu-
rations resulting from the OpenRAVE IK solutions;
1st line: original OpenRAVE example environment;
2nd line: modified environment as used for the ik katana service;
Bottom left: OpenRAVE initial configuration

Figure 4.41.: Katanas URDF model and two related coordinate frames used for the IK
workaround; attached to the base: ”katana internal controlbox link”, at-
tached to the end-effector: ”katana openrave frame”;
(coordinate frames [red, green, blue] → [x, y, z])

88

4.3. Software implementation

katana medbox picking / KatanaSolut ions
u int64 seq
s t r i n g frame
bool s o l u t i o n
uint64 num solut ions
katana medbox picking / KatanaSolution [] s o l u t i o n s

f l o a t 6 4 [5] data

Listing 4.16: ROS action for box detection

[pos.x, pos.y, pos.z, or.x, or.y, or.z]

This information is simply passed into the OpenRAVE 5D IK solver which then tries to
calculate possible arm configurations. Each calculated configuration consists of a full set
of five joint angles, one angle for each joint of the Katana arm. The solutions are packed
into a response message of type KatanaSolutions (see Listing 4.16) and sent to the calling
node.

Important to know is that the goal position is defined in the OpenRAVE environment’s
global frame. In the used configuration this matches the ”katana internal controlbox link”
frame as defined in the Katanas URDF description (see subsection 4.3.5). This frame is
located in the bottom center of the Katanas base plate with the x-axis oriented to the
arm’s front and the z-axis oriented upwards. The back side of the Katana arm’s base
is characterized by the control box connector. The end-effectors planning point matches
the origin of the ”katana openrave frame” from the URDF description. In Figure 4.40 it
can be seen that this point approximately lies at the center between the fingers of the
original two finger gripper. The given goal orientation is a direction vector and leads to an
orientation of the end-effector that the z-axis of the mentioned ”katana openrave frame”
from the URDF description is antiparallel to this vector. Figure 4.41 shows pictures of
the Katana’s URDF model and the coordinate axes of the two mentioned frames.

4.3.7.2.2. katana openrave trafo server node
As described in the previous paragraph, the OpenRAVE IK solver uses another point

(coordinate frame) on the end-effector to calculate the IK for, than it is required for the
overhead grasp during the item manipulation. This is caused by the fact that the original
two finger gripper has been replaced by the vacuum gripper and that the interesting point
for grasping with such a gripper and therefore for IK calculation is the gripper’s tip.
Furthermore the OpenRAVE IK solver expects the goal coordinates to be in relation to
the frame attached to the Katana’s base plate which in the used URDF description is
called ”katana internal controlbox link” frame (see Figure 4.41).

So the task for the katana openrave trafo server node is, to calculate the position of
the OpenRAVE planning point relative to the ”katana internal controlbox link” frame,
simulating that the vacuum gripper’s tip is already at the desired goal position and
in the desired orientation for an overhead grasp. Therefore the node implements a
ROS service with the definition given in Listing 4.17. On start up this node fetches
three ROS parameters. The ”REFERENCE FRAME” parameter defines the URDF de-

89

Chapter 4. System description

scription frame matching the OpenRAVE environment frame. In the given case this is
the ”katana internal controlbox link” frame. The ”ENDEFFECTOR FRAME” parame-
ter means the URDF description frame for which the IK shell be calculated. As men-
tioned above, this is the gripper’s tip with the attached ”vacuum endpoint” frame. The
”KATANA OR FRAME” parameter defines the frame attached to the point for which
OpenRAVE calculates the IK. In the used configuration called ”katana openrave frame”.
Now the values from the parameters ”ENDEFFECTOR FRAME” and ”KATANA OR -
FRAME” are used to fetch and save the corresponding transform between these frames
which is assumed to be fixed and will be used for later calculations. Figure 4.42 shows the
”vacuum endpoint” frame and the ”katana openrave frame” as defined in the used Katana
arm URDF description.

Figure 4.42.: The figure shows the Katanas two different end-effector frames used for IK;
Left: ”vacuum endpoint” frame attached to the vacuum gripper tip; Centre:
”katana openrave frame” representing the OpenRAVE end-effector frame;
Right: both frames; (coordinate frames [red, green, blue] → [x, y, z])

katana openrave t ra fo . s rv
r eque s t
geometry msgs /PointStamped t a r g e t p o i n t
−−−
re sponse
geometry msgs /PointStamped o r t a r g e t p o i n t

Listing 4.17: ROS action for box detection

The first step for every received request point is the transformation into the frame, given
by the ”REFERENCE FRAME” parameter. This step is skipped if the received point
is not already defined in the given ”REFERENCE FRAME”. Then a transformation is
generated that simulates the overhead grasp pose for the ”vacuum endpoint” frame at the
desired goal point relative to the REFERENCE FRAME. The translation values of this
transformation are the goal point coordinates and the rotation is set in a way that the
frame’s z-axis is pointing downwards. Using this transformation and the transformation
fetched at start up, the position of the ”katana openrave frame” origin is calculated and
sent back to the calling node in the service response.

90

4.3. Software implementation

4.3.7.2.3. katana openrave jointtrafo server node
The third part of the IK workaround is the katana openrave jointtrafo server node. This

node is required because of different joint angle formats. The angle format of the Katana’s
OpenRAVE description, used for IK calculations inside the ik katana server.py node, and
the angle format of the URDF description, used by the other ROS arm navigation nodes,
are completely different. More precisely they differ in the position of the zero-angle and
the angle counting direction as to see in Figure 4.43. This means that a given joint angle
set leads to different configurations or rather a desired configuration requires different joint
angle sets. Figure 4.44 shows some example configurations and the corresponding angle
sets for both description formats.

α
0
>0 α

0
<0 α

0
<0 α

0
>0

α
1
<0 α

1
>0

α
2
<0 α

2
>0

α
1
<0

α
1
>0

α
2
<0

α
2
>0

α
3
>0 α

3
<0

α
3
<0

α
3
>0

α
4
<0 α

4
>0

α
4
>0

α
4
<0

x

y

z

Figure 4.43.: The pictures show arm configurations for a zero angle set and the joint angle
counting directions; Left: OpenRAVE model; Right: URDF model

k a t a n a o p e n r a v e j o i n t t r a f o . s rv
r eque s t
katana medbox picking / KatanaSolut ions s o l u t i on s op en r ave f o rma t
−−−
re sponse
katana medbox picking / KatanaSolut ions s o l u t i o n s k a t a n a f o r m a t

Listing 4.18: ROS action for box detection

The node implements a ROS service with the definition in Listing 4.18 which has the
same message type for request and response. It is also the same message type as the

91

Chapter 4. System description

response from the OpenRAVE IK service described above so that the IK response can be
directly used as request for this service. As it is shown in Listing 4.16, the request message
can contain several sets of joint angles. All the angle sets, each having five joint values in
the range [−π . . . π], are simply converted from the OpenRAVE model format (angles αi)
to the URDF model format (angles βi) using the following formula and sent back to the
calling node in the service response.

βi = ai · (αi + bi) + ci

with : a = [−1,−1,−1,−1,−1]

b = [0,−π
4
, 0, 0, 0]

c = [0,
π

4
, 0, 0, 0]

92

4.3. Software implementation

[0, 0, 0, 0, 0] [0, π2 , 0, 0, 0] [−π
2 , 0, 0, 0, 0] [π2 ,

π
2 , 0, 0, 0] [−π

2 , 0, 0, 0,
π
2][π2 ,

π
2 , 0, 0,

π
2]

[0, π2 , 0, 0, 0] [0, 0, 0, 0, 0]

[0, 0, π2 , 0, 0] [0, π2 ,
π
2 , 0, 0] [0, 0, 0, π2 , 0] [0, π2 , 0,

π
2 , 0]

Figure 4.44.: The figure shows Katana arm configurations with the corresponding joint
angle sets and configuration differences resulting from different joint angle
formats in the OpenRAVE and URDF description; the pairs left parts show
the OpenRAVE configuration and the right parts the URDF configuration

93

Chapter 4. System description

4.3.8. Robot control

The several steps, necessary to fulfil the task of order picking, are shown in Figure 4.1.
They are implemented as ROS services and actions in the ”Services & actions” layer (see
Figure 4.4). When a new order is sent to the robot, the ”Overall robot control” receives it
and in the following, it is responsible for calling the right services and actions in the right
sequence to fulfil the task.

The ”Overall robot control” is implemented in the kombot smach.py node which, as
the name already suggests, uses the functionality of the SMACH (State Machine) python
library to build the state machine shown in Figure 4.45. This state machine in turn is
wrapped into a ROS action with the definition given in Listing 4.19. A ROS SMACH
documentation as well as several tutorials can be found under:

http://www.ros.org/wiki/smach, (2012)

goa l d e f i n i t i o n
kombot smach/KomBotArticle [] order
−−−
r e s u l t d e f i n i t i o n
u int8 s t a t u s
u int8 SUCCEEDED = 0 # Everything done
u int8 PREEMPTED = 1 # Goal cance l ed
u int8 ABORTED = 2 # Aborted , Error occured

s t r i n g smach state
kombot smach/KomBotArticle [] o r d e r r e s u l t
−−−
f eedback
s t r i n g smach state
kombot smach/KomBotArticle [] p icked up

Listing 4.19: ROS action for sending a new order to the robot

Due to the fact, that this implementation of the state machine is only for testing the
basic functionality of the services and actions in the ”Services & actions” layer, hardly any
error and fault handling has been implemented. If a called action finishes not successful
the whole order picking is aborted which can also be seen in Figure 4.45. This figure
also shows, that the ”move to shelf place” as well as the ”deliver order bin” step from the
work cycle overview (Figure 4.1) are omitted in the prototype’s state machine due to some
problems with the autonomous navigation, as already mentioned in subsubsection 4.3.4.1.

A new order is received from the node as action goal and consists of an array of kom-
bot smach/KomBotArticles (message definition see Listing 4.20). For each article in the
order this message contains identifying information about the article, like the article’s
identification number from the warehouse database and the article’s description as well
as the article’s order size. In this context, order size means the number of pieces to be

94

http://www.ros.org/wiki/smach

4.3. Software implementation

Figure 4.45.: The picture shows the ”Overall robot control” state machine, implemented
with SMACH, which calls the services and actions to fulfil the task of order
picking

95

Chapter 4. System description

fetched from the shelf to satisfy the customer’s order. The message also contains infor-
mation where the article can be found (shelf ...). The shelf row for instance indicates the
shelf level from where the Container Manipulation module will fetch the container (see
subsection 4.3.3) while the shelf number and shelf column are from interest for the fine
positioning process. Another message content is the article’s dimension (box ...), neces-
sary for the object detection (see subsection 4.3.6). Finally it contains a way point with
orientation on the map (map ...) directly in front of the article’s shelf as it should be used
for the autonomous navigation (see subsubsection 4.3.4.1).

kombot smach/KomBotArticle
u int64 ar t i c l e number
s t r i n g d e s c r i p t i o n
uint64 amount
uint64 she l f number
uint64 she l f co lumn
uint64 s h e l f r o w
uint64 box length
uint64 box width
uint64 box he ight
f l o a t 6 4 map x
f l o a t 6 4 map y
f l o a t 6 4 map theta

Listing 4.20: ROS message with article information for the robot

From the different possible state implementations provided by the SMACH library
only two types are used. The states INIT STATE, POST PICKING STATE and OR-
DER CHECK STATE are implemented as standard states by simply inheriting from the
state base class and implementing an execute method which does the actual work. SMACH
is relatively easy to use but the state implementation requires the definition of decided
state outcomes, inputs and outputs. The outcomes are strings used to define the state
transitions depending on the outcome values. Inputs and outputs are used to pass data
into the state for processing and to return data from the state respectively. This strict
separation of inputs and outputs causes that input data can not be modified directly and
have to be copied before editing, which is very inconvenient in some cases but ensures that
changes can not have any effect to the data outside the state. The other states, used in
the state machine, are of type SimpleActionState which is a special state type that simply
calls a ROS action and returns the result and the result state. It also provides the feature
to register callbacks for generating the goal message, used for the following action call, or
for processing the action’s result message.

The state machine is stitched together by adding states to it. Each of this states gets at
least a name, a state object that has to be inherited from the state base class and a list of
pairs defining the following state depending on the states outcome value. It can also get
a list of pairs for remapping variables from names used in the state machine definition to
variable names used in the state definition and vice versa. Depending on the state’s type

96

4.3. Software implementation

(standard state, action state, etc.) a state itself will have additional parameters like, in
case of an action state, callback functions or the action server name that should be called
and so on. Similar to states the state machine itself has outcomes, inputs and outputs,
so that a given state machine can be wrapped into a state and used as sub part of an
higher state machine. Another possibility is to wrap the state machine into an action
server like in the present case. This means that an action server is created that forwards
every received goal message to the state machine. Unless otherwise defined, the first added
state is used as starting state. The action server also uses three definable lists, mapping
state machine outcomes the one of the three possible action result states (SUCCEEDED,
ABORTED, PREEMPTED).

When the implemented prototype state machine, shown in Figure 4.45, is started by
receiving a new action goal the first step is the INIT STATE. Here the received goal
is checked for validity and the first article to be fetched is selected and handed over to
the next state which in the actual implementation is the SHELF FINE POSITIONING
because the autonomous navigation part is omitted. In the SHELF FINE POSITIONING
state the landmark positioning action server is called with a goal generated in a call back.
This call back uses the shelf column information to select the correct position relative to
the landmark. The shelf and landmark configuration for the prototype test uses landmarks
positioned in the middle between two neighbouring shelf columns so that the robot has
to be positioned slightly left from the landmark to fetch containers from columns with
uneven numbers and lightly right from the landmark to fetch from columns with even
numbers.

After a successful fine positioning the goal callback of the GET BIN FROM STOCK
state uses the shelf row information to generate the goal message to be sent to the mecha-
tronics controller action server that manages the necessary sub steps to fetch the container
from the right shelf level. The container fetching is followed by the DETECT MEDBOX
state with a goal containing the detection sensor topic and the dimensions of the de-
sired object. This is the first state that uses a result callback to check the action result
as well as the actions result state and to forward the detection result to the next state
which is the PICKING STATE calling the katana medbox picking action server. In the
POST PICKING STATE the state machine’s internal order progress is updated and the
fetched article’s stock amount in the warehouse management’s database is decremented. If
the fetched amount is less than the order’s amount, the detection and picking is restarted
otherwise the following state is the PUT BIN TO STOCK which simply is the comple-
ment to the GET BIN FROM STOCK state.

A different and maybe a better way to update the stock amount after picking an item
from the storage container would be to use the action feedback to signal the calling instance
that an article has been taken from the stock and to invoke a stock update. This solution
would be better for real world use because only one central part of the robot framework
needs access to the warehouse database. The following SHELF MOVE BACK state is
similar to the preceding SHELF FINE POSITIONING state but uses a position further
away from the shelf which should be safe to start the autonomous navigation. The final
state in the order picking sequence is the ORDER CHECK STATE which simply checks,
if the order is finished or not. Finished means that all article’s have been picked with

97

Chapter 4. System description

the requested amount. If this is not the case and there are still some article’s missing, it
selects the next article from the list and starts over with the shelf fine positioning. If the
order is completed the state machine terminates and the action server will send the result
data, contained in the according state machine variable, to the calling action client.

It has already been mentioned that this prototype state machine does not really imple-
ment any fault or error handling. Therefore the state machine graph, shown in Figure 4.45,
is quite simple. Its also simplified by the fact that only explicit state transitions are shown,
even though lot of implicit transitions exist too. This is due the fact that all the used
action states have three possible outcome values, succeeded, preempted and aborted, but
for most of them only the transition for a succeeded, in some case also for an aborted
action is explicitly defined. The implicit transitions are automatically connected to the
corresponding final state of the state machine which in Figure 4.45 are shown as red ovals.
The only more or less fault handling state is the abbort PUT BIN TO STOCK state which
is the same as the normal PUT BIN TO STOCK state but in every case terminates the
wrapping action. The calling node is informed that the action has been aborted. This
implementation of ”fault handling” is also the best example for the absence of real fault
handling because actually this state does not even check if the arm is in a safe position
for starting the container manipulation unit after a failed picking action.

4.3.9. Warehouse management

The top layer of the software concept (see Figure 4.4) is the warehouse and order manage-
ment. As also shown in the figure and mentioned in subsection 4.1.2 this is usually a very
complex piece of software with a lot of functionalities. For the prototype testing software
the warehouse management layer has been kept quite simple with a MySQL database stor-
ing the required information and a simple ROS node combining the order and warehouse
management software.

The prototype’s database uses a very simple design with only two tables. The first table
contains the articles with all additionally needed information as there are:

• article number: a unique number for each article in the system

• article amount: the actual number of articles in stock

• shelf number: the number of the shelf where the article is stored

• shelf column: horizontal position in the shelf and therefore the position for the robot

• shelf row: vertical position in the shelf, used by the container manipulation unit

• package dimensions: necessary for the object detection process

The second table contains a 2D map pose (position and orientation) for each pair of shelf
number and shelf column, to be used for the autonomous navigation. These information
are sent to the robot, but as repeatedly mentioned, are actually not used because the
autonomous navigation part is omitted. The contained map pose has to be chosen in a
way that the robot has clear view of the landmark, corresponding to the desired shelf
place.

The above mentioned ROS node provides a simple Qt GUI as shown in Figure 4.46 for
generating orders and sending them to the robot. On the left side of the GUI the actual

98

4.3. Software implementation

Figure 4.46.: This picture shows an image of the simple warehouse and order management
software GUI with the actual stock on the left, the actual order on the right
side and control buttons on the bottom to edit the order and to send it to
the robot for picking

stock is displayed and the right side shows the actual order. Underneath the two lists are
some control buttons for changing the order on the right side or to refresh the actual stock
on the left side of the GUI. There are also buttons to start and cancel order picking or to
quit the program. The actual stock amount is directly fetched from the MySQL database
and displayed in the left half of the GUI. For establishing a connection to the robot, the
node uses a ROS action client that connects to the corresponding action server from the
robot control node, described in the previous section (subsection 4.3.8). To start order
picking, the node sends a new action goal to the robot through its action client and for
interrupting a running picking process it sends a cancel request.

When the start button is clicked to start the picking process a new goal is generated
which contains all the articles contained in the right list of the GUI. To implement a
minimum of process optimization, the articles in the new goal are sorted in an ascending
order with shelf number, shelf column and shelf row as sort criteria, assuming that the
numbering of them is also ascending. This will reduce the robot’s ways because all articles
stored in the same shelf column will be picked before moving to the next one.

99

Chapter 5.

Experiments

5.1. Autonomous navigation

The goal of this experiment was to evaluate the positioning accuracy of the single Krikkit
drive guided by the ROS navigation stack (see subsubsection 4.3.4.1). Of particular inter-
est with this experiment was the accuracy of repositioning at a previously saved position
which was estimated by the amcl node from the navigaiton stack. The amcl node is
responsible for localization on the map by combining laser and odometry data. This
experiment was also the first extensive test for the Krikkit driver implemented in the
ODO CAN krikkit node described in subsection 4.3.1. This is the only experiment con-
cerning the autonomous navigation. A similar experiment with the whole robot failed
because the whole robot has serious difficulties with in-place rotations necessary for local-
ization. For a more detailed description of these problems see paragraph 4.3.4.1.1.

5.1.1. Setup

For this experiment the Krikkit drive was equipped with an Hokuyo URG-04LX laser
scanner. Markers for measuring the distance to the desired goal pose have been placed at
the robot’s front and rear centre having a distance of 495mm. The bottom left image in
Figure 4.6 shows the used configuration. The navigation stack for the robot was configured
according to the navigation stack tutorial already mentioned in subsubsection 4.3.4.1.
Interesting to know in this regard are the allowed goal tolerances defining within which
maximum linear and angular distances the navigation stack considers the goal as reached:

Linear: 0.05m; Angular: 0.1 rad (5.73◦)

In a preparation step a map of the laboratory was generated using the ROS gmapping
package and saved for later use. In a second step the teleop krikkit node, described in
subsubsection 4.3.1.2, was used to move the robot to three generic positions on the map.
The amcl pose estimations at these positions were saved and then used as navigation goals
for the later experiment. Markers were placed on the floor directly beyond the markers on
the robot. During the experiment these marker were used for measuring the distance to
the desired pose. Figure 5.2 indicates these floor markers as big black arrows. Figure 5.1
shows the map section and goal poses used for this experiment. The goal poses relative
to the map frame are also shown in the following table.

101

Chapter 5. Experiments

Position number x [m] y [m] Θ [rad]

1 3.145340 3.226932 -2.739936

2 -0.006413 2.407585 -0.200077

3 6.531130 -2.851779 0.337694

Table 5.1.: Goal poses for the auto navigation experiment

Figure 5.1.: This figure shows the map section of the laboratory used for the auto nav-
igation experiment, the map frame (number 0), three poses (1-3) used for
positioning during the experiment and a grid with a cell size of 1m ([red,
green, blue] → [x, y, z])

5.1.2. Execution

The experiment started with the robot approximately positioned at the maps origin iden-
tified by the number ”0” in Figure 5.1. After starting the navigation stack the amcl node
was triggered manually by a service call to perform an initial localization. Now one of
the goal poses in Table 5.1 was selected randomly and sent to the navigation stack as
new auto navigation goal. When the goal was reported as succeeded by the navigation
stack the current amcl pose estimation was saved immediately. The distances between the
according markers on the robot and those on the floor were measured as shown in the left
part of Figure 5.2. The measured values were noted and used later on for calculating the
actual distance to the formerly marked goal pose. This process was repeated 16 times.
Due to the fact that this experiment was not intended to be the final auto navigation
experiment only a few runs have been performed and caused by the random goal selection
position 1 was only selected three times.

102

5.1. Autonomous navigation

h R
=4
95
m
m

dy
V

dx
H

dy
H

dx

X
R

Y
R

dΘ

dy

X
R

Y
R

hR / 3

Figure 5.2.: The figure shows the measured and calculated distances of the auto navigation
experiment; the actual robot pose is indicated by the black triangle and the
desired goal pose is indicated by the dashed triangle; Left: Measured distances
between the markers on the robot and the markers on the floor indicating the
desired goal; Right: Calculated distances of the robot’s centre between the
actual and desired goal pose

103

Chapter 5. Experiments

5.1.3. Results and evaluation

The direct results of the experiment are reported in Table 5.2. These are the pose estima-
tions of the amcl node at the moment when the auto navigation stack reported the goal
as succeeded and the distances (dxH , dyH , dyV) between the associated position markers
at the robot and on the floor as shown in the left part of Figure 5.2. Using measurement
values from Table 5.2 the differences to the original amcl goal pose estimation, reported
in Table 5.1, and the linear and angular distance to the original pose, indicated by the
floor markers, are calculated. The right part of Figure 5.2 shows the distances calculated
from the measured marker distances. For these calculations the robot’s shape is approxi-
mated as an equilateral triangle with a height of hR = 495mm and the robots coordinate
frame is located at the incircles centre. The rotational, linear and absolute distances were
calculated using the following formulas:

dΘ = arcsin

(
dyV − dyH

hR

)
dx =

2hR
3

(cos(dΘ)− 1) + dxH

dy =
2hR

3
sin(dΘ) + dyH

d =
√
dx2 + dy2

For the amcl pose difference the goal pose values from Table 5.1 were simply subtracted
from the measured values. The absolute distance d is calculated with the same formula
as for the marker positions. The calculated values for both, the amcl and marker dis-
tances, are reported in Table 5.3. This table also shows the distance means and standard
deviations separate for each of the three goal poses as well as for all poses together.

In this context it is of particular interest that for only 5/16 calculated amcl distances
the absolute distance d is above the allowed goal tolerance of 0.05m while the angular
distance is above the tolerance of 0.1 rad in 12/16 runs. This is caused by the system
time delays and the robot’s typical behaviour when moving towards a goal. When the
navigation stack detects that the pose estimation is within the goal tolerances it sends a
stop command to the drive via the corresponding topic and reports the goal as succeeded
via the action interface. The Krikkit driver node as well as the action client node receive
the messages with a little delay and therefore the robot moved a little further when the
noted amcl pose is fetched. The fact, that the angular distance is affected more strongly,
is caused by the robot’s behaviour when moving towards a goal. The robot usually tries
to minimize the linear distance and in a last step it rotates in place until the rotational
distance is within the tolerance.

In real the positioning is much worse as the amcl poses suggest. In 13/16 runs the actual
linear distance was above the navigation stack goal tolerance and the angular distance
exceeded the tolerance in all runs. On the one hand this is caused by the amcl ’s pose
estimation which is further worsened by the fact that the used laser scanner has a
maximum scanning range of 4m. The small lasers maximum range is a problem because
the experiments area width is more than 4m (see also Figure 5.1) which forces the robot to
use odometry for localization which is a lot less accurate than localization via laser data.

104

5.1. Autonomous navigation

Position 1
Seq.

number

amcl pose ([m], [rad]) marker dist. ([mm])

x y Θ dxH dyH dyV
4 3.141 3.245 -2.827 40 -160 5

12 3.103 3.215 -3.116 80 -215 -35

15 3.185 3.218 -2.869 -20 -120 10

Position 2
Seq.

number

amcl pose ([m], [rad]) marker dist. ([mm])

x y Θ dxH dyH dyV
1 0.022 2.399 -0.258 60 -10 -75

3 0.011 2.376 -0.591 55 -115 -215

5 0.009 2.443 -0.739 10 -45 -140

7 -0.033 2.363 0.082 0 -45 -105

9 0.025 2.421 -0.247 10 -125 -210

11 -0.037 2.449 -0.573 -30 -10 -105

13 0.005 2.369 0.194 -20 -85 -160

Position 3
Seq.

number

amcl pose ([m], [rad]) marker dist. ([mm])

x y Θ dxH dyH dyV
2 6.490 -2.849 -0.085 -20 -135 -25

6 6.527 -2.914 0.750 10 -130 0

8 6.506 -2.821 -0.186 -20 -30 85

10 6.514 -2.900 0.279 70 -203 -15

14 6.459 -2.862 0.039 -50 -125 5

16 6.495 -2.851 0.019 -10 -140 10

Table 5.2.: Measurement results of the auto navigation experiment

105

Chapter 5. Experiments

Position 1
Seq.

number

amcl distances ([mm], [rad]) marker distances ([mm], [rad])

dx dy d dΘ dx dy d dΘ

4 -4.0 18.3 18.7 -0.087 21.1 -50.0 54.3 0.340

12 -42.4 -12.2 44.1 -0.376 57.4 -95.0 111.0 0.372

15 39.6 -9.3 40.7 -0.129 -31.6 -33.3 45.9 0.266

Mean -2.3 -1.1 34.5 -0.197 15.7 -59.4 70.4 0.326

Std dev 41.0 16.8 13.8 0.156 44.7 31.9 35.4 0.055

Position 2
Seq.

number

amcl distances ([mm], [rad]) marker distances ([mm], [rad])

dx dy d dΘ dx dy d dΘ

1 28.4 -9.0 29.8 -0.058 57.1 -53.3 78.2 -0.132

3 17.6 -31.9 36.4 -0.391 48.2 -181.7 188.0 -0.203

5 15.4 35.7 38.9 -0.539 3.9 -108.3 108.4 -0.193

7 -27.0 -44.9 52.4 0.282 -2.4 -85.0 85.0 -0.122

9 31.3 13.8 34.2 -0.047 5.1 -181.7 181.7 -0.173

11 -31.0 41.0 51.4 -0.373 -36.1 -73.3 81.8 -0.193

13 11.9 -38.4 40.2 0.394 -23.8 -135.0 137.1 -0.152

Mean 6.6 -4.8 40.5 -0.105 7.4 -116.9 122.9 -0.167

Std dev 25.3 35.5 8.5 0.353 34.5 51.2 47.0 0.032

Position 3
Seq.

number

amcl distances ([mm], [rad]) marker distances ([mm], [rad])

dx dy d dΘ dx dy d dΘ

2 -41.1 2.8 41.2 -0.423 -28.3 -61.7 67.8 0.224

6 -4.0 -62.5 62.6 0.412 -1.6 -43.3 43.4 0.266

8 -25.1 30.6 39.5 -0.523 -29.0 46.7 55.0 0.235

10 -17.2 -47.9 50.9 -0.059 45.4 -77.5 89.8 0.389

14 -72.6 -9.9 73.3 -0.299 -61.6 -38.3 72.5 0.266

16 -35.7 0.3 35.7 -0.318 -25.5 -40.0 47.4 0.308

Mean -32.6 -14.4 50.6 -0.202 -16.8 -35.7 62.7 0.281

Std dev 23.6 34.6 14.8 0.338 36.0 43.1 17.5 0.060

All positions
amcl distances ([mm], [rad]) marker distances ([mm], [rad])

dx dy d dΘ dx dy d dΘ

Mean -9.8 -7.7 43.1 -0.158 -0.1 -75.7 90.5 0.094

Std dev 31.8 31.2 12.9 0.306 36.9 57.4 45.1 0.242

Table 5.3.: Calculated amcl and marker distances as well as their means and standard
deviations separate for each goal pose and for all goals together

106

5.2. Fine positioning

The loss of localization leads to recovery behaviours of the robot and this significantly
increases the runtime. On the other hand the robot does not stop immediately after
receiving the stop command but rather needs a while to decelerate. This leads to an
additional error compared to the amcl distance.

Except the runtime, improvements would require major changes to the whole system.
To improve the positioning accuracy a new move base node would be necessary, again
checking the pose estimation after the robot has stopped before reporting the goal as
succeeded. If the actual pose is outside the goal tolerance this node should continue
positioning. A similar behaviour is implemented in the positioning controller of the fine
positioning system described in paragraph 4.3.4.2.2. An improvement of the runtime could
be achieved more easily by using a laser scanner with a greater scanning radius, like the
later used Sick LMS100. This would improve the localization and decrease the amount of
recovery actions caused by delocalization of the robot. This in turn would significantly
reduce the runtime.

5.2. Fine positioning

The goal of this experiment was to evaluate the positioning accuracy of the whole robot
guided by the fine positioning system described in subsubsection 4.3.4.2. The system
uses an artificial landmark for positioning relative to it. Of particular interest with this
experiment was to find out if the system is accurate enough to position the robot within the
acceptable tolerances for the container manipulation system. For the allowed tolerances
have a look at section 5.3.

5.2.1. Setup

The setup for this experiment includes the test shelf shown in the left part of Figure 5.3.
A cardboard wedge is used as landmark and mounted at the bottom centre of the two
center columns. Therefore the landmarks attached frame, indicated by its axes XM , YM
in the right part of Figure 5.3, is located at the coordinates

xAM = 125mm and yAM = 530mm

relative to the auxiliary frame XA, YA without any rotation. The auxiliary frame is located
at the shelfs front right edge with its y-axis along the shelfs front. All measured distances
are relative to this frame.

Column Label xM
G [mm] yM

G [mm] Θ [◦]

1 a -175 90 0

2 b -175 -135 0

Table 5.4.: Goal poses for the fine positioning experiment

In a preparation step two robot poses in front of the shelf columns 1 and 2, representing
the optimal poses for container manipulation operations, were identified. This was done by
repeated positioning of the robot via the fine positioning system combined with fetching of

107

Chapter 5. Experiments

X
A

Y
A

Kombot

X
L

Y
L

Θ

dr

X
M

Y
M

dyA

dl

dxA

Col. 0 Col. 1 Col. 2 Col. 3

xM
A
=125mm yM

A
=530mm

wR=700mm

Figure 5.3.: Left: Shelf with centred landmark cardboard wedge used for the experiment;
Right: The figure shows a top view of a typical measurement scenario during
the fine positioning experiment including the shelf with its columns 0-3, the
landmark (black wedge) centred at the bottom of the columns 1,2, the robot
(”Kombot”) with the navigation sensor at its front, the measured distances
dl, dr, dx, dy and the calculated angle Θ

containers via the container manipulation system. The poses are defined by the location
of the laser frame XL, YL relative to the landmark frame XM , YM . Table 5.4 reports these
poses. The poses are also shown in Figure 5.4 marked by the crosses ”a” and ”b”. The
goal of the positioning system is to bring the robot in a position minimizing the linear and
angular distance between the laser frame and goal pose. The goal is reported as succeeded
if the distance is still less the goal tolerance after the robot has stopped.

5.2.2. Execution

This experiment consist of 60 runs. For each run the robot was positioned at one of ten
start positions which are shown in Figure 5.4, marked with a ”X”. Each position was
repeated three times with three different starting angles:

Starting angles: Θstart = {−20, 0, 20} [◦]

This results in a set of 30 starting poses and each pose was used twice, once for each
of the two goal poses reported in Table 5.4. The starting pose defines the pose of the
coordinate frame XL, YL attached to the robot’s laser scanner. It should be mentioned
that the starting angles were only adjusted roughly (±5◦) while the adjustment of the
translational position was quite precise.

The different start poses simulate possible robot poses resulting from a previous auto
navigation step to a goal pose in front of the shelf. Positions further away have not been
chosen because the auto navigation experiment (see section 5.1) showed that a positioning
within a radius of 10 cm and a maximum rotation of about 20◦ can be achieved using the

108

5.2. Fine positioning

X
A

Y
A

X
M

Y
M

200mm

100mm

200mm

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

Col. 0 1 2 3

 a b

xM
A =125mm yM

A
=530mm

Figure 5.4.: The figure shows the ten start positions marked by a ”X” and the two goal
positions (a,b) marked by a cross for the fine positioning experiment

navigation stack.

After positioning the robot at the starting pose a testing node was used to send a fine
positioning goal to the landmark positioning action server. According to the results of
the container manipulation experiment described in section 5.3 following values have been
chosen for the positioning tolerances:

Linear tolerance: 10mm Angular tolerance: 0.01 rad (≈ 0.573◦)

Before starting the run, the distances dl and dr (see Figure 5.3, right part) were noted
for calculating the actual starting angle Θ. The distances were measured from the front
edges of the robot’s frame to the shelf’s front. After the run was finished the distances
dl and dr were noted again. Also noted were the runtime t, the translation dxA, dyA of
the laser frame XL, YL relative to the auxiliary frame XA, YA and the debug output of
the landmark positioning action server, reporting the final estimated distance to the goal
pose. The estimated goal distance is the filtered transformation between the robot and
the goal pose as estimated by the landmark tracker action server.

5.2.3. Results and evaluation

The translation dxA, dyA of the laser frame XL, YL relative to the auxiliary frame XA, YA
was noted for calculating the actual resulting position dxM , dyM relative to the landmark
frame XM , YM and the distances dl and dr are used to calculate the angle Θ via the
formulas below. It has to be mentioned that the values for dxA are negative, referenced to
the coordinate system XA, YA. Using these values the linear distances dx, dy between the
actual measured position and the desired goal position are calculated. The angle Θ already
represents the angular distance to the goal because the rotation for the goals is intended to
be zero. Table 5.5 reports the minimum, maximum, mean and standard deviation values
for the calculated distanced dx, dx, d,Θ, the runtime and the filtered goal distances finally

109

Chapter 5. Experiments

reported by the landmark positioning action server. The values are reported separate for
each of the two goal poses as well as combined for both goal poses (a,b).

Θ = arcsin

(
dl − dr
wR

)
dxM = dxA − xAM
dyM = dyA − yAM
dx = dxM − xMG
dy = dyM − yMG
d =

√
dx2 + dy2

Goal ”a”

Calculated distances Tracker distance

Min Max Mean Std dev Min Max Mean Std dev

Θ [◦] −1.64 0.41 −0.75 0.53 −0.53 0.47 −0.03 0.29

dx [mm] −40 −30 −34.00 4.62 0.07 7.95 4.13 1.77

dy [mm] 30 55 43.33 6.48 −8.89 5.00 −2.22 4.85

d [mm] 46 64 55.40 5.12 2.86 9.96 6.60 2.09

t [s] 23 195 64.17 47.31

Goal ”b”

Calculated distances Tracker distance

Min Max Mean Std dev Min Max Mean Std dev

Θ [◦] −0.16 2.87 1.28 0.75 −0.51 0.53 0.08 0.33

dx [mm] −40 −30 −33.33 4.61 −5.01 2.12 0.34 1.92

dy [mm] 50 75 62.67 6.12 −8.63 8.89 −1.21 4.80

d [mm] 61 81 71.20 6.12 0.54 8.92 4.71 2.33

t [s] 20 280 69.22 60.62

Both goals ”a,b”

Calculated distances Tracker distance

Min Max Mean Std dev Min Max Mean Std dev

Θ [◦] −1.64 2.87 0.26 1.21 −0.53 0.53 0.02 0.31

dx [mm] −40 −30 −33.67 4.59 −5.01 7.95 2.23 2.65

dy [mm] 30 75 53.00 11.58 −8.89 8.89 −1.72 4.81

d [mm] 46 81 63.30 9.47 0.54 9.96 5.65 2.39

t [s] 20 280 66.69 53.97

Table 5.5.: Evaluation of the calculated goal distances, the final distances reported by the
landmark positioning action servers goal tracker and the runtime

In the ”Tracker distance” columns of the evaluation table (Table 5.5) can be seen that
the final estimated linear distance d, which is one criteria for the decision if the goal is
reached or not, is less than the tolerance of 10mm in every run. The second criteria is
the angular distance Θ. The tracker’s values of Θ are also less the tolerance (≈ 0.573◦) in

110

5.3. Container manipulation

all runs. In contrast to the autonomous navigation experiment from the previous section
these values are taken when the received odometry ensures that the robot has already
stopped. Therefore these values don’t change due to robot motion but for the reason of
estimation fluctuations.

For the calculated real goal distance evaluation, shown in the left part of Table 5.5, it can
be seen that for the separate evaluated goals the mean value of the linear distances d, dx, dy
greatly exceeds the tolerance of 10mm. The great mean distance in contrast to the relative
small standard deviation, less the tolerance, suggest a great unknown systematic error.
The minimum and maximum values show that the linear distance exceeds the tolerance in
all runs. The real angular distance mean also exceeds the given tolerance (≈ 0.573◦) but
the standard deviation is in the scale of the angular tolerance. Here the resulting error
might be a combination of a slightly misaligned landmark and the limited accuracy of the
landmark trackers pose estimation which is the base for the whole positioning procedure.
It should be noted that the angular tolerance exceeded the tolerance in 19/30 runs for
goal pose ”a” and in 24/30 runs for goal pose ”b”.

It was expected that the runtime would correlate with the starting distance but it
turned out that this is not true for the prototype robot. Having a look at the runtimes
t in Table 5.5, it can be seen that there are great differences between the minimum and
maximum runtime values. The runtime was less a consequence of the starting distance,
than rather a random result. This was shown by some runs, starting from the farthest
start positions, but having runtimes less than 30 seconds. In opposite, runs starting from
the closest starting position had runtimes of more than two minutes. The great runtimes
are rather an outcome of the same problems causing the auto navigation to fail (see
paragraph 4.3.4.1.1). It is probable that the runtimes could be improved significantly by
a better and more powerful locomotion system.

5.3. Container manipulation

This experiment belongs to the work of Bernhard Puchinger (see [20]) and its results are
here reported briefly because the original work is in German. The goal of this experiment
was to evaluate the workspace of the container manipulation unit.

For this experiment the whole robot was placed in front of the shelf already used in the
fine positioning experiment (see left part of Figure 5.3). Starting from the center position,
with the fork of the container manipulation unit at the centre of the shelf column, the robot
was stepwise moved sideways, forward and backward to find the translational tolerances. It
appeared that the maximum lateral offset without rotation, ensuring a proper operation
of the container manipulation unit, is 2.75 cm. If this maximum is exceeded the fork
collides with the lateral profiles carrying the container. The maximum offset along the
forks moving direction depends on the parameter settings for the manipulation unit but
should not exceed 1.5 cm.

For finding the maximum rotational offset, the robot was placed centred in front of the
shelf column, with a distance of 10 cm between the shelf and the robot’s front and rotated
in both directions. With this setting the maximum rotational offset is about 3.3◦. This
value shrinks dramatically if a translational offset is added.

111

Chapter 5. Experiments

For a proper operation of the manipulation unit it is very important to keep the rota-
tional offset as low as possible. This is so important because of the long fork, even small
rotations lead to collisions with the shelf when moving the fork forward.

5.4. Object detection

The aim of this experiment was to test the object detection module, described in subsec-
tion 4.3.6. It should be tested in different situations and under controlled, comparable
conditions. Of special interest are the influences of ambient light, different box surfaces
(reflective, matt) as well as the orientation inside the container and the orientation relative
to other contained boxes.

5.4.1. Setup & execution

For this experiment the camera mount shown in Figure 5.5 was used. The container was
placed on the bottom centre and the Kinect camera, not shown in the figure, was mounted
on top. The camera orientation is indicated by its attached coordinate system which has
a vertical offset of 880mm to the base plate. The coordinate system on the bottom is
approximately at the containers bottom centre point and used as reference frame for the
detection. A light source for simulating different ambient light conditions is indicated by
the flash light symbol.

Figure 5.5.: The figure shows the camera mount with base coordinate system and the
container used for the object detection experiment. Not shown: Light source,
indicated by the flash light and the Kinect camera, indicated by its attached
coordinate system (coordinate systems [red, green, blue] → [x, y, z])

Four kinds of drug boxes with different dimensions were used as target objects (see
Table 5.6). For each box type there was one original drug box with a glossy surface and

112

5.4. Object detection

Label Length Width Height Area Diameter

A 145mm 90mm 35mm 13050mm2 171mm

B 105mm 70mm 68mm 7350mm2 126mm

C 97mm 71mm 31mm 6887mm2 120mm

D 95mm 41mm 20mm 3895mm2 103mm

Table 5.6.: Box dimensions of the target objects, their largest surfaces area and diameter
as used for the detection experiment

two boxes made of matt grey cardboard.

During the experiment 1-3 boxes were placed inside the container. Each test case was
repeated for all box types shown in Table 5.6. For testing the detection under variable light
conditions a single box was placed inside the container. The detection was executed three
times. Once without extra light and two times with two different light intensities. The
same procedure was repeated twice. First with the original glossy box and then with the
matt one. As a second test case, two or three boxes were placed inside the container. Of
special interest was the detection result in case of partially occluded boxed or when they
lie close to each other. The basic assumption for these test cases was that the container
content is unmixed. For the third test case this assumption was rejected and two boxes
of different type were placed inside the container. This should usually not be the case in
a well managed warehouse so this test only concerns the detections selectivity.

5.4.2. Results and evaluation

The whole experiment consists of 57 runs with several runs for each of the three test
cases described before. The results of the different test cases are described separate in the
subsections below.

5.4.2.1. Variable light conditions

Figure 5.6 shows the experiments outcome pictures and point clouds for box type ”C”
under different light conditions. The result are quite the same for all of the tested box
types shown in Table 5.6. The pictures and points clouds (a-c) belong to the original
glossy drug box while the pictures (d,e) belong to the matt box type.

It can be seen that the point cloud of the container is dense in case of no extra light
(Figure 5.6, (a)) but already has a small gap inside the dashed rectangle which indicates
the drug box area. With increasing light intensity these gaps grow. Having a closer look
at the point clouds (b) and (d), both taken with light intensity ”1”, it can be seen that
the matt boxes cloud (d) has still no gap while the glossy boxes cloud (b) shows less than
the half of the box. Comparing the clouds (c) and (e), taken with light intensity ”2” it
can be seen that the glossy box is now fully invisible and the matt box is only partially
visible.

The detection worked well for both box types, glossy and matt, as long as there was
not too much ambient light. The major problem with too much light is the detection of
the container border which failed in nearly all cases with extra light and caused the whole

113

Chapter 5. Experiments

(a) (b) (c) (d) (e)

Figure 5.6.: The figure shows images of the container under different light conditions and
the corresponding points clouds. Left to right: Original glossy drug box with
light intensities 0-2 and matt box with intensities 1-2; (coordinate systems
[red, green, blue] → [x, y, z])

114

5.4. Object detection

detection to fail. This is caused by the fact that an undetectable container border prevents
a proper segmentation of the container’s content.

The reason for the ambient light problems with the point clouds is the sensing method
of the used Kinect camera. The camera projects and detects infrared patterns which in
case of high reflective surfaces or too much ambient light can not be detected properly.
It has to be mentioned that the sensing works better on less reflecting surfaces. This can
especially be seen in the point cloud of Figure 5.6 (d) which shows a good representation
of the box despite the extra light with intensity ”1” while the glossy box in (b) is already
half invisible.

During this experiment another problem became obvious. The actually used detection
method has a great problem with flat boxes like the box type ”D” lying direct on the
containers floor. Such boxes often can not be separated properly from the container
bottom and therefore will not be detected. In some other cases, especially with small
boxes, the used plane segmentation does not fit the plane good enough and therefore a
big part of the surface is clipped what causes the detection to fail.

5.4.2.2. Multiple boxes

The multiple boxes test case is the default scenario for detecting objects in the container.
As described in subsection 4.3.6 the used detection module only tries to detect the objects
largest surface. The surfaces center points, calculated as mean of the corresponding point
coordinates, are used as possible grasp points for item manipulation. This method works
well for more or less fully visible surfaces. This means that primarily non-occluded boxes,
usually lying on top, or only partially occluded boxes will be detected. Such boxes are
easy to grasp what is important for the following manipulation step and therefore such
boxes are preferred.

This experiment evaluation will show example scenarios with positive detection results,
scenarios that cause the detection to fail or lead to false positive detections. Especially
false positives are a great problem because they lead to a more or less blind grasp which
carries a great risk to fail. The evaluation will also discuss the implemented but actually
not used box pose estimation as well as its problems and weaknesses. Due to the results
from the previous described test case no extra lighting of the scene was used to improve
detection conditions.

5.4.2.2.1. Partially occluded but detectable boxes
Figure 5.7, (c) shows a scenario with 2 boxes of type ”A” (see Table 5.6). One of them
is partially occluded by another box. Figure 5.7, (a,b) shows the corresponding input
point cloud. The boxes are indicated by two dashed rectangles. The fine dashed rectangle
indicates the upper box which partially occludes the other one. This leads to a hole
in the point cloud representation of the lower box. This can be seen in Figure 5.7, (b).
Nevertheless both boxes are detected properly what can be seen in Figure 5.7, (e,f). These
images show the calculated surfaces centre points which are used as grasp points by the
item manipulation module. It can be seen that the centre point of the upper surface is
more or less exact at its centre while the centre point of the lower surface is shifted along
the x-axis in negative direction. This is caused by the hole in the representing point cloud

115

Chapter 5. Experiments

and the calculation method for the centre point which is a simple calculation of the mean
along the three coordinate axes. This leads to a shifting of the calculated point towards
the majority of points. This can also be seen in Figure 5.7, (d) which shows the aligned
templates from the surface pose estimation step. While the template for the upper surface
is properly aligned the lower surfaces template is also shifted, similar to the centre point.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.7.: The figure shows images of a standard detection scenario with 2 detectable
boxes. The dashed rectangle indicates the bottom box and the fine dashed
rectangle the top box surface. (c) container RGB image; (a,b) corresponding
input point cloud of the container and its content; (e,f) 2 detected surfaces
with its calculated centre points (small coordinate axes); (d) the ICP aligned
templates; (coordinate systems [red, green, blue] → [x, y, z])

Despite the small shifting error at the lower surface this is a good detection result which
can be used as input for the item manipulation without any problems.

5.4.2.2.2. Detection preventing occlusion
Similar to the previous scenarios this one also includes two boxes of type ”A” (see Ta-
ble 5.6), but in contrast the occlusion this time prevents a proper detection of the lower
box surface. In Figure 5.8, (a,b) it can be seen that this time the occlusion produces a hole
in the point cloud, splitting the representation of the lower box surface into two separate
clusters. As shown in Figure 5.8, (d-f), the detection of the upper box is as good as in the
previous scenario but the lower box surface it not detected at all. This is caused by the
fact, that the detection’s plane segmentation step properly segments the lower surfaces
plane but the hole in the point cloud causes that the detection’s euclidean clustering step
separates it into two discrete candidates which will be rejected because their diameter and

116

5.4. Object detection

area are too small. This rejection of such occluded surfaces is deliberated because the
visible surface parts are to small for a reliable grasp.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.8.: The figure shows images of a standard detection scenario with 1 detectable
box. The dashed rectangle indicates the bottom box and the fine dashed
rectangle the top box surface. (c) container RGB image; (a,b) corresponding
input point cloud of the container and its content; (e,f) 1 detected surface
with its calculated centre point (small coordinate axes); (d) the ICP aligned
template; (coordinate systems [red, green, blue] → [x, y, z])

5.4.2.2.3. False positive detection
Figure 5.9 shows an example scenario producing a false positive detection. The container

content consist of 3 boxes of type ”C” (see Table 5.6) placed upright side by side with
their smallest surfaces on top. These small surfaces are indicated by the dashed rectangles
in the input point cloud images (Figure 5.9, (a,b)).

Due to the limited resolution and a relative big measurement noise of the Kinect camera
the three surfaces can not be identified in the point cloud what is well illustrated in
Figure 5.9, (a,b). The result of this special box arrangement is a combined surface having
similar dimension properties as the target surface the detection is actually looking for.
Table 5.7 shows these properties as well as the actual area and diameter values estimated by
the detector. The also shown ratios (Detector/Target) clarify the small difference between
the detected and target surfaces values. These small differences in combination with the
ratio thresholds used by the detector are the reason for the false positive detection of a
target surface. Figure 5.9, (e,f) shows the detected surface and the calculated centre point.

117

Chapter 5. Experiments

(a) (c) (e)

(b) (d) (f)

Figure 5.9.: The figure shows images of a detection scenario producing a false positive
result. (c) container RGB image with 3 boxes upright, side by side; (a,b)
corresponding input point cloud of the container and its content, top surfaces
indicated by dashed rectangles; (e,f) 1 wrongly detected surface with its cal-
culated centre point (small coordinate axes); (d) the ICP aligned template
(slightly tilted); (coordinate systems [red, green, blue] → [x, y, z])

118

5.4. Object detection

Surface Dimensions Diameter Area

Combined 93x71mm 117mm 6603mm2

Target 97x71mm 120mm 6887mm2

Detector 114mm 6922mm2

Ratios 0.950 1.005

Table 5.7.: The table shows surface and detection properties of the false positive detection
scenario

Figure 5.9, (d) shows the ICP aligned surface template of the surface pose estimation. It
can be seen that it is tilted which is also caused by the obvious noisy surface points.

Figure 5.10 shows another example scenario with a false positive result using boxes of
type ”A” (see Table 5.6). In contrast to the previous scenario, this time the problem is
caused by the ICP separation attempt which comes into play when area and diameter of
a surface candidate are to big. In this special arrangement it is not possible to separate
the boxes via ICP because no target surface is visible. Figure 5.10, (d,e) makes a great
weakness of the ICP algorithm obvious. As already mentioned in subsection 2.2.4, the
algorithm requires a good initial transformation which is missing in this context. Therefore
the ICP alignment often produces bad results leading to detection failure or more worse,
to false positives like in this example .

False positive detected surfaces are more worse than not detected ones. The problem
with such false positive detections as input for the following item manipulation is the
great risk of a failed grasp. This could for instance happen if the gripper touches the edge
between the boxes which would result in a failed, or even worse, unsafe grasp. An unsafe
grasp would be more worse because it carries a greater risk of loosing the item. Loosing
the item would possibly lead to damage of the item and would also require urgent human
intervention.

5.4.2.3. Mixed container content

Figure 5.11 shows a scenario with mixed container content for testing the detections se-
lectivity. Two boxes of type ”A” and ”C” (see Table 5.6) were placed inside the container
and the detection was executed twice. The first time looking for box type ”A” and the
second time for type ”C”.

The result for the first run is shown in Figure 5.11, (e). It can be seen that the surface
of the box is properly detected with a slight shift along the positive x-axis. In contrast
the result when looking for box type ”C” is quite bad as shown in Figure 5.11, (f). This
is caused by the fact that the detections plane segmentation step returns bigger surfaces
first which in this case is the surface of box ”A”. In the following this surface candidates
will lead to an ICP segmentation attempt because they are too big. As already mentioned
in paragraph 5.4.2.2.3, this segmentation does not work very well and often leads to false
positive detections. Therefore it can be said that the detection is very selective towards
surfaces that are smaller than those the detection is actually looking for and more or less
not selective towards surfaces that are bigger than the expected one.

119

Chapter 5. Experiments

(a) (b)

(c) (d)

(e)

Figure 5.10.: The figure shows images of a detection scenario producing a false positive
result caused by the ICP separation. The visible long side box surfaces
are indicated by dashed rectangles. (c) container RGB image with 3 boxes
upright (long side surface on top), side by side; (a,b) corresponding input
point cloud of the container and its content; (d) surface candidate and ICP
aligned template used for ICP separation; the intersection is wrongly detected
as surface; also shown the calculated centre point; (e) container point cloud
and ICP aligned template; (coordinate systems [red, green, blue]→ [x, y, z])

120

5.4. Object detection

(a) (c) (e)

(b) (d) (f)

Figure 5.11.: The figure shows images of a scenario for testing the detectors selectivity.
Visible box surfaces are indicated by dashed rectangles. Normally dashed:
box type ”A”; Fine dashed: type ”C”; (a) container RGB image 2 boxes of
type ”A” and ”C”; type ”A” flat on the container bottom; (b-d) correspond-
ing input point cloud of the container and its content; (e) good detection
result for box type ”A”; (f) wrongly detected surfaces when looking for box
type ”C”; (coordinate systems [red, green, blue] → [x, y, z])

121

Chapter 5. Experiments

5.5. Item manipulation

This experiment was designed to test the item manipulation hardware and software mod-
ules. Of special interest was the accuracy of the arm navigation while picking an object
with an overhead grasp and the reliability of the whole system when moving the item from
the storage container to the order bin. It was also part of the experiment to determine
the area for grasp points inside the container not leading to collisions between the arm’s
end effector and the container.

22
4m

m
43

m
m

205mm Order bin

Container
from shelf

Katana
robot arm

6
4m
m

80
m
m

Figure 5.12.: The figure shows images of the important parts of the object manipulation
experiment and actual distances between coordinate frames used during the
experiment. (coordinate systems [red, green, blue] → [x, y, z])

5.5.1. Setup & execution

For the experiment the setup shown in Figure 5.12 was used. The fork of the container
manipulation system was moved to its reference position and a container was placed at
the desired optimal position on the fork. During the experiment the goal positions for the
vacuum gripper’s tip were defined relative to a coordinate frame located at the container’s
bottom centre hereinafter referred to as ”container frame”. In the robot’s URDF de-
scription this ”container frame” is defined relative to the ”katana base link” frame which
is at the top centre of the Katana arm’s base plate (see Figure 5.12). The translation
according to the used URDF robot description of the ”container frame” relative to the

122

5.5. Item manipulation

”katana base link” frame is:

Translation: [x y z]T = [224 0 −64]T ; Unit: [mm]

This position of the frame is directly in front of the arm and in the same plane as the
forks upper side and approximately centred related to the forks longitudinal axle. The
container’s bottom and some test boxes with different dimensions were provided with a
grid for measuring the gripper’s contact point on the box and the position of the box
relative to the ”container frame” to get the actual position compared to the given goal
position. A comparison is only possible for the x- and y-direction because under pressure
the fork yields in z-direction which prevents proper measuring of the position along the
z-axis. An image of a typical scene is shown in the left part of Figure 5.13. During the
experiment such images were automatically acquired with the Kinect camera mounted
straight above the container before starting the manipulation process.

container frame

A(5|10)

B(0|10)

D(5|0)

C(-5|10)

E(0|0)

F(-5|0)

G(5|-10)

I(-5|-10)

H(0|-10)

Figure 5.13.: Left: Image acquired with Kinect camera looking straight downwards on
the scene of the item manipulation experiment; Right: Container (border in
blue), attached coordinate frame and goal positions (x) for the experiment;
Position (x|y) in [mm]; (coordinate system [red, green] → [x, y])

For each run a box, or for higher grasp points a stack of boxes, was placed inside the
container. Simulating a perfect detection the top surface centre point was then used
as grasp point and sent to the item manipulation module. The module itself has been
slightly modified for this experiment by adding breaks after some steps. For instance,
when the arm reached the grasping point the module stopped the process until the distance
between the desired grasp point and the actual gripper tip position and the arm’s joint
angle values were noted. At the end of each run the manipulation modules response and
additional information about special incidents were also noted for later evaluation. The
full action definition of the manipulation module (described in subsection 4.3.7) including
the response message is shown in Listing 4.13. The response reports if the module has
successfully picked (box picked variable) the box from the container, has successfully placed
(box placed variable) the box in the order bin and if the arm successfully returned to its
initial position (back to init pos variable). It also reports an error code giving additional
information about possible problems during the process.

123

Chapter 5. Experiments

5.5.2. Results and evaluation

At the beginning a few runs were executed to find the allowed area inside the container.
It was found out that due to the dimensions of the arm’s end effector a minimum distance
of the used goal points to the containers border of about 3 cm along the x- and about 2 cm
along the y-axis has to be adhered to avoid collisions between the arm and the container.

For the second part of the experiment different goal positions along the x- and y-axes, as
shown in the right part of Figure 5.13, were used. These positions are covering the whole
reachable area inside the container and the same positions were used for four different
levels along the z-axis. The level heights are given by the thickness of the three used
target box types.

Level heights: 2.0; 4.0; 6.5; 10.5 (Offset: 6.5; Box: 4.0); Unit: [cm]

This combination leads to a total number of 36 gripper tip goal positions. For each position
three runs were performed, except if the first run showed up that the goal position is out
of the arm’s range.

In general, it can be said that the item manipulation works quite well as long as

• the given goal point actually lies on the box surface.

• the given goal point is within the allowed and reachable area.

• the box does not slip away when being touched.

• the box is thin enough, not to collide with the container border during transfer.

In the following some incidents, observations and occurred errors as well as their causes,
or rather possible causes, are reported.

Grasp position aberration
In all runs the actual gripper tip position in relation to the desired grasp point position
was noted. As already mentioned above it was only possible to measure the distance
along the x- and y-axis. Due to the used measurement method the error could only be
determined with an accuracy up to 5mm but it could be seen that the error was in the
same range in all runs. One could also see that it was exact the same when repeating the
run for a certain goal point. The reason for this position aberration is highly probable a
combination of two things. The first part is a slight misalignment of the container relative
to the arm, producing a constant translational error as given below.

Translational grasp point position error: dx = −10mm; dy = −5mmm

The second part is a small inaccuracy of the Katana arm’s joint calibration. During
the experiment it could be seen, that the arm’s end effector was never looking straight
downwards when performing the overhead grasp. The gripper’s tip was always slightly
pointing towards the arm’s base which indicates a problem with the joints ”2” and ”3”.
In this case joint ”0” being the pan joint at the arm’s base (see also Figure 4.43).

Out of range error
If the goal is out of range, is indicated by the error code ”3” (TOUCH BOX ERROR) in

124

5.5. Item manipulation

the action response (definition given in Listing 4.13). This error occurred only two times
during the experiment. It turned out, that the positions ”A” and ”G” (see Figure 5.13,
right part) in combination with a grasp point height of 10.5 cm were outside the reachable
area of the arm when trying to perform an overhead grasp.

Box not picked
This case is indicated by the error code ”5” (BOX NOT PICKED ERROR) and the re-
sponses field box picked set to ”False”. During the experiment this case occurred several
times when a wrong grasp points were entered and the vacuum gripper missed the box.
This case could also arise if the box slides away when being touched by the gripper which
can easily happen if the desired box lies inclined on another one.

Box lost
The boxes with 4.0 cm and 6.5 cm in height produced collisions with the container border
when moving the arm towards the order bin. This is the result of keeping the end effector
oriented downwards resulting in a relatively small distance, a little bit less than 4 cm,
between the containers border and the gripper’s tip. For the 4.0 cm boxes the collision
caused a loss of the box in about 50% and for the 6.5 cm boxes in about 95% of the runs.
The suction power of the used vacuum gripper and vacuum pump is quite high and is
usually sufficient to lift a weight of about 500 g which is also the reason that not every
collision leads to a loss of the box. What actually happens when a box is lost is, that the
gripper slides on the boxes surface until it slips of. Before dropping the box into the order
bin the item manipulation module checks the pressure sensor to detect if the box was lost
during the transfer and if this is the case this is indicated in the action result by the error
code ”8” (BOX LOST ERROR) and the field box placed set to ”False”. As mentioned in
subsubsection 4.3.5.2 this problem should be avoided by attaching a collision model of the
grasped box to the arm so that the arm navigation can include it in the path planning
process and avoid collisions. But as also mentioned all efforts to get this feature to work
had been in vain.

Arm collision detected
Whenever an error occurs during the item manipulation process recovery behaviours will
be performed but the last step in every case is the try to move the arm back to its
initial pose. This is important because this pose is safe and stable. Safe means that
the container manipulation unit can operate without the risk of collision. In this context
”stable” means that in case of power loss this pose guaranties that the arm will not slump
down, possibly leading to damaged. If it is not possible to move the arm back to its initial
pose this is indicated by the result’s field back to init pos set to ”False” and the error code
”9” (INIT POS ERROR). In this case the whole robot operation should be stopped and
human intervention should be requested to avoid damages of the hardware.

During the experiment this error occurred only twice but in fact this is a fatal error
because it prevents the robot from accomplishing its function. In both cases the problem
appeared after a successful placement of the box in the order bin when moving the arm
back to its initial pose. When performing this movement the arm’s gripper tip came

125

Chapter 5. Experiments

close to the motor of the container manipulation unit’s vertical axis which caused the arm
navigation to stop to avoid a possible collision.

This happened because the arm navigation stack continuously checks for possible colli-
sions during arm movements and if the arm undershoots the given minimum distance to
some part of the environment it will be stopped. In such a case the item manipulation will
start recovery behaviours but in this special case they have to fail and cause the abort of
the whole picking process.

In such a case, all implemented recovery behaviours, including movements with disabled
collision monitoring (described in paragraph 4.3.7.1.2), will fail because the minimum
distance to the environment has already been undershot. This causes the arm navigations
path planning process to fail which is not affected by the disabled collision monitoring
because this setting only effects the live collision monitoring during movements. This
problem could be avoided by finding a way to set a greater distance threshold for the
planning process than for the collision monitoring during movements. Another way would
be to identify the links with possible collisions and allow collisions between these links for
the recovery movement planning process.

126

Chapter 6.

Conclusion and future work

In this thesis a concept and a prototype system for an autonomous mobile order picking
robot is presented. The thesis also reports experimental results concerning the different
presented prototype hardware and software modules. The developed prototype hardware
system uses off the shelf components except the omnidirectional drive and parts of the
vacuum gripper system. For the prototype software a Linux based environment and the
popular ROS (Robot Operating System) as well as other up to date libraries, tools and
packages like PCL (Point Cloud Library) and OpenRAVE (Open Robotics Automation
Virtual Environment) were used. Wherever possible, the used software is free and open
source.

In general, it can be said that the developed prototype system, following the presented
concept, is in principle capable of performing autonomous order picking even if there is
still a lot of work to do before reaching a state ready for productive operation. To only
name a few things:

• The hardware, especially the mobile base, has to be re-engineered

• Integration into a real warehouse management system

• Integration of fleet management capabilities

• Improvement of the developed software modules (reliability, runtime, etc.)

• Optimization of all parts with respect to energy efficiency

• etc.

In the following the system main parts will be discussed in detail.

Mobile base
The fundament for the whole system is the mobile base. On the hardware side it is
consisting of the omnidirectional Krikkit drive, the coupled self supporting frame and a
laser scanner as navigation sensor. During the development and the following experiments
several problems where discovered. The first problem is caused by the ball casters of the
self supporting frame which have a very small contact surface but carry all the weight.
Especially on soft floor coverings this leads to a very high resistance and prevents the
robot from moving. The second problem, already reported in paragraph 4.3.4.1.1, comes
from the small Krikkit drive in combination with the large and heavy frame which makes
a proper operation of the autonomous navigation impossible. Nevertheless it could be
shown that the prototypes mobile base with all its issues is still able to reach goals with
high accuracy. To solve the mentioned problems the prototypes mobiles base should be
replaced with a real omnidirectional drive directly carrying all other required components.

127

Chapter 6. Conclusion and future work

Different systems and projects are already present like the ”KUKA omniMove” platform
(see http://www.kuka-omnimove.com, 2013) or the ”OmniRob” platform developed at the
University of Applied Sciences and Arts in Dortmund and used for the project presented
in [23] to name just two. Another aspect to keep in mind when re-engineering the mobile
base is the diameter. A smaller diameter is better for the moveability because the ROS
navigation stack uses the robot’s circumcircle as convex collision model for motion planning
and therefore a smaller diameter will make turns easier. In contrast, a smaller diameter
reduces the footprint which increases the risk of tilting.

On the mobile base software side there are the drivers for the Krikkit drive and the
laser scanner as well as the ROS navigation stack for autonomous navigation on a known
environment map and the landmark based fine positioning system. As reported in sec-
tion 5.1 and section 5.2 both navigation modules performed quite well under the given
experimental conditions. Due to the good performance of the navigation stack with the
single Krikkit drive it can be assumed that it will do as well for a bigger drive with better
suspension characteristics like one of the two mentioned in the paragraph above. Future
research should evaluate the capabilities of the navigation modules under more realistic
conditions like in a real warehouse. Especially the performance of the localization in an
environment with many similar looking rack aisles. For the fine positioning there should
also be a possibility to check if the robot is in front of the correct shelf place which could
be achieved easily by a visual tag like a QR-code or something similar. In future research
it could also be evaluated, if a new move base node for the navigation stack, combining
autonomous navigation and landmark based fine positioning, would have valuable advan-
tages compared to the system presented in this work.

Container manipulation
The container manipulation unit, designed as fork lift like apparatus, is relatively simple
but the prototype hardware implementation has several issues. First of all it requires
a really precise positioning in front of the shelf, reported in section 5.3, which in turn
requires a more precise positioning system and mobile base. Another issue of the used
system are the two horizontal slide rails which lead to jerky motions when carrying load on
the fork. This becomes worse if the slide rails are not exactly parallel aligned what is almost
impossible. The forks implementation itself is also a problem especially in combination
with jerky horizontal movements. The prototypes fork is a simple bent steel plate and
therefore very flexible. This leads to oscillations with observed amplitudes up to 5 cm at
the forks end. Similar to the fork, the connection between the vertical and horizontal axis is
also a made of bent sheet and also quite flexible. Due to this problems the movement speed
had to be limited dramatically what increases the needed time for container manipulations.
Another problem would be collisions of the fork with parts of the environment which could
cause deformations especially of the flexible fork and axis connection part.

The container manipulations software, described in subsection 4.3.3, is part of the work
presented in [20] and consists of two nodes. In the ”Hardware abstraction” layer (see
Figure 4.4) there is the nanotecContr node which is responsible for the communication
between the PC and the Nanotec control units. This node is not only associated with the
container manipulation module because also the ”Vacuum gripper system” uses the node
to control the vacuum pump and to check the pressure sensor which are both connected

128

http://www.kuka-omnimove.com

to the digital I/O ports of the control unit responsible for the horizontal axis. During all
tests, the node performed very well with only a single issue. If the serial connection is
lost and the node tries to send some data, the node is terminated due to an unhandled
exception. This is not a big problem because during the tests this only occurred when
the connection was physically broken, what in every case requires human intervention and
a restart of the robot’s software. Nevertheless this problem should be solved. Maybe it
would also be a good idea to implement an automatic reconnection. This would allow for
continuing operation without restarting the robot’s software after the connection problem
is fixed.

The second node belonging to the container manipulation is the mechatronicsContr
node from the ”Services & actions” layer (see Figure 4.4). The node is configurable
via several ROS parameters which are fetched at start up. This node contains a state
machine, handling the whole container manipulation process. The implemented ROS
action server is quite simple and offers three commands for fetching a container from the
shelf, placing a container on the shelf and moving the manipulation unit to its reference
position. For starting the container manipulation process, a goal, containing a command
and a shelf level number, is sent to the action server. The different level heights and
other important parameters (see Listing 4.7) are predefined via a configuration file which
is loaded at start up. This approach is very unflexible and especially the fixed level heights
and distances for horizontal movements are causing problems. Due to the fact that the
gap between containers in neighbouring levels is really small, the level heights have to
be defined quite precise so that the fork can move into this gap without collisions. This
is already challenging under optimal conditions but it is impossible, if the floor is not
absolutely even. The fixed distances for horizontal fork movements produce the problem,
that it is not possible to balance differing distances to the shelf. The actual distance to
the shelf could be easily estimated via the landmark tracker during the fine positioning
process. To overcome the level heights problem it would be necessary to detect the gap
between vertically neighbouring containers which is the target for the fork. This could be
achieved via a camera system at the forks tip that is able to track the target containers
bottom edge. So only approximate level heights would be necessary and the actual height
to move the fork under the container could be determined exactly for each shelf place. It
would also provide a possibility to verify that the right container will be fetched. Therefore
the containers could be labelled with bar codes or other camera readable tags.

Another field for future work would be to replace the fork lift like container manipulation
unit with a robot arm. On the one hand this would increase the system’s complexity, which
is already very high, but on the other hand it would also increase its flexibility. The most
important advantage would be the ability to balance positioning errors in front of the
shelf. In contrast to the fork lift a robot arm would be able to balance especially angular
positioning errors in a wider range. This in turn would reduce the requirements for the
fine positioning system. For using a robotic arm it would be necessary to detect the
container’s position and orientation so that it can be grasped. Similar to the approach
described before this could for instance be achieved via a camera system able to track a
tag on the container front and an iterative grasping approach. Another idea would be to
properly detect the container’s pose relative to the arm using 3D sensor information and
perform a single grasp.

129

Chapter 6. Conclusion and future work

Object detection
The object detection module uses the point cloud data from the Kinect camera and a
relatively simple approach to detect the container and the surfaces of its content and to
find possible grasp points for the following item manipulation step. As shown in section 5.4
a lot of things are influencing the detection and cause the used detection approach to fail.
A special problem during this work was the sensor noise of the used Kinect camera which
is relatively high compared to the size of the objects to be detected. Another problem
is the fact that the used detection approach does not allow for determining the objects
orientation which would be required for collision checking during the arm path planning
process. Determining the objects orientation would also be necessary if another gripper
system, a hand like gripper for instance, should be used. Because of the problems and
limitations of the used detection approach a lot of work has to be done to get a reliable
productive detection system.

The detection offers a wide field for future research. Different sensing technologies, like
stereo vision or 3D laser scanner, as well as new 3D data analysing methods should be
evaluated for their capabilities to solve the detection problems mentioned in the paragraph
above. The surface detection approach, using curvature analysis, described in [22](page
90 ff, chapters 6.3, 6.4 and 6.5) and mentioned in section 3.3 is also a good candidate for
future research but will require a more precision 3D scanner than the used Kinect camera.
Also of interest could be new features of the PCL (Point Cloud Library), using additional
information like color values to extend traditional 3D data analysis approaches.

Item manipulation
The item manipulation uses a robot arm with 5 DOF (Degrees Of Freedome), equipped
with a vacuum gripper system on the hardware side and the ROS arm navigation stack
and other software packages (see subsection 4.3.5 and subsection 4.3.7) on the software
side. As already mentioned in section 5.5, the item manipulation worked quite well as
long as some basic conditions are met. However, there are still some issues to be resolved.

The first discovered problem is the fact that with the used version of the ROS arm
navigation stack, responsible for motion planning, it is not possible to execute pose goals.
It seemed to be a problem of the inverse kinematics plugins with the Katana robot arm,
or rather arms with less than 6 DOF in general (see subsubsection 4.3.5.2). The de-
veloped workaround works for the implemented overhead grasps approach but is not a
general solution for the problem. Another problem with the ROS arm navigation stack,
also described in subsubsection 4.3.5.2, is the not working collision avoidance for grasped
objects. During the experiment, discussed in section 5.5, this provoked collisions between
the carried object and the container border but in general collisions of the carried object
with the environment can not be excluded. Both problems should hopefully be solved
in the newest version of the ROS arm navigation stack but due to some major changes
in the architecture of the arm navigation stack and its communication paths plenty of
work has to be done to port the developed modules to work with the new version of the
arm navigation stack. A third issue in connection with the implemented overhead grasp
approach became obvious during the tests. The overhead grasp’s condition of keeping the
gripper in a straight vertical orientation significantly reduces the reachable area especially

130

along the z-axis. During the experiment this lead to the ”Out of range error” reported
in section 5.5. A possible workaround for this problem without replacing the robot arm
would be to lift or lower the fork of the container manipulation unit if it is needed, which
would require a corresponding adaptation of the container manipulation software.

One outcome of the experiment and preceding tests is the finding, that a vacuum gripper
is a simple but also very efficient and convenient way for grasping boxlike objects as used
during this work. Nevertheless it limits the field of possible objects to those with more or
less even and gas-tight surfaces. For the future it is the aim to be able to detect and grasp
more arbitrary objects. To reach this goal it will be necessary to replace the vacuum
gripper with a handlike one. This would increase the flexibility but naturally also the
requirements for motion and grasp planning and in turn for object recognition.

Robot control & warehouse management
The top level of the robot’s on-board software is the ”Overall robot control” responsible for
triggering the necessary actions in the right sequence to fulfil the task of order picking. On
the off-boar side is the warehouse management system responsible for managing customers
orders, sending them to the robots and so on.

The prototypes robot control node, described in subsection 4.3.8, only implements the
basic work cycle with almost no fault handling and is far away from the required reliability
for productive operation. Therefore the node has to be re-engineered with special respect
to safety and fault recovery capabilities.

The implemented warehouse management node, described in subsection 4.3.9, was only
designed for testing and demonstration purposes. For operative use a full integration into,
or at least an interface to a real warehouse and order management system is required. The
extension of common warehouse management systems for handling and coordinating a fleet
of mobile order picking robots offers great potential for future research and development.

131

Appendix A.

Abbreviations

AIMM Autonomous Industrial Mobile Manipulation
CAN Controller Area Network
USB Universal Serial Bus
IPC Inter-Process Communication
GUI Graphical User Interface
DOF Degrees Of Freedome
ROS Robot Operating System
ICP Iterative Closest Point
PCL Point Cloud Library
OMPL Open Motion Planning Library
RRT Rapidly-Exploring Random Trees
KDL Kinematics and Dynamics Library
Orocos Open Robot Control Software
URDF Unified Robot Description Format
SRP Schäfer Robo-Pick
SVD Singular Value Decomposition
PRM Probabilistic Roadmap
SIFT Scale Invariant Feature Transform
WLAN Wireless Local Area Network
SLAM Simultaneous Localization and Mapping
SMACH State Machine
OpenRAVE Open Robotics Automation Virtual Environment
IK Inverse Kinematic
PC Personal Computer
RPC Remote Procedure Call
CAD Computer-Aided Design

133

Bibliography

[1] Towards Reliable Grasping and Manipulation in Household Environments, New Delhi,
India, 12/2010 2010.

[2] R. Bohlin and E.E. Kavraki. Path planning using lazy prm. In Robotics and Automa-
tion, 2000. Proceedings. ICRA ’00. IEEE International Conference on, volume 1,
pages 521–528 vol.1, 2000.

[3] Christian Matt and Daniel Wimmer. KomBot - autonomer Kommissionierroboter.
Technical report, Institute of Logistics Engineering - Graz University of Technology,
2013.

[4] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning Library.
IEEE Robotics & Automation Magazine, 2012. To appear.

[5] Florian Ehrentraut and Christian Landschützer and Dominik Lechner and Chris-
tian Matt and Wolfgang Pichler and Bernhard Puchinger and Gerald Steinbauer and
Daniel Wimmer. Kombot - An Autonomous Mobile Order Picking Robot. 2012.

[6] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision
avoidance. Robotics Automation Magazine, IEEE, 4(1):23–33, 1997.

[7] W. Gellert, S. Gottwald, M. Hellwich, H. Kästner, and H. Küstner. Analytic geometry
of space. In W. Gellert, S. Gottwald, M. Hellwich, H. Kästner, and H. Küstner,
editors, The VNR Concise Encyclopedia of Mathematics, pages 530–547. Springer
Netherlands, 1990.

[8] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid mapping
with rao-blackwellized particle filters. Robotics, IEEE Transactions on, 23(1):34–46,
2007.

[9] Martin Günther and Henning Deeken. Katana driver ros stack documentation. http:
//www.ros.org/wiki/katana_driver, 2011.

[10] Dirk Holz, Stefan Holzer, Radu Bogdan Rusu, and Sven Behnke. Real-time plane
segmentation using rgb-d cameras. In RoboCup Symposium, 2011 2011.

[11] Howie Choset and Kevin M. Lynch and Seth Hutchinson and George A Kantor and
Wolfram Burgard and Lydia E. Kavraki and Sebastian Thrun. Principles of Robot
Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge, MA,
June 2005.

[12] Advait Jain and Charles Kemp. El-e: an assistive mobile manipulator that au-
tonomously fetches objects from flat surfaces. Autonomous Robots, 28:45–64, 2010.
10.1007/s10514-009-9148-5.

135

http://www.ros.org/wiki/katana_driver
http://www.ros.org/wiki/katana_driver

Bibliography

[13] E. Gil Jones. Ros arm navigation stack documentation. http://www.ros.org/wiki/
arm_navigation, 2012.

[14] Kurt Konolige. A gradient method for realtime robot control. In International Con-
ference on Intelligent RObots and Systems - IROS, 2000.

[15] Soon-Wook Kwon, Frederic Bosche, Changwan Kim, Carl T. Haas, and Katherine A.
Liapi. Fitting range data to primitives for rapid local 3d modeling using sparse range
point clouds. Automation in Construction, 13(1):67 – 81, 2004.

[16] Steven M. LaValle, James J. Kuffner, and Jr. Rapidly-exploring random trees:
Progress and prospects, 2000.

[17] Sukhan Lee, Jaewoong Kim, Moonju Lee, Kyeongdae Yoo, L.G. Barajas, and
R. Menassa. 3d visual perception system for bin picking in automotive sub-assembly
automation. In Automation Science and Engineering (CASE), 2012 IEEE Interna-
tional Conference on, pages 706–713, 2012.

[18] Mads Hvilshoj and Simon Bogh. ”Little Helper” - An Autonomous Industrial Mobile
Manipulator Concept. International Journal of Advanced Robotic Systems, 2011.

[19] Michael Wild. Recent Development of the Iterative Closest Point (ICP) Algorithm.
Technical report, Swiss Federal Institute of Technology Zurich, 2010.

[20] Bernhard Puchinger. Automatisierung eines Ein/Aus-Lagerungsmechanismus für
Kisten in der Logistik. Technical report, 2012.

[21] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating system. In
ICRA Workshop on Open Source Software, 2009.

[22] Radu Bogdan Rusu. Semantic 3D Object Maps for Everyday Manipulation in Human
Living Environments. PhD thesis, Technische Universität München, 2009.

[23] Röhrig, C. and Hess, D. and Kirsch, C. and Künemund, F. Localization of an om-
nidirectional transport robot using ieee 802.15.4a ranging and laser range finder. In
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
on, pages 3798–3803, Oct.

[24] Radu Bogdan Rusu, Andreas Holzbach, Rosen Diankov, Gary Bradski, and Michael
Beetz. Perception for mobile manipulation and grasping using active stereo. In
Humanoids, Paris, 12/2009 2009.

[25] Gildardo Sánchez and Jean-Claude Latombe. A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking. In RaymondAustin Jarvis and
Alexander Zelinsky, editors, Robotics Research, volume 6 of Springer Tracts in Ad-
vanced Robotics, pages 403–417. Springer Berlin Heidelberg, 2003.

[26] Schäfer itself. Automatisierte Systeme in der SSI Schäfer Gruppe. Schäfer itself.

136

http://www.ros.org/wiki/arm_navigation
http://www.ros.org/wiki/arm_navigation

Bibliography

[27] R. Smits. KDL: Kinematics and Dynamics Library. http://www.orocos.org/kdl,
2012.

[28] Siddhartha Srinivasa, Dave Ferguson, Casey Helfrich, Dmitry Berenson, Alvaro Col-
let, Rosen Diankov, Garratt Gallagher, Geoffrey Hollinger, James Kuffner, and
Michael Weghe. Herb: a home exploring robotic butler. Autonomous Robots, 28:5–20,
2010. 10.1007/s10514-009-9160-9.

[29] Gerald Steinbauer, Mathias Brandstötter, Martin Buchleitner, Stefan Galler, Simon
Jantscher, Martin Mörth, Gerald Krammer, Jörg Weber, and Martin Weiglhofer.
Mostly Harmless Team Description 2006 - Robust Control of Mobile Robots. In
International RoboCup Symposium, Bremen, Germany, 2006.

137

http://www.orocos.org/kdl

	Introduction
	Motivation
	Goals and challenges
	Outline & contributions

	Basics
	Robot Operating System (ROS)
	The Robot Operating System actionlib

	Point Cloud Library (PCL)
	Point clouds
	Plane segmentation
	Euclidean clustering
	Iterative Closest Point (ICP) algorithm

	Path planning
	Probabilistic Roadmap planning
	Tree-based planning

	Related research
	"Little Helper" and the AIMM concept
	Mobile manipulator systems
	"HERB"
	"EL-E"

	Box detection in point clouds

	System description
	Concept
	Hardware concept
	Mobile platform
	Navigation sensors
	Container manipulation
	Item manipulation
	Computing & communication
	Power supply

	Software concept
	Warehouse management
	Hardware abstraction layer
	Services & actions layer
	Overall robot control

	Hardware implementation
	Mobile base
	Navigation sensors
	Container manipulation
	Item manipulation
	Computing & communication
	Power supply

	Software implementation
	Mobile platform
	ODO_CAN_krikkit_node
	Receiving new motion commands
	Sending motion commands to the drive
	Forwarding messages to the CAN bus
	Receiving and forwarding of CAN bus messages
	Odometry calculations
	Publishing odometry

	teleop_krikkit node

	Sensors
	Navigation sensor
	Object recognition sensor

	Container manipulation
	nanotecContr node
	mechatronicsContr node

	Navigation & localization
	Autonomous navigation
	Problems with autonomous navigation

	Fine positioning
	Landmark tracker
	Position controller

	Arm navigation
	Arm navigation pipeline
	Problems with the arm navigation
	Arm movement sequence

	Object detection
	MedboxDetector class

	Item manipulation
	katana_medbox_picking_action_server node
	MoveArm class
	MedboxPicking class

	Katana inverse kinematics workaround
	ik_katana_server node
	katana_openrave_trafo_server node
	katana_openrave_jointtrafo_server node

	Robot control
	Warehouse management

	Experiments
	Autonomous navigation
	Setup
	Execution
	Results and evaluation

	Fine positioning
	Setup
	Execution
	Results and evaluation

	Container manipulation
	Object detection
	Setup & execution
	Results and evaluation
	Variable light conditions
	Multiple boxes
	Partially occluded but detectable boxes
	Detection preventing occlusion
	False positive detection

	Mixed container content

	Item manipulation
	Setup & execution
	Results and evaluation

	Conclusion and future work
	Abbreviations
	Bibliography

