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Abstract

This thesis deals with the application of model-based mutation testing in software-
development processes. In recent research projects the Austrian Institute of Technology
and the Institute for Software Technology have developed a prototype toolchain, which
can automatically derive test cases out of UML diagrams. In order to support modern
software-development methods like test-driven development and enabling regression test-
ing, the idea is used, to decompose test models into their functional components and gain
partial test models. In later development phases, these partial models can be combined,
which can be seen as re�nement of the underlying partial models. In two case-studies
this thesis shows, how partial models can be built. The �rst case-study deals with a car
alarm system. A given test model is decomposed into two partial models and alternative
modeling styles are presented. The second case study deals with the bucket control of
an agricultural vehicle. Here, a given test model is optimized and a second partial model
is introduced in order to cope with the complexity of the test case generation, so that
it becomes computational feasible. Additionally, a comparison among di�erent test case
extraction strategies is conducted.
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Kurzfassung

Diese Arbeit befasst sich mit der Anwendbarkeit von modellbasiertem Mutationstesten
in der Softwareentwicklung. In vergangenen Forschungsprojekten wurde in Zusammenar-
beit zwischen dem Austrian Institute of Technology und dem Institut für Softwaretech-
nologie an der TU Graz ein Prototyp entwickelt, der es ermöglicht, aus UML-Diagrammen
automatisch Testfälle abzuleiten. Um den Bedürfnissen moderner Softwareentwicklungs-
methoden wie der testgetriebenen Entwicklung gerecht zu werden und Regressionstesten
zu ermöglichen wird die Idee aufgegri�en, die Testmodelle entsprechend ihrer funk-
tionalen Einheiten aufzuteilen und dadurch partielle Modelle zu erhalten. In späteren
Entwicklungsphasen können mehrere partielle Modelle zusammengefasst werden, was
einer Verfeinerung (Re�nement) der Ursprungsmodelle entspricht. In zwei Fallstudien
wird gezeigt, wie ein Testmodell in mehrere partielle Modelle aufgeteilt werden kann.
Die erste Fallstudie befasst sich mit einer Autoalarmanlage. Ein vorhandenes Testmod-
ell wird in zwei partielle Modelle aufgeteilt und alternative Modellierungsstile werden
gezeigt. Die zweite Fallstudie befasst sich mit der Steuerung der Baggerschaufel eines
landwirtschaftlichen Fahrzeuges. Hier wird ein vorhandenes Testmodell optimiert und
um ein weiteres partielles Modell ergänzt, um die Komplexität der Testfallgenerierung
soweit in den Gri� zu bekommen, dass eine fruchtbringende Anwendung von modell-
basiertem Mutationstesten überhaupt statt�nden kann. Auÿerdem wird ein Vergleich
unterschiedlicher Testfallextrahierungsstrategien durchgeführt.
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1 Introduction

1.1 Motivation

Testing is a very crucial part of software development, since it is the most common way
of ensuring the quality and providing con�dence. Modern approaches like test-driven
development [Bec02] go so far to put testing in the center of the development, with
test cases being created even before beginning to implement the system itself. While it
can be considered as state-of-the-art to automate the process of executing test cases,
creating them most often is still done manually. This is not only a costly procedure,
but also the quality of the gained test cases varies. In order to improve the situation,
research has been done on how to automate the generation of test cases. As a result,
some prototype tools exist, which claim to perform such a fully automated test case
generation. In recent research projects, a working prototype toolchain has been created
in cooperation between the Austrian Institute of Technology (AIT) and the Institute for
Software Technology (IST). It uses UML models as input and creates test cases using a
so-called model-based mutation testing approach.

This thesis deals with the topic of modeling the requirements in a way that the models
can be successfully processed by the toolchain.

1.2 Model-based Mutation Testing

1.2.1 Model-based Testing

Model-based testing is a general term for black-box testing techniques which use models
as speci�cation. In black-box testing as opposed to white-box testing the source code of
the implementation is not available, so test cases have to be derived from requirements
and speci�cation documents. A textbook [UL07] and a journal paper [UPL12] written
by Utting et al. provide a good overview of available technologies and approaches.

The approach that underlies the tools used in this thesis, can be classi�ed as �Generation
of test cases with oracles from a behavior model� according to Utting and Legeard [UL07].
A more detailed classi�cation of the used techniques can be found in Section 2.1. The
key point of these techniques is, that once the behavior model is given, the generation
process can be automated.
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1 Introduction

According to Utting and Legeard the process for model-based testing consists of �ve
steps:

1. Creating test models from requirements and speci�cation documents
2. Choosing test selection criteria
3. Transforming the test selection criteria into test case speci�cations
4. Generating the test suite
5. Executing the test suite on the system-under-test

So instead of deriving test cases directly from the requirements, �rst an abstract model
has to be created. Then the so-called test selection criteria have to be chosen. In a fault-
based approach so-called �pre-speci�ed faults� serve as criterion [UL07]. Test cases are
created, which can determine, whether the anticipated faults have been implemented on
the system-under-test. Since they are created using an abstract model, the generated
test cases are called abstract test cases. In order to run them against the actual system-
under-test, a test adapter and a test driver have to be written. This test adapter and
test driver have to translate the abstract events of the test case into messages that are
compatible to the interface of the implementation.

1.2.2 Mutation Testing

Originally, mutation testing has been introduced as method to measure the quality of test
data which is used to test a program. It has been presented by DeMillo et al. [DLS78]. A
comprehensive overview is given by Jia and Harman [JH11]. The idea is to create a set
of so-called mutants, which are copies of the program but altered so that they contain
simple errors. Then, the test data is applied to the original program and to each mutant.
If the results of a speci�c mutant di�er from the results of the original program, it is
called a �dead� mutant, otherwise it is called a �live� mutant. Accordingly the given test
data is able to �kill� a mutant or it is not.

There are two observations which support the power of this approach: the �rst is often
referred to as competent programmer hypothesis. In DeMillo et al. write:

�Programmers have one great advantage that is almost never exploited: they
create programs that are close to being correct!�

The second observation is called coupling e�ect :

�The coupling e�ect: Test data that distinguishes all programs di�ering from
a correct one by only simple errors is so sensitive that it also implicitly
distinguishes more complex errors.�

Both observations have been investigated in more detail by O�utt [O�92]. In his work
also a de�nition for the di�erence between simple and complex errors resp. faults is given.
According to O�utt, a fault is simple if it can be repaired by a single change, otherwise
it is complex. He also distinguishes between �simple mutants�, which are obtained by
applying a single mutation and �complex mutants�, also called �higher-order mutants�

2



1.3 UML

which are obtained by applying multiple mutations. Thus simple mutants are simple
faults, while complex mutants are complex faults.

As a consequence it is assumed, that simple mutants are su�cient. Thus, the mutation
operators, which de�ne which syntactical element of the source code is replaced in the
mutant create a new copy for each mutation.

1.2.3 Model-based Mutation Testing

Model-based mutation testing is the application of mutation testing as test selection
criterion for model-based testing. Instead of mutating a program, the mutation is per-
formed on the test model. As in classical mutation testing mutation means the creation
of a copy of the model which di�ers in just one position. This is done by implementing
�mutation operators�. Each mutation operator scans the original model for a speci�c
syntactical element and replaces it, so that it is still syntactical correct, but the behavior
changes. The application of these mutation operators to the original model leads to a set
of mutants. Together they form a fault-model, which can be seen as test case speci�ca-
tion. As in classical mutation testing, the set of mutants can either be used to measure
the �fault-�nding power� of a given test suite, or they can be used to �guide the design�
of new test cases. [UL07]

When used in the test-case generation process the goal is to create and select test cases,
which are able to reveal the di�erence between the original test model and the derived
mutants.

So in summary the aim of model-based mutation testing is to create an abstract test
model, for which mutation operators anticipate a comprehensive set of simple faults.
In a test case generation process test cases are generated, which can decide whether
the anticipated faults have been implemented on a given system-under-test or not. Be-
cause of the coupling e�ect it can be argued that the absence of the simple faults in an
implementation also implies the absence of more complex faults.

1.3 UML

The Uni�ed Modeling Language (UML) [BRJ05] is a visual modeling language managed
by the Object Management Group (OMG). Its main purpose is to provide a common
language for visualizing and communicating software blueprints for object-oriented sys-
tems, where it has become a de facto standard. It provides several di�erent diagram
types, which allow to model di�erent aspects of a system. There are many software tools
supporting UML, most of them for the purpose of creating design models of software
under development. However, there also exist various model-based testing tools, which
take UML models as input. The advantage of using UML is that it is widely known and
the diagrams are often perceived as easy to read. The disadvantage of using UML as
input models for model-based testing is, that there are some semantic variation points,
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which are underspeci�ed by the speci�cation. Because of that, UML often is criticized
as being only semi-formal. In order to use UML models for formal methods, a concrete
subset of UML features has to be de�ned and a precise semantics has to be given.

1.4 Re�nement, Partial Models, and Compositionality

A widely known de�nition of re�nement is given by the ISO reference model for open
distributed components [ISO97]. There the term re�nement refers to two concepts:

• The process of obtaining a more detailed speci�cation.
• The relation between an original speci�cation and a more detailed speci�cation.

The detailed speci�cation is said to re�ne an original speci�cation only if they are be-
haviorally compatible. Two objects are behaviorally compatible if the environment can
not distinguish them.

Note, that these de�nitions are rather weak and depend on user-de�ned criteria. For
this thesis re�nement is based on the conformance relation ioco, which is described in
Section 2.2.

The idea of re�nement in general, and �step-wise re�nement� in particular is linked to a
formal software-development method. From a requirements document an initial abstract
model of the system is built. Later, in so-called �re�nement steps� this model becomes
more concrete until �nally, an implementation can be derived. One early adopter of
this method is VDM [Jon90] or more recently the B-method [Abr96] and its successor
Event-B [Abr10]. The latter is supported by a software platform called �Rodin�, which
allows the formal check of each re�nement step using a proof system, that guarantees
the implementation satis�es its initial speci�cation [Abr+10].

The idea of partial models in general is to avoid being too concrete when creating abstract
models in early re�nement steps. One early approach to implement this idea is the
introduction of �Modal Transition Systems� as proposed by Larsen and Thomsen [LT88].
In this logic, a distinction between �necessary� and �admissible� actions is made explicitly.
When using ioco as conformance relation, all models are inherently partial, since the ioco
relation only cares about whether outputs from the SUT are allowed. Inputs which are
not de�ned by the speci�cation are implicitly considered as underspeci�ed, allowing
the SUT to react arbitrarily. Additionally, underspeci�cation of output behavior can
be achieved by explicitly using the concept of a �non-deterministic choice�. A detailed
discussion with examples can be found in Section 4.1.

Partial models also allow to decompose a system into functional components. This leads
to the idea of so-called �compositional testing� as proposed by the group of Tretmans
[BRT04]. The idea is to imply the correctness of an integrated system from the correctness
of the parts. In the context of this thesis, the term �partial model� will be used only to
denote test models, which only contain some functional components.
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1.5 Project Background

1.5 Project Background

This thesis is based on the outcomes of the EU-FP7 project MOGENTES1. MOGENTES
is an acronym for �Model-based Generation of Tests for Dependable Embedded Systems�.
The project took place from January 2008 to March 2011 and had been coordinated by
AIT. It consisted of ten organizations including research centers and university insti-
tutes conducting the research and industrial companies providing demonstrators of the
automotive and railway domain.

The prototype toolchain MoMuT as well as both demonstrators used for the case studies
are artifacts produced within the project. Also the author of thesis has been employed
within this project for nine months.

For writing this thesis the author has been employed by AIT within the Artemis project
MBAT2, which is an acronym for �Combined Model-based Analysis and Testing of Em-
bedded Systems�. The aim of this project is to integrate existing tools and technologies
for performing model-based validation and veri�cation into a �Reference Technology
Platform�. The project runs for 36 months and consists of 38 organizations. The demon-
strators within this project focus on embedded systems in airplanes, cars and trains.

1.6 Running Example

To illustrate the algorithms and concepts of the theoretical part of this thesis and of
the description of the toolchain, examples are used which are based on one of the case
studies.

This case study investigates a car alarm system. The speci�cations come from Ford and
have been provided as demonstrator within the FP-7 project MOGENTES.

The core requirements of this system are:

R1 - Arming �The system is armed 20 seconds after the vehicle is locked and the bonnet,
luggage compartment, and all doors are closed.

R2 - Alarm The alarm sounds for 30 seconds if an unauthorized person opens the door,
the luggage compartment, or the bonnet. The hazard �asher lights will �ash for
�ve minutes.

R3 - Deactivation The anti-theft alarm system can be deactivated at any time, even
when the alarm is sounding, by unlocking the vehicle from outside. � [KSA09]

Since these requirements leave some decisions open, several test models haven been
written in UML by AIT. They di�er about the interpretation of these requirements.

One particular model has been used as example in earlier published work of the project
[KSA09]. There the translation from UML to object-oriented action systems is described.

1http://www.mogentes.eu/
2http://www.mbat-artemis.eu/
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Figure 1.1: State machine of the car alarm system used in [KSA09]

«environment»
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  SetOn()
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«system_under_test»
AlarmSystem

«from_environment»  Lock
«from_environment»  Unlock
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«from_environment»  Open
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«environment»
OpticalAlarm

  SetOn()
  SetOff()

«signal»
Open

«signal»
Close

«signal»
Unlock

«signal»
Lock+ acousticAlarm

[1]
+ alarmArmed

[1]
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Figure 1.2: Class diagram of the car alarm system used in [KSA09]

This model is shown in Figure 1.1, depicting the state machine and Figure 1.2 depicting
the class diagram, which de�nes the system boundaries and therefor the test interface.
There are four inputs to the system (�Lock�, �Unlock�, �Close�, and �Open�), which are
modeled as signals. The outputs to the actuators are divided into three classes �Alarm-
Armed�, �AccousiticAlarm�, and �OpticalAlarm�. They each provide two operations �Set-
On� and �SetO��, which correspond to the outputs responsible for the arming, the sound
alarm, and the hazard �asher lights resp. A description for the used stereotypes can be
found in Section 3.1.2.

The transitions within the state machine are labeled with the triggers �ring them and
the e�ects they cause. In this particular model two kinds of triggers are used: signal
receptions and time triggers. The signal receptions are labeled according to the signal,
which is received as input and the time triggers are labeled with the time, after which the
transition is taken. Outputs produced by the system are modeled in so-called �opaque
behaviors� which are either used in e�ects or in entry- and exit actions. The according
labels are �Armed�, �Unarmed�, �Activate Alarms�, �Deactivate Alarms�, and �Deactivate
Sound�.
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Being very well sized this demonstrator has been chosen as default example of our
workgroup. It is small enough to be analyzed even by unoptimized test case generation
algorithms in reasonable time, but yet not trivial, since it contains interesting features
like time constraints.

1.7 Aims and Goals

This thesis investigates the e�ects of di�erent modeling styles in test models for a partic-
ular prototype toolchain performing model-based mutation testing. Using class diagrams
and state machines of UML models as input language, there are several possible ways
how to build a test model.

One particular concept is the use of partial models and compositional testing in model-
based mutation testing. This approach is based on ideas, which are also presented in
our technical report [ALT12b], where a novel formal test-driven development process
is proposed. If at the beginning of the development process �rst partial test models
are created, which are later re�ned, then test-driven development can pro�t most from
model-based testing.

In two case studies the use of partial models is demonstrated.

In the �rst case study, the already mentioned car alarm system is investigated. For this
demonstrator it is shown how a test model can be decomposed into partial models. This
is done by creating test models using di�erent modeling styles. Doing so gives a good
overview over the capabilities and limitations of the used toolchain.

In the second case study, a wheel loader is investigated. Within the MOGENTES project
some test models have been created, which could be used to generate meaningful test
cases using the MoMuT toolchain. However, the results had not been satisfying. Pro-
cessing all mutants of a test model took more than a month. To make things worse, a
test suite generated using a random walk in a fraction of this time had been able to
outperform the mutation-based test suite. One aim of this thesis is to improve the test
models applying the ideas of re�nement and partial models in order to generate test
suites using the MoMuT toolchain in reasonable time outperforming random test case
generation. The partial models shall be used to repeat the experiments regarding the
comparison among di�erent killing strategies [Aic+11a] in order to gain empirical results
for further publications.

1.8 Structure

This thesis is structured as follows:

Chapter 2 introduces the theoretical background of this thesis. Here all the used concepts
and notations are introduced. Section 2.1 relates the approaches used by the tools to

7



1 Introduction

a taxonomy of model-based testing. Section 2.2 explains the conformance relation ioco
which is the part of the testing theory, which is crucial for the design of test models. Sec-
tion 2.3 describes the notion of action systems which serve as intermediate language.

Chapter 3 discusses the used toolchain and its development throughout the MOGENTES
project. Also implementational details which in�uence the creation of the test models
are discussed.

Chapter 4 describes the implications a model-based mutation testing approach has on the
development process. The main focus lies on the ideas of re�nement, how partial models
and compositionality can help to create feasible models, which are able to provide mean-
ingful test suites at the right time. Section 4.1 shows, which features of the conformance
relation ioco enable the use of partial models and where the limits are. Section 4.2 relates
the proposed way of re�nement based on partial models to other forms of re�nement.
Section 4.3 explains how partial models in a model-based testing approach can help to
generate test cases in early development phases. So combining these techniques can lead
to a new test-based development process.

Chapter 5 presents the car alarm case study. Section 5.1 describes how the test model
is decomposed into partial models and why it makes sense to use non-determinism.
Section 5.2 presents three alternative UML modeling styles applied on the car alarm
system. Section 5.3 shows the results from performing the test case generation of the
presented test models and the mutation analysis used to measure the quality of the
generated test suites.

Chapter 6 presents the wheel loader case study. Section 6.1 describes the requirements
of the demonstrator in detail. Section 6.2 shows both the existing test model and its
improvements as well as the new additional partial model. Section 6.3 shows the results
from performing the test case generation and the mutation analysis.

Chapter 7 gives concluding remarks. Section 7.1 summarizes the content of this thesis.
Section 7.2 shows related work on partial models. Section 7.3 discusses the results from
the case studies. Section 7.4 gives an outlook on future work.
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2.1 Classi�cation of Model-based Testing

For classifying the di�erent available model-based test case generation techniques, the
survey by Utting et al. [UPL12] provides a taxonomy with six dimensions. In the following
this taxonomy is used to compare the toolchain used in this thesis to other possible
technologies.

The �rst dimension is the so-called �model scope�. It de�nes, whether inputs and outputs
or only inputs are modeled. This has a high impact on the so-called �test oracle�, which
decides, whether or not a system passes a test case. If outputs are omitted, the oracle
is considered as �weak oracle� since it only focuses on whether the system crashes or
raises an exception. The approach used in this thesis requires to also model the desired
outputs, which leads to a much stronger oracle.

The second dimension are the so-called �model characteristics�. This dimension includes
decisions made on time handling, determinism vs. non-determinism, and an event-based
view vs. the use of continuous systems. The MoMuT toolchain supports basic time-
outs and non-determinism and uses an event-based view. Note, that the term �non-
determinism� is ambiguous. In this thesis, the term is used in the sense of underspeci�-
cation. This is discussed in detail in Section 2.2. The complete toolchain only supports
an event-based view. However, some parts, like the test-case generator Ulysses, described
in Section 3.4 are already prepared for hybrid systems.

The third dimension is the so-called �model paradigm�. For this thesis, a combination
of di�erent paradigms is used: On the one hand, there is a strong focus on so-called
�Transition-Based Notations�, since UML state machines are used, on the other hand
there is also heavy use of �State-Based Notations�. This is very important for this thesis,
since it allows for di�erent modeling styles. One important contribution of this thesis is
the investigation of the impact of the modeling style on the test-case generation.

The fourth dimension are the so-called �test selection criteria�. As the title of this thesis
already suggests, mutation testing, which classi�es as fault-based selection criterion, is
used. Mutation operators are used to create a set of faulty models, which are later
analyzed in order to create test cases. Depending on which mutation operators are used,
this test selection criterion can also cover other criteria. For instance, in the toolchain
used in this thesis, there is one mutation operator, which corresponds to `transition
coverage�, which is considered a �structural model coverage criterion�.
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The �fth dimension is the so-called �test generation technology�. The toolchain used
in this thesis can be classi�ed to do �bounded model checking�. However, the proper-
ties, which are checked are not formulas in temporal logic, but instead the conformance
between a mutated model and the unmutated model is checked.

The sixth dimension is the decision between online and o�ine testing. In online testing,
the test tool communicates directly to the system-under-test, whereas in o�ine testing a
test suite is created, which can later be executed using a test adapter and a test driver.
The toolchain used in this thesis performs o�ine testing.

In summary the toolchain used in this thesis is based on an approach operating on non-
deterministic input-output model speci�cations, that are transition-based in the front
end and have a pre-post structure in the internal representation to generate o�ine tests
that cover fault-based criteria, which can subsume structural criteria by applying model
checking.

2.2 The Conformance Relation ioco

2.2.1 De�nition

The toolchain used for this thesis is designed for the conformance relation ioco. It has
been presented by Tretmans [Tre96]. Using ioco allows for partial models and non-
determinism in the sense of underspeci�cation. To decide the conformance i ioco s be-
tween the implementation i and the speci�cation s, both implementation and speci�-
cation have to be presented as Labeled Transition System (LTS). Note, that the terms
implementation and speci�cation refer to the role in conformance checking and not to
the level of abstraction. In fact, for generating test cases the tool can use mutated mod-
els as implementation or even existing test cases as speci�cations, since they can all be
expressed as LTS.

The de�nition of a labeled transition system that is used in earlier work of our workgroup
[Aic+11a], where the approach of the toolchain is described, is:

�Thereby, a labeled transition system is de�ned as tuple 〈S,L, T, s0〉 where

• S is a countable set of states
• L = LU ∪ LI is a countable set of labels divided into input labels LI
and output labels LU such that LI ∩ LU = ∅
• T ⊂ S × (L ∪ {τ})× S is the transition relation, and
• s0 ∈ S is the initial state.�

So the labels denoting events of the system are distinguished between input and output
events. Additionally there are internal events, which are expressed by the special label
τ , which is neither an input nor an output label.

The system serving as implementation is considered to be weakly input-enabled, which
means that all input events are possible in any state and the implementation is not
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allowed to prevent them. However, it may be necessary to take internal transitions before.
Technically, input enabledness is realized by adding self-loops with otherwise unde�ned
inputs. The class of LTS which are input-enabled is called IOTS.

For each state of the LTS L, where no output is produced, a self-loop with a special out-
put label denoting quiescence is added to the LTS. After determinizing this automaton
this results in a so-called suspension automaton ∆(L). The set Straces(s) contains all
possible traces through the suspension automaton, which are called suspension traces.

Straces(L) =df traces(∆(L))

A suspension trace is a sequence of input- and output-events including the special output
δ for quiescence. For each IOTS and each trace the function after returns the set of states
that are reached, when following the labels of the trace. The function out takes a set of
states and returns the set of output labels that occur in transitions going away from any
of the given states.

Finally i ioco s can be de�ned as:

i ioco s =df ∀σ ∈ Straces(s) • out(i after σ) ⊆ out(s after σ)

The rationale behind this de�nition is that conformance only depends on traces, de�ned
by the speci�cation. This has the great advantage that partial models can be used to
specify a system and a full model or an implementation can conform to it. All input-
events that are not part of the speci�cation are left to the freedom of the implementation.
However, if a trace is de�ned by the speci�cation, then in order to conform, any output-
event (either an output label or quiescence) occurring on the implementation has to be
allowed by the speci�cation. Any allowed output-event after a trace σ is element of the
set out(s after σ), so the set of performed output-events by the implementation out(i
after σ) has to be a subset.

If the speci�cation LTS models a deterministic system, each set of allowed outputs after
any trace contains exactly one output event, so in order to conform to the speci�cation
the implementation has also to be deterministic and produce the same output as the
speci�cation. If on the other hand the speci�cation LTS models a non-deterministic
system, there are some traces after which the set of allowed outputs contains more than
one element and it is up to the implementation which one to produce. This means, that
non-determinism is always understood in the sense of underspeci�cation and there is
no fairness-assumption which would require an implementation to be non-deterministic,
too.

Example To illustrate the meaning of ioco conformance let us consider the following
example:

Given the LTS S1, S2 and I, which represent two di�erent speci�cations and one im-
plementation for a minimized version of the car alarm system. Let the alphabet consist

11



2 Prerequisites

of the set of input-labels LI = { Close , Lock } and the set of output-labels LU =
{ ArmedOn }. Consider the set of states, the transition relation and the initial state as
visualized in Figure 2.1

S1

Close

Lock

Lock

Close

ArmedOn

S2

Close

Lock

ArmedOn

I

Lock

ArmedOn

Figure 2.1: LTS of ioco example

In a �rst step, the implementation becomes input-enabled by adding self-loops with all
elements of LI at each state, where a transition with an input label is missing. This leads
to the IOTS depicted in Figure 2.2.

I

Close

Lock

Close, Lock

ArmedOn

Close, Lock

Figure 2.2: IOTS of implementation of ioco example

In a next step the suspension automata are derived, as depicted in Figure 2.3.

To decide, whether I iocoS1 and I iocoS2 hold, the traces of S1 resp. S2 have to be
investigated.

Table 2.1 shows some traces, which can be used to instantiate the formula. In the last
row, the trace < Lock > is considered. After this trace S1 prescribes quiescence, which
is violated by the implementation by producing the output event �ArmedOn�. This is a
counterexample, so I iocoS1 does not hold.

Table 2.2 shows the relevant traces for determining whether I iocoS2 holds. Note, that
traces with consecutive quiescence have been omitted, as otherwise the number of traces
would be in�nite. So technically Table 2.2 is not a proof that I iocoS2 holds. However,
it can be argued, that since both models represent a deterministic system, these traces
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∆(S1)

δ

δ δ

δ

Close

Lock

Lock

Close

ArmedOn

∆(S2)

Close

δ

Lock

δ

ArmedOn

δ

∆(I)

Close, δ

Lock

Close,Lock

ArmedOn

Close,Lock, δ

Figure 2.3: Suspension automata of ioco example

σ out(I after σ) out(S1 after σ) ⊆
< > {δ} {δ} 3

< Close > {δ} {δ} 3

< Close , Lock > {ArmedOn} {ArmedOn} 3

< Lock > {ArmedOn} {δ} 7

Table 2.1: Traces to decide I iocoS1

σ out(I after σ) out(S1 after σ) ⊆
< > {δ} {δ} 3

< Close > {δ} {δ} 3

< δ, Close > {δ} {δ} 3

< Close , Lock > {ArmedOn} {ArmedOn} 3

< δ, Close , Lock > {ArmedOn} {ArmedOn} 3

< Close , δ, Lock > {ArmedOn} {ArmedOn} 3

< δ, Close, δ , Lock > {ArmedOn} {ArmedOn} 3

< Close , Lock , ArmedOn > {δ} {δ} 3

< δ, Close , Lock , ArmedOn > {δ} {δ} 3

< Close , δ, Lock , ArmedOn> {δ} {δ} 3

< δ, Close, δ , Lock , ArmedOn > {δ} {δ} 3

Table 2.2: Traces to decide I iocoS2
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won't reveal non-conforming behavior either. Another way to determine the ioco confor-
mance is shown in Section 2.2.2.

2.2.2 Product Graph

For automating the decision, whether for two LTS i and s the statement i ioco s holds,
Weiglhofer and Wotawa proposed the idea of a synchronous product ×ioco. The result
of i ×ioco s is a LTS which contains a special �fail� state if and only if i ioco s does not
hold. Additionally a synchronous product contains a so-called �pass� state for allowed
behavior of the implementation that is underspeci�ed by the speci�cation.

In later work of the workgroup [BWA10] this was changed slightly so that now �fail�
resp. �pass� states are regular states, with the property that they are sink states with a
self-loop, which has a special label �fail� resp. �pass�. This kind of synchronous product
is also referred to as �product graph�.

The product graph i ×ioco s can be constructed automatically by exploring both LTS
simultaneously and applying the following rules: [BWA10]

• If a transition is possible in both i and s, it is added to the product graph.
• If a transition with an input label is possible in i but not in s, then a new node
is created in the product graph. Then a transition with said input label leading to
this node is created and a self-loop with the special label �pass� is added.
• If a transition with an output label is possible in s but not in i, then also a
new node, with a �pass� self-loop is created and is connected to the graph with a
transition using said output label.
• If a transition with an input label is possible in s but not in i, then it is assumed
that i contains a self-loop with this input label and thus stays in the same state.
• If a transition with an output label is possible in i but not in s, then a new node
with a �fail� self-loop is created and connected to the graph using said output label.
In this case non-conforming behavior has been revealed.

Example As example consider the three LTS from Figure 2.3, which have already served
as example in Section 2.2.1. Figure 2.4 shows the corresponding product graphs. Since
I×iocoS1 contains a fail transition and I×iocoS2 does not, I iocoS1 does not hold, while
I iocoS2 does.
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I ×ioco S1

δ

δ

δ

Close

Lock

Lock

Close

ArmedOn

δ

pass

ArmedOn

fail

I ×ioco S2

Close

δ

Lock

δ

ArmedOn

δ

Figure 2.4: Product graphs of ioco example
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2.3 Action Systems

2.3.1 Flat Action Systems

Instead of directly mapping the UML input models to LTS, in the MoMuT toolchain
two intermediate languages are used. They are based on the action system formalism
proposed by Back and Kurki-Suonio [BK83]. First the UML model is translated into an
object-oriented action system, which is later translated into a �at version of an action
system. This process has been described in previous publications of this workgroup
[Aic+11b].

There the abstract syntax of Action Systems have been de�ned as:

�

AS =df |[ var V : T = I
functions F 1

n = F 1
b ; . . . ; F

m
n = Fmb

actions N1
n = N1

b ; . . . ; N
a
n = Na

b

do A1 2 ... 2 Ad od
]| : FI

"

Action systems are state based. The state is represented by a vector of variables V ,
which are initialized with the vector I. The state update can be done either in the
named actions or they can be swapped out into functions. The basic concept of a state
variable update is a so-called guarded command, which has been introduced as guarded
iteration statement by Dijkstra [Dij76]. The rationale behind this notion is that each
action has a so-called guard, which is a condition over the variables, that decides, if
the action is enabled. The operator 2 is called �non-deterministic choice� and states
that in each iteration of the loop one action is chosen non-deterministically. Within this
loop, A1 . . . Ad are so-called anonymous actions. They can consist of basic actions and
additionally of calls of the named actions N1 . . . Na.

The following basic actions exist: [Aic+11b]

Guarded Command. A guarded command has the form �requires p: S end� where p is
the condition serving as guard and S can be any other basic action. That means,
that guarded commands can be nested.

Assignment. An assignment is used to actually perform a state update and has the form
�y := e� where y is a variable and e is an expression.

Local Variables. Local variables can be introduced to store intermediate results that
shall not introduce a new state. The general form is �var x1: T1; . . . ;xn: Tn: S�
where x1 . . . xn are the introduced variables of type T1 . . . Tn and S is any other
basic action.

Sequential Composition. A sequential composition has the form �S1; . . . ;Sn� and is
used to denote that the basic actions S1 . . . Sn are performed in the given order.
Note, that since the composed action is performed atomically, the sequential com-
position of some basic actions is only enabled if every single action is enabled. So if
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a basic action is not enabled it hinders all basic actions which are connected using
the sequential composition, even if they occur before it.

Nondeterministic Composition. A non-deterministic composition has the generic form
�S1 2 S2� and denotes the same as the non-deterministic choice. Either S1 or S2
are performed, if they are enabled.

Prioritized Composition. The prioritized composition has the generic form �S1//S2�
and denotes that if S1 is enabled, it is performed, otherwise S2 is performed. It is
merely a short form for a non-deterministic composition and a guarded command
consisting of the negation of the guard-condition of S1 as guard for S2.

Skip. Skip is the basic action used to denote an empty assignment, leaving the state
unchanged.

Named actions have a name and a body. The name may be pre�xed with �ctr� or �obs� to
mark an action as input resp. output action, otherwise the action is treated as internal.
This is important, since the name of the actions correspond to the labels in the LTS, and
labels are distinguished between input and output labels as described in Section 2.2.1.

The body of a named action can consist of basic action as well as of calls of functions,
but not other named actions. Functions can only consist of basic actions. That way, there
are no direct or indirect recursive calls, and for evaluating the action system all calls can
be inlined.

2.3.2 Object-Oriented Action Systems

Additionally to the �at action systems which serve as input language for the ioco checker
Ulysses there are so-called object-oriented action systems which serve as intermediate
modeling language. In this language an object-oriented extension is made to action sys-
tems. This extension is a limited implementation of an approach proposed by Bonsangue
et al. [BKS98].

An object-oriented action system may consist of several action systems which are treated
as classes. So it should not surprise that the de�nition of a class resembles the de�nition
of an action system:

�

Cb =df |[ var V : T = I
methods M1

n = M1
b ; . . . ; M

m
n = Mm

b

actions N1
n = N1

b ; . . . ; N
a
n = Na

b

do A od

]| : MI

� [Aic+11b]

The current implementation of the MoMuT toolchain (the responsible part is called
Argos and described in Section 3.3) only allows for a �nite set of classes and a �nite set
of objects. So objects can only be created within the var block. Additionally one class
is marked as autocons, which means that one object of this class is created and serves
as root object.
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2 Prerequisites

To prioritize the actions between objects of di�erent classes, a so-called �system assem-
bling block� is introduced. There all classes used in the object-oriented action system
are enumerated and connected using either the 2 or // operator. When the // operator
is used to connect two classes, actions of the latter class or only enabled if none of the
former is.

Communication is done via a shared memory. Technically, this is realized by getter and
setter methods, since methods can be called from actions of any class.

Variables can either be objects, Booleans, Integers or enumerations. For Integers the
typing system is very strong including lower and upper bounds. This is due to the
enumerative exploration approach done by Ulysses, which is very sensitive about the
range of values that can be used as parameters. Additionally there is support for lists
and tuples, which can be of any de�ned type, including other list types and tuples. The
strong typing system prescribes to include the length of a list in its de�nition.
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3 The Toolchain

All experiments described in this work are conducted using the prototype toolchain,
which has been created within the MOGENTES project with the purpose of test case
generation. This toolchain is currently named MoMuT. Throughout the development it
has also been referred to as the UML/OOAS track, since it uses UML as input language
for models which are then transformed into so-called Object-Oriented Action Systems.

Figure 3.1 gives an overview over the tools contained in this toolchain. The solid boxes
represent the programs, those within the dashed box are considered as part of the
toolchain. The lines with arrows represent �les, which are created as output by one
program and used as input by the next program. The label OOAS refers to the object-
oriented action system encoding the original model and the label OOASM refers to the
object-oriented actions systems encoding the model mutants. The labels AS and ASM

refer to the resp. �at action systems.

The tool Argos has to be run once per mutant and once with the original model. Also
the tool Ulysses has to be run for each mutant independently. Shell scripts are used to
automate this process.

3.1 Input Language

Even though object-oriented action systems are a modeling language of their own, the
designated input language of the toolchain is UML. In the MOGENTES project the
Eclipse Modeling Framework (EMF) has been used as common representation format.
As formalism a subset of UML 2.0 and OCL 2.0 is used. Supported elements of UML
are class diagrams and state machine diagrams. [Pol09]

Papyrus UMMU Argos Ulysses
UML

OOAS

OOAS

AS

AS

Script ScriptMoMuT Toolchain

Abstract TCs
M M

Figure 3.1: Overview over the MoMuT toolchain
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As modeling tool Papyrus UML1 is used. [Kro10]

3.1.1 Used UML elements

UML speci�es many di�erent diagrams and for each diagram many di�erent elements,
but not all of them are supported by the MoMuT toolchain. In fact, only two types of
diagrams are used: class diagrams and state machine diagrams

One of the core functions of the class diagrams used for test models is to de�ne the test
interface. That means, class diagrams are used to de�ne the system boundaries and to
determine which events can occur in the generated test cases. Both environment and
the system-under-test are represented as classes. The events, which are used in the test
cases, can either be modeled as signal receptions or operations.

Signal receptions in a class representing (a part of) the system-under-test are considered
as inputs, while operations and signal receptions in an environment class are considered
as output. Both signals and operations can have parameters. Properties of classes can
be used as variables, which can be accessed by OCL constraints and so-called opaque
behavior, which can be linked to transition e�ects or entry- and exit actions. For param-
eters and properties not only the UML primitive data type Integer can be used, but also
user-de�ned types like enumerations, which can also be de�ned in the class diagram, or
other classes. For parameters of operations and properties of signals it is recommended
to use user-de�ned data types instead of UML primitive data types.

According to a former publication [KSA09] it had been planed to implement both signal
receptions and operations for input events as well as for output events. Since operations
are supposed to be synchronous, it had been planed to implement the support for return
values. An operation in an environment class using a return value would have resulted
in an output event directly followed by an input event representing the return value.
An operation in a system-under-test class would have resulted in an input event directly
followed by an output event representing the return value. However, the feature to use
operations in a class of the system-under-test has not been maintained, and the feature
to use operations in an environment class still lacks the support for return values in the
current version of UMMU.

Class diagrams are also used to statically create the instances of the classes. This is done
by using so-called �instance speci�cations�. There also the initial value for the properties
can be assigned including references to other objects.

For classes, there is a limited support for inheritance without polymorphism and �late-
binding� [KSA09].

Classes can either be used to merely encapsulate data, then they can be passive. Oth-
erwise, they are active and a state-machine diagram has to be created for them. Valid
input �les contain exactly one state-machine diagram per active class. However, the

1http://www.papyrusuml.org/
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state-machine within this diagram can use orthogonal regions in order to model parallel
behavior within one class.

In each orthogonal region there is an initial state. This is the state where the transition
from the �Initial� element (the black dot) points to. From this state, there has to be at
least one outgoing transition. This can either be a self-loop or a transition to any other
state. Transitions can have a trigger, a guard and an e�ect.

A trigger is linked to an event. If this event occurs, the trigger is said to ��re� and
the transition is taken. Currently supported events are the reception of a signal (Sig-
nalEvent), the lapse of time (TimeEvent), or an event, that occurs when the evaluation of
a user-de�ned Boolean expression in OCL changes from false to true (ChangeEvent).

A guard is a Boolean expression, which has to be true, in order that the transition can be
taken, if the trigger �res. Thus, a guard can hinder a transition to be taken. Additionally
to arbitrary expressions in OCL there are two special expressions: �false� and �else� As
suggested by the name a �false� guard disables a transition completely, whereas an �else�
guard can be used if there are two transitions with the same trigger as a short-hand form
of the negation of the guard of the other transition.

In an e�ect, opaque behavior can be de�ned to perform a state variable update, a call of
an operation or the sending of a signal to other objects. The language used for opaque
behavior is called AGSL and described in Section 3.1.3. Opaque behavior can also be
linked to the entry or the exit of a state, which is useful if there is more than one
transition leading to or away from a state and the e�ect shall happen either way.

3.1.2 Mogentes UML Pro�le

UML diagrams can only be processed by the toolchain, if the custom �Mogentes UML
pro�le� is applied to it. Using this pro�le one can add information speci�c for the fault
based test case generation to the model. The following stereotypes are provided by the
pro�le:

�system_under_test� This stereotype is used to mark exactly one class as system-
under-test. However, the system-under-test can consist of more than one class.
As described in a publication by the developers [KSA09] all classes that are not
marked with the sterotype �environment� are considered to be part of the system-
under-test.

�environment� This stereotype is used to mark one or more classes as environment.
Method calls and signal receptions of these classes are later mapped to observable
actions.

�from_environment� This stereotype can be applied to both signals and signal recep-
tions. If it is used to mark a signal, then this signal is broadcasted to all instances of
all classes, which have a reception for this signal. If it is used on a signal reception,
then the signal is only broadcasted to the instances of the particular class.
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�range_de�nition� This stereotype is used on user-de�ned data types in order to limit
the range of Integer and Float types. Limiting the range is very important for test
case generation approaches, which enumerate all possible values as Ulysses does.

�range� This stereotype is used to denote that a user-de�ned range is used for a prop-
erty.

�sample_de�nition� When limiting the range of an Integer to a continuous range is
not restrictive enough to cope with the complexity, this stereotype can be used.
By de�ning a sample one can limit the values used for enumeration to a de�nite
set of concrete values.

�sample� This stereotype is used to denote that a user-de�ned sample is used for a
property.

�triggerless� In UML a so called change-trigger only �res, when the evaluation of an
expression changes from false to true. If a transition has no trigger at all, a transi-
tion can only be taken if the guard holds, when the source state of the transition
is entered. The stereotype �triggerless� has been introduced as combination of
both. A transition having no trigger and a guard when marked with the stereotype
�triggerless� is taken whenever the guard evaluates to true.

3.1.3 Activity and Guard Speci�cation Language

The activity guard and speci�cation language (AGSL) is a �programming language
embeddable in UML model elements�. It has been developed by Budapest University
of Technology and Economics and is described in the appendix of a technical report
[Kro10].

For the use in the MoMuT toolchain, the following statements are supported:

Assignment. An assignment has the form prop = expression;, where prop is the iden-
ti�er of a property of the current object and expression is an expression.

Invoke Statement. An invoke statement has the form run op(params); where op is the
quali�ed name of an operation of any object that the current object has a reference
to and params is a parameter for the operation. Note, that parameters are optional
for operations. Operations are used to model outputs from the system-under-test
to the environment, if the output is modeled as operation.

Send Statement. An invoke statement has the form send sig(params) to obj; where
sig is the identi�er of a signal, params are optional parameters and obj is the
object that shall receive the signal. There are two usages of the send statement.
Send statements can be used to model an output by sending a signal to a class
belonging to the environment. Send statements can also be used to dispatch inputs
received from one class of the system-under-test explicitly to other classes, which
also belong to the system-under-test.

22



3.2 UMMU

3.2 UMMU

The �rst tool of the MoMuT toolchain is called UMMU. It translates the UML test
models into object-oriented action systems, which are used as intermediate language.
Also, here the mutation operators for creating the model mutants are implemented. The
output of this tool are both the original model and model mutants encoded as object-
oriented action systems. This tool has been developed by AIT within the MOGENTES
project.

3.2.1 VIATRA

For parsing, mutating and transforming both original and mutated models into OOAS,
the VIATRA Framework is used. VIATRA is an acronym for �Visual Automated Trans-
formations for Formal Veri�cation and Validation of UMLModels�. It has been developed
at Budapest University of Technology and Economics before the MOGENTES project
has started [Cse+02].

VIATRA is based on Eclipse. It provides so-called model spaces, in which the test model
can be imported and transformed.

3.2.2 UML to OOAS transformation

The general ideas of the transformation and the model mutation have been presented
in a publication presenting the mapping [KSA09]. Even though this paper is based on
a previous version of the toolchain, most parts are still correct, only the notion of time
has changed slightly since.

All classes of the test model that correspond to the system-under-test (and not the
environment) are directly mapped to a corresponding class in the object-oriented action
system. Additionally there is one so-called �housekeeping� class with the name __model
and one class called __environment in the OOAS, which represents all classes marked
as environment in the UML class diagram.

The OOAS class __model is marked as autocons, thus one object is automatically created
and used as root object. In the variable de�nition block of this class all instances of the
system-under-test as de�ned in the UML class diagram are de�ned. Additionally one
object of the __environment class is created.

In the system-assembling-block the prioritized composition is used to give the actions
of the __model class priority over the system-under-test classes, which are themselves
connected with a non-deterministic choice among each other and have priority over the
actions in the __environment class.

For the test model of the car alarm system, described in Section 1.6 the system-assembling-
block looks as follows:
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__model // ( AlarmSystem ) // __environment

The input actions are de�ned in the __environment class. Since this class has the
lowest priority in the system-assembling-block, so-called run-to-completion semantics
is achieved. That means that new inputs only occur in the test model, when the internal
actions caused by the last input have �nished.

One important aspect of the input handling is, that in each state of the action system,
only those input actions are enabled which correspond to trigger events of transitions
which are outgoing from the current state and enabled by the guards. Because of that,
the action system is not input-complete. This is very important in order to enable partial
models.

When an input-event is chosen, the object of the __environment class writes a corre-
sponding event into an event queue. If there is only one object, which uses this event as
transition trigger, the queue of this object is used, otherwise it is broadcasted via the
housekeeping class, which implements an observer pattern.

The transitions themselves, as well as their e�ects are translated into several internal
actions. For each transitions between two states an internal action is created. In each
class for each orthogonal region of the state machine and for each nested state there is a
variable storing the current state. The type of each of these variables is an enumeration
with all possible states in this region resp. nested state. The action representing the
transition consists of a guard with the condition that the source state of the transition
equals the current state and the body contains a state update, which updates this variable
with the destination state of the transition. If the transition is triggered by an event the
guard additionally contains the condition that the event has to be on top of the queue
and the body contains a variable update which eliminates this event from the queue.

Opaque behavior of e�ects or entry and exit actions is also translated into several actions.
Each assignment statement is translated into an internal action, calls of and signals to
the environment are translated into output actions.

In the so-called do od-block, the iterative loop of each class, these actions are composed
as follows: for each transition between two states, �rst the transition, then the actions
which correspond to the exit action of the source state, then the actions corresponding
to the e�ects of the transitions and �nally the actions corresponding to the entry action
of the destination state are connected using the sequential composition. The blocks for
di�erent transitions are then composed using the non-deterministic choice.

For time handling, originally there had been a special output event called after(t) which
had been non-deterministically composed with the input actions in the __environment
class. The parameter t denoted the time that had passed in the same time unit that has
been chosen for the UML input model.

In current versions of UMMU this action is now internal. In order to make the time
visible within the LTS, each other input- and output- action now has one additional
parameter. The �rst parameter of each input- or output action denotes the time that
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has passed since the last input- or output action. A comparison between these two ways
of time handling can be found in Section 5.1.3.

One very important aspect of this notion of time is the complexity of exploring the
action system using an enumerative approach as Ulysses does. Each possible value of
each parameter of each action leads to a new branch which has to be considered in
a breadth-�rst-search. As one can easily imagine, this can lead to enormous run time
problems unless the range of possible values is restricted rigorously. Because of that
UMMU provides di�erent options for picking only �interesting� time steps. Using the
default behavior of generating an OOAS with UMMU only time values occur in the
LTS, which correspond to a time trigger used by a transition that is reachable by the
current state of any orthogonal region.

Example As example for an input event consider the �Close� signal from above men-
tioned car alarm system. The code that is produced for this input action looks as fol-
lows:

1 ctr rece ive_externa l_s igna l_Close_at_InstanceSpec i f i cat ion_0 ( c_wait_time : t_time )
2 = requires m. Close_is_enabled_at_AlarmSystem (0) and

3 ( m. get_wait_time ( ) = c_wait_time ) :
4 # re−a l l ow wait c o n t r o l l a b l e
5 wait_allowed := true ;
6 m. reset_wait_time ( ) ;
7 # re s e t f l a g s enab l ing e x t e rna l input
8 m. disab le_externa l_input ( ) ;
9 m. get_Ins tanceSpec i f i ca t i on_0 ( ) . __rcv_Close ( ) ;

10 check_for_inputs := true

11 end ;

The pre�x ctr is used to mark the action as input, so that its occurrence leads to an input
label in the produced LTS and is therefore considered as input event in the test case. The
name of the action is derived from the name of the signal, but the label contains addi-
tional information, like the object, that receives the signal (InstanceSpecification_0).
The parameter denotes the time, that has passed before this action occurs. The guard in
lines 2 and 3 consists of a method call to the �housekeeping� object to ensure, that one
of the transitions triggered by the reception of this signal is enabled and the parameter
denoting the time matches the internal simulated time.

Setting the wait_allowed �ag to true in line 5, the action re-enables the internal after
action. The internal simulated time is reseted in line 6, so that the time parameter of
the next visible action will show the time, that has passed since this action has occurred.
In line 8 the method disable_external_input() is called on the housekeeping object.
This resets the variables containing the information, which input actions are enabled
because they have a corresponding internal action encoding an enabled transition in the
state machine. Using the method m.get_InstanceSpecification_0().__rcv_Close();

in line 9 the event is written into the queue of the object InstanceSpecification_0.
By setting the �ag check_for_inputs to true in line 10, in the next iteration of the
do od-block an internal action gets enabled. This action evaluates, which input actions
shall be enabled because their corresponding transitions are.
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In the following as example for an internal action encoding the actual transition within
the state machine is given. The transition from the state �OpenAndLocked� to the state
�ClosedAndLocked� looks like this:

1 trans_OpenAndLocked_From_OpenAndLocked_to_ClosedAndLocked_Trans_ClosedAndLocked =
2 requires ( ( Region_0 = AlarmSystem_Region_0_OpenAndLocked ) and

3 ( not __consumed_Region_0) and ( s e l f . __events <> [ n i l ] ) and

4 ( ( (hd s e l f . __events ) [ 0 ] = __received_AlarmSystem_Close ) ) ) :
5 # r e g i s t e r t imer ( s ) f o r entered s t a t e : ClosedAndLocked
6 __m. reg ister_trans i t ion_AlarmSystem (20 , s e l f , ClosedAndLocked_TimeEvent_3_Armed

) ;
7 Region_0 := AlarmSystem_Region_0_ClosedAndLocked ;
8 # se t consumed f l a g s
9 __consumed_Region_0 := true ;

10 __consumed_Region_0__Alarm__Region_0 := true

It is an internal action, so it has no pre�x. The variable Region_0 is used to store
the current state of the orthogonal region. The transition is enabled if the system is in
the state �ClosedAndUnlocked� and the �rst element of the event queue is the event
corresponding to the reception of the �Close� signal. The state variable is updated to
the enumeration value corresponding to the �ClosedAndLocked� state and since there is
a transition triggered by a time trigger leading away from the target state, a timer is
registered. For each orthogonal region and for each super-state there is a consumed �ag
to ensure that in each region only one transition is triggered by the event.

An example for an output event is the call of the operation �SetOn� in the environ-
ment class �AlarmArmed�. In the OOAS this is translated as output event of the class
�AlarmSystem�.

The action looks like this:

1 obs __call_AlarmArmed_SetOn( c_wait_time : t_time ) =
2 requires __m. get_wait_time ( ) = c_wait_time : __m. reset_wait_time ( ) end ;

Again, the parameter denotes the time that has passed, before this action occurs. The
guard �lters the possible time values and only allows the one matching the internal
simulated time.

Since this output is produced as entry action of the �Armed� state, this action is coupled
to each transition leading to this state. This is done by using the sequential composition
within the do od-block:

1 #. . .
2 [ ]
3 (
4 trans_ClosedAndLocked_From_ClosedAndLocked_to_Armed_Trans_0_Armed ;
5 (var __t26 : t_time : __call_AlarmArmed_SetOn( __t26) )
6 )
7 [ ]
8 #. . .

The temporary variable __t26 is used to enumerate all possible time values. There is an
implicit non-deterministic choice among each of these values and the guard within the
output action �lters it.
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3.2.3 Model Mutation

The e�ectiveness and e�ciency of a mutation based technique depends on the quality
of the mutation operators. By choosing, which mutation operator is applied, it is de-
termined, which possible errors can be predicted. The generated test cases can then be
used to decide, whether these errors occur in the system-under-test.

A survey of planned and realized mutation operators within the MOGENTES project
has been published in a project deliverable [Wei08].

In the version of the toolchain used for this thesis, the following mutation operators have
been implemented. Note, that each mutant has only one deviation from the original. So
if an operator replaces something �for each transition�, then for each transition a new
mutant is created. The rationale behind this is to rely on the coupling e�ect which
described in Section 1.2.2 and create only �rst-order-mutants.

Removing Trigger Events on all Transitions. This mutation operator removes the trig-
ger of each transition and applies the �triggerless� stereotype instead.

Mutating Transition Signal Events. This mutation operator replaces the signal used
as trigger with any other possible signal. Thus, if a class has several signal recep-
tions, due to combinatorial e�ects this mutation operator creates a high number of
mutants. Also this mutation operator is likely to create non-deterministic mutants
out of deterministic test models.

Mutating Transition Time Trigger Events. This mutation operator replaces the time
trigger expression with six other values: the expression is increased and decreased
by one unit (+1, -1), increased and decreased by one order of magnitude (* 10, /
10) and replaced by the highest used value and by the constant value 1.

Mutating Transition OCL Expressions. This mutation operator is responsible for mu-
tating expressions used in guards, which are written in OCL. Every literal Integer
value used in a guard is replaced by a value increased by one, a value decreased by
one, and the constant value 0. Enumeration literals used in guards are replaced by
another value of the same type.

Mutating Transition AGSL Expressions. This mutation operator replaces literal Inte-
ger and enumeration values used in assignment statements of transition e�ects.
Integer values are increased and decreased by one and replaced by the constant
value 0, enumeration values are replaced by an other value of the same type.

Mutating Guards on all Transitions. This mutation operator mutates guards as whole.
On each transition the guard is inverted by negating the condition. Additionally for
each transition with a guard the condition is set to logical false and true. Setting
the guard to false disables the transition, while setting the guard to true removes
the guard.

Mutating OCL Change Expression on all Transitions. This mutation operator inverts
the expressions of change triggers.

Removing Entry and Exit Action in all States. This mutation operator removes entry-
and exit actions as a whole. If both entry- and exit actions exist in a state, then
two separate mutants are created.
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Mutating Entry and Exit Action in all States. This mutation operator replaces the en-
try action of a state with the entry action of another state and the exit action of
a state with the exit action of an other state.

Removing E�ect in all Transitions. This mutation operator removes the e�ect of a
transition as a whole.

Mutating E�ect in all Transitions. This mutation operator replaces the e�ect of a tran-
sition with the e�ect of each other transition.

Mutating Sub Expressions in OCL Expressions. This mutation operator decomposes
the guards and replaces each Boolean subexpression with the negated expression
as well as to true and to false.

Mutating Operator in OCL Expressions. This mutation operator replaces an �equal�,
�unequal�, �less�, �greater�, �less or equal� or �greater or equal� operator with each
other operator except for the logical negation. Also it replaces an arithmetic oper-
ator with each other arithmetic operator.

Mutating AGSL Expressions. This mutation operator removes a single statement of an
opaque behavior.

Figure 3.2 illustrates �ve mutation operators ( �Mutating Transition Signal Events�,
�Mutating Transition Time Triggers�, �Removing Trigger Events�, Mutating Guards, and
Removing Entry Action) by showing a mutant of each.

3.3 Argos

Argos is a compiler for object-oriented action systems (OOAS) and has been originally
written by Willibald Krenn within the MOGENTES project. It produces �at action
systems which are encoded in Prolog �les that can be processed by Ulysses. Since July
2010 Argos is maintained by the author of this thesis. As a part of this maintenance
work, an Argos manual which also describes in detail the concrete syntax of OOAS has
been written. [Tir12]

In order to convert the object-oriented action system into a �at one, Argos duplicates
each variable, method and action de�ned in a class for each object. This is possible, since
objects can only be created in the variable de�nition block and are therefore known at
compile-time. Details on the translation process can be found in the paper [KSA09]
describing the approach.

3.4 Ulysses

Ulysses is an ioco checker developed by Harald Brandl within the MOGENTES project.
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Mutating Transition Signal Events

Mutating Transition Time Trigger Events Removing Trigger Events

Original

Mutating Guards Removing Entry Action

Figure 3.2: Illustration of mutation operators
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3.4.1 Features

The main usage of Ulysses is to check the ioco conformance between two action systems.
When providing two action systems, one marked as original and one marked as mutant,
it can interpret the action systems and check whether the LTS corresponding to the
mutated action system conforms to the LTS of the original action system in terms of
ioco. If it does not, a test case revealing the failure can be generated. When Ulysses is used
this way, the LTS is constructed on the �y and only used internally. The construction of
the LTS is performed by calculating the product graph as described in Section 2.2.2.

Another possible usage of Ulysses is the generation of the product graph as ×ioco asm
of two action systems as and asm and explicitly store it as �le. For doing so one can
choose among two di�erent �le formats: the �aut� format and the graphviz format. The
�aut� format is the same format as used for test cases. Files in this format can also be
used as input �les, while the graphviz format is for visualization and debugging only.

When calculating the product graph of an action system as with itself as ×ioco as, the
result equals the LTS of the action system. This means, that calculating the product
graph can be used to interpret an action system and store its LTS explicitly as graph.

Instead of providing two action systems, it is also possible to provide one action system
and a LTS in Aldebaran �aut� format. This enables the ioco check between action systems
which have to be adapted �rst, in order to use the same alphabet. Action systems using
di�erent alphabets can arise, when they are produced from di�erent UML models, since
in each translation step of the toolchain some information about the internal structure
is encoded into the action names, on which the labels of the LTS are based on. Even if
the test interface of two UML models is the same, the labels in the produced LTS may
di�er. Since the �aut� format is human readable, a text editor can be used to relabel the
actions of a LTS.

Finally, Ulysses can also be used to check, whether a given test case is able to reveal the
di�erence between an action system marked as original and an action system marked as
mutant.

3.4.2 Killing Strategies

To determine the conformance between two action systems, Ulysses calculates the cor-
responding product graph. If non-conformance can be shown, at one point there is an
output produced by the model mutant, which is not allowed by the original model. In
the product graph the last state before this output occurs, is called �unsafe state�. From
this state there is a transition labeled with the unspeci�ed output leading to a so-called
�fail state�. This state has a self-loop labeled with �fail�.

Ulysses is designed to create positive test cases, which explicitly contain a pass verdict.
So a test case can be obtained by expanding a trace, that leads to an unsafe state,
by adding only outgoing transitions with an output label de�ned by the speci�cation
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representing an allowed output. The output leading to the fail state per de�nition is not
an allowed output and therefore not part of the test case. Instead, after each output
passing the unsafe state without reaching the fail-state, the pass verdict is given.

The rationale behind this is, that any implementation, that produces a correct output,
does not implement the failure, which had been injected to the mutant by the mutation
operator.

Since a failure in a model can cause non-conforming behavior in more than one state,
it can happen, that the product-graph contains more than one �unsafe state� and often
there is more than one trace leading to a speci�c �unsafe state�.

Because of that a decision has to be made, how to extract test cases out of a product
graph. Throughout the development of Ulysses, di�erent strategies have been imple-
mented, but not all have been maintained. The �rst seven strategies including a so-called
random walk have been presented in [Aic+11a]. There a comparison among them is pre-
sented using the car alarm system. For more complex models, like the wheel loader, these
strategies had been adapted.

The �rst decision to make is whether test cases have to be linear or if they may be
adaptive. Traditionally, test cases had been linear. Since models can be non-deterministic,
there can be states, in which there is a non-deterministic choice between two or more
output actions, or even states, in which both input- and output-actions can occure. In a
linear test case, only one case can be considered per test case. When executing the test
cases on an actual implementation, it can happen, that the implementation behaves not
as assumed by the test case but still correct with respect to the speci�cation. Because
of that, so-called �inconclusive� verdicts have to be added, whenever there is an output
in the product graph, that leads away from the considered path to the unsafe state.

A more sophisticated kind of test cases are so-called �branching adaptive test cases�.
As the name suggests this kind of test cases allow to represent the branching behavior
of the speci�cation in the test case. While linear test cases consider just one path to
the unsafe state and stop immediately when this path is left, adaptive test cases can
represent any number of paths at the same time. These test cases are general graphs
and can even be cyclic. Only if there is a path, from which the unsafe state can not
be reached at all, an �inconclusive� verdict is given. An example for a cyclic test case is
given in Section 5.3.2.

Early versions of Ulysses implemented algorithms to create both linear and adaptive test
cases. In a previous paper [Aic+11a] a comparison between the seven strategies provided
by Ulysses and one approach using another model-based testing tool had been presented.
Approach A1 and A2 included algorithms which created linear test cases. However, they
had severe disadventages like producing far too many duplicate test cases. Thus, they
had been given up quite soon.

Current versions of Ulysses provide the following of the original presented test case
selection strategies:
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S3 , also referred to as �Adaptive Killing Strategy�, creates one test case for each unsafe
state of the product graph between the original model and a model mutant. The
generated test cases are adaptive.

S4 , also referred to as �Lazy Killing Strategy�, also considers each unsafe state. However,
before creating a new test case, it checks whether a given unsafe state is already
covered by an existing test case. Only for unsafe states, that have not been covered,
new test cases are generated.

S5 , also referred to as �Lazy Ignorant Killing Strategy�, is even more restrictive about
creating new test cases. Before calculating the product graph between original
model and model mutant, an ioco check between each existing test case and the
model mutant is performed with the test case as speci�cation and the model mutant
as implementation. If non-conformance is shown, the test case is said to kill the
mutant. In this case processing the entire mutant is skipped and no additional test
case is produced. However, if no pre-existing test case is able to kill the model
mutant, for each unsafe state of the product graph a test case is created.

S6 , also referred to as �Random First Killing Strategy�, is very similar to S5, with the
only di�erence, that it starts with an initial test suite. This initial test suite consists
of test cases gained by so-called random walks. A random walk is a random path
through the LTS of the original model.

S7 , also re�ered to as �Random Killing Strategy�, consists solely of random walks,
without any fault-based approach.

In each fault-based strategy the creation of the product graph is bounded by a user-
de�ned search depth. For small models like most of the models of the car alarm system
this is more or less irrelevant, since the models are circular and it is feasible to use a
search depth, which is higher than the length of the longest path. For larger models,
like in the wheel loader case study, this is di�erent for two reasons: �rstly, the run-time
of the creation of the product graph grows exponentially with the number of di�erent
possible actions, which are possible in each step. So if a high search depth is needed,
the process becomes computational infeasible. Secondly, a fault in the model can lead to
numerous unsafe states in the product graph. The reason for this is, that non-conforming
behaviour of the model mutant can occure in more than one branch. Even though the
exploration stops in a branch, as soon, as the �rst fail state is reached, other branches
might be explored far deeper. So even if a fault in a mutant manifests itself in a fail-state
that is found early in the generation, exploring alternatives branches might be necessary.
Besides the long run-times for complex models this also results in huge test suites, which
in general is also considered as undesirable.

For this reason, current versions of Ulysses provide an option to alter the above-mentioned
test case extraction strategies as follows: instead of exploring the model always up to the
given search depth, if the option is enabled, Ulysses now also stops at the depth of the
�rst unsafe state. So if an unsafe state is found, the breadth-�rst-search only �nishes the
current level but does not go any deeper. The rationale behind this optimization is the
reduction of both size of the test suite and test case generation time. Note, that already
in the original strategies S5 and S6 not all unsafe states are covered. If a mutant can
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N

fail fail

fail

Figure 3.3: The cut of the search tree as product graph

already be killed by an existing test case, which only means that at least one unsafe
state is covered, no further test case is generated.

Figure 3.3 visualizes the e�ects of the altered killing strategies using the product graph.
The product graph serves as �search tree�, even though it is not necessarily a tree, since
nodes are merged, if they represent an identical state. For creating new test cases, this
graph is searched for unsafe states. This is done by searching for fail states, because
anunsafe state is a parent of a fail state.

When the altered version of a killing strategy is applied, the search stops at the dashed
line. However, in other branches of the search tree unsafe states can occur in higher
search depths, visualized as below the dashed line. For these unsafe states no test case
is generated.

This option is referred to as �Search Tree Cut� in the rest of this thesis.
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4 Combining Model-Based Mutation

Testing with Re�nement

4.1 Partial and Underspeci�ed Models with ioco

Partial models are one way to handle the complexity that arises with large systems. The
idea is to split the system into functional components. Each partial model concentrates
on one functional component and leaves other aspects underspeci�ed.

When building abstract models that shall conform to the full model in terms of ioco, two
cases have to be distinct: in the �rst case, the underspeci�cation regards input behavior.
This can be expressed implicitly, since ioco is designed to not care about unde�ned
inputs. Within this thesis, this concept is referred to as �partial models�. In the second
case, the underspeci�cation regards output behavior. This has to be expressed explicitly
by using a so-called non-deterministic choice.

Figure 4.1 shows an example demonstrating the decomposition of a model into partial
models using additional input behavior. The models are presented as LTS. As introduced
in Section 2.3.1 the pre�x �ctr� is used to denote input labels and the pre�x �obs� is used
to denote output labels. Note, that the labels correspond to the actions of the underlying
action systems, but the labels have been simpli�ed for legibility reasons. Parameters are
also part of the label and denote the time that passes before the corresponding action
occurs.

The system F is a simpli�ed model of the car alarm system. After the car is closed
(action Close) and locked (action Lock), the alarm system goes into an armed state.
(action ArmedOn). The delay of 20 seconds is denoted in the parameter. Now two things
can happen. Either an authorized person unlocks the door (action Unlock), which turns
o� the arming of the alarm system, or an unauthorized person opens the locked door by
force which turns on the alarm.

Since Open and Unlock are both input actions, their common source state is a good
choice for decomposing the system into partial models. P1 only models the behavior of
an authorized unlocking, while P2 only models the behavior of an unauthorized opening
of the locked car.

Figure 4.2 shows an example demonstrating underspeci�ed output behavior, which can
be used to express non-determinism. The abstract model A is again inspired by the
car alarm system. It de�nes, that after an input action Open has been received, the
system has to react with two output actions, SoundOn and FlashOn but the exact order
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P1

ctr Close(0)

δ

ctr Lock(0)

δ

obs ArmedOn(20)

δ

ctr Unlock(0)

obs ArmedO�(0)

P2

ctr Close(0)

δ

ctr Lock(0)

δ

obs ArmedOn(20)

δ

ctr Open(0)

obs AlarmOn(0)

F

ctr Close(0)

δ

ctr Lock(0)

δ

obs ArmedOn(20)
ctr Unlock(0)

obs ArmedO�(0)

ctr Open(0)

obs AlarmOn(0)

δ

Figure 4.1: Partial models using implicit ambiguity of input behavior

C1

δ

ctr Open(0)

obs FlashOn(0)

obs SoundOn(0)

C2

δ

ctr Open(0)

obs SoundOn(0)

obs FlashOn(0)

A

δ

ctr Open(0)

obs SoundOn(0) obs FlashOn(0)

obs FlashOn(0) obs SoundOn(0)

Figure 4.2: Underspeci�ed abstract model A allowing two di�erent concrete implemen-
tation models C1 and C2
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N

δ

ctr Open(0)

τ τ

obs SoundOn(0) obs FlashOn(0)

obs FlashOn(0) obs SoundOn(0)

D

δ

ctr Open(0)

obs SoundOn(0) obs FlashOn(0)

obs FlashOn(0) obs SoundOn(0)

Figure 4.3: Non-deterministic expressed by a non-deterministic LTS and its determinized
version

is unspeci�ed. This is expressed by explicitly drawing both possible execution paths,
which is also called �non-deterministic choice�. C1 and C2 are both models, which are
concrete about the speci�c order and are both conforming in terms of ioco to the abstract
model A.

This kind of underspeci�cation is often used when modeling processes which run in
parallel on the system-under-test. In this case the scheduling of processes can lead to
many possible interleavings, which causes the speci�c order of the events to become
unpredictable.

Note, that the term non-deterministic choice refers to the speci�ed behavior and not
the structure of the LTS. In fact, a non-deterministic choice can be expressed either by
a non-deterministic LTS using internal transitions, or by deterministic LTS, as shown
in Figure 4.3. Both LTS model a system, which after receiving the input ctr Open(0)
produced the outputs obs SoundOn(0) and obs FlashOn(0) in either order. In the LTS N,
the internal choice between the two possible interleavings is explicitly expressed using two
internal τ transitions. Since there is a state, from which there are two outgoing transitions
with the same label, it is a non-deterministic LTS. The LTS D is the determinized version
of N, where all internal transitions are hidden. It is deterministic, since there is no state,
with two transitions having the same label.

A special case of this kind of non-deterministic behavior are so-called mixed states. In a
mixed-state, both input and output actions can occur. Figure 4.4 shows an example LTS
and its determinized suspension automaton. The example shows again a part of the car
alarm system: 20 seconds after the car is closed and locked the alarm system goes into
an armed state. However, if the car is unlocked or opened before that 20 seconds have
passed, the system stays unarmed. The passing of time itself is not observable, thus it is
represented as internal action τ . When creating the suspension automaton, the internal
actions are deleted and there is a state, from which there are outgoing transitions with
both input and output labels.
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N

ctr Open(0) ctr Unlock(0)
τ

obs ArmedOn(20)

D

ctr Open(0) ctr Unlock(0) obs ArmedOn(20)

Figure 4.4: Mixed state expressed by a non-deterministic LTS and its determinized
version

4.2 Model Re�nement

The idea to start developing a system by initially creating an abstract model, which is
later re�ned, is quite old. One of the �rst methods, using this approach is the Vienna
Development Method (VDM) [Jon90]. There the re�nement steps consisted mostly of
transforming mathematical abstract data types into data types that can be used in
implementations. This technique is often referred to as �data re�nement� but sometimes
literature [Jon90] prefers the term �data rei�cation� instead of re�nement.

In general, literature [Geo+95] distinguishes between two di�erent types of re�nement:

1. program transformation
2. invent and verify

The idea of program transformation is to apply transformation rules which are guaran-
teed to produce new models that are re�nements of the original ones. The idea of invent
and verify is to generate new models independently of the original ones and verify the
re�nement afterwards. The most well-known technique to do program transformation for
re�nement is called �re�nement calculus� [BVW98]. Examples for the invent and verify
method are VDM, the B method [Abr96] and its successor Event-B [Abr10] or RAISE
[Geo+95]. In this thesis re�nement refers to the invent and verify approach.

Another important aspect is to distinguish horizontal modularity and vertical modular-
ity. Beginning with an abstract model of the system, which later is re�ned step-wise,
usually is referred to as vertical modularity. Horizontal modularity on the other hand
refers to the decomposition of a system into functional components. In this thesis both
types of modularity are considered, but only the vertical modularity is referred to as
re�nement, while horizontal modularity is referred to as partial models.

One concept of re�nement that is related to the re�nement based on ioco of our ap-
proach is the so-called �traces re�nement�. It is one of three re�nement relations for
Hoare's Communicating Sequential Processes (CSP) [Hoa78], which are implemented by
a re�nement checker called �FDR2�.
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It is de�ned as:

P vT Q =df traces(Q) ⊆ traces(P )

It means that a process Q re�nes a process P, if all traces of Q are possible in P. [FSE10]

Note, that the special process STOP, which does not perform any events at all, but
deadlocks immediately is a traces re�nement of any other process. Because of that,
there are two additional re�nement relations called �Failures re�nement� and �Failures-
Divergences re�nement�. Failures re�nement additionally insists, that the re�ning process
does not refuse more events than the re�ned process and a deadlocked process refuses
every event. Failures-Divergence re�nement additionally takes care of so-called livelocks.
Livelocks are states, in which a process performs an in�nite sequence of internal events.

Note, that using partial models, as described in Section 4.1 would not work with above
mentioned re�nement relations. Instead, already the abstract model has to be complete.
The reason, why partial models can be used as speci�cation in ioco, is that ioco only
considers traces, which are de�ned by the speci�cation.

Since Ulysses is an ioco checker, it can be used in order to support re�nement steps,
using ioco as re�nement relation. It can be determined automatically, if a more speci�c
model re�nes an abstract model up to a certain depth. Since ioco is used, the re�ned
model can be more partial than the re�ning model.

4.3 Test-Driven Development Process

In a technical report [ALT12b] the current workgroup of Prof. Aichernig (including the
author of this thesis) has proposed a new test-driven development process based on
model-based mutation testing. Test-driven development has been made popular by Kent
Beck [Bec02]. The idea is to start the development of a system by writing test cases,
which fail at the beginning. Then the system is implemented so that the test cases pass.
Traditionally concrete test cases are written and unit testing frameworks are used for
this approach.

However, we suggest to use model-based testing techniques. At �rst this idea might
sound counter-intuitive, since this requires one to build a test-model �rst, which is used
to generate abstract test cases. To run these test cases on the implementation under
development, additionally a test adapter has to be written. On a second thought however,
this can also be seen as big advantage. If requirements change, only the test model and
the test adapter have to be adjusted. There is no need for manually updating the test
cases.

Another advantage of using models to generate test cases is that models can be veri�ed
to ful�l expected properties. Even if there is no support for model checking for the chosen
input language of the test model, a representative set of generated test cases can be used
as abstract representation of the model. This idea is not subject of this thesis and has
been discussed in detail in another publication [ALT12a].
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One main idea of this proposed development process is to use re�nement techniques. In
early development phases a series of partial test models in terms of horizontal modularity
shall be created. That means that each of this models shall capture a di�erent part
of the functionality. In later development phases, re�nement steps in terms of vertical
modularity can be taken, for example by merging some of the vertically modular partial
test models. These steps can be supported by conformance checking, which validates the
re�nement steps.

The development process as shown in Figure 4.5 consists of several steps, divided into
two phases: an initial phase and an iterative phase.

In the initial phase the test interface has to be de�ned. When using theMoMuT toolchain,
this means for the test model to de�ne the signals and operations, which correspond to
the inputs and outputs and therefor the stimuli and responses from the system as de-
scribed in Section 3.1.1. Then, the test interface has to be de�ned on the implementation
level. This means, that for each input de�ned by the test model, a concrete stimulus has
to be provided and also the responses from the system have to be de�ned. How this is
done depends highly on the used programming language, framework or user interface
that is used. For instance this can be done, by de�ning methods for the stimuli and call-
back methods for the responses. Another possibility would be to de�ne input commands
and output messages for a command-line interface.

Next, a test driver and test adapter have to be implemented. Here the abstract test cases
are parsed and executed on the system. The abstract inputs have to be mapped to the
concrete stimuli, which are sent to the system-under-test and the concrete responses have
to be received, a look-up for the abstract outputs has to be performed and the resulting
output has to be compared to the expected ones. Here it has to be taken care of the
structure of the test cases and the underlying testing theory. For the MoMuT toolchain
this means for example that the test cases are adaptive, having a tree structure and
that they are positive test cases having only the pass and inconclusive verdict explicitly
contained, while fail verdicts are implicit.

As soon as test driver and test adapter are available, the iterative phase of the process
begins. A �rst partial model is created and abstract test cases are generated. Then the
system is implemented and refactored until the test cases pass. In a next iteration a new
partial model is built, either capturing di�erent functionality leading to a horizontal
step, or being the re�nement of one or more existing partial models, leading to a vertical
re�nement step.

Figure 4.5 sketches, how a series of partial models of a system under development could
look like. In this schematic view, for example initially three partial models P1, P2, and P3

are created and test cases are generated independently. The next partial model P4 would
be a re�nement of the former models. This can be proven by running the conformance
check with P4 in the role of the implementation and each other partial model in the
role of the speci�cation. If the conformance holds, the test suite generated for P4 can be
initialized with all existing test cases. Then, using a regression based approach, additional
test cases are only generated, if the existing test cases would not able to reveal all
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Figure 4.5: Illustration of the development process

mutants of P4. In a next step another partial model P5 would be created, in which
some new functionality is modelled. It does not have to conform to the prior models,
so the test case generation starts again with an empty test suite. In a further step, a
new partial model P6 can be built, which contains the functionality of all prior partial
models. Here, again all existing test cases can be used to initialize the test suite for the
test case generation.

P1 P2 P3

P4 P5

P6

ioco ioco ioco

ioco ioco

horizontal modularity
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Figure 4.6: Conformance and re�nement steps of the partial models
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The �rst case study is based on the car alarm system demonstrator from Ford which is
already described in Section 1.6.

The test model depicted there has also been used by Aichernig et al [Aic+11a] to compare
a total of 8 di�erent approaches to generate test cases. For this paper a Java implemen-
tation has been written by Willibald Krenn. Also, for these former experiments a set
of faulty implementations has been derived from this implementation using the muta-
tion tool µJava [MOK05]. These faulty implementations have been manually analyzed,
whether they are equivalent to one of the other implementations leading to a total of 38
unique faulty implementations.

Finally, there also exists a test driver that parses abstract test cases in Aldebaran aut
format and executes them on either the original implementation or one of the faulty
implementations.

Being well-known this demonstrator is very useful in order to show new ideas. In this
chapter, decomposing a test model into partial models is shown. Also, the impact of
di�erent modeling styles is investigated. For each model test suites are generated. Using
classical mutation testing, the given faulty implementations are used to measure the
quality of the test suites.

5.1 Common Modeling Details

5.1.1 Re�nement

Just like in the technical report [ALT12b], the car alarm system has been split up into
two partial models in terms of horizontal modularity. Note, that the author of this thesis,
also contributed the models and the experimental results of test case generation to the
technical report. There, object-oriented action systems had been used directly as input
language. For this thesis, the experiment has been repeated using UML models as input
�les and therefore the entire MoMuT toolchain is used.

Figure 5.1 shows the conformance relation between the two partial models cas1 and cas2
and the full model cas3.

Figures 5.2 and 5.3 illustrate the decomposition into partial models using the UML state
machines.
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Figure 5.1: Conformance and re�nement steps of the partial models (car alarm system)

AlarmSystem_StateMachine

Armed

Show Armed /entry
Show Unarmed /exit

ClosedAndLocked

OpenAndUnlocked

ClosedAndUnlocked OpenAndLocked

Unlock

20

Unlock OpenLock Close

Close LockOpen Unlock

Figure 5.2: State machine of the car alarm system, cas1

In the model cas1, depicted in Figure 5.2 only behavior is modeled that leads to the
Armed state. After reaching the Armed state only Unlock is de�ned, which disables the
arming.

Partial model cas2, shown in Figure 5.3 is the counter part. Here, there is only one path
from the initial state to the Armed state. In this trace �rst the door is closed, than the
car is locked and �nally 20 seconds are waited. However, for cases where an intrusion
has been detected, all alarm behavior is modeled.

5.1.2 Non-Determinism

While the original UML model, which was created within the MOGENTES project, rep-
resented a deterministic system, the OOAS model used in the technical report [ALT12b]
represents a non-deterministic system.
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AlarmSystem_StateMachine

Alarm
Activate Alarms /entry
Deactivate OpticalAlarm /exit

Flash

FlashAndSound

Armed

Show Armed /entry
Show Unarmed /exit

ClosedAndLocked

OpenAndUnlocked

ClosedAndUnlocked

SilentAndOpen

Unlock

30 / Deactivate Acoustic Alarm

300

Open

Unlock

20

Close

Lock

Close

Figure 5.3: State machine of the car alarm system, cas2

Non-determinism in terms of underspeci�cation is introduced to model parallel behavior.
For instance, there are situations, in which two events shall happen at the same time:
when both �ash and sound alarm are switched on or o�, the original model prescribes
a speci�c order. Since our toolchain supports non-determinism, this is not necessary.
Instead, the non-determinism can be used to model both possible interleavings.

5.1.3 Time Handling

One important aspect of modeling the car alarm system is the lapse of time. Two out of
the three core requirements prescribe timing behavior. In UML this is expressed by so
called time triggers. Time Triggers are events, parametrized by an Integer value denoting
the time in a �xed unit. OOAS on the other hand lacks the notion of time. Within the
MOGENTES project two possible ways of modeling the lapse of time in action systems
have been investigated.

The �rst notion of time has been the introduction of a new observable action called after.
This had been inspired by the representation of quiescence in ioco, which is also treated
as observable action. This worked �ne for the car alarm system, because here, each time
events are always followed by another observable action.

Figure 5.4 shows a labeled transition system of the deterministic version of the car alarm
system using the old notion of time.

The disadvantage of this notion is, that it is impossible to express the di�erence, whether
the delay is controlled by the system-under-test or by the environment. Especially with
mixed-states, which can occur in LTS, this distinction can be important.
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obs AlarmArmed_SetOn

ctr Lock
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ctr Close

obs AlarmArmed_SetOff

ctr Unlock

obs OpticalAlarm_SetOff

obs OpticalAlarm_SetOn

obs AcousticAlarm_SetOff

ctr Open
ctr Close

obs after (c_waittime: 20 )

ctr Unlock

ctr Unlock

obs AcousticAlarm_SetOff

ctr Close

obs AlarmArmed_SetOff

ctr Unlock
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obs AcousticAlarm_SetOn

ctr Unlock

obs after (c_waittime: 30 )

obs OpticalAlarm_SetOff

obs AcousticAlarm_SetOff

ctr Unlock

obs after (c_waittime: 270 )

Figure 5.4: LTS of the car alarm system (deterministic, old notion of time)
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To overcome this problem a second notion has been developed. In this notion all control-
lable and observable actions are parametrized with an Integer denoting the time. In the
context of a test case, where the tester has the role of the environment, the semantics for
these parameters is: if the action is controllable, the tester shall wait the speci�c time
before processing the action. If the action is observable, the occurrence of the action is
expected exactly after waiting the speci�c time.

Figure 5.5 shows a labeled transition system of the non-deterministic version of the car
alarm system using the new notion of time.

5.2 Alternative UML Modeling Styles

In addition to the original model, which has been created by AIT and models a de-
terministic system, within this thesis di�erent non-deterministic versions of the model
have been created. As suggested in Section 3.1.1 the variety of supported UML elements,
enables di�erent possible modeling styles. In this section three possible ways of modeling
the car alarm system are presented:

• Simple State Machines
• Action System Like
• Multiple Classes

They di�er in size and complexity, follow di�erent paradigms and processing them using
the described tool chain leads to di�erent test suites. They are not meant as suggestion
how one should model a system, but they are rather extreme border cases built to
demonstrate what is possible and how it e�ects the generated test suites.

5.2.1 Simple State Machine Modeling Style

The idea behind this modeling style is to directly encode the structure of the intended
labeled transition system into one UML State Machine of one active SUT class. From
a structural point of view the di�erence to the original model, which is presented in
Section 1.6, is that all outputs to the actuators are put in one environment class. In the
state machine diagrams there are two main di�erences compared to the original model:
�rstly no sub state is used, but rather all possible states are enumerated explicitly.
Secondly, instead of using entry and exit actions in order to model the outputs behavior,
here every output has its an own transition.

Figure 5.6 shows the �rst partial model using this modeling style. Again, the model only
contains scenarios up to the point, where the car alarm system is armed. �State_0� is the
initial state and corresponds to the �OpenAndUnlocked� state. The states �State_1� ..
�State_4� also have a corresponding state in the original model. �State_5� on the other
hand is introduced as intermediate step replacing the exit action of the �Armed� state.
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Figure 5.5: LTS of the car alarm system (non-deterministic, new notion of time)
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Figure 5.6: State machine, simple state machine version, cas1
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Figure 5.7 shows the complementing partial model using this modeling style. Again, only
one path from the initial state to �State_4� which corresponds to the �Armed� state is
de�ned. From �State_6� there are two outgoing transitions with an e�ect but without a
trigger. This is one way to model under-speci�ed behavior. In order to explicitly allow
that the output events �FlashOn� and �SoundOn� can occur in both possible orders,
this diamond shaped structure is used. A similar structure can be found in the outgoing
transitions from �State_10� and �State_11�, where the alarms are turned o� in any order.
�State_10� corresponds to the case, where the car is unlocked by an authorized person,
�State_11� corresponds to the case, where the alarms are turned o� after �ve minutes.
Note, that the sound alarm is turned o� a second time, in order to be compatible with
the existing Java implementation of the car alarm system.

Figure 5.7 shows the full model which combines the behavior of the two partial models.

When translating this model into OOAS using the same translation parameters (ie. Time
Handling) like the original model, it can be proven that the deterministic model conforms
to this non-deterministic model in terms of ioco, but the non-deterministic model does
not conform to the deterministic one. The reason for this is, that being in the state, where
the alarm is turned on, the non-deterministic allows both orders in which SoundAlarm
and FlashAlarm are turned on, whereas the deterministic model prescribes the order
precisely. Since for conforming in terms of ioco the set of outputs of the implementation
has to be a subset of the outputs of the speci�cation, this implies non-conformance.
When using Ulysses to check this property, one has to make sure, that both models use
the exact same labels for input and output actions. This is not the case when using the
�les generated using Argos since a lot of structural information is encoded into the labels
of the actions. Practically this can be worked around by storing the LTS into a �le in
Aldebaran �aut� format and using a text editor to replace the labels into the exact labels
of the other action system.
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Figure 5.7: State machine, simple state machine version, cas2
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Figure 5.8: State machine, simple state machine version, cas3
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5.2.2 Action System Like Modeling Style

As described in Section 3.1.1 properties of classes can be used as variables. This kind of
notion is often referred to as extended state machines.

In extended state machines, whether a transition can be taken, does not only depend
on whether the corresponding event triggers it. Instead, also in a so called guard, the
evaluation of expressions can enable or disable a transition.

This is the same mechanism which is also used within an object-oriented action system,
so one can think of the other way round and translate an OOAS back to a state machine.
The models presented in this section are the result of a manual translation of the OOAS
models, the author of this thesis has created for the technical report [ALT12b], into
UML.

This modeling style resembles more of how one would program a system using an im-
perative paradigm than how one would model it using a UML state machine diagram.

Figure 5.9 shows the class diagram of the partial model cas1 and Figure 5.10 shows the
class diagrams of the partial model cas2 which is the same as for the full model cas3.
One important characteristics of this modeling style is the existence of several Boolean
�ags represented as properties, which encode the state of the system. This includes
describing �ags like open, locked, and armed as well as �ags that encode the next
operation to be performed as armedOn or armedOff. One special variable is the Integer
property semaphore. In the object-oriented action system this variable had been used
to coordinate the input and the output events. Whenever outputs are produced, this
variable is set to the number of produced outputs and each time, an observable action is
actually chosen this variable is decreased. Only if this variable is zero, an input can occur.
When using UML models as input, this synchronization is usually achieved as side-e�ect
of the run-to-completion semantics, which is implemented in UMMU. However, omitting
the variable and removing its occurrences within the guards and e�ects would lead to
some events in the LTS that would be inconsistent to the Java implementation. This
happens due to some speci�c implementation detail of the UML-to-OOAS transformation
regarding the time triggers.

Figure 5.11 shows the �rst partial model using this extreme kind of modeling style.

Characteristic to this style is, that there is one �big� state with many self-loops. This state
represents the do od-block, the iterative loop of an action system. Because of the lack
of an if-then-else statement, a so-called DNF partitioning [DF93] has been performed.
Each self-loop represents a conjunction, which is used as guard.

For instance in the �rst partial model, there are two cases, when an input event �Close�
can occur: it can either occur in a state, where the car is still unlocked or in a state,
where the car is already locked. Because of that, there are two self-loops triggered by the
Close event: Close1 and Close2. Close1 handles the case that the car is already locked
and therefore sets the �ag armedOn, that enables the 20 seconds timer that triggers the
ArmedOn output event, while Close2 only sets the open �ag to false.
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«system_under_test»
SUT

  open: Boolean
  locked: Boolean
  armed: Boolean
  armedOn: Boolean
  semaphore: Integer
  armedOff: Boolean

«from_environment»  Open
«from_environment»  Close
«from_environment»  Lock
«from_environment»  Unlock

«environment»
ENV

  ArmedOn()
  ArmedOff()

«signal»
Open

«signal»
Close

«signal»
Lock

«signal»
Unlock

+ ENV

[1]

Figure 5.9: Class diagram, action system like version, cas1

Table 5.1 lists the guards and the opaque behavior of the transition e�ects, which have
been hidden in the state machine diagram for readability reasons.

Figure 5.12 shows cas2 and Figure 5.13 shows cas3 using this style.

One interesting e�ect of this modeling style is, that the corresponding LTS does not
conform to either LTS of the former models in terms of ioco, even though it is perfectly
suitable for generating test cases which can be run against the Java implementations. The
reason for this lies again in the UML-to-OOAS transformation of the time events, which
required already the workaround using the semaphore. As mentioned in Section 3.2.2
within this transformation only �interesting� time values for the internal after are picked
in order to keep the generated LTS as simple as possible.

Figure 5.14 shows a comparison of the LTS up to the �rst input event of both the original
model and the model using the �Action System Like� modeling style. The LTS already
contain the quiescence labels δ, which are appended by Ulysses.

In the state machine of the original model in the initial state there is no outgoing
transition triggered by a time event. Therefor no time trigger is registered in the initial
state of the generated OOAS, which causes the internal after action to be disabled.
Hence, the only enabled events in the initial state of the LTS are the input events
�Close(0)� and �Lock(0)� with the parameter �0� denoting that no time has passed. Since
all outgoing transitions are labeled with an input event, the initial state is a quiescent
state.

In the state machine of the model using the �Action System Like� modeling style, from
the initial state there are also outgoing transitions �red by time triggers. Even though
the transitions are disabled, the corresponding time triggers are still registered in a
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«system_under_test»
SUT

  open: Boolean
  locked: Boolean
  armed: Boolean
  armedOnNow: Boolean
  armedOnLater: Boolean
  semaphore: Integer
  armedOff: Boolean
  soundOn: Boolean
  soundOffNow: Boolean
  soundOffLater: Boolean
  flashOn: Boolean
  flashOffNow: Boolean
  flashOffLater: Boolean
  bothOffNow: Boolean
  bothOffLater: Boolean
  silent: Boolean
  soundAlarm: Boolean
  flashAlarm: Boolean

«from_environment»  Open
«from_environment»  Close
«from_environment»  Lock
«from_environment»  Unlock

«environment»
ENV

  ArmedOn()
  ArmedOff()
  SoundOn()
  SoundOff()
  FlashOn()
  FlashOff()

«signal»
Open

«signal»
Close

«signal»
Lock

«signal»
Unlock

+ ENV

[1]

Figure 5.10: Class diagram, action system like version, cas2 and cas3

SM_CAS1_AS

State_0

Open / Open1

Unlock / Unlock1 Unlock / Unlock2 Unlock / Unlock3

Close / Close1

Close / Close2

Lock / Lock1 Lock / Lock2

/ ArmedOff

20

Open / Open2

/ ArmedOn

Figure 5.11: State machine, action system like version, cas1
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Trigger Name Guard (OCL) Opaque Behavior (AGSL)

Close Close1 armed = false and

open = true and

locked = true and

semaphore = 0

open = false;

armedOn = true;

Close Close2 armed = false and

open = true and

locked = false and

semaphore = 0

open = false;

none ArmedO� armedOff = true armedOff = false;

semaphore = semaphore - 1;

armed = false;

run ENV.ArmedOff();

20 time units Wait20
none ArmedOn armed = true armedOn = false;

run ENV.ArmedOn();

Lock Lock1 armed = false and

locked = false and

open = true and

semaphore = 0

locked = true;

Lock Lock2 armed = false and

locked = false and

open = false and

sempahore = 0

locked = true;

armedOn = true;

Open Open1 armed = false and

open = false and

armedOn = false and

semaphore = 0

open = true;

Open Open2 armed = false and

open = false and

armedOn = true and

sempahore = 0

open = true;

armedOn = false;

Unlock Unlock1 locked = true and

armed = false and

armedOn = false and

semaphore = 0

locked = false;

Unlock Unlock2 locked = true and

armed = true and

armedOn = false and

semaphore = 0

locked = false;

armedOff = true;

semaphore = 1;

Unlock Unlock3 locked = true and

armed = false and

armedOn = true and

semaphore = 0

locked = false;

armedOn = false;

Table 5.1: OCL and AGSL code of car alarm system, action system like version, cas1
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SM_CAS2_AS
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Figure 5.12: State machine, action system like version, cas2
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Figure 5.13: State machine, action system like version, cas3
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q0
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δ

ctr Close(0) ctr Lock(0)

q0

AS Like

q2q1 q3
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ctr Close(0) ctr Lock(0)τ

ctr Close(20) ctr Lock(20)τ

ctr Close(30) τ ctr Lock(30)

ctr Close(270) ctr Lock(270)

δ

Figure 5.14: Di�erences in the LTS up to �rst input event of action system like version
compared to other modeling styles

queue. This queue is used by the internal after action in order to determine, which
time steps are �interesting�. So additionally to the input events �Close(0)� and �Lock(0)�
in the do od-block of the OOAS, the internal event �after(20)� can be chosen non-
deterministically. In the LTS this internal event is represented as τ . Note, that if there is
an outgoing transition labeled with τ from a state, Ulysses does not consider this state
as quiescent, so q0 is not quiescent.

If the internal event �after(20)� is chosen, the variable storing the lapsed time since the
last visible action is increased, leading to state q2, where the choice is among the events
�Close(20)�, �Lock(20)�, and �after(10)�, with �10� being the remaining time to the next
registered time trigger. Therefor, also q2 is not quiescent.

If the internal even is chosen again, this leads to state q5, where the choice is among
�Close(30)�, �Lock(30)�, and �after(240)�, so neither q5 is quiescent.

The internal event can be chosen one last time leading to state q8 . There the outgoing
transitions are labeled with �Close(270)� and �Lock(270)�, which are both input events,
so q8 �nally is a quiescent state.

In order to perform an ioco check, the LTS containing the quiescence information has
to be determinized, resulting in a suspension automaton. In Ulysses this is done by
using the standard Rabin-Scott powerset construction algorithm [RS59]. Figure 5.15
shows the suspension automaton up to the �rst input event. The initial state of the
suspension automaton represents all states, that can be reached from the initial state of
the underlying LTS by using transitions labeled with τ . Note, that since the self-loop with
the quiescence label δ only occurred in one of these states, in the suspension automaton
this is represented by a transition to a new state representing only the quiescent state.
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q0, q2, q5, q8

AS Like

q8q1q4q7q10 q11 q9 q6 q3

δctr Close(0)

ctr Close(20)

ctr Close(30)

ctr Close(270) ctr Lock(270)

ctr Lock(30)

ctr Lock(20)

ctr Lock(0)

δ

ctr Close(270) ctr Lock(270)

Figure 5.15: Suspension automaton of action system like version up to �rst input event

As can be seen in the extract of the suspension automaton, the trace < δ, Close(270) >
is de�ned, while the trace < δ, Close(0) > is not. Since the parameter denotes the lapsed
time, an intuitive interpretation in the context of software testing would be, that after
waiting for a time-out it is not possible to send the �Close� input without delay. For
creating test cases, this is not a problem, for conforming to the LTS of the original
model it is.

Let us consider the trace < δ, Close(0), Lock(0) >, which is a trace of the original
model. However, after the �rst step delta the suspension automaton of the model using
the �Action System Like� style, will be in a state, where neither �Close(0)� nor �Lock(0)�
are de�ned. Because of its role in conformance checking the automaton is assumed to
be input enabled. So the unde�ned events are ignored and the automaton stays in a
quiescent state. The LTS of the original model on the other hand prescribes the output
event �ArmedOn(20)� after this trace, so the model using the �Action System Like�
modeling style does not conform to the original model in terms of ioco.

In summary it can be said, that this is an extreme form, of how a UML state machine
can look like. However, it gives a good impression on how action systems, the internal
representation within the MoMuT toolchain, work.

5.2.3 Multiple Classes Modeling Style

As mentioned in Section 3.1.1 there are two ways of expressing parallel behavior in test
models used for the MoMuT toolchain: orthogonal regions and multiple classes. Test
models using orthogonal regions have been created quite often within the MOGENTES
project. For instance, a test model for the wheel loader, which is also investigated as
second case study in Chapter 6 of this thesis, uses orthogonal regions. However, for
demonstrating the object-oriented features, it makes more sense to use multiple classes.
Since it is a test model and not a design model, design principles like data encapsulation
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have not been considered as important. Instead, the focus lies on reducing the overhead
resulting from the UML-to-OOAS transformation. Communication between the objects
is done by reading shared variables. Additionally to the variables which are explicitly
de�ned as properties in the class diagram, the current state of another object can be
accessed using the Boolean function oclIsInState(S), which returns true, if and only
if the object is in the state S.

Figures 5.16 resp. 5.17 show the corresponding class diagrams. The partial model cas1
consists of �ve classes: �Door�, �Locking System�, �Armed�, �ENV� and �SUT�. The classes
�Door� and �Locking System� have the signal receptions for the signals �Close� and
�Open� resp. �Lock� and �Unlock�. The class �Armed� controls the outputs �ArmedOn�
and �ArmedO�� by calling the corresponding operations on the environment object.
The class �ENV� models the environment and provides the operations, which are used
to represent the output of the system-under-test. The class �SUT� is just a dummy
element with no functionality at all. The MoMuT toolchain requires that exactly one
class is marked with the stereotype �system_under_test�. The alternative would have
been to arbitrarily choose another class to mark it with this stereotype.

The partial model cas2 and the full model cas3 contain another three additional classes:
�FlashAlarm�, �SoundAlarm� and, �Timer�. The classes �FlashAlarm� and �SoundAlarm�
control the outputs �FlashOn�, �FlashO��, �SoundOn�, and �SoundO�� by calling the
corresponding operations on the environment object. The class �Timer� is needed to
work around an issue within the current version of UMMU which requires all time
triggers to occur in the state machine of the same class.

Figure 5.18 shows the instance speci�cations of the full model. Within the UML-to-
OOAS transformation they are translated into objects. This is necessary, since in the
current implementation of Argos objects have to been known at compile time.

Note, that for each object, that accesses the state of another object, there has to be
an association in the class diagram. In the diagram representing the instances, these
links are represented as initializations of the corresponding �de�ning features�. In the
generated OOAS the �housekeeping object� initializes each object by setting references
to each needed other object.

Figures 5.19, 5.20 and 5.21 show the state machines of the partial model in the distributed
style. The state machines of the door and the locking system are very simple. They just
consist of two states, which are changed, when the corresponding signal is received.
The state machine for the �Armed� object watches the state of both door and locking
system using a triggerless transition with a guard. As soon as the door is closed and the
locking system is locked, the system changes into the �Armed_Closed_And_Locked�
state. From there it can either change back to the �Armed_Idle� state if one of the other
state machines change their state. Otherwise, after 20 time units the system changes
to the �Armed_Armed� state, where as entry action the corresponding output event is
produced.

The models for the partial model cas2 and the full model cas3 are more complex. As
already mentioned, all time triggers have to be in the same class. However, in this test
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Door

«from_environment»  Clos
«from_environment»  Open

LockingSystem

«from_environment»  Lock
«from_environment»  Unlock
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«signal»
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«signal»
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Unlock

«environment»

ENV

  ArmedOn()
  ArmedOff()

«system_under_test»

SUT

Figure 5.16: Class diagram, multiple classes version, cas1
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Figure 5.17: Class diagram, multiple classes version, cas2 and cas3
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door : Door

timer = timer
armed = armed

lockingSystem : LockingSystem

timer = timer
door = door

armed : Armed

door = door
lockingSystem = lockingSystem
timer = timer
flashAlarm = flashAlarm
soundAlarm = soundAlarm

env : ENV

Dummy : SUT

flashAlarm : FlashAlarm

armed = armed
lockingSystem = lockingSystem
timer = timer

soundAlarm : SoundAlarm

armed = armed
lockingSystem = lockingSystem
timer = timer

timer : Timer

armed = armed
soundAlarm = soundAlarm
lockingSystem = lockingSystem

Figure 5.18: Class diagram showing instances, multiple classes version, cas2 and cas3

Door

Open Closed
Close

Open

Figure 5.19: State machine door, multiple classes version, cas1

LockingSystem

Unlocked Locked
Lock

Unlock

Figure 5.20: State machine locking system, multiple classes version, cas1 and cas3
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Armed_Idle
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ArmedOn /entry
ArmedOff /exit
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«triggerless»
[ door.oclIsInState(Closed) and
lockingSystem.oclIsInState(Locked) ]

«triggerless»
[ door.oclIsInState(Open) or
lockingSystem.oclIsInState(Unlocked) ]

«triggerless»
[ door.oclIsInState(Open) or lockingSystem.oclIsInState(Unlocked) ]

20

Figure 5.21: State machine armed, multiple classes version, cas1

model there are three classes, in which the lapse of time is modelled. The object of
the �Armed� class (depicted in Figure 5.22) starts a timer of 20 time units when it is in
the �Armed_Closed_And_Locked� state before going to the �Armed_Armed� state, the
object of the �SoundAlarm� class (depicted in Figure 5.24) has to wait 30 time units in the
�SA_Sound_And_Flash_Alarm� state before turning of the sound alarm and switching
to the �SA_Flash_Alarm� state, while the �FlashAlarm� class (depicted in Figure 5.25)
has to wait for 270 time units before turning o� the Flash Alarm. The solution is to create
an additional �Timer� class (depicted in Figure 5.23), which implements all timers and
use triggerless transitions with guards checking the state of the other classes in order to
synchronize the state machines.

This test model might not look very nice because of the workarounds needed for the time
handling and the redundancy in the state machines, but it has one notable characteristic:
the non-determinism in terms of the two possible interleavings when turning on or o�
the Alarms, is expressed implicitly using objects, which run in parallel.

Another interesting observation is that unlike in every other modeling style, the partial
model cas2 is not smaller than the model cas3, but actually more complex. This is due
to the fact, that de�ning only one path to the point, where the �Armed� output event is
sent in the underlying LTS, is done by explicitly disabling the occurrence of the other
possible input events in the guard of the corresponding transitions in the UML state
machines. While model cas3 uses the same state machines for the locking system as the
�rst partial model, in the second partial model there are additional guards as depicted
in Figure 5.27.

Note, that even in the model cas3 there are states, in which the input event �Close�
is not speci�ed, even though the door is in a �Open� state. Figure 5.26 shows the state
machine of the door of model cas2 and Figure 5.28 shows the corresponding state machine
of model cas3.

Ulysses can be used to proof the conformance to the test models using other styles.
The LTS generated from this model conforms to the LTS of the simple state machine,
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«triggerless»
[ door.oclIsInState(Open) or
lockingSystem.oclIsInState(Unlocked) ]

«triggerless»

[ door.oclIsInState(Open) ]

«triggerless»
[ timer.oclIsInState(Timer_After_20) ]

«triggerless»

[ door.oclIsInState(Closed) ]

«triggerless»
[ door.oclIsInState(Closed) ]

«triggerless»
[ flashAlarm.oclIsInState(FA_Idle) or soundAlarm.oclIsInState(SA_Idle) ]

«triggerless»

[ flashAlarm.oclIsInState(FA_Sound_And_Flash_Alarm)
and soundAlarm.oclIsInState(SA_Sound_And_Flash_Alarm) ]

Figure 5.22: State machine armed, multiple classes version, cas2 and cas3

Timer

Timer_Idle

Timer_Closed_And_Locked

Timer_Sound_And_Flash_Alarm

Timer_Flash_Alarm

Timer_After_20

[ armed.oclIsInState(Armed_Closed_And_Locked) ]

«triggerless»
[ soundAlarm.oclIsInState(SA_Sound_And_Flash_Alarm) ]

270
«triggerless»

[ lockingSystem.oclIsInState(Unlocked) ]

«triggerless»
[ armed.oclIsInState(Armed_Armed) ]

«triggerless»
[ lockingSystem.oclIsInState(Unlocked) ]

20

30

Figure 5.23: State machine timer, multiple classes version, cas2 and cas3
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SoundAlarm

SA_Idle
SA_Sound_And_Flash_Alarm

SoundOn /entry

SA_Flash_Alarm

«triggerless»
[ armed.oclIsInState(Armed_Violation_Detected) ]

«triggerless»

[ lockingSystem.oclIsInState(Unlocked) ] / SoundOff

«triggerless»
[ lockingSystem.oclIsInState(Unlocked) or timer.oclIsInState(Timer_Idle) ] / SoundOff

«triggerless»
[ timer.oclIsInState(Timer_Flash_Alarm) ]

Figure 5.24: State machine sound alarm, multiple classes version, cas2 and cas3

FlashAlarm

FA_Idle
FA_Sound_And_Flash_Alarm

FlashOn /entry

FA_Flash_Alarm

«triggerless»

[ armed.oclIsInState(Armed_Violation_Detected) ]

«triggerless»
[ lockingSystem.oclIsInState(Unlocked) ] / FlashOff

«triggerless»
[ timer.oclIsInState(Timer_Idle) ] / FlashOff

«triggerless»
[ timer.oclIsInState(Timer_Flash_Alarm) ]

Figure 5.25: State machine �ash alarm, multiple classes version, cas2 and cas3
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Door

Open Closed
Close [ not (timer.oclIsInState(Timer_Flash_Alarm) or
timer.oclIsInState(Timer_Sound_And_Flash_Alarm)) ]

Open [ armed.oclIsInState(Armed_Armed) ]

Figure 5.26: State machine door, multiple classes version, cas2

LockingSystem

Unlocked LockedLock [ door.oclIsInState(Closed) ]

Unlock [ not timer.oclIsInState(Timer_Closed_And_Locked) ]

Figure 5.27: State machine locking system, multiple classes version, cas2
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Door

Open Closed
Close [ not (timer.oclIsInState(Timer_Flash_Alarm) or
timer.oclIsInState(Timer_Sound_And_Flash_Alarm)) ]

Open

Figure 5.28: State machine door, multiple classes version, cas3

described in Section 5.2.1 and vice versa. The LTS of the deterministic model conforms to
the LTS of this model, while the LTS of this model does not conform to the deterministic
model for the very same reason as with the simple state machine.
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5.3 Empirical Results

5.3.1 Application of Mutation Operators

The number of mutants, generated by a �xed set of mutation operators, can be seen
as fault-based metrics to measure the complexity of a test model. Each application of a
mutation operator represents the anticipation of a possible design �aw. The more often
a mutation operator can be applied, the more �aws can be anticipated. Therefor it can
be argued, that a test model, which yields many di�erent mutants is more complex than
a test model yielding less di�erent mutants.

Table 5.2 shows how many mutants have been generated for each model. For each mod-
eling style there is column, beginning with �Original�, which refers to the style of the
original model, presented in Section 1.6. Further columns refer to the three new presented
modeling styles �Simple State Machine�, �Action System Like� and �Multiple Classes�.
There is each a row for both partial models cas1 and cas2 as well as one for the full
model cas3.

Table 5.3 shows in detail how often each mutation operator has been applied to each full
model cas3.

Model Original
Simple
SM

AS
Like

Multiple
Classes

cas1 58 59 419 44
cas2 70 369 1185 174
cas3 100 399 1648 168

Table 5.2: Generated mutants per model of the car alarm system.

When comparing the number of generated mutants the original model created by AIT is
the smallest model. Most e�ects are modeled as entry and exit actions, only one is linked
to a transition. Because of that, in this model the mutation operators on removing and
mutating entry and exit actions are applied. However, these mutation operators keep
these e�ects atomically bound to the state. There is no mutation operator that enables
or disables such an action depending on which transition leads towards or away from
the respective state. The one e�ect which is linked to a transition leads to exactly one
mutation, in which this e�ect is removed. Since there are no pairs of transitions having
e�ects, the mutation operator for pairwise swapping the e�ect can not be applied. This
is totally di�erent for the �Simple State Machine� model, described in Section 5.2.1,
where all states and transitions are drawn explicitly. Here, all the e�ects are linked to
the transitions and none is linked to a state, leading to 17 mutants when removing each
e�ect once and 272 transitions when swapping the e�ects of the transitions pairwise.
Even more extreme is the �Action System like� modeling style. Since here the state
of the system is represented by attributes, also setting the new state is represented
by e�ects. This results in a total of 702 mutants just using this one mutation operator.
Despite of having some redundancy in the �Multiple Classes� modeling style, the number
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Mutation Operator Original
Simple
SM

AS
Like

Multiple
Classes

Removing Trigger Events on all Transitions 15 17 17 7
Mutating Transition Signal Events 36 42 42 4
Mutating Transition Time Trigger Events 18 18 18 18
Mutating Transition OCL Expressions 0 0 54 0
Mutating Transition AGSL Expressions 0 0 48 0
Mutating Guards on All Transitions 19 33 89 93
Mutating OCL Change Expression on all Trans. 0 0 0 0
Removing Entry and Exit Action in all States 4 0 0 5
Mutating Entry and Exit Action in all States 4 0 0 12
Removing E�ect in all Transitions 1 17 27 4
Mutating (Replacing) E�ect in all Transitions 0 272 702 12
Mutating sub expressions in OCL expressions 0 0 351 3
Mutating Operator in OCL Expressions 0 0 131 6
Mutating AGSL Expressions 3 0 90 4

Total 100 399 1648 168

Table 5.3: Application of mutation operators on cas3 of the car alarm system.

of generated model mutants is quite moderate with 168 mutants in total. Most of them
are generated by mutating the guards on all transitions, as many guards are used in this
modeling style in order to synchronize between the state machines.

5.3.2 Results Using Default Strategy

Test Case Generation The principal of generating test cases is based on the develop-
ment process described in Section 4.3. That means that for each modeling style �rst the
two partial models are investigated and then the full model is used to supplement the
obtained test suite.

As described in Section 3.4.2 a variety of di�erent test case selection strategies exist in
Ulysses. In the technical report [ALT12b] only the strategy S5 (�Lazy Ignorant Killing
Strategy�) has been investigated and stopping the exploration at the depth of the �rst
unsafe state has been turned on. In this strategy for each mutant Ulysses �rst checks,
whether one of the already existing test cases is able to �kill� it by revealing a fault
when executing a test case. This strategy supports the attempt to bene�t most from
re�nement by only generating test cases covering aspects which have been introduced in
a higher re�nement level. Because of that, this strategy can be considered the default
strategy in the MoMuT toolchain.

Table 5.4 shows the number of generated test cases per re�nement level and per model
version. The row ∆cas3 refers to the set of additionally created test cases for cas3 starting
with a test suite, which contains already the test cases from the two partial models cas1
and cas2. These test cases are created because there are some mutants of the full model,

69



5 Case Study: Car Alarm System

which cannot be killed by any existing test case. The row cas1∪cas2∪∆cas3 is the sum of
the three rows above and represents the test suite that results from the regression based
approach. For comparison, there is also the row cas3 which represents the test suite,
that results from generating test cases from the full model without using test cases of
the partial models.

A rather surprising observation from this data is that starting with the test cases of
the partial models when processing the full model (table row ∆cas3) in two out of four
modeling styles did not add any additional test case.

Test Suite Original
Simple
SM

AS
Like

Multiple
Classes

cas1 9 10 41 6
cas2 6 11 61 7
∆cas3 0 0 12 4

cas1 ∪ cas2 ∪∆cas3 15 21 114 17

cas3 13 20 70 11

Table 5.4: Size of generated test suites, car alarm system, default strategy.

Test Case Execution To evaluate the quality of the generated test suites, the test cases
have been executed on the Java implementation and the faulty implementations. These
implementations have been reused from the experiments of [Aic+11a]. Note, that they
have been already manually �ltered so that only 38 unique faulty implementations are
left.

Test Driver and Test Adapter Most parts of the test driver and test adapter could
be reused from the former experiments. This test driver uses calls of methods to com-
municate with the implementation under test. Thus it implements the Java interface of
the environment, which includes Java methods corresponding to the output Operations
ArmedOn, ArmedO�, FlashOn, FlashO�, SoundOn, and SoundO�.

Abstract test cases are parsed and executed. Controllable actions are processed by calling
the corresponding methods, responses of the implementation are received by the call-
back methods and stored by the test driver. When parsing an observable action, it is
compared to the stored event from the test driver in terms of ioco. If the observation
received by the call-back method is allowed by the test case, the test case is continued,
otherwise the test case kills the implementation and a �fail� verdict is given.

The lapse of time is simulated by a discrete Tick() method in the implementation.
In the test case it is presented in the �rst parameter of each action. For controllable
actions the test driver calls the Tick method repeatedly according to the time denoted
by the parameter. For observable actions, the Tick method is called until an observable
is received by the call-back functions or a time out has occurred, which is interpreted
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as quiescence. The information is then stored in the expected label, which is used to
determine the conformance.

New with this experiments, using now also models of non-deterministic systems, is the
existence of cyclic test cases. These are created when a mutation leads to an unsafe state
only in a branch, which the system is allowed to enter non-deterministically. Figure 5.29
depicts a schematic LTS of a speci�cation �O� and a mutant �M� which yield such a
cyclic test case �TC�.

O

Close

Lock

ArmedOn

FlashOn SoundOn

SoundOn FlashOn

M

Close

Lock

ArmedOn

FlashOn SoundOn

δ

SoundOn

TC

Close

Lock

ArmedOn

FlashOn SoundOn

FlashOn

pass

SoundOn

Figure 5.29: A cyclic test case

O

Close

Lock

ArmedOn

FlashOn

SoundOn

Figure 5.30: Deterministic
implementation

TC

Close

Lock

ArmedOn

SoundOn FlashOn

FlashOn

inconc

pass

Figure 5.31: A linear test case
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Test Suite Original
Simple
SM

AS
Like

Multiple
Classes

cas1 71 % 71 % 82 % 66 %
cas2 63 % 66 % 74 % 66 %
cas1 ∪ cas2 84 % 87 % 100 % 82 %
cas1 ∪ cas2 ∪∆cas3 84 % 87 % 100 % 87 %
cas3 84 % 87 % 100 % 87 %

Table 5.5: Mutation scores of the generated test suites using the default strategy on 38
faulty Java implementations.

If this test case is executed on a deterministic implementation as depicted in Figure 5.30,
there is an in�nite loop, since the implementation will never enter the branch, in which
the pass state occurs. This is a consequence of using non-determinism only in terms
of under-speci�cation, since there is no fairness-assumption, which would exclude this
case.

Because of that, a time out or a loop counter has to be implemented in the test driver. If
the loop is traversed too often, an inconclusive verdict is given. Note, that a linear test
case, as depicted in Figure 5.31 would have an explicit inconclusive verdict.

Discussion The result of a mutation analysis is the so-called �mutation score�. The
mutation score is de�ned as ratio of the killed faulty implementations over the total
number of non-equivalent mutants. As already mentioned, the equivalent mutants had
already been removed from the set of faulty implementations, which are reused in this
experiment.

The most powerful test suite is the one generated from the model following the �Action
System Like� modeling style. It is the only one able to kill all 38 faulty implementations.
Furthermore, it is not even necessary to generate test cases from the full model. The
union of the test suites generated from both partial model is already su�cient.

There are many reasons, why the �Action System Like� modeling style is powerful for
the aim of killing mutated implementations. First of all, this model is quite complex,
allowing many possible mutations. Other than the models, which explicitly enumerate
the possible states, here the actual state is composed of many variables. Mutating the
update statements leads to complete new states, that might lead to quite subtle failures.
Second, a lot of mutation operators have been implemented for guards in OCL and
variable updates in AGSL. This is because they are well known from existing mutation
tools. Using a style, where a lot of behavior is represented by these elements, leads to
a big test suite. Last but not least, the structure of the �Action System Like� model
resembles a lot the way code is written using an imperative programming paradigm.
Since the implementation that has been used to run the test suite against is written
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in Java, one could argue, that here just two di�erent suites of mutation operators have
been compared.

On the other hand, one can ask, why the test cases of the other models miss some of
the faulty implementations. One explanation for this would be the lack of some speci�c
powerful mutation operators. Other work of Aichernig et al. [ALN13] for instance sug-
gests, that a mutation operator creating sink states is very powerful. Such an operator
is still missing in the MoMuT toolchain.

Another explanation for missing faulty implementations could be, that the test selection
strategy is too weak. This hypothesis can be supported by comparing the results to the
results of the publication presenting the di�erent strategies [Aic+11a]. There, using the
strategy S3 and S4 resulted in a test suite, which was able to kill all faulty implementa-
tions. Even the strategy S5 resulted in a test suite, which missed only one out of 38 faulty
implementations. Even though the numbers cannot directly be compared, as the notion
of time has changed too, this still indicates, that the decision, to stop the generation
of the product graph at the depth of the �rst unsafe state, has a negative e�ect on the
power of the generated test suites.

5.3.3 Comparison with other Killing Strategies

As described in Section 3.4.2 Ulysses can be con�gured to use other killing strategies
than the default one. Note, that the e�ects of these di�erent strategies had already been
investigated and published [Aic+11a]. However, this publication had been based on a
previous version of Ulysses. Back then, Ulysses supported the generation of linear test
cases, which was discontinued very soon, because of the huge number of generated test
cases and the limited exploration depth. On the other hand, the option to cut the search
tree on the depth of the �rst unsafe state was not yet introduced.

Test Case Generation For the context of this thesis it is interesting, whether some
killing strategies of Ulysses are able to create more powerful test suites. As result of
Section 5.3.2 only the test models following the �Action System Like� modeling style,
were able to generate a test suite killing all available faulty implementations.

In order to investigate, whether other test case extraction strategies are able to achieve
better results for the modeling styles �Original�, �Simple State Machine�, and �Multiple
Classes�, the test case generation process has been repeated with them. For the �Action
System Like� modeling style this has also been tried, but cancelled because it did not
scale at all. For example, using the strategy S3 without the cut of the search tree, it was
not possible to process the �rst ten out of 1658 mutants within three days. Among the
�rst seven mutants there is one, which takes alone 38 hours to be processed, which has
to be considered as too slow for such a simple system.
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Killing
Strategy

Search
Tree Cut Original

Simple
SM

Multiple
Classes

S3 yes 126 388 215
S3 no 469 585 700
S4 yes 19 28 28
S4 no 130 100 135
S5 yes 13 20 11
S5 no 33 21 36

Table 5.6: Number of generated test cases per killing strategy (cas3)

Killing
Strategy

Search
Tree Cut Original

Simple
SM

Multiple
Classes

S3 yes 3.6 16.3 19.1
S3 no 9.0 22.8 25.3
S4 yes 3.4 16.6 19.4
S4 no 31.5 27.7 37.6
S5 yes 3.5 16.3 15.7
S5 no 9.8 34.8 37.3

Table 5.7: Total time t in minutes for generating test suites per di�erent killing strategy
(cas3)

Note, that the killing strategy S3 is not designed for a regression based approach, since
it does not depend on existing test cases, whether new test cases are generated. So �rst
a comparison among the strategies S3 � S5 has been made on the full model cas3.

Table 5.6 shows the size of each generated test suites.

Table 5.7 shows the according run-times for generating the test suites of the full models
per killing strategy.

Data presented in these tables suggests, that enabling the cut of the search tree has a
big in�uence on both size of the generated test suites and time needed for the generation
process. The biggest di�erences in terms of the run-time can be found in strategy S4
which is quite as fast as S3 when the cut of the search tree is enabled, while it as
signi�cantly slower, when it is disabled.

Additionally, both variants of strategies S4 and S5 can be used to generate test cases
via the regression based approach beginning with the partial models. First test suites
for cas1 and cas2 are generated independently, then they are merged and used as initial
test suite for generating test cases for the model cas3. Table 5.8 shows the size of the
generated test suits for this approach.

Test Case Execution Table 5.9 relates the mutation score of each generated test suits
to its size. The strategies S3 and S4 without stopping the search at the depth of the
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Killing
Strategy

Search Tree
Cut Original

Simple
SM

Multiple
Classes

S4 yes 22 30 34
S4 no 136 105 143
S5 yes 15 21 17
S5 no 27 24 28

Table 5.8: Number of generated test cases per killing strategy using the regression based
approach cas1 ∪ cas2 ∪∆cas3.

Killing
Strategy

Search
Tree Cut Original Simple SM Multiple Classes

Size MS Size MS Size MS

S3 yes 126 84 % 388 87 % 215 92 %
S3 no 469 100 % 585 100 % 700 100 %
S4 yes 19 84 % 28 87 % 28 92 %
S4 no 130 100 % 100 100 % 135 100 %
S5 yes 13 84 % 20 87 % 11 87 %
S5 no 33 98 % 21 92 % 36 98 %

Table 5.9: Number of generated test cases and mutation scores per killing strategy ap-
plied on cas3

�rst fail states achieve 100 % mutation score. Since in strategy S4, the generation of
test cases for unsafe states, which are already covered by existing test cases is avoided,
the size of the test suites decreases signi�cantly. In strategy S5, where the generation of
new test cases is already omitted, if any non-conformance between the original model
and the model mutant can be shown with existing test cases, the size of the test suites
decreases again, but they do not achieve a perfect mutation score anymore. The cut of
the search tree decreases the size of each test suite, but the mutation score su�ers even
more.

Table 5.10 shows the resp. numbers for the regression based approach, where �rst test
cases are generated using the partial models. The mutation scores in most cases are the
same, only one number di�ers slightly for strategy S5, which is very sensitive about the
exact order, in which the model mutants are processed. Also in the size of the test suites
there is no big di�erence. This indicates, that if strategy S4 or S5 is used, there is no
objection to use the regression based approach.

Discussion The comparison between the di�erent test case extraction methods shows
big di�erences in run-time of the generation process as well as size and quality of the
generated test suites. It suggests, that the right choice of the parameters has a bigger
in�uence than the used modeling style. Using the killing strategy S3 or S4 without
the cut of the search tree ensures that for each unsafe state there is at least one test
case covering it. These test suites are also able to kill all 38 faulty implementations. As
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Killing
Strategy

Search
Tree Cut Original Simple SM Multiple Classes

Size MS Size MS Size MS

S4 yes 22 84 % 30 87 % 34 92 %
S4 no 136 100 % 105 100 % 143 100 %
S5 yes 15 84 % 21 87 % 17 87 %
S5 no 27 97 % 24 92 % 28 95 %

Table 5.10: Mutation scores per killing strategy using a regression based approach cas1∪
cas2 ∪∆cas3.

downside strategy S3 produces large test suites, containing duplicate test cases, which
increases the time needed to execute them on the implementations. Strategy S4 reduces
the number of test cases, but takes more time to generate them. Also, without the cut of
the search tree, they are only feasible for small models. Enabling the cut of the search tree,
lowers both run-time and size of the generated test suites. Since the strategies S3 and S4
loose their advantages, strategy S5 becomes a good trade-o�. However, the e�ectiveness
of the generated test suites in terms of killing faulty implementations su�ers.
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6 Case Study: Wheel Loader
Parts of this chapter have been submitted to but not yet published by the Journal of

Software Testing Veri�cation, Validation and Reliability (STVR) [Aic+].

The second case study deals with a wheel loader. The requirements have been provided
by RE:LAB, an industry partner within the MOGENTES project.

The wheel loader consists of a bucket, which is connected to a tractor. It is controlled
by a human, using a joystick to move both the bucket and the bucket arm. The core
component of the system-under-test is an electronic control unit (ECU), which is con-
nected to an ISOBUS network. ISOBUS is an extension to the widely-known CAN bus
technology for the automotive industry. Besides of the ECU, in this network there is
the joystick used to control the bucket and a TFT display, also referred to as Virtual
Terminal, which shows the status of the system and can be mounted in the cabin. Also,
the ECU controls the actuators of the bucket and the bucket arm. This is done by set-
ting the currents of two electromagnets, of which each controls a �hydraulic distributing
valve�. The ECU itself has been implemented on a Freescale i.MX35 processor running
Linux. For demonstration purposes within the MOGENTES project, a Lego model of
the wheel loader has been built by RE:Lab and the ECU, the joystick and the TFT
display have been connected. Figure 6.1 shows the setup of this demonstration, which
has been performed by RE:Lab within one MOGENTES meeting.

6.1 Requirements

Unlike the requirements of the car alarm system, which could be condensed to only three
core requirements, the requirements of the wheel loader cover a broad range of di�erent
aspects. These aspects are input handling, error management, providing suitable values
ful�lling the physical constraints, and general timing related properties.

6.1.1 Input Handling

The wheel loader is controlled by an eight-way joystick. That means that the joystick can
be moved in the cardinal directions as well as in the diagonals. The cardinal directions
are along the two axes. The de�ection in Axis 1 controls the position of the bucket arm,
while the de�ection in Axis 2 controls the rotation of the bucket. When the joystick is
moved backward (Axis 1), the bucket arm moves towards the top, when the joystick is
moved forward, the bucket arm moves towards the bottom. When the joystick is moved
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Figure 6.1: Demonstration setup of a wheel loader Lego model

left (Axis 2), the bucket rotates towards the top, when the joystick is moved right, the
bucket rotates towards the bottom.

The de�ection of the joystick is sent using ISOBUS messages, containing two Integer
values in a range between 0 and 65355. This range is divided into a �valid� range and
an �error� range. The valid range is from 0 to 64255 and its values represent an actual
joystick de�ection, while values from 64256 to 653555 are in the �error� range used to
communicate problems like a stuck switch or a broken wire.

The de�ection value of the neutral position of the joystick is 32127 on both axes. In the
requirements document this position is also referred to as �rest position�.

6.1.2 Error Handling

For error handling there is an extended state machine de�ned in the requirements doc-
ument as depicted in Figure 6.2. The ECU reacts to faults reported by the joystick by
switching the state within this state machine. The state machine uses three variables
(un_valid_data_counter, correction_counter, and valid_data_counter) and three
constants (K, M, and N), which can be set by the original equipment manufacturer (OEM).
The initial state is called NO_ERROR_DETECTED. As soon as the �rst joystick input
representing an error value is received, the system is switched in the FILTERING state.
In this state, the system functionality is still enabled, but further faults reported by
the joystick are counted. If the number of reported faults exceeds the threshold M, the
system functionality is disabled, and the system state is changed to CONFIRMATION
or STOP. The �rst K - 1 times, the system goes into the CONFIRMATION state, from
which it can still recover, the Kth time it goes to the STOP state, where the system
functionality is disabled until the system is restarted. In the CONFIRMATION state
the ECU waits for inputs of the joystick using valid values. If this happens, the state
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Error Handling

NO_ERROR_DETECTED

ResetUnvalidDataCounter /entry

FILTERINGUN_VALIDATION

CONFIRMATION

ResetValidDataCounter /entry

STOP

«triggerless»
[ un_valid_data = 1
 ] / IncreaseUnvalidDataCounter

«triggerless»
[ valid_data_counter >= N ]

«triggerless»
[ un_valid_data_counter > M
and correction_counter < K
  ] / IncreaseCorrectionCounter

«triggerless»

[ un_valid_data_counter > M
and correction_counter >= K ]

«triggerless»
[ un_valid_data = 1
  ] / IncreaseUnvalidDataCounter

«triggerless»
[ un_valid_data = 1 ]

«triggerless»
[ valid_data = 1
 ] / IncreaseValidDataCounter

«triggerless»
[ valid_data_counter > 0 ]

«triggerless»

[ valid_data = 1 ] / IncreaseValidDataCounter

Figure 6.2: Error handling state machine of the ECU of the wheel loader

changes to UN_VALIDATION, where further valid de�ection values are expected. If
at least N times in series a valid de�ection valid has been received, the system traverses
back in the NO_ERROR_DETECTED state, where the system functionality is enabled
again.

6.1.3 Virtual Terminal

The virtual terminal is the interface to the TFT display mounted in the cabin of the
wheel loader. The display shows the current state of the system including the current
state of the error handling, the current de�ection of the joystick as well as the direction
the bucket and the bucket arm are moving, which is an abstraction of the outputs of the
ECU to the electromagnets. Because of that, the virtual terminal is divided into three
areas. For each area there is a prede�ned set of possible graphics. There are three possible
pictures showing the error handling state, allowing to distinguish an �OK Status� for the
states, in which the system functionality is enabled, �Error� for the states, in which
the functionality is disabled but the system can still recover, and �Critical Error� for the
state, from which the system does not recover but has to be restarted. Additionally, there
are nine graphics showing the directions in which bucket and bucket arm are moving and
a total of 81 graphics showing the current de�ection of the joystick.
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Whenever a graphic changes, the ECU has to send an ISOBUS message in order to
trigger the update of the TFT display.

6.1.4 Electromagnets

In order to actually cause movements of the bucket and its arm, the ECU has to set the
current of two electromagnets. One electromagnet is responsible for the bucket and one
is responsible for the bucket arm. Each of them has two ports. One port is responsible
for the movement towards the top, the other is responsible for the movement towards
the bottom. The current of each port ranges from 0A (not powered) to 0.8A (fully
powered). The currents must not jump outright from 0A to 0.8A and vice versa. Instead
the ECU has to perform a so-called �ramp mode� in which the values change slowly. The
minimum time needed for a change from 0A to 0.8A can be de�ned by the OEM and can
be di�erent from the time needed for a change from 0.8A to 0A. Also the durations can
be di�erent between the movement of the bucket and the movement of the bucket arm.
So the de�ections of the joystick are not directly mapped to the actual output currents,
but instead they are mapped to target values, and the actual currents are changed slowly
until they match the target value. The mapping between the de�ection values and the
target output values is de�ned as follows: de�ection values in an ε-neighborhood are
mapped to 0A, the extreme de�ections of 0 resp. 64255 are mapped to 0.8A and all
other values are mapped linearly.

6.1.5 Timing Properties

The requirements document implicitly includes two aspects of timing properties: The
�rst aspect is that outputs to the electromagnet have to be provided by a �xed rate
de�ned by the OEM (for example each 100 ms), whereas the joystick has a maximum
transmission rate of 5 Hz which means that new de�ection values can occur only every
200 ms, and it can even take up to one second. The second aspect of timing properties is
that each component in the ISOBUS network has to send a so-called heart-beat message
to show that it is still alive and if there is a time-out for one of them, the ECU has to stop
the system functionality and traverse into the STOP state of the error management.

The heart-beat message of the joystick is called �Auxiliary input maintenance message�
and has to oocur at least every 300 ms, the heart-beat message of the virtual terminal is
called �VT Status Message� and the ECU itself has to send a heart-beat message called
�Working Set Maintenance Message� every second.

6.1.6 ISOBUS initialization

Another set of requirements concerns the initialization of the ISOBUS. First the ECU
claims its address and broadcasts it to the network. If for 250 ms, no other component
vetoes, the initialization is completed. Otherwise another component claims the same
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address. In this case, a protocol ensures that the component with the smaller numerical
value in its name wins and the other component has to choose another address.

6.2 Test Models

6.2.1 Preexisting Models

Within the MOGENTES project, a �rst test model has been created by AIT. The class
diagram is divided into three parts and shown in Figure 6.3, Figure 6.4, and Figure 6.5.

As can be seen in Figure 6.3 the parameters, that can be set by the OEM are stored as
constants in an own class called �Parameter Set�. Here the constants K, M, and N are de-
�ned for the error handling, described in Section 6.1.1. The property cycleTime denotes
the output rate of the ECU towards the electromagnets. The properties maxStepUpBucket
etc. are used to parameterize the ramp mode, which is described in Section 6.1.4. Instead
of de�ning the time needed for a change from 0 A to 0.8 A, the maximum current change
per update cycle is stored.

The ECU itself provides the following properties:

• the variables de�ned by the error handling
• the target value of each electromagnet current as well as the current values needed
for the next update cycle (RequestedOut)
• the current graphics shown on the TFT display
• the ISOBUS address (SA)
• the dummy element msg used to access the parameters of the input signals
• the address within ISOBUS network

Additionally the class de�nes private operations, in which AGSL code is swapped out
that is used more than once in order to avoid redundancy.

Also in this class diagram the data types are de�ned. For the graphics used on the
TFT display an enumeration type is used, all other data types are restricted Integers.
Note, that the ranges used for the joystick de�ection are too wide (0 to 65355) for the
enumerative approach of Ulysses, since it would lead to 4271276025 di�erent input events
for each step, where an input occurs.

Because of that, the input values have to be restricted more rigorously, leading to a
model with less possible di�erent input labels. Such a model is an abstraction in terms
of under-speci�cation as described in Section 4.1.

Figure 6.4 depicts the test interface of the model. The system boundaries de�ne the ECU
as system_under_test and the electromagnets and the virtual terminal as environment.
Messages from the ECU to the environment occur as output events in the LTS and
therefor in the test case. For setting the current on the electromagnet, a public operation
with four Integer parameters is de�ned. Outputs from the ECU to the virtual terminal
via the ISOBUS network are de�ned as signal reception. The input messages to the
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Figure 6.3: Class diagram ECU of the wheel loader

ECU also come from the ISOBUS network and are also de�ned as signal receptions. The
signals are de�ned in an extra class diagram as depicted in Figure 6.5.

Figure 6.6 depicts the version of the state machine of the whole wheel loader ECU, which
had been used, before this thesis has started. The initial state is called �AddressClaim�
which is a relict of the ISOBUS initialization phase, which had been originally modelled
in the same test model. It soon turned out, that the ISOBUS initialization had to be
modelled in an own partial model, so it has been already deactivated by removing the
transition from the sub-state �Wait� to the sub-state �Rcv�. So the only thing left is the
sending of the address by the ECU as entry action and after 250 ms the system enters
the �Initialized� state. This state is a super-state containing six orthogonal regions. The
�rst region models the error handling which is described in Section 6.1.2. The only dif-
ference is that the states in which the system functionality is enabled are grouped in a
super-state �Active� and the states in which the system functionality is currently dis-
abled but can be recovered are grouped in a super-state �Inactive�. The second region is
responsible for processing the inputs coming from the joystick. In the state �Receiving�
an �AuxiliaryInputStatusMessage� is received with the joystick de�ection as parameters
and then processed. If one of the values is in the error range, the corresponding vari-
ables of the error handling mechanism are updated. Otherwise a new target value for
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«system_under_test»
ECU

«from_environment»  AuxiliaryInputStatusMessage
«from_environment»  VirtualTerminalStatusMessage
«from_environment»  AuxiliaryInputMaintenanceMessage
«from_environment»  AddressClaimed

«environment»

Electromagnet

  SetCurrent(in Integer, in Integer, in Integer, in Integer)

«environment»
Terminal

  DisplayImage
  AddressClaimed
  WorkingSetMaintenanceMessage

+ terminal[1]

+ electromagnet[1]

Figure 6.4: Test interface of the wheel loader

«signal»
AuxiliaryInputStatusMessage

«range, sample»  Axis1: Integer [1]
«range, sample»  Axis2: Integer [1]

«signal»
DisplayImage

  ImageID: Image_ID [1]

«signal»
VirtualTerminalStatusMessage

«signal»
AuxiliaryInputMaintenanceMessage

«signal»
WorkingSetMaintenanceMessage

«signal»
AddressClaimed

«range, sample»  SA: Integer [1]
«range, sample»  name: Integer [1]

Figure 6.5: Class diagram ISOBUS messages of the wheel loader

83



6 Case Study: Wheel Loader

sm_ECU

AddressClaim

ClaimAddress /entry

Wait Rcv

Initialized
ErrorManagement

Active

ShowTerminalSystemOK /...

FILTERING

NO ERROR DETECTED

reset_un_valid() /entry

Inactive

ShowTerminalSystemError /en...

CONFIRMATION

reset_valid() /entry

UNVALIDATION

reset_un_valid() /entry

Stopped

ShowTerminalSystemCritical /entry

ReceiveInput

Receiving ReceiveWait

ControllerOutput
ControlOutput

RecalculateOutput /entry

ControlSafe

SetSafeOutputs /entry

JoystickStatus

JoystickLostJoystickOK JoystickWeak

VirtualTerminalStatus

VTLostVTOK VTinit

SendHeartBeat

ECUalive

WaitForReclaimAddressClaimed [ msg.SA <> self.SA ]

AddressClaimed [ msg.SA = self.SA ]

250

70

when un_valid_data_counter >= self.parameterSet.M

when un_valid_data_counter <> 0

when valid_data_counter >= self.parameterSet.N / increase_correction()

when valid_data_counter <> 0when un_valid_data_counter <> 0
[ else ]

when self.oclIsInState(Initialized::VTLost), when oclIsInState(Initialized::JoystickLost)

[ correction_counter >= parameterSet.K ]

1000 [ not (oclIsInState(Initialized::Stopped) or oclIsInState(Initialized::Inactive::CONFIRMATION)) ] / increase_un_valid()

AuxiliaryInputStatusMessage

200

[ not (oclIsInState(Initialized::Stopped) or oclIsInState(Initialized::Inactive::CONFIRMATION)) ] / increase_un_valid()

/ ShowJoystickPosition

[ (msg.Axis1 <= 64255) and (msg.Axis2 <= 64255 ) ] / increase_valid()
[ else ]

/ SetTargetOutput

parameterSet.cycleTime

when not oclIsInState(Initialized::Active)

when oclIsInState(Initialized::Active)

1

300

AuxiliaryInputMaintenanceMessage

1

3000

VirtualTerminalStatusMessage

1000 / SendWorkingSetMaintenanceMessage

[ else ]
[ msg.name < parameterSet.name ] / ChangeSA

Figure 6.6: State machine of the wheel loader

the electromagnet currents is calculated and the graphic depicting the current de�ec-
tion is sent to the virtual terminal. This leads to the state �ReceiveWait� in which the
system stays for 200 ms, which corresponds to the maximum transmission rate for the
joystick of 5 Hz, before returning in the �Receiving� state. In the third region, the actual
currents are calculated and sent to the electromagnet. This is done as entry action of
the state �ControlOutput�, which has a self-loop triggered by a time trigger waiting as
long as de�ned by the constant cycleTime. If the error handling changes to the state,
in which the system functionality is disabled, the system changes to the �ControlSafe�
state. The last three regions are responsible for the time out events. If the joystick does
not send the �AuxiliaryInputMaintenanceMessage� for more than 300 ms or the virtual
terminal does not send the �VirtualTerminalStatusMessage� for more than 3 seconds,
the error handling stops the functionality of the system. The ECU itself has to send the
�WorkingSetMaintainenceMessage� once per second.

84



6.2 Test Models

«sample_definition»
JoystickXValueSet

 «sample_definition»
     v = [1605, 7496, 16064, 24632, 32127, 39624, 48191, 56759, 62649, 64805]

«sample_definition»
JoystickYValueSet

 «sample_definition»
     v = [1605, 7496, 16064, 24632, 32127, 39624, 48191, 56759, 62649, 64805]

Figure 6.7: Equivalence class partitioning sample de�nition model �EQC�

Partial Models To a limited extent, the idea to use partial models has already been
incorporated within the MOGENTES project. As already mentioned, the idea to use
one model for both ISOBUS initialization phase and the rest of the requirements has
been given up immediately. Another point are the used values for the joystick de�ection.
Having two Integer parameters with a range from 0 to 65355 results in 232 possible
combinations. Using the enumerative approach of Ulysses, these are by far too many.
While a parameter range from 0 to 300 is acceptable for internal actions, parameters
used in input and output events have to be restricted more rigorously.

Instead of using a continuous range of values, it is necessary to do a so-called equivalence
class partitioning. This is a common technique in software testing, where input data is
divided into several classes and input data within the same class are assumed to be
equivalent in terms of revealing faults in a system. Then for each equivalent class one
value can be chosen arbitrarily and used to represent the whole class of test data.

In the test model, the chosen values can be enumerated explicitly using the stereotype
�sample_de�nition� as described in Section 3.1.2. Within the MOGENTES project two
partial models have been derived from the test models by using di�erent equivalence
class partitions. They have been referred to as EQC resp. X_error.

The term EQC is an acronym for �equivalence classes�. The partitions are based on the
graphics, sent to the virtual terminal. That means that for each graphic depicting a
particular joystick position one value is chosen. Additionally to these nine values per
axis, there is a value from the error range, which is used by the joystick to report a fault,
in order to be able to trigger the error handling. Since this value is also used for both
axes, there is a total of 10 values per axis, leading to 100 possible combinations and
therefore 100 di�erent input events in the generated LTS. Figure 6.7 shows the sample
de�nition.
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«sample_definition»
JoystickXValueSet

 «sample_definition»
     v = [64805, 0]

«sample_definition»
JoystickYValueSet

 «sample_definition»
     v = [32127]

Figure 6.8: Equivalence class partitioning sample de�nition model �X_error�

This test model captures the whole system functionality except for the ISOBUS initial-
ization. The random test case generation approach of Ulysses can be used to generate
test cases covering error handling as well as the calculation of the currents for the elec-
tromagnets as well as sending the correct pictures to the TFT display. However, the
mutation-based approach su�ers from the so-called �state space explosion�. In each step,
where an input from the joystick occurs, execution branches 100 times. Because of that
performing an ioco check is only feasible when small values for the search depth are used.
Exploring the system up to the point, where the �rst joystick input is processed and all
output events are considered, took about three hours.

Figure 6.8 shows the sample de�nition for another equivalence class partitioning, which
is based solely on the error handling. This model is also referred to as �X_error�. Instead
of considering ten values per axis, in this model the Y-axis uses a �xed value �32127�
which corresponds to the neutral position, while the X-axis uses the value �0� which
corresponds to the left-most joystick de�ection and the value �64805� which is in the
error range and therefore corresponds to a fault reported by the joystick.

Instead of 100 choices each time, a joystick input occurs, only two choices have to be
considered. Because of that, it is feasible to perform an ioco check up to a depth, where
the behavior of the error handling can be observed. So X_error can be seen as �rst
partial model for the wheel loader case study.

One main characteristic of the underlying modeling style is the extensive use of orthog-
onal regions. Note, that in order to generate comprehensive tests of the error handling,
also processing the joystick input and generating the output to the electromagnet have
to be modeled. Within this thesis it has been tried to provide an alternative version using
the multiple classes modeling style, as presented in Section 5.2.3. Unfortunately, due to
some limitations within the UML-to-OOAS transformation this has not been successful.
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Unlike the models of the car alarm system, where inputs from the environment did not
contain any parameters, when modeling the ECU of the wheel loader, there are parame-
ters. Because of some issues when trying to access the information received as parameter
of an input action, there would have been the need for additional workarounds. Since
these workarounds would have caused additional overhead within the UML-to-OOAS
transformation, obtaining a feasible model using the �multiple classes� modeling style
did not look promising.

6.2.2 Improvements

General Bottlenecks A �rst attempt to improve the test model is to identify bottle
necks. One of them is the lapse of time, which on the OOAS level is modelled using an
internal action called after(t). This action is enumerated t times, where t is the maximum
time value used in a time trigger of the test model. This means that in each step, where
an input event can occur, there are t calls of the after(t) action non-deterministically
composed to each of the input events. Experiments by Aichernig and Jöbstl [AJ12] have
shown, that Ulysses is very sensitive about the range of these parameters. Compared
to the test model of the car alarm system, in which the highest time unit has been 300
time units, the original test model of the wheel loader uses time events up to 3000 time
units. While a range from 0 to 300 for the internal after event works �ne with Ulysses,
a range from 0 to 3000 can render the enumeration to a bottleneck of the exploration.
To avoid this issue, it is better to change the time unit. When de�ning one time unit in
the test model to correspond to 10 ms in reality, values used in the model are limited by
300, which is known to work.

Another optimization is to remove all unused transitions in the ISOBUS initialization
phase. Even though the transitions are not reachable, they are still translated into the
object-oriented action system as internal actions and called in the iterative loop of the
corresponding action system.

New Partial Model Since the partial model for testing the error handling has been
already feasible at the start of this thesis, most e�orts have been put on the second partial
model. Two reasons can be identi�ed, why the �EQC� model is so complex: �rstly, 100
di�erent choices of possible joystick de�ection values are too many. Since runtime grows
exponentially to the number of choices, choices have to be restricted more rigorously.
Secondly, the model consists of six orthogonal regions, covering also the error handling,
which is already tested using the other partial model.

Figure 6.10 shows the state machine of the partial model that has been created within
this thesis. When modeling the system without error handling, all the other orthogonal
regions can be merged. In this case, the test model only speci�es joystick input that
represents a valid joystick de�ection values. Only those parts of error handling have to
be considered, which are responsible for reacting to timeouts caused by missing keep
alive messages. Note, that the guards are hidden because of readability reasons.
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«sample_definition»

JoystickXValueSet

 «sample_definition»
     v = [1605, 32127, 62649]

«sample_definition»

JoystickYValueSet

 «sample_definition»
     v = [1605, 32127, 62649]

Figure 6.9: Equivalence class partitioning sample de�nition model �Extremes�

Figure 6.9 shows the corresponding sample de�nition. The equivalence class partitioning
has been done on extreme values. They include the four cardinal directions (left, right,
up, down), the four corners as well as the neutral position. Because of that it is referred
to as model �Extremes�.

To make the state machine as simple as possible, only one region has been used. Also,
each opaque behavior is linked to a transition and no entry or exit action is used. The
initial state is �q0�, where the startup phase begins. The �rst output events occur until
the system enters the state �q5�. In this state the �rst input from the joystick can occur,
leading to state �q6�, or another 100 ms (10 time units) pass without an input, leading
directly to state �q9�. Here also the update loop begins. Note, that it is only possible to
merge all six orthogonal regions of the original model into one big loop, if some input
events are left out, in order to synchronize the input and output events. This can be done,
since it leads to a more abstract model, leaving the missing inputs under-speci�ed.

In this model, each iteration of the loop lasts 300 ms (30 time units) and includes at most
one joystick input, while the original model allowed for an joystick input every 200 ms.
The states �q11�, �q14�, and �q20� contain a self-loop with an e�ect of sending the heart-
beat message of the ECU. To ensure, that this is done exactly once every second, the
current time is stored in a class property called WorkingSetClock which stores the time
since the last heart-beat messages in ms. The self-loop has a guard with the condition
WorkingSetClock = 1000 and the other outgoing transitions have a guard with the
condition WorkingSetClock < 1000. From state �q20� there is a transition triggered by
a time event of one time unit. This transition is taken, if the heart-beat message of the
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Extremes

q0 q1 q2 q3 q4

q5

q6

q7

q8

q9q10q11q12q13

q14

q15

q16

q17

q18 q19 q20

q21

q22

q23 q24

/ SendAddressClaimed 25 / SetCurrent / SendImplementStatus

/ SendErrorManagerState

AuxiliaryInputStatusMessage

10 / ClockUpdate

/ ProcessInput

/ SendJoystickImage

10 / ClockUpdate

AuxiliaryInputMaintenanceMessage

/ SetCurrent

/ SendImplementStatus

/ HeartBeat

10 / ClockUpdate

/ SetCurrent

/ SendImplementStatus

10 / ClockUpdate

AuxiliaryInputStatusMessage

/ HeartBeat

/ ProcessInput

/ SendJoystickImage

10 / ClockUpdate

/ SetCurrent

/ SendImplementStatus

/ HeartBeat

1 / ClockUpdate

/ SetCurrent

/ SendDisplayImage

10 / ClockUpdate
9 / HeartBeat

100 / HeartBeat

Figure 6.10: State machine, model �Extremes�
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joystick is missed, leading to a timeout. In this case the system functionality is disabled
and only the own heart-beat message is sent every second (100 time units).

The underlying modeling style resembles to the �Simple State Machine� modeling style,
presented in Section 5.2.1. However, there is some information stored in the properties,
so technically it is a combination of the �Simple State Machine� and the �Action System
Like� modeling style.

Sample Test Case Figure 6.11 shows a sample test case for the wheel loader ECU.
Output events from the ECU are marked with the pre�x �obs�, the input event is marked
with the pre�x �ctr�. The �rst parameter denotes the time that has passed before the
event occurs. Data using an enumeration type like the id of the pictures sent to the TFT
display is represented by Integers. The mapping is done by the tool Argos and has to be
considered when writing the test driver.

The test case describes the following scenario: Immediately after started (0 time units)
the ECU provides its name (0) and claims its ISOBUS address (4). This is modeled in
the e�ect named �SendAddressClaimed�. Then 250 ms afterwards (25 time units) it sets
the currents of each port of each electromagnet to �0� (e�ect �SetCurrent�). Immediately
after that (0 time units) the ECU sends the picture �3�, denoting that the bucket is
currently not moving (e�ect �SendImplementStatus�) and �nally picture �0�, denoting
that it is in a healthy state (e�ect �SendErrorManagerState�). Without waiting (0 time
units) the joystick sends its current de�ection (right most on X-axis, no de�ection on
Y-axis) to the ECU (signal event �AuxiliaryInputStatusMessage�). The desired behavior
is a rotation towards the bottom, but no movement of the bucket arm. The ECU has to
send picture �56�, corresponding to the joystick position immediately (e�ect �SendJoy-
stickImage�) and set the current of Port A of electromagnet 1 to 50 mA after 100 ms
(e�ect �SetCurrent�).

obs send_AddressClaimed_to_Terminal(0,0,4)

obs call_Electromagnet_SetCurrent(25,0,0,0,0)

obs send_DisplayImage_to_Terminal(0,3)

obs send_DisplayImage_to_Terminal(0,0)

ctr AuxiliaryInputStatusMessage(0,62649,32127)

obs send_DisplayImage_to_Terminal(0,56)

obs call_Electromagnet_SetCurrent(10,50,0,0,0)

pass

Figure 6.11: A sample test case for the wheel loader case study
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6.3 Experiments

The aim of the experiments within this case study has been to repeat the comparison
between the di�erent killing strategies, described in Section 3.4.2. For the car alarm
system this has already been published [Aic+11a].

As test model for testing the error handling the X_error model and for testing the
positive behavior the Extremes model have been chosen.

6.3.1 Mutation

To make the experiment feasible parameters had to be chosen, in order to keep the needed
time per model and killing strategy below one week. This can be done by restricting the
search depth or by selecting the mutation operators. Applying all mutation operators
on the two partial models would result in 418 mutants for the X_error model and
2004 mutants for the Extremes model. The reason, why the latter model yields so many
mutants is that this model has more redundancy. To avoid multiple orthogonal regions,
which lead to more complex object-oriented action system, some AGSL code fragments
have been duplicated. For instance the code responsible for calculating the currents for
the electromagnet occur only once in the X_error model but three times in the Extremes
model.

Another observation is that many mutations occur in the startup and initialization phase.
Test cases yielded by these mutations would be included in most other test cases, which
test for more subtle faults. So instead of using all mutations, only the following three
mutation operators have been chosen:

1. Mutating Transition Time Trigger Events.
2. Mutating Transition OCL expressions.
3. Mutating Transition AGSL expressions.

These mutation operators replace all literal Integer values by other values, for this ex-
periment the value increased by one has been chosen. Together these mutation operators
capture a fault-model of so-called o�-by-one errors.

Additionally mutants have been �ltered out, where the mutation regards the mapping
between the joystick de�ection and the picture sent to the TFT display. Since the equiv-
alence class partitioning is not based on the joystick pictures anymore, this can be con-
sidered as so-called �dead code�. That means, that the relevant code can not be reached
using this input values. To decide, which picture is displayed on the TFT display, a
nested conditional assignment is used. Using the equivalence class partitioning contain-
ing only three values per axis, most branches of the statement can not be reached and
therefore a mutation in there can not be found.

Finally, this results in a total of 58 mutants for the X_error model and 192 mutants for
the Extremes model.
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Model Metrics X_err Extr

Max. depth for ioco check 35 25
Mutants [#] 58 192
Equivalent mutants [#] 35 106
Mutants causing a livelock 0 8

Table 6.1: Important characteristics for both test models of the wheel loader model.

6.3.2 Test Case Generation

Setup As described in Chapter 3 the MoMuT toolchain consists of several loosely
connected separate tools.

For these experiments the creation resp. adaption of the UML models with Papyrus
as well as mutating with UMMU and translating the models into action systems using
Argos has been done using a laptop computer with one 2.0 GHz quad-core processor and
4 GB RAM.

The core part of the experiments, the generation of test cases using Ulysses, has been
conducted on a computer with two 2.5 GHz quad-core processors and 32 GB RAM
running a 64-bit Linux as operating system. This computer is also used by other work-
groups of the institute, but �ve parallel processes have been granted to these particular
experiments and up to 25 GB RAM could be used.

For parameterizing Ulysses to run each test model with each killing strategy, shell scripts
have been used.

Results All �ve strategies described in Section 3.4.2 (S3 � S7) have been applied to
both test models. The mutation-based approaches (S3 � S6) have been used with the cut
of the search tree enabled. Strategy S7, which does a random test case generation, has
been applied three times. Also, the strategy S6, which uses random test cases generated
by strategy S7 as initial test suite, has been applied three times. The reported values
are therefor mean values of the three runs.

It has also been attempted to apply the same strategies with the cut of the search tree
disabled. However, this attempt had to be cancelled, since within two months, not even
processing the �rst test model could be completed by any of the killing strategies with
the cut of the search tree disabled. It already took 24 days just to process the �rst
model mutant of the X_error test model with strategy S3, which yielded alone 1190
test cases.

Table 6.1 lists the metrics of the models which are independent of the strategy: for the
Extremes model a search depth of 25 and for the X_error model a search depth of 35 has
been used. Up to these exploration depths, 106 of the 192 mutants of the Extremes model
and 35 of the 58 mutants of the X_error model have been equivalent, that means, they
are input-output conform to the original model with respect to the given exploration
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Strategy S3 S4 S5 S6 S7

X_error 31 17 14 13.3 3
Extremes 356 150 60 28.3 3

Table 6.2: Number of generated test cases per test model and strategy

Strategy S3 S4 S5 S6
Model X_err Extr X_err Extr X_err Extr X_err Extr
Avg. t for equivalent
mutant

161.8 35 162.3 35 162.7 36 156.8 36.8

Total t for equivalent
mutants

5663 3711 5679 3709 5696 3812 5487 3849

Avg. t for mutant caus-
ing livelock

0 6.2 0 6.2 0 7.2 0 5.6

Total t for mutants
causing livelock

0 50 0 50 0 58 0 40

Mutants triggering TC
[#]

23 78 9 41 6 23 5.3 9.3

Avg. t for mutant trig-
gering TC

7.3 2.1 19.6 5.9 27.7 3.4 36.2 6.8

Total t for mutants
triggering TC

168 167 176 241 166 79 181 410

Mutants killed by ex-
isting TC [#]

� � 14 37 17 55 17.6 71

Avg. t for mutant killed
by TC

� � 0.1 1.7 0.1 0.3 0.4 0.7

Total t for mutants
killed by TC

� � 2 63 1 15 25 48

Total t for TC gen 5831 3928 5857 4063 5863 3964 5693 4347

Table 6.3: Run-times t in minutes for generating test cases per strategy.

depths. Note, that they are not necessarily really equivalent as behavioral di�erences
might occur deeper in the state space. On average processing a mutant up to this point
took 35 minutes.

Since it might happen that mutated speci�cations run into in�nite loops of internal
actions, a so-called livelock, a timeout of 5 minutes for each step between two visible
actions during test case generation has been set. If this timeout is reached, the test case
generation fails and no test case is generated. Eight of the Extremes mutants caused a
livelock, but none of X_error.

The main di�erence among the fault-based test case generation strategies S3�S6 lies in
the number of generated test cases. Table 6.2 lists the number of test cases for each
application of a strategy for both test models. Compliant with the results of the car
alarm system case study the number of generated test cases decreases as the strategy
gets more sophisticated.

For the X_error model the number of generated test cases ranges from 31 using the
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strategy S3 to 14 using strategy S5 and an average of 13.3 using strategy S6. Hence, the
size of the test suites can shrink to less than half.

For the Extremes model the number of generated test cases ranges from 356 using the
strategy S3 to 60 using strategy S5 and only 28.3 on average when using strategy S6.
Hence, by using a combination of random and fault-based test case generation one is
able to shrink the size of the generated test suite to less than one tenth compared to a
test suite created by a strategy that does neither of these optimizations.

In contrast to the signi�cant reduction of the number of test cases, the total run-times
for the test case generation process for each strategy stays almost constant. Table 6.3
shows the run-time of the purely fault-based strategies as well as the run-times of the
combined strategy S6. The total generation time for one test suite using strategies S3�
S6 ranges from more than two days (3928 minutes) to approximately four days (5863
minutes), depending on which model is used.

The table also presents the time spent by mutant-type. The �rst two rows show the
time spent processing equivalent mutants: if the non-conformance between the original
and the mutant cannot be shown within the given depth, processing just one mutant
takes from 35 to 162 minutes. This is independent of the strategy and responsible for
the largest portion of time spent. Hence, equivalent mutants are the main reason, why
the total time spent on test case generation does not di�er much among the presented
strategies.

The next two rows show how much time is spent on processing mutants where test case
generation fails due to a livelock. As already presented in Table 6.1 this only happens
in the Extremes model. It can be seen that the livelocks in the mutants occur at the
beginning of the exploration, therefore comparatively little time is spent on processing
these mutants.

The number of mutants triggering a new test case depends on the strategy. In strategy
S3, all mutants that are neither equivalent up to the search depth nor fail because of a
livelock trigger the generation of new test cases. The average time needed for processing
such a mutant highly depends on how sophisticated the killing approach is. For example,
strategy S3 generates many short test cases, which lowers the average generation time.
In the more sophisticated strategies S4�S6, this is often suppressed by the check whether
an existing test case can already kill the mutant.

The last three rows show what happens if a mutant is killed by an existing test case: the
average time to kill a mutant is comparatively low. For the Extremes model, which has
a larger range for input values that need to be enumerated, it is below two minutes. For
the X_error model it is even faster taking less than half a minute in average.

Test case generation using a random walk is comparatively fast. The generation of each
test suite containing three test cases took between two and three minutes.

Since strategy S6 (the combination between random and fault-based test case generation)
has been repeated three times, Table 6.4 presents the associated data in detail.
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Test Case Generation with S6 Extremes X_error
Run1 Run2 Run3 Run1 Run2 Run3

Generated test cases (excl. random) [#] 21 28 36 13 14 13
Mutants triggering a new test case [#] 7 12 9 5 6 5
Mutants killed by existing test cases [#] 79 65 69 18 17 18

Table 6.4: Details on individual test case generation runs with strategy S6.

6.3.3 Test Case Execution

To measure the power of the generated test suites in the car alarm system case study an
implementation has been created and faults have been injected using classical mutation
testing. For the wheel loader case study this has been repeated.

Implementation As part of the master project of the author of this thesis a Java
implementation of the ECU has been created. The implementation consists of approxi-
mately 500 lines of code and is based on the test model �EQC�. Random test cases have
been generated and the system has been implemented using a test-driven development
method.

The design is similar to the implementation of the car alarm system. The implementation
simulates an ECU, that receives its inputs by method calls and reacts by calling call-back
methods, which are de�ned in two Java interfaces. One interface de�nes the methods
of the ECU, which correspond to the ISOBUS messages of the real ECU. Additionally,
there is a method called tick() de�ned in order to simulate time. Calling this method
denotes, that one time unit has passed.

Test Driver The test driver is built analogously to the test driver of the Car Alarm
System. It implements the environment interface to provide the call-back functions for
the ECU.

Mutation Analysis The mutation tool µJava [MOK05] has been used again to create
faulty versions of the implementation. All method-level mutation operators have been
applied, which yielded 1511 mutated implementations. For manually inspecting, which
of these mutated implementations are actual faulty and not just equivalent mutants,
this number is by far too high. However, to be able to measure the quality of the test
suites, which have been obtained using the model-based mutation approach, at least an
approximation was needed.

In order to estimate, how many of the mutated implementations are equivalent mutants,
the following procedure has been used: the test model �EQC�, which has already served
as basis for the implementation, has been used to generate 1000 test cases applying the
random killing strategy (S7) of Ulysses. Mutated implementations, which survived this
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Strategy S3 S4 S5 S6 S7
Model X_err Extr X_err Extr X_err Extr X_err Extr X_err Extr
Gen. test cases [#] 31 356 17 150 14 60 13.3 28.3 3 3
Mutation score [%] 36.01 72.7 36.01 72.7 35.85 71.27 36.99 71.61 28.84 61.14
Total mut. score [%] 81.07 81.07 79.65 79.87 65.47

Table 6.5: Number of generated test cases and mutation scores for strategies S3�S7.

large test suite, have been considered equivalent. Note, that even though the random
killing strategy (S7) is the fastest test case generation strategy, generating such a large
test suite, took approximately three days on a single CPU. The execution of the resulting
test suite on all mutated implementations consisted of a total of 174,903 test runs. Out
of the 1511 mutated implementations, 317 mutants survived and have therefore been
considered being equivalent to the original implementation. The remaining 1194 faulty
implementations have been used to evaluate the power of the test suites generated with
the MoMuT toolchain.

Results All generated test suites from the test models �Extremes� and �X_error� have
been run against the 1194 faulty implementations. Table 6.5 shows the mutation score
and relates them to the size of the generated test suites. Additionally the table shows
the mutation score, that can be achieved by merging the two test suites of each strategy.
The di�erence between the mutation score of the test suites are quite low. Having that
in mind, strategy S6, is a good choice if the size of the test suite matters. Starting with
a small number of random test cases and adding further test cases only, if existing test
cases cannot kill a model mutant, is a good way to avoid creating short test cases. If on
the other hand only mutation score matters, strategies S3 and S4 are slightly better.

Unfortunately, the killing strategies, in which the cut of the search tree is disabled, do
not scale to complex test models, like the ones used in this case study.

It is also remarkable, that random test case generation is quite powerful. Having in mind,
that a test suite containing 6 test cases, which can be generated in less than have an
hour, can already kill about 65 % of the faulty implementations is quite impressive.
However, it has to be noted, that the random killing strategy S7 still performs model-
based testing using the model as oracle. Also, the model is used to guide the random
test case generation, so that it creates meaningful test cases. Because of that, one should
think of strategy S7 as random search through a test model rather than of purely random
software testing.

Empirical data gained by this case study also supports the claim, that partial test models
help for creating powerful test suites. In each strategy combining the test suites from
both test models results in a higher mutation score than the better of the two distinct
test suites, so each partial model contributes to the combined test suite.
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7.1 Summary

In this thesis the role of test models for a particular prototype toolchain performing
model-based mutation testing has been investigated. This toolchain originated from a
past research project as joint work between the Austrian Institute of Technology and
the Institute for Software Technology. It takes UML models using class diagrams and
state machines as input and generates abstract test cases. The UML models may include
code written in OCL, as well as in a proprietary programming language called AGSL.
The internal process of the toolchain includes a transformation of the test models into
an intermediate language called �object-oriented action systems�, which has a clearly
de�ned formal semantics and can be mapped to a LTS (Labeled Transition System). As
test selection criterion mutation testing is used. A set of faulty models is created and the
conformance of their associated LTS to the LTS of the original model is checked. Test
cases are generated, which are able to reveal non-conformance. As conformance relation
Tretmans' ioco is used.

The main purpose of this thesis was to address the e�ects of possible modeling styles for
the UML models, which are used as input for the toolchain.

One approach was the use of a series of partial models covering di�erent functional
aspects of the system-under-test in addition to or instead of one single full model covering
the whole functionality. It has been argued, how a new iterative, test-driven development
process could look like, which is based on model-based mutation testing using partial
models.

In a �rst case study dealing with a car alarm system, it has been shown how a pre-existing
model of a system-under-test can be decomposed into two partial models and how the
toolchain can be used to generate a test suite in an iterative way. Furthermore three
alternative UML modeling styles have been presented. Test cases have been generated
and a mutation analysis using a pre-existing Java implementation has been conducted.
Additionally, a comparison among di�erent parameters controlling the test case extrac-
tion strategy of the test case generation process has been made. This gave new insight
about the interdependency between the modeling style of the test model, the test case
extraction strategy, and the results.

In a second case study dealing with the electronic control unit of a wheel loader, a
pre-existing test model has been improved and complemented with a new additional
partial model in order to be able to generate test suites in reasonable time and conduct
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a comparison of the di�erent possible test case extraction strategies. A mutation analysis
had been performed using a Java implementation, which had been created by the author
of this thesis beforehand. The test case generation process within this case study has
been a large empirical study, where alone the successful runs took over 40 CPU days.

7.2 Related Work on Partial Models

The idea to use partial models is not new, but rather state-of-the art in model-based
testing. It has to be noted, that the term �partial model� in literature often is used for
both horizontal and vertical modularity, while in this thesis it is only used to denote
horizontal modularity.

In their textbook �Practical Model-Based Testing� Utting and Legeard [UL07] illustrate
how to write test models for a drink vending machine using di�erent notations. They
emphasize the importance of the test model and show that partial models are possible
and useful. This book also gives a very comprehensive overview over model-based testing
practices in general.

Some early work in the �eld of partial models has been done by Larsen and Thomsen,
who introduced the concept of �Modal Transition Systems� [LT88] in order to be able to
explicitly de�ne under-speci�ed behavior, which refers to vertical modularity.

Other relevant work includes the work of Salay et al. [SFC12], who show how to de�ne
the information of uncertainty and partiality in a language-independent manner.

However, all of this work deals with partiality in design models, not in test models.

One example of research done in the �eld of partial models and compositionality for
testing is the work of Grieskamp et al. from Microsoft Research [GKT06]. They use
a formalism called �action machines�, which is similar to the concept of the �action
systems�, which serve as intermediate language in the MoMuT toolchain. Their idea is
to create so-called �scenario machines�, which can be used to slice the test model in order
to gain a partial model. The �action machines� framework supports conformance checking
using �alternating simulation�, which which was proposed by Alur et al. [Alu+98]. This
relation is very similar to the ioco conformance relation used by the MoMuT toolchain.
Veanes and Bjørner [VB10] even provide formal proofs that relate the re�nement relation
�alternating simulation� to ioco.

Another example for related work on partial models for model-based testing is the re-
search of Robinson-Mallett et. al. [Rob+08]. Their approach is to generate partial models
from test sequences in order to perform integration testing. The used formalism are timed
automata.

There has also been work on improving the conformance relations, in order to improve
the expressibility of under-speci�ed behavior. This has been done by the group of Tret-
mans leading to the new conformance relation uioco [BRT04]. There the capabilities of
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ioco regarding under-speci�cation have been extended. Also, for conducting vertical re-
�nement steps a possibility to hide more abstract actions in favor of new more concrete
actions has been introduced. This allows the modeler to replace an atomic action by a
trace of actions. This technique is also referred to as trace re�nement which is not to be
confused with the traces re�nement relation.

Other work in this �eld has been done by Gorrieri and Rensink, who suggested the idea
of �action re�nement� [GR01]. In their approach in each vertical level, the set of visible
actions used can di�er. In traditional ioco there is only limited support for this kind
of re�nement: in a later re�nement step only additional input actions can be added, as
explained in Section 4.1.

7.3 Discussion

In two case studies this thesis has demonstrated, how a system can be decomposed into
partial models. Results show, that model-based mutation testing is applicable and is
able to generate respectable test suites. Yet, it is not a push-button technology. A lot of
parameters have to be chosen, including a wise selection of mutation operators leading to
a meaningful fault-model or a search depth that is large enough to �nd the injected faults
but small enough that equivalent model mutants do not delay the process exorbitantly.
Another important parameter is the test case extraction strategy, that de�nes how many
test cases are generated when non-conforming behavior can be identi�ed. All this requires
a thorough understanding of the used tools as well as of the test model. The test model
itself is probably the most important factor for the power of model-based mutation
testing.

In the car alarm system case study additionally to the pre-existing model three alterna-
tive modeling styles have been presented. The comparison among these modeling styles
and di�erent test case extraction strategies has shown very interesting interdependen-
cies: for each modeling style there has been at least one parameter set which achieved
100 % mutation score on 38 faulty Java implementations. However a parameter set that
worked perfectly for a test model using one particular modeling style, did not even �n-
ish in reasonable time for a test model of another modeling style. Some combination of
parameters and modeling style led to test suites containing up to 700 test cases, while
another combination led to a test suite containing only 11 test cases.

This thesis has shown both possibilities and limitations of a current prototype toolchain.
In the case of the wheel loader demonstrator, before starting the work of this thesis,
it seemed that test suites generated by a mutation-based approach would easily be
outperformed by random test case generation. With a new partial model, developed
within the thesis this has changed. For being so fast, random test case generation is still
enviably good, but the test suites generated by a mutation-based approach have their
advantages, too. Moreover, both techniques can be combined, leading to even better
results.
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From the wheel loader case study we also learned, how the toolchain scaled for large
systems. Here partial models were not just an option, but instead they were needed in
order to cope with the complexity.

7.4 Future Work

This thesis is only one step towards the applicability of model-based mutation testing. For
one particular prototype toolchain it has been shown, how test models can be written and
what impact a certain modeling style has on the results of a test case generation process.
Even though the input to the toolchain is UML, which is a very common modeling
language, creating good test models, is a very tricky task. It is not su�cient to be
familiar with the input language itself, but also the knowledge of internal details of the
toolchain is necessary in order to achieve satisfying results.

In order to distribute the toolchain to industry, a detailed set of instructions on modeling
guidelines has to be developed. Insight gained from a work like this could be one source
for doing so.

When building the models for the case studies of this thesis a lot of issues within some
parts of the toolchain have been found. Some of them made it necessary to use little
intuitive workarounds, other issues could hinder some approaches to succeed. In order
to become applicable the prototype toolchain has to mature.

One particular issue is the lack of scalability to large models in terms of run-time and
memory consumption. This is mostly due to the fact, that Ulysses uses an enumerative
approach to build the state space, which inevitable leads to a �state-space explosion�
unless all possible value ranges are restricted very rigorously. To overcome this problem,
there is already ongoing work by Aichernig and Jöbstl [AJ12] where a symbolic approach
is used instead of the enumerative approach.

Other ongoing joint work of the Institute for Software Technology and the Austrian
Institute of Technology addresses the use of timed automata as formalism [ALN13].
This is a promising approach especially for designing test models, which have to represent
complex time constraints.

Further use cases and demonstrators within current and future research projects will
give insight on which approach is preferable in which domain and how the test models
have to be designed.
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