
christian caldera

C O M F Y

C O M F Y

christian caldera

A Conference Management Framework

April 2013 – version 1.0

Christian Caldera: COMFy, A Conference Management Framework,
© April 2013

A B S T R A C T

Scientific work has to be documented and is usually submitted to a
conference to be published as a paper. Prior to publishing, the pa-
per has to be reviewed, which is a cumbersome task for the review-
ers as well as for the chair. The chair has to assign the reviewers to
the papers which they read and rate. Computer based programs - so
called conference management systems - are used to help reviewers
and chairs managing the submissions. These systems maintain the
submissions, enforce access rights and guarantee a certain amount of
anonymity between reviewer and author. This thesis presents a differ-
ent approach to such systems. The use of an API instead of a closed
system makes it much easier for external programs to harvest and
process the data within the framework. Because of this API it is also
easy to customize the system to the users needs. An example imple-
mentation of this new approach shows the advantages proving that
this new approach is feasible.

Z U S A M M E N FA S S U N G

Wissenschaftliches Arbeiten wird dokumentiert und bei Konferen-
zen als sogenanntes Paper veröffentlicht. Bevor so ein Paper pub-
liziert werden kann, muss es noch von Gutachtern rezensiert werden.
Diese Aufgabe ist sowohl für die Gutachter als auch den Vorsitzen-
den der Konferenz eine mühselige Arbeit. Der Vorsitzende muss die
Rezensenten zuordnen. Diese müssen wiederum das Paper lesen und
eine Rezension schreiben. Computerprogramme, sogenannte Konferenz-
managementsysteme, werden benutzt um den Vorsitzenden und den
Gutachtern zu helfen die Einreichungen zu verwalten. Diese Pro-
gramme verwalten die Paper, gewährleisten Zugriffsrechte und garantieren
einen gewissen Grad der Anonymität zwischen Gutachtern und Au-
toren. Diese Arbeit präsentiert eine neue Herangehensweise an so
ein System. Um die Kommunikation mit dem Framework einfacher
zu machen wird eine API angeboten anstatt eines geschlossenen Sys-
tems. Diese API erleichtert das Anbinden externer Programme um
Daten zu erfassen und sie zu verarbeiten. Der User kann aufgrund
dieser API das System auch individuell auf seine Bedürfnisse an-
passen. Eine Beispielimplementierung zeigt die Vorteile und Realisier-
barkeit des neuen Systems.

iv

P U B L I C AT I O N S

"COMFy - A Conference Management Framework" was accepted as a
paper on the 17th International Conference on Electronic Publishing
the Digital Information Networks (ELPUB 2013

1). [2]

1 http://www.bth.se/com/elpub2013.nsf

v

A C K N O W L E D G M E N T S

This project would not have been possible without the support of
many people. I would like to thank my supervisor René Berndt who
supported and guided me throughout the project. Further I like to
thank all members of the Institute of Computer Graphics and Knowl-
edge Visualization as well as the Fraunhofer Austria Research GmbH,
especially Christoph Schinko, Harald Grabner, Martin Schröttner and
Stefanie Behnke. I would also like to express my highest gratitude to
my family, in particular my parents and grandparents for support-
ing me throughout my study. Last I want to thank all my friends for
helping and supporting me throughout the study, especially Andrea
Jäger and Melanie Fuchs for mental support through the study and
the project.

vi

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

C O N T E N T S

1 introduction 1

1.1 Overview . 1

1.2 Conference Example . 3

1.3 Motivation . 6

2 related work 9

2.1 Overview . 9

2.2 Easy Chair . 9

2.3 COMS Conference Management System 9

2.4 OpenConf . 10

2.5 Confious . 11

2.6 SRM . 11

2.7 Conclusion . 14

3 technologies 16

3.1 Overview . 16

3.2 Used technologies . 16

4 system design 24

4.1 Overview . 24

4.2 User/Role Management 25

4.3 Database Schema . 26

4.4 Repositories . 29

4.5 Statemachine . 30

4.6 COMFy . 31

4.7 COMFys API . 31

4.7.1 Usage of the API 32

4.7.2 API classification 32

4.7.3 API example . 34

4.8 SRMv2 . 35

4.8.1 Example use case 35

4.8.2 Implementation 36

5 comfys workflow 43

5.1 Overview . 43

5.2 Summarized Workflow 43

5.3 Submission . 44

5.3.1 Setting up the conference 44

5.3.2 Submission for authors 45

5.3.3 Submission for IPC 46

5.3.4 Submission for chair 46

5.4 Reviewing . 47

5.4.1 Pre reviewing . 47

5.4.2 Assigning reviewers 47

5.4.3 Reviewing phase 48

5.5 Decision . 49

viii

contents ix

5.6 CRC . 50

6 discussion 51

6.1 Comparison of the results 51

6.2 Modularity . 51

6.2.1 Modifying the database 51

6.2.2 Modifying the repositories 52

6.2.3 Modifying the WebUI 52

6.3 Future Work . 53

6.4 Conclusion . 54

bibliography 55

a appendices 57

L I S T O F F I G U R E S

Figure 1 Peer Reviewing types experienced by respon-
dents . 2

Figure 2 Peer reviewing types how they are thought ef-
fective and prefered by participants 3

Figure 3 Information flow of the Submission Review Sys-
tem . 4

Figure 4 This figure shows an extract of the current ACM
classification . 5

Figure 5 The function getChildObjects on one submis-
sion in SRM . 7

Figure 6 Acceptance rate of the Eurographics Annual
Conference . 8

Figure 7 Elpub 2013 information page managed by Easy-
chair . 10

Figure 8 The COMS demo conference welcome screen . 11

Figure 9 The home screen of the OpenConf demo con-
ference 2014 . 12

Figure 10 The Confious paper overview seen as chair . . 13

Figure 11 The electronic workflow of the Submission Re-
view System . 14

Figure 12 The SRM home screen 15

Figure 13 The typical model-view-controller workflow . 17

Figure 14 A datatable example which is based on jQuery 19

Figure 15 Difference Ajax vs. classical request 20

Figure 16 How dependency injection works. 21

Figure 17 A simple state machine 22

Figure 18 Stackdiagram of COMFy 24

Figure 19 ASP.net database 26

Figure 20 COMFys database 1 27

Figure 21 COMFys database 2 28

Figure 22 Sequence diagramm of repository pattern . . . 30

Figure 23 Sequence diagramm of two chairs creating a
decision on the same paper 39

Figure 24 Actors and Use Cases of SRMv1 40

Figure 25 Assigning a reviewer from chairs perspective . 40

Figure 26 The home screen of SRMv2 41

Figure 27 A submission screen of SRMv2 42

Figure 28 Current Phases of COMFy 43

Figure 29 The managment view for the different review-
ing types . 46

x

Figure 30 Warning about a Coauthorship 49

L I S T O F TA B L E S

Table 1 Overview of the Home API calls 35

Table 2 Account API calls 36

Table 3 Conference API calls 37

Table 4 Submission API calls 38

L I S T I N G S

Listing 1 A GET request example 16

Listing 2 A simple XML example document 18

Listing 3 A simple JSON example document 18

Listing 4 Ninject Dependency Injection Example 22

Listing 5 COMFy XML example GET response example 33

Listing 6 COMFy JSON example GET response example 34

xi

1
I N T R O D U C T I O N

1.1 overview

In the scientific world it is common to present the research of one or
multiple persons as a written scientific work. Authors publish their
work in journals, books or conferences. Before such an academic work
is published in such a media it has to be reviewed as a so called paper.
The acceptance of a paper is based on reviews written by experts in
the field the paper is written. This process is called peer reviewing.

The peer reviewing process originated from the 18 century. In 1731

the Royal Society of Edinburgh published the peer-reviewed Medical
Essays and Observations. These essays were given to people who were
well versed in their field. The purpose behind this idea was not like
today to check if the paper contains scientific progress but to spread
the work and ideas. From this time the peer-reviewing process ap-
proached step-by-step to our current format. [1]

With the introduction of the computer and the internet the review-
ing process developed to a new format. The computer now manages
submissions and users under the supervision of the chair. Tedious
work like assigning reviewers to hundreds of papers can also be taken
by the computer. Reviewers and authors can access now the confer-
ence at anywhere at any given time.

The Publishing Research Consortium1 analysed four of the most
common peer reviewing types[23]. These types are:

Single-blind peer review: In this reviewing process the authors don’t know who is review-
ing their paper. The reviewer on the other hand knows the iden-
tity of the author. This practice is done to grant the reviewer
protection to give a honest review about the paper. This pro-
cess is currently the most common in the different journals (see
Figure 1).

Double-blind peer review: If the reviewer also don’t know about the identity of the author
the review process is called Double-blind peer review. Journal
editors and authors think this is the most effective and also their
preferred choice (see Figure 2).

Open peer review: If the reviewer and the author knows each others identity the
process is called Open peer reviewing.

1 The Publishing Research Consortium is a group of associations and publishers,
which supports global research into scholarly communication in order to enable
evidence-based discussion. - http://www.publishingresearch.net

1

1.1 overview 2

Post-publication review: These reviews are submitted after the publication of a paper.
These papers were reviewed with one of the previous men-
tioned formats. The Post-publication reviews are considered in
Figure 2 as an additional assistance process rather than a re-
viewing process on its own. They add further information or
critiques to such a paper. [23]

Figure 1: This figure shows the different types of peer reviewing techniques
and how often they are experienced by authors and journal editors
(Image source: [23])

But the process of peer reviewing is not unquestioned within the
scientific community, e.g. Richard Smith presented lots of critiques
about peer reviewing in his article "Peer review: a flawed process at
the heart of science and journals"[19]. It is slow, expensive, inconsis-
tent, biased and may also be abused. Mayur Amin from Elsevier2

summarizes the current situation very well:

"Peer review is not perfect, but its the best we have."

So many large publisher and organization uses peer-reviewing as
their main process for filtering the best papers amongst all submis-
sions. These papers will then get published in their journals or con-
ference reports. One of these organizations, Eurographics3, uses the
peer reviewing process since their first workshop in the year 1980.

In the year 1999 they developed their own online reviewing system.
Their first prototype was called Managing Conference Proceedings
(MCP). This system had a user and submission managment. Users

2 Peer Review at the APE (Academic Publishing in Europe) Conference, Berlin, Jan-
uary 2011

3 an European Association for Computer Graphics - http://www.eg.org

1.2 conference example 3

Figure 2: This figure shows the different types of peer reviewing techniques,
how they are thought to be effective and whats the prefered choice
by the participants (Image source: [23])

could create an account and upload their paper. After assigning the
reviewers, they could write a review about the paper and submit it.
It was first tested and used in the Eurographics 2000 conference. [6]

Based on the MCP prototype an improved version was developed.
This system was called SRM - Submission and Review Management.
Like the MCP it is based on a hyperwave information server4 to man-
age content and create views. Over the time this system got bigger
and got extensions until its current form having over 11.000 members
and 25 conferences were managed in the year 2012.5

1.2 conference example

To get a better understanding of conference management systems in
general this section will give an example conference based on the
information flow of the SRM system which can be seen in Figure 3.

At first the five different kind of actors of SRM are explained. It is
possible that a user can be multiple roles within a conference in the
system:

• The chair or a group of chairs are the head of the conference.
They sets the rules of the conference, defines deadlines, notifies
other users if a deadline is approaching and adds the IPC mem-

4 http://www.hyperwave.com/
5 https://srm.eg.org/

1.2 conference example 4

Figure 3: This figure shows information flow of the different actors in the
Submission Review System (Image source: [26])

bers to the conference. The most important part of their role is
to assign the reviewers to the papers.

• The International Program Committee (IPC) are special users in
the system seen as experts in the field of the conference. They
voluntary review papers in the conference and support the chair
with their suggestion of acceptance. In the system the IPC mem-
bers are added to the conference from the chair. Then define in
which exact areas they are experts within the conference. Fur-
ther they specify which papers they can review. When they are
added as reviewer to a paper they have to review it and find
further reviewers. In the end they help the chair accepting and
declining the papers.

• The author in the system uploads the paper and additional me-
dia files. Further he adds other authors to the paper, sets the
preferences of the submission and fill out the additional meta-
data fields like the title or abstract. If the submission needs re-
visions or the paper gets accepted the author also uploads the
revised paper or the camera ready copy.

• Reviewers have the access rights on the paper they are assigned
to. After reading this paper they fill out a reviewing form about
their opinion on the paper.

• The publisher takes in the end all camera ready copy (CRC)
papers and publishes them in their journal or another medium.

Once a conference starts, the chair sets the deadlines and defines
the areas of expertises the conferences focuses in. This special fields

1.2 conference example 5

may be for example the ACM computing classification6 (see Figure 4)
or any other classification which fits for the conference. When this is
done the chair adds users as IPCs to the conference. These IPC users
may then define which knowledge they have in the defined areas of
expertise. In SRM there are currently 4 possible answers to define the
knowledge of a user: "Expert", "Knowledgeable", "Passing", "No Knowl-
edge". This answer will then have an impact on the assignment for
the reviewing process. When this setup is done the chair calls for pa-
pers. This call promotes the conference by advertising on the website
or sending emails to a mailing list. Authors may then create a sub-
mission, upload the paper, set additional authors, fill up additional
metadata fields like title or abstract. Further they select up to 5 topics
from the area of expertise. The chair may also set an abstract deadline.
This deadline defines by what date the submission has to be created
and the abstract and title has to be set.

Figure 4: This figure shows an extract of the current ACM classification. The
current classification can be seen on [3]

When the submission deadline has passed the IPC members may
bid on these papers. This bidding process works as follows: The user
is presented with all submitted abstracts and titles. According to this
metadata he has to decide whether he "Want to Review", "Could Re-
view" is "Not Competent or has a "Conflicts of interest". According to
this selection and the previously set knowledge the IPC member is in-
vited as a reviewer. Further he is encouraged to add further users to
the paper as reviewers. After the reviewer has finished his review he

6 A classification for structuring the areas of expertise in Computer science -
http://www.acm.org

1.3 motivation 6

can discuss with the other reviewers of that paper using a discussion
forum.

When the review deadline has passed, the chair has to decide based
on the reviews which papers will get accepted, which are declined
and which papers need a further review phase. If a paper needs fur-
ther review the user will see this decision and upload a modified
paper. Then the review process will go in another cycle. When a pa-
per is accepted, the user uploads a camera-ready copy (CRC) version
of his paper. Then this paper goes into print/production.

1.3 motivation

As mentioned MCP and its successor SRM are based on the Hyper-
wave information server. The Hyperwave information server stores
its data unlike relational databases. It creates object and collections
which are stored again in collections. Attached to these collections
and objects are attributes. These collections, objects and attributes
contains the data. To understand this terms better it might be eas-
ier to compare it to a filesystem. The collections are similar to folders,
objects are like files in these folders and the attributes are like the
attributes of the files and folders. For example the created date of a
file.

When SRM was created it was decided to create collections out of
every submission. Within these collections there are objects like the
paper, the contribution which contains the metadata of the submis-
sion (see Figure 5). This was done to use Hyperwaves special ability
to manage the access rights. In case of SRM the author of paper1019

will never be able to see the Reviewer Collections even if he access the
directly the collection. Unfortunately this chosen data model doesn’t
scale very well like the following example shows:

Lets say the chair wants to see all titles and authors of one confer-
ence. Hyperwave uses a function called getChildObjects() to select the
content of a collection. At first the getChildObjects() function is used
on the conference select all submissions. Then every submission has
to be selected to access the title and the author of the submission sim-
ilar to browsing in a directory. If there are at average 250 submission
(see Figure 6) this example takes 251 statements to complete. This
use case and similar listings which queries all papers takes up sev-
eral seconds in the current system because of the huge amount of
work Hyperwave has to process.

When the system was designed in the year 1999 the bottleneck was
the internet and the hardware. People used their modems to con-
nect to the internet. So they were used to wait several seconds before
server responded. And Hyperwave processed the listings faster than
the internet could transfer the data. However the internet and hard-
ware got faster over the years but SRM didn’t reduce its respond time.

1.3 motivation 7

Figure 5: This figure shows the result of the getChildObjects function in
SRM on one submission. Contribution is a textfile which contains
the metadata of the file like title and abstract. primaryRev1 is again
a collections where the attributes of the collection contains the data
about the reviewer.

The current bottleneck of the system is the creation of lists in the Hy-
perwave information server. Responding times of over one second is
not acceptable in the current times. As SRM is completely based on
the Hyperwave information server it was decided to dispose the old
system and start again from scratch. The new system should be based
on current technologies, faster but as extensible and modifiable as the
current system. Further it should include all features the current sys-
tem has.

1.3 motivation 8

138

174

232
221

243

303

250

219

300

243
261

236
260

52 54
42 45 44 47 42 50 58 56 53

40

66

0

50

100

150

200

250

300

350

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Papers submitted Papers accepted

Figure 6: This figure shows the submitted and accepted papers over the last
years of the Eurographics Annual Conference

2
R E L AT E D W O R K

2.1 overview

This chapter will give an overview of other conference management
systems. At first it will show some of the most popular and most
used current conference management systems then it will present the
old SRM system. It will give a small insight on the strengths and
weaknesses of these systems. In the end this chapter will summarize
all systems, why none of them satisfied the needs of Eurographics
and why it was decided to perform a complete redesign.

2.2 easy chair

One of the largest conference management sys-
tems is Easy Chair(Figure 7). It has hosted nearly 20.000 conferences
and is used by over 700.000 users. Easy Chair provides the basic con-
ference management features like paper submission, reviewer assign-
ment and creation of reviews. They also provide a so called rebuttal
phase where authors can respond to the reviews. They also claim this
management system is so flexible that it has been used already as a
project evaluation tool.

One of the strong advantages of Easy Chair is that it is a free prod-
uct. So it is possible to creates an own conference and manage it,
without paying for the service. However they don’t provide free sup-
port. So if there is the need for help during creation, installation or in
managing the conference it won’t be free.

Easy Chair supports multiple conference models, from which a
chair can choose from. But if non of these models suites the needs
of the conference there is no further customization for the chair. So
if there is a requirement for the conference which Easy Chair doesn’t
have, the paid support might implement it for their premium cus-
tomers. Otherwise it is only possible to use the standard models. [22]

2.3 coms conference management system

Like Easy Chair COMS (Figure 8) is a fairly large management system.
They currently have 450.000 page views per month. But unlike Easy
Chair their service is not free. There is a one time set up fee. Once
this fee is paid, COMS create a website for the needed conference and

9

2.4 openconf 10

Figure 7: This figure shows an example page of easychair. It displays the
information page of the Elpub2013 conference.

style it the users needs. Further COMS supports 3 different languages
(English, French and German) and upon creation of the homepage the
chair may choose one of them. When the website is created, there are
the standard features of a conference managing system, like creating
and reviewing submissions. It is possible to define 9 different review
fields, but once they conference is created, there is no possibility no
modify these fields. [11]

2.4 openconf

is a PHP based conference management tool. They
used it for thousands of events in over 100 countries. Like the pre-
vios conference management tools, it is possible to upload a paper,
assign the papers to reviewers and let it get reviewed.

The standalone feature of OpenConf (Figure 9) is their mobile pro-
gram. This is an app for various types of smartphones designed to
help users in the systems.

To use OpenConf the user has to pay per year per conference. And
if the customer wants any customizations for his conference it is pos-
sible to contact them, that they implement it for the conference for a
fixed price. [10]

2.5 confious 11

Figure 8: This figure shows the COMS demo conference welcome message
after a new account is created.

2.5 confious

Confious is a conference management tool,
where authors can submit their papers, reviewers can bid on them
and create reviews. One of the main features of Confious is the dy-
namic generation of the review form. A chair can setup their own
forms and change them to their liking. For example he can add ad-
ditional textfields, checkboxes or drop-down lists without contacting
the administrator of the program and create real dynamic forms. Con-
fious also has a easy to use demo conference. They provide for every
role login data to test out their system. Figure 10 shows the demo
conference of Confious from the chairs overview about all submitted
papers. [12]

2.6 srm

In the year 1999 the European Association for Computer Graphics
(Eurographics) created their first own conference management sys-
tem. This system was a prototype, with all features for managing

2.6 srm 12

Figure 9: This figure shows the Openconf Demo conference 2014. An author
can see this screen upon login for his conference and create a new
submission.

conferences. The electronic workflow (Figure 11) was created based
on the information workflow (Figure 3) and the shown conference
example in Section 5.1.

The core part of SRM is the multimedia database managed by the
Hyperwave information server. Every actor in the system has access
to the data in the server. An author can submit papers with the help of
submission tools like templates or authoring guidelines and receive
the electronic review. The reviewer on the other hand can receive the
paper and submit his review via a review form. The Hyperwave infor-
mation server manages the access rights so the author won’t see the
reviewers identity in single- or double-blinded reviewing. The chair
can access all data and accept or decline the paper based on the re-
viewing information. IPCs can access the title and abstract during the
specification which paper they want to review. A deamon is always
active to remind people of incoming deadlines or for other email no-
tifications. In the last conference phase after the authors submitted
their camera ready copy (CRC) paper a publishing tool extracts these
papers, and starts the publication process (e.g. reformatting the paper
and sending them to print). [26]

2.6 srm 13

Figure 10: This figure shows the Confious demo conference as a chair. This
overview of submissions provides the chair all necessary infor-
mation about the submitted papers.

Since 1999 a lot of modifications were done to the system until its
current form (see Figure 12). Most of these ideas started as sugges-
tions of chairs and users on how to improve the program. A lot of
these suggestions have been implemented. For example the bidding
process was expanded. IPCs are now able to specify the paper they
want to review and areas where the IPC is knowledgeable in. This
feature helps the chair to create a better matching between the IPCs
and the papers.

As mentioned in Section 1.3 the system does not scale when cre-
ating large lists. One of these use cases is when the chair loads all
submissions and reviews to accept and decline the papers. Florian
Sumann evaluated this use case in his Bachelor-thesis[21]. The com-
munication alone takes 5 minutes to load, filter and save and filter
the data. In his thesis he describes how he tried to increase this per-
formance by the means of Asynchronous JavaScript and XML (AJAX).
AJAX is a technology where data is loaded asynchronous after the
page is displayed at the client. For further information about AJAX
refer to Section 3.2. Before this change, it was only possible to load
all the data when the chair wanted to get an overview of the current
submissions. Now the system displays the page faster and loads the
submission data dynamically when it arrives.

Unfortunately the test results didn’t really meet the expectations
and the anticipated speed up was absent. The overall loading times
grew a bit. It was still partly a success, because the systems workflow
is now more efficient. The chair doesn’t have to wait several minutes

2.7 conclusion 14

Figure 11: This figure shows the electronic workflow of the Submission Re-
view System (Image source: [26])

for all papers to be loaded and displayed. The request without papers
is pretty fast and the first papers are also loaded within seconds. So
the chair can start working on the them when the page is still in
generation. [21]

2.7 conclusion

As this chapter shows an excerpt of conference management systems.
All of them can execute the basic conference management features.
They are all modular by either switching configuration modes like
easychair or including modules like OpenConf. Most of them also
offer some kind of bidding or automatic assignment for the reviewers
based on the preferences they gave. So why is there the need for a new
management system?

One of the most wished feature for SRM were additional fields in
the review and the submission form. The current solution in SRM
to satisfy the users are 26 fixed fields in the review form and 6

metadata fields the submission form. But these forms aren’t needed
in every conference. The new system should have the possibility to
include these 26 or less fields. Such a dynamic review forms like
Confious were a requirement for the new system. Unfortunately Con-
fious doesn’t have dynamic submission forms for additional metadata
fields like contribution or benefit.

2.7 conclusion 15

Figure 12: This figure shows SRM home screen where. It gives an overview
where the user is chair, ipc and his current submissions.

The second requirement is the bidding system. As explained in Sec-
tion 1.2 with the current system it is possible to specify the paper and
the expertise areas of an IPC. Most of the systems can bid on the pa-
pers but very few of them can bid on expertise areas of a conference.
Further with the current system a new approach for these bidding
system is in development. By means of natural language processing
current papers of are IPCs processed and matched to submitted pa-
pers in the conference. This matching is done to automate the assign-
ment and bidding process. The desired system should also be able to
use this system with an interface.

This interface should also serve as an application programming in-
terface (API). This API is intended to make it easier, to add further
additional modules to the program when they are needed.

As there are currently no known systems which supports all these
features, Eurographic decided to create a new improved SRM system
instead of using an existing one and adapt it to their needs.

3
T E C H N O L O G I E S

3.1 overview

This chapter will give an overview over the used technologies and
techniques. It should build up the foundation for understanding the
next chapters. It will also give an insight why certain technologies
where chosen.

3.2 used technologies

http “The Hypertext Transfer Protocol (HTTP) is an application-
level protocol for distributed, collaborative, hypermedia infor-
mation systems. It is a generic, stateless, protocol which can be
used for many tasks beyond its use for hypertext, such as name
servers and distributed object management systems, through
extension of its request methods, error codes and headers.” [4]

HTTP is the current state of the art protocol for loading website
to the browser within the World Wide Web. The so called verbs
define the action of the user. The current HTTP/1.1 specification
defines nine verbs. The two most common used verbs are: GET
and POST. The GET verb requests a specified resource on the
server. The typical use case for this verb is when the user enters
a Uniform Resource Locator (URL) in his browser (e.g: http:
//localhost/COMFy/Home) or clicks on a hyperlink. The browser
will translate this URL to a GET request (see Listing 1) and
send it to the server. The response of the server is the received
website. The POST verb on the other hand sends data to the
webserver. The typical usecase is, when a user fills out a web-
form or uploads a file to the server.

GET http://localhost/COMFy/Conference/EG2012 HTTP/1.1

Host: localhost

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:16.0) Gecko/20100101

Firefox/16.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive �
Listing 1: This listing shows a GET request example. The browser converts

the URL to such a request. In this process it appends the further
fields.

16

http://localhost/COMFy/Home
http://localhost/COMFy/Home

3.2 used technologies 17

The additional fields in Listing 1 give the server information
about the connected user. For example the local language. This
information might be used from the server to create a better
user experience. The server might translate the website in the
users native language with this information. One important field
for the framework is the Accept field. This field describes in de-
scending order the representation of the response. In the exam-
ple the user prefers HTML before XML. [4]

model view controller pattern The model view controller(MVC)
pattern is a pattern which consists of 3 parts. These parts are,
as the name suggests a model, a view and a controller. The core
idea behind this pattern is to make code reusable and maintain-
able. This is done by separating the data from the presentation.

Figure 13: This figure shows shows the typical model view controller work-
flow. The model contains the data. Once the data changes the
model notifies the view which querys the model to get the up-
dated data. The view is seen by the user. When the user modifies
data on the view the controller notifies it and changes the data
on the model. (picture derived from: [13])

The model is responsible for the data storage, the view is for
displaying it to the user and the controller connects the two
parts together. Figure 13 shows how these parts are connected.
User actions are handed over to the controller over the view.
The controller changes the states of the model who notifies the
view. The view queries the model and displays the new data.
The idea is now if either the model or the view changes the
other part doesn’t have to be changed. [13]

3.2 used technologies 18

asp.net mvc provides an framework which enforces structured MVC
architecture. This leads to a better code design. In return this re-
sults to tidier code encapsulation and easier maintenance. This
is necessary as the program will be extended and modified
in the future. The ASP.net MVC framework with C# as pro-
gramming language was a requirement of Eurographics for the
project. [15]

javascript is a programming language which is mainly used in
web browser to modify the Document Object Model (DOM) of
a HTML site. For example asynchronous loading of additional
data (AJAX) or improving the browsing experience for example
with jQuery. Due to its constant development to create better
and faster Javascript interpreter it is now also used outside this
client-side scripting like PDF documents or desktop widgets. [9]

json stands for JavaScript Object Notation. It is a format to save and
transport data like XML. JSON based on the Javascript language
which has a built in function to parse the data. Objects are en-
capsulated in curly braces. These braces contains name/value
pairs where the value itself can be null, false, true, a string, a
number, an array or an inner object. If the value is as a string
it is enclosed by two inverted commas, an array is enclosed by
square braces and a inner object is enclosed by further curly
braces.

JSON is often seen to be more compact than XML. And due
to its increasing popularity, additional parsers for nearly ev-
ery other programming language were developed. Listing 2 and
Listing 3 shows the two formats next to each other. They both
store the information of a circle. [5]

<?xml version="1.0" encoding="

UTF-8" ?>

<circle>

<radius>1</radius>

<coordinates>

<x>2</x>

<y>3</y>

</coordinates>

<Name>Unit circle</Name>

<IDs>

<ID>0</ID>

<ID>1</ID>

</IDs>

</circle> �
Listing (2) This listing example

shows a circle stored in
XML format.

{

"circle": {

"radius": 1,

"coordinates": {

"x": 0,

"y": 0

}

}

"Name": "Unit circle",

"ID": [0, 1]

} �
Listing (3) This listing example

shows a circle stored in
JSON format.

3.2 used technologies 19

jquery jQuery is a Javascript library which can be used to sim-
plify the manipulation of the Domain Object Model. There are
a lot of different widgets, tools and effects which enriches the
user experience and simplifies the development. Some exam-
ples provided by the jQuery UI1 are: Dialogs, Menus, Progress-
bars, Spiners, Tabs. [7]

One example of a tool which is based on the jQuery library
are datatables2. By providing the data in a defined way, the
datatables creates a sortable, searchable table with paging and
dynamic amount of entries (see Figure 14).

Figure 14: This figure shows a table based on the jQuery library. It features
searching, sorting paging and dynamic amount of entries. (Image
source:[20])

ajax stands for Asynchronous JavaScript and XML. AJAX is used for
sending and retrieving data after the page is loaded and dis-
played. A classic request sends a HTTP request to the server,
the server processes the request and sends the page with the
data back. When this data is retrieved at the client the browser
renders the page and displays it to the user. This request might
take some time where the user is forced to wait. When AJAX
is used the server responds immediately with the page. This
page is rendered and displayed. After the page finished render-
ing the browser requests the data from the server. When the
data arrives at the client, the browser changes the DOM of the
HTML site and injects the data into the site Figure 15. [24]

Some usecases where AJAX is used are:

• The user requests a huge amount of data and wants to start
working before the data arrives at the client. This improves
the user experience as the user can start working when still
some data is missing.

1 http://jqueryui.com
2 http://www.datatables.net

3.2 used technologies 20

Figure 15: This figure shows the difference between an Ajax and a classical
request. With the classical request the client always has to wait
for the data. In Ajax the client can dynamically load further data
and displays it when the request is complete (Image source: [8])

• The user requests a mainpage of website and is only inter-
ested in a link. When the page is displayed the server starts
incrementally sending the data but stops when the user
leaves the page. This saves processing time at the server.

• When the user changes only some values in a huge form it
is advantageous when only the changed data is sent back
instead of the whole form.

microsoft sql server The Microsoft SQL server was the chosen
Database management system over MySQL because of two main
reasons. The first one is, when developing with Microsoft Visual
Studio and ASP.net it will integrate into the project without sig-
nificant problems.

The second one is the new Filestream feature of Microsoft SQL
Server 2008. Prior to this feature there were two possibilities to
save huge binary files. Either the the blob (binary large object)
files are stored in the database. This will then gain transactional

3.2 used technologies 21

consistency and a reduced complexity when managing these
files. But it will result in a bad performance when accessing
the data. The second option is that the data are saved as files
on the disk and the links to the files are saved in the database
management system. This will result in good performance but
managing the data, like creating backups, is very complex to do.
Also the database can’t guarantee transactional consistency on
the file system. With the new Filestream feature the database
will manage the meta information of the files in the database
while saving the blob files on the disc, where the folder is man-
aged by the database. This way it is possible to get the benefits
of both worlds. [18]

dependency injection & ninject Dependency injection (see Fig-
ure 16) is a design pattern which resolves dependencies of ob-
jects at runtime [17]. An example when such feature is needed
is the following: Assuming there is a live system with data in
a database and test data. When testing a new feature it is nor-
mally required to either switch out the real data in the database
or switch the whole database. With the dependency injection
pattern it is required to implement the solution against an inter-
face and just switch the implementation. Listing 4 connects one
interface of such a repository to the real implementation. There
it is further possible to write a test repository, unload the kernel
and connect it then to the test implementation. Ninject provides
a container for injecting dependencies.

Figure 16: This figure shows how dependency injection works. At first a
factory creates an application or an instance of an application.
Then it injects the SQLRepository dependency into this applica-
tion. The application itself uses the IRepository which is an inter-
face of the SQLRepository.

3.2 used technologies 22

public interface IRepository {

Conference getConference(int ID);

}

4

public class SQLRepository : IRepository {

public Conference getConference(int ID) {

return select * from Conference where id = ID;

}

9 }

public class RepositoryModule : NinjectModule {

public override void Load() {

Bind<IRepository>().To<SQLRepository>();

14 }

}

public void main() {

IKernel kernel = new StandardKernel(new RepositoryModule());

19 IRepository repository = kernel.Get<IRepository>();

repository.getConference(5);

...

} �
Listing 4: This listing shows a ninject dependency injection. There is a

repository interface (Line 1) an implementation of the interface
(Line 5). With ninject it is now possible to define a Kernel (Line 18).
This kernel glues the Interface with the implementation together
(Line 13). After this setup it is possible to talk only to the interface
of the repository (Line 19 - 20)

statemachine A statemachine is a mathematical construct which
describes the behaviour of the system. The state machine has
a finite amount of states and can switch with state transition
between them. [25]

Figure 17: This figure shows a simple state machine which has 3 different
states and state transistions to switch between them.

An example of such a machine can be seen in Figure 17. In
this example there are 3 different states: Off, On, Work. It can
switch between this states. By turning the machine on or off it

3.2 used technologies 23

switches between those two states, Further it is also possible to
let the machine calculate. During calculation the state machine
is in the state Work. When it is done working the state machine
switches back to state on.

4
S Y S T E M D E S I G N

4.1 overview

COMFy can be seen from two different points of view. The first one
is the abstract view of the typical conference workflow. This means
how the conference gets created, papers are uploaded and papers
are reviewed. The second view is the system design and technical
details about the implementation. This section will explain the system
design in detail, Section 5.1 will show the conference from its different
phases.

The new system consists of two parts. First there is COMFy which
stands for COnference Management Framework. This framework pro-
vides an API to manage a conference. The second part of the system
is SRMv2. The majority of users don’t want to use the API or read
an API description to access the framework. For this purpose SRMv2

was developed. SRMv2 provides the user a graphical user interface
(GUI) for using the framework as it is a normal conference manage-
ment system. At first this chapter will address the framework. Then
Section 4.7 will address the API and in the end Section 4.8 will ex-
plain the GUI which will be seen by users.

The structure of COMFy is based on different stacks. Each of these
layers serves a specific purpose and adds functionality to the under-
lying layer. The overview of all layers can be seen in Figure 18.

Figure 18: This stackdigaram shows the internal structure of COMFy

The first layer is the relational database. This is where all the data,
the papers and additional media files are stored. The second layer is
the Domain layer. It consists of two different parts. At first there are
the repositories. They query the database and provide the data as a
repository to the upper layer. The second part is the state machine. It
consists of the business logic for swapping the submissions between

24

4.2 user/role management 25

the phases. It is also possible to add separate modules on this layer
which can be accessed by the framework. As user and role manage-
ment the generated providers of the framework are used.

The next layer is COMFy and its API. COMFy uses the as a model
view controller (MVC) pattern. The controller requests data from the
repository in the domain and parses the data into its own model if
necessary. This model is then passed to the view in the SRMv2 system.
If the user is interested in the data instead of the SRM system, COMFy
will prepare the modeldata as JSON or XML.

4.2 user/role management

A reason why the Microsoft SQL server was used is that the MVC
framework can generate an out of the box user management sys-
tem. This system generates register and login forms and security fea-
tures like salted and hashed passwords. It also has some further fea-
tures like counting the amount of failed password login attempts or
when the password was last changed. So if these security features are
needed in any time in the future, they are already implemented and
only need to be enforced. For example a user may only attempt to lo-
gin 5 times, until he gets a temporary ban in the system. The database
behind the generated system is documented in Figure 19.

A further feature which is used in COMFy is the roles manage-
ment. The checks if someone has the permission to certain actions are
always performed against the Role provider. So if a user performs a
certain action for which part it needs a certain role, these action gets
rejected an the user is redirected to the associated main screen if the
user doesn’t have the permission.

The disadvantage of the automated database is the profile table.
When using the built in ProfileBase and its functions the performance
decreases drastically. This is because the ASP.net framework doesn’t
know which profile information the user wants to save. They are
parsed at compile time from the web.config file. So the whole pro-
file information of a user is stored in one string. They get parsed
there with delimiter and information how long an entry is for each
profile. And each profile call for each profile field for every person is
one connection to the database.

When using this practice with over 11.000 users like SRMv1 cur-
rently has it is impossible to get decent access times to the user table.
Therefore it was decided to discard the built in profile functionality
and create a own. The new one is the profile table, as seen in Fig-
ure 20.

The applications table, which is used when creating further appli-
cation on the same userbase, is currently not used in COMFy.

4.3 database schema 26

Figure 19: This figure shows the the first part of COMFys database. These
tables are generated by the ASP.net framework. The framework
also provides the functionality to interact with these tables. Like
registering which creates a new user or handling the roles in the
system.

4.3 database schema

The papers and the zip files are stored in the AdditionalSubmission-
Content table. The particular feature of this table is the column Con-
tentData. This column has the previously mentioned filestream at-
tribute (Section 3.2). With this attribute the files are stored in folders
and managed by the database instead of being in the database itself.

The second table which contains the filestream attribute is the Files
table. It is used for storing additional files wich are not papers or
paper related material within COMFy. Currently it is only used for
linking files for a conference. In the future it might be used for global
files too therefore it needs an additional conference2files table within
the system. Its current main purpose is to store Latex and Word tem-
plates for the conferences.

To use the filesteam attribute to its full advantage, it is necessary
to circumvent the database management system. Otherwise, there
wouldn’t be a speed up in the access times. When the new line is
inserted in the table the database creates a dummy file from which

4.3 database schema 27

the path is selected. Once the routine has the path, it can inject the file
into the dummy file through SqlFileStream. After the file is written to
the disk the md5 hashvalue is calculated on the stored file. This hash
value is saved in MD5Hash and presented to the user after the up-
load. This way a user can ensure, that his file is stored on the server
without communication errors.

When creating, a conference the chair can create additional fields
for each of the submissions. These additional fields is stored in the
AddConfFields table. When a user wants to submit a new paper the
fields from the AddConfFields are parsed and presented to the user.
Upon submitting the input of the user to these fields are stored in the
AdditionalSubmissionFields.

The conference chairs, IPC members and authors are stored in their
respective tables. Whereas the authors have an additional field called
ordering. This ordering represents the order of appearance in the pa-
per.

Figure 20: This figure shows the second part of the COMFy database. It
displays how the conferences, submissions and profiles interact
with each other and how they are connected to the generated
database.

4.3 database schema 28

The Bidding table (Figure 20) contains specification which IPC user
is able to review which submission. The IPCscores can be injected
from an external source. The Preferences2User table contains the knowl-
edge of the IPC users to the areas of expertise which are defined in
the conference. These tables are used in the to create a suggestion
which reviewer is assigned to which submission as in Section 5.4.2
described. The injected IPCscores is a simple addition to the aoeRat-
ing to let chair define weighting of these scores.

Figure 21: This figure shows the third part of the COMFy database. It dis-
plays how the preferences interact with the conference and the
reviewers interact with the submissions.

Figure 21 contains the database entries for the areas of expertise
(preferences) and the reviewing fields. The mandatory fields for every
review are stored in the review table. Upon completion of these fields
the reviewer has access to the reviewer discussion. In the discussion

4.4 repositories 29

it is also saved whom a reviewer replied to, in order to create a folder
like structure in the discussion.

Before assigning a reviewer it is necessary to define the review
types in the conference. This defines the specific access rights a re-
viewer has or needs to accomplish. For example, if the FillOutRe-
viewToAccessDiscussion flag is set, the reviewer needs to fill out the
review form before he can access the discussion forum. Each reviewer
must be associated with a reviewer type.

The additional fields for the reviewing form are like the Additional-
Submission fields stored in an separate table called the AddRevFields.
They are created by the chair when he configures the conference.
When a reviewer is presented the standard review fields, the addi-
tional fields are added to the form. The values which are entered by
the reviewer are then stored in the AddReviewFieldContent.

The preferences table is filled from the chair after the creation of a
new conference. The mapping of the preferences to the submissions
and to the users are stored in the Submission2Preferences and Pref-
erences2User fields. Whereas the Preference2User fields also have an
expertise level entry in order to store how much expertise a user has
in a specific area of expertise.

A further functionality of COMFy is the dynamic web content. In
the srmv2_WebDefaultText are key-value pairs of text, which contain
certain parts of content of the website. Like the description of what
a user should enter at the submisson form. This functionality was
created to offer the possibility to replace this text with an own. This
text is then stored in the srmv2_WebAlternativeText table.

4.4 repositories

The usual way to enforce separation between the domain
model and the persistence system is to define repositories
(see Figure 22). These are object representations of the un-
derlying database. Rather than working directly with the
database, the domain model calls the methods defined by
the repository, which in turn makes calls to the database to
store and retrieve the model data. This allows us to isolate
the model from the implementation of the persistence.[16]

The domain layer defines this separation by declaring five reposito-
ries. These repositories are explained below:

Conference The conference repository is used for modifying the conference
as a whole. It contains the functionality like managing the chairs
and IPC members, swapping all submissions or adding addi-
tional submission fields which are needed during submission.

Submission The submissions repository is used when changes only affect
one submission. Like adding or deleting additional authors, ad-

4.5 statemachine 30

Figure 22: This figure shows the usage of the repository pattern based on an
example in the COMFy framework.

ditional content like pdf and zip files, or adding or deleting
preferences for the submission

Preference The preference repository is used when changes occur to the
areas of expertise, like parsing new areas of expertise. It is also
used when getting the areas of expertise for specific users.

Review The review repository contains all functionality about the re-
viewing. Like creating or modifying a review or creating new
reviewer. It is also used for the discussion after the reviewer has
created his review.

Profile The profile repository is used when querying the profiles of
users. The general case for using this repository is for changing
the users profile information. Another example when the profile
repository is when for adding authors, reviewers, IPCs or chairs
to a submission or a conference.

Nearly all communication between the web UI and the database is
done through these five repository. There are some occasions where
the repositories are not used. One exception to this rule is when
the Roleprovider or the Membershipprovider is accessed. These two
providers are generated by the ASP.net framework. The Roleprovider
is for security reasons to check if a user is allowed to access certain
areas. The Membershipprovider handles password resets or creating
and managing a session.

4.5 statemachine

As mentioned in Section 3.2 COMFy has a state machine to switch
the submissions between the different states of the conference. The
advantage of this system is that at any given time it is possible to

4.6 comfy 31

check in which phase a submission currently is. The state of each sub-
mission is stored in the database in the CurrentPhase field. A further
advantage of this system is that the transition of one phase to another
can be handled. For example during the transition of the submission
phase to reviewing phase all submitted files will be locked. So if the
submission needs a further submission phase the author can’t delete
his old data. As the state machine is designed in a modular way, it is
also simple to add further phases and phase transition.

4.6 comfy

This is the biggest part of the program. It is designed using the MVC
pattern (Section 3.2) and its main purpose is to query the repositories
of the domain process. This data is processed in the controller and
then provided to the user. It also works the other way around, where
it takes the user data, processes it for the repositories and save it
there. The other main part of the controller is to ensure that no one
can access confidential data or data which a person is not supposed
to see. For example the authors of a submission may only be seen by
the other authors of the paper and the chair but not the reviewers of
this paper, for the double blind reviewing.

COMFy currently has four different controllers.

Home Controller The home controller is responsible for the main screen a user
gets to see after he logs into the system. He gets an overview of
all of his submissions, reviews and on which conferences he is
chair and IPC member.

Account Controller The account controller is used for account functions. The user
can change his profile data or reset the password if he has for-
gotten it. Additionally this controller is used for registering and
logging into the system.

Error Controller If the system creates an error or the user requests confidential
data he may not access, he gets redirected to the error controller.
There he will get notified if he did something wrong or why the
system couldn’t handle his request.

Conference Controller The conference controller handles every request which concerns
a conference or submissions of the conference. This means ev-
ery request which isn’t covered by the previous controller is
handled by the conference controller.

4.7 comfys api

Occasionally scientist who submitted a paper to a conference, were
reviewer or chairs are not satisfied with the functionality, provided
informations or other parts of the management system. Some of these

4.7 comfys api 32

scientists also have ideas how to improve the system. To make it easier
for them, they might also be willingly to improve the system on their
own. The conference providers often don’t implement these features
because it costs money and the mentioned scientist can’t implement
the features because providers don’t want to disclose their system.
COMFy tries to circumvent this problem by providing the user an
API.

COMFy was designed as a framework with a complete GUI. Most
of the users will use the HTML frontend. If they are satisfied with
it, the framework will behave like a normal conference management
system. The difference is, when a user is not satisfied with some parts
of the framework. If this is the case, every call of COMFy can be used
as an API call. This means, it is possible to get the data, when calling
an URL parsed in XML or JSON. The user might use this data to
create his own representation via multiple requests or just rearrange
the layout or even create a widget which checks the server if there are
new reviews available.

The big advantage of such an API however is when combined with
the dynamic review and submission fields. COMFy provides an eval-
uation on the rating for every review on each submission. If the chair
created special fields in the reviewform or submissionform it is only
possible to see these fields when accessing the submission or the re-
view. With the API it is possible to load these and create a own table
when accepting or declining the submissions. The advantage is, these
tasks are possible without contacting the administrator and without
modifying the framework.

4.7.1 Usage of the API

COMFy provides three ways of displaying the data. The first possi-
bility is using the HTML. The framework will always output HTML
if not specified differently. The other two options are either JSON
(Section 3.2) or XML.

There are currently two different ways how to access the data to
get XML or JSON in return. The first is to add a data parameter to
the request and set this parameter to either JSON or XML. For ex-
ample the request http://localhost/COMfy/Conference/Test2013?data=xml.
creates the following XML output Listing 5.

The request http://localhost/COMfy/Conference/Test2013?data=json cre-
ates the following JSON output Listing 6.

4.7.2 API classification

The COMFy API calls can be categorized into four different logical
classes.

4.7 comfys api 33

<Conference xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http

://www.w3.org/2001/XMLSchema-instance">

<ConferenceId>24</ConferenceId>

3 <ShortName>Test2013</ShortName>

<Name>TestConference for SRMv2</Name>

<Prefix>paper</Prefix>

<Description>

This is the first conference handled with the new COMfy/SRMv2 system.

8 </Description>

<Submission_PublicationLength>8</Submission_PublicationLength>

<SubmissionDeadline>2012-12-27T10:27:00</SubmissionDeadline>

<activatedBidding>false</activatedBidding>

<pDeadline>2013-01-27T10:27:00</pDeadline>

13 <sDeadline>2013-01-27T10:27:00</sDeadline>

<tDeadline>2013-01-27T10:27:00</tDeadline>

</Conference> �
Listing 5: This listing shows a XML formatted response for a request sent to

the COMFy API.

• The UserHome API calls are for calls which are used for re-
trieving information about the conference and submission of
the user within the system. These UserHome API calls can be
seen in Table 1

• The account API calls are used for everything related to the
account and the system, like registering a new account, logging
into the system or changing the profile settings. Some of the
Account API calls can be seen in Table 2.

• The conference API calls are used for everything regarding the
whole conference. For example viewing or editing the confer-
ence, managing the IPC members or manage the fields in one
conference. These conference calls are primarily used by the
conference chair and the administrator as normal users have
no rights to modify anything regarding the conference. Some of
the conference calls can be seen in Table 3.

• The submissions API calls are a subcategory of the conference
calls. The submission identifier itself is only unique within one
conference. This means it needs the conference identifier to ac-
cess the correct submission. This identifier is set by the system
and consists of the defined prefix of the conference and a num-
ber which starts at 1000 and increases with every submission.
Because of this decision, the identifier is always short and it is
possible to see the conference by the means of the URL schema.
The submission API calls are used for everything concerning
a submission. These include viewing and editing, assigning re-
viewers or other authors. Some of these API calls can be seen in
Table 4.

4.7 comfys api 34

{

"ConferenceId": 24,

"ShortName": "Test2013",

"Name": "TestConference for SRMv2",

5 "Prefix": "paper",

"ImageData": null,

"Description": "This is the first conference handled with the new

COMfy/SRMv2 system.",

"Submission_PublicationLength": 8,

"ImageMimeType": null,

10 "SubmissionDeadline": "/Date(1356600420000)/",

"AdditionalFields": null,

"activatedBidding": false,

"pDeadline": "/Date(1359278820000)/",

"sDeadline": "/Date(1359278820000)/",

15 "tDeadline": "/Date(1359278820000)/",

"eMail": null

} �
Listing 6: This listing shows a JSON formatted response for a request sent

to the COMFy API.

These tables are only a small overview of all current API calls. A
listing of all calls can be found in the Appendix A.

4.7.3 API example

As the decision making for hundreds of papers is a tedious task, con-
ferences might have multiple chairs to create the decisions if a pa-
per is accepted or not. In order to allow the chairs to work parallel,
COMFy uses the same technique as the old SRM framework. This
procedure will be an example how the API can be used.

At first the chairs load all submissions with the current reviews
and the current decisions. Then a chair can set a decision by opening
the decision form. During opening an AJAX call looks up if there
were any changes to the current decision. If there were changes the
Domain Object Model and the review form are updated. The chair
can decide if he is already satisfied with the decision, if the review
form was updated. If he is not, he can set his own decision or close
the dialog and start with the next paper.

Once for all papers a decision has been made, the chair can swap all
submission to their respective phase. Submissions which need major
or minor revisions, are moved to the submission phase, submissions
which need further reviewing are moved to the reviewing phase and
submissions which are accepted are moved to the CRC phase.

4.8 srmv2 35

API Call
Type

Description

Home/ GET information of conferences/-
submissions of the user

Home/mySubmissions GET submissions where the user
is author

Home/myReviews GET submission where the user is
reviewer

Home/myConferences GET conferences where the user is
chair

Home/myIPC GET conferences where the user is
IPC

Table 1: This table shows all home API calls. These calls are for getting the
information on the own submissions, chairings, reviewings and con-
ferences where the user is IPC.

4.8 srmv2

As COMFy is an API it encapsulate the full business logic of a con-
ference system. But it does not provide the user a step by step guide,
which API calls are possible or should be used when. It would also
not be very comfortable for a user to search in over 100 API calls or
read the description of them. For this reason SRMv2 was created. It
should help the users use COMFy as conference management system.

In Figure 24 all identified use cases of the system are shown. These
use cases consists of multiple steps which the API expects to happen
in order but can’t enforce it on the API layer. The next chapter will
illustrate an example of ordered calls using the assign reviewer use
case.

4.8.1 Example use case

This section will break down one of the use cases of Figure 24 into
simple step by step guide. This will try to give an insight why COMFy
needs a SRMv2 system and why the API alone is not sufficient. The
example will be the Assign Reviewer from the chairs perspective.

At first the chair has to select the paper where he wants to add
the reviewer. Then the chair has to select the user who will be the
reviewer. As there are over 11.000 users in the old system there should
also be the possibility to search for the user before selecting him. Once
the user is chosen, the chair has to select the role of the reviewer.
He might choose between his previously defined reviewer types (see

4.8 srmv2 36

API Call Call
Type

Description

Account/LogOn POST logging into the system

Account/Profile GET reading the profile informa-
tion

Account/Profile POST saving new profile informa-
tion

Account/Register POST registering with the system

Table 2: This table shows a small excerpt from all account API calls. They are
used for everything in which concerns the account, like registering,
loging into the system or changing the profile information.

Section 5.2). Then it is possible to edit the email from a template the
user will get when he is invited to review the paper. Once this is done,
the chair has to confirm the assignment and send it. (see Figure 25)

All this steps are possible with the API but SRMv2 helps the user
to do these necessary steps. As the API is in REST principle (see 4.7)
these steps can also be done in one step by confirming the assignment
if the user, the Email template, the role and the paper are known. So
for a frontend developer it is also possible to change these steps in
any way he likes. This order was chosen to help people switch from
the SRMv1 system to the new system as the order there was the same.

4.8.2 Implementation

SRMv2 can be seen as the view in the model-view-controller in COMFy.
It provides the systems procedures in a convenient format for the
user. The homescreen which can be seen in figure Figure 26. These
tiles guides the user to the associated sub section. These four sections
are:

submissions : The submissions section provides the user with all
his submitted papers. He gets an overview which phase his pa-
pers are and all conferences where he submitted a paper. From
there it is possible to navigate to his papers and edit the sub-
mission. For example to change the metainformation or upload
a revised paper. An example submission screen can be seen on
Figure 27.

reviews : This section provides the user with all papers, where he
is assigned as a reviewer. The user might accept or decline a
review assignment or access a submission from this section. At
the submission the reviewer can submit or edit his review.

4.8 srmv2 37

API Call Call
Type

Description

Conference/EG2012 GET retrieves information of the
Conference EG2012

Conference/EG2012/ POST saves modified conference

EditConference

Conference/EG2012/ GET get all submission of EG2012

ShowSubmissions

Conference/EG2012/ GET overview of the additional

manageFieldsForConference submission fields

Conference/EG2012/ POST deletes one of the additional

deleteFieldForConference submission fields

Conference/EG2012/ GET overview of IPC members

manageIPCMember

Conference/EG2012/ POST adds a new IPC member

addIPCToConference

Table 3: This table shows some conference API calls. These calls are used
for managing the conference or displaying information about the
conference.

ipc member : On the IPC member section the user can see all con-
ferences where he is IPC. From this section he can access the
conferences bid for the different papers or specify his areas of
expertises.

chair : There the user has an overview of all conferences where he
is chair. From there he can access the different conferences and
manage them.

4.8 srmv2 38

API Call Call
Type

Description

Conference/EG2012/ GET information of submission

Submission/Show/ Paper1000

paper1000

Conference/EG2012/ POST saves the new information

Submission/paper1000/

editSubmission

Conference/EG2012/ POST assigns a reviewer

Submission/paper1000/

assignReviewer

Conference/EG2012/ POST deletes reviewer

Submission/paper1000/

removeReviewer

Conference/EG2012/ GET access the discussion forum

Submission/paper1000/

reviewerDiscussion

Table 4: This table shows a small excerpt from the submission API calls.
These calls are a subcategory of the conference calls. They are used
for all calls which concerns only one submission within one confer-
ence like editing the submission, uploading a paper or assigning a
reviewer.

4.8 srmv2 39

Figure 23: This sequence diagramm shows how two different chairs can
work on the same submissions overview formular and how the
current decision of the same paper is updated by the use of Ajax
to avoid multiple input

4.8 srmv2 40

Figure 24: This figure shows all found actors and use cases in the old SRM
system

Figure 25: This figure shows the steps necessary for assiging a new reviewer
from the perspective of a chair.

4.8 srmv2 41

Figure 26: This figure shows the home screen of SRMv2. Each of the tiles
guides the user to the associated section.

4.8 srmv2 42

Figure 27: This figure shows a submission screen of SRMv2. From there it
is possible to see the metadata, the preferences of the paper, and
the paper. If the user is allowed to see the authors they are also
displayed on this page.

5
C O M F Y S W O R K F L O W

5.1 overview

The previous chapter gave an in depth insight of the design of the
technical side of COMFy. This chapter will cover how such a confer-
ence runs in the system. Section 5.2 will give an overview, to get a
rough idea of how the parts are connected in COMFy and how they
interact. Section 5.3 and subsequent sections will cover each part in
detail. It will show how some of the internal parts interact with each
other and it will explain why some design decisions were made like
they are.

5.2 summarized workflow

Through the duration of a conference the submissions pass through
specific phases which are shown in Figure 28

Figure 28: This figure shows the current phases of COMFy.

The first phase is called the submission phase. When the confer-
ence is created, the submitted papers will start in this phase. This
is also the only phase where the author has still full control over
the paper, so he can delete it and upload a new improved version.
The system also supports additional zip-compressed files for the sub-
mission which might improve the paper with 3D-Models, movies or
presentations. Furthermore authors can add other authors to the sub-
mission, as well as decide which of the authors should be the person
to contact.

When the deadline of the submission phase has passed, COMFy
will check every paper for its completeness. If a submission has meta-
data and an uploaded PDF document it is considered as complete.
This submission will then enter the review phase. In this phase the
submission won’t accept any changes to the submissions by the au-
thors, which means that they can’t delete this paper, the zip-files or
change the metadata or authors anymore. The chair of the conference
still can change the submissions if he needs to. COMFy currently has
a sub-phase called bidding in the reviewing phase. In this bidding

43

5.3 submission 44

phase IPC members of the conference can specify which papers they
would like to review and which they are not competent enough. Once
the bidding is done, a chair can invite reviewers for the submission.
These reviewers can then either accept this invitation or decline it.
Once they have accepted it, the primary and secondary reviewers can
start inviting tertiary reviewers. The system also allows them to view
the paper and the additional content of the submission and write a
review. When the reviewer has written a full review they get to see
a small forum like structure where they can discuss and justify their
review.

When the deadline for the reviewers is reached, the chair can de-
cide what will happen next with the submission. It can be accepted,
declined, accepted with minor or major revisions or that it might
need further reviewing. The authors will be contacted with the chairs
decision about the paper. When it was accepted the paper will get
to the camera ready copy (CRC) phase. In this phase the authors
can upload the CRC version of his paper. When the submission was
accepted with minor/major revisions, the submission will enter the
submission phase again. There the author can upload a revised pa-
per and content. The old paper and content is still locked for the user.
Then the submission again gets into the reviewing phase. In some
cases the submission wasn’t reviewed within the deadline. Then the
chair puts the submission back to the review phase where he can
invite other reviewers, or give the original reviewers more time.

5.3 submission

5.3.1 Setting up the conference

Before anyone can even create a submission, an administrator of COMFy
has to create a new event. Upon creation of this event, the adminis-
trator has to set a short unique identifier which will then identify this
event. The administrator must also add the first responsible chair to
this event. After this the chair has full control over this event.

The chair can then modify the conference to his requirements. First
of all he might add further chairs to the event, to help him manage the
conference. He can also add IPC members to the conference, change
the event details and add the areas of expertise for the specific event.
This areas will be used by the IPC users and the authors.

The chair might also create additional submission fields like textboxes,
dropdown lists or checkboxes which an author has to fill up during
his submission. But not also the author can have these special fields,
the chair might also create additional review fields a reviewer has to
fill up during his review. Further the chair has to create the different
reviewer types or use the default ones (Figure 29). There are currently
eleven different access settings a reviewer can have:

5.3 submission 45

Display name: Decides how the reviewer type is called in this conference.

Can add review: The reviewer can add a reviews to the the submission. These
reviews can be seen by the chair and influence his decision if
the paper will be accepted.

Can access discussion: Decides if the reviewer can see the discussion after the dead-
line reviewing deadline. There the reviewers and the chair can
discuss the submission and eliminate uncertainties.

Fill out review to access discussion: The reviewer has to fill out his review before he can access the
discussion. This prevents the reviewer to get influenced by other
reviewers. A primary reviewer, who does not need to write his
own review might not need this limitation.

Can assign other reviewer: Means that this reviewer type can add further reviewers to the
submission. These reviewers are informed about the invitation
and can accept or decline the request.

Can be assigned from reviewer: These review types can be added from the reviewer. This pre-
vents a main reviewer to add further main reviewer to a submis-
sion.

Can edit senior recommendation: This field decides if the reviewer can edit the recommendation
if the papers is accepted or not. This recommendation will be
seen by the chair.

Can see authors: This field decides if the reviewer does a single- or double blinded
reviewing.

Can see other reviewers: These review types can see the real names of other reviewers.
Especially in the discussion where it is either anonymously or
the reviewers can see each other.

Can see other reviews: Decides if a reviewer type can see the other reviews. The pri-
mary reviewer can give his recommendation based on the re-
views of the other users.

Reviewer deadline: Decides when a reviewer can’t add or edit his own review any
more.

5.3.2 Submission for authors

Once this conference is created, a user of the system is allowed to
create a submission for this event. Upon creation of the submission a
user has to fill out the basic fields for a conference and the additional
fields the chair set for this specific event. Of course it is possible for
the user to modify the submission afterwards. Furthermore the au-
thor can add other authors to its submission, define the areas of ex-
pertise for the submission and upload zip and pdf files. These added

5.3 submission 46

Figure 29: This figure shows the managment console for the reviewing types.
Here it is possible to add, modify and delete different types of
reviewers which are used for adding a reviewer.

authors get the same user rights as the creator of the submission. Fur-
ther it is possible to sort and order the authors in accordance with the
submitted paper.

5.3.3 Submission for IPC

During the submission or reviewing phase a chair can activate the
bidding process. When the bidding is activated every IPC member
must complete the following 3 steps.

Set areas of expertise At first the IPC has to set the expertise level in the areas which
are defined by the chair. He can choose from either being expert,
has knowledge, passing or no knowledge in every specific area.

set conflicts To avoid that a person will review a paper when he knows the
author, the reviewer gets a list of all authors from all submis-
sions. This conflict will remain for all future events for these
two persons.

bidding When the IPC member has completed the previous steps, he can
bid for the papers. During bidding the user has three possible
ways to sort these papers to get a better overall view of the
papers. Either he can sort it after the paper ID or by the areas
of expertises or by his preferences of the expertise level. He can
then specify for each paper whether he would like to review it,
if he could review it or if he is not competent enough to review
it.

5.3.4 Submission for chair

During the submission phase a chair can keep the overview of all
submissions and which IPC already completed his bidding.

5.4 reviewing 47

5.4 reviewing

5.4.1 Pre reviewing

Once the deadline is expired, the authors can’t modify or change their
submissions and papers anymore. The chair is still able to upload or
modify the submission or papers if he wishes to do it. But before
the reviewing can start, the chair has to prepare it to customize it to
his desires. The chair still can add or modify his own review fields,
which reviewers have to fill up for the review.

Then the chair activates the the reviewing phase. By doing so COMFy
transfers all submissions into the reviewing phase with its state ma-
chine. To learn more about COMFys state machine see Section 3.2.
To simplify this process for the chair COMFy uses an automatic sug-
gestion system to make the decision for the chair easier. During this
transition all papers of all submissions, which get to the reviewing,
will be hard locked. This means, that when the deadline is expended
for minor or major revisions and the submission returns to the sub-
mission phase see Figure 28, the author still can’t delete his old sub-
mission. This guarantees that the previous submitted files wont be
lost.

5.4.2 Assigning reviewers

The next step is the assignment of the reviewers. COMFy uses a spe-
cific algorithm to create a good matching for the reviewers. Before
this matching is taken live it will be presented to the chair as a sug-
gestion. The chair can modify the distribution or restart it to create a
new matching. In order to create this matching 3 different values are
taken into account (Equation (1)).

IPCsuggestion = aoeRating+biddingRating+external IPC score

(1)

The first value is created out of the areas of expertise of the paper
and the IPC. The formula can be seen in Equation (2).

aoeRating = 25 · 4 · #{expMatch}+ 2 · #{knowMatch}+ #{passMatch}

#{Area of expertises of Paper}

(2)

The expMatch is the amount of areas of expertise which the pa-
per has and the IPC member is expert in. KnowMatch is the amount
where the IPC member has knowledge in and passMatch where the
IPC has only passing knowledge. This formula guarantees a value be-
tween 0 and 100. So if a IPC is expert in every area, then knowMatch

5.4 reviewing 48

and passMatch will be zero and expMatch will cancel out with the
amount of area of expertise.

The second value comes from bidding. If a user wants to review a
paper he will get 100 points, if he could review a paper he gets 80

points. These values and the formula have been tried and tested with
the old SRM system and are proven to generate good results.

biddingRating =

100 Want Review

70 Could Review

0 no Expertise

(3)

COMFy however has a third value, the external IPC score (Equa-
tion (4)). This value will be used in the future. A program will get
all IPC members and search for their papers in old conferences. This
program will then process the papers with natural language process-
ing. These processed papers are then matched to the natural language
process papers in the conference. So every IPC gets matching points
to the papers in the conference. The external IPC score then serve for
a weighted assignment for reviewing.

external IPC score =

0 default

x external Injected
(4)

The assignment of the papers to the IPCs is a modified stable match-
ing problem which is a np-complete problem[14]. In COMFy the best
matched reviewer is assigned to a paper until he is assigned to more
than the average workload of reviews then the second best matched
reviewer is assigned.

Once this suggestion is created, the chair modify the result. Once
he is satisfied with the suggestion he can take the assignments live.
This means that all IPCs gets a request to review the paper in assigned
reviewer role. It is also possible that the chair manually invites users
to review the paper.

5.4.3 Reviewing phase

Once a user or IPC member gets a review invitation, he will get noti-
fied that there are new review requests. If the request gets accepted,
the reviewer gets the authorization to view the submission and down-
load the paper. When the reviewer finished reading the paper, he can
add a review to the submission.

If the review role allows to add further reviewers. It is possible for
them to add them in this phase. For these invited user the reviewing
phase starts again at Section 5.4.3. Before the chair or the reviewer

5.5 decision 49

who assigns the new reviewer finished the assignment, the assigned
reviewer and the authors are checked if there is a coauthorship be-
tween these users. This is done by using the Digital Bibliography &
Library Project (DBLP) API interface. If such a coauthorship is found,
the current user is warned about the authors (see Figure 30). This
warning might be ignored from the user, if the coauthorship is not
correct.[2].

Figure 30: This figure shows a warning of a found DBLP coauthorship be-
tween two authors and the assigned reviewer from the chairs per-
spective.

During the review phase the chair can again overview all reviews,
how much reviews every submission has, or view the discussion. He
can also intervene if something doesn’t go according to plan within
one of the submissions.

5.5 decision

As seen in Figure 28 the decision is not really a phase like submission
or review phase as it doesn’t have a deadline. But the decision pro-
cesses is one of the core process in a conference. There the chair has
to decide what happens with every submitted paper. The chair typ-
ically starts to work on the papers after the review deadline. There
he decides whether a paper gets accepted or declined. Some of the
papers might also need a minor or major revision, or if they require
a further review cycle. The submitted reviews are assisting the chair
in his decision. It is also possible for the chair to ask the reviewers
in a discussion form for further opinions on one paper. The review-
ers, which review roles has access to this discussion forum, can visit
this forum and answer the question or exchange opinions with other

5.6 crc 50

reviewers. For every submission there is such a specific forum. They
have a directory like structure so it is possible to answer previous
postings or create a new entry post.

5.6 crc

The CRC (camera ready copy) is the final phase. There the authors
can upload their final document which contains their names and the
complete references. Again during the CRC phase the chair can check,
which of the submissions already have been uploaded. Once the CRC
papers are submitted they can be printed in the conference proceed-
ings.

6
D I S C U S S I O N

This chapter will give an overview of the thesis and the project. It
compares COMFy with other conference systems out there and espe-
cially with the old SRM system. It will show where it needs polishing
in order to improve the user experience for the targeted user commu-
nity.

6.1 comparison of the results

Upon creation of this document the framework wasn’t used by a con-
ference. Therefore it still has to show how it behaves and perform un-
der real conditions. The test results however are promising. In order
to create a possible real environment, all users of the old system were
exported from the old system and imported into COMFy. Once all
11.000 users were imported to the system some performance checks
were done on the user data table like searching users. Whereas the
old SRM system always took up several seconds to finish the request,
COMFy consistently finished the requests in under 500 milliseconds.
The reason for this huge difference is the underlying storage layer of
SRM. As said in Section 1.1, SRM is based on Hyperwave.

6.2 modularity

A major challenge in current applications is to enhance the user expe-
rience by responding to user requests and implement them into the
system. This section should show how easy it is, to modify COMFy
or when someone wants to add features to it.

6.2.1 Modifying the database

All database tables are mapped via LINQ to SQL in entity classes in
the domain. The general rule is, if there is avalue to be added to the
database table it is enough to add the associated value in the entity.

There are two exceptions to this rule. The first is when modifying
the dynamic additional submissions fields or additional review fields
table. These tables are selected by outer joins and LINQ still has some
problems with integers, null values and outer joins. So it is neces-
sary if adding values to these two tables to also add the parsing in
either the SQLSubmissions- or the SQLReviewRepository outer join
function. The second exception is the profile and submission table.
These two tables are not directly connected to the table itself, instead

51

6.2 modularity 52

they are connected to a view. The reason for the profile to be con-
nected to a view is the e-mail field. As this field is managed by the
ASP.net framework and to obtain data consistency it is selected in the
view and handled by the remaining framework as a profile field. So
it is possible to edit the e-mail address with either the membership
provider or the profile repository. The reason for the submission to be
connected to the view is its submission short name. This short name
is used in the whole framework as an identifier. Although it doesn’t
exist in the database. The short name is a concatenation of the prefix
of the conference and the paperID of the paper itself. This paperID
is unique within the conference but not over multiple conferences. So
only the conference and the paperID generate a unique identifier for
the submission. If a value is added to the submission or the profile
table, the value should also be added to the related view.

When modifying or deleting a value from the database it is enough
to modify or delete the associated value in the entity field and check
and update all references

6.2.2 Modifying the repositories

The repositories in the domain are basically a collection of select, in-
sert, update and delete commands in LINQ to SQL. So it queries the
database and returns the value to the controller.

Adding a new command is very simple as it only needs a further
entry in the interface and the implementation. Then the new com-
mand is available in every controller the interface is included.

When modifying or deleting an existing repository method, it only
needs to be checked if the function itself works after it has been mod-
ified and if all references still fully functional. Upon deleting all ref-
erences should be deleted as well.

6.2.3 Modifying the WebUI

Most of the time there are changes to the conference controller, be-
cause this module is the core of the application.

Before modifying the controller, some basic knowledge how the re-
lated action is connected to the controller is required. The URI schema
of COMFy for conferences follows a simple principle. If a action is re-
lated to a conference the following URL is used: .../Conference/
{confShortName}/action

If the action relates to a submission this URL is used: .../Conference/
{confShortName}/Submission/{submission}/action

The action defines which method is called during a request of the
user. All current actions can be looked up in the Appendix A. So if
there is the need for a new action or view or API call, just add a
new action to the controller in the appropriate region. It is simple

.../Conference/{confShortName}/action
.../Conference/{confShortName}/action
.../Conference/{confShortName}/Submission/{submission}/action
.../Conference/{confShortName}/Submission/{submission}/action

6.3 future work 53

to find the right action with this schema. Then the controller parses
the {confShortName} and the {submission} from the request in their
respective strings.

Then all actions follow a simple step by step guide.

• At first the user is checked if he is authorized in the system.

• If he isn’t authorized he is redirected to the login page. If he is,
the needed data is fetched from the repositories.

• Then it will be checked if the user is allowed to perform the
requested task. This is done after the fetching because for the
checks data from the database is needed.

• If the user is not allowed he will get redirected to an action
which he is allowed to see. If he is allowed, the task like saving,
fetching more data or deletion is performed.

• After the task is done the user gets his corresponding answer
from the server.

6.3 future work

One of the major points which will greatly increase the user expe-
rience, is to use the programs scores feature. The idea is, that once
all papers are submitted, a program will scan them with natural lan-
guage processing. The same program can then scan over some papers
of every IPC members and then create matchings between the publi-
cations of the IPCs and the papers of the authors. Then the IPC of the
processed paper can be assigned to review the paper according to the
previously found matching. COMFy’s API currently supports both
cases. Either mentioned program can ingest only matching values of
an IPC member to a submission. So it takes the matching value into
account. During the suggestion creation process, this program can in-
gest the suggestion itself. This way it will skip the suggestion creation
process. By using the first case it is also possible to modify the weight
value of the matching values as the internal program can give any
values from 0 to 200. If the matching values contain higher values
they are automatically weighted higher and therefore more likely to
be used during assignment. Once this process is fully functional the
areas of expertise and the whole bidding system will then be dep-
recated as a program searches for areas instead of the user to add
himself to his paper. The authors don’t need to add preferences to
their submissions as well as the chair, who doesn’t need to input any
preferences. The most time however will be saved for the IPC mem-
bers, as they don’t need to answer which areas they are expert in as
well as they don’t need to bid on every paper, if they want to review
it or not.

6.4 conclusion 54

Until now no conference was using the system. In the small test
conferences which were managed with the system there were no ma-
jor difficulties. But as practice shows, real world systems often behave
different than test systems. And once some small conferences are or-
ganized with the new framework it will turn out were some parts
needs improvement. Then, although performance was kept in mind
during creation of COMFy there might be some cases which need
further tweaking. As opposed to COMFy in SRMv1 every possibility
was taken into consideration to get a further speed up. So there might
also be some places where COMFy needs tweaks to further increase
the speed of the requests.

If a users queries COMFy often for one result it is also possible to
create a further API call to offer this data in one request. This might
be necessary if these request requires much server capacity.

6.4 conclusion

In this paper a new conference management system was introduced.
The main feature which distinguishes COMFy from other conference
systems is its API functionality (Section 4.7). Every requested page
can also be treated as an API call. This provides the user with a lot
of flexibility if he wants to configure the interface by himself. If the
user only wants to use the system in its standard configuration it is
possible to use SRMv2 (Section 4.8).

A further feature of the system are its dynamic reviewing and sub-
mission fields. This feature fits very well with the API. As someone
can adjust the conference to his own needs without contacting the
administrator by usage of the dynamic fields and its API. It is even
possible to use COMFy for other workflows where user generated
content has to be reviewed like books, designs or journals.

COMFy still has to prove itself under real life conditions. It is the
question if and how users will accept a new system and how much
users will use the API. Currently the first small conference is held on
the new system. There it will show how users are accepting the new
system. The current feedback is however primarily positive and the
acceptance for the new system looks great.

B I B L I O G R A P H Y

[1] Benos, Dale J. ; Bashari, Edlira ; Chaves, Jose M. ; Gaggar,
Amit ; Kapoor, Niren ; LaFrance, Martin ; Mans, Robert ;
Mayhew, David ; McGowan, Sara ; Polter, Abigail ; Qadri,
Yawar ; Sarfare, Shanta ; Schultz, Kevin ; Splittgerber, Ryan ;
Stephenson, Jason ; Tower, Cristy ; Walton, R. G. ; Zotov,
Alexander: The ups and downs of peer review. In: Advances
in Physiology Education 31 (2007), Juni, Nr. 2, S. 145–152. – URL
http://dx.doi.org/10.1152/advan.00104.2006

[2] Christian, Caldera ; Berndt, René ; Fellner, Dieter W.:
COMFy - A Conference Management Framework. – 2013 in press

[3] Computing Machinery, Inc. The Association for: CCS 2012 -
Table of Contents. April 2013. – URL http://dl.acm.org/ccs_

flat.cfm

[4] Connolly, Dan: Hypertext Transfer Protocol – HTTP/1.1. Septem-
ber 2004. – URL http://www.w3.org/Protocols/rfc2616/

rfc2616.html

[5] Crockford, Douglas: The application/json Media Type for
JavaScript Object Notation (JSON) / IETF. 7 2006 (4627). – RFC

[6] Fellner, Dieter W. ; Zens, Marco: Managing Conference Proceed-
ings TUBSCG-2001-02. 2001

[7] Foundation, The jQuery: jQuery. 2013. – URL http://jquery.

com. – [Online accessed 19-February-2013]

[8] Garret, Jesse J.: Ajax: A New Approach to Web Applications.
Februar 2005. – URL http://www.adaptivepath.com/ideas/

ajax-new-approach-web-applications

[9] Goodman, D.: JavaScript bible. Hungry Minds, 2001

(Bible Series). – URL http://books.google.com.au/books?id=

46MwAQAAMAAJ. – ISBN 9780764533426

[10] Group, Zakon: OpenConf. Januar 2013. – URL http://www.

openconf.com

[11] Mandl, Marianne: Conference Management System (COMS).
Dezember 2012. – URL http://www.conference-service.com

[12] Papagelis, Manos ; Prof. Plexousakis, Dimitris: Confious.
Dezember 2012. – URL http://www.confious.com

55

http://dx.doi.org/10.1152/advan.00104.2006
http://dl.acm.org/ccs_flat.cfm
http://dl.acm.org/ccs_flat.cfm
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://jquery.com
http://jquery.com
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://books.google.com.au/books?id=46MwAQAAMAAJ
http://books.google.com.au/books?id=46MwAQAAMAAJ
http://www.openconf.com
http://www.openconf.com
http://www.conference-service.com
http://www.confious.com

bibliography 56

[13] Programmeerkunde, Laboratorium V. ; Goderis, Sofie ;
Goderis, C S.: On the Separation of User Interface Concerns A Pro-
grammer’s Perspective on the Modularisation of User Interface Code
Proefschrift voorgelegd voor het behalen van de graad van Doctor in de
Wetenschappen. 2007

[14] Ronn, Eytan: NP-complete stable matching problems. In: J. Al-
gorithms 11 (1990), Mai, Nr. 2, S. 285–304. – URL http://dx.doi.

org/10.1016/0196-6774(90)90007-2. – ISSN 0196-6774

[15] Sanderson, Steven: Pro ASP.NET MVC 2 Framework. Second
Edition. Apress, 2010. – ISBN 9781430228868

[16] Sanderson, Steven: Pro ASP.NET MVC 3 Framework. Third Edi-
tion. Apress, 2011. – ISBN 9781430234043

[17] Schwarz, Niko ; Lungu, Mircea ; Nierstrasz, Oscar: Seuss:
Decoupling responsibilities from static methods for fine-grained
configurability. In: Journal of Object Technology 11 (2012), Nr. 1,
S. 1–23

[18] Sebastion, Jacob: An Introduction to SQL
Server FileStream. August 2009. – URL http:

//www.simple-talk.com/sql/learn-sql-server/

an-introduction-to-sql-server-filestream

[19] Smith, Richard: Peer review: a flawed process at the heart of
science and journals. In: JRSM 99 (2006)

[20] SpryMedia: DataTables. 2013. – URL http://www.datatables.

net. – [Online accessed 18-February-2013]

[21] Sumann, Florian: AJAX4SRM - Asynchroner Datentransfer für
Submission & Review Management, Technische Universität Graz,
Diplomarbeit, 2011

[22] Voronkov, Andrei: Easy Chair Conference System. Dezember 2012.
– URL http://www.easychair.org

[23] Ware, Mark: Peer review: benefits, perceptions and alternatives
/ Publishing Research Consortium. Publishing Research Con-
sortium, 2008 (PRC Summary Papers 4). – Forschungsbericht. –
URL http://www.publishingresearch.net/PeerReview.htm

[24] Wenz, Christian: JavaScript und AJAX. 7., aktualisierte Au-
flage. Bonn : Galileo Computing, 2007. – URL http://www.

galileocomputing.de/openbook/javascript_ajax/

[25] Wright, David R.: Finite State Machines. 2005

[26] Zens, Marco: Creation, Management and Publication of Digital Doc-
uments using Standard Components on the Internet, Technische Uni-
versität Braunschweig, Dissertation, 2004

http://dx.doi.org/10.1016/0196-6774(90)90007-2
http://dx.doi.org/10.1016/0196-6774(90)90007-2
http://www.simple-talk.com/sql/learn-sql-server/an-introduction-to-sql-server-filestream
http://www.simple-talk.com/sql/learn-sql-server/an-introduction-to-sql-server-filestream
http://www.simple-talk.com/sql/learn-sql-server/an-introduction-to-sql-server-filestream
http://www.datatables.net
http://www.datatables.net
http://www.easychair.org
http://www.publishingresearch.net/PeerReview.htm
http://www.galileocomputing.de/openbook/javascript_ajax/
http://www.galileocomputing.de/openbook/javascript_ajax/

A
A P P E N D I C E S

This section will give an overview of all API calls which currently
exists in COMFy

Account::LogOn

The get function for the Login of the program

Account::LogOn

the post function to log into the program
model (SRMv2.WebUI.Models.LogOnModel): contains the username and
the password
returnUrl (System.String): to this url he will get redirected when the
user is logged in

Account::LogOff

The get function to log out of the program

Account::ViewUserDb

The usertables for the administrator to edit or delete users

Account::ViewUserDb

the post function for the administrator to edit/delete users
pressedButton (System.String): "delete" = delete the user, "edit" = go to
the admin edit user profile form
userToAdd (System.String): The userId of the user the admin wants to
delete or edit

Account::AdminEditProfile

the get function for the administrator to edit the user
userToAdd (System.String): the userid of the person who

57

bibliography 58

Account::AdminEditProfile

the post function for the administrator to edit the user
model (SRMv2.Domain.Entities.Profile): the userprofile of the user

Account::AjaxAddUser

The get ajax call to add a new user to anywhere (add reviewer, add
chair, add author) in the program. This function returns a userlist. It
is based on the jquery plugin DataTables (http://datatables.net/)
param (SRMv2.WebUI.Models.jQueryDataTableParamModel): The param-
eters for the datatable, see their homepage for further information

Account::Register

the get function for a new user to register with the system

Account::Register

the post function for the user to register with the system
model (SRMv2.WebUI.Models.RegisterModel): the profile of the user who
should be added

Account::CaptchaImage

Returns a captcha immage for the user to enter during registering.
Code from: http://www.stefanprodan.eu/2012/01/user-friendly-captcha-
for-asp-net-mvc/
prefix (System.String): If the captcha is needed anywhere else, it can
get an additional prefix to save it on the serversession
noisy (System.Boolean): if noise should be added

Account::checkEmail

email check from http://haacked.com/archive/2007/08/21/i-knew-
how-to-validate-an-email-address-until-i.aspx
eMail (System.String):

Account::ChangePassword

The get function to change a userpassword

bibliography 59

Account::ChangePassword

the post function to change a userpassword
model (SRMv2.WebUI.Models.ChangePasswordModel): the new and old
passwords

Account::ChangePasswordSuccess

the view function to show the user, that his password was changed

Account::ShowUser

This function takes the userId and queries DBLP and Mendeley APIs
and return the Coauthors and the papers writtten by this person
userId (System.String): The userId of the person

Account::RecoverPassword

the get function to recover a password if the parameters are given,
this get function also gets called to activate the new password
password (System.String): the new password to activate it
email (System.String): the email person of the user which password
should be activated

Account::RecoverPassword

the post function to recover a pasword
model (SRMv2.WebUI.Models.RecoverPasswordModel): contains the email
where the new password will be sent

Account::AcceptReviewAgreement

the get function to accept the review agreement. This should be ac-
cepted before a user can review papers

Account::AcceptReviewAgreement

the post function for the review agreement. Once agreed, he may re-
view papers
model (SRMv2.WebUI.Models.AcceptReviewAgreement): The model con-
tains the userId and if he accepts the reviewagreement

bibliography 60

Account::AdminLogin

The get function for the admin to login as other user. The admin
needs his adminusername, password and the username of the user
he want to login to

Account::AdminLogin

The post function for the admin to login as other user.
model (SRMv2.WebUI.Models.AdminLogOnModel): contains the admi-
nusername, password and the username where the admin wants to
login to
returnUrl (System.String): to this url he will get redirected when the
user is logged in

Account::Profile

The get function for the user to change and watch his profile

Account::Profile

The post function for a user to change his profile
model (SRMv2.Domain.Entities.Profile): The new profile model of the
user

Conference::ShowSubmissions

Shows all submissions for a specific conference.
confShortName (System.String): The unique conference ShortName

Conference::Show

Shows all the data of one specific submission
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId

Conference::getAuthorsOrdered

returns the authors for a submission ordered in an ordered list
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId

bibliography 61

Conference::addSubmission

the get function for adding a new submission to a conference
confShortName (System.String): The unique conference ShortName

Conference::addSubmission

the post function for adding a new submission
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.EditSubmissionModel): The model for the
submission without the additional fields
collection (System.Web.Mvc.FormCollection): As we can’t create beauti-
ful models for the dynamic fields, we have to parse them from the
FormCollection At first the additional fields are selected from the
database and then the data is parsed from the collection

Conference::editSubmission

the get function for editing a submission
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId

Conference::editSubmission

the post function for editing a submission
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.EditSubmissionModel): The submission model
without the additional fields
collection (System.Web.Mvc.FormCollection): As we can’t create beauti-
ful models for the dynamic fields, we have to parse them from the
FormCollection At first the additional fields are selected from the
database and then the data is parsed from the collection

Conference::deleteUndeleteSubmissions

show all submission (even the submissions in the recycle bin) to
delete/undelete them - Submissions are never deleted during a con-
ference phase only recycled
confShortName (System.String): The unique conference ShortName

bibliography 62

Conference::deleteUndeleteSubmissions

The post function to delete/undelete submissions - only accessible
for the chair and the admin
confShortName (System.String): The unique conference ShortName
collection (System.Web.Mvc.FormCollection): The checkboxes for the sub-
missions - if they are checked they are deleted

Conference::swapPhaseSubmission

The get function to swap one Submission into another phase
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId

Conference::swapPhaseSubmission

the post function to swap one submission into another phase
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId
model (SRMv2.WebUI.Models.PhaseSwapModel): the phase model, which
contains the current phase and the swapcommand

Conference::parseFieldListForAddSubmission

private parser which parses the fields when adding a new submission
conferenceId (System.Int32): the conferenceId for which conference the
fields are parsed

Conference::saveAdditionalFieldsFromFormCollection

parses and saves the data from the formcollection see add/editsub-
mission for further details
collection (System.Web.Mvc.FormCollection): the formcollection which
we got from add/edit submission
submissionId (System.Int32): the submissionId for which submission
the fields are parsed

Conference::addPreferencesToSubmission

the get function for adding preferences to a submission
confShortName (System.String): The unique conference ShortName

bibliography 63

submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId

Conference::addPreferencesToSubmission

the post function for adding preferences to a submissions, at first all
previous preferences are deleted then the checked are added
model (SRMv2.WebUI.Models.ListPreferenceModel): which preferences are
checked
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId

Conference::DeletePreferenceFromSubmission

deletes one specific preference from a submission
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId
preferenceId (System.String): the preferenceid which should get deleted
from the submissiojn

Conference::addAuthorToSubmission

a function which returns all authors, currently not used - see ajax.adduser
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId
searchValue (System.String): a searchvalue to search for specific users

Conference::addAuthorToSubmission

the post function to add a author to a submission
model (SRMv2.WebUI.Models.AddAuthorToSubmissionModel): the short-
name from the submission from the model is needed
confShortName (System.String): The unique conference ShortName
userToAdd (System.String): The Guid of the user which should be added
searchValue (System.String): a searchvalue, currently not needed, only
if ajax.add

Conference::MoveAuthorOrder

post function used for moving the authors in their order of appear-
ance

bibliography 64

confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId
Author (System.String): The Guid of the person which should be moved
OrderUp (System.String): true if he should be moved up, false if down

Conference::DeleteAuthorFromSubmission

post function used to delete an author form a submission
confShortName (System.String): The unique conference ShortName
author (System.String): The Guid of the person which should be moved
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId

Conference::addContentToSubmission

get function used to add a zip file to a submission
confShortName (System.String): The unique conference ShortName
submission (System.String): ShortName for the submission - generated
from conference prefix + paperId

Conference::addContentToSubmission

Post function to add zip file to a submission
model (SRMv2.WebUI.Models.AddContentToSubmission): Currently used
only for the submission- and conference short name
content (System.Web.HttpPostedFileBase): the uploaded file of the client

Conference::addPaperToSubmission

get function used to add a pdf file to a submission
confShortName (System.String): The unique conference ShortName
submission (System.String): ShortName for the submission - generated
from conference prefix + paperId

Conference::addPaperToSubmission

Post function to add pdf file to a submission
model (SRMv2.WebUI.Models.AddContentToSubmission): Currently used
only for the submission- and conference short name
content (System.Web.HttpPostedFileBase): the uploaded file of the client

bibliography 65

Conference::DeleteContentFromSubmission

the post function to delete content from the submission (pdf files can
only be replaced by uploading a new pdf - chairs/admin overrule
this restriction)
confShortName (System.String): The unique conference ShortName
submission (System.String): ShortName for the submission - generated
from conference prefix + paperId
fileID (System.Int32): the file id which should be deleted

Conference::GetFile

returns the bytestream when the file should be downloaded
confShortName (System.String): The unique conference ShortName
submission (System.String): ShortName for the submission - generated
from conference prefix + paperId
fileID (System.Int32): The requested file ID

Conference::manageFieldsForConference

get function to create/delete the additional fields for the conferences
submissions
confShortName (System.String): The unique conference ShortName

Conference::manageFieldsForConference

post for adding a new additional field to the conferences submissions
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.ConferenceFieldsModel): The model from
the additional conference Field

Conference::editFieldForConference

This function is used for editing Fields additional submission fields
in the conference
confShortName (System.String): The unique conference ShortName
fieldId (System.String): The Id of the field which should be edited

Conference::editFieldForConference

The post function for the editing of a additional submission field of
the conference
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.AddConfFieldsModel): Contains the new

bibliography 66

data of the additional submission field

Conference::deleteFieldForConference

post function used to delete a additional field for the conferences sub-
missions
confShortName (System.String): The unique conference ShortName
fieldId (System.String): The field id which should be deleted

Conference::manageFiles

This get function Lists all additional Files which are connected to a
conference. It is possible to add/delete files like conference templates
or other bigger files in this function. All files are stored via Filestream
on the filesystem.
confShortName (System.String): The unique conference ShortName

Conference::addFileToConference

This post function is used for adding Files to the conference system.
They are stored via Filestream on the filesystem
model (SRMv2.WebUI.Models.FilesManagementModel): The model con-
tains the confShortName
content (System.Web.HttpPostedFileBase): Contains the uploaded file

Conference::GetConferenceFile

This function returns a certain File with the fileID from a conference.
confShortName (System.String): The unique conference ShortName
fileID (System.Int32): The fileId of the file which should be returned

Conference::deleteConferenceFile

This function deletes a file with the fileId from a conference.
confShortName (System.String): The unique conference ShortName
fileID (System.Int32): The fileId of the file which should be deleted

Conference::Index

te get function to show a specific conference
confShortName (System.String): The unique conference ShortName

bibliography 67

Conference::addNewConference

get function to create a new conference - only accessible by adminis-
trators

Conference::addNewConference

the post function to create a new conference
model (SRMv2.Domain.Entities.Conference): the conferencemodel
image (System.Web.HttpPostedFileBase): the image for the conference

Conference::editConference

the get function to edit the conference - may be used by chairs too
confShortName (System.String): The unique conference ShortName

Conference::editConference

the post function to edit the conferences
confShortName (System.String): The unique conference ShortName
model (SRMv2.Domain.Entities.Conference): the model for the confer-
ence
image (System.Web.HttpPostedFileBase): the image for the conference

Conference::Instruction

the post function to edit the conferences
confShortName (System.String): The unique conference ShortName

Conference::DeleteConference

the post function used to delete a conference when its finished - only
accessible by administrator
confShortName (System.String): The unique conference ShortName

Conference::addChairToConference

a get function used to add chairs to the conference - replaced by datat-
ables
confShortName (System.String): The unique conference ShortName
searchValue (System.String): used to search for persons

bibliography 68

Conference::addChairToConference

the post function to add a chair to the conference
model (SRMv2.WebUI.Models.AddUserToConferenceModel): the model which
contains the conferenceShortName
userToAdd (System.String): The Guid of the user, who should be added
searchValue (System.String): an optional searchvalue - replaced by datat-
ables

Conference::viewChairs

the get function to show all chairs and a remove mask for the admin
confShortName (System.String): The unique conference ShortName

Conference::removeChairs

The post function to remove one chair - only accessible by admins
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.ViewChairsModel): contains the model which
chairs should be removed

Conference::swapPhase

the get function for a static swap of all submission from one to an-
other phase - currently not used - see autoswapPhase
confShortName (System.String): The unique conference ShortName

Conference::swapPhase

the post function to swap all submissions from an phase to another -
see autoswapphase
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.PhaseSwapModel): The model of all sub-
mission which should be swapped

Conference::autoSwapPhase

the main get function to swap all submission of a conference - easier
as it already tries to decide what should happen to all submissions
confShortName (System.String): The unique conference ShortName

bibliography 69

Conference::autoSwapPhase

the main post function to swap all submission of a conference - easier
as it already tries to decide what should happen to all submissions
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.AutoPhaseSwapModel): The model of all
submission which should be swapped

Conference::manageIPCMember

the get function to get manage the IPCs - used for adding/deleting
them
confShortName (System.String): The unique conference ShortName

Conference::addIPCToConference

the get function to add an ipc to a conference - currently not used
replaced by datatables
confShortName (System.String): The unique conference ShortName
searchValue (System.String): The search value for persons to be searched

Conference::addIPCToConference

the post function to add an ipc to a conference
model (SRMv2.WebUI.Models.AddUserToConferenceModel): the model which
contains the conferenceShortName
userToAdd (System.String): The guid of the user who should be added
searchValue (System.String): The search value for persons to be searched
- currently not used replaced by datatables

Conference::deleteIPCFromConference

post function to delete an ipc from a conference
username (System.String): The guid of the user who should be deleted
confShortName (System.String): The unique conference ShortName

Conference::processConflicts

creates a list of all authors of a conference - used to create conflicts
between ipc and authors
confShortName (System.String): The unique conference ShortName

bibliography 70

Conference::processConflicts

the post function send the conflicts created to the server
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.ListIPCConflictsModel): The model hich
containts the conflicts of the user

Conference::biddingById

The get function for bidding by paperId. This function returns the
submission of a conference sorted by their paperId
confShortName (System.String): The unique conference ShortName

Conference::biddingById

The post function for bidding by paperId. This function gets called
when the user finished his choice on the bidding when they are sorted
by the paperId
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.BiddingViewModel): The bidding model
which contains the submissions and the users choices

Conference::biddingByAoE

The get function for bidding by areas of expertise. This function re-
turns the amount of submissions one area of expertise one user has.
(the submissions themself are loaded per ajax afterwards with Bid-
dingGetPartial)
confShortName (System.String): The unique conference ShortName

Conference::BiddingGetPartial

This functions returns the submissions for biddingbyAoE and bid-
dingbyPref of one specific area of expertise. This function is called by
ajax
confShortName (System.String): The unique conference ShortName
itemId (System.String): the preferenceId which papers are returned,
"unsorted" the papers who don’t have a area of expertise
returnstring (System.String): to save where the request came from (ei-
ther biddingByAoE or biddingByPref) to konw where to submit

bibliography 71

Conference::biddingByAoE

The post function for the bids by Areas of Expertise. The submissions
and the user choices are in the BiddingModel
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.BiddingViewModel): The bidding model
which contains the submissions and the users choices

Conference::biddingByPref

The get function for bidding by the users preferences. The prefer-
ences are sorted where the user is expert, knowledgeable, passing or
has no knowledge. Only the amount of submissions of each area are
returned. (the submissions themself are loaded per ajax afterwards
with BiddingGetPartial)
confShortName (System.String): The unique conference ShortName

Conference::biddingByPref

The post function for bids sorted by user Preferences. The submis-
sions and the user choices are in the Bidding Model
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.BiddingViewModel): The bidding model
which contains the submissions and the users choices

Conference::showBiddingResult

The overview function for the chair the see which all IPC member
their bids on all submissions and the conflicts a IPC might have with
one submission
confShortName (System.String): The unique conference ShortName

Conference::showIPCScores

returns the Scores of IPC members for each submission. These scores
will be injected from the outside for the suggestion. This get function
is only to see the view if the API is not used.
confShortName (System.String): The unique conference ShortName

Conference::showIPCScores

the post function to inject the IPC scores into the system. These will
be used for the suggestions system where IPC are assigned to the pa-
pers

bibliography 72

confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.ListIPCScoresModel): The model which con-
tains the ipc and the submissions and the associated score

Conference::editSuggestion

With this get function, the chair can modifiy a suggestion of the sys-
tem, if he is not satisfied with the created.
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId

Conference::editSuggestion

The post function to edit the suggestion. Here the chair posts his
modified result. This function can also be used to inject the sugges-
tion from other sources
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId
primary (System.String): The userId who should be primary on the pa-
per
secondary (System.String): The userId who should be secondary on the
paper
model (SRMv2.WebUI.Models.EditSuggestionModel): The suggestion Model
which contains the tertiary and the suggestion Rating for every per-
son

Conference::showSuggestionsForIPC

The get function to show the the overview of the suggestion for Ipc
member where he is primary, secondary and tertiary for each paper
confShortName (System.String): The unique conference ShortName

Conference::takeSuggestionsLive

This get function takes all the suggestions live which are in the sug-
gestion table
confShortName (System.String): The unique conference ShortName

Conference::createNewSuggestionForIPC

The get function to set up for the internal programm to create a new
suggestion. If a primary shold get choosen, a secondary and if ter-

bibliography 73

tiary how much tertiaries and how many papers a user can maximal
have
confShortName (System.String): The unique conference ShortName

Conference::createNewSuggestionForIPC

the post function to calculate the new suggestions. A suggestion for
a person is createdy by adding the aoe of a person and the paper
(0-100) the bidding of the person (0-100) and the suggestion (userde-
fined how large it can be). After the calculations are done, the users
are assigned to the paper according to the set up in the model
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.NewSuggestionModel): the model which
contains the setup for the caluclations (see get function)

Conference::GetImage

returns the Image of a conference
confShortName (System.String): The unique conference ShortName

Conference::setPreferencesForConference

The get function where a user can set his preferences for a conference
confShortName (System.String): The unique conference ShortName

Conference::setPreferencesForConference

The post function where the user can set his preferences for a confer-
ence
confShortName (System.String): The unique conference ShortName
formCollection (System.Web.Mvc.FormCollection): Each preference and
how the user has voted on it

Conference::parseNewPreferences

The get function to parse the Areas of expertise for a conference
confShortName (System.String): The unique conference ShortName

Conference::parseNewPreferences

The post function to parse the areas of the expertise for a conference.
If a line starts with a "*" it gets interpreted as preamble
model (SRMv2.WebUI.Models.ParsePreferencesModel): Contains the new

bibliography 74

preferences as one textfield
confShortName (System.String): The unique conference ShortName

Conference::manageReviewerTypes

Overview of the current Types of reviewers in the Programm, from
there it is possible to add, delete and edit them
confShortName (System.String): The unique conference ShortName

Conference::editReviewType

The edit form for the Reviewertype with the ID reviewTypeId
confShortName (System.String): The unique conference ShortName
reviewTypeId (System.Int32): the ReviewerTypeID which should be edited

Conference::editReviewType

The post function. When this function is called the model with the
new reviewertype is saved
confShortName (System.String): The unique conference ShortName
model (SRMv2.Domain.Entities.ReviewerType): the Model which contains
the information about the new edited reviewtype

Conference::deleteReviewerType

deletes the review type with the Id = reviewertypeId
confShortName (System.String): The unique conference ShortName
reviewerTypeId (System.Int32): The Id which should be deleted

Conference::addNewReviewType

Inserts a new ReviewtypeId to the conference
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.ReviewerTypeManagementModel): contains
information about the conference which should be added

Conference::assignReviewer

Post function from assigning a user (from the userlist) to create a
form to complete the assignment
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId

bibliography 75

userToAdd (System.String): The userId of the user who is choosen as
reviewer
searchValue (System.String): The search value for persons to be searched
- currently not used replaced by datatables

Conference::confirmAssignReviewer

Stores the user as reviewer in table and sends out email to the re-
viewer that he has a new review to accept
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId
model (SRMv2.WebUI.Models.AddReviewerToSubmissionModel): contains
the position, the userID of the reviewer and the message for the Email

Conference::removeReviewer

This get functions parses all reviewers from a submission and shows
it to the chair
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId

Conference::removeReviewer

The post function to remove a reviewer from a submission
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId
model (SRMv2.WebUI.Models.RemoveReviewerFromSubmissionModel): The
model contains all reviewers which should be removed from the sub-
mission

Conference::reviewerDecision

If a reviewer accepts/declines his review assignment, and he clicks
on the link which is sent in the email. This function is called.
confShortName (System.String): The unique conference ShortName
submission (System.String): The submission which he accepts or de-
clines
reviewerId (System.Int32): The Id of the assigned reviewer
decision (System.Int32): The decision he chooses (1 = accept, 2 = de-
cline)

bibliography 76

Conference::currentReviewStatus

the get overview function for the chair to get all reviews, reviewer
and the submissions, here he can also edit the decision if a submis-
sion will get accepted or declined
confShortName (System.String): The unique conference ShortName

Conference::currentReviewStatus

the post overview function where the chair adds a review decision (if
it get accepted or declined) and the comment to a specific submission
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId
model (SRMv2.WebUI.Models.ReviewStatusModel): the model contains
the comment and the decision of a submission

Conference::reviewGetCurrentDecision

the get function to get the real actual decision, if two chairs work at
the same time on all submissions gets called with ajax
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId

Conference::addReview

the get function to get the review form, if the user has already entered
a part of his review, these values are parsed as well
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId

Conference::addReview

the post function to add a review to a submission
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId
model (SRMv2.WebUI.Models.ReviewModel): the reviewModel contains
the standard fields
collection (System.Web.Mvc.FormCollection): used for the fields which
are dynamically parsed

bibliography 77

Conference::manageReviewFields

the get function for the chair to manage new review fields. The cur-
rent fields are parsed in the view
confShortName (System.String): The unique conference ShortName

Conference::manageReviewFields

the post function to add a new review field to the conference
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.ReviewFieldsModel): contains the data of
the new ReviewField

Conference::editReviewField

The get function for editing a additional review Field in a conference.
confShortName (System.String): The unique conference ShortName
fieldId (System.Int32): The id of the field which should be edited

Conference::editReviewField

The post function of the review field which should be edited
confShortName (System.String): The unique conference ShortName
model (SRMv2.Domain.Entities.AddRevFields): Contains the new data
of the edited Review field

Conference::deleteReviewFieldForConference

the post function to delete an additional field from a conference
confShortName (System.String): The unique conference ShortName
fieldId (System.String): the fieldID which should get deleted

Conference::showReview

shows the review of one reviewer for one submission
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId
reviewerId (System.Int32): The reviewer Id the chair wants to see
reviewId (System.Int32): The Id of the review

bibliography 78

Conference::reviewerDiscussion

the get function to show all current discussion entries of one submis-
sion
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId

Conference::reviewerDiscussion

the post function to add a new entry to a discussion
confShortName (System.String): The unique conference ShortName
submission (System.String): The ShortName for the submission - gen-
erated from conference prefix + paperId
model (SRMv2.WebUI.Models.ReviewerDiscussionModel): contains the data
for a new Discussionentry

Conference::sendEmailToIPC

The get function to create an email to all IPC members of a conference
confShortName (System.String): The unique conference ShortName

Conference::sendEmailToIPC

The post function to send an email to all IPC member of a conference
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.sendEmailToIPCModel): contains the email
template and the ipcs which gets the mail, further the subject and a
cclist

Conference::sendEmailToReviwer

The get function to create an email to choosen reviewers of a confer-
ence
confShortName (System.String): The unique conference ShortName

Conference::sendEmailToReviwer

The post function to send an email to choosen reviwer of a conference
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.SendEmailReviewerModel): containts all the
data - who gets the mail, the email template, the reviewers

bibliography 79

Conference::sendEmailToAuthors

This function is creates a template for sending emails to the authors.
confShortName (System.String): The unique conference ShortName

Conference::sendEmailToAuthors

This is the post function for sending emails to the authors. The email
will be sent here.
confShortName (System.String): The unique conference ShortName
model (SRMv2.WebUI.Models.SendEmailToAuthorModel): Contains the
data for the email (like which authors and the email template what
they get)

Conference::AjaxAddUser

The get ajax call to add a new user to anywhere (add reviewer, add
chair, add author) in the program. This function returns a userlist. It
is based on the jquery plugin DataTables (http://datatables.net/)
param (SRMv2.WebUI.Models.jQueryDataTableParamModel): The param-
eters for the datatable, see their homepage for further information

Conference::AjaxGetReviewStatus

The ajax call for the chair managing all reviews and deciding if a pa-
per is accepted or not
param (SRMv2.WebUI.Models.jQueryDataTableParamModel): The param-
eters for the datatable, see their homepage for further information
confShortName (System.String): The unique conference ShortName

Error::General

The general exception, thrown when something went wrong
exception (System.Exception): the exception the user gets presented

Home::Index

the main screen where a user gets all the information of his submis-
sions, reviews and where he is chairs and ipc

Home::mySubmissions

a listing of the users submissions

bibliography 80

Home::myConferences

a list where the user is chair

Home::myIPC

a list where the user is ipc

Home::myReviews

a list of the users reviews

Home::Events

a list of all current events

Home::acceptReviewer

the post function for the user to accept a review request
reviewerId (System.String): the users reviewer id
accept (System.String): if he wants to accept or decline it (2 = decline,
1 = accept)
confShortName (System.String): The unique conference ShortName

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Overview
	1.2 Conference Example
	1.3 Motivation

	2 Related Work
	2.1 Overview
	2.2 Easy Chair
	2.3 COMS Conference Management System
	2.4 OpenConf
	2.5 Confious
	2.6 SRM
	2.7 Conclusion

	3 Technologies
	3.1 Overview
	3.2 Used technologies

	4 System design
	4.1 Overview
	4.2 User/Role Management
	4.3 Database Schema
	4.4 Repositories
	4.5 Statemachine
	4.6 COMFy
	4.7 COMFys API
	4.7.1 Usage of the API
	4.7.2 API classification
	4.7.3 API example

	4.8 SRMv2
	4.8.1 Example use case
	4.8.2 Implementation

	5 COMFys Workflow
	5.1 Overview
	5.2 Summarized Workflow
	5.3 Submission
	5.3.1 Setting up the conference
	5.3.2 Submission for authors
	5.3.3 Submission for IPC
	5.3.4 Submission for chair

	5.4 Reviewing
	5.4.1 Pre reviewing
	5.4.2 Assigning reviewers
	5.4.3 Reviewing phase

	5.5 Decision
	5.6 CRC

	6 Discussion
	6.1 Comparison of the results
	6.2 Modularity
	6.2.1 Modifying the database
	6.2.2 Modifying the repositories
	6.2.3 Modifying the WebUI

	6.3 Future Work
	6.4 Conclusion

	Bibliography
	A Appendices

