
Cryptanalysis of SHA-3

Stefan Kölbl

Cryptanalysis of SHA-3

Master’s Thesis

at

Graz University of Technology

submitted by

Stefan Kölbl

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology

A-8010 Graz, Austria

22 Apr 2013

© Copyright 2013 by Stefan Kölbl

Assessor: Dipl.-Ing. Dr.techn. Florian Mendel
Advisor: Dipl.-Ing. Dr.techn. Martin Schläffer

Kryptoanalyse von SHA-3

Diplomarbeit

an der

Technischen Universität Graz

vorgelegt von

Stefan Kölbl

Institute for Applied Information Processing and Communications (IAIK),
Technische Universität Graz

A-8010 Graz

22. April 2013

© Copyright 2012, Stefan Kölbl

Diese Arbeit ist in englischer Sprache verfasst.

Assessor: Dipl.-Ing. Dr.techn. Florian Mendel
Advisor: Dipl.-Ing. Dr.techn. Martin Schläffer

Abstract

Cryptographic hash functions are a fundamental part of modern cryptography
and play an important role in many practical applications. In recent years new
techniques have been developed in this field and attacks for popular designs like
MD5 and SHA-1 were published. As a consequence, NIST announced a public
competition in 2007 to find a new hash standard, the SHA-3 competition. This
competition ended in October 2012 and Keccak was selected as the winner.

In this thesis, the security of the hash function Keccak is evaluated. An overview
of the current state of the security analysis is given and attacks on round-reduced
variants of Keccak are presented using techniques from differential cryptanalysis.
Furthermore, the applicability of algebraic attacks to find preimages is evaluated.

A tool assisted method, which was previously used for the analysis of SHA-2,
is applied on the Keccak hash function and allows to find practical collisions for up
to 4 rounds. The attack is of practical complexity and takes only minutes on recent
hardware. In addition, a technique is shown to find new differential characteristics,
for larger output sizes of Keccak, by combining multiple characteristics.

Keywords: hash function, Keccak, cryptanalysis, SHA-3, collision resistance,
algebraic attacks, differential characteristics

Kurzfassung

Kryptographische Hashfunktionen sind ein wesentlicher Teil der modernen Kryp-
tographie und haben eine bedeutende Rolle in vielen praktischen Anwendungen. In
den letzen Jahren wurden neuen Techniken zur Analyse entwickelt und Attacken auf
bekannte Hashfunktionen wie MD5 und SHA-1 publiziert. Infolgedessen kündigte
NIST einen öffentlichen Wettbewerb an, um einen neuen Standard für Hashfunktio-
nen zu finden, den SHA-3 Wettbewerb. Dieser Wettwerb endete im Oktober 2012
und Keccak wurde als Gewinner ausgewählt.

In dieser Arbeit wird die Sicherheit der Hashfunktion Keccak untersucht. Es
wird ein Überblick über existierende Attacken auf Keccak gegeben und es werden
Attacken auf runden-reduzierte Varianten von Keccak, basierend auf Differenziel-
ler Kryptoanalyse, präsentiert. Weiters wird die Anwendbarkeit von algebraischen
Attacken untersucht um Urbilder zu finden.

Eine automatisierte Methode, welche zuvor für die Analyse von SHA-2 verwen-
det wurde, wird auf Keccak angewendet und erlaubt es Kollisionen für bis zu 4 Run-
den zu finden. Die Attacke hat eine praktische Komplexität und benötigt nur wenige
Minuten auf einem aktuellen Computer. Zusätzlich wird eine Methode präsentiert,
um neue differentielle Charakteristiken für längere Ausgabegrößen von Keccak zu
finden, in dem man mehrere Charakteristiken miteinander kombiniert.

Schlüsselwörter: Hashfunktion, Keccak, Kryptoanalyse, SHA-3, Kollision, al-
gebraischer Angriff, Differenzielle Kryptoanalyse

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other

than the declared sources / resources, and that I have explicitly marked all material

which has been quoted either literally or by content from the used sources.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,

andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten

Quellen wörtlich und inhaltlich entnommene Stellen als solche kenntlich gemacht

habe.

Ort Datum Unterschrift

Contents

Contents ii

List of Figures iii

List of Tables v

Acknowledgements vi

1 Introduction 1
1.1 SHA-3 Competition . 2

1.2 Outline . 2

2 Cryptographic Hash Functions 3
2.1 Applications . 4

2.2 Security . 5

2.3 Design . 7

2.4 Generic Attacks . 10

3 Keccak 14
3.1 Description of Keccak . 14

3.2 Keccak Challenges . 19

4 Existing Analysis of Keccak 20
4.1 Structural Attacks . 20

4.2 Differential Attacks . 21

5 Analysis 23
5.1 Algebraic Attack . 24

5.2 Differential Cryptanalysis . 32

5.3 Combining Kernel Paths . 44

i

6 Conclusion 55

A Appendix 57

A.1 Notation for Keccak State . 58

A.2 Differential Distribution Table . 59

A.3 Colliding message pairs . 60

Bibliography 64

ii

List of Figures

2.1 Outline of a hash function. 4

2.2 Preimage resistance . 6

2.3 Second preimage resistance . 7

2.4 Collision resistance . 7

2.5 Iterative construction of hash functions 8

2.6 The sponge construction . 10

2.7 Birthday Paradox . 11

2.8 Length extension property. 13

3.1 Keccak state . 15

3.2 One round of the Keccak-f permutation. 16

3.3 θ step of Keccak-f . 16

3.4 ρ step of Keccak-f . 17

3.5 π step of Keccak-f . 18

3.6 χ step of Keccak-f . 19

4.1 Outline of the attack by Dinur, Dunkelman and Shamir. 22

5.1 Outline of the algebraic attack for Keccak. 29

5.2 Fixed variables in the Keccak state. 30

5.3 Outline of differential cryptanalysis for hash functions. 32

5.4 ρ shifts differences on the lanes. 35

5.5 π transposes the lanes. 35

5.6 Search strategy for differential characteristics. 36

5.7 Notation used for the states. 39

5.8 Outline of the search tree. 39

5.9 Outline of the 4-round attack. 42

5.10 States containing differences with the corresponding column parity. 44

A.1 Naming convention for state . 58

iii

List of Tables

2.1 Digest sizes for different hash algorithms. 12

3.1 Rotation constants for ρ. 17

3.2 Parameters for Keccak divided up in Keccak challenges and recom-
mended values for SHA-3. 19

4.1 Attacks on different Keccak versions by Dinur, Dunkelman and
Shamir. 22

5.1 Preimage for Keccak[r = 240, c = 160] challenges. 31

5.2 Message pairs and their corresponding input and output differences.. 34

5.3 Generalized conditions. 37

5.4 Starting point for 2-round collision. 38

5.5 Characteristic for 2 rounds. 41

5.6 A 2 round collision for Keccak[240, 160]. 42

5.7 Characteristic for 4-rounds. 43

5.8 Results of the kernel search. 46

5.9 A 2-round kernel path leading to a collision. 47

5.10 Propagating conditions for an additional round. 47

5.11 Consistency check of non-linear layer. 49

5.12 Trivial combination of 3 kernels. 51

5.13 An example for combining three hash output vectors. 52

5.14 Number of combinations tested. 53

5.15 Characteristic for 2-round collision for 384 bits. 53

5.16 Characteristic for 2-round collision for 502 bits. 54

5.17 A 4-round 384-bit collision with reduced capacity. 54

iv

A.1 Differential distribution table for Keccak χ step. MSB order is used. 59

A.2 A colliding message pair for 2 rounds of Keccak[240, 160]. 60

A.3 A colliding message pair for 4 rounds of Keccak[1440, 160]. 61

A.4 A colliding message pair for 4 rounds of Keccak[1088, 512]. 62

A.5 A colliding message pair for 4 rounds of Keccak[1088, 512] with
384-bit output. 63

v

Acknowledgements

I am indebted to my colleagues at the IAIK (Institute for Applied Information Pro-
cessing and Communications) for providing such a pleasent working enviroment,
particularly the Krypto research group who have provided invaluable help and feed-
back during the course of my work.

I especially wish to thank Florian Mendel and Martin Schläffer, for their imme-
diate attention to my questions and endless hours of discussions. I am also grateful
to Vincent Rijmen, who made it possible for me to go a semester abroad to work on
this thesis at the KU Leuven, Belgium.

Last but not least, without the support of my family and my girlfriend, this thesis
would not have been possible.

Stefan Kölbl
Graz, Austria, April 2013

vi

1
Introduction

Begin at the beginning and go on till you come to the end; then stop.

– Lewis Carroll, Alice in Wonderland

This thesis is about the cryptographic hash function Keccak. Cryptographic hash
functions are a fundamental part of modern cryptography and are used in many prac-
tical applications, for instance verification of message integrity, message authenti-
cation or secure storage of passwords. A hash function computes a short identifier
for a message, which is representatively used in cryptographic protocols, to provide
integrity or authentication.

A cryptographic hash function takes an input of arbitrary finite length and pro-
duces a fixed sized output. Usually, the input domain is larger than the output
domain, therefore these functions are many-to-one. As a result, the existence of
two different messages having the same output is unavoidable. In consequence, for
a hash function to be secure it should be computationally infeasible to find these
collisions.

The most commonly used hash functions at the moment are SHA-1, SHA-256
and SHA-512 certified by NIST. They are part of several standards and based on
the design principles of MD4 and MD5. In the last few years cryptanalysis made a
huge leap forward and weaknesses have been found for these functions. Practical

1

1.1. SHA-3 Competition 2

collisions have been shown for MD4 [1], MD5 [2] and SHA-0 [3]. Although the
computational effort to construct collisions for SHA-1 is still impracticable, the
security bound is much lower than expected [4]. Attacks on reduced rounds are
possible and practical example have been shown [5]. For this reason there is a
strong interest in designing new secure hash functions.

This thesis deals with the analysis of the hash function Keccak, which was se-
lected by NIST as the winner of the SHA-3 competition.

1.1 SHA-3 Competition

The SHA-3 competition was a public competition held by NIST (National Institute
of Standards and Technology), with the purpose of finding a new cryptographic hash
algorithm. It was announced on November 2nd, 2007 with the goal to find a new
standard by the end of 2012. There were 64 initial submissions by October 31th,
2008 and 51 were selected to advance to the first round. This round lasted till July
24th, 2009 and 14 candidates have been selected to advance to the second round.
After briefly a year for the public review NIST selected five candidates for the final
round: Blake [6], Grøstl [7], JH [8], Keccak [9] and Skein [10]. Out of these five
finalists, NIST selected Keccak to become the new SHA-3 standard on October 2,
2012.

1.2 Outline

The thesis is structured as follows. In Chapter 2, the fundamental properties and de-
sign principles of hash functions are presented followed by generic attacks. Chapter
3 describes the Keccak hash function and its building blocks in detail. In Chapter 4
an overview of the current state of research on Keccak is given.

The main part of this thesis is the analysis of the Keccak hash function and can
be found in Chapter 5. The first part of this chapter shows how algebraic attacks
can be applied on Keccak and the results are evaluated. The second part deals with
differential cryptanalysis. A tool-assisted approach is presented to automatically
find complex differential characteristics for Keccak. The third part of the analysis
presents a method, based on combining known high probability characteristic, to
find new characteristics for larger output sizes. In Chapter 6, the conclusion can be
found which summarises the results and discusses direction for future work.

2
Cryptographic Hash Functions

It turns out that an eerie type of chaos can lurk just behind a facade

of order - and yet, deep inside the chaos lurks an even eerier type of

order.

– Douglas R. Hofstadter

This chapter gives a brief introduction to cryptographic hash functions, their
applications and properties. In addition some generic attacks are outlined to get a
bound for the security provided by these functions. A more thorough introduction
can be found in [11].

A hash function is an efficient deterministic algorithm, which maps an input of
arbitrary length to a fixed size output called hash-value, digest or fingerprint (see
Figure 2.1).

h : {0, 1}∗ → {0, 1}n (2.1)

A hash function associates a hash-value with every input which can be used as an
identifier for this message. Consequently, no two messages should have the same
output, a so-called collision. As the input domain is much larger than the output
range, collisions are unavoidable. Thus, while these collisions are unavoidable it
should be infeasible to find them efficiently.

3

2.1. Applications 4

”One morning, when Gregor Samsa woke from troubled dreams, ...”

h

0101101001010111

Figure 2.1: A hash function is a function h mapping an input of arbitrary
length to an output of fixed length n.

2.1 Applications

Cryptographic hash functions are one of the most versatile cryptographic primi-
tives and are a fundamental part of modern cryptography. A typical application for
them is to provide message integrity. If a single bit is changed in a message it will
influence the computation and result in a different output, allowing to detect any
modifications.

In signature schemes, like the DSA (digital signature algorithm), hash functions
are used as a short unique identifier for a message [12]. This scheme signs the
hash, as a representative for the message, which speeds up the computation and
also provides additional security compared to a raw RSA signature.

A second important application are MACs (message authentication code). A
MAC is a keyed hash function that provides both integrity and authenticity of a
message. For this a secret, shared by two parties Alice and Bob, is involved in the
computation of the hash and allows the receiver to check if the message originates
from the desired sender. HMAC (hash-based message authentication code) is a
widespread algorithm used in standards like TLS [13] and IPSec [14].

Another common application is password protection. Passwords are usually not
stored as plaintext but only the digest is stored. The password entered by the user is
hashed and compared with the stored digest. This allows the original password to
be kept secret due to the one-wayness of hash functions. For a secure hash function
it should be infeasible to derive a password from the stored hash-value.

A further application is for confirmation of knowledge or commitment schemes.
If someone wants to prove that he has some information without revealing it, the
hash of this information can be made public. Once this information is public the
commitment can be verified by computing this hash.

2.2. Security 5

Cryptographic hash functions are also used for pseudo random number gen-
eration, key derivation and play an important role in micropayment systems like
MicroMint [15] or Bitcoin [16].

Hash functions should be fast compute in general but this is not necessarily true
for all applications. Password hashing and key derivation schemes like bcrypt [17],
scrypt [18] and PBKDF2 [19] are designed to be computationally expensive to make
brute force attacks less efficient.

Different applications might also have different security requirements. For in-
stance if an attacker constructs two documents with the same hash-value then also
the signature of this two documents will be the same. The attacker can deceive
an user by signing one of the documents and gets a valid signature on the second
document.

2.2 Security

As hash functions play such an important role in cryptography they have to fulfil
various requirements to be considered secure. For discussing security the following
three properties are used:

• Preimage resistance

• Second preimage resistance

• Collision resistance

An attack on a hash function typically tries to break one of these properties. For a
secure hash function it is assumed that, if an attacker is computationally bound then
it is infeasible to break any of these properties.

Furthermore, for an ideal hash function it would be desirable to behave like
a random oracle. A random oracle outputs for every input a random value from
the output domain. If an input is used a second time the same random value is
chosen. This concept is important for security proofs in protocols and cryptographic
primitives where one can prove that the system is secure if the hash function behaves
like a random oracle.

No real hash function can implement a random oracle. Hence, the best that can
be achieved is that there exists no efficient algorithm that can distinguish the output
of a hash function from the output of a random oracle.

2.2. Security 6

2.2.1 Preimage Resistance

A hash function is preimage resistant if it is hard to invert.

Definition 1. Preimage Resistance: For a given output y it should be computation-
ally infeasible to find an input x′ such that y = f(x′).

A hash function with n-bit output is preimage resistant if no algorithm exists
that finds a preimage with a complexity of less than O(2n).

???

h

y

Figure 2.2: Preimage Resistance: The attacker needs to find a valid input
which results in the given output y.

2.2.2 Second Preimage Resistance

Definition 2. Second Preimage Resistance: For given x, y = h(x) it should be
computationally infeasible to find x′ 6= x such that h(x′) = y.

A hash function with n-bit output is second preimage resistant if no algorithm
exists that finds a preimage with a complexity of less than O(2n).

This property gives the attacker additional information on the input for the fixed
output y. This could improve an attack, for instance by knowing the message length
or the exact input to a block in an iterative scheme.

2.3. Design 7

x

h

6= ???

h

y

Figure 2.3: Second Preimage Resistance: Given an input/output pair the
attacker needs to find a second input which results in the same
output y.

2.2.3 Collision Resistance

Definition 3. Collision Resistance: It should be computationally infeasible to find
two distinct inputs x, x′ such that h(x) = h(x′).

A hash function with n-bit output is collision resistant if no algorithm exists that
finds a preimage with a complexity of less than O(2n/2).

This problem might look similar to second preimage resistance but the attacker
can choose both x and x′ in this case and the output y is also not fixed, which
enables the use of birthday attacks. As the input domain is much larger than the
output domain collisions are unavoidable (pigeonhole principle), so the best one
can achieve is that it is computationally infeasible to find a collision.

???

h

6= ???

h

y

Figure 2.4: Collision Resistance: The attacker needs to find two different
messages with the same output y.

2.3 Design

Most hash functions follow an iterative design similar to Figure 2.5. The input m is
split into evenly sized blocks M1,M2, . . .Mn and a compression function f is used

2.3. Design 8

IV
f

M1

f

M2

f

Mn

g
h = Hn+1

Figure 2.5: An iterative construction for a hash function, where IV is a fixed
initial value.

to process each block iteratively. If the input m is not a multiple of the block size
the message is padded accordingly. Examples for this padding can be found in the
upcoming constructions.

2.3.1 Merkle-Damgård construction

The Merkle-Damgård construction is a method to build a collision-resistant hash
function from a collision-resistant compression function [20]. It uses the same iter-
ative approach and adds the length of the message at the end of the padding which
is often referred to as Merkle-Damgård strengthening (MD-strengthening).

Algorithm 1 Merkle-Damgård Construction
Precondition: Message: m
Output: Hash: h

Apply padding to m and split in evenly sized blocks M1,M2, . . . ,Mn and
H0 = 0n

Hi = f(Hi−1,Mi) for 1 ≤ i ≤ n
Hn+1 = g(Hn)

For designs like MD4 no output transformation is used and g is the identity
function.

Padding

The input m is padded by appending a 1-bit followed by the minimum number of 0

bits to result in a multiple of the block-size. This is followed by an additional block
which encodes the binary representation of the length of m. This is often referred
to as Merkle-Damgård strengthening.

Proof of Collision-resistance

This construction gives a provable collision-resistant hash function. However, other
flaws still exist which are discussed in Section 2.4.3.

2.3. Design 9

Proof. Assume that the hash function h is not collision-resistant and the attacker
can find a colliding message pair (M,M ′) such that h(M) = h(M ′). Consider the
following two cases:

• The length of the two messages is not equal. If the attacker has found a
collision then the output of the last compression function call must be equal.
The last message block contains the message length, hence Mn and M ′

n are
different but this implies that a collision for the compression function exists
as f(Mn, Hn) = f(M ′

n, H
′
n).

• The length of the two messages is equal. In this case at least one compression
function call must lead to a collision f(Mi, Hi) = f(Mj, Hj) for the output
to be equal.

This proof assumes that no additional output transformation is applied else one has
to consider collisions in the output transformation too.

2.3.2 Sponge construction

The sponge construction is a mode of operation building a function which takes
arbitrary sized input and generates arbitrary sized output. It is based on a fixed-
sized permutation f , a padding rule and takes two parameters: the rate r and the
capacity c. The sponge construction is iterative and operates on an internal state S
of size b = r + c.

First, split the input m into blocks M0,M1, . . . ,Mn of size r by using the
padding rule. Set the initial state to S = (0 . . . 0) and process the input through
the following two phases

• Absorb: XOR the ith message block to the first r bits of the state and update
the state with the f -permutation. Repeat this step for all message blocks.

• Squeeze: Append the first r bits of the state to h and update the state. Repeat
this step to generate more output bits.

An outline of this procedure can be seen in Figure 2.6. When using a random
permutation the sponge construction is as secure as a random oracle apart from
inner collisions [21].

2.4. Generic Attacks 10

m pad

0

0

r

c

f

M0

f

M1

f

M2

f

h0

f

h1

h|∗|

Absorb Squeeze

Figure 2.6: The sponge construction takes input of arbitrary length and com-
putes an output of arbitrary length. It uses a fix-sized invertible
permutation f and the input is processed iteratively.

Padding

The input m is padded to be a multiple of the block-size. This is done by appending
a 1-bit followed by the minimum number of 0 bits and a 1 bit to result in a multiple
of the block-size. This padding is called multi-rate padding.

pad(m) = (m||10∗1) (2.2)

2.4 Generic Attacks

In this section, general attacks on hash functions are outlined. These kind of attacks
can be applied to any hash function disregarding the underlying structure. The
hash function acts like a black box and the only relevant parameter is the length n
of the hash value. It is assumed that the output of the hash function is uniformly
distributed. If this is not the case generic attacks can be more efficient.

2.4.1 Brute-Force Attack

The simplest approach for an attacker to find a preimage would be to test different
messages and check if he gets the desired output y. If the hash function has n-bit
output, then the probability, given a random input x, h(x) = y is equal to 2−n.
Hence, after about O(2n) trials a correct input will be found.

The same method allows to find a second preimage with the only difference is
to discard x if it equals the given input. A generic attack to find a (second) preimage

2.4. Generic Attacks 11

#People

p(X)

1

0.5

9023

Figure 2.7: The probability that two persons share the same birthday is >
0.5, for a group of 23 people.

has a complexity of O(2n).

2.4.2 Birthday Attack

The birthday paradox states that in a group of 23 people, the probability is> 0.5 that
two persons share the same birthday. The probability for this event grows quickly
to 1 (as can be seen in Figure 2.7).

This fact appears when searching collisions. Consider a hash function with n-
bit output, then the probability that two messages collide is 2−n. It follows that the
probability that no collision occurs after N trials is:

p′(N) = 1 · (1− 1

2n
) · (1− 2

2n
) . . . (1− N − 1

2n
) ≈ e−

N2

2n+1 (2.3)

For details on this approximation see [22]. The probability for a collision after N
trials is then given by the converse probability:

p(N) = 1− p′(N) ≈ 1− e−
N2

2n+1 (2.4)

Consequently, the expected numbers of trials is
√

ln(2)2 · 2n/2 before a collision
occurs. A generic attack to find a collision has a complexity of O(2n/2).

The simplest version of this attack is to store a list of hash outputs and subse-
quently compute new outputs [23]. If an output is already in the list then a collision
was found (see Algorithm 2).

The high memory requirements make this approach infeasible in practice even
for a relative small output size, but memoryless variations can be applied [24] for

2.4. Generic Attacks 12

Algorithm 2 Birthday Attack - Yuval
Precondition: List L

1 while do
2 select random message m
3 if h(m) ∈ L then
4 found collision
5 else
6 add (h(m),m) to L

instance Floyd’s cycle–finding algorithm.

From this attacks it follows that, if a hash function should have k-bit collision
resistance then the output must be at least of size n = 2k. The digest size, of the
currently most common used hash algorithms, is listed in Table 2.1.

Table 2.1: Digest sizes for different hash algorithms.

Algorithm Output size Year released

MD5 128-bit 1992
SHA-1 160-bit 1995
RIPEMD-160 160-bit 1996
Whirlpool 512-bit 2000
SHA-2 224-, 256-, 384- and 512-bit 2001
Keccak (SHA-3) 224-, 256-, 384- and 512-bit 2012

2.4.3 Attacks on the Merkle-Damgård construction

The Merkle-Damgård construction is provable collision-resistant but has other un-
desirable properties. The length extension attacks allows an attacker to compute
H(pad(m)||X) without knowing m (see Figure 2.8). This can be a problem, for in-
stance if a MAC is constructed by computingH(key||m). In this case it would allow
an attacker to forge valid tags for messages of the structure H(pad(key||m)||X). A
random oracle would not have such a property [25].

Kelsey and Schneier showed that finding a second preimage for hash functions
with Merkle-Damgård strengthening is easier for large messages [26]. Using their
results, a second preimage for SHA-1 for a message of size 260 can be found with a
complexity of 2106 compared to the costs of 2160 for the generic attack.

Computing multi-collisions for hash functions based on the Merkle-Damgård
construction can be done efficiently. Multi-collisions are t-tuples of messages which
all hash to the same output. Joux presented an approach to construct 2t-collisions at
t times the costs of finding a collision for two messages [27].

2.4. Generic Attacks 13

IV
f

M1

f

M2

f

Mn||padding

H(m)

f

X1

f

X2

f

Xn||padding

H(pad(m)||X)

Figure 2.8: The length extension property allows to compute
H(pad(m)||X), using H(m) as input to the compression
function f . An attacker needs no further information on the
structure of m.

3
Keccak

This chapter is about the Keccak hash function designed by Guido Bertoni, Joan
Daemen, Michaël Peeters and Gilles Van Assche. Keccak was submitted to the
SHA-3 competition and selected by NIST as the winner on October 2nd, 2012.

Keccak is a sponge based construction using the fix sized permutation Keccak-f .
The internal structure of this permutation is very important to understand the fol-
lowing analysis, thus a detailed description of the building blocks is given in this
chapter.

3.1 Description of Keccak

Keccak is a family of hash functions based on the sponge construction where the
state can have a size b ∈ {25, 50, 100, 200, 400, 800, 1600}. It uses the permutation
Keccak-f and the padding scheme defined in Section 2.3.2. A specific instance of
Keccak is notated as Keccak[r, c, nr] where r is the rate, c the capacity and nr the
number of rounds.

The permutation f used in Keccak operates on a three-dimensional state with
elements in F2 (see Figure 3.1). The dimensions for this state are 5 × 5 × w with
w ∈ {1, 2, 4, 8, 16, 32, 64}. This allows to represent each lane as a w-bit word. A

14

3.1. Description of Keccak 15

three-dimensional array is used, S[x][y][z], to describe the state. Some additional
terms are defined to ease the description of the state:

• A plane is a set with constant y-coordinate (S[∗][y][∗]) of size 5w.

• A slice is a set with constant z-coordinate (S[∗][∗][z]) of size 25.

• A sheet is a set with constant y-coordinate (S[x][∗][∗]) of size 5w.

• A row is a set with constant y- and z-coordinate (S[∗][y][z]) of size 5.

• A column is a set with constant x- and z-coordinate (S[x][∗][z]) of size 5.

• A lane is a set with constant x- and y-coordinate (S[x][y][∗]) of size w.

A visualisation of this terms can be found in Appendix A.1.

Figure 3.1: Outline of the internal state of Keccak with a width of 81.

The hash h for a messagem is computed in the following way for Keccak[r, c, nr]:

1. Initialise the state S[x][y][z] = 0 for x = 0 . . . 4, y = 0 . . . 4 and z = 0 . . . w.

2. Compute the padded message M = m||10∗1 such that M is a multiple of r.

3. Absorb the next r-bit message block by computing S[x][y] = S[x][y] ⊕Mi

and update the state by computing S = f(S).

4. Squeeze until the requested number of bits is reached.

1Image from http://keccak.noekeon.org/

http://keccak.noekeon.org/

3.1. Description of Keccak 16

3.1.1 Keccak-f

Keccak uses the iterative permutation Keccak-f operating on Fw2 , with w being the
word size. The permutation consists of multiple rounds in which five functions are
used in sequence R = ι ◦ χ ◦ π ◦ ρ ◦ θ. The number of rounds nr depends on the
word size of the lane:

nr = 12 + 2 log2(w) (3.1)

Apart from ι, this functions are the same for each round.

S

θ ρ π χ ι

R(S)

Figure 3.2: One round of the Keccak-f permutation.

Description of θ

The θ function is linear and provides diffusion over the whole state. The step adds
to every bit of the state S[x][y][z] the bitwise sum of the neighbouring columns
S[x− 1][∗][z] and S[x+ 1][∗][z − 1].

x

y z z

Figure 3.3: θ step of Keccak-f .

3.1. Description of Keccak 17

This procedure can also be described with the following equation:

θ : S[x][y][z]← S[x][y][z] +
4∑

n=0

S[x− 1][n][z] +
4∑

n=0

S[x+ 1][y][z] (3.2)

For computing the inverse of this step see [9].

Description of ρ

This function rotates the bits in every lane by a constant value. This is done to speed
up dispersion between the slices. The constants are given in Table 3.1.

Figure 3.4: ρ step of Keccak-f .

x=3 x=4 x=0 x=1 x=2
y=2 25 39 3 10 43
y=1 55 20 36 44 6
y=0 28 27 0 1 62
y=4 56 14 18 2 61
y=3 21 8 41 45 15

Table 3.1: Rotation constants for ρ.

The inverse of ρ can be computed by shifting with the same constants in the
opposite direction.

Description of π

This function transposes the lanes using the following function:(
x

y

)
=

(
0 1

2 3

)
×

(
x

y

)
(3.3)

3.1. Description of Keccak 18

Figure 3.5: π step of Keccak-f .

The inverse of π is given by:(
x

y

)
=

(
1 3

1 0

)
×

(
x

y

)
(3.4)

Description of χ

This step is the only non-linear step in Keccak and operates on each row of 5 bits.
It can be seen as applying in parallel a 5-bit s-box to all rows:

χ : S[x][y][z]← S[x][y][z]⊕ ((¬S[x+ 1][y][z]) ∧ S[x+ 2][y][z]) (3.5)

The algebraic degree of χ is two and it is invertible. The inverse of this function
has an algebraic degree of three.

Description of ι

This steps adds a round dependent constant to the state. The constants are different
to avoid attacks exploiting symmetry like slide attacks. For a list of the constants
see [9].

3.2. Keccak Challenges 19

Figure 3.6: χ step of Keccak-f .

3.2 Keccak Challenges

The Keccak challenges are a set of challenges proposing different parameters to en-
courage the cryptanalysis of Keccak. The capacity is fixed to 160-bit which results
in a security level of 280 against birthday attacks. Table 3.2 contains the parame-
ters for the challenges followed by the parameters recommended for SHA-3 with
different output sizes. In the following analysis both variants will be used as attack
targets.

Table 3.2: Parameters for Keccak divided up in Keccak challenges and rec-
ommended values for SHA-3.

Name Word size Rate Capacity Output size

Keccak[40, 160] 8 40 160 160
Keccak[240, 160] 16 240 160 160
Keccak[640, 160] 32 640 160 160
Keccak[1440, 160] 64 1440 160 160

Keccak[1152, 448] 64 1152 448 224
Keccak[1088, 512] 64 1088 512 256
Keccak[832, 768] 64 832 768 384
Keccak[576, 1024] 64 576 1024 512

4
Existing Analysis of Keccak

This chapter gives an overview of the current state of analysis on Keccak. The first
section will discuss structural attacks, while the second is about differential attacks
which are also a significant part of the analysis presented in this thesis.

4.1 Structural Attacks

Aumasson and Khovratovich published the first external analysis on Keccak [28].
They applied automated cryptanalytic tools, using the triangulation algorithm [29]
and cube testers, to detect structures in reduced round versions of Keccak. The
application of their tools was limited due to the good diffusion properties of the
inverse of θ.

Aumasson and Meier presented a zero-sum distinguisher for Keccak-f for up to
9 rounds with a practical complexity and for up to 16 rounds [28] with a theoretical
complexity. Boura and Canteaut extended this distinguisher to 20 rounds [30].

Morawiecki and Srebrny presented a SAT-based analysis to find preimages for
reduced Keccak variants [31]. The idea is to formulate the problem of finding a
preimage as a SAT problem. The first step is to generate the CNF which is then
processed with a SAT solver to find the preimage. The main advantage of this

20

4.2. Differential Attacks 21

attack is that highly optimised SAT solvers exist to solve this hard problem. The
results of the SAT-based analysis suggest that Keccak is very resistant to this kind
of attacks. The attack only worked on 3-round Keccak[1024, 576] with 40 unknown
message bits. Using this approach, they found collisions up to 2 rounds for the
Keccak challenges for Keccak[240, 160], Keccak[640, 160] and Keccak[1440, 160].

4.2 Differential Attacks

Differential cryptanalysis is an important tool in the analysis of cryptographic prim-
itives and plays a key role in the results presented in this thesis. For a detailed
explanation of differential cryptanalysis see Section 5.2.

Naya-Plasencia, Röck and Meier presented various attacks on Keccak based on
differential cryptanalysis [32]. They use an efficient method to find low weight
differential paths using column-parity kernels which are also an important part of
the analysis in this thesis. The details of this method can be found in Section 5.3.
In their work they proposed the following attacks: a preimage attack on 2 rounds,
a collision attack on 2 rounds, a near-collision on 3 rounds and a distinguisher for
4 rounds. The results can be applied for Keccak[1152, 448] and Keccak[1088, 512]

with a complexity of ≈ 233.

Duc et al. presented new differential paths and used them for a rebound attack
on the internal permutation of Keccak [33]. The method to find this new paths
is also based the column-parity property. The rebound attack was first proposed
by Mendel et al. in [34] and applied to AES-based hash functions like Grøstl and
Whirlpool.

For the rebound attack, a permutation P is split into three parts P = Ef ◦Ei◦Eb.
The attack proceeds now in two phases:

• The inbound phase covers the middle part Ei. This part typically covers the
most expensive part in a characteristic and computes solutions by propagating
differences forward/backward through the linear layers and match them at a
single s-box layer.

• The outbound phase propagates each solution, from the inbound phase, in
both directions Ef and Eb.

The rebound attack is convenient to apply on AES-based permutations, as one can
use truncated differentials. This is not the case for Keccak due to the bit-oriented
design which makes the application more difficult. Duc et al. proposed a practical

4.2. Differential Attacks 22

distinguisher with complexity 232 for 6 rounds and with a complexity of 2491.47 for
8 rounds using the Keccak permutation with a width of 1600 bits.

The best practical attack published is a 4-round collision by Dinur, Dunkel-
man and Shamir. In [35] they present 4-round collisions for Keccak[1152, 448] and
Keccak[1088, 512] and near-collisions for 5 rounds with the same parameters.

Their approach is to use a high probability characteristic and connect it to the
starting point over 2 rounds. They presented the target difference algorithm to solve
this problem of connecting to the starting point. This algorithm exploits that the
algebraic degree of the non-linear layer is only 2 and makes use of the degree of
freedom in the message input.

The high probability characteristic is a 2-round column-parity kernel. These
characteristics are examined in detail in Section 5.3.

2 rounds 2 rounds

high probability pathconnect to start

Figure 4.1: Outline of the attack by Dinur, Dunkelman and Shamir.

In [36] they presented the first attacks on Keccak[832, 768] and Keccak[576, 1024].
The attacks are based on internal differential cryptanalysis. A practical attack on 3
rounds and an attack on 5-round Keccak[1088, 512] with a complexity of 2115 are
shown. A summary of the attacks by Dinur, Dunkelman and Shamir can be found
in Table 4.1.

Table 4.1: Attacks on different Keccak versions by Dinur, Dunkelman and
Shamir.

Keccak-224 Keccak-256 Keccak-384 Keccak-512

Collision 4 4 , 5 (2115) 3, 4 (2147) 3

5
Analysis

This chapter presents the results of our analysis on the Keccak hash function. First,
the use of algebraic attacks to find preimages for reduced round versions of Keccak
is evaluated. This section shows how to derive a system of non-linear equations, for
which finding a solution is equivalent to finding a preimage for Keccak.

The second part of this chapter deals with differential cryptanalysis and is the
main part of this thesis. A tool-assisted method based on the concept of generalized
conditions is used to find both a differential characteristic and the corresponding
message pair. This method allows to find collisions for up to 4 rounds of Keccak
with a practical complexity.

The third part is about finding new high probability differential characteristics
for more than 2 rounds or larger output sizes of Keccak. Based on the column-parity
property of Keccak, new characteristics are constructed and combined to find new
collision attacks on Keccak.

23

5.1. Algebraic Attack 24

5.1 Algebraic Attack

An algebraic attack is a method of cryptanalysis based on expressing the crypto-
graphic primitive as a system of equations, fixing known variables and solving this
system. This is done to find a secret key in an encryption system or in the case of
hash functions to find a preimage or collision. A system of linear equations can be
efficiently solved, therefore cryptographic primitives are designed to be highly non-
linear. The sheer size of the system and the non-linearity make this a hard problem
to solve.

This section starts with an introduction on the concept of Gröbner bases and the
required definitions. A short description of Buchberger’s algorithm to find Gröbner
bases is given and it is shown how it can be used to solve systems of non-linear
equations. The subsequent section shows how the problem of finding preimages for
Keccak can be solved with Gröbner bases.

The following notation and preliminaries are based on the work in [37] and
[38], where also a more thorough discourse of the mathematical background can be
found.

5.1.1 Preliminaries

Notations

Some notation which is used in the following sections:

• Fp is the finite field of order p with p being prime.

• Fpn is the finite extension field of degree n over Fp.

• P is a polynomial ring F[x1, . . . , xn] in the variables x1, . . . xn.

• lcm(a, b) is the least common multiplier of a and b.

Polynomials and Ideals

Definition 4. A monomial in x1, . . . xn is a product of the form

xα1
1 · xα2

2 . . . xαn
n (5.1)

5.1. Algebraic Attack 25

Definition 5. A polynomial f in x1, . . . xn is a finite linear combination of mono-
mials of the form

f =
∑
i

aαx
α, aα ∈ k (5.2)

where

• aα are the coefficient of the monomial xα

• aαxα is a term of f

• deg(f) is called the total degree of f and is the maximum |α| such that aα 6= 0

Definition 6. A subset I ⊂ F[x1, . . . , xn] is an ideal if it satisfies:

• 0 ∈ I

• If f, g ∈ I , then f + g ∈ I

• If f ∈ I and h ∈ F[x1, . . . , xn], then hf ∈ I

Monomial Ordering

For univariate polynomials it is easy to determine the total degree of a given polyno-
mial by just determining the largest monomial. For multivariate polynomials this is
not the case. For instance, it is not clear whether x4y3z2 should be greater or smaller
than x2y7z4. There exist different possibilities to define the ordering. Therefore a
monomial ordering is needed to compare them.

Definition 7. A monomial ordering on F[x1, . . . , xn] is a relation > on Zn≥0 or
equivalently, any relation on the set of monomials xi, i ∈ Zn≥0 satisfying:

• > is a total (or linear) ordering on Zn≥0

• If α > β and γ ∈ Zn≥0 then α + γ > β + γ

• > is a well-ordering on Zn≥0. This means that every non-empty subset of Zn≥0

has a smallest element under >

There are many different monomial ordering. The two most common used
monomial orderings are the ”lexicographical” and the ”degree reverse lexicograph-
ical” ordering which is used throughout this thesis.

Definition 8. Degree reverse lexicographical ordering: Let α = (α1 . . . αn) and
β = (β1 . . . βn) than α > β if

5.1. Algebraic Attack 26

• |α| =
n∑
i=1

αi > |β| =
n∑
i=1

βi or

• |α| = |β| and the rightmost nonzero entry of α− β is negative

Example 1. To illustrate how the degree reverse lexicographical ordering works

• x2y7z4 > x4y3z2 since |(2, 7, 4)| = 13 > |(4, 3, 2)| = 9

• x2y7z4 > x3y4z6 since |(2, 7, 4)| = 13 = |(3, 4, 6)| = 13 and (2, 7, 4) −
(3, 4, 6) = (−1, 3,−2)

The monomial ordering can now be applied to polynomials by reordering the
terms by size with respect to >.

Definition 9. Let f =
∑

α aαx
α be a nonzero polynomial in F[x1, . . . , xn].

• The multidegree of f is

multideg(f) = max(α ∈ Zn≥0 : aα 6= 0) (5.3)

(the maximum is taken with respect to >)

• The leading term of f is

LT(f) = amultideg(f)x
multideg(f) (5.4)

Example 2.
LT(−3x4y1 + 2x3y2 + 4y2 + x) = −3x4y1 (5.5)

5.1.2 Gröbner Basis

The theory of Gröbner basis was developed by Buchberger in 1965 [39]. It can be
seen as a generalisation of:

• the Euclidean algorithm for computing univariate greatest common divisors.

• Gaussian elimination for linear systems of equations.

Definition 10. Fix a monomial order. A finite subset G = g1, . . . , gn of an ideal I
is called a Gröbner basis if

〈LT(g1),LT(g2), . . . ,LT(gn)〉 = 〈LT(I)〉 (5.6)

5.1. Algebraic Attack 27

5.1.3 Algorithms to find Gröbner Bases

Finding a Gröbner basis for an ideal is a hard problem and various algorithms exist
to find them. The example given here is Buchberger’s algorithm (see Algorithm
3) which takes as input a finite set of polynomials and computes the Gröbner basis
with respect to a given monomial order.

Definition 11. Let f, g ∈ F[x1, . . . , xn] be nonzero polynomials. The S-polynomial
of f and g is the combination

S(f, g) =
lcm(LT(f),LT(g))

LT(f)
· f − lcm(LT(f),LT(g))

LT(g)
· g (5.7)

The algorithm will always terminate but the worst case running time is double
exponential in the number of variables [40].

Algorithm 3 Buchberger’s Algorithm

Precondition: F = 〈f1, . . . , fn〉
Output: Gröbner Basis G = (g1, . . . , gn)
G← F
repeat

G′ ← G
for each pair p, q, p 6= q in G′ do

S ← Remainder of S(p, q)/G′

if S 6= 0 then
G← G ∪ S

until G = G′

Other popular algorithms are:

• The Faugère F4 [41] and F5 [42], which are both based on the principles of
Buchberger’s algorithm.

• The slimgb algorithm, which is also used in the Sage computer algebra system
[43].

Example 3. Consider the following set of polynomials in F2[x, y]

f0 = x4 + x2 + x+ 1 (5.8)

f1 = x4 + x3 + y2 + x (5.9)

f2 = x3 + xy (5.10)

The Gröbner basis for this example is obtained with Sage (see Listing 5.1). First
the polynomial ring R and an ideal I are defined. Using the built-in algorithms the

5.1. Algebraic Attack 28

Gröbner basis can be computed. The resulting Gröbner basis gives the solution
x = 1, y = 1 to the non-linear system of equations.

sage: R.<x,y> = PolynomialRing(GF(2),’degrevlex’)
sage: f0 = xˆ4 + xˆ2 + x + 1
sage: f1 = xˆ4 + xˆ3 + yˆ2 + x
sage: f2 = xˆ3 + x*y
sage: I = Ideal(a,b,c)
sage: I.groebner_basis()
sage: [x + 1, y + 1]

Listing 5.1: Computing the Gröbner basis of a simple ideal

5.1.4 Algebraic Attack

An algebraic attack is a method for cryptanalysis for cryptographic primitives. The
idea for this attacks is to express the problem of finding a secret key (or a preim-
age), as a system of equations. Solving a system of linear equations can be done
in polynomial runtime but for a non-linear system the problem is computationally
hard. Therefore, cryptographic primitives are designed to achieve a high degree of
non-linearity. This can be done using various techniques, for instance s-boxes.

Non-linear systems of equations can be solved by using Gröbner basis based
algorithms. In general algorithms for finding Gröbner bases have at least exponen-
tial running time, which would not be feasible for systems of this size. However,
for hash functions the equation systems are very structured and this might allow to
compute the Gröbner basis in practice.

5.1.5 Attacking Keccak

The algebraic attack on Keccak can be split into three steps (see Figure5.1):

1. Express Keccak as a system of non-linear equations.

2. Fix the value of all variables which are predefined.

3. Use algorithms to compute the Gröbner basis.

Equation system

The first question which arises is how to describe Keccak algebraically. There are
different options to represent the internal state of Keccak. Due to the bitwise struc-
ture of the steps a representation over F2, by mapping every bit to variable in F2,

5.1. Algebraic Attack 29

Keccak

express as
equations fix variables

compute
Gröbner

basis

Preimage

Figure 5.1: Outline of the algebraic attack for Keccak.

seems a good choice. This allows to derive a clean definition of the equations from
the steps. Another possible choice would be to map every lane to an element of Fn2
where n equals the lane-size or to map every row to F5

2 but doing so would only be
beneficial for some specific steps of Keccak and unfavourable for the others. The
following notation is used to name the variables:

• The position of single bit in a state X is notated as

Xb
y,z (5.11)

where y is the position in the column, z is the position in the row and b the
position on the lane.

• The states X are named in the following way: A is the initial state after the
message has been xored to the state. BL is the state after applying π ◦ ρ ◦ θ.
BNL after applying ι ◦ χ. CL is the next state after applying the linear steps
followed by CNL and so on.

Getting the equations from the steps is done by first separating the linear and non-
linear part:

• The linear steps ρ and π only move the position of the related bits and do
not change any values. Therefore this steps can be represented by changing
the corresponding variables in the related equations. In the θ step 11 bits are
involved to compute a single output bit. For every bit of the state a linear
equation with 12 variables is added. For example one equation might look
like this:

BL0
0,0+A0

0,0+A15
0,1+A15

1,1+A15
2,1+A15

31
+A15

4,1+A0
0,4+A0

1,4+A0
2,4+A0

3,4+A0
4,4 = 0

• The non-linear step χ uses 3 bits to compute one output bit. For every bit of

5.1. Algebraic Attack 30

the state a non-linear equations with 4 variables is added:

BNL0
0,0 +BL0

0,0 + (BL0
0,1 + 1) ·BL0

0,2 = 0 (5.12)

The number of equations and variables depends on the state size of Keccak. For
the initial state b = r + c variables are added. The initial state is all 0 and xored to
the message. Therefore, it is sufficient to add the result of this computation to the
equation system.

Depending on the capacity, c of this variables are fixed and c equations have to
be added. For each following round we need b variables and equations for the output
of the linear step and b variables and equations for the output of the non-linear step.
For the hash value only the first n bits contributing to the output are relevant and
the rest of the state is truncated. This allows to drop the r corresponding equations
because they do not contribute anything to the hash-value.

• Number of variables for: Keccak[c, r, nr] = b+ 2nrb

• Number of equations for: Keccak[c, r, nr] = c+ 2nrb− r

where nr denotes the number of rounds.

Fixing variables

For the algebraic analysis Keccak[r = 240, c = 160] is used as it is part of the
Keccak challenges (see Section 3.2). Therefore 160 bits in the input state A are
fixed to 0 and the output is truncated to 160 bits (see Figure 5.2). The variables at
the output are fixed to the given hash for the preimage attack.

f

Figure 5.2: Variables corresponding to grey shaded bits are fixed.

5.1. Algebraic Attack 31

Optimisation for last round

For a preimage some of the bits are fixed at the output. An important observation is
that, if a full row at the output of χ is fixed then also the input row is known (as for
Keccak[r = 240, c = 160] in Figure 5.2). This allows to ignore χ in the last round
when searching for a preimage. If the row is not completely fixed then some of the
free variables can be set to arbitrary values to achieve this.

5.1.6 Results

For computing the Gröbner basis of the Keccak equation system, Sage with the
PolyBori library is used[44][45]. The Keccak challenges for Keccak[r = 240, c = 160]

were chosen as a target for finding the preimage.

Table 5.1: Preimage for Keccak[r = 240, c = 160] challenges.

#Rounds m H(m)

1 f03c0243e2f090042cfe d9d6d3c84d1ac1d75f96

Finding the Gröbner basis for 1 round only takes a few seconds. The problem
for 1 round seems particular easy as one can ignore χ which makes the problem
linear. For computing the Gröbner basis it did not make any difference whether
this optimisation was used or not. For 2 rounds no solution could be found in a
reasonable amount of time. The higher number of variables and increase in degree
of non-linearity makes the problem more difficult for a higher number of rounds.

Possible approaches to improve this attack might be to use a different represen-
tation of Keccak, find further optimisations or adapt the Gröbner bases algorithms
for this specific problem.

5.2. Differential Cryptanalysis 32

5.2 Differential Cryptanalysis

Differential cryptanalysis was first published by Biham and Shamir to analyse the
block cipher DES [46]. The attack scenario is a chosen plaintext attack, which
means the attacker can choose arbitrary messages and gets the encryption of it. Dif-
ferential cryptanalysis observes how the difference between a pair of inputs affects
the resulting output difference. While it was originally devised to analyse block
ciphers the technique is also used for stream ciphers and hash functions.

Resistance to differential cryptanalysis is an important design criteria. Design-
ers of cryptographic primitives have to argue or ideally proof that their algorithm is
secure against differential cryptanalysis.

Differential cryptanalysis gives a natural approach to find collisions for hash
functions. A message pair (M,M ′) with difference ∆in = M ⊕M ′ 6= 0 which
results in an output difference h(M)⊕ h(M ′) = 0 equals a collision as can be seen
in Figure 5.3.

M

h

h(M)

∆in M ′

h

h(M ′)∆out

Figure 5.3: The relation between the input and output difference of two mes-
sages M and M ′ is used for the analysis.

5.2.1 Preliminaries

First some frequently used terminology is defined.

Definition 12. The XOR difference of two n-bit vectors a and a′ is defined by

∆a = ∆(a, a′) = a⊕ a′ (5.13)

5.2. Differential Cryptanalysis 33

A cryptographic primitive is typically composed of multiple rounds. Therefore
it is of interest how differences behave with respect to these functions.

Definition 13. A differential for a round-function f is denoted by

∆in
f−→ ∆out (5.14)

Definition 14. A differential characteristic is a sequence of differentials of the
following form

∆a0
f0−→ ∆a1

f1−→ ∆a2 . . .
fn−→ ∆an (5.15)

Linear Functions

Definition 15. The difference propagation for a linear function L, with respect to
the difference operator, is deterministic. Given a pair of values M,M ′ and the
difference ∆M = M ⊕M ′ the following equations holds

L(M)⊕ L(M ′) = L(M ⊕M ′) = L(∆M) (5.16)

When the input difference of a linear function is known the output difference is
also determined.

Non-Linear Functions

For non-linear functions the transition from a given input difference ∆in to a given
output difference ∆out is probabilistic. A difference distribution table (DDT) is
used for the analysis of non-linear functions. The DDT enumerates the number of
solutions for (∆in,∆out)

∃a | SBOX(a)⊕ SBOX(a⊕∆in) = ∆out (5.17)

The DDT shows which input/output pairs (∆in,∆out) are possible and how often
they occur. Entries with zero occurrences are called impossible differentials. For
computing the DDT of a non-linear function Algorithm 4 is used which enumerates
all the valid pairs.

The following example illustrates this important property by using the s-box
used in Keccaks χ function.

Example 4. Given the s-box in the non-linear function χ and the corresponding
DDT (see Appendix A.1). If for instance the difference at the input ∆in = 0x08

5.2. Differential Cryptanalysis 34

Algorithm 4 Constructing a DDT for a k-bit function f

Precondition: DDT[k][k]
for a = 0 . . . k − 1 do

for b = 0 . . . k − 1 do
DDT[a⊕ b][f(a)⊕ f(b)]++

then the set of possible output differences is ∆out = {0x08, 0x09, 0x18, 0x19}
where each one is equally likely with a probability of 0.25. Depending on the values
of the message pair the output difference will be one of these four choices as can be
seen from Table 5.2.

Table 5.2: Message pairs and their corresponding input and output differ-
ences..

Input (x, y) ∆in Output (x, y) ∆out

(0x10, 0x18) 0x08 (0x12, 0x1a) 0x08
(0x11, 0x19) 0x08 (0x15, 0x1d) 0x08
(0x12, 0x1a) 0x08 (0x18, 0x10) 0x08
(0x13, 0x1b) 0x08 (0x1b, 0x13) 0x08
(0x18, 0x10) 0x08 (0x1a, 0x12) 0x08
(0x19, 0x11) 0x08 (0x1d, 0x15) 0x08
(0x1a, 0x12) 0x08 (0x10, 0x18) 0x08
(0x1b, 0x13) 0x08 (0x13, 0x1b) 0x08
(0x00, 0x08) 0x08 (0x00, 0x09) 0x09
...

...
...

...

5.2.2 Differential Properties of Keccak

This section gives an overview of the differential behaviour of the Keccak step func-
tions. It is essential to understand how these functions manipulate differences, be-
cause the following attacks make use of their properties. The most important fea-
tures for each function are given here and a more detailed discussion can be found
in the original Keccak specification [9].

Differential Properties of ρ

This step translates the bits in every lane by a constant value. Therefore differences
are also rotated by the same constant.

5.2. Differential Cryptanalysis 35

ρ

Figure 5.4: ρ shifts differences on the lanes.

Differential Properties of π

This step transposes the lanes, hence the differences in the lanes are also transposed
to a new position.

π

Figure 5.5: π transposes the lanes.

Differential Properties of θ

This step adds the bitwise sum of two columns to a bit. A single bit difference at
the input of θ always affects two columns, hence 10 bits are changed. If there is
an even number of differences in all columns (the parity is 0 for all columns) then
this is called a column parity kernel[9]. This property is important for the analysis
presented in Section 5.3 and will be examined in detail.

Differential Properties of ι

This step adds the same constant to both messages therefore it has no influence on
the differences. For differential cryptanalysis this function is of no further interest
and is omitted.

Differential Properties of χ

This step is composed of 5-bit s-boxes and is the only non-linear step in Keccak.
Using Algorithm 4 the DDT for the 5-bit s-box is computed which can be found in

5.2. Differential Cryptanalysis 36

Appendix A.1. From the DDT it follows that the maximum differential probability
(MDP) is 2−2.

5.2.3 Searching for Complex Differential Paths

De Cannière and Rechberger presented a method to search automatically for dif-
ferential characteristics for SHA-1 [47]. This method is a generalization of the
approach by Wang et al. [4] and allows all possible conditions on the values of
pairs of bits for the analysis. The notation for generalized conditions can be found
in Table 5.3.

Starting
Point

Guess bit

Propagate
conditionsBacktrack

Is state
consistent?no

yes

Figure 5.6: An outline showing the basic steps of the search strategy used to
find differential characteristics.

The characteristics are constructed iteratively by adding more conditions on the
state, propagating this conditions and check for consistency (see Figure 5.6). The
idea for this search strategies originates from SAT solvers.

5.2. Differential Cryptanalysis 37

Table 5.3: This table shows the 16 possible combination of pairs of bits and
the corresponding symbol used for notation.

(Xi, X
′
i) (0, 0) (1, 0) (0, 1) (1, 1)

? X X X X
- X X
x X X
0 X
u X
n X
1 X
#
3 X X
5 X X
7 X X X
A X X
B X X X
C X X
D X X X
E X X X

The cryptography research group at the IAIK developed a tool for cryptanal-
ysis of hash function which is based on the concept of generalized conditions.
It implements the functionality to propagate bit-conditions, check for consistency
and backtracking and was used to analyse several hash functions including SHA-
2[48][49][50].

Finding differential paths for Keccak

Constructing differential characteristics manually seems to be hard for Keccak due
to the size of the state and the properties of the step functions. As part of this thesis
the previously mentioned tool was extended to support the Keccak hash function
and different search strategies have been evaluated to possibly find collisions for
reduced round versions.

The state of Keccak is large compared to SHA-2. A single 32-bit word is up-
dated in every of the 64 rounds. For Keccak with 64-bit lanesize the state for one of
the 24 rounds is already 1600 bits large. This does not necessarily imply that also
the search space grows by a proportional factor because conditions might propagate
faster or contradictions might be detected earlier in the search process. Another con-
cern is that there is no message input between the rounds of Keccak which could be
used to create local collisions. These collisions could be used to cancel out differ-
ences at an intermediate output to reduce the overall complexity of a characteristic.

5.2. Differential Cryptanalysis 38

Table 5.4: Starting point for a 2-round collision search. Some bits of the mes-
sage are fixed due to padding and the specification of the sponge
construction. The only other restriction is that the output bits for
the hash contain no difference.

Name State

A[0]

???????????????? ???????????????? ???????????????? ???????????????? ????????????????
???????????????? ???????????????? ???????????????? ???????????????? ????????????????
???????????????? ???????????????? ???????????????? ???????????????? 11??????????????
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

B[1]

???????????????? ???????????????? ???????????????? ???????????????? ????????????????
???????????????? ???????????????? ???????????????? ???????????????? ????????????????
???????????????? ???????????????? ???????????????? ???????????????? ????????????????
???????????????? ???????????????? ???????????????? ???????????????? ????????????????
???????????????? ???????????????? ???????????????? ???????????????? ????????????????

A[1]

???????????????? ???????????????? ???????????????? ???????????????? ????????????????
???????????????? ???????????????? ???????????????? ???????????????? ????????????????
???????????????? ???????????????? ???????????????? ???????????????? ????????????????
???????????????? ???????????????? ???????????????? ???????????????? ????????????????
???????????????? ???????????????? ???????????????? ???????????????? ????????????????

B[2]

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
???????????????? ???????????????? ???????????????? ???????????????? ????????????????
???????????????? ???????????????? ???????????????? ???????????????? ????????????????
???????????????? ???????????????? ???????????????? ???????????????? ????????????????

A[2]

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
???????????????? ???????????????? ???????????????? ???????????????? ????????????????
???????????????? ???????????????? ???????????????? ???????????????? ????????????????
???????????????? ???????????????? ???????????????? ???????????????? ????????????????

In the following sections the search strategy for Keccak will be explained in
detail. For the purpose of demonstration a lanesize of 16 bits is used but the same
strategy can also be used for 32-bit and 64-bit lanesize.

Starting Point

The starting point for a collision search for Keccak[240, 160] can be found in Ta-
ble 5.4. Each lane is mapped to a 16-bit word and the words are ordered in a 5× 5

matrix. The message block is padded and the output bits contributing to the hash
value are set to “−” which equals no difference.

The naming convention (see Figure 5.7) for the states in Table 5.4 is the following:

• A is the input to the linear layer.

• B is the input to the non-linear layer.

Search Strategy

The search strategy for Keccak is based on the approach used for SHA-2 in [49].
The idea is to combine the search for a differential characteristic and a correspond-
ing message pair in the search process. This two processes can further be split up
in three parts:

5.2. Differential Cryptanalysis 39

A0

θ ρ π

B0

B0

χ

A1

Figure 5.7: Notation used for the states.

• Decision: Choose a bit position for which a new condition is set.

• Deduction: Propagate conditions and check if the state is consistent.

• Backtracking: If the state is inconsistent then revert the previous choice for
this bit and set a different condition. If all choices fail then it is necessary to
jump back to a previous state to resolve this conflict.

The algorithm processes the state from the starting point and restricts bit conditions
successively until only “1”, “0”, “n” and “u” conditions remain and the message

?

–

1 0

x

n u

Figure 5.8: This tree shows how the search refines the conditions from free
pairs of bits (’?’) to pairs of bits with a difference (’x’) and pairs
of bits that are equal (’-’).

pair is fully determined. This can be seen from Table 5.3 as there is only one option
for these conditions.

5.2. Differential Cryptanalysis 40

Finding the differential characteristic

The starting point in Table 5.4 contains no differences. Therefore, a random bit is set
to “x” at the beginning of the search. This is essential for the following algorithm as
only a trivial solution, where both messages are the same would be found elsewise.

The decision step for finding a differential characteristic chooses a random free
bit (“?” condition) and tries to set it to equal (“-” condition) or a random difference
(“x” condition) and set it to “n” or “u”. If a contradiction is found after propagating
then the other possible choice for this bit is used.

The reason behind choosing “-” first for a “?” condition is to have less dif-
ferences in the resulting path which generally leads to a higher probability. Algo-
rithm 5 outlines this process in detail and the result of this computation can be found
in Table 5.5.

Algorithm 5 Keccak Search - Characteristic
Precondition: Starting point S

1 Choose a random ’?’ in S and set to ’x’
2 repeat
3 U ← the set of all ’?’ and ’x’
4 B ← a random bit in U
5 if B == ’?’ then
6 B ← ’–’
7 else if B == ’x’ then
8 B ← randomly ’n’ or ’u’
9 Propagate conditions for the new state

10 Check the new state for contradictions
11 if found contradiction then
12 if B == ’–’ then
13 B ← ’x’
14 else if B == ’n’ then
15 B ← ’u’
16 else if B == ’u’ then
17 B ← ’n’
18 if contradiction still exists then
19 Jump back until bit is resolved
20 until U empty

Decision

Deduction

Backtracking

Finding a message pair

The process of finding a message pair is very similar. First a random “-” condition is
chosen and set to either “1” or “0” and the conditions are propagated. If a contradic-

5.2. Differential Cryptanalysis 41

Table 5.5: A differential characteristic found with the iterative approach for
2 rounds of Keccak[240, 160].

Name State

A[0]

-----u-n-n-un-un u----uu--------n n---n--n-----u-u u----nu-nn----n- n-n-uun---n-uu--
--u--u----n----n n--u-uu--------- uu-----u-------n -nu-uuuu-------- u-u----n-u-u--n-
---n-u---n-n--u- -----u--n--u-u-- ---u---uu--n---- --u---nuu------- 11n---u----n-n--
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

A[1]

-----------u--nn --n----u----nu-- --u-un--u---uu-- nun--------nu-u- n-u-n--------u--
--u-u----n--u--- -----n-----n---- u----------u--n- --u-----u--un--- ---uu---------n-
-----------u--uu -u---n--u--n---n u--n--nu-n-----u ------n-n-n---n- -u-u-n-u-u-u----
n-nn-----unn---u -----u-----u---- -u-n--n-----u-uu nuu--------nu-u- -uun--u----u--un
-nu----u------n- --u---n---un-unn u--n--uu-n-----u uu--u----n--nuuu ---nu---------u-

A[2]

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
----nnn--unuun-u nnun-n--u---nnnn nnun-n-uunn---nu u--nnn-u--n--uu- n--n-u--uununn-n
u-nn------n----- un------u-nu--n- -un--u-nu-n--nn- -nn--u--u---nn-n -un--u----unn-n-
--u--nn-nn-n--nu -n---u-u--n----- u-uu-n-nn-uun-n- u---nu-----n--n- nnuuu-nun-n-unuu

tion occurs the other possible choice is selected or if both choices fail the algorithm
needs to jump back to a previous state to resolve the conflict. The whole process is
outlined in Algorithm 6 and the corresponding result can be found in Table 5.6.

Algorithm 6 Keccak Search - Message
Precondition: State containing only ’-’, ’n’ and ’u’

1 repeat
2 U ← the set of all ’-’
3 B ← a random bit in U
4 B ← randomly ’1’ or ’0’
5 Propagate conditions for the new state
6 Check the new state for contradictions
7 if found contradiction then
8 if B == ’1’ then
9 B ← ’0’

10 else if B == ’0’ then
11 B ← ’1’
12 if contradiction still exists then
13 Jump back until bit is resolved
14 until U not empty

Decision

Deduction

Backtracking

5.2.4 Collisions for 4-round Keccak

The previous approach failed to find any differential characteristics and correspond-
ing message pairs for more than 2 rounds. It is possible to extend the attack to 4
rounds by using the approach by Dinur, Dunkelman and Shamir presented in [35].
The idea is to use a 2-round path with a high probability and combine it with a
2-round path which connects with the starting point (see Figure 5.9).

5.2. Differential Cryptanalysis 42

Table 5.6: A 2 round collision for Keccak[240, 160].
Name State

A[0]

11011u0n1n1un1un u1100uu11100100n n111n10n11100u1u u0111nu0nn0001n1 n1n0uun101n0uu01
11u00u1011n0110n n11u0uu111000001 uu01111u1000110n 0nu1uuuu00100011 u0u0100n1u0u11n0
101n0u001n1n10u0 10101u01n10u1u10 101u001uu10n0111 01u111nuu0000011 11n110u0111n1n10
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

A[1]

11011011000u10nn 10n1110u1000nu00 11u0un11u111uu11 nun00011011nu1u0 n0u1n10111000u01
11u1u1111n11u100 11001n01100n0110 u0000011111u11n1 01u10001u01un101 100uu001100000n1
10000010101u00uu 1u100n00u10n010n u01n00nu0n10011u 100001n0n1n001n1 0u1u0n1u0u0u0001
n0nn01000unn001u 00010u11100u1110 0u0n00n00110u0uu nuu00010000nu1u0 0uun10u1111u11un
1nu0110u001111n1 10u101n000un1unn u11n00uu0n10111u uu10u0101n01nuuu 101nu110101000u0

A[2]

0100000101101011 1100000010000111 1000111001001010 1001001110000111 1111001110011111
1111000101001101 1001110001001001 1011000010011101 1111100101010111 1011010100001000
1100nnn00unuun1u nnun0n11u011nnnn nnun1n0uunn001nu u01nnn1u01n00uu1 n10n0u11uununn1n
u0nn110010n01001 un110000u1nu11n0 1un11u0nu1n11nn1 0nn10u01u000nn0n 0un10u0111unn0n0
00u00nn0nn0n10nu 1n100u1u01n10111 u1uu1n0nn0uun1n1 u000nu00010n00n1 nnuuu1nun0n0unuu

2 rounds 2 rounds

high probability pathconnect to start

Figure 5.9: Outline of the 4-round attack.

The high probability paths are constructed using the column-parity property
which is discussed in Section 5.3. The connection with the starting point is done
with the iterative approach presented in the previous section. This approach only
works if there are enough free bits in the message. Hence, collisions could only be
constructed for Keccak with 64-bit lanesize.

In Table 5.7 the differential characteristic for Keccak[1088, 512] which is used
to find a 4-round collision is shown. The corresponding message pair can be found
in Appendix A.4. The search for this specific message pair took 78 seconds on a
standard PC1.

11,86 GHz (SL9400) Intel Core 2 Duo, 4GB Ram, SSD

5.2. Differential Cryptanalysis 43

Table 5.7: A 4-round differential characteristic for Keccak with 64-bit lane-
size. All words are converted to hexadecimal values and every non
zero bit is a difference at this position. The dense structure in the
first two rounds can be seen followed by a sparse column parity
kernel over two rounds.

Name State

A[0]

b3-78891a9372f5- 8751b674255e59c1 b6558bf983a14d1- 4397b59dec18fec2 aeae97e4baa63e94
2585a6a9-c7-bcf5 944c32a58-8fb985 f5acfd62-c2e-b66 cb661a9bacd18a9c 4547f7a74fd2d938
-8dd1ad242369c6d ca7faf6-6413b61e 8ed168---2716e45 2c2a951b7c9597ce 4-c6ab73d1adf3d1
d-b59d454d-cbf-c -4fced51b821cb63 ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

A[1]

26978af134cb835e af224c4d78366789 c4dae35e2656f26b 357c4789af3-6af1 78d3526bc6a74c4d
26978af134cb835e af224c4d78366789 c4dae35e2656f26b 357c4789af3-6af1 78d3526bc6a74c4d
26978af134cb835e af224c4d78366789 c4dae35e2676f26b 357c4789af3-6af1 78d3526bc4a74c4d
26978af134cb835e af224c4d78366789 c4dae35e265ef26b 357c4789af3-4af1 78d3526bc6a74c4d
26978af134cb835e af226c4d78366789 c4dae35e2656f26b 35fc4789af3-6af1 78d3526bc6a74c4d

A[2]

---------------- ---------------- ---------------1 -------4-------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- -------4-------- ----8-----------
---------------- ---------------- ---------------1 ---------------- ----8-----------

A[3]

---------------- ---------------- ---------------- --8------------- 2---------------
4--------------- ---------------- ---------------- ---------------- 2---------------
---------------- ---------------- ---------------- --8------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
4--------------- ---------------- ---------------- ---------------- ----------------

A[4]

---------------- ---------------- ---------------- ---------------- ----------------
-----------a---- -----------2---- ---------------- -----------8---- -----------8----
-----------1---- ---------------- ---------------- ---------------- -----------1----
-------4-1------ -------4-------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

5.3. Combining Kernel Paths 44

5.3 Combining Kernel Paths

This section presents a method to find collisions for Keccak by combining differen-
tial paths. The idea is to use multiple paths and combine them such that differences
cancel out and lead to a collision. This might allow to extend the attack on more
rounds, if such a combination exists. In this case the differential paths should have
a high probability in order to keep the overall complexity of the attack low.

The next section presents an algorithm to find all the high probability paths for
two rounds in detail followed by two techniques to find combinations leading to
collisions.

5.3.1 Kernel

It is important to first argue on how to construct a differential path for Keccak, such
that the resulting probability is high. The linear steps are all deterministic and only
the input to χ contributes to the resulting probability of the differential path. There-
fore a low Hamming weight in this inputs will result in a high probability for the
differential path. The function responsible for most of the diffusion in Keccak is
θ. However, θ has properties which can be used to mitigate this effect (see Sec-
tion 5.2.2).

As defined by the authors of Keccak a state is in the column parity kernel, if
the parity of all columns is 0. In this case θ becomes the identity function. This
can be utilised to create high probability differential paths, since π and ρ provide
no diffusion and χ provides only slow diffusion. There is a restriction to this by the
interaction of the linear functions π, ρ and θ. This functions guarantee that no low
weight kernel over three consecutive rounds exists [9].

⊕⊕⊕⊕⊕ ⊕⊕⊕⊕⊕

State in kernel State not in kernel

Figure 5.10: States containing differences with the corresponding column
parity.

5.3. Combining Kernel Paths 45

The second property of Keccak which is applied to keep the number of active
bits low is that a single bit difference at the input of χ leads to a single bit difference
at the output of χ with probability of 2−2. This can be seen from the DDT which
can be found in Appendix A.1.

5.3.2 Finding Kernels

There is a only a limited number of kernel paths up to a given Hamming weight.
The following procedure constructs all these paths [32]:

1. First select an arbitrary bit as a starting point in state S0 and compute π(ρ(S0)) =

S1. These functions move this bit to a different position. Note that the po-
sition on the z-coordinate is also different which is denoted as zo, z1, z2 and
z3.

z0

ρ π

z1

2. Next add a second difference in the same column to S1 and compute ρ−1(π−1(S1)).

z0 z2

ρ−1 π−1

z1

3. Add another difference in the same column in S0 and compute S1 = π(ρ(S0)).

z0 z2

ρ π

z1 z3

4. Put a difference in the same column and compute S0 = ρ−1(π−1(S1)).

5.3. Combining Kernel Paths 46

z0 z2

ρ−1 π−1

z1 z3

5. Check if the difference added at last is moved to z0. If so, a column parity
kernel for 2-rounds has been found with a Hamming weight of 8. Elsewise the
procedure can be continued to find kernels with a higher Hamming weight.

For a kernel containing n differences (per round) the complexity of this proce-
dure is given by

O(25 · 4n−1) (5.18)

Table 5.8 lists the results for Keccak[240, 160] and Keccak[1344, 256]. For
Keccak[1344, 256] all kernels have at least a Hamming weight of 12 while for
Keccak[240, 160] there are 64 kernels with a Hamming weight of 8. An example
for a kernel can be found in Table 5.9.

Table 5.8: Results of the kernel search.

Keccak[r, c] #Kernels #Collision #1-bit χ input over two rounds

Keccak[240, 160] 672 16 608
Keccak[1344, 256] 512 64 448

5.3.3 Combining Kernels

Kernel paths have a high probability but are limited to two rounds. The idea is to
create a differential path by combining multiple kernel paths such that a collision
occurs for more than two rounds.

For an attack to be feasible the probability of the resulting differential path must
be greater than 2−n/2 where n is the size of the hash-value. The kernels found
in the previous section utilise the property that χ is the identity function for 1-
bit difference input with probability 2−2. To get a low number of active bits this
property is preferable kept over the 2 rounds. This results in a probability of 2−24

for a 2-round kernel. Table 5.8 highlights the number of kernels for which this
property holds.

5.3. Combining Kernel Paths 47

Table 5.9: A 2-round kernel for Keccak[160, 240] leading to a collision. The
bits contributing to the hash value are marked gray. The probabil-
ity that A[1] = χ(B[0]) is 2−12 (see Section 5.2.2)..

Name State

A[0]

---------------- ---------------- -------x-------- -----x---------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------x ---------------- -------x-------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------x ---------------- ---------------- -----x---------- ----------------

B[0]

---------------- ------------1--- ------------x--- ------------0--- ----------------
---------x------ ---------0--1--- ------------x--- ------------0--- ---------1------
-------------0-- ---------------- ---------------- -------------1-- -------------x--
-------------0-- ---------------- ---------------- -------------1-- -------------x--
---------x------ ---------0------ ---------------- ---------------- ---------1------

A[1]

---------------- ------------1--- ------------x--- ---------------- ----------------
---------x------ ------------1--- ------------x--- ---------------- ---------1------
---------------- ---------------- ---------------- -------------1-- -------------x--
---------------- ---------------- ---------------- -------------1-- -------------x--
---------x------ ---------------- ---------------- ---------------- ---------1------

B[1]

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ------x--------- ---------------- -----x---------- -------x--------
---------------- -----x---------- ---------------- ---------------- ----------------
--------------x- ---------------- ------x--------- ---------------- ----------------

A[2]

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
------?--------- -----?x--------- -----?-?-------- -----x-?-------- ------?x--------
-----?---------- -----x---------- ---------------- ---------------- -----?----------
------?-------x- ------?--------- ------x--------- --------------?- --------------?-

The question which arises now is how this paths behave if we propagate the
conditions an additional round forward. This can be done with the same tool used
to find the differential paths in Section 5.2. The results of such a propagation of a
2-round kernel can be seen in Table 5.10.

Condition for collision

The first n bits of A[3] are the hash output, where n is the length of the hash.
For a collision these bits are not allowed to have any differences. An important
observation is that A[3] contains no differences in the first n bits if and only if B[2]

Table 5.10: Propagation for 3 rounds of the path in Table 5.9. The bits con-
tributing to the hash value are marked gray. A[2] = χ(B[1])
holds with a probability of 2−12 (see Section 5.2.2).

Name State

A[2]

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
------1--------- ------x--------- -----1---------- -----x-1-------- -------x--------
-----1---------- -----x---------- ---------------- ---------------- ----------------
--------------x- ------1--------- ------x--------- ---------------- --------------1-

B[2]

----xx-x-------- --x------x------ ---------xxx---- ---------------- -------x-------x
---------------- -x-------x------ -xx-x----------- -x-------------- -------xx-------
----x--------x-- x-------------xx ------------x--- -----x-------x-- --xx-x------x---
--x-------x----- xx-x------------ ----x------xx--- -----xxx-------- ----------------
------xxx------- ---------------- x-----x-------x- -----------xx-x- ---x--------x---

A[3]

--?-xx-x-???---- --x------???---- -------?-xxx---? ----??-?-------? --?-??-?-?-----x
-??-?----?------ -??-?----x------ -?x-x--??------- -x-----??------- -?-----xx?------
?---x-------?x?? x----?------??xx --??-?------??-- --????------??-- ?-xx?x------x???
??x??-----x??--- xx-x????---??--- ----x???---xx--- --?--xxx--?----- ????------?-----
?-----?xx-----?- ?-----?----??-?- x--?--x----??-?- ---?--???--x?-x- ---x--???---x---

5.3. Combining Kernel Paths 48

contains no difference in the first n bits. This fact is due the structure of χ.

The first n bits of B[2] are extracted for all kernels to obtain the hash output
vectors hi. The target for combining the kernels is to find a combination of hi such
that all x conditions cancel out and the resulting state has no differences in the hash
output.

Proposition 1. The kernel paths behave linear (with a certain probability), hence it
can be derived that a combination leading to a collision will give a colliding input
too. Given the hash output vector h0 = f(m0), h1 = f(m1) and assuming this
combination gives a solution h0 ⊕ h1 = 0. Due f(x) being a linear function this
implies f(m0 +m1) = 0. Therefore the input m0 +m1 will lead to a collision.

There are some restrictions and requirements on the kernels and the resulting
differential path obtained by combining them. First the quantity of kernels which
can be used simultaneously is limited. A single two round kernel has a probability
of 2−24, therefore combining more than five kernels would already result in an attack
worse than brute-force for 256-bit hash output.

Apart from the problem of handling the number of kernels and combinations
the resulting differential path might be inconsistent. Consequently every possible
colliding path obtained has to be validated.

Consistency Checks

First of all it is important that the kernels used do not share differences at the same
bit-positions in the first two rounds or the resulting differential path will not lead to
a collision. If the kernels share a single difference the parity of the state changes
and θ does not act as the identity function. If the differences are all distinct then the
new differential path can be obtained by adding up the kernel paths.

After this process the resulting differential path can still be invalid due to the
properties of χ. The kernel paths are all fixed to a 1-bit difference input to χ, but
after combining them this property might be violated. For every 5-bit s-box it is
necessary to check if DDT [∆in][∆out] 6= 0 (see Table 5.11). The resulting path
might have a lower probability in this case.

5.3. Combining Kernel Paths 49

Table 5.11: Checking for valid input/output pair for χ. The input/output to a
single 5-bit s-box is marked blue.

Name State

B[1]

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
------10-------- ------x--------- -----10--------- -----x-1-------- -----0-x--------
-----1---------- -----x---------- -----0---------- ---------------- ----------------
--------------x- ------1-------0- ------x--------- ------0--------- --------------1-

A[2]

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
------1--------- ------x--------- -----1---------- -----x-1-------- -------x--------
-----1---------- -----x---------- ---------------- ---------------- ----------------
--------------x- ------1--------- ------x--------- ---------------- --------------1-

Linear Algebra for Combing Kernels

The first method to find these combinations of kernels is based on the problem of
finding the null space2 of a matrix. The null space of a m × n matrix A is defined
by

Null(A) = {x ∈ Fn : Ax = 0} (5.19)

This set can be efficiently computed using Gaussian elimination. In fact by con-
structing an appropriate matrix from the hash output vectors the null space gives all
the existing solutions for combining kernels to a collision. The matrix is defined by

A =

hT0 hT1 · · · hTj

 (5.20)

where hi are the hash output vectors mapped to F2. All ’x’ conditions are mapped
to 1, whereas all ’-’ conditions are mapped to 0. For example given the following
five vectors

h0 = (x--x) (5.21)

h1 = (-x--) (5.22)

h2 = (-x-x) (5.23)

h3 = (---x) (5.24)

h4 = (x---) (5.25)

2Also referred to as the kernel of a matrix, but the term null space is favourable in this case to
avoid any misconceptions.

5.3. Combining Kernel Paths 50

The corresponding matrix obtained by using definition 5.20 is

A =


1 0 0 0 1

0 1 1 0 0

0 0 0 0 0

1 0 1 1 0

 (5.26)

and computing the null space gives

Null(A) =

(
1 0 0 1 1

0 1 1 1 0

)
(5.27)

This matrix represents a basis for all the solutions toAx = 0. The rows in the matrix
give the solutions h0 ⊕ h3 ⊕ h4 = 0, h1 ⊕ h2 ⊕ h3 = 0 and by linear combination
of them a third solution h0 ⊕ h1 ⊕ h2 ⊕ h4 = 0 is found.

The same procedure is now applied to the hash output vectors obtained from the
kernel paths for both variants of Keccak.

• For Keccak[1344, 256] the number of kernels is 448. Therefore A is of di-
mensions 256 × 448. The null space of A is of dimensions 192 × 448 and
provides all solutions, putting aside the consistency checks. There are a total
of 2192 − 1 solutions because all linear combinations are a solution too.

The null space of A contains 38 rows with a Hamming weight of 3 which are
good candidates for a solution. For each row the corresponding kernels are
combined and the consistency checks are applied. For this combinations the
difference all overlap, hence no solution exists for combining these kernels.

• For Keccak[240, 160] the matrix A is of size 160× 608 and the dimensions of
null(A) are 448×608. The null space has 41 rows with Hamming weight of
3 and 22 with Hamming weight of 4. For all this rows the kernel combinations
are constructed and the consistency checks are applied. Again no solution
exists without differences overlapping in the first two rounds.

For both Keccak variants only trivial solutions are found which would result
in an input state with zero differences. Consequently no colliding input can be
constructed with the previous methods. This confirms that no sparse characteris-
tic constructed from multiple kernel paths will lead to a collision for 3 rounds of
Keccak.

It might still be possible to find additional solutions by using the linear combi-
nations of Null(A). The problem here is to find combinations with low Hamming

5.3. Combining Kernel Paths 51

Table 5.12: Below are the input difference for 3 different kernels. The com-
bination of them leads to a trivial collision as every difference
occurs exactly two times

Name State

A[0]

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------x ------------x---
---------------- x--------------- ---------------- ---------------x ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- x--------------- ---------------- ---------------- ------------x---

A[0]

---------------- ---------------- ---------------- ---------------- ----------------
------------x--- ---------------- ---------------- ---------------x ----------------
---------------- x--------------- ---------------- ---------------x ----------------
------------x--- x--------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

A[0]

---------------- ---------------- ---------------- ---------------- ----------------
------------x--- ---------------- ---------------- ---------------- ------------x---
---------------- ---------------- ---------------- ---------------- ----------------
------------x--- x--------------- ---------------- ---------------- ----------------
---------------- x--------------- ---------------- ---------------- ------------x---

weight which is known to be a hard problem. A possible approach might be to
construct a linear code from Null(A). This allows to search for code words with a
low Hamming weight for instance with the probabilistic algorithm by Canteaut and
Chabaud [51].

General Algorithm

This algorithm checks for every combination of k vectors if the combination leads
to a collision. The requirement to obtain a vector with zero differences are that for
all bit positions:

1. the number of ’x’ conditions is even

2. there is at least one ’?’ condition

The main advantage of this algorithm is that it can be applied if the states con-
tains free bits (bits with ’?’ conditions). This can be useful for instance if the input
to χ in the second round is not fixed. In this case there will be undetermined bits
in the resulting hash vector. This bits will flip to ’-’ or ’x’ with a specific probabil-
ity depending on the actual message pair. As a result this might lead to additional
solutions.

Listing 5.2: An algorithm to find a combination of kernels leading to a colli-

sion.
def solve_combinations(hashoutput_vectors, k, wordsize):

C = Combinations(hashoutput_vectors, k)
result = []
it = iter(C)
while True:

5.3. Combining Kernel Paths 52

try:
combination = it.next()
isSolution = true
for lane_index in range(0, wordsize):

cond_diff = 0
cond_free = 0
for row_index in combination:

if(row_index[lane_index] == "x"):
cond_diff += 1

if(row_index[lane_index] == "?"):
cond_free += 1

if((cond_diff % 2) != 0):
if(cond_free == 0):

isSolution = false
if(isSolution):

result.append(combination)
except StopIteration:

print "All combinations tested"
return result

The main drawback with this kind of algorithm is that it needs to loop over all
possible combinations which makes it infeasible to check combinations for larger
values of k. Fortunately these combinations are not of interest because they lead to
denser paths with lower probability. The number of ways to pick k kernels out of n
possibilities is given by the binomial coefficient

C(n, k) =

(
n

k

)
=

n!

k!(n− k)!
(5.28)

The total number of combinations that need to be tested for Keccak[160, 240]

and Keccak[256, 1344] can be found in Table 5.14.

For Keccak[1344, 256] this procedure finds 64 solutions for combinations of
4 kernels. For Keccak[240, 160] this procedure finds 288 solutions of 3 kernels.
However, this solutions are all trivial because all of the input difference cancel out.

Table 5.13: An example for combining three hash output vectors.

Vector Conditions

h0 x----x----x x---------x ?-----?----
h1 --x--x----x ?----x----? ?-----x----
h2 ----------x x----x----? ?----------

Result x-x-------x ----------- -----------

5.3. Combining Kernel Paths 53

Table 5.14: Number of combinations tested.

Keccak[r, c] #Kernels k C(n, k)

Keccak[240, 160] 608 3 ≈ 225.2

Keccak[1344, 256] 448 4 ≈ 230.6

Table 5.15: A 2-round kernel with 64-bit lanesize leading to a 384-bit colli-
sion.

Name State

A[0]

---------------- --4------------- ---------------- ---------------- --------1-------
---------------- ---------------- ---------------- ---------------- ----------------
---------------1 --4------------- ----------2----- ---------------- --------1-------
---------------- ---------------- ---------------- ---------------- ----------------
---------------1 ---------------- ----------2----- ---------------- ----------------

A[1]

---------------- ---------------- ---------------1 ---------------- ----------------
---------------- ---------------- ---------------8 ---------------- -----------4----
--8------------- ---------------- ---------------- ---------------- -----------4----
--8------------- ---------------- ---------------1 ---------------- ----------------
---------------- ---------------- ---------------8 ---------------- ----------------

A[2]

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ------4--------- -4-------------- ---------------- ---------------1
---------------- -------------2-- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ------------8--- ----------------
4--------------- ---------------- -2-------------- -------1-------- ----------------

5.3.4 Kernels for larger output sizes

The method of combining kernels can be used to find new kernels which lead to
collisions for a higher number of bits. The method presented in the previous section
finds new paths which could enable attacks on Keccak variants with a higher output
size.

• 384-bit: Combinations of 2 kernels (128 solutions)

• 448-bit: Combinations of 4 kernels (64 solutions)

• 470-bit: Combinations of 4/12/16 kernels (33/5/4 solutions)

• 500-bit: Combinations of 4/24/28 kernels (3/2/7 solutions)

• 502-bit: Combinations of 4/28 kernels (1/9 solutions)

• 512-bit: Combinations of 256 Kernels (1 solution, impossible differential)

The following paths all have a lanesize of 64 bits, therefore the conditions are
encoded as hexadecimal values to reduce the size of the tables. In these tables
differences are given as XOR values.

The paths found with this method are good candidates to use in the 4 round
attack presented in Section 5.2. The capacity has to be increased in relation to the

5.3. Combining Kernel Paths 54

Table 5.16: A 2-round kernel with 64-bit lanesize leading to 502-bit colli-
sion. The XOR-differences are given as hex values.

Name State

A[0]

---------------- 1-------------2- ---------------- -----4---------- -------4--------
--------------4- ---------------- ------1--8------ -----4---------- ----------------
--------------4- 1-------------2- ------1--8------ ---------------- -------4--------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

A[1]

---------------- ---------------- ------------8-4- ---------------- ----------------
--------------4- ---------------- -------------2-- ---------------- ----------------
2-------------4- -----4-2-------- ---------------- ---------------- ----------------
2--------------- -----4---------- ------------8-4- ---------------- ----------------
---------------- -------2-------- -------------2-- ---------------- ----------------

A[2]

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- -------------2-1 ----------8----- --------------4-
---------------- ------------8--- ---------------- ---------------- ----------------
---------------- -----4---------- --1--8---------- --------4-2----- ----------------
------------2-1- ---------------- ---------------- ------4--------- -------8--------

Table 5.17: A 4-round characteristic leading to a collision for 384 bits with
the capacity being reduced to 512 bits.

Name State

A[0]

caf81dbdb8a3a36- 9415151caf6e728- 74da685b3459b13f -5d4352d2aa3a9db 1a9-2fbc859d1273
631816cbb789ba6f aae789a561f1a351 ffb26761e-d8cfd8 9a9e15bf4122488- a5991dfc33b3afa7
e8a4f3eaf78d85c6 39541c87edcd5fb7 179838c55f368ea9 ca1871ca71fde7aa 3475a962932863f1
29c4ca71149df311 3b33411a3f8685b4 ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

A[1]

ea6b826bc4d7a9e3 82f13af135e2789a f44c5c4d789aeabc 2b5eb35e26bc4b11 ef89b789af131-d6
ea6b826bc4d7a9e3 -2f13af135e27c9a f44d5c4d789aeab8 2b5eb35e26bc4b11 ef89b789af131-d6
ea6b826bc4d7a9e3 -2f13af135e2789a f44c5c4d789aeab8 3b5eb35e26bc4b11 ef89f789af131-d6
ea6b826bc4d7a9e3 -2f13af135e2789a f44c5c4d789aeab8 2b5eb35e26bc4b11 ef89b789af131-d6
ea6b826bc4d7ade3 -2f13af135e2789a f44c5c4d789aeab8 2b5eb35e26bc4b11 ef89b789af135-d6

A[2]

---------------- --4------------- ---------------- ---------------- --------1-------
---------------- ---------------- ---------------- ---------------- ----------------
---------------1 --4------------- ----------2----- ---------------- --------1-------
---------------- ---------------- ---------------- ---------------- ----------------
---------------1 ---------------- ----------2----- ---------------- ----------------

A[3]

---------------- ---------------- ---------------1 ---------------- ----------------
---------------- ---------------- ---------------8 ---------------- -----------4----
--8------------- ---------------- ---------------- ---------------- -----------4----
--8------------- ---------------- ---------------1 ---------------- ----------------
---------------- ---------------- ---------------8 ---------------- ----------------

A[4]

---------------- ---------------- ---------------- ---------------- ----------------
---------------- ------4--------- -4-------------1 ---------------- ---------------1
-------------2-- -------------2-- ---------------- ---------------- ----------------
---------------- ------------8--- ------------8--- ------------8--- ----------------
42-------------- -2-----1-------- -2-------------- 4------1-------- ----------------

outputsize to get the desired security level when using the sponge construction. This
leads to less free message input which can be used to connect the high probability
2-round paths with the starting point.

No solution was found to connect the paths in Table 5.15 and Table 5.16 to the
starting point. If the capacity is reduced to 512 bits a solution can be found for the
384-bit path. The complete 4-round characteristic can be found in Table 5.17 and
the message pair in the Appendix A.5. Finding this message pair took 294 seconds.

The path in Table 5.16 can be used to find two round collisions for a capacity up
to 672 and output size 502.

6
Conclusion

In the first chapters of this thesis, cryptographic hash functions and the generic
attacks applicable to them have been discussed. The hash function Keccak was
presented in detail and an overview of the current state of attacks was given. The
use of algebraic attacks and how they can be applied on Keccak has been evaluated.
The main part of this thesis focused on differential cryptanalysis and the attack
strategy was presented in detail.

A new method to find 4-round collisions for Keccak has been presented by using
a similar approach to the attack by Dinur et al. By connecting a 2-round column-
parity kernel path to the starting point an attack on 4 rounds is possible. A tool-
assisted method based on generalized conditions was used to find these connections
to the starting point and the corresponding message pair. The method is practi-
cal and takes only a few minutes on recent hardware. Examples for this colliding
message pairs have been shown.

Furthermore, this thesis presented a technique to find new differential charac-
teristics by combing 2-round kernel paths. The analysis of the combination of these
paths shows that there is no combination of low weight kernels leading to a collision
for 3 rounds. However, new differential characteristics for larger output sizes can
be found, which might allow new attacks on these variants of Keccak.

Future work will include optimisations for the tool-assisted method to improve

55

56

the search process. Detecting contradictions earlier would reduce the time spend in
dead branches of the search tree, which could improve the running time. A further
improvement could be to use multiple message blocks. The attacks in this thesis
are using only a single message block. Additional message blocks would give more
freedom at the input and might enable new attacks at the cost of an increased search
space.

The differential characteristics found by combining kernel paths could be used
in the 4-round attack scenario for larger versions of Keccak. With the current imple-
mentation no solution was found in a reasonable amount of time as there is signifi-
cant less free message input. The previously mentioned optimisations might enable
such an attack.

A
Appendix

57

A.1. Notation for Keccak State 58

A.1 Notation for Keccak State

Figure A.1: Additional terms used for specific parts of the state1.

1Image from http://keccak.noekeon.org/

http://keccak.noekeon.org/

A.2. Differential Distribution Table 59

A.2 Differential Distribution Table

∆out
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

∆in

00 32 0
01 0 8 0 8 0 8 0 8 0
02 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
03 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
04 0 0 0 0 8 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 8 0 0 0
05 0 4 0 4 0 0 0 0 0 0 0 0 0 4 0 4 0 4 0 4 0 0 0 0 0 0 0 0 0 4 0 4
06 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0
07 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
08 0 0 0 0 0 0 0 0 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 0 0 0 0 0 0
09 0 0 0 0 0 0 0 0 4 0 0 4 4 0 0 4 0 0 0 0 0 0 0 0 4 0 0 4 4 0 0 4
0A 0 0 4 4 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 4 4
0B 0 4 4 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 4 4 0
0C 0 0 0 0 4 4 0 0 0 0 0 0 4 4 0 0 0 0 0 0 4 4 0 0 0 0 0 0 4 4 0 0
0D 0 0 0 0 4 0 0 4 4 0 0 4 0 0 0 0 0 0 0 0 4 0 0 4 4 0 0 4 0 0 0 0
0E 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2
0F 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0 0 4 4 4 4 0 0 0 0 4 4
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
14 0 0 0 0 4 0 4 0 0 0 0 0 4 0 4 0 0 0 0 0 0 4 0 4 0 0 0 0 0 4 0 4
15 0 4 0 4 0 0 0 0 0 0 0 0 0 4 0 4 4 0 4 0 0 0 0 0 0 0 0 0 4 0 4 0
16 0 0 4 0 4 0 0 0 0 0 4 0 4 0 0 0 0 0 0 4 0 4 0 0 0 0 0 4 0 4 0 0
17 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
18 0 0 0 0 0 0 0 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 0 0 0 0
19 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
1A 0 0 0 0 0 0 0 0 4 4 0 0 0 0 4 4 4 4 0 0 0 0 4 4 0 0 0 0 0 0 0 0
1B 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0
1C 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
1D 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0
1E 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0
1F 0 2 2 0 2 0 0 2 2 0 0 2 0 2 2 0 2 0 0 2 0 2 2 0 0 2 2 0 2 0 0 2

Table A.1: Differential distribution table for Keccak χ step. MSB order is
used.

A.3. Colliding message pairs 60

A.3 Colliding message pairs

Table A.2: A colliding message pair for 2 rounds of Keccak[240, 160].

M1:

D9 ED 61 C9 FD E2 3C C7 E3 61
C2 ED E1 C1 1E 8D 50 23 09 8E
B0 F8 A9 CA A2 57 5E 03 F8 FE

M2:

DC B6 E7 C8 74 E7 BA 05 4D 4D
E6 CC 77 C1 DF 8C 3F 23 A8 DC
A4 AA AD 5E B3 C7 7D 83 DA EA

H(M1) = H(M2):

78 42 97 D0 4A 8E 07 13 1F 62
4D D1 49 BC 9D 90 77 D9 28 95

A.3. Colliding message pairs 61

Table A.3: A colliding message pair for 4 rounds of Keccak[1440, 160].

M1:

6D 3F 8F 98 19 8E CB 1A 61 BB 16 48 9D 91 4C 5B 43
CB 8F AC BD 61 5B 41 B1 11 C3 7F F2 6B E8 54 4A 87
7A 81 EE BA 17 B1 80 5D 72 0C AF 57 9D 30 86 A5 BE
9B ED DF 96 5E 78 72 AE 83 0B FE 2C 30 EA 6B 60 CF
E8 1E F0 C4 1F E8 14 05 37 57 B4 A5 76 53 66 62 7D
AF 54 E6 CA 96 55 2A 1A 77 E3 C4 99 25 D3 85 57 1C
DA 67 5D 4E D5 A0 C3 B3 33 48 41 6D 6E 47 C7 44 EC
70 33 88 64 9D 70 16 84 4F BE 3B C2 C7 61 35 C4 47
9B 5D C7 24 DD 80 0B 83 F3 48 33 43 66 4D 76 3C 08
A7 B7 59 AB 70 29 2F B2 08 02 11 62 C5 83 42 22 14
94 76 01 81 ED 89 8D 9A 38 F8

M2:

C0 67 25 47 EA 89 71 7B 7B 56 9A 21 CF 97 BA 6F F8
94 09 D7 88 D9 9D 3B 2F 19 B4 FE 08 67 C3 79 F7 08
10 64 B8 98 66 65 36 B0 97 43 96 89 27 29 D8 53 B1
16 2C F7 51 70 55 97 22 21 37 E9 65 0D 39 AE E0 71
40 53 A4 01 6E A1 F2 FD 4D 4C 0B 3B 0C 2E B7 3E 0B
5D 2C 9A C3 62 1F 33 14 7D A7 50 9F 30 71 E0 0F 0C
A7 9B FA 96 88 66 1A 8E A5 21 B1 83 1B 66 55 DE C9
E1 5E 55 4B 69 47 80 88 30 1E 1B 21 E5 AB B7 00 25
AE 84 5A CE F1 D0 14 0B 06 AC 50 CD FC 11 68 FF B8
94 CA 90 CE 02 36 B1 A9 F6 FF 72 C3 A5 08 76 D9 21
AA 78 60 30 FB 49 E6 0B 2E C3

H(M1) = H(M2):

69 32 CB 92 D9 02 1C CD 5C C2
C0 4F 4F 17 B8 EA 1C 67 EF 10

A.3. Colliding message pairs 62

Table A.4: A colliding message pair for 4 rounds of Keccak[1088, 512].

M1:

DC 22 00 57 69 5E 12 71 EC 8B 83 F0 95 A3 AF 80 34
70 01 6C 1C B3 31 9C 6E F5 F6 32 D7 30 96 8D 79 E8
2C 07 71 DB 42 34 E0 53 90 76 72 78 32 65 26 A8 14
94 76 7E 15 B0 D5 C4 AA 56 AB 57 1D E2 54 9B 4C 5E
E4 12 DD D0 55 8A 86 DC 42 B5 53 48 FA 45 17 5A 4B
A5 A6 97 D2 23 40 D9 D0 DA 30 7F AB 91 06 87 B0 C4
88 11 7B E6 9F E7 A3 4D 84 99 DA 15 5D 12 72 2F CB
22 B0 8D AF E9 CB 4D 31 71 DA 38 BF A4 ED 2D 34 05

M2:

6F 25 88 C6 C0 69 3D 21 6B DA 35 84 B0 FD F6 41 82
25 8A 95 9F 12 7C 8C 2D 62 43 AF 3B 28 68 4F D7 46
BB E3 CB 7D 7C A0 C5 D6 36 DF 7E 08 8E 90 B2 E4 26
31 F6 F1 AC 35 20 68 57 34 A7 79 16 84 9F FD 56 C5
48 C3 57 4C 10 CD 71 7B 0D 67 8A 70 F2 98 0D 88 09
93 3A FA 18 5C EF B9 B4 C9 86 61 25 40 6E 87 B2 B5
E6 54 57 CC 0A FC DF D8 13 57 9A D3 F6 61 A3 82 38
F3 60 38 32 AC 86 41 8E 7D DE C4 52 F5 55 0C FF 66

H(M1) = H(M2):

AA 57 74 2C 5F DE CC 5F D7 67 9C F7 4E 8F 7D 96
B3 B1 C2 8D 17 46 0E DB 5E 40 FF 28 64 FC 13 78

A.3. Colliding message pairs 63

Table A.5: A colliding message pair for 4 rounds of Keccak[1088, 512] with
384-bit output.

M1:

FB B9 31 67 E2 64 1B 3F 09 99 19 73 C6 80 4F 2E AC
5F 41 A5 36 65 96 11 B5 08 79 4A 5A 07 33 FC 2D F8
87 31 3C 9D 28 BF DC 72 94 A8 21 9F 54 8B 26 3D 2D
06 9E 13 10 72 12 25 E5 4F 2C 25 9D 1B F1 EE 17 1C
50 EC 29 3A EA 72 91 F3 2E 84 62 D6 98 73 6C 46 BA
C3 D6 B3 AB C4 1A 68 D0 F7 CD 7B EE A5 38 05 A3 D7
B7 2C FC E2 31 E0 1C 97 A2 F5 9B E1 93 41 A3 DD 5F
4A A2 03 BD 41 C3 C6 A7 BF CD F1 B2 3C C2 A4 A4 75

M2:

31 41 2C DA 5A C7 B8 5F 9D 8C 0C 6F 69 EE 3D AE D8
85 29 FE 02 3C 27 2E B0 DC 4C 67 70 A4 9A 27 37 68
A8 8D B9 00 3A CC BF 6A 82 63 96 16 EE E4 8C DA A4
A3 FF E2 B3 23 ED 97 82 2E CC FD 52 C3 6B 70 02 A3
11 CE 61 BA 4F EB 8C 0F 1D 37 CD 71 70 D7 9F AC 4D
4E 53 75 92 90 06 EF 3D 3A 92 CC F9 3D 00 C0 FC E1
39 85 36 FA 40 2A 6D 6A 45 5F AF 94 3A 23 30 F5 3C
BB 8B C7 77 30 D7 5B 54 AE F6 C2 F3 26 FD 22 21 C1

H(M1) = H(M2):

B2 AD 99 8F CC 49 41 07 22 EE 61 24 71 35 03 59 0C
F6 6A 32 81 0C 70 7D F7 F3 50 86 07 BF 69 4F 8A F0
94 2C E4 D4 8A 80 BF D4 F4 75 76 23 1F FD

Bibliography

[1] Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash
Functions MD4 and RIPEMD. In Cramer, R., ed.: EUROCRYPT. Volume
3494 of LNCS., Springer (2005) 1–18 (Cited on page 2.)

[2] Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In Cramer,
R., ed.: EUROCRYPT. Volume 3494 of LNCS., Springer (2005) 19–35 (Cited
on page 2.)

[3] Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0.
In Shoup, V., ed.: CRYPTO. Volume 3621 of LNCS., Springer (2005) 1–16
(Cited on page 2.)

[4] Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. [52] 17–36
(Cited on pages 2 and 36.)

[5] De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-
1: On the Full Cost of Collision Search. In Adams, C.M., Miri, A., Wiener,
M.J., eds.: Selected Areas in Cryptography. Volume 4876 of LNCS., Springer
(2007) 56–73 (Cited on page 2.)

[6] Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal
BLAKE. Submission to NIST (Round 3) (2010) (Cited on page 2.)

[7] Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to
NIST (Round 3) (2011) (Cited on page 2.)

[8] Wu, H.: The Hash Function JH. Submission to NIST (round 3) (2011) (Cited
on page 2.)

[9] Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 sub-
mission. Submission to NIST (Round 3) (2011) (Cited on pages 2, 17, 18, 34,
35 and 44.)

64

Bibliography 65

[10] Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T.,
Callas, J., Walker, J.: The Skein Hash Function Family. Submission to NIST
(Round 3) (2010) (Cited on page 2.)

[11] Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press (1996) (Cited on page 3.)

[12] Standards, F.I.P.: Digital signature standard. (1994) (Cited on page 4.)

[13] Dierks, T.: The transport layer security (TLS) protocol version 1.2. (2008)
(Cited on page 4.)

[14] Doraswamy, N., Harkins, D.: IPSec: the new security standard for the Internet,
intranets, and virtual private networks. Prentice Hall (2003) (Cited on page 4.)

[15] Rivest, R.L., Shamir, A.: PayWord and MicroMint: Two Simple Micropay-
ment Schemes. In: Proceedings of the International Workshop on Security
Protocols, London, UK, UK, Springer-Verlag (1997) 69–87 (Cited on page 5.)

[16] Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. (2009) (Cited
on page 5.)

[17] Provos, N., Mazieres, D.: A future-adaptable password scheme. In: Proceed-
ings of the Annual USENIX Technical Conference. (1999) (Cited on page 5.)

[18] Percival, C.: Stronger key derivation via sequential memory-hard functions.
BSDCan 2009 (2009) (Cited on page 5.)

[19] Kaliski, B.: RFC 2898 - PKCS #5: Password-Based Cryptography Specifica-
tion Version 2.0. Technical report, IETF (2000) (Cited on page 5.)

[20] Damgård, I.: A Design Principle for Hash Functions. In: Proceedings of the
9th Annual International Cryptology Conference on Advances in Cryptology.
CRYPTO ’89, London, UK, UK, Springer-Verlag (1990) 416–427 (Cited on
page 8.)

[21] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT hash workshop. Volume 2007., Citeseer (2007) (Cited on page 9.)

[22] Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: Proceedings of
the workshop on the theory and application of cryptographic techniques on
Advances in cryptology. EUROCRYPT ’89, New York, NY, USA, Springer-
Verlag New York, Inc. (1990) 329–354 (Cited on page 11.)

Bibliography 66

[23] Yuval, G.: How to Swindle Rabin. Cryptologia 3 (1979) 187–189 (Cited on
page 11.)

[24] Quisquater, J.J., Delescaille, J.P.: How Easy is Collision Search. New Results
and Applications to DES. [53] 408–413 (Cited on page 11.)

[25] Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård re-
visited: how to construct a hash function. In: Proceedings of the 25th annual
international conference on Advances in Cryptology. CRYPTO’05, Berlin,
Heidelberg, Springer-Verlag (2005) 430–448 (Cited on page 12.)

[26] Kelsey, J., Schneier, B.: Second Preimages on n-bit Hash Functions for Much
Less than 2n Work. IACR Cryptology ePrint Archive 2004 (2004) 304 (Cited
on page 12.)

[27] Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions. [54] 306–316 (Cited on page 12.)

[28] Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f
and for the core functions of Luffa and Hamsi. Rmp session of Cryptographic
Hardware and Embedded Systems-CHES (2009) (Cited on page 20.)

[29] Khovratovich, D., Biryukov, A., Nikolic, I.: Speeding up Collision Search for
Byte-Oriented Hash Functions. [55] 164–181 (Cited on page 20.)

[30] Boura, C., Canteaut, A.: Zero-sum distinguishers for iterated permutations
and application to keccak-f and hamsi-256. [56] 1–17 (Cited on page 20.)

[31] Morawiecki, P., Srebrny, M.: A SAT-based preimage analysis of reduced
Keccak hash functions. Cryptology ePrint Archive, Report 2010/285 (2010)
http://eprint.iacr.org/. (Cited on page 20.)

[32] Naya-Plasencia, M., Röck, A., Meier, W.: Practical Analysis of Reduced-
Round Keccak. [57] 236–254 (Cited on pages 21 and 45.)

[33] Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned Rebound Attack: Application
to Keccak. In Canteaut, A., ed.: Fast Software Encryption. Volume 7549 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg (2012) 402–
421 (Cited on page 21.)

[34] Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound At-
tack: Cryptanalysis of Reduced Whirlpool and Grøstl. [58] 260–276 (Cited
on page 21.)

http://eprint.iacr.org/

Bibliography 67

[35] Dinur, I., Dunkelman, O., Shamir, A.: New Attacks on Keccak-224 and
Keccak-256. [59] 442–461 (Cited on pages 22 and 41.)

[36] Dinur, I., Dunkelman, O., Shamir, A.: Self-Differential Cryptanalysis of Up
to 5 Rounds of SHA-3. IACR Cryptology ePrint Archive 2012 (2012) 672
(Cited on page 22.)

[37] Albrecht, M.: Algorithmic Algebraic Techniques and their Application to
Block Cipher Cryptanalysis. PhD thesis, Royal Holloway, University of Lon-
don (2010) (Cited on page 24.)

[38] Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An In-
troduction to Computational Algebraic Geometry and Commutative Algebra,
3/e (Undergraduate Texts in Mathematics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA (2007) (Cited on page 24.)

[39] Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: An algorithm for find-
ing the basis elements of the residue class ring of a zero dimensional polyno-
mial ideal. J. Symb. Comput. 41(3-4) (2006) 475–511 (Cited on page 26.)

[40] Dubé, T.W.: The structure of polynomial ideals and Gröbner bases. SIAM
Journal on Computing 19(4) (1990) 750–773 (Cited on page 27.)

[41] Faugere, J.C.: A new efficient algorithm for computing Gröbner bases (F4).
Journal of pure and applied algebra 139(1) (1999) 61–88 (Cited on page 27.)

[42] Faugère, J.C.: A new efficient algorithm for computing Gröbner bases with-
out reduction to zero (F5). In: Proceedings of the 2002 international sympo-
sium on Symbolic and algebraic computation, ACM (2002) 75–83 (Cited on
page 27.)

[43] Brickenstein, M.: Slimgb: Gröbner bases with slim polynomials. Revista
Matemática Complutense 23(2) (2010) 453–466 (Cited on page 27.)

[44] Stein, W., et al.: Sage Mathematics Software (Version 5.6). The Sage Develop-
ment Team. (YYYY) http://www.sagemath.org. (Cited on page 31.)

[45] Brickenstein, M., Dreyer, A.: PolyBoRi: A framework for Gröbner-basis
computations with Boolean polynomials. Journal of Symbolic Computation
44(9) (2009) 1326 – 1345 Effective Methods in Algebraic Geometry. (Cited
on page 31.)

Bibliography 68

[46] Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems.
J. Cryptology 4(1) (1991) 3–72 (Cited on page 32.)

[47] Cannière, C.D., Rechberger, C.: Finding SHA-1 Characteristics: General
Results and Applications. [60] 1–20 (Cited on page 36.)

[48] Mendel, F., Nad, T., Schläffer, M.: Finding Collisions for Round-Reduced
SM3. [61] 174–188 (Cited on page 37.)

[49] Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching
through a Minefield of Contradictions. [62] 288–307 (Cited on pages 37
and 38.)

[50] Mendel, F., Nad, T., Scherz, S., Schläffer, M.: Differential Attacks on Reduced
RIPEMD-160. [63] 23–38 (Cited on page 37.)

[51] Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight
words in a linear code: Application to McEliece’s cryptosystem and to narrow-
sense BCH codes of length 511. Information Theory, IEEE Transactions on
44(1) (1998) 367–378 (Cited on page 51.)

[52] Shoup, V., ed.: Advances in Cryptology - CRYPTO 2005: 25th Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August
14-18, 2005, Proceedings. In Shoup, V., ed.: CRYPTO. Volume 3621 of Lec-
ture Notes in Computer Science., Springer (2005) (Cited on page 64.)

[53] Brassard, G., ed.: Advances in Cryptology - CRYPTO ’89, 9th Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August
20-24, 1989, Proceedings. In Brassard, G., ed.: CRYPTO. Volume 435 of
Lecture Notes in Computer Science., Springer (1990) (Cited on page 66.)

[54] Franklin, M.K., ed.: Advances in Cryptology - CRYPTO 2004, 24th Annual
International CryptologyConference, Santa Barbara, California, USA, August
15-19, 2004, Proceedings. In Franklin, M.K., ed.: CRYPTO. Volume 3152 of
Lecture Notes in Computer Science., Springer (2004) (Cited on page 66.)

[55] Fischlin, M., ed.: Topics in Cryptology - CT-RSA 2009, The Cryptographers’
Track at the RSA Conference 2009, San Francisco, CA, USA, April 20-24,
2009. Proceedings. In Fischlin, M., ed.: CT-RSA. Volume 5473 of Lecture
Notes in Computer Science., Springer (2009) (Cited on page 66.)

[56] Biryukov, A., Gong, G., Stinson, D.R., eds.: Selected Areas in Cryptography -
17th International Workshop, SAC 2010, Waterloo, Ontario, Canada, August

Bibliography 69

12-13, 2010, Revised Selected Papers. In Biryukov, A., Gong, G., Stinson,
D.R., eds.: Selected Areas in Cryptography. Volume 6544 of Lecture Notes in
Computer Science., Springer (2011) (Cited on page 66.)

[57] Bernstein, D.J., Chatterjee, S., eds.: Progress in Cryptology - INDOCRYPT
2011 - 12th International Conference on Cryptology in India, Chennai, India,
December 11-14, 2011. Proceedings. In Bernstein, D.J., Chatterjee, S., eds.:
INDOCRYPT. Volume 7107 of Lecture Notes in Computer Science., Springer
(2011) (Cited on page 66.)

[58] Dunkelman, O., ed.: Fast Software Encryption, 16th International Workshop,
FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised Selected Papers.
In Dunkelman, O., ed.: FSE. Volume 5665 of Lecture Notes in Computer
Science., Springer (2009) (Cited on page 66.)

[59] Canteaut, A., ed.: Fast Software Encryption - 19th International Workshop,
FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised Selected Pa-
pers. In Canteaut, A., ed.: FSE. Volume 7549 of Lecture Notes in Computer
Science., Springer (2012) (Cited on page 67.)

[60] Lai, X., Chen, K., eds.: Advances in Cryptology - ASIACRYPT 2006, 12th
International Conference on the Theory and Application of Cryptology and
Information Security, Shanghai, China, December 3-7, 2006, Proceedings. In
Lai, X., Chen, K., eds.: ASIACRYPT. Volume 4284 of Lecture Notes in Com-
puter Science., Springer (2006) (Cited on page 68.)

[61] Dawson, E., ed.: Topics in Cryptology - CT-RSA 2013 - The Cryptographers’
Track at the RSA Conference 2013, San Francisco,CA, USA, February 25-
March 1, 2013. Proceedings. In Dawson, E., ed.: CT-RSA. Volume 7779 of
Lecture Notes in Computer Science., Springer (2013) (Cited on page 68.)

[62] Lee, D.H., Wang, X., eds.: Advances in Cryptology - ASIACRYPT 2011 -
17th International Conference on the Theory and Application of Cryptology
and Information Security, Seoul, South Korea, December 4-8, 2011. Proceed-
ings. In Lee, D.H., Wang, X., eds.: ASIACRYPT. Volume 7073 of Lecture
Notes in Computer Science., Springer (2011) (Cited on page 68.)

[63] Gollmann, D., Freiling, F.C., eds.: Information Security - 15th International
Conference, ISC 2012, Passau, Germany, September 19-21, 2012. Proceed-
ings. In Gollmann, D., Freiling, F.C., eds.: ISC. Volume 7483 of Lecture
Notes in Computer Science., Springer (2012) (Cited on page 68.)

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	1 Introduction
	1.1 SHA-3 Competition
	1.2 Outline

	2 Cryptographic Hash Functions
	2.1 Applications
	2.2 Security
	2.3 Design
	2.4 Generic Attacks

	3 Keccak
	3.1 Description of Keccak
	3.2 Keccak Challenges

	4 Existing Analysis of Keccak
	4.1 Structural Attacks
	4.2 Differential Attacks

	5 Analysis
	5.1 Algebraic Attack
	5.2 Differential Cryptanalysis
	5.3 Combining Kernel Paths

	6 Conclusion
	A Appendix
	A.1 Notation for Keccak State
	A.2 Differential Distribution Table
	A.3 Colliding message pairs

	Bibliography

