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Abstract

Information derived from human visual attention is important for many applications which
need to focus on important regions in visual scenes. Currently used computational models
of human visual attention provide possibilities to predict these most important regions for
scenarios, in which eye tracker studies are not feasible. Even though researches already
have identified the importance of text regarding the human visual attention, modeling
text saliency is still a largely omitted topic. We provide a large scale database containing a
combination of natural scene images and scene text images as well as according eye move-
ment data collected at an eye tracking user study with 15 participants. A computational
attention model based on a state-of-the-art approach to train specific context from eye
movement data is learned on this new database to train an attention model with top-down
text context. We further included a high-level text saliency feature to the computational
attention model to test its influence on the prediction performance. The proposed model
reports good performance results on our database as well as compared to other state-of-
the-art models.

Keywords: Human Visual Attention, Computational Attention Model, Text Saliency,
Text Detection, Saliency Model, Top-Down Text Context, Bottom-Up Text Feature.



Zusammenfassung

Für viele Anwendungen, die auf wichtige Bereiche einer Szene fokussieren, ist es essen-
ziell, Informationen aus der visuellen Aufmerksamkeit des Menschen abzuleiten. Compu-
tergestützte Modelle der visuellen Aufmerksamkeit des Menschen sind in der Lage, diese
Bereiche zu berechnen. Sie werden eingesetzt wenn Eye-Tracking Studien nicht sinnvoll
durchführbar sind. Forscher haben den Einfluss von Text auf die visuelle Aufmerksamkeit
des Menschen bereits entdeckt, aber die Modellierung von Textsalienz wurde bis jetzt wenig
behandelt. Wir haben eine kombinierte Bilddatenbank aus generellen und textfokussierten
Szenenbildern erstellt. Anschließend füllten wir sie mit Blickbewegungsdaten von 15 Teil-
nehmern einer von uns zu diesem Zweck durchgeführten Eye-Tracking Studie. Basierend
auf einem Ansatz des aktuellen Standes der Technik, trainierten wir ein Text-Kontext fo-
kussiertes computergestütztes visuelles Aufmerksamkeitsmodell. Wobei der Text-Kontext
den Blickbewegungen unserer Eye-Tracking Studie auf textfokussierten Szenenbildern ent-
spricht. In weiterer Folge fügten wir dem trainierten Modell ein neues Textsalienz-Feature
bei, um dessen Einfluss auf die Leistung der Vorhersage zu überprüfen. Unser Modell zeigt
gute Vorhersageleistungen sowohl im Bezug auf die von uns gesammelten Daten, als auch
verglichen mit anderen aktuellen Aufmerksamkeitsmodellen.
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Chapter 1

Introduction

A colorful poster on a blank wall, a lonely ship at sea, or a frisbee thrown in a group of
people will likely catch your attention. But what exactly is attention? The first definition
was introduced by William James in his work ”The Principles of Psychology” in 1890
[James1890]:

Every one knows what attention is. It is the taking possession by the mind,
in clear and vivid form, of one out of what seem several simultaneously possible
objects or trains of thoughts. Focalization, concentration, of consciousness are
of its essence. It implies withdrawal from some things in order to deal effectively
with others, and is a condition which has a real opposite in the confused, dazed,
scatterbrained state which in French is called distraction, and Zerstreutheit in
German.

James was the first to distinguish between intellectual attention that is directed at non-
physically present ideal stimuli, and sensorial or visual attention, which focuses on present
stimuli. Corbetta [Corbetta1998] further defined that:

Attention defines the mental ability to select stimuli, responses, memories,
or thoughts that are behaviorally relevant, among the many others that are
behaviorally irrelevant. Selection is necessary because of computational limita-
tions in the brainś capacity to process information and to ensure that behavior
is controlled by relevant information.

Hence when we look at a scene our brain prioritizes objects, because the visual data is too
immense to process all at once.

Since we need to see objects to trigger this sensorial attention, eye movements play an
important role in visual attention research. Holmqvist et al. [Holmqvist2011] state that
eye movements are controlled by muscles that enable the eye to move in a three dimen-
sional orientation and that parts of the brain are controlling these muscles to locate the
gaze at interesting stimuli. There are differently classified events in eye movements which
can be measured with a device called an eye tracker. It tracks the motion of the eye in
relation to the head or the gaze direction. According to Holmqvist et al. the most re-
ported event is the so-called fixation, which is defined as the state whereupon the eye
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rests on a position over a period of time, such as when we gaze at a word while reading
for a certain time. Fast movements in-between fixations are defined as saccades, but even
while we fixate on something the eye does not stay completely still and moves slightly
performing so-called drift, tremor or microsaccade events. Holmqvist et al. further state
that it is generally considered that visual attention is measured when a fixation occurs.
The correlation between the processing of visual attention and eye movements is a topic
that has been thoroughly researched since the late 1800s when the first eye trackers were
build. According to Holmqvist et al., the earliest eye trackers were uniformly difficult to
build and were in general invasive to the participants. Dodge and Cline [DodgeCline1901]
proposed the method of photographing certain reflections from external light sources on
the fovea, which has become the most used technique nowadays. In the mid 1970s, com-
panies started to build and sell eye tracking devices to scientists and since then increasing
numbers of manufacturers habe continuously improved these systems. Currently used eye
tracking systems from companies such as SensoMotoric Instruments (SMI)1, tobii2 or SR
Research3, to name just a few, generally provide an algorithm that tracks the pupil and
corneal reflection to estimate the gaze point [Holmqvist2011]. Pupil and corneal reflection
tracking is used with a second reference point to compensate potential falsely detected
head movements.

Based on Yarbus’ [Yarbus1967] proposed correlation between attention and fixations,
Just and Carpenter [JustCarpenter1980] introduced the hypothesis that comprehending a
word takes a person as long as he or she fixates upon it. Hence they proposed that atten-
tion occurs when one fixates upon something. Research in visual attention modeling and
eye tracking is commonly still based on this hypothesis, even though according to Hoffman
[Hoffman1998] the current notion is that compared to the time the eye needs to move to
the next fixation, attention is processed 100 - 250 ms faster.With his famous eye tracking
experiments in which participants had to look at the painting ”The Unexpected Visitor”by
Repin with different tasks, Yarbus further showed the impact of a given task on eye move-
ments. This led to the definition of the two main mechanisms of human visual attention: the
bottom-up attention and the top-down attention. Bottom-up mechanisms are also called
reflexive or stimuli-driven because they are triggered by the scene itself [Nothdurft2000].
They respond to objects in visual scenes humans find naturally or biologically interesting.
On the other hand top-down mechanisms are also referred to as task-driven or voluntary
because they are driven by cognitive factors [CorbettaShulman2002] such as tasks, expec-
tations or knowledge.

The concept of selective attention models has became evermore interesting for other
fields of research, inter alia computer science where systems often have to process large
amounts of image data as fast as possible [Judd2011a]. Researchers in the fields of com-

1http://www.smivision.com/
2http://www.tobii.com/
3http://www.sr-research.com/
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puter vision, robotics, computer graphics and usability, for example, have developed visual
attention models in order to select the most important objects in visual scenes of any kind
to improve their system’s performance and computation time. For instance Visual at-
tention models are used to select regions of interest or image segmentation in computer
vision [Valenti2009] to measure the regional importance of meshes in computer graphics
[Varshney2005], or for a movement decision system to select the most interesting locations
in robotics [SiagianItti2009]. We will describe further applications using visual attention
models in chapter 2.3.
These computational models of human visual attention were motivated by research find-
ings of cognitive psychology described previously. In the field of human visual attention,
saliency is commonly mentioned when addressing the most relevant parts of a scene.
Therefore, we will stick to this naming for the rest of the thesis and describe the most
important locations: ”the most salient”. Treisman and Gelade’s feature integration the-
ory [TreismanGelade1980], which introduced the idea of using different sensorial informa-
tion as feature maps, was an important step for computational attention models and laid
the foundation for many other models to come. Based on this theory, Koch and Ullman
[KochUllman1985] proposed their algorithmic model of attention which provided efficient
strategies to produce saliency maps with bottom-up cues. Itti et al. [Itti1998] provided a
framework to compute so-called saliency maps that used the structure described by Koch
and Ullman and which is still updated and used today. Saliency maps are defined as the
resulting map of a computational attention model marking the most salient locations of a
given image. They are usually presented as grayscale images where the image’s intensity
brightens correspondingly to the saliency of a pixel. The brighter the image, the more
salient the pixel, as shown in figure 1.1. We give an overview on further computational

(a) Input image (b) Saliency map

Figure 1.1: A sample saliency map (b) for a given input image (a), the pixel’s intensity
relates to its saliency (brighter means more salient).

attention models based on bottom-up cues in chapter 2.1.1.
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Eventually researchers added top-down cues to computational attention models which
used high-level features, weighting values for certain features based on certain tasks or a
combination of these. Though some bottom-up models achieved good results predicting
human fixations, the general consensus is that a computational attention model combin-
ing bottom-up and top-down cues performs better [Henderson2005]. Judd et al. [Judd2009]
used machine learning techniques to learn a model of attention using human fixations on a
broad variety of scene images collected in an eye tracking study. Their approach provided
a large database of human fixation data, as well as a combination of several well researched
feature maps and a saliency classifier that is directly learned from human fixations. This
state-of-the-art computational attention model outperforms most of the other currently
used attention models, which is why we decided to use it as a basis for our approach in
this thesis. Therefore, we will give a detailed description of the model in chapter 5. A more
extensive overview of top-down attention models can be found in chapter 2.1.2.
High-level object features are already used in several attention models, however a focus
on scene text is still missing. When an image containing text is shown to a person he
or she will most likely read the text and therefore his or her attention will be drawn to
these text areas. Cerf et al. [Cerf2009] did several experiments on how salient text, faces
and cell phones are in human visual attention. They showed that faces and text have a
strong impact on eye movements and added face and text locations as features to Itti et
al.’s framework. Cerf et al. concluded that text features are an important aspect of vi-
sual attention and should be included in computational models to improve the prediction
of human fixations. However, to our knowledge, using text features and the context that
could be learned from machine learning models trained on text features are largely omitted
aspects in current state-of-the-art computational attention models. Therefore, the aspect
of text saliency should be further researched to improve currently available models and we
will elaborate on this topic in chapter 2.2. Our hypothesis in this thesis is that including
text features in a bottom-up way, as well as text context learned from these features as
proposed by Judd et al., in short a focus on text saliency should improve the performance
of predicting human fixations on scene images.

The condition of including text saliency in an attention model is first of all a text de-
tection method to locate text areas in scene images. Text detection in natural images is
an important task and a well-researched topic in computer vision. However, the variety of
fonts and colors, lightning conditions or reflections, and the difference of indoor and out-
door environments pose several problems for a text localization, which are some reasons
why the text detection problem is far from solved. Text detection algorithms can roughly
be classified into region based algorithms that create connected components out of pixels
with suitable parameters, and texture based algorithms, which classify pixel neighbor-
hoods based on several text properties at several scales [Konuskan2008]. We summarize
a short history and current state-of-the-art algorithms of this field of research in chap-
ter 3.1. At the time this thesis started, the Stroke Width Transform (SWT) by Epshtein
et al.[Epshtein2010] was a text detection algorithm that outperformed most of the other
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state-of-the-art approaches. They introduced a new local operator (the SWT) to gather
potential letter candidates from pixels, which their algorithm then filtered through sev-
eral filter and heuristic stages to connect components and eliminate non-text regions. The
SWT algorithm is able to detect scene text regardless of font, language, scale and whether
the text is presented dark on bright or bright on dark. This is why at that time we de-
cided to include Epshtein et al.’s approach as text feature in our computational attention
model with focus on text saliency. A detailed description of this approach can be found
in chapter 3.2. Since [Epshtein2010] was published, text detection approaches have, of
course, advanced and several newer methods such as [Yin2013], [NeumannMatas2012], or
[Yao2012] to name just a few, provide better detection performances at benchmark com-
parisons.
The methodology as to how our approach creates text saliency features is not depen-
dent on a certain text detection algorithm; it could be easily changed. Our hypothesis
for using different text detector algorithms is that the model’s prediction performance
should increase accordingly with an improved detection performance. Therefore, we also
tried to train our computational attention model with an OpenCV4 implementation based
on the scene text algorithm proposed by [NeumannMatas2012] and the character can-
didates grouping by [GomezKaratzas2013], to show the impact a different text detector
yields. These approaches are also further described in chapter 3. We compared different
approaches of transforming the detected text areas of given images to text saliency maps:
A binary saliency map where pixels inside a text bounding box are marked as salient,
a text segmentation approach where segmented characters are marked as salient, and a
novel approach to blur these text segmentation images to give a continuous saliency vote
depending on the pixels distance to a character. Our novel approach yielded the best ex-
perimental results and will be described in chapter 5.1.2.

Judd et al. [Judd2009] collected an extensive database of general natural scene images
and performed an eye tracking user study to gather human fixation data that they used to
train their computational attention model. After a thorough examination of their image
database we came to the conclusion that it contained very little scene text images. To train
a computational attention model with more top-down text specific context we needed more
human fixation data for scene text images. Therefore, we performed an eye tracking user
study ourselves on an extensive text database collected from images of the well known
ICDAR robust reading competition5. However, since our model should not only perform
well on text images, we combined the database with Judd et al.’s original database so we
would not lose their general natural scene image context. The user study, the combined
database and the way we transformed the eye tracking data to usable human fixation maps
is described in chapter 4.

The contributions of this thesis are the following:

4http://opencv.willowgarage.com/
5http://algoval.essex.ac.uk/icdar/Competitions.html
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We performed an eye tracking user study to gather text specific as well as general
context for natural scene images.

For this study we created a combined image database with images from a scene text
image database and a general scene image database to acquire human fixation
maps from both of them.

We included a text saliency feature to a state-of-the-art computational attention
model, using a text detection algorithm and a novel approach to transform detected
text regions to saliency maps.

We learned a general computational attention model with newly collected top-down
text saliency context based on the framework of a state-of-the-art computational
attention model.

As described in chapter 6, the results of our experiment have shown that including text
saliency to Judd et al.’s computational attention model increased the model’s performance.
We outperformed their original model comparing the model’s true positive rate when
matching predicted saliency maps against actual human fixations at different percentages
of saliency, as it is common for applications that use computational attention models. We
also achieved an improvement comparing the Receiver Operating Characteristics (ROC),
however, one not as significant as we expected, when the original Judd et al. model was
retrained on our dataset. We concluded that this is mainly because of the fact that their
approach was retrained on our database containing enough text context and the fact that
text saliency feature alone did not change the performance as significantly as expected.
Also the center bias that occurs when people take photos of natural scenes and important
objects tend to be oriented in the middle of the image, and the features used by Judd et
al. that already emphasized text properties, lowered the overall performance difference of
the proposed model and theirs.
To compare our new models’ performance to other models as well, we also carried out
a benchmark comparison on the saliency benchmark6 by Judd et al. [Judd2012], which
tests three different metrics, and scored the fourth best rank of 22 models. Overall, we
provide a robust new computational attention model based on the approach of Judd et al.
[Judd2009], which provides an efficient way to compute saliency maps for natural scene
images focusing on text saliency.

6http://people.csail.mit.edu/tjudd/SaliencyBenchmark/
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Chapter 2

Computational models of human visual
attention

In this chapter we are giving a background to the existing computational models of human
visual attention. We will start by exploring the differences between common bottom-up
and task based top-down models in section 2.1. In this section we will further explain
why we have based our project on the work of Judd et al. [Judd2009]. Since the focus of
this thesis is text saliency, we will then explain why text saliency is an important part of
visual attention in section 2.2. After these sections, we will complete this chapter with a
description of the applications of computational visual attention models in section 2.3.

2.1 Bottom-Up or Top-Down models

There is an increasing interest in systems that model human visual attention in the fields
of computer science. These systems are commonly used as mechanisms to select the most
relevant objects in a scene containing visual data. In computer vision, human computer in-
teraction and robotics for example, computer systems sometimes have to focus on relevant
objects. A computational model of visual attention can help to decrease the computing
time of these systems by focusing on relevant objects. Therefore, the scope of these systems
for computer scientists is predominantly to improve vision based systems by obtaining a
numerical likelihood model of the most relevant parts in a scene. All of these systems,
though, are based on psychological theories of human visual attention. Therefore, in order
to implement a human visual attention model, we have to try to better understand the
human perception.
Generally, there are two types of approaches for computational visual attention mod-
els: bottom-up and top-down models. The difference between these two is based on the
mechanisms of visual attention. Bottom-up models predict salient regions based on the
visual scene only[Nothdurft2000]. In this case the mechanism is called stimulus-driven or
automatic. In comparison, top-down models add the influence of a task and are driven
by cognitive factors. These factors could be goals, knowledge or expectation of a task
[CorbettaShulman2002] and the mechanism is called voluntary or goal-driven.
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2.1.1 Structure of Bottom-Up attention models

Figure 2.1 shows a flow diagram of a typical feature-based bottom-up attention model, by
Itti and Koch [IttiKoch2001]. As stated in Judd et al. [Judd2011a], this attention model
structure is adapted from Treisman and Gelade’s feature integration theory [TreismanGelade1980],
and the guided search model by Wolfe et al. [Wolfe1989].

Figure 2.1: A Flow diagram of a typical bottom-up attention model. From Itti and Koch
[IttiKoch2001].

As we can see in this flow graph, the basic idea is that the combination of several
pre-attentive feature detection mechanisms lead to an overall saliency map. This flow
graph is based on Koch and Ullman’s algorithmic model of attention [KochUllman1985].
Their hypothesis is that a centralized saliency map can provide efficient strategies for the
deployment of attention, on the basis of bottom-up cues.
According to Judd et al. [Judd2011a] a common structure for one input image, based on
this hypothesis, would be the following:

Compute image pyramids to enable feature computation for different scales.

Chapter 2 Computational models of human visual attention 15



Compute image features such as color, orientation and intensity. Usually the image fea-
tures are subdivided into more sub-channels, such as red, green and blue color-maps
for the color feature.

Apply differences of Gaussian or center surround algorithms to get the inter-map con-
trasts into the feature maps. These algorithms compare the mean values of surround-
ing regions to the means of center regions and create sub-feature maps.

Create conspicuity maps which are the result of summing up these sub-feature maps.

Normalize the conspicuity maps to make their values comparable to other conspicuity
maps. If they were not normalized, then channels with more features would be ranked
higher.

Weight the conspicuity maps to define their feature importance. This is normally done
by using a weighting function for each conspicuity map.

Combine the maps to get the image’s saliency map. Usually a linear summation of
all feature maps is carried out. A gray-scale image is the result, wherein the most
brightest pixels are the most salient.

Koch and Ullman [KochUllman1985] introduced a structure of a bottom-up compu-
tational attention model, based on Treisman and Gelade’s feature integration theory
[TreismanGelade1980]. It was not implemented back then, but it provided the basic al-
gorithms for implementations. One of the first implementations of this model was done
by [ClarkFerrier1989]. It provided the above mentioned feature maps, a weighting system
and a resulting summed up saliency map. An important work based on this model is the
iLab Neuromorphic Vision C++ Toolkit1 (iNVT) by Itti et al. [Itti1998]. This toolkit was
updated several times [IttiKoch2001], [NavalpakkamItti2006] and is still kept up to date
by Itti et al.
An improved and more stable version of this toolkit was introduced by [DraperLionelle2005],
called SAFE (selective attention as a front end). They found errors in the fields of geometric
transformations in the iNVT toolkit, and released a refactored version. Some researchers
extended or altered the toolkit with different approaches to improve the performance
of predicting human fixations. For example [WaltherKoch2006] introduced the Saliency-
ToolBox (STB)2, by adding so-called proto-object features, which are objects of volatile
units of visual information. A more recent extension was done by [Valenti2009], who added
isocentric curvedness and color features to the iNVT model. This approach was based on
the idea that attentive objects often have local characteristics which differ from the rest
of the image. Furthermore, [Vasconcelos2010] introduced a spatiotemporal saliency model,
based on their center-surround framework [Vasconcelos2009]. Their approach extends a
center-surround saliency model, which has been proposed for static images, to an unsu-
pervised spatiotemporal saliency algorithm, usable for scenes with dynamic backgrounds.
Although it is known that task specific top-down cues have a great influence on our vi-

1http://ilab.usc.edu/toolkit/
2http://www.saliencytoolbox.net/
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sual attention [Yarbus1967], most models only cover the aforementioned bottom-up cues.
Bottom-up models are of course much easier to model, as top-down modeling requires task
specific knowledge.

2.1.2 Top-Down components of attention models

Figure 2.2, the ”Unexpected Visitor” by Yarbus et al. [Yarbus1967], shows how eye move-
ments change when viewers have different tasks.

Figure 2.2: The famous ”Unexpected Visitor” by Yarbus et al. [Yarbus1967], first showed
that eye movements change with different tasks.

The idea of including more knowledge than only bottom-up cues was introduced by the
guided search model and Desimone and Duncan’s biased competition theory [DesimoneDuncan1995].
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Henders et al. [Henderson2005], have shown that the influence of low-level information for
search tasks is minimal, and that top-down information dominates a search task. There-
fore, a good attention model should include top-down components when tasks are given.
Torralba et al. [Torralba2006] have shown further that context in real-world scenes is very
important for attention modeling. Their approach is a combination of bottom-up saliency
and scene context for guiding search. When predicting human fixations for a search task,
it outperforms bottom-up saliency-based models. They provide a weighing system that
weights high salient areas within a selected region higher than regions outside of the se-
lection. This approach was updated by [Hidalgo2009] and is used, for example, in the
approach of Judd et al. [Judd2009] and in our approach in this thesis. A more recent
approach which used context-aware saliency was done by [Goferman2010]. This approach
detects the representing image regions, not only salient objects. They include global effects
on frequently occurring objects and add a face detector.
Another structural possibility for adding top-down components is modifying a feature
map’s weight, depending on the given task. This concept was introduced by [Wolfe1989],
a model that increases the weight of features which are important to a given task. Their ap-
proach is used in several more recent approaches such as [ElazaryItti2010] and [IttiNavalpakkam2010].
When using a database containing many annotated images, [Marchesotti2009] proposed
an approach based on the concept that images with similar appearances are more likely to
have similar saliency. A classifier can create the saliency maps, when the annotated image
database is provided. Yet another way to add top-down components is to include object
detectors, when the given task focuses on certain objects. The approach of [Cerf2009]
showed that faces and text are very attentive features for humans, which can not be easily
ignored. To improve the model of [KochUllman1985], Cerf et al. included a face detection
conspicuity map. Their face detection was done based on the approach of [ViolaJones2002]
and these new features significantly improved the performance of predicting human fixa-
tions.
A more recent general model, which used both bottom-up and top-down cues, is intro-
duced by Judd et al. [Judd2009], [Judd2011a]. They have provided a supervised learning
model of human visual attention, which combines image-based information (bottom-up)
with semantic-based cues (top-down). The proposed model uses a lot of the previous stated
approaches such as biologically inspired features [KochUllman1985], [WaltherKoch2006],
object-based [Cerf2009], context-based features [Torralba2006], amongst others. All in all
they combined 33 features (including sub-channels): sub band features, color features,
Itti and Koch channels (using the STB by [WaltherKoch2006]), distance to the cen-
ter, automatic horizon, face, person and car detectors. They used a support vector ma-
chine to train the model, using positive and negative samples of each feature-channel.
Judd et al. [Judd2011a] has stated several times that center bias is an important as-
pect of computational attention models. Center bias means that human fixations are usu-
ally biased towards the center of an image [ParkhurstNiebur2003], [BruceTsotsos2009],
[VincentTatler2009], [Tseng2009]. Even though this bias was researched often, [Judd2009],
[ParkhurstNiebur2003] and [ZhaoKoch2011] are the only ones who have implemented mod-
els that included this bias. To our knowledge the approach of Judd et al. [Judd2009] still
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outperforms the currently used and available computational attention models for general
scenes. This is why we have use the framework of [Judd2009], as basis for the computa-
tional model of this thesis. Figure 2.3 shows a sample of resulting predictions using the
model of Judd et al. [Judd2009].

(a) Scene images

(b) Human fixations

(c) Model predictions

Figure 2.3: Images by Judd et al. [Judd2009]. Samples of predictions where people look
(c) as saliency maps, provided by the model of Judd et al., compared to real
human fixations (b).

2.2 Importance of text saliency in visual attention

Image features are important in order to identify salient locations in a scene, as described
in section 2.1.2. Computational models of attention are often provided with different im-
age features to improve their performance in predicting human fixations. As stated before,
many models have already included image features such as object-based or context-based
features (for example [Judd2009]). Cerf et al. [Cerf2009] have shown that text is a very
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attentive feature for humans, as well as faces. They carried out a user study with four dif-
ferent experiments, testing how attentive faces, text and cell phones are to humans. Their
psychophysical results show that text and faces have an impact on eye movements, which
are rapidly attracted to both. Furthermore, they refined the iNVT model of [Itti1998], and
added high-level semantic information such as text and face locations. With this refine-
ment they enhanced the model’s performance in predicting human fixations. Hence, they
concluded that scene text is an attentive feature, which should be used to improve hu-
man fixation predictions. However, scene text features, to our knowledge, are still largely
omitted in computational attention models, especially in newer models such as the current
state-of-the-art model by [Judd2009]. More recently, [Shahab2012] evaluated four compu-
tational attention models ([Itti1998], [Harel2007], [Torralba2006], [Zhang2008]), on their
behavior at text regions. Their conclusion was that the saliency maps provided by these
models could be used to improve scene text detection methods by suppressing non text
regions. Judd et al. [Judd2009] also stated that people commonly look at text, faces or
other persons but did not include a text feature to their computational attention model.
Since, to our knowledge, text saliency has not yet been included in state-of-the-art com-
putational model of attention, we propose that including scene text features, provided by
a state-of-the-art text detection algorithm, would further improve the performance of the
model.

2.3 Computational visual attention applications

Whenever we need to extract the most interesting data from an image scene, a computa-
tional visual attention application is very useful. Several fields in computer sciences, such
as computer vision, computer graphics, robotics or human computer interaction, use these
applications. Of course, for the means of usability testing or marketing research, visual
attention aspects are also very important. As [Judd2011a] states, an attention selection
provides an intuitive way for selecting regions of interest in image scenes.
In the fields of computer vision, salient regions provide natural regions for image seg-
mentation or region of interest (ROI) calculation. Both [Valenti2009] and [Achanta2008],
for example, proposed an image segmentation approach based on a saliency model. Some
researchers use bottom-up saliency information for improving object recognition meth-
ods. The idea is to combine a saliency based model with an object recognition system,
as in the approaches of [Miau2001], or more recently [WaltherKoch2006]. Mahadevan et
al. [Mahadevan2013] proposed an approach to biologically inspired object tracking, using
center-surround saliency mechanisms [Vasconcelos2010]. They used a saliency model for
the learning stage, by combining a bottom-up saliency and a focus of attention method, to
find interesting features for target detection. In the detection stage they used a top-down
saliency detector, focused on the target, combined with a feature based saliency method.
Their experimental results show that their method outperforms several state-of-the-art
object trackers.
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In computer graphics computational models, for example, can again be used to identify
ROIs in a scene. Santella et al. [SantellaDeCarlo2002], have shown that ROIs could help
detecting the appropriate level of detail needed for non photo realistic renderings, such as
abstract photographs or stylization. Saliency models can also be used for measuring the
regional importance of meshes. For example, [Varshney2005] used low-level human visual
attention cues to compute a mesh saliency operator. Another application is to provide
estimations for computing the best crop of a scene, as in the approach of [Santella2006].
They provided an interactive method for image cropping, based on fixation data.
In robotics a very important task is for the robot to decide where to look next. Clark and
Ferrier [Clark1988] introduced the first so-called active vision system with visual attention.
This system described how to direct a robotic head to potential interesting objects in a
scene. Their approach performed a simple tracking after fixating the most salient region
in an artificial scene. More recent systems pertaining to directing attention are done by
[Butko2008] and [Zhang2008]. Usually robots use a laser scanner approach for their lo-
calization. However, this approach sometimes fails in outdoor environments, and a visual
approach, using landmarks, is applied. To support these systems in the detection of land-
marks, computational saliency models, which select ROIs in sensor data, can be used. The
proposed landmarks can be salient objects in the environment, such as in the approach of
[SiagianItti2009].
Eye tracking devices are often used by companies in the fields of marketing and usability,
as can be seen in [PooleBall2006]. Companies are mostly interested in at what and where
people look on their web pages, and how to accordingly place their products. Therefore,
they usually want saliency maps for their individual setup. SMI3 or tobii4 provide software
solutions for creating such saliency maps derived from human fixations, gathered by user
studies. However, to our knowledge, there are no general computational saliency models
yet in the fields of usability or marketing that could provide saliency maps without large
user studies.
An important aspect of the reasons for our use of computational models of attention, is
that they usually decrease the computation time of the approach we combine it with.
This is possible due to the underlying nature of a computational model of attention: in
predicting or focusing on the most salient regions. All these approaches above show that
there is a variety of fields where computational models can be applied. This thesis is about
the potentials for improvement in general computational model of attention through the
application of good text features. Hence, we will further discuss text detection algorithms
in chapter 3.

3http://www.eyetracking-glasses.com/products/eye-tracking-glasses/technology/
4http://www.tobii.com/en/eye-tracking-research/global/research/usability/
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Chapter 3

Text detection

Text detection in natural scene images is an important task in computer vision. Many
tasks such as robotic navigation or aiding software for the visually impaired, for example,
need a robust text detection method for natural scenes. Detection texts in different fonts,
colors, environments (indoors and outdoors), however, lay out several complex parameters
for good results. We already discussed the benefits of scene text features for computational
attention models in section 2.2. Furthermore, we already stated that we included a text
detection feature in our computational attention model. Therefore, we will now examine
the topic of text detection further. In this chapter we will first give an overview to the
currently used text detection approaches in section 3.1. Since we have used Epshtein et al.’s
[Epshtein2010] approach in this thesis, we will describe it in-depth in section 3.2. We will
also give a performance comparison between state-of-the-art text detection algorithms and
show why we have chosen Epshtein et al.’s approach for our thesis. However for the method
of computing our text saliency features it does not matter which text detector algorithm
is chosen as long as it provides rectangular bounding boxes for found text locations. The
hypothesis of course is that a better performing text detection algorithm will also achieve
a better performing computational text saliency model. Therefore, we also included a
second text detector that will also be described in this chapter, to show the impact on the
computational attention model when using a different text detector.

3.1 Overview of algorithms

Text detection algorithms can be roughly grouped into the following: region based algo-
rithms and texture based algorithms. We adapted the following differentiations between
those methods, from [Epshtein2010] and [Konuskan2008].
Region based algorithms group pixels with properties such as constant color together.
These groups create connected components that are then filtered to eliminate non-letter
components. The analysis of which components might fit together can be done using edge
detectors or by analyzing the aspect ratio of edges for example. The advantages of this
approach are that the detection can not only handle horizontal texts, but different angles,
and the detection is not dependent on scale.
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Texture based algorithms, on the other hand, classify the pixels neighborhoods on sev-
eral scales. The classification is based on several text properties such as the variance of
intensity, gradient changes, or edge density. Hence, these approaches build on the pre-
sumption that text regions have distinct properties in texture, which discriminate them
from their background. These approaches are usually computationally more complex than
region based methods because the image has to be scanned for several scales. Furthermore,
typically only scaled down or small texts contain the required texture properties, which
might affect the detection precision. And finally texture based methods usually have dif-
ficulties detecting angular text.

We will now give an overview of approaches published in both categories, starting with
region based methods. Li et al. [Li2000] proposed a scale space feature extractor that
uses an artificial neural processor for text detection in videos. Their approach decom-
poses an input image into smaller parts, and uses a feature based approach to group
potential connected text regions. Ye et al. [Ye2005] introduced a coarse-to-fine method to
detect text lines with complex backgrounds. They used multi-scale wavelet features for a
coarse detection, which located potential text pixels, followed by a density based region
growing algorithm to create connected components. A similar approach was proposed by
[Gllavata2004], who used high-frequency wavelet coefficients to characterize text and back-
ground regions. Both approaches use wavelet features to distinguish between text regions
and non-text regions, however, they apply different classifiers to actually detect scene text
in images. As already stated we are using Epshtein et al.’s Stroke Width Transform ap-
proach [Epshtein2010] in this thesis. Their approach falls into the category of region based
methods, however, they used a pixel wise stroke width measure instead of the common
edge, intensity or color similarities. Essentially, they introduced a local operator (the stroke
width transform) to gather potential letter candidates from pixels, followed by several filter
and heuristic stages to connect components and eliminate non-text regions. The proposed
algorithm is able to detect scene text regardless of font, language, scale and whether text
is presented dark on bright or bright on dark. At the time we started this thesis the Stroke
Width Transform approach was the most promising text detection algorithm, which is
why we decided to use it for the text saliency implementation. An in-depth description of
the algorithm can be found in section 3.2 and a further description on our text saliency
implementation will follow in chapter 5.1.2. A related approach to Epshtein et al.’s is
the Character-Stroke Detection for Text-Localization and Extraction [Subramanian2007].
They use the knowledge that text has a roughly constant stroke width and proposed a
fast and robust method to detect character stroke widths. Epshtein et al., however, states
that there are several differences between these two approaches. First of all, Subrama-
nian et al.’s method scans the image horizontally, while looking for intensity changes and
always assuming dark text on bright backgrounds. Found regions are then analysed for
stroke width and color constancy, also a certain range of stroke widths is not learned but
assumed to be known.
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The maximally stable extremal regions (MSER) approach by Matas et al. [Matas2004]
was used as the basis for several novel text location and text segmentation approaches.
Originally the MSER algorithm was introduced as a blob detector to establish correspon-
dences between stereo-images. The new set of image elements called extremal regions
(ERs) had several properties, such as the affine invariants or lighting sensitivity (mono-
tonic transformation of the image’s intensity), which were also useful for text detection
approaches. Neumann and Matas [NeumannMatas2011] introduced a general method for
text detection that departed from a strictly feed-forward pipeline and proposed a method
to simultaneously process multiple text lines. They used synthetic fonts to train the algo-
rithm and exploited the MSER approach to collect data that is robust to geometry and
lighting. The properties of the ERs are used to perform a robust character recognition.
They further proposed a scene text detection approach [NeumannMatas2012] using a real-
time character recognition based on ERs. The OpenCV1 library implemented a scene text
detection algorithm based on this approach and combined it with the multi-script text ex-
traction from natural scenes approach by Gomez and Karatzas [GomezKaratzas2013]. We
used this implementation to compare a more recent approach to the results we achieved
using Epshtein et al.’s Stroke Width Transform approach and will therefore describe it in
more detail in section 3.3.

Texture based methods commonly use texture analyzing methods such as wavelet decom-
positions [Gllavata2004], Gabor filtering [JainBhattacharjee1992], [Mancas-Thillou2007] or
gaussian filtering [Wu1997], for example, to filter textural information. Usually these filters
are applied to the input image to obtain texture features and then compute the contrast,
correlation, entropy or energy, which are then stored as a feature vector. The feature
vectors are then used to classify text from non-text regions with the aid of machine learn-
ing algorithms. Jain and Bhattacharjee [JainBhattacharjee1992], for example, proposed a
multi channel Gabor filter to gather texture information and computed the energy around
filtered pixels. To classify the text regions they used a squared error cluster method on the
computed features. A more recent approach by Thillou et al. [Thillou2005] used the same
texture segmentation as [JainBhattacharjee1992], but changed the machine learning algo-
rithm to an unsupervised k-means approach. Chen and Yuille [ChenYuille2004], proposed
a well performing approach to detect scene text on cluttered backgrounds. They used an
AdaBoost learning algorithm on prior determined potential text regions. A success rate
of 93% was reported for 35 images, however, no comparison with other approaches on a
database was given.

Some researchers combine the efficiency of region based methods with robust texture
based ones. Liu et al. [Liu2005] proposed a text detector for color images with complex
backgrounds, using a connected component analysis to provide text candidates, followed by
a candidate verification with texture features. More recently a well performing approach
was introduced by Lee et al. [Lee2011], who also used a combination of texture based

1http://opencv.org/
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methods and connected components. They proposed a novel approach which extracts six
different text feature classes and used an AdaBoost algorithm with a multi scale sequential
search. Their feature classes included: variance and expectation of x-y derivatives and the
local energy of the Gabor filter as proposed by [ChenYuille2004]. These are combined with
a statistical texture measure of image histograms, a simple edge detection, a computation
of variance of wavelet coefficient, and finally a connected component analysis. A resulting
feature map is then scanned with a 64 x 48 search window on a multi scale sequential
level. Each of these windows are trained with an effective AdaBoost classifier that com-
putes whether it is a text window or a non-text window. A comparison of performance on
the ICDAR [Lucas2003] database, showed that Lee et al.’s approach outperforms several
state-of-the-art text detection methods, with a precision of 66%, a recall of 75% and the
combined quality measure of 70%. As the reader will notice later in section 3.2, this is
even a better score than the stroke width transform algorithm of Epshtein et al. reaches.
Since this approach was published after we started the project for this thesis, we had no
knowledge of a better approach than that of Epshtein et al. Therefore, we decided back
then to use this state-of-the-art algorithm as a text detection feature for our computational
attention model.

Several other approaches with state-of-the-art localization and detection results have
been published in recent years, such as [Yin2013], [NeumannMatas2012], [YiTian2011], or
[Yao2012]. More comprehensive studies on different text detection algorithms are provided
in surveys such as [Jung2004] and [Liang2005]. In the following chapter we give a detailed
description of the stroke width transform algorithm, including a performance comparison
table.

3.2 Stroke width transform

The text detection algorithm we have used in this thesis is the stroke width transform
(SWT) method by Epshtein et al. [Epshtein2010]. The SWT algorithm contains the fol-
lowing steps in its workflow:

• Computing an edge map of the input image

• Computing the SWT operator

• Finding suitable letter candidates

• Filtering these candidates

• Aggregating text lines out of the filtered letter candidates

• Using heuristics to break text lines into detected words

We will now explain these steps in more detail.
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The SWT algorithm:
SWT is a local image operator and calculates the most likely stroke a pixel is part of.
A stroke is defined as a contiguous part of the image that has an almost uniform width.
Figure 3.1, taken from [Epshtein2010], shows an example of the SWT implementation. The

(a) (b)

(c)

Figure 3.1: A sample of the SWT implementation taken from Epshtein et al.
[Epshtein2010]. Darker pixels represent a stroke (a). From the green boundary
pixel p (b), in direction of the gradient, we hit the red pixel q on the other end
of the stroke. In between them, the minimum of either the width of the stroke,
or the currently found width value, is assigned to each pixel (c).

SWT algorithm returns a image of the same size as the input image, in which each pixel
has the value of stroke width associated with it. The first step to find strokes is using a
canny edge detection [Canny1986] on the image. As shown in figure 3.1(b), the next step is
to calculate a gradient direction for each edge pixel. For all boundary pixels, the gradient
direction must be a normal to the stroke’s orientation. When following the ray produced
by the pixel plus the gradient direction’s normal (see Figure 3.1(a)), an edge pixel on the
other side of the stroke is found. If there is no edge pixel found on the other side of the
stroke, the algorithm discards the ray and continues to the next edge pixel. Otherwise the
stroke’s width, assigned to each pixel along the ray, is defined as the length between the two
boundary pixels. However, if a pixel already has a width value assigned to it, the minimum
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of the two values is chosen as can be seen in figure 3.2(a). Some complex pixel candidates,

(a) (b)

Figure 3.2: A stroke width assignment example of a pixel, taken from Epshtein et al.
[Epshtein2010]. A correct pixel assignment (a), of the minimum stroke width
value of the vertical and horizontal lengths of rays between boundary pixels.
A more complex example (b), shows an incorrect assignment of the minimum
stroke width value between two rays. In this second example, the correct stroke
width would be the length between the pixel and the corner. Therefore, a second
median SWT pass is needed for more complex candidates.

such as corners, will be assigned with false stroke width values as shown in figure 3.2(b).
Hence, a second median SWT pass is computed for every non-discarded ray. In this sec-
ond pass the median stroke width value is computed for all the pixels of a ray. All pixels
assigned with a higher stroke width value than the median are then set to the median value.

Finding suitable letter candidates:
As a basis for finding suitable letter candidates out of the SWT image, Epshtein et al.
modified the connected component approach of [Horn1986]. A sample of a SWT image is
shown in figure 3.3. They changed the association rule to compare stroke width values of
pixels, instead of a binary mask. The algorithm was applied for the positive and negative
gradient direction to enable both dark text on bright background and bright text on dark
background. A letter can contain several neighbouring pixels if their stroke width values
are alike. Epshtein et al. used a small stroke width ratio as a threshold for the grouping.
This also allowed a pixel grouping for strokes which widths changed slightly, as in more
complex fonts.
After grouping neighbouring pixels, they filtered these potential letter candidates accord-
ing to a set of rules. The following list summarizes the rule set used to filter the letter
candidates:
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(a) (b)

Figure 3.3: The SWT image (b) computed for a sample input image (a).

• Eliminate connected components which have a stroke width variance that is to high.
This rule eliminates foliage, for example, which is known to be a common false
positive candidate of text detectors. And since text regions are more consistent than
foliage regions this rule works, according to [Epshtein2010].

• Limit the connected component’s aspect ratio to be between 0.1 and 10. Furthermore,
limit the ratio between the component’s median stroke width value and their diame-
ter to be less than 10. Very narrow or long false positive components are eliminated
by this rule.

• Eliminate components, which are smaller than 10 pixels or larger than 300 pixels.
This filters a lot of aliasing from the canny edge detection.

• The maximum number of components inside the bounding box of another component
is set to two. This ignores forms that surround text, such as sign frames.

All connected components, which pass this set of rules, are regarded as letter candidates.

Aggregating text lines:
To further improve their algorithm, Epshtein et al. grouped the extracted letter compo-
nents to sets of letters. They expect text to be linear and to have similar characteristics
such as size, average color, or stroke width. Also two letters must be within a distance of
three times their width to be connected to the same word. Epshtein et al. state that all
the thresholds for the letter rule sets and the word filter parameters were learned on a
trainings set of the ICDAR text database.
Following these filtering steps, the algorithm further clustered pairs of letters into word
chains. These chains are merged several times, until no more neighboring chains with a
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Algorithm Precision Recall f Time(sec.)
Epshtein 0.73 0.60 0.66 0.94
Hinnerk Becker 0.62 0.67 0.62 14.4
Alex Chen 0.60 0.60 0.58 0.35
Qiang Zhu 0.33 0.40 0.33 1.6
Jisoo Kim 0.22 0.28 0.22 2.2
Nobuo Ezaki 0.18 0.36 0.22 2.8
Ashida 0.55 0.46 0.50 8.7
HWDavid 0.44 0.46 0.45 0.3
Wolf 0.30 0.44 0.35 17.0
Todoran 0.19 0.18 0.18 0.3
Full 0.1 0.06 0.08 0.2

Table 3.1: A performance comparison of text detection algorithms at the ICDAR 2003 and
2005 competitions, adopted from [Epshtein2010].

similar direction can be found.
To compare their results with the ones on the ICDAR database, they applied one last step.
They used a heuristic, which uses a histogram of horizontal distances between neighboring
letters and computes a threshold to separate text lines. This heuristic is used to partition
the prior merged chains into the final text lines.

The SWT algorithm of Epshtein et al. [Epshtein2010] outperformed many other state-of-
the-art text detection algorithms when we started this thesis. They published a precision
and recall performance comparison based on the ICDAR text detection competitions (2003
and 2005), were they performed 73% in precision and 60% in recall, resulting in a 66%
combined measure of quality (4% better than the second best algorithm). The full com-
parison list, published in [Epshtein2010], can be seen in table 3.1. To our knowledge, it was
then the best performing state-of-the-art algorithm. We therefore decided to use the SWT
algorithm in our thesis and add it as a saliency feature to our computational attention
model (see chapter 5). As stated above however the method of computing text saliency
features for this computational attention model does not change when the text detection
algorithm is exchanged.
There is, no published source code for the SWT algorithm provided by the authors. To
implement the SWT algorithm we used the CCV library2, which provides a fairly good
implementation. The CCV approach implements the above described algorithm, but lacks
some parameter tuning and the correct handling of the resulting word detection mask.
With a non-modified version of the SWT implementation of the CCV library, we only
managed to achieve a score of 58% precision and 60% recall. To reach comparatively good
precision and recall results as proposed by Epshtein et al. we had to modify the CCV li-

2http://libccv.org/
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brary’s source code and parameters. To use the resulting text areas as saliency features in
our model, we also had to implement a saliency representation of the detected text areas.
A further description of the modified CCV’s library SWT algorithm, and our use of it in
the attention model, can be found in section 5.1.2.

3.3 OpenCV scene text detector

As stated above, we wanted to compare the performance of a computational attention
model using the SWT approach for text features to a more recent text detection algorithm.
Therefore, we chose to use the new scene text detection implementation provided by the
OpenCV library. This implementation is based on two publications: the scene text detec-
tion algorithm by Neumann and Matas [NeumannMatas2012] and the the multi-script text
extraction from natural scenes algorithm by Gomez and Karatzas [GomezKaratzas2013].
Neumann and Matas approach is based on the MSER algorithm, which is mentioned above.
They selected suitable extremal regions (ERs) using classifier trained for character detec-
tion from the entire component tree of an image. This selection is carried out sequentially
to improve the computing time. The classification is done in two phases:

Compute Incrementally Computable Descriptors such as area, bounding box, perime-
ter, euler number and horizontal crossing for every region. These descriptors are then
used as classifier features to compute the probability that the region is a character.
Hence, only ERs which are classified as potential character regions are selected for
the second phase.

Compute Sequential Classifiers such as the hole area ration, the convex hull ratio and
the number of outer boundary inflexion points, to further classify selected potential
character regions.

This selection process is computed in several projections to increase a characters recall.

The grouping of the selected potential character regions into high-level text blocks is
then achieved with the approach of Gomez and Karatzas. They proposed a method to
find reasonable groups of characters with the use of a perceptual organisation framework
that exploits collaboration of proximity and similarity rules. Their method used two clus-
tering algorithms without parameters to detect potential groups of text regions. The first
method finds the maximally reasonable groups within several sets of feature spaces that
hold similarity measures and proximity parameters. Then they created hypotheses for po-
tential groups of text areas for the resulting sets of feature spaces and used an evidence
accumulation algorithm to combine them. These combined hypotheses of potential text
groups are finally checked for their alignment since the grouping algorithm can only handle
horizontally aligned text.

Figure 3.4 shows some sample results of the used text detection algorithms.
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Figure 3.4: Sample results of the used text detection implementations. The left row (red
bounding boxes) shows sample results computed with the SWT algorithm, the
right row (yellow bounding boxes) shows sample results computed with the
OpenCV scene text detector.

As can be seen by the performance comparison on table 3.1, and the performance results
of [Lee2011] stated in section 3.1, the problem of detecting text in natural image scenes is
far from solved. This means, of course, that a text detection feature used in a computational
attention model will miss some text regions or falsely specify non-text regions as text. With
this knowledge, and since there was no better performing solutions available, a quality
measure of 66% as performed by Epshtein et al., provides a good basis for text specific
attention models. Furthermore, we compared the computed model using Epshtein et al.’s
approach to a second text detection algorithm implemented by the OpenCV library to
show how the used text detection algorithms change the performance.
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Chapter 4

Visual attention study

In this chapter we are going to describe the user study we did for our attention model.
This study recorded human fixations on an image database, using a remote eye-tracking
device. Section 4.1 will be on why we needed to do a user study, followed by a description
of the used database in section 4.2. In Section 4.3 we will explain our eye tracking setup
as well as provide an in-depth summary on the recording procedure. And finally in section
4.4 we explain which algorithms we used to transform raw eye data to fixations.

4.1 Purpose of the study

Since this thesis is based on the model of Judd et al. [Judd2009], we also wanted to be
as comparable as possible to their approach. Judd et al. did an eye-tracking user study
to gather ground truth data for their model, using the MIT database[Judd2009]. After
a thorough analysis of the stimuli images of this database, we found that only 7.9% of
the images contain scene text. We, however, wanted to improve Judd et al.’s model with
a text detection component. Therefore, we decided to add a database, which focuses on
scene text, to the MIT database for our study. We chose about 500 images from the
ICDAR[Lucas2003] dataset, containing scene text. To gather the new human fixations
that were needed to retrain our computational attention model, we carried out a new eye
tracking study containing both of these datasets. An eye tracking study only containing
the ICDAR images would not have been sufficient since we would have had mixed gaze
data from our participants with those provided by Judd et al. To provide clean and contin-
uous eye tracking data a used database should contain the eye tracking data of the same
participants for each image. The alternative to this combined dataset would have been
to collect completely new stimuli images containing both natural scene images as well as
scene text images. We did however refrain from this option since Judd et al. already showed
good results with a model trained on their collected natural scene context, and we wanted
to compare the influence that additional text context might provide to this general dataset.

As stated above, we wanted this study to be as similar as possible to the one Judd et
al. did in [Judd2009]. Therefore, we will shortly summarize their data gathering protocol
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first. They had fifteen participants between 18 and 35, two of them were researchers on the
project, the others naive viewers. All of them were sat approximately 60 cm apart from a
19 inch screen, with a resolution of 1280x1024. The company or model of their eye tracking
device is not stated in their approach, however they used a chin rest to stabilize the head.
We also know that the sampling rate of their eye tracker was 250hz. Each participant
free viewed the 1003 images of their MIT database, in a random order. To avoid the
loss of a participant’s concentration, they divided the viewing into two sessions. At the
beginning of each session the eye tracking device was calibrated, and a validation process
was done for every 50 images. Validation means that the device’s calibration is checked for
correctness and re-calibrated if a non tolerable offset is reached. Each image was shown at
full resolution for 3 seconds, followed by a gray image containing a cross-hair at the center
for 1 second. The cross-hair at the center is a standard method to refocus the viewer’s
attention to the center of the screen before presenting the next image. Furthermore, the
carried out a memory test after each session, showing the participants a couple of images
and asking them if they had just seen these images. These memory tests were done to
motivate the participants to pay attention. We were not able to gather any more details
on the data gathering protocol from the published approach [Judd2009].

4.2 Image database

Judd et al. [Judd2009] already used an extensive image database for their user study,
called the MIT database1. This database contains 1003 stimuli images they collected ran-
domly from flickr creative commons2 and LabelMe [Russell2008]. The image dimensions
of these images were 1024 pixels on the larger side and varied from 405 to 1024 pixels on
the smaller one. It was created to provide ground truth data for computational attention
models and for large scale quantitative analysis of eye movements. Judd et al. provided
the image database, all collected eye tracking data, as well as the Matlab source code they
used to collect those on their web page.
As already stated above, even though this database already has an extensive amount of
stimuli images, it only contains 79 images with visible scene text (7.9%). And only 32
images, which are 3.2% of the entire database, contain text that is not far too small,
occluded, blurred or possibly undetectable for current state-of-the-art text detection al-
gorithm in any other way. Therefore, as stated above, we decided to add a database of
natural scene text stimuli images to the existing MIT database. We chose the ICDAR3

database [Lucas2003] which was proposed as a training, as well as a validating, database
for the robust reading competitions for ICDAR 2003. Lucas et al. [Lucas2003] provided a
common benchmark dataset, to compare the performance of text recognition algorithms in
natural scenes. They provided train and validation image datasets for three sub problems:

1http://people.csail.mit.edu/tjudd/WherePeopleLook/index.html
2http://www.flickr.com/creativecommons/
3http://algoval.essex.ac.uk/icdar/Datasets.html
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text location, character recognition and word recognition. We decided to use the combined
trainings and validation image sets of the text location dataset, because these provide a
large amount of scene text in natural environments. Therefore, we chose 250 images of the
trainings set and 245 of the validation set, leading to a database of 495 scene text stimuli
images.
With the MIT and the ICDAR datasets combined we gathered a database of 1498 stimuli
images, where 38.5% of the images contained scene text. An extended database meant that
we needed to redo an eye tracking user study to gather new ground truth gaze data.

4.3 Eye tracker setup and data gathering

Figure 4.1 shows a sample of our eye tracker setup. In our study we used a SMI RED5004

Figure 4.1: The study’s eye tracker setup. Participants sat about 70cm apart from the
22“stimuli screen (A) that showed stimuli images in full screen, at a resolution
of 1680x1050. A SMI Red500 eye tracking device (B) collected eye movement
data at a sampling rate of 250hz. While all data was viewed and stored on the
supervisors laptop (C).

Chapter 4 Visual attention study 34



remote eye tracker, which is able to gather gaze data with up to 500hz. The RED500
is a remote eye tracker that collects binocular gaze and pupil data. It allows free head
movement (40cm x 20cm at a distance of 70cm), and several calibration modes (2, 5 or
9 point calibration). According to the manufacturer, it also works with most glasses and
contact lenses. However, as described in [Holmqvist2011] glasses and contact lenses can
still be a problem if an experiment has to be very accurate. We tried therefore to acquire
participants with normal eye sight. To stay comparable to Judd et al. we decided to record
our data using 250hz instead of 500hz. We placed our participants about 70 cm apart from
our 22“computer screen that showed all stimuli images to the participants. The screen’s
resolution was 1680x1050, and we showed the images in full size.

Data gathering protocol:
The study for this thesis was also done with fifteen participants. Eight female and seven
male participants, aged between 18 and 33, with a mean age of 25.13 and a standard
deviation of 3.7 years, attended the study. All of the participants had normal or corrected-
to-normal eye sight. Furthermore, all of them were naive to the task, which is important
because participants with prior knowledge of the project’s focus on text would probably
be more prone to look at scene text.
Larger images from the ICDAR database were down-scaled before the study, to fit the
screen, so we could still used a full-size view for all images. Since we added 495 images
from the ICDAR scene text database to the MIT database, we had a total number of 1498
images to show each user.
We used the same viewing setup as Judd et al. with 3 seconds per image, each followed by
a gray image, containing a cross in the center, for 1 second. With this setting, a session
would take one hour and 40 minutes only for the viewing task. Including calibration at
the start, validation for every 50 images and the memory test at the end, each participant
would have to be concentrating for more than two hours. This is why we chose to partition
the study into three sessions for each user. The first two sessions containing 500 images
each and the last 498. For each session the eye tracking device had to be calibrated. We
did a 9-point calibration, and also validated the calibration every 50 images. At the end
of each session we also carried out a memory test, which participants had been told about
in advance. Each participant got reimbursed 20e per session for their time.

Validation process:
The validation process, provided by the SMI recording software we used to collect the eye
data, calculated the so-called gaze accuracy. Accuracy, as described in [Holmqvist2011],
is defined as the average difference between the recorded gaze position and the true gaze
position. The accuracy measured by eye tracking software modules is commonly an av-
erage angular distance (offset) θi between the n recorded gaze locations and the defined
location of the gaze targets. Holmqvist et al. stated that this is an operational definition

4http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/red-red250-red-500.html
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of accuracy, also called offset,

θOffset =
1

n

n∑
i=1

θi (4.1)

Holmqvist et al. further stated that, depending on the experiment, a reasonably small off-
set (therefore good accuracy) can span from 0.3◦ to 2◦. There are several factors which may
influence the accuracy during eye tracking recordings, such as glasses, contact lenses, vary-
ing eye physiologies, varying levels of lightning, strong head movements or problems while
calibrating. They collected reported measurements from several experiments of different
researches over a few years, which brought up different arguments as to why inaccuracy
should be below certain values. A good accuracy offset for general remote eye tracking
studies seems to be an average offset of ≤ 0.5◦, which equals 20.5 pixels at a distance of
70cm. Therefore, we decided to use this offset as a maximum deviation when validating,
and re-calibrated the eye tracker when participants achieved higher inaccuracies during
the experiment.

4.4 Transforming eye data to fixations

The data we collected with our eye tracking study was raw data that consisted of eye gaze
position and time values for each sample. To gather the more useful fixation information,
we used Torralba et al.’s [Torralba2006] acceleration based algorithm to separate the data
samples into fixations and saccades. Torralba et al. defines saccades as a combination of
distance and velocity criteria between eye movements. The acceleration criteria to detect
saccades by distance d and velocity v is defined in equation 4.2.

d = p ∗ t; 0 <= v <= n/r; (4.2)

The pixel per degree (p) is based on the used eye tracking device, the degree per second is
defined as an acceleration threshold of value 6, the number of samples (n) divided by the
sampling rate (r) defines the maximum velocity time in milliseconds. Data samples with a
smaller movement as defined by the criteria are considered a drift within a fixation, while
data samples with greater movements are defined as saccades. Fixations have a fixation
duration (the time span between two saccades) and a position that was defined as the
average position of all data points of the fixation. We decided to use Torralba et al.’s
method, again, to stay comparable with the procedure of Judd et al. [Judd2009]. The
source code of this algorithm can be found on the MIT web page, provided in the adopted
version by Judd et al.5.
As stated above, it is a common procedure to refocus a viewer’s attention to the center
before a new stimuli appears. However, when evaluating the data samples it is also common
to discard the first fixation from each stimuli for each user [Judd2011b]. This is done to
eliminate the irrelevant initial center fixation information. As proposed by Judd et al.

5http://people.csail.mit.edu/tjudd/LowRes/Code/checkFixations.m
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[Judd2009] we also used only the first six fixations of each user, since only the first few
seconds of seeing a new stimulus are said to be important for human attention. Judd et al.
[Judd2011b] also states that the first few fixations are commonly more consistent, either
because they tend to look at the center first or they tend to look at more salient regions
first. And therefore, early fixations are more easy to predict, according to Judd et al.
Figure 4.2 shows sample images of the top six human fixations (4.2(e)-4.2(h)) for sample
images from both databases (ICDAR 4.2(a), 4.2(b) and MIT 4.2(c) 4.2(d)).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.2: The top six human fixations for all 15 users (e-h), and computed fixation
maps (i-l) for sample stimuli images from both, ICDAR (a,b) and MIT (c,d),
databases.

Once we gathered this fixation information, we transformed it to a continuous saliency
map for each image, as proposed by Judd et al. [Judd2009]. This was done by convolving
a Gaussian filter across the top fixations of each viewer. We also computed such saliency
maps for single participants and all but one of the participants for the experimental anal-
ysis (see chapter 6). Thresholding these saliency maps means that binary maps of the top
n% saliency locations of the stimuli images can be aquired. Figure 4.3 shows a sample

Chapter 4 Visual attention study 37



image of human fixation saliency map thresholded to the top 20% and top 5% of saliency.
Such thresholded saliency maps are what most attention model aided applications use

(a) (b) (c) (d)

Figure 4.3: Sample images of top percent saliency thresholded fixation maps. A full human
fixation saliency map (b), for a sample stimuli image (a), convolved with a
Gaussian filter across the top fixations of all participants is thresholded at the
top 20% (c) and the top 5% (d) of saliency.

to improve their performance. However, the saliency maps we are explaining here are all
created from real human fixations and not yet computed by any computational attention
model. We need those human fixation saliency maps to train the machine learning part
of our model and to use them as ground truth to validate the performance of the model.
The basic source code for the above described computations was provided by Judd et al.
on their project’s web page6. Their method of creating human fixation saliency maps out
of computed fixation data was not part of this source code. Since we used a different eye
tracking device, resulting in different raw data, and not all of the source code used by
Judd et al. was available, we had to modify and extend the source code to produce similar
human fixation saliency maps.

The data quality of recorded eye gaze data is dependent on many factors. Holmqvist et al.
[Holmqvist2011] give a good overview of the most important steps to be aware of before,
while and after carrying out an eye tracking experiment. We noticed that Judd et al.’s
experiment setup was planned quite well, since we tried to reproduce the study as closely
as possible. What we learned from our study was that first of all: a repeated calibration
validation step within a recording session is very important, because the accuracy can
degrade over time, as described above. Furthermore, the transformation from raw data
to fixation data, and further to continuous human fixation maps, was very tricky because
small disparities would lead to completely different results.

6http://people.csail.mit.edu/tjudd/WherePeopleLook/Code/DatabaseCode.zip
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To our knowledge, the eye tracking experiment for this thesis provided the largest collection
of gaze data including general and scene text focused images. In the following chapter
we will explain how we trained our computational attention model using the human eye
tracking data described above.
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Chapter 5

A new computational model of human
visual attention

One of the contributions of this thesis is the extension of the saliency model by Judd et
al. [Judd2009]. As described previously, we have proposed to add a state-of-the-art text
detection approach [Epshtein2010] and using newly collected human fixation data (see
chapter 4) to train a saliency classifier. Since the framework we have used is based on
Judd et al. we are going to describe this approach in section 5.1. Further we will describe
the image feature collection they used in section 5.1.1, how we added the text saliency
approach in section 5.1.2 and finally how the SVM classification has been done in section
5.1.3.

5.1 The Framework

The main contribution of Judd et al.’s [Judd2009] approach was that instead of only com-
bining bottom-up features and biologically plausible filters, their saliency model learned
a saliency classifier from human fixations. In this section we are giving an in-depth de-
scription of Judd et al.’s framework, which features are used and how the learning process
has been carried out. The framework we are working with is a supervised learning model
of saliency that combines bottom-up cues with top-down semantic depended cues. Judd
et al. did an eye-tracking user study on an extensive image database, which they used as
ground truth data to feed the machine learning algorithm and also to validate the trained
model. For more details see chapter 4, or the data gathering protocol in section 4.1. The
basic work-flow of their approach is shown in figure 5.1 and shortly summarized in the
following:

Collect a data-set of images and corresponding human fixations for each image. Then
partition these images in a set of training images and a set of test images.

Compute all features for each training image, and store them as a sub-feature matrix,
where each column represents the feature vector of one image.

Select positive and negative samples for each training image. These are randomly cho-
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sen pixels from the top p percent of the ground truth data for the positive samples,
and bottom q percent for the negative samples. Each of these pixels is assigned a
label (1 for positive samples and 0 for negative samples) and stored in a label vector
that is subsequently used by the machine learning algorithm.

Create a feature matrix out of the chosen sample pixels, from each prior calculated fea-
ture vectors. This reduces the data size extensively, depending on the parameters
chosen for p and q as well as the number of different image features.

Whiten the data to ensure zero mean and unit variance. Since the image features may
be computed in different data ranges we need to adapt them to ensure useful classi-
fications between the image features.

Learn the saliency classifier by using a linear support vector machine (SVM). The posi-
tive and negative training samples for the SVM are provided from the prior defined
feature matrix, and the labels associating pixel values with their classification (posi-
tive or negative), are provided by the label vector. As a result the classifier produces
a weighting value for each image feature.

The Matlab source code of this basic framework, the stimuli database and the human fix-
ation maps of the [Judd2009] publication are all available for download on their webpage1.
We will describe the important tasks of this work-flow in the following sections in more
detail as well as what modifications and extensions we carried out.

5.1.1 Feature collection

The concept that a combination of pre-attentive feature detection mechanisms lead to
an overall saliency map, which provides efficient strategies for deploying attention on the
basis of bottom-up cues, was already introduced by Koch and Ullman [KochUllman1985]
(see section 2.1.1). As stated in chapter 2, Judd et al. [Judd2009] used several low, mid
and high-level image features to define salient locations of input images. When using Judd
et al.’s Matlab framework we first had to install several feature detector libraries to be
able to carry out the feature collection step. Figure 5.2 shows Judd et al.’s 33 combined
features (including sub-channels), which we will now describe in more detail:

Low-level features: were used because they have been shown to provide good predictions
of human visual attention and are physiologically plausible [Judd2009]. Judd et al.
used the local energy from steerable pyramids subband features [SimoncelliFreeman1995]
in three scales and four orientations (figure 5.2 images 3 -15). A steerable pyramid
is defined as a multi-scale/-orientation image decomposition in the frequency do-
main, which allows efficient representations independent of orientation and scale. An
image is first partitioned into lowpass and highpass subbands, whereupon the low-
pass subbands are then divided into several oriented bandpass subbands and further
subsampled for x and y directions. These subbands are translation-invariant and

1http://people.csail.mit.edu/tjudd/WherePeopleLook/index.html
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Figure 5.1: A simplified diagram of the computational model’s work-flow. Saliency maps
for each image feature are calculated for each training image. Positive (green
dots) and negative (red dots) samples are randomly chosen from the top p
and bottom q percent of the human fixation saliency maps, which are created
from actual human fixations (see section 4.4). A labeled feature matrix is then
created from the selected samples of each feature saliency map and is further
whitened to ensure data coherence between the different features. This matrix
is then used as input for a SVM classifier, which provides a so-called model
containing a weight value for each image feature.

rotation-invariant and are constructed into a pyramid hierarchy. Judd et al. used
Simoncelli and Freeman’s [SimoncelliFreeman1995] approach, which can be down-
loaded from their webpage2, to find the steerable pyramid subbands, and blurred
each band with a Gaussian filter to use them as saliency maps. They also included
the so-called Torralba saliency feature based on the simple saliency model ap-
proaches of [Rosenholtz1999] and [OliviaTorralba2001] (figure 5.2 image 30). This
simple model computes saliency values from probability computations of different
histogram layers of the subband pyramids, multiplied by a weighting value for each

2http://www.cns.nyu.edu/˜eero/steerpyr/
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Figure 5.2: Judd et al.’s [Judd2009] features. A sample of all 33 image features computed
for one sample image (top left) and the human fixations (second image).
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scale. As stated in chapter 2 it is well-known that intensity, color contrast and ori-
entation are important bottom-up features, as shown for example in Itti et al.’s iLab
Neuromorphic Vision C++ Toolkit [Itti1998]. Therefore, Judd et al. included these
three feature channels (figure 5.2 images 16-18) as Itti and Koch saliency fea-
tures, using the Saliency-ToolBox (STB)3 [WaltherKoch2006] described in section
2.1.1. Since color is an important feature for natural scene image based attention
modeling, they further included several color feature channels such as red, green,
blue (figure 5.2 images 19-21), the probabilities of these channels (figure 5.2 images
22-24), as well as the median filtered probability from a 3D color histogram per color
channel at six scales (figure 5.2 images 25-29).

Mid-level features: as Judd et al. state in their approach most objects in a scene rest
on earth’s surface, which is why humans naturally fixate upon the horizon (fig-
ure 5.2 image 31). Therefore, they used mid-level gist features as described by
[TorralbaSinha2001] to detect the location of the horizon line on a scene image.
The algorithm to detect horizon lines can be downloaded as part of the LabelMe
toolbox4. They further blurred the horizon line, providing a continuous saliency map
of the attentive horizon area.

High-level features: As stated in chapter 2, objects, especially faces, are image features
to whom the human attention is commonly drawn (see section 2.1.2 for reference).
Therefore, Judd et al. included Viola and Jones’s [ViolaJones2002] face detector
(figure 5.2 image 32) and Felzenszwalb et al.’s [Felzenszwalb2008] car and people
detector (figure 5.2 images 33-34). Judd et al. used a Matlab implementation5 of the
face detector by Viola and Jones and the Matlab code Felzenszwalb et al. provided
on their webpage6. These algorithms were state-of-the-art object detection methods
at that time and we decided not to modify them since our focus was including text
saliency to the attention model.

Distance to center feature: is an image feature with the purpose of reducing the natural
center bias, which occurs when humans commonly frame an interesting object at the
center of an image. As stated in section 2.1.2 the center bias is an important aspect
of human visual attention, but was only included in a few computational attention
models [Judd2009], [ParkhurstNiebur2003] and [ZhaoKoch2011]. Therefore, Judd et
al. included a center feature (figure 5.2 image 35) that computed the distance to
the center for each image pixel.

We reused these feature detectors, and set up the basic feature collection algorithm
proposed by Judd et al. [Judd2009]. The newly applied text saliency feature from this
thesis will be described in the next section. All of these computed features were resized to

3http://www.saliencytoolbox.net/
4http://labelme.csail.mit.edu/LabelMeToolbox/index.html
5http://www.mathworks.com/matlabcentral/fileexchange/19912-open-cv-viola-jones-face-detection-in-

matlab
6http://people.cs.uchicago.edu/˜pff/latent/
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a dimension of 200x200 to improve computation time.
The next steps of the learning process will be described in section 5.1.3.

5.1.2 Adding the text feature

As stated in chapter 3, it does not matter which text detector we include with the com-
putational attention model . However, based on the hypothesis that a text feature will
improve the model’s performance, we expect that the results will increase the performance
when we choose better text detectors. To demonstrate the impact of using different text
detectors, we decided to include a newer text detection approach for comparison. We will
first show how we computed the saliency map out of detected text areas for each image
and then elaborate further on the differences between used text detectors.
Since a saliency map is the representation of a certain interesting feature within a scene
image, it is usually a grayscale image, where brighter values are assigned to more salient
pixels. For some features a binary saliency map (either a pixel is salient or its not) is suffi-
cient, such as the face detection feature where the detection bounding box lies within the
face. Other features need a more differential measurement and usually represent the likeli-
hood or weight of a salient pixel (again brighter means more salient), such as the colorspace
features, subband features, distance to center feature and model based features like the
Torralba saliency feature. Text detection algorithms provide a rectangular bounding box
for text regions in a scene image and one possible approach for creating text saliency im-
ages would therefore be to create a binary map setting all pixels inside these text bounding
boxes as salient pixels. However, due to the natural properties of characters, these bounding
boxes often hold more background pixels than actual character pixels, in contrast to, for
example, face or car detection algorithms. To separate character pixels from background
pixels, a text segmentation that produces a binary map of black background and white
character pixels is needed. Using those text segmentation results directly as text saliency
maps could be another approach, however, the sample scan path of a study participant
reading the scene text in figure 5.3 shows that the human fixations do not necessarily rest
directly on a character pixel even when we look at the text. Therefore, we decided to blur
the resulting text segmentation, using the same Gaussian blurring algorithm Judd et al.
[Judd2009] used to blur their human fixation maps, to create a continuous grayscale text
saliency map. This third possibility is, to our knowledge, a novel approach to creating text
saliency images and an experimental comparison between different models trained with
the three possible approaches showed that this third approach yields the best prediction
results. We will now further describe the work-flow we used to produce the text saliency
maps that is shown in figure 5.4:

Text detection: The SWT [Epshtein2010] text detection algorithm we used for the scene
text detection is already described in detail in chapter 3. For the text saliency work-
flow we need this algorithm to gather positions of potential text regions in a given
input image. We created a binary of the CCV library SWT algorithm implementation
(see section 3.2) that could be called as a system call from the Matlab implementa-
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Figure 5.3: A sample scan path of one of our participants shown for the text segmentation
image. Fixation points are shown as yellow dots, saccade data points as red
dots, fixation labels are starting at the second fixation (see section 4.4 for clar-
ification). As shown in this sample, human fixations don’t always rest exactly
on the letters when we read, therefore, a blurring as in figure 5.4(c) is applied
to the text segmentation in order to achieve correct behavior when training a
classifier with random human fixation samples.

tion of the model’s feature collection, as described above. The created SWT binary
requires the input image as well as threshold parameters for the canny edge detector,
all other SWT relevant parameters were hardcoded into the source code. As visu-
alized in figure 5.4(a), the algorithm returns the pixel-coordinates of a rectangular
bounding box for each text region found for a given image. This part of the work-flow
is the most important regarding detection performance, since the other parts of the
work-flow are dependent on the precision of the text detection results.
However, as stated before, this part is also replaceable with other text detection
algorithms which may improve the performance. To show this we did an experi-
ment with another text detector by exchanging the SWT module with the scene
text implementation of the OpenCV library7. Their implementation is based on the
scene text algorithm proposed by [NeumannMatas2012] for detecting characters can-
didates using Extremal Regions (ERs). For the grouping of these character candi-
dates into text blocks, the OpenCV implementation uses Gomez and Karatzas’s
[GomezKaratzas2013] approach. We will further call this approach based on the
two publications, which both have already been described in chapter 3, OpenCV
text detector (OCVTD). We developed a simple C++ scene text detector using this
OCVTD implementation that was also called from the feature collection script and
also returned a rectangular bounding box for each text area of a given image. This
made it easy to exchange the OCVTD with the SWT text detector and vice versa.

We did an adapted precision and recall evaluation on the ICDAR test dataset to

7http://opencv.org/
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(a) Text detection (b) Text segmentation

(c) Text saliency

Figure 5.4: The text saliency image creation process: first we use the text detection algo-
rithm (a) to gather text regions in the original image, next we use the text
segmentation approach (b) to separate characters from background and last
we blur the segmentation result to get a continuous saliency map (c) of the
image’s text regions.

compare the detection performance of both algorithms. The dataset was available on
the ICDAR competition’s webpage8, where we chose the text location test dataset
that contained the ground truth text locations for each image. Our text detection
algorithms usually grouped text lines together and returned one estimation bounding
box per text line E, the ground truth’s text locations T on the other hand are
stored as one bounding box rectangle per word. We marked the areas of intersections

8http://algoval.essex.ac.uk/icdar/Datasets.html#Robust%20Reading.html
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Algorithm Precision Recall f
OCVTD 0.81 0.66 0.72
SWT 0.73 0.62 0.67

Table 5.1: Performance comparison of the used text detection algorithms.

between E and T which had at least a 50% intersection area compared to the T
rectangle area. The best match for a rectangle re ∈ E and a rt ∈ T is defined as
the r′ with the smallest difference of the area of intersection and the area of rt. If
we found more than one rt rectangles inside one re as mentioned above, we summed
the intersecting areas of all rt up, checked if the summed up area matched to above
criteria and if so we counted the re as number of r′t correctly matched rectangles.
All correctly matched re according to this criteria were stored as true positives tp,
all remaining rt rectangles were counted as false negatives fn and all remaining re
rectangles as false positives fp.

With this matching definition we computed precision and recall as:

precision =

∑
tp

|E|
(5.1)

recall =

∑
tp

|T |
(5.2)

The standard f measure that is used as a single quality measure from both precision
and recall is defined as:

f =
1

α
precision

+ 1−α
recall

(5.3)

The weighting parameter α is set to 0.5 to give both precision and recall equal
weights.

Our performance comparison of the two used text detection algorithms that were
evaluated on the ICDAR 2003 test dataset is shown in table 5.1.

Text segmentation: For the segmentation we tested several available algorithms, of which
an approach based on the well-known Maximally stable extremal regions (MSER)
approach proposed by Matas et al. [Matas2004] and the segmentation approach
from [Kasar2007], performed the best. The algorithm extracts co-variant regions
(the MSERs) from a given image that represent a stable connected component for
a certain level set of the image. Several text detection and localization algorithms
use MSER-based approaches, such as Neumann and Matas [NeumannMatas2011],
[NeumannMatas2012] for example, because well-selected sets of ERs can be used to
detect characters in scene images. The MSER approach has previously been used
for image segmentation, for example by Oh et al [Oh2013] who’s algorithm collects
MSERs and segments the image by drawing them in a specific order. Since we had
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already collected the text detection bounding boxes, we applied a simple text seg-
mentation within the found rectangular bounding box regions to separate the scene
text from the background. We used the MSER implementation of a computer vision
Matlab library called VLFeat9 to collect the MSERs within these regions. The idea
was to collect ERs for each character, which should be found more easily within only
the bounding box of found text regions. We further exploited a drawing function
from this library to draw the extracted boundary pixels of the ERs and all pixels
within them on a blank image to the positions they have been found in the original
image.
Kasar et al.’s [Kasar2007] Font and Background Color Independent Text Binarization
approach provides an edge based connected component algorithm that determines
the threshold for each component automatically. Their approach achieved good re-
sults on images with different background shades and multi-colored text in varying
text sizes. We provided a C++ implementation of this approach that computes a
binary image with white text character pixel for a given input image and a cor-
responding text file containing found text rectangles. We tested separately trained
models including these approaches (after the text saliency step described in the fol-
lowing) and concluded that Kasar et al.’s approach yielded roughly 1% improvement,
we therefore based the resulting tests in chapter 6 on this approach. Figure 5.5 shows
our implementation of Kasar et al.’s text segmentation approach once applied on the
entire image (figure 5.5(b)) and once applied only within the detected text locations
(figure 5.5(c)) as used in our the text saliency process. As can be seen even tough the
input image of figure 5.5(a) poses a difficult example for text segmentation (many
small edge areas, reflective backgrounds and so on), if applied only on areas where
text has supposedly been found it provides good results.

Text saliency: As stated above, since humans don’t always fixate exactly on characters
(as shown in figure 5.3) when reading, and we furthermore did not use all fixation
data points for the model’s training, we needed to blur the text segmentation in
order to vote fixation data points that lie near characters as fixated on text. Using the
proposed blurring algorithm votes the highest salient values directly on the characters
and continuously less salient values the more distant a pixel is located to the nearest
character pixel. We further normalized the blurred saliency images yielding maximum
values of 255 directly located on the characters and 0 for pixels outside the text area
rectangle.

Figure 5.6 shows some examples of the resulting text detection methods (first two rows)
text segmentation method (third and fourth row) and the text saliency method (fifth and
sixth row).

The model’s feature gathering process was done as before, but we added the above
described text saliency map as the 34th feature. Each feature of every input image was
resized to an image dimension d, in this case 200x200 and then transformed in a 1-D vec-

9http://www.vlfeat.org
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(a) (b) (c)

Figure 5.5: The text segmentation approach of Kasar et al. [Kasar2007] on a sample image
(a), once computed for the entire image (b) and once computed only within
the detected text area locations (c) by the OCVTD algorithm.

tor resulting in a 40000x34 feature sub-matrix per image. Each of these sub-matrices were
subsequently combined to a MxN feature matrix, where M is the number of input images
n ∗ d and N the number of features (34 for our model).

We created different models to compare their performance in our experiments, therefore
we did the above described text saliency process for both text detection approaches and
added each of them as the 34th feature to their own feature matrix. Furthermore, we
remodeled Judd et al.’s approach with our new human fixation ground truth data gathered
on our the combined dataset (see section 4.2), to compare their original approach to our
adapted one.

5.1.3 Learning the attention model

The next step of the model’s work-flow was to select positive and negative samples out
of the feature matrix above described to generate a training set for the machine learning
process. The positive and negative samples were randomly chosen pixels from the top p
percent for the positive samples, and bottom q percent for the negative samples of the
ground truth human fixation data. We chose 10 positive and 10 negative samples from
each image, because according to Judd et al. [Judd2009] using more than 10 samples did
not increase their model’s performance. We also kept Judd et al.’s percent salient selection
for p as the top 20% salient locations and q as the bottom 70% salient locations to acquire
strongly salient and accordingly strongly not salient pixels. Furthermore, as Judd et al.
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Figure 5.6: Sample images of the used text detections SWT (first row) and OCVTD (sec-
ond row), the text segmentation approach for the SWT results (third row) and
the OCVTD results (fourth row) and the associated text saliency images (fifth
and sixth row).

suggested, we did not use any pixels on the boundary between p and q or within 10 pixels of
the image’s border. Figure 5.7 shows a sample image of the human fixation ground truth
and the selected positive (as green dots) and negative (as red dots) samples using the
above described procedure. The model’s training set X was thus defined as the 10 selected
positive and the 10 selected negative pixels for each image and each feature of the previous
described feature matrix, yielding in (n ∗ 20)xN sampled feature matrix. Furthermore, a
label vector Y is defined containing a label 1 for each positive sample and a label 0 for
each negative sample of this matrix.

Some of the image features above described were computed in different data ranges since
some of them are purely binary images, whereas others are continuous grayscale maps or
probability distributions. To enable a useful classification between them, we needed to
whiten X to acquire zero mean and unit variance, as proposed by Judd et al. The result-
ing whitening parameters for each feature column of X were then stored and reused for
the testing phase.
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Figure 5.7: A sample selection of 10 positive (green dots) and 10 negative (red dots) sample
pixels that were randomly chosen from the top 20% salient locations and the
bottom 70% salient locations of the human fixation ground truth image.

Once the labeled feature matrix X was computed, a classification procedure was
applied to achieve a weighting value for each feature, as described accordingly:

The classifier
The model was trained with a Liblinear10 [Fan2008] support vector machine (SVM)
with linear kernels. A linear SVM [CortesVapnik1995] is a supervised machine learn-
ing approach that is used for classification tasks and regression analysis. It produces
a set of hyperplanes within a high-dimensional space filled with training data, where
usually a good classification is acquired with the maximum-margin hyperplane that
is defined as the maximum distance hyperplane to the closest data-points of both
classes. The generalization error, a quality measure for classifications, usually de-
creases the larger the margin gets. Boser et al. [Boser1992] proposed an approach
to train non-linear SVM classifiers by using Aizerman et al.’s [Aizerman1964] kernel
trick. Applied on the SVM algorithm, it was used to fit the maximum-margin hyper-

10http://www.csie.ntu.edu.tw/˜cjlin/liblinear/
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plane, using a nonlinear transformation in a high dimensional transformed feature-
space and therefore produce a nonlinear hyperplane in the original classifier space.
Depending on the task a SVM can thus be trained not only with linear kernels, but
for example with radial kernels or multiple kernel learning as proposed by Sonnen-
burg et al. [Sonnenburg2006].
Judd et al. [Judd2009] states that experimentations had shown that models with
linear kernels performed as well as models trained with multiple-kernel for the given
task and are additionally easier to interpret and faster to compute. Therefore we
decided to stay with a linear kernel SVM to classify our attention model.

The training process
To train the model we used 1300 training images randomly chosen from our combined
dataset yielding 13000 positive and 13000 negative samples for each feature. Hence
the sampled feature matrix X had a dimension of 26000x34 and the label vector Y
a dimension of 26000x1. We used the Matlab implementation of the liblinear SVM
to train the our model with the following parameters:

• The bias b was activated by setting it to 1, to receive a bias term for the
weighting vector. The online example of Judd et al.’s framework did not include
a bias value, however, they state that they used the bias for the testing phase
and moreover it makes no sense to deactivate it for this classification task.

• The so-called misclassification cost c was set to 1, since Judd et al. [Judd2009]
already did a cross validation on different c values and stated that the perfor-
mance between 1 and 10000 did not change, but rather got worse when c was
smaller than 1.

The liblinear SVM train function needed X to be a sparse matrix for which we used
the basic Matlab function. Then we used the whitening function, as described above,
to create zero means and unit variance and started the training. The resulting model
consisted of a weighting vector w that provided a weight value for each feature and
a bias value b, as well as the weighting values described above that we need for
normalizing in the testing phase. Figure 5.8 shows the resulting mean weights of the
model trained with Judd et al.’s approach, our approach using the SWT text saliency
and our approach using the OCVTD approach, as well as their standard deviation
for 5 training trails. What we learned from this figure first of all is that the distance
to center feature has a very strong negative value in all of the models, which backs
up the center bias theory stated in chapter 2.1.2. Since this feature is saliency map
that has it’s most salient pixels at the border of an image and it’s least salient pixels
in the center (see figure 5.2) a strong negation of this feature will vote a stronger
saliency the closer a pixel is located to the center. This of course has to do with the
image database we used in our eye tracking study, where most of the supposedly
interesting objects were located at the center of an image, and due to the fact that
people tend to look for these objects near the center. Therefore, the center bias is
that strongly mapped because the training of the model’s weights is dependent on
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Figure 5.8: The mean trained model weighting values for each feature and the correspond-
ing standard deviation for the retrained Judd et al. approach (blue), our ap-
proach using the SWT text saliency maps (green) and our approach using the
OCVTD saliency maps (red) for 5 training trails. The text feature (number
34) was set to zero in this diagram for the original Judd et al. approach but is
in fact not existing.

the human fixations we gathered in the eye tracking study. Furthermore the text
feature’s weight is slightly more important in the model trained with the OCVTD
feature, which would encourage the hypothesis that a model’s performance will also
be higher when using a better text detector in the feature collection phase. We did a
performance comparison of different models trained on the feature groups described
above in chapter 6.

Saliency prediction
We will now explain how a prediction saliency map was computed using the model
described above, all details on testing the model and it’s performance will follow in
chapter 6. When using a saliency model in applications (see section 2.3) the typical
desired output of the model is thresholded image locations of the top i percent salient
locations. In this project, as proposed by Judd et al. [Judd2009], the weights learned
by the SVM classification are used to create a continuous saliency map for a given
image. We use the same feature collection process as for the training to gather the
input image’s feature matrix x and then use the value of xw + b, where w and b
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are the learned parameters of our text saliency model, to acquire a saliency value for
each pixel. As stated above, we used the same normalization parameters to normalize
the prediction image’s feature matrix as in the training whithening process. Figure
5.9 shows a sample of a predicted saliency map using our model compared to the
saliency map predicted with Judd et al.’s original model. As can be seen our model

(a) (b) (c)

Figure 5.9: A saliency map prediction with our model (c) compared to a predicted saliency
map with the approach by Judd et al. [Judd2009] (b) of a sample image (a).

emphasized text region as strongly salient.

Our computational attention model approach in this thesis used the framework proposed
by Judd et al. [Judd2009] and extended it with a bottom-up text saliency feature. With the
newly collected human fixations of our eye tracking study (see chapter 4), on the combined
natural scene images, as well as text focus images in natural scenes, we also added top-
down text context to the model. We further tried to scale the weight of the text feature,
as proposed by [Wolfe1989], to add yet another structural top-down improvement to the
model. However, tests with several scaling factors showed that, even tough improvements
occurred for some testing images, the mean prediction performance did not improve. We
carried out several experiments to test our computational attention model’s performance
to predict human fixations and summarized them and their results in chapter 6. All in all
the framework based on Judd et al.’s [Judd2009] framework provides a robust way to learn
new computational attention models and the resulting weights vector enables an efficient
computation of saliency maps based on those models.
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Chapter 6

Experiments and Results

In this chapter we are describing how we carried out the experiments to test the compu-
tational attention model’s performance, show their results and discuss them. As described
in the previous chapter we trained our new model using 1300 randomly chosen training
images from our image database. The continuous human fixation saliency maps we created
as described in chapter 4.4, were used for the positive and negative sample selection we
needed to train the SVM. As the ground truth for testing the performance of our model we
did not use these continuous human fixation saliency maps but the actual human fixation
points, as proposed by Judd et al. [Judd2009]. We used 190 testing images that were not
used to train the model from our database and gathered the associated human fixation
points for each of these testing images. Since our model is based on the approach of Judd
et al. we wanted to compare our model to the original one, but we also retrained Judd et
al.’s approach on our dataset (using our images and collected fixation maps) to compare
the original and retrained approach to our model. We trained separate models using the
text saliency features computed with the SWT approach as well as the OCVTD approach.
To show how the other feature groups affected the model we also trained separate models
for all used feature groups as well as a model using only the text saliency feature.
The performance of a model was tested pixel-wise, as proposed by Judd et al., by predicting
a saliency value for each pixel of a test image. A predicted saliency map of the test image
was created as described in chapter 5.1.2, by using the same feature collection process as
for the training to gather the input image’s feature matrix x and then used the value of
xw+ b, where w and b are trained parameters of our learned model, to acquire a saliency
value for each pixel. Since these saliency maps are commonly thresholded when used in ap-
plications, we used the defined thresholds by Judd et al. at n = {1, 3, 5, 10, 15, 20, 25, 30}
percent saliency. We used the thresholded continuous human fixation saliency maps as
the human fixation performance measure to compare with the others. We did 5 training
trails for each separately trained model, randomly chose 1300 training images and used
190 test images which were not included in the associated training trail. We predicted a
saliency map for each testing image of each feature model and thresholded them for each
n percent saliency. Figure 6.1 shows a sample of the thresholded saliency maps at n = 10,
20 and 30 percent saliency for the top performing models Judd et al.’s original approach,
the retrained version of it on our dataset, and our models including the two text saliency
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approaches. For each n we computed the true positive rate of predicted salient pixels and

Figure 6.1: The thresholded predicted saliency maps at n = 10, 20 and 30 percent saliency
for the sample image on the left, predicted with Judd et al.’s original model,
a retrained version of it and our models using the SWT and OCVTD text
saliency approaches. We also superimposed the ground truth human fixation
points as red dots on the predicted continuous saliency maps without an applied
threshold.

ground truth fixation point pixels. Figure 6.2 shows a receiver operating characteristic
(ROC) curve of the mean true positive rate performance over all trails for each n percent
salient predictions. The models trained with all features including a text feature as well
as the retrained model based on Judd et al. outperformed the other models, including the
original Judd et al. model. The model using the better text detection algorithm OCVTD
performed slightly better than the one using the SWT approach. Also both models trained
with text saliency performed slightly better than the retrained model of Judd et al., which
was after all trained on a database containing a lot of text context. Figure 6.3 shows a
boxplot of the four leading models for the 30 percent threshold maps in detail, where the
red line represents the mean value and the blue box the standard deviation of each models
performance results. As expected the model trained only on the center feature performed
better than the other feature sets without it, followed by the combined feature sets of all
other features but the center. Other than in the published results of Judd et al. [Judd2009]
did the model trained using the subband features [SimoncelliFreeman1995] perform slightly
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Figure 6.2: The ROC curve of performance for models trained on our dataset using dif-
ferent feature sets. The model’s performance was tested on several thresholds
which indicate the percentage of saliency that we used to threshold the pre-
dicted saliency maps.
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Figure 6.3: The mean values and standard deviations of the area under the ROC per-
formances, thresholded at 30% saliency, for the original Judd et al. model,
a retrained version on our dataset and our approach using both SWT and
OCVTD text saliency approaches.
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better than the model trained with the so-called Torralba feature map (based on the ap-
proach of [Rosenholtz1999] and [OliviaTorralba2001]). The models trained with color and
horizon features performed close to 50% at 30% saliency which is lower than in Judd et
al.’ published results. These differences occurred most likely because we used 35% more
text images in our database as well as fixation data from 15 different participants. The
visual properties of test images may also be the reason why the Itti feature (based on
the STB [WaltherKoch2006]) reaches an unexpectedly low performance of only 25% at
30% saliency. Object detection features alone are known to be no sufficient predictors for
natural scene images [Judd2009], they lack the potential for reasonable predictions when
no objects are present. The same applies for the text saliency feature, which on its own
yielded even lower results than the object detection, which however contained three differ-
ent object detectors (face, car and person), and therefore was expected to perform better.

To show the impact of the center bias we translated all of our stimuli images and the as-
sociated human fixation positions to random positions in an accordingly larger image. By
performing this image transformation we moved the interesting objects away from the cen-
ter which should neutralize the distance to center features importance and represent how
important the contributions of other features are. Figure 6.4 shows the resulting weights
of our text saliency model trained on these translated stimuli images. If you compare them

Figure 6.4: The SVM weights learned from images of our database translated to random
positions. As can be seen, distance to center feature weight (number 33) is no
longer the most important.

to the mean weight values in figure 5.8 it is obvious that the distance to center feature
(number 33) has lost the most importance and the weights overall are far less diverse with
a maximum difference of 0.455. The most important feature, and therefore most beneficial
after the distance to the center, seems to be the so-called Torralba feature based on the ap-
proach of [Rosenholtz1999] and [OliviaTorralba2001], which also concurs with the findings
Judd et al. [Judd2009] provided on their dataset. After that the subband features score
the most important weights, which consequently makes sense since the Torralba feature
is based on subband features. Text and object features seem to provide less benefit then
most of the other features, however are still useful in combination with other features as we
can see in the computed results of figure 6.2. Figure 6.5 shows some example evaluations
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we performed using the translated model, as expected the results resemble saliency maps
computed with Olivia and Torralba’s approach [OliviaTorralba2001].

Figure 6.5: Some sample evaluations on the translated images with the model weights
shown in figure 6.4.

To compare our model’s performance to other computational saliency models we used
the saliency benchmark1 proposed by [Judd2012]. This benchmark system was introduced
to provide a way for researchers to compare their computational attention models with
others. The used metrics to compare the models’ performances are defined as:

The area under the ROC curve (AUR) [Green1966] which measures the correlation of
saliency maps and fixation points, hence the probability that a fixation point is voted
correctly from the saliency map.

1http://people.csail.mit.edu/tjudd/SaliencyBenchmark/index.html
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The Earth mover’s distance (EMD) [Rubner2000] which measures the distance of two
probability distributions within an area, where the EMD indicates the overall dif-
ference of these distributions. A smaller EMD equals a smaller distance and hence
more similarity of the two areas.

The similarity measure indicates how similar two distributions are [Judd2012], and com-
putes their overlap. The sum of the distributions is normalized to equal one and
the similarity is computed as the sum of the minimum value of each value of the
overlapping distributions. Therefore, a score of 1 means the areas are completely
overlapping while 0 means they share no similar value.

To compute the scores for these three metrics and compare them to other models one has
to download 300 scene images from the benchmarks webpage and compute their saliency
maps. We computed the saliency map using the model including the SWT text saliency
feature and uploaded them. The results are listed in table 6.1 where we ranked as fourth
from a total of 22 competing approaches (the full list can be seen on the above mentioned
webpage).

Based on the AUR metric we further compared the mean AUR results for our 5 test
trails (again using 190 test images) without thresholding the predicted saliency maps.
Figure 6.6 shows some sample results of predicted continuous saliency maps for the top
four performing models as well as a superimposed human fixation ground truth. As can
be seen the predicted saliency maps are fairly similar since they are all based on Judd et
al.’s approach. However differences, for example regarding the text features, can be seen
in image three where detected text regions are significantly brighter when using the text
saliency approaches. As shown in the boxplot in figure 6.7 there are only slight differences
between the Judd et al. model and its retrained version, and our text saliency approaches.
However the state-of-the-art models ranked in the benchmark system above, including our
model, also show only slight differences in the score metrics.

The fact that we performed better than Judd et al. on our dataset and worse on
their benchmark system is again deducible by the missing text context in the benchmark
database images. Our approach only detected 12 images containing text areas within the
300 benchmark images, which is only 4%. Furthermore, since our dataset contains 38%
scene text images and participants obviously looked actively at these areas, our model is
also trained to weighting text like areas higher then a model trained on fixation data with
less text context.

Since text saliency is still largely omitted in state-of-the-art computational attention
model, we were not able to find other published datasets with more focus on text context.
Overall our model performed best on the proposed dataset, however not significantly better
than the retrained model of Judd et al. on the data containing text context.
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Model AUR
(higher is better)

Similarity
(higher is better)

EMD
(lower is better)

Humans* 0.922 1 0
Bio-inspired hierar-
chical features (not
published)

0.8192 0.5123 3.0129

Judd et al.
[Judd2009]

0.811 0.506 3.13

CovSal
[Erdem2013]

0.8056 0.5018 3.1092

Our model 0.8095 0.5008 3.2303
Tavakoli et al.
[Tavakoli2011]

0.8033 0.4952 3.3488

Region Contrast
[Cheng2011]

0.7922 0.4705 3.4180

Multi-Resolution
AIM
[Advani2013]

0.7719 0.4711 3.3635

Center* 0.783 0.451 3.719
Random Center
Surround Saliency
[Vikram2012]

0.7719 0.4711 3.3635

Table 6.1: A saliency benchmark comparison based on the benchmark system of
[Judd2012]. Computational attention models and *baseline models are com-
pared by the scores of three different metrics.
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Figure 6.6: Sample predicted continuous saliency maps for the four top performing models
according to the AUR scores. The saliency maps for each image are arranged
as the following: the second column saliency maps are computed using Judd et
al.’s model, the third column maps are predicted using Judd et al. approach
retrained on our text context database and the fourth and fifth column indicate
the predictions using the SWT based and OCVTD based text saliency model.
The last column shows the OCVTD predictions again with the superimposed
human fixation ground truth points.
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Figure 6.7: The mean AUR performance on the non-thresholded predicted saliency maps
computed by the four model: Judd et al. original model, Judd et al.’s approach
retrained on our dataset, our approach using the SWT text saliency features
and our approach using the OCVTD saliency features.

Chapter 6 Experiments and Results 65



Chapter 7

Conclusion

In this thesis we engaged the largely omitted topic of computational attention models
focusing on text saliency. To use both natural scene images as well as scene text images
for large scale attention studies, we combined the largest available natural scene database
used for attention studies with a well known scene text database. We carried out an eye
tracking user study using this database and gathered eye movement data from 15 partici-
pants. We learned a new computational model of attention on the hypothesis that trained
text context from our database as well as a newly added text saliency feature will improve
a current state-of-the-art attention model. To our knowledge, our combined database of
1498 stimuli images is the largest natural scene database containing data collected from an
eye tracking study. We introduce a novel approach to compute text saliency maps, which
performs slightly better than using a naive binarization of detected text regions. The per-
formance results on our database have shown that we outperformed the state-of-the-art
computational attention model without text saliency our thesis was based on. However,
when retrained with our database, the original approach also learns the text context from
human fixations on text images and the improvement of the text saliency feature alone
is not as significant as expected. We have shown that the use of different text detectors
for our text saliency approach yields only slight differences, but a better performing text
detector also achieves better performing saliency models. On a benchmark system for gen-
eral computational attention models, our model scored the fourth rank out of 22 models.
We were ranked behind the original state-of-the-art model we based our approach on, and
conclude that this is due to the lack of sufficient scene text images in the benchmark image
database. However, we outperformed several general state-of-the-art models of recent years
and only achieved about one percent less true detection rate than the first ranked model.

We conclude that using a text saliency feature provides an improvement to computa-
tional attention models that are used in fields where text context is important. The per-
formance improvement of the model is depending on the used text detector and therefore
the text saliency feature’s performance. We further conclude that including top-down text
context information by training the model using a fair amount of scene text images yields
a significant improvement on databases with scene text images. Therefore, computational
attention models using features to handle the center bias and features that emphasize
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text properties, trained on a database containing text context, perform almost as good as
models that include text saliency features as well. Simply scaling a text features weight
after the model is learned seems to have no positive effect on the model’s performance.

All in all the model’s performance is promising for applications that use computational
attention models in natural scenes and are focusing on the role of scene text. Since this
thesis was carried out in cooperation with a company using this systems, we are looking
forward on using our model in the field and testing its predictability of human fixations
in real world scenarios.

7.1 Future work

For future work in this field of research we would be interested to see how even more recent
text detector algorithms would change the model’s performance. Furthermore we would
be interested how the model would perform when trained on different datasets containing
even more scene text focus than our database provided. And of course testing other top-
down influences like additional background knowledge on text context or other machine
learning approaches would be needed to further investigate the influence of text context
in human visual attention.

As stated above, the computational attention model for this thesis was carried out
in cooperation with a company in order to acquire a scene text focused human fixation
predictor. There are some projects planned in the near future in which we will be able
to test the model’s performance in predicting human fixations based on a real world task
like text guided navigation. A task like navigation is performed with a moving subject
and therefore does not exactly apply on a model trained with a static eye tracker and
random scene images. Therefore, we would further be interested in a model that is learned
based on a scene video and associated eye movement data recorded with a mobile eye
tracking device. However, since there is not yet a clear definition that we know of on how
to compute real fixations with mobile eye trackers, a meaningful approach on this matter
is not yet possible.
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