S2MAV

Static Slicing for Mobile Application Verification

Christoph Woergoetter

S2MAV

Static Slicing for Mobile Application Verification

Master’s Thesis
at

Graz University of Technology

submitted by

Christoph Woergoetter

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology
A-8010 Graz, Austria

05 Nov 2012

© Copyright 2013 by Christoph Woergoetter

Advisors: Univ.-Prof. Dr. Roderick Bloem
Dipl.-Ing. Daniel Hein
Dr. Peter Teufl

JIAIK T

Grazm

S2MAV

Statisches Slicen zur Mobilen Applikationsverifikation

Diplomarbeit
an der

Technischen Universitat Graz

vorgelegt von

Christoph Woergoetter

Institut fiir Angewandte Informationsverarbeitung und Kommunikation (IAIK),
Technische Universitit Graz
A-8010 Graz

5. November 2012

© Copyright 2013, Christoph Woergoetter

Diese Arbeit ist in englischer Sprache verfasst.

Begutachter: Univ.-Prof. Dr. Roderick Bloem
Dipl.-Ing. Daniel Hein
Dr. Peter Teufl

JIAIK T

Grazm

Abstract

Today’s mobile phones are powerful and complex devices. These devices store sensitive data like
business data, contact data, account information, and banking data. All of these data are worthy of
protection. Unfortunately, modern phone operating systems have different security issues. These issues
are composed of operating system issues, application issues, and implementation issues. Therefore,
Android applications with sensitive information have to deal with these issues to minimize the number
of security vulnerabilities.

This master’s thesis provides a framework to efficiently analyse if an application properly implements
security checks to consider Android’s different security issues. The idea behind our approach is to use
static slicing, which is a well-known analysis technique, to analyse Android’s Dalvik instruction set.
This technique is used to classify the quality of current Android application in terms of security relevant
code. To evaluate the performance of our framework, we analysed 4969 arbitrary applications.

Kurzfassung

Heutige Handys sind leistungsstarke und komplexe Gerite. Diese Gerite speichern viele sensible
Daten, wie Unternehmensdaten, Kontaktdaten, Benutzerinformation, und Bankinformationen. Alle die-
se Daten sind schiitzenswert. Weiters haben moderne Handybetriebssysteme viele verschiedene Sicher-
heitsprobleme. Diese Probleme setzen sich aus Problemen des Betriebssystems, der Anwendungsschicht,
und der Implementierungen von Anwendungen zusammen. Eine Anwendung, mit sensiblen Daten, muss
folglich all diese verschiedenen Probleme behandeln, um die Menge der Sicherheitsschwachstellen zu
minimieren.

Diese Masterarbeit stellt ein Framwork zur Verfiigung, um zu tiberpriifen ob Android Anwendungen
Sicherheitsiiberpriifungen verwenden und diese auch korrekt implementiert haben. Fiir dieses Ziel ver-
wendet das Framework statisches Slicen, um die Dalvik Instruktionen von Android zu analysieren. Diese
Methode wird verwendet, um die Qualitét aktueller Android Anwendungen in Bezug auf Sicherheit zu
tiberpriifen. Fiir die Evaluierung der Qualitéit unserer Losung haben wir 4969 zufillige Anwendungen
analysiert.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources / resources, and that I have explicitly marked all material which has been quoted either literally

or by content from the used sources.

Place Date Signature

Eidesstattliche Erklarung

Ich erklire an Eides statt, dass ich die vorliegende Arbeit selbststindig verfasst, andere als die angegebe-
nen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wortlich und inhaltlich entnommene
Stellen als solche kenntlich gemacht habe.

Ort Datum Unterschrift

Contents

Contents

List of Figures

List of Tables

List of Listings

Acknowledgements

Credits

1 Introduction

1.1 Android Security Issues e
1.1.1 Low-LevelIssues it
1.1.2 Mid-Level Issues e
1.1.3 High-LevelIssues
1.2 The Goals of this Master’s Thesis
1.2.1 Android as Mobile Platform
1.2.2 On-device Execution
1.2.3 RootClassification e
1.2.4 SMS Classification 0 i e e e
1.2.5 Applicability for Cryptographic Analysis
1.3 Structure of this Thesis e

2 Preliminaries

2.1 Technical Vocabulary
22 Android OS e
2.2.1 Android Architecture
2.2.2 Android Application Structureo
2.2.3 Android Application Components
224 Application Start-Up Methods L.
2.2.5 Android’s Security Mechanisms oL oL,
2.3 Dalvik Architecture
2.3.1 Dalvik Instructions

iii

vii

ix

xi

xiii

24 Code AnalySis L e 23
2.4.1 Static Analysis 23
2.4.2 Dynamic AnalysisS 24
2.5 StaticSlicing e e 24
2.5.1 Language Definition 25
2.5.2 Backward SlicingwithaPDG 25
253 Forward Slicing 26
254 Limitations e e e 29
Related Work 31
3.1 Malware e e e e e e e e e e e e e e 31
3.1.1 Malware Evolution e 31
3.1.2 Malware Detection e e e 32
3.1.3 Tolerate Malware 34
32 InformationLeaks L 35
3.2.1 Information-Flow Analysis 36
3.2.2 Information Protection 37
3.3 Security Analysis L. e e e e 38
3.4 Security Analysis for Android 40
3.5 Code Analysis Frameworks L 42
351 ADAM . . Lo e 42
352 Andromaly 42
353 Apktool . . .o 42
354 Dex2jar e 42
355 Ded e e 43
356 Dedexer e 43
357 ComDroid e 43
35.8 Paranoid 43
359 SAAF . . . e 44
APK Analyser 45
4.1 Architecture e e e e e e e e 45
4.1.1 Execution Management 45
4.1.2 Execution Environment Lo 46
42 Register Tracker 47
4.2.1 Slicing Android Applications 47
422 Issues with Static Slicing 50
43 Modules e e 54
43.1 Root. e 54
432 T0 . . e 56
433 SMS . e 56
434 Crypto e 58
44 Generated Results 58
4.4.1 User Notifications v ittt e 58
442 Technical Experts e 59

ii

5 Evaluation
508 10
5.1.1 Evaluation Basis
5.1.2 Evaluation of the Arbitrary Set

5.1.3 Malware Evaluation
52 Root
5.2.1 EvaluationBasis

5.2.2 Evaluation of the Arbitrary Set

5.2.3 Malware Evaluation
53 SMS
5.3.1 EvaluationBasis

5.3.2 Evaluation of the Arbitrary Set

5.3.3 Malware Evaluation
54 Crypto
5.4.1 EvaluationBasis

5.4.2 Evaluation of the Arbitrary Set
5.4.3 Malware Evaluation

55 Timing.
6 Concluding Remarks
7 Outlook
A Acronyms
B Class Diagrams
C Dalvik Opcodes

Bibliography

ii

61
62
62
63
64
65
65
66
67
68
69
69
72
73
73
74
75
76

79

81

83

85

89

95

v

List of Figures

2.1
2.2
23
24
2.5

4.1
4.2
4.3

5.1
5.2
53
54
5.5

B.1
B.2
B.3
B.4
B.5

Android System Architecture 11
Javavs. Dalvik Binaries L 19
PDG for Listing 2.12 e e 27
CFG for Listing 2.14. e e e e 29
CFG for Listing 2.14 with Applied Flow Propagation Algorithm. 29
Apkanalyser Architecture 46
Illustration of the Generation of Branches for the Register Tracker 51
SMS Classification Hierarchy 57
Intersection of the IO Categories Write, and Delete 63
Intersection of the IO Categories Write, and Delete for the Malgenome Evaluation 64
Intersection of the SMS andIOModule 71
Intersection of the Root and CryptoModule 75
Intersection of the Root and Crypto Module, Based on the Malware Set 76
Class Diagram: ApkAnalyser Framework 86
Class Diagram: Execution Management 87
Class Diagram: Execution Management 87
Class Diagram: Slicing Architecture L. 88
Class Diagram: Module Architecture 88

vi

List of Tables

5.1
52
53
54
5.5
5.6
5.7
5.8

59

5.10
5.11
5.12
5.13
5.14
5.15
5.16

C.1

Evaluation of the IO Module with the Manual Evaluation Set 62
Evaluation of the IO Module with the Arbitrary Set 63
Evaluation of the IO Module with the Malgenome Set 64
Evaluation of the Root Module with the Manual EvaluationSet 66
Evaluation of the Root Module with the Arbitrary Set 66
Evaluation of the Root Module in Combination with the IO Module 67
Evaluation of the Root Module with the Malgenome Set 68
Evaluation of the Malgenome Set with the Root Module in Combination with the 10

Module e 68
Evaluation of the SMS Module with the Manual Evaluation Set 69
Evaluation of the SMS Module with the Arbitrary Set 70
Evaluation of the SMS Module in Combination with the IO Module 71
Evaluation of the SMS Module with the Malgenome Malware Set 72
Evaluation of the Crypto Module with the Manual Evaluation Set 73
Evaluation of the CryptoModule 74
Evaluation of the CryptoModule 75
Timing of the Modules 77
Dalvik’s Opcode List [Bytecode for the Dalvik VM 2007] 93

vii

viii

Listings

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
3.1
3.2
33
4.1
4.2
4.3
4.4
4.5

Android’s Filesystem 14
SharedUserld-Flag Example Manifest 15
SharedUserld-Flag Directory Listing 15
Source for Private File Storage Lo 16
Dalvik Instruction Format o 19
Dalvik Instruction: const-string v . e e e e e e e 20
Dalvik Instruction: move 21
Dalvik instructions for instance getandput, 21
Dalvik instructions: if-eq 22
Dalvik instructions: invoke-direct and invoke-direct/range 22
BNF of Example Language 25
Example Program for Backward Slicing 26
Flow Propagation Algorithm for Forward Slicing 28
Example Program for Forward Slicing 28
Code Sample: Early Denial of Service 32
Code Sample: Circumvent TaintDroid 36
Dedvs. Dex2jar e e e e e e e 43
Rules for Assignment Instructions 49
Code Example for Callback Mechanism 52
Superuser.apk and Build-Tagchecks 55
Suexecutioncheck e 55
CryptoCode e e e 58

X

Acknowledgements

I would like to thank my colleagues at the institute of applied information processing and communication
(IAIK) who have provided invaluable help and feedback during the course of my work. I especially wish
to thank my advisors Peter Teufl and Daniel Hein for their immediate attention to my questions and
endless hours of toil in correcting draft versions of this thesis, giving feedback and showing new ways
and impressions during the development of the framework.

Christoph Woergoetter
Graz, Austria, October 2013

X1

Xii

Credits

I would like to thank the following individuals and organisations for permission to use their material:

* The thesis was written using Keith Andrews’ skeleton thesis [Andrews, 2012].
* Figure 2.1 was extracted from Android System Architecture [2013] under the terms of the Cc-by-
sa-3.0-migrated, GFDL. Copyright © by the GNU Free Documentation License.
Creative Commons Notice

Copyright © by Creative Commons
Permission to copy, distribute, transmit and to adapt the work under the following conditions:

* The work must be attributed in the manner specified by the author or licensor.

* If the work is altered, transformed or built upon it, then the work is distributed under the same or
similar license to this one.

For further information see the Creative Commons Attribution-ShareAlike 3.0 Policy .

"http://creativecommons.org/licenses/by-sa/3.0/legalcode

xiii

X1v

Chapter 1

Introduction

“ Begin at the beginning and go on till you come to the end; then stop. ”

[Lewis Carroll, Alice in Wonderland]

Currently, the most popular smartphone operating system is Android [Spreitzenbarth, 2013]. How-
ever, the increased exposure of Android leads to an increased risk of threats to Android phones through
poorly, or maliciously designed applications. In this context, Zhou and Jiang [2012] describe Android as
the top mobile malware platform.

While Android defines a base set of permissions to protect phone resources and core applications,
it does not define what a secure phone is, relying on the applications to act together securely [Enck,
Ongtang, and McDaniel, 2008]. Nevertheless, for the protection of sensitive data, Android provides
different security mechanisms [Shabtai, Fledel, et al., 2010].

» QOperating system mechanisms
POSIX users to encapsulate application data on file-system level.

Deactivated root user, to avoid unauthorized system modifications.

* Application’s communication-specific mechanisms
Application permissions to limit application abilities to perform malicious behaviour.
Component encapsulation, to prevent that one application disturbs another application.

Own Dalvik virtual machine for each application.

Beside these mechanisms, the applications are also able to implement their own protection mecha-
nisms for their data. For example, a common method to protect data is to encrypt the data of an applica-
tion with a common encryption algorithm.

Thus, the protection possibilities of Android, and its applications can be separated into three cat-
egories. These three categories can be defined as low-level, mid-level, and high-level security mech-
anisms, where the levels define the place of the security mechanisms. In this context, we defined the
following security levels.

Operating system security mechanisms are defined as low-level protection mechanisms based on oper-
ating system mechanisms, like file-system permission schema.

Application-specific security mechanisms are mid-level protection mechanisms, which protect the op-
erating system, and the applications against malicious applications. This mechanism is based on
the previously defined application’s communication-specific mechanisms, like component encap-
sulation, application permissions, and own Dalvik virtual machines.

2 1. Introduction

Implemented security mechanisms are defined as high-level security mechanisms, which an applica-
tion implements by itself and is not based on any Android-specific security mechanism, like data
encryption.

However, each of these security categories has its weaknesses. Based on the defined security levels,
we similarly separate the issues of each security level. These levels, and an exemplary issue for each
level can be connected to the previously defined security mechanisms as follows.

Low-level issues are based on weaknesses of operating system security mechanisms. For example the
deactivated root user can be activated, which destroys the application encapsulation mechanism on
file system level.

Mid-level issues are based on weaknesses of application-specific security mechanisms. For example,
application’s components are protected by several security mechanisms to avoid unauthorized ac-
cess, but all of them share the same communication channels for making phone calls, sending and
receiving an SMS, and to use the Internet. Thus, these communication channels can be used to
infiltrate the security mechanisms of Android applications.

High-level issues are based on weaknesses of implemented security mechanisms. For example, the
idea to protect application by additional security mechanisms, like encryption, is good, but if
an application uses an already broken, or weak encryption algorithm, then the data protection is
useless.

In the following section we discuss the issues of the different levels in more detail, and why it is im-
portant to analyse, and to verify applications if certain security mechanisms are correctly implemented.
Additionally, we discuss why applications should implement specific measurement mechanisms, to en-
sure that all operating system security mechanisms are active.

1.1 Android Security Issues

Modern mobile phone operating systems have many different security issues, which are composed of
low-level, mid-level, and high-level issues. Low-level issues are defined as issues based on operating
system security mechanisms. Mid-level issues are defined as issues based on application-specific security
mechanisms, and high-level issues are issues of own implemented security mechanisms.

Thus, an application with sensitive data has to deal with these issues to minimize the number of
security vulnerabilities. To gain a better insight, this section describes the different types of issues in
more detail.

1.1.1 Low-Level Issues

Low-level issues, which are based on operating system security mechanisms, including, among others,
the version of the operating system and the administration user. Currently, there are at least five different
Android versions outstanding [Andreas, 2013]. However, security vulnerabilities of older Android ver-
sions still exist and application developers must deal with them. One possible solution for this problem
is to only support the latest version, but this would decrease the potential amount of customers. Another
issue of this category is the administration user. The so-called root user is able to modify all files on
the system. Therefore, a security relevant application should check, whether a device is rooted or not.
Unfortunately, we do not have any analysis results whether applications make root-checks or not, what
we want to change with this work.

1.1. Android Security Issues 3

Accordingly, one important focus of this master’s thesis is the detection of root-checks in applica-
tions. This helps us to make assumptions about the security of an application and whether the developers
of an application also considered operating system issues or not. However, an analysis of the available
Android versions and their vulnerabilities is not part of this work, because this is basically an operat-
ing system and market share analysis. The next section describes rooted phones with its advantages,
disadvantages, and issues in more detail.

Rooted Phones

In general a rooted device is a device with an active user account that has administration privileges. The
term rooted is derived from Unix operating systems, which always have an administration user called
root. Nevertheless, this user can be activated, or deactivated. Current Unix operating systems deactivate
the root user and allow users with the help of a program, which is executed with administrative rights,
to run other programs with administration privileges. The advantage of this solution is that the root user
remains inactive and only one application acts as a gatekeeper. This gatekeeper application is able to
allow users to execute applications with administrative rights or not.

Android does not have such a program. Furthermore, such a program can not even be installed,
because the system prevents the installation and the root user is deactivated by default. Thus, the user
does not have the required permissions to grant an application administrative rights.

To circumvent this protection mechanism, a vulnerability must be exploited, but this results in an
active root user. Thus, the user, and the applications are able to modify files from other applications, or
system files. This is done for various reasons. On the one hand, an owner of the phone can reactivate
root to modify the system, or to use low-level functions of the operating system that can not directly
be used without administration privileges. On the other hand, malicious applications use administration
privileges to embed malicious code deeper in the system and to hide it from antivirus applications.

In contrast to the advanced capabilities of rooted phones, security relevant applications tend to pre-
vent the execution on rooted phones, because the data of the applications could be compromised. So,
we defined security relevant applications as applications with sensitive data. That means that, in our
case sensitive data are business data, authentication data, and banking information. Security relevant
applications could be applications with business data, applications for storing electronic money, banking
applications, or other applications with authentication data. If such applications store the sensitive data
in plain text or with a weak encryption in the private folder of the application, then another application
with administration privileges can easily steal this sensitive data.

In this context, we see a high security vulnerability in rooted phones. Thus, it must be detected,
whether applications check if a phone is rooted or not. Furthermore, if an application uses administrative
permissions for certain operations, then this application must be found, because it could be that such an
application is malicious.

1.1.2 Mid-Level Issues

Mid-level issues are based on the different application-specific security mechanisms. These security
mechanisms protect the inter-process communication with other applications, and the usage of Android’s
communication channels.

In Android the inter-process communication can be done through services, and intents. For example,
an application is able to bind to a service from another application to communicate with certain compo-
nents of the other application. Additionally, it is also possible to use intents to forward some content to
another application and to retrieve some response. Chin et al. [2011] discuss issues with inter-process
communication in Android. Furthermore, privilege escalation of an application by exploiting compo-
nents of other applications is also possible with inter-process communication [Davi et al., 2011]. These

4 1. Introduction

are only two of many research papers about IPC in Android. Thus, the analysis of the IPC architecture of
Android is not one of the primary goals of this work, but it is discussed how good the detection of such
mechanisms would work with our framework.

Furthermore, a smartphone has typically three different communication channels. Firstly, it is able
to make phone calls. Secondly, it is possible to send short messages (SMS). Thirdly, a smartphone has
access to the Internet. Each of these communication channels can be used for benign, and malicious
applications, for different purposes.

Phone calls can be used for several purposes. The typical usage scenario is to call another person,
but phone calls can also be used for payment services, emergency services, and scam calls. Payment
services, and scam calls are more interesting for security inspection. Calls to premium rate numbers are
protected by an additional permission of the system. Thus, a user sees the possibility that an application
is able to call premium rate numbers during install-time. Furthermore, the owner of a phone can block
incoming and outgoing premium rate numbers from the service provider. Thus, we do not inspect the
possibilities of phone calls in this work, because the user has always the possibility to block premium
rate numbers through the service provider.

The connectivity to the Internet is the communication channel with the most possibilities. Through
the use of this channel, applications are able to do almost all from the other two channels. In that way, it
is possible to make calls, send short messages, send mails, download additional content, etc.. To prevent
that benign, and malicious applications do not send sensible data to a server, many researchers presented
approaches to secure the communication with the Internet. Enck, Gilbert, et al. [2010] discuss the pos-
sibilities of an information-flow tracking system to detect data, which are sent to a server. Furthermore,
Barrera et al. [2010] formulated a fined-grained permission model to increase the security by reducing
the amount of allowed operations on a communication channel. These are only two of many research
papers, which primarily discuss issues with the Internet on mobile phones. Thus, we do not focus on this
communication channel, because there is already a lot of research in this field.

SMS have an important role as communication channel, because SMS are typically used as second
authentication method in two-factor authentication scenarios, and as confirmation messages in electronic
depository transfers. Unfortunately, it is very easy to intercept the SMS communication on Android.
Malicious applications are able to sniff, and abort SMS without the knowledge of the user. Furthermore,
it is also possible to hide such an SMS listener from Android’s API. Thus, third-party applications can
not easily detect whether an application intercepts the SMS communication or not. Because of the high
relevance of the SMS channel, we added the SMS channel to our goals. We want to detect issues with
SMS regarding the possibilities what an application can do with an SMS, and which kind of applications
sniff or abort SMS. The next section discusses issues with the SMS channel in more detail.

SMS Issues

Our second defined security threat handles vulnerabilities of the SMS architecture on Android, which
come from the flexible use of broadcast receivers. SMS is a communication method, but the range of
functions for SMS is much higher than only sending text messages. It is used to control the behaviour
of the phone, to track the position of the phone, or to do a factory reset in case of a theft. Furthermore,
SMS are often used for multi-factor authentication mechanisms, and for electronic banking. Multi-factor
authentication can be used to reduce the probability of a hijacked account, by using two communication
channels for authenticating a user. For electronic banking, short messages are used to validate a cashless
money transfer. This enormous potential of the SMS architecture and the vulnerabilities of the underlying
component led us to define this as our second point of interest.

Android’s system architecture allows applications to register themselves to receive SMS in two dif-
ferent ways, either dynamically, or statically. The differences of these two registration schemes are not
obviously visible. It is only possible to retrieve information of statically registered receivers from other

1.2. The Goals of this Master’s Thesis 5

applications, whereas dynamically registered receivers are not visible by other applications with the help
of Android’s API. Consequently, it is not easily possible to detect SMS applications with dynamically
registered receivers. As a result of this, applications have the possibility to hide their SMS function-
ality from other applications. The only sign of an SMS receiver is the additional permission for the
application, but many applications are over-privileged [Davi et al., 2011]. Therefore, applications that
analyse and classify the installed applications do not classify and list such applications as SMS receiving
applications.

We believe that also current antivirus applications do not detect this type of applications. In our
perspective, these applications are potentially security threats, because they are able to sniff SMS without
the knowledge of the user. Our motivation is to detect such applications to notify the user about the
existence of such applications on the phone.

1.1.3 High-Level Issues

The last defined security issues are high-level issues, which are based on implemented security mech-
anisms. Android applications have the possibility to easily replace every default application. Because
of this fact, applications must have wide-ranging permissions in the system, to be able to replace core
features, like the lock screen, the home screen, the dialer application, or the messaging application. Nev-
ertheless, such wide-ranging permissions can lead to security vulnerabilities, because if an application
does not care about the security of a component, then the application will have a security vulnerabil-
ity. Security relevant implementation issues including among others, input-output operations (I10), and
encryption algorithms.

10 operations can be an implementation issue, but this issue depends on the location where a file
is stored, read, and which data the file contains. If an application uses the public directory to store
configuration properties, or cached data, then this application will be exploitable for another application.
The problem with cached data is that they can contain authentication information, or other sensitive
information. Because of the relevance of the correct use of the public directory, we also inspect 10
operations in this work.

Another implementation issue can be the usage of encryption. Data encryption is basically an effi-
cient method to protect data, but if the used encryption algorithm is already broken, or by default weak,
then the encryption is useless. Nevertheless, in certain cases a weak encryption is not an issue by default,
because if the encryption must only withstand a short period of time, then a weak encryption algorithm is
also suitable. On the one hand, such an usage scenario could be the encrypted transaction of a one-time
pad, where the one-time pad is only valid for a couple of minutes. On the other hand, secure applications
— like password safe applications — must use a strong encryption algorithm, which is exhaustively anal-
ysed and where an attack is computational infeasible. Thus, it is interesting to know if an application
uses encryption. Because of these aspects we also added the detection of cryptographic code to the goals
of this work.

1.2 The Goals of this Master’s Thesis

This section describes the goals of this master’s thesis, based on the previously described problems. We
do have the following goals:

* Provide a framework for direct execution on Android’s mobile platform, to give users the capability
to analyse their applications.

* Analyse applications to find the code for root-detection.

6 1. Introduction

* Analyse applications to detect the code for processing SMS, and classify the applications, based
on this SMS processing code.

» Evaluate the framework for the applicability to detect cryptographic code snippets in applications.

1.2.1 Android as Mobile Platform

We decided to use Android as the underlying operating system on which our framework should work.
This decision is made for several reasons. Android is currently the most common operating system for
mobile phones [Zhou and Jiang, 2012]. Thus, our framework covers the most mobile phones, and the
amount of malware for Android is probably also higher than for other mobile platforms. Furthermore,
it has a more open approach in contrast to the other three common operating systems — i0S, Windows
Mobile, and Blackberry OS. Therefore, we can get easier an in-depth knowledge of the operating system.
The last property is regarding the execution environment. It is easier to statically analyse intermediate
code as native code.

1.2.2 On-device Execution

Our second basic design decision was to build a framework that is capable of running directly on a mobile
phone. This is due to the entry barriers of desktop analysis frameworks for mobile applications. We did
not choose a cloud-based solution, because we would have more implementation effort for implementing
a server, and client application, and to design a communication protocol. Additionally, not each user has
a mobile data contract with unlimited data transfer volume. Therefore, we assume that a standalone
client is more suitable.

Our experience with desktop analysis frameworks is that they are mostly difficult to use for end users.
Nevertheless, the end users should also be able to do basic security checks on installed application and
not only trust the application’s developers.

We know that this decision has certain disadvantages in calculation power and execution privileges.
Thus, our evaluation includes a performance evaluation of our framework to discuss the usability of our
framework on mobile phones.

1.2.3 Root Classification

One of our focused goals is the detection of code that is used to classify whether a mobile phone is rooted
or not. Thus, we must find applications that check if the phone is rooted or not. With that basis we are able
to find common root-detection patterns and compare them with our detection methods. Subsequently,
our framework must be evaluated to analyse the reliability of it. We defined the goals for detecting code
to detect rooted phones as follows:

1. Search, decompile, and analyse current available applications with root-detection code.

2. Define detection patterns for the framework on the basis of the analysis, and our already known
detection methods.

3. Evaluate the defined detection patterns.

1.2.4 SMS Classification

The second goal of this work is the SMS architecture of Android. We want to have a deeper under-
standing of the architecture itself and its potential threats. In consequence of that, we have to manually
analyse many applications with the permission to receive SMS and to classify these applications. Thus,

1.3. Structure of this Thesis 7

classification categories must be defined. Based on the newly learned behaviour of the SMS architecture,
we must define detection patterns to efficiently classify applications into our defined categories. Finally,
we must also evaluate the performance of our framework with our defined detection patterns. Therefore,
our goals for classifying the SMS architecture of Android are the following ones.

1. Analyse applications with SMS permissions, define categories, and classify these applications.
2. Define detection patterns to efficiently classify applications in our defined categories.

3. Evaluate the defined detection patterns.

1.2.5 Applicability for Cryptographic Analysis

Beside our previously defined goals, our framework should also be able to detect and to classify other
types of code. Thus, we also defined an additional detection pattern to analyse the use of cryptographic
code in applications.

Furthermore, it is interesting to know which encryption is used and whether the cryptographic code is
used or not. With this information we can conclude the strength of the used cryptography. Nevertheless,
we are aware of the fact that static slicing is not the best mechanism to find cryptographic code. Thus,
this should only be an experimental setup to examine the applicability for the analysis of cryptographic
code in applications.

Therefore, this detection class should be able to find the code for encryption and decryption and to
detect the used algorithms for the cryptographic operations. This detection class is also used to analyse
whether the framework is portable for other usage scenarios or not.

1.3 Structure of this Thesis

This thesis describes a new approach of analysing Android applications for gathering information about
their security. The first part of the thesis (Section 2 and 3) embeds this work into the context of other
related work. Furthermore, it describes background knowledge about the Android system, its security
mechanisms, and technical background about static slicing. Additionally, this part also describes related
frameworks, which are also used to analyse Android applications.

The second part of the thesis handles the technical implementation of the work and the evaluation of
the performance of the work. Section 4 describes the technical implementation of the work and Section
5 describes the results of the evaluation of the framework on different evaluation sets.

Finally, the last part outlines some concluding remarks about the work of this thesis in Section 6 and
consists of a discussion about future work in Section 7.

1. Introduction

Chapter 2

Preliminaries

»

“ Getting information off the Internet is like taking a drink from a fire hydrant.

[Mitchell Kapor]

This work discusses issues with applications, which leak information on mobile phones powered
by Android and proposes a solution for those issues. Here we give a brief introduction about the used
technologies. The first section defines the technical vocabulary, which we use in this work. Section
2.2 discusses the Android operating system and its security mechanisms. This platform is used by our
proposed solution. Next, an in-depth discussion about the Dalvik file format and the use for static slicing
is given. The following sections discuss different analysis methods and existing frameworks, which are
based on these analysis methods. Finally, the last section gives a brief introduction of static slicing, with
the help of a simple language.

In contrast to the related work chapter, this chapter does not consist of academical research, but rather
technical background about the Android system, analysis techniques, and available analysis tools.

2.1 Technical Vocabulary

We must differentiate between mobile phones and smartphones. A smartphone is a mobile phone with
more advanced capabilities than a typical mobile phone has. Such advanced capabilities are email func-
tionalities, portable media player, digital camera, GPS navigation, and feature-rich Internet browsers.
Nevertheless, in this work both terms are equally used and refer to smartphones. It is possible to root
current smartphones. The term root refers to the possibility to gain administrative privileges on the mo-
bile phone. Rooted phones have additional functions, which result from the additional privileges of an
application. Such applications can be used to read private data from other applications. Therefore, the
data of the applications can be compromised. It is essential to differentiate between data security, and
data confidentiality.

Data confidentiality refers to preventing the disclosure of information to unauthorized individuals or
systems.

Data security means protecting data against malicious applications and keeping the data confidential.

We also introduce the terms technical expert, non-technical expert, security expert, and user. We use
the terms technical expert, and security expert for persons, whose knowledge about the technical details
of a specific piece of hardware, or software is higher than for typical end users. For the term end user,

10 2. Preliminaries

we also use the terms non-technical expert, and user. All of these terms refer to persons, who have basic
knowledge about the system, but have not detailed understanding of the underlying technology.

Finally, there are different definitions for malicious applications and its variant. In this work we
do not differ between the terms malicious applications, malware, and viruses. In all cases we mean a
harmful application.

2.2 Android OS

This section gives a brief overview of the Android system architecture, which is currently the world’s
most popular smartphone operating system. Android reached a market share of 75% in the third quarter
of 2012 [Nagamine, 2012]. Furthermore, Android’s official application market reached an amount of
700.000 applications [Islam, 2012]. The success story began when Android was founded in 2003. It
took five years until the first Android devices for mass-market were available in 2008. Android has
become the market leader in only five years.

One success factor of Android’s mobile device operating system is, that it is based on open source
licenses [Butler, 2011]. Thus, it allows every company, and especially every developer, to modify and
improve the code of the operating system. In general, for most parts of the operating system the Apache
License! is used, and for the Linux kernel the GNU General Public License? is used [Paul, 2007]. These
licenses allow developers to modify the software for any purpose. We believe that another success
factor of the system is that the system is based on an already existing operating system and Google’s
marketing strategy. The core of Android comes from Linux, an open source operating system. The main
advantage to use an existing operating system is that the basic functionality of an operating system does
not need to be written by oneself which can lead to a faster development of the operating system itself.
A disadvantage that possibly many vulnerabilities are also ported to the new platform. Nevertheless, if
everything is newly developed, it will also have some vulnerabilities. Beside the Android’s open source
property, Google developed a good marketing strategy, and ecosystem for Android.

We believe that these properties have led many companies to use Android on their different devices.
Nowadays, it is used for smart watches, smart TVs, cameras, laptops, etc. Nevertheless, a primary threat
of such a wide spread system is that every vulnerability in the software is in every device. Thus, if every
device from a user is based on the same operating system, then it will be possible that an attacker can
easily infiltrate the whole technical infrastructure of such a user.

Android seems to waste many system resources for protecting application processes from each other,
but in more detail the system uses this to efficiently avoid program-flow manipulation by malicious
applications. Furthermore, Android has specific security mechanisms, which are designed to protect
application components. It is important to use these security mechanisms, because a weak design of
applications can lead to security vulnerabilities, which would make it possible for malware to hide mali-
cious code, or to easily gain additional permissions by exploiting benign applications [Felt, Chin, et al.,
2011]. The following sections describe the general design of Android, its security vulnerabilities, and
the security mechanisms of Android applications.

2.2.1 Android Architecture

Android is built on top of a modified Linux kernel. The kernel is adapted to fulfill the requirements of
mobile devices. One example is Android’s better power management to increase the uptime of mobile
devices [Android Kernel Development 2013]. Android’s applications are written in Java, but they do not
use the Java virtual machine (JVM) for execution. Android has its own virtual machine to execute the

Thttp://www.apache.org/licenses/LICENSE-2.0.html
“http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt

2.2. Android OS 11

code of applications. Android’s runtime environment consists of core libraries, which are written in Java,
and the Dalvik virtual machine (DVM). The DVM interprets the byte code of the applications.

Furthermore, it does not matter if the application is pre-installed, or a third party application, because
by design Android handles every application in the same way. As a result of this, it is possible to replace
the functionality of every pre-installed application by a third party application. Third party applications
can be used to replace for example the pre-installed messenger application. Furthermore, Android’s
developers have added many libraries for third-party developers to reduce the effort of developing new
applications for the system.

Figure 2.1 shows the Android architecture with its components divided into five layers. The root of
the operating system is the Linux kernel, on which Android is built on. The second layers consist of
Android’s specific libraries. Android’s runtime layer with the DVM and the core libraries is embedded
between the library layer and the application framework layer. The last two layers at the top of the hier-
archy are for applications and the application’s framework that is used by the applications [Developers,
2011].

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Activity Window Content View Notification
Manager Manager Providers System Manager

Package Telephony Resource Location XMPP
Manager Manager Manager Manager Service

LIBRARIES ANDROID RUNTIME

Surface Media : Core
Manager Framework — Libraries

OpenGL|ES FreeType i _

LINUX KERNEL

Display Camera Bluetooth Flash Memory Binder (IPC)
Driver Driver Driver Driver Driver

UsB Keypad WiFi Audio Power
Driver Driver Driver Drivers Management

Figure 2.1: Android’s system architecture divided into five layers. [Image extracted from Android System
Architecture [2013] under the terms of the Cc-by-sa-3.0-migrated, GFDL. Copyright © by the GNU Free
Documentation License.]

2.2.2 Android Application Structure

Every Android application consists of the manifest file, the resource files, and the source code files. The
manifest file declares the different components of an application. In addition, the entry point of the
application, and the requested permissions are also declared in the manifest file. Beside the manifest file,
every application also contains some resource files. These files are used for additional resources as well
as for user interface declarations.

The different components of an Android application, their properties, and a brief discussion about the
relevance of the component in terms of the security are described next. Android and its different appli-

12 2. Preliminaries

cation components suffer from specific security vulnerabilities [Enck, Ongtang, and McDaniel, 2009b].
The security vulnerabilities of Android, and the security vulnerabilities of the different components of
an application are described in later sections.

2.2.3 Android Application Components
Activities

Activities are the primary components of Android applications. Activities are used as the presentation
layer of an application. Hence, activities are used to handle an application’s user input and output. Every
Activity must be declared in the manifest file. The manifest file is used to declare all components and
permissions, which are requested. Furthermore, for every application one defined Activity must hold
an Android specific action?, which defines the entry point of an application. This is similar to the main
function for applications written in C/C++. One important property of an Activity is that it is not possible
to run more than one Activity at the same time. Thus, if an Activity calls another Activity, the first is
paused and the second is started [Android Developer Guide - Activity 2013]. Another property of an
Activity is that it is executed on the main thread. This is the only thread that is allowed to draw elements
on the screen [Android Developer Guide - Activity 2013; Kroop, 2008].

Activities are less important in the context of a security analysis, because malicious applications
have not many advantages if they start an Activity of another application. Except starting an exploitable
Activity to circumvent Android’s permission model by taking advantage of granted permissions of an-
other application [Orthacker et al., 2012]. Basically, the idea of this is that an benign application has an
exploitable Activity with a relevant system permission like the Internet permission. Then a malicious
application can exploit this service to gain access to the Internet without the permission for the Internet
by itself.

Broadcast Receiver

One of the most interesting components of the Android system is the broadcast receiver. Broadcast
receivers play an important role in the whole design of Android. They are used for delivering system
events, simple inter-process communication, and for broadcasting short messages [Android Developer
Guide - Receiver 2013; Kroop, 2008].

From the security point of view, broadcasting short messages, or in general inter-process commu-
nication, is an interesting aspect, because it is possible that such messages include private information
which should not be read or forwarded to certain applications [Chin et al., 2011].

Background Tasks

Services: If an application has a long running operation, then this operation must not be done on
the main thread, because this prevents every input and output. If the main thread is blocked, then An-
droid terminates the blocking application, and throws an application not responding (ANR) exception.
Android has services, which are components, designed for long running operations. Services run in the
background to execute an operation even if the user opens another application. Additionally, a property
of a service is that it allows other components to use it.

This could be a potential security threat if the service is defined wrongly in the manifest file [Android
Developer Guide - Service 2013; Kroop, 2008]. Wrongly defined services can be misused by malicious
applications for example to simulate the behaviour of another application. A service can be exploited
and misused, if the service does not check the sent data of the calling application.

3android.intent.action.MAIN

2.2. Android OS 13

Asynchronous Tasks: Beside services, Android provides another concept for handling long run-
ning tasks in Android. So-called asynchronous tasks are used to execute an operation in the background
as well. Such tasks are basically extensions of the Java thread mechanism and thus, they are not a com-
ponent of an application. Furthermore, asynchronous tasks are designed for one-time operations, like
loading some data from the web, to embed it into an application.

In contrast to services, asynchronous tasks have two advantages. Firstly, they have a simple archi-
tecture and secondly, the pre-defined call-back architecture to the Ul-thread makes it easy to inform the
user about progress updates. Our framework also uses an asynchronous task to handle long running
operations and to easily inform the user about the current status of the analyser.

Storage

Content Provider: For data storage, content providers are the most common components, because
with the help of content providers every application is able to retrieve data and can easily store data in
a database. This component is the recommended way to connect to a database in an application. The
advantage is that this component encapsulates the data and provides more security mechanisms than
other storage solutions would do [Android Developer Guide - Provider 2013; Kroop, 2008].

Files: Another common approach is to store data in a file. This approach is not restricted to the
Android environment. It is a common solution on Unix systems to store configuration properties of
applications in files. Nevertheless, a disadvantage of this simple storage solution is that the files are only
protected by the permission model of the system. Thus, the security depends where the file is stored
[Becker and Pant, 2010].

2.2.4 Application Start-Up Methods

Android applications consist of different components and three of these components can be used to start
an application. These three are activities, sending broadcasts, or starting services. The regular way to
start an application is to click on the icon of the application. This tells Android to start the main Activity
of the application. The other two start-up methods are hidden and not visible for the user. The system
fires broadcasts for pre-defined events, like boot completed or message received. Thus, every application
is able to register a receiver for these events. Android starts all registered receivers, when the event
occurs. The callback method of the broadcast receiver can be used to do event based operations or to
execute malicious code. It is possible that a malicious application starts after the boot of the operating
system by registering a receiver for the boot completed event.

Receivers and activities can not be used for long-running operations. Therefore, services can be
used to keep the application running in the background without the knowledge of the user. Applications
use the combination of the broadcast receiver, and the service component to start at boot and to keep
themselves alive to execute code in the background.

2.2.5 Android’s Security Mechanisms

This section describes the security properties of the Android system. One important security mechanism
is the idea of application isolation through sandboxing [Enck, Octeau, et al., 2011]. A sandbox in the
field of computer security is a well known technique to encapsulate an application in a way that this
application can not harm the hosting system or another application. Android and other systems use this
mechanism to avoid that an application is able to alter data from other applications. Nevertheless, it must
be possible to communicate with other applications. So, Android weakens the sandbox principle. One
case is the usage of different components where each component can be reused and integrated in other
applications in different ways [Felt, H. J. Wang, et al., 2011].

O 0 N O\ W R W =

I e ==y
AW N = O

—_
N

14 2. Preliminaries

Three security mechanisms implement sandboxing on Android. Firstly, Android’s application-specific
user management on file-system level uses well known mechanisms to manage the access to the files of
applications on the disk. This mechanism comes from Android’s kernel, which is adapted from the
Linux kernel. Secondly, the execution of an application is encapsulated in its own Dalvik virtual ma-
chine [Enck, Ongtang, and McDaniel, 2009b]. Thirdly, to protect the application interfaces, Android
provides a permission schema to grant access to specific application components. This mechanism is
also used by Android to protect its components from not permitted access [Felt, H. J. Wang, et al., 2011].
All of these mechanisms are described next.

System Permission Model

Android uses the multiuser concept, which comes from the Linux kernel, to encapsulate applications.
Basically, this prevents process A to access process B’s data, because Android assigns to every appli-
cation its own identity. Every application, which is not signed by the same developer gets a different
Android ID (AID), which consists of a Linux User ID (UID) and Group ID (GID). Consequently, each
process from a different developer is executed with its own identity. Therefore, the owner of the files
of two applications from different developers are not the same. The principle of shared identities is
described in the next section.

If a process tries to access a file from another process then the file system checks the permissions
of the file and prevents the access because of the different owners of the accessing process and the file
itself.

This mechanism restricts access to files of applications on the file system. Thus, if the device is not
rooted, then it is not possible to access private application folders outside an application. Furthermore,
it is not possible to access all system folders. Some of the system folders are only accessible by the
system. Nevertheless, if a device is rooted the permission structure is useless, because root has per
design access to every file, even if the file does not allow the access through the permission system
[Enck, Ongtang, and McDaniel, 2009b]. As a consequence of this, it is important to check if the device
is rooted or not, because smartphones with root access do not have this security function. The absence of
this security feature allows malicious applications to access private folders of applications. For benign
applications this is not important, but security critical applications, like banking or business applications,
have information leaks [Scheid, 2012].

Listing 2.1 shows the file and permission structure of Android’s application cache directory. If it is
possible to access this folder, then it will be possible for applications to easily extract cached files from
an application, which can include authentication credentials, or other sensitive data.

android:/# ls —1 /data/data/

drwxr—x—=x app_0 app_0 com.cyanogenmod.theme.Achromatic

drwxr—x—=x app_2 app_2 com.boombuler.system.appwidgetpicker

drwxr—x—=x app_1l app_1 com.anddoes.launcher

drwxr—x—x app_3 app_3 com.android.providers.applications

drwxr—x—=x app_3 app_3 com.android.providers.contacts

drwxr—x—=x app_3 app_3 com.android.providers.userdictionary

drwxr—x—=x app_3 app_3 com.android.contacts

drwxr—x—x app_4 app_4 com.android.backupconfirm

drwxr—x—=x app_100 app_100 com.valvesoftware.android.steam.
community

drwxr—x—=x app_101 app_101 com.google.android.street

16

18
19
20
21
22
23

O 0 1 N RN =

[R S e

2.2. Android OS 15

drwxr—x—x app_102 app_102 jp.takke.cpustats
drwxr—x—=x app_103 app_103 jp.susatthi.ManifestViewer
drwxr—x—=x app_104 app_104 woergi.tools

android:/# ls —I1 data/data/woergi.tools/
drwxrwx—x app_104 app_104 cache
drwxr—xr—x system system lib

Listing 2.1: A typical permission structure of the /data/data directory, which is the installed
application cache directory.

Weakening Android’s System Permission Model

Applications with limited communication channels are more secure, than applications with many com-
munication channels [Chin et al., 2011]. This is obvious, because for example an application with no
communication possibilities can hardly be modified by a malware and has no data, except the binary of
the program itself, which can be exploited by a malware. Nevertheless, applications with no commu-
nication channels, except the Ul channel, have limited usability and they are only used for real offline
applications, like a calculator, or a heart-rate monitor. Therefore, a compromise between data protection
and communication capabilities must be achieved, by the underlying operating system.

For that reason, Android added a feature that easily allows developers to communicate with their
own applications, but avoids unprivileged access by other applications. In detail, this feature weakens
the user and file permission system of Android. If a developer defines a sharedUserld in an application’s
manifest file, any application with the same ID is executed in the same process and has the same user ID
in the system. Therefore, they share the same sandbox [Bugiel et al., 2011]. Listing 2.2 and Listing 2.3
show this mechanism in detail. The first listing shows the needed tag embedded in the manifest file and
the second listing shows the directory of the shared applications. Both applications are able to read each
others private data. Furthermore, they share the same process, so they also share system preferences and
other process resources.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="iaik . thesis.examplel"
android:versionCode="1"
android:versionName="1.0"

android:sharedUserld="1iaik .thesis"

Listing 2.2: This listing shows an example usage of the sharedUserld-flag, which puts two
applications into the same sandbox (Adapted from the Source printed in Becker
and Pant [2010, page 31]).

android:/# Is —I1 /data/data/

drwxr—x—=x app_114 app_114 iaik.thesis.examplel
drwxr—x—=x app_114 app_114 iaik.thesis.example?2

[S N S

16 2. Preliminaries

Listing 2.3: This listing shows two applications, which share the same AID. (This listing uses
the example code from Listing 2.2 for the two applications.).

File System Security

In early Android versions the private application folder was a common place to store passwords and
other configuration files. One advantage of a file-based persistence model is that it is possible to store
and retrieve data without any deeper knowledge of Android [Hyojun Kim, Agrawal, and Ungureanu,
2012]. It is also possible to quickly port existing application and its configuration files to the Android
platform without deeper knowledge of Android’s architecture.

Listing 2.4 shows a code snippet that accesses the private folder of an application. If the data should
be accessible for every user, the mode must be replaced by one of the public-modes. These modes can
be used to share information with other applications. For that, two modes are available:

* MODE_WORLD_WRITEABLE

* MODE_WORLD_READABLE

Nevertheless, public files are dangerous and they are a potential security leak for the application. As
a result of this, these two modes are marked as deprecated and should not be used anymore [Android
Developer Guide - Context 2013]. Thus, files for applications should be only stored with the private
mode.

void storeData(String fname, String data) {
FileOutputStream f = openFileOutput(fname, Context.MODE_PRIVATE);
f.write(data.getBytes());
f.close();

Listing 2.4: This source code example shows how data can be stored in the internal private
directory.

Application Security

Beside the system permission model, Android provides mechanisms to secure every application compo-
nent by itself. The communication between application components can easily become an attack vector.
If an application has an unprotected component, an attacker is able to force the program to interpret
his message which leads to unpredicted behaviour and possibly to information leaks. Furthermore, if
a developer accidentally sends data to the wrong recipient, it will probably leak information too. Chin
et al. [2011] describe security threats of Android applications and its components. Furthermore, Enck,
Ongtang, and McDaniel [2009b] and Kuhn, Ritter, and Mitschang [2012] also discuss security threats
in Android’s component mechanism. This section describes security threats and Android’s protection
mechanisms for applications and their components.

2.2. Android OS 17

Application’s Component Security:

The components of an application are defined in its manifest file. In terms of security, the manifest
holds certain important flags, which must be inspected to make an assumption about the accessibility
of application components and therefore, for the overall security of the application. For example, each
component can be assigned as external accessible or not in the manifest. In addition, different component
types have different communication capabilities. Three of four component types are able to receive
Intents (broadcast receiver, activities, and services). Intents are the message passing system of Android,
which can be used to easily communicate with the components of applications. Whether a component of
an application is able to receive Intents from outside the application or not depends on the exported flag.
This flag can be declared for each component in the manifest. If this flag is declared for a component
in the manifest, it is easily possible to derive the accessibility of the component. If it is not declared
for a component, then it depends on the implicit assignment by the system. The implicit assignment of
the exported flag depends on the component type, and is defined as follows [Android Developer Guide -
Manifest 2013].

Services, Receiver, Activities are by default exported if they hold at least one intent filter. If they do not
hold an intent filter, then Android assumes that these services are only for internal use and sets the
exported flag to false [Android Developer Guide - Manifest 2013].

Providers are by default exported, but for applications with a minimum-sdk-version number or a target-
sdk-version number above 16 are by default not exported [Android Developer Guide - Manifest
2013].

Application’s Permission Model:

Android also provides a permission model on application level. This model is used for two different
things. Firstly, it protects application programming interface (API) calls from unauthorized access and
secondly it protects exported broadcast receiver components from unauthorized access. Nevertheless,
the permissions are granted at install-time. Thus, the protection of API calls is very limited, because the
user decides during installation, if an application gets access to certain functionality or not [Orthacker
et al., 2012].

As a consequence of this, the permission model of Android can protect applications, and stored data
on the phone, as long as the phone is not rooted. Compared to other mobile operating systems, Android
grants the permissions at install-time and not at run-time [App Attack-Surviving the Explosive Growth of
Mobile Apps]. Thus, users install over-privileged applications on the phone, because they are not aware
of the the problems with over-privileged applications [Felt, Chin, et al., 2011]. This can lead to security
leaks.

For Android’s permission model, the permissions can be separated into four different protection
levels [Android Developer Guide - Permission’s Protection Level 2013]:

Normal: The system automatically grants this type of permission to a requesting application at instal-
lation, without asking for the user.

Dangerous: The user can grant these permissions during installation.

Signature: These permissions are only granted if the requesting application is signed by the same
developer that defined the permission.

SignatureOrSystem: This category is the highest one. The system grants such permissions only to
applications that are in the Android system image or that are signed with the same certificate as
the application that declared the permission.

18 2. Preliminaries

Reverse Engineering

Another issue is that it is possible to reverse engineer the code of an application. It must be differentiated
between byte code and native code. Byte code is compiled to a higher-level portable code that operates
on classes and primitive types. Native code is compiled to a low-level instruction set that operates on raw
binary data and is specific to the target hardware, such as x86. In general, it is easier to reverse engineer
the byte code of an application, than the native code of an application. This results from the fact that byte
code has still more information than native code.

The reasons for security analysts to reverse engineer the code of applications are to understand the
behaviour of the code faster, and to easier analyse it. Unfortunately, malware developers also use this
technique to find vulnerabilities in applications.

To increase the complexity of reverse engineering, application developers can obfuscate their code.
Obfuscation methods restructure the code and potentially add many useless operations to the code. This is
done to increase the effort of following the program-flow in the reversed program. In general, obfuscation
methods can be divided into three categories [Nolan, 2012, page 122ff]:

Layout obfuscation: This technique renames the names of the variables, methods and classes which
makes the code harder to read.

Control obfuscation: If many useless commands are inserted into the code, the reversed code is harder
to read, because these useless code breaks the control-flow.

Data obfuscation: Data obfuscation restructures the data by dividing the data into smaller pieces, en-
coding it or by reordering the data.

Another simple technique to protect code against reverse engineering is to hide it in native libraries.
Native libraries are more complex to reverse engineer as byte code.

2.3 Dalvik Architecture

The Dalvik VM is the basis of every Android application. Android has its own virtual machine which
is similar to Java’s virtual machine. It interprets Dalvik bytecode. Nevertheless, the Dalvik bytecode
format differs in many aspects to Java’s bytecode architecture [Bender, 2010]. Figure 2.2 shows the
differences between Dalvik and Java binaries. Java compiles each file by its own and Dalvik compiles
all files and removes duplicate entries for type declarations, identical strings and other identical data by
putting everything in a global section. Another difference is that Java byte code is based on stack-based
execution model, whereas Dalvik is based on a register-based execution model. That means that the Java
byte code mainly uses a stack for handling data, which leads to many load and store operations. On the
other hand Dalvik uses a registers-based architecture which is faster and reduces the amount of instruc-
tions [Nolan, 2012]. Both, the register-based architecture and the Dalvik file architecture with global
and not class-based sections, lead to a smaller code-size as for Java archive (JAR) files. Ehringer [2010]
includes a sample measurement between uncompressed Dalvik Executable (DEX) files, and uncom-
pressed and compressed JAR files. An uncompressed DEX file is approximately 45 percent smaller than
an uncompressed JAR file and approximately 5 percent smaller than a compressed JAR file [Ehringer,
2010].

For analysing an application, the most important section is the one, where the instructions are stored.
Dalvik adds the instructions into the data section. The data section can be accessed through the class
section, which holds a reference to the data of a class in the data section. This class-data element holds
information about the methods, variables, etc. of a class. Each method of a class has a reference to a
code-item. Finally, such code-items hold the instructions of a method in the data section [Nolan, 2012].

O 0 1 O W RN =

—_— =
N = O

2.3. Dalvik Architecture 19

" classes.dex . :
/ Header \ .
l' < d \ /', C Header) \
‘I- C String Ids > _ | (Constant Pool) ‘
. C Type lds > ‘- I (Class > l
(Proto lds) 1 1 (Field) f
@D | || ==
1. C Methods > J \ C Attributes).
C
C

Classes > / e second.class N

Figure 2.2: This picture compares the Java architecture to the Dalvik architecture. On the one hand
Java compiles every class individually and adds every file into an archive. On the other
hand Dalvik produces only one file containing compiled classes (The picture is adapted
from Nolan [2012, page 58]).

2.3.1 Dalvik Instructions

Dalvik assigns to each instruction a specific instruction format. This instruction format defines the size of
the instruction, the number of parameters, and some additional properties of the opcode, like install-time
static linking for faster code execution [Paller, 2012].

Dalvik has 30 different instruction formats. Listing 2.5 shows the format of a Dalvik method-
invocation instruction. The first half defines the byte code format, with the opcode, the instruction
format, the name of the instruction, the parameters. Thus, the instruction invoke-virtual has five argu-
ment register and the reference to the method object. The second half defines the instruction format for
35¢, which is used by the invoke-virtual instruction. Each word is separated by a space and consists of
16 bits. Each character in a word represents four bits read from high bits to low. Uppercase letters in
sequence from A are used to indicate fields, and the term op is used to indicate the position of an eight-bit
opcode.

Byte code format

6e35c invoke—virtual {vC, vD, vE, vF, vG}, meth@BBBB

ANEAN A AN N

I | | Method reference
[| Argument registers

I Instruction name

| Instruction format

Opcode

Dalvik VM instruction format 35c

AlGlop BBBB FIEIDIC
AN AN AN A AN AN AN A

O 0 1 O W RN =

—_ =
)

20 2. Preliminaries

I 4 argument registers (each 4 bit)
| | Method reference (16 bit)

| Opcode (8 bit)

Argument register (4 bit)

Argument word count (4 bit)

[A=5] op {vC, vD, vD, vF, vG}, meth@BBBB

[A=0] op {}, meth@BBBB

Listing 2.5: Dalvik Instruction Format

Table C.1 on page 93 holds all opcodes, whereas this section describes the most important instruc-
tions, their instruction formates and their use in more detail. Basically, instructions can be separated in
different categories, based on their use.

e Instructions for data retrieval.
* Instructions for arithmetic operations.
¢ Instructions for branches.

¢ Instructions for method calls.

Data Retrieval
This section describes four different types of data retrieval.

1. Loading data into a register.
2. Reading an instance variable.
3. Reading a static variable.

4. Extracting an element from an array.

Loading data into a register can be basically done in two different ways. Either it loads a constant
into a register, or it moves a value into a register. Firstly, loading a constant into a register can be done
with one of the 12 const instructions. For example to load a string into the register the instruction in
Listing 2.6 can be used. Secondly, one of the 13 move instructions can be used to move a value. Listing
2.7 shows a simple move from one register to another register.

Byte code format

la2lc const—string vAA, BBBB

AAN A A A

(. | | String index
I | Destination register
[Instruction name

| Instruction format

Opcode

Dalvik VM instruction format 2lc
AAlop BBBB

Listing 2.6: Dalvik Instruction: const-string

O 0 N N W R W =

—_ -
[

2.3. Dalvik Architecture 21

Byte code format

0112x move vA, VB

ANEVAN A N N

| | I Source register
| | Destination register
I Instruction name
Instruction format

Opcode

Dalvik VM instruction format 12x

BlAlop

Listing 2.7: Dalvik Instruction: move

Instance, and static variables have an additional set of instructions. The move instructions are used
to move the values of such variables, and the const instructions are used to initialise such variables.
Nevertheless, both variable types have an additional instruction set for storing and loading data from a
variable into a register. Without these instructions, they are identically to local variables. Listing 2.8
shows a get and put operation for an instance variable. Static variables have a similar instructions as the
put and get instructions for instance variables and the identical instruction format as constant strings.

O 0 N N W R W =

—_— e e
LW N = O

Byte code format

5b22c iput—object vA, vB, field@CCCC

5422c iget—object vA, vB, fieldQCCCC

AN A A A A

| | | | Instance field reference index
| | | Object register

| | Source or destination register

| Instruction name

Instruction format

Opcode

Dalvik VM instruction format 22c
BlAlop CCCC

Listing 2.8: Dalvik instructions for instance get and put

Another way to store data is to store it in arrays. An array is a set of values from the same type.
Dalvik provides specific instructions to get, and put a value in the set. The structure of these instructions
is also similar to the structure of the instance instructions, except they refer to an array register and not
to an object register.

Arithmetic operations

Arithmetic operations have different instruction formats, which depends on the different instruction sizes.
The arithmetic operations with the small instruction size can only be used from the first 16 registers. This
results from the fact that for each register only four bits in the instruction format are reserved. The other
instruction format reserves eight bit for each register.

O 0 N O\ W R W N =

—_ =
N = O

S S I S

22 2. Preliminaries

Conditions and Jumps

Dalvik has several possibilities for program-flow manipulation. Common terms in a high-level language,
like Java, for program-flow manipulations are conditions, and loops. Dalvik has two similar constructs.
Firstly, Dalvik has different instructions for jumping to a program location, based on a specific condi-
tion. Listing 2.9 shows such an instruction, and its format. The instruction compares the values of two
registers, and if the condition is fulfilled, then Dalvik continues with the execution at the position stored
in the third register.

Byte code format

3222t if—eq vA, vB +CCCC

VANEVAN N N N N

| | | | Signed branch offset
| | | Second register

| | First register

| Instruction name

Instruction format

Opcode

Dalvik VM instruction format 22t
BlAlop CCCC

Listing 2.9: Dalvik instructions: if-eq

Secondly, to achieve loops in Dalvik, a condition instruction must be combined with a jump instruc-
tion. Jump instructions are similar to goto statements in C. Such instructions only hold an offset address
to a specific position in the code.

Method calls

For method calls, Dalvik has two different formats. The first one is able to handle five parameter regis-
ters. For that instruction format, the first 16 registers can be used as parameter register. This limitation
makes the size of the instruction smaller [Paller, 2012]. For methods with more than five parameters or
for passing a register, which is not one of the first 16, Dalvik has another instructions — invoke-kind/range.
For the parameters of that instructions, the registers can be in the range of 0-65535. Nevertheless all pa-
rameters must be consecutive, because only the number of the first register and the amount of the passed
registers are passed to the instruction. Additionally, both instructions have a method reference, which
refers to the invoked method. The first parameter of a non-static invocation is the this reference. There-
fore, the first instruction type can be used for an instance method with a maximum of four parameters
and for static methods with a maximum of five parameters.

If the method has a return-value, then the result of the method is stored in a hidden result register. To
use the return-value of a method, the result must be moved from the hidden register to a register, which
is accessible by other instructions. This can be done with one of the move-result instructions [Paller,
2012]. Listing 2.10 shows the two different method-invocations, and Listing 2.7 shows the basic move
instruction, which is similar to the move-result instruction.

Byte code format

7035¢ invoke—direct {vC, vD, VvE, vF, vG}, meth@BBBB

N A N N N

(| | [Method reference index
[| Argument registers

23
24
25
26
27
28
29
30
31
32

2.4. Code Analysis 23

(| Instruction name
| Instruction format
Opcode

Dalvik VM instruction format 35c

AlGlop BBBB FIEIDIC

[A=5] op {vC, vD, VvE, VvF, vG}, meth@BBBB
[A=0] op {}, meth@BBBB

A

Argument count

Byte code format

743rc invoke—direct/range {vCCCC .. vNNNN}, meth@BBBB

AN A A A A AN

(. | | | Method reference index

(. | | Last argument register: NNNN = CCCC +
AA — 1

[| First argument register

[Instruction name

| Instruction format

Opcode

Dalvik VM instruction format 3rc
AAlop BBBB CCCC
A

|
Determines the count 0..255

Listing 2.10: Dalvik instructions: invoke-direct and invoke-direct/range

2.4 Code Analysis

Information-flow analysis methods and malware detection methods are mainly based on code analysis
techniques. In general, there are two different code analysis techniques — either static code analysis or
dynamic code analysis. The main difference between these two categories is that for dynamic analysis
the code under inspection must be executed, whereas for static analysis only the byte-code is inspected.
This section describes the properties of both analysis techniques and their advantages and disadvantages.
Additionally, it discusses the usability for direct use on a mobile device.

Mobile devices are limited in resources. In addition, Android applications are limited in their granted
permissions by the protection mechanisms of Android, which leads to further issues for static and dy-
namic analysis techniques. Therefore, not every code analysis technique is suitable for mobile platforms.

2.4.1 Static Analysis

In contrast to dynamic analysis, which needs a complete runtime environment, static analysis only needs
the application binary, and a parser for the code. Thus, static analysis frameworks requires less privileges
on a system, which stems from the fact that it only needs access to the application. Additionally, it is
easier to execute and to automate frameworks based on static analysis techniques on restricted environ-
ments. This results from the fact that static analysis frameworks requires less privileges on a system. This
property is very important for restricted environments like the Android system, because on a non-rooted

24 2. Preliminaries

Android system, it is not as easily possible to intercept the execution of an application or to sniff system
calls as on desktop operating systems.

Nevertheless, static code analysis also has some negative properties or disadvantages. The usage of
resources can grow exponentially, because each possible execution path produces a new possible result,
which must be tracked for a complete analysis of an application. Therefore, a complete analysis of an
application could result in many possible execution paths, where each of them consume memory. Many
of those cold never practically be realised.

2.4.2 Dynamic Analysis

In contrast to static code analysis, dynamic code analysis needs more than only the application. It also
needs a modified execution environment to track the execution path of an application. To track such
an execution path of an application a dynamic analysis framework must also be able to interact with
the application. For example, this can be done manually, or by tools like Monkey*, which is a tool for
Android applications that simulates user interactions.

A dynamic code analysis technique can not guarantee that every branch in the code is executed
and inspected, because dynamic analysis is performed on specific execution paths with specific variable
assignments. These variable assignments potentially do not match all possible variable assignments of
the program, and thus not all execution paths are analysed. For example, if a malicious code is triggered
by an external event, which is hard to guess, then it will not be detected during a dynamic analysis. This
results from the fact that the specific execution path is not executed.

Dynamic code analysis inspects the executing program, which can be done if the framework is able
to intercept the communication of the application and the underlying operating system [Blasing et al.,
2010]. Furthermore, dynamic code analysis can also be used to inject additional code in an application,
to analyse the internal communication of this applications.

Unfortunately, a stock Android system does not allow to inspect the communication between an
application and the operating system, so for this dynamic analysis technique the device has to be rooted
first. The so-called application instrumentation method can be used to analyse the application itself, or to
circumvent the restrictions of a stock Android by intercepting the communication between the operating
system and the application [Enck, Gilbert, et al., 2010].

2.5 Static Slicing

Static slicing is an established method for analysing applications, especially for debugging and testing.
Weiser [1981] introduced the concept of a program slice. He defined a slice as follows:

A static program slice S is a reduced executable program derived from program P, and consists of
all statements in P that may affect the value of variable v at some program point p, such that .S
replicates parts of the behaviour of P.

The slice S is defined for a slicing criterion C' = (p, V'), where p is in P, and V' is a subset of variables
in P.

K. J. Ottenstein and L. M. Ottenstein [1984] showed that a program can be represented by its program
dependency graph (PDG) and the computation of a slice can be simplified to a reachability problem in
the PDG.

*http://developer.android.com/tools/help/monkey.html

O 0 1 N RN =

—_
- o

2.5. Static Slicing 25

A number of different static and dynamic slicing algorithms, with different definitions, are published.
This section describes the basics of static forward and backward slicing in association with a simple
language.

2.5.1 Language Definition

This simple language we use to illustrate is shown in Listing 2.11. In this language, a program P is a
block B, in which a number of statements S are defined. The language consists of arithmetic operations,
binary operations, assignments and two different types of branches. One branch is to construct condi-
tions, and the other one is to construct loops in a program. It lacks classes, methods, concurrency, IPC,
etc., because for simplicity reasons.

P = B
B = begin S* end;
S := identifier = E;
| if E then B [else B] fi;
| while E do B od;
E = num
| identifier
| (E OP E)
| (UOP E)
OP = 4+ | — | =1 / 1 &1 Il | >1< 1| ==
gop = ! | ~

Listing 2.11: A very compact and abstract language which is used in the static slice examples.
The language is adopted from Wotawa [2002].

2.5.2 Backward Slicing with a PDG

For backward slicing with a PDG the following definitions are made. Firstly, a node j postdominates
another node ¢, if every path from i to the exit of the graph goes through 7 [Lam et al., 2006]. A path is
a sequence of edges, which connects a sequence of vertices. Secondly, DEF (i) is a definition set that
denotes the set of variables, which are defined at node 7. Thirdly, REF'(j) is a reference set that denotes
the set of variables, which are referenced at node j [Krinke, 2003].

Based on the language in Listing 2.11, a PDG is a directed graph of a program P. The nodes are
the statements S of the program P and the edges are control- and data-dependencies. A node 7 has a
control-dependency to another node j if and only if

* there exists a path R from 7 to j such that any node u # 4, j in R is post-dominated by j and

* 4 is not post-dominated by j.

Without modifications, the control dependence subgraphs have no single root because the top most
statements will not be control dependent on anything. On the other hand, it is desirable that there exists
a single root, which should be the FNTRY node. This is usually achieved by inserting an irrelevant
control flow edge from the ENTRY to the EXIT node. The effect is that no other node than the
EXIT node post-dominates the ENT'RY node, and the ENT RY node will be the root in the control
dependence subgraph. Normally, the E X I'T' node will be omitted from the program dependence graph,
as it has no in-, or outgoing dependence edges [Krinke, 2003].

Additionally, a node has a data-dependency to another node if there exists a variable x such that:

26 2. Preliminaries

« x € DEF(i),
* z € REF(j) and

* there exists a path R from ¢ to 7 without intervening definitions of x.

Based on the simple language, Listing 2.12 shows a basic program with a loop, and a condition. This
program is used to discuss the principle of static backward slicing with a PDG.

begin
n = 4;
r = 0;
i = 0;
while (i < n) do
begin
if (1 == 1) then
begin
r =r + 1;
end
fi;

i =1+ 1;

end;

Listing 2.12: A very compact program to demonstrate static slicing with a PDG.

To generate the PDG, the control-, and data-dependencies must be computed. As defined before,
a control-dependence is defined in terms of post-domination. For the computation of the PDG, each
statement in a branch of an if or while block depends on the specific control statement. In addition, data-
dependencies are defined through the definition, and reference set. Thus, we can say that the definition
of x at node i is a reaching definition for node ;.

The slicing criterion is identified with a node in the PDG, where the node corresponds to the program
point p in the slicing criterion C' = (p, V). For the defined language, the slice S with respect to p consists
of all nodes from which p is reachable, either via a data-, or control-dependency. Thus, to compute S we
have to find all nodes in the PDG, which have a path to p.

Figure 2.3 shows the computed PDG from the example program, which is shown in Listing 2.12.
The solid lines are the computed control-dependencies and the broken lines are the computed data-

dependencies. For an exemplary slicing criterion C' = (16, {i}), the resulting slice Sy (5} is {2,4, 5,12, 13}.

The specific nodes for this slicing criterion and the resulting slice are marked in Figure 2.3.

2.5.3 Forward Slicing

Forward slicing uses the basic idea of slicing in execution direction. In contrast to backward slicing,
it does not inspect the predecessors pred(n) of a statement, it inspects the successors succ(n) of that
statements.

To inspect the successors of a statement, a control flow graph (CFG) is used. If a path made up of
one or more successive edges leads from x to y, then y is said to be a successor of x, and x is said to
be a predecessor of y. In other words, if y is reachable from z, then x is a predecessor of y, and y is a
successor of x.

2.5. Static Slicing 27

ENTRY @

Figure 2.3: PDG for Listing 2.12

A CFG is a directed attributed graph G with a node set N and an edge set £. The nodes are the
statements S of the program P, and the directed edges represent the jumps in the control flow [Zeller,
2009].

For forward slicing a flow propagation algorithm must be applied on the CFG, to compute all influ-
enced successors of a variable v. This algorithm is based on the definitions of DEF, REF', an influenced
set Infl(n) for every node n, which holds the influenced variables v of n, a logical value inSlice(n),
which defines if a node is part of the slice, and the following rules:

* in(n) = Upepredecessor(n)0Ut(p)

* out(n) = GEN(n) U (in(n) \ KILL(n))

* GEN(n) =v|lv € DEF(n) A (REF(n) Nin(n) # {} VinSlice(n))

* KILL(n) =v|v e DEF(n)

e inSlice(n) = True|REF (n) Nout(n) # {}

e inSlice(m) = Trueln € N(m € Infl(n) A inSlice(n))

The logical value inSlice(n) is at the beginning of the computation false for all nodes, except for
the node for which the forward slice should be calculated. After calculation of the relevant variables,
inSlice(n) is set to true for all nodes n where REF'(n) N out(n) # {}. Furthermore, inSlice(m) is

set to true for all nodes m, which are in the influence of n(m € Infi(n)) if inSlice(n) is true. At the
end, the slice S¢ consists of all nodes n where inSlice(n) = True.

The flow propagation algorithm adds a variable v to the tracking set if:
* v is defined in the statement n and the statement n is already in the forward slice or
* v is defined in the statement n and a relevant variable of a predecessor node is referenced vy €

REF(n) Avs € in(n)

Listing 2.13 shows the pseudo code of the generic flow propagation algorithm. The algorithm is from
Lam et al. [2006]; Tonella [2005].

O 0 N N W R W N =

28 2. Preliminaries

Input: A set of nodes N, and the slicing criterion C
Output: The resulting slice S¢
Vne N

in(n) = {}

out(n) = GEN(n) U (in(n) \ KILL(n))

KILL(n) =v|v € DEF(n)

GEN(n) =v|v € DEF(n) A (REF(n)Nin(n) #{})
inSlice(n) = False

while any inSlice(n) changes
while any in(n) or out(n) changes
Yn e N
m(n) = UpEpredecessor(n)OUt(p)
out(n) = GEN(n) U (in(n) \ KILL(n))
GEN(n) =v|lv € DEF(n) A (REF(n)Nin(n) # {} VinSlice(n))
inSlice(n) = True|REF(n) Nout(n) # {
end while
Ym e N
inSlice(m) = Trueln € N(m € Infl(n) A inSlice(n))
end while

Vne N
Sc = Sc UnlinSlice(n) = True

Listing 2.13: The pseudo code of the flow propagation algorithm for slicing applications.

For every statement, the flow propagation algorithm computes a generation-, and an outgoing-set.
All other sets implicitly exist from the current statement and its predecessors. The definition set can
only hold at the maximum one variable, because each node is one statement and each statement can
only be one assignment operation. The reference set contains all variables referenced from the current
statement and the incoming set contains all outgoing variables of all predecessors. Finally, the kill set is
a duplication of the definition set.

The generation and outgoing set can be easily computed by applying the previously defined rules.
After generating all sets, the next step is to compute the statements of the slice. For that the definition
of inSlice(n) and inSlice(m) is used. A statement is in the slice if it is directly influenced. This is
described by the intersection of the reference and the outgoing set. Additionally, a node is indirectly
influenced if a predecessor is influenced on which the node depends on.

To visualise the behaviour of forward slicing, the slicing criterion C' = (3, {i}) is applied on P,
which is shown in Listing 2.14. The CFG for this program is shown in Figure 2.4. Figure 2.5 shows the
computed results of the flow propagation algorithm. The computed slice S¢ is {3, 4,6, 7}. Line 3 is the
slicing criterion itself, line 4, and 6 fulfill the condition REF'(n) A out(n) # {}, and line 6 is indirectly
influenced, and thus in the slice, because at line 4 inSlice is true, which influences line 6.

begin
r = 0;
i=0;
while (i < x) do
begin
r=r +vy;
i=1i+ 1;
end;

2.5. Static Slicing 29

9 od;
10 ..
11 end;

Listing 2.14: A very compact program to demonstrate forward slicing.

InSlice = F
in={}, out = {}, gen = {}
def = {}, ref = {}, kill = {}
InSlice = F
in={}, out = {}, gen = {}
def = {r}, ref = {1}, kil = {r}
InSlice = T
in = {i}, out = {i}, gen = {}
def = {i}, ref = {}, kil = {i}
InSlice = F
in = {i,r}, out = {i.r}, gen = {}Y
def = {}, ref = {}, kill = {}
InSlicea = T

in = {ir}, out = {i.rk, gen = {}
def = {}, ref = {ix}, kill = {}

InSlice = T
in = {i}, out = {i,r}, gen = {r}
def = [r}, ref = {ry}, kill = {r}

InSlice = T
in = {i,r}, out = {i,r}, gen = {i}
def = {i}, ref = {i}, kill = {i}

YR
H%

Figure 2.4: CFG for
Listing
2.14.

Figure 2.5: CFG for Listing 2.14 with Applied Flow
Propagation Algorithm.

2.5.4 Limitations

The static slicing algorithm, as defined in this section, has some limitations. The complexity of slicing
increases, if the program is object-oriented, or uses concurrency, and aliasing [Wotawa, 2002].

Object-oriented programs have classes, methods, and instance and static variables. A static slicing
algorithm must consider the scope, and lifetime of these objects.

Aliasing describes a situation in which data can be accessed through different names in a program.
Thus, modifying the data through one name implicitly modifies the values associated with all
aliased names.

Concurrency: A thread is a part of a program, which must be executed on a single processor. Threads
may be executed in parallel. Thus, a static slicing algorithm must consider threaded programs,
beside object-oriented programs.

Section 4.2 discusses the modifications, and restrictions of the slicing algorithm, for Android appli-
cations. This includes the issues with concurrency, aliasing, object-oriented properties, etc.

30

2. Preliminaries

Chapter 3

Related Work

“ Learn from yesterday, live for today, hope for tomorrow. The important thing is not to stop
questioning. ”

[Albert Einstein]

It is important to know current work regarding malware detection and avoidance, information leaks,
application analysis, and Android analysis. Furthermore, this chapter also discusses limitations of the
proposed approaches.

The chapter itself is structured into four sections. First, related work regarding malware and its de-
tection is discussed. The next section describes the issues of mobile devices regarding information leaks.
The third section deals with related work regarding the chosen analysis method for this master thesis in
general, and the last section discusses related work regarding the analysis of Android applications.

3.1 Malware

Mobile phones have evolved from simple communication devices to powerful computers. The growing
popularity of smartphones has turned them into attractive targets for malware. The continuing increase
of malware for smartphones has forced researchers to think about detection mechanisms for mobile
malware and the security of current mobile operating systems.

This chapter describes the historical development and the current situation of mobile malware. Fur-
thermore, it describes the issues of different detection strategies and why it would be better to check
applications for their security and not to search for malicious applications. As a consequence, this sec-
tion is divided into four parts. The first one describes the evolution of malware on desktop computers
and finally on mobile devices. Next, a short introduction in common malware detection mechanisms and
their problems are described. The last two parts describe further issues, which are especially important
for mobile devices, and a new approach which uses the discussed malware detection mechanisms to
make assumptions about the security of an application. We also use this new approach in this master
thesis.

3.1.1 Malware Evolution

Malware for personal computers really started in the 90s of the 20th century as the Internet and Microsoft
Windows came up. Before this era there had been some viruses, which infected the boot sector of
floppy disk to spread [Milosevi¢, 2013]. Nowadays, malicious applications are based on the technology
developed in the 90s of the 20th century. They use vulnerabilities to infect computers and spread over the

31

O 0 N O W RN =

—_ = =
N = O

32 3. Related Work

Internet. In 2000, the first trojan horse for a mobile device was reported [Leavitt, 2005]. After four years,
in 2004, the first mobile-phone virus was reported [Lawton, 2008]. Probably, the reason why mobile
phones were not interesting for attackers over a long period of time is that mobile phones were not more
than simple communication devices without any useful information for an attacker. Nevertheless, mobile
devices have changed to a fully equipped computer with an enormous amount of personal information
[Goasduff and Pettey, 2011].

The problem of current mobile operating systems is that their systems are based on desktop operating
systems, which are ported to mobile devices. Basically, at the perspective of functionality and develop-
ment, the porting of a desktop operating system to a mobile device is a wise decision, but the problem is
that current security vulnerabilities are also ported. However, during a complete new development of an
operating system, security vulnerabilities will also be created.

Malicious applications for smartphones are increasing rapidly [Schmidt et al., 2009; “Malicious
mobile threats report 2010/2011” 2011]. In addition, the amount of personal and sensitive information
stored is rapidly increasing on smartphones [Zhou, Zhang, et al., 2011]. Zhou and Jiang [2012] show a
growth from 23 malware samples at the beginning of 2011, to 1260 at the end of 2011. One reason for
that is the fact that smartphones stores more sensitive information [Rao and Minakakis, 2003]. Schmidt et
al. [2009] and F-Secure [2012] show a massive growth of mobile malware, especially of trojan horses for
controlling the victim’s phone. Consequently, it is getting more and more important to secure sensitive
data on mobile devices against those new threats.

The field of research for malware must find more efficient techniques against malicious applications
which are continuously increasing in complexity. The following section describes methods how mal-
ware can be detected, and how precise such detection mechanisms are. Furthermore, the next sections
describe why it is not sufficient to try to detect malware with classic detection techniques like antivirus
applications, which are mainly based on static signature detection.

3.1.2 Malware Detection

Applications for detecting malicious applications, and malicious applications have had a similar devel-
opment. In the early beginning of viruses, the only way to infect computers was through floppy disks.
Thus, the first antivirus applications only had to check the boot sector of floppy disk and the executables
on the disk, because only an executable file was able to infect the computer. Nevertheless, researcher
quickly realised that it is not easily possible to find every malicious code, because protecting the system
from some kind of malicious code is as difficult as the halting problem [Cohen, 1984]. Especially, early
denial of service attacks are good examples. Listing 3.1 shows such an early denial of service attack.
The first routine is used to trigger the malicious code. The malicious code itself is an endless loop. Such
simple code was able to freeze computers for a significant period of time by consuming all computing
power.

void doDamage() {
loop: goto loop;
}
void trigger() {
if (year > 1984)
doDamage(); // Trigger subroutine

// Otherwise return.

3.1. Malware 33

Listing 3.1: A typical code used as denial of service attack in the very beginning of the computer
era [Cohen, 1984].

Cohen [1988] wrote a paper about defence mechanisms against malicious code. Many of that strate-
gies were picked up by later antivirus applications. Some of these common strategies for detecting
malicious code in applications are discussed in the following section.

Detection Methods

Early antivirus applications are based on signature detection. Newer, and more sophisticated antivirus
applications are based on heuristic analysis techniques. Nowadays, in combination with the Internet,
many antivirus vendors combine an offline with an online approach to achieve a higher detection rate,
and to provide an up-to-date database.

Signature-based detection mechanisms have a long history. In general, such applications use a
database to compare entire files with malware signatures stored in the database [Landesman, 2012].
In the early beginning of those applications, the signature databases were updated very infrequently.
Unfortunately, one of the problems of this technology is that it always takes some time until new virus
signatures are inserted in the signature database and distributed to the customers. Therefore, virus au-
thors are always one step ahead of antivirus developers. Another issue of this method is that developers
of malicious applications continuously enhance their code to prevent applying signature checks. Such
malicious applications consists of oligomorphic, polymorphic or metamorphic code.

Oligomorphic code generates a decryptor for itself by selecting each piece from several predefined
alternatives. This pieces are usually too common, and so they can not be detected by signature-
based technologies.

Polymorphic code is a piece of code, which changes every time the code is executed. That means, that
the underlying algorithm and behaviour stays the same, but the code looks differently after each
run.

Metamorphic code outputs a logical equivalent of itself. The differences to polymorphic code, which
also outputs a modified version of itself, is that metamorphic code modifies the whole code, which
includes the metamorphic engine as well.

Newer and more sophisticated antivirus applications are based on a heuristic approach. Such ap-
plications use heuristic analysis to distinguish between malicious and trustworthy applications. Thus,
heuristic methods are able to detect new and currently unknown viruses, because they are not based on
a signature database or something similar. Heuristic methods can be used in a static and dynamic way
[Mishra, 2012]. Nevertheless, heuristic methods are limited in detecting malicious applications. This
results from the fact that malicious applications are able to implement identical behaviours in many dif-
ferent ways and it is not possible to definitely categorise every piece of code. If heuristic methods are
combined with emulation techniques, then it is possible that the application must run for a long time until
the malicious code executes if ever. Furthermore, it still has the same problem that the application must
recognise that a malicious piece of code is triggered and executed at the moment.

Further detection methods are cloud-based approaches and online checking solutions. These methods
are only improvements of common signature-based or heuristic methods. The advantage of such a hybrid
solution is that the signature database can be centralised and need not to be distributed.

34 3. Related Work

Further Issues of Malware Identification

Malware-detection applications must always fight against more and more complex malicious code. Es-
pecially, on smartphones it is not easy to detect malicious applications. This results from two primary
problems. First, malware on smartphones is younger and antivirus vendors must adapt their antivirus
solution for different smartphone operating systems. Secondly, considering the level of resources needed
by antivirus techniques and the power and memory constraints of mobile phones, comprehensive analy-
ses are not sufficient on the phone [Burguera, Zurutuza, and Nadjm-Tehrani, 2011].

Section 2.2 describes the security properties of Android, which is currently the most popular smart-
phone operating system today [Burguera, Zurutuza, and Nadjm-Tehrani, 2011]. This section mainly
refers to issues of detecting malicious applications on Android devices.

Beside different code modification techniques (polymorphic, metamorphic, and oligomorphic), de-
velopment kits for mobile applications support code obfuscation. This technology is used to obfuscate
the code of an application to protect intellectual properties, and to make it harder to circumvent copy
protections or licence checks. Unfortunately, an obfuscated code has one disadvantage in the context of
security analysis. It is more difficult to analyse, and so this protection mechanism increases the effort for
security experts to analyse the code of an application.

Another issue of detecting code on mobile phones is the code structure itself. It is possible to pack
malicious code into native libraries. Furthermore, it is possible to split the malicious code and to pack
it into more than one application to circumvent the permission structure of Android [Orthacker et al.,
2012]. For that, two applications, which seems to be benign, request a typical permission to work, but if
both applications are installed on the same phone, they will work together and leak information, by using
the permissions of each other. Such behaviour is hard to detect, because it would mainly depend on the
context in which an application is executed. Furthermore, this is similar for the combination of libraries
and applications. It would be possible to act as a regular application and at any time it loads a library
from the Internet or as an update from the market and reacts as a malicious application afterwards.

Detection Rates on Mobile Devices

Ching and John [2012] describe an automatic stress test framework for antivirus systems for Android.
The result from this paper is that all current antivirus solutions achieve a detection rate of over 90%.
However, the detection rate is based on a small set of malicious applications, and slight variants of these
malicious applications. On the other hand Zhou and Jiang [2012] describe different types of viruses and
the detection rates of four antivirus applications where the worst achieved result of an antivirus program
is by 20%. These two papers highly differ in their result. We think, that this large gap occurs, because
of the used malware samples. They did not use the same sample set, and thus, that on one set the
inspected antivirus applications are more suitable than on the other one. Therefore, on smartphones it is
not sufficient to only rely on antivirus applications.

3.1.3 Tolerate Malware

Another approach is to try to secure the system and its applications in a way that malicious applications
are not able to harm the system, and are not able to steal any sensitive information. This approach is
common on mobile platforms and is enforced by different security barriers.

Those include the use of official markets, where applications can be downloaded, and only installed
if they are correctly signed. Here, it is still possible that malicious applications are in the market, and
find their way on the device [Zhou, Z. Wang, et al., 2012]. Thus, preventing malware with the help of
an official market is not enough. In addition to official markets, Android also allows the installation of
applications from other sources.

3.2. Information Leaks 35

Consequently, Android must execute applications in sandboxes, where they theoretically can not
harm other applications or the system itself. A perfect solution is found if malicious applications and
applications with sensitive data are able to coexist on the same device without any information leaks.
Operating system developers, security experts, and application developers are continuously improving
current systems and applications to achieve a more secure system, where malicious code is not able to
harm the system or to steal data of an application.

To protect the data of an application it is possible to use antivirus applications, which try to detect
and to delete malware on the phone. Furthermore, there are also information-flow analysis frameworks.
The aim of these frameworks is to detect if some applications leak sensitive information. This can be
detected, if the pre-defined information ends at specific API calls. Nevertheless, a complete co-existence
of malware and applications with sensible information without any negative influences is not currently
possible. One reason for that is that application interfaces are always security vulnerabilities and weaken
the sandbox principle [Davi et al., 2011].

3.2 Information Leaks

Beside malicious applications, information leaks are a huge threat on mobile devices. Information leaks
result not only from malicious applications, because well-known applications also use sensitive data,
which they do not necessarily need to run properly. This results from the use of advertising libraries.
Gibler et al. [2012] describe that a lot of advertising libraries leak information. Advertising libraries
especially tend to retrieve the phone Identifier (ID), which is unacceptable for some user. Another issue
which can lead to an information leak is the wide misuse of permissions. Android’s permission system
is designed to protect access to sensitive data and to protect sensitive API calls. Unfortunately, if an
application has more permissions than it really needs and if it has a security issue, then another malicious
application will be able to retrieve sensitive information without holding a permission for this information
by using components of the benign application [Orthacker et al., 2012]. Such information leaks exist on
Android, because of their application architecture.

Barrera et al. [2010] analysed Android’s permission model and formulated some possible enhance-
ments. The most important enhancement proposes to make a more fine grained hierarchical permission
scheme. Their opinion is that, such a permission scheme improves the user’s understanding for the re-
quested permissions of an application and it additionally improve the security of the whole system. A
typical example for this idea is the permission to access the Internet'. Nearly all applications and espe-
cially free applications use this permission and in most cases only to download advertising from a server.
With a hierarchical permission scheme an additional permission for advertising? is possible. Thus, the
security is increased, because such a permission can be used to only grant limited access to the Internet
[Barrera et al., 2010].

Felt, Greenwood, and Wagner [2011] discuss over-privileged applications. They analysed the re-
quested permissions of 956 applications. They concluded that all analysed Android applications asked
for less than half of the Android permissions and a majority requested less than four. The most common
permissions are the permission for accessing the Internet, and the permission to retrieve the GPS posi-
tion. They also manually analysed the 36 most popular applications, which showed that four of them
are over-privileged. Three of them unnecessarily requests the Internet permission, and one application
unnecessarily request the permission for accessing the GPS position.

Another common approach to retrieve some sensitive data is not to circumvent some security mech-
anisms of the system, but to apply a simple phishing attack. Felt and Wagner [2011] analysed such
phishing attacks on mobile applications and websites, and found out that they interact in a way which
can be exploited by an attacker. They describe four different attack vectors. These four attack vectors

'android.permission.INTERNET
%android.permission INTERNET.ADVERTISING

O 0 N O\ W R W N =

—_ -
—_ O

12

36 3. Related Work

are defined through the role as attacker, or target. In this scenario, a mobile phone, or a web site can be
the attacker, or the target for a phishing attack.

Each of these attack vectors can be exploited. Mobile targets can be exploited either by key logging
and faked login screens, or website spoofing. On the other side web targets can be exploited either by
URL spoofing, or active network attacks.

Many researchers have started to develop detection frameworks which are able to detect informa-
tion leaks and to track sensitive data through the system, to categorize applications in malicious and
trustworthy ones.

3.2.1 Information-Flow Analysis

One issue for detecting malicious applications is, that in many cases the context, in which the application
is executed, decides if the application is a malicious one or not. Typical applications for such a dual-
behaviour are position tracking applications. In general, these applications are trustworthy, but if another
person as the owner of the phone installs the position tracking application, then such applications will
typically be malicious. However, information-flow analysis techniques can not solve such categorisation
problems, but they improve the security by observing sensitive information, and by detecting if sensitive
information leave the phone. Therefore, this technology can also detect unexpected behaviour of benign
applications. This section describes related work about information-flow analysis.

One common information-flow analysis framework for Android is TaintDroid [Enck, Gilbert, et al.,
2010]. TaintDroid adds a tag to sensitive data and tracks the flow of this data through the system. For that
TaintDroid modifies the Dalvik VM to apply the tag propagation algorithm. This tracking system is able
to track sensitive information like the device ID. Thus, it can detect information leaks from applications.
Unfortunately, by design it is not possible to apply TaintDroid on a regular phone, because it needs to
exchange the system image by a modified one. Furthermore, it is currently very easy to circumvent the
tainting mechanism, because TaintDroid is only able to trace explicit data flow and not implicit data
flow. Therefore, sensitive data can be easily decoupled from the taint that it is not tracked anymore.
We analysed this behaviour with different implicit data flow techniques. Listing 3.2 shows an obvious
solution of such an indirect data flow.

Another approach to circumvent the taint tracking mechanism of TaintDroid is to decouple the taint
and the data by using system processes. We tested this solution by writing sensitive data to an arbitrary
file and then reading it in through a Java process, which executes the Unix command cat to read the
data from the file again. This mechanism opens a new process and by reading its output stream the taint
gets lost, because the process for cat does not run in the virtual machine, and thus, the tag propagation
mechanism of Taintdroid does not retrieve the taint.

nn

String trespasser = ;
for(int i = 0; 1 < imei.length(); i++)
switch (imei.charaAt(i)){
case '0’: trespasser += ’0’; break;
case '1’: trespasser += ’1’; break;
case '2’: trespasser += ’'2’; break;
case '3’: trespasser += ’'3’; break;
case '4’: trespasser += ’'4’; break;
case '5’: trespasser += ’'5’; break;
case ‘6’ : trespasser += ’6’; break;
case '7’: trespasser += '7’; break;
case '8’: trespasser += '8’ ; break;
case '9’: trespasser += '9’; break;

k) b}

case '—’: trespasser += '—’; break;

3.2. Information Leaks 37

default : break;

Listing 3.2: A simple example how the tainting mechanism from TaintDroid can be
circumvented.

ScanDroid has a completely different approach. It statically analyses data flows through Android ap-
plications, and can make security-relevant decisions automatically, based on such flows [Fuchs, Chaud-
huri, and Foster, 2009]. In particular, it decides if an application is safe to run with certain permis-
sions, based on the permissions enforced by other applications. The framework is based on T. J. Watson
Libraries for Analysis (WALA), which is a collection of open-source libraries for Java code analysis.
Furthermore, the analysis is based on Java source code, so it is not immediately possible to apply the
framework on Android applications. Another property of that system is that it also finds security viola-
tions in benign applications. The problem is that many benign applications also have one of the defined
security specifications. For example, if a mail reader application has the permission to read and write
contacts as well as to send and receive messages, then this application breach a security specification of
ScanDroid and the system falsely detect a security violation.

A similar detection framework to ScanDroid is AndroidLeaks [Gibler et al., 2012]. This system
extracts the code from the APK and reverse-engineers it to a JAR. This step is done by some external
tools — like dex2jar. Afterwards they used WALA[Center, 2011] to build a call-graph, and to statically
analyse the resulting Java bytecode for a connection between a pre-defined source and sink. This is
done in a two-step procedure. First the application must include the API call for the source and the
sink, and then the static analyser searches for a connection between the found sources and sinks. One of
the potential sources is the device ID and one of the potential sinks is the network interface. Both can
be detected by a specific API call. They analysed 24350 applications with this framework in 30 hours.
The evaluation shows, that nearly every advertising library leaks Android’s phone data, and location
information. Nevertheless, a property of this framework is, that it can not be executed directly on a
phone. Thus, an application must always be reverse-engineered until the framework is able to classify it.
Furthermore, that means, that a non-technical expert can not easily use this tool to quickly analyse their
installed applications to find potential information leaks.

For Apple’s iOS Egele et al. [2011] wrote a framework to detect privacy leaks in iOS applications
written in Objective-C. This framework is based on IDA Pro, which is a disassembler. The analysis itself
is a plug-in for the IDA-python interface. IDA Pro is used for the reverse-engineering part and the plug-
in builds the Control Flow Graph (CFG) and does the analysis based on the CFG. To find a potential
privacy leak, the framework performs a reachability analysis. More precisely, they check the graph for
the presence of paths from sources to sinks. In this environment a source is defined as a function, which
retrieves sensitive data from the system and a sink is defined as a function, which is able to transmit data
over the network. The evaluation is done with 1407 1OS applications. They found out that the device ID
is leaked most frequent. Nevertheless, from 1407 analysed iOS applications only 195 applications leak
the device ID. The second most important information leak is the location, which is on iOS not really a
dangerous leak because iOS warns users whenever an application tries to access the fine location [Egele
et al., 2011].

3.2.2 Information Protection
Beside information-flow analysis techniques it is also important to do some research in the area of in-

formation protection. There is the focus to protect sensitive data and to increase the privacy on mobile
devices. This section describes related work from this research area.

38 3. Related Work

Beside TaintDroid, MockDroid [Beresford et al., 2011] is a system for privacy enhancing on Android
devices, but with a slightly different aim. The aim of MockDroid is to increase the privacy by spoofing
API calls for certain applications, where TaintDroid tries to track a specific piece of information, and
to informs the user about information leaks. Beresford et al. [2011] developed MockDroid, which is a
modified Android operating system with some additional functionality in terms of privacy and avoiding
information leaks. MockDroid mocks certain API calls in a way that applications do not recognize that
the underlying system rejects every request. For example, if for an application the network interface
is mocked, then a socket never connects and always throws a timeout exception. Such an exception is
common and an application can not realize that the access has been rejected. Nevertheless, this system
has similar issues as TaintDroid. Hence, it needs to replace the installed Android system by the modified
one. Additionally, MockDroid adapts Android 2.2.1 which is out of date and could be vulnerable to other
security threats regarding the old Android version.

Taming Information-Stealing Smartphone Applications (TISSA) is similar to MockDroid. They also
modified an Android version and replaced Android’s permission scheme [Zhou, Zhang, et al., 2011].
They extended Android’s permission scheme with additional permissions to enforce a better privacy on
the system. For each application, the user can choose, if the application retrieves real-world data from
the system or faked ones. Thus, it is possible to only grant certain applications access to sensor values
or to sensitive information even if the permission for the usage is granted during the installation. For the
correct use of this framework, the user needs a deeper knowledge about the permission model and the
effects of providing faked or real values for an application. A typical use case for such a framework is the
use for applications with advertising. To avoid the leak of the device ID, the device ID can be replaced
by a dummy one, which leads to non-personalised advertising. Nevertheless, TISSA is based on Android
2.1, so it is older than MockDroid. Thus, it is not meaningful to use this system anymore, because such
an old Android version is vulnerable to other security threats.

Hornyack et al. [2011] used data shadowing to protect sensitive information against unauthorized
applications. If an unauthorized application requests the location, or the device ID, then it always gets
the same pre-defined position and it always gets a spoofed device ID. If the resource is stored in a
database and accessed by a Uniform Resource Identifier (URI) then it will create a shadow database and
a new cursor to the new database. Thus, a user can define, which applications operate on real-world
data, and which ones operate on spoofed information. In contrast to TISSA, this framework does not
replace Android’s system image, but it only works on rooted devices, because Android’s core libraries
and framework must be modified.

3.3 Security Analysis

Static security analysis, especially with the help of static slicing, is a well-known technique to analyse
the security of applications. It is primarily used for information-flow analysis, because static slicing can
be used to over-approximate information flows in a program in order to ensure information-flow security
[Pistoia et al., 2007]. This section presents a survey of related work for analysing applications with the
help of static as well as dynamic analysis methods.

Static slicing is to extract code snippets of a program based on certain conditions, to generate a subset
of the whole program. This mechanism can be used for various scenarios. It can be used to classify
applications based on their code, by using static slicing to build a System Dependence Graph (SDG), and
analyse it, based on the so-called tell-tale signs [Bergeron, Debbabi, Erhioui, et al., 1999]. The tell-tale
signs are defined as properties of a program that can be used to discriminate between malicious and
benign programs [Lo, Levitt, and Olsson, 1995]. In general, tell-tale signs are various security properties
of a program. It is also possible to make assumptions about the behaviour of benign applications. Tell-
tale signs must be simple enough, so that their identification can be automated and must be fundamental
enough, so that certain security relevant actions are impossible without showing tell-tale signs. Lo,

3.3. Security Analysis 39

Levitt, and Olsson [1995] categorise tell-tale signs in the following three groups:

Tell-tale signs identified by program slicing are file operations, process creation and execution, network
access, change of privileges on the file system, race conditions, and input dependent system calls.

Tell-tale signs based on data-flow information are anomalous data flow. For example, such an anoma-
lous data flow is opening and writing to executable files.

Tell-tale signs based on program-specific information are based on the authentication process of a pro-
gram. If a program has an authentication process, like a login screen, then the input values must
be tracked.

Secure information flow is also important in the context of web applications [Pistoia et al., 2007].
Therefore, a number of information-flow analysis approaches handle network-based traffic. For example,
Myers and Liskov [1997] discuss the use of static as well as dynamic analysis to enforce information
flow policies for applications. The idea is that each user defines an information flow policy at the level
of individual data items, to protect sensitive data. On the other side Newsome and Song [2005] propose
a dynamic tainted-variable analysis that catches errors and detects malicious behaviour by monitoring
tainted variables at runtime. In detail, they taint all variables, which are derived from untrusted sources,
such as the network interface. If a variable is used in a dangerous way, then an attack is detected in this
scenario. A dangerous behaviour is defined by:

* Overwrite variables with jump addresses, to redirect control flow.
* Access to unauthorized memory regions.

* Access to unauthorized system calls.

Furthermore, Wagner and Dean [2001] propose an approach for intrusion detection via static analysis.
They want to detect if an application is penetrated and then exploited to harm other parts of the system.
To achieve this, they defined specifications of expected application behaviours, and monitored the actual
behaviour to see whether the behaviour deviates from the specifications or not. They also mentioned that
it is still possible for attackers to circumvent the detection, if they do not cause any harm, because then
they do not interact with the operating system in a way the framework is able to detect.

Beside the analysis of web applications and network communication, static analysis can also be used
to detect security-correct programs [Snelting, Robschink, and Krinke, 2006]. They make the observation
that Program Dependence Graph (PDG)s and non-interference are related. Thus, in a security correct
program a statement s; must not be in the backward slice of another statement s, if the predecessor set
of s1 is not a subset of the predecessor set of sa.

Another common vulnerability for applications is the insufficient protection against buffer overflows.
This attack vector is ranked as the top vulnerability in RPC services to UNIX-systems [The twenty most
critical internet security vulnerabilities.]. Such vulnerabilities are easy to exploit and step-by-step guides
are available, to construct such exploits [One, 1996]. Additionally, one widely used language — C — is
highly vulnerable, because there are among others several library functions that manipulate buffers in an
unsafe way [Larochelle and Evans, 2001; Wagner, Foster, et al., 2000]. Ganapathy et al. [2003] propose
one approach to prevent such attacks. They use CodeSurfer [Horwitz, Reps, and Binkley, 1990; Reps
et al., 1994], a tool to produce inter-procedural slices with the ability for forward and backward slicing
from a program point. Next, they use the resulting slice from CodeSurfer to find declarations of buffers.
This declarations are used to formulate constraints, which define the size of the buffers. Furthermore,
the slice is analysed, if any of the statements break the constraint by accessing the buffer with a higher
index as the constraint permits.

40 3. Related Work

Furthermore, it is also possible to find dead code with static slicing [Benton, 2004]. Dead code is
a code, which is never executed, because it does not have a connection to a potential entry point of the
program. Thus, this code can be removed. Bergeron, Debbabi, Desharnais, et al. [2001] proposed a
solution for finding and removing dead code based on the SDG. After building a SDG, dead code is
defined as a not-connected sub-graph, because each of the not-connected sub-graphs does not have any
data- or control-dependence edges to the entry point of the program [Bergeron, Debbabi, Desharnais,
et al., 2001].

3.4 Security Analysis for Android

Modern mobile phone operating systems must deal with many different attack vectors. Beside Apple’s
i0OS and Windows’ mobile phone operating system, Android allows more access to system components
by third-party applications [Lettner, Tschernuth, and Mayrhofer, 2012]. This can lead to vulnerabilities,
but it can also lead to a higher security of Android [Shin et al., 2009].

Mobile phones have many different vulnerabilities, based on their used software and their included
hardware components [Becher et al., 2011]. Becher et al. [2011] classify potential attack vectors into
four categories.

Hardware-centric attacks target the mobile device itself. These are primarily attacks, which directly
attack the physical hardware, and attacks on the smartcard communication.

Device-independent attacks target the communication channels of the device.
Software-centric attacks target vulnerabilities in installed applications.

User layer attacks contain every exploit that is not of technical nature. Many of today’s mobile malware
samples are not based on a technical vulnerability, but trick the user into overriding technical
security mechanisms [State of cell phone malware in 2007 (2007)].

Thus, it is important to provide more information about an application and its potential risk to the
user, to reduce user layer attacks. Beside the different attack vectors, the different attack channels are
important as well. Guo, H. J. Wang, and Zhu [2004] discuss various ways in which a smartphone could
be compromised. They defined three general attack channels.

* Attacks from the Internet [Summer Brings Mosquito-Born Malware].
* Infection from compromised PC during data synchronisation [Windows Mobile-based Smartphones].

* Peer smart-phone attack or infection [Labs, 2004; SMS Killer].

Attacks from the Internet are simple, and efficient user layer attacks, because in most cases the user
downloads and installs applications from third party markets, or suspicious websites. Unfortunately,
these sources include many malicious contents [Zhou, Z. Wang, et al., 2012].

Another interesting attack channel is the peer smart-phone attack. A common attack uses an infected
phone to spread malicious content by sending SMS to all contacts in the address book. This malicious
content can be an advertising message, a premium rate message, or a malformed SMS to enforce mal-
functions at the receiving phone [SMS Killer].

Thus, it is important to detect malicious applications and to differentiate between malicious and be-
nign applications [Felt, Finifter, et al., 2011]. A lot of related work deals with malware and detection
strategies of malware. These works discuss current detection algorithms, and their improvements for de-
tecting malicious applications. A few of them deal with the classification of applications into malicious

3.4. Security Analysis for Android 41

and benign applications, and with their security properties. These works primarily discuss security prop-
erties, and the behaviour of applications to define benign application. This master thesis contributes to the
second category and also deals with security properties and classifying applications by these properties.

Related work for malware detection is discussed in a previous section. This section discusses related
work regarding the analysis of applications, the classification of applications, and related work regarding
defining security properties for applications and mobile operating systems.

To that effect, Grace et al. [2012] discuss issues with pre-installed applications on stock Android.
Those applications leak private information, because of the way the private information is managed and
accessed [App Attack-Surviving the Explosive Growth of Mobile Apps]. As opposed to Apple’s i0S,
Android does not use run-time approval for access to sensitive information, it uses a permission-based
model, that grants a set of permissions to an application at install-time. Nevertheless, the problem of
over-privileged applications is not limited to pre-installed applications. Many third party applications
request too many permissions as well [Felt, Chin, et al., 2011]. Thus, it is essential to analyse the
inter-process communication as well. Chin et al. [2011] and Felt, H. J. Wang, et al. [2011] analyse
inter-process communication of Android applications. They concluded, that Android’s message passing
system supports the creation of rich, collaborative applications, but it also introduces the potential for
attacks, if developers do not take precautions. Thus, developers must be aware of outgoing, and incom-
ing communication risks. Potential outgoing communication risks are broadcast theft, data theft, result
modification, and activity and service hijacking. Potential incoming communication risks are malicious
activity and service launches, and broadcast injections [Chin et al., 2011].

One solution regarding information leaks, is to block the installation of potential unsafe applications
[Enck, Ongtang, and McDaniel, 2009a]. They propose security rules to differentiate between malicious
and benign applications and to only allow the installation of benign applications. The defined security
rules are potentially able to defend against complex attacks, but not for malicious applications in gen-
eral. This results from the fact, that many applications use the same set of permissions as malicious
applications. A typical example is Facebook, which uses the permission for accessing the address book
and the permission for web-access. This constellation can also be used from malicious applications to
steal contact information from the phone. Thus, such malicious applications can not be detected by the
proposed security rules.

Ongtang et al. [2012] propose a similar solution, to avoid information leaks. They developed a
modified Android operating system, that allows developers of applications to define fine-grained security
policies, for their application components. Thus, application components can not be hijacked or misused
by other applications, if the security policies for the components are strong enough.

Dietz et al. [2011] contribute to the problem of information leaks with a framework, that tracks
the call chain of inter-process communication on the device. To that end, they extended Android’s Java
runtime libraries and the IPC system. With this modification, applications can operate on the components
of other applications in two different modes. The user can decide whether an application, which accesses
components of another application, is allowed to also use the permissions of another application, or not.
Therefore, with this mechanism, exploiting of over-privileged applications is not possible anymore.

Another proposal is to increase the sandboxing mechanism of the operating system, to isolate ap-
plications for different usage environments in different virtual machines. Andrus et al. [2011] propose
an approach with so-called virtual phones. Each virtual phone is a lightweight Android environment,
which is totally decoupled from other virtual phones. These virtual phones are configured on a PC and
downloaded to a phone. On the phone the different virtual phones can not be modified anymore, and a
regular application is used to switch through the installed virtual phone. Lange et al. [2011] propose a
solution, that uses a microkernel instead of Android’s monolithic architecture, because they think, that
the primary security threat of Android is its monolithic kernel architecture.

42 3. Related Work

3.5 Code Analysis Frameworks

The idea of reversing an Android application to analyse the code of the application is not new. In most
cases the analyses is done to find malicious applications. The basic principle is to separate malicious
applications from trustworthy applications by classifying them into categories. Furthermore, reversing
an Android application can also be used to apply security analyses. Other frameworks can be used to
add, or remove instructions of an application, and to repack and reinstall the modified application on the
phone again. This section describes a small subset of those frameworks.

3.5.1 ADAM

ADAM is an automated system for evaluating the detection of Android malware. It provides an envi-
ronment for the automatic evaluation of anti-virus products. This is done by gathering malware samples,
and buildings variants of these malware samples by reverse engineering them, adding a method in the
Smali-code, and repack them. The original malware samples, and their variants are used to evaluate
commercial online and offline malware detection toolkits [Ching and John, 2012].

3.5.2 Andromaly

Andromaly is a framework, which tries to detect suspicious behaviour of the phone. The assumption is
made that such a suspicious behaviour results from malicious applications. The basis of the detection
process consists of real-time, monitoring, collection, and analysis of various system metrics, such as
CPU consumption, number of sent packets through the Wi-Fi, number of running processes and battery
level. After collecting the system metrics, a detection unit tries to find suspicious behaviour on the phone
with the help of machine learning [Shabtai, Kanonov, et al., 2012].

3.5.3 Apktool

Apktool? is a framework to decompile APK files and then recompile them again. The framework does
not decompile the program back to Java it uses the intermediate language Smali instead. Smali* is used
by Apktool to represent the program. Smali is a low-level language which is loosely based on Jasmin’s
dedexer’s syntax. Each Smali file represents a class which can be modified or analysed.

Singh and Garg [2012] use Apktool to automatically search for repackaged applications. Such ap-
plications are applications, which are reverse engineered and compiled, packaged, and signed again.
Furthermore, Helfer and Lin [2012] and McClurg, Friedman, and Ng [2012] use Apktool to analyse
Android applications in terms of their security. The first framework uses it to remove permissions from
applications, and the second uses it to detect privacy leaks by adding taints to various instructions in
the application. After recompiling and installing it, the taint is used to log the access to sensitive code
snippets. Every time the application accesses such code snippets the user gets a notification.

The framework of this master thesis also uses the parser of Apktool to reverse engineer an application
to search for information leaks.

3.5.4 Dex2jar

Dex2jar” is a framework to reverse engineer APK or DEX files to JAR files. Afterwards, JD-GUI® can
be used to retrieve Java files from the archive. Nevertheless, the resulting Java files are not suitable for

3https://code.google.com/p/android-apktool/
*https://code.google.com/p/smali/
Shitps://code.google.com/p/dex2jar/
®http://java.decompiler.free.fr/?q=jdgui

3.5. Code Analysis Frameworks 43

applying code analysis techniques, because it is possible that the framework does not correctly parse
every method. Furthermore, if an application should be also recompiled, then other frameworks would
be better for code modifications than this one, because it is not easily possible to recompile a decompiled
application.

This framework is used among others in Rhee, Hawon Kim, and Na [2012] for analysing the security
of a mobile device management (MDM) systems and in Sharma et al. [2013] for analysing Android
malware.

3.5.5 Ded

Ded is similar to Dex2jar. It is a reverse engineering framework, which decompiles DEX files to Java
byte code, but also optimize them [Enck, Octeau, et al., 2011]. Listing 3.3 shows an optimisation of Ded
in contrast to Dex2jar.

Decompiled and optimized with Ded Decompiled with Dex2jar
double return_a_double(int varl) { double return_a_double(int varl) {
double var?2; long var2;
if(varl != 1) { if(varl != 1) {
var2 = 2.5D; var2 = 4612811918334230528L;
} else { } else {
var2 = 1.2D; var2 = 4608083138725491507L;
} }
return var2; return (double)var?2;
} }

Listing 3.3: Ded vs. Dex2jar

3.5.6 Dedexer

Similar to Dex2Jar, Dedexer is able to decompile DEX files, but this framework decompiles the code to
an assembly-like format. The format is similar to the Jasmin syntax, which is an assembler for the JVM,
but contains Dalvik opcodes. Thus, the Jasmin compiler is not able to compile the generated Dedexer
files.

3.5.7 ComDroid

ComDroid is a framework, which analyses the communication between Android applications. For that
it uses Dedexer to decompile Android applications. Next it parses the result and logs potential com-
ponent, and intent vulnerabilities. Such vulnerabilities are basically defined as sending and receiving
mechanisms, without protection mechanisms. The protection mechanisms are defined through a per-
mission map, and the sending and receiving mechanisms are Android’s specific API calls. Data can be
propagated by sending a broadcast, or starting an activity or service. These three components are also
the only components for receiving information from other applications. If a vulnerability is found, then
ComDroid issues a warning Chin et al. [2011].

3.5.8 Paranoid

Paranoid is a two-component system. Firstly, it records input data from applications on several phones
and replays the situation on an emulator on a server. The first step ensures that the system image of the

44 3. Related Work

mobile phone must not be modified, but dynamic taint analysis can be applied. Secondly, dynamic taint
analysis is applied on the replica on the server. With this mechanism all data from a suspect source are
tainted and tracked through the system [Portokalidis et al., 2010].

3.5.9 SAAF

SAAF is a static analyzer for Android’s APK files. The main feature is the ability to calculate program
slices for arbitrary method invocations and their corresponding parameters. SAAF will then calculate a
slice for this so called slicing criterion and search for all constants which are part of that slice [Static
Android Analysis Framework 2013].

This framework was developed during the development of our framework. Therefore, we were not
able to use this framework for our purposes.

Chapter 4

APK Analyser

“The art of simplicity is a puzzle of complexity. ”
[Douglas Horton]

This chapter describes the architecture and the limitations of the framework. The first section de-
scribes the general architecture of the framework, and its core components. The next section describes
the tracking algorithm, the implementation properties, and the restrictions. Afterwards, the modules,
which define the start, and end criteria of a slice, are described. The last section discusses the format of
the generated results of the framework.

4.1 Architecture

The framework includes two parts. Firstly, the execution management, and secondly the execution envi-
ronment. The execution management is used to handle Android-specific User Interface (UI) behaviours,
because Android’s Ul design has certain properties, which must be considered for correct use.

Beside, the execution management the analysis of the framework is encapsulated in the execution
environment. Basically, this part is built on top of an asynchronous task. The execution environment
ensures that all parameters are correctly initialised, inspects the analysis, sends progress updates to the
execution management, and generates the result logs.

Figure 4.1 illustrates the interaction between the two core parts. The following sections describe the
architecture of the two parts, and its components in more detail.

4.1.1 Execution Management

The execution management primarily handles the user interaction with the application. Thus, this part
encapsulates all UI classes, and defines the interfaces to the execution environment.

The UI of the framework is based on Android’s Fragment architecture. Android uses Fragments to
spilt the UI in small reusable modules. Those modules can be loaded from activities to interact with
the user. The idea behind the Fragment activity concept is to reduce the development effort for different
display sizes. Similar to an activity, a Fragment can exist in three states:

Resumed: The Fragment is visible.

FPaused: Another activity is in the foreground, or has the focus, but the activity in which this Fragment
lives is still visible.

45

46 4. APK Analyser

Execution
Erwironment

Execution
Management

Q — start() 1w
/K- > start()

update()

Asynchronous
Tasl

Figure 4.1: The figure shows the interaction of the two core parts of the Apkanalyser, the execution
management, and the execution environment. The Execution management handles the
complete interaction with the user, and the execution environment encapsulates the
analysis in an asynchronous task.

Stopped: The Fragment is not visible.

The problem with these states is that Fragments and activities are re-created when they are paused and
resumed. This always occurs when the user rotates the device or turns the screen off and on. To proper
handle callbacks, the Fragment instances must retain state across activity re-creation. Additionally, the
activity reference from the execution environment must be also updated.

Thus, to correctly handle notifications from the execution environment, the framework implements
a special callback structure. Every time the activity changes its state, the context is updated. In our
framework, this is done by registering a special Fragment, which is used for context retrieval. This
Fragment is detached and re-created every time the activity is re-created. This Fragment connects the
asynchronous task of the execution environment to the execution management. Additionally, it must hold
a list where the task manager of the execution environment can register notifications. The notifications
are forwarded to the UI thread, when the underlying activity gets ready. This must be done, because of
the fact that Android recreates the activity after every Ul event, and thus the application must wait until
the Ul is correctly rebuilt.

4.1.2 Execution Environment

In addition to the execution management, the application must also provide an execution environment to
efficiently execute the framework and handle potential errors. This execution environment can be split
into three parts:

* Module management
* Execution optimization

* Result logging

Module Management

A module defines sources, and sinks for the slicing algorithm, and is managed by the module factory.
The module factory extends the enumeration class of Java. That means, that each module is a static,
final instance of this class, and can be implicitly accessed by its name. This approach has advantages as
well as disadvantages. An advantage of this approach is that the creation, and registration of a module is
simple, because these steps are handled by the enumeration class.

4.2. Register Tracker 47

A disadvantage of this approach is that the modules are created during the start of the application.
Thus, all modules exist and consume memory, which is relatively limited on mobile phones, until the
application is closed. Nevertheless, due to the architecture of our execution mechanism, the wasted
memory is insignificant, because only the module classes themselves are allocated in the memory. The
references to other classes only exist during an analysis. Thus, the garbage collector is able to free the
memory of all classes, except the module classes.

Execution Optimization

Another concept of the execution environment is the execution optimizer. To improve the performance
of the framework, certain code should not be analysed. For example, the linked Android libraries, or
linked cryptographic libraries must not be analysed. This is done to improve the performance in terms of
the run-time, and in terms of the accuracy of the analyser, because otherwise more false-positives occur.

The optimizer uses uses a blacklist, a whitelist, and a manifest analysis to examine relevant package
names. The manifest analysis retrieves all package names of an application. Only classes that are part of
one of the retrieved package names, and package names on the whitelist will be analysed.

Thus, foreign package names, which are not in the subset of the examined package names are not
analysed. However, this method is used to remove third party libraries, and Android’s libraries.

Result Logging

The logging architecture of the analyser consists of two parts. Firstly, the execution environment itself
is able to write a general result file about the analysed application. This contains information from the
manifest, as well as execution times, and calculated results. Secondly each module is able to write
Smali-notated files, which represent the specific slice of the module.

4.2 Register Tracker

The Register Tracker is the core of the framework. It includes the static slicing algorithm for Android
applications. Static slicing is a well-known technique that can be used for tracing variables. The concept
of static slicing is described in Section 2.5.

In the context of this work, variables are traced on top of the Dalvik bytecode. This section describes
the slicing criteria of the framework for slicing Android applications and which trade-offs are made.

4.2.1 Slicing Android Applications

The algorithm, which is used for the framework, is based on forward slicing, but has certain slight
modifications to fulfill the requirements of slicing Dalvik bytecode in an efficient way. Additionally,
to classify applications in various security categories, only explicitly influenced variables are added to
the slice. This results from the fact that if an implicitly influenced variable is added to the slice, then
the implemented detection mechanism does not work. The reason for that is that if a specific register
is traced through the program, and if implicitly influenced registers are also added to the slice of the
specific register, then our algorithm will potentially wrongly detect sinks, because of the definition of
implicitly influences. For example, if an influenced register is part of a condition, then the influenced
register implicitly influence all statements of the resulting branch.

The register tracker class implements the slicing algorithm and is build on top of the parser of the
Apktool framework (see Section 3.5.3). The parser of this framework reads the DEX file and parses
the code based on its instruction formats (Section 2.3 describes the Dalvik bytecode in more detail).
Each Dalvik instruction format, is represented as a Java class in our framework. The slicing algorithm

48 4. APK Analyser

works on top of these classes. Thus, for identical, or similar instructions with different formats, these
instructions must be brought together and different instructions with identical instruction formats must
be separated to handle all instructions efficiently.

Furthermore, to correctly handle the register-based architecture of Dalvik, certain criteria to handle
the different instructions, the sources, and the sinks must be defined. The source of a slice is basically a
single register, which is observed by a module. Thus, the module (The modules are discussed in Section
4.3) inspects the code until a suitable source is found, and then it starts the register tracker, based on
the found register. However, it is possible that the so-called start condition consists of a specific set of
instructions in a specific order. This condition can be fulfilled by the register tracker itself. If a module
is based on such a start condition, then it starts a slice at every possible occurrence of the first instruction
of the starting set, and checks if the built slice fulfills the criteria of the starting set. If it is part of the
slice, the register tracker is reseted and the slice with the correct start condition can start. The starting
conditions of every module are described in more detail in Section 4.3.

To properly handle class, and method changes, the register tracker must provide a structure to store
influenced classes, their influenced methods and their influenced variables. The slice itself is a set of
influenced classes and each class holds the class-specific elements, like methods, instance variables, and
static variables. Additionally, each method is divided into several branches and each branch consists of
an influenced register set. If the method changes, then the register tracker will create a newly empty
method, with one root branch for this method. In addition, if the current method has some influenced
instructions, then this method will be added to the containing class, and each influenced class is added to
the slice when the class changes.

The slicing algorithm works on these branches, but the detection patterns of the module operate on
the complete slice with its class structure.

To decide if a single instruction is added to the slice or not, the algorithm consists of a set of criteria
to handle different instruction classes. An instruction class is a set of instructions, which are not identical
in terms of their format, but their operation. For example, Dalvik consists of several different move
operation, where each move operation basically is a data-flow from one register to another one. The
instructions can be divided into the following instruction classes.

* Benign statements

* Assignment operations

* Conditions and jumps

* Method invocations

* Return statements

* QOperations on instance variables

* Operations on static variables

* QOperations on arrays
Benign statements are all statements that do not have any influence on the slice. Obviously, nop
is such an instruction, and beside nop, instructions for exception handling are not part of the slice. We

consider it unlikely that the code we analyse uses implicit information flow, like those generated by
exceptions. The complete instructions list of this category consists the following instructions:

* check-cast

4.2. Register Tracker 49

e monitor—enter, monitor—-exit
e throw

* nop

Assignment operations are simply all operations that assign a register. Many instructions fall in
this category. Compare, arithmetic, binary and object generation instructions are in this category, as well
as typical assignment and move operation. The algorithm must decide if a statement is added to the slice
or not. This decision is based on the definition of the slicing algorithm of Section 2.5.

The previously defined slicing criterion C' = (p, V') consists of a program point p, and a list of
variables V. For Dalvik, V is a list of registers. Thus, the slice S with respect to C'is a set of statements,
which are influenced by V. A statement is added to S if the rules for inSlice(n) are fulfilled.

To update the registers in the influenced set In fl(n) the algorithm must consider two rules. Firstly,
if the intersection of the reference set REF'(n) and the incoming set in(n) is not the empty set, then the
used register will be added to the influenced set. Secondly, if the influenced set contains the used register
and the intersection of the referenced set REF'(n) of the current instruction with the incoming set in(n),
is the empty set then the register will be killed and not further tracked. Listing 4.1 shows these two rules.

1 Infi(n) = Infl(n)Uvlv € DEF(n) A (REF(n) Nin(n) # {})
2 Infl(n) = Infl(n) \ vjv € Se A (REF(n) Nin(n) = {})

Listing 4.1: These two rules are applied to properly handle assignment instructions.

Operations on instance variables are based on put and get operations. Instance variables
are similar to assignment operations, but with one additional property - they have a specific scope and
lifetime. Obviously, it is impossible that a variable is able to violate the limitation of the scope or lifetime.
Nevertheless, the algorithm must be aware of this, because a typical instance variable is generated in the
constructor and then it is reused in different methods and classes. To handle instance variables, the
register tracker has a set of influenced instance variables for each influenced class. Adding variables
to the slice is based on the rules of assignment operations. In addition, the slice can grow very fast if
instance variables are tracked. Therefore, it is possible to deactivate the tracking of instance variables in
our framework.

Operations on static variables are similar to operations on instance variables, but it is not sensible
to track static variables because they are very often used for debug-level flags. This fact can lead to a large
slice, because if an influenced register is logged, the register of the debug-level flag will be influenced
and this results in a slice where every occurrence of the specific debug-level flag is also in the slice.
Therefore, the algorithm is able to track static variables, but this feature is deactivated by default.

Operations on arrays are similar to operations on static or instance variables. For static slicing, it
is not easily possible to compute the index of a specific element or the element itself in an array. Thus, it
is hard for static slicing algorithms to only track the specific element in an array. A common approach,
which is also used in this framework, is to handle arrays as a single variable and not as a container. The
result is that the complete array and every operation on the array will be tracked, and not only the specific
element in the array and operations on that element.

50 4. APK Analyser

Method invocations are slightly more complex than assignments of variables, and operations on
them. If an influenced register is passed as an argument to a method, then the following criteria must be
considered:

* The register is potentially not the same in the invoked method.

¢ The correct method must be found.

The first n registers of a method are local registers and the first parameter register is the n* register.
For tracking a parameter register, the algorithm calculates the offset of the parameter register and adds it
to the slice.

However, a method can be invoked on a base-type, on an interface or on a derived class. Unfortu-
nately, during a static analysis it is not easily possible to find a specific class based on an interface or a
base-class, because for that the instantiation of the object must be found first. To find the correct method
of the invocation, the register tracker uses a slight simplification. The tracker inspects each method in ev-
ery class that fits to the signature of the invoke instruction. Thus, if the invocation is done on an abstract
method, then the tracker will slice all implementations of the abstract method, which are found.

Return statements are the logical sequel of method invocations. If a register of an invoked method
is influenced, and the method has a return value, then the register of the return value must also be tracked
in the calling method.

However, a register, which is returned from a method, is stored in a hidden register first. A special
move instruction retrieves it and stores it in an accessible register. Therefore, a return statement is
identically handled to an assignment instruction, with the addition that the algorithm must be aware of
the scope.

Conditions and jumps are the most complex code structures for static slicing. Basically, the slicer
inspects the instructions in the order as defined in the bytecode. If a condition or an unconditional jump
occurs, then the slicer calculates the offset address, where the new branch starts, and adds the new branch
to the tracking set. After the branch instruction, a recalculation of all branches is done, when the newly
added branch starts before the current instruction. That means, if the calculated offset is negative.

It is also possible that more than one branch is active at the same time. Each branch lives until a re-
turn, or unconditional jump statement occurs. Nevertheless, by design it is not possible that two branches
are identical, but it is possible that two branches visit the same instructions. Figure 4.2 illustrates this
behaviour. The first branch starts at instruction number 1 and inspects each instruction until instruction
number 3. At instruction number 3, a new branch is added, which starts at instruction number 6. Next,
the first branch continues with instruction number 4 and 5. Instruction number 5 is an unconditional
jump, which closes the first branch and creates a new branch, which contains the instructions from 3
to 5. This branch is immediately recalculated, because it starts before the current instruction and the
subsequent branches are updated. Thus, the second branch is updated, because this is the branch, which
is generated by instruction number 3. At instruction number 6 the second branch becomes active until
instruction number 8 returns to the calling method. In this example branch 2 is a subset of branch 0, and
thus they visit the same instructions, but they are not identical.

4.2.2 Issues with Static Slicing

Furthermore, to be able to slice Dalvik bytecode, various issues must be considered. These issues result
from the Dalvik architecture, and the slicing algorithm. This section discusses the following issues, and
how we considered these issues in the framework:

4.2. Register Tracker 51

Branch 0
Il"
+ Branch 0 = {1, 2, 2, 4, 5}
Branch 1 = {&, 7, 8}
2 Branch 2 = {32, 4, 5}

; constfd M, 2
: constfd rl, 1
: if-=qz o, 4
sub i, rl
goto -2

nop

nap

: retum-y oid

* . " Branch 2

_L
L
Lol Rl R

Figure 4.2: Tllustration of the Generation of Branches for the Register Tracker

* Concurrency

* Aliasing

Callback mechanisms
¢ Native calls

* Exceptions and reflections

Concurrency: Android applications frequently use concurrency, because Android’s application con-
cepts enforce this. Each application on Android has its own Ul thread. This handles the callbacks from
the operating system when an interaction with the application occurs. Nevertheless, Android restricts the
runtime for every Ul thread. That means, that each callback to a user input must not run longer than 5 sec-
onds and each callback to a broadcast receiver must not run longer than 10 seconds [Android Developer
Guide - ANR 2013]. Thus, it is not possible to execute a long-running operation on the Ul-thread.

To circumvent this issue, threads must be used. This can be done by using Java threads or Android’s
specific concurrency classes — services, and asynchronous tasks. The algorithm must be aware of the
concurrency and must be able to correctly detect information-flow in threaded applications.

The detection of Java threads is simple, because Java threads are based on two steps:

1. Initialise the runnable object.

2. Trigger the system to start the thread.

This two-step execution is simple to trace, because all data on which the thread operates on are passed
to the thread by step one, which is typically the constructor of the object. In addition, the second step can

O 0 N O\ W BN =

—_
=)

52 4. APK Analyser

not be tracked, because the invoked method differs from the executed method. The connection between
these two methods is done by the system, and thus can not be tracked. However, threaded applications
are still correctly sliced because of the initialisation step. The slicer recognise the use of the influenced
registers, and continues at this point.

Unfortunately, by the nature of Android’s concurrent components, the algorithm is not able to cor-
rectly trace registers through such components. That means, that the slicer miss some influenced regis-
ters. The reason for that is that the the start method can be parametrised, an these parameter variables can
not be traced. Similar to Java’s thread architecture, the invoked method name differs from the executed
method name. Thus, parameters from the starting method can not be tracked through the system, and so
the trace of the relevant registers are lost at this point.

Aliasing: Aliasing describes a situation in which data can be accessed through different names in the
program. Thus, modifying the data through one name implicitly modifies the values associated with
all aliased names. For static slicing that means that an aliased name can potentially modify influenced
values without being tracked. We are aware of the problem of aliasing, but we did not considered it in the
framework, because our manual analyses of applications showed that for the purpose of the framework it
is not necessary to deal with aliasing, and because of the limited time for this work. This is also described
in Section 5.

Callback mechanisms: Beside the issue with different Android components, the algorithm has
some problems with callback architectures, which is a special form of aliasing. The problem with
common callback mechanisms in an application is similar to the problem with Android’s concurrent
components. In both cases the method name of the invocation differs from the executed method name.
This is only true for callbacks on base-types and interfaces. If a class invokes the callback method on the
class in which the method is implemented, then the previously defined invocation rules are applied.

The behaviour of callbacks on interfaces and base-types is discussed with the code from Listing 4.2.
The example consists of two classes, one implements an interface and the other one creates an instance
of this class and stores the reference to the class in an instance variable, which has the interface as type.
In addition, a method invokes the callback method from the interface on the instance variable. If register
three is in the tracking set, then this register will be a parameter for the method callback from the type
Lat/iaik/thesis/MyCallbackInterface. Unfortunately, the variable, on which the reference to the object is
stored, is not in the slice and even if it is in the slice the implementation of the method callback can not
be found, because the correct class is not known. The correct class will be known, if for each variable
the instantiation is stored. However, this is not feasible, because of the consumed memory of this list.

Nevertheless, to be able to handle such callbacks the algorithm inspects every method in each class,
which implements the specific interface or base-type. Thus, it is possible that the slice contains too
many methods, because if something like a command pattern is implemented then every command has
a method with the same signature. The modules must consider such things for the definition of the
detection patterns.

.class Lat/iaik/thesis/AClass
.super Ljava/lang/Object
.interfaces null

.instance variables
interface —> Lat/iaik/thesis/MyCallbackInterface;

.method <init>

new—instance v0, Lat/iaik/thesis/MyClass;

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

4.2. Register Tracker 53

invoke—direct {v0}, Lat/iaik/thesis/MyClass;—><init>()V
iput—object p0, v0, Lat/iaik/thesis/AClass;—>interface
.method someMethod()
iget—object p0, v0, Lat/iaik/thesis/AClass;—>interface
invoke—interface {v0, vl, v3}, Lat/iaik/thesis/MyCallbackInterface;—>
callback(Ljava/lang/String; Ljava/lang/String);V
.end class
.class Lat/iaik/thesis/MyClass
.super Ljava/lang/Object
.interfaces Lat/iaik/thesis/MyCallbackInterface
.method callback(Ljava/lang/String; Ljava/lang/String)
new—instance vl, Ljava/io/File;

invoke—direct {vl, pl}, Ljava/io/File;—><init>(Ljava/lang/String);V
invoke—virtual {vl}, Ljava/io/File;—>delete();V

.end class

Listing 4.2: This piece of Smali code illustrates the issues of callback mechanisms.

Native calls: Android supports native libraries for computation-expensive code fragments. Unfor-
tunately, native libraries are outside the scope of the slicer. They are written in a different language,
which are compiled to native code. Thus, to also analyse native libraries a completely different parser
and analyser is needed. In this case the analyser is restricted by its architecture, which is designed for
Dalvik bytecode and such potential gaps must be accepted in the slice.

Exceptions and reflections: In addition, Java has two additional language elements which are not
considered by the slicer — exceptions and reflection. Firstly, exceptions are used for error propagation
through the program. The challenges of exceptions are:

* The enormous amount of different exception classes, and thus throw statements in the code.
* The arbitrary place of the catch block.

* The possibility to nest catch blocks.

For a static slicer it is not possible to detect if a program misuses regular exceptions for information
forwarding. Thus, if an application forces a null-pointer exception to start malicious code, which is
hidden in the code of the exception handler, then the static slicer does not notice it. Because of the nature
of exceptions, the whole code of each catch block must be added to the slice to detect such implicit
data-flow. Unfortunately, this increases the slice and adds a lot of code to the slice that is not potentially
connected to it. Thus, as discussed before, our slicer is not able to slice exceptions.

Reflection is the ability of a computer program to examine and modify the structure and behavior

(specifically the values, meta-data, properties and functions) of an object at runtime [J. Malenfant and
Demers, 1996]. The complexity in slicing the reflection mechanism is the design of this mechanism

54 4. APK Analyser

itself. With the help of reflection a class can be instantiated, and used based on a string that represents
the class. Thus, to slice this mechanism the slicer must be able to analyse all strings in the program to
understand which class is built, and which method is used. Furthermore, it would be possible that the
strings, which represent the classes and methods, are encoded, and decoded at runtime. Such mechanism
would efficiently blockade static program slicing.

4.3 Modules

The register tracker contains the slicing architecture, and the modules specific start and success patterns.
These so-called sources, and sinks define specific code fragments in an application, to define the start,
and end criteria of a slice. Currently, our framework includes the following modules.

Root: Analysis the application for the existence of a root-check. This is important for security critical
applications, because otherwise such applications have additional security threats, like no private
folder to privately store session information.

10: The 10 module has two fields of application. Firstly, it classifies applications by their use of the ex-
ternal file system, and secondly it supports the other modules to improve the detection capabilities
of the other modules.

SMS: This module tries to classify SMS sniffers and catchers. In addition, it classifies the application
by the registration type of the SMS application — static or dynamic. In combination with the 10
module, it tries to find applications that control the phone through SMS.

Crypto: The crypto module tries to find code for cryptographic operations. The crypto module is
basically built to examine the possibilities of the framework for the analysis of cryptographic
code.

Each module is derived from a base class. This base class handles all slicer instances for a module.
Furthermore, it handles method and class changes, and the reset of a module after an inspection. This is
important to avoid wasting memory, because all modules are created by a factory, which is designed as
an enumeration class. Enumeration classes have the disadvantage to store all modules in static instances
of the class. This architecture keeps the modules in the memory.

4.3.1 Root

The first module is the root module. This module tries to find code fragments that do a root-check. Basi-
cally, applications do not have superuser access, but it is possible to circumvent this security mechanism
by unlocking the root user on the phone. Normally, this is done by exploiting a security leak of the
operating system (OS). Unfortunately, the user-based permission system of the Android system is one of
the most important security features and if this feature is circumvented by the root user, then applications
do not have private folders. Thus, all other applications are able to access all data of every installed ap-
plication. Additionally, applications are able to access and install low-level services — for example their
own kernel modules. The superuser access is a threat for the data of installed applications.

An application can use different methods to detect whether a phone is rooted or not. After a deep
manual analysis of applications with implemented root checks, we found out that at least one of the
following checks is used to classify a mobile phone as rooted or not in the analysed applications.

* Check the existence of the Superuser.apk, which is a root-user manager.

¢ Check the existence of the su command.

~N N B W N =

[R I

4.3. Modules 55

* Execute the su command and check if the shell throws an exception.

* Check the build-tag of the phone.

The first and the last check are simple. The first test checks if an application with the name Supe-
ruser.apk in /system/app/ exist and the last one checks if Android’s build-tag contains the string ’zest-
keys’. Each of these checks can be written in one line of Java code. Listing 4.3 shows these two lines of
code. The second check is more complex because there are different places where the su application can
be installed. Each directory in the PATH environment variable can hold it. However, the basic idea is the
same as for the Superuser.apk file, which searches for a file at a specific location on the file system.

if (new File(‘ ‘/system/app/Superuser.apk’’).exist()) {

}

if (Build.TAGS.contains(‘ ‘test—keys’’)) {

}

Listing 4.3: This source code example shows two root-checks. The first line shows the
Superuser.apk check, and the second line shows the build-tag check.

The third check tries to execute the su application and checks whether it was able to execute it or not.
Listing 4.4 shows the code for this check.

try {
Runtime.getRuntime () .exec(‘su’’)
} catch (IOException ex) {
// Could not find, or execute the command.

}

Listing 4.4: This source code example shows how to check if a phone is rooted or not, by
executing the su command.

Additionally, there are some other techniques to classify Android phones as rooted or not, but none
of the manually analysed applications used one of these mechanisms. Some of these checks are:

* Check the correct mapping, and mount properties of the partitions.
» Check the existence of applications, which are only available on rooted phones, like tcpdump.

* Check the file and folder permissions, for system files, and folders, which are not modifiable by
the user.

The root module analyses applications for the commonly used detection code snippets. For detecting
the Superuser.apk, or the su binary file, the application must check if the specific file exists. Next,
executing a shell command is basically a method invocation with specific parameters. The last check
searches for an access of Android’s build-tag and a belonging check for its correctness. The phone is
rooted if the build-tag contains the value test-keys.

56 4. APK Analyser

432 10

The 10 module evaluates whether an application tries to modify the file system or not. Modifications can
be done by:

* Creating a file.
* Writing to a file.

* Deleting a file.

These operations are done by nearly all file browser applications. It does not make sense to use
these operations to make an assumption about the security of an application, but it is possible to classify
applications by their file system behaviour. Therefore, the module tries to find operations on the file
system and classifies the application into the following categories:

* NONE - The application does not use files.
* WRITER - The application creates files and writes to it.

* DELETER - The application removes files.

Nevertheless, this module is more useful in combination with other modules, like the SMS module.
If these two modules are combined, then the analyser is able to potentially detect simple SMS command
architectures. That means, that if an application receives an SMS and if the slice includes an 1O operation,
then the application will have a SMS command architecture, or is a backup application, which stores the
SMS on the file system.

4.3.3 SMS

The SMS module tries to classify applications by its SMS behaviour. Applications receive SMS, which
are distributed by Android’s broadcasting mechanism, for different reasons. Most of the applications are
simple messengers, which show the received message to the user, but some other applications use short
messages to remotely control the phone. Additionally, applications are not only able to receive and read
SMS they are also able to abort the broadcast. Thereby, no other application receives the SMS. Such
applications are potentially malicious, but the classification in malicious and trustworthy applications
can not be done by this detection system, because this classification mainly depends on the context in
which the application is installed, and used.

Thus, this module classify applications by the type of registration and by the behaviour of the receiver
into the following categories, where 1 is the highest and 3 the lowest category.

1. DYNAMIC

(a) CATCHER
(b) SNIFFER READER
(c) SNIFFER DUMMY

2. STATIC

(a) CATCHER
(b) SNIFFER READER
(c) SNIFFER DUMMY

4.3. Modules 57

3. NONE

Android has two different registration types for broadcast receivers. The common way is a static
registration in the Android manifest. Beside this one, dynamic receivers can be registered during runtime.
The problem with dynamic receivers is that they can not be determined through Android API calls.
Therefore, we think that dynamic receivers may do more suspect things than static receivers. The module
tries to find the registration process, which is for static receivers a simple manifest lookup, and for
dynamic receivers, the module searches for the correct registration pattern. Afterward, the determined
receiver is classified into one of the above categories.

If more than one receiver is found, then the application is classified based on the category of the high-
est receiver, which is found in the application. Dynamic receivers are more suspect and potentially more
dangerous than static receivers, so the categories for dynamic receivers are higher than the categories
for static receivers. After the registration type classification, the receiver is classified by its behaviour.
A catcher aborts the broadcast, a sniffer reader extracts at least the body, or the origin address, and a
sniffer dummy receives the SMS but does not extract data from it. This classification principal is shown
in Figure 4.3. The category with the thick edges is the category in which the framework classifies such
applications.

Dynamic | Static

Found a receiver | | Catcher |

|
|
|
|
|
|
Sniffer-R :
|
|
|
|
J

Found an extract operation | | Catcher |

Dynamic | Static

Found an abort in the receiver | I Catcher I

Sniffer-D

|
|
|
|
|
|
Sniffer-R :
|
|
|
|
J

Figure 4.3: SMS Classification Hierarchy

This figure illustrates the SMS classification hierarchy. If a receiver is found, then it is a sniffer
dummy. If an extract operation is found, then it is a sniffer reader. If an abort operation is found,
then it is a catcher.

This module does not inspect the further usage of the SMS message. If the application extracts the
body and executes a command based on the body, then this will not have any effect on the classification.
It is possible to combine this module with other modules to detect this behaviour.

~N N R W =

58 4. APK Analyser

4.3.4 Crypto

The crypto module tries to find the use of cryptographic algorithms. The entry point of the slice of this
module is an initialisation of the crypto class. This class takes the cryptographic algorithm identifier
as initialisation parameter. Thus, the source is the initialisation string, which defines the cryptographic
algorithm, and the initialisation statement of the crypto class.

Afterwards, the module can track the operations on this class. At the end of a cryptographic operation
the method doFinal must be called. Therefore, the defined sink for this module is the doFinal
method, which finalises a cryptographic operation. Listing 4.5 shows a code example that can be sliced
with this module.

public static byte[] encrypt(Key key) throws Exception {
Cipher aes = Cipher.getInstance("AES/ECB/PKCS5Padding");
aes.init(Cipher.ENCRYPT_MODE, key);
byte[] ciphertext = aes.doFinal("This is the plaintext".getBytes());

return ciphertext;

}

Listing 4.5: This source code example shows how to encrypt data in Java.

Nevertheless, the detection rate of this module is limited by the design of the slicer and common
implementation of cryptographic operations. The chosen source, and sink is one possible way to encrypt
data. However, if it is differently implemented, then the slicer do not detect this cryptographic code.

4.4 Generated Results

Basically, the framework is designed to run directly on the device. The framework should analyse appli-
cations and present results for users for deciding if an application should be removed or kept and used
on the device. Additionally, for technical experts a more detailed result should be stored for later inspec-
tion. Thus, the analyser stores the slice for later inspection and makes assumptions about the analysed
application and presents clear statements to the user.

4.4.1 User Notifications

Each module generates a result string which is shown to the user. The following enumerations show the
different result strings of the different modules.

For the root module only two possible result strings exist. This results from the fact that an applica-
tion can check for root and we find it, or not. Therefore, the result of the checks is one of the following
strings:

* A root check can not be found. Either the application does not check if the phone is rooted, or the
application uses an uncommon technique for determining if a phone is rooted or not.

* The application has at least one check. The more checks the application implements the higher the
chance to find an indication that the phone was rooted.

The IO module searches for file operations and describes if an application modifies the file system.
It is possible that more than one result string fits for the result of the check. Thus, all fitting result strings
are concatenated together. The possible result strings for the IO module are the following ones:

4.4. Generated Results 59

* The application deletes files on the phone.
* The application creates files and writes to them.

* The application does not touch the file system.

The SMS module analysis operations that are based on incoming short messages. Similar to the 10
module it is possible that more than one result string fits the application. Furthermore, the registration
type is not included in the result string, because it is assumed that a typical user does not know the
differences between these categories.

* The application aborts the received SMS, so that no other application receives the SMS.
* The application reads the origin address from the SMS.
* The application extracts the message from the SMS object.

* The application receives SMS, but it neither extracts the message nor the origin address form the
SMS.

* The application is not able to receive SMS.

4.4.2 Technical Experts

For technical experts the analyser contains a more detailed result writer. This result writer creates a
general file, and for each module a detailed file. The general file contains the classification results of
each module, the requested permissions of the application and the timings, to analyse the runtime of the
analyser.

Each executed module also generates a file, which contains the slice of all registered trackers. It
is possible that a module registers more than one tracker, where each tracker starts with a different start
pattern. Thus each slice of each tracker must be written into the file. To structure the output of all tracker,
each tracker must register a section for the file. These sections are sequentially written to the file. The
used layout of the result file is based on the Smali notation, to be able to use Smali’s syntax highlighting
in supported editors for inspection.

60

4. APK Analyser

Chapter 5

Evaluation

2»

“ We must reinforce argument with results.

[Booker T. Washington]

The evaluation is done to verify the detection patterns of every module. We do not know the quality
of our analyser. Thus, we built an evaluation basis, by manually analysing, and classifying applications
for each module. After our manual classification, we evaluated the detection rate of every module.
Furthermore, we evaluated the timing of each module based on a Nexus S.

The complexity of an evaluation is the evaluation basis. An evaluation basis must fulfil certain
properties, to make an assumption about the correctness of a framework. In our case, such properties
are the amount of sample applications, the amount of different implementation mechanisms, and the
knowledge of the correct classification category.

During our manual analysis of applications, and the definition of the slicing criteria, we gained among
others some in-depth knowledge about the implementation techniques of several security mechanisms.
Therefore, we built evaluation bases consisting of manually built applications, and downloaded appli-
cations, which we manually analysed. These evaluation bases are assigned to the modules. Thus, each
module has its unique evaluation basis.

Furthermore, each module is tested with a wider basis. We tested our framework on the basis of
3709 arbitrary applications and 1260 malware samples. To retrieve these applications, we used two other
frameworks. We retrieved the arbitrary set of applications by our non-official market crawler framework,
and the malware samples were retrieved from Malgenome during another master’s thesis. Thus, we
are able to make assumptions about the behaviour of malicious applications, and about the behaviour
of an arbitrary set of applications. Unfortunately, it is not possible to manually analyse all of these
4969 applications to verify the results of our implementation. Therefore, we have another approach to
interpret the results of the two large application sets. We use the knowledge of the evaluation basis
in combination with a selectively manual analysis of the larger application sets to make an assumption
about the correctness of the results.

The following sections describe the evaluation basis, and the evaluation results for each module.
Consequently, each of the following sections is divided into a section that discusses the evaluation basis,
the evaluation of the arbitrary set, and a section that discusses the evaluation of the malware set. Fur-
thermore, we discuss possibilities to combine modules to improve the classification. Finally, in the last
section we discuss the timing of the framework.

61

62 5. Evaluation

51 10

The IO module checks whether an application accesses public files on the external storage or not. This is
done by finding variables that hold the path to the external storage and additionally, by finding all IO op-
erations associated to these variables. With this module we focused on modification access, because then
it is possible to filter applications by their permissions in the manifest. Furthermore, we assume that the
public folder only contains content that should be publicly available for other applications. Therefore, we
also assume that a read-access is tolerated by the user. For our analysis, we defined a modification access
as one of the following actions. Either the application tries to write data, or the application tries to delete
some data on the external storage by overwriting, or deleting it. Thus, we classify these applications as
potentially dangerous, because it could be possible to hijack components of such applications to modify
the external storage or to completely wipe it.

Beside a standalone analysis, it is also possible to use this module in combination with other mod-
ules. The idea, of such a combined analysis, is to increase the detection rate of the modules. We use
this method to increase the detection rate of the root, and IO module. The resulting evaluation of the
combined analysis are described in the sections of the appropriate modules.

5.1.1 Evaluation Basis

The evaluation basis of the IO module consists of manually written applications, downloaded file-browser
applications, and applications, which do not modify the file-system. The manually written applications
are either write, or delete a file, whereas the downloaded applications write, and delete files. Thus,
in Table 5.1 the number of classified applications is higher than the application set. The applications
without an IO operation holds the permission for modifying the external storage, but does not modify it.
These applications are used to evaluate the detection of false-positives.

Table 5.1: Evaluation of the IO Module with the Manual Evaluation Set

Classified (#)
Applications with write operations 12 (12)
Applications with delete operations 12 (12)
Applications without an IO operation 20 (20)
Application set 40

The table shows the evaluation results of the evaluation basis for the IO module. The manual ap-
plication set of 40 applications is classified in three different categories. The sum of these three
categories is higher than the total amount of applications, because an application can have write,
as well as delete operations on the external directory. Thus, some applications are counted twice.
Furthermore, the number in braces is the basis for each category.

The evaluation of the IO module with its evaluation basis showed that our module correctly classifies
all applications from the evaluation basis. We think that this outcome primarily results from two different
properties. Either our defined sources and sinks are precisely enough to correctly classify applications
with, and without an IO operation, or our manual evaluation set does not reflect all possibilities.

Therefore, the evaluation basis shows that the IO module correctly classifies common implementation
types. Although we are aware of that this module has a specific error rate. A possible approach to
circumvent the detection mechanisms of this module is to use system applications. Android has specific
system applications to read, write, and delete files. To read a file, cat can be used. This is an application
that reads the content of a file and sends it to the current output stream. To write some content to a file,
echo can be used. Echo is an application that writes data from the input stream to the output stream,

5.1.10 63

which can be a file. Finally, to delete a file, the system provides the so-called rm application. Thus,
an application could open a shell and read, write, and delete files with the help of these specific system

applications.

5.1.2 Evaluation of the Arbitrary Set

The evaluation of the arbitrary set of applications showed that more than the half of the applications in
our test-set write, or delete data on the external storage. Table 5.2 shows the result of the evaluation. We
assume that this result is a consequence of the random property of the evaluation set. A brief manual
analysis of the evaluation set showed that the set includes many file browser applications.

Table 5.2: Evaluation of the IO Module with the Arbitrary Set
Classified (#) Classified

Writes files 1210/1458 82.99%
Deletes files 1015/1458 69.62%
Modify external storage 1458/3709 39.31%
Do not modify external storage 2251/3079 60.69%
Application Set 3709 100%

The results of the evaluation of the IO module with the arbitrary set is separated into two sections.
The first section shows the separation between write, and delete applications. As explained before,
the sum of these two categories can be higher than the total classified applications. The next section
shows the classification into applications that modifies the external storage and those that do not
modify it. The sum of this section is the total amount of applications for this evaluation.

Furthermore, the result of our analysis is visualised in Figure 5.1. The intersection of the sets of write-
and delete-accesses to the external storage holds the largest part of the classified applications. Thus, we
assume that we have at least 767 file browser applications, or applications that primarily operate on the
file system in our evaluation set.

WRITE 12100 DELETE €101

Figure 5.1: Intersection of the IO Categories Write, and Delete

64 5. Evaluation

Conclusion

Through the standalone analysis of the IO module, we got in-depth details about the behaviour of the
applications in the arbitrary application set, and information about the performance of the IO module.
In combination with a manual analysis, we found out that many applications in our arbitrary set are file-
browser applications. Furthermore, we are able to separate applications that use the external storage and
those they do not use it.

However, this module is primarily designed to support the other modules by their classification. The
sections of the root, and SMS module show that we are able to improve the root, and SMS module with

the IO module.

5.1.3 Malware Evaluation

The second evaluation set consists of malicious applications only. Table 5.3 shows the result of this
evaluation. The evaluation shows that the number of malicious applications with IO operations on the
external storage and those without such operations are nearly equal. Thus, a general assumption about
the file-usage behaviour of malicious applications can not be made. Nevertheless, an additionally manual
analysis showed that the usage of the external storage depends on the malware families. Specific malware
families do not modify the external storage and other malware families have the possibility to write, and

to delete files on the external storage.

Table 5.3: Evaluation of the IO Module with the Malgenome Set
Classified (#) Classified

Writes files 530/579 91.54%
Deletes files 507/579 87.56%
Modify external storage 579/1260 45.95%
Do not modify external storage 681/1260 54.05%
Application set 1260 100%

Similar to the evaluation result of the arbitrary set, the result is also separated into two sections.
The first one divides those applications that modify the external storage into writer, and deleter

applications.

Oelete 3072 Write C530)

Figure 5.2: Intersection of the IO Categories Write, and Delete for the Malgenome Evaluation

5.2. Root 65

The largest part of the malware, which is able to modify the external storage, has the ability to write
as well as to delete files. We assume that this results from the malicious nature of a malware. A malware
with both functionalities is more flexible, and efficient. Figure 5.2 illustrates the intersection of the
classified categories.

Conclusion

Similar to the evaluation with the arbitrary set of application, the detection of IO operations makes
limited sense only. In this scenario we are able to differentiate between malicious application that use
the external storage, and those they do not use it. Thus, this module is able to make a pre-separation of
the malicious application set for an additionally manual analysis. Our brief manual analysis showed that
the use of the external storage primarily depends on the malware family. Nevertheless, the module is
designed to cooperate with other modules and a standalone usage is less conclusive.

5.2 Root

The root module checks if an application includes some root-checks in its code or not. We defined in
Section 4.3 the detection mechanisms for the root module in detail. In summary, common root checks
are the following ones:

* Check the existence of the Superuser.apk file.

Check the existence of the su command.

¢ Execute the su command to check whether the command is executable with the default environ-
ment variables.

Check Android’s BUILD tag.

Our framework classifies applications, based on these four checks. Thus, either an application has at
least one of these checks and is classified as an application that does root-checks to ensure the integrity
of the phone, or it has not such a check. If it is classified as an application without a root-check, then
either it is an application without a root-check, or it has an uncommon root-check, which our framework
is not able to detect.

5.2.1 Evaluation Basis

To evaluate the root module, a good evaluation basis must be found. Unfortunately, it is not easily pos-
sible to find applications with root-checks by special key-words, or tags. Thus, we did a comprehensive
survey of container-, and banking-applications. These applications should have root-checks to ensure the
integrity of the phone [Lange et al., 2011]. Nevertheless, only a few applications have implemented a
root-check.

Therefore, our evaluation basis consists of the applications from our comprehensive survey that use
at least one root-check, and own sample applications, which are based on our manual analysis of ap-
plications with root-checks. To also detect false-positives we built a set of applications without any
root-checks as well. This set consists of the remaining applications from our comprehensive survey, as
well as manually built applications.

Table 5.4 shows the results of the manual evaluation set. The applications with root-checks were
correctly detected, but there are also four wrongly detected applications. The problem is that the module
does not check, whether the application opens a root-shell, or does a root-check. This issue can be fixed
by combining the root module with the IO module.

66 5. Evaluation

Table 5.4: Evaluation of the Root Module with the Manual Evaluation Set

Classified (#)
Applications with root-checks 24 (20)
Applications without root-checks 16 (20)
Application set 40

The table shows the evaluation of the root module with the corresponding evaluation basis. This
module classifies an application either as an application that has at least one root-check, or non.
Furthermore, the number in braces is the basis for each category.

The following sections describe the different evaluation results, based on the arbitrary, and the mal-
ware application set. Furthermore, combined results for further improvements are discussed.

5.2.2 Evaluation of the Arbitrary Set

Our evaluation on the wider set of arbitrary applications showed that only approximately 5% of these
applications contain at least one of the four defined root-checks. Table 5.5 shows this result in more
detail.

We assume that the small amount of applications, with a detected root-check in our test-set, primar-
ily results from two different properties. Firstly, the applications in our test-set are arbitrarily retrieved
from different markets. Because of this random property, many applications function properly without
an existing root-check. A manual analysis showed that the arbitrary set also includes wallpaper, messen-
ger, and simple notifier applications. Obviously, these types of applications do not need a root-check.
Secondly, our manual analysis also showed that hardly any applications implemented a root check.

Table 5.5: Evaluation of the Root Module with the Arbitrary Set
Classified (#) Classified

Applications with root-checks 199/3709 5.37%
Applications without root-checks 3510/3709 94.63%
Application set 3709 100%

The table shows the evaluation of the root module with the arbitrary set of applications. It separates
the 3709 applications of the arbitrary set into applications with and without root-checks.

Nevertheless, 5% of our test-set contains a root-check, and the evaluation of our manual evaluation
basis showed that we are able to detect the defined root-checks, but the result can also include false-
positives. Therefore, detected applications can also use the privileges of the root user on the phone
to gain more permissions for their applications. The next section discusses a method to differentiate
between root-checks and potential root-usages in an application.

Combined Results

The combined evaluation combines the root module with the IO module. The idea behind this is to
improve the performance of the root module, by separating applications that open a root-shell. A usable
root-shell can be created by executing the superuser binary and retrieving the corresponding input and
output streams. In contrast to this, one of the defined root-checks tries to execute the superuser binary,
and to check whether the system throws an exception or not.

5.2. Root 67

Thus, we used the I0 module to differ between applications that implement a root-check and those
that use root to gain more permissions for their applications. The IO module has the possibility to find
file operations in an application. These file operations can be divided into read-, write-, and delete-
access. Our assumption is that if an application uses the privileges of the root user, the application needs
an input-, and an output-stream for the created root-shell. These streams are derived from Java’s 10
architecture and therefore, they are IO operations that our IO module is able to detect.

Table 5.6 shows the combined result of the IO module and the root module. For this analysis we used
the 5% of applications, which are classified as applications with root-checks.

Table 5.6: Evaluation of the Root Module in Combination with the IO Module
Classified (#) Classified

Applications with IO operations in the slice of the root-check 145/199 72.86%
Applications without IO operations in the slice of the root-check 54/199 27.14%
Application set 199 100%

The table separates the applications with root-checks into applications with IO operations in the slice
of the root-check and those without ones.

145 applications are classified in one or more I0-categories, but 54 applications do not have 10 oper-
ations related to their root-check. Therefore, based on our previous assumption, these 54 applications are
applications that really do a root-check. Furthermore, we did a brief manual analysis of the applications
with root-checks, and 10 operations. The manual inspection showed that these applications are primarily
file-browser applications, which use root to gain more permissions for their applications.

Conclusion

The analysis in combination with our manual inspection showed that our framework is able to find code
that is used to make root-checks. It also showed that the detector for the root-checks also wrongly detect
some applications. Nevertheless, the wrongly detected applications contains code that uses the root user
for opening a root-shell and these applications can be filtered with the combined approach. Thus, this
module is able to find root-checks, and the usage of the su command to open a root-shell.

5.2.3 Malware Evaluation

Our second wider evaluation basis consists of malware only. Therefore, we assume that our framework
finds more applications, which do root-checks, or open root-shells. The evaluation showed that this
assumption was correct. Table 5.7 shows the result of the evaluation, where 452 applications contain a
root-check.

Nevertheless, we still have the problem that the detected applications do not make a root-check,
but rather use root to open a root-shell. In this specific set of applications, we assume that many of
these applications generate a root-shell to execute their malicious code. The combined result helps us to
differentiate between these two types.

Combined Results

Similar to the arbitrary set of applications, the combined result is used to differentiate between applica-
tions with root-checks, and applications with root-shells. Table 5.8 shows the result of this evaluation.
We found out that 436 of 452 applications contingently use root-shells for executing code. For this spe-
cific applications we can conclude that they use a root-shell for malicious purpose. Furthermore, 16

68 5. Evaluation

Table 5.7: Evaluation of the Root Module with the Malgenome Set
Classified (#) Classified

Applications with root-checks 452/1260 35.87%
Applications without root-checks 808/1260 64.13%
Application set 1260 100%

The table shows the separation into applications with and without root-check, based on the malicious
application set.

applications have a root-check, but do not use it for executing malicious code. In these applications, a
manual inspection showed that the root-check is used to control the behaviour of the malicious applica-
tion. We found out that some malware families check if a phone is rooted or not. If it is not rooted, then
such a malware tries to root the phone.

Table 5.8: Evaluation of the Malgenome Set with the Root Module in Combination with the 10

Module
Classified (#) Classified
Applications with IO operations in the slice of the root-check 436/452 96.46%
Applications without IO operations in the slice of the root-check 16/452 3.54%
Application set 452 100%

The previously classified applications that include a root-check are separated into applications that
have an IO operations in the slice of the root-check and those without.

Conclusion

With the analysis of the malware set, we showed that malicious applications as well as benign appli-
cations make root-checks. Obviously, the motivation is differently. A manual analysis showed that
malicious applications use root-checks to classify mobile phones into rooted, and non-rooted phones.
Furthermore, we found out that these malicious applications classify the mobile phone to know if a root-
exploit must be executed or not, and whether an executed root-exploit was successful or not. Finally, we
showed that our framework is able to find applications, which try to execute commands as root, but it can
not differentiate between malicious and benign applications.

5.3 SMS

The SMS module tries to classify the different types of SMS receiver. It is possible to register a receiver
either statically in the manifest file, or dynamically in the code. Statically registered receivers can be
easily found through Android’s API calls. Thus, such applications can be easily listed as applications that
receive incoming SMSs. Unfortunately, third-party applications are not able to easily detect dynamically
registered receivers in other applications. These applications hide the functionality to receive incoming
SMSs. Furthermore, the influence on the incoming SMSs from an application should be also classified,
because it is possible that an application only counts the arrival, reads the body or the address of the
SMS, or aborts the SMS. The SMS module classifies each application into one of seven categories, to
separate between the registration types and the type of usage of the incoming message.

5.3. SMS 69

5.3.1 Evaluation Basis

To evaluate this module, we built an evaluation basis with 145 different applications. These applications
were downloaded from Android’s official market, and from 3rd party markets. 117 applications contain at
least one SMS receiver and 28 applications are without an SMS receiver, to also evaluate false positives.
The applications are not equally distributed over all categories, because it is not easily possible to find
applications, which fit to the criteria of a category. This results from the fact that we can not specifically
search for applications with dynamically registered receivers in it. Thus, many applications must be
reverse engineered until an application with a suitable dynamically registered SMS receiver is found.

Furthermore, applications with complex programming constructs are not included in the set. Com-
plex programming constructs are reflections and libraries. Both can not be sliced with the design of the
analyser. Thus, it is not sensible to include applications with such code in the manual evaluation set.
Additionally, we did not find any applications that use one of these constructs to handle incoming SMSs,
during our analysis of this module.

Table 5.9: Evaluation of the SMS Module with the Manual Evaluation Set

Category Classified (#) Classified
Dynamic Catcher 13 (16) 81.25%
Dynamic Sniffer - Reader 34 (35) 97.14%
Dynamic Sniffer - Dummy 6 (6) 100%
Static Catcher 12 (12) 100%
Static Sniffer - Reader 34 (41) 82.93%
Static Sniffer - Dummy 7(7) 100%
None 28 (28) 100%
Complete result without None 106 (117) 90.6%
Complete result with None 134 (145) 92.41%

The SMS module seperates the applications into seven categories. An SMS can be aborted, read, or
only counted, and the broadcast receiver can be statically, or dynamically implemented. Thus, an
SMS applications is classified into a dynamic, or static SMS application of the specific type. The
number in braces is the manually defined number of applications in each category.

Table 5.9 shows the detection rate of our manual evaluation set for each category, and an overall
detection rate. 11 applications were not correctly detected. These 11 applications were classified as
applications with SMS receiver, but they were classified in a wrong category. The reason for this is that
all of these applications use Android’s service architecture to handle receiving SMSs. Unfortunately, our
slicer is currently not able to correctly slice over Android’s service architecture. This results from issues
with the IPC architecture in combination with static slicing. Nevertheless, our framework found the SMS
receiver, but did not correctly classify the applications. Therefore, the wrong result is only the type of a
receiver, but it is not the possibility to receive an SMS. Thus, it does not forge the number of applications
with and without an SMS receiver.

5.3.2 Evaluation of the Arbitrary Set

In our arbitrary set of applications, our framework found 1205 applications with a registered SMS re-
ceiver. Table 5.10 shows this result in detail. A manual analysis showed that 1889 applications have the
permission for receiving an SMS. We assume that this gap of 684 applications exist, because of one of
the following reasons.

70 5. Evaluation

» The application does not contain a receiver and is over-privileged, because the developer did not
care about Android’s permission model.

* The receiver is not publicly accessible and consequently not tracked by our framework.

¢ QOur framework could not find the receiver.

Felt, Chin, et al. [2011] also describe issues with over-privileged applications. Thus, we assume that
our framework is correct, except a minimal error rate with services in combination with SMS receiver.
Nevertheless, this error rate only has an effect on the categories and not on the detection of SMS receivers

itself.

Table 5.10: Evaluation of the SMS Module with the Arbitrary Set

Category Classified (#) Classified
Dynamic Catcher 172/3709 4.64%
Dynamic Sniffer - Reader 351/3709 9.46%
Dynamic Sniffer - Dummy 54/3709 1.46%
Static Catcher 204/3709 5.50%
Static Sniffer - Reader 311/3709 8.38%
Static Sniffer - Dummy 113/3709 3.05%
None 2504/3709 67.51%
Applications with SMS receiver 1205/3709 32.49%
Application set 3709 100%

The table shows the results of the evaluation of the SMS module with the arbitrary set.

In addition to the gap of 684 applications, we classified the applications into seven categories. A
manual analysis showed that the two catcher categories primarily consists of two different types of ap-
plications. Firstly, typical third-party messenger applications, which abort the message to avoid that the
default messenger also retrieves the SMS and notifies the user. Secondly, applications that use SMSs as
control commands. Such control commands are not shown to the user and thus, such applications abort
the incoming SMSs. Furthermore, our manual analysis showed that typical sniffer applications retrieve
the address, and the body to store it into a private database, or to show detailed notifications to the user.
Typical dummy sniffer are also applications that notifies the user that an SMS arrived.

Furthermore, we also figured out that we can not correctly detect all applications in the correct
category, because some sniffer are also abort the incoming SMS. Nevertheless, we also showed this with
the evaluation basis, and thus, it is not astonishing.

Combined Results

Furthermore, it is possible to combine the SMS and the IO module. The idea of this combined result is to
filter applications that use SMSs as remote commands. Our assumption is that if an application receives
an SMS and if the message of an SMS has a relation to an IO operation, then this application will use
SMSs to control the phone. This assumption is based on the manual analysis of applications with remote
wipe functionality.

Table 5.11 shows the result of this combined evaluation and Figure 5.3 illustrates the result. A brief
manual analysis showed that the 181 classified applications can be divided into two different categories.
Either the applications modify the file system, based on the message of the SMS, or the applications hide
the SMS by aborting the broadcast and storing the SMS into a private database. The first category is our

5.3. SMS 71

Table 5.11: Evaluation of the SMS Module in Combination with the IO Module

File Operation Type Classified (#)

Read 119/1205
Write 140/1205
Delete 61/1205
Application set 1205

The table shows the separation of the applications with an SMS slice into the different IO operations
in the slice. The sum of all IO operations can be higher than the application set, because each
application can also include more than one type of IO operation.

predicted SMS command architecture and the second category consists of SMS blocking applications,
which are used to avoid messages from specific addresses.

Nevertheless, this is only a subset of applications with SMS commands, because our framework is
not able to slice IPC architectures. Furthermore, we only detect commands that result in an IO operation,
and consequently other SMS commands are not detected during our evaluation. Thus, we conclude that
our result only contains a small subset of applications with SMS command functionality.

Read (119 Write c1dio

\ 4

Delete (G612

Figure 5.3: Intersection of the SMS and IO Module

Conclusion

We showed that beside the detection categories, other criteria are important as well. It is important to
know what the application does with the message, beside of the knowledge about the category of SMS
applications. If an application is able to modify the system, based on a receiving short message, then this
will be more dangerous as an application, which only aborts the broadcast. Furthermore, we found out
that some applications from the evaluation set are blocking applications. These applications extract the
origin addresses of the incoming short messages and block those messages that the user is not allowed

72 5. Evaluation

to see. If the user defines the blocking rules, then such applications work correct, but if another person
defines the rules, then it will be a malicious behaviour.

5.3.3 Malware Evaluation

Another dataset for the evaluation of the SMS module is retrieved from the Malgenome project. Table
5.12 shows the result of this application set. Similar to our other arbitrary evaluation set, many ap-
plications do not contain the permission to handle incoming SMS. Furthermore, the malware set also
contains over-privileged applications. 22 applications have the SMS permission in the manifest, but nei-
ther a static nor a dynamic receiver is detected by our framework. The reasons for such applications are
discussed in the evaluation section of the arbitrary set.

Table 5.12: Evaluation of the SMS Module with the Malgenome Malware Set

Category Classified (#) Classified (%)
Dynamic Catcher 116/1260 9.21%
Dynamic Sniffer - Reader 3/1260 0.24%
Dynamic Sniffer - Dummy 11/1260 0.87%
Static Catcher 287/1260 22.78%
Static Sniffer - Reader 57/1260 4.52%
Static Sniffer - Dummy 3/1260 0.24%
None 783/1260 62.14%
Applications with SMS receiver 477/1260 37.86%
Application set 1260 100%

The table shows the results of the evaluation of the SMS module with the malware set.

The primary categories are dynamic, and static catchers. We expected this result, because we think
that malicious applications try to catch SMS for their own purpose. This can be done to sniff mobile
TANS, to make electronic depository transfers without the knowledge of the user [Helmut, 2013]. Fur-
thermore, we think that the other categories result from another type of malicious application. These
applications are malicious applications with the possibility to read incoming SMS. This type of applica-
tion can read and forward incoming SMS without the knowledge of the user.

Combined Results

Interestingly, the malware evaluation set does not use 10 operations in combination with incoming SMS.
Nevertheless, the applications in our malware set access the file system. This shows the result of the
evaluation of the 10 module, but they do not include SMS commands to directly modify the file system,
based on incoming SMS. We think that this method of controlling a phone is not common for a malware
and thus, it is not included in our malicious sample set.

Conclusion

We found malware that try to intercept the SMS communication in our malicious application set. Fur-
thermore, the applications, which are classified as dummy sniffer, are wrongly classified. A manual
inspection showed that these application forward the intent to a service, which we can not be tracked
with our framework. Nevertheless, we correctly found the applications and only wrongly classified it.
Malicious applications, which only reads the applications, are either wrongly classified and they also

5.4. Crypto 73

abort the broadcast, or they only extract the content and probably forward the retrieved information
through another communication channel, like the Internet.

5.4 Crypto

Our cryptographic module is based on the idea of a bachelor thesis, which also used static analysis for
classifying Android applications. The basic idea of our approach is to find the generation of a cipher and
track the cipher until it is finished. Therefore, we ignore cryptographic code that is not used to encrypt,
or to decrypt data in the code.

For the definition of our detection parameters, we used our experiences of the bachelor thesis as well
as a brief manual analysis of encryption applications. Consequently, we defined a set of cryptographic
algorithms that we want to find. For this module we defined AES, DES and its variants, RSA, Blowfish,
and Twofish as algorithms we want to find.

We used this small sample set of algorithms to evaluate the usability of this approach. Nevertheless,
we are aware of the fact that other detection mechanisms are potentially better than this approach. Fur-
thermore, we also know that our framework does not perfectly fit for cryptographic analysis, because of
the following facts.

* Our slicer is not able to track registers through libraries. Unfortunately, cryptographic algorithms
are also implemented in native libraries to improve the performance for encryption, and decryption.

* Cryptographic libraries for Java use many loose bindings, between the creation process and the
cipher itself. Consequently, we can not always find a connection between the creation of a cipher
and the usage.

* Furthermore, cryptographic algorithms can also be implemented by themselves.

5.4.1 Evaluation Basis

Because of the experimental approach of the crypto module, the evaluation basis consists of manually
built, and downloaded applications. We manually built 20 application that use encryption and down-
loaded 20 applications without any encryption in it. Table 5.13 shows the result of the manual evaluation
set.

Table 5.13: Evaluation of the Crypto Module with the Manual Evaluation Set

Classified (#)
Applications with cryptographic operations 14 (20)
Applications without cryptographic operations 20 (20)
Application Set 40

The table shows the evaluation of the crypto module with the corresponding evaluation basis. The
number in braces shows the amount of applications for each category.

From 20 applications, we correctly detected 14 applications and for 6 applications we could not find
a connection between the creation of the cipher and the finalisation of the cipher. This results from the
loose binding, when factories are used.

Nevertheless, we also run the module of the two wider evaluation sets. We know of the weaknesses
of our module, but we also know that the module is able to find the usage of cryptographic algorithms.

74 5. Evaluation

Thus, we get additional information about the applications, which we can combine with the previous
analyses.

5.4.2 Evaluation of the Arbitrary Set

Our evaluation of the wider arbitrary set showed that 1191 applications use one of the defined crypto-
graphic algorithms. Table 5.14 shows the results of the evaluation. Unfortunately, our result does not
assume anything about the completeness of the detected set of applications.

Nevertheless, we know that the detected applications really use one of the defined ciphers. This
results from our very limited definition of the start- and end-condition of the slicer. Furthermore, this
knowledge is more interesting in combination with the root module.

Table 5.14: Evaluation of the Crypto Module
Classified (#) Classified

Applications with cryptographic operations 1191/3709 32.11%
Applications without cryptographic operations 2518/3709 67.89%
Application set 3709 100%

The table shows the evaluation of the crypto module with the arbitrary set of applications.

Combined Results

Beside the standalone analysis, we can also combine the results of the crypto module with other modules.
An interesting approach of the cryptographic module is the usage of this module in combination with
the root module. If we combine these two modules, we are able to make some assumptions about the
relation of integrity checks and cryptographic operations.

Figure 5.4 illustrates the result of the combined evaluation. We combined the results of the crypto
module with the results of the combined analysis of the root module with the IO module. The result
shows that applications with IO operations in the root-check more often use cryptographic code in the
application as the applications without 10 operations in the root-check. Less than the half of the ap-
plications without IO operations in the root-check also use cryptographic operations in the application.
Consequently, we can assume that these applications are security related applications, which want to
ensure a secure environment for their application on the phone.

Conclusion

The cryptographic module by its own is not really useful, because we do not get additional information
about an application, except that it uses a cryptographic algorithm. With the results of a standalone exe-
cution, all detected applications must be reverse engineered to understand the usage of the cryptographic
operations in the applications. Thus, we manually analysed a subset of the result, to argue from this
selective set of applications to all applications. Our brief analysis showed that the applications uses cryp-
tographic operations for file encryption, key derivation, and payment verification. Furthermore, Google’s
advertising library also uses encryption. It seems that this library encrypts sensitive information before
it sends it to a server.

In contrast to the standalone result, we can see the relation between cryptographic operations, and
root-checks in the combined result. More than the half of the applications, which are detected by the root
module, use cryptographic operations. We can assume that the largest part of the intersection are security
relevant applications. A brief manual analysis showed that the intersection also holds some file-browser

5.4. Crypto 75

Crupto (11913 Foot-check with IO C1450

Foot-check without I0 (542

Figure 5.4: Intersection of the Root and Crypto Module

applications, which use root-shells and cryptography. Thus, we found out that this combination primarily
occurs by file-browser, and security relevant applications.

5.4.3 Malware Evaluation

The evaluation of the malware set showed that nearly the half of the malware includes cryptographic
code. Table 5.15 shows the result of this evaluation. Beside the use in advertising libraries, it seems to
us that some malware hides data, or code with the help of cryptographic algorithms. A manual anal-
ysis showed that it depends from the malware family. Some malware families only use cryptographic
operations in combination with advertising libraries, and other families use malware for encryption, and
signature creation and verification as well. The last type of applications seems to be trojan horses. This
assumption is made, because we compared the applications of our manual analysis with an online virus
database. This database categorised these applications as trojan horses.

Table 5.15: Evaluation of the Crypto Module
Classified (#) Classified

Applications with cryptographic operations 600/1260 47.62%
Applications without cryptographic operations 660/1260 52.38%
Application set 1260 100%

The table shows the evaluation of the crypto module with the malware set.

Combined Results

Similar to the combined result for the arbitrary set, we try to gain some information about the relation
between cryptographic operation and the usage of root-checks, or root-shells, with the combination of

76 5. Evaluation

the crypto module and the root module. Figure 5.5 illustrates the combined result. Nearly all malware
applications that use the root user to gain more permissions also use cryptographic algorithms in their
applications. 84.63% of the malware applications with IO operations in the root-check also use crypto-
graphic operations. We assume that these malware use root in combination with cryptographic operations
to hide data or code, and to modify their application’s binary. Rastogi, Chen, and Jiang [2013] and You
and Yim [2010] also describe malware with polymorphic capabilities. Furthermore, 62.5% of the ap-
plications without IO operations in the root-check also use cryptographic operations. The behaviour of
malicious applications that use root-checks is discussed in the root module. To sum it up, it could be that
an application uses the root-check to classify the phone as rooted, or not. Such applications are able to
root the phone and thus, to also use cryptographic operations to hide data or code.

Crypta Ca00) Root-check with IO (4362

Root-check without I0 (167

Figure 5.5: Intersection of the Root and Crypto Module, Based on the Malware Set

Conclusion

Although the experimental approach of this module, we got interesting information about the behaviour
of malicious applications. We found out that the malicious applications does not really differ by their use
of cryptographic operations to benign applications. Some malware families use cryptographic operations
in combination with advertising libraries. During our analysis we found out that malicious applications
use Chinese advertising libraries more often than benign applications. Nevertheless, this can also be
a result of our reduced manual analysis, or a property of our malicious application set. Furthermore,
malicious applications use cryptographic code for signature creation and verification. If we compare the
results with virus databases, then these applications will be classified as trojan horses. Additionally, it
seems to be that some of the malicious applications use encryption to hide data.

5.5 Timing

One important factor for the usability of a framework is the execution time. We measured the timing of
our framework, based on the wider arbitrary evaluation set and a Nexus S. Table 5.16 shows the result of

5.5. Timing 77

the timing evaluation.

Table 5.16: Timing of the Modules

Module Average Time Median

ROOT 11.78 sec 5.01 sec
10 27.80 sec 5.23 sec
SMS 10.44 sec 2.91 sec
CRYPTO 17.50 sec 6.10 sec

The execution of each module is on average faster than half a minute and the median of each module
is below ten seconds. Furthermore, there are some differences between the execution time of the different
modules. This results from two influence factors. Firstly, we can not control background operations on
the phone. Nevertheless, with our large evaluation basis, we believe that the influences of the operating
system do not really impact the average time of execution. Secondly, the random nature of the evaluation
set also influences the result. We do not exactly have the same amount of applications for every category
of each module. Consequently, some modules produce a longer slice, which takes more time. This is
also the reason for the significant gap between the 10 module and the other modules.

78

5. Evaluation

Chapter 6

Concluding Remarks

”

“ Everything has an end, only a sausage has two.

[German, Danish, and Dutch proverb.]

This master’s thesis tries to efficiently analyse Android applications directly on the device. The
idea of this approach is to learn something about the security functions, and protection mechanisms of
Android applications. Furthermore, we want to separate applications by their use of data.

For example, we classify applications in different SMS categories, where the categories define the
type of usage. Thus, we separate applications into applications that abort SMS broadcasts, read the mes-
sage or the address, or only count that a message arrived. With this method of classification we learned
which type of application does which operation. We found out that, beside malicious application, benign
messaging applications typically abort the SMS broadcast. We think that the messaging applications
abort the broadcast to avoid that Android’s default messaging application also receives the message. Fur-
thermore, we found out that benign applications, which extract the origin address or the message of a
SMS, are typically either a message blocking application, or a control application. An additional analysis
showed that we are able to find applications that use SMS for controlling the phone. We can conclude
on this behaviour of an application, if the application has an 1O operation in the slice of the SMS.

Beside SMS applications, we also inspected another security relevant property of mobile phones.
For some kinds of applications, it is relevant to know whether a device is rooted or not. This results
from the fact that on rooted phones applications have less protection mechanisms against attackers, and
malicious applications. Thus, it is sensible for security relevant applications — like banking, business, or
video streaming applications — to check whether a phone is rooted or not and to prevent the execution
if it is rooted. Our framework tries to determine if applications implement such security checks or not.
Our analysis showed that many applications do not check if a phone is rooted or not. Furthermore, the
applications, which check if the phone is rooted or not must be separated into two categories. The first
category consists of those applications, which make root-checks for protecting application’s data, and
the second category includes the applications, which also try to use an existing root user for their own
purposes. We were able to partially filter these two categories by analysing the 10O operations in the slice
of the root-check.

Our third evaluation setup tries to use the framework to find cryptographic code in applications.
Unfortunately, the results of this evaluation were not as good as from the two former ones. Our evaluation
basis, which consists of manually written applications, showed that the complexity of cryptographic
libraries can not be easily sliced with our approach. This results from the loose binding between the
creation of a cipher and the usage of the cipher. For example, a cipher can be initialised, and then
retrieved by a factory. Such code constructs can not be sliced, because from the perspective of the slicer
the creation of the cipher does not have a static relation to the usage of the created cipher. Nevertheless,

79

80 6. Concluding Remarks

we were able to detect cryptographic code and with a manual analysis we were able to partially classify
the applications.

All things considered, we contributed to the understanding of security mechanisms of Android with
our framework. We primarily discussed issues with the SMS channel on Android, and the issues with
rooted phones. Thus, our framework helps to better understand these security vulnerabilities.

Chapter 7

Outlook

“It’s very easy to predict the future. People do it all the time. What you can’t do, is get it

’»

right.
[Don Norman, The Front Desk, BBC Video, 1995.]

We precisely discussed the capabilities and restrictions of this framework. Nevertheless, there is still
space for improvement. For example, we made an experimental setup for detecting cryptographic code in
applications. We found out that we are able to partially classify cryptographic code with our framework.
A possible improvement of our framework would be to improve the detection rate and to extend the
framework to detect other cryptographic operations as well. Another security relevant property of an
application is the storage of passwords. Our framework should fit the requirements to slice password
fields and to detect whether an application uses a key derivation function, or not. Furthermore, another
possible extension would be to track if sensitive information — like passwords — are sent over the Internet.

Beside the improvement of the modules, the static slicer itself should be improved as well. There are
some functionalities that would improve the quality of the slicer, but were not implemented because of
the limited amount of time. It would be possible to parse a complete string, which is built from the string
builder class, to learn more about string parameters. Furthermore, a solution for more complex pro-
gramming constructs must be found. Java reflections, and IPC calls are examples for such programming
constructs.

81

82

7. Outlook

Appendix A

Acronyms

AES Advanced Encryption Standard
AID Android ID

ANR Application Not Responding

APl application programming interface
APK Android application package

CFG Control Flow Graph

DES Data Encryption Standard

DEX Dalvik Executable

DVM Dalvik Virtual Machine

GID Group ID

ID Identifier

I0 Input-Output

IPC Interprocess Communication

JAR Java archive

JVM TJava Virtual Machine

MDM Mobile Device Management

OS Operating System

PDG Program Dependence Graph

RSA Rivest, Shamir und Adleman

SDG System Dependence Graph

SMS Short Message Service

TAN Transaction Authentication Number
TISSA Taming Information-Stealing Smartphone Applications
Ul User Interface

UID User ID

URI Uniform Resource Identifier

VM Virtual Machine

WALA T.J. Watson Libraries for Analysis

83

84

A. Acronyms

Appendix B

Class Diagrams

Figure B.1 shows the class diagram of the complete framework. Each of this sections of the framework
is described in Section 4. The framework itself is separated into two sections:

* The execution management.

¢ The execution environment.

The first section of the framework handles the execution of the framework on a phone. This consist
of selecting an application and handling the slicer. The slicer itself runs for a longer period of time and
all potential events, which change the environment, must be considered during this period. Such events
are suspends, rotations and applications switches.

The next section handles the execution of the framework with the selected modules. It does some
performance improvements which decreases the amount of code the slicer must analyse. Otherwise
the inspection would potentially take too long for a sensible execution on the phone. Additionally,
this section handles the logging process. The execution environment has a general result writer for
protocolling general information about the application, the execution time and all assigned modules.
Furthermore, each module has one result writer with at least one section. Each slicer from a module gets
its own section and the result writer writes all sections with Smali notation to the file.

85

86

s Grnia
Gsetmgatragment e
ke = seone: g

e e DmUeRTER s
4 ke e DesUCPANTER Lov: s
4 ke stace pere soeg
4 e east e svey

) Foovrmen

e TG STATIC v s >
et o [Rovessui
et o e
p

.. & stsntmvo ooy

e

woduoraciory

700 Mossren
/DS STomGe wesstan
e

/TIPS Masuepacn

/3. oo

/e sesun svg

o e Fsnatel 4
GMainaciiy
ey

B. Class Diagrams

O Taskanagerrragment

T oErALLT TaG Sty

T —

o)

btamger | somesacnanyios

E)
© eyt

O omtaskute
primy

]

St ————

e T
wlor G optimier @ miaLogoer
s Frnrcmgeames S v o
e — e
e,
© aronciss svmo i ST ostsvea)
e & st sookan o cassonisranon
e —— o clmpactoCotetanbokan o comoreniiion
© i e P

o —————
ermerenmirieyog

@Frameworsexecstor
o

o pacsporsne

| Manageatsyne Taskeparams progrss Resut

* dontacrona gl o

o oo

TRAGK STATIC VARS oo

Svomtons Genpomonss [, Grostonss
i Tetieun v T s Fonion
e i e s ;
o sStaicoadcast bookean of oarTracer: RegiteTrachar SFanpoMtodue)
oo
ey Sowimionm sl TN
s e s T4
prresosi e - & e S i 08
prstoniun e sl i
vy premimasatroia)
e e et ot
ot g S
enzsom v o
T CATEGORY_SNIFFER.D: Swng. = gemrancn(e Branchiom o
Sestecom st pes
TCATEGORY.PROB CATCHER. Skng toncosCiasses f0.+ uronsiass g1 = GOARCa S BnaDE LS Varabe>
e o
S = e
[N
frrom T
i et
i -
o s § eackuacimves | S
© ey o [B
plinenti
S [
poetimnirmes
ooy
et Shromen
pe—— =
prevsenassieas gl [N bt
ey “ers Foammria
s Seoarane
S
it o
S
A -
ey

RE=
ey
s son:
ters Faritane sora
- e
s et
o croiina
Sresavrton)
o g sEmg
o seFenTs B
 cowelepongsrag sy ey
o coman
e e —
e
© eSS it

Figure B.1: The complete framework architecture including the analyser and the execution envi-
ronment on the device.

<<Java Class>>
(& ManagedAsyncTask<Params,Progress,Resuit>
at iak. apkanalyser. asynotaskmanager

o ManagedAsyncTask(Actvity)

& ManagedAsyncTask(Actiity, String)
© onPreExecute():void

<P dolinBackground(Params]]) s
 onProgressUpdate(Progressflivoid
< onPostExecute(Resut):void

(9 TaskManagerFragment
atiok apkanlyser.asynctaskmanager

<<Java Class>>

<<Java Class>>
(@ Fragment

‘android app

%FDEFAULT_TAG: String

<FmLock Object

< mReady: Boolean

< mPendingCalbacks: List<Runnable>

-mManager | gFTaskManagerFragment()

© onGanceled() void
@ execute(Params]) ManagedAsyncTask<Params Progress Result>

0.1 | @ onCreate(Bundle):voki
@ onDatach(J:void

© getActivity():Actity
© cancel{boolean):bookean
@ isCancalled():boolean

<<Java Interface>>
TaskManager
ay

(1)

[

© onAgtivityC:
@ sReady()boolean

atisk.apk.

© gell)
© get{iong, TimeUnit)
© getStatus{):Status

@ isReady():boolean

®

@
@ runWhenReady(Runnable):void

<f publishProgress(Progress{]):void

<<Java Class>>
<cJava Interface>> (® FrameworkExecutor
Bo at.iak apkanalyser

T a.iak apkanalyser startTime: long
@ onTaskUpdate{Integer)-void | —G@{ o endTime: long

o pm: PackageManager

<

<<lava Interface>>
% OnTaskComplete |~ < onPostExecute(Void):void

atiak apkanalyser & onPreExecule():void
@
TaskCe lete id
@ onTaskComplete():voi o ol Vo

@ onProgressUpdateinteger):void

@

<<Java Class>>

(@ AsyncTask<Params,Progress,Result>
anchoidon
ek, 0.1

<<lava Class>>
(3 InternalAsyncTask
at.iak. apkanalyser.asynctaskmanager

<CinternalAsyncTask{)

< onPreExecule()void

¢ dolnBackground(Params[])

< onProgressUpdate(Progress]) void
& onPostExecute(Resul):voxd

< onGanceled()void
 doPublish(Progressflivoid

-mManager 0.1

<aJava Class>>

Figure B.2: This class diagram shows the callback mechanism of the asynchronous task, which

executes the framework.

<<Java Class>> <<Java Class>>

(©DexFilcClassMap
org . doxis Cose Aratysis

@ DexFile
ot derid

~ciassMapping “dexFie] 0.1

<l Gl
®ModuleExecutor
ai

Finfo: Packagelnfo

o STACK_DEPTH: int

of FAST_INSPECT: boolean
“TomeT s string

o curtProcessedClass: String

<ava nfrfacen>
© onProgressupdate

o onProgressUpdate(Integer)vod | 0.1

<ava Ciss>
@ TimingLogger
stiok apanayseratis

= misbet Strng

o mspits: Aray st<Long>

= mSpiLabels: ArayLit<Sting>

SFTAG: Sting

& TimingLogger(String)

© addSplit(String):void

o dungTaLog(jvoid

o toSirng() Siing

“timings

<<Java Ciasso
® BufferedindentingWriter
e ——

‘& ModuleExeator(OnProgressUpdate Sting, String Packagelnfo)
@ execute():void

= processCodeltem{Codeltem):void

& processMethodsinstructions(Instruction]) vaid

-optmizer 0.1 -registeredhoduies! >

-currentResulsler

FBufferedindentingWiriter(Writer,int)
o

FBufferedindentingWrier(Wrier,int String nt)
& BuferedindentingWriter(Wrier,int String)

@ write(in):void
@ write(charl] nt nt)void
& wrte(Siring,intin):void

<<Java Class>> <<Java Class>> <<Java Enumeration>>
® FrameworkExecutor © optimizer @ ModuleFactory
e —— atisk apkanayser nlysis atiak apkanayser analysis

°
& writeFirst{intj:void
@ WriteFirst(Stringint it -void.

FralcPaciageNames: Lst<Sing>
black stedLbraries: Lkt<Sting>
Fint: Packageito

5 3/ HTTPS: ModieFactory
@ checkString(String) void
= hasPerm(String) :boolean

o startTime: long 5 ROOT: ModukFactary
& endTime: long

o pm: PackageManager

& onPostExecute(Void)void
4 onPreExecute()void

& WriteFirst(String)void

& onProgress.
4 dolnBackground(String[])Void
© onProgressUpdate Integer)void

Findex: int

o module: Module:

o description: String
o perm: String

o successiul: boolean
o resultString: String
o resutLst Stringl]

o registered: boolean

5 EXTERNAL_STORAGE: ModuleF actor @ indent()void
3 CRYPTO, ModuieFadlory © deindent()vou
& fusn(von
£ SMis: ModuleFactory close() voit
5 modules: ListeMoguleF actory> @ writeToOffset(int String):-void
L Factory> a int):void
Sf DEFAULT RESULT: Strin = bol():void

& regilrSectonFor(Siring)void

@ lengtn()int
@ sethark(String):void
© gethark(String)int

& coseMark(String void
@ setCursor(int:void

@ setPref(Siring)void

& getSectonF or(String):BufferedindentingWrier

Y reselAiModules(}-void
& prepareExecution(void

& getResull() Sting

& ModukFacory(int Moduie,String)

& ModuleFaclorylint Module, String, String)
% getAModulesList<ModuleFactory>
% getRegisteredModules() List<ModuleF actory>
@ nitRegisteredModules():void

& getRegisleredModuleDescription() String
&ishlleasiOneselected()boojean

Figure B.3: This class diagram shows the three categories of the execution environment, the mod-

ule executor and the entry point.

87

88 B. Class Diagrams

<<Java Class>>

(D RegisterTracker
apkanalyser analysis tracker

<<Java Class»>
0.* ~currentClass
-influencedClasses 0.1 ~reference g
<<Java Class>>
@ classitem
‘at.iak.apkanalyser.analysis. tracker
F
o dassName: Siring <<lava Class>>
& Classltem(ClassDefltem) (& Variable
@ writeTo{BufferedindentingWriter):void st iak. apkanalyser analysis tracker
@ isEmpty():boolean ofref: Fiekdlditem
of accessflags: int
@ addClassMethod(Methoditem] void ihvencedinstancevariables g
® hasMethod|(String,String):bookean o name: String
@ getMethod(String String):Instruction 0.7 7| o shortName: String
N ring):boolean ~nfluencedStaticVariables | of register: int
& addStaticvariable(Fiekilditam, int) vokd < Variable(FieididHem, String i)
& addinstanceVariable{Fieldlditem int):void & toString():String
& getStaticVariables(int): Collection<? extends Variable © equals{Object)boalean

& getinstanceVariables(int).Collection<? extends Variable>
® equals(Object):bookean
& sParlofype(String):boolean

~parentClass | 0..

<<Java Class>>

~referency” 0..1
~influencedMathads |0..*

<<Java Class>> T
wa Class>>
(@ Methoditem ©Branchi
ranchitem
at.iaik.apkanalyser.analysis.tracks
= = == at.iak.apkanalyser.analysis. tracker
o methodName: String
f currentLocalMethodRegisterCnt: int 4 pranchnr nt “olava Classn
o
g & startinsthr: int (@ TrackEntry <<Java Class=>
 methodinstructionCache: Instruction[] at ik apkmnayser. anchysis fracker
A bookeanl] ~branchSet | 4 endlnstNr: int e sy ~elements | (& Instruction
0.7 & parentinstnr: int 3| 4 overwritten: bookean 27| oo desit.Cose
& Methoditem(Classitem, Codeliem) & rackingSet; SparseArray<TrackEntry> T Fopoade: Opoode
@ writeTo{BufferedindentingWriter):void o
A" Branchltem(int,int int,int) @ toString():String
@ sEmpiy(}:boolean
& isStilActive(int]:boolean
@ addBranch{Branchltem):void
& toString():String
@ equals(Cbject):bookean §
® writeTo{BufferedindentingWriter):void
o doselocalRegister():void

Figure B.4: Class Diagram: Slicing Architecture

<<Java Class>>
(& Module
at iaik apkanalyser. anafysis modules
<+ currentCodeltem: Codeltem
4 currentClass: String
< currentMethod: String
< parentClass: String
< conciseld: String
< sucoessful boolean
4 resultWriter: BufferedindentingWriter
AwriteResults: boolean
<Pfastinspect: boolean
< firstRound: boclean

& Module()
@ doPreExecute()void TR
< >
& inspectinstruction(Instruction)-hoolean #tracker el ,Va, TSS K
i) racker
<HoheckinstForStartCond(Instruction) void LIS apkanalyser analysis tracker

@ doPostinspect():boolean

@ doPostExecute():boolean

<M checkSuccess() void

@ resetModule() void

@ onMethodChanged(Codeltem):void

@ onClassChanged(ClassDefltem):void

@ iter(B iter):void
gssethstlnsEjmmeanl'm»d
gsenabbeResurtWrrter void
orusaﬁcMetnunCzl\[lnstruc‘tmn]:Dnulean
<>Fusz1cstrmg[lns1rucmn):mlean
oFsetsHegister[lnslructiDn,imJ boolean
oFgetRegMerForStrmg[Ins1ructinn21c.51ring] int
<>FusMethudCa\IFDr[Instrucﬁun.Strmg‘String]:buulean
orusclasc\«'ananle[\ns‘truc‘tmn.strlngj:mbean

<<Java Class>> <<Java Class>> <<Java Class>> <<Java Class>>
(5 RootModule (9 ExternalStorage Module (S smsModule (3 CryptoModule
at.isk. apkanalyser.analysis.modules | | atisk apkanalyser. analysis. modules at sk apkanalyser. anafysis. modulss at.iak analysis.modules

Figure B.5: Class Diagram: Module Architecture

Appendix C

Dalvik Opcodes

Example opcode: move vA, vB

* move is the base opcode.
Opcodes can have additional suffixes for indicating different register sizes.
The suffix wide indicates that it operates on 64 bits.

The suffix from16 indicates that the opcode has a 16-bit register reference as a source.
* VA is the destination register which must be in the range of 0 to 255.

* vB is the source register which must be in the range of 0 to 255.

Opcode Mnemonic / Syntax
& Format

00 10x nop

01 12x move VA, vB

02 22x move/froml16 vAA vBBBB

03 32x move/16 vAAAA, vBBBB

04 12x move-wide VA, vB

05 22x move-wide/from16 vAA, vBBBB
06 32x move-wide/16 vVAAAA, vBBBB
07 12x move-object VA, vB

08 22x move-object/from16 vAA, vBBBB
09 32x move-object/16 vVAAAA, vBBBB

Oa11x move-result vVAA

Ob 11x move-result-wide vVAA
Oc 11x move-result-object vVAA
0d 11x move-exception VAA
Oe 10x return-void

Of 11x return vVAA

10 11x return-wide vAA

11 11x return-object vAA

12 11n const/4 vA, #+B

13 21s const/16 vAA, #+BBBB

14 31i const vVAA, #+BBBBBBBB
1521h const/highl6 vAA, #+BBBB0000

89

90

C. Dalvik Opcodes

16 21s const-wide/16 vAA, #+BBBB

17 311 const-wide/32 vAA, #+BBBBBBBB

18 511 const-wide vAA, #+BBBBBBBBBBBBBBBB
19 21h const-wide/high16 vAA, #BBBB000000000000
la2lc const-string VAA, string@BBBB

1b31c const-string/jumbo VAA, string@BBBBBBBB
lc2lc const-class VAA, type@BBBB

1d 11x monitor-enter VAA

le 11x monitor-exit vVAA

1f 21c check-cast vAA, type@BBBB

2022¢ instance-of VA, vB, type@CCCC

21 12x array-length vA, vB

22 2lc new-instance VAA, type @BBBB

23 22¢ new-array VA, vB, type @CCCC

24 35¢ filled-new-array {vC, vD, VE, VF, vG}, type@BBBB
25 3rc filled-new-array/range {vCCCC ...vNNNN}, type@BBBB
26 31t fill-array-data vAA, +BBBBBBBB

27 11x throw vAA

28 10t goto +AA

29 20t goto/16 +AAAA

2a 30t goto/32 +AAAAAAAA

2b 31t packed-switch vAA, +BBBBBBBB

2c 31t sparse-switch vAA, +BBBBBBBB

2d 23x cmpl-float vAA, vBB, vCC

2e 23x cmpg-float vAA, vBB, vCC

2f 23x cmpl-double vAA, vBB, vCC

30 23x cmpg-double vAA, vBB, vCC

3123x cmp-long VAA, vBB, vCC

3222t if-eqz vAA, +BBBB

3222t if-nez vAA, +BBBB

3222t if-ltz vAA, +BBBB

3222t if-gez vAA, +BBBB

3222t if-gtz vAA, +BBBB

3222t if-lez vAA, +BBBB

44 23x aget VAA, vBB, vCC

45 23x aget-wide vAA, vBB, vCC

46 23x aget-object vAA, vBB, vCC

47 23x aget-boolean vAA, vBB, vCC

48 23x aget-byte vAA, vBB, vCC

49 23x aget-char vAA, vBB, vCC

4a 23x aget-short vAA, vBB, vCC

4b 23x aput vAA, vBB, vCC

4c 23x aput-wide vAA, vBB, vCC

4d 23x aput-object vAA, vBB, vCC

de 23x aput-boolean vAA, vBB, vCC

4f 23x aput-byte vAA, vBB, vCC

50 23x aput-char vAA, vBB, vCC

5123x aput-short vAA, vBB, vCC

5222¢ iget VA, vB, field @ CCCC

53 22¢ iget-wide VA, vB, field@CCCC

54 22¢ iget-object VA, VB, field @ CCCC

5522¢ iget-boolean vA, vB, field@CCCC

56 22¢ iget-byte vA, vB, field @ CCCC

57 22¢ iget-char vA, vB, field @ CCCC

58 22¢ iget-short vA, vB, field @ CCCC

59 22¢ iput vA, vB, field@CCCC

5a22c iput-wide VA, vB, field @ CCCC

5b 22¢ iput-object VA, vB, field@CCCC

5¢22c iput-boolean vA, vB, field @ CCCC

5d 22¢ iput-byte vA, vB, field@CCCC

Se 22c iput-char vA, vB, field@ CCCC

5f 22¢ iput-short vA, vB, field@CCCC

60 21c sget VA, field@BBBB

61 21c sget-wide VA, field@BBBB

62 2lc sget-object VA, field@BBBB

63 21c sget-boolean VA, field@BBBB

64 21c sget-byte VA, field@BBBB

65 21c sget-char vA, field@BBBB

66 21c sget-short VA, field@BBBB

67 21c sput VA, field@BBBB

68 21c sput-wide VA, field@BBBB

69 21c sput-object VA, field @ BBBB

6a2lc sput-boolean vA, field @ BBBB

6b 21c sput-byte vA, field@BBBB

6¢c 21c sput-char vA, field@BBBB

6d 21c sput-short vA, field @ BBBB

6e 35¢ invoke-virtual {vC, vD, VE, VF, vG}, meth@BBBB

6f 35¢ invoke-super {vC, vD, VE, vVF, vG}, meth@BBBB

70 35¢ invoke-direct {vC, vD, VE, VF, vG}, meth@BBBB

71 35¢ invoke-static {vC, vD, VE, vF, vG}, meth@BBBB

72 35¢ invoke-interface {vC, vD, vE, VF, vG}, meth@BBBB

74 3rc invoke-virtual/range {vCCCC ...vNNNN } meth@BBBB
75 3rc invoke-super/range {vCCCC ...vNNNN } meth@BBBB
76 3rc invoke-direct/range {vVCCCC ...vNNNN } meth@BBBB
77 3rc invoke-static/range {vCCCC ...vNNNN } meth@BBBB
78 3rc invoke-interface/range {vCCCC ...vNNNN } meth@BBBB
7b 12x neg-int vA, vB

Tc 12x not-int VA, vB

7d 12x neg-long vA, vB

Te 12x not-long VA, vB

7f 12x neg-float vA, vB

80 12x neg-double VA, vB

81 12x int-to-long vA, vB

82 12x int-to-float vA, vB

83 12x int-to-double VA, vB

84 12x long-to-int VA, vB

85 12x long-to-float vA, vB

86 12x long-to-double vA, vB

87 12x float-to-int VA, vB

88 12x float-to-long vA, vB

91

92

C. Dalvik Opcodes

89 12x float-to-double VA, vB

8a 12x double-to-int vA, vB

8b 12x double-to-long vA, vB

8c 12x double-to-float VA, vB

8d 12x int-to-byte vA, vB

8e 12x int-to-char vA, vB

8f 12x int-to-short vA, vB

90 23x add-int vAA, vBB, vCC

91 23x sub-int vAA, vBB, vCC

92 23x mul-int vAA, vBB, vCC

93 23x div-int vVAA, vBB, vCC

94 23x rem-int vAA, vBB, vCC

95 23x and-int vVAA, vBB, vCC

96 23x or-int vAA, vBB, vCC

97 23x xor-int vVAA, vBB, vCC

98 23x shl-int vAA, vBB, vCC

99 23x shr-int vAA, vBB, vCC

9a 23x ushr-int vAA, vBB, vCC
9b 23x add-long vAA, vBB, vCC
9c 23x sub-long vAA, vBB, vCC
9d 23x mul-long vAA, vBB, vCC
9e 23x div-long vAA, vBB, vCC
of 23x rem-long vAA, vBB, vCC
a0 23x and-long vAA, vBB, vCC
al 23x or-long vAA, vBB, vCC

a2 23x xor-long vAA, vBB, vCC
a3 23x shl-long vAA, vBB, vCC
ad 23x shr-long vAA, vBB, vCC
a5 23x ushr-long vAA, vBB, vCC
a6 23x add-float vAA, vBB, vCC
a7 23x sub-float vAA, vBB, vCC
a8 23x mul-float vAA, vBB, vCC
a9 23x div-float vAA, vBB, vCC
aa 23x rem-float vAA, vBB, vCC
ab 23x add-double VAA, vBB, vCC
ac 23x sub-double vAA, vBB, vCC
ad 23x mul-double vVAA, vBB, vCC
ae 23x div-double vAA, vBB, vCC
af 23x rem-double vAA, vBB, vCC
b0 12x add-int/2addr vA, vB

bl 12x sub-int/2addr vA, vB

b2 12x mul-int/2addr vA, vB

b3 12x div-int/2addr vA, vB

b4 12x rem-int/2addr vA, vB

b5 12x and-int/2addr VA, vB

b6 12x or-int/2addr vA, vB

b7 12x xor-int/2addr vA, vB

b8 12x shl-int/2addr vA, vB

b9 12x shr-int/2addr vA, vB

ba 12x

ushr-int/2addr vA, vB

bb 12x add-long/2addr vA, vB

bc 12x sub-long/2addr vA, vB

bd 12x mul-long/2addr vA, vB

be 12x div-long/2addr vA, vB

bf 12x rem-long/2addr vA, vB

c0 12x and-long/2addr vA, vB

cl 12x or-long/2addr vA, vB

c2 12x xor-long/2addr vA, vB

c3 12x shl-long/2addr vA, vB

c4 12x shr-long/2addr vA, vB

¢S5 12x ushr-long/2addr vA, vB

c6 12x add-float/2addr vA, vB

c7 12x sub-float/2addr vA, vB

c8 12x mul-float/2addr vA, vB

c9 12x div-float/2addr vA, vB

ca 12x rem-float/2addr vA, vB

cb 12x add-double/2addr VA, vB

cc 12x sub-double/2addr vA, vB

cd 12x mul-double/2addr vA, vB

ce 12x div-double/2addr vA, vB

cf 12x rem-double/2addr vA, vB

d0 22s add-int/lit16 vA, vB #+CCCC
dl 22s rsub-int/lit16 vA, vB #+CCCC
d2 22s mul-int/lit16 vA, vB #+CCCC
d3 22s div-int/lit16 vA, vB #+CCCC
d4 22s rem-int/lit16 vA, vB #+CCCC
d5 22s and-int/lit16 vA, vB #+CCCC
d6 22s or-int/lit16 vA, vB #+CCCC
d7 22s xor-int/lit16 vA, vB #+CCCC
d8 22b add-int/lit8 vAA, vBB #+CC
d9 22b rsub-int/lit8§ vAA, vBB #+CC
da 22b mul-int/1it8§ vAA, vBB #+CC
db 22b div-int/lit8 vAA, vBB #+CC
dc 22b rem-int/lit8 vAA, vBB #+CC
dd 22b and-int/lit8 vAA, vBB #+CC
de 22b or-int/lit8 vAA, vBB #+CC
df 22b xor-int/1it8 vAA, vBB #+CC
e0 22b shl-int/lit8 vAA, vBB #+CC
el 22b shr-int/1it8 vAA, vBB #+CC
e2 22b ushr-int/1it8 vAA, vBB #+CC

Table C.1: Dalvik’s Opcode List [Bytecode for the Dalvik VM 2007]

93

94

C. Dalvik Opcodes

Bibliography

Andreas, Floemer [2013]. Android-Versionsverteilung: Jelly Bean auf iiber 50% aller Gerite. Nov. 2013.

http://www.androidnext .de/news/android-versionsverteilung-jelly-bean-auf-ueber-
50-aller-geraete/ (cited on page 2).

Andrews, Keith [2012]. Writing a Thesis: Guidelines for Writing a Master’s Thesis in Computer Science.
Graz University of Technology, Austria. Oct. 22,2012. http://ftp.iicm.edu/pub/keith/thesis/
(cited on page xiii).

Android Developer Guide - Activity [2013]. June 2013. http://developer.android.com/reference/
android/app/Activity.html (cited on page 12).

Android Developer Guide - ANR [2013]. June 2013. http://developer.android.com/training/
articles/perf-anr.html (cited on page 51).

Android Developer Guide - Context [2013]. June 2013. http://developer.android.com/reference/
android/content/Context .html#MODE_WORLD_WRITEABLE (cited on page 16).

Android Developer Guide - Manifest [2013]. June 2013. nhttp://developer.android.com/guide/
topics/manifest/ (activity-element . html $20%7C%20receiver —element . html%$20%7C%
20provider-element .html%20%7C%20service—element.html) (cited on page 17).

Android Developer Guide - Permission’s Protection Level [2013]. June 2013. http: / /developer.
android.com/guide/topics/manifest/permission-element.html (cited on page 17).

Android Developer Guide - Provider [2013]. June 2013. http://developer.android.com/guide/
topics/manifest/provider-element.html (cited on page 13).

Android Developer Guide - Receiver [2013]. June 2013. http://developer.android.com/guide/
topics/manifest/receiver—-element.html (cited on page 12).

Android Developer Guide - Service [2013]. June 2013. http: //developer . android.com/guide/
components/services.html (cited on page 12).

Android Kernel Development [2013]. Oct. 2013. http://source.android.com/devices/index.html
(cited on page 10).

Android System Architecture [2013]. Feb. 2013. http://upload.wikimedia.org/wikipedia/commons/
thumb/a/af/Android-System—-Architecture.svg/1000px—-Android-System—Architecture.
svg.png (cited on pages xiii, 11).

Andrus, Jeremy et al. [2011]. “Cells: a virtual mobile smartphone architecture”. In: Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles. ACM. 2011, pages 173-187 (cited
on page 41).

Barrera, David et al. [2010]. “A methodology for empirical analysis of permission-based security mod-
els and its application to android”. In: Proceedings of the 17th ACM conference on Computer and
communications security. ACM. 2010, pages 73—84 (cited on pages 4, 35).

95

http://www.androidnext.de/news/android-versionsverteilung-jelly-bean-auf-ueber-50-aller-geraete/
http://www.androidnext.de/news/android-versionsverteilung-jelly-bean-auf-ueber-50-aller-geraete/
http://ftp.iicm.edu/pub/keith/thesis/
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/training/articles/perf-anr.html
http://developer.android.com/training/articles/perf-anr.html
http://developer.android.com/reference/android/content/Context.html#MODE_WORLD_WRITEABLE
http://developer.android.com/reference/android/content/Context.html#MODE_WORLD_WRITEABLE
http://developer.android.com/guide/topics/manifest/(activity-element.html%20%7C%20receiver-element.html%20%7C%20provider-element.html%20%7C%20service-element.html)
http://developer.android.com/guide/topics/manifest/(activity-element.html%20%7C%20receiver-element.html%20%7C%20provider-element.html%20%7C%20service-element.html)
http://developer.android.com/guide/topics/manifest/(activity-element.html%20%7C%20receiver-element.html%20%7C%20provider-element.html%20%7C%20service-element.html)
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/provider-element.html
http://developer.android.com/guide/topics/manifest/provider-element.html
http://developer.android.com/guide/topics/manifest/receiver-element.html
http://developer.android.com/guide/topics/manifest/receiver-element.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/services.html
http://source.android.com/devices/index.html
http://upload.wikimedia.org/wikipedia/commons/thumb/a/af/Android-System-Architecture.svg/1000px-Android-System-Architecture.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/a/af/Android-System-Architecture.svg/1000px-Android-System-Architecture.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/a/af/Android-System-Architecture.svg/1000px-Android-System-Architecture.svg.png

96 Bibliography

Becher, Michael et al. [2011]. “Mobile security catching up? revealing the nuts and bolts of the security
of mobile devices”. In: Security and Privacy (SP), 2011 IEEE Symposium on. IEEE. 2011, pages 96—
111 (cited on page 40).

Becker, Arno and Marcus Pant [2010]. Android 2. 2nd edition. dpunkt.verlag, 2010. ISBN 9783898646772
(cited on pages 13, 15).

Bender, Waldemar [2010]. “Entwicklung eines IF-MAP Clients fiir die Android Plattform”. Bachelo-
rarbeit im Studiengang Angewandte Informatik in der Abteilung Informatik der Fakultdt IV an der
Fachhochschule Hannover (2010) (cited on page 18).

Benton, Nick [2004]. “Simple relational correctness proofs for static analyses and program transforma-
tions”. ACM SIGPLAN Notices 39.1 (2004), pages 14-25 (cited on page 40).

Beresford, Alastair R et al. [2011]. “MockDroid: trading privacy for application functionality on smart-
phones”. In: Proceedings of the 12th Workshop on Mobile Computing Systems and Applications.
ACM. 2011, pages 49-54 (cited on page 38).

Bergeron, Jean, Mourad Debbabi, Jules Desharnais, et al. [2001]. “Static detection of malicious code in
executable programs”. Int. J. of Req. Eng 2001 (2001), pages 184—189 (cited on page 40).

Bergeron, Jean, Mourad Debbabi, Mourad M Erhioui, et al. [1999]. “Static analysis of binary code to iso-
late malicious behaviors”. In: Enabling Technologies: Infrastructure for Collaborative Enterprises,
1999.(WET ICE’99) Proceedings. IEEE 8th International Workshops on. IEEE. 1999, pages 184—
189 (cited on page 38).

Blasing, Thomas et al. [2010]. “An android application sandbox system for suspicious software detec-
tion”. In: Malicious and Unwanted Software (MALWARE), 2010 5th International Conference on.
IEEE. 2010, pages 55-62 (cited on page 24).

Bugiel, Sven et al. [2011]. “Practical and lightweight domain isolation on android”. In: Proceedings of
the 1st ACM workshop on Security and privacy in smartphones and mobile devices. ACM. 2011,
pages 51-62 (cited on page 15).

Burguera, Iker, Urko Zurutuza, and Simin Nadjm-Tehrani [2011]. “Crowdroid: behavior-based malware
detection system for android”. In: Proceedings of the 1st ACM workshop on Security and privacy in
smartphones and mobile devices. ACM. 2011, pages 15-26 (cited on page 34).

Butler, Margaret [2011]. “Android: Changing the mobile landscape”. Pervasive Computing, IEEE 10.1
(2011), pages 4-7 (cited on page 10).

Bytecode for the Dalvik VM [2007]. 2007. http://source.android.com/devices/tech/dalvik/
dalvik-bytecode.html (cited on page 93).

Center, IBM T.J. Watson Research [2011]. T. J. Watson Libraries for Analysis (WALA). Mar. 2011. http:
//wala.sourceforge.net/wiki/index.php/Main_Page (cited on page 37).

Chin, Erika et al. [2011]. “Analyzing inter-application communication in Android”. In: Proceedings
of the 9th international conference on Mobile systems, applications, and services. MobiSys "11.
Bethesda, Maryland, USA: ACM, 2011, pages 239-252. I1SBN 978-1-4503-0643-0. doi:10.1145/
1999995.2000018. http://doi.acm.org/10.1145/1999995.2000018 (cited on pages 3, 12, 15,
16, 41, 43).

Ching, Lee Pak and LUI Chi Shing John [2012]. “ADAM: An Automatic and Extensible Platform to
Stress Test Android Anti-Virus Systems”. DIMVAI2 (2012). http://dspace.lib.cuhk.edu.hk/
handle/2006/398721 (cited on pages 34, 42).

http://www.amazon.com/exec/obidos/ASIN/9783898646772/keithandrewshcic
http://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
http://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://www.amazon.com/exec/obidos/ASIN/978-1-4503-0643-0/keithandrewshcic
http://dx.doi.org/10.1145/1999995.2000018
http://dx.doi.org/10.1145/1999995.2000018
http://doi.acm.org/10.1145/1999995.2000018
http://dspace.lib.cuhk.edu.hk/handle/2006/398721
http://dspace.lib.cuhk.edu.hk/handle/2006/398721

Bibliography 97

Cohen, Fred [1984]. Computer Viruses - Theory and Experiments. 1984. http: //web.eecs.umich.
edu/~aprakash/eecs588/handouts/cohen-viruses.html (cited on pages 32, 33).

Cohen, Fred [1988]. “On the implications of computer viruses and methods of defense”. Comput. Secur.
7.2 (Apr. 1988), pages 167-184. 1SSN 0167-4048. doi:10.1016/0167-4048(88)90334-3. http:
//dx.doi.org/10.1016/0167-4048 (88) 90334-3 (cited on page 33).

Cooperation, Microsoft. Windows Mobile-based Smartphones. http: //www.microsoft .com/windowsmobile/
smartphone/default .mspx (cited on page 40).

Cyrus, Peikari et al. Summer Brings Mosquito-Born Malware. http://www.informit .com/articles/
article.asp?p=327994%5CssegNum=1 (cited on page 40).

Davi, Lucas et al. [2011]. “Privilege escalation attacks on android”. In: Information Security. Springer,
2011, pages 346-360 (cited on pages 3, 5, 35).

Developers, Android [2011]. “What is android?” ht tp://developer. android. com/guide/basics/what-is-
android. html 2 (2011) (cited on page 11).

Dietz, Michael et al. [2011]. “QUIRE: Lightweight Provenance for Smart Phone Operating Systems.”
In: USENIX Security Symposium. 2011 (cited on page 41).

Egele, Manuel et al. [2011]. “PiOS: Detecting privacy leaks in iOS applications”. In: Proceedings of the
Network and Distributed System Security Symposium. 2011 (cited on page 37).

Ehringer, David [2010]. “The dalvik virtual machine architecture”. Techn. report (March 2010) (2010)
(cited on page 18).

Enck, William, Peter Gilbert, et al. [2010]. “TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones”. In: Proceedings of the 9th USENIX conference on Operating
systems design and implementation. 2010, pages 1-6 (cited on pages 4, 24, 36).

Enck, William, Damien Octeau, et al. [2011]. “A Study of Android Application Security.” In: USENIX
security symposium. 2011 (cited on pages 13, 43).

Enck, William, Machigar Ongtang, and Patrick McDaniel [2008]. “Mitigating Android software misuse
before it happens” (2008) (cited on page 1).

Enck, William, Machigar Ongtang, and Patrick McDaniel [2009a]. “On lightweight mobile phone appli-
cation certification”. In: Proceedings of the 16th ACM conference on Computer and communications
security. ACM. 2009, pages 235-245 (cited on page 41).

Enck, William, Machigar Ongtang, and Patrick McDaniel [2009b]. “Understanding android security”.
Security & Privacy, IEEE 7.1 (2009), pages 50-57 (cited on pages 12, 14, 16).

Felt, Adrienne Porter, Erika Chin, et al. [2011]. “Android permissions demystified”. In: Proceedings of
the 18th ACM conference on Computer and communications security. ACM. 2011, pages 627-638
(cited on pages 10, 17, 41, 70).

Felt, Adrienne Porter, Matthew Finifter, et al. [2011]. “A survey of mobile malware in the wild”. In:
Proceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile devices.
ACM. 2011, pages 3—14 (cited on page 40).

Felt, Adrienne Porter, Kate Greenwood, and David Wagner [2011]. “The effectiveness of application
permissions”. In: Proceedings of the 2nd USENIX conference on Web application development.
USENIX Association. 2011, pages 75-86 (cited on page 35).

Felt, Adrienne Porter and David Wagner [2011]. “Phishing on mobile devices”. University of California,
Berkeley (2011) (cited on page 35).

http://web.eecs.umich.edu/~aprakash/eecs588/handouts/cohen-viruses.html
http://web.eecs.umich.edu/~aprakash/eecs588/handouts/cohen-viruses.html
http://worldcatlibraries.org/wcpa/issn/0167-4048
http://dx.doi.org/10.1016/0167-4048(88)90334-3
http://dx.doi.org/10.1016/0167-4048(88)90334-3
http://dx.doi.org/10.1016/0167-4048(88)90334-3
http://www.microsoft.com/windowsmobile/smartphone/default.mspx
http://www.microsoft.com/windowsmobile/smartphone/default.mspx
http://www.informit.com/articles/article.asp?p=327994%5C&seqNum=1
http://www.informit.com/articles/article.asp?p=327994%5C&seqNum=1

98 Bibliography

Felt, Adrienne Porter, Helen J Wang, et al. [2011]. “Permission Re-Delegation: Attacks and Defenses.”
In: USENIX Security Symposium. 2011 (cited on pages 13, 14, 41).

F-Secure. SMS Killer. nttp://www.f-secure.com/v-descs/sms.shtml (cited on page 40).

F-Secure [2012]. Mobile Threat Report Q2 2012. Aug. 2012. http://www. f-secure.com/weblog/
archives/MobileThreatReport_Q2_2012.pdf (Cited on page 32).

Fuchs, Adam P, Avik Chaudhuri, and Jeffrey S Foster [2009]. “SCanDroid: Automated security certifi-
cation of Android applications”. Manuscript, Univ. of Maryland, http://www. cs. umd. edu/” avik/pro-
Jjects/scandroidascaa (2009) (cited on page 37).

Ganapathy, Vinod et al. [2003]. “Buffer overrun detection using linear programming and static analysis”.
In: Proceedings of the 10th ACM conference on Computer and communications security. ACM. 2003,
pages 345-354 (cited on page 39).

Gibler, Clint et al. [2012]. “AndroidLeaks: Automatically Detecting Potential Privacy Leaks in Android
Applications on a Large Scale”. In: Trust and Trustworthy Computing. Edited by Stefan Katzen-
beisser et al. Volume 7344. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012,
pages 291-307. ISBN 978-3-642-30920-5. doi:10.1007/978-3-642-30921-2_17. http://dx.doi.
org/10.1007/978-3-642-30921-2_17 (cited on pages 35, 37).

Goasduff, Laurence and Christy Pettey [2011]. Gartner Says Worldwide Mobile Phone Sales Grew 35
Percent in Third Quarter 2010; Smartphone Sales Increased 96 Percent. Gartner. 2011. http://
www.gartner.com/newsroom/i1d/1466313 (cited on page 32).

Grace, Michael et al. [2012]. “Systematic detection of capability leaks in stock Android smartphones”.
In: Proceedings of the 19th Annual Symposium on Network and Distributed System Security. 2012
(cited on page 41).

Guo, Chuanxiong, Helen J Wang, and Wenwu Zhu [2004]. “Smart-phone attacks and defenses”. In:
HotNets 111. 2004 (cited on page 40).

Helfer, Jonas and Ty Lin [2012]. “Giving the User Control over Android Permissions” (2012) (cited on
page 42).

Helmut, Reimer [2013]. “ESET Secure Authentication: Sicherer Zugang zu VPN und Outlook Web
App”. German. Datenschutz und Datensicherheit - DuD 37.7 (2013), pages 479—-480. ISSN 1614-
0702. doi:10.1007/s11623-013-0194-y. http://dx.doi.org/10.1007/s11623-013-0194-y
(cited on page 72).

Hornyack, Peter et al. [2011]. “These aren’t the droids you’re looking for: retrofitting android to protect
data from imperious applications”. In: Proceedings of the 18th ACM conference on Computer and
communications security. ACM. 2011, pages 639-652 (cited on page 38).

Horwitz, Susan, Thomas Reps, and David Binkley [1990]. “Interprocedural slicing using dependence
graphs”. ACM Transactions on Programming Languages and Systems (TOPLAS) 12.1 (1990), pages 26—
60 (cited on page 39).

Hypponen, M. State of cell phone malware in 2007 (2007) (cited on page 40).

Islam, Zak [2012]. Google Play Matches Apple’s iOS With 700,000 Apps. Oct. 2012. http: / / www .
tomsguide.com/us/Google-Play-Android-Apple-1i0S, news-16235.html (cited on page 10).

J. Malenfant, M. Jacques and F.-N. Demers [1996]. “A Tutorial on Behavioral Reflection and its Imple-
mentation” (1996). http://www2 .parc.com/csl/groups/sda/projects/reflection96/docs/
malenfant/malenfant.pdf (Cited on page 53).

http://www.f-secure.com/v-descs/sms.shtml
http://www.f-secure.com/weblog/archives/MobileThreatReport_Q2_2012.pdf
http://www.f-secure.com/weblog/archives/MobileThreatReport_Q2_2012.pdf
http://www.amazon.com/exec/obidos/ASIN/978-3-642-30920-5/keithandrewshcic
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://www.gartner.com/newsroom/id/1466313
http://www.gartner.com/newsroom/id/1466313
http://worldcatlibraries.org/wcpa/issn/1614-0702
http://worldcatlibraries.org/wcpa/issn/1614-0702
http://dx.doi.org/10.1007/s11623-013-0194-y
http://dx.doi.org/10.1007/s11623-013-0194-y
http://www.tomsguide.com/us/Google-Play-Android-Apple-iOS,news-16235.html
http://www.tomsguide.com/us/Google-Play-Android-Apple-iOS,news-16235.html
http://www2.parc.com/csl/groups/sda/projects/reflection96/docs/malenfant/malenfant.pdf
http://www2.parc.com/csl/groups/sda/projects/reflection96/docs/malenfant/malenfant.pdf

Bibliography 99

Kim, Hyojun, Nitin Agrawal, and Cristian Ungureanu [2012]. “Revisiting storage for smartphones”.
ACM Transactions on Storage (TOS) 8.4 (2012), page 14 (cited on page 16).

Krinke, Jens [2003]. Advanced Slicing of Sequential and Concurrent Programs. Apr. 2003 (cited on
page 25).

Kroop, Sebastian [2008]. “Evaluierung der Android-Plattform anhand einer Referenzanwendung” (2008)
(cited on pages 12, 13).

Kuhn, Tobias, Thomas Ritter, and Bernhard Mitschang [2012]. “Das Sicherheitskonzept von Android”
(2012) (cited on page 16).

Labs, Kaspersky [2004]. Viruses move to mobile phones. 2004. http: //www.kaspersky.com/news?id=
149499226 (cited on page 40).

Lam, Monica et al. [2006]. Compilers Principles, Techniques, and Tools. Addison-Wesley, 2006 (cited
on pages 25, 27).

Landesman, Mary [2012]. What is a Virus Signature? 2012. nhttp://antivirus . about . com/od/
whatisavirus/a/virussignature.htm (cited on page 33).

Lange, Matthias et al. [2011]. “L4Android: a generic operating system framework for secure smart-
phones”. In: Proceedings of the 1st ACM workshop on Security and privacy in smartphones and
mobile devices. ACM. 2011, pages 39-50 (cited on pages 41, 65).

Larochelle, David and David Evans [2001]. “Statically Detecting Likely Buffer Overflow Vulnerabili-
ties.” In: USENIX Security Symposium. Washington DC. 2001, pages 177-190 (cited on page 39).

Lawton, G. [2008]. “Is It Finally Time to Worry about Mobile Malware?” Computer 41.5 (May 2008),
pages 12—14. 1SSN 0018-9162. doi:10.1109/MC.2008.159 (cited on page 32).

Leavitt, Neal [2005]. “Mobile phones: the next frontier for hackers?” Computer 38.4 (2005), pages 20—
23 (cited on page 32).
Lettner, Michael, Michael Tschernuth, and Rene Mayrhofer [2012]. “Mobile platform architecture re-

view: Android, iPhone, Qt”. In: Computer Aided Systems Theory—EUROCAST 201 1. Springer, 2012,
pages 544-551 (cited on page 40).

Lo, Raymond W, Karl N Levitt, and Ronald A Olsson [1995]. “MCEF: A malicious code filter”. Comput-
ers & Security 14.6 (1995), pages 541-566 (cited on page 38).

Mahaftey, K and J Hering. App Attack-Surviving the Explosive Growth of Mobile Apps (cited on pages 17,
41).

“Malicious mobile threats report 2010/2011” [2011] (2011) (cited on page 32).

McCaskill, Mary K [1998]. “Grammar, Punctuation, and Capitalization”. A Handbook for Technical
Writers and Editors. NASA SP-7084. 20 (1998). http://www.eknigu.org/get /L%5C_Languages/
LEn%$5C_English/McCaskill .Grammar, $20punctuation, $20and%20capitalization. $20A%
20handbook%20for%20technical%20writers%$20and%20editors.

McClurg, Jedidiah, Jonathan Friedman, and William Ng [2012]. “Android Privacy Leak Detection via
Dynamic Taint Analysis” (2012) (cited on page 42).

Milosevié, Nikola [2013]. History of Malware. 2013. http://cryptome.org/2013/02/malware -
history.pdf (cited on page 31).

Mishra, Umakant [2012]. Methods of virus detection and their limitations. 2012. nttp://ssrn.com/
abstract=1916708 (cited on page 33).

http://www.kaspersky.com/news?id=149499226
http://www.kaspersky.com/news?id=149499226
http://antivirus.about.com/od/whatisavirus/a/virussignature.htm
http://antivirus.about.com/od/whatisavirus/a/virussignature.htm
http://worldcatlibraries.org/wcpa/issn/0018-9162
http://dx.doi.org/10.1109/MC.2008.159
http://www.eknigu.org/get/L%5C_Languages/LEn%5C_English/McCaskill.Grammar,%20punctuation,%20and%20capitalization.%20A%20handbook%20for%20technical%20writers%20and%20editors
http://www.eknigu.org/get/L%5C_Languages/LEn%5C_English/McCaskill.Grammar,%20punctuation,%20and%20capitalization.%20A%20handbook%20for%20technical%20writers%20and%20editors
http://www.eknigu.org/get/L%5C_Languages/LEn%5C_English/McCaskill.Grammar,%20punctuation,%20and%20capitalization.%20A%20handbook%20for%20technical%20writers%20and%20editors
http://cryptome.org/2013/02/malware-history.pdf
http://cryptome.org/2013/02/malware-history.pdf
http://ssrn.com/abstract=1916708
http://ssrn.com/abstract=1916708

100 Bibliography

Myers, Andrew C and Barbara Liskov [1997]. “A decentralized model for information flow control”.
In: ACM SIGOPS Operating Systems Review. Volume 31. 5. ACM. 1997, pages 129-142 (cited on
page 39).

Nagamine, Kathy [2012]. Android Marks Fourth Anniversary Since Launch with 75.0% Market Share
in Third Quarter, According to IDC. 2012. http: //www.idc .com/getdoc. jsp?containerId=
prUs23771812#.URtLEnxQBgE (cited on page 10).

Newsome, James and Dawn Song [2005]. “Dynamic taint analysis for automatic detection, analysis, and
signature generation of exploits on commodity software” (2005) (cited on page 39).

Nolan, Godfrey [2012]. Decompiling Android. 2nd edition. Apress, 2012. ISBN 9781430242482 (cited
on pages 18, 19).

One, Aleph [1996]. “Smashing the stack for fun and profit”. Phrack magazine 7.49 (1996), page 365
(cited on page 39).

Ongtang, Machigar et al. [2012]. “Semantically rich application-centric security in Android”. Security
and Communication Networks 5.6 (2012), pages 658—673 (cited on page 41).

Orthacker, Clemens et al. [2012]. “Android Security Permissions—Can we trust them?” In: Security and
Privacy in Mobile Information and Communication Systems. Springer, 2012, pages 40-51 (cited on
pages 12, 17, 34, 35).

Ottenstein, Karl J and Linda M Ottenstein [1984]. “The program dependence graph in a software devel-
opment environment”. In: ACM Sigplan Notices. Volume 19. 5. ACM. 1984, pages 177-184 (cited
on page 24).

Paller, G [2012]. Dalvik opcodes. 2012 (cited on pages 19, 22).

Paul, Ryan [2007]. “Why Google chose the Apache Software License over GPLv2 for Android”. Ars
Technica,(November 06, 2007) (2007) (cited on page 10).

Pistoia, Marco et al. [2007]. “A survey of static analysis methods for identifying security vulnerabilities
in software systems”. IBM systems journal 46.2 (2007), pages 265-288 (cited on pages 38, 39).

Portokalidis, Georgios et al. [2010]. “Paranoid Android: versatile protection for smartphones”. In: Pro-
ceedings of the 26th Annual Computer Security Applications Conference. ACSAC *10. Austin, Texas:
ACM, 2010, pages 347-356. ISBN 978-1-4503-0133-6. doi:10.1145/1920261.1920313. http :
//doi.acm.org/10.1145/1920261.1920313 (cited on page 44).

Rao, Bharat and Louis Minakakis [2003]. “Evolution of mobile location-based services”. Communica-
tions of the ACM 46.12 (2003), pages 61-65 (cited on page 32).

Rastogi, Vaibhav, Yan Chen, and Xuxian Jiang [2013]. “Evaluating Android Anti-malware against Trans-
formation Attacks” (2013) (cited on page 76).

Reps, Thomas et al. [1994]. Speeding up slicing. Volume 19. 5. ACM, 1994 (cited on page 39).

Rhee, Keunwoo, Hawon Kim, and Hac Yun Na [2012]. “Security Test Methodology for an Agent of a
Mobile Device Management System” (2012) (cited on page 43).

Scheid, Julian [2012]. “Kapitel 1 Sicherheit mobiler Gerdte-SchutzmaBBnahmen, Angriffsarten & Angriff-
serkennung auf Android”. Ausgewdhite Themen der IT-Sicherheit (2012), page 7 (cited on page 14).

Schmidt, A.-D. et al. [2009]. “Smartphone malware evolution revisited: Android next target?” In: Ma-
licious and Unwanted Software (MALWARE), 2009 4th International Conference on. Oct. 2009,
pages 1-7. doi:10.1109/MALWARE.2009.5403026 (cited on page 32).

http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.URtLEnxQBgE
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.URtLEnxQBgE
http://www.amazon.com/exec/obidos/ASIN/9781430242482/keithandrewshcic
http://www.amazon.com/exec/obidos/ASIN/978-1-4503-0133-6/keithandrewshcic
http://dx.doi.org/10.1145/1920261.1920313
http://doi.acm.org/10.1145/1920261.1920313
http://doi.acm.org/10.1145/1920261.1920313
http://dx.doi.org/10.1109/MALWARE.2009.5403026

Bibliography 101

Shabtai, Asaf, Yuval Fledel, et al. [2010]. “Google android: A comprehensive security assessment”.
Security & Privacy, IEEE 8.2 (2010), pages 3544 (cited on page 1).

Shabtai, Asaf, Uri Kanonov, et al. [2012]. “"Andromaly": a behavioral malware detection framework for
android devices”. J. Intell. Inf. Syst. 38.1 (Feb. 2012), pages 161-190. ISSN 0925-9902. doi:10.1007/
$10844-010-0148-X. http://dx.doi.org/10.1007/s10844-010-0148-x (cited on page 42).

Sharma, Kiriti et al. [2013]. “Malware Analysis for Android Operating”. In: 8th Annual Symposium on
Information Assurance (ASIA’13). 2013, page 31 (cited on page 43).

Shin, Wook et al. [2009]. “Towards formal analysis of the permission-based security model for android”.
In: Wireless and Mobile Communications, 2009. ICWMC’09. Fifth International Conference on.
IEEE. 2009, pages 87-92 (cited on page 40).

Singh, Ankush Kumar and Shree Garg [2012]. “Detection of Repackaged Smartphone Applications On
Android” (2012) (cited on page 42).

Snelting, Gregor, Torsten Robschink, and Jens Krinke [2006]. “Efficient path conditions in dependence
graphs for software safety analysis”. ACM Transactions on Software Engineering and Methodology
(TOSEM) 15.4 (2006), pages 410—457 (cited on page 39).

Spreitzenbarth, Michael [2013]. “Dissecting the Droid: Forensic Analysis of Android and its malicious
Applications Sezierung eines Androiden: Forensische Analyse von Android und dessen schadhaften
Applikationen” (2013) (cited on page 1).

Static Android Analysis Framework [2013]. 2013. https: //code . google . com/p/saaf/ (cited on
page 44).

The twenty most critical internet security vulnerabilities. www.sans.org/top20 (cited on page 39).

Tonella, Paolo [2005]. “Reverse engineering of object oriented code”. In: Proceedings of the 27th inter-
national conference on Software engineering. ACM. 2005, pages 724—725 (cited on page 27).

Wagner, David and R Dean [2001]. “Intrusion detection via static analysis”. In: Security and Privacy,
2001. S&P 2001. Proceedings. 2001 IEEE Symposium on. IEEE. 2001, pages 156-168 (cited on
page 39).

Wagner, David, Jeffrey S Foster, et al. [2000]. “A First Step Towards Automated Detection of Buffer
Overrun Vulnerabilities.” In: NDSS. 2000, pages 2000-02 (cited on page 39).

Weiser, Mark [1981]. “Program slicing”. In: Proceedings of the 5th international conference on Software
engineering. IEEE Press. 1981, pages 439-449 (cited on page 24).

Wotawa, Franz [2002]. “On the relationship between model-based debugging and program slicing”. Ar-
tificial Intelligence 135.1-2 (2002), pages 125-143. 1SSN 0004-3702. doi:http://dx.doi.org/10.
1016/S0004 - 3702(01)00161-8. http://www. sciencedirect . com/ science /article/pii/
$0004370201001618 (cited on pages 25, 29).

You, Ilsun and Kangbin Yim [2010]. “Malware obfuscation techniques: A brief survey”. In: Broadband,
Wireless Computing, Communication and Applications (BWCCA), 2010 International Conference
on. IEEE. 2010, pages 297-300 (cited on page 76).

Zeller, Andreas [2009]. Why programs fail: a guide to systematic debugging. Access Online via Elsevier,
2009 (cited on page 27).

Zhou, Yajin and Xuxian Jiang [2012]. “Dissecting Android Malware: Characterization and Evolution”.
In: Security and Privacy (SP), 2012 IEEE Symposium on. May 2012, pages 95-109. doi:10.1109/
SP.2012.16 (cited on pages 1, 6, 32, 34).

http://worldcatlibraries.org/wcpa/issn/0925-9902
http://dx.doi.org/10.1007/s10844-010-0148-x
http://dx.doi.org/10.1007/s10844-010-0148-x
http://dx.doi.org/10.1007/s10844-010-0148-x
https://code.google.com/p/saaf/
www.sans.org/top20
http://worldcatlibraries.org/wcpa/issn/0004-3702
http://dx.doi.org/http://dx.doi.org/10.1016/S0004-3702(01)00161-8
http://dx.doi.org/http://dx.doi.org/10.1016/S0004-3702(01)00161-8
http://www.sciencedirect.com/science/article/pii/S0004370201001618
http://www.sciencedirect.com/science/article/pii/S0004370201001618
http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1109/SP.2012.16

102 Bibliography

Zhou, Yajin, Zhi Wang, et al. [2012]. “Hey, you, get off of my market: Detecting malicious apps in official
and alternative android markets”. In: Proceedings of the 19th Annual Network and Distributed System
Security Symposium. 2012 (cited on pages 34, 40).

Zhou, Yajin, Xinwen Zhang, et al. [2011]. “Taming information-stealing smartphone applications (on
Android)”. In: Trust and Trustworthy Computing. Springer, 2011, pages 93—-107 (cited on pages 32,
38).

Index

ADAM, 42 MockDroid, 38
Android, 10
Activities, 12 Obfuscation, 18
Architecture, 10 Control, 18
Asynchronous Task, 13 Data, 18
Broadcast Receiver, 12 Layout, 18
Components, 12 Oligomorphic, 33

Content Provider, 13
Permission, 14
Security, 13
Services, 12

Paranoid, 43
Phishing, 35
Polymorphic, 33

Andromaly, 42 Reverse Engineering, 18
Antivirus, 33 Root
Apktool, 42 Evaluation, 65
Asynchronous Task, 46 Module, 54
Buffer overrun attacks, 39 SAAF, 44

ScanDroid, 37

ComDroid, 43
Crypto
Evaluation, 73
Module, 54, 58

SMS
Evaluation, 68
Module, 54, 56
Static Slicing, 38

Dalvik, 18 Android, 47
Instructions, 19 Backward, 24, 39

Dead code, 40 Dalvik, 47

Ded, 43 Forward, 26

Dedexer, 43

TaintDroid, 36
Tell-tale signs, 38
Flow Propagation, 28 TISSA, 38

Dex2Jar, 37,42

Information Leaks, 35 Weiser, 24
Information-Flow Analysis, 36
Dynamic, 24
Static, 23
Intrusion detection, 39
10
Evaluation, 62
Module, 54, 56

Malware, 31
Detection, 32
Metamorphic, 33

103

	Contents
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Credits
	1 Introduction
	1.1 Android Security Issues
	1.1.1 Low-Level Issues
	1.1.2 Mid-Level Issues
	1.1.3 High-Level Issues

	1.2 The Goals of this Master's Thesis
	1.2.1 Android as Mobile Platform
	1.2.2 On-device Execution
	1.2.3 Root Classification
	1.2.4 SMS Classification
	1.2.5 Applicability for Cryptographic Analysis

	1.3 Structure of this Thesis

	2 Preliminaries
	2.1 Technical Vocabulary
	2.2 Android OS
	2.2.1 Android Architecture
	2.2.2 Android Application Structure
	2.2.3 Android Application Components
	2.2.4 Application Start-Up Methods
	2.2.5 Android's Security Mechanisms

	2.3 Dalvik Architecture
	2.3.1 Dalvik Instructions

	2.4 Code Analysis
	2.4.1 Static Analysis
	2.4.2 Dynamic Analysis

	2.5 Static Slicing
	2.5.1 Language Definition
	2.5.2 Backward Slicing with a PDG
	2.5.3 Forward Slicing
	2.5.4 Limitations

	3 Related Work
	3.1 Malware
	3.1.1 Malware Evolution
	3.1.2 Malware Detection
	3.1.3 Tolerate Malware

	3.2 Information Leaks
	3.2.1 Information-Flow Analysis
	3.2.2 Information Protection

	3.3 Security Analysis
	3.4 Security Analysis for Android
	3.5 Code Analysis Frameworks
	3.5.1 ADAM
	3.5.2 Andromaly
	3.5.3 Apktool
	3.5.4 Dex2jar
	3.5.5 Ded
	3.5.6 Dedexer
	3.5.7 ComDroid
	3.5.8 Paranoid
	3.5.9 SAAF

	4 APK Analyser
	4.1 Architecture
	4.1.1 Execution Management
	4.1.2 Execution Environment

	4.2 Register Tracker
	4.2.1 Slicing Android Applications
	4.2.2 Issues with Static Slicing

	4.3 Modules
	4.3.1 Root
	4.3.2 IO
	4.3.3 SMS
	4.3.4 Crypto

	4.4 Generated Results
	4.4.1 User Notifications
	4.4.2 Technical Experts

	5 Evaluation
	5.1 IO
	5.1.1 Evaluation Basis
	5.1.2 Evaluation of the Arbitrary Set
	5.1.3 Malware Evaluation

	5.2 Root
	5.2.1 Evaluation Basis
	5.2.2 Evaluation of the Arbitrary Set
	5.2.3 Malware Evaluation

	5.3 SMS
	5.3.1 Evaluation Basis
	5.3.2 Evaluation of the Arbitrary Set
	5.3.3 Malware Evaluation

	5.4 Crypto
	5.4.1 Evaluation Basis
	5.4.2 Evaluation of the Arbitrary Set
	5.4.3 Malware Evaluation

	5.5 Timing

	6 Concluding Remarks
	7 Outlook
	A Acronyms
	B Class Diagrams
	C Dalvik Opcodes
	Bibliography

