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Abstract
The Hubbard model, one of the simplest models in many-body physics, describes
highly correlated electrons on a lattice. It is believed to be able to give a description
of the copper oxide planes responsible for the high-TC superconductivity of the
cuprates. But despite its seeming simplicity the exponential growth of the Hilbert
space restricts standard numerical methods to very small system sizes.

The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm,
a recently developed adaptation of the Diffusion Monte Carlo method by the group
of Prof. Ali Alavi allows an exact calculation of the ground state of a quantum
mechanical system. It avoids the necessity of a prior knowledge of the nodal struc-
ture of the fermionic ground state by formulation in the anti-symmetric Hilbert
space of Slater determinants. Record breaking results, regarding system sizes and
accuracy, in quantum chemistry calculations were achieved by the use of this method.

In this thesis the application of the FCIQMC method to the two-dimensional
fermionic Hubbard model is investigated. The differences of formulation in restricted
and unrestricted Hartree-Fock single particle basis and the influences of different
boundary conditions (periodic and twisted) are analyzed. To compare results, small
systems were solved with exact diagonalization with extensive use of the symmetries
of the model.
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Kurzfassung
Das Hubbard Modell, eines der simpelsten Modelle in der Viel-Teilchen Physik,
beschreibt stark korrelierte Elektronen auf einem Gitter. Man glaubt, dass es
in der Lage ist eine Beschreibung der Kupfer-Oxid Ebenen, die für die Hochtem-
peratursupraleitung der Kuprate verantwortlich sind, zu liefern. Aber trotz der
anscheinenden Einfachheit schränkt der exponentielle Wachstum des Hilbert Raums
übliche numerische Methoden auf sehr kleine Systemgrößen ein.

Der ’Full Configuration Interaction Quantum Monte Carlo’ (FCIQMC) Algorith-
mus, eine kürzlich von der Gruppe von Prof. Ali Alavi entwickelte Weiterentwicklung
der ’Diffusion Monte Carlo’ Methode, erlaubt eine exakte Berechnung des Grundzu-
standes eines quantenmechanischen Systems. Er umgeht die Notwendigkeit einer
vorherigen Kenntnis der Vorzeichenstruktur des fermionischen Grundzustandes durch
eine Formulierung im anti-symmetrischen Hilbert Raum von Slater Determinanten.
Rekordbrechende Resultate, Systemgrößen und Genauigkeit betreffend, in quanten-
chemischen Berechnung wurde mit dieser Methode erzielt.

In dieser Arbeit wird die Anwendung der FCIQMC Methode auf das zweidimen-
sionale fermionische Hubbard Modell untersucht. Die Unterschiede der Formulierung
in der ’restricted’ und ’unrestricted’ Hartree-Fock Einteilchen Basis und die Einflüsse
von verschiedenen Randbedingungen (periodisch and verdreht) wird analysiert. Für
den Vergleich von Ergebnissen werden kleine System mit exakter Diagonalisierung,
mit umfangreicher Benutzung der Symmetrien des Modells, gelöst.
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1 Introduction

1.1 The Hubbard model
Introduced in 1963 as a model for the description of the strong electronic correlation
effects in the narrow d- and f -bands of the transition metals [2], the Hubbard model
until today is in the focus of attention of modern theoretical research.
With the discovery high-Tc cuprate superconductors, [3], this interest has been

revitalized, as it is believed that the Hubbard model is the simplest model able to
describe the physics of the two-dimensional copper-oxide planes [4, 5, 6], responsible
for the unconventional superconductivity of the cuprates.

1.2 High-Tc cuprate superconductors
The first discovered high-Tc superconductor was the ceramic barium-doped lanthanum-
copper oxide La2−xBaxCuO4 in 1986 [3], with the record-breaking critical temperature
of 30K. Shortly afterwards the first superconductor with a critical temperature
above the technical important boiling point of liquid nitrogen of 77 K, was found in
yttrium-barium-copper oxide YBa2Cu3O7 (YBCO) [7].

As an example for most cuprates the crystal structure of YBCO, a layered
perovskite-like structure, is shown in figure (1.1a) [8].
The CuO2 planes, responsible for the superconducting properties of YBCO,

are separated by insulating layers of yttrium or barium. These layers, besides
conventional doping and oxygen defects, determine the hole-doping of the CuO2
layers, which is crucial for the electronic properties of the materials.
Band-structure calculations for La2−xBaxCuO4, as discussed below, show that

the 3d-copper- and 2p-oxygen-orbitals in the two-dimensional CuO2 planes are the
dominant factors for its electronic properties [10], [11].

In fig.(1.2) a typical phase diagram for superconductors of cuprate type is displayed,
taken from [9]. For low doping values around half-filling the low temperature phase
has antiferromagnetic order, due to Mott-localization of the 3d copper electrons. By
adding holes to the system the antiferromagnetic long-range order of the localized
spins is destroyed.

1
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Figure 1.1: General chemical structure of high-Tc cuprates using the example of
YBCO. (a) the crystal structure of YBa2Cu3O7 taken from [9]. (b) A schematic
two-dimensional CuO2 plane most important for the electronic properties of the
cuprates.

With increasing hole doping the system changes to a pseudogap state below the
critical superconducting temperature. This pseudogap state is characterized by the
existence of very few states near the Fermi level [12], [13]. Upon a specific value of
hole-doping the superconducting state emerges, although the possible reasons for
it are still subject of debate. Experimental evidence strongly suggests that, also
for the cuprates, the formation of Cooper-pairs in the copper-oxide layers is the
reason for superconductivity. But the pairing mechanism is not as in BCS-theory,
the process of saving ionic kinetic energy through formation of Cooper-pairs, but
most likely a consequence of strong electron-electron interaction [14].
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Figure 1.2: General phase diagram example of cuprate-superconductors with T
being the temperature and x the hole doping in the CuO2 plane. Taken from [9].

1.3 Transition to the theoretical model
Taking barium-doped lanthanum-copper oxide La2−xBaxCuO4 as an example it
can be concluded from its stoichiometry that the copper ion is in the valency
Cu2+, implying a one hole-3d9 electronic configuration. While the oxygen has a
filled 2p-orbital configuration with a valency O2−. As seen in the LAPW band-
structure of La2−xBaxCuO4 in fig. (1.3) [10], there are only two of the Cu(3d)-
O(2p) bands of importance. These are the filled bonding(B) and half-filled anti-
bonding(A) Cu(3dx2−y2)-O(2px/y) σ-bonds in the xy-plane, [11]. The dominant
electronic behavior of the CuO2 planes can be seen as there is almost no dispersion
for any orbital along the Λ-path between Γ and Z in fig. (1.3), which is out of the
CuO2 in the z-direction of the Brillouin zone.

A schematic representation of the bonding and anti-bonding configurations of the
x2 − y2-symmetric 3d-copper orbitals and the corresponding non-orthogonal px- or
py-oxygen orbitals are displayed in fig. (1.4)
Although there are these three orbitals (Cu(3dx2−y2), O(2px/y)) in the CuO2

unit-cell, essentially requiring a three-band model for description, angle resolved
photoemission spectroscopy data suggest that only one band is present at the Fermi
surface of superconducting cuprates, [15]. This means the electronic properties of
these CuO2 planes of the cuprates can be described by an effective one band model
on a two-dimensional lattice.
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Figure 1.3: LAPW band structure of La2−xBaxCuO4. Except the filled bond-
ing(B) and half-filled anti-bonding(A) Cu(3dx2−y2)-O(2px/y) in-plane σ-bonds of
the CuO2 plane, no other orbitals display a significant dispersion. This figure is
taken from [10].
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Figure 1.4: Arrangement of the electronically active orbitals in the CuO2 plane.
(a) anti-bonding configuration. (b) bonding configuration
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The model
Since the Hubbard model is the simplest electronic lattice model which may possesses
a superconducting phase in two dimensions and is able to describe the one- and
two-particle dynamics of electrons in the orbitals of the CuO2-planes it is in the
spotlight as possible theoretical description of the superconductivity of the cuprates.
In real space and second quantization notation it is defined as

H = −t
∑
〈i,j〉,σ

c†iσcj,σ + U
∑
i

ni,↑ni,↓. (1.1)

c†i,σ(ci,σ) are the fermionic creation(annihilation) operators, which create(destroy) a
fermion with spin σ on site i and n↑i (n

↓
i ) are the corresponding number-operators. Due

to the anti-symmetric properties of fermions, the fermionic creation and annihilation
operators c†i,σ and ci,σ obey the canonical anticommutation relations (CAR):{

c†i,σ, c
†
j,σ′

}
=
[
c†i,σ, c

†
j,σ′

]
+

= [ci,σ,cj,σ′ ]+ = 0 = δi,jδσ,σ′ (1.2)

and {
c†i,σ,cj,σ′

}
=
[
c†i,σ,cj,σ′

]
+

= δi,jδσ,σ′ , (1.3)

where {A,B} = [A,B]+ = AB +BA. In this work the summation in the first term
of (1.1) is restricted to nearest-neighbors sites only and corresponds to the one-
particle kinetic energy (’hopping’) part of the model, identical to the tight-binding
Hamiltonian. It describes the movement of electron between neighboring lattice sites.
The second part in (1.3) accounts for the very short-ranged on-site two-particle
interaction. In the repulsive U > 0 fermionic Hubbard model this corresponds to
the Coulomb repulsion of two electrons with opposite spin residing on the same
lattice site i. In fig. (1.5) the two possible effects occurring within the Hubbard
model are displayed. A hopping of an electron with spin-σ to an nearest-neighbor
site, previously unoccupied by an spin-σ electron, with kinetic energy −t. And the
repulsive on-site repulsion of two electrons with opposite spin on the same site in
units of U/t.

Since the model (1.3) possesses only two parameters, the hopping strength t and
on-site repulsion U , it is possible to fix one value and measure every quantity of
interest in units of it. In this work the hopping parameter was set to t = 1 and only
parameter U was allowed to change.
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U

-t

Figure 1.5: Example of the possible processes of the effective two-dimensional
one-band Hubbard model on a 2× 2-lattice: the possible on-site repulsion of strength
U and nearest-neighbor hopping with magnitude −t.

Optical lattices
A further spark of interest in lattice models, and especially the Hubbard model,
was caused by the advent of precisely controllable ultra-cold atom gases on optical
lattices used as quantum simulators [16, 17, 18, 19, 20, 21]. Where the ultra-cold
atoms are trapped on certain lattice sites and the strength of the corresponding
hopping and repulsion parameters are experimentally tunable, and thus, in principle,
allowing the physical simulation of the theoretical model.
The Hubbard model was exactly solved in one-dimension through the use of the

Bethe-Ansatz by Lieb and Wu [22]. And in two dimension the two limiting cases
t = 0, which is already diagonal in the real-space representation, and U = 0, which
is identical to the tight-binding model and diagonalized through a momentum-space
transformation (2.1), are also easily solved. And yet, due to the dynamic interplay
of the kinetic hopping term and the Coulomb-like on-site interaction part, the
Hubbard model, nearly 50 years after its introduction, is still not solved and not
even thoroughly understood for a wide range of the parameter U in dimensions
greater than one. And due to the exponentially growing Hilbert-space with lattice
sites and number of electrons an exact solution in the classical sense is out of reach
for even intermediate system sizes.

The Hubbard model is not only of interest due to its physical applications in the
above mentioned cases, but also from a pure theoretical standpoint, since it is the
simplest possible model for strongly interacting fermions, only taking into account
the motion of electrons through lattice sites and short range interaction of opposite
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spin fermions. Nevertheless it exhibits many interesting complex physical phenomena,
like metal-insulator transitions, antiferromagnetism and superconductivity, naming
only a few examples. Also other prominent theoretical models like the t− J and
its special case at half filling, the Heisenberg model, can be derived in the strong
coupling U � t limit of the Hubbard model [23]. Any advancement in the solutions
for bigger lattice sizes, in dimensions greater than one, would be a great starting
point in the understanding of many interesting physical phenomenona.

1.4 Full configuration interaction Quantum Monte Carlo
In this work the recently developed full configuration interaction quantum Monte
Carlo algorithm (FCIQMC) by G.H. Booth, A. Thom and A. Alavi [24] and its
shortly afterwards adapted initiator-approximation version [25] were applied to
the two dimensional Hubbard model. The FCIQMC algorithm set new records,
concerning accuracy and system size, in calculation of chemical systems [26, 27], in
the field of quantum chemistry and was recently also applied to the homogeneous
electron gas [28] and real solids [29]. The in chapter 5 more thoroughly described
FCIQMC method is an adaptation of the diffusion quantum Monte Carlo method
which projects an arbitrary starting state |Ψ〉 onto the ground state of a system by
imaginary-time evolution

|Ψ0〉 = lim
τ→∞

e−τ(H−E0) |Ψ〉. (1.4)

In the FCIQMC method the application of the projector exp(−τ(H − E0)) is
simulated by population dynamic rules for a set of, so called, walkers living in the
Hilbert-space in which the wave function is expanded in

|Ψ〉 =
∑
i

ci|Φi〉. (1.5)

The sign problem of the DMC algorithm, due to the unknown nodal structure of
the true ground state wave function, is circumvented in the FCIQMC algorithm by
expanding the wave function (1.5) in Slater determinants |Φi〉. The weight ci of each
basis state is given by the number of signed walkers inhabiting it and which evolve
according to rules set by the underlying Hamiltonian of the system. Annihilation
processes of walkers with different sign inhabiting the same Slater determinant |Φi〉
allow the true ground state wave function to emerge during simulation.

The choice of the single orbital basis in which the wave function is represented is
of crucial importance to the performance of the FCIQMC algorithm. In the above
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mentioned successful applications to chemical system the basis states in which the
wave function were expanded were highly sophisticated, but very specific to the
investigated system, basis sets prevalent in the quantum chemistry community. For
system defined on periodic lattice systems, as the Hubbard model in this work,
the choice of basis is more generic. In an optimal basis as few basis states |Φi〉 as
possible would contain most of the important information of the system.
In this work the performance of the FCIQMC method applied to the Hubbard

Hamiltonian formulated in the momentum-space and unrestricted Hartree-
Fock basis was investigated.

For FCIQMC calculations in this work the openly available stand-alone FCIQMC
code NECI [1] was utilized, which was provided and explained to me by developers
Prof. Ali Alavi and George H. Booth during two visits at their workgroup and in
ongoing correspondence.

1.5 Outline
The remaining structure of this thesis is as follows: In chapter 2 the exact diagonal-
ization of the Hubbard model for small systems is described. The exact solution is
on the one hand used to compare results obtained from FCIQMC simulations and
on the other to assert the validity and investigate properties of the momentum-space
and Hartree-Fock basis transformations, which are described in the following chapter
3. Also in chapter 3 the underlying method of full configuration interaction and
basic terminology used in quantum chemistry, and thus in the FCIQMC formulation,
is described.
Chapter 4 gives a short review to the general quantum Monte Carlo technique

and serves as a transition to the introduction of the main topic of this thesis, the
full configuration quantum Monte Carlo method, described in chapter 5. Chapter
5 also contains results on which factors the performance of the FCIQMC method
depends when applied to the Hubbard model on a periodic lattice.
The concluding chapter 6 contains a discussion and outlook on how to conclude

superconducting properties from the Drude and superfluid weight of a system,
obtained from ground state energies as a function of an applied external field.



2 Exact Diagonalization

2.1 Analytic solution of limiting cases
For t = 0 the Hubbard Hamiltonian (1.1) is already diagonal in the real-space
basis. In the non-interacting U = 0 limit the Hubbard Hamiltonian is identical
to the tight-binding Hamiltonian and can be diagonalized by a momentum space
transformation

c†k,σ = 1√
N

∑
r

eikr c†r,σ, ck,σ = 1√
N

∑
r

e−ikr cr,σ, (2.1)

which is also one of the bases in which the FCIQMC algorithm is applied to the
Hubbard model. Inserting the inverse transformation of (2.1) into the real-space
Hubbard Hamiltonian (1.1) yields

H = −t
N

∑
k,k′,σ

∑
〈r,r′〉

e−i(kr−k′r′) c†k,σck′,σ

+ U

N2

∑
klmn,r

e−ir(k−l+m−n) c†k,↑cl,↑c
†
m,↓cn,↓. (2.2)

With the nearest neighbor conditions

rx =r′x + 1 ∨ r′x − 1 for ry = r′y (2.3)
ry =r′y + 1 ∨ r′y − 1 for rx = r′x (2.4)

and
1
N

∑
r

eir(k−k′) = δk,k′ (2.5)

9
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equation (2.2) becomes

H = −t
∑

k,k′,σ

(
eikx +e−ikx + eiky + e−iky

)
c†k,σck,σδk,k′

+ U

N

∑
klmn

c†k,↑cl,↓c
†
m,↑cn,↓δk,l+n−m

=
∑
k,σ

ε(k)nk,σ + U

N

∑
lmn

c†l+n−m,↑cl,↑c
†
n,↓cm,↓, (2.6)

which is the Hubbard model formulated in momentum space representation. For
U = 0 it is diagonal with the tight binding single particle energy ε(k) = −2t(cos(kx)+
cos(ky)) in two dimensions. But compared to the real-space representation (1.1) the
former diagonal two-particle interaction part now takes on a more complicated form.

Exact diagonalization
For every other values of U and t, due to the interplay of the one particle hopping
part and the two-particle interaction term, no such trivial solution is possible. To
obtain an exact solution of a quantum-mechanical problem, like the Hubbard model,
the associated Hamiltonian, formulated in a suitable basis, has to be diagonalized.
This exact diagonalization (ED) then yields the complete spectrum of eigenvalues
and eigenvectors and hence complete knowledge of the investigated system. But the
complete diagonalization of a matrix is a computationally very expensive procedure,
generally scaling like O(N3), where N is the exponentially growing size of the Hilbert
space of the problem. If one is only interested in the low-energy, zero-temperature
physics of a model, where only the ground-state and a few excited-states are of
major importance to the properties of the system, less costly methods like the
Lanczos-algorithm [30] can be used.
For exact diagonalization one has to construct a numerical representation of the

basis states of the Hilbert space of the system. In the fermionic Hubbard model (1.1),
due to the Pauli exclusion principle, there are four states per lattice site possible.
With arbitrary choice of the z-axis as spin-quantization axis the possible states of a
site can be seen in fig. (2.1).
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Figure 2.1: Possible states on a site i:
(a) |0〉 . . . empty site i,
(b) c†i,↑|0〉 . . . one spin-up electron occupying site i,
(c) c†i,↓|0〉 . . . one spin-down electron occupying site i,
(d) c†i,↑c

†
i,↑ . . . two electrons with opposite spin on site i.

This leads to a 4L-exponential growth of the Hilbert space with the number of
lattice sites L. Without use of symmetries this limits the exact diagonalization
application to L ≈ 16, even on modern supercomputers [31]. Since the Hamiltonian
will not mix eigenstates belonging to different symmetry subspaces, represented
by operators A commuting with H, a separate solution of the eigenvalue problem
within each symmetry subspace is possible. The most important symmetries for
basis state construction of the Hubbard Hamiltonian (1.1) are the following:

• Particle-number/charge conservation:
The Hubbard Hamiltonian does not change the total number of particles of a
basis state

N =
∑
i,σ

ni,σ. (2.7)

• Magnetization conservation:
The total magnetization projected on the chosen quantization axis is conserved.

Sztot = 1
2
∑
i

(ni,↑ − ni,↓) (2.8)

• Translational invariance:
For periodic boundary conditions the Hubbard Hamiltonian commutes with
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the translation operator

Tc
(†)
i,σ = c

(†)
i+1,σ (2.9)

• Point-group symmetry:
Depending on the momentum of a state, certain underlying symmetries of the
lattice point-group are conserved.

• Full SU(2) spin symmetry:
In the Hubbard model all components of the total spin

Sα = 1
2
∑
i,µ,ν

c†i,µσ
α
µ,νci,ν (2.10)

with σα being the Pauli-matrices, are conserved. As opposed to the afore-
mentioned symmetries the SU(2) is computationally more complicated to
implement and not used in practical computations most of the times.

In this work the use of the first four symmetries was implemented, allowing for an
exact diagonalization of the Hubbard Hamiltonian up to the 16-site 4× 4-square
lattice at half filling. Besides the dramatic reduction Hilbert space size, the use of
symmetries in exact diagonalization calculations also allows an association of the
solution with the conserved quantum numbers of the model.

2.2 Basis construction
The real-space basis is the most obvious basis to represent the Hubbard Hamiltonian
in, and given by all possible combinations of distributing a given number of ↑- and
↓-spin -electrons on a lattice with N sites. Each basis state is uniquely identified by
the positions of ↑- and ↓-spin electrons

|Ψ〉i =
∏

j∈{I↑}
c†j,↑

∏
j′∈{I↓}

c†j′,↓|0〉, (2.11)

where I↑/↓ are index lists of the corresponding occupied sites. Since we are dealing
with fermions an important detail is that one has to define the normal order of the
creation operators c†i,σ for the uniqueness of basis states. In this work the operator
were first sorted by spin (the spin-down operators were applied first) and then
by decreasing linear lattice index. Sorting first by spin has the advantage in the
Hubbard model that the nearest-neighbor hopping processes, since they only involve
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electron of same spin, do not cause inter-spin sign factors. Since application of the
down-spin hopping part to an arbitrary state (2.11)

c†i,↓cj,↓
∏

l∈{I↑}
c†l,↑

∏
l′∈{I↓}

c†l′,↓|0〉, (2.12)

yields the same amount of phase factors for the creation and annihilation operator
through the fermionic anti-commutation relations

(−1)2nl
∏

l∈{I↑}
c†l,↑ c

†
i,↓cj,↓

∏
l′∈{I↓}

c†l′,↓|0〉. (2.13)

The use of the particle number and total magnetization conservation of the Hubbard
Hamiltonian is readily implemented by only creating the basis states for certain
fixed number of spin-up N↑ and spin-down N↓ electrons on a lattice with N sites.
The size of these symmetry subspaces is determined by the number of possibilities
to distribute N↑ spin-up electrons and N↓ spin-down electrons on N sites and thus(

N

N↑

)(
N

N↓

)
. (2.14)

The biggest subspace with fixed particle number and total spin magnetization is the
half-filled sector with N↑ = N↓ = N

2 . Which is approximately a factor πL
2 smaller

than the un-symmetrized case of 4L. An efficient numerical implementation is to
represent the spin-up and spin-down of an basis state (2.11)

|Ψ〉i = |Ψ↑〉i ⊗ |Ψ↓〉i (2.15)

by a binary representation with two bit strings, where a 1 indicates an occupied
site by either a ↑- or ↓-spin and a 0 an unoccupied one. For example a linear 4-site
lattice with two spin-↑ electrons on site 1 and 3 and two spin-↓ electrons on site 3
and 4:

|Ψ〉 = c†1,↑c
†
3,↑c
†
3,↓c
†
4,↓|0〉 =̂ |↑ ,0, ↑↓ , ↓〉

=̂ |↑ ,0, ↑ ,0〉↑ ⊗ |0,0, ↓ , ↓〉↓ =̂ |1010〉↑ ⊗ |0011〉↓. (2.16)

This representation is efficiently storable as the corresponding integer value, where
the spin-↑ part is treated as the ’most significant bit’ part. For example (2.16) this
would yield

Int(|Ψ〉) = 24 ×
(
23 + 11

)
+ 11 + 10 = 163 (2.17)
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Another advantage of this bit-string integer representation is a fast calculation of the
action of the Hamiltonian on a basis state through bit-operations, further explained
in section 2.3. To get the full Hubbard basis all possible states |Ψ↑〉i with N↑ ↑-spin
electrons on N sites and |Ψ↓〉j with N↓ ↓-spin electron on N sites have to be created
and all combinations of |Ψ↑〉i ⊗ |Ψ↓〉j have to be calculated. For efficient searching
within the basis set, required in the Hubbard Hamiltonian calculation, it is important
to create the basis in an ordered fashion. An efficient way to create an ordered list
of integers with a fixed number of bits set to 1 is as follows:

1. Start with lowest possible binary integer representation for Nσ electrons on N
sites. E.g.:

00111 =̂ 7

2. To get the next state find the least significant 0 with at least one 1 right of
it and set it to 1. Set all bits to the right of this bit to 0 except the (n− 1)
lowest bits to 1, where n is the number of 1s right of the initial 0. Leave the
rest of the bitstring unchanged.

00 111︸︷︷︸
n

→ 0010 11︸︷︷︸
n−1

=̂ 11

3. continue until there is no 0 with 1s right of it.

00111 =̂ 7
01011 =̂ 11
01101 =̂ 13
01110 =̂ 14
10011 =̂ 19

. . .

11100 =̂ 28

It is only necessary to store the ↑- and ↓-spin basis states separately and implicitly
remember that all combinations are needed for the full Hubbard basis and treat
one spin channel(in this work the ↑-spin) as the most significant bit part. As an
illustrative example the stored basis of the N↑ = 3, N↓ = 2 , N = 4 site lattice
system is given in table (2.1).
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Table 2.1: ↑- and ↓-spin Hubbard basis parts for N↑ = 3, N↓ = 2 on a L = 4 site
linear lattice

|↑〉 2L × Int(|↑〉) ⊗ |↓〉 Int(|↓〉)
|0111〉 24 × 7 = 112 |0011〉 3
|1011〉 24 × 11 = 176 |0101〉 5
|1101〉 24 × 13 = 208 |0110〉 6
|1110〉 24 × 14 = 224 |1001〉 9

|1010〉 10
|1100〉 12

For the full basis each pair of basis states has to be combined, and since every
possible ↓-spin integer is smaller than the smallest possible ↑-spin integer times 2L,
the basis stays in ordered form if the full basis is created by first combining the first
↑-spin state with each ↓-spin state, then the second ↑-spin state and so on as seen
in table (2.2).

Table 2.2: Combined ↑- and ↓-spin Hubbard basis of table (2.1)
|↑〉 |↓〉 Int(|↑〉|↓〉) = 2LInt(|↑〉) + Int(|↓〉) Index in combined basis
|0111〉 |0011〉 24 × 7 + 3 = 115 0× 6 + 1 = 1
|0111〉 |0101〉 24 × 7 + 5 = 117 0× 6 + 2 = 2
|0111〉 |0110〉 24 × 7 + 6 = 118 0× 6 + 3 = 3
|0111〉 |1001〉 24 × 7 + 9 = 121 0× 6 + 4 = 4
|0111〉 |1010〉 24 × 7 + 10 = 122 0× 6 + 5 = 5
|0111〉 |1100〉 24 × 7 + 12 = 124 0× 6 + 6 = 6
|1011〉 |0011〉 24 × 11 + 3 = 179 1× 6 + 1 = 7
|1011〉 |0101〉 24 × 11 + 5 = 181 1× 6 + 2 = 8
|1011〉 |0110〉 24 × 11 + 6 = 182 1× 6 + 3 = 9
. . . . . . . . . . . .
|1110〉 |1010〉 24 × 14 + 10 = 234 3× 6 + 1 = 23
|1110〉 |1100〉 24 × 14 + 12 = 236 3× 6 + 6 = 24
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2.3 Calculation of the Hamilton matrix
2.3.1 No translational and point-group symmetry
Without further use of symmetries, except the already implemented particle number
and magnetization conservation, an efficient way of calculating the matrix repre-
sentation of the Hubbard Hamiltonian (1.1) is to apply it on all basis states and
efficiently relate the created states to the ordered list of basis states. The action of
the Hamilton operator (1.1) can be split up in a diagonal and an off-diagonal part

H = −t
∑
〈i,j〉,σ

c†i,σcj,σ︸ ︷︷ ︸
off−diagonal

+U
∑
i

ni,↑ni,↓︸ ︷︷ ︸
diagonal

, (2.18)

since the on site interaction term does not change basis states in real-space represen-
tations. It only counts the number of doubly occupied sites for each basis state. To
implement this with the two-integer-table basis representation is to loop over both
spin bases and sum the amount of 1s resulting from the bitwise AND-operation of ↑
and ↓-spin bitstring basis multiplied by the on-site interaction parameter U . E.g.:

|↑〉: 25 × 7 =̂ 00111
|↓〉: 11 =̂ 01011

AND 00011

yields two doubly occupied sites.
The off-diagonal hopping part of eq. (2.18) can be further split up into an ↑- and
↓-spin part, since the hopping is independent of the opposed spin channel.

Hhop = Hh
↑ +Hh

↓ = −t
∑
〈i,j〉

c†i,↑cj,↑︸ ︷︷ ︸
H↑

+ c†i,↓cj,↓︸ ︷︷ ︸
H↓

 . (2.19)

Because as mentioned above, by using spin-first normal ordering of basis states,
there are no inter-spin phase factors in the hopping processes. An electron on site i is
in two-dimensions able to hop to its four neighboring sites in the one-band Hubbard
model on a square lattice. The information of possible hopping destinations can be
saved in a list with all linear indices of nearest-neighbor sites of each lattice site.
This is essentially the only lattice information needed if there is even lattice spacing
between each site, which is assumed throughout this work. To avoid double counting
of hopping processes only two of the four possible hoppings per site must be counted.
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The labeling conventions of the two-dimensional lattice throughout this work are of
column-major order and the single site index I is defined as

I = Ix + Iy(Lx − 1), (2.20)

where Ix(Iy) are the x(y) indices and Lx the linear size of the lattice in x-index
direction, as seen at the example of a 4× 4-lattice in figure (2.2).

(4,1) = 4

(3,1) = 3

(2,1) = 2

(1,1) = 1

(4,2) = 8

(3,2) = 7

(2,2) = 6

(1,2) = 5

(4,3) = 12

(3,3) = 11

(2,3) = 10

(1,3) = 9

(4,4) = 16

(3,4) = 15

(2,4) = 14

(1,4) = 13

Figure 2.2: Lattice indication convention using the example of a 4× 4-lattice.

2.3.2 Fermionic phase factors
For a system with periodic (PBC) or twisted boundary conditions (TBC) fermionic
phase factors have to be considered, within each spin channel, if a hopping over a
boundary occurs, since the creation operators have to be brought into normal order.
For a one-dimensional system these are easy to calculate, since fermionic phase
factors only occur if an electron jumps over the boundary and the arrangement of
operators have to be brought into normal order. But for a two-dimensional system,
since the two lattice indices have to be mapped on a single index representation for
a bit-string integer representation like (2.20), there are not only fermionic phases
factors when there is hopping over a boundary, but also within the lattice if a hop
corresponds to jump ’over’ another electron in the linear lattice index. So if for
example we have a state with ↑-spin electrons on lattice site 2 and 5, a hop from
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the electron from site 5 to 1

c†1,↑ c5,↑ c
†
2,↑︸ ︷︷ ︸

−c†2,↑c5,↑

c†5,↑|0〉 = −c†1,↑c
†
2,↑ c5,↑c

†
5,↑|0〉︸ ︷︷ ︸
|0〉

yields a negative sign. The reversed process, a jump from an electron from site 1
to site 5 while an electron is at site 2 yields the same negative sign, due to normal
ordering of the operators. In general the phase ph of a hopping process is determined
by the number of creation operators between the two sites (i < j) involved in the
linear lattice index

ph = (−1)
∑

i<k<j

nk

. (2.21)

Since each ↑-spin basis state has the same ↓-spin basis part in the combined full
Hubbard basis and ↑- and ↓-spin hopping does not interfere with each other, the
application of each spin-hopping part of the Hamiltonian only has to be applied
once to the respective spin-channel basis states to get the matrix representation of
H↑ and H↓ from (2.19). The resulting indices have to be replicated accordingly to
the whole basis.

Another major advantage of the bit-wise integer representation of the basis states
is the very efficient calculation of the hopping process. An application of a bit-wise
exclusive-OR (XOR) operation on a basis state and a bit-mask, with 1s on sites
where hopping occurs, gives the desired hopped state.

001011 state
001100 bitmask
000111 XOR

The bit mask for site i is obtained through the previously mentioned nearest-neighbor
index list kept for each site i.

2.3.3 Calculation of off-diagonal matrix elements
In this work following method was used to calculate the off-diagonal hopping matrices
Hh
σ :

1. For a given ordered single-spin basis |Ψσ〉 each possible state |Ψ ′σ〉 = Hσ|Ψσ〉 is
calculated. This is achieved by first calculating, for each basis state |Ψσ〉i, the
position and number of possible hoppings by a XOR operation of state |Ψσ〉i
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and the nearest-neighbor state. E.g. in one dimension for the nearest-neighbor
to the right of each site with periodic boundary conditions:

|Ψi〉σ = |001011〉 (2.22)
nearest-neighbors : |010110〉 (2.23)

XOR : |011101〉 (2.24)
bitmasks : |011000〉,|001100〉,|000110〉,|100001〉 (2.25)

In two dimensions a loop over the dimensions is performed. Each 1 after the
XOR operation in (2.25) and the site to the right of it indicate a possible
hopping process.

2. The states Hσ|Ψσ〉 are calculated by a XOR operation with |Ψσ〉 and each of
the bitmasks from (2.25). The resulting integers are stored in a list.

3. A ordered list Ix, the x-index of the Hσ, indicating the position of a state |Ψσ〉i
in the basis, is also kept. Indices of states with multiply hopping possibilities
get replicated accordingly.

4. The phase factor of each hopping process, calculated according to (2.21), is
also stored.

5. The integer list of resulting states Iy = Int(|Ψ ′σ〉) is appended by integer values
of states not reached by a hopping process.

6. The resulting integer list and corresponding phases are sorted. The original
positions of the now sorted integers in Iy are the y-indices of the Hσ matrix.

The Hσ matrices are now represented in the single spin-channel basis states. This
is also the reason why they are easily storable, since the single spin basis size is
tremendously smaller than the whole Hubbard basis. To get the indices of the full
hopping-matrix, the ↓-spin indices have to be replicated and adjusted to the whole
combined basis. Since the ↑-spin basis is the MSB part of the bit representation
and each ↑-spin basis state has the same ↓-spin part, to the matrix indices of H↓
a factor n · G↓, where n = 0,1, . . . ,G↑ − 1, and Gσ the number of basis states in
the respective spin-channel, is added to obtain the indices of the whole Hubbard
Hamilton matrix.
The matrix indices of H↑ are the MSB-indices. To get the corresponding indices

of the full basis the replicated factor n = 1,2, . . . ,G↓ has to be added to the index
corresponding to (H↑ − 1) ·G↓.
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For ’very large’ systems, L > 16, the storage of the Hamilton matrix is not possible
anymore because of memory constraints due to the enormous size of the Hilbert
space. In this case only the action of the matrix on a vector H|Ψ〉 = |Ψ ′〉 has to be
programmed as actually only this is needed in the Lanczos algorithm to calculate
the ground state of the system.

But in this work the Hamilton matrix was always stored in its sparse form (only
storing the non-zero elements and corresponding indices), which is possible for
lattices up to L = 16 sites with use of symmetries, due to its sparseness. There are
very little non-zero matrix elements because of the few hopping possibilities, which
are at most Nσ ·Nc for each spin channel, where Nc is the coordination number of
the lattice. This leads to at most N↑ · N↓ · N2

c non-zeros elements per state, but
most of the time even less due to prohibited hoppings due to the Pauli exclusion
principle. Figure (2.3) shows matrix representation of the non-zero elements of the
N↑ = N↓ = 5 3× 3-square lattice Hubbard Hamiltonian. Although the Hilbert space
is of size

(
9
5

)2
= 15876 there are only 333396 of possible 158762 = 0.25 · 109 matrix

elements non-zero, which corresponds to only 0.13%.

Figure 2.3: Matrix representation of the Hubbard Hamiltonian on a 3× 3-square
lattice with N↑ = N↓ = 5 ↑- and ↓-spin electrons and periodic boundary conditions.
Only 0.33 · 106 of possible 0.25 · 109 matrix elements, 0.13%, are non-zero.
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By constructing the Hamilton matrix and storing it for further computation,
memory becomes the restricting factor in the ED implementation. The biggest
system calculated without the use of additional symmetries was the 4×4-square lattice
with N↑ = 5, N↓ = 7 electrons with a Hilbert space dimension of N = 49.97 · 106,
with the demanding memory cost to store the Hamilton matrix of 52.12 Gb.

But even in the matrix-free implementation of the Lanczos algorithm, where only
three vectors with length of the Hilbert space size need to be stored in memory, due
to the exponential growth memory rapidly becomes the restricting factor. In table
(2.3) the required memory to store three vectors of double data type of the length
of the Hilbert space size and the Hamilton matrix in sparse form with two integer
index lists of single data type and a list of double type for the matrix elements. For
an estimate of the length of the sparse-matrix lists the worst-case half-filled system
where every electron in each state can hop to all the nearest neighbor sites is assumed.
This causes 4 dimHN↑N↓ off-diagonal matrix elements in the two-dimensional case,
where dimH is the size of the Hilbert space.

Table 2.3: Size of the Hilbert space and memory requirements of saving three
vectors |Ψ〉 and the Hamilton matrix in sparse form. For system sizes Lx · Ly > 18
without use of symmetry and Lx · Ly > 20 with symmetries memory restrictions even
cause the matrix-free Lanczos implementation to cease to work. The maximum
system size, without use of symmetries, which could be handled in this work, where
the Hamilton matrix also got stored, was the quarter filled 4× 4-lattice. With use of
symmetries the half-filled 4× 4-lattice was manageable.

Lx Ly N↑ N↓ dimH memory 3× |Ψ〉 memory H
2 2 2 2 36 865 b 9.00 kb
3 3 5 5 15876 372.09 kb 24.22 Mb
4 4 4 4 3.31 · 106 75.81 Mb 3.16 Gb
4 4 4 6 14.57 · 106 222.39 Mb 10.42 Gb
4 4 5 7 49.97 · 106 762.48 Mb 52.12 Gb
4 4 6 6 64.13 · 106 1.47 Gb 137.60 Gb
4 4 8 8 165.64 · 106 3.71 Gb 631.85 Gb
18 1 9 9 2.36 · 109 52.83 Gb 5.57 Tb
19 1 10 10 8.53 · 109 190.74 Gb 24.84 Tb
5 4 10 10 34.13 · 109 762.97 Gb 198.69 Tb
21 1 11 11 124.41 · 109 2.72 Tb 438.11 Tb
5 5 13 13 27.04 · 1012 590.29 Tb 259.79 Pb
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2.4 Application of translational and point-group symmetries
For periodic boundary conditions the most obvious symmetry to further reduce
the size of the Hilbert space is translational invariance. Due to the fact that the
translation operator T commutes with H, for periodic boundary conditions, the
Hamilton matrix acquires block structure in a eigenbasis of T . In one dimension the
application of the translation operator on a general state is the displacement of each
electron one lattice site in the positive x-direction

Tc†i,σc
†
i′<i,σ . . . c

†
j,σc
†
j′<j,σ . . . |0〉 = c†i+1,σc

†
i′+1,σ . . . c

†
j+1,σc

†
j′+1,σ . . . |0〉 (2.26)

with possible phases factor if a hopping over the boundary i > L occurs. For
eigenstates |Ψ〉 of T

T |Ψ〉 = eik |Ψ〉 (2.27)

the discrete lattice momenta or wave vectors k are determined by the fact

TL = 1 → k = 2πn
L
, n = 0,1, . . . ,L− 1. (2.28)

In on dimension the eigenbasis of T can be constructed by the application of the
projector [32]

Pk = 1
L

L−1∑
j=0

e
2πijk
L T j, (2.29)

which commutes with the Hamiltonian

[Pk,H] = 0, (2.30)

since T commutes with H. And the projector property P 2
k = Pk can also easily be

verified

P 2
k = 1

L2

L−1∑
j,l

e
2iπ(j+l)k

L T j+l =︸︷︷︸
l→−l

1
L

∑
j

e
2iπjk
L T j = Pk, (2.31)
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The projector applied to an general basis state Pk|Ψ〉 is an eigenstate of T with
eigenvalue e−2πik

L since

TPk|Ψ〉 = 1
L

L−1∑
j=0

e
2πijk
L T j+1|Ψ〉 = e−2πik Pk|Ψ〉. (2.32)

The generalization to two dimension is straightforward given by

[Tx,H] = [Ty,H] = [Tx,Ty] = 0, (2.33)

Pk = 1√
LxLy

Lx−1∑
rx=0

Ly−1∑
ry=0

e−i(kxrx+kyry) T ryy T
rx
x , (2.34)

kx/y = 2πnx/y
Lx/y

, nx/y = 0,1, . . . ,Lx/y − 1, (2.35)

with Lx/y being the linear lattice sizes in x/y-direction. The details of the procedure
of constructing these eigenstates is described below in combination with point-group
symmetries. Represented in this basis the original Hamilton matrix decomposes into
L = Lx ·Ly sub-matrices, associated with an discrete lattice momentum k, which are
generally a factor 1/L smaller than the original matrix. The 1/L is not strictly the
Hilbert space reduction since there are possible states which are incompatible with
certain lattice momenta, as discussed below. In figure (2.4) the Hamilton matrix of
the above mentioned (2.3) system (3× 3-square lattice, N↑ = N↓ = 5) with (b) and
without (a) use of translation symmetry is displayed.

To implement both translational and lattice point group symmetries, eigenstates
of the combined symmetry group have to be constructed. The combined spatial
symmetry group G of a system is the direct product of the set of translations TG
and point group elements PG [33]

G = TG⊗ PG. (2.36)

Since the translational group is abelian, it has a one dimensional irreducible repre-
sentation [34], which can be associated to a wave vector k. The character of this
representation is

χk(t) = eik·r(t), ∀t ∈ TG, (2.37)

with r(t) being a translation operation of the translation group. For the combination
of translational and point-group symmetries only those elements of PG, are allowed
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which leave a given reciprocal lattice vector k invariant

PGk =
{
p ∈ PG|p(k = ~k)

}
. (2.38)

Figure 2.4: Matrix representation of the Hubbard Hamiltonian on a 3× 3-square
lattice with N↑ = N↓ = 5 ↑- and ↓-spin electrons and periodic boundary conditions.
(a) Without use of translation symmetry the full N × N matrix with N = 15876
would have to be used in the Lanczos diagonalization. (b) In the eigenbasis of the
translation operator T the original matrix decomposes into blocks of size, in this
case exactly, N/L×N/L with N/L = 15876/9 = 1764.

In this work only the two-dimensional square lattice was considered, which tech-
nically possesses the C4v, in Schönflies, or 4mm in Hermann-Mauguin notation,
point group. This point group consists of the identity operation E, the clock and
counter-clock-wise rotation of 90◦ C±4 , the 180◦ rotation C2 and the two vertical
reflections with respect to the x- and y-axis and the two dihedral reflections along
the diagonal (x = y)- and the orthogonal (x = −y)-axis. But as mentioned above
for a given wave vector k only point group symmetries conserving k are applicable.
The Brillouin zone of a two-dimensional square lattice with lattice spacing a = 1 is
again a square lattice and is displayed in fig. (2.5). The compatible point group
symmetries for a given wave vector are listed in table (2.4).
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Γ (0,0)

π

π

−π

−π

kx

ky

K2

K1

X

∆

Σ
Z

M

Figure 2.5: Brillouin zone of the two-dimensional square lattice with lattice spac-
ing a = 1. Points of high symmetry are displayed with the usual notation. Since
every k vector is equivalent to k′ vectors differing by a reciprocal lattice vector
K e.g. points along the line of symmetry Z between the points M = (π,π) and
X = (π,0) are equivalent to k−K1-vectors, and hence also posses σx symmetry.

Table 2.4: Compatible point-group symmetries for a given k-vector in the two-
dimensional square lattice.

k applicable symmetry operations corresponding point group(
kx
ky

)
E C1(

kx
kx

)
E,σd Cs(

kx
−kx

)
E,σe Cs(

0
ky

)
,
(
π
ky

)
E,σx Cs(

kx
0

)
,
(
kx
π

)
E,σy Cs(

π
0

)
,
(

0
π

)
E,σx,σy,C2 C2v(

0
0

)
,
(
π
π

)
E,σx,σy,C2,C

±
4 ,σd,σe C4v

Since a wave vector k is only determined up to addition of a primitive reciprocal
lattice vector the wave vectors (

(
π
ky

)
and

(
kx
π

)
) are also invariant to a σx, respectively

σy, reflection. To construct the corresponding symmetry-adapted basis states for a



2.4 Application of translational and point-group symmetries 26

given k vector the irreducible representations (irreps) of the compatible symmetry
group have to be known. Those are tabulated and easily available for every important
symmetry group, mostly in form of character tables. For a given irrep, denoted by k
and a second quantum number pk for distinction within the compatible point group,
a symmetry-adapted basis state for a single spin-channel is obtained, similar to the
translation-only case, by applying a projector onto a basis state |Ψσ〉i

|Φσ〉i = 1
NΨiσ ,k,pk

∑
T∈TG,P∈PGk

χk(T )χpk(P )(T ◦ P )|Ψσ〉i. (2.39)

χpk(P ) is the tabulated character of the irrep pk within the applicable point-group
and NΨiσ ,k,pk the, later discussed, normalization factor. Such states are invariant
under the corresponding symmetry operation. The character tables of the compatible
point groups in the two-dimensional square lattice (2.4) are given in table (2.5)

Table 2.5: Character tables of the point groups Cs, C2v and C4v. The header of
each table denotes the symmetry classes of the group. Integer values in the header
of character tables indicate the number of elements of this symmetry class, so e.g.
the C4v symmetry group consist of two symmetry operations of class C4 being
the counter- and clock-wise 90◦ rotations C+

4 and C+
4 . The row entries denote the

irreducible representations within each symmetry group. Roman letters A and B
denote one-dimensional irreps, while E specifies a two-dimensional irrep in C4v.

Cs E Ch

A′ 1 1
A′′ 1 -1

C2v E C2 σx σy

A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

C4v E 2C4 C2 2σv 2σd
A1 1 1 1 1 1
A2 1 1 1 -1 -1
B1 1 -1 1 1 -1
B2 1 -1 1 -1 1
E 2 0 -2 0 0

The two-dimensional irrep E, not to be confused with the identity operation, can
reduced to the two one-dimensional irreps B1 and B2 of the subgroup C2v by the
subduction chain C4v ⊃ C2v because the characters of E of C4v can be obtained by
an direct sum of B1 ⊕B2 of C2v [32]:
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E C2 σx σy

C2v: B1 1 -1 1 -1
B2 1 -1 -1 1

C4v: E 2 -2 0 0 B1 ⊕B2

For a given k vector and an irrep of the compatible symmetry group the application
of the projector (2.39) on an original basis state, to form a symmetry-adapted basis,
yields a sum of symmetry connected states. It is sufficient to only store one element
of (2.39) as the representative of this so called ’cycle’, since all other elements can
be constructed from it. The calculation of the normalization is more involved, since
it is not just the number of elements of a cycle. For certain electron configurations a
given symmetry operation only acts like the identity operation, so only the number
of unique elements of a cycle count towards the normalization. Additionally there is
also the possibility of cancellation of states in subsets G′ ⊂ G when the characters
χ cancel each other∑

T∈TG,P∈PGk

χk(T )χpk(P ) = 0, for (T ◦ P )|Ψ〉 = |Ψ〉, ∀T,P ∈ G′. (2.40)

Such states are incompatible to the given symmetry operation and must not be
used in the basis. This means for a given basis set only the representative states
which are not related by the given symmetry operation and the normalization factor
are enough to represent the new symmetrized basis set. It is essentially arbitrary
which element to store as representative, but again for reason of faster searching it
is optimal to store the state with the lowest corresponding integer representation.
For the Hubbard Hamiltonian with the two distinct basis state sets |Ψ↑〉 and |Ψ↓〉
which form the full Hubbard basis |Ψ〉 = |Ψ↑〉 ⊗ |Ψ↓〉 a possible calculation of the
whole basis set is as follows [35]:

Creating the symmetry-adapted basis

1. For a given symmetry sector (k,pk) loop over the ↑-spin basis state set |Ψ↑〉i
and calculate the symmetry-adapted basis according to (2.39). Only store
the unique lowest integer basis states |R↑〉 as representatives of each sym-
metrized cycle and keep track of the subset of symmetry operations leaving
the representatives invariant

Ek ⊂ Gk = {(T ◦ P ) ∈ Gk|(T ◦ P )|R↑〉 = |R↑〉} . (2.41)
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For faster calculation of the Hamilton matrix it is advantageous to save a
list I↑ relating the elements of the ↑-spin basis states to their representatives
containing the position of the representative, the fermionic phase factor,
acquired due the symmetry operation, and the characters χk(T )χpk(P ) of the
symmetry operation relating them. The calculation of the normalization factor
and the elimination of incompatible states are not yet done at this stage.

2. The whole Hubbard basis is created by all possible combination of the ↑-spin
representatives |R↑〉 and the ↓-spin basis states |Ψ〉 = |R↑〉 ⊗ |Ψ↓〉. The sym-
metry operations Ek which leave the ↑-spin representatives invariant are then
applied to the ↓-spin basis states and only lowest integer representatives of
these cycles are stored. Since for the full Hubbard basis all ↑-spin representa-
tives have to be combined with each possible ↓-spin state the combination of
|R↑〉i ⊗ |Ψ↓〉j is automatically a representative of a cycle of the corresponding
symmetry operation, and due to the ordering of both sets even the lowest
integer one, except for symmetry operations which leave |R↑〉i invariant.
The normalization NΨσi,k,pk of the combined basis states |Ψ〉 = |R↑〉 ⊗ |Ψ↓〉 is
calculated and incompatible states (2.40) are eliminated at this step. Again
for faster calculation of the Hamilton matrix a list of indices now relating the
↓-spin states to their representative is also stored.

2.4.1 Hamilton matrix
For the calculation of the Hamilton matrix the Hamilton operator can again be
split in diagonal and spin-dependent off-diagonal parts as in (2.18). Since the
projection operator Pk commutes with H (2.30) and fulfills P 2

k = Pk (2.31) the
diagonal elements calculation reduces to the counting of doubly occupied sites of
the representatives of a cycle

〈Φ|Hd|Φ〉 = 〈Ψ |P
†
kHdPk|Ψ〉

〈Ψ |P †kPk|Ψ〉
= 〈Ψ |P

2
kHd|Ψ〉

〈Ψ |P 2
k |Ψ〉

= hd(|Ψ〉)
〈Ψ |Pk|Ψ〉
〈Ψ |Pk|Ψ〉

= hd(|Ψ〉). (2.42)

With hd(|Ψ〉) denoting the diagonal matrix element of representative |Ψ〉 and is
calculated as in (2.3.1).
The off-diagonal matrix calculation is more complicated when translational and

point-group symmetries are used. The Hamiltonian is again split up into ↑-spin
and ↓-spin part (2.19). The full Hubbard basis now consists of representatives of
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↑-spin states |↑R〉 and if there are no symmetry operations Ek leaving them invariant
(2.41) the whole down spin basis set |↑R〉|↓〉 and other wise representatives of the
corresponding cycle |↓R〉 = Ek|↓〉. The off-diagonal ↓-spin hopping matrix elements
for the case that an ↑-spin representative has no symmetry operation leaving it
invariant is given by

〈Φ′|H↓|Φ〉 = NΦ′NΦ〈↑′R|〈↓′|PkH↓Pk|↑R〉|↓〉
= NΦ′NΦ〈↑′R|〈↓′|PkH↓|↑R〉|↓〉
= h↓(Φ′′)NΦ′NΦ〈↑′R|〈↓′|Pk|↑R〉|↓′′〉. (2.43)

And since in the case Ek = 1 each resulting combination |↑R〉|↓′′〉 is again a
representative of a cycle

〈↑R|〈↓|Pk|↑′R〉|↓′′〉 = NΦδ↑′R,↑Rδ↓,↓′′ . (2.44)

So in this case the off-diagonal Hamiltonian calculation in principle reduces to the
same calculation as without the use of spatial symmetries, except the ↑-spin basis
part only consists of the representatives.
If there are symmetry operations leaving the ↑-spin representatives invariant,

implying there can be ↓-spin states being non-representatives, the application H↓|↓R〉
can lead to states being non-representatives of its corresponding cycle. These states
have to be linked to their representatives, including phase factors, through the
corresponding list stored in the basis creation process mentioned above.
The ↑-spin hopping matrix elements are given by:

〈Φ′|H↑|Φ〉 = NΦ′NΦ〈↑′R|〈↓′R|PkH↑|↑R〉|↓R〉
= h↑(Φ′′)NΦ′NΦ〈↑′R|〈↓′R|Pk|↑′′〉|↓R〉, (2.45)

where it is now possible that |↑′′〉 is not a representative of a ↑-spin cycle anymore
and has to be linked to it through the list stored in the basis creation process. The
symmetry operations relating |↑′′〉 and its representative |↑′′R〉

|↑R〉 = (Ti ◦ Pj)|↑〉, (2.46)

also stored in a list during the basis creation, and possible symmetry operations Ek
leaving |↑R〉 invariant have to be applied to the ↓-spin basis part |↓R〉 in (2.45) to
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get the correct representative.

(Ti ◦Pj)|↑′′〉|↓R〉 = p(|↑′′〉)|↑′′R〉(Ek ◦Ti ◦Pj)|↓R〉 = p(|↑′′〉p(|↓R〉))︸ ︷︷ ︸
p(Φ′′)

|↑′′R〉|↓′′R〉, (2.47)

with p(Φ′′) containing all possible phase factors from the application of the symmetry
operations. This leads for eq.(2.45) to

〈Φ′|H↑|Φ〉 = h↑(Φ′′)NΦ′NΦp(Φ′′) 〈↑′R|〈↓′|Pk|↑′′R〉|↓′′R〉︸ ︷︷ ︸
NΦ′′δΦ′,Φ′′

(2.48)

In figure (2.6) the influence of applied point-group symmetries on the block-structure
of the previously compared (2.4) 3× 3-lattice wit N↑ = N↓ = 5 electron is displayed.
The smallest block with use of point-group symmetries is 220× 220 which is about
8 times smaller than the translation symmetry block size (1764× 1764) and about
72 times smaller than the original 15876× 15876 Hamilton matrix without use of
any symmetries.

Figure 2.6: Hamilton matrix of the 3 × 3-lattice with N↑ = N↓ = 5 electrons.
(b) Shows the further reduction of block sizes trough the use of lattice point-group
symmetries. (a) Is the same as in fig. (2.4b) in the eigenbasis of the translation
operator alone. As can be seen in (b) there are some lattice momenta k which
are incompatible with every point-group symmetry and thus no further block size
reduction occurs. The smallest block in (b) is 220× 220 compared to the 1764× 1764
block sizes in (a).
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Depending on the compatible point group symmetries PGk the sizes of the
Hamilton matrix in the direct product G = TG⊗ PGk symmetry-adapted basis is
about a factor NkNν , where Nν is the number of irreps of the compatible point group
and Nk the number of irreps of the translation group, hence the number of lattice
sites, smaller as the original matrix. Thus the half-filled 4× 4-lattice is manageable
with storage of the Hamilton matrix. The reduced blocks are not exactly a factor
NkNν smaller since there still can be incompatible states for a given irrep of the
symmetry group.

2.5 Results
In table (2.6) the exact ground state results for various system sizes and parameter
U = 4 are displayed. Additionally to the ground state energy, with reference
results where available, for each system, the total calculation time from the start
of the basis calculation until the finish of the Lanczos diagonalization ttot, the
block size of the ground state symmetry subspace N0, the adjusted calculation time
tadj = ttotN0/ dimH and the memory needed for the storage of the Hamilton matrix
in sparse form for the use of no symmetry, translation symmetry only and combined
translation and compatible point group symmetry are listed. Due to the increased
complexity in the creation of basis states and calculation of Hamilton matrix elements
the total calculation time ttot increases with more extensive symmetry use. Whereas
the needed memory to store the Hamilton matrix, which is in the end the limiting
factor of this implementation, declines with additional symmetry use.

In most cases a very symmetric k-vector is associated to the ground state and thus
allowing a efficient further reduction of the ground state subspace size through use
point group symmetries. But there are cases, e.g. the L = 16, N↑ = 4, N↓ = 6 system,
where the k-point of the ground state has no compatible point group symmetries
and thus allows no further reduction of the translational invariant subspace. The
maximal manageable memory requirement were the 52.12 Gb needed to store the
Hamilton matrix of the L = 16, N↑ = 5, N↓ = 7 without use of symmetry. While the
application of symmetries allowed the calculation of the half filled L = 16 system.

The adjusted calculation time tadj has to be taken with a grain of salt, since it is
only naively assumed as the fraction of the total calculation time corresponding to
the ground state subspace size. First of all does the calculation time not linearly
scale with subspace size, although this probably favors the adjusted time, since in
most cases the ground state symmetry belongs to a highly symmetric and thus highly
block diagonalized subspace. But the symmetry of the ground state is generally not
known prior to the calculation and one has to diagonalize all subsystems first to
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find the subspace of the groundstate.
Another advantage, as mentioned above, is the association of calculated energies

to specific irreducible representations of the underlying symmetry group, which
consecutively can be associated to good quantum number of the Hamiltonian in
question and thus allowing for a more sophisticated physical analysis of system
properties. And additionally by calculating the lowest energy states of symmetry
subspaces not containing the actual ground state, it is possible to easily calculate
low-lying excited states system otherwise not so easily implemented with the Lanczos
algorithm.
In figure (2.7) the total needed computational time of the exact diagonalization

of the Hubbard model for various system sizes and fillings for U = 4 is displayed
in a logarithmic plot. The first entries of the x-axis labels denotes the system size
L = Lx ·Ly and the second the number of ↑- and ↓-spin electrons N↑+N↓. The reason
for the non strictly monotonic behavior is that the calculations were performed
on different powerful computers. But the general trend of exponential scaling
with system size is clearly observable. Also the impact of the previously discussed
increased implementation complexity of symmetry-adapted bases is identifiable,
although the difference in computation decreases with system size. Unfortunately
no bigger systems than L = 16, N↑ +N↓ = 12 were computable without the use of
symmetry to further investigate this behavior.
In figure (2.8) the corresponding memory costs to store Hamilton matrix of the

symmetry subspace containing the ground state for the same system sizes and
symmetry used as in fig. (2.7) are displayed. The non monotonic behavior for the
’no-symmetry’ and translation symmetry case occurs since the system sizes are first
ordered by lattice size and then by the filling factor. And although the Hilbert space
of the L = 9, N↑+N↓ = 2 system is bigger than the corresponding L = 4, N↑+N↓ = 2
Hilbert space there are less hopping possibilities and thus less off-diagonal matrix
elements, which cause the memory requirements to be lower. The smaller memory
requirements for the L = 16, N↑ + N↓ = 5 compared to the L = 9, N↑ + N↓ = 8
system for used translation symmetry also stem from the fact that there are more k
vectors in the bigger L = 16 system and thus the Hamilton matrix is more blocked.
As mentioned above the varying memory requirements for the use of compatible
point group symmetry depend on the k-point symmetry associated to the ground
state of the system. The red line in fig. (2.8) denotes the maximum available RAM
memory for computations, and as can be seen the L = 16, N↑ = 6, N↓ = 6 is the first
non-computable system without use of symmetries, whereas both translation- and
translation combined with compatible point group symmetry allow an ED of the
half-filled 4× 4 lattice.
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Table 2.6: Exact diagonalization results of the Hubbard model on the square lat-
tice for various system sizes (L = Lx · Ly) and number of electron (N↑, N↓) for U = 4.
dimH denotes the size of the Hilbert space. G is the above described application
of the direct product combination of the translation group and compatible point
groups G = TG ⊗ PGk. ttot denotes the total time needed from basis creation
until the finish of the Lanczos algorithm to solve for the lowest energy eigenvalue.
N0 is the dimension of the symmetry subspace containing the ground state |Ψ0〉.
ttotN0
dimH is the theoretical fraction of time needed to diagonalize the ground state sym-
metry subspace and the last column is the needed memory to store the Hamilton
matrix in sparse form. Reference energies from the literature, where available, are
documented below the calculated energies.
L N↑ N↓ dimH E0/N Symmetry ttot [s] N0

ttotN0
dimH [s] Memory

- 0.06 36 0.06 4.5 kb
4 2 2 36 -1.4142 TG 1.17 12 0.39 1.4 kb

G 1.80 6 0.30 768 b
- 0.30 7056 0.30 1.94 Mb

9 3 3 7056 -1.1417 TG 3.83 792 0.43 222.75 kb
G 9.96 101 0.15 28.41 kb
- 0.47 15876 0.47 12.11 Mb

9 5 5 15876 -0.699 TG 3.85 1764 0.43 1.35 Mb
G 8.65 232 0.14 181.25 kb
- 0.61 14400 0.61 1.76 Mb

16 2 2 14400 -0.7206 TG 10.21 912 0.65 114.0 kb
Ref. [36]: -0.72064 G 33.06 144 0.33 18.0 kb

- 6.8 0.31 · 106 6.8 85.14 Mb
16 3 3 0.31 · 106 -0.946 TG 45.4 19.6 · 103 2.8 5.38 Mb

Ref. [36]: -0.946 G 101.9 2.47 · 103 0.8 694 kb
- 71.5 3.31 · 106 71.5 1.58 Gb

16 4 4 3.31 · 106 -1.0959 TG 317.7 0.21 · 106 19.9 102.54 Mb
Ref. [36]: -1.0959 G 532.5 26.07 · 103 4.2 12.73 Mb

- 415 14.58 · 106 415 10.43 Gb
16 4 6 14.58 · 106 -1.1359 TG 1313 0.91 · 106 82 666.5 Mb

G 2210 0.91 · 106 138 666.5 Mb
- 2378 49.97 · 106 2378 52.12 Gb

16 5 7 49.97 · 106 -1.1053 TG 4458 3.12 · 106 279 3.25 Gb
G 5849 1.56 · 106 183 1.63 Gb
- N/A 64.13 · 106 N/A 68.8 Gb

16 6 6 64.13 · 106 -1.1081 TG 8985 4.01 · 106 562 4.3 Gb
Ref.[36]: -1.1081 G 11163 0.50 · 106 87 549.32 Mb

- N/A 0.17 · 109 N/A 324.25 Gb
16 8 8 0.17 · 109 -0.85137 TG 12916 10.35 · 106 807 19.74 Gb

Ref. [36],[37]: -0.8514 G 16896 1.30 · 106 132 2.48 Gb
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Figure 2.7: Total needed computational time of the exact diagonalization of vari-
ous systems with and without the use of symmetry-adapted bases.
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In fig. (2.9) the memory reduction due to translation- and combined translation-
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point-group symmetry compared to the full Hilbert space size are displayed. The
translation symmetry implementation generally reduces the size of the subspace
by a factor of L, but the efficiency of point-group symmetry usage depends on the
symmetry of the ground-state wave vector k as mentioned above.

                       
0

20

40

60

80

100

120

140

m
em

or
y 

re
du

ct
io

n

 

 

  4
; 2

  4
; 3

  4
; 4

  9
; 2

  9
; 4

  9
; 5

  9
; 6

  9
; 7

  9
; 8

 1
6;

 5

 1
6;

 6

 1
6;

 7

 1
6;

 8

 1
6;

 8

 1
6;

 9

 1
6;

10

 1
6;

11

 1
6;

11

 1
6;

12

 1
6;

12

 1
6;

13

 1
6;

13

 1
6;

16

TG
G

Figure 2.9: Reduction of memory requirements to store the Hamilton matrix of
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3 Mean-field treatment
With an obtained exact solution for small model systems (2.5) the results of the
used momentum-space transformation, introduced in the previous chapter 2.1 and
the Hartree-Fock transformation can be analyzed.

3.1 Hartree-Fock approximation
The Hartree-Fock approximation is one of the most prominent approximation
techniques and starting point for many more evolved ones. In first quantization
formulation the Hartree-Fock (HF) ground state of a Hamiltonian is given by the
single wave function |Ψ0〉 which variationally minimizes the energy expectation value

EHF
0 = 〈Ψ0|H|Ψ0〉. (3.1)

The wave function |Ψ0〉 = |χ1χ2 . . . χN〉 is the total anti-symmetrized N -electron
Slater determinant

|Ψ(x1,x2, . . . ,xN)〉 = 1√
N !

∣∣∣∣∣∣∣∣∣∣
χ1(x1) χ1(x2) · · · χ1(xN)
χ2(r1) χ2(x2) · · · χ2(xN)

... ... . . . ...
χN(xN) χN(x2) · · · χN(xN)

∣∣∣∣∣∣∣∣∣∣
, (3.2)

with χi(xj) = φσi (xj) being spin orbital states describing an spatial electron orbital
φ and spin state σ = {↑ , ↓}. The spatial orbitals are optimized to find the best
possible approximation to (3.1). The formulation as a Slater determinant ensures
the correct fermionic anti-symmetry properties with regard to particle exchange due
to the Pauli exclusion principle.
The general non relativistic N -electron many-body Hamiltonian in the Born-

Oppenheimer approximation in Hartree atomic units(e = me = ~ = 4πε0 = 1) reads
as

H = −
N∑
i=1

1
2∇

2
i −

N∑
i=1

M∑
A=1

ZA
ri,A

+
N∑

i=1,j>i

1
ri,j

, (3.3)

36
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where the first term describes the kinetic motion of the electrons, the second the
attractive interaction between the electron with the M fixed nuclei with charge ZA
and the third the electron-electron repulsion. The minimization of the expectation
value of (3.3) by variation of the spin-orbital states χi(x) of the Slater determinant
(3.2) leads to the self-consistent Hartree-Fock eigenvalue problem [38]

f(i)χ(xi) = εiχ(xi). (3.4)

With f(i) being the single-electron Fock operator for electron i

f(i) = −1
2∇

2
i −

M∑
A=1

ZA
ri,A

+ vHFi , (3.5)

where two-particle electron-electron term of (3.3), responsible for the exponential
complexity, is approximated by an averaged potential vHFi , caused by all other
electrons, acting on electron i. As a matter of fact the mean field potential vHFi
depends on the spin orbitals of all other N − 1 electrons, which means (3.4) has to
be solved iteratively until self-consistency. The form of vHFi depends on the basic
symmetry assumptions to the spin-orbitals χi(x) in the Slater determinant (3.2) and
the finite basis-set in which they are expressed.

3.1.1 Restricted Hartree-Fock
If the spatial part of the spin-orbital basis functions χi are assumed to be the same
for the ↑- and ↓-spin part χi(xj) = φi(xj) · σ, the solution to (3.4) is called the
restricted Hartree-Fock (RHF) approximation. In this case the orthogonality of two
spin orbital χi,χj with the same spatial orbital φ is only ensured by the spin part σ∫

χ∗iχjdΩ =
∫
φ∗φσiσjdΩ = δσi,σj

∫
|φ|2dx = δσi,σj (3.6)

In this case the averaged potential vHFi of the Fock operator f(i) in (3.5) takes the
form [39]

vHFi =
∑
j

∫
dx′
|φj(x′)|2
|x− x′|

−
∑
j

δσi,σj

∫
dx′

φ∗j(x′)φi(x′)
|x− x′|

. (3.7)

Since the Fock operator (3.5) in (3.4) does not explicitly depend on the spin part
of χi it has to be only solved once for both ↑- and ↓-spin part. For a given basis
set expansion with K spatial function φi there are then 2K corresponding spin
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orbitals. From the solution to (3.4) the energetically N -lowest spin orbitals χi, the
so called occupied orbitals, determine the single Slater determinant ground state,
the Hartree-Fock (HF) determinant |Ψ0〉. The corresponding 2K −N energetically
higher orbitals are called the unoccupied orbitals. This is schematically displayed in
fig. (3.1a).

3.1.2 Unrestricted Hartree-Fock
A more general approach is to place no restrictions on the spatial parts φi(x) of
the spin orbitals χi and allow them to differ for opposite spin: χi(xj) = φσi (xj).
This unrestricted Hartree-Fock (UHF) approach leads to two coupled eigenvalue
equations from (3.4) with a Fock operator [40]

vUHFi,σ =
∑
τ=↑,↓

∑
j

∫
dx′
|φτj (x′)|2

|x− x′|
−

∑
τ=↑,↓

∑
j

φσj (x)
∫ (φτj (x))∗φτi (x)

|x− x′|
(3.8)

for each spin channel. The next iterative solution for spin-part σ(t + 1) depends
on the current solution of the opposing spin part σ′(t) and vice versa. As in the
RHF case the N energetically lowest orbitals constitute the HF determinant, which
no can differ for the two spin channels, schematically displayed in fig. (3.1b) Since
there is more freedom in the UHF basis functions opposed to the RHF functions,
the variational principle leads to strictly lower energy solutions, except when the
two solutions are identical. But a major drawback in the UHF approach is the fact
that it breaks the spin-symmetry of the Hubbard Hamiltonian, allowing a spatial
overlap between wave functions with different spin∫

φσi φ
σ′

j dΩ 6= δi,jδσ,σ′ , (3.9)

called the spin contamination. And additionally the translational and point group
symmetry of the system is also lost in the UHF approach. Although in the half-filled
case it is possible to regain partial translation symmetry for the UHF transformation
as described below in (3.2.3).

The quality of both the RHF and UHF and approximation depends on the size of
the spatial basis set. In the limit of complete basis sets in which the spin orbitals
are expanded the HF procedure converges to the so called Hartree-Fock limit energy
EHF

0 and not the exact ground state of the system.
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RHF UHF

     (a)                                                                                           (b)

Figure 3.1: Schematic representation of the occupied spin-orbitals of the Hartree-
Fock determinant marked red in the RHF (a) and UHF (b) approximation. The
energies of the different spin channels are allowed to vary in the UHF approxima-
tion leading to an variationally lower energy compared to the RHF approximation.

3.1.3 Configuration interaction
Both in the RHF and UHF approximation there are 2K spin orbitals in the basis,
from which the N energetically lowest are occupied in the HF determinant. There
are however all possible excitations from this HF determinant possible. Including
the HF ground state there are totally

(
2K
N

)
possible configurations of occupied

and unoccupied orbitals possible. By taking the HF determinant |Ψ0〉 as reference
determinant an excited determinant is denoted by∣∣∣Ψ r,s,...a,b,...

〉
= |χ1χ2 . . . χrχs . . . χN〉, (3.10)

where spin orbitals (r,s, . . .) are occupied as opposed to (a,b, . . .) in the HF determi-
nant. An example is displayed in fig. (3.2). For a complete basis set of spin orbitals
{χi} all possible Slater determinants (3.10) also form a complete basis set, in which
any wave function can be expanded

|Φ〉 = c0|Ψ0〉+
∑
ra

cra|Ψ ra〉+
∑

a<b,r<s

crsab|Ψ rsab 〉+ . . . (3.11)
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The method of expressing and diagonalizing the matrix representation of a Hamilto-
nian (3.3) in the Hilbert space of all possible Slater determinants (3.10) is called
full configuration interaction (FCI). This procedure is basically identical to
exact diagonalization as described in chapter 2. Since the FCI procedure is exact
the difference of the exact lowest energy eigenvalue of the FCI approach ECI

0 and
the HF-limit energy EHF

0 , obtained by neglecting electron correlation,

Ecorr = ECI
0 − EHF

0 (3.12)

is called the correlation energy. But like ED the FCI approach suffers from expo-
nential scaling with system size, hence it is not applicable in practice, except for
very small systems. In chapter 5 the full configuration interaction quantum Monte
Carlo (FCIQMC) approach is introduced, which tries to handle this exponential
scaling of the FCI procedure by applying quantum Monte Carlo techniques within
the subspace of Slater determinants of a system.
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Figure 3.2: An example of an excitation of the HF determinant |Ψ0〉 (a), where
the previously unoccupied orbitals s,t are now occupied as opposed to orbitals c,f .
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3.2 Mean-field approximation to the Hubbard model
The Hartree-Fock approximation is applied to the Hubbard Hamiltonian (3.1.2), in
second quantization formulation,

H = −t
∑
〈i,j〉,σ

c†iσcj,σ + U
∑
i

ni,↑ni,↓. (3.13)

by approximating the electron number operator ni,σ by its expectation value 〈ni,σ〉
and derivations δni,σ thereof

ni,σ ≈ 〈ni,σ〉+ δni,σ. (3.14)

The real-space basis states (2.11) used in the exact diagonalization section 2 to calcu-
late the matrix representation of the Hubbard Hamiltonian (1.1) can be interpreted
as Slater determinants. The fermionic anti-symmetry is automatically included in
the second quantization formulation through the anti-commutation relations of the
fermionic creation and annihilation operators (1.3). For finite lattice systems the
basis states (2.11) are also a complete basis set and thus the obtained energy will be
the Hartree-Fock limit energy.
By inserting the mean-field approximation (3.14) into the Hamiltonian (3.13)

HHF = −t
∑
〈i,j〉,σ

c†iσcj,σ︸ ︷︷ ︸
T

+U
∑
i

(〈ni,↑〉+ δni,↑) (〈ni,↓〉+ δni,↓) (3.15)

and neglecting the δni,↑δni,↓-term yields

HHF = T + U
∑
i

(〈ni,↑〉 〈ni,↓〉+ 〈ni,↑〉 δni,↓ + 〈ni,↓〉 δni,↑)

=︸︷︷︸
δni,σ=ni,σ−〈ni,σ〉

T + U
∑
i,σ

(〈ni,σ〉ni,σ − 〈ni,↑〉 〈ni,↓〉) . (3.16)

Through the HF approximation the former two particle electron-electron Coulomb
interaction term in (3.13) is replaced by an mean-field electron term 〈ni,σ〉 which
can be interpreted as the electron density of spin-σ on site i. The Hamiltonian is
now a sum of one-particle operators for each spin σ

HHF = HHF
↑ +HHF

↓ =
∑
〈i,j〉,σ

(tij + U 〈ni,σ〉 δi,j) c†i,σcj,σ−U
∑
i

〈ni,↑〉 〈ni,↓〉 , (3.17)
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where tij = −t for nearest neighbors (i,j) and zero else and the last term is just a
constant factor. As in (3.4) the eigenvalue equation corresponding to (3.17)

HHF
σ |Ψ〉 = Ek

σ|Ψ〉, (3.18)

depends on the solution of the opposite spin solution through the electron density
term 〈nσ〉 and the coupling constant 〈ni,↑〉 〈ni,↓〉 and has to be solved iteratively
until self-consistency.

3.2.1 Restricted Hartree-Fock
For the restricted Hartree-Fock solution of (3.17) the electron density solution is
assumed to be independent of lattice site i, and for N↑ = N↓ identical for both spin
channels, thus 〈ni,↑〉 = 〈ni,↓〉 = 〈n〉 = Nσ/L. This yields a Hartree-Fock Hamiltonian
independent of spin

HHF
σ =

∑
i

(tij + U 〈n〉 δi,j) c†i,σci,σ − U
L∑
i

〈n〉2

2 . (3.19)

and similar to the tight-binding Hamiltonian tij only with an additional diagonal
on-site terms U 〈n〉. Thus it can be analytically diagonalized by a momentum space
transformation. For the one-dimensional case and omitting spin labels for simplicity,
with the transformation

c†j = 1√
L

∑
k

eikj b†k and cl = 1√
L

∑
k′

e−ik′l bk′ , (3.20)

the single spin parts of (3.19) become

HRHF =
∑
k,k′

1
L

∑
j,l

(tjl + U 〈n〉 δj,l) ei(jk−lk′) b†kbk′ − U
∑
i

〈n〉2

2 . (3.21)

For the generality of the derivation phase factors e±iAx due to later introduced
twisted boundary conditions (TBC) are included in the nearest neighbor hopping



3.2 Mean-field approximation to the Hubbard model 43

terms in one dimension tjl = −t(δj,j+1 eiAx +δj,j−1 e−iAx). This leads to

HRHF
a = 1

L

∑
k,k′

∑
j,l

[
−t
(
δj,j+1 eiAx +δj,j−1 e−iAx

)
+ U 〈n〉

]
ei(jk−lk′) b†kbk′

− U
∑
i

〈n〉2

2

=
∑
kk′

[
−t
(
e−i(k′−Ax) + ei(k′−Ax)

)
+ U 〈n〉

]
b†kbk′

1
L

∑
j

eij(k−k′)

︸ ︷︷ ︸
δk,k′

− U
∑
i

〈n〉2

2

=
∑
k

(−2t cos(k − Ax) + U 〈n〉)︸ ︷︷ ︸
ε(k)

n̂k − U
∑
i

〈n〉2

2 , (3.22)

which is similar to the tight binding solution, except an electron density dependent
energy offset U 〈n〉 and a shift of the k values due to the twisted boundary conditions.
The total RHF energy is, due to identical spin solutions, given by the Nσ lowest
single orbital energies minus the energy offset

ERHF
tot = 2

Nσ∑
k

ε(k)− U
L∑
i

〈n〉2 . (3.23)

3.2.2 Self-consistent unrestricted Hartree-Fock
For the UHF solution there is no constraint on the electron densities 〈ni,σ〉, leading
to the coupled eigenvalue problems∑

i,j

(tij + U 〈ni,σ〉 δi,j) c†i,σcj,σ −
∑
i

〈ni,↑〉 〈ni,↓〉
2

 |Ψσ〉 = Ek
σ|Ψσ〉, (3.24)

which have to be solved simultaneously in iterative fashion. For a starting density〈
n0
i,↑/↓

〉
the matrix (3.24) is diagonalized for the ↑- and ↓-spin parts and from the

Nσ energetically lowest spin orbital solutions Ψkσ , with eigenvalues Ek
σ , the densities
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for the next step are constructed by

〈nt+1
i,σ 〉 =

Nσ∑
k

(Ψki,σ)∗ · Ψki,σ, (3.25)

This process is repeated until the total UHF energy

EUHF
tot =

N↑∑
k

Ek
↑ +

N↓∑
k

Ek
↓ (3.26)

and the electron densities 〈ni,σ〉 are converged.
The problem of calculating self consistent solutions iteratively is the risk of getting

stuck in local minima during the calculations. To counteract to this behavior, inspired
by [41], a simulated annealing procedure was coupled to the iterative calculation, by
randomly, but dependent on the simulated temperature, modify already converged
density solutions.

In table (3.1) various UHF ground state results for half-filled systems are compared
to references from literature [42], [43] and as can be seen there is excellent agreement.
In the half-filled case for U = 4 the UHF solution adopts an anti-ferromagnetic

shape as seen in fig. (3.3) for the 4× 4-lattice and in fig. (3.4) for the 16× 16-lattice,
where in the left panel the local difference in ↑- and ↓-spin densities, the local
spin-density mi = 〈ni↑〉 − 〈ni,↓〉, and in the right panel the local charge density
ρi = 〈ni↑〉+ 〈ni,↓〉 is displayed. For the half filled case the charge density on each
site is exactly equal to one in both examples. Whereas the absolute value of the
local spin density |mi| for both cases is |m4×4

i | = 0.70449 and |m16×16
i | = 0.69066

uniformly for each lattice site but with alternating signs between nearest-neighbor
sites.
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Table 3.1: UHF results for half filling and various system sizes with reference
results from [42],[43].

Lx Ly U EUHF
ref EUHF

calc

4 4 2 -17.55618 -17.556175
4 4 4 -12.56655 -12.566554
4 4 6 -9.37989 -9.379897
4 4 8 -7.38963 -7.389626
4 4 10 -6.06641 -6.066413
8 8 2 -72.39542 -72.395414
8 8 4 -50.99788 -50.997884
8 8 6 -37.93309 -37.933094
8 8 8 -29.81631 -29.816313
8 8 10 -24.42973 -24.429730
10 10 2 -113.54082 -113.540828
10 10 4 -79.70094 -79.700944
10 10 6 -59.26953 -59.269530
10 10 8 -46.58779 -46.587789
10 10 10 -38.17143 -38.171434
12 12 2 -163.75967 -163.759676
12 12 4 -114.77146 -114.771461
12 12 6 -85.34817 -85.3481676
12 12 8 -67.08643 -67.086430
12 12 10 -54.96687 -54.966867
16 16 2 -291.43655 -291.436547
16 16 4 -204.03940 -204.039401
16 16 6 -151.73009 -151.730089
16 16 8 -119.26476 -119.264764
16 16 10 -97.71887 -97.718875
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Figure 3.3: (a) Local spin density mi = 〈ni,↑〉 − 〈ni,↓〉 and (b) local charge density
ρi = 〈ni,↑〉+ 〈ni,↓〉 for the 4× 4-lattice at U = 4. The charge density ρi assumes uni-
formly the value 1 on each lattice site, whereas the charge density mi = ±0.70449
on every site with alternating signs between nearest-neighbor sites.
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Figure 3.4: (a) Local spin density mi = 〈ni,↑〉 − 〈ni,↓〉 and (b) local charge density
ρi = 〈ni,↑〉+〈ni,↓〉 for the 16×16-lattice at U = 4. The charge density ρi assumes uni-
formly the value 1 on each lattice site, whereas the charge density mi = ±0.69066
on every site with alternating signs between nearest-neighbor sites.
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3.2.3 Analytic unrestricted Hartree-Fock
Due to the anti-ferromagnetic (AF) order of the UHF solution of the Hubbard model
in the half-filled case there is the possibility of an analytic formulation of it. Since
the solution assumes a periodic form with a repeating 2× 2 sub-structure on the
square lattice, as seen in fig. (3.3) and (3.4), the solution of the whole Lx×Ly-lattice
is determinable by the solution of the 2× 2 structure [44]. The solution of the 2× 2
system can be obtained by a Fourier transformation with a unit cell of size 2× 2
and twice as large primitive lattice vectors T′i as depicted in fig. (3.5a). Due to the
AF order in the half-filled case the electronic densities on the sublattice are given by
aσ = nσ +∆nσ and bσ = nσ −∆nσ with nσ = Nσ

N
being the mean spin-σ electron

density per site. For generality of the derivation the hopping matrix tij is again
modified with phase factors eiAx/y due to twisted boundary condition explained
below in chapter 6.
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(b) Reduced Brillouin zone

Figure 3.5: Sublattice structure due to the AF character of the UHF solution on
the square lattice in the half filled case. In (a) the color red(white) and letter a(b)
indicate the spin density on the different lattice sites. The new primitive lattice
vectors R1,R2 are twice as large as in the original lattice. This causes the reduced
Brillouin zone (indicated red in (b)) to be quarter as large as the original BZ (blue
in (b))

The UHF Hamiltonian (3.13) is mapped on the 2× 2 system by associating each
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creation (annihilation) operator with a index I denoting the unit cell and second
index α for the position within sublattice. Omitting spin labels this transforms

c
(†)
i → c

(†)
I,α and tij → tI,Jα,α′ , (3.27)

with same column-first indexing for the sublattice index α as used in the exact
diagonalization chapter 2. Within a sublattice ∆I = I −J = 0→ R = 0 the nearest
neighbor hopping terms are, as previously, given by −t e±iAx/y , with a phase factor
due to TBC depending on the direction of the hopping process. For inter-sublattice
hoppings the unit cells have to be nearest-neighbors |∆I| = 1 with corresponding
primitive lattice vector R ∈ {

(
0
2

)
,
(
−2
0

)
,
(

0
−2

)
,
(

2
0

)
}. The Fourier transformation of the

operators in the UHF Hamiltonian, where the constant energy shift −U ∑
i
〈ni,↑〉 〈ni,↓〉

is pulled into H for now, in terms of the sublattice operators

HUHF
σ =

∑
I,J

∑
α,α′

(
tI,Jα,α′ + U 〈nI,α,σ〉 δI,Jδα,α′

)
c†I,α,σcJ,α′,σ (3.28)

is then given by

bK,α,σ = 1√
N/4

N/4∑
I

eiK·R cI,α,σ, (3.29)

where R is the primitive lattice vector associated to the sublattice index I. The
wave vectors K now belong to the reduced Brillouin as depicted in red in fig.(3.5b)
which is only quarter as large as the original BZ due to the 2× 2 unit cell. But due
to the association of the solutions to specific wave vectors, translational symmetry
can at least be partially retained [45]. The transformed sublattice Hamiltonian for a
given wave vector K for one spin channel is then given by

Hσ
α,α′(K) =

U(n+∆n) −t e−iAy(1 + e2iKy) −t eiAx(1 + e−2iKx) 0
−t eiAy(1 + e−2iKy) U(n−∆n) 0 −t eiAx(1 + e−2iKx)
−t e−iAx(1 + e2iKx) 0 U(n−∆n) −t e−iAy(1 + e2iKy)

0 −t e−iAx(1 + e2iKx) −t eiAy(1 + e−2iKy) U(n+∆n)


(3.30)

The corresponding matrix for the opposite spin channel σ is given by exchanging
∆n↔ −∆n. Independent of spin the analytic eigenvalue solutions in both cases are
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given by

λ1,2,3,4
σ (k′,∆n) = U

2 ±
√

(∆nU)2 + 4t(cos(k′x)± cos(k′y))2, (3.31)

with the shifted wave vectors k′ = K + A caused by the twisted boundary conditions.
The total UHF energy of (3.17) for half filling is given by filling up the Nσ = N/2
lowest energy orbitals of (3.31) for both ↑- and ↓-spin electrons. In the half filled case
this are exactly all the energy eigenvalues in the two energetically lower branches of
(3.31)

EUHF
tot = 2

Nσ∑
k′

[
Un−

√
(∆nU)2 + 4t(cos(k′x)± cos(k′y))2

]
−U

N∑
i

〈ni,↑〉 〈ni,↓〉 . (3.32)

The factor 2 in front of the sum stems from the fact that the corresponding sum for
the opposite spin electrons is identical, since all eigenvalues are exactly the same as
seen in (3.31). In the analytic UHF solution the constant factor at the end of (3.32)
can be evaluated. Due to the antiferromagnetic order the electron density on each
site i is given by

〈ni,σ〉 = n±∆n and 〈ni,σ〉 = n∓∆n. (3.33)

By pulling out the constant Un factor in each addend in (3.32) and inserting (3.33)
into it the total UHF energy as function of electron density difference ∆n is given by

EUHF
tot (∆n) = UN(n−n2+∆n2)−2

Nσ∑
k′

√
(∆nU)2 + 4t(cos(k′x)± cos(k′y))2. (3.34)

The analytic UHF solution is given by the electron density difference ∆n minimizing
EUHF
tot (∆n).
In figure (3.6a) the analytic UHF energy as function of spin density difference for

the 4 × 4-square lattice is plotted. It exactly coincides with the half of the local
spin density |m4×4

i |/2 = 0.35224 from the self consistent solution from above (3.3).
For zero spin density difference the UHF solution would be equivalent to the RHF
solution of the system. In figure (3.6b-c) the energy minimizing density difference
∆nUHF as function of parameter U for the 4 × 4- (b) and 16 × 16- (c) lattice is
displayed. As can be seen for this system the UHF solution is energetically favorable
for infinitesimally U > 0 but the magnitude of the jump at U = 0 decreases with
increasing system size. In (3.6d) the thermodynamic limit lim

L→∞
behavior of the

density jump at zero U is displayed, and from the perfect quadratic fit to the data
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points it can be concluded that the discontinuity of ∆n is only a finite size effect.
A sublattice decomposition with a 1 × 2 unit cell and primitive lattice vectors

R1 =
(

1
1

)
,R2 =

(
1
−1

)
on the square lattice would also be possible. This would cause

the reduced Brillouin zone to only be half as small as the original one but at the
same time would cause ambiguities which K vectors belong to the BZ. So for sake
of simplicity the 2× 2-decomposition was chosen.
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Figure 3.6: (a) Total UHF energy as function of electron density difference for U
= 4 in the 4× 4-square lattice. Energy minimizing electron density as function of U
for the 4× 4- (b) and 16× 16-square lattice (c). (d) Thermodynamic kimit behavior
of the discontinuity of the energy minimizing electron density difference at U = 0+.
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3.2.4 Tilted square lattice
The second lattice used in this work was the tilted square lattice. It is basically a
regular square lattice with the same nearest-neighbor hopping possibilities but with
different periodic boundary conditions. In fig. (3.7) the 3× 3 tilted square lattice is
displayed with its primitive lattice vectors T1 =

(
L1
L2

)
=
(

3
3

)
,T2 =

(
3
−3

)
. As seen in

fig. (3.7) the L1×L2 tilted square lattice has N =
√

2L1
√

2L2 = 2L1L2 lattice sites.

T
2

T
1

Figure 3.7: Periodicity of the 3 × 3-tilted square lattice with 18 sites. The only
difference to the regular square lattice are different boundary conditions.

As opposed to the regular square lattice the sublattice transformation of the
UHF Hamiltonian (3.24) and subsequent Fourier transformation is unambiguously
possible with a 1× 2-unit cell for the tilted square lattice
Due to the 1× 2 unit cell there are N/2 K-points in the reduced BZ as seen in

(3.8). In the transformed sublattice Hamiltonian there are now one intra-cell in
positive or negative x-direction −t e±iAx and three inter-cell hoppings possible with
associated lattice vectors R ∈ {

(
−1
1

)
,
(
−1
−1

)
,
(
−2
0

)
}. The Fourier transformed sublattice

UHF Hamiltonian, again including phase factors from additional twisted boundary
conditions, is given by

Hσ
α,α′(K) =

(
U(n+∆n) T

T ∗ U(n+∆n)

)
, (3.35)
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Figure 3.8: (a) 1 × 2 sublattice structure due to AF order in the tilted square
lattice. (b) Original BZ (blue) and half as large reduced BZ (red) of the tilted
square lattice due to the 1× 2 unit cell.

where the off-diagonal hopping entries are given by

T = −t((eiAx) + eiAy ei(−Kx+Ky) + e−iAy ei(−Kx−Ky) + e−iAx e−2iKx). (3.36)

As above in the regular square lattice the eigenvalues of both spin matrices are
identical and given by

λ1,2
σ (k′,∆n) = Un±

√
(∆nU)2 + 4t(cos(k′x) + cos(k′y))2, (3.37)

where again the effect of the twisted boundary conditions is a shift of the K values
k′ = K + A. And for half filling since there are exactly N/2 = Nσ k-points in the
reduced BZ this leads to a total UHF energy of

EUHF
tot (∆n) = UN(n−n2 +∆n2)−2

Nσ∑
k′

√
(∆nU)2 + 4t(cos(k′x) + cos(k′y))2. (3.38)

The minimization of (3.38) with regard to the density difference ∆n again yields
the anti-ferromagnetic UHF solution.
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The eigenstates, called orbitals from now on, for the UHF basis transformation
are obtained by diagonalizing the 2× 2/4× 4, depending on the unit cell size, for
each K−point in the reduced BZ after the optimal UHF electron density difference
∆nUHF is obtained. The 2 × 2/4 × 4 solutions are replicated accordingly to the
whole lattice with their corresponding Bloch phase factor eiKR. In the 4× 4 matrix
corresponding to the 2×2-unit cell for the regular square lattice there are degeneracies
in the eigenvalue solutions possible leading to unfavorable linear combinations in
degenerate subspace eigenstate solutions.

3.3 Basis transformation
The matrix of eigenvectors Uσ obtained by the solution of the Hartree-Fock eigenvalue
problem

HHF
σ |Ψ〉 = [tij + U 〈ni,σ〉 δij] |Ψ〉 = Ek

σ|Ψ〉 (3.39)

can be viewed as an unitary basis transformation between the real-space and re-
stricted and unrestricted Hartree-Fock-space. As mentioned the RHF transformation
corresponds to the momentum space transformation. These are the bases in which
the FCIQMC algorithm was formulated to be applied to the Hubbard model.

3.3.1 Transforming the Hamiltonian
To compare ground state properties in the real-space and Hartree-Fock-space basis
representation a transformation and exact diagonalization of the Hubbard Hamil-
tonian in these bases can be performed. With the unitary transformation of the
real-space creation and annihilation operators

~b†σ = U †σ~a
†
σ, and ~bσ = ~aσUσ (3.40)

creation and annihilation operators of Hartree-Fock single orbital states are defined.
With the inverse transformation of (3.40)

a†i,σ =
∑
l

Uil,σb
†
l,σ, and ai,σ =

∑
l

(
U †σ
)
li
bl,σ (3.41)
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the real-space Hubbard Hamiltonian can be transformed into Hartree-Fock represen-
tation

H =
∑
ij,σ

tija
†
i,σai,σ + U

∑
i

ni,σni,σ

=
∑
ij,σ

tij
∑
ll′
Uil,σU

∗
jl′,σb

†
l,σbl′,σ

+ U
∑
i,jklm

Uij,σU
∗
ik,σUil,σU

∗
im,σb

†
j,σbk,σb

†
l,σbm,σ. (3.42)

The exact diagonalization of the Hubbard Hamiltonian in HF-space (3.42) is more
involved than in its real-space counterpart due to the more general one- and two-
particle terms. The one-particle term of (3.42) can be split up into an diagonal l = l′

term

Hdiag
1 =

∑
l,σ

[
Uil,σtijU

∗
jl,σ

]
nl,σ, (3.43)

where the prefactors can be computed as the diagonal elements of the matrix
multiplication (U †σtUσ)ll , and a hopping term

Hhop
1 =

∑
ll′,σ

[
U †σtUσ

]
ll′
b†l,σbl′,σ. (3.44)

The quantity in the square brackets of eq. (3.44) is again meant to be understood
as a matrix multiplication and this hopping term is now not constraint to nearest
neighbors, as in the real-space Hubbard Hamilton representation, but a hopping
from each HF-state l to every other l′ is possible, with a weight factor determined by
the matrix element

[
U †σtUσ

]
ll′
. This is still computable with the method described in

chapter 2.3, albeit the computational cost is much higher due to the greatly increased
hopping possibilities. The increase in computational complexity is even more severe
for the in real-space representation originally diagonal on-site interaction term. For
optimized implementation the possible terms can be broke up in several terms. For
j = k, l = m the 2-particle H2 term of (3.42) becomes

Hdiag
2 = U

∑
jl

[∑
i

Uij,σU
∗
ij,σUil,σU

∗
il,σ

]
nj,σnl,σ, (3.45)

which is fully diagonal for both spin channels and is given by the sum of doubly
occupied sites times the weight factor ∑

i
Uij,σU

∗
ij,σUil,σU

∗
il,σ.
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For j = k, l 6= m a term coined semi-diagonal ↑-spin part

Hsemi−diag
2,↑ = U

∑
jlm

[∑
i

Uij,σU
∗
ij,σUil,σU

∗
im,σ

]
nj,σb

†
l,σbm,σ (3.46)

and the corresponding semi-diagonal ↓-spin part for j 6= k, l = m

Hsemi−diag
2,↓ = U

∑
jkl

[∑
i

Uij,σU
∗
ik,σUil,σU

∗
il,σ

]
b†j,σbk,σnl,σ. (3.47)

are obtained. Those terms are diagonal in one spin channel, thus named semi-
diagonal, and describe a hopping of the opposite spin electrons. These can also
be calculated by the hopping algorithm described in section 2.3 with additionally
taking into account the prefactor due to the unitary transformation matrices Uij
and the number of electrons with opposite spin due to the ni,σ/σ term.
Until now, expect for the increased density of the Hamilton matrix due to more

allowed hoppings no general change of the exact diagonalization procedure, described
in chapter 2, occurred. But the computational most costly new term is the fully
off-diagonal j 6= k, l 6= m part

Hoff−diag
2 = U

∑
jklm

[∑
i

Uij,σU
∗
ik,σUil,σU

∗
im,σ

]
b†j,σbk,σb

†
l,σbm,σ, (3.48)

which takes into account all combinations of all possible ↑- and ↓-spin hopping
possibilities. The meliorating fact is that if one keeps track over the possible
hoppings in the calculation of (3.46) and (3.47) the calculation of (3.48) reduces to
the calculation of all combinations of these hoppings with the corresponding weight
prefactors.

Due to the increase in computational cost and more severe memory demands due
to a higher density of the Hamilton matrix and the loss of applicable translational and
point-group symmetries the possible system size in which the Hubbard Hamiltonian
can be exactly diagonalized is greatly reduced. For our implementation the ED of a
4× 4 system was only possible up to N↑ = N↓ = 3 electrons.

3.3.2 Transformation of the ground state
Since we are only interested in the differences of coefficient magnitudes and other
properties of the ground state of the Hubbard model in various bases, it is also
possible to not transform the whole Hamiltonian, but only the ground state alone.



3.3 Basis transformation 56

The ground state of the original Hamiltonian is given by a linear combination of
real space basis states

|Ψ0〉 =
∑
Γ↑Γ↓

cΓ↑Γ↓ |Γ↑〉|Γ↓〉, (3.49)

where the coefficients cΓ↑Γ↓ are obtained from the exact diagonalization. The σ-spin
part of the real-space Hubbard basis |Γ i

σ〉 is given by

∣∣∣Γ i
σ

〉
=

Nσ∏
ν

a†Γ iν ,σ|0〉. (3.50)

Γ i
ν ,σ denotes a index list of sites occupied by σ-spin electrons. Transforming the

creation operators in (3.50) with the unitary basis transformation obtained from the
solution of the Hartree-Fock eigenvalue problem (3.39)

a†i,σ =
∑
l

Uil,σb
†
l,σ (3.51)

yields [44]

∣∣∣Γ i
σ

〉
=

Nσ∏
ν

∑
l

UΓ iν l,σb
†
l,σ|0〉 =

∑
l1l2...lN

(∏
ν

UΓ iν lν ,σ

)∏
ν

b†lν ,σ|0〉. (3.52)

The index combination (Γ i
ν ,lν) denotes occupied states in the original and transformed

basis, since the last term in (3.52)∣∣∣Llνσ 〉 :=
∏
ν

b†lν ,σ|0〉 (3.53)

is a specific basis state in the new HF basis. Eq. (3.52) can be rewritten as a
summation over all possible configurations of occupied states and their permutations,
and according signs, in the transformed basis as [44]∣∣∣Γ i

σ

〉
=
∑
L

∑
P
sign(P)

∏
ν

UΓ iν li,σ︸ ︷︷ ︸
A

|Lσ〉, (3.54)

where the term A is equivalent to the Leibniz determinant formula detUΓ iLi,σ, of
the minor of the transformation matrix Uij containing the rows and columns (Γ i, Li)
determined by the occupied states in the original basis state |Γ i

σ〉 and the transformed
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state |Liσ〉.
Inserting (3.54) into (3.49) yields the representation of the exact ground state in

the new basis

|Ψ ′0〉 =
∑
Γ↑Γ↓

cΓ↑Γ↓
∑
L↑L↓

detUσ
Γ↑L↑

detUσ
Γ↓L↓
|L↑〉|L↓〉 =

∑
L↑L↓

dL↑L↓ |L↑〉|L↓〉. (3.55)

Unfortunately the calculation of the new ground state coefficients dL↑L↓ through
this approach is still of order O(N2) with N the Hilbert space of the problem.

3.4 Comparison of different bases
Inspired by [46] following quantities of the exact ground-state wave function of the
Hubbard model in real-space, momentum-space and unrestricted Hartree-Fock-space
representation were compared to determine the optimal basis:

• Coefficient magnitudes |ci|
The simplest quantity to compare are the absolute values of the ground state
wave function weights cΓ↑,Γ↓ and dL↑,L↓ from (3.49) and (3.55).

• Energy Contribution ∆Ei
A more elaborate quantity is the energy contribution of basis states to the
exact ground state energy defined by [47]

∆Ei = (Eex −Hii)|ci|2
1− |ci|2

, (3.56)

where Eex is the exact ground state energy and Hii the diagonal Hamilton
matrix element and ci the ground state coefficient of the ith basis state.
Although more elaborate than bare comparison of ground state coefficients,
the diagonal matrix elements Hii in each basis are additionally needed to
compute (3.56). This energy contribution ignores cumulative effects when
discarding states in a wavefunction |Ψ ′〉 with an energy contribution below a
certain threshold for the energy calculation E ′ = 〈Ψ ′|H|Ψ ′〉.

• Truncated energy ratio R
To account for the cumulative effects the Hubbard Hamiltonian was diagonal-
ized for different truncated basis sets. States with an energy contribution ∆E
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below certain threshold K were discarded and the ratio

R =

〈
ΨKt

∣∣∣HK
∣∣∣ΨKt 〉

〈ΨKt |ΨKt 〉
/Eex, (3.57)

where
∣∣∣ΨKt 〉 denotes the threshold dependent truncated basis, was calculated

for different threshold values K. Unfortunately this method requires the full
knowledge of the Hamiltonian in each basis representation, which restricts this
comparison, as mentioned above, to at most N↑ = N↓ = 3 electrons for the
4× 4-lattice due to increased memory requirements to store the Hamiltonian
in the UHF basis.

The bases in which the ground state properties were compared, were the real-spaceR,
in which the Hubbard Hamiltonian was diagonalized, the momentum-space (RHF)
K and UHF basis U in which the ground state was transformed through the use of
eq. (3.55). Since systems off half filling were investigated the self-consistent UHF
solution (3.2.2) was used to transform the real-space basis into the UHF basis.

The sorted absolute values of the ground state coefficients of the 4×4, N↑ = N↓ = 2
system, with a Hilbert space size of H = 14400, for the three compared bases for
various values of the on-site repulsion U are displayed in fig. (3.9). As can be seen
both the UHF, denoted with U , and the momentum space, or RHF, (K) ground
states have far less coefficients with a significant weight than in the real-space
representation R. For the momentum- and UHF basis only a few of the 14400 states
have a coefficient greater than 10−2. For the UHF case more than a third, and in
the momentum space the half, of all states have a coefficient magnitude smaller
than 10−5. This is more clearly displayed in fig. (3.10), where for U = 2 and U = 8
the number of coefficients N(C) with a greater weight than C is plotted versus C
in a double logarithmic scale. In both UHF and RHF representation there are less
than 100 states with a coefficient magnitude greater than 10−2 whereas there are
over 1000 of those in the real-space representation, where almost every state has a
magnitude of at least 10−4. The number of states on the left end of both figures
(3.9) are different because the x-axis is cut off at 10−10 and the remaining UHF-
and RHF-states have an even lower weight. In this analysis of the ground state
properties there is little difference between results for different values of parameter
U .
In fig. (3.11) the number of states N(∆E) with an higher energy contribution

than ∆E (3.56) is plotted against ∆E and basically shows the same behavior as the
analysis in fig. (3.10).
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Figure 3.9: Sorted absolute values of the ground state coefficients |ci| of the 4 ×
4, N↑ = N↓ = 2 system in real- (R), RHF- (K) and UHF-space (U) for on-site
repulsion U = {2, 4, 6, 8}. Both the momentum- and even more the UHF-space
ground states have far less states with significant weight compared to the real-space
representation. The differences with increasing U are marginal.
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Figure 3.10: The number ground state coefficients N(C) with a greater weight
than C versus C. There are under 100 states in the RHF- and UHF-space with
a weight greater than 10−2 whereas there are over 1000 of those in the real-space
representation. The differences between U = 2 and U = 4 are very little.
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Figure 3.11: Number of ground states N(∆E) with an higher energy contribution
than ∆E versus ∆E.
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In fig. (3.12a) the energy ratio (3.57), which takes into account cumulative
effects of discarding basis states as described above, versus the number of regarded
states with an energy contribution higher than a certain threshold for the U =
2, 4× 4, N↑ = N↓ = 2 system is plotted. Compared to the real-space basis in both
the UHF- and RHF-space representation very little states are required to regain
almost completely the exact ground state energy. The zoomed in version in the
right panel of (3.12) shows that for U = 2 in the UHF- and RHF-basis less than
10 states contain over 99% of the exact ground state energy information, whereas
in the real-space representation almost all basis states are needed to achieve this
accuracy. Additionally opposed to the previous ground state comparisons a stronger
influence of the parameter U is noticeable, as seen in fig. (3.13). In tile (a)-(c)
again the energy ratio R as function of regarded number of states for values of
U = {4,6,8} is displayed and in tile (d) the number of required states to achieve
an energy ratio R > 0.99 NR(R>0.99) as function of U for the UHF- and RHF-basis
is displayed. The number of important states definitely increases with U for both
the UHF- and RHF-basis. In the 4× 4, N↑ = N↓ = 2 system the number of needed
states is higher in the RHF- than in the UHF-basis, but this is no general conclusion
as can be seen compared to the 4 × 4, N↑ = N↓ = 3 system seen below in fig.
(3.14). The non-monotonic growth with U is probably due to numerical issues during
calculation, and a general monotonic behavior can be assumed. In comparison the
number of needed states in real-space representation was at a constant value of
about NR(R>0.99) = 9700 for all values of U.
In fig. (3.14) the sorted absolute values of the ground state coefficients |ci|, the

truncated energy ratio R and the required number of states to achieve a ratio
R > 0.99 for the N↑ = N↓ = 3, 4 × 4-lattice system for various values of the
parameter U and all compared bases are displayed. The Hilbert space size of this
system is dimH = 313600. In the UHF- and RHF-basis for low values of U = 1− 4
below 1% of the Hilbert space size is needed to achieve an accuracy in energy of
above 99%. As mentioned, opposed to the N↑ = N↓ = 2 system the UHF basis
generally needs more states than the momentum space basis. The non-monotonic
behavior again is due to numerical issues.

For certain values of U and filling factors the UHF- and momentum-space transfor-
mation provide a drastically improved basis, usable in FCIQMC algorithm, compared
the real-space representation. For low values of U the momentum space transforma-
tion provides a good basis for the Hubbard model since the kinetic hopping term
in the Hamiltonian (3.13) dominates the on-site repulsion. This is also the fact for
low fillings (=̂ high hole-doping) due to decreased electron-electron interactions,
which is also the reason why the momentum-space ground state properties analyzed
above remain so beneficial even for high U values in this case. For low U values the



3.4 Comparison of different bases 62

10
0

10
1

10
2

10
3

10
4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of states

E
n
e
r
g
y
r
a
ti
o
R

R
K
U

(a) U = 2

10
0

10
1

10
2

10
3

10
40.95

0.96

0.97

0.98

0.99

1

Number of states

E
n
e
r
g
y
r
a
ti
o
R

R
K
U

(b) U = 2

Figure 3.12: Truncated energy ratio R for the U = 2, N↑ = N↓ = 2, 4 × 4-lattice
system. The right panel (b) is an enhancement of the 0.95 − 1 y-axis region of the
left panel (a). As seen in (b) in the UHF and momentum space basis less than 10
states of the 14400-state big Hilbert space are needed to retrieve over 99% of the
exact ground state energy.

UHF transformation works so well, since it greatly resembles a momentum space
transformation due to the dominating kinetic hopping term in the approximation
(3.17). Since the UHF approximation favors anti-ferromagnetic order, which is
naturally established by more separated electrons due to high on-site repulsion,
it maintains its favorable ground state properties for increasing U . But since the
approximation the UHF approach makes, by linearizing the two-particle interaction
operator in (3.13), is directly proportional to U it gets inherently worse with an
increasing value of it.

Since the majority of the ground state energy information is compressed in only a
tiny fraction of the total number of states compared to real-space formulation, both
the momentum-space and the unrestricted Hartree-Fock basis seem to be prime
candidates to express the FCIQMC algorithm in.
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Figure 3.13: Truncated energy ratios R for U = {4,6,8} of the N↑ = N↓ = 2, 4× 4-
lattice system (a-c) and in (d) the number of states needed to consider to achieve
a ratio of R > 0.99 versus parameter U is plotted. As can be seen, in general for
increasing U the number of states needed increases and at a faster pace for the
momentum space compared to the UHF basis in the N↑ = N↓ = 2, 4× 4 system.
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Figure 3.14: Sorted absolutes values of ground state coefficients |ci| and truncated
energy ratios R of the 4 × 4-lattice with N↑ = N↓ = 3 electrons for parameter
U = {2,4,6,8}(a-h) and required number of states to achieve a ratio R > 0.99(i). As
opposed to the N↑ = N↓ = 2 system, see figures (3.12,3.13) there are now generally
fewer states needed in the RHF basis.



4 Quantum Monte Carlo
Before introducing the FCIQMC algorithm a short review of the basics of Monte
Carlo integration techniques, Markov chains and the FCIQMC predecessor diffusion
quantum Monte Carlo is given.
The Monte Carlo method allows the evaluation of multidimensional integrals

by stochastically sampling the integrand and averaging over the results with only
polynomially scaling with integral dimensions. Following [39], consider a three
dimensional system with N particles, and denote a possible configuration of the
particles as R = (r1,r2, . . . , rN), with the probability of this configuration

P(R) ≥ 0 and
∫
dRP(R) = 1. (4.1)

As described below (4.3), due to the anti-symmetry of fermionic wave-functions, the
quantity P(R) can assume negative values for electrons and thus not be interpreted
as probability density. This is a manifestation of the renowned sign problem for
fermionic system in QMC.
Nevertheless for bosonic systems the mean value of the function f(RM) of M

uncorrelated, according to distribution P(R), randomly distributed configurations
Ri can be interpreted as a random variable

Zf = 1
M

M∑
i=1

f(Ri). (4.2)

Due to the central limit theorem, Zf is normally distributed with mean

µf =
∫
dRf(R)P(R) (4.3)

and standard deviation σf/
√
M

σ2
f =

∫
dR (f(R)− µf )2P(R) (4.4)

of the function f(R) for large values of M [48]. As discussed below this estimate of

65
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the statistical error ∆µf =
√
σ2
f/M is only valid for truly, practically never achieved,

uncorrelated configurations.
Nevertheless this means that for a large enough number of measurements of

configurations M , the mean value of these measurements will be a good estimator
for the mean of this function, with the standard deviation decreasing as M−1/2. This
allows an evaluation of integrals

I =
∫
dRg(R) (4.5)

by rewriting the integrand with f(R) = g(R)/P(R) to

I =
∫
dRf(R)P(R). (4.6)

With P(R) obeying the positive-definiteness condition (4.1) the integral can be eval-
uated approximately by sampling the mean value of a large number of measurements
of configurations R distributed according to P(R)

I ≈ 1
M

∑
i

f(Ri). (4.7)

Allowing a calculation of the integral in the exponentially growing phase space with
particle number N with a only polynomially scaling algorithm with N .
A efficient method of generating random samples of configurations according to
P(R) is by creating Markov chains with the Metropolis-Hastings algorithm [49]. A
Markov chain is a series of random states, where the next state only depends on
the current state and not on the history of the series. For an arbitrary starting
state Ri a random trial state Rt according to a symmetric, ergodic and non periodic
probability distribution Q(Rt|Ri) is proposed as next state. In the Metropolis
implementation the trial state Rt is accepted as the next state of the Markov chain
with a probability

N (Ri → Rt) = min
(

1, P(Rt)
P(Ri)

Q(Ri|Rt)
Q(Rt|Ri)

)
, (4.8)

elsewise Ri is the next state. Since only the ratio of the probabilities P(Rt)/P(Ri)
is needed the generally hard to calculate normalization of the probability density
drops out of the calculation. This process creates a Markov chain with states
distributed according to P(R). But since the next Markov chain element depends
on the current one the created configurations are correlated. The influences of these
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autocorrelations within the Markov chain manifest themselves in an additional factor
in the estimated standard deviation (4.4)

∆I =

√
σ2
I (2τA + 1)
M

, (4.9)

where τA is the integrated autocorrelation time [50]. In this work the calculation of
the adjusted standard deviation, due to correlations, was done by a blocking analysis
[51] discussed in section 5.5.

4.1 Variational QMC
A quantum Monte Carlo algorithm closely related to the above described procedure
is variational quantum Monte Carlo (VMC). The starting point of VMC is a given
trial wave function |Ψ(R)t〉 which should already be a rather good approximation
to the true ground state wave function of the system. The energy expectation value

Et = 〈Ψt|H|Ψt〉
〈Ψt|Ψt〉

=
∫
dRΨ ∗t (R)HΨt(R)∫
dRΨ ∗t (R)Ψt(R) (4.10)

is a variational upper bound to the true ground state energy E0. To evaluate the
integral in (4.10) stochastically it is rewritten to [39]

Et = 1∫
|Ψt(R)|2dR

∫
|Ψt(R)|2︸ ︷︷ ︸

P(R)

El(R)︷ ︸︸ ︷(
Ψ−1
t (R)HΨt(R)

)
dR, (4.11)

where the first term can be interpreted as probability density and El(R) is the local
energy, which mean sample value is an estimate of the trial state energy Et

Et ≈
1
M

M∑
i

El(Ri). (4.12)

4.2 Diffusion QMC
The Diffusion quantum Monte Carlo algorithm (DMC) is a projector method related
to the Power method, which determines the true ground state of a system by repeated
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application of an operator related to the time-dependent Schrödinger equation

i~
∂|Ψ〉
∂t

= H|Ψ〉 (4.13)

to an arbitrary starting state. It is closely related to the Green’s function Monte
Carlo technique (GFMC)[52, 52], as it also uses a functional of the Hamiltonian,
repeatedly applied to an arbitrary state, with a non zero overlap with the true ground
state, to project out the ground state. In the GFMC technique the projector G
applied is the first order difference approximation of the propagator (1+τ(H−ω))−1

[53] ∣∣∣Ψ (n+1)
〉

= [1− τ(H − ω)]︸ ︷︷ ︸
G

∣∣∣Ψ (n)
〉
, (4.14)

hence the name Green’s function Monte Carlo. As seen below in chapter 5 this choice
of approximation is also used in the FCIQMC algorithm. In order for the projection
operator G to filter out only the ground state component of |Ψ〉 the magnitude of
the eigenvalue of G corresponding to the ground state |Φ0〉 must be equal to one and
all eigenvalues of G associated to excited states must have an absolute value less
than one, causing τ to be bound by τ ≤ 2/(Emax − E0), where Emax is the largest
eigenvalue of H [54]. In this case there in no time-step error if τ is small enough
and the spectrum of H is bound from above and below [55], which is asserted for a
discrete lattice Hamiltonian. In the FCIQMC algorithm Emax can be estimated by
the excited determinant containing the energetically highest single particle orbitals
[24].

The projector of the DMC method is obtained from the imaginary time Schrödinger
equation by performing a so called Wick rotation of time τ = it in (4.13) leading to

∂|Ψ〉
∂τ

= −H|Ψ〉 (4.15)

in Hartree atomic units. The name of this method stems from the fact that for a
general non-relativistic Hamiltonian H eq. (4.15)

−∂|Ψ(R,τ)〉
∂τ

= −1
2∇

2|Ψ(R,τ)〉+ V (R)|Ψ(R,τ)〉 (4.16)

can be viewed as a diffusion equation, when the potential term is neglected and |Ψ〉
is interpreted as diffusive particles, or walkers as they are called in the FCIQMC
formalism. By expanding the arbitrary starting wave function |Ψ〉 in eigenstates of
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the Hamiltonian

|Ψ〉 =
∑
i

ci|Φi〉, with H|Φi〉 = Ei|Φi〉, (4.17)

a formal solution to (4.15) is given by

|Ψ(τ + δτ)〉 = e−Hδτ |Ψ(τ)〉 =
∑
i

ci e−Eiδτ |Φi〉. (4.18)

For a discrete spectrum with a non-degenerate ground state energy E0 < E1 ≤ E2 . . .
this time evolution will converge to the ground state in the long time limit

lim
τ→∞
|Ψ(τ)〉 = c0 e−E0τ |Φ0〉, (4.19)

with all other excited states decaying exponentially. Although the decay of the
ground state component |Φ0〉 could be avoided by constant renormalization it is
favorable to shift the energy Ei → Ei−ES in the exponential for the long time limit
of |Ψ〉 to remain finite. This causes equation (4.16) to become

−∂|Ψ(R,τ)〉
∂τ

= −1
2∇

2|Ψ(R,τ)〉+ (V (R)− ES) |Ψ(R,τ)〉. (4.20)

Since (4.19) will only remain finite for ES = E0 the energy shift ES has to be varied
during the calculation.

As mentioned above, when the potential term in (4.20) is neglected it reduces to
a diffusion equation. And if otherwise the kinetic term is neglected it is identical
to a rate equation. Hence it is possible to simulate (4.20) by population dynamics
of walkers on configurations |Ψ(R)〉. Simulating the diffusive process by particle
movement and the rate term by death and birth of walkers.
When neither potential nor kinetic term are neglected an approximation to the

Green’s function corresponding to the Hamiltonian (4.20) can be obtained by a
Trotter-Suzuki decomposition of e−τ(T+V ), where T denotes the kinetic and V the
potential part of (4.20). For small τ an approximate Green’s function is given by
[56]

G(R,R′,τ) ≈ 1
(2πτ)3N/2 exp

(
(R −R′)2

2τ

)
︸ ︷︷ ︸

A

exp
(
−τ V (R) + V (R′)− 2ES

2

)
︸ ︷︷ ︸

B

. (4.21)

Where term A can be interpreted as a diffusion governing part and term B is a
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time-dependent reweighting of part A [39], interpretable again as the birth/death
of walkers. So even for both kinetic and potential term considered concurrently it
is still possible to simulate eq. (4.20) exactly by population dynamics of a large
ensemble of walkers, with a small enough timestep τ . As the energy shift ES appears
in the birth/death term B of eq. (4.21) it is possible to control the total population
by adjusting it during the calculation.

4.2.1 The fixed-node approximation in DMC
According to [39] the above described implementation of the DMC algorithm assumes
a strictly positive wavefunction |Ψ(R)〉 in the entire phase space, hence effectively
making it only applicable to bosonic systems. Since due to the anti-symmetry
property of every fermionic wave function it has to have regions in phase space with
positive and negative sign. As described in section 4.3 this causes the Monte Carlo
scheme to break down for fermionic systems. An approach to this problem within
DMC is the fixed-node approximation. In this approximation the nodal surface,
this is the multidimensional surface on which the wave function changes sign, of a
trial wave function |Ψt〉 is used as a reference for the lowest energy wave function
obtained by DMC. In the long-time limit the obtained wave function is then the
best possible solution for the given nodal surface. The DMC algorithm effectively
calculates the exact solution within each area enclosed by the nodal surface, subject
to the boundary condition |Ψ(R)〉 = 0. It is variational in the sense that if |Ψt〉
possesses exactly the true ground state nodal surface, DMC will produce the true
ground state.

4.3 The sign problem
The sign problem of a fermionic system, stemming from the anti-symmetry property
of the fermionic wave-function, manifests itself in the calculation of any expectation
value through (4.6)

〈O〉 =
∫
dRO(R)P(R)∫
dRP(R) . (4.22)

For a bosonic system, with symmetric wave functions regarding particle exchange,
the quantity P(R) can always be chosen positive-definite and thus be regarded as
probability density, as assumed in the start of chapter 4. Allowing for a polynomially
scaling evaluation technique of exponential scaling integrals. But for a fermionic
system, due to the negative sign obtained through particle exchange, the quantity
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P(R) can be negative valued and therefor not be regarded as probability density
anymore. Thus the general method outlined in the beginning of chapter 4 is not
straightforward applicable to fermionic systems.
A way to circumvent negative P(R) is to sample from the modified ’bosonic’

absolute values of the probability density [57]

P ′(R) = |P(R)|∫
|P(R)| (4.23)

and regard the sign s of P(R) as part of the measured quantity

〈O〉 =
∫
O(R)sign[P(R)]P ′(R)∫

sign[P(R)]P ′(R) = 〈Os〉
〈s〉

. (4.24)

While in principle allowing the Monte Carlo technique to be applied, this approach
suffers from the fact that for a set of M measurements the estimate for the average
sign (4.3) and standard deviation (4.4) is

〈s〉 = 〈s〉 ± σs√
M
. (4.25)

If the average of the sign is very small 〈s〉 = ε � 1 its variance σ2
s has to be

approximately 1, causing the relative error of (4.25) to be

∆s

〈s〉
≈ 1√

Mε
. (4.26)

According to [50] for a general quantum mechanical system the mean values of the
sign 〈s〉 is given by the ratio of the fermionic Z and bosonic Z ′ partition functions

〈s〉 = Z

Z ′
=

∫
P(R)∫
|P(R)| . (4.27)

Since the partition functions are the exponentials of the corresponding free energies
f the average sign is the exponential of the difference ∆f ,

〈s〉 = e−βN∆f . (4.28)

This causes the number of measurements needed to achieve a certain accuracy(4.26)
to increase exponentially with system size N and inverse temperature β. This means
for systems with a sign problem the favorable polynomial scaling of the Monte Carlo
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approach is lost. There is no general solution to the sign problem, and since it has
even been shown by Troyer and Wiese to be a NP -hard problem [50], a solution in
polynomial computational effort would imply the answer to one of the millenium
problems: NP = P?



5 Full configuration interaction QMC
The full configuration quantum Monte Carlo (FCIQMC) algorithm, developed
recently by G.H. Booth, A. Thom and A. Alavi [24], is an adaptation of the diffusion
quantum Monte Carlo (DMC) approach discussed in section 4.2, which avoids
the necessity of knowledge of the nodal structure of the fermionic ground state
wave function to converge to it. This is achieved by sampling in the complete
anti-symmetric Hilbert space of the full configuration interaction Slater determinant
expansion (3.1.3) of the system. The starting point is, as in the previously discussed
projector-like GFMC and DMC methods, the imaginary-time Schrödinger equation
(4.15)

∂|Ψ〉
∂τ

= −(H − ES)|Ψ〉, (5.1)

where an energy shift ES is introduced to ensure convergence to a finite long-time
limit value. As in the GFMC method the projector corresponding to (5.1) which
filters out the ground state component of any starting state |Φ〉 in the long-time
limit

|Ψ0〉 = lim
τ→∞

e−τ(H−ES) |Φ〉 (5.2)

can be approximated in first order finite difference by

e−τ(H−ES) ≈ 1− τ (H − ES) . (5.3)

The long-time limit application of this projector (5.3) converges to the ground state
if ES = E0, but since E0 is not known until convergence the shift parameter ES
is adjusted simulation. Additionally, as described later, it is also used for walker
population control. As mentioned in section 4.2, this first-order finite difference
approximation restricts the time step τ to

τ ≤ 2
Emax − E0

(5.4)

to avoid a time-step error.

73
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As opposed to DMC and GFMC the Hilbert space in which FCIQMC is expressed
in is the fully anti-symmetric space of Slater determinants formed from a finite
single-particle spin orbital basis set, as discussed in chapter 3. A single Slater
determinant in second quantization is given by

|Ψi〉 = a†φ1a
†
φ2 . . . a

†
φN
|0〉 (5.5)

where a†φi is the fermionic creation operator of an electron in orbital φi, which is part
of a 2M spin orbital single particle basis set. As mentioned in chapter 3 the basis
sets used in this work were the momentum-space and unrestricted Hartree-Fock
basis. As discussed in section 3.1.3, for a complete basis set {φi} every wave function
can be expressed as linear combination

|Φ〉 =
∑
i

ci|Ψi〉 (5.6)

and the lowest energy solution to the eigenvalue problem obtained when the Hamil-
tonian H is expressed in this basis (5.5)∑

j

cj〈Ψi|H|Ψj〉 = E0ci (5.7)

is the exact ground state solution of the system. The idea of the stochastic FCIQMC
algorithm is now to simulate the imaginary-time Schrödinger equation (5.1) in its
first order finite-difference approximation (5.3) through the population dynamics
of an ensemble of particles, called walkers, inhabiting the Slater determinant space
(5.5). By inserting the general state expressed in Slater determinants (5.6) in
the imaginary-time Schrödinger equation (5.1) with the first order finite-difference
approximation (5.3) one obtains

c
(n+1)
i = [1− τ (Hii − ES)] c(n)

i − τ
∑
j 6=i

Hijc
(n)
j . (5.8)

This equation governs the dynamics of the walker evolution with time and if iterated
until convergence the Monte Carlo averages of the number of walkers inhabiting
determinant |Ψi〉 represent the coefficients ci of the FCI ground state wave function

ci = 〈Ni〉
〈Ntot〉

(5.9)

where Ni is the number of walkers on determinant |Ψi〉 and Ntot the total number of
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walkers. Same as in the DMC method (4.2) a diffusional process, implemented as
spawning step of new walkers on different determinants, and a death/cloning
step of walkers mimic the action of (5.8), more thoroughly described below. Addi-
tionally, as was shown by Booth et al. [24] and analyzed by Spencer et al. [55], an
essential ingredient to enable the wave function to converge to the fermionic ground
state is to assign each walker an additional sign property and allow for annihilation
of walkers with different sign occupying the same determinant |Ψi〉. The number
of signed walkers on each component ci in each time step gives an ’instantaneous’
representation of the wave function |Φ〉.

5.1 The algorithm
For FCIQMC calculations in this work the openly available stand-alone FCIQMC
code NECI [1] was used, which was provided by developers Prof. Ali Alavi and
George Booth. The following description of the specific algorithmic implementation
is from [58] and personal communication with the code creators George H. Booth
and Ali Alavi.

The main input to the NECI program is a file containing the one- and two- particle
overlaps of the single particle orbitals of the basis the Hamiltonian is expressed in.
For the Hubbard Hamiltonian in terms of the single particle basis functions φσij they
are given by

〈k|t|l〉 =
∑
ij

tij(φσik)∗φσ
′

jl δσ,σ′ (5.10)

〈jk|lm〉 = U
∑
i

(φσjij )∗(φσkik )∗φσlil φσmim δσj ,σl δσk,σm , (5.11)

with the hopping matrix tij = −t exp(±iAx/y) for nearest-neighbor indices i,j and
zero else.

Additionally, if available, also symmetry information of each single particle orbital
like associated k-points used to allow the application of translational symmetry in
the FCIQMC calculation are given as input.
A NECI calculation is usually started with a single walker with positive sign

residing on the Hartree-Fock (HF) determinant and a high enough value of the
energy shift ES to ensure an exponential walker growth.
Within NECI a main list of occupied determinants specified by the N of 2M

occupied spin orbitals, where N is the number of electrons and M is the number of
single particle spatial orbitals, is stored in bit string integer representation. Similar
to the basis state storage described in the exact diagonalization chapter 2. A second
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integer list stores the walker number, sign and additional information like symmetry
values, and when in use the ’initiatior’ flag, described below. And for decreasing
computational cost the diagonal Hamilton matrix elements Hii of each occupied
determinant are also stored. As only information of occupied determinants is stored,
at no point of the computation vectors of the size of the Hilbert-space need to be
handled.
To simulate eq. (5.8) following set of rules are applied to the set of Nw walkers

each time step [58]:

The spawning step
To simulate the diffusional off-diagonal part of (5.8)

c
(n+1)
i,off = −τ

∑
j 6=i

Hijc
(n)
j , (5.12)

for each walker α on every determinant |Ψi〉 a possible connected determinant |Ψj〉
with probability pgen(j|iα) is randomly chosen. In general a possible connected
determinant of the source determinant |Ψi〉, for a Hamiltonian containing maximal a
two particle term, as the Hubbard Hamiltonian, can differ at most by two occupied
and unoccupied orbitals. For computational reasons the process of finding a possible
connected determinant |Ψj〉 and the calculation of the Hamilton matrix element
〈Ψj|H|Ψi〉, which can still be zero, is disjoint in the NECI implementation.
Actually a walker would have to try to spawn progeny on all connected deter-

minants with probability τ |Hij|, but since this is computationally unfavorable to
implement, each walker only tries to spawn on one connected determinant, modified
by the probability of choosing this specific determinant τ |Hij|/pgen(j|i). The process
of choosing a connected determinant is termed ’random excitation generation’ and
implemented as follows [58]:

In NECI each determinant is represented bitwise by its occupied and unoccupied
single particle orbitals. For the selected source determinant |Ψs〉 two lists containing
the numbers of occupied and unoccupied orbitals, with corresponding symmetry
information, is created. The symmetry information in this case is associated to
the one-particle symmetries of the specific orbitals and can be of spin, point-group
and/or translational type. This information is the same for each walker occupying
|Ψi〉.

The first step of selecting a specific connected determinant is to decide whether a
single psingle or a double pdouble excitation of the occupied single particle orbitals is
considered. The values of psingle/pdouble are determined by ratio of possible single
and doubly excitations. For ergodicity it is not necessary to exactly account for the
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ratio of possible single and double excitation, although being as close as possible is
favorable, only the sum of both processes has to be normalized psingle + pdouble = 1.
Hence specific values for psingle/double, from the Hartree-Fock determinant excitation
possibilities, are set for the whole run.
Single excitation

In the case of a single excitation a specific occupied orbital i from the previously
created list is randomly chosen to excite from with a probability p(i) = 1/N . For the
selected orbital i the number of unoccupied symmetry-compatible orbitals Mallow to
excite to is calculated. For an excitation to orbital a to be symmetry-compatible

Γi ⊗ Γa 3 A1, (5.13)

where A1 is the totally symmetric representation, has to be fulfilled [58].
In the case where no excitation is possible, the next walker is regarded. Otherwise

a compatible orbital a is chosen and the corresponding bit representation is just
given by an exchange of the i and a bit in |Ψs〉 and corresponding fermionic phases
due to the i↔ a exchange have also to be considered. The overall probability of a
specific single excitation is given by

pgen(a|i) = psingle × p(i)× p(a|i) = psingle
NMallow

. (5.14)

Double Excitation
With probability pdouble two distinct occupied orbitals (i,j) are chosen randomly
with probability p(i,j) = 2

N(N−1) to excite from. Due to spin conservation of the
Hamiltonian the first picked unoccupied orbital a depends on the spins of the chosen
occupied orbitals (i,j). If both are of the same spin, orbital a also has to have
this spin, otherwise there is no restriction. For an alike spin σ pair (i,j) there are
M − Nσ possibilities and for unlike spins 2M − N . For more effective sampling
the number δd of unoccupied orbitals a which would not allow any second orbital
b to be picked due to spin and symmetry restrictions is calculated. This allows a
normalized re-picking of a orbitals, which increases the efficiency of the spawning
step. according to [58] the possible symmetry-compatible b orbitals are uniquely
defined through the triplet (i,j; a) through the condition

Γa ⊗ Γb = Γi ⊗ Γj. (5.15)

From the allowed number of b orbitals Mallow(b|a) one is selected at random and
the corresponding probability if the pair (a,b) had been chosen in reversed order is
calculated, since generally Mallow(a|b) 6= Mallow(b|a). The total probability of the
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specific double excitation is given by

pgen(a,b|i,j) = pdouble · p(i,j) · (p(a|i,j)p(b|a,i,j) + p(b|i,j)p(a|b,i,j)) ·
Mallow(a)

Mallow(a)− δd
, (5.16)

where the last factor is due to renormalization if multiple a orbitals are drawn until
there are compatible b orbitals. (5.16) simplifies to

pgen(a,b|i,j) = 2pdouble
N(N − 1)(Mallow(a)− δd)

(
1

Mallow(a|b) + 1
Mallow(b|a)

)
. (5.17)

According to eq. (5.8) the probability to spawn a new walker on the chosen connected
determinant |Ψj〉 is then given by

pspawn = τ |Hij|
pgen(j|iα) (5.18)

and the sign of the new walker is given by

sign(|Ψj〉) = −sign(|Ψi〉)sign(Hij). (5.19)

If the probability (5.18) exceeds 1, the amount of walkers corresponding to the
integer part bpspawnc are spawned definitely and an additional walker with probability
pspawn − bpspawnc.

Matrix elements
Within NECI the calculation of the matrix elements of an Hamilton operator with a
one- and two-electron part Hij happen on the single particle orbital level through
the use of the Condon-Slater rules [38]

〈Ψ |H|Ψ〉 = 1
2

N∑
i<j

(〈ij|ĝ|ij〉 − 〈ij|ĝ|ji〉) +
N∑
i

〈i|ĥ|i〉 (5.20)

〈Ψ |H|Ψ ra〉 =
N∑
i

(〈ai|ĝ|ri〉 − 〈ai|ĝ|ir〉) + 〈a|ĥ|r〉 (5.21)

〈Ψ |H|Ψ rsab 〉 = 〈ab|ĝ|rs〉 − 〈ab|ĝ|sr〉. (5.22)

ĝ denotes the one- and ĥ the two-electron part of a general non-relativistic Hamilto-
nian and

∣∣∣Ψ r(s)a(b)

〉
, as described in section 3.1.3, is the single(double) excited Slater
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determinant compared to |Ψ〉. As mentioned above these overlap integrals of the
single particle orbitals are given as input to the NECI program.

If a spawning attempt was successful in a list, separate from the main walker list,
the newly inhabited determinants with the corresponding number of walkers, sign
and diagonal Hamilton matrix elements are stored.

The death/cloning step
After every walker on a determinant has tried to spawn progeny on a connected
determinant, a second population dynamic step corresponding to the diagonal part
of (5.8)

c
(n+1)
i,diag = [1− τ (Hii − ES)] c(n)

i (5.23)

is carried out. Each walker on a determinant ’tries to die’ with probability

pdeath(i) = τ (Hii − ES) . (5.24)

Walker with a successful death event are immediately removed from the simulation
and do not participate in the later described third ’annihilation’ step of the simulation.
If pdeath < 0 a walker is cloned instead with probability |pdeath|. Cloning events only
occur for ES > Hii so, as later described in section 5.2, the shift parameter ES can
be used to control the total population of walkers. The sign of cloned walkers remain
the same.
A major advantage of the up until now described algorithm is that no commu-

nication between different walkers need to occur, allowing for easy and effective
parallelization of the code.

The annihilation step
But unfortunately this implementation alone would not yet converge to the true
FCI ground state. As shown by Booth et al. [24] a third step, termed ’annihilation’
step, in the algorithm is needed to correctly simulate the master equation (5.8) and
allow it to converge to the true fermionic ground state. As shown by Spencer et al.
[55] without annihilation the evolution of walkers with positive c+

i and negative c−i
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sign occurs according to the coupled differential equations

∂c+
i

∂τ
=
∑
j

(
T+
ij c

+
j + T−ij c

−
j

)
(5.25)

∂c−i
∂τ

=
∑
j

(
T+
ij c
−
j + T−ij c

+
j

)
. (5.26)

T = T+ + T− is the transition matrix from (5.8)

T = −(H − ES), (5.27)

where T+/− now only contains the positive/negative off-diagonal elements. This is
because the sign of a spawned walker depends on the off-diagonal matrix elements
(5.19) and without annihilation adding and subtracting c−i from (5.26) the coupled
equations can be decoupled to

∂c+
i + c−i
∂τ

=
∑
j

(
T+
ij + T−ij

) (
c+
j + c−j

)
(5.28)

∂c+
i − c−i
∂τ

=
∑
j

(
T+
ij − T−ij

) (
c+
j − c−j

)
. (5.29)

And since the largest eigenvalue of T+ + T− is always greater than the largest
eigenvalue of T+ − T− the simulation converges to the c+ + c− solution in the long-
time limit in absence of annihilation [55]. This solution corresponds to the unphysical
additive combination of walker of opposite signs inhabiting the same determinant.
Although it is not a ’bosonic’ solution as in DMC since the anti-symmetric behavior
of the solution is ensured by the formulation in the Slater determinant space.
The annihilation step consists of removing walkers of opposite sign residing on

the same Slater determinant. For the annihilation step communication between the
different walkers is needed, as the list of newly spawned walkers and the original
walker list have to be merged and opposite signed walkers on same determinants
have to be removed.
There is a system specific number of walkers and time needed to ensure enough

occurrences of annihilation processes to allow the true fermionic ground state to
emerge during a simulation. This dependence on annihilation processes to converge
to the true fermionic ground state is the manifestation of the sign problem in the
FCIQMC algorithm.
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5.2 Population dynamics
The preliminary described implementation of the FCIQMC algorithm posses typical
behavior throughout the simulation [24]. Typically a simulation is started with a
single walker with positive sign on the Hartree-Fock determinant. The shift values
ES is kept at a constant value above Hii to ensure exponential walker growth. As
mentioned above, if a large enough system dependent walker population is reached,
the constructive off-diagonal spawning and cloning events and the destructive death
and annihilation events cancel each other. This phase of almost constant walker
number is called the annihilation plateau, during which the correct sign structure of
the ground state wave function emerges through annihilation processes. The number
of walkers in this simulation phase compared to the total Hilbert space size of the
system is an indication for the difficulty of the system to be simulated through
the FCIQMC method [55]. There have to be enough walkers in a well connected
subspace of determinants which contribute significantly to the ground state wave
function. This implies the difficulty of a system is basis dependent. The formulation
of FCIQMC in the discrete basis of Slater determinants increases the efficiency of
the annihilation step significantly compared to first quantized [59] or even earlier
attempts in continuous basis sets for DMC and GFMC [60], [61], [62].
After a system dependent duration the simulation exits this annihilation phase,

when the sign structure of ground state wave function has been agreed on, and a
second exponential growth phase occurs. If the, until now constant, energy shift ES
is not adjusted this second growth is unbound. A constant walker population can
be achieved by varying the shift according to [24]

ES(n) = ES(n− A)− ζ

Aτ
ln
(

Nw(n)
Nw(n− A)

)
, (5.30)

where ζ is a damping parameter to ensure more smooth behavior and A is a predefined
parameter how often ES is updated. This dynamic updating causes the shift value
ES to fluctuate around the true ground state energy E0 causing its mean value to
be an estimation for E0.

Results and analysis for the Hubbard model with this FCIQMC implementation
for different parameters U and both momentum-space and UHF-space single particle
bases are found in section 5.6.
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5.3 The initiator approximation
Shortly after the publication of the FCIQMC algorithm the ’initiator’ approximation
i-FCIQMC was proposed [25]. In this variant an additional restriction is imposed
on the spawning step of the original implementation. The spawning of walkers onto
previously unoccupied determinants is only allowed by a specific set of determinants,
called initiators. Determinants become initiators if the number of walkers occupying
it exceeds a predefined threshold ni and also loose this property if the occupation
drops below this value. The occupied determinants when the simulation is started,
usually only the HF determinant, are set as initiators. Algorithmically this is
implemented in the merging of the new and main walker list in the annihilation step,
by checking a flag for initiator property, if the determinant of the new walker is not
in the main list[58].

The idea of the initiator approach is to avoid the system dependent annihilation
plateau phase in which the correct sign structure of the ground state wave function
emerges. This is achieved by only allowing spawning events of already sufficiently
high occupied determinants, implying that the sign of this determinant already should
be correct. Hence the progeny of walkers from these determinants also should posses
the correct sign for the final ground state wave function. Additionally an incorrect
occupation, of eventually unimportant determinants in the converged ground state,
during the simulation is also suppressed with the initiator approximation.

There is in fact no plateau phase in the i-FCIQMC implementation but a slower
’sign coherent’ initial exponential walker growth up to a fixed maximum walker
number Nmax. The maximum walker number needed in i-FCIQMC calculations to
obtain comparable ground state energies is in most cases substantially smaller as
the height of the annihilation plateau in standard FCIQMC calculations [25], [63].

But at the same time the disregard of specific spawning events between connected
determinants |Ψi〉 → |Ψj〉 is equivalent of applying a truncated Hamiltonian where
the overlap matrix element is set to zero Hij = 0. Hence it restricts the reachable
Hilbert space for low walker number, essentially violating the ergodicity of the
algorithm and leads to a non variational ’initiator error’. In the large walker limit the
error due to the initiator approximation vanishes as eventually all determinants will
become initiators. The only possibility to check if an applied initiator approximation
influences the calculated energy is by checking its behavior with increasing maximum
walker number. Optimally the ground state energy converges with a much smaller
walker number to its correct FCIQMC value.

Results and analysis of the influence of the initiator approximation of the FCIQMC
algorithm applied to the Hubbard model are found in section 5.6.
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5.4 Energy estimators
As mentioned above a possible estimator for the ground state energy is the long-time
limit average value of the applied energy shift 〈Es〉. When the simulation is in
constant walker mode the shift Es oscillates according (5.30) around the ground state
energy E0 if the correct ground state wave function emerged during the simulation.

The second method of energy calculation is the projected energy of the instanta-
neous representation of the evolved wave function |Ψ(τ)〉. For the exact converged
ground state wave function |Φ0〉 the ground state energy would be given by

E0 = 〈Ψ0|
E|Φ0〉︷ ︸︸ ︷
H|Φ0〉

〈Ψ0|Φ0〉
= E0

〈Ψ0|Φ0〉
〈Ψ0|Φ0〉

, (5.31)

where |Ψ0〉 is a single determinant component of |Φ0〉 called reference determinant.
During the simulation an estimator for the ground state energy is then given by

〈Eproj〉 (τ) =〈Ψ0(τ)|H|Ψ(τ)〉
〈Ψ0(τ)|Ψ(τ)〉

=
∑
i

ci(τ)
c0(τ)〈Ψ0(τ)|H|Ψi(τ)〉

=
∑
i

〈N i
w(τ)〉

〈N0
w〉 (τ)〈Ψ0(τ)|H|Ψi(τ)〉, (5.32)

where the instantaneous wave function is expanded in its occupied Slater determi-
nants |Ψi〉 and |Ψ0〉 is a specific highly occupied reference determinant, usually the
HF determinant, but adjustable on the fly during the calculation if another deter-
minant becomes significantly higher occupied. A high walker number is desirable
since the ratio of coefficients ci/c0 is calculated by the number of walkers N i

w/N
0
w

residing on the corresponding determinants. And thus the higher the number of
walkers on the reference determinant, the better the statistics of the measured
quantity. To avoid statistical cancellation the ensemble average of the numerator
and denominator of (5.32) are calculated separately. The matrix elements 〈Ψ0|H|Ψi〉
are calculated according to the Condon-Slater rules (5.22) so only singly and doubly
excited determinants |Ψi〉 from the reference determinant have to be considered.
Since any operator which commutes with H possesses the same eigenvector spectrum,
expectation values of these operator are also calculable with equation (5.32).
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Whereas ground state expectation values of other operators

〈O〉 = 〈Φ0|O|Φ0〉
〈Φ0|Φ0〉

=

∑
ij
〈Ψi|O|Ψj〉cicj∑

i
c2
i

(5.33)

not commuting with H are not possible to calculate within this framework, since
the off diagonal elements Oij corresponding to all determinants ever occupied would
be needed, and not only the current wavefunction representation.

Due to the fact that the energy from the shift 〈Es〉 depends on the whole walker
population and the projected energy estimator 〈Eproj〉 only on the number of walker
of the reference determinant and single and double excitations thereof, these two
values provide two uncorrelated energy estimates [24].

5.5 Error analysis
As in every Monte Carlo method a careful analysis of the statistical error of the
correlated data set is mandatory. The used NECI program [1] automatically applies
a blocking error analysis of the energy shift 〈Es〉 and projected energy 〈Eproj〉
estimators [51].
Opposed to the description in chapter 4 the subsequent configurations during a

Monte Carlo simulation are never completely uncorrelated and this has an effect on
the statistical properties of the obtained estimators. Following [51] the estimator of
the variance σ2(m) of the average value of n measurements xi is given by

σ2(m) = 〈m2〉 − 〈m〉2 , m = 1
n

n∑
i=1

xi. (5.34)

Inserting for m yields

σ2(m) = 1
n2

n∑
i,j

γi,j, (5.35)

with

γi,j = 〈xi xj〉 − 〈xi〉 〈xj〉 (5.36)

being the correlation function of the data set {xi}. The correlation function is
invariant under time translation and hence only dependent on the distance of the
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two data points γi,j = γ|i−j|. This causes eq. (5.35) with t = |i− j| to become

σ2(m) = 1
n
γ0 + 2

n2

n∑
i>j

γt. (5.37)

And since there are (n− 1) terms with t = 1, (n− 2) terms with t = 2 and so on,
the variance estimator is given by

σ2(m) = 1
n2

n∑
i,j=1

γ|i−j| =
1
n

[
γ0 + 2

n−1∑
t=1

(
1− t

n
γt

)]
, (5.38)

The direct evaluation of this quantity is computationally too costly and has to be
calculated approximately. The blocking method for the calculation of the variance
estimator works as follows [51]:
If the data set {xi} for which σ2 has to be calculated is transformed to the half as
big data set {x′i} by averaging over two subsequent values

x′i = x2i−1 + x2i

2 , n′ = n

2 (5.39)

the average value m′ = m of the new data set remains unchanged. Also, since
〈x+ x′〉 = 〈x〉 + 〈x′〉, the correlation function (5.36) of the transformed data set
(5.39) is given by

γ′t =

γ0+γ1

2 , for t = 0.
γ2t−1+2γ2t+γ2t+1

4 , for t > 0,
(5.40)

and hence the variance of the new data set

σ2(m′) = 1
n′2

n′∑
i,j

γ′i,j

= 2
n

γ0 + γ1

2 + 2
4

n/2−1∑
t=1

(
1− 2t

n

)
(γ2t−1 + 2γ2t + γ2t+1)


(with t′ = 2t) = σ2(m) (5.41)

remains unchanged. Since γt ≥ 0 equation (5.38) indicates

σ2(m) ≥ γ0/n (5.42)
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and unless γ1 = 0 γ0/n increases everytime the data set is blocked due to eq. (5.40)
and n′ = n/2. In the limit of repeated blocking transformations the variance estimate
is exactly given by γ0/n [51]. To evaluate γ0 at every blocking step it is approximated
by the naive variance

ct = 1
n− t

n−t∑
k=1

(xk − x)(xk+1 − x), (5.43)

which is a biased estimator for the correlation function γt. Biased because it has an
expectation value of [51]

〈ct〉 = γt − σ2(m) +∆t, with ∆0 = 0, (5.44)

what can be used to eliminate γ0 in (5.42) to obtain

σ2(m) ≥ 〈c0〉
n− 1 . (5.45)

To compute σ2(m) for each blocked data set {xi} the naive variance c0 with (5.43)
is computed and used as an estimate for 〈c0〉 /(n− 1) and this is repeated until the
number of elements of the final available data set n′ = 2 is reached. The values of
c0/(n− 1) converge to its fixed point value with increased blocking of the data set,
which is the estimate for the variance of the data set σ2(m).

5.6 FCIQMC run properties for the 4× 4-square and 18-site
tilted lattice

Standard-FCIQMC
This section deals with the results of the standard FCIQMC implementation without
the initiator approximation applied to the 4× 4 square- and 18-site tilted square-
lattice at half-filling for different values of U with the UHF and momentum-space
basis, also called RHF basis throughout the rest of this chapter. The time-step of
the calculation was set to τ = 0.0001 for all calculations throughout this chapter.
The maximum allowed number of walkers was adjusted individually for each system
to be larger than the system specific annihilation plateau height. The Hilbert-space
size of the 4× 4 system at half-filling is dimH = 165.6 · 106.

Figure (5.1) shows the walker population dynamics (a-b) and total energy obtained
with the projected energy estimator (c-d) for the RHF (left) and UHF (right) basis
for U = 2. As described in section 5.2 the walker population without initiator approx-
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imation shows an initial fast exponential growth until a certain walker threshold, the
so called initiator plateau, is reached. During this phase constructive creation and
destructive annihilation and death process balance each other and the ground state
wave function emerges. After this phase a second exponential growth occurs which
can be regulated by adjusting the global energy shift parameter during simulation
to keep the walker number at a given maximum value. The intermediate walker
growth at the annihilation plateau for the UHF basis in fig. (5.1b) was caused by a
stop and restart of the FCIQMC simulation and has no special meaning.
The walker population and duration in the annihilation plateau indicate the

difficulty to simulate a given system with the FCIQMC algorithm and are given in
table (5.1) for FCIQMC runs in this section.
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Figure 5.1: Walker population dynamics (a-b) and total projected energy estima-
tor (c-d) for the U = 2,4× 4 square lattice for the RHF (left) and UHF (right) basis.
The weird looking growth phase at the annihilation plateau for the UHF basis (b)
happened due to a stop and restart of the FCIQMC simulation.

The standard-FCIQMC results for U = 4 are displayed in fig. (5.3), where
additionally the weight of the HF determinant is shown in the last row (e-f).
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The jump in the total energy estimator for the RHF basis obtained through the
projection to a reference determinant can be explained by the fact that the reference
determinant can be dynamically adjusted during the simulation to be the most
populated one. This happened for the RHF run as can be seen in tile (e) of fig.
(5.3). The corresponding reference energy is the triple excited determinant with
occupied orbitals: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 22). The detailed
results can again be found in table (5.1). Walker population and energy results for
the U = 6 case are displayed in figure (5.2) and can be found in table (5.1).
As seen in figure (5.4) for the investigated range of parameter U there seems

to be a linear increase of the annihilation plateau with U in the RHF basis. In
the UHF basis there seems to be no linear behavior, but to conclude a specific
functional behavior more data points would be needed. In the 4× 4-square lattice
significantly less walkers are needed in the UHF basis as in the RHF basis to reach
the annihilation phase.

0 0.5 1 1.5 2
0

0.5

1

1.5

2x 10
8

τ

w
a
lk
e
r
p
o
p
u
la
ti
o
n

(a) RHF walker population

0 2 4 6 8 10 12
0

2

4

6

8

10

12x 10
6

τ

w
a
lk
e
r
p
o
p
u
la
ti
o
n

(b) UHF walker population

0 0.5 1 1.5 2
−20

−15

−10

−5

0

τ

E

(c) RHF total energy

0 2 4 6 8 10 12
−20

−15

−10

−5

0

τ

E

(d) UHF total energy

Figure 5.2: Walker population dynamics (a-b) and total projected energy estima-
tor (c-d) for the U = 6, 4 × 4 square lattice for the RHF (left) and UHF (right)
basis.
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Figure 5.3: Walker population dynamics (a-b), total projected energy estimator
(c-d) and weight of the highest occupied determinant (e-f) for the U = 4, 4× 4 square
lattice for the RHF (left) and UHF (right) basis.

The second investigated lattice was the previously described 18-site tilted square
lattice with an Hilbert space size of 2.4 · 109 at half filling. For U = 4 the height of
annihilation plateau in the RHF basis is 129.2 · 106 walkers. In the UHF basis even
a maximum number of 500 million walkers was not enough to reach the annihilation
plateau and since this already accounts for 21.2% of the Hilbert space size no further
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Figure 5.4: Number of needed walkers to reach the annihilation phase in the
standard FCIQMC implementation for the 4 × 4-square lattice as function of U
for the RHF and UHF basis. In the investigated parameter U range the walker
population in the RHF basis shows a linear behavior as function of U.

run attempt with a higher walker population was done.
Spencer et al. [55] also investigated the application of the FCIQMC algorithm

to the Hubbard model on the 18-site tilted square lattice in momentum-space
representation. Similar to our results for the 4× 4-square lattice they observed a
linear increase of the walker population at the annihilation plateau with parameter
U . And our plateau height of 129.2 · 106 walkers for the U = 4 case is in good
agreement with their results.

The results of the standard-FCIQMC runs for the square- and tilted square lattice
for the RHF- and UHF-basis for different values of U are summed up in table (5.1).
The simulation on the tilted lattice in the RHF basis was still in the annihilation
phase when this report was written. But as mentioned, an extensive investigation of
this system was done by Spencer et al. in [55].

For the 4×4-lattice the height of the annihilation plateau, and hence the difficulty
to simulate the system with the FCIQMC algorithm, rises with increasing U values.
As seen in fig. (5.4) linearly in the RHF basis. Additionally the number of walkers
needed to reach the annihilation phase is higher and the convergence of the energy
is slower when using the RHF basis compared to the UHF basis.
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Table 5.1: Standard-FCIQMC run results for the 4 × 4-square lattice for U =
{2,4,6} and the 18-site tilted square-lattice for U = 4 for the RHF and UHF basis.
The reference exact energy results for the 4× 4-lattice were obtained through exact
diagonalization.
Lattice U basis walker pop. fraction dimH Eproj ∆E weight
4× 4 2 RHF 4.11 · 106 2.42% -17.96 0.10 0.17

2 UHF 2.00 · 106 1.21% -18.00 0.02 0.50
4 RHF 11.51 · 106 7.95% -13.42 0.20 0.15
4 UHF 6.70 · 106 4.05% -13.61 0.01 0.35
6 RHF 18.57 · 106 11.21% -10.15 0.40 0.12
6 UHF 8.27 · 106 5.99% -10.60 0.05 0.27

18-sites 4 RHF 129.2 · 106 5.57% N/A
4 UHF > 500 · 106 > 21% N/A

Initiator-FCIQMC
The effects of the initiator approximation for the square- and tilted square-lattice for
different values of U are studied in this section. The threshold number of walkers on
a determinant to become an initiator determinant was set to 2. As in the previous
section the simulation time-step was τ = 0.0001. The influence of the initiator
approximation was studies as function of maximum allowed number of walkers, which
was increased in steps: 100 · 103 → 500 · 103 → 1 · 106 → 2 · 106 → 4 · 106 → 8 · 106.

4× 4, U = 2: In fig. (5.5) the controlled walker population (a-b) and averaged
energy shift during the different phases (c-d) for the RHF- (left) and UHF-basis
(right) for the 4× 4-square lattice and U = 2 is displayed. As mentioned in section
5.3 the population dynamics with applied initiator approximation do not posses a
two-stage exponential growth but only one sign coherent, albeit slower, exponential
growth. The spikes in the energy shift in (c-d) are due to the increase of the
maximum walker number during simulation. For the RHF-basis the energy shift
for U = 2 already converges to its final value at a walker population of 500 · 103.
The results for the same settings for the UHF basis are displayed on the right of fig.
(5.5). Also for the UHF basis the averaged energy shift does not change anymore
above 500 · 103 walkers.
The total energy of the i-FCIQMC simulation for the RHF basis ERHF

i has the
same slow convergence to the exact energy Eexact = −18.02 as in the standard
FCIQMC run above. It is also given by ERHF

i = −17.96 for this duration of
simulation. The total energy in the UHF basis for this i-FCIQMC simulation is
given by EUHF

i = −18.02 which is in good agreement with the exact energy.
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Figure 5.5: Controlled maximum number of walkers (a-b) and energy shift (c-d)
for the U = 2, 4 × 4-square lattice i-FCIQMC calculation for the RHF- (left) and
UHF-basis (right). The energy shift for the RHF and UHF basis converges to its
final value already at 500 · 103 walkers

4× 4, U = 4: The results of the i-FCIQMC simulation for U = 4 are displayed in
fig. (5.6). The needed walker population for a converged energy shift in the RHF basis
is 2 ·106 and for the UHF basis 4 ·106. As in the U = 2 case, (5.5), the convergence of
the total energy in the RHF basis, like in the standard FCIQMC implementation, is
very slow. It is given by ERHF

i = −13.46 against the exact energy of Eexact = −13.62.
And as in the U = 2 case and in the standard FCIQMC calculation the total energy
with UHF basis converges much faster to the exact ground state with a value of
EUHF
i = −13.61 versus the exact value of Eexact = −13.62.
4× 4, U = 6: For U = 6 the RHF energy shift does not change anymore above 4

million walkers, whereas the UHF shift is still not converged at 8 million walkers.
Nevertheless the total energy of the UHF run is, with a value of EUHF

i = −10.54
compared to ERHF

i = −10.31, closer to the exact ground state energy of Eexact =
−10.55.
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Figure 5.6: Energy shift for the U = 4, 4× 4-square lattice i-FCIQMC calculations
for the RHF- (left) and UHF-basis (right). The maximum walker number increases
same as in the U = 2 case in fig. (5.5) from 100 · 103 → 500 · 103 → 1 · 106 → 2 · 106.

18-site tilted: As seen in figure (5.7a) already 2 million walkers are sufficient for
the U = 4, 18-site tilted square lattice in the RHF basis for the average shift value
to not change anymore. This accounts for only 0.08% of the total Hilbert space
size of 2.36 · 109 and only 1.6% of the annihilation plateau height of 129.2 · 106

walkers of the system. For the UHF basis 8 million walkers were not enough for
convergence of the average shift value. But as 500 million walkers were not enough to
reach the annihilation plateau phase with the UHF basis in the standard FCIQMC
implementation in this system, a high needed maximum walker number in the
initiator implementation is to be expected.

Different to the 4× 4-square lattice system the convergence properties of the total
energy in the RHF basis are more favorable in the tilted lattice. For this comparably
short run the total energy for the RHF basis is already given by ERHF

i = −17.23
compared to the exact value of Eexact = −17.25 [45]. Whereas the total energy
estimated from the energy shift for the UHF basis is given by EUHF

i = −17.07.
In table (5.2) the results for the initiator error study for the square- and tilted

square-lattice are gathered. It can be seen that, although the number of needed
states to overcome the initiator error in the 4× 4-square lattice is lower for the RHF
basis, the convergence of the total energy is better in the UHF basis. And as seen
for the U = 6 UHF case even if the initiator error is still there its magnitude can
still be very low.
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Figure 5.7: Energy shift for the U = 4, 18-site tilted lattice i-FCIQMC calcula-
tions for the RHF- (left) and UHF-basis (right). The maximum number of walkers
increases now from 100 · 103 → 500 · 103 → 1 · 106 → 2 · 106 up to 4 · 106 in the RHF
case (a) and up to 8 · 106 in the UHF case (b).

Table 5.2: Fraction of Hilbert space needed to overcome the error due to the ini-
tiator approximation. Additionally the fraction of the needed walkers in i-FCIQMC
and the annihilation plateau height in the standard FCIQMC implementation and
the energy difference to the correct ground state energy due to not yet converged
simulations are given.
lattice U basis fraction dimH fraction annihilation plateau ∆E

4× 4 square 2 RHF 0.30% 12.2% 0.06
2 UHF 0.30% 25.0% 0.00
4 RHF 1.21% 17.4% 0.20
4 UHF 2.42% 59.7% 0.01
6 RHF 2.42% 21.5% 0.24
6 UHF N/A N/A 0.01

18-site tilted 4 RHF 0.08% 1.6% 0.02
4 UHF N/A

Single orbital properties
This section is devoted to draw conclusions between the differences of the above
FCIQMC simulations and the corresponding single orbital properties of the basis
used. There are fundamental differences between the RHF and UHF basis on the
single orbital level in the square- and tilted square-lattice. The single orbital energies
of the RHF and UHF basis in both lattice types are displayed in fig. (5.8). As can
be seen the RHF basis in the 4× 4-square lattice has an open-shell configuration, no
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energy gap between the highest occupied and lowest unoccupied orbital, in the half-
filled case and this degeneracy causes an ambiguity of the Hartree-Fock determinant.
All other cases possess a closed-shell configuration in the half-filled case. As can
be seen in all FCIQMC calculations with an open-shell HF configuration the run
qualities are inherently poorer. There are many more equally important excited
determinants, since already the HF determinant is degenerate. So in systems where
the RHF basis possesses an open-shell configuration the UHF basis shows better
simulation properties.
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Figure 5.8: Single orbital energies of the RHF and UHF basis in the square- and
tilted square-lattice.

In fig. (5.9a) the energy gap between the highest occupied and lowest unoccupied
orbital EG of the UHF basis in the half filled case divided by the bandwidth EW of
the whole single orbital spectrum as function of U is displayed. For low values of U
the energy gap tends to zero whereas in the high U limit the ratio converges to 1.
In fig. (5.9b) the mean value of the absolute values of overlap of opposite-spin

orbitals of the UHF basis, the so called spin-contamination as discussed in section
3.1.2, is displayed. It is an indication of the additional symmetry breaking properties
of the UHF- compared to the RHF-basis. For U exactly zero the UHF solution
is equivalent to the RHF solution and hence the opposite-spin wavefunctions are
identical. Which for increasing values of U become more distinct, breaking the
inherent spin-symmetry of the Hubbard Hamiltonian, which explains that the
FCIQMC run properties in the UHF basis deteriorate with increasing U .
As mentioned above for the tilted square lattice there exists a finite value UC

below which the RHF solution is the energetically more favorable one. And hence
the energy gap/bandwidth ratio and spin-contamination possess a constant value
even for the UHF basis below UC , as seen in fig. (5.10c-d).
So although the existence of an energy gap between the highest occupied and

lowest unoccupied orbital seems to be favorable for FCIQMC calculations, increasing



5.6 FCIQMC run properties for the 4× 4-square and 18-site tilted lattice 96

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U

E
G
/
E

W

(a) EG/EW

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

U

|(
Ψ

σ ij
)∗
Ψ

σ ik
|

(b) Spin-contamination

Figure 5.9: (a) Energy gap between highest occupied and lowest unoccupied or-
bital divided by the bandwidth of the energy spectrum as function of U for the
UHF basis in the 4× 4-square lattice. (b) Mean value of the absolute values of the
orbital overlap, the so called spin-contamination, of the UHF basis states.

values with U thereof do not automatically imply better simulation qualities. As at
the same time other orbital properties, as the spin-contamination, deteriorate.
Another defining difference between the two bases is the quality of the approxi-

mations and parameter U range where they coincide. As seen in section 3.2.3 in the
4× 4-lattice the UHF solution is energetically more favorable for all infinitesimal
U > 0, whereas in the 18-site tilted lattice, below a critical value UC = 2.87, the
RHF solution is more favorable, as can be seen in fig. (5.10a). Tile (b) of fig. (5.10)
shows that in the thermodynamic limit lim

L→∞
UC possesses a finite value. In table

(5.3) the energy differences for the RHF and UHF approximation for different U for
each lattice are found. As mentioned in the tilted case there is no difference for U =
2 since it is below UC . Even compared to UHF solution the RHF approximation
gets very inaccurate already at intermediate values of U , implying worse FCIQMC
simulation properties.
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Figure 5.10: Single orbital properties of the UHF basis for the 18-site tilted
square lattice. (a) Energy minimizing spin density difference as function of U. For
U < UC = 2.87 the RHF solution is energetically more favorable. (b) Thermody-
namic limit behavior of the critical UC with an residual value U∞C = 0.56651. The
non-perfect fit behavior is due to numerical inaccuracies. (c) Ratio of energy gap
and bandwidth as function of U. (d) Mean spin contamination value as function of
U.

Table 5.3: Energies of the RHF and UHF approximation for different U on the
square and tilted square lattice.

lattice U EUHF ERHF ∆EHF Eexact

4× 4-square 2 -17.556 -16.0 1.5562 -18.02
4 -12.567 -8.0 4.5666 -13.46
6 -9.3799 0.0 9.3799 -10.55

18-site tilted 4 -15.0279 -14 1.0279 -17.25
6 -10.8453 -5 5.8453 N/A
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Non-optimal UHF-basis
In this section the question is discussed whether there exists a basis with better
FCIQMC run properties between the RHF and UHF solution. The non-optimal
UHF basis is defined by, not finding the energy minimizing spin-density difference
∆nUHF , but by enforcing a certain difference between ↑- and ↓-spin densities ∆n
for each lattice site.
In fig. (5.11) and (5.12a-d) the i-FCIQMC results for the 18-site tilted square

lattice with U = 4 and a maximum number of one million walkers, corresponding to
only 0.04% of the Hilbert space size, for different ∆n values are displayed. On the left
side the total energy calculated with the projected energy estimator 〈E〉proj and on
the right side the proportion of total walkers on the current reference determinant to
calculate the projected energy is shown. When not mentioned explicitly the reference
determinant is always the Hartree-Fock determinant, hence the axis caption ’HF
weight’. A high occupation of the reference determinant ensures better statistical
properties of the projected energy estimator since it reduces noise of the measurement.
And if the highest occupied determinant happens to be the HF determinant the
weight of it is also an indication of how good the basic HF approximation already
describes the interacting system.

In tile (e) of fig. (5.12) the converged energies of the different∆n runs are displayed
and it can be seen, as in the initiator error section above, that the limited number of
walkers is too little for the UHF-basis, and even more the ∆n = 0.5 variant, to yield
good results compared to the exact energy of Eex = −17.25 [45]. But for bases with
∆n ≤ 0.2 and especially the RHF basis already a walker population corresponding
to only 0.04% of the Hilbert space size is enough yield satisfying energy values in
this case.

For the 18-site tilted lattice, tile (g-h) of fig. (5.12) show the energy gap/bandwidth
ratio and spin-contamination of the UHF-like basis as function of spin-density
difference.
The corresponding energy and HF weight results, only for the RHF- and UHF-

basis, for different values of U are displayed in fig. (5.13a-b). In all cases either the
RHF- or UHF-basis yielded the best results and no non-optimal UHF-like basis in
between. Although the energy results for high U values, e.g. U = 10, are similar
in both bases used, as seen in tile (a), the FCIQMC simulation properties are
significantly worse with RHF-basis as seen in tiles (c-d).
As the initiator error study above showed that for the UHF basis a rather high

number of walkers is needed to overcome the initiator error, it is not surprising that
the converged total energy of the U = 10 UHF run with only 1 million maximum
walkers EUHF = −7.87 is not yet in good agreement with the exact ground state
energy of Eexact = −8.07 [45].
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Figure 5.11: U = 4, 18-site tilted square lattice i-FCIQMC total energy and ref-
erence determinant weight (called HF weight generically) results for the RHF- and
non-optimal UHF-basis.
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Figure 5.12: U = 4, 18-site tilted square lattice i-FCIQMC total energy and refer-
ence determinant weight results for the UHF-basis (a-b) and non optimal ∆n = 0.5
basis (c-d). In tile (e) the energy per site of the FCIQMC runs is plotted as a func-
tion of the density difference. The red line corresponds to the exact energy solution
of Eex = −17.25 [45]. (f) shows the weight of the reference determinant and (g)
the energy gap and (h) the spin contamination of the UHF-like basis as function of
density difference ∆n.
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Figure 5.13: (a) Energy per site for the UHF and RHF basis on the 18-site tilted
square lattice as function of U. Exact energy result are given for U = 4 and U =
10 [45]. For values of U < 8 the RHF-basis yields better results but as expected for
larger values of U this behavior switches. The inspected non-optimal UHF bases
always showed worse behavior than the corresponding optimal basis. (b) shows the
weight of the reference determinant for RHF and UHF as function of U. The UHF
weight starts off similar to the RHF basis, but increases again after a slight de-
crease for intermediate U values. In (c-d) the vastly different simulation properties
of the total energy for U = 10 in the RHF and UHF basis are shown. Compared to
the very noisy RHF run the UHF run, although the simulation time is very long,
shows good convergence even for the small used maximum walker number of 106.

Influence of twisted boundary conditions
Although the reasoning behind introducing twisted boundary conditions (TBC)
is only described in the next chapter 6 the effects of them on FCIQMC runs are
analyzed in this section.

The most obvious effect of twisted boundary conditions is the lifting of degeneracies
within the single orbital energies due to shift of the associated k-vectors. In fig.
(5.14) the single orbital energies for both the square and tilted square lattice and
RHF and UHF bases for an arbitrary twist value are displayed. With TBC also the
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RHF basis in the square lattice for half-filling possesses an closed-shell structure, as
every other system.
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Figure 5.14: Lifted degeneracies of single orbital energies due to applied twisted
boundary conditions.

In figure (5.15) the energy and reference determinant weight results of i-FCIQMC
runs with a maximum walker number of 106 for different values of U and twist values
along the x-axis for the RHF and UHF basis in the 18-site tilted square lattice are
shown. As can be seen the RHF results get worse with increasing twist values Φx
compared to the UHF basis.
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Figure 5.15: (a) Energy and (b) reference determinant weight as function of twist
Φx for different values of U for the RHF and UHF basis in the 18-site tilted square
lattice.

This behavior can be explained by the fact that the energy gap in the half-filled
case of the tilted square lattice for the RHF basis decreases with applied twist Φx as
seen in fig. (5.16a). The energy minimizing spin-density difference as function of U
and twist Φx is displayed in fig. (5.16b). It can be seen that for a certain twist value
of Φx = π, corresponding to anti-periodic boundary conditions, the UHF solution is
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the energetically lower one for every U > 0, as in the square lattice with no twist
applied. The energy gap/bandwidth ratio for the UHF basis is displayed as function
of U for different specific twist values in fig. (5.16b). For the ratio and for the spin
contamination of the UHF orbitals, fig. (5.16d), it can be seen that the transition
between UHF and RHF properties as function of U changes from discontinuous to
continuous behavior for a certain value of twist Φx.
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Figure 5.16: Single orbital properties of the RHF and UHF basis in the 18-site
tilted square lattice. (a) Energy gap between highest occupied and lowest unoc-
cupied orbital divided by the width of the energy spectrum as function of applied
twist Φx for the RHF basis. The ratio for RHF case is independent of U, whereas
the ratio for the UHF basis (b) is displayed as function of U for specific twist val-
ues. (c) The energy minimizing density as function of applied twist and parameter
U and the corresponding spin contamination of the UHF basis (d). As can be seen
in (c) the maximal value of UC for the tilted lattice is at zero applied twist and
actually goes to zero for a twist Φx = π corresponding to anti-periodic boundary
conditions.

Fig. (5.17) shows the energy and reference determinant weight of different non-
optimal UHF-bases for no applied twist (blue) and a Φx = 3 twist value at U = 4 in
the 18-site tilted square lattice. It can be concluded that also for twisted boundary
conditions either the RHF- or the UHF- basis is the optimal one and no UHF-like
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basis in between.
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Figure 5.17: (a) Energy per site and (b) reference determinant weight for different
twist values as function of spin-density difference for U = 4 on the 18-site tilted
square lattice.
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Figure 5.18: Single orbital properties for as function of applied twist for the 4× 4-
square lattice. (a) shows the energy minimizing spin-density difference as function
of twist and U. In (b) the ratio energy gap/spectrum width as function of U for
different twists for the UHF basis is shown and in (c) the corresponding spin con-
tamination. The U-independent EG/EW for the RHF basis as function of twist Φx
is displayed in (d).
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In fig. (5.18) the single orbital properties of the 4× 4-square lattice for TBC are
displayed. Opposed to the tilted lattice case, the minimum critical UC = 0 is at zero
applied twist for the square lattice. And the maximum of the energy gap/bandwidth
ratio for the RHF basis is at the anti-periodic Φx = π boundary condition.

Conclusions:
It can be concluded that for the RHF and UHF basis a distinct energy gap between
the highest occupied and lowest unoccupied orbital greatly improves the FCIQMC
simulation properties. And due to the shift of k-vectors for systems with twisted
boundary conditions there are more filling-factors with closed-shell configurations
than in the non-twisted case.

Also in each investigated case either the RHF or the UHF basis possessed better
simulation properties compared to a basis with a non-optimal electron density
difference ∆n.
For closed-shell systems, like the half-filled 18-site tilted lattice, and low values

of U the RHF basis shows better energy convergence and annihilation plateau
height properties compared to the UHF basis. The additional breaking of the spin
symmetry of the Hubbard model in the UHF basis seems to deteriorate FCIQMC
simulation properties in these systems. Simulations in the RHF basis in systems with
open-shell configuration and with increasing values of U get more difficult, meaning
a higher number of needed walkers, worse statistical properties and sometimes
even no convergence of the simulation at all. But in these system where the RHF
basis is in an open-shell configuration, like the half filled 4× 4-square lattice, the
UHF basis provides an improvement concerning simulation properties. But the
use of the UHF basis may become troublesome in systems off half-filling, due to
the fact that the analytic UHF solution is not valid anymore in these systems.
But although the iterative self-consistent calculation becomes more problematic for
bigger lattices, there have been recent advancements in this topic by Xu et al. [64].
Unfortunately there is not even a partially conserved translation symmetry anymore
for the self-consistent UHF solution off half filling.
These problems are topic of ongoing investigations.

5.7 Outlook on larger lattices
The 6 × 6-square lattice system with N↑ = N↓ = 9 electrons, corresponding to a
closed-shell configuration, has an Hilbert space size of 8.9 ·1015. But only a maximum
walker number of one million walkers, corresponding to only 1.1 ·10−8% of the Hilbert
space size, were enough to simulate the system up to U = 4 without a apparent
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initiator error. And for U = 5 and U = 6 from only 5 million walkers upwards
no initiator error was detectable. The total energy and reference determinant
occupation for the U = 1 and U = 4 case are displayed in fig. (5.19). Although the
total energy in the U = 4 case gets noticeable noisier the value it fluctuates around
does not change for a higher number of maximum walkers. The astonishing high
reference determinant weight, which is the HF determinant in this case, of over 98%
in the U = 1 case shows that this system is already good described with the RHF
approximation.
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Figure 5.19: Energy and reference determinant weight of the 6× 6-square lattice
with N↑ = N↓ = 9 for U = 1 (top) and U = 4 (bottom) with 1 million maximum
walkers.

For N↑ = N↓ = 13 in the 6× 6-square lattice up to U = 4 is easily simulated with
a fairly low maximum walker number of 5 million. But for U > 4 a smaller timestep
of τ = 0.00001 and a higher maximum walker number of 10 million upwards was
needed to simulate these systems.
The biggest system simulated with only 1 million maximum walkers was the

8 × 8-square lattice with N↑ = N↓ = 13 at U = 1. The Hilbert space size of this
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system is 1.7 · 1026 meaning only a fraction of 5.8 · 10−19% walkers are sufficient to
simulate this system. The weight of the Hartree-Fock determinant in this system is
also at an extremely high value of 0.95.

The problem is that only systems which are already well described by the Hartree-
Fock approximation, indicated by an high reference determinant weight, are so easily
simulated with the i-FCIQMC method in the RHF basis. For higher values of U
or unfavorable filling factors the simulation time, the needed time step and the
maximum number of walkers increase significantly.
And, as mentioned, although the UHF basis provides an improvement over the

RHF basis in the half-filled 4× 4-square lattice case, the analytic calculation, based
on the anti-ferromagnetic structure of the solution, is not valid off half-filling. And
the self-consistent solutions also has convergence problems for larger lattice sizes
and additionally does not provide the useful translational invariance.



6 Outlook: Drude and superfluid weight
From the response of a system to an applied phase twisting field Φ, manifesting
itself in the ground states energy E0(Φ), conclusions can be drawn if a system is
in a metallic, insulating or superconducting phase [65]. The phase twist can be
interpreted as twisted boundary conditions of the system, meaning a translation of
an electron over the boundaries cause a phase factor in the wavefunction:

TLxx TLyy |Ψ〉 = eiΦxeiΦy |Ψ〉, (6.1)

where TLxx and TLyy is the translation in x/y-direction for the linear number of lattice
sites of a Lx × Ly-lattice and Φx/y is the value of the phase twist.
Disregarding the phase twist in y-axis direction for now and omitting the x-axis

subscript, the twisted boundary conditions can be mapped onto the hopping-matrix
of the Hubbard Hamiltonian by a pseudo-gauge transformation,[66]. Where each
hopping amplitude is modified by a Peierls phase e±iA, with the vector potential
A = Φ

L
being the fraction of the phase twist and the linear lattice size L. With

alternate signs depending on the direction of the electron movement t is transformed
to

−t→ −te±i
Φ
L = −te±iA. (6.2)

Applying this transformation to the hopping parts in x-direction of the Hubbard
Hamiltonian 1.1

H(A) = −t
∑
x,y,σ

(
eiA c†(x+1,y),σc(x,y),σ + e−iA c†(x,y),σc(x+1,y),σ

+ c†(x,y+1),σc(x,y),σ + c†(x,y)σc(x,y+1),σ
)

+ U
∑
i,σ

ni,σni,σ̄, (6.3)

where (x,y) in the hopping part are now the two-dimensional indices of the lattice.
As seen in section 3.2.3 the effect of this phase factor in the hopping matrix t leads
only to an additive shift of the reciprocal lattice vectors in kx direction.

The Drude weight, or charge stiffness, of a system can be obtained from the second
derivative of the ground state energy with respect to the applied phase twist in the
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thermodynamic limit [67],[65]

ρd = lim
L→∞

π

L2
∂2EL

∂A2 . (6.4)

It is the ratio of the mobile charge carrier density to their mass

ρd = πe2 n

m
(6.5)

and the δ-function coefficient of the long wavelength (q → 0) static (ω → 0)
limit of the real part of the optical conductivity [67]. Hence a finite value in the
thermodynamic limit(L→∞) would characterize a zero resistance state, while for
an insulator it would vanish.

It is important to note that the Drude weight has to be obtained from the curvature
of the non-degenerate ground state at zero applied field. But with increasing phase
twist level crossings of the many body eigenstates occur. So one has to adiabatically
follow the ground state energy to the desired phase twist. Adiabatic following means
a slow enough change of outside conditions, so that the system is able to adapt
to them. In this case the system remains in an initial eigenstate if there is a gap
between the corresponding eigenvalue and the rest of the system [68].
If the twist is applied non-adiabatically, since level crossing of the single many

body states occurs, it is not ensured that the system is in the original ground state
at a specific Φ. A possible estimation for the critical phase twist Φc at which the
first level crossing occurs is as follows [65]:

From the second order perturbed Hubbard Hamiltonian (6.3) by expansion of the
Peierls phase factor e±iΦL , an estimate for the change of the ground state energy due
to the phase twist is

E0(Φ)− E0(0) ≈ Φ2 +O(Φ4). (6.6)

While the typical level spacing δE for many-body eigenstates scales as L−d [65],
where d is the dimensionality of the system, in this case d = 2. This leads to an
estimate for the critical phase

Φc ≈ L−1. (6.7)

This means that Φc vanishes in the thermodynamic limit L→∞, which causes the

order of calculating the curvature ∂
2EL

∂Φ2 for a finite system and taking the limit
L→∞ to matter in the calculation of the Drude weight (6.4).
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A possibility to obtain the Drude weight is to calculate the curvature of the ground
state energy for phase twists below the critical Φc ≈ L−1 for finite systems first,

ρLd = π

L2
∂2EL

∂A2 , A <
Φx
L
. (6.8)

and afterwards take the thermodynamic limit

ρd = lim
L→∞

ρLd . (6.9)

If the weight is calculated the other way around, by first taking the thermodynamic
limit of the ground state energies at a finite phase twist

E∞(A) = lim
L→∞

π

L2E
L(A) (6.10)

and afterwards calculating the curvature of the infinite-size limit energies

ρs = ∂2E∞(A)
∂A2 (6.11)

the resulting quantity can be associated with the superfluid weight of the system
[65]. In this case the contributions from the different lowest energy levels, after level
crossing, are being averaged and the curvature of the envelope of them is obtained.
The superfluid weight (6.11) is the ratio of the superfluid density ns and the

electron mass m of a system [65]

ρs = πe2ns
m
. (6.12)

And the superfluid density on the other hand can be related to the penetration
depth λ of the Meissner effect[69]

1
λ2 = 2πnse2

mc2 . (6.13)

The behavior of both the Drude and superfluid weight in the thermodynamic bulk
limit L→∞ gives insight on whether the ground state of the system is insulating,
metallic or superconducting [65]. For an insulator both ρd and ρs are expected to go
to 0. Indicating a resistive behavior with infinite magnetic penetration depth. While
a finite value of ρd and ρs = 0 characterizes a metal, since no expulsion of a magnetic
field occurs. And finally finite values for both ρd and ρs imply a superconducting
ground state with zero-resistance and an expulsion of a magnetic field up to the



6 Outlook: Drude and superfluid weight 111

penetration depth λ.
Additionally it has been shown [70] that the Drude weight, opposed to other

quantities used to draw conclusions on the electronic behavior of a system, e.g. the
compressibility, is less sensitive to finite-size effects. These are the effects from
artificial gaps in the energy spectrum of a system due to its finiteness. Since for
certain system sizes at filling factors corresponding to a closed-shell configuration,
these finite-size gaps can become of the same order of magnitude as gaps of the
thermodynamic limit system responsible for certain electronic behaviors. This
property of the Drude weight is advantageous to our calculations, as it has been
shown in the last chapter 5 that the FCIQMC simulations behave better in systems
with a closed-shell configuration.

The problem of the scaling of the critical phase twist where level crossings occur
with lattice size (6.7) is that the differences in the ground state energies at different
phase twists get very small with increasing lattice sizes. Hence it may become
impossible to reliably calculate the curvature of the energy for larger systems due to
the fact that the energy differences become of the same order of magnitude as the
statistical errors from the Monte Carlo runs. The level crossing between ground state
belonging to different k-sectors can be avoided by use of translational symmetry
[71], possible with both RHF and partially with analytically calculated UHF basis
states. But this does not prevent level crossing of states within specific k-sectors.

A workaround of this problem may be the recent advances of Hetényi [72, 73] to
associate the Drude and superfluid weight, or transport susceptibilities of a system in
general, to eigenstates of the reduced density matrix of a specific order. In [72] it is
shown that the superfluid weight can be associated to eigenstates of the one-particle
reduced density matrix (1-RDM) of the system, due to off-diagonal long range order
(ODLRO) in it. In this case the superfluid weight is given by

ρs = N

1−
∑
j

Rj

 , (6.14)

where N is the number of particles of the system and Rj the weight of the eigenstates
of the one-particle density matrix, the natural orbitals, which are not simultaneously
eigenstates of the one-particle momentum operator to the eigenvalue zero [72].
Further in this paper the two-particle Cooper pairing mechanism, associated with
the Meissner weight, is similarly given by eigenstates of the two-particle reduced
density matrix, due to ODLRO, not simultaneously being eigenstates of the two-
particle momentum operator to the eigenvalue zero.

Hetényi argues that, as it has been proven [74] that if ODLRO exists for a given
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order of the reduced p-particle density matrix it exists for all s-RDM s > p, it is
sufficient to calculate the first finite weight associated with p-RDM. And if p is
of order of the total particle number of the system is can be associated with the
Drude weight and hence regular conductance of the system. Whereas if all weights
associated with reduced density matrices of order p are zero the system can be
classified as insulator [72].
As natural orbital basis states, and hence reduced density matrix eigenstates,

are currently investigated by the group of Alavi as possible basis for FCIQMC
calculations in the Hubbard model [45] the possibility of simultaneous calculation of
quantities for description of electronic transport properties is a promising outlook
for further studies.
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