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Abstract

Radio-Frequency Identification (RFID) technology has gained a lot of attraction over the
last years. As one particular application, RFID tags allowing an unforgeable proof of
origin are an important aid in the struggle against product counterfeiting. Elliptic Curve
Cryptography (ECC) can provide the required secure authentication services and is, due
to the small key sizes, more resource friendly than other public-key systems. This makes
a successful deployment of ECC to RFID tags mandatory.

Designing cryptographic hardware for RFID tags is a challenging task. Circuit size and
power consumption must be minimized in order to attain low production cost and high
reading ranges. Most existing low-resource ECC implementations suffer either from large
circuit sizes or horrid algorithm runtimes. This thesis aims at tackling these problems.

For this reason, a low-resource hardware implementation of the Elliptic Curve Digital
Signature Algorithm (ECDSA) based on the 160-bit prime-field curve secp160r1 is pre-
sented. As a novelty, the Keccak hashing algorithm—selected as the winner of NIST’s
SHA-3 competition in 2012—is integrated. Various new techniques are deployed to max-
imize efficiency, e.g., application of a fixed-base comb method and new point-addition
formulæ based on co-𝑍 notation provide a considerable speed-up of elliptic-curve opera-
tions. The 32-bit datapath contains a 16-bit integer multiplier, which is utilized within a
pipelined multiplication scheme. A (very area efficient) single-port RAM macro is used as
main storage element.

Especially for easily accessible devices like RFID tags, implementation attacks are
a serious threat. Thus, countermeasures aimed at thwarting most common attacks are
added. Most prominently, signature generation is performed in a constant and data-
independent runtime, thereby making attacks based on power or timing analysis more
difficult.

The implementation (including RAM) takes up an area of 63 735µm2 or 12 448 gate
equivalents (GEs) in a 130 nm CMOS process technology. A message signature is generated
within only 140 000 clock cycles, which makes the design both smaller and significantly
faster than previous work. The mean power consumption is 42.7µW at a clock frequency
of 1MHz, thus making it well suitable for passively-powered tags. Interestingly, these
figures can compete with published binary-curve implementations, which are considered
to be more resource friendly.

Keywords: Elliptic Curve Cryptography, Digital Signatures, Hardware Implementation,
ASIC, ECDSA, Keccak, SHA-3, RFID.
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Kurzfassung

Radiofrequenz-Identifikationstechnologie (RFID) findet immer breiteren Einsatz. RFID-
Tags, die fälschungssichere Herkunftsnachweise erlauben, sind eine große Hilfe im Kampf
gegen Produktpiraterie. Elliptische-Kurven-Kryptographie (ECC) stellt die dafür benötig-
ten sicheren Authentifizierungsschemata bereit und ist durch die kleineren Schlüssellängen
ressourcenschonender als andere Public-Key-Systeme. Das macht den Einsatz von ECC
auf RFID-Tags unausweichlich.

Der Entwurf kryptographischer Hardware für RFID-Tags ist alles andere als trivial.
Chipfläche und Leistungsaufnahme müssen minimiert werden um Produktionskosten nied-
rig und Reichweiten hoch zu halten. Bestehende ECC-Implementierungen weisen entweder
eine große Chipfläche oder quälend lange Ausführungszeiten auf. Diese Arbeit nimmt sich
dieses Problems an.

In dieser Diplomarbeit wird eine Hardwareimplementierung des Elliptische-Kurven-
Digitaler-Signaturalgorithmus (ECDSA) basierend auf der 160-Bit-Primkörperkurve
secp160r1 vorgestellt. Als Neuheit wird der Keccak-Hashalgorithmus verwendet, dieser
ging im Jahr 2012 als Gewinner aus dem SHA-3-Wettbewerb hervor. Um eine möglichst
hohe Effizienz zu erreichen werden mehrere neuartige Techniken zum Einsatz gebracht. So
werden zum Beispiel durch Anwendung einer Kammmethode und neuen Punktadditions-
formeln basierend auf Co-𝑍-Notation Kurvenoperationen beschleunigt. Der in den 32-Bit
breiten Datenpfad eingebettete 16-Bit-Multiplizierer wird einem Pipeline-Multiplikations-
schema verwendet. Ein sehr flächeneffizientes Single-Port-RAM-Makro wird als Speicher-
element eingesetzt.

Besonders für leicht zugängliche Geräte wie RFID-Tags sind Implementierungsattacken
eine echte Gefahr. Um ebendiese zu verhindern wurden Gegenmaßnahmen implementiert.
Besonders hervorzuheben ist hier die konstante und datenunabhängige Laufzeit der Signa-
turberechnung. Diese erschwert Attacken basierend auf Leistungsaufnahme- und Zeitmes-
sungen.

Die Implementierung (inklusive RAM), benötigt eine Fläche von 63 735µm2 oder
12 448 Gate-Äquivalente (GEs) in einer 130 nm CMOS-Prozesstechnologie. Die Berech-
nung einer Signatur benötigt nur 140 000 Taktzyklen, womit dieses Design sowohl kleiner
als auch wesentlich schneller als bisherige Arbeiten ist. Die durchschnittliche Leistungsauf-
nahme beträgt 42.7µW bei einer Taktfrequenz von 1MHz, was einen Einsatz in passiven
Tags erlaubt. Diese Werte können es durchaus mit Binärkurvenimplementierungen auf-
nehmen.

Stichwörter: Elliptische-Kurven-Kryptographie, Digitale Signaturen, Hardwareimplemen-
tierung, ASIC, ECDSA, Keccak, SHA-3, RFID.
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Chapter 1

Introduction

Radio-Frequency Identification (RFID) technology is used in a broad variety of applica-
tions, such as supply-chain management, access control, and contactless payment. Basic
RFID systems are restricted to simple tag identification, but there is an ever increasing
demand for secure services. To satisfy them, elaborate cryptographic schemes need to be
applied.

RFID tags are shipped in a very large scale, which makes key distribution in symmetric-
key systems extremely difficult. Public-key cryptography solves this problem, it allows to
equip each tag with a unique key pair. Elliptic Curve Cryptography (ECC) has much
smaller key sizes than comparable public-key systems, which makes it ideal for use on
resource-constrained devices like RFID tags.

With all that said, actual deployment of ECC systems on RFID tags is not triv-
ial. Hardware designers must cope with stringent requirements, especially in the case of
passively-powered tags. These tags draw their energy from the field of a reader device,
which severely limits the available power. Also, to achieve low production, cost the circuit
size must be small. Finally, implementers must also consider implementation attacks.

There already exist several low-resource ECC implementations in the wild. Some are
(relatively) large and power hungry, which makes them not suitable for such constrained
devices. Many others sacrifice computational performance in order to reach their goals;
this often leads to horrible runtimes. In order to achieve somewhat short tag-response
times, the clock frequency must be increased, which has a severe impact on the power
consumption.

This thesis aims at improving this situation. For this reason, a low-resource Ellip-
tic Curve Digital Signature Algorithm (ECDSA) hardware implementation was designed.
Goal was to be smaller and considerably faster than previous work. As a first, theKeccak
hashing algorithm was evaluated in the context of low-resource ECDSA. The outcome of
this work is now presented.

Organization of the Thesis

This thesis is organized as follows. In Chapter 2, an introduction to ECC and ECDSA
is given. Also, efficient algorithms for elliptic-curve operations and finite-field arithmetic
are presented. A small part part is dedicated to cryptographic hash functions and the
Keccak algorithm. The challenges lying in designing cryptographic hardware for RFID
tags are presented in Chapter 3. Additionally, an overview of implementation attacks is
given.

1



CHAPTER 1. INTRODUCTION 2

In Chapter 4, the requirements of the presented design are stated and some basic design
decisions are made. Then, the implementation details are discussed in Chapter 5. It starts
with a description of the datapath and then moves on to modular arithmetic, point-scalar
multiplication, and modular field inversions. Finally, the implemented countermeasures
aimed at thwarting most common implementation attacks are presented. Chapter 6 dis-
cusses the used Keccak architecture and its integration into the design.

In Chapter 7, the detailed implementation results are given. Circuit size, power con-
sumption and algorithm runtime are analyzed and compared to related work. Moreover,
further research suggestions are raised. Finally, in Chapter 8 conclusions are drawn.



Chapter 2

A Primer on ECDSA

In this chapter, an explanation of the Elliptic Curve Digital Signature Algorithm (ECDSA)
is given. First, the very basics of public-key cryptography are discussed in Section 2.1.
Section 2.2 then gives a short introduction to Elliptic Curve Cryptography (ECC). ECC
implementations require efficient finite-field arithmetic, which is explained in Section 2.3.
In Section 2.4, fast elliptic curve point addition formulæ and point-scalar multiplication
algorithms are presented. Finally, Section 2.5 discusses the ECDSA and lists the param-
eters used for this work. Although not directly related to ECC, hashing is an important
part of the ECDSA. Thus, Section 2.6 presents the basics of hash functions and gives
further details on the Keccak hashing algorithm.

2.1 Public-Key Cryptography

The field of cryptography is concerned with techniques that allow secure and authenticated
communication in the presence of an adversary [28]. The typically used communications
model is depicted in Figure 2.1. Two entities, called Alice (A) and Bob (B), want to
communicate over an unsecure channel. It is assumed that an adversary, called Eve (E),
has the capabilities of monitoring and influencing all communications.

There exist two basic types of cryptographic techniques. In symmetric schemes, the
entities both agree on a secret key that is then used by both parties. Commonly used sym-
metric algorithms are the Data Encryption Standard (DES), the Advandced Encryption
Standard (AES), and symmetric authentication algorithms such as HMAC. Symmetric
cryptography suffers from the key-distribution problem, each communicating pair needs
to maintain a separate key. In a system with 𝑛 entities, roughly 𝑛2 keys are required.

Alice Bob

unsecure
channel

Eve

Figure 2.1: Communications model

Alice

eA

Choose dA

Compute eA = f(dA)

Bob

Send

Figure 2.2: Key-pair generation
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CHAPTER 2. A PRIMER ON ECDSA 4

Public-key cryptography (also called asymmetric cryptography) does not suffer from
this problem, but is typically more resource consuming. In asymmetric schemes, each
entity selects a key pair (𝑒, 𝑑), which consists of a private key 𝑑 and a related public key
𝑒. The public key 𝑒 can be transmitted to other parties (e.g., to Bob) over an unsecure
channel like the internet, while the private key 𝑑 is kept secret. The key-pair generation
process is shown in Figure 2.2. The public-key computation must be a one-way function,
i.e., deriving the private key only from the public key must be computationally hard.

There exist three main groups of asymmetric schemes, each is based on a different
mathematical problem. The integer factorization problem is the foundation of probably
the most well-known public-key technique, namely the RSA algorithm. Then there exist
techniques based on the hardness of the discrete logarithm problem, such as the ElGamal
encryption scheme, the Digital Signature Algorithm (DSA), or the Diffie-Hellmann key
agreement. Finally, Elliptic Curve Cryptography (ECC) is based on the elliptic curve
version of the discrete logarithm problem, as will be discussed later.

Public-key cryptography can be used for multiple applications, such as encryption, key
agreement, or digital signatures. The latter is now discussed in greater detail.

2.1.1 Digital Signature Schemes

Digital signatures can be used for message and origin authentication, they can also provide
non-repudiation. Some well known examples of digital signature schemes are the Digital
Signature Algorithm (DSA) and its elliptic curve analogue ECDSA.

Signature schemes work as follows. The signing entity (A) uses a signature generation
algorithm (Sign) with the message 𝑚 and the private key 𝑑𝐴 to compute the signature
𝑠 = Sign(𝑚, 𝑑𝑎). After receiving the message and the signature, the verifying party (B)
uses a signature verification algorithm (Verify(𝑚, 𝑠, 𝑒𝐴)) to validate the signature’s au-
thenticity. This operation requires the signers public key, which the verifier must obtain
in an authenticated fashion. As only the signer is in possession of 𝑑𝐴, the verifier is assured
that indeed A signed this message. Also, the signature 𝑠 is bound to the message, for a
different message 𝑚′ the signature 𝑠 is not valid.

Digital signatures can be used for RFID-tag authentication services. Figure 2.3 shows
a challenge-response authentication protocol which is defined in the ISO 9798-3 standard
[36]. The RFID reader first fetches the tag’s certificate, it contains the tag’s public key
𝑒 and is signed by a tag issuing party. The reader then validates this certificate, if it is
authentic it sends a challenge 𝑐1. The tag also chooses a random nonce 𝑐2, it then signs
the concatenation of both values 𝑐1||𝑐2. Finally, the reader verifies the returned signature.

Reader Tag

Choose random 𝑐1 Choose random 𝑐2
cert𝑡𝑎𝑔

Verify cert𝑡𝑎𝑔
𝑐1

(𝑟, 𝑠) = Sign(𝑐1||𝑐2, 𝑑)
(𝑟, 𝑠), 𝑐2

Verify(𝑐1||𝑐2, (𝑟, 𝑠))

Figure 2.3: Tag authentication protocol
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Such tag-authentication mechanisms can be a big aid in the struggle against product
counterfeiting, as they allow an (ideally) unforgeable proof of origin. Original products can
be fitted with tags, each one featuring its own unique key pair. The tag issuer then signs
the public key and stores the certificate on the tag. A successful protocol execution then
attests that the tag is indeed in possession of the related private key. Hence, it is proven
that the tag was issued by the issuing party, so the product is original. This assumes that
the private key is securely stored on the tag, it must not leak in any way.

2.2 Elliptic Curve Cryptography

Elliptic curves have long been around and are used for multiple applications. In 1985,
Koblitz [45] and Miller [55] independently proposed to use them in asymmetric cryptog-
raphy schemes, thereby giving birth to Elliptic Curve Cryptography (ECC).

One can define point addition and doubling operations on such curves, the set of all
curve points then forms an abelian group under the addition. The doubling and addition
operations can be used to perform so-called elliptic-curve scalar multiplication (ECSM),
i.e., a base point 𝑃 is multiplied with a scalar 𝑘. This can be written as

𝑄 = 𝑘𝑃 =

𝑘⏞  ⏟  
𝑃 + 𝑃 + · · ·+ 𝑃 .

The inverse operation, i.e., finding 𝑘 with given 𝑃 and 𝑄, is (assumed to be) computa-
tionally hard. This so-called Elliptic Curve Discrete Logarithm Problem (ECDLP) is the
security foundation of ECC.

Finite-Field 
Arithmetic

Elliptic-Curve 
Operations

Protocol - 
ECDSA

Figure 2.4: Hierarchy of ECC [81]

ECC implementations can be organized into a
hierarchical structure, as depicted in Figure 2.4.
Elliptic-curve operations, i.e., addition, doubling,
and moreover scalar multiplication, make use of
finite-field arithmetic, hence efficient field compu-
tation schemes are required. Commonly used types
of fields are prime fields F𝑝 and binary fields F2𝑚 .
Then, cryptographic protocols, in this case ECDSA,
build upon the point-scalar multiplication.

The major advantage of ECC over schemes re-
liant on RSA are the considerably smaller key sizes.
For example, a 160-bit prime field curve offers a se-
curity level of 80 bits. In comparison, a 1024-bit RSA modulus is required to achieve the
same level [28]. This makes ECC ideal for low-resource devices, where storage space is
absolutely scarce.

2.3 Prime-Field Arithmetic

Efficient prime-field arithmetic is absolutely vital for designing fast ECDSA implementa-
tions. In this section, first the very basics of prime-field arithmetic are discussed. Then, a
short introduction to multi-precision operations is given and common integer multiplica-
tion algorithms are discussed. Afterwards, two widespread modular reduction algorithms
are presented. Finally, algorithms for computing modular inversions are given.
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Field definition.
Mathematical fields are a set F with two operations, namely addition (+) and multiplica-
tion (×). Fields must fulfill following properties [28]:

1. (F,+) forms an abelian group with an identity denoted by 0.

2. (F,×) forms an abelian group with an identity denoted by 1.

3. The distributive law is in place, i.e., 𝑎+ (𝑏× 𝑐) = 𝑎× 𝑏+ 𝑏× 𝑐.

If the number of elements in F is finite, then it is called a finite field. The number of
elements 𝑞 is then called the order of the field. The order must be a prime power, i.e.,
𝑞 = 𝑝𝑚, where 𝑝 is a prime (called characteristic) and 𝑚 is a positive integer. Fields with
𝑚 = 1 are called prime fields. Fields with 𝑚 ≥ 2 are called extension fields, in particular,
binary fields are extension fields with 𝑝 = 2.

For a prime 𝑝, the corresponding prime field F𝑝 contains all integers in the range
{𝑝−1, . . . , 2, 1, 0}. Addition and multiplication are done modulo 𝑝, i.e., modular reductions
are required to obtain the final result.

2.3.1 Multi-Precision Arithmetic

The used primes are typically long, for ECC they range between 160 and up to over 500
bits. So-called full-precision logic operates on entire field elements at once. However,
due to the large bit sizes this is not an option on low-resource devices. Multi-precision
arithmetic operates on shorter words, which are obtained by splitting the field element
into multiple parts. With a chosen word size 𝑤, an 𝑛-bit integer 𝑎 is split into 𝑡 = ⌈𝑛/𝑤⌉
equal sized words. This is denoted by 𝑎 = (𝑎[𝑡− 1], . . . , 𝑎[1], 𝑎[0]).

A modular addition with multi-precision logic is shown in Algorithm 2.1. If the sum is
greater than the modulus, it must be reduced modulo 𝑝. As 𝑐 < 2𝑝, this can be achieved
by simple subtraction of 𝑝.

Algorithm 2.1: Multi-precision modular addition

Input: 𝑎, 𝑏 ∈ F𝑝, modulus 𝑝
Output: 𝑐 = 𝑎+ 𝑏 mod 𝑝

1 carry = 0
2 for 𝑖 = 0 to 𝑡− 1 do
3 (carry, 𝑐[𝑖]) = 𝑎[𝑖] + 𝑏[𝑖] + carry
4 end
5 𝑐[𝑡] = carry
6 if 𝑐 > 𝑝 then
7 return 𝑐
8 else
9 return 𝑐− 𝑝

2.3.2 Multi-Precision Multiplication

There exist several different widespread techniques for performing multi-precision multi-
plication, i.e., multiplying two large integers using lower width multiplications. Two of
these, namely operand-scanning and product-scanning multiplication, are now discussed,
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especially in respect to their efficiency in hardware implementations. Not further dis-
cussed but still noteworthy are the hybrid method [26], the operand-caching method [35],
Karatsuba’s method [42], or FFT-based multiplications.

Both operand-scanning and product scanning have a quadratic runtime complexity,
exactly 𝑡2 partial products must be computed. The sequence of computation however
differs. The multiplication process can be illustrated as a rhombus, as seen in Figures
2.5 and 2.6 (with the example of 5-word integers). Each line stands for a single word
of operand 𝑎 or 𝑏, each dot represents a multiplication. The multiplication sequence is
denoted by red arrows, on the left side the structure of the algorithm is shown.

Probably the most simple multiplication technique is the so-called operand-scanning
multiplication. When implemented using two loops, the outer loop iterates over the words
of 𝑎, while the inner loop loads each word of 𝑏, multiplies it with the current 𝑎[𝑖] and adds
the result to the intermediate column value. This process is depicted in Figure 2.5. The
intermediate column values are either stored in dedicated registers or in external memory.
The main disadvantage of the latter option is the high number of load and store operations
of intermediate results.

c[0]c[4]c[8]

t

Figure 2.5: Operand-scanning multiplication of 5-word large integers

The product-scanning multiplication performs better in this regard. It follows a column-
wise approach, i.e., column after column of the final result is computed using the equation
𝑐[𝑖] = (𝑐[𝑖 − 1] >> 2𝑤) +

∑︀
𝑗,𝑘:𝑗+𝑘=𝑖 𝑎[𝑗]𝑏[𝑘] (see Figure 2.6). The partial products can

be summed up using a multiply-and-accumulate approach, then no intermediate column
results need to be stored or loaded. The downside is the higher number of load operations
for fetching the operands.

2.3.3 Fast Reduction using Special Primes

Modular reduction after multiplication can be an expensive operation. However, there
exist special primes that allow a fast reduction by using only shifting and addition. Such
primes, also called pseudo-Mersenne primes, can be written as a short sum or difference
of powers of 2.
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c[0]c[4]c[8]

t

Figure 2.6: Product-scanning multiplication of 5-word large integers

The prime 𝑝 used in the secp160r1 curve has this property, as 𝑝 = 2160 − 231 − 1.
An integer 𝑥 > 𝑝 can be reduced as follows. First the integer is split in parts ℎ, ℓ, with
ℓ < 2160, such that 𝑥 = ℎ · 2160 + ℓ. Then, by using the equivalence 2160 ≡ 231 +1 mod 𝑝,
one can rewrite 𝑥 ≡ ℎ · 231 + ℎ + ℓ mod 𝑝. Hence, reduction is achieved by means of
additions and binary shifts (by 31 bits to the left). This process is depicted in Figure 2.7.
If the sum is greater than the modulus 𝑝, another round of reduction must be applied.

H

160

L

H

H <<31

+
H‘ L‘

L

Figure 2.7: Fast reduction in F𝑝

2.3.4 The Montgomery Multiplication

If the modulus does not have any special form, then other reduction algorithms need to
be used. Noteworthy examples are the Montgomery multiplication scheme [56] and the
Barret reduction [5], the former is now discussed in greater detail.

The Montgomery multiplication performs operations on representatives �̄� = 𝑥𝑅 mod
𝑁 , with the modulus 𝑁 and a chosen 𝑅 > 𝑁 . The set of representatives is from now
on also called Montgomery domain. The Montgomery product, denoted by MonPro(�̄�, �̄�),
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is the efficient computation of �̄��̄�𝑅−1 mod 𝑁 . Thus, MonPro(�̄�, �̄�) = �̄��̄�𝑅−1 mod 𝑁 =
𝑎𝑏𝑅 mod 𝑁 = 𝑐, with 𝑐 = 𝑎𝑏.

Let 𝑅 > 𝑁 and 𝑁 ′ = −𝑁−1 mod 𝑅. The Montgomery multiplication is then carried
out as listed in Algorithm 2.2. It contains both division and modular reduction by the
chosen 𝑅. To make these operations simple, typically 𝑅 = 2𝑤, where 𝑤 denotes the
processor word size. For a more in-depth description of the algorithm see [56].

Algorithm 2.2: Montgomery multiplication scheme [56]

Input: 𝑎, 𝑏
Output: MonPro(𝑎, 𝑏) = 𝑎𝑏𝑅−1 mod 𝑁

1 𝑇 = 𝑎𝑏;
2 𝑚 = (𝑇 mod 𝑅)𝑁 ′ mod 𝑅;
3 𝑡 = (𝑇 +𝑚𝑁)/𝑅;
4 if t ≥ N then
5 return t - N ;
6 else
7 return t ;
8 end

The value of 𝑡 ≡ 𝑎𝑏𝑅−1 mod 𝑁 , but is in range 𝑡 < 2𝑁 . Thus a conditional subtraction
is required to retrieve the final result. This subtraction can be avoided, as first shown by
Walter [75, 76]. His method was later analyzed and improved by Hachez and Quisquater
[27] and Örs et al. [63]. They modify the algorithm to allow usage of operands 𝑎, 𝑏 < 2𝑁 ,
thus the previous result 𝑡 can be directly used as input for the next multiplication. This
is achieved by increasing the lower bound of 𝑅.

Transforming integers to the Montgomery domain and back is rather expensive, so the
Montgomery multiplication scheme is not very efficient for single multiplications. However,
the transformation is required only once when part of a larger computation, such as
inversion by exponentiation.

Efficient implementation.
The Montgomery multiplication method executes two integer multiplications, 𝑎𝑏 and 𝑚𝑁 ,
with the operands 𝑎, 𝑏 and the modulus 𝑁 . There exist several possibilities to combine
the multiplications and integrate the computation of 𝑚, as discussed by Koç et al. [46].
The Finely Integrated Product Scanning (FIPS) approach is relevant to this work and will
be presented.

One simple optimization applies to the computation of 𝑚. As first noted by Dussé and
Kaliski [19], the reduction process proceeds word by word, i.e., one can write
𝑚[𝑖] = 𝑇 [𝑖]𝑛′

0 mod 2𝑤, with 𝑛′
0 = 𝑛′ mod 2𝑤 and 𝑤 the processor word size. This replaces

a full-size multiplication with a few single-word ones.
The Finely Integrated Product Scanning (FIPS) approach interleaves computation of

𝑎𝑏 and 𝑚𝑁 by performing two multiplications in the inner loop, i.e., it switches between
multiplication and reduction after each step. Algorithm 2.3 illustrates this approach. acc
denotes an accumulator register, acc𝑤 references the 𝑤 low-order bits of the accumulator.
The final subtraction is not shown.
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Algorithm 2.3: Finely Integrated Product Scanning (FIPS)

Input: a, b
Output: t

1 s = l/w;
2 for i=0 to s-1 do
3 for j=0 to i-1 do
4 acc = acc + a[j]b[i-j];
5 acc = acc + m[j]N[i-j];

6 end
7 acc = acc + a[i]b[0];
8 m[i] = acc𝑤 n′0 mod 2𝑤;
9 acc = acc + m[i]n[0];

10 acc >>= w;

11 for i=s to 2s-1 do
12 for j=i-s+1 to s-1 do
13 acc = acc + a[j]b[i-j];
14 acc = acc + m[j]n[i-j];

15 end
16 t[i] = acc𝑤;
17 acc >>= w;

18 end

19 end

2.3.5 Inversion in Prime Fields

In a prime field F𝑝, the inverse of an element 𝑎, denoted by 𝑎−1 mod 𝑝, is an integer that
fulfills 𝑎 · 𝑎−1 ≡ 1 mod 𝑝.

Probably the most well-known inversion method is the extended Euclidean algorithm.
As the name implies, it is an extension to the Euclidean algorithm, which computes the
greatest common divisor of two integers. The binary inversion algorithm [28] is a deviation
of this method using only shifts and subtractions. Another widely used inversion algorithm
is the Montgomery inversion, it is based on the Montgomery multiplication scheme. Both
the extended Euclidean algorithm and the Montgomery inversion scheme do not feature a
constant, i.e., operand independent, runtime.

Inversion by exponentiation, which is based on Fermat’s little theorem, does offer this
treat, but is typically slower. Fermat’s little theorem (not to be confused with the Fermat’s
famous last theorem) states that 𝑎𝑝 ≡ 𝑎 mod 𝑝 for each prime 𝑝 and integer 𝑎. If 𝑎 is not
a multiple of 𝑝, then there exists an 𝑎−1 mod 𝑝. By multiplying both sides of the theorem
with 𝑎−2 mod 𝑝 one gets 𝑎𝑝−2 ≡ 𝑎−1 mod 𝑝, i.e., the inverse can be calculated by raising
𝑎 to the power of 𝑝 − 2. The runtime of even the most basic exponentiation algorithms
is only dependent on the exponent, which is fixed in this case. Thus, the inverse can be
retrieved in constant time. A very basic modular exponentiation algorithm is discussed in
the following.

Modular exponentiation.
A straight-forward binary multiply-and-square exponentiation (Algorithm 2.4) requires
|𝑒| − 1 field squarings and HW(e)− 1 field multiplications, where 𝑒 denotes the exponent,
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|𝑒| its bit length, and HW(𝑒) its Hamming weight. The Hamming weight of an integer is
defined as the number of its non-zero digits, for a binary representation this is equal to
the number of 1s. Sliding window algorithms trade off memory for speed and require a
costly precomputation phase. Similarly to comb methods (Section 2.4.5), for a specified
window size 𝑤 they precompute and store all 𝑎𝑥 = (1 𝑎𝑤−2 . . . 𝑎0)𝑥, with 𝑎𝑖 ∈ {0, 1} and
0 ≤ 𝑖 < 𝑤 − 1. The exponent is then scanned, a multiplication is carried out whenever a
window match occurs. The squaring and multiplication sequence is thus computed online
and on-the-fly.

Algorithm 2.4: Left-to-right binary square-and-multiply exponentiation method

Input: 𝑒 = (𝑒𝑛−1, . . . , 𝑘0), 𝑥
Output: 𝑥𝑒

1 𝑅← 0;
2 for i = n-1 downto 0 do
3 𝑅← 𝑅2;
4 if e𝑖 = 1 then 𝑅← 𝑅× 𝑥;

5 end
6 return 𝑅;

2.4 Elliptic-Curve Arithmetic

Elliptic curves are a special form of algebraic curves. An elliptic curve 𝐸 is usually defined
over a field F, e.g., over the real numbers R or over finite prime or binary fields. This can
be denoted by 𝐸/F, i.e., the curve 𝐸 is defined over the underlying field F. A curve 𝐸 is
typically defined by a short Weierstrass equation

𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏 (2.1)

with some 𝑎, 𝑏 ∈ F. Pairs of (𝑥, 𝑦) fulfilling this equation are said to be points 𝑃 on the
curve 𝐸, the set of all points on a curve is denoted by 𝐸(F).

2.4.1 Basic Curve Arithmetic

One can define a point-addition operation on elliptic curves using the cord-and-tangent
rule. This addition can be best explained geometrically.

As illustrated in Figure 2.8a, two points 𝑃,𝑄, with 𝑃 ̸= 𝑄, can be added with the
following method. Draw a straight through both points, this line intersects the curve at a
third point. This point is mirrored at the 𝑥-axis to retrieve the sum 𝑅 = 𝑃 +𝑄.

Point doubling is defined as follows. Draw the tangent of the point 𝑃 , just like earlier
this line intersects the curve at a third point. This point is mirrored at the 𝑥-axis to
retrieve the double 𝑅 = 2𝑃 . This is shown in Figure 2.8b.



CHAPTER 2. A PRIMER ON ECDSA 12

y

x

P

Q

R

(a) Addition 𝑃 +𝑄 = 𝑅
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x
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R

(b) Doubling 2𝑃 = 𝑅

Figure 2.8: Example of point addition and doubling on curve 𝑦2 = 𝑥3 − 2𝑥+ 3 over R

For curves in short Weierstrass form, the point doubling operation can be expressed as
follows. Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸,𝑄 = (𝑥2, 𝑦2) ∈ 𝐸 where 𝑃 ̸= 𝑄. Then 𝑅 = 𝑃 +𝑄 = (𝑥3, 𝑦3)
with

𝑥3 =

(︂
𝑦2 − 𝑦1
𝑥2 − 𝑥1

)︂2

− 𝑥1 − 𝑥2 and 𝑦3 =

(︂
𝑦2 − 𝑦1
𝑥2 − 𝑥1

)︂
(𝑥1 − 𝑥3)− 𝑦1.

The doubling operation is defined as follows. Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸, where 𝑃 ̸= −𝑃 .
Then 𝑅 = 2𝑃 = (𝑥3, 𝑦3) with

𝑥3 =

(︂
3𝑥21 + 𝑎

2𝑦1

)︂
− 2𝑥1 and 𝑦3 =

(︂
3𝑥21 + 𝑎

2𝑦1

)︂
(𝑥1 − 𝑥3)− 𝑦1.

The set 𝐸(F) forms an abelian group under this addition operation. Groups require
a neutral element (an identity), thus the so-called point at infinity 𝑃∞ is included. This
point is neutral to addition, hence 𝑃 + 𝑃∞ = 𝑃∞ + 𝑃 = 𝑃 , for all points 𝑃 ∈ 𝐸(F).

Points 𝑃 can be negated by mirroring them at the 𝑥-axis, i.e., by negating the 𝑦
coordinate. Hence, with 𝑃 = (𝑥, 𝑦), the negative −𝑃 = (𝑥,−𝑦). Note that 𝑃 + (−𝑃 ) =
𝑃∞.

2.4.2 Projective Coordinates

The doubling and addition formulæ presented in the previous section contain divisions.
For prime-field curves this translates to a multiplication with the modular multiplicative
inverse of the divisor. Field inversions are expensive in terms of runtime. The use of
so-called projective coordinates allows to avoid them.

One can represent the two-dimensional points (𝑥, 𝑦) using 3 integers (𝑋,𝑌, 𝑍), called
projective coordinates. The equivalence relation ∼ of points can be defined as

(𝑋1, 𝑌1, 𝑍1) ∼ (𝑋2, 𝑌2, 𝑍2) if 𝑋2 = 𝜆𝑐𝑋1, 𝑌2 = 𝜆𝑑𝑌1, 𝑍2 = 𝜆𝑍1 for any 𝜆 ∈ F𝑝

Both (𝑋1, 𝑌1, 𝑍1) and (𝑋2, 𝑌2, 𝑍2) are then different representatives of the same curve
point. For each projective point (𝑋1, 𝑌1, 𝑍1) the representative (𝑋/𝑍𝑐, 𝑌/𝑍𝑑, 1) allows a
direct mapping of projective coordinates to affine points, and vice versa.
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Out of the set of projective coordinates, homogeneous coordinates with 𝑐 = 𝑑 =
1 and Jacobian coordinates with 𝑐 = 2, 𝑑 = 3 are the most widespread. Point-scalar
multiplications are then carried out entirely in projective coordinates, in the end a single
inversion 𝑍−1 is required to retrieve the affine result (𝑥, 𝑦) = (𝑋𝑍−𝑐, 𝑌 𝑍−𝑑). In the
next section, efficient point addition formulæ are presented .They aim at minimizing the
number of required field multiplications and squarings.

2.4.3 Efficient Addition Formulæ

There exists a broad range of efficient point addition and point doubling formulæ utilizing
all sorts of different projective coordinates. The runtime of these algorithms is typically
measured in necessary field multiplications (M) and squarings (S), additions and subtrac-
tions have a much lower runtime and are hence excluded from a simple time analysis.
Another important factor is the minimum number of required field registers, i.e., the min-
imum memory requirements. Here some caution is required, most authors assume the
availability of in-place multiplication. If only out-of-place multiplication is available, the
number might be higher.

For a comprehensive list of addition formulæ for all sorts of different curves and pro-
jective coordinates, see the Explicit-Formulas Database by Bernstein and Lange [6]. For
curves in short Weierstrass form and Jacobian coordinates, the fastest listed doubling
algorithm requires 3M + 5S. For a mixed Jacobian-affine addition, where one point is
represented in Jacobian and the other in affine coordinates, the fastest formula takes 7M
+ 4S. A doubling-addition 2𝑃 + 𝑄, i.e., performing a doubling immediately followed by
an addition, takes 10M + 9S when using these formulæ.

In 2007, Meloni introduced the so-called co-𝑍 addition formulæ [54], which are based
on Jacobian coordinates. He noticed that two points 𝑃,𝑄 sharing the same 𝑍 coordinate
can be added in only 5M and 2S (Algorithm 2.5). The key observation is that this addition
yields an alternative representation of the input 𝑃 that shares the 𝑍 coordinate with the
result 𝑃 +𝑄, i.e., point 𝑃 is updated to 𝑃 ′ = (𝑋1(𝑋2−𝑋1)

2, 𝑌1(𝑋2−𝑋1)
3, 𝑍(𝑋2−𝑋1)).

Using this method in context of a point-scalar multiplication requires some work, it must
be ensured that in each step the added points share the 𝑍 coordinate.

Algorithm 2.5: Meloni’s co-𝑍 addition [54]

Input: 𝑃 = (𝑋1, 𝑌1, 𝑍), 𝑄 = (𝑋2, 𝑌2, 𝑍)
Output: 𝑃 +𝑄 = (𝑋3, 𝑌3, 𝑍3), 𝑃

′ = (𝐵,𝐷,𝑍3)
1 𝐴 = (𝑋2 −𝑋1)

2; 𝐵 = 𝑋1𝐴;
2 𝐶 = 𝑋2𝐴; 𝐷 = (𝑌2 − 𝑌1)

2;
3 𝑋3 = 𝐷 −𝐵 − 𝐶;
4 𝑌3 = (𝑌2 − 𝑌1)(𝐵 −𝑋3)− 𝑌1(𝐶 −𝐵);
5 𝑍3 = 𝑍(𝑋2 −𝑋1);

Co-𝑍 doubling-addition.
Goundar et al. [25] further analyzed the co-𝑍 addition and introduced a co-𝑍 doubling-
addition. This operation computes 2𝑃 + 𝑄 and yields an updated representation of the
input point 𝑄 using 9M and 7S and a minimum of 8 field registers. Using this operation
one can construct co-𝑍 versions of some standard ECSM algorithms, like left-to-right
signed-digit algorithms or Joye’s method.
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The co-𝑍 doubling-addition algorithm can be easily adapted to a more general case,
where the co-𝑍 requirement of the operand points is dropped and instead the point
𝑄 = (𝑥2, 𝑦2) is given in affine coordinates. Then the first step is to compute a co-𝑍
representation of 𝑄, i.e., 𝑄′ = (𝑥2𝑍

2, 𝑦2𝑍
3, 𝑍), which takes an additional 3M and 1S.

There is no need to retrieve an updated representation of 𝑄 at the end of the algorithm,
skipping these operations saves 1M and 1S. Hence, the total cost is 11M + 7S.

Longa and Miri [52] followed a different approach, but ended up with very similar
results. They observed that a mixed Jacobian-affine addition 𝑃 +𝑄 (7M + 4S) yields an
alternative co-𝑍 representation of 𝑃 . Then it is possible to add (𝑃 + 𝑄) + 𝑃 = 2𝑃 + 𝑄
using a standard co-𝑍 addition (5M + 2S). When merging these additions one can trade
2S by 1M, thus the total runtime is 11M + 7S. The resultant formulæ are shown in
Algorithm 2.6, they can be implemented using only 7 field registers (Algorithm 5.2).

Algorithm 2.6: EC doubling-addition according to [52]

Input: 𝑃 = (𝑋1, 𝑌1, 𝑍1), 𝑄 = (𝑋2, 𝑌2)
Output: 2𝑃 +𝑄 = (𝑋4, 𝑌4, 𝑍4)

1 𝛼 = 𝑍3
1𝑌

2 − 𝑌1; 𝛽 = 𝑍2
1𝑋2 −𝑋1;

2 𝑋 ′ = 4𝑋1𝛽
2; 𝑌 ′ = 8𝑌1𝛽

3;
3 𝑍 ′ = (𝑍1 + 𝛽)2 − 𝑍2

1 − 𝛽2;
4 𝜃 = 𝑋3 −𝑋 ′ = 4(𝛼2 − 𝛽3 − 3𝑋1𝛽

2);
5 𝜔 = 𝑌3 − 𝑌 ′ = 𝛼2 + 𝜃2 − (𝛼+ 𝜃)2 − 16𝑌1𝛽

3;
6 𝑋4 = 𝜔2 − 𝜃3 − 2𝑋 ′𝜃2;
7 𝑌4 = 𝜔(𝑋 ′𝜃2 −𝑋4)− 𝑌 ′𝜃3;
8 𝑍4 = 𝑍 ′𝜃;
9 return (𝑋4, 𝑌4, 𝑍4)

Both Longa’s scheme and Goundar’s (modified) method have a runtime of 11M + 7S.
Another thing they have in common is that both compute (𝑃 +𝑄) + 𝑃 , i.e., they replace
the doubling operation in 2𝑃 +𝑄 with a second addition. This has a downside, as it must
always be ensured that 𝑃 ̸= ±𝑄.

2.4.4 Point-Scalar Multiplication

The elliptic curve scalar multiplication (ECSM) is the basis of all elliptic curve crypto-
graphic algorithms and protocols. A base point 𝑃 is multiplied with a scalar 𝑘 with bit
length 𝑚 = |𝑘|, which is denoted by 𝑄 = 𝑘𝑃 . The smallest 𝑛 satisfying 𝑛𝑃 = 𝑃 is called
the order of the point 𝑃 .

The runtime of point-scalar multiplication algorithms is measured in required additions
(A) and doublings (D). It is typically the most expensive operation for cryptographic
protocols, so fast and efficient techniques are vital.

The left-to-right binary double-and-add method (Algorithm 2.7) is one of the most
simple scalar multiplication algorithms. The intermediate 𝑅 is first initialized to the point
at infinity 𝑃∞. Then the scalar 𝑘 is scanned from left-to-right, for each digit a doubling is
performed, which is followed by an addition of the base point 𝑃 if the scalar digit equals
1. The expected runtime is 𝑚D and HW(𝑘)A.

While very simple, the algorithm has one major flaw. By means of an SCA it is
relatively easy to detect if the point addition is carried out, i.e., if the scalar bit 𝑘𝑖 equals
1. A single power trace might be sufficient to reveal the entire scalar. The double-and-add
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Algorithm 2.7: Left-to-right binary double-and-add method

Input: 𝑘 = (𝑘𝑚−1, . . . , 𝑘0), 𝑃
Output: 𝑄 = 𝑘𝑃

1 𝑅← 𝑃∞;
2 for 𝑖 = 𝑚− 1 downto 0 do
3 𝑅← 2𝑅;
4 if 𝑘𝑖 = 1 then 𝑅← 𝑅+ 𝑃 ;

5 end
6 return 𝑅;

always approach (see Section 3.2.1) tries to solve this problem with dummy operations,
but is susceptible to fault attacks.

There exist highly regular algorithms not relying on dummy operations, e.g., Joye’s
right-to-left algorithm [38] or the Montgomery ladder [40, 57]. Especially the latter is a
very widespread scalar-multiplication technique, it is shown in Algorithm 2.8. It has a
highly regular structure, which makes it ideal for SCA resistant implementations. The
runtime of both Joye’s method and the Montgomery ladder is 𝑚 doublings and additions.

Algorithm 2.8: Montgomery ladder [57]

Input: 𝑘 = (𝑘𝑚−1, . . . , 𝑘0), 𝑃
Output: 𝑄 = 𝑘𝑃

1 𝑅0 ← 𝑃∞;
2 𝑅1 ← 𝑃 ;
3 for 𝑖 = 𝑚− 1 downto 0 do
4 𝛼← 𝑘𝑖;
5 𝑅1−𝛼 ← 𝑅1−𝛼 +𝑅𝛼;
6 𝑅𝛼 ← 2𝑅𝛼;

7 end
8 return 𝑅0

A possible way of speeding up the ECSM, especially if the base point 𝑃 is not fixed
and some memory is available, are window methods. The most simple window algorithms
typically precompute all 𝑎𝑃 , with 0 ≤ 𝑎 < 2𝑤 and for a chosen window size 𝑤, and store
these points in memory. They then proceed by scanning the scalar from left to right, 𝑤
bits at a time are processed by performing 𝑤 doublings and 1 addition of a precomputed
point. When excluding the cost for precomputation, the algorithm requires only𝑚/𝑤 point
additions. However, the number of point doublings does not decrease when compared to
the more simple algorithms.

2.4.5 ECSM using Fixed-Base Comb Methods

For algorithms featuring a fixed base point 𝑃 , e.g., ECDSA signature generation, the
ECSM can be sped up considerably by applying so-called comb methods. First proposed
by Lim and Lee [50], they require an (offline) precomputation of several points that need
to be stored in a (read-only) memory.
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Basic comb methods, e.g., [14], proceed as follows. Let w be the chosen width of the
comb and ℓ = ⌈𝑚/𝑤⌉. Then one needs to precompute

[𝛼𝑤−1, . . . , 𝛼1, 𝛼0]𝑃 = 𝛼𝑤−12
(𝑤−1)ℓ𝑃 + · · ·+ 𝛼𝑤−12

ℓ𝑃 + 𝛼𝑤−1𝑃

for all possible bit strings (𝛼𝑤−1, . . . , 𝛼1, 𝛼0) and store all 2𝑤 − 1 points in a (read-only)
memory. This precomputation is very expensive, so it can only be done offline and for a
fixed base point.

For the actual scalar multiplication, comb methods rearrange the scalar in a matrix,
with w equal sized parts forming the rows of length ℓ. This is shown in Figure 2.9, where
the length 𝑚 of the scalar is 160 and the width 𝑤 is set to 4. The scalar matrix is then
processed column-wise from left-to-right in a simple double-and-add fashion. Processing
time is cut by a factor of 𝑤 when compared to a standard multiplication algorithm. Note
that also the number of doublings is decreased.

w = 4

l = 160/w = 40

160

Figure 2.9: Rearranging the scalar for comb methods

Comb methods are somewhat similar to window algorithms, both require a precom-
putation of several points and process 𝑤 bits of the scalar 𝑘 at once. However, there are
also some major differences. Comb methods rearrange the scalar 𝑘 into a matrix and
then process its columns, window methods simply scan the scalar from left to right. For
window methods the number of doublings does not decrease, however, precomputation
is much cheaper and can be done online. Hence, window methods are also applicable to
non-fixed base protocols, e.g., ECDSA signature verification.

Just like the binary double-and-add algorithm, the simple comb method is not secure
against SCA. If all bits of a column are equal to 0, then the point addition needs to be
skipped. This behavior is easily detectable in an SPA and reveals 𝑤 bits of the scalar
per occurrence. The comb method of Hedabou et al. [29] (Algorithm 2.9) thwarts this
attack scenario and also helps saving storage space. It uses the Zeroless Signed Digit
(ZSD) recoding scheme [25] for representing the scalar, i.e., the scalar is represented using
only digit values of 1 and -1. All-zero columns can obviously not occur when using a
zeroless recoding scheme, thus the addition step is always executed and the side channel
is eliminated.

A detailed view on the Zeroless Signed Digit (ZSD) recoding.
The ZSD representation is based on the observation that 1 = 2𝑤 −

∑︀𝑚−1
𝑖=0 2𝑖, ∀𝑤 > 0.

The binary representation of the scalar is 𝑘 =
∑︀𝑚−1

𝑖=0 𝑘𝑖2𝑖, with 𝑘𝑖 ∈ {0, 1} and 𝑛 the bit
length, and let 𝑘 be odd (𝑘0 = 1). Based on the mentioned observation each 𝑏-bit block
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Algorithm 2.9: Hedabou’s comb method [29]

Input: 𝑘 = (𝑘𝑛−1, . . . , 𝑘0), 𝑃, 𝑤
Output: 𝑄 = 𝑘𝑃

1 𝑙← ⌈𝑛/𝑤⌉;
2 𝜅← 𝑍𝑆𝐷(𝑘);
3 𝑅← 0;
4 for 𝑖 = 𝑙 − 1 downto 0 do
5 for j = 0 to w-1 do 𝛼𝑖 = 𝜅𝑗×𝑙+𝑖;
6 𝑠 = 𝛼𝑤−1;
7 𝑅← 2𝑅+ 𝑠× [1, 𝑠𝛼𝑤−2, . . . , 𝑠𝛼0]𝑃 ;

8 end
9 return 𝑅0

of 000 . . . 01 can be replaced by 𝑏 signed bits 11̄1̄ . . . 1̄1̄, with 1̄ = −1. Thus, the ZSD
representation of 𝑘 =

∑︀𝑚−1
𝑖=0 𝜅𝑖2

𝑖, 𝜅𝑖 ∈ {1,−1} is defined as [25]:

𝜅𝑖 =

{︃
1 if 𝑘𝑖−1= 1

−1 if 𝑘𝑖−1= 0
for 0 ≤ 𝑖 ≤ 𝑛− 2

𝜅𝑚−1 = 1

This representation can be obtained by simply shifting 𝑘 to the right and reinterpreting
all 0 bits as (-1). The hardware cost of obtaining the ZSD representation is therefore almost
zero.

Apart from the added security against SCA, usage of the ZSD representation has
another big advantage. A simple trick helps slashing the number of stored precomputed
points in half. The set of all precomputed points is [𝛼𝑤−1, . . . , 𝛼0]𝑃,∀𝛼𝑖 ∈ {1,−1}. When
selecting a designated sign bit, e.g., the column MSB 𝛼𝑤−1, the precomputed points
can be grouped into pairs of {𝑄,−𝑄}, with 𝑄 = [1, 𝛼𝑤−2, . . . , 𝛼0]𝑃 . A point 𝑄 on the
elliptic curve can be negated by simply negating its 𝑦 coordinate, i.e., if 𝑄 = (𝑥1, 𝑦1) then
−𝑄 = (𝑥1,−𝑦1). Hence, it suffices to store only half the points, the negative counterparts
are computed on the fly. The memory requirements are decreased to 2𝑤−1 points, which
is roughly half of the 2𝑤 − 1 points needed for traditional comb methods.

Co-𝑍 point-addition formulæfor comb methods.
Comb methods require so-called point doubling-additions, i.e., point operations of form
𝑅 = 2𝑃 + 𝑄. In Section 5.6, two schemes based on Meloni’s co-𝑍 addition formulæ [54]
were presented. Both feature a runtime of 11M + 7S, which is only a small improvement
over non co-𝑍 methods. A higher speed-up might be expected, especially when considering
the potential of co-𝑍 arithmetic.

The core observation behind the co-𝑍 addition 𝑃 +𝑄 is that it provides an alternative
representation of 𝑃 , this representation 𝑃 ′ features a common 𝑍 coordinate with the
result. Hence, 𝑃 is updated to 𝑃 ′, which allows an immediate readdition of 𝑃 ′. To fully
utilize this fact, adapted point-scalar multiplication algorithms are required. They have
in common that in each step one operand point is updated to a co-𝑍 representation.

This makes such schemes incompatible with comb methods, which select the added
point 𝑄 out of the set of precomputed points stored in ROM. Updating just this one point
with a new 𝑍 coordinate is pointless, as a (potentially) different point is added in the next
iteration. Thus, implementers must stick to the slower doubling-addition formulæ.
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2.5 The Elliptic Curve DSA

The Elliptic Curve Digital Signature Algorithm is the elliptic curve variant of the Digital
Signature Algorithm. It is standardized by, e.g., ANSI [2], FIPS [61] and by the Standards
for Efficient Cryptography Group (SECG) [16].

The secp160r1 domain parameters.
Before starting any computations, the signer and verifier must agree on domain parameters
𝑇 = {𝑝, 𝑎, 𝑏,𝐺, 𝑛, ℎ}. These parameters describe an elliptic curve 𝐸 over a finite field F𝑝,
also included is a base point 𝐺 with prime order 𝑛. The cofactor ℎ is defined as |𝐸|/𝑛,
i.e., the ratio of total points on the curve to the order of the base point. Prime field curves
are typically given in short Weierstrass form 𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏.

In this thesis the secp160r1 parameters defined by the Standards for Efficient Cryptog-
raphy Group (SECG) in [15, 16] are used. Note that, due to their relatively low security
level, 160-bit curves have been dropped from version 2.0 of SEC 2 [17]. However, the
targeted application does not have high security requirements.

According to the Standards for Efficient Cryptography 2 [16] the secp160r1 parame-
ters are defined by the sextuple 𝑇 = (𝑝, 𝑎, 𝑏,𝐺, 𝑛, ℎ) with the following values.

The finite field F𝑝 is defined by the 160-bit prime

𝑝 = 0xFFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 7FFFFFFF

= 2160 − 231 − 1

The elliptic curve 𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏 over F𝑝 is defined by

𝑎 = 0xFFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 7FFFFFFC

𝑏 = 0x1C97BEFC 54BD7A8B 65ACF89F 81D4D4AD C565FA45

The base point 𝐺 = (𝐺𝑥, 𝐺𝑦) is defined as

𝐺 = (0x4A96B568 8EF57328 46646989 68C38BB9 13CBFC82,

0x23A62855 3168947D 59DCC912 04235137 7AC5FB32)

The prime order 𝑛 of the base point 𝐺 and its cofactor ℎ are

𝑛 = 0x1 00000000 00000000 0001F4C8 F927AED3 CA752257

ℎ = 1

The prime 𝑝 is a so called pseudo-Mersenne prime, it can be written as a sum of
some powers of 2. This allows the usage of the fast reduction algorithm described in
Section 2.3.3. Note that 𝑎 ≡ −3 mod 𝑝, this allows a faster doubling operation.

Key-pair generation.
After choosing domain parameters 𝑇 , the signer has to generate his key pair. The private
key 𝑑 ∈ [1, 𝑛−1] is a scalar and has to be chosen randomly in a secure, i.e., non-predictable
and secret, fashion. The corresponding public key 𝑄 is then computed as 𝑄 = 𝑑𝑃 .

Reversing this process, i.e., computing 𝑑 with a given 𝑄, is exactly the ECDLP. It is
essential that the domain parameters 𝑇 are chosen in a way that this problem is hard to
solve.
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Signature generation.
The ECDSA signature generation algorithm (Algorithm 2.10) computes the 2|𝑛| bit sig-
nature pair (𝑟, 𝑠). First the message is hashed using a cryptographic hash function H, if
the output is longer than |𝑛| it needs to be truncated. Then the base point 𝐺 is multiplied
with a secret and random nonce 𝑘, the (affine) 𝑥 coordinate of the result is used as signa-
ture value 𝑟. The nonce then needs to be inversed and is multiplied with (𝑒+ 𝑟𝑑) mod 𝑛
to retrieve the second signature part 𝑠.

Algorithm 2.10: ECDSA signature generation

Input: Domain Parameters 𝑇 = {𝑝, 𝑎, 𝑏,𝐺, 𝑛, ℎ}, private key 𝑑, message 𝑚
Output: Signature (𝑟, 𝑠)

1 Compute hash 𝑒 = H(𝑚), truncate to bit length of 𝑛
2 Select random 𝑘 ∈ [1, 𝑛− 1]
3 Compute (𝑥, 𝑦) = 𝑘𝐺
4 Compute 𝑟 = 𝑥 mod 𝑛
5 if 𝑟 = 0 then goto 2
6 Compute 𝑠 = 𝑘−1(𝑒+ 𝑟𝑑) mod 𝑛
7 if 𝑠 = 0 then goto 2
8 return (r,s)

The signature algorithm requires computation in two different prime fields. The elliptic
curve 𝐸 is defined over F𝑝, the computation of 𝑠 is carried out in F𝑛.

The scalar 𝑘 must be secret, random, and it must not be reused. For a known nonce
𝑘 one can simply compute the private key 𝑑 = 𝑟−1(𝑘𝑠− 𝑒) mod 𝑛. If the scalar is reused
for signatures (𝑟1, 𝑠1), (𝑟2, 𝑠2) of two different messages 𝑚1,𝑚2, the key can be recovered
by computing 𝑘 = (𝑠1 − 𝑠2)

−1(𝑒1 − 𝑒2) mod 𝑛.
It is also crucial to use a secure cryptographic hash function H, as explained in Sec-

tion 2.6.1.

Signature verification.
The signature verification algorithm shown in Algorithm 2.11 verifies if a given pair (𝑟, 𝑠)
is a valid signature for a message 𝑚 and a public key 𝑄. First it must be checked if
𝑟, 𝑠 ∈ [1, 𝑛− 1], if this is not the case the signature must be rejected. Then the message is
hashed and two point multiplications are carried out. Note that the public key 𝑄 is used
as base point for the second multiplication 𝑢2𝑄. The signature is accepted if the final 𝑥
coordinate is equal to the signature value 𝑟.

Algorithm 2.11: ECDSA signature verification

Input: Domain Parameters 𝑇 = {𝑝, 𝑎, 𝑏,𝐺, 𝑛, ℎ}, public key 𝑄, message 𝑚,
signature (𝑟, 𝑠)

Output: Signature acceptance or rejection
1 Verify that 𝑟, 𝑠 ∈ [1, 𝑛− 1], otherwise reject
2 Compute hash 𝑒 = H(𝑚), truncate to bit length of 𝑛
3 Compute 𝑤 = 𝑠−1 mod 𝑛
4 Compute 𝑢1 = 𝑒𝑤 mod 𝑛, 𝑢2 = 𝑟𝑤 mod 𝑛
5 Compute (𝑥, 𝑦) = 𝑢1𝐺+ 𝑢2𝑄
6 if 𝑟 ≡ 𝑥 mod 𝑛 then accept else reject
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It is now shown that this algorithm is correct, i.e., the signature pair was indeed
computed by a legitimate signer for message 𝑚. According to [28], one can rearrange
𝑠 ≡ (𝑒+ 𝑟𝑑) mod 𝑛 to

𝑘 ≡ 𝑠−1(𝑒+ 𝑑𝑟) ≡ 𝑠−1𝑒+ 𝑠−1𝑑𝑟 ≡ 𝑤𝑒+ 𝑤𝑑𝑟 ≡ 𝑢1 + 𝑢2𝑑 mod 𝑛 (2.2)

Then (𝑥, 𝑦) = 𝑢1𝐺+ 𝑢2𝑄 = 𝑢1𝐺+ (𝑢2𝑑)𝐺 = 𝑘𝐺, hence 𝑥 = 𝑟. �
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2.6 KECCAK - SHA-3

This section briefly describes cryptographic hash algorithms in general and the Keccak
hash function in detail. Although not directly related to elliptic curve cryptography, a
short introduction is necessary as hashing is an essential part of the ECDSA.

2.6.1 Cryptgraphic Hash Functions

Hash functions map an arbitrary length input to a fixed-size hash value, i.e., ℎ = H(𝑚),
where 𝑚 stands for the input (also called message), ℎ for the hash value (also called
message digest) and H for the used hash function.

Cryptographic hash functions must fulfill 3 main requirements:

Preimage Resistance. Given a hash value ℎ it should be infeasible to compute an 𝑚
such that H(𝑚) = ℎ.

Second Preimage Resistance. Given a message 𝑚1 and ℎ = H(𝑚1), it should be in-
feasible to compute a second preimage 𝑚2 ̸= 𝑚1 with H(𝑚2) = ℎ.

Collision Resistance. It should be infeasible to find two messages 𝑚1 ̸= 𝑚2 such that
H(𝑚1) = H(𝑚2).

Possible applications of cryptographic hash functions include data integrity checks,
password verification and pseudorandom number generation. In context of the ECDSA,
the hash is used to map the input message to a fixed-length value in a secure fashion. If
the hash function is not preimage resistant, then an adversary can forge a signature by
determining a preimage of an already signed message hash and can then simply copy the
signature. Collisions can also be used for forgery, an adversary can compute 𝑚1 ̸= 𝑚2

with H(𝑚1) = H(𝑚2) and then ask the signer to sign 𝑚1, the computed signature is also
valid for 𝑚2.

Examples of widely used cryptographic hash functions are MD5, SHA-1, or the SHA-2
algorithm family (SHA-224/256/384/512). As most other hash functions, they are based
on the Merkle-Damg̊ard hash construction and thus feature a fixed output length 𝑛. The
generic attack complexity of such hashes is 𝑛 bits of preimage security and 𝑛/2 bits of
collision resistance.

2.6.2 The Hash Crisis and SHA-3 Competition

In recent years, it was shown that some widely used cryptographic hash functions have
serious weaknesses. The MD5 algorithm appears to be completely broken in terms of
collision resistance, as demonstrated by Wang and Yu [78]. In 2009, Stevens et al. were able
to successfully forge X.509 certificates using MD5 collisions [73], proving that the use of
MD5 is a real security threat. In 2005, Wang et al. presented a theoretical attack on SHA-
1 [77], which allows to find collision in 263 operations instead of the ideal 280. Recently,
Stevens presented an attack that should allow finding collisions in 261 operations [72]. Due
to these findings the SHA-1 is now considered to be broken. No attacks on the SHA-2
algorithm family (full versions) are known to date. However, the algorithmic similarity to
SHA-1 and MD5 raises some concerns.

In light of these events the NIST announced an open competition, similar to the
successful AES contest, to develop a new hash function named SHA-3. Out of the 51 first
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round candidates, five algorithms made it into the final round. In October, 2012 NIST
announced the Keccak algorithm as the winner of the competition. Selected versions of
the algorithm will be incorporated into the Secure Hash Standard (SHS) [60] as SHA-3.

Please note that at the time of writing the SHA-3 standardization process is still
ongoing, the Keccak algorithm was not yet incorporated into the SHS. Derivations from
the Keccak contest submission [10] are possible and likely. The Keccak-𝑓 permutation
will most likely stay unchanged, however, the values of the tunable parameters 𝑟 and 𝑐
are subject to change. For recent events surrounding the standardization process visit the
Keccak website [43] or the NIST web page on the topic [59].

2.6.3 The KECCAK Algorithm

This section gives a brief overview of the Keccak hashing algorithm, for a more de-
tailed explanation please see the Keccak reference [9]. Additionally, the implementation
overview [11] explains different implementation techniques. For the use in the SHA-3
standard, the Keccak authors suggested values for the parameters state size and capac-
ity [10]. A departure from these values is absolutely possible and, although (possibly)
not standard conform anymore, allows, e.g., the construction of light-weight hashes with
a state size of 400 or 200 bits. Also, the security level and throughput can be tweaked by
changing the security parameter 𝑐.

The Sponge Construction

In contrast to many existing hash functions typically based on the Merkle-Damg̊ard con-
struction, Keccak uses the relatively new sponge construction [8]. This construction is
based on iterated application of a fixed-size permutation f on a state of size 𝑏. The 𝑏-bit
state is split into two parts of size 𝑟 (rate) and 𝑐 (capacity), respectively. The Keccak
authors suggested to set 𝑏 = 1600 and 𝑐 = 2𝑛 for SHA-3, where 𝑛 equals the desired
output size in bits [10]. Keccak-𝑓 is used for the state permutation function f.

Figure 2.10: The sponge construction1

The hashing process is illustrated in Figure 2.10. The input message is padded to
a length that is a multiple of the rate 𝑟, then it is cut into equal-sized blocks. During
the absorbing stage, the message blocks are XORed with the 𝑟 low-order bits of the state,

1This picture has been taken from the Sponge function website [7] and is available under the Creative
Commons Attribution License.
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Figure 2.11: Keccak pieces of state

each block-XOR operation is followed by an application of the permutation f. After having
absorbed the whole message, the sponge switches to squeezing mode. During squeezing,
the lower 𝑟 bits of the state are used as output, followed again by applications of f when
𝑛 > 𝑟.

Unlike the Merkle-Damg̊ard construction the sponge construction allows to tweak the
security level by simply choosing an appropriate value for the security parameter 𝑐. The
sponge offers a security level of 2𝑐/2 bit for both preimage and collision security, unless an
easier generic attack, e.g., a birthday attack on a truncated output, is possible [8]. The
suggested 𝑐 = 2𝑛 hence results in 𝑛 bit preimage security but 𝑛/2 bit collision security,
which is the complexity of a generic birthday attack on the (truncated) output. Choosing
𝑐 = 𝑛 matches both security levels.

The KECCAK-𝑓 Permutation

The Keccak-𝑓 state permutation is defined for state sizes of 𝑏 = 25 × 2ℓ, with 0 ≤
ℓ ≤ 6, the different instances are denoted by Keccak-𝑓 [𝑏]. The two largest permutation
functions are Keccak-𝑓 [1600] and Keccak-𝑓 [800].

The permutation function organizes the 𝑏 bit state in a three-dimensional matrix with
dimension 5× 5×𝑤, with 𝑤 = 2ℓ. The names of the different parts of state are shown in
Figure 2.11. A lane consists of 𝑤 = 2ℓ bit of constant 𝑥 and 𝑦 coordinates. A slice consists
of 25 bits of constant 𝑧 coordinate, it can be further split into 5 rows or 5 columns.

Keccak-𝑓 is an iterated function consisting of a total of 12 + 2ℓ rounds, each round
consists of five different state mappings:

𝜃 The column parity of two nearby columns is computed and added (XORed) to each bit
of the current column (Figure 2.12a).

𝜌 Each lane is rotated by a specified offset.
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𝜋 The lanes are transposed in a fixed pattern.

𝜒 The 5 bits of each row are combined using logical ANDs and inverters, the result is
added back to the row (Figure 2.12b).

𝜄 A 𝑤-bit round constant is added to lane[0,0].

(a) 𝜒

ΣΣ

(b) 𝜃

Figure 2.12: Keccak 𝜒 and 𝜃 transformation

For a more thorough explanation of the Keccak algorithm and a listing of all con-
stants, e.g., the rotation offset and round constants, please see the Keccak reference
[9]. Suggested values for the state size and capacity are given in the Keccak contest
submission [10].



Chapter 3

Secure Hardware for RFID Tags

In this chapter, a brief introduction to Radio-Frequency Identification (RFID) technology
is given and the challenges that arise by the inclusion of strong cryptography on tags are
discussed. Also, an overview of implementation attacks is given in Section 3.2.

3.1 RFID

Radio-Frequency Identification (RFID) is a contactless communication technology, it con-
sists of three main parts: tags, readers, and a back-end system. Tags are basically mi-
crochips with an attached antenna, they are mass produced and must be very cheap. They
can communicate with the reader device through an electromagnetic field. Tags can be
powered by batteries (active tags) or draw the required energy from the field of the reader
(passive tags). The reader communicates with the back-end system, which typically hosts
some sort of database with tag data.

RFID systems are used in a broad variety of applications, such as access control,
contactless payment, and logistics. Also, it is the base for the aspiring Near Field Com-
munication (NFC) technology, which is now commonly used in banking cards and mobile
phones. While most RFID tags are very simple and only store their own ID, some appli-
cations have high security demands. Adding strong cryptography to tags enables services
such as proof of origin, tag and message authentication, and confidentiality.

3.1.1 Designing Hardware for Tags

Designing cryptographic hardware for (passive) RFID tags is a challenging task. Imple-
menters must cope with stringent area and power requirements, while trying to satisfy the
ever increasing security demands. The most basic design principles and requirements for
RFID tags are now listed.

Power consumption.
Passive powered tags draw their energy from the field of a reader, internal capacitors
are used as energy buffers. The available power depends on multiple factors, such as
distance to the reader, antenna size, and operating frequency. Tags operating in the HF
band (13.56MHz) are inductively coupled, they have relatively short reading ranges but
can draw several milliwatts of power, which is more than enough for most devices. UHF
systems operating at roughly 900MHz, such as EPC Gen2 tags, boast reading rangers of
several meters. However, their power is severely limited, only a few microwatts can be
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drawn from the electrical far field of the reader. Thus, UHF systems must cope with an
available power roughly 1 000 times lower than that of HF systems [66, 68].

Chip area and costs.
RFID tags are typically produced in very high volumes. Their production cost is directly
related to circuit size, minimizing area requirements is thus a prime goal. This is reflected
by the basic RFID design principle few gates and many cycles, as stated by Weis [79]. In
the past, several authors have given circuit size and cost estimations. Early figures were
given by Sarma [69, 70, 71] and Weis [79] in 2003. They predicted that the production
cost might fall under 5 dollar cents, with an available circuit area of up to 15 kGEs (but
only 2 000 gates for cryptographic purposes). Advances in process technology will surely
increase these figures, as noted by Feldhofer and Wolkerstorfer [20]. Also, slightly more
expensive tags might feature a bigger area.

Speed.
Performance is often sacrificed in order to achieve low area requirements, this leads to
high algorithm run- and tag response times. However, many applications demand a tag
response in a limited amount of time. The ISO/IEC 14443-4 standard allows response
times of up to 5 seconds, but there might be higher performance demands depending on
the application.

3.2 Implementation Attacks on Cryptographic Hardware

The maths behind cryptography is often beautiful and elaborate, so breaking modern al-
gorithms is nearly impossible. However, even the most sophisticated schemes are of no
use if not implemented securely, i.e., if secret information is leaked. So-called implemen-
tation attacks make use of this fact, they target the specific implementation instead of the
executed algorithm.

They can be grouped in two main categories. In an active attack, an attacker somehow
interferes with on-device computations. One prominent example are fault attacks, where
an attacker induces a computation error during device operations. In the case of passive
attacks, the device is not actively manipulated. Instead, an attacker tries to deduce infor-
mation on secret material by extensively monitoring some properties of the device, e.g.,
its execution time or power consumption.

One particular group of passive attacks, namely Side-Channel Analysis (SCA), has
received a lot attention. SCA attacks can be based on the observation of the device’s
execution time [47], power consumption [48], or EM radiation [22, 65]. Recently, Genkin
et al. [23] demonstrated that even the emanated sound might leak information. They were
able to retrieve secret RSA keys with the help of microphones placed in a distance of up
to 4 meters to the cryptographic device.

Power analysis techniques have gained the most interest over the last years. Intro-
duced in 1999 by Kocher et al. [48], they can be applied to both symmetric and asym-
metric schemes [18]. The basic setup of power analysis is as follows. The device’s power
consumption is measured over time, e.g., with the help of a shunt resistor and a digital
oscilloscope, then stored and analyzed. In this context, the term power trace refers to
the set of measurements taken during a single algorithm execution. Kocher described two
analysis techniques, namely Simple Power Analysis (SPA) and the more powerful Dif-
ferential Power Analysis (DPA). They are now shortly described, for a more thorough
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explanation of power analysis please see [53]. Afterwards, an overview of fault attacks is
given.

Simple Power Analysis.
According to Kocher, SPA involves directly interpreting the power measurements. For an
SPA, an attacker usually has only a few power traces available, also he must posses detailed
knowledge of the inner workings of the attacked implementation. For unprotected devices,
the key might by revealed by means of a simple visual trace inspection or by template
matching, as shown in [53]. Consider a device implementing the simple binary left-to-right
ECC point-scalar multiplication (Algorithm 2.7). The power traces of point addition and
point doubling might differ considerably, allowing an attacker to distinguish them. If
two consecutive point-doubling operations are detected, then the point-addition step was
skipped, which means that the scalar bit was set to 0. Hence, a single trace might be
enough to reveal the entire scalar 𝑘.

A possible countermeasure against SPA-based attacks is to eliminate all data depen-
dencies in the control path, e.g., by using highly-regular algorithms. Then attackers must
resort to using data-dependent leakage, which is usually much weaker and harder to exploit
than operation-dependent leakage.

Differential Power Analysis.
DPA-based attacks are more sophisticated and considered to be more powerful than SPA.
They exploit variations in the power consumption stemming from different processed data
values. These differences are usually very small, much smaller than that of different
instructions. Thus, DPA requires a large amount of traces. In exchange, no detailed
knowledge of the implementation is necessary.

They proceed as follows [53]. First an intermediate of the cryptographic algorithm
must be chosen, this intermediate must be a function 𝑓(𝑑, 𝑘), where 𝑑 is known non-
constant value (e.g., a part of the plain or ciphertext), and 𝑑 is a part of the key. The
second step is to record many traces and store them alongside the used values of 𝑑. Then,
the attacker must calculate hypothetical intermediate values for each possible value of 𝑘.
All these intermediate values are afterwards mapped to hypothetical power consumption
values, which requires a power model. The outcome of the attack strongly depends on the
quality of this model, so some knowledge of the device is beneficial. In the final step, the
hypothetical power values are compared to the measured ones. The key guess resulting in
the highest correlation is most likely to be correct.

There exist several techniques aimed at thwarting DPA-based attacks. One possi-
bility is to avoid computations of form 𝑓(𝑑, 𝑘), which might be achieved by algorithmic
rearrangements or by randomization of the computed values.

Fault attacks.
In fault attacks, an adversary tries to induce a computation error (a fault) during execution
of a cryptographic algorithm. The (potentially) faulty algorithm output is then used to
deduce information on the key. Typical means of fault injection are clock glitches, power
spikes, and optical methods [4].

A prime example of these schemes is the fault attack on RSA implementations utilizing
the Chinese remainder theorem. This theorem allows a speed-up of private key operations,
such as signing and decryption, but enables key retrieval when inducing a fault at the
correct time [84]. Another instance are safe-error attacks, which were introduced by Yen
[82, 83] and are applicable to implementations utilizing dummy operations. They are
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further explained in the next section, with the example of the double-and-add always
algorithm.

3.2.1 Attacks and Countermeasures for ECC Implementations

This section describes attacks and possible countermeasures specific to ECC implementa-
tions. Attacks usually aim to identify the scalar 𝑘 used in a point-scalar multiplication,
so secure ECSM schemes are a necessity.

The most simple scalar-multiplication algorithm, namely the binary left-to-right ap-
proach shown in Algorithm 2.7, requires conditional branching. This makes it susceptible
to SPA and timing attacks, as already mentioned earlier.

To thwart this attack scenario, Coron [18] introduced the double-and-add always algo-
rithm (Algorithm 3.1). It simply executes a point addition regardless of the scalar bit 𝑘𝑖,
i.e., a dummy operation is performed if 𝑘𝑖 = 0. Safe-error attacks can exploit this fact, as
noted by Yen et al. [83]. An attacker might induce a fault during a single point-addition
operation, he then checks the algorithm output for correctness, e.g., by validating the
signature in the case of ECDSA. If the output is still valid and the glitch did not affect
the result, then the scalar bit must have been 0, otherwise it was 1.

Algorithm 3.1: Left-to-right binary double-and-add always method [18]

Input: 𝑘 = (𝑘𝑛−1, . . . , 𝑘0), 𝑃
Output: 𝑄 = 𝑘𝑃

1 𝑅← 0;
2 for 𝑖 = 𝑛− 1 downto 0 do
3 𝑅← 2𝑅;
4 if k𝑖 = 1 then 𝑅← 𝑅+ 𝑃 ;
5 else 𝑅𝑥 ← 𝑅+ 𝑃 ;

6 end
7 return 𝑅;

There exist highly regular point-multiplication schemes not reliant on dummy opera-
tions, such as the Montgomery ladder (Algorithm 2.8) and Joye’s right-to-left algorithm
[38]. Both feature a constant runtime and control flow, thus they provide a natural pro-
tection against SPA and fault attacks.

Basic fixed-base comb methods (Section 2.4.5) suffer from the same fate as the (un-
modified) binary double-and-add approach. If all column bits evaluate to 0, then the
point-addition step is skipped. Although the probability of all-zero columns decreases
with higher comb widths, they are still a threat. In Hedabou’s comb method (Algo-
rithm 2.9), the scalar 𝑘 is first recoded using the Zeroless Signed Digit (ZSD) scheme,
which represents an odd integer using only digits 𝜅𝑖 ∈ {−1, 1}. Then a point addition is
required in each iteration.

DPA.
ECC protocols using a fixed scalar 𝑘, such as the Elliptic Curve Integrated Encryption
Scheme (ECIES) encryption scheme or the Elliptic Curve Diffie-Hellmann (ECDH) key
agreement, are potentially susceptible to DPA attacks. According to [24], three meth-
ods are considered to be effective countermeasures and are widely deployed: Randomized
Projective Coordinates [18], Randomized Curve Isomorphisms, and Random Field Iso-
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morphisms [39]. Especially the first is considered to be a very cheap but still effective
method. When using Randomized Projective Coordinates (RPC), the (affine) coordinates
of the base point are first transformed into a projective representation with a random
𝑍 coordinate. As both representations are equivalent, the scalar-multiplication outcome
is unchanged. However, the processed values differ in each ECSM execution, thereby
thwarting DPA.

RPA and ZPA.
The RPA (Refined Power-Analysis Attack) [24] and the ZPA (Zero-Value Point Attack) [1],
both presented in 2003, are based on the occurrence of certain points that lead to zeros in
the execution path. The three mentioned anti-DPA countermeasures do not prevent these
attacks, other means of protection have to be found. Both attacks require a fixed secret
scalar 𝑘 and a user-selectable ECSM base point. Neither is the case with the ECDSA, so
they are not applicable here. Example of susceptible algorithms are again the ECIES and
ECDH.

Attacks on partial nonce leaks.
ECDSA requires secrecy of two values: the private key 𝑑 and the nonce 𝑘 (the scalar). A
cryptographic nonce is a number used only once, it is typically required to thwart replay
attacks. In 2001, Howgrave-Graham and Smart [31] demonstrated that even partial nonce
leaks are dangerous. They were able to retrieve a 160-bit ECDSA private key given
only 8 bits of the nonce 𝑘 for 30 signatures. Recently, Liu and Nguyen [51] improved
on these results, they reduced the number of required nonce bits to only 2. Mulder et
al. [58] also presented results, they were able to deduce the key with a 5-bit nonce leak
and 4000 signatures. Moreover, they mounted a real-life attack of a smart card running
ECDSA. The nonce bits were revealed using a template-matching approach (SPA) on
the implemented binary inversion algorithm. As stated in Section 2.3.5, this algorithm
includes data-dependent branches and loops, which makes it susceptible to SPA.



Chapter 4

Requirements and Design Space
Exploration

Before diving into the details of the ECDSA hardware implementation, it is important
to discuss the imposed requirements as well as some fundamental design choices. In this
chapter, first the detailed requirements and goals are presented in Section 4.1. Then, in
Section 4.2 some basic design considerations are discussed. Finally, in Section 4.3 a brief
overview of the implementation is given.

4.1 Requirements and Goals

Goal of this thesis is to improve the state of the art in low-resource hardware implemen-
tations of the Elliptic Curve Digital Signature Algorithm (ECDSA). For this reason, an
Application Specific Integrated Circuit (ASIC) coprocessor dedicated to signature gener-
ation must be designed and the results presented.

The targeted application are low-cost passively-powered RFID tags. Such tags draw
the energy required for computation from the field of a reader, hence a low power con-
sumption is required to ensure high reading ranges. Moreover, tags are mass produced, so
the circuit size must be minimized in order to keep production cost low.

There already exist several low-resource ASIC implementations of the ECDSA. How-
ever, many of these proposed designs are troubled by either large area requirements or
excruciating runtimes. Performance is often sacrificed in favor of small circuit area, thus
following the RFID design principle few gates and many cycles as suggested by Weis [79].
However, there exist applications requiring fast tag response times, a runtime way above
the one second mark might not be acceptable. Moreover, a low cycle count allows de-
creasing the operating frequency for non time-critical computations, thereby drastically
reducing the power consumption. For these reasons, the implemented design should be
considerably faster, but still smaller than comparable implementations. To achieve these
goals novel techniques, such as fixed-base comb methods and faster point-addition for-
mulæ, need to be deployed. Both methods decrease the runtime of the elliptic curve scalar
multiplication, which is typically the most expensive operation in protocols relying on
ECC.

Another main goal is to achieve security against the state of the art of implementation
attacks. Countermeasures thwarting known attacks must be implemented, most promi-
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nently the implementation must be able to sign data in an absolute constant (i.e., data
independent) runtime.

The implementation needs to be based on the SECG-standardized curve secp160r1,
which is defined over a 160-bit prime field. As a novelty, the Keccak hashing function
should be integrated. This is a first, as most other ECDSA implementations either rely
on SHA-1/SHA-2 or do not feature hashing at all. The impact of Keccak integration on
area and power requirements should be evaluated.

The implementation must be fully-fledged, i.e., all parts of signature generation must
be supported. The only exception is random number generation, implementation of a
secure pseudorandom number generator is out of scope of this work.

These requirements are now summed up in bulletin form.

� ECDSA coprocessor for signature generation

� Fully fledged, but no integrated random number generation

� Smaller and considerably faster than previous work

� Achieve speed-up with fixed-base comb methods and new addition formulæ

� Secure against the state of the art of SCA and other implementation attacks

� Based on SECG-standardized curve secp160r1 [15]

� Integration of Keccak hashing algorithm

Some of these points need to be discussed in greater detail.

Implementation features.
ECDSA signatures can be used within several authentication protocols, e.g., embedded in
identification schemes to allow entity authentication or in signature schemes to offer mes-
sage authentication. On-tag verification of signatures is typically not required. Hence, the
focus is put upon designing a small signature-only core. The implementation is designed
purely as a coprocessor, its sole purpose is signature computation. For use in real-life
RFID tags additional logic for protocol handling and for the RF frontend is required.

The implementation of a true or pseudorandom number generator (RNG) is out of
scope of this thesis. RNGs can be based on, e.g., hash functions, block and stream
ciphers, or dedicated algorithms. They require a truly random number, called the seed,
as an initial value. Acquiring this seed value is a difficult task, as true random number
generators are difficult to implement and external sources might not be trustworthy.

The secp160r1 curve.
The secp160r1 domain parameters define an elliptic curve over a 160-bit prime field.
While hardware implementations of binary-field curves are generally smaller and faster
[81], they typically lack signing capabilities. ECDSA requires prime-field arithmetic re-
gardless of the chosen curve type, addition of prime-field units more than obliterates the
initial area advantage of binary-field curves (see [81] for an example). Moreover, they are
often excluded in security standards, e.g., there are no binary-field curves in NSA’s Suite B
cryptography standards.

In general an 𝑛 bit curve has a security level of 𝑛/2 bits [28]. Due to the relatively low
security level of 80 bits, all 160-bit curves have been dropped from the current version 2.0
of the Recommended Elliptic Curve Domain Parameters by the SECG [17]. However, the
targeted application—very low-cost RFID tags—does typically not require high security
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levels, achieving a small circuit area and hence lowering the cost is often more important.
The runtime also benefits from the use of smaller curves.

The secp160r1 curve is defined over a 160-bit pseudo-Mersenne prime 𝑝, the group
order 𝑛 of the fixed base point 𝐺 is 161 bits long. Starting from now, 𝑝 and 𝑛 refers to
these specific values, F𝑝 and F𝑛 denotes the respective prime fields.

Hashing - KECCAK.
For the hashing operation the Keccak algorithm, which was selected as the winner of the
SHA-3 competition held by the National Institute of Standards and Technology (NIST),
is used. The selected instance is Keccak[r=640, c=160]. The Digital-Signature Standard
(DSS) [61] specifies that an algorithm specified in the Secure Hash Standard (SHS) [60] is
to be used for ECDSA. The standard includes SHA-1 and the SHA-2 algorithm family. At
the time of writing, the winner of the SHA-3 competition was already chosen, however, the
standardization process is still ongoing and it remains open if the used Keccak instance
will be part of the standard. Absolute standard conformity is not a necessity for this work,
so usage of a non-standard hash is acceptable.

SHA-1, with its output length of 160 bits, seems to be predestined for usage with
a 160-bit curve. Longer hashes, like those produced by the SHA-2 family, have to be
truncated, so the use of such typically more complex algorithms does not increase the
security level. However, concerns over the security of SHA-1 were raised in the past.
Another driving factor in the choice of the hashing algorithm is the differentiation from
previous ECDSA implementations using SHA-1 [33, 44, 80]. Integration of Keccak into
ECDSA is a novelty, so a first analysis of area and power impact can be given.

The Keccak algorithm family offers a tunable hashing algorithm. Due to the use of
the sponge construction the output length is variable, the security level can be influenced
by choosing an appropriate capacity 𝑐. The parameters are chosen to fit the selected
ECDSA domain parameters, i.e., both the output length and the capacity are set to 160
bits, which results in a security level of 80 bits for preimage and collision security. Recall
that hash algorithms based on the Merkle-Damg̊ard construction, such as SHA-1 and
SHA-2, offer 𝑛 bits of preimage security and 𝑛/2 bits of security against collisions, with
𝑛 being the length of the message digest. A preimage security vastly higher than collision
resistance is not needed, lowering it to 𝑛/2 by setting 𝑐 = 𝑛 speeds up the hashing process.

The chosen parameters result in a state size of 800 bits, which is the second biggest
specifiedKeccak state size right after 1600 bits. TheKeccak authors proposed to use the
1600-bit state version in the SHA-3 standard, but smaller state sizes allow faster hashing
while using less memory for state storage. The circuit area of hardware implementations
also benefits from smaller state sizes.

4.2 Basic Design Considerations

In this section, some core ideas of the hardware design are presented. They act as a basis
for the implementation presented in Chapter 5.

Storage type.
Elliptic curve operations as well as the Keccak algorithm require a lot of storage space.
While memory requirements are kept relatively low by selecting a 160-bit curve, they still
amount to well over 1 kbits. Previous work often utilized some sort of synthesized dual-
port memory block (e.g., [30, 33, 44]), which results in extremely high area requirements.
It was thus chosen to use a single-ported SRAM macro as the main storage element, such
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specialized macros typically require much less resources than standard-cell based memory
blocks. A single SRAM cell consists of 6 transistors and thus requires 1.5GEs, in contrast,
even the most simple flip-flop requires 5.5GEs (in the chosen process). While there also
exist dual-port RAM macros, they require roughly twice the area of single-ported versions.

Using macros introduces a technology dependency, porting the design to other, e.g.
more modern, process technologies requires switching the macro. However, this does not
affect the computation core and is an acceptable price to pay for the area savings. To keep
things simple, the clock frequency of the RAM is set equal to that of the computation
core. The choice of a single-ported memory has severe impacts on the overall design.
Concurrent read and write operations are not possible, also only a single data word can be
fetched at each cycle. In order to, still attain a high speed, the implementation core has
to fully utilize the bus width while keeping memory wait cycles to an absolute minimum.

Constants required for computation are stored in a dedicated ROM, some later listed
decisions inflate the memory requirements to almost 3 kbits. Despite this high number, the
ROM is based on standard cells instead of a macro. The much higher memory density of
ROMs brings down the hardware cost to an acceptable level, modern hardware synthesizers
can implement such ROMs in less than 1 kGEs.

Datapath and memory width.
An important decision to make is that of the datapath and memory width. RAM and
ROM bus interface should obviously have a width equal to that of the datapath, then
fetched operands can be immediately processed. A full-precision solution, i.e., a 160-
bit datapath capable of processing an entire field element at once, might be suitable for
high-speed implementations, for a low-cost application the extremely high hardware cost
immediately disqualifies this approach. A multi-precision solution is a much better fit for
a low-resource implementation. Typical datapath sizes include 8, 16, 32 and 64 bits, other
(less conventional) widths were not considered. Here no detailed runtime or hardware cost
analysis is carried out, instead the choice is based on simple estimations and arguments.

A 64-bit datapath, while without doubt a very fast option, is too costly in terms of area
and power. Also, 160 is not a multiple of 64, making implementation even more complex.
On the opposite side of the spectrum, an 8-bit datapath is very area friendly but comes
with an excruciating performance penalty. After eliminating these two possibilities, the
options 16 and 32 are left.

The majority of a signing operation’s runtime is typically spent for modular multipli-
cations or squarings. The runtime of basic multi-precision multiplication algorithms has a
quadratic complexity1, i.e., slashing the word size in half increases the runtime by a factor
of four. Also, the lack of a dual-ported memory needs to be compensated somehow, e.g.,
by choosing a wider bus. These considerations led to the choice of a 32-bit datapath and
memory interface.

Integer multiplier.
At the core of all multi-precision multiplication schemes, an integer multiplication unit is
found, the presented design also needs to incorporate such a multiplier in its datapath.
Its width needs to be discussed separately. Setting the multiplier width equal to the rest
of the datapath, i.e., include a 32 × 32 bit multiplier, seems tempting, but has severe
shortcomings. The hardware complexity (gate count) of a basic 𝑛 × 𝑛 bit integer multi-
plier is quadratic, it requires roughly 𝑛2 AND gates and adders. This makes multipliers

1Sub-quadratic multiplication algorithms like Karatsuba’s technique were not considered because it
usually requires more hardware resources than quadratic algorithms.
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extremely costly, too costly to include a 32-bit instance in a low-resource design. Also,
due to the absence of a dual-ported RAM, the memory is not fast enough to fully utilize
the multiplier. Two memory cycles are required for fetching both multiplication operands
while the actual multiplication takes only one, i.e., the multiplier is idling half the time.
When including RAM-setup and result-write cycles into this calculation the outcome gets
even worse.

For these reasons it was decided to include a 16×16 bit integer multiplier. The chosen
bus width favors 32-bit multiplications, so the smaller instance is used to compute 32×32
bit multiplications during the course of multiple, or more exactly four, cycles. Operand
load and result write cycles can be streamlined into this multi-cycle process, this ensures
maximum multiplier utilization. When compared to a dedicated 32-bit multiplier this
scheme reduces the hardware cost by a factor four, while the runtime increases by a factor
of less than two.

Speeding up the ECSM with comb methods.
While a low area and power consumption are the primary goals of this work, the runtime,
often a weakness of other low-resource designs, should not be neglected. The elliptic curve
scalar multiplication (ECSM) is by far the most time consuming part of the ECDSA, so it
is essential to cut computation time here. Comb methods (Section 2.4.5) allow a drastic
speed-up, thus it was decided to incorporate them into the design.

For a chosen comb width 𝑤 the achieved speed up is linear, i.e., the original compu-
tation time is divided by 𝑤. The performance gain is paid by high memory requirements,
roughly 2𝑤 points on the curve need to be precomputed and stored in a ROM. A trade-off
between the linear speed-up and the exponential storage requirements needs to be found.

New elliptic curve addition formulæ.
In 2007, Meloni introduced new elliptic curve addition formulæ later dubbed as co-𝑍
addition formulæ [54]. They offer a speed-up over other methods and led to a fair amount
of further research. Their disadvantage is that they require modified scalar multiplication
algorithms. A refinement of co-𝑍 arithmetic and several point-multiplication algorithms
were presented by Goundar et al. [25]. In [34], Hutter et al. presented a co-𝑍 based version
of the Montgomery ladder algorithm. Longa and Miri [52] presented a fast co-𝑍 doubling-
addition scheme, which can also be used in more tradition scalar-multiplication algorithms.
The presented formulæ should be evaluated in the context of comb methods, if a suitable
algorithm is found then they should be incorporated into the design.

Security against SCA.
A chain is only as strong as its weakest link, so implementing secure algorithms without
considering implementation attacks is grossly negligent. The presented implementation
must be secure against the state of the art of implementation attacks, ranging from simple
and differential power analysis to fault attacks. One essential part in securing the design
is to assure an absolute constant runtime and operation flow, no data dependency should
exist in the control path.

This requirement restricts the freedom of algorithm choice on several occasions. The
most prominent example is the computation of modular multiplicative inversions (cf. Sec-
tion 5.7). Two widely used algorithms, namely the binary inversion and the Montgomery
inversion algorithm, do not feature a constant runtime, and thus can not be used. It needs
to be resorted to other, typically slower, algorithms. For this thesis inversions should be
performed by utilizing Fermat’s little theorem, i.e., by means of modular exponentiation.
This approach can easily be executed in constant time, but is relatively slow.
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The point-scalar multiplication is another potential pitfall. The runtime of the most
basic comb methods is dependent on the random and secret nonce 𝑘. There exist al-
terations of the comb method that eliminate this dependency. More details are given in
Section 5.5.

Finally, modular reduction must also be performed in constant time. The prime 𝑝
defined in secp160r1 is a pseudo-Mersenne prime, it allows usage of a fast-reduction
mechanism. The order 𝑛 of the base point 𝐺 is not of any special form, hence the fast-
reduction algorithm is not applicable and a more general approach must be found. The
Barret reduction scheme relies on conditional additions and subtractions, which conflicts
with the constant runtime requirement. The Montgomery multiplication scheme can be
modified to fulfill this important requirement, thus it was decided to use it for computa-
tions in F𝑛.

Power-saving measures.
There exist two simple generic techniques that allow a reduction of power consumption,
namely clock gating and operand isolation. Both methods aim to reduce switching activ-
ity, which is the main contributor to power consumption in CMOS technology. For clock
gating, registers are only clocked if new values are to be stored. So-called clock-gating
cells disable the clock signal for inactive registers, thereby reducing their dynamic power
consumption to zero. The second technique, operand isolation, can be applied to combi-
national blocks. If an output of such a block is not needed in the current cycle, the input
is set to a constant value. Both techniques should be applied.

4.3 Implementation Overview

Figure 4.1 depicts the overall structure of the implementation. Alongside the ECDSA
computation core, it contains a 1 504-bit RAM and a 2 976-bit ROM, both featuring a
wordsize of 32 bits. The core can be split into three major parts, a controlling block, a
datapath, and an AMBA APB interface.

The AMBA Advanced Peripheral Bus (APB), a standardized yet simple interface im-
plemented according to [3], allows communication of an outside entity, i.e., a bus master,
with the core. The functionality of the bus includes controlling the core, querying its cur-
rent status, writing the message and finally retrieving the signature pair (𝑟, 𝑠). The width
of the read and write data buses is left open in the specification, for this implementation
a width of 8 bits was chosen.

The datapath contains separate modules for elliptic curve and Keccak computations,
both share a common register file. The controlling block is split up into multiple sub-
controllers. The multiplication controller steers the process of modular multiplication
in both finite fields F𝑝 and F𝑛 and implements two different reduction algorithms. The
elliptic curve doubling-addition (EC-DA) controller houses the program code needed for
the execution of the chosen elliptic curve addition formulæ. The SHA controller, used
for the hashing operation, is taken from previous work (cf. [64]) and slightly modified to
accommodate to the differing security parameters. Finally, the top-level controller oversees
the signing process by operating the sub-controllers as well as providing the logic needed
for field inversion, amongst other things.
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Figure 4.1: Top-level view of the ECDSA core

4.4 Summary

In this chapter, the fundamental implementation requirements and goals were presented.
A low-resource core capable of generating ECDSA signatures should be implemented, it
should be both smaller and considerably faster than previously proposed designs. As a
novelty, the Keccak hashing algorithm should be incorporated. Also, security against
modern implementation attacks must be achieved. Then some core design ideas were dis-
cussed. A 16-bit multiplier should be embedded into the 32-bit datapath. The integration
of techniques such as fixed-base comb methods and new point-addition formulæ should
allow a drastic speed-up of computations. Finally, a brief overview of the design was given.



Chapter 5

Elliptic-Curve Modules

After having outlined the basics of elliptic curve cryptography in Chapter 2 and discussing
the requirements and the most important design choices in Chapter 4, it is now time to
dive into the implementation details. In this chapter, the detailed hardware design used
for signature computation (with the exception of hashing) is discussed. First the basic
datapath is presented, then the focus shifts to the higher-level parts of the ECDSA.

To get the big picture, some corner stones of the implementation are summed up below.

� 32-bit datapath

– 67 bit accumulator allowing multiply-accumulate operation

– 16× 16 bit multiplier used in a pipelined product-scanning multiplication

– Dedicated fast-squaring operation

– Dual-field (F𝑝, F𝑛) support

� 47× 32 bit single-ported SRAM for storage (i.e., 1 504 bits)

� 93× 32 bit ROM for storing of constants (i.e., 2 976 bits)

� Hybrid finite-state machine and microcontroller-like controlling, split into multiple
dedicated controllers

The remainder of this chapter is organized as follows. In Section 5.1, the layout of
both RAM and ROM is shown, also the exact contents of the ROM are detailed. In Sec-
tion 5.2, the datapath is presented and it is shown how basic arithmetic operations, e.g.,
addition, multiplication or squaring, are performed. In Sections 5.3 and 5.4, the efficient
implementation of modular arithmetic in the fields F𝑝 and F𝑛 is discussed. Using this
foundation the implementation of the more higher-level aspects of ECDSA are presented.
Section 5.5 is mainly concerned with selecting an appropriate value for the comb method.
All comb methods require so-called doubling-additions, a fast and efficient implementa-
tion of this operation is outlined in Section 5.6. In Section 5.7, optimized algorithms for
computing modular multiplicative inversions are presented. The implementation details
of the top-level controller, which is in charge of overseeing the signing process, are given in
Section 5.8. Protecting the implementation from all sorts of side-channel and other imple-
mentation attacks is a major goal, in Section 5.9 applied countermeasures are presented
and possible remaining attack points are given.

37
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5.1 Memory Organization

This section describes the memory layout of both RAM and ROM. Due to the choice
of the ECDSA domain parameters most stored elements feature a bit length of 160 bits.
RAM as well as ROM is partitioned into so-called field registers, most field register are
comprised of five 32-bit words. They are denoted with R𝑥, where 𝑥 is the index of the
register. The name field register stems from the fact that they are used to store elements
out of the fields F𝑝 and F𝑛.

The 1 504-bit RAM consists of 47× 32 bit words organized into 9 field registers. The
lower registers R0 to R7 are 160 bits long while the up-most R8 features 224 bits, its
extra bits are required for the fast-reduction process in F𝑝 (Section 5.3). The RAM
register allocation, i.e., which value is stored in which register, depends on the respective
operation. For details please refer to the following sections and the program code listed
in Appendix B.

The ROM stores 93 × 32 bit words partitioned into 19 field registers, which sums up
to a total of 2 976 bits. The contents of the ROM are pictured in Figure 5.1. It contains
the precomputed points for the comb method, constants needed for the Montgomery mul-
tiplication scheme and the Montgomery representation of the private key 𝑑. The key was
added to the (hardcoded) ROM for the sake of simplicity, in a real life scenario it needs to
be moved to a writable memory block, e.g., an EPROM. The comb width 𝑤 was chosen
to be 4, thus 2𝑤−1 = 8 points need to be precomputed and dumped into ROM. Points are
stored in affine coordinates, so two 160-bit field registers are needed to store both the 𝑥
and 𝑦 coordinates. Reducing storage requirements to only a single coordinate per point is
not possible, in contrast to the Montgomery ladder algorithm there exists no 𝑥-coordinate
only version of the comb method. The coordinates of each point 𝑃𝑛 are stored in the
ROM registers R2𝑛 (𝑥 coordinate) and R2𝑛+1 (𝑦 coordinate), respectively. The constant
𝑅2 mod 𝑛 is needed for transformations into the Montgomery domain (Section 5.4.4) and
is stored in R16. The 96-bit R17 stores the 3 low-order words of the modulus 𝑛, the
upper words are not stored as they are either zero or one. Finally, the private key 𝑑 (in
Montgomery representation 𝑑𝑅 mod 𝑛) is kept in ROM register R18.
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Figure 5.1: ROM contents (address on left denotes the field register). 1̄ = (−1)
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All 160-bit field registers, with the exception of the key register, are kept at the lower
part of the respective address space to allow easy addressing. The address adder depicted
in Figure 5.2 multiplies the 5-bit register index with 5 and adds the 3-bit word offset to
retrieve the wanted address. The same address signal is fed to both RAM and ROM, thus
only a single address adder is needed. Concurrent operations on RAM and ROM are not
possible.

Address Adder

RegNr x5 +

Offset

5

3

7 7
Address

Figure 5.2: Address adder

5.2 The Datapath and Basic Operations

This section describes the overall structure of the datapath and tries to explain how the
most basic arithmetic operations, e.g., multi-precision addition and multiplication, are
carried out. The later sections then describe how these operations are used to build
complex algorithms.

The datapath, shown in Figure 5.3, is comprised of a multiplication (left) and an ac-
cumulation path (right). A 67-bit accumulator register (ACC) alongside a 67-bit adder,
which allows adding an integer to the accumulator, form an accumulation unit. Multiplex-
ers allow shifting the current adder output by 32 bits to the right. The lower 32 bits of the
adder output are fed to the RAM, a write-enable signal determines if the current output
is actually written. Writing is usually, but not always, activated alongside the shifting
operation.

The accumulation operand can be selected from the inverted or non-inverted RAM
output, the multiplication result or (a 32-bit part of) the constant modulus 𝑝. Thanks to
the highly regular modulus 𝑝—only a single bit is zero, all others are one—it is possible to
hardcode this constant without any noteworthy area gain. The selected operand is then
routed through two configurable shifters, the first one can shift its input up to 3 bits to
the left and thus produces a 35-bit output, while the second shifter can shift this result
by either 0, 16, or 32 bits to the left.

The multiplication part of the datapath consists of two multiplication operand registers
A, B and a 16×16 bit integer multiplier producing a 32-bit output. The operand registers
are made up of 16-bit chunks, A consists of 3 parts A0 to A2 while B consists of 2 parts
B0 and B1. The operand registers are used to perform a pipelined multiplication, which
will be explained in Section 5.2.2.

5.2.1 Basic Arithmetic Operations

Before diving into more complex matter the most basic operations shall now be discussed.
Due to the chosen domain parameters (160-bit curve) all integers processed are 160 bits
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Figure 5.3: ECDSA datapath

long. Both the RAM interface and the basic datapath have a width of 32 bits, thus each
integer has to be split into five 32-bit memory words.

The most basic operation is a simple addition of two integers. Computation starts
with the least significant word 0. This lowest-order word of the first operand is fetched
from memory and added to the accumulator, which is assured to have a value of zero
at the beginning of the operation. This is then repeated for the second operand. The
addition result (adder output) is shifted by 32 bits to the right and the lowest 32 bits are
written to the RAM. Everything above those 32 bits is now stored in the lower bits of the
accumulator. This process is repeated for all other words of the integers.

Subtraction is very similar to addition. The two’s complement representation of the
subtrahend, which is retrieved by inversion and addition of 1, is added to the minuend.
In the subsequent reduction step a possible negative result would need to be treated
differently than a positive one, such differing behavior should be avoided as it poses as
a potential side channel. To ensure that the result of a modular subtraction is always
positive, a multiple of the modulus 𝑝 is added to the difference. Note that, due to working
in F𝑝, this does not change the outcome of the operation.

The first shifter allows shifting each operand a configurable number of up to 3 bits to
the left before adding it to the accumulator, this is equal to a multiplication with a power
of two.

5.2.2 Pipelined Multiplication

Modular multiplication is both the most time and area consuming operation needed for
ECDSA, thus an efficient multiplication scheme is vital. Starting from a very basic integer
multiplier algorithms for fast and efficient modular multiplication and squaring were built
and are now discussed.

At the very center of all multi-precision multiplication algorithms is an integer mul-
tiplier. To illustrate the structure of such a multiplier, a simple 4 by 4 bit instance is
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shown in Figure 5.4, it computes the 8-bit product 𝑝 = 𝑎 × 𝑏 of two 4-bit integers 𝑎, 𝑏.
A single-bit multiplication corresponds to an AND combination of the two operand bits.
To perform an 𝑛× 𝑛 bit multiplication each bit of operand 𝑎 needs to be combined with
each bit of operand 𝑏, hence a total of 𝑛2 AND gates are required. The partial products
are summed up with simple adder chains. This implementation features a 16 by 16 bit
multiplier, which computes the 32-bit product of two 16-bit operands and needs 𝑛2 = 256
AND and 𝑛(𝑛− 1) = 240 adder gates.

+ + + +

a0 b0a1 b0a2 b0a3 b0

a0 b1a1 b1a2 b1a3 b1

+ + + +

a0 b2a1 b2a2 b2a3 b2

+ + + +

a0 b3a1 b3a2 b3a3 b3

p0p1p2p3p4p5p6p7

Figure 5.4: 4× 4 integer multiplier

To fully utilize the 32-bit single-port memory interface, 32 × 32 bit multiplications
are computed with the help of the 16-bit multiplier. A 32-bit multiplication takes four
cycles and is done with a simple school book multiplication algorithm, as illustrated in
Figure 5.5a. Both 16-bit chunks of the first operand (A0 and A1) are multiplied with both
chunks of the second operand (B0 and B1). The 32-bit partial products are first shifted
accordingly using the second shifter and then added to the accumulator, thus utilizing
the multiply-and-accumulate (MAC) functionality of the datapath. More sophisticated
multiplication algorithms might speed up the process considerably, e.g., the Karatsuba
multiplication [42] would reduce the number of cycles needed for a 32-bit multiplication
to three. However, the area overhead would be significant, which is why the shown school
book multiplication scheme was chosen.

Prior to the start of the 32-bit multiplication, both operands need to be loaded into the
designated operand registers, they are then selected using multiplexers (see Figure 5.5b).
Dedicated operand load cycles would slow down the multiplication process considerably,
thus the operands for the next 32-bit multiplication are fetched during execution of the
current one. As denoted by dotted lines in Figure 5.5a, operand 𝑏 is replaced at the end
of the fourth cycle, operand A after the second cycle. However, the 16 high-order bits of 𝑎
(A1) are still needed in the third and fourth multiplication cycle, for this reason there are
three 16-bit operand registers for 𝑎. The 16 high-order bits of operand 𝑎 are alternately
stored in the operand registers A1 and A2. If the value of register A1 is still needed, the
high-order bits of the loaded operand are written to A2, and vice versa.
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Figure 5.5: Overview over the pipelined multiplication

This scheme is an example of a two-stage pipeline, the operand is fetched in the first
stage while the actual multiplication is performed in the second stage.

5.2.3 Multi-Precision Multiplication

Two multi-precision multiplication techniques were discussed in Section 2.3.2, namely
the operand-scanning and the product-scanning multiplication. The product-scanning
approach (Figure 2.6) was chosen for this work, it offers several advantages over the
operand-scanning technique. It works exceptionally well in combination with a multiply-
and-accumulate unit, which is also used by the pipelined multiplication approach presented
earlier. The number of operand load cycles is higher when compared to operand-scanning,
however, they are streamlined into the pipelined multiplication process.

The 160-bit multiplication operands are split into five 32-bit words, thus a total of
52 = 25 partial products need to be computed and summed up. Using the presented
pipelined multiplication scheme, this can be done in a minimum of 25× 4 = 100 cycles.

Some additions and alterations are made to adopt the multiplication algorithm to
modular multiplication. Modular multiplication in F𝑝 is discussed in Section 5.3.1, mul-
tiplication in F𝑛 using the Montgomery multiplication scheme and Integrated Product
Scanning in Section 5.4.

5.2.4 Fast Squaring

The squaring operation is equal to a multiplication with identical operands. However, there
exists a very easy and cheap way of speeding up the process. Due to the commutative
property of multiplication, i.e., 𝑎[𝑖]×𝑎[𝑗] = 𝑎[𝑗]×𝑎[𝑖],∀𝑖 ̸= 𝑗, and hence 𝑎[𝑖]×𝑎[𝑗]+𝑎[𝑗]×
𝑎[𝑖] = 2(𝑎[𝑖]×𝑎[𝑗]), one can skip computation of roughly half the partial products. This is
shown in Figure 5.6, grey dots can be skipped and the number of necessary partial products
is reduced to 15. The doubling operation, needed whenever 𝑖 ̸= 𝑗 (blue dots), is equivalent
to a binary shift to the left by one bit, which is achieved with the first shifter in the shifter
chain. The hardware cost of this simple optimization is almost zero, while it speeds up
the processes of both field inversion and point-scalar multiplication tremendously.
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Figure 5.6: Fast squaring with product scanning

5.2.5 The Multiplication Controller

The multiplication process is steered by the dedicated multiplication controller. It is
implemented using a finite-state machine approach, the FSM including all states and
possible transitions is depicted in Figure 5.7. During execution of the states InitLoadA
and InitLoadB the multiplication pipeline is initialized, i.e., the operands of the first 32-bit
multiplication are fetched from memory and stored in the operand registers. The actual
pipelined multiplications are then carried out in the Mult state. In WriteAcc the current
accumulator content is written to RAM and the accumulator value is shifted to the right.
The states RedAdd, Reduction0, and Reduction1 are used for reduction in F𝑝, AccM and
SubN are part of the Montgomery multiplication scheme for performing computations in
F𝑛.
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Figure 5.7: Multiplication controller FSM
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5.3 Modular Arithmetic in F𝑝

An elliptic curve is defined over an underlying field, which in the case of the secp160r1

curve is a finite prime field F𝑝 with a 160-bit prime 𝑝. This section presents the imple-
mented modular-arithmetic algorithms.

The prime 𝑝 is a so called pseudo-Mersenne prime that permits fast reduction (Sec-
tion 2.3.3). Recall that an integer 𝑥 > 𝑝 can be reduced by splitting it in 𝑥 = ℎ · 2160 + ℓ
and then computing ℓ + ℎ + (ℎ << 31), i.e., reduction is achieved using shifts by 31 bits
and additions. 31 is not a multiple of the word size 32, thus disallowing shifting by simple
addressing. Instead the datapath is modified to allow addition of a 32-bit word, i.e., a
word of ℎ, in two different locations of the accumulator concurrently. As pictured in Fig-
ure 5.8, an additional single-bit adder is necessary for handling the overlapping bit 31. A
dual-digit carry addition is avoided by storing the carry in a dedicated register instead of
propagating it to the next adder in the chain. After advancing to the next multiplication
column, this carry bit is added to the LSB of the accumulator.
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Figure 5.8: Structure of the adder

The fast reduction algorithm is not only used in multiplication, but also for the basic
operations addition, subtraction, and shifting. The alternative reduction method of con-
ditional subtraction of the modulus 𝑝 (Algorithm 2.1) does not offer a constant runtime,
it is also difficult to implement whenever the result range exceeds 2𝑝.

Reduction works as follows. The unreduced operation result is first stored in the 224-
bit RAM register R8. Then word after word of the lower 160 bits (𝑙) is fetched and added
to the accumulator, whenever necessary a word of ℎ is added in two places using the
presented adder structure.

5.3.1 Modular Multiplication

Modular multiplication is the most time critical part of an ECSM, thus it is important
to design a highly efficient multiplication algorithm. The minimal time spent for a single
160-bit multi-precision multiplication is already established to 25 × 4 = 100 cycles, it is
now necessary to minimize the cycle count for modular reduction.

The simplest approach is to keep multiplication and reduction separate, i.e., to calcu-
late the 320-bit product and to reduce it afterwards. However, this has several problems.
First, storing the intermediate result needs lots of memory, and second, it is slow due to
the additional memory access cycles.

A more efficient approach is now presented. The reduction is integrated into the mul-
tiplication process, this gives a time and storage space advantage. As seen in Figure 5.9,
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multiplication is performed in two phases. First only the upper columns 5 to 8 are pro-
cessed, the 160-bit result 𝐻 is stored in RAM register R8. Then multiplication continues
with the lower columns. After having finished a column the appropriate word of𝐻 is added
twice using the aforementioned adder structure. This produces 𝐿+𝐻+(𝐻 << 31), where
L is the 195 bit product of the lower five columns. The 195-bit sum is again stored in
R8, which for this purpose is the only one longer than 160 bits. Finally, another round
of reduction is performed, i.e., the upper part of the intermediate is added twice to the
lower-order bits, this produces the final 160-bit output.

L(195)

H(160)

Figure 5.9: Modular multiplication in F𝑝

Note that all intermediate values are stored in register R8, only in the very last step
(the second reduction round) the result is written to the designated register. This fact
allows the usage of in-place multiplication, i.e., the result can overwrite an operand. In
contrast, this is not possible with out-of-place multiplication, the result and operand field
registers must be different. The register mapping for the elliptic curve addition formulæ
presented in Algorithm 5.2 takes this fact into account.

A smaller optimization has gone unmentioned until now. As one can notice in Fig-
ure 5.9, the multiplication sequence (denoted by red arrows) is reversed for every other
column. This allows reusing one multiplication operand when switching to the next col-
umn, thus saving some memory cycles and power. When, for example, switching from
column 1 to column 2, 𝑎[0] is already stored in the operand register and does not have to
be fetched again.

5.3.2 Avoiding a Third Reduction Round

The final result of the presented reduction mechanism is not guaranteed to be smaller
than 2160, i.e., it might be 161 bits long. However, an occurrence of a 161-bit result is,
with a chance of 2−93, very unlikely and also detectable. Hence, instead of performing yet
another round of reduction to retrieve a 160-bit result, it is simply assumed that no 161-
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bit results occur during signature generation. If, despite the diminishing odds, a 161-bit
result is detected, an error flag is set in hardware and an error is returned at the end of
the signing process. Computations are finished instead of stopped, an immediate abortion
would give away the exact time of error when doing a timing attack. Note that in no case
an erroneous result is returned.

The probability of 2−93 is valid for reduction after multiplication and is calculated as
follows. The 195-bit intermediate reduction result obtained after the first reduction round
can be split in two parts, a 160-bit lower part ℓ and a 35-bit upper part ℎ. Computing
ℎ+ (ℎ << 31) yields a 67-bit number. When adding this to ℓ the result can only be 161
bits long if the higher-order 160−67 = 93 bit of ℓ are 1, only then a generated carry would
propagate all the way to the front. The chance of this happening, assuming ℓ is a random
bit string, is 2−93.

5.3.3 Implementation Results

All in all, modular multiplication in F𝑝 takes 123 cycles. Due to fast-squaring mechanic
squares can be computed in 83 cycles, i.e., exactly 10×4 = 40 cycles less (cf. Section 5.2.4).
The runtime ratio of S/M is roughly 0.67, or 2/3. This ratio is important for selecting the
fastest curve addition fomulæ.



CHAPTER 5. ELLIPTIC-CURVE MODULES 48

5.4 Modular Arithmetic in F𝑛

The Elliptic Curve Scalar Multiplication greatly benefits from the use of a pseudo-Mersenne
prime, which makes reduction a lot faster. All other parts of the Elliptic Curve DSA how-
ever are performed in F𝑛, with 𝑛 being the prime order of the curve. This modulus 𝑛 is
not of any special form, thus a different reduction algorithm has to be implemented. The
Montgomery multiplication algorithm presented in Section 2.2 and shown in Algorithm 2.2
is used for this purpose. A Montgomery multiplication of 2 operands 𝑎, 𝑏 is the efficient
computation of 𝑎𝑏𝑅−1 mod 𝑁 and is denoted by MonPro(𝑎, 𝑏). This section discusses its
implementation aspects.

5.4.1 Avoiding 161-bit Integers

One of 𝑛’s properties makes implementing modular multiplication using the Montgomery
method difficult: its bit length of 161. The implementation is geared towards handling of
160-bit integers, everything above that adds an area and time overhead. Also, 161 is not a
multiple of the word size 32, which makes implementation more complex. Now a method
is presented that allows working with 160-bit numbers.

An important choice is that of parameter 𝑅. According to Montgomery 𝑅 has to be
chosen so that 𝑅 > 𝑁 , where 𝑁 is the used modulus. Typically a power of 2, ideally a
multiple of the processors word size, is used. Then division by 𝑅 is a simple shift and
modular reduction becomes a truncation.

Before presenting the options of 𝑅, please recall that the intermediate 𝑚 < 𝑅 as
𝑚 = (𝑇 mod 𝑅)𝑛′ mod 𝑅. Also note that 32-bit multiplications with a single-bit operand,
i.e., one input word is either 0 or 1, have to be avoided. An attacker might be able to
determine the value of this bit with SPA, a multiplication with 0 does not change any
values in the accumulator and thus has a different power trace than a multiplication with
1. A possible workaround is widening one of the two multiplier inputs to 17 bit, then it is
possible to perform a 32× 33 multiplication. The previously single bit is incorporated as
MSB of a 33-bit word.

There exist several possible choices of 𝑅, each has its own set of advantages and
disadvantages.

𝑅 = 2161

While seemingly the smallest suitable option, 161 is not a multiple of 32. This makes
shifting rather expensive, instead of using simple addressing dedicated shifters need
to be included. The multiplier needs to be expanded to 17 bits in order to multiply
the highest word of the 161-bit 𝑚 value. Additionally, the integrated product-
scanning approach requires 𝑅 = 2𝑎, where 𝑎 is a multiple of the word size, thus
disqualifying this first option.

𝑅 = 2176 or 2192

Stepping up to multiples of 16 or 32, respectively, solves some of these problems. The
integrated product scanning scheme is compatible with these two choices, making
them a viable option. In case of 192-bits, the shifting can be done with simple
addressing, thus eliminating the need for dedicated shifters. However, the need for a
wider multiplier is only partially eliminated. While the computation of 𝑚×𝑁 can be
carried out with the 16-bit multiplier, the multiplication of the two 161-bit operands
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𝑇 = 𝑎 × 𝑏 still requires a 17 × 17 bit instance. Another downside is the additional
storage space and time needed for computation of 𝑚 and its multiplication with 𝑁 .

𝑅 = 2160

Although violating the requirement of being greater than 𝑁 , 𝑅 = 2160 is still a valid
option under certain assumptions. In this case the bit length of the intermediate
𝑚 is also 160 bits, which has several advantages. Both computation of 𝑚 and its
multiplication with 𝑁 is faster when compared to the previous case, also storage
requirements are slightly lower. Multiplication logic can be easily reused for multi-
plying 𝑚×𝑁 due to the same number of partial products. Finally, shifting by 160
is a simple matter of addressing.

Considering all the above 𝑅 = 2160 was chosen. However, the problem remains that
it does not satisfy 𝑅 > 𝑁 . It is now shown that an 𝑅 greater than both multiplication
operands 𝑎, 𝑏 suffices.

An appropriate size of 𝑅 ensures that 𝑡 < 2𝑁 , i.e., at most one subtraction is necessary
for retrieving the final result. Montgomery argues that 0 ≤ 𝑇 + 𝑚𝑁 < 𝑅𝑁 + 𝑅𝑁 , so
𝑡 = (𝑇 +𝑚𝑁)/𝑅 < 2𝑁 [56]. This statement still holds for 𝑅 < 𝑁 if both multiplication
operands 𝑎, 𝑏 are smaller than 𝑅. It now needs to be assured that this is true, i.e., both
operands 𝑎, 𝑏 < 2160.

Due to the structure of 𝑛—the MSB is followed by many 0 bits—the probability of a
random element in F𝑛 being greater than 2160 is very low. In fact, this probability is only
2−79. It is assumed that all operands of Montgomery multiplications during the course of
a signing operation are smaller than 𝑅. Or in other words, all operands and results are
restricted to 160 bits.

Other than allowing 𝑅 = 2160, this restriction offers additional advantages. No added
storage is needed for the MSB of potentially 161-bit long integers, all values fit into the
160-bit field registersR𝑥. Also, no 17-bit multiplier is required, the 16-bit instance suffices.

If a multiplication results in a 161-bit product, the outcome can not be used as input
to another multiplication. Such an occurrence is detected and an error flag is set, after
finishing the signing operation an error is returned instead of the result. Throughout the
signing process only four Montgomery multiplication operands are not output of another
Montgomery multiplication: the input message hash 𝑒, the ECSM result’s 𝑥 coordinate 𝑟,
the scalar 𝑘 and the private key 𝑑. All these are 160 bits long, due to either choice (𝑒, 𝑘,
and 𝑑) or being an element in F𝑝 (𝑟).

There are a total of 200 Montgomery multiplications computed for a single signing
operation, this results in an overall probability of 2−73 of abortion due to a 161-bit result.
This probability is deemed to be acceptable.

5.4.2 Integrated Product Scanning

Two ways of integrating the reduction steps into the multiplication were presented in
Section 2.3.4. Standard multiplication uses the product-scanning approach, so the Finely
Integrated Product Scanning (FIPS) method (Algorithm 2.3) is the obvious choice. This
work uses Coarsely Integrated Product Scanning (CIPS), a derivation of the FIPS algorithm
not covered by Koç et al. [46].

Recall that the reduction can proceed word-wise, i.e., 𝑚[𝑖] = 𝑇 [𝑖]𝑛′
0 mod 2𝑤, with

𝑛′
0 = 𝑛′ mod 2𝑤. The word size used for reduction (𝑤) does not need to be equal to the

processor or RAM word size, which in this case is 32 bits. Here the parameter 𝑤 was
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c[0]c[4]c[8]c[9] c[7]

Figure 5.10: Multiplication with modulus 𝑛

chosen to be 16 bits, i.e., the width of the multiplier. This allows to compute each 16-bit
part of 𝑚 in a single cycle. In an attempt to reduce both area and time requirements 𝑤
was set to 1. The outcome however was rather negative, this is discussed in Appendix C
in greater detail.

The Coarsely Integrated Product Scanning (CIPS) algorithm is very similar to the FIPS
approach, it however alternates between multiplication and reduction after each column by
simply splitting the inner loop. This is needed due to the use of the reversed multiplication
order in odd columns (see Figure 5.9). Pseudocode for the CIPS approach using 𝑤 = 16
and a 32-bit RAM interface is shown in Algorithm 5.1. acc15..0 denotes the 16 low-order
bits of the accumulator, acc31..16 the next-highest 16 bits.

Due to the differing word sizes—16 bit reduction and 32 bit memory—slight modifica-
tions are applied to the computation of 𝑚. A 32-bit memory word m[i] contains two 16-bit
parts m[i]0 and m[i]1. In Line 9 of Algorithm 5.1, the lower part m[i]0 is computed by
multiplying the 16 lowest-order bit of the accumulator with the 16-bit constant 𝑛′

0. The
result is stored in RAM, in the next cycle the saved word appears at the RAM output
and is immediately written back to operand register A. During the next 2 cycles, m[i]0 is
multiplied with the lowest word of 𝑛, which is stored in operand register B. This process
is repeated for the upper part m[i]1. In RAM the intermediate m[i] is stored in the first
register of the current result register set (Section 5.4.3), i.e., either in R4 or R6.

The multiplication 𝑚 × 𝑁 can be considerably sped up when taking the structure of
the modulus into account. As depicted in Figure 5.10, two of 𝑛’s 32-bit words are equal to
zero, i.e., they can be skipped in a multiplication (white dots). The highest word equals
1, which allows replacing a multiplication with a simple addition of the appropriate word
of 𝑚 (green dots). This optimization reduces the cycle count for performing 𝑚×𝑁 to 65.

In contrast to modular multiplication in F𝑝, there is no RAM register dedicated to
storing intermediate values. Hence, in-place multiplication is not possible.
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Algorithm 5.1: Coarsely Integrated Product Scanning (CIPS) with 𝑤 = 16 and
32-bit RAM

1 s = 160/32 = 5;
2 for i=0 to s-1 do
3 for j=0 to i do
4 acc = acc + a[j]b[i-j];
5 end
6 for j=0 to i do
7 acc = acc + m[j]n[i-j];
8 end
9 m[i]0 = acc15..0 n

′
0 mod 216;

10 acc = acc + (m[i]0n[0]0);
11 acc = acc + (m[i]0n[0]1 << 16);
12 m[i]1 = acc31..16 n

′
0 mod 216;

13 acc = acc + (m[i]1n[0]0 << 16);
14 acc = acc + (m[i]1n[0]1 << 32);
15 acc >>= 32;

16 for i=s to 2s-1 do
17 for j=i-s+1 to s-1 do
18 acc = acc + a[j]b[i-j];
19 end
20 for j=i-s+1 to s-1 do
21 acc = acc + m[j]n[i-j];
22 end
23 acc >>= 32;

24 end

25 end

5.4.3 The Final Subtraction

Up until now, all explanations concern the calculation of 𝑡, which is of range 𝑡 < 2𝑛. The
final result of the Montgomery multiplication is retrieved by subtracting the modulus if
𝑡 ≥ 𝑛, or by simply returning 𝑡 otherwise.

This final conditional subtraction can be avoided, as first shown by Walter [75, 76].
Instead of reducing the output to the desired range, the Montgomery multiplication is
modified to accept inputs in the range of 𝑎, 𝑏 < 2𝑁 , i.e., the product 𝑡 can be used as
input for the next multiplication. The basic multiplication algorithm is unchanged, the
lower bound for 𝑅 however is raised above 𝑁 . A higher 𝑅 has, as already discussed before,
several disadvantages, which is why a more traditional approach using subtractions was
chosen.

A conditional subtraction must be avoided as it poses as a possible side channel. A very
simple solution is to always execute the subtraction, it is needed anyway for performing
the comparison with the modulus 𝑁 . Both results 𝑡 and 𝑡−𝑁 are stored in the RAM in
neighboring registers, i.e, 𝑡 in R𝑥 and 𝑡−𝑁 in R𝑥+1, respectively. Two such neighboring
register pairs, dubbed result register set, are reserved in RAM: set 1 spans R4 and R5,
set 2 R6 and R7. In-place multiplications are not possible, thus two register sets are
needed for the case that a multiplication needs the outcome of the previous one. The
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correct result is determined by the sign of the subtraction result, if negative (𝑡−𝑁 < 0),
the correct result is stored in R𝑥, otherwise in R𝑥+1. The sign is stored in a dedicated
register (one per result set), which ensures that the next operation accesses the correct
register. Note that this subtraction scheme might be exploited by so-called safe-error
attacks (Section 5.9).

5.4.4 Switching domains

Prior to using a regular integer as an operand in the Montgomery multiplication, it has to
be transformed into the Montgomery domain, which is denoted by �̄� = 𝑎𝑅 mod 𝑁 . Also,
the signature part 𝑠 needs to be transformed back. Both transformations are accomplished
using Montgomery multiplications with special operands.

Three values need to be transformed into the Montgomery domain: 𝑘, ℎ, and 𝑟. This is
achieved by performing a Montgomery multiplication with𝑅2 mod 𝑁 , i.e., MonPro(𝑎,𝑅2) =
𝑎𝑅2𝑅−1 = �̄�. The 160-bit constant 𝑅2 mod 𝑛 was precomputed and is stored in ROM
register 16. The private key 𝑑 must be transformed during the (offline) key generation,
the Montgomery representation is then written to ROM.

Transformation in the other direction is needed only once, namely for retrieving the fi-
nal value of the signature part 𝑠. One can do this by multiplying with 1, i.e.,𝑀𝑜𝑛𝑃𝑟𝑜(�̄�, 1) =
�̄�𝑅−1 = 𝑎𝑅𝑅−1 = 𝑎. Although one could optimize this multiplication by simply skipping
the actual multiplication with 1, no such measure was implemented, as time savings would
be minimal and the controller complexity would rise.

5.4.5 Additions to the datapath

The implemented Montgomery multiplication scheme requires some additions to the basic
datapath, they are marked red in Figure 5.11. For the computation of a part of 𝑚, the
current contents of the accumulator, more specifically either acc15..0 or acc31..16, need to be
multiplied with the 16-bit constant 𝑛′

0, which is simply hardcoded as a possible input of the
integer multiplier. The multiplication result is written to RAM. In the basic design, only
the adder output is fed to RAM, now the multiplier output needs to be written. Instead of
adding multiplexers, the 32 low-order bits of the first adder input (the accumulator) can
be set to zero using AND gates, then the same output signal can be used for both cases.
After having computed a part of 𝑚, it needs to be multiplied with the lowest-order word
of the modulus 𝑛 (stored in operand register B). A simple trick is used here, after storing
a word in RAM it appears at its output, so the computed part of 𝑚 can be copied to the
operand register A without requiring multiplexers.

5.4.6 Implementation results

Using the described design, a single Montgomery multiplication can be carried out in 197
cycles, squarings amount to 157 cycles. This is a substantial increase when compared to
multiplications in F𝑝. This is explained by the fact that the modulus is not of any special
form, and hence does not allow the use of the fast-reduction algorithm. The runtime ratio
S/M is roughly 0.8.



CHAPTER 5. ELLIPTIC-CURVE MODULES 53

 EC Datapath

3

ACC67

Mult
16x16

A2 A1 A0B1 B0

Add67

RAM

ROMp

32

32 32

32

RAM

Shiftshift by 0..3

Shift16shift by 0, 16, or 32

67

16 16

16

16
hi

lo

n0'

32

Figure 5.11: Additions to datapath required for Montgomery multiplication. Additions
are marked red.
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5.5 Tuning the Comb Method

The Elliptic Curve Scalar Multiplication (ECSM) is the most time consuming part of the
Elliptic Curve DSA. For the signing operation, a random scalar 𝑘 is multiplied with a fixed-
base point G, this is denoted by 𝑄 = 𝑘𝐺. There exist several multiplication algorithms,
some of which are mentioned in Section 2.4.4. Fixed-base comb methods offer a drastic
speed up in exchange for higher memory requirements.

This thesis uses the comb method of Hedabou et al. [29], which offers several advantages
over other methods. The used Zeroless Signed Digit (ZSD) recoding scheme [25] helps
mitigating a possible side channel as no all-zero columns can occur. Also, the number
of required precomputed points is slashed in half when compared to other methods, only
2𝑤−1 points need to be stored.

5.5.1 Choosing the Comb Width

The choice of the comb width 𝑤 depends on the imposed requirements and constraints.
Small widths already offer a relatively high speed up for small cost, e.g., for 𝑤 = 2
computation time is halved and only two points need to be stored. Due to the exponential
growth of precomputed points, a high 𝑤 is not very advisable. Also, the performance gain
is minimal for each further bit added if 𝑤 is already high.

Table 5.1 compares both memory and time requirements for widths of up to 6. Given
are the number of precomputed points, the size of the ROM, the number of necessary
EC doubling-additions (DAs), and the computation time relative to the case 𝑤 = 1. A
width of 1 is equal to a standard, i.e., non-comb, left-to-right algorithm. In this case
only the base point 𝐺 needs to be stored. Points are stored in affine, i.e., non-projective,
coordinates, therefore 2 × 160 = 320 bits of ROM are needed per point. The number of
doubling-additions is equal to the number of comb columns (ℓ in Figure 2.9) minus 1.

Table 5.1: Comparison of different comb widths

𝑤 Points ROM bit DAs Time rel.

1 1 320 159 1.00
2 2 640 79 0.50
3 4 1 280 53 0.34
4 8 2 560 39 0.25
5 16 5 120 31 0.20
6 32 10 240 26 0.16

A width of 3 or 4 seems the most suitable, 2 does not offer enough performance gain,
and 5 or 6 are too costly and offer little return. For this thesis 𝑤 = 4 is chosen, it offers a
good speed-up with acceptable cost.
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5.6 Implementing the Doubling-Addition

Comb methods scan the scalar matrix from left to right, for each column, a point operation
of form 2𝑃 + 𝑄 is performed. This section describes the efficient implementation of this
operation dubbed doubling-addition. First, the used addition formulæ are discussed, they
are then mapped to executable instruction code. Finally, a controller design that allows
executing the stored program is shown.

There exists a broad range of efficient point addition and doubling formulæ (Sec-
tion 5.6). Recall that the runtime of these algorithms is typically measured in required
field multiplications (M) and squarings (S). Two doubling-addition schemes featuring a
runtime of 11M + 7S were presented, namely Longa and Miri’s scheme and Goundar’s
ZDAU operation. The former can be implemented using one less field register, also the
overall instruction count of this method is lower than that of Goundar’s algorithm. As all
instructions are concluded by a reduction operation, the total cycle count of this method
is slightly lower. Due to these advantages, Longa and Miri’s formulæ are adapted for this
work.

The chosen addition formulæ utilize standard Jacobian projective coordinates (Sec-
tion 2.4.2), which represent the two-dimensional points by three coordinates. This allows
to reduce the number of needed field inversions in F𝑝 to one. The added point 𝑄 is as-
sumed to be stored in affine coordinates, so a mixed Jacobian-affine addition has to be
performed.

5.6.1 Doubling-Addition Controller Design

The datapath was already presented in Section 5.2, it allows modular multiplication,
squaring, addition, subtraction, and shifting. The doubling-addition controller, which
implements the elliptic curve formulæ and utilizes the datapath’s capabilities to perform
its duties, follows now. The control logic is housed in a separate module (DA-Control in
Figure 4.1) and is activated by the top-level controller whenever needed.

The elliptic curve doubling-addition is both a relatively lengthy and irregular process.
Controllers based on finite-state machines (FSM) are, while simple and efficient in general,
not suitable for these types of algorithms. Instead, the used controller architecture is based
on a microcontroller-like design, i.e., instructions and accompanying operands are stored
in a program memory and are fetched and executed one after another. An instruction
counter keeps track of the current operation.

The main task in designing the controller is mapping the EC addition formulæ to in-
struction code. A two-operand code that allows instructions of form 𝑟 = 𝑎 * 𝑏, where *
stands for any of the supported operations, results in the most compact controller design.
All code can be stored in a single table, one counter is sufficient for addressing the instruc-
tion. The major downside is the longer runtime. Two-operand code has a high number of
instructions, as each operation is concluded by a reduction lowering the overall instruction
count is desirable. The number of field registers required for a doubling-addition might
also be higher.

The presented controller design thus allows the use of composite operations, e.g.,
𝑟 = 𝑎× 𝑏+ 2𝑐− 4𝑑. This reduces the operation count when compared to the two-operand
approach and also saves memory cycles, as less intermediate values need to be stored and
retrieved from the RAM. The multiply-accumulate unit embedded in the datapath can be
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used to efficiently compute such composite instructions. Before explaining the controller
design, the instruction code is discussed.

Instruction code

The used mapping of Longa and Miri’s addition formulæ is shown in Algorithm 5.2. R𝑖,
with 1 ≤ 𝑖 ≤ 7, denotes the RAM field registers. During doubling-additions R0 is reserved
for the scalar 𝑘, the 224 bit-R8 is used for the unreduced operation results. As stated
in Section 5.3.1, in-place multiplication is possible due to the use of R8 as dedicated
temporary register. The mapping reflects this fact, e.g., in Lines 10 and 17.

The algorithm assumes that the Jacobian coordinates of the point 𝑃 = (𝑋1, 𝑌1, 𝑍1)
are stored in R1 (𝑋1), R2 (𝑌1), and R3 (𝑍1), respectively. At the end of the doubling-
addition the result 2𝑃 +𝑄 = (𝑋4, 𝑌4, 𝑍4) is stored in the same registers, which allows to
start the next iteration without further ado.

Prior to starting the actual computation, the four appropriate column digits [𝑠 𝛼2 𝛼1 𝛼0],
with 𝑠, 𝛼𝑖 ∈ {−1, 1}, of the scalar matrix are fetched and stored in a dedicated register.
Recall that the actual bit values 𝑎𝑖 ∈ {0, 1} are interpreted as 𝛼𝑖 = (−1)1+𝑎𝑖 , i.e., zero
bits are reinterpreted as (−1). The (affine) coordinates X𝑅𝑂𝑀 and Y𝑅𝑂𝑀 of the corre-
sponding comb point [1 𝛼2 𝛼1 𝛼0]𝐺 are kept in the ROM field registers (2(𝑎2 𝑎1 𝑎0)) and
(2(𝑎2 𝑎1 𝑎0) + 1), respectively.

If the column’s highest-order bit, i.e., the sign 𝑠, is negative, the precomputed point’s
𝑦 coordinate has to be negated. To avoid conditional behavior a simple trick is used. First
Y𝑅𝑂𝑀 is copied to the RAM, then 2Y𝑅𝑂𝑀 mod 𝑝 is computed and stored in a neighboring
register. After this, depending on the sign of the column, either 𝑦 ≡ 2𝑦 − 𝑦 mod 𝑝 or
−𝑦 ≡ 𝑦 − 2𝑦 mod 𝑝 is computed (Line 3). Only a single bit of the operand addresses has
to be conditionally flipped.

In order to avoid negative results after a subtraction, the a multiple of the modulus
𝑝 is added to the difference. These additions are not listed in Algorithm 5.2, but can be
seen in Appendix B.

Controller structure

For easy execution each operation—an operation is equal to a line in Algorithm 5.2—is
split into multiple steps. Both operations and steps are stored in dedicated look-up tables,
as can be seen in Figure 5.12. Steps are stored in the monolithic StepLut containing a
total of 55 entries. The operation table OpLut contains 28 entries and stores the result
register address Res and a pointer OpOffset pointing to the operations first step in the
StepLut. The 3 bit counter StepOffset keeps track of the current step within an operation,
it is added to the base address to retrieve the current StepNr.

Each entry of the StepLut contains a 3-bit opcode Instruction, two 3-bit arguments
OpA and OpB, and two single-bit flags. Eight different instructions are supported: ADD,
ADDP, SUB, MULT, SQUARE, SHIFT, COPY, and READK. READK is used as the
first step of a doubling-addition and retrieves four column digits of the scalar 𝑘, all other
instructions should be self-explanatory. The first argument OpA contains the index of
the first operand field register. In the case of MULT, OpB points to the second operand
register, for ADD, ADDP, SUB, and SHIFT it contains the number of shifts, which is
directly fed to the first shifter in the datapath. The LastStepFlag determines if the step
is the last within its operation. The RomFlag is set whenever OpA points to the ROM
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Algorithm 5.2: Explicit register mapping of Longa’s doubling-addition

Input: 𝑃 = (R1,R2,R3), 𝑄 = (X𝑅𝑂𝑀 ,Y𝑅𝑂𝑀 )
Output: 2𝑃 +𝑄 = (R1,R2,R3)

1 R4 ← Y𝑅𝑂𝑀 // Y𝑅𝑂𝑀

2 R5 ← 2Y𝑅𝑂𝑀 // 2Y𝑅𝑂𝑀

3 R4 ← R4/5 - R5/4 // ±Y𝑅𝑂𝑀

4 R5 ← R3
2 // Z2

5 R6 ← R3 × R5 // Z3

6 R4 ← R4 × R6 - R2 // 𝛼
7 R6 ← X𝑅𝑂𝑀 × R5 - R1 // 𝛽
8 R7 ← R6

2 // 𝛽2

9 R3 ← R3 + R6 // Z + 𝛽
10 R6 ← R7 × R6 // 𝛽3

11 R3 ← R3
2 - R5 - R7 // Z’

12 R5 ← R1 × R7 // X’/4

13 R2 ← R2 × R6 // Y’/4

14 R7 ← R4
2 // 𝛼2

15 R1 ← 4R7 - 4R6 - 8R5 - 4R5 // 𝜃
16 R6 ← R4 + R1 // 𝛼+ 𝜃
17 R6 ← R6

2 // (𝛼+ 𝜃)2

18 R4 ← R1
2 // 𝜃2

19 R2 ← 8R2 // Y’

20 R6 ← R7 + R4 - R6 - 2R2 // 𝜔
21 R5 ← 4R5 // X’

22 R5 ← R5 × R4 // X’𝜃2

23 R3 ← R3 × R1 // Z4
24 R4 ← R1 × R4 // 𝜃3

25 R1 ← R6
2 - R4 - 2R5 // X4

26 R4 ← R2 × R4 // Y’𝜃3

27 R5 ← R5 - R1 // X’𝜃2 - X4
28 R2 ← R6 × R5 - R4 // Y4

instead of the RAM. For the detailed code, i.e., the exact contents of both the operations
and steps table, please refer to Appendix B.

Execution of a single operation is performed as follows. If the first instruction of an
operation is either MULT or SQUARE, the columns 5 to 9 of the product are computed
and stored in R8, as outlined Section 5.3.1, otherwise computation starts with column 0.
The controller executes step after step until the LastStepFlag is set, then the 32-bit partial
result is written to R8 and the stepOffset is reset to 0. This process is repeated for the
columns 0 to 4. For multiplications and squarings, one column of the product-scanning
scheme is processed at once. All other instructions as well as the addition required by
the integrated reduction step also add to the accumulator. The computation is finally
concluded by a reduction round, i.e., the upper part of R8 is added twice to the lower
part and the result is written to the field register R𝑅𝑒𝑠.
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Figure 5.12: Doubling-addition controller

Implementation results

With the described controller architecture, a doubling-addition can be performed in 2 251
cycles. The area requirements for the dedicated controller are 594GEs, the two look-up
tables take up 243GEs.
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5.7 Modular Multiplicative Inverse

During the course of an ECDSA signing operation, two modular multiplicative inversions
have to be performed. The Jacobian representation of the point 𝑘𝐺 must be converted
to affine coordinates, this requires the inversion of the final points 𝑍 coordinate in F𝑝.
Also, for computation of the signature value 𝑠, the inverse of the scalar 𝑘−1 mod 𝑛 is
needed. Some widespread inversion algorithms are presented in Section 2.3.5. To achieve
the primary goal of safety against all sorts of side-channel attacks a constant runtime and
operation flow is vital. Inversion using Fermat’s little theorem, i.e., computing 𝑥−1 ≡ 𝑥𝑛−2

mod 𝑛, is the only presented algorithm that offers a constant runtime, which makes the
algorithm choice obvious. Both inversion processes are steered by the top-level controller,
which is discussed in Section 5.8.

When using Fermat’s little theorem inversion is performed by means of a modular
exponentiation 𝑥𝑒 mod 𝑛. Modular exponentiation is very similar to the ECSM, in fact
almost the same algorithms can be used. The additive notation of elliptic-curve opera-
tions is replaced with a multiplicative one, i.e., point doubling becomes modular squaring
and point addition becomes a modular multiplication. Commonly used algorithms in-
clude binary left-to-right and right-to-left algorithms, the Montgomery powering ladder
or sliding-window methods.

This thesis utilizes a left-to-right square-and-multiply algorithm for modular exponen-
tiation. Both exponentiation operations have a fixed and publicly-known exponent, namely
𝑛 − 2 and 𝑝 − 3, respectively. No countermeasures for protecting the exponent against
side-channel leakage have to be implemented, this allows the use of faster exponentiation
algorithms. Recall that the binary left-to-right algorithm requires |𝑒| − 1 field squarings
and HW(𝑒)−1 field multiplications, where |𝑒| denotes the bit length of the exponent 𝑒
and HW(𝑒) its Hamming weight. A fixed exponent allows to optimize the exponentiation
algorithm, the number of required field multiplications can be drastically lowered.

Sliding-windows algorithms require a costly precomputation phase, they then scan the
exponent to determine the multiplication sequence. For a fixed exponent, it is possible
to perform an offline search for an optimal multiplication sequence for the square-and-
multiply algorithm. Precomputation of all possibilities of a fixed-size window, as required
by sliding-window algorithms, is not necessary. Instead, the optimal set of precomputed
powers can be determined individually for each exponent, this allows a maximum speed-
up with minimal storage requirements. The number of needed multiplications can be
drastically reduced, however, the number of squarings is fixed to |𝑒|−1. This high number
of squarings makes the fast-squaring mechanism discussed in Section 5.2.4 an absolute
necessity. It is now shown how computation time is minimized for each exponentiation
individually.
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𝑍−1 mod 𝑝

The ECSM is carried out in Jacobian coordinates, the result’s affine 𝑥 coordinate (the
signature part 𝑟) is retrieved by computing 𝑟 = 𝑋𝑍−2 mod 𝑝. Note that the square of
the inverse is needed. A direct computation using Fermat’s little theorem, i.e., 𝑍−2 ≡
𝑍𝑝−3 mod 𝑝, is faster than first computing the inverse and then squaring it.

The 160-bit exponent 𝑒 = 𝑝− 3 (Equation 5.1) contains only three zero digits, thus its
Hamming weight is 157. This constellation makes a traditional binary square-and-multiply
approach extremely costly. However, there exists a much more efficient way.

𝑒 = 𝑝− 3 = 0xFFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 7FFFFFFFC (5.1)

The 128 high-order bits of the exponent are all equal to 1, thus it is necessary to
compute 𝑍2128−1. This is achieved by iteratively calculating 𝑍2𝑗−1 for 𝑗 = 2𝑖 and 0 < 𝑖 ≤ 7,
starting with 𝑍1. The index 𝑖 is raised by using Equation 5.2, each incrementation takes
2𝑖 squarings and only 1 multiplication. The computation of 𝑍2128−1 thus takes 127S but
only 7M. The values for 𝑖 = 2, 3, 4 are later reused and stored in RAM registers.

(𝑍2𝑗−1)2
𝑗
𝑍2𝑗−1 = 𝑍2(𝑗+𝑗)−2𝑗𝑍2𝑗−1 = 𝑍2(2𝑗)−1 = 𝑍22

𝑖+1−1 (5.2)

There exists a simpler and less mathematical view on this problem. A squaring op-
eration is equivalent to a binary left-shift of the exponent, multiplying two powers adds
the two exponents. The fastest way to build the bit string (1)128 using only shifts and
additions is to iteratively compute ((1)𝑗 << 𝑗) + (1)𝑗 = (1)2𝑗 , again with 𝑗 = 2𝑖 and
0 < 𝑖 ≤ 7.

The single 0 bit at position 31 of the exponent is followed by another block of 29 1s.
As 29 = 24 + 23 + 22 + 1, this block can be computed using four multiplications with the
stored powers of 𝑍.

Summing up, an inversion in F𝑝 takes 159S and only 11M. The total runtime is 14 550
cycles. For the detailed instruction sequence refer to the Appendix B

𝑘−1 mod 𝑛

Finding an optimal multiplication sequence for inversions in F𝑛 is harder. Apart from the
long block of 0s, the 161 bit exponent 𝑒 (Equation 5.3) is not very regular, hence there is
no obvious solution like for F𝑝. The Hamming weight is 45, the now presented algorithm
reduces the multiplication count to 26.

𝑒 = 𝑛− 2 = 0x1 00000000 00000000 0001F4C8 F927AED3 CA752255 (5.3)

A modified sliding-window algorithm is used for inversion in F𝑛. Instead of precom-
puting all possible values for a fixed-size window, only the powers 𝑘3, 𝑘5, and 𝑘9 are
precomputed and stored in RAM, this takes 3M and 3S. The actual square-and-multiply
exponentiation is then started from 𝑘8, which is a by-product of computing 𝑘9. This
simple trick saves 3S, the effective cost for precomputation is reduced to only 3M. The
multiplication sequence, i.e., when to multiply with which precomputed power of 𝑘, was
computed offline and is stored in a look-up table. The additional circuit area occupied
by this LUT could be spared by determining the sequence online, e.g., by parsing the
exponent. However, considering the differing window sizes, this is too complex and would
possibly require an even larger area.



CHAPTER 5. ELLIPTIC-CURVE MODULES 61

The inversion in F𝑛 takes a total of 160S and 26M, or 30 252 cycles using the Mont-
gomery multiplication scheme presented in Section 5.4.

The search for an optimal set of precomputed powers was done using a brute-force
approach. Odd powers of up to 𝑘31 were included in the search set 𝑆, i.e., the exponent’s
LSB is always set. The power set 𝑃 (𝑆), i.e., the set of all possible subsets, was constructed,
then each entry of 𝑃 (𝑆) was analyzed in terms of precomputation cost and a possible
multiplication sequence was determined. Note that, due to the lack of a fixed window size,
there is no unique multiplication sequence. To simplify the search, only a single sequence
was determined per set, similar to standard sliding-window algorithms the exponent was
scanned from left to right and the powers were matched, higher powers were preferred if
multiple options were possible. The fastest found option was {𝑘3, 𝑘7, 𝑘9}, which offers a
very cheap precomputation and fits perfectly within the tight memory requirements.

Due to memory constraints, the maximum number of precomputed powers is 3. Mul-
tiplication in F𝑛 is carried out using the Montgomery multiplication scheme presented in
Section 5.4, thus field registers R4..7 are reserved for multiplication results (result register
sets). The signature value 𝑟 is stored in R8, the scalar 𝑘 in R0. This leaves the 3 registers
R1..3 at disposal.
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5.8 The Top-Level Controller

The ECDSA controller is comprised of multiple sub-controllers, as seen in Figure 4.1.
The top-level controller is in charge of overseeing the signature process and steering the
sub-controllers, its structure is now discussed in greater detail.

The top-level controller is implemented following a hybrid approach, it utilizes both
a finite-state machine and microcontroller-like programming. The absolute top-level of
controlling is implemented using a FSM, as depicted in Figure 5.13. It features states
dedicated to the comb method, the two inversions, and hash computations. All other
operations needed for computing a signature are carried out in the state Prog. In this
state, instructions are fetched from a program memory and then executed, which is very
similar to the design of the doubling-addition controller.

SHA3

Comb

InvZ InvK

Prog

1

2

3

Figure 5.13: Top-level controller FSM

Apart from the FSM, the top-level controller houses several other parts, some of which
are shown in Figure 5.14. The 4-bit columnCounter keeps track of the current word index,
it is shared with the multiplication and doubling-addition controllers. The 8-bit kCounter
is used for counting down the columns of the scalar matrix used in the comb method as
well as for keeping track of the number of performed squarings for both field inversions.
The 5-bit opCounter points to the current operation for both the doubling-addition and
the top-level program. The InvZLut and InvKLut store the multiplication sequence for
the field inversion, the OpLut stores the program executed during the Prog state.

columnCounter/4

kCounter/8

opCounter/5

InvKLUT

MultRequired

MultOp

InvZLUT

MultRequired

MultOp

MultRes

SquareOp

TopLUT

Instruction

Res

OpA

OpB

OpAMont

Figure 5.14: Top-level controller structure

The four dedicated states contain sub-FSMs for completing their task. The SHA state
is the most simple one, the dedicated SHA controller is started and the end of the hashing
process is awaited. For the Comb state, the doubling-addition controller is invoked for
each column of the scalar matrix. The kCounter acts as column index, it is, starting from
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39, being count down to 0. For the ECDSA, only the 𝑥 coordinate of the final point is
required, so the computation of the 𝑦 coordinate (2 field squarings) is skipped in the last
doubling-addition. The two inversion states need a more detailed explanation.

5.8.1 Field Inversions

Field inversions are performed by means of a modular exponentiation in either F𝑝 or F𝑛, the
used algorithms are discussed in Section 5.7. They are implemented using two separate
look-up tables and the 8-bit kCounter, which keeps track of the number of performed
squarings. In the case of 𝑍−1 mod 𝑝, the counter counts up starting from 0 until it reaches
159. For 𝑘−1 mod 𝑛 the counter is set to 160 and then counts down to 0.

The two look-up tables InvZLUT and InvKLUT (Figure 5.14) are very similar to each
other. The MultRequired flag determines if a multiplication is required for the current
value of the kCounter, if set to 0 only a squaring is performed. The first operand of such
a multiplication is always the outcome of the previous squaring operation, the second
operands index is stored in MultOp.

The InvZLUT also contains the multiplications result register index and the operand
for the squaring operations. Squarings always writes its outcome to R2, thus most of the
SquareOp entries are 2.

All multiplications and squarings needed by the second inversion 𝑘−1 mod 𝑛 are carried
out with the Montgomery multiplication scheme presented in Section 5.4. This scheme
does not allow in-place multiplication and stores the result in two neighboring field reg-
isters, which are dubbed result register sets. Almost all performed multiplications and
squarings use the previous result as an input. For this reason there exist two such result
sets, they are used alternately. The result is written to one register set, while the operand
is read from the other.

5.8.2 The TopLUT

While in state Prog the controller executes the program stored in the TopLUT by fetching
one instruction after another. This look-up table contains 32 entries and is similar to the
table used by the DA-Controller. No composite operations are needed, a two-operand
code is sufficient. This allows the use of a single monolithic table.

Each table entry is comprised of a 3-bit instruction code, pointers to the result and
operand registers, and a flag. Five instructions are supported: COPY, MULT, SQUARE,
READK, and ADDN. The first three are self-explanatory, the two remaining need expla-
nation. READK is equal to the doubling-addition instruction of the same name, the four
digits of the highest-order column out of the scalar matrix are fetched and stored in a
dedicated register.

ADDN performs a modular addition in F𝑛, which is only needed for computing 𝑠 =
𝑘−1ℎ + 𝑘−1𝑟𝑑 mod 𝑛. The fast reduction mechanism used for calculations in F𝑝 is not
applicable in F𝑛, so a different method has to be found. The sum is smaller than 2𝑛, so the
same mechanism found in the final subtraction step of the Montgomery multiplication can
be used. During computation of the sum also its difference to the modulus is determined.
The sum 𝑡 is stored in R4, the difference 𝑡 − 𝑛 in R5. Depending on the sign of the
subtraction 𝑡− 𝑛 the correct result is chosen and used for the next operation. As also the
case for the Montgomery multiplication, this opens up the possiblity of so-called safe-error
attacks.
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The Res field contains the index of the target register, in case of Montgomery multi-
plications it indicates which result register set to use, i.e., 0 for R4/5 and 1 for R6/7. OpA
points to the first operand, OpB points to the second operand register and is only evalu-
ated whenever a MULT instruction is executed. The OpAMont flag determines whether
OpA points to a field register or to a Montgomery result register set. If the flag is set the
correct result out of the result register set 0 or 1, depending on the LSB of OpA, is used.

For the exact content of the look-up table please refer to Appendix B.

5.8.3 The ECDSA Program

The execution mechanism was discussed in detail, however, no word was lost on what the
program actually does. This shortcoming is now taken care of.

Algorithm 5.3 outlines the used program. Commented lines represent the top-level
dedicated states, all other operations are performed during execution of the Prog state.
In the first step, two 160-bit random numbers are retrieved from a random number gen-
erator and stored in the RAM. The random scalar 𝑘 is written to R0, the second integer
𝑍𝑟 is used for Projective Coordinate Randomization and written to R3. Note that the
implementation does not feature such an RNG, the random values are simply delivered
by the simulation environment.

Due to some algorithm choices, the scalar 𝑘 must have certain properties, which need
to be ensured while copying the random value to the RAM. The ZSD representation
requires that the scalar is odd, hence the LSB of the lowest word is always set to 1. The
doubling-addition formulæ (Section 5.6) compute ((𝑃 +𝑄) +𝑃 ) instead of (2𝑃 +𝑄), i.e.,
no doubling is performed. An elliptic curve point addition 𝑃 +𝑄 requires that 𝑃 ̸= ±𝑄.
The first doubling-addition performed by the comb method is critical in this regard, the
two highest-order columns of the scalar matrix must not point to the same precomputed
point. This is ensured by performing a simple correction: the MSB of the scalar (𝑘159)
is set to the value (𝑘39 ⊕ 𝑘40) (Figure 5.15), where ⊕ denotes the binary XOR. Then the
two columns are different in at least one row while being identical in another row. For
the subsequent doubling-additions, the current point 𝑃 can never be equal to any stored
point 𝑄, no additional measures are necessary.

1
k120
k080
k040

… 

k159
k119
k079
k039

k158
k118
k078
k038

k121
k081
k041
k001

Figure 5.15: Correction of scalar 𝑘 to ensure 𝑃 ̸= ±𝑄

After copying and correcting the random values, the powers 𝑍2
𝑟 and 𝑍3

𝑟 mod 𝑝 are
computed. The four digits of the highest-order column out of the scalar matrix are fetched,
the appropriate comb points affine coordinates (𝑥, 𝑦) are multiplied with the powers of 𝑍𝑟,
i.e., 𝑋 = 𝑥𝑍2

𝑟 and 𝑌 = 𝑦𝑍3
𝑟 . This technique is called Randomized Projective Coordinates

(RPC) and helps thwarting differential Side-Channel Analysis (SCA) (Section 5.9).
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During execution of the Comb state, 39 doubling-additions are performed, the follow-
ing inversion is done as described in Sections 5.8.1. The signature value 𝑟 is computed
by multiplying the final 𝑋 coordinate with the square of the inverse of Z, during this
computation an inline check is performed. If the condition 0 < 𝑟 < 𝑝 is violated, an
abortion flag is set, computation however continues. Then, the scalar 𝑘 is transformed to
the Montgomery domain by computing 𝑘 = MonPro(𝑘,𝑅2 mod 𝑛). During the precom-
putation phase preceding the second inversion, the powers 𝑘3, 𝑘7, and 𝑘9 are computed
and stored in field registers 1 to 3.

Then, the second inversion 𝑘−1 mod 𝑛 is carried out. The subsequent hashing oper-
ation computes an 800-bit state version of Keccak. The input-message hash 𝑒 as well
as the signature part 𝑟 are then transformed to the Montgomery domain. Note that the
non-transformed representation of 𝑟 is later used as a return value, thus it is also kept in
RAM and not overwritten. Finally, the second signature part 𝑠 = 𝑘−1ℎ+𝑘−1𝑑𝑟 mod 𝑛 is
computed. During the addition, an inline check is performed to determine if 𝑠 ̸= 0. Note
that the bracket in 𝑠 = 𝑘−1(ℎ+ 𝑑𝑟) mod 𝑛 is unfolded, two multiplications with 𝑘−1 are
performed. This prevents the multiplication 𝑑× 𝑟, where a known value—𝑟 is part of the
signature—is multiplied with the private key 𝑑. Instead, the private key is multiplied with
the random and not publicly-known 𝑘−1, which makes (at least first-order) differential
SCA targeting these operations harder (Section 5.9).

The exact program, i.e., the exact contents of the TopLUT, is listed in Appendix B.

Algorithm 5.3: ECDSA program

1 Retrieve random numbers from RNG, store in R0 (scalar 𝑘) and R3 (random 𝑍𝑟)
2 Compute 𝑍2

𝑟 and 𝑍3
𝑟 mod 𝑝

3 Retrieve the highest-order column of the scalar matrix
4 Perform projective coordinate randomization on the appropriate comb point
// Comb : Perform comb method ECSM

// InvZ : Compute 𝑍−2 mod 𝑝
5 Compute signature value 𝑟 = 𝑥 = 𝑋𝑍−2 mod 𝑝
6 Verify that 𝑟 ̸= 0 and 𝑟 < 𝑝
7 Transform 𝑘 to the Montgomery domain
8 Perform precomputations needed by the second inversion
// InvK : Compute 𝑘−1 mod 𝑛
// SHA : Hash the input message 𝑒 = SHA3(𝑚)

9 Transform 𝑒, 𝑟 to the Montgomery domain
10 Compute 𝑘−1ℎ and (𝑘−1𝑑)𝑟 mod 𝑛
11 Compute signature value 𝑠 = 𝑘−1𝑒+ 𝑘−1𝑑𝑟 mod 𝑛
12 Convert 𝑠 back from Montgomery domain
13 Verify that 𝑠 ̸= 0
14 return (𝑟, 𝑠)
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5.9 Protection from Implementation Attacks

Implementation attacks (Section 3.2) target a specific implementation rather than the
executed algorithm. Since the introduction of power analysis in 1999 by Kocher et al. [48],
especially the field of side-channel analysis (SCA) spurred a lot of research. Myriads
of attacks were proposed and countermeasures that help securing devices against those
attacks were presented. The presented implementation should be secure against the state
of the art of side-channel attacks. While absolute safety is not achievable and new attack
techniques might show up any time, resistance against currently known attacks is possible.
This section describes how security against implementation attacks (with focus on SCA)
is achieved. Several countermeasures aimed at thwarting known attacks are discussed and
remaining attack points are listed.

Please note that no effort was made to make the Keccak modules secure against SCA.
Due to the highly regular structure of Keccak, SPA-based attacks are not very likely
to succeed. However, DPA-based techniques might be successful. There exist several
techniques aimed at making Keccak secure against first-order DPA, as shown by the
Keccak team [11] and Bilgin et al. [12]. None of the proposed countermeasures were
adopted in this work.

Following countermeasures were implemented.

� (Randomization of ECDSA)

� Constant runtime and operation flow

– Constant runtime modular reduction

– Constant runtime conditional negation of stored 𝑦 coordinate

– Avoid negative results after subtractions by adding modulus beforehand

– No all-zero columns in comb

– Inversion using Fermat’s little theorem

– Always execute final subtraction in Montgomery multiplication

� Randomized Projective Coordinates [18]

� Reorder final computations to avoid multiplication of private key 𝑑 with known 𝑟

A constant runtime and operation flow mainly helps securing the implementation
against SPA. The Randomized Projective Coordinate approach as well as the avoidance
of the multiplication 𝑑 × 𝑟 is aimed at disabling DPA attacks. The countermeasures are
now explained in greater detail.
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5.9.1 Ensuring a Constant Runtime

An important part in securing the implementation against all sorts of SCA and especially
SPA is ensuring an absolute constant runtime and operation flow. The control flow should
have absolutely no dependency on the processed data. Reaching this goal requires caution
in all steps of the implementation design, the necessary steps are now listed and further
discussed.

Modular reduction in F𝑝.
The fast reduction mechanism (Section 5.3) is used for all reduction processes in F𝑝, i.e.,
not only for multiplications. Reduction after addition or similar operations can also be
achieved by means of a conditional subtraction of the modulus. However, this is difficult to
implement whenever the output range exceeds two times the modulus and it furthermore
introduces a runtime dependency. A dummy operation, e.g., a subtraction of 0 performed
if the result is in the exact range, is easily detectable.

Negation of stored 𝑦 coordinate.
The used comb method requires only half the memory when compared to other comb
methods, but adds the need of a conditional negation of stored 𝑦 coordinates. A simple
trick is used to perform this conditional operation in constant runtime without the need
of dummy operations. As seen in the first few lines of Algorithm 5.2, the 𝑦 coordinate
is first copied from ROM to RAM register R4, then 2𝑦 mod 𝑛 is computed and stored
in R5. Depending on the sign of the current comb column either 𝑦 = 2𝑦 − 𝑦 mod 𝑛 or
−𝑦 = 𝑦 − 2𝑦 mod 𝑛 is computed and stored in R4. This value always depends on both
intermediates, thus thwarting safe-error attacks. The small differences in RAM address
calculation should not be detectable by an SPA.

Avoiding negative subtraction results.
The doubling-addition formulæ require the execution of modular subtractions. The fast
reduction mechanism does not apply to negative results, hence they have to be avoided.
This is simply done by always adding a multiple of the modulus 𝑝, this ensures a positive
result. This addition is done during the ACCP instruction and can be seen in the doubling-
addition program code (Appendix B).

No all-zero columns in comb method.
In classical comb method all-zero columns might occur, i.e., all bits of a column out of the
scalar matrix are 0. In this case no point addition is to be performed, which immediately
reveals the column value and thus some scalar bits to an adversary. Use of the zeroless
signed-digit recoding scheme obviously crosses this attack scenario.

Inversion using Fermat’s little theorem.
There exist multiple algorithms that allow the computation of a modular multiplicative
inverse. While inversion using Fermat’s little theorem is not as fast as, e.g., the binary in-
version or the Montgomery inversion algorithm, it does offer a constant runtime. Even the
most basic modular exponentiation algorithms, e.g., the binary left-to-right Algorithm 2.4,
feature a runtime and operation flow only dependent on the exponent, which is fixed in
this case.

Always execute subtraction in Montgomery multiplication.
The intermediate result 𝑡 in the Montgomery multiplication scheme (Algorithm 2.2) is in
range 𝑡 < 2𝑁 , a final conditional subtraction of the modulus 𝑁 is required to retrieve the
final result. The subtraction is always executed, both 𝑡 and 𝑡−𝑁 are stored in RAM and
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the correct value is then chosen. For a more thorough explanation of the final subtraction
step refer to Section 5.4.3.

5.9.2 Countermeasures Against DPA

A constant operation flow is by no means a protection against Differential Power Analysis
(DPA). Recall that DPA typically requires a large set of power traces. Also, an interme-
diate algorithm results of form 𝑓(𝑑, 𝑘) is needed, where 𝑑 is a known non-constant value,
e.g., the algorithm in- or output, and 𝑘 is a part of the (fixed) secret key [53]. One pos-
sible way of protection is to avoid such computations, e.g., through randomization of the
computed values.

The implemented anti-DPA countermeasures are now presented and discussed.

In-built ECDSA randomization.
The ECDSA signing operation requires that the cryptographic nonce 𝑘 is both random
and secret. A violation of this rule can immediately reveal the secret key 𝑑 to an adversary.
The randomization can thus not be counted as an additional countermeasure, but it makes
DPA harder.

Randomized Projective Coordinates.
The use of Randomized Projective Coordinates (RPC) was first proposed in 1999 by
Coron [18] and became an accepted and widely deployed countermeasure [37, 44, 62].
The projective coordinates of the ECSM base point, or in the case of comb methods the
first used precomputed point, are randomized. When using Jacobian coordinates, the
affine base point (𝑥, 𝑦) is transformed to the Jacobian point (𝑥𝑍2

𝑟 , 𝑦𝑍
3
𝑟 , 𝑍𝑟), where 𝑍𝑟

denotes the randomly chosen 𝑍 coordinate. The coordinates of all intermediate points
computed during an ECSM are then also randomized, thus thwarting DPA attacks that
try to determine the scalar 𝑘. In the ECDSA, the scalar is already randomized, but the
cheap RPC adds another layer of security.

Adding RPC also protects against template-based SPA attacks. If not adding random-
ization, the computed values of the first doubling-addition depend on only six bits of the
scalar. An adversary can record templates for all 64 different cases, assuming he has full
access over a similar device where he can freely set the scalar 𝑘. For the actual attack,
the adversary then records the power trace of the first doubling-addition and matches
it against the precomputed templates. A single doubling-addition takes over 2k cycles,
which might give a high chance for a successful attack. A randomization of the computed
values immediately disables this attack scenario.

Reordering final multiplications.
The ECDSA algorithm requires the computation of 𝑟𝑑 mod 𝑛 (Line 6 of Algorithm 2.10),
i.e., the private key 𝑑 is multiplied with the publicly known signature part 𝑟. The mul-
tiplication is avoided by simply unfolding the bracket in 𝑘−1(𝑒 + 𝑟𝑑). When performing
(𝑘−1𝑑)𝑟 mod 𝑛 the private key 𝑑 is multiplied with the inverse of the random and secret
scalar 𝑘. This multiplication is not susceptible to (at least first-order) DPA, the need for
the additional modular multiplication 𝑘−1𝑒 mod 𝑛 is a relatively small price to pay.

5.9.3 Possible Attacks

Although a lot of effort was put into making the design secure against SCA, absolute
safety is not possible and a few possible attack points remain.
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One weakness might be the handling of the secret scalar 𝑘. Bit 𝑘159 is not random,
it is dependent on the value of 2 other bits. The ZSD recoding scheme requires that the
scalar is odd, so the LSB 𝑘0 is always set to 1. This is not ideal, as only a few leaked
nonce bits over multiple signatures might already reveal the private key, as recently shown
by Liu and Nguyen [51] and Mulder et al. [58]. A possible solution to this problem is to
add a multiple of the (odd) group order 𝑛, i.e., 𝑛 if 𝑘 is even and 2𝑛 otherwise, to the
scalar before starting the ECSM. Adding the group order to the scalar does not change
the outcome of the ECSM. However, the conditional addition of either 𝑛 or 2𝑛 might be
detectable by an SPA.

Another possible weakness is found in the final subtraction step of the Montgomery
multiplication scheme. Both values 𝑡 and 𝑡 − 𝑁 are computed and stored side-by-side
in RAM. When inducing an error during the save operation of only one of these values,
an adversary can determine the correct result by verifying the final output. When, for
instance, an attacker is able to induce a glitch during writing of 𝑡−𝑁 and observes that
the final result is still correct, then 𝑡 must be the correct result. If the final signature is
invalid then 𝑡 − 𝑁 must have been correct. This is an example of a safe-error attack,
which belongs to the group of fault attacks. The most obvious target of this attack is
the multiplication with the private key 𝑘−1 × 𝑑. For a greater key 𝑑 the probability that
𝑡 > 𝑁 rises, i.e., it is more likely that 𝑡 − 𝑁 is correct. An adversary can determine the
probability that 𝑡 < 𝑁 by performing the safe-error attack multiple times, it might then
be possible to derive information on the up-most bits of the (Montgomery representation
of the) private key.

The small chance of failure also poses as a side channel. On multiple occasions during
signature generation computation errors might occur, these are detected and an error flag
is set. For instance, both the fast reduction and the Montgomery reduction scheme have
a non-zero chance failure. Also the checks if 0 < 𝑟 < 𝑝 and 𝑠 ̸= 0 might turn out negative.
While the probability of errors is very low, an attacker might be able to provoke them and
then use the gained information to deduce bits of the key or the nonce.

5.10 Summary

In this chapter, the details of the presented implementation were presented. The main dat-
apath contains a 67-bit accumulator and a 16×16 bit multiplier that is used in a pipelined
multiplication scheme. For modular reductions in F𝑝, a fast reduction mechanism using
only shifts and additions is used. The reduction process is integrated into multiplication,
a slightly modified adder allows addition of the shifted intermediates. The prime 𝑛 is not
of any special form, so the more general Montgomery multiplication scheme is used for
reduction in F𝑛. It is is implemented following the Coarsely Integrated Product Scanning
(CIPS) approach.

The execution time of a point-scalar multiplication is drastically lowered through the
use of a fixed-base comb method. The comb width was set to 4, so 8 curve points need to be
precomputed and stored in ROM. For the point doubling-addition operation, formulæ by
Longa and Miri are used, a dedicated controller supporting composite operations reduces
the number of required modular reductions.

Prime-field inversions are computed by means of modular exponentiation, i.e., by uti-
lizing Fermat’s little theorem. The fixed moduli allow usage of highly optimized exponen-
tiation algorithms, the number of required field multiplications can be drastically lowered.
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The computation of 𝑍−2 mod 𝑝 takes 159S + 11M, the inversion of the nonce 𝑘 in F𝑛 160S
+ 26M.

Countermeasures aimed at thwarting most common implementation attacks were im-
plemented. First and foremost, signature generation has a constant and data independent
runtime, which makes SPA-based attacks more difficult. Randomized Projective Coordi-
nates counter attacks based on differential power analysis.



Chapter 6

SHA-3 Modules and Integration

The hash function is an integral part of the ECDSA algorithm. Instead of signing the
whole message, the digest or hash of the input message is first computed, then this value
is signed. Out of the myriads of existing hash functions, theKeccak algorithm, which won
the SHA-3 competition and will be incorporated into the Secure Hash Standard (SHS),
was chosen to be used in this work. Hashing is typically not nearly as time consuming as
an elliptic curve scalar multiplication, nonetheless an efficient design is important. The
signing process should not be slowed down significantly and the area footprint has to
be small. This chapter presents a low-resource design for the Keccak algorithm and
discusses how it is integrated into the existing modules.

The Keccak modules are based on the low-resource implementation of Pessl and
Hutter [64], which is to the authors knowledge currently the smallest published full-state
(1600 bits) ASIC implementation. In fact, a large portion of the VHDL code is reused,
however, some adaptations are necessary. The RAM interface is widened up to 32 bits and
the chosen rate and capacity differ. To better utilize the wider RAM interface, the used
interleaving scheme is changed from factor-2 to factor-4. Finally, the Keccak parts need
to be integrated into the other modules. The goal of the integration is the minimization
of circuit area. Synergies between the modules need to be found, as many resources as
possible need to be shared.

6.1 Basic Considerations

The basic design considerations are listed in [64], they are now summed up and discussed
in the context of ECDSA. The width of the datapath is chosen to be (mostly) 16 bits,
despite using a 32-bit RAM. A wider datapath would increase circuit area, while the
computation time savings would be relatively low when compared to the time needed for,
e.g., an ECSM. To keep both area and power requirements low, all operations are highly
serialized.

The 800-bit state should be stored in a RAM. The memory requirement should not
exceed these 800 bits, no additional storage for temporary results should be required. The
RAM interface is 32-bit wide, byte-wise writing operations need to be supported.

The constants needed for the Keccak-𝑓 transformation, i.e., the 32-bit round con-
stants for the 𝜄 transformation and the 5-bit lane rotation offsets needed by 𝜌, are stored
in a simple look-up table. The round constants can also be generated using a 7-bit LFSR,
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for the sake of simplicity the LUT approach was chosen. Area-wise the two techniques are
comparable.

There exist two basic approaches for designing a serializedKeccak architecture. Lane-
wise processing fetches and processes lane after lane, it is being used by most software
implementations and the compact co-processor presented in [11]. This straight-forward
approach has the downside that additional storage for intermediate results is needed, it is
also relatively slow as each lane needs to be accessed multiple times throughout a single
round. The hardware friendly slice-wise processing was first presented by Jungk and Apfel-
beck [41]. In the case of slice-wise processing the 𝜋 operation becomes a simple rewiring,
also the non-linear 𝜒 and the 𝜃 operation can be performed in single step. Jung and
Apfelbeck’s FPGA implementation processes 8 slices of the state in parallel, computation
of a single round hence takes only 8 cycles. The round function is rescheduled. The initial
round consists of 𝜋 ∘ 𝜌 ∘ 𝜃, which is followed by 23 rounds of 𝜋 ∘ 𝜌 ∘ 𝜃 ∘ 𝜄 ∘𝜒. Computation
is concluded by the final round of 𝜄 ∘𝜒. This design requires the state to be stored in a 25
8× 8 distributed RAM, which is not an option here.

The now presented implementation utilizes both slice- and lane-wise processing. The
rotation 𝜌 is performed on a lane-per-lane basis, all other transformations are executed
slice-wise. The round function is rescheduled to allow computation of all 4 slice operations
in a single cycle. The initial round consists of only 𝜃 and 𝜌, then 21 main rounds of
𝜌 ∘ 𝜃 ∘ 𝜄 ∘ 𝜒 ∘ 𝜋 are performed. The final round consists of 𝜄 ∘ 𝜒 ∘ 𝜋. This schedule differs
slightly from the one used by Jungk and Apfelbeck. Special attention needs to be put
upon to the memory layout, the combined processing approach requires that both slices
and lanes can be accessed efficiently. This problem is solved by using a storage scheme
that utilizes bit interleaving.

6.2 The KECCAK Architecture

The detailed architecture of the Keccak modules is now presented. Special emphasis
is put upon the two key ideas of the design: Combined slice- and lane-wise processing
and the interleaved storage scheme. The structure of the Keccak datapath is shown in
Figure 6.1. It is comprised of four 32-bit registers R0 to R3 (not to be confused with the
RAM field registers), four separate 𝜌 units and a slice unit. The interleave and deinterleave
units are a basic rewiring. During lane processing each register stores a 32-bit lane, while
slice processing the registers keep four slices with a total of 100 bits. The sponge unit,
which is responsible for XORing the padded input message to the 640 low-order bits of
the state, is not shown.

6.2.1 Interleaved storage

Combining both lane- and slice-wise processing when using a RAM for state storage is
challenging, the state needs to be traversed in two different directions. The now presented
scheme tries to solve this by merging multiple lanes into a single memory word.

The 800-bit state is not stored lane-after-lane in RAM, but interleaved. Four consec-
utive 32-bit lanes are bit-wise interleaved and form a virtual 128-bit word, which is then
stored in RAM. An 𝑛 bit memory word then contains information on 4 lanes but only
𝑛/4 slices, which helps drastically speeding up the loading and storing operations during
the slice-processing phase. An example with 𝑛 = 8 is seen in Figure 6.2. The number
of lanes, 25, is not a multiple of the interleaving factor 4, so a single lane is not stored
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interleaved. The lane in the origin, i.e., at position [𝑥 = 0, 𝑦 = 0], is the only one with a
rotation offset of 0, hence it can be skipped by the 𝜌 transformation. This makes this lane
the ideal candidate for non-interleaved storage. For easy addressing it is kept at the end
of the state address space, i.e., at RAM address 24.

6.2.2 Combined Processing

Each (rescheduled) round of Keccak-𝑓 consists of a slice- and a lane processing phase.
During lane processing four consecutive lanes at a time are fetched into the registers

(6.4, middle) and then rotated using four separate 𝜌 units. Each 𝜌 unit (Figure 6.3) consists
of a 4-bit barrel shifter and a rotation register that serves as a basic delay element. The
4-bit rotation offset is split in-two, the high-order bits are handled by proper register
addressing, while the two low-order bits are fed to the barrel shifter. The 32-bit RAM
interface would also allow the use of 8 bits wide 𝜌 units, computation time would be
decreased by roughly 1 kCycle. While this is a considerable speed-up in context of hashing,
it is almost negligible when compared to the time needed for, e.g., an ECSM or field
inversion. For this reason a width of 4 was chosen, which saves circuit area.

BarrelShift4

rotReg / 4bit  

shiftIn

curr

rotations[1:0]

r / 32bit

rotations[4:2]

4 4

Figure 6.3: Keccak 𝜌 unit

For slice processing, four slices are fetched, then they are separately fed to the slice
unit (in ascending order). The slice unit (Figure 6.4) first computes the 𝜋 operation,
which is just a rewiring of the input. The non-linear 𝜒 operation is performed as shown in
Figure 2.12a. A single bit of the round constant is added (𝜄), afterwards the five column
parities are computed and added to the shifted column parity of the previous slice. The
result is finally added (XORed) to the slice. For the first and final round of computation
some operations need to be skipped, which is why multiplexers were introduced.
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Figure 6.4: Keccak slice unit
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6.3 Permutation Computation

Due to the use of an 800-bit state the Keccak-𝑓 permutation consists of 22 rounds of five
transformations. As stated in Section 6.1, the round function is rescheduled around the
lane-based 𝜌 function to allow computation of all four slice-based operations at once. To
recap, the first round consists of only 𝜃 and 𝜌, the 21 main rounds of 𝜌 ∘ 𝜃 ∘ 𝜄 ∘ 𝜒 ∘ 𝜋 and
the last round of 𝜄 ∘ 𝜒 ∘ 𝜋. Each modified round then consists of a slice-processing phase,
during which 𝜋, 𝜒, 𝜄 and 𝜃 are computed, followed by a lane-processing phase of only 𝜌.

Slice processing starts of with a precomputation. The 𝜃 operation of the very first slice
0 requires the column parity of the last slice 31, thus this last slice is fetched, its parity
is computed and stored in the parity register of the slice unit. Then, four slices at a time
are fetched (see Figure 6.5c), they are fed to the slice unit and the result is stored back
in the register. The final register content is interleaved and stored back to RAM. Loading
or storing four slices is done in ⌈25/4⌉ = 7 cycles, actual slice computation takes 4. This
is repeated 8 times to cover all 32 slices. Please note that all slice loading and storing
operations are carried out on 16-bit words, i.e., effectively only half of the memory bus
width is used. A 32-bit memory word contains information on 32/4 = 8 slices, however,
the internal registers can only store 4. To fully utilize the 32-bit bus, the internal memory
thus needs to be increased to 8× 25 = 200 bit, the computation time savings are however
not worth the additional circuit area.

During lane processing, four lanes at a time are loaded into the internal registers
(Figure 6.5b). The lane-loading operation is the only part of Keccak that fully utilizes the
32-bit RAM interface, it takes only 4 cycles to fill the internal registers. All other loading
or storing operations are performed on either 16 or 8-bit words, which is mainly done to
save circuit area. Rotation starts by initializing the rotation registers, then the lanes are
rotated by their respective rotation offset, using the separate 𝜌 units, and immediately
stored back to RAM. The rotation and storing stage takes 8 cycles to complete. This
process is repeated 6 times to handle all 24 lanes with a rotation offset other than 0.

(a) Whole state (b) Lane processing (c) Slice processing

Figure 6.5: Keccak loaded parts of the state

Until now all explanations dealt with the Keccak-𝑓 permutation function, the han-
dling of the sponge construction is now discussed. XORing the state with the padded
input and retrieving the final hash works similar to the lane-processing phase of the Kec-
cak-𝑓 permutation. The core registers are filled with four lanes, the dedicated sponge
unit is then used to XOR 8 bits of the input at a time with the stored lanes. The result is
finally written back to RAM. Other than by lane processing the lane at the origin can not
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be skipped. Additional logic is required to handle this single non-interleaved lane during
sponge computations.

Runtime.
The total runtime of hashing a single 640-bit message block is roughly 5.5 kcycles, which
is 2 kcycles below the cycle count of the fastest 800-bit state version presented in [64].
This reduction can be contributed to the use of a 32-bit memory bus and the extension of
the interleaving scheme to factor 4, which allows better bus width utilization during the
slice processing phase. The throughput rises from 38.6 to 115.6 kBit/s(@1MHz), which
is mainly due to the massively higher rate 𝑟. The implementation in [64] adheres to the
suggestion 𝑐 = 2𝑛 [10], so the rate 𝑟 is only 800 − 512 = 288. For this thesis 𝑐 = 𝑛, with
𝑛 only 160 bits, was chosen, so 𝑟 = 800− 160 = 640.

6.4 The KECCAK Controller

The Keccak controller is implemented using a finite-state machine approach. The de-
tailed state machine, including all states and possible transitions, is shown in Figure 6.6.
Most states should be self-explanatory, some require additional explanation. The SpongeInit,
SliceInit, and RhoInit states are used to feed the first address of the respective loading
sequence to the RAM. For a RAM reading process the address needs to be given the cycle
before the respective value appears at the output, i.e., there is a delay of one cycle. This
delay is the reason for the init states. During the load states the address of the next to
be read word is presented to the RAM. The Init, PermutationInit, and RoundInit states
initialize certain variables, e.g., loop counters and flags, to the required value. The Sli-
ceParity state corresponds to the precomputation of the parity of the last slice 31, which
needs to be executed at the beginning of the slice-processing phase.

6.5 Integration

Until now the Keccak modules were viewed as completely separate entities. Adding an
entirely independent Keccak instance to the ECDSA implementation would be a waste
of precious resources, hence the hashing modules have to be integrated into the existing
design. As many resources as possible need to be shared to keep the area footprint of the
added Keccak modules low.

One major shared part is obviously the RAM, the Keccak modules use the same
RAM used by other parts of the ECDSA algorithm. The 800-bit state is stored in the
lower-order parts of the RAM, the ECDSA field registers R0 to R4 are hence overwritten
during the hashing process. The time of invoking the hashing algorithm in Algorithm 5.3
was chosen so that only 2 values need to be saved from being overwritten. The signature
part 𝑟 is kept in R8, the inverse of the scalar 𝑘 is stored in R6. After hashing is finished,
the Keccak controller dumps the 160-bit message digest in R7.

The Keccak algorithm is based on logic operations like XOR and rotations. In con-
trast, all other parts of the ECDSA rely on integer arithmetic, e.g., addition and multi-
plication. Also, the used Keccak architecture is highly specialized and far from a multi-
purpose microcontroller-like architecture. These facts make it hard to find similarities in
the datapaths, hardly any resource sharing can be done.

It is however possible to merge the internal registers. The Keccak datapath includes
a total of 144 register bits, needed by the main registers (4×32) and the rotation registers
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Figure 6.6: Keccak controller FSM

(4 × 4). The general ECDSA datapath (Figure 5.3) contains a 67-bit accumulator and
5 × 16 bit multiplication operand registers, which adds up to a total of 147 register bits.
These numbers match up nicely. In fact, the ECDSA datapath was designed with the
Keccak memory requirements in mind. The registers are hence merged into a single
shared register file, as previously seen in Figure 4.1.

The structure of the common register file is illustrated in Figure 6.7. Due to the
combined processing approach and the interleaved storage scheme, the load and store
logic of the Keccak part is more complex, which is why the Keccak register file poses
as the starting point. The accumulator and multiplication operand registers were then
fitted.

The write-enable logic of Keccak’s main registers allows enabling the write operation
for each register nibble individually. If not enabled the nibble value will be kept and not
be overwritten by its input at the clock transition. The enable logic generates a single 8
bit, i.e., a bit per nibble, write-enable signal that is fed to all 4 registers. Thus, a total of
16 bits are switched per bit of the enable signal. Due to this design, the ECDSA registers
need to be spread over the four main registers to allow individual writing. As seen in
Figure 6.7 the 64 low-order bit of the accumulator are spread over the lower half of the
4 registers, the up-most 3 bits are stored in a separate register. The 4 operand registers
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Figure 6.7: Common register file organisation

A[0], A[1], B[0], and B[1] are spread over the top half. A[2] is stored in the two 8 bit
multi-purpose registers MP0 and MP1.

They are dubbed multi-purpose as they serve multiple functions during hashing. Dur-
ing the lane-processing phase they serve as 4 × 4 bit rotation registers. In the slice-
processing phase the 5-bit slice parity is kept in MP0. The RAM allows byte-wise writing
operations, however, only 4 bits of the lane[0,0] are used during an iteration of the slice-
processing phase. The other nibble of the 8-bit memory word is kept in MP1.

The controllers are kept separate, no effort was made to integrate the Keccakinto the
top-level controller. The top-level controller can invoke the hashing operation by simply
setting a start flag, hereby enabling the sub-controller. The Keccak controller contains
3 counters, e.g., a loop counter and a round counter, which are merged with the top-level
counters seen in Figure 5.14 to save additional area.

6.6 Summary

In this chapter, the hashing-specific modules of the hardware implementation were dis-
cussed. They are largely based on an existing design, some changes were made to adapt
to, e.g., the wider bus. A slightly modified state-interleaving scheme (factor 4 instead of
2) is used to achieve a higher bus-width utilization. Also, the Keccak components are
tightly integrated into the existing design to minimize the area impact of hashing.



Chapter 7

Results and Discussion

In this chapter, the implementation results are presented. Detailed listings of area, power,
and time requirements are given, they are then compared to related work. Finally, some
points of discussion are raised and an outlook for possible future work is given.

7.1 Design Flow and Tools

After designing the implementation using pen and paper, it must somehow be transformed
into gates, wires, and transistors. Various tools, programs, and description languages are
required for this multi-step process, this section presents the most important parts of the
used tool flow.

The first step was the generation of a cycle-accurate high-level model using the JAVA
programming language. The final model was used for retrieving intermediate values and
generating test vectors, which are required for testing the actual hardware model. The
design was then implemented using the VHDL hardware description language.

The Synopsys Design Compiler 2013.03 mapped the HDL description to gates out of
the FSC0L D standard-cell library by Faraday. This library is based on the low-leakage
130 nm process technology by UMC. After place-and-route (PAR) (using Cadence RTL-to-
GDSII), the power consumption is determined with the Cadence Encounter Power System
v8.10. The power simulation is performed on the gate level, which might lack the accuracy
of a transistor-level simulation, but is much faster in exchange. As a storage block a single-
port SRAM hard macro provided by Faraday is used.

7.2 Implementation Results

This section provides detailed results for area, power, and time requirements.

7.2.1 Area Requirements

The circuit area is given as reported by the RTL compiler. It is expressed in terms of
µm2 and gate equivalents (GEs), 1GE is equivalent to the size of a 2-input NAND gate
(5.12µm2 in the used process). The scaling to GEs allows to compare designs using
different process technologies, the physical size is obviously strongly dependent on the
used technology node and can not be used for a fair comparison. Please beware that GE
is not an exact measurement. Synthesizing the same design with varying tool flow, used
parameters and process technology, might yield very different GE results.
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Component Area
[GEs] [µm2]

EC-DP 2 800 14 334
Multiplier 1 616 8 273

SHA-DP 823 4 211
Register File 1 662 8 509
Control 2 473 12 663
Top 756 3 871
Mult 667 3 414
DA 594 3 039
Keccak 457 2 340

Other 816 4 178
ROM 820 4 198
Core Total 9 393 48 093

RAM 3055 15 642
Total 12 448 63 735
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Figure 7.1: Area of chip components

The implementation requires a total area of 12 448GEs (or 63 735µm2). In Figure 7.1,
a detailed analysis of the circuit size is given, Figure 7.1b illustrates the area distribution.
With 3 kGEs, the RAM macro takes up roughly 1/4 of the total area. The ECDSA
datapath, with its 2.8 kGEs the next biggest block, is dominated by the 16-bit integer
multiplier. After adding the Keccak datapath and the shared register file, the complete
datapath amounts to 42% of the total area. The controller, which is comprised of 4 sub-
controllers, takes up exactly 20%. Interestingly, only 820GEs are required for the ROM
that is used to store the pre-computed elliptic curve points (2 560 bits). This is a very
small price to pay when considering the massive speed-up provided by the fixed-base comb
method (factor 4 times faster).

If no RAM macro is available, the memory must be realized using standard cells. A
latch-based version of the RAM takes up 8.6 kGEs, thus raising the total area to roughly
18 kGEs. Bear in mind that the presented design revolves around usage of a RAM macro
(including its limitations), so these values should not serve as a reference.

Due to the tight integration, it is difficult to accurately estimate the area impact of
the Keccak algorithm. The hashing-specific modules (controller, datapath, LUT) add up
to 1.4 kGEs. After addition of the required glue logic and considering the more complex
register file, the hardware cost of hashing can be roughly estimated with 2 to 2.5 kGEs.
In [64], a Keccak core area of 3 kGEs was reported, the main registers take up 1.2 kGEs.
Hence, it was possible to save some area by sharing resources.

7.2.2 Timing Details

Signing a 160-bit message takes exactly 139 930 cycles, which translates to a time of 140ms
at an operating frequency of 1MHz. The runtime of the hashing operation depends on
the message length, all other parts of ECDSA computation feature a constant execution
time.
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Operation Cycles

Comb 87 513
InvZ 14 550
InvK 30 252
SHA 5 537
Other 2 078

Total 139 930
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Figure 7.2: Runtime analysis

As illustrated in Figure 7.2, the runtime is dominated by the ECSM with comb methods
(taking up roughly 2/3 of the execution time). The comb method slashes the runtime by a
factor of four, without it the ECSM would require approximately 350 kCycles. A tenth of
the time is devoted to the computation of 𝑍−2 mod 𝑝 (InvZ), the inversion of 𝑘 (InvK) is
twice as expensive. This is due to the fact that the Montgomery multiplication scheme is
more expensive than the fast reduction, also the number of required field multiplications
and squarings is higher.

With a runtime of less than 5%, hashing the 160-bit message is relatively cheap.
The message-block size 𝑟 is set to 640 bits, each additional block adds 5.5 kCycles to the
execution time.

The place-and-route (PAR) tool reported a maximum clock frequency of 55MHz (after
synthesizing the design using 1MHz). However, this frequency is dependent on several
register-transfer level compiler settings. Also, the synthesizer can adapt to higher frequen-
cies by changing the design. The targeted application does not require high frequencies,
so no detailed tests were conducted.

7.2.3 Power Consumption

The mean power consumption was determined for typical process conditions. The imple-
mentation has a power consumption of 42.7µW at a clock frequency of 1MHz. Due to the
usage of a low-leakage process technology, the static power consumption is in the nanowatt
region. This makes a separation into static and dynamic power consumption pointless.

Figure 7.3 gives details of the power consumption of different chip components, the
distribution only barely reflects the area requirements. The EC datapath and the register
file combined drain more than half of the total power. The consumption of ROM and
Keccak datapath is almost negligible, but bear in mind that this stems from the low
activity of these parts. Hashing takes up less than 5% of the total runtime, due do the
use of operand isolation the hashing specific parts drain almost no power during the other
steps of the signing process. Also, the ROM has a much lower activity than the RAM.

Interestingly, the Other part, which consists of mostly glue logic, consumes almost
20% of the total power. The main culprit is the RAM multiplexer, which selects the
RAM input from either the Keccak or the EC datapath output. This single part has a
very high switching activity, which explains the relatively large current drain.



CHAPTER 7. RESULTS AND DISCUSSION 82

Component Power
[µW/MHz]

EC-DP 16.3
Multiplier 7.8

SHA-DP 0.5
Register File 4.9
Control 2.8
Other 8.1
ROM 0.2
Core Total 32.7

RAM1 10.0
Total 42.7

(a) Power consumption of chip compo-
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Figure 7.3: Area of chip components

For battery-powered devices the limiting factor is the energy consumption, power is
only a secondary concern. Energy consumption is computed by multiplying the power
drain with the runtime, this yields a consumption of 6µJ.

7.3 Comparison

In this section, the outcomes of this thesis are compared to other reported low-resource
implementations. Table 7.1 gives a detailed comparison.

In [44], Kern presented an ECDSA design also using the secp160r1 curve. His imple-
mentation uses a 350 nm process and implements the SHA-1 hashing algorithm. It is both
larger (by 5.8 kGEs) and considerably slower (factor 3.6) than the here presented work.
Recently, Roy et al. [67] showed a point-multiplication coprocessor supporting both the
secp160r1 and a 192-bit curve. It requires 26 kGEs (in a 32 nm process technology) and
takes 250 kCycles for 160-bit point multiplication. This design too is slower, roughly by a
factor of 2.

192-bit prime field implementations have been shown by Wenger [81], Hutter et al. [33]
and Fürbass et al. [21]. They are larger and significantly slower, which can partly be
contributed to the larger prime-field size. Wenger’s design is the smallest of the three,
however, it is 10 times slower than the presented work.

Binary-field point-multiplication devices were presented by Hein et al. [30], Bock [13],
and Lee et al. [49]. Area-wise they are comparable to the outcome of this thesis, although
binary-field implementations are considered to be cheaper [81]. Also they include neither
hashing nor signing capabilities.

Power consumption is extremely difficult to compare over different process technologies,
so values are only given for designs using a 130 nm process. The 192-bit prime curve
processor by Wenger—it uses the same 130 nm process technology used here—requires
39.54µW/MHz and 55µJ of energy. In comparison, the power consumption of our design is

1Please note that the specific RAM macro required for this work was not available for synthesis. The
power consumption was estimated to be 10µW/MHz.
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Table 7.1: Comparison of prime and binary field ECC implementations

Techn. Area Time Powera
Field Featuresb

[nm] [GEs] [Cycles] [µW/MHz]

This workc 130 12 448 139 930 42.70 F𝑝160 ECDSA, SHA-3
Roy13 [67] 32 26 000 250 000 - F𝑝160 ECC, dual field
Kern10 [44] 350 18 247 511 864 - F𝑝160 ECDSA, SHA-1

Wenger11 [80, 81]c 130 14 644 1 394 000 39.54 F𝑝192 ECDSA, SHA-1
Hutter10 [33] 350 19 115 859 188 - F𝑝192 ECDSA, SHA-1
Fürbass07 [21] 350 23 656 500 000 - F𝑝192 ECC

Hein08 [30] 180 11 904 296 000 - F2163 ECC
Bock08 [13] (𝑑=4) 220 12 876 80 000 - F2163 ECC, DH
Lee08 [49] (𝑑=1) 130 12 506 302 457 32.42 F2163 ECC, Schnorr

aPower values of designs using other process technologies are omitted
bECC refers to plain point-scalar multiplication.
cUses a RAM macro for storage.

slightly higher (42.70µW/MHz), but due to the lower cycle count the energy consumption
is considerably smaller (6µJ).

In Figure 7.4 the cycle count of the discussed implementations is plotted over the area
requirements. As one could expect, faster implementations generally have higher area
requirements. The presented implementation does not adhere to this trend, as it is both
faster and smaller than previous work.
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Figure 7.4: Time over area comparison of prime-field ECC and ECDSA implementations
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7.4 Discussion and Future Work

In the following, some points for discussion and possible future work are presented.

Extension to larger fields.
The chosen 160-bit curve allows a small and thus cheap implementation, but does not offer
a very high security level. For higher security demands the design can relatively easy be
extended to larger, e.g., 192 or 224-bit, prime-field curves. The datapath would be mostly
unchanged, the small adaptations in the controller would also not increase the circuit size.
However, the memory requirements would rise, in the case of 192-bit fields by 20%. This
would translate to an estimated area increase of 1 to 2 kGEs.

Execution time would take a bigger hit. The product-scanning multiplication algorithm
has quadratic complexity, increasing the field size by a factor of 1.2 (to 192 bits) thus results
in a runtime increase of 44%. The total runtime of signature generation is expected to
rise between 40 and 50%, to somewhere around 200 kCycles. These numbers for area and
time requirements would still be competitive and an improvement over related work.

Integration.
The implementation is designed as a coprocessor, its sole purpose is signature computa-
tion. For usage in a real-life RFID tag additional logic is needed, e.g., for handling the
cryptographic protocol or for the RFID front end. On the other side, for devices already
featuring a RAM only the ECDSA core, with its area of 9.4 kGEs, needs to be added.

SCA strengthening.
A lot was written on the topic of security against SCA and other implementation attacks.
Yet, no real-life tests have been conducted, as they would require the production of a real
silicon chip. This would allow a more thorough evaluation of the design, especially the
claimed security against side-channel analysis could be tested. It would be interesting
to investigate power and EM attacks on the implemented comb method to evaluate if it
is susceptible to these attacks and if the selection of the comb point stored in the ROM
can be identified out of the traces. Also, second-order DPA attacks might target the
multiplication with the private key 𝑑. Finally, susceptibility to fault attacks, in particular
of the final subtraction in the Montgomery multiplication, could be tested.

Also, additional countermeasures could be implemented. Currently the LSB of the
nonce 𝑘 is always set to 1, as required by the ZSD recoding scheme. There exists a better
solution, before performing the ECSM one could add the odd group order 𝑛 to an even 𝑘,
which does not change the final result. To retain a constant runtime this addition must
always be executed. Thus, for an even 𝑘 one has to add the odd 𝑛, and for an odd 𝑘 the
even 2𝑛. This conditional behavior might be detectable in an SPA, but it is still a better
option than fixing the bit altogether.

The Keccak computation is currently not secured, an adversary might be able to
determine the message or the hash. However, many cryptographic protocols involving
ECDSA do not rely on message secrecy. Yet, an SCA resistant hashing operation might
be required for random number generation.

Experiment with comb size.
For this work the comb width 𝑤 was fixed to 4, the reasons are discussed in Section 5.5.
It might be interesting to experiment with other sizes and to perform a more detailed
evaluation.

Implement the Karatsuba multiplication.
The next step in speeding up the implementation would be exchanging the school-book
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multiplication (Section 5.2.2) with a more sophisticated algorithm. When using the Karat-
suba multiplication algorithm, 32-bit multiplications can be computed in only 3 cycles
(25% faster than currently implemented). While the comb method only affects the ECSM,
speeding up the multiplication also reduces time required for both inversions. Additional
adders and registers for storing intermediates would be required, in total the area would
probably rise somewhere between 1 and 2 kGEs.

7.5 Summary

In this chapter, the detailed implementation results were presented. It was shown that
the hardware design requires 12.4 kGEs (or 63 735µm2) in a 130 nm low-leakage process.
Signature generation takes a constant 140 kCycles. This makes this design smaller and
considerably faster than related work. The power consumption is roughly 42.7µW at a
clock frequency of 1MHz, which makes the design suitable for the use on passively-powered
RFID tags.



Chapter 8

Conclusions

In this thesis, a low-resource hardware design of the ECDSA based on a 160-bit curve was
presented. After stating the requirements and the most important design decisions, the
design was presented and the results were thoroughly discussed.

Several new techniques were implemented. Application of an SCA-resistant comb
method (with a width 𝑤 = 4) dramatically decreased the runtime of the point-scalar
multiplication. With only 800GEs, the area impact of this measure is acceptable. New
point-addition formulæ based on co-𝑍 notation further increased performance. The im-
plementation features a 32-bit datapath, but with an integrated 16-bit multiplier. To
achieve high multiplier utilization, a pipelined multiplication algorithm is executed. 32-
bit multiplications take four cycles, during which the next multiplication operands are
fetched. Especially prime-field inversions benefit from a dedicated fast-squaring opera-
tion. A single-port RAM macro is used as main storage element, which is much smaller
than dual-ported macros or synthesized storage blocks.

The Keccak hashing algorithm was first evaluated in the context of ECDSA hardware
implementations. The used Keccak architecture is based on a previous implementation,
but it is strongly integrated into the existing design. Sharing of RAM and register file
decreases the area impact of hashing.

Several countermeasures aimed at thwarting common implementation attacks were
added. Most prominently, signature generation has a constant and data-independent
runtime. Constant-time prime-field inversions are computed with the help of Fermat’s little
theorem, i.e., by means of a modular exponentiation. Also, the implemented comb method
is highly regular. To counter DPA-based attacks, Randomized Projective Coordinates
(RPC) were applied and the final multiplications were rearranged.

The implementation results have shown that a 160-bit ECDSA can be implemented
using just 12.4 kGEs. The RAM takes up 3 kGEs, the computation core requires the other
9.4 kGEs. Signature generation is performed in a constant runtime of only 140 kCycles,
where the point-scalar multiplication takes up the biggest part. These figures make the
presented design both smaller and considerably faster than previous work. The power
consumption is 42.7µW at a clock frequency of 1MHz. The short computation allows
operation at very low clock frequencies while still attaining (relatively) fast tag-response
times. This would drastically decrease power consumption and would enable long reading
ranges.
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Abbreviations

AES Advanced Encryption Standard
AMBA Advanced Microcontroller Bus Architecture
APB Advanced Peripheral Bus
ASIC Application-Specific Integrated Circuit
CIPS Coarsely Integrated Product Scanning
DA Doubling-Addition
DES Data Encryption Standard
DPA Differential Power Analysis
DSA Digital Signature Algorithm
EC Elliptic Curve
ECC Elliptic Curve Cryptography
ECDH Elliptic Curve Diffie-Hellman
ECDLP Elliptic Curve Discrete Logarithm Problem
ECDSA Elliptic Curve Digital Signature Algorithm
ECIES Elliptic Curve Integrated Encryption Scheme
ECSM Elliptic Curve Scalar Multiplication
FIPS Finely Integrated Product Scanning
FSM Finite State Machine
GE Gate Equivalent
HDL Hardware Description Language
HMAC Keyed-Hash Message Authentication Code
HW Hammin Weight
LFSR Linear-Feedback Shift Register
LSB Least Significant Bit
LUT Lookup Table
MAC Multiply-Accumulate
MSB Most Significant Bit
NFC Near Field Communication
NIST National Institute of Standards and Technology
PAR Place And Route
RAM Random-Access Memory
RFID Radio-Frequency Identification
RNG Random Number Generator
ROM Read-Only Memory
RPA Refined Power-Analysis Attack
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RPC Randomized Projective Coordinates
RTL Register-Transfer Level
SCA Side-Channel Analysis
SECG Standards for Efficient Cryptography Group
SHA Secure Hash Algorithm
SPA Simple Power Analysis
SRAM Static Random-Access Memory
XOR Exclusive Or
ZPA Zero-Value Point Attack
ZSD Zeroless Signed Digit



Appendix B

Program Code

In this chapter, the detailed program code is listed. In Table B.1, the code used for the
elliptic curve doubling-addition is shown. For a detailed explanation of the fields and their
usage see Section 5.6. The OpTable and StepTable are merged, the three leftmost columns
belong to the OpTable, while the others belong to the StepTable. The columns OpNr and
StepNr contain the respective entry index, which is obviously not stored in the table.

In Table B.2, the contents of the TopLut, which houses the program executed by
the top-level controller, are listed. The controller is thoroughly discussed in Section 5.8,
a condensed and more readable version of the program is given in Algorithm 5.3 The
unnumbered lines in Table B.2 refer to the dedicated states, the second column gives a
short description of the respective operation.

In Algorithm B.1, the detailed program for the computation of 𝑍−2 mod 𝑝 (see Sec-
tion 5.7) is shown. It requires a total of 159S + 11M. The inversion of the scalar 𝑘 is not
shown, as it is very lengthy and can be easily reconstructed by an interested reader.
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Table B.1: Combined OpTable and StepTable

OPNr Res StepOffset StepNr Instr. OpA OpB RomFlag lastOp
0 - 0 0 readK - - 0 1
1 4 1 1 copy y - 1 1
2 5 2 2 shift 4 1 0 1
3 4 3 3 accP - 0 0 0

4 acc 4 0 0 0
5 sub 4 0 0 1

4 5 6 6 square 3 - 0 1
5 6 7 7 mult 3 5 0 1
6 4 8 8 mult 4 6 0 0

9 accP - 0 0 0
10 sub 2 0 0 1

7 6 11 11 mult 5 x 1 0
12 accP - 0 0 0
13 sub 1 0 0 1

8 7 14 14 square 6 - 0 1
9 3 15 15 acc 3 0 0 0

16 acc 6 0 0 1
10 6 17 17 mult 7 6 0 1
11 3 18 18 square 3 - 0 0

19 accP - 1 0 0
20 sub 5 0 0 0
21 sub 7 0 0 1

12 5 22 22 mult 1 7 0 1
13 2 23 23 mult 2 6 0 1
14 7 24 24 square 4 - 0 1
15 1 25 25 accP - 4 0 0

26 acc 7 2 0 0
27 sub 6 2 0 0
28 sub 5 3 0 0
29 sub 5 2 0 1

16 6 30 30 acc 4 0 0 0
31 acc 1 0 0 1

17 6 32 32 square 6 - 0 1
18 4 33 33 square 1 - 0 1
19 2 34 34 shift 2 3 0 1
20 6 35 35 accP - 2 0 0

36 acc 7 0 0 0
37 acc 4 0 0 0
38 sub 6 0 0 0
39 sub 2 1 0 1

21 5 40 40 shift 5 2 0 1
22 5 41 41 mult 5 4 0 1
23 3 42 42 mult 3 1 0 1
24 4 43 43 mult 1 4 0 1
25 1 44 44 square 6 - 0 0

45 accP - 2 0 0
46 sub 4 0 0 0
47 sub 5 1 0 1

26 4 48 48 mult 2 4 0 1
27 5 49 49 accP - 0 0 0

50 acc 5 0 0 0
51 sub 1 0 0 1

28 2 52 52 mult 6 5 0 0
53 accP - 0 0 0
54 sub 4 0 0 1
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Table B.2: TopLut

OPNr Description Instr. res opA opAMont opB
0 copy randK copy 0
1 copy randZ copy 3
2 square randZ square 1 3
3 mult randZ mult 2 3 1
4 read column readK
5 mult 𝑥𝑧2 mult 1 1
6 mult 𝑦𝑧3 mult 2 2

Comb
InvZ

7 mult 𝑋𝑍−2 mult 1 1 2
8 copy 𝑥 copy 8 1
9 toMont 𝑘 mult 0 0

10 copy 𝑘 copy 0 0 1
11 square 𝑘2 square 1 0
12 mult 𝑘3 mult 0 1 1 0
13 copy 𝑘3 copy 1 0 1
14 mult 𝑘5 mult 0 1 1 1
15 copy 𝑘5 copy 2 0 1
16 mult 𝑘8 mult 1 1 2
17 mult 𝑘9 mult 0 1 1 0
18 copy 𝑘9 copy 3 0 1

InvK
19 copy 𝑘−1 copy 6 1 1

SHA-3
20 toMont ℎ mult 0 7
21 copy 𝑘−1 copy 0 6
22 mult 𝑘−1𝑒 mult 1 0 1 0
23 copy 𝑘−1𝑒 copy 1 1 1
24 copy 𝑟 copy 2 8 0
25 toMont 𝑟 mult 1 2
26 copy 𝑟 copy 2 1 1
27 mult 𝑘−1𝑑 mult 0 0
28 mult 𝑘−1𝑑𝑟 mult 1 0 1 2
29 addMont acc 0 1 1 1
30 fromMont 𝑠 mult 1 0 1
31 copy 𝑠 copy 0 1 1
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Algorithm B.1: Computation of 𝑍−2 mod

Input: R3 = 𝑍
Output: R2 = 𝑍−2 mod 𝑝

1 R2 ← R3
2;

2 R7 ← R3×R2 ; // R7=𝑍
22−1

3 R2 ← R7
2;

4 R2 ← R2
2;

5 R4 ← R2×R7; // R4=𝑍
24−1

6 R2 ← R4
2;

7 Repeat R2 ← R2
2 times 3 ;

8 R5 ← R4×R2; // R5=𝑍
28−1

9 R2 ← R5
2;

10 Repeat R2 ← R2
2 times 7 ;

11 R6 ← R5×R2; // R6=𝑍
216−1

12 R2 ← R6
2;

13 Repeat R2 ← R2
2 times 15 ;

14 R7 ← R6×R2; // R7=𝑍
232−1

15 R2 ← R7
2;

16 Repeat R2 ← R2
2 times 31 ;

17 R7 ← R6×R2; // R7=𝑍
264−1

18 R2 ← R7
2;

19 Repeat R2 ← R2
2 times 63 ;

20 R7 ← R7×R2; // R7=𝑍
2128−1

21 R2 ← R2
2;

22 Repeat R2 ← R2
2 times 16 ;

23 R2 ← R6×R2;
24 Repeat R2 ← R2

2 times 8 ;
25 R2 ← R5×R2;
26 Repeat R2 ← R2

2 times 4 ;
27 R2 ← R4×R2;
28 R2 ← R3

2;
29 R2 ← R3×R2;
30 R2 ← R2

2;
31 R2 ← R3

2;



Appendix C

A Take at a Faster and Smaller
Montgomery Multiplication

An attempt was made to speed up and simultaneously simplify the Montgomery multipli-
cation scheme. When setting the word size 𝑤 to 1, i.e., to radix 2, some operations can
be simplified. As computations with a modulus of 20 = 1 become simple bit operations,
retrieving a single bit of 𝑚 is achieved with a simple bit test. Multiplication with 𝑚
becomes a conditional addition.

Note that there already exist several proposals for dedicated Montgomery multipli-
ers utilizing Radix 2. The Multiple Word Radix-2 Montgomery Multiplication algorithm
(MWR2MM) was proposed by Tenca and Koç [74] and later optimized by Huang et al. [32].
A dedicated unit for performing Montgomery multiplications is however expensive in terms
of area, therefore these algorithms are not considered here. Instead, the 16-bit integer mul-
tiplier is reused.

Algorithm C.1 shows how 16 bits of 𝑚 can be calculated and multiplied with 𝑛. Bit
after bit is tested, if it is 1 the low-order bits of the modulus (𝑛0) are added at the current
bit position. The next iteration of the loop tests the updated accumulator. When finished,
the 16 lower-order bits of the accumulator are zero.

Algorithm C.1: Computing a 16-bit Part of 𝑚 in Radix 2

1 for i = 0 to 15 do
2 m[i] = acc[i];
3 acc = acc + (m[i]×n0 << i);

4 end

It is possible to perform all of Algorithm C.1 in a single cycle, i.e., compute 16 bits
of 𝑚 and simultaneously multiply it with 𝑛. As can be seen seen in Figure C.1, this is
achieved by slightly modifying the 16-bit multiplier. The first operand is set to 𝑛0, the
output of the accumulation adder is fed back to the second multiplier input. A straightfor-
ward implementation results in a purely combinational hardware loop (Figure C.1a). The
architecture depicted in Figure C.1b avoids such a loop. It is based on the observation
that the low-order bits of the final accumulator value are known to be zero, thus there
is no need to compute them. The first addition of each row is skipped by simply setting
one operand to zero, which breaks the loop. The now-missing carry bit is compensated by
feeding the adder output to the carry input of the next adder row. This is correct due to

93



APPENDIX C. A TAKE AT A FASTER AND SMALLERMONTGOMERYMULTIPLICATION94

the aforementioned observation of the result being zero. This scheme can not be applied
to the last row, instead the carry bit is stored in a register and added to the LSB for the
next multiplication.

+ + + +

n0n1n2n3

n0n1n2n3

+ + + +

n0n1n2n3

+ + + +

n0n1n2n3

+

m[0]m[1]m[2]m[3]

acc

(a) Combinational loop

+ + + +

n0 0n1n2n3

n0 0n1n2n3

+ + + +

n0 0n1n2n3

+ + + +

n0 0n1n2n3

+ acc

carry
m[0]m[1]m[2]m[3]

(b) Loop corrected

Figure C.1: Multiplier in Montgomery configuration

On theory this approach is smaller and faster than the used method with𝑤 = 16. No
cycles need to be spent on the computation of 𝑚, hence saving 10 cycles per multiplication.

However, in practice these savings come with a hefty cost. The drastically lengthened
critical path forces the RTL Compiler to construct a faster multiplier, which results in
an almost doubled gate count. Combined with a higher multiplexing effort, this scheme
adds roughly 500GEs to the area requirements in comparison to the used method. The
more complex multiplier also has a negative impact on power consumption. Considering
the relatively small time savings, the described multiplication technique is not worth the
additional logic.
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