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Kurzfassung

Elektrofahrzeuge bieten durch ihre derzeit eingesetzten Batteriesysteme eine

noch immer zu geringe Reichweite, um für potenzielle Kunden attraktiv zu

sein. Die vorliegende Arbeit beschäftigt sich mit energieoptimalen Regelungs-

strategien zur Verbesserung der Effizienz und damit auch der Reichweite

des Fahrzeugs, ohne jedoch Änderungen an der Struktur des Antriebsstrangs

vorzunehmen. Ausgehend von den Spezifikationen eines reinen Elektrofahr-

zeugs und dem entsprechenden Modell in der Simulationsumgebung AVL

CRUISE konnte ein Algorithmus entwickelt werden, der das Drehmoment

effizient auf beide Elektromotoren dynamisch während der Fahrt aufteilt.

Dieses Verfahren erfordert jedoch die Implementierung und Evaluierung von

Kalibrationsmethoden, um einem praktischen Einsatz gerecht zu werden. Es

wurden einerseits Effekte von verschiedenen Hysterese-Verfahren untersucht,

andererseits konnte ein prädizierender Algorithmus entwickelt werden, der

mithilfe künstlicher neuronaler Netze das zukünftige Fahrverhalten einzu-

schätzen vermag. Der zweite Teil beinhaltet Untersuchungen des thermischen

Verhaltens von Elektromotoren sowie die Entwicklung eines geeigneten ma-

thematischen Modells zur Integration in eine nichtlineare Optimierungsauf-

gabe, die durch Anwendung der Sequentiellen Quadratischen Programmierung

gelöst wurde. Abschließend wurden Messdatensätze von verschiedenen Test-

strecken analysiert, um die Wirkung der entwickelten Strategien im realen

Fahrzeug zu bestätigen.

Diese Arbeit erfolgte in enger Zusammenarbeit mit AVL List GmbH und trägt

maßgeblich zu den Zielen des europäischen Forschungsprojektes OpEneR bei.
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Abstract

Electric vehicles generally suffer from their limited driving range discour-

aging potential costumers and consequently raising the need for specific im-

provements. The present work investigates several optimum control strategies

without modifying the actual powertrain configuration in order to reduce the

overall energy consumption, and thus also to extend the range of the vehicle.

Based on the specifications of a fully electric prototype vehicle a suitable plant

model developed in AVL CRUISE allowed the implementation of an energy

efficient torque split algorithm, which needed to be calibrated effectively to

suit for practical applications. Various methods comprise the investigation

of hysteresis effects and the development of a predictive control algorithm

estimating the future driving behavior using Artificial Neural Networks. The

second part focuses on the thermal behavior of electric machines and the in-

tegration of a suitable thermal model into the task of optimizing the torque

distribution for given road and speed profiles. The mathematical formula-

tion led to a nonlinear problem with constraints and was solved by means of

Sequential Quadratic Programming. Concluding evaluations of real measure-

ment data finally confirm the application of the proposed control strategies

with respect to an efficient energy management system.

This thesis was written in close collaboration with AVL List GmbH and con-

tributes to the objectives of the European research project OpEneR.
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1 Introduction

Over the past few years global climate change and the impact of greenhouse

gas emissions have been highly discussed and became an issue for several

conferences around the world. Already in 1972 during the climate change

conference in Stockholm, it was found out that global warming is a matter of

world-wide restrictions and regulations [Uni]. Following the idea of defining

obligations in terms of a global pollution control, the famous Kyoto-Protocol

was established in 1997 which forces all participating countries to significantly

reduce their own amount of greenhouse gas emissions.

Since 23 % of all such emissions were produced by traffic and transport in

2004, whereof around 3
4

belong to CO2 emissions of pure road vehicles [Sch09,

p. 8], the potential of reducing the overall amount of greenhouse gas emis-

sions in the transport sector is enormous. Influenced by climate conventions

in the United States, the European Parliament announced a regulation in

2009 to restrict the CO2 emissions of passenger vehicles to 95 g CO2/km

by 2020 [Eur09]. According to Statistik Austria [Sta], the average amount of

CO2 emissions based on new registrations of passenger cars in 2011 has been

reduced from 176 to 138 g CO2/km within 10 years.

Through the use of electric and hybrid electric vehicles (EV, HEV) the over-

all air pollution caused by the transport sector can be reduced much more

since the amount of CO2 emissions decreases through the application of elec-

tric driven parts in the powertrain. Consider table 1.1 where current vehicle

statistics for Austria in 2010/2011 are shown.

Although the trend to hybrid and electric driven engines in passenger cars has

not stopped during the last few years, for example in table 1.1 the number of

EV has increased by 180 % from 2010 to 2011, the total amount of HEV and

1



1 Introduction

Engine type Stock Change (%)
2011 2010

absolute rel. (%) absolute rel. (%)

Petrol 1.997.066 44,2 1.988.079 44,8 0,5
Diesel 2.506.511 55,5 2.445.506 55.1 2,5
Electric 989 0,0 353 0,0 180,2
Hybrid 6.056 0,1 4.792 0,1 26,4

Table 1.1: Excerpt of passenger car statistics for Austria [Sta]

EV being sold is still very low compared to ordinary combustion-engine cars.

According to several surveys, e.g. the institute for social-economic research in

Frankfurt analyzed the attractiveness and acceptance of electric vehicles in

2011 [GSB11, p. 7], it was found out that mainly following criteria discourage

potential costumers from buying EV:

• too short driving ranges

• (still) too expensive

• relatively long charging times

• rather slow

While E-cars can easily reach speeds up to 140 km/h nowadays, charging

times can still be rather long and mostly depend on the capacity of charging

stations and the installed battery technology. In general, very low charging

times would require accordingly high currents in return which can damage

the battery seriously. Considering typical charging times of several hours,

it is clear that E-cars cannot compete against the short time usually spent

on refueling vehicles with ordinary combustion engines. However, the most

crucial factor might still comprise the limited driving range which nowadays

restricts possible application fields of EV primarily to inner-urban areas.

The aim of this thesis is to extend the range of fully electric vehicles through

several energy management strategies without increasing battery size, and

thus also by limiting charging times and prices of the battery. The developed

control algorithms contribute significantly to the overall objectives presented

in the research project ”OpEneR”, which is briefly explained in the following

section.

2



1 Introduction

1.1 The OpEneR research project

OpEneR stands for ”Optimal Energy consumption and Recovery based on

system network” and is a current research project funded by the European

Union with a total budget of 7.7 million Eur. It is part of the Seventh Frame-

work Programme (FP7) launched in 2007, which is the EU’s main instrument

for funding research in different scientific disciplines. The OpEneR-project

partners are the Austrian powertrain development company AVL List GmbH,

the Spanish research institute Centro Tecnológico de Automoción de Galicia

(CTAG), the German Forschungszentrum Informatik Karlsruhe (FZI), the

French car manufacturer Peugeot Citroën (PSA), and the German companies

Robert Bosch GmbH and Robert Bosch Car Multimedia GmbH [OpE].

Figure 1.1: OpEneR - environmental perception [OpE]

OpEneR focuses on the development of new driving strategies which aims

to extend the range of electric vehicles with respect to safety and comfort.

Software control algorithms will be implemented in an overall ”Energy Man-

ager” which collects car-specific data as well as additional information from

the environment (see fig. 1.1). In other words, current states of the vehi-

cle, battery, e-machine and regenerative braking system is merged with on-

3



1 Introduction

and offboard data coming from various sources such as radar sensors, GPS,

car2car, car2infrastructure, etc. in order to optimize the energy management

within the safety limits of the vehicle.

Through the development and integration of sophisticated energy manage-

ment functions and vehicle control strategies significant improvements re-

garding the overall efficiency can be achieved. These functions usually rely

on the optimization of utilizing the vehicle’s internal components and are

supported by various information coming from environmental perception and

the prediction of future road or traffic conditions.

A powerful simulation tool chain forms the basis for any development and

evaluation process, since any complex integration of management functions

into the vehicle’s control software can be replaced by virtual simulations

achieving lots of benefits, such as greater comfort, higher efficiency during

the development, testing and evaluation phase resulting in a decrease of error-

rate, etc. Thus, the proposed tool chain comprises:

• AVL CRUISE for simulations and analysis of powertrain and vehicle

dynamics,

• IPG CarMaker for complex 3D vehicle dynamics and the interaction

between other traffic objects,

• Matlab/Simulink for the development of energy management and vehi-

cle control strategies including the evaluation of simulation results.

1.2 Scope of work

In chapter 2 of this thesis a suitable vehicle model for the proposed EV used

within the OpEneR project is introduced. Furthermore the most important

physical relations affecting a vehicle when driving on a straight road are

described, also the correspondent subsystems forming the actual powertrain

of the vehicle are investigated with special focus on the transmission of torque

from EM to the wheels. An essential part of this chapter comprises various

reflections on the type of EM used in the proposed vehicle, including the

4



1 Introduction

description of structure, efficiency, modeling and recuperation limits of the

EM.

Chapter 3 investigates several strategies for an optimum distribution of the

torque demand which also suits for practical applications. These so called cal-

ibration techniques comprise different ways for improving various powertrain

aspects such as EM-switching times in order to ensure practical applicability

with respect to lowest energy consumption. The second part of this chapter

evaluates the possibility for estimating the future driving behavior which can

be used to suppress certain EM switches causing unnecessary EM synchro-

nization phases and additional energy consumption. The method decided to

use for this prediction task is called Artificial Neural Networks which simply

tries to generate patterns based on specified features of the driving behav-

ior collected in the past. Finally the best designs of all presented methods

are compared to each other giving clues about applicability and energy effi-

ciency.

In contrast to all previously developed strategies, chapter 4 focuses on opti-

mization with respect to the variation of EM temperature. The objective is

to generate the optimum temperature trajectories of front and rear EM for a

certain torque and speed profile within a predefined time interval. The math-

ematical formulation of this task leads to a nonlinear optimization problem

with restrictions and will be solved using the method of Sequential Quadratic

Programming. Since there is a need to integrate the EM temperature behav-

ior into the algorithm, the development of a suitable thermal model has to

be conducted in advance. As a basis for the validation step, several measure-

ments of vehicle test runs were provided to ensure that the model correlates

with the real physical behavior as much as possible. In the end results of the

optimization task are presented and analyzed.

Chapter 5 finally deals with the evaluation of real measurement data provided

by several runs on a dedicated test track. After the recorded measurements

have been analyzed properly based on a distance oriented approach, the chap-

ter concludes with comparisons to previously obtained simulation results and

the practical applicability of investigated torque split strategies.

5



2 Vehicle model

In general modeling aims at representing the most important aspects of a

system in order to form the basis for any further design process. In case of

vehicle modeling, physical characteristics of a specified passenger car are re-

flected by a suitable plant model, which allows to be extended by various

control algorithms and afterwards to be evaluated with the help of an appro-

priate simulation environment. Within OpEneR two prototype vehicles are

built to implement and demonstrate the effects of a smart energy manager

trying to increase the vehicle’s overall efficiency.

Prototype specifications

The base prototype vehicle for the OpEneR project is a Peugeot 3008 EV pro-

vided by PSA, offering fully electric 4-wheel-drive (e4-WD) via two electric

machines, built up as permanent magnet synchronous motors (PMSM). Each

EM drives one axle of the vehicle and provides 50 kW power and 210 Nm of

mechanical torque. The rear EM can also be used as a generator to recuper-

ate electric energy in case of moderate deceleration. Furthermore the EV is

equipped with a 40 kWh battery package providing approximately 200 km of

electric range and top speeds of 140 km/h on highways. [OpE].

Consider fig. 2.1 illustrating the correspondent vehicle model for the OpEneR

project car. It is adapted from the actual plant model layout of AVL CRUISE,

which served as an appropriate simulation environment for vehicle and pow-

ertrain analysis throughout the whole thesis’ scope of work.

All important subsystems are highlighted via frames, for instance, the dark

shadowed boxes represent the four wheels of the vehicle. Dotted lines indi-

cate electric parts/connections of the system, whereas mechanical parts such

6



2 Vehicle model

as EM, transmission gear, clutch or differential can be distinguished through

full lines. The controller consists of all necessary functions which handle the

(efficient) interaction between all subsystems.

Figure 2.1: Vehicle model based on the layout of AVL CRUISE with emphasize on power-
train and control subsystems.

2.1 Longitudinal dynamics
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2 Vehicle model

The analysis of longitudinal vehicle dynamics relates to the investigation of

various effects occurring in the direction of movement, exclusively. Besides

the consideration of lateral dynamics and pitch movements of a vehicle, it

plays the major role in terms of energy consumption and will therefore give

attention to some important explanations in this section.

Imagine a car moving on an inclined road along the way x as visualized in fig.

2.2. Several forces are acting on the vehicle, which include gravity-, rolling

resistance-, aerodynamic drag- and longitudinal tire forces [Raj06].

According to Newton’s 2nd law the equation of motion is expressed as fol-

lows:

mẍ = Fx,f + Fx,r − Faero −Rx,f −Rx,r −mg sinφ (2.1)

where

Fx,f , Fx,r . . . . . . longitudinal tire force due to traction at front/rear tires

Faero . . . . . . . . . . correspondent longitudinal aerodynamic drag force

Rx,f , Rx,r . . . . . . force due to rolling resistance at the front/rear tires

m . . . . . . . . . . . . . mass of the vehicle

g . . . . . . . . . . . . . . acceleration due to gravity

φ . . . . . . . . . . . . . .angle of road inclination

The longitudinal tire forces Fx,f and Fx,r acting on the drive wheels are re-

sponsible for initiating the movement of the vehicle. They depend on the

normal force on the tire as well as on friction coefficients of the tire-road

interface and a possible slip ratio [Raj06].

Faero is the correspondent aerodynamic drag force acting on the vehicle when

moving forward. It is proportional both to the front area of the car and to

the square sum of the current velocity ẋ and wind velocity vwind (positive

for headwind, negative for tailwind). Usually the frontal area AF is in the

range of 79-84 % of the area calculated from the vehicle’s width and height

[Raj06].

Faero =
1

2
ρ cdAF (ẋ+ vwind)

2 (2.2)

where ρ is the mass density of air and cd is the aerodynamic drag coefficient.
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2 Vehicle model

Rolling resistance forces Rx,f and Rx,r reflect the loss of energy when tires are

rotating due to special deformation and recovering processes happening inside

the tires. They act oppose the motion of the vehicle and are proportional to

the normal force on the tires (Fz,f , Fz,r):

Rx,f +Rx,r = f(Fz,f + Fz,r) (2.3)

where f is the rolling resistance coefficient [Raj06].

2.2 Powertrain dynamics

The key task for a powertrain implemented in an EV like the Peugeot 3008

project car is to transform electric energy saved in the battery into kinetic

energy transmitted to the drive wheels. Consider fig. 2.3 which illustrates the

powertrain for a single wheel based on the vehicle model previously introduced

in fig. 2.1. Note that both front and rear axle are built up identically in the

proposed EV, each supported by one separate EM.
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Figure 2.3: Single wheel powertrain - consisting of (front or rear) electric machine, trans-
mission block, dog clutch and differential gear ending up at a single drive wheel.

Based on the torque demand requested by the powertrain control software,

the corresponding EM delivers the actual torque MEM while running the

axle at the desired speed ωEM . The reduction gear box is characterized by

its efficiency ηtr and constant transmission ratio itr, which can be expressed

as

itr =
ωEM
ωtr

(2.4)
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2 Vehicle model

Furthermore it is assumed that the efficiency of the dog clutch is always 1,

which means that any possible slip during closing and opening of the clutch

is avoided.

The differential gear is responsible for a smooth transmission of the driving

torque onto both wheels connected to the correspondent axle and adjusts

different wheel speeds in a bend [Gri11]. The equivalent ratio idf = ωtr

ωwheel
can

be defined similarly to eq. (2.4).

Mwheel and ωwheel finally denote the actual torque and rotational speed at the

drive wheel provided by the overall powertrain.

The equation of power yields to the following relations:

PEM = ωEM MEM = ωtrMtr
1

ηtr
(2.5)

ωtrMtr = ωwheelMwheel
1

ηdf
(2.6)

Combining eq. (2.4)-(2.6) enables the calculation of the actual torque at the

drive wheel as a function of MEM . Note that the overall efficiency of the

powertrain can be simplified to ηPT = ηtr ηdf since all parameters are assumed

to be constant.

Mwheel = MEM · itr idf · ηPT (2.7)

It is important to mention that the behavior of a real vehicle’s drive line al-

ways requires the involvement of dynamical transitions for the torque transfer

from EM to the tires. In AVL CRUISE simulation environment this aspect

is modeled by 1st order dynamical equations using inertias of powertrain ele-

ments.
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2.3 Electric machine

The Peugeot 3008 EV proposed in the OpenER research project is equipped

with two identical EMs offering full electric 4-WD at any time. Each EM

is built up as a permanent magnet synchronous machine (PMSM) which

generally belongs to the class of rotating field machines.

PMSM - basic structure and mode of operation:

The physical principle for generating torque in electric machines relies on the

”Lorentz-force” ~F = q (~v x ~B), which describes the force ~F acting on a current

flowing electric conductor being exposed to a magnetic field ~B.

Figure 2.4: PMSM

Consider fig. 2.4 visualizing the schematic structure

of a PMSM. The stator forms the chassis of the

EM and consists of a three-phase winding ordered

in several channels. Depending on how the perma-

nent magnet is realized in the rotor, PMSM can be

divided into surface mounted PM (see fig. 2.4) and

interior PM synchronous machines. While the for-

mer is easier to construct it has the disadvantage of

poor robustness. IPMSM are typically used for high

speed applications since they can compromise this

negative aspect by a more complex manufacture [Acq12].

Basically, after inversion of the supplied DC-current coming from the battery,

the windings generate a rotating field according to the frequency adjusted at

the inverter. In case of PMSM the rotor consists of a permanent magnet

causing a static magnetic field ~B in the meantime. As a result of the Lorentz-

force acting on the stator windings and the interlacing of the magnetic fields

the rotor follows a rotation of the same (synchronous) frequency as the stator’s

rotating field.

The Energy-Manager as a part of the powertrain control software is respon-

sible for an adequate load distribution on both EMs, since the choice of op-

erating points has a high impact on the corresponding energy efficiency. For

electric motors the term efficiency ηEM is defined as the relation between

11



2 Vehicle model

delivered mechanical power and consumed electric power. Note, that the rear

EM can also be used as a generator in case of ”recuperation”, which will

be explained in the following section. Consider fig. 2.5 which illustrates typi-

cal torque- and efficiency characteristics for permanent magnet synchronous

EM.
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Figure 2.5: Typical torque and efficiency characteristics for PMSM (adapted from [GS07])

It is interesting to note, that the curve for the maximum torque a motor

can provide follows a hyperbolic decrease after a region of constant torque.

The reason for this is the limitation of current and power. For low speeds

the battery provides the maximum deliverable current so that high torque

requests can be supplied. In case of high speeds the power limitation is active,

which means that the EM reaches its maximum transferable power. From the

relation PEM = ωEM MEM the hyperbolic decrease can be derived [GS07,

p. 75].

 
 

Author: Pfeifer, Mario AVL/AT 

Created: 27.04.2013 

 

 

 

 

 

 

 

 

 

 

 

http://www.shoutwiki.com/w

 

Rx,f 

Faero 

x 

Electric machine

MEM 

ωEM 

Trot 

Tstat 

VDC 

Filename: efficiency_diagram.docx 

w/images/auto/4/42/Peugeot-3008-28.jpg 

 

ϕ

Fx,f 

Fx,r 

mg Rx,r 

lectric machine (PMSM) 

power: ≈ 50 kW 
torque: ≈ 205 Nm 
speed: ≈ 10 000 rpm 

ηEM 

 

internal / public / confidential 1/2 

ϕ 

Figure 2.6: EM-model as a system with five inputs and one output ηEM
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In Matlab/Simulink a black box model of the specified EM was provided

by R. Bosch GmbH. Given a set of inputs consisting of torque MEM , speed

ωEM , temperature Trot, Tstat (rotor/stator) and voltage VDC provided by the

battery, the resulting efficiency can be obtained during simulation and used

for upcoming optimization processes. Consider figure 2.6, which describes the

EM-model as a system with five inputs and one output so that following

relation can be expressed:

ηEM = f(MEM , ωEM , Trot, Tstat, VDC) (2.8)

Note that optimizing the vehicle’s energy consumption is equivalent to the

maximization of the combined EM-efficiency, which will be the main target

for different optimum control strategies introduced in the following chapters

of this work.

2.4 Regenerative braking

This section briefly introduces the recuperation ability implemented in the

OpEneR project car, which was developed especially for hybrid and electric

vehicles by R. Bosch GmbH under the name ESP R©hev [Bos].

In case of an ordinary vehicle, pushing the braking pedal by the driver would

require the mechanical brakes to be activated which implies that kinetic en-

ergy would be dissipated as heat into the environment due to friction at the

brakes. This loss of energy can be partially recovered by the use of regenerative

braking or so called ”recuperation”. Depending on the actual deceleration of

the vehicle the currently required braking torque would be split onto mechan-

ical brakes and EM, which now works as a generator transforming mechanical

energy over the powertrain back into electric energy, which can be saved in

the battery. Sometimes the so called e-braking torque is high enough to decel-

erate the vehicle completely without using any mechanical brakes, resulting

in various advantages like energy savings and increasing the durability of the

braking system.

13



2 Vehicle model

Figure 2.7: Recuperation ability for Peugeot 3008 EV defined by ESP R©hev

At the time the work for this thesis was conducted, it was assumed that the

proposed OpEneR project car was able to recuperate only with the rear EM.

The particular e-braking torque was calculated using a predefined character-

istic provided by R. Bosch GmbH, where the maximum available torque was

dependent on the current braking request of the driver resulting in the cor-

respondent deceleration level of the vehicle.

Cf. fig. 2.7 for the detailed behavior. Up to 1 m/s2 full recuperation can be

applied, whereas high deceleration values of more than 3 m/s2 require the use

of pure mechanical brakes.
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3 Torque split calibration

A powertrain management software relies on instantaneous inputs of the

driver as well as on current vehicle and powertrain states. The overall torque

demand in an EV primarily depends on the acceleration pedal position, which

is controlled by the driver in order to accelerate the vehicle. In the OpEneR

project-cars, two equivalent electric machines are used to drive each axle,

front and rear, separately. For this special case the question arises how to

divide the actual torque demand among both EM during the drive.

In [Mas12] an online algorithm for the optimum distribution of the currently

requested torque amount has been developed. The main idea that is followed

in this approach is to maximize the overall efficiency of both EM, which

generally depends on several factors such as speed, torque demand, battery

voltage and EM- temperature. As it will be derived within the first section

of this chapter, a pure application of this algorithm leads to an undesired

behavior which needs to be adjusted before a car-integration process can be

conducted.

The ”Direct calibration” methodology uses hysteresis effects based on the

current state of the vehicle to improve the overall control strategy. Within

this approach the most promising design will be selected among various hys-

teresis implementations based on different selection criteria.

The second investigated method focuses on the prediction of the future driving

behavior especially to reduce unnecessary changes of the powertrain control

states without using hysteresis effects. AVL CRUISE, an appropriate simula-

tion environment for vehicle and driveline analysis, will show possible impacts

primarily in terms of energy consumption for all evaluated designs.
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3.1 Review and problem definition

In this section the basic approach towards the optimum torque split algorithm

for the proposed EV is briefly reviewed before several issues concerning the

pure application of this algorithm are discussed.

Again picking up the question how to divide the torque demand efficiently

among both EM implemented in the OpEneR-project cars, one trivial option

might be to use an equal distribution. This means to split the demand via a

50:50-distribution onto front and rear EM constantly during the drive. How-

ever, simulations on various driving cycles have shown that this option yields

to the worst results in terms of energy consumption. Given the fact that this

setup is initially used in the original vehicle, it will serve as an important

benchmark for comparisons later on.

While relatively high torque demands generally require both EM being active

during traction, significantly better results can be achieved by switching off

one EM in case of low torque demands. From the mathematical point of view,

calculating the dynamical load distribution with respect to both EM requires

the definition of the torque split factor at first:

uf :=
M1EM,f

M1EM,f +M1EM,r

=
M1EM,f

M2EM

(3.1)

M1EM,f . . . . . . . . .Torque demand at front EM in Nm

M1EM,r . . . . . . . . .Torque demand at rear EM in Nm

M2EM . . . . . . . . . . Total torque demand in Nm

According to eq. (3.1) uf denotes the amount of torque provided by the front

EM relatively to the total torque demand. Note that 0 ≤ uf ≤ 1. However,

imagine two identical EM with exactly the same temperature and voltage

provided by the battery. Since relation (2.8) holds for both EM it is clear,

that for a given speed ω a torque split factor uf will now give the exact same

combined result as for the factor (1−uf ). Therefore it is sufficient to consider

only values between the interval [0, 0.5].
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Since the combined efficiency of both EM will be maximized in the algorithm,

following equation expresses the degree of efficiency for electric machines both

in motor mode as well as in generator mode (recuperation case).

η1EM =


P1EM

Pel
=
M1EM ω

Pel
for motor mode (3.2)

Pel
P1EM

=
Pel

M1EM ω
for generator mode (3.3)

η1EM . . . . . . . . . . . EM efficiency

Pel . . . . . . . . . . . . . electric power of 1 EM in W

P1EM . . . . . . . . . . .mechanical power of 1 EM in W

ω . . . . . . . . . . . . . . .EM speed in rad
s

Combining the efficiency of each EM with the definition of the torque split

factor, the overall efficiency of both EM can be expressed as a nonlinear

function in uf and ηf , ηr (cf. [Mas12, p. 15]).

Pel,tot =
uf P2EM

ηf
+

(1− uf )P2EM

ηr
forP2EM , Pel,tot > 0 (3.4)

η2EM =
P2EM

Pel,tot
=

ηf ηr
uf ηr + (1− uf ) ηf

forP2EM , Pel,tot > 0 (3.5)

Pel,tot . . . . . . . . . . . overall electrical power in W

P2EM . . . . . . . . . . .overall mechanical power in W

η2EM . . . . . . . . . . . combined efficiency of both EM

In case of negative torques where the rear EM runs in generator mode for

energy recuperation, eq. (3.4) and (3.5) have to be slightly changed with

respect to relation (3.3).

The approach for calculating the optimum torque split factor can now be

described as follows. Basically, given the EM model in Matlab/Simulink ef-

ficiency values for different torque-, speed- and voltage inputs covering the

whole operating area of both EM have to be collected. Since the EM tem-

perature was kept constant for the upcoming study in this chapter, possible

influence of temperature variations in this step can be neglected as well.
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In order to ensure feasibility of the algorithm on a digital computer the torque

split factor uf ∈ [0, 0.5] has to be discretized into a sufficiently large amount

of values uf,i for i = 1, 2, .., n, so that: uf = {uf,1, uf,2, .., uf,n}.

In the next step, combined efficiency values η2EM,i are determined based on

n different distributions of the torque demand onto both EM. For instance at

step i the torque split is defined according to eq. (3.1):

M1EM,f = M2EM · uf,i
M1EM,r = M2EM · (1− uf,i)

The optimal torque split factor for the triple (M2EM , ω, VDC) can now be

derived according to the previously obtained efficiency values η2EM,i for all

steps i = 1, 2, .., n and saved in a lookup table for a fast and efficient access:

j = arg max
i

η2EM,i

uf,opt = uf,j

Consider fig. 3.1 illustrating the optimal torque split factor over the feasible

torque-speed area of both EM during traction:

Figure 3.1: Optimal torque split factor uf,opt for traction mode with step size 0.05 and
selected parameters VDC = 305V , Trot = Tstat = 60 ◦C. The threshold line
separates two major split strategies: In the lower torque area uf,opt is zero
which corresponds to traction with rear EM only. Above the threshold line the
majority of all optimal split values within the feasible operating area implies
an equal distribution between front and rear EM.
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Taking a closer look on fig. 3.1, the majority of all calculated optimal torque

split factors comprises values of 0 or 0.5, which corresponds to use either

the rear EM or both EM equally for a certain input configuration. Thus it

is useful to separate both modes with a threshold line in order to clarify

the use of two major split strategies for further considerations. With respect

to the upcoming study, this option will be called as the suboptimal design

approach, since only two discrete values uf,subopt ∈ {0, 0.5} are considered

here - compared to the optimal design, respectively, where all (simulated)

values of uf in the interval [0, 0.5] are used.

Given the fact that computations generally need to be carried out as fast as

possible especially with respect to a further integration in the vehicle’s con-

trol software, the use of the suboptimal design approach can be clearly jus-

tified since it simplifies the optimum algorithm essentially. But also in terms

of energy consumption the suboptimal design still reaches satisfying results

compared to the optimal approach which will also be proved by simulation

results in the next sections.
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Problem definition

Recent simulations with an applied version of the previously introduced sub-

optimal torque split algorithm have revealed that the resulting driving be-

havior is not sufficient for practical reasons and thus the path for further

modifications and improvements is opened. For illustration, in fig. 3.2 the ve-

locity profile and in fig. 3.3 the simulated torque split characteristics for two

different driving cycles, NEDC1 and FTP-752, are shown.

Figure 3.2: Velocity profile for two different driving cycles: NEDC (left) and FTP75 (right)

Figure 3.3: Corresponding suboptimal torque split characteristic for both driving cycles.
In case of FTP-75 an oscillating behavior can be observed since the minimum
time frame between two consecutive switches of the driving mode is remarkably
small compared to NEDC.

1New European Driving Cycle
2Federal Test Procedure - established in 1975
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In NEDC, the minimum time interval between two different (suboptimal)

driving modes is about 1.15 s. Since NEDC is a rather artificial driving cycle

with several redundant passages of easy acceleration and brake maneuvers,

this value is not fully significant for further evaluations although the mini-

mum switching time is still very low.

On the right side of 3.3, uf -characteristics for FTP-75 are illustrated. In op-

posite to NEDC, FTP-75 does not consist of clearly delimited regions and

tries to reproduce a more realistic driving behavior instead. Here, the mini-

mum time interval between two changes of the torque split factor is already

close to zero or, to be more precise, at the simulation time limits.

Different aspects showing the overall problem situation for the presented

torque split algorithm can be listed as follows:

1.) Comfort, durability and safety considerations

In general, applying the pure suboptimal control algorithm to an EV’s

Energy Manager causes very high switching rates of the driving modes,

which results in an oscillating behavior of the front EM. Especially

for durability reasons this effect is considered as insistently undesirable

since fast on/off-switching of an EM causes inadvertent operations of

internal parts which consequently leads to an unnecessary wearing of

mechanical components and can damage the whole EM in the long term.

Furthermore it has to mentioned, that fast changes of the driving mode

are generally regarded as infeasible for practical applications due to the

physical time constant of engaging and disengaging of electric machines.

Additional comfort and safety concerns regarding the decrease of torque

split switches with respect to current road and driving conditions con-

clude the requirement for an appropriate adjustment of the proposed

control strategy.

2.) Additional energy consumption

Another issue regarding the change of driving modes covers additional

energy consumption that occurs, when one specific powertrain state

has to be moved to another state due to the change of the torque split

factor. For instance, if the transition corresponds to uf : 0→ 0.5, hence
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the torque demand of the rear EM will be splitted among both EM

in the next step, a speed synchronization process has to be applied to

the unused (front) EM before the clutches close in order to facilitate

a smooth torque transfer. This implies a certain time delay until the

whole powertrain works in its requested state again, since lags between

the detection of a mode change and the physical execution occur due to

the previous preparation and synchronization phase. Especially when

uf -switches are really close to each other like in fig. 3.3, additional

efforts for a mode change might result in higher energy consumption

and should therefore be avoided.

In the following sections two different approaches as a possibility to deal with

these problems will be introduced. While the first one tries to apply direct cal-

ibration methods based on the past and current states of the powertrain, the

second approach tries to predict the driving behavior itself and avoid unnec-

essary switches in advance. Furthermore, several simulations will show that

adequate designs can also limit an additional increase of energy consumption

which always occurs when optimality of the overall system is compromised.
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3.2 Direct calibration

In this section two different calibration methods will be introduced, each

applying special hysteresis effects to improve the overall control strategy.

The basis for this calibration technique is the suboptimal design approach

where two major split designs are separated through a single threshold line.

The major objective is to improve the oscillating torque split behavior with

strong emphasize on retaining energy improvements which have been gained

through the use of the suboptimal design approach for different driving cycles.

Both methods only use past and present states of the powertrain in order to

directly choose the next pending driving mode.

3.2.1 Time based hysteresis

Figure 3.4: Time based hysteresis design approach with ∆T as a varying parameter to limit
the minimum switching time

The idea behind the method of a time based hysteresis is to force the torque

split factor to stay at a certain value for a previously defined time span ∆T

in order to prevent fast changes of uf already in the first place. Compare fig.

3.4, where ∆T is the minimum time where no switches are allowed, both for

trajectories uf : 0.5→ 0 and uf : 0→ 0.5.

Varying ∆T leads to several options for possible designs which will be eval-

uated for different driving cycles based on several metrics, such as the total

change of battery state of charge and the absolute number of switches.
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3.2.2 Threshold based hysteresis

This method tries to apply a threshold zone to the combined operating area

of both EM. At first consider fig. 3.5 where the solid line corresponds to

the suboptimal torque split strategy for uf ∈ {0, 0.5}, which was previously

defined by the suboptimal design approach in section 3.1. The dashed lines

above and below the threshold line define the hysteresis bounds. The purpose

of introducing a broader area around the threshold is to avoid consecutive

switches caused by torque demands which lie very close to this line. An upper

and lower boundary line can prevent this behavior since no switches will be

allowed to occur inside this area.

Figure 3.5: Threshold based hysteresis design approach with α and β as varying parameters
to define the hysteresis bounds in the torque-speed-map

Various benchmarks of this improvement strategy will differ in the parameters

α and β, which define the gap between the threshold and the border lines for

EM-speed ωmin = 0 rpm and ωmax = 10 000 rpm, respectively. Note, that an

affine linear characteristic will be used to define the upper and lower bounds

for the complete EM-speed range according to eq. (3.6) and (3.7),

f(ω) =
−(α− β)

ωmax − ωmin
ω +Mthreshold(ω) + α (3.6)

g(ω) =
(α− β)

ωmax − ωmin
ω +Mthreshold(ω)− α (3.7)
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where:

f(ω) . . . . . . . . . . . upper hysteresis line

g(ω) . . . . . . . . . . . . lower hysteresis line

Mthreshold(ω) . . . suboptimal threshold line

As can also be seen in fig. 3.5 the width of the threshold zone does not

necessarily have to be equal for the entire operating area. It can truly be

useful to apply a distribution with α > β implicating that more switches in

the lower torque demand area are suppressed. In the following consider fig.

3.6 which shows the EM-operating points for several driving cycles - NEDC,

FTP75 and AVL-internal test cycles which represent urban-, extraurban- and

highway driving characteristics. Note, that the last three DC also include

altitude profiles in their road description.

Obviously most of the torque demands lie in the lower EM-speed area, which

leads to the assumption that during realistic driving most of the switching

behavior happens during low speeds and should therefore give attention to

an adequate adjustment of the border line especially in this area.

Figure 3.6: Total torque demand over EM-speed during traction for different driving cycles
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Based on fig. 3.6 it can also be observed that NEDC contains rather artifi-

cial driving maneuvers where all distinct stages of the DC trace out easily

distinguishable trajectories in the overall EM operating area. In contrast to

NEDC, for all other remaining cycles the driving behavior is generally more

complex so that nearly the complete area is covered by the simulated oper-

ating points. For this purpose also consider fig. C.1 in Appendix C where the

velocity profile of each DC is illustrated.

3.2.3 Simulation and evaluation process

In chapter 2, a vehicle model of the Peugeot 3008 OpEneR project cars has

been introduced. AVL CRUISE simulation environment was used to imple-

ment a complete parametrized version of this model in order to simulate the

effects of longitudinal vehicle dynamics for different driving maneuvers.

During the integration phase several torque split designs based on the pre-

viously defined methods have been implemented in the model to adapt the

powertrain control software in a proper way. In the following each design will

be called benchmark to emphasize the possibility of comparison and further

evaluation based on different selection criteria.

All developed designs are analyzed based on 5 different driving cycles:

a) NEDC,

b) FTP75,

c) AVL Urban DC,

d) AVL Extraurban DC

e) and AVL Highway DC.

In each case different system parameters are collected to define a metric which

allows a further evaluation of the developed designs. On the one hand these

parameters include the investigation of battery state of charge, which directly

links to the consumed energy during the drive. On the other hand characteris-

tics of the torque split behavior are needed to check if possible improvements

are reached. Summarized, following parameters are collected during each sim-

ulation run:
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BM1 BM2 BM3 BM4 BM5
optimal suboptimal rear EM front EM 50:50

∆SOC (%) 3.9396 3.9403 3.9704 3.9697 4.2216
∆SOCimp,BM5 (%) 6.68 6.66 5.95 5.96 -
# switches 39 28 0 0 0
# switches/s 0.033 0.023 0 0 0
min ∆T (s) 0.025 1.15 - - -

Table 3.1: NEDC results for basic torque split approaches

• ∆SOC (in %)

absolute decrease of battery SOC (state of charge)

∆SOC = SOCinitial − SOCfinal

• ∆SOCimp,BM5 (in %)

SOC improvement relative to ∆SOC of BM5 (50 % const. distribution)

• # switches

total number of mode changes

• # switches/s (in 1
s
)

number of mode changes per second, underlying the total DC-duration

• min ∆T (in s)

minimum time between two switches

At first consider table 3.1, where NEDC simulation results for basic torque

split designs are illustrated. BM1 and BM2 denote the optimal and subop-

timal design as earlier mentioned, BM3 (BM4) implicate traction with rear

(front) EM only and BM5 finally represents the results for the 50:50 constant

torque split distribution.

As earlier mentioned in section 3.1, a const. 50:50 distribution yields to the

worst results not only for NEDC, but also for all other driving cycles. Ob-

viously the optimal solution gains the best (lowest) ∆SOC-value, closely fol-

lowed by the suboptimal design approach which improves already by 6.66 %

in terms of energy consumption compared to the previously mentioned const.

distribution design. Still the number of switches is relatively low for a total

NEDC duration of 1180 s, but as explained in 3.1 this driving cycle is rather

artificial. Therefore it is recommended to take a closer look on the remain-
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NEDC FTP75 Urban Extraurban Highway

optimal 39 273 419 458 182
suboptimal 28 128 158 230 86

Table 3.2: Number of uf -switches for optimal and suboptimal design

ing DCs, which represent a more realistic driving behavior instead. In BM1

min ∆T is about 0.025 s which exactly corresponds to the simulation time

limits. As can be seen from table 3.2 the amount of driving mode switches

jumps instantly to very high values, when other DC are investigated. Switches

in the optimal design are determined based on the discretization of possible

split values so that the simulated interval equates to [0, 0.05, 0.1,.., 0.5]. Note

that a possible longer DC-duration is not the primary factor for the increase

of uf -switches, it is more the driving characteristic that has an influence on

it.

Although the number of switches could be reduced significantly through the

use of the suboptimal design approach in BM2, min ∆T is still in a non-

acceptable range for all DC besides NEDC.

Time based hysteresis results

For the time hysteresis case, several designs have been created by successively

increasing ∆T from 0 to 30 s. Obviously the results in terms of energy con-

sumption will get worse, the higher ∆T is chosen which directly forces the

vehicle to stay at a certain - probably inefficient - driving mode. In fig. 3.7,

∆SOCimp,BM5 increases monotonously until ∆T reaches 0, which results in

the maximum improvement value visualized in the diagram. Note, the last

benchmark (BM12) equals to the suboptimal case (BM2). Fig. 3.8 shows how

the number of switches/s change due to various designs.

In summary it can be said, that in this design approach directly reducing

the amount of mode changes by setting a time limit is done at the expense

of additional increase of energy consumption, which cannot be neglected at

least for high values of ∆T. For further details it is referred to Appendix B,

where the complete simulation results for the time based hysteresis case are

listed.
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Figure 3.7: Simulation results for ∆SOCimp in % relative to BM5 for several time hysteresis
designs and DC

Figure 3.8: Simulation results for number of uf -switches per second for several time hys-
teresis designs and DC
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Threshold based hysteresis results

Like in the previous section, fig. 3.9 shows the energy improvement results

compared to the 50%-constant distribution for various threshold based hys-

teresis designs. As can be seen from the x-axis labeling, several designs cov-

ering different possibilities to define the linear hysteresis bounds according

to eq. (3.6) and (3.7) are investigated during the simulation and evaluation

process. Generally, considering all listed designs the hysteresis gap defined by

α and β decreases the higher the benchmark-number becomes. BM20 corre-

sponds to the suboptimal case again.

One could expect that an increasing hysteresis gap negatively influences the

overall efficiency and furthermore the energy consumption, which could di-

rectly be linked to a drop of ∆SOC. However, it turns out that nearly inde-

pendent of various design approaches the ∆SOC characteristic stays constant

for all investigated DCs. For instance, in NEDC the suboptimal case im-

proves by 6.66 % compared to BM5. The design with the biggest gap (BM13:

α = 40 Nm, β = 10 Nm) reaches a value of 6.43 %, which is only negligibly

worse.

Given the fact that various benchmarks yield to nearly the same ∆SOC result

as the suboptimal case, furthermore that the constant SOC characteristic is

independent on different DCs and therefore independent on the driving be-

havior, it is possible to focus on the number of torque-split switches and select

the best design based on this criteria only.

In fig. 3.10 the number of uf -switches divided by the total DC-duration is

visualized for all investigated benchmarks and several driving cycles. Obvi-

ously the values increase when the gap of the hysteresis curve declines until

α = β = 0 (BM20) which represents the threshold-line in the suboptimal case

again.

A question that might arise is how the parameter min ∆T changes with

respect to the different designs, since in the time-hysteresis case min ∆T di-

rectly equals to the design parameter ∆T and does not have to be considered

there explicitly. According to Appendix B where the detailed simulation re-

sults for the threshold based hysteresis case are listed, min ∆T varies between
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Figure 3.9: Simulation results for ∆SOCimp in % relative to BM5 for several threshold
based hysteresis designs and driving cycles

Figure 3.10: Simulation results for number of uf -switches per second for several threshold
based hysteresis designs and driving cycles
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NEDC FTP75 Urban Extraurban Highway

∆SOC (%) 3.94 7.03 2.31 7.71 11.33
∆SOCimp,BM5 (%) 6.66 4.36 4.66 4.47 5.71
# switches 28 128 158 230 86
# switches/s 0.024 0.052 0.147 0.094 0.080
min ∆T (s) 1.15 0.05 0.025 0.025 0.025

Table 3.3: Complete simulation results for BM2 (suboptimal case)

NEDC FTP75 Urban Extraurban Highway

∆SOC (%) 3.95 7.03 2.32 7.72 11.39
∆SOCimp,BM5 (%) 6.43 4.36 4.29 4.37 5.22
# switches 18 64 37 49 15
# switches/s 0.015 0.026 0.034 0.020 0.014
min ∆T (s) 25.9 1.4 1.4 1.6 2
Drop of switches (%) -36 -50 -77 -79 -83

Table 3.4: Complete simulation results for BM13 (α = 40 Nm, β = 10 Nm) including drop
of driving mode switches compared to the suboptimal design.

the simulation time limits and about 2 s depending on the DC, respectively

(in NEDC much higher). At least for designs with rather broad hysteresis

curves, values generally do not fall below 1 s which should be sufficient for

most applications. In any other case further restrictions can be easily imple-

mented using additional time hysteresis design approaches.

Conclusion

Since the overall amount of EM-switches during the drive should be kept

to a minimum, benchmark 13 with the design parameters α = 40 Nm and

β = 10 Nm is the best choice for the direct torque split calibration method.

Comparing fig. 3.9, BM13 reaches ∆SOC-values close to the suboptimal case

for all different DCs which have been investigated during the evaluation pro-

cess. Hence, the corresponding improvement results for ∆SOCimp,BM5 reach

almost suboptimal values as well.

Furthermore, the number of torque-split switches can be reduced up to 83 %
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compared to the suboptimal case (cf. also table 3.4 where the complete results

for BM13 are listed). For instance, according to the suboptimal results in table

3.3 BM13 improves by 6.43 % compared to 6.66 % (suboptimal) in terms of

energy consumption for NEDC and thus, BM13 is only insignificantly worse.

Instead of this, if the design is applied to the powertrain control software

high benefits can be achieved from the loss of driving mode changes, since

in Extraurban-DC, for example, the number of switches could be decreased

from 230 to 49 (-79 %).

The last evaluation parameter min ∆T, which denotes the smallest time span

between two different driving modes, reaches satisfying values for various DCs

(2 s up to 26 s for NEDC) and can further be increased by an additional time

hysteresis design if needed.

Summarized, after comparing the results between the suboptimal design (BM2)

and the best fitted hysteresis design (BM13) the objectives for various im-

provements regarding the practical applicability of an optimum torque split

strategy could be proved by simulations. Furthermore, the presented results

fulfill all expectations towards high energy efficiency for different driving cy-

cles.

33



3 Torque split calibration

3.3 Predictive calibration using ANN

This method tries to focus especially on the second issue introduced in section

3.1 (problem definition), where consecutive changes of the driving mode result

in probably higher energy consumption due to time lags of certain preparation

and EM-synchronization phases. Especially for closely arranged switches as it

happens for the ordinary torque split algorithm, energy benefits of changing

to every optimal/suboptimal mode might not occur or would rather turn into

additional costs instead.

An appropriate algorithm could predict the short time behavior of the driver

and measure the probability of oscillating switches for the next few time steps.

This prediction value could be used in the subsequent powertrain control soft-

ware to avoid unnecessary switches and improve the overall energy efficiency

in the end. Furthermore, durability and comfort issues are taken into account

as well since the amount of driving mode switches will also decrease within

this approach.

Figure 3.11: Approach for driving mode prediction. Classes C1EM−mode and C2EM−mode

represent uf values of 0 and 0.5, respectively. Arrows denote a possible driving
mode trajectory over time t, where t = i, i+ 1, .., i+N

Consider fig. 3.11, where the driving mode trajectory indicated by consecu-

tive arrows describes the following sequence: Depending on the correspondent
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driver inputs at time (i) the current operation point lies in area Ai. In the

next time step (i+1) the powertrain control software recognizes an upcoming

torque-split change since the transition from Ai to Ai+1 implies crossing the

suboptimal uf -threshold line. At this point the question arises, whether it is

useful to perform the desired switch or to neglect it with respect to an up-

coming oscillating behavior and a ”collectively” jump back to the 2-EM-mode

area ending up at time stamp (i + N), which completes the considered time

interval in this approach.

Note, that primely this question brings up the need for the development of a

predictive calibration algorithm.

According to eq. (3.10) ”collectively” means the average membership of op-

erating points belonging to the class C1EM−mode and C2EM−mode, respectively,

during the future-interval of N time steps. Consider eq. (3.8)-(3.10) for the

mathematical expression of ĀN .

α =
i+N∑
j=i+1

ξj ξj =

1 Aj ∈ C1EM−mode

0 Aj ∈ C2EM−mode

(3.8)

β = N − α (3.9)

Then, ĀN can be defined as

ĀN ∈

C1EM−mode for α > β

C2EM−mode otherwise.
(3.10)

Every time a change of the current driving mode is requested (as it is the case

for t = i + 1 in the example), the probability of coming back to the original

state in average during the short time period of N samples is needed for the

further decision process. Hence, an appropriate algorithm has to calculate a

prediction value which estimates the conditional probability of an upcoming

oscillating behavior due to future driver inputs based on various information

provided to the algorithm.
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See eq. (3.11) for the prediction value definition in the case of fig. 3.11. A

switch in the other direction can be derived similarly replacing class C1EM−mode

with C2EM−mode and vice versa.

δp := 1− P (ĀN ∈ C2EM−mode |Ai ∈ C2EM−mode, Ai+1 ∈ C1EM−mode) (3.11)

where δp ∈ [0..1] is the output of an appropriate prediction algorithm and

reflects the torque split switching recommendation:

δp = 0 . . . . switch not recommended

100 % probability of jumping back instantaneously to C2EM−mode.

δp = 1 . . . . switch recommended

0 % probability of jumping back to C2EM−mode.

It is clear that any forecasting methodology has the need for adequate infor-

mation as an input to its algorithm in order to produce feasible outcomes. For

this approach, both driver commands and actual powertrain states based on

statistical examinations as well as information about the current/upcoming

road conditions will serve as meaningful inputs to the prediction learning pro-

cess.

If other sensing devices were provided by the vehicle, further data sources

could consist of road related information (e.g. hills, curves) delivered by

GPS-signals, current traffic information through radar sensors and car2car-

communication systems, or data of upcoming speed limits provided by car2-

infrastructure-communication.3

In the next section ”Artificial Neural Networks” (ANNs) as a common and

convenient possibility to deal with forecasting problems, especially with sub-

ject to pattern recognition issues, will be introduced.

3cf. correspondent patent ”Driver behavior pattern recognition by using past behaviors
and environmental sensing”, AVL Graz
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3.3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are generally adapted from the informa-

tion processes going on in human brains. About 1011 special cells called neu-

rons are provided with each 104 inputs coming from other cells connected via

synapses in order to enable information exchange. The output of a human

neuron is called axon and ”fires” if certain thresholds are reached [Maa08;

Haj]. See also fig. 3.12 which visualizes the principle structure of a biological

neuron.

Figure 3.12: Schematic drawing of a biological neuron adapted from [Haj]. Arrows denote
the information flow.

In general, ANNs form a parametrized model in order to adapt to arbitrar-

ily defined continuous functions usually provided by training data consisting

of inputs and targets in case of supervised learning. A training set usually

contains plenty of data points describing the most important features for the

learning task, each input combined with a target value to define the desired

output of the ANN. Parameter values of the network refer to the weights each

connection is characterized by and during training process these parameters

are adapted based on a certain learning algorithm, e.g. perceptron learning

rule or the backprop-algorithm introduced in section 3.3.1.3).

ANNs are widely used in different application areas [Maa08], such as:

• Classification, Pattern Recognition

system identification, control systems (vehicle control), face and typog-

raphy recognition, medical diagnosis, data mining, etc.
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• Prediction

financial applications, driving behavior estimation, extrapolation based

on historical data, approximation of functions

• Noise Reduction, Filter

recognize noisy data and produce meaningful outputs

Various properties as well as advantages and disadvantages of neural networks

[Haj] can be listed as:

+ Ability to learn:

Connecting simple elements generates an overall complex behavior which

makes it possible to adapt to arbitrarily functions. The input-output

behavior is characterized by the adjusted weights.

+ Ability to generalize:

ANNs are said to generalize well when the input-output relationship

computed by the network generates reasonable outputs for data not

encountered during training process.

+ Distributed and parallel computing:

Robust against errors (failure of neurons if implemented in hardware)

since the performance degrades gracefully rather than ending up in-

stantly in a catastrophe.

+ Good performance

+ Small memory requirements

− Computing time:

Relatively high during training, but typically fast for testing (even for

many test samples)

− Risk of overfitting:

For complex networks the risk of over-training increases dramatically,

which means that the network performs well on the training set, however

generalizes poorly.

− Intuitive interpretability:

Rather bad since ANNs can be seen as nonlinear black box models with

high complexity inside.

The simplest form of neural network is called perceptron consisting of one

single neuron together with a hard limit threshold gate and is used for linear
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classification problems. The most successful model for ANNs in the case of

pattern recognition is the feed-forward architecture, also known as the multi-

layer perceptron which will be discussed in section 3.3.1.2 [Bis06].

3.3.1.1 Perceptron

Figure 3.13: Mathematical structure of a single-layer perceptron

The single-layer perceptron shown in fig. 3.13 is provided with N inputs and

an additional bias x0 = 1 to support any possible linear combination of the

inputs plus an additive term. The weighted sum a of all inputs is transferred

to an activation function h(a), which denotes a hard limit threshold gate in

the case of perceptrons so that the output z of the neuron always corresponds

to a binary value. Training the perceptron means to adjust all weights wi for

i = 0, .., N so that the output z corresponds to the desired target specified

in the training set. Consider the perceptron learning rule in eq. (3.12), where

t indicates a specific target value and α denotes the so called learning rate.

Note that all weights and inputs have been replaced by vectors w and x.

wt+1 = wt + α (t− z) · x (3.12)

According to the perceptron convergence theorem, it is proved that for linear

separable training data sets the perceptron learning rule in eq. (3.12) con-
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verges and generates a decision surface in form of a hyperplane between the

classes [Haj, p. 23].

Note, that for perceptrons the activation function is always a threshold gate,

which is not differentiable and therefore has to be replaced by appropriate

functions in case of more complex networks with a different learning algo-

rithm.

3.3.1.2 Feed Forward Architecture

According to the literature there exist several possibilities how to connect per-

ceptrons to a complex network. Without considering recurrent ANNs, sparse

networks or included skip-layer connections, in this thesis the focus lies on

dense layered feed forward networks as shown in fig. 3.14. The first or lowest

layer is called input layer, which receives external information to define the

network inputs. The last layer consists of several output neurons, depend-

ing on the particular use case the network is designed for. For instance a

classification task with K > 2 classes is commonly described by K output

neurons to gain a maximum distance between the classes that have to be

distinguished [Maa08]. The input and output layers are separated by one or

more intermediate layers called hidden layers. Characteristics for this type of

ANN are:

• The network can be described as a directed graph G = (V,E) with

nodes V (inputs, hidden neurons, outputs) and edges E.

• For every edge (i,j) ∈ E from node i to node j in layer l there exists a

weight w
(l)
ji

• For every node except input nodes there exists an activation function

h(l)(·), which equals for all nodes in layer l.

The overall input to each neuron in fig. 3.14 is called activation and can be

expressed as the weighted sum of all outputs from the previous layer [Bis06;

Maa08]. The activation for node j equates to:

aj =
N∑
i=0

wji zi (3.13)
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Figure 3.14: Structure of a 2-layer feed forward network with D inputs, M hidden units
in the 1st layer and K output neurons in the 2nd layer. Bias parameters are
represented by links coming from additional nodes x0 and z0. Arrows denote
the information flow from left to right during forward propagation [Bis06].

where:

N = {D, M} is the number of neurons in the previous layer, and

zi =

xi when node i corresponds to an input node

h(ai) otherwise.

The output of a neuron (except input layer) is transformed using a differen-

tiable activation function h(·), which usually denotes linear-, tanh-functions

or the commonly used sigmoid function (in Matlab: logsig, see also fig. 3.15).

Figure 3.15: Commonly used activation functions for neural networks (linear, sigmoid,
tanh)
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Combining all stages the output of neuron k for a 2 layered feed forward

network can be calculated as expressed in eq.(3.14). Note, that all weights

and bias value have been grouped to the vector w.

yk(x,w) = h(2)

(
M∑
j=0

w
(2)
kj h

(1)

(
D∑
i=0

w
(1)
ji xi

))
for k = 0, 1, .., K (3.14)

Remarks:

It is clear that if all activation functions in the ANN are linear, then the

output yk will be a linear function of the inputs again. In this case there can

always be found an equivalent network without any hidden layers.

Furthermore it has been proved that a single hidden layer network like in fig.

3.14 is sufficient to approximate any continuous function arbitrarily exact.

This is also called as the universal approximation theorem and can be referred

in [Bis06; Maa08; Haj].

3.3.1.3 Error backpropagation

According to the literature, Error backpropagation or simply back-prop is an

algorithm to calculate the gradient of the error function in an efficient way.

It was introduced by Paul Werbos in his PhD. thesis in 1972, but did not

get popular until the 80’s when other authors ”reinvented” this algorithm

[Maa08]. It is characterized by two distinct stages denoting the pass of mes-

sages through the network:

Forward propagation

It means to pass information from the input layer over all hidden nodes to

the output layer and to collect the results of each neuron according to eq.

(3.14).

Backward propagation

At first derivatives of the error function with respect to the weights are calcu-

lated for the complete output layer. Afterwards those signals are propagated

backwards through the network to assign the corresponding derivatives to all

remaining nodes [Bis06].
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Back-prop is designed for feed-forward networks with differentiable activation

functions and a class of error functions which can be expressed as the sum

over all training examples L:

E(w) =
L∑
n=1

En(w) (3.15)

The goal is to calculate the local gradient with respect to a certain weight

wji for a single training input n:

∇En =
∂En
∂wji

=
∂En
∂aj

∂aj
∂wji

≡ δjzi (3.16)

The second term corresponds to the output of neuron i as in eq. (3.13) ex-

pressed. For the first term the definition δj is used to define the local error

at each node [Bis06] which will be more clear when the error for an output

neuron is derived (with tk as target value for neuron k):

En =
1

2

K∑
k=1

(yk − tk)2 =
1

2

K∑
k=1

(h(ak)− tk)2 (3.17)

δk =
∂En
∂ak

= (yk − tk) for linear h(a) = a (3.18)

The error δj for hidden neurons can be calculated using the information

from previous nodes:

δj =
∂En
∂aj

=
∑

k∈post(j)

∂En
∂ak

∂ak
∂aj

=
∑

k∈post(j)

δk
∂ak
∂aj

=

=
∑

k∈post(j)

δk
∂

∂aj

 ∑
i∈prev(k)

wki zi

 =

=
∑

k∈post(j)

δk
∑

i∈prev(k)

wki
∂zi
∂aj

Given the fact that zi = h(ai), what means that ∂zi
∂aj

= 0 for j 6= i, the error
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for a hidden node in layer (l) equates to:

δj =
∂h(l)(aj)

∂aj

∑
k∈post(j)

δk wkj (3.19)

Now, a simple gradient descent based method with learning rate η can be

used to update the weights in order to train the network with respect to a

decreasing error function [Bis06; Maa08]:

wt+1 = wt − η∇E(wt) (3.20)

3.3.2 Modeling and training

In section 3.3 the problem of recognizing driving behavior patterns together

with a prediction task has been stated, which forms the basis for the devel-

opment of a forecasting neural network. Since the modeling and training of

ANNs has a high impact on the overall performance, it is crucial to focus on

the selection of an appropriate network architecture at first. According to the

composition of feed-forward networks this implies the decision on the number

of layers as well as the number of nodes in each layer.

Further issues contain the choice of activation function, efficient training algo-

rithm, the selection of training and test sets together with data normalization

and a suitable error function for performance measure [ZHP]. In this section

all above mentioned issues about modeling ANNs in general as well as for the

driving behavior prediction task will be successively investigated.

Architecture

Defining the architecture of an ANN means to determine the number of neu-

rons for each layer. According to the literature this task is non-trivial and the

resulting layout mainly depends on the application of the ANN. Furthermore

there exists no optimal solution for determining the number of neurons, hence,

the design of an ANN is more an ”art” than a matter of science. Guidelines

44



3 Torque split calibration

are either heuristics or based on several trial and error simulations so that

the network reaching the best results is selected [ZHP].

The input layer should consist of a small number of essential nodes, which

describe the underlying features in the data as significantly as possible. Too

few or too many inputs can affect the learning and generalization capability

of the network in a bad way [ZHP].

For the given problem (cf. fig. 3.11) it is useful to consider the state of the

vehicle at time t = i, i + 1 and define the inputs based on this time frame.

The acceleration pedal position of the driver as well as current torque demand

and EM-speed reflect the most important characteristics of the actual driving

state at the specific time when a mode change is requested (t = i + 1).

Relations to the last state (t = i) are considered to improve the overall

learning and are therefore added to the input layer. Furthermore, information

covering the road/traffic conditions should be mapped to the inputs as well

since the future behavior of the driver might be dependent on changes of

the environment. Hence, data about the current road inclination which could

come from an integrated GPS sensor device completes the number of inputs

for the prediction task.

However, determining the number of nodes in the output layer is rather

simple instead. According to the definition of the prediction value δp in eq.

(3.11), only 1 single output neuron is needed to indicate if a requested mode

change should be performed or not.

The choice of nodes for the hidden layer(s) is one of the most crucial as-

pects for designing an ANN, since only hidden neurons have the capability

of recognizing any concealed pattern in the data and to perform nonlinear

approximations to reach the desired input/output mapping. It is unclear how

many layers are considered to be sufficient for a forecasting problem, since

several authors propose either a single-hidden-layer network or ANNs with

two hidden layers. In general, more than two hidden layers are never applied

to neural networks because they tend to overfit (bad generalization), which

is a common problem for networks with rather high numbers of hidden nodes

[ZHP; Bis06].

For the defined prediction task several simulations with different network
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layouts showed that a single-hidden-layered ANN with 20 neurons reached

quite as good results as more complicated networks. Hence, and according to

Occam’s Razor:

”If possible, always prefer the simplest hypothesis”,

the 2-layer feed-forward network as illustrated in fig. 3.16 was selected during

the decision process.

Figure 3.16: Applied 2-layer feed-forward ANN to deal with the proposed driving behavior
prediction task. Inputs correspond to various vehicle and powertrain states as
well as road conditions assigned when changes of the driving mode emerge.
The last three inputs indicate the differences to the former driving state. The
output δp of the network denotes the prediction value defined in eq. (3.11).

Activation function

As already mentioned in section 3.3.1.2, activation functions are used to trans-

late the weighted sum of inputs to a bounded output value depending on the

characteristics of this function. In general, those functions are responsible for

introducing nonlinearities to the network which makes it valuable for most

applications. Although it is important to use differentiable functions with re-

spect to the training process, it is not clear which activation function should

46



3 Torque split calibration

be used in which case or if different functions have an impact on the perfor-

mance of the network[ZHP; Bis06].

Several authors simply suggest the use of sigmoid (logistic) activation func-

tions for both hidden and output layers. Furthermore, the addressed function

seems suitable especially for output nodes in case of binary classification prob-

lems [ZHP].

To follow the convention for the given task, all nodes will be equipped with

sigmoid activation functions.

Performance measure and training

Training a neural network is an unconstrained nonlinear parameter optimiza-

tion problem, where the weights w characterizing the connections between

the nodes are adjusted in a way so that the error function E(w) reaches a

minimum. Usually either the total squared error or the mean squared error

(MSE) for all output nodes over all input data is used for the training and

validation process [ZHP]. For the specific driving behavior prediction task,

MSE as a performance measure over all training examples n = (1, .., L) with

targets tn was selected according to eq. (3.21).

MSE = E(w) =
1

L

L∑
n=1

(δp(w)− tn)2 (3.21)

Since there is no possibility to find a closed formula for solving this optimiza-

tion problem, an iterative procedure is applied which updates the weights

in each step (epoch). Unfortunately there is no guarantee to find the global

optimum, which means that all algorithms generally suffer from the local

minimum stuck problem [ZHP; Maa08]. In order to find a sufficient solution,

several training cycles with different initial weights are performed to select

the best fitted network in the end.

Generally, combining Error-backprop with a pure gradient descent algorithm

results in slow convergence, inefficiency and weak robustness [ZHP]. Although

there exist methods which can improve the behavior (e.g. adaptive learn rate,
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momentum term, weight decay, early stopping4), other training algorithms

usually achieve significantly better results and a faster convergence.

For the proposed prediction task, a scaled conjugate gradient method (in

Matlab: trainSCG) is used to train the designed network in an efficient way.

Compared to the ordinary algorithm, SCG does not update the weights in

gradient descent direction, rather using conjugate directions instead.5

Data sets

For training and testing of ANNs typically two different data sets are used.

If possible, the training set comprises a large amount of samples to cover

all feasible inputs which could occur during the application of the network.

Generally, as for any statistical approach the accuracy of an ANN increases

the more samples are provided to an ANN during training. However, the

sample size is limited in reality due to restricted availability of data.

On the other hand, the test set usually consists of only a few samples which

are used for measuring the performance of the network (estimating the ”true

error” according to the literature). Sometimes a third validation set is used

to avoid overfitting problems and to perform model selection. It is important

that all data sets are disjoint to each other - cf. eq. (3.22) [Maa08; ZHP].

Training-data ∩ Test-data = ∅ (3.22)

In case of the driving behavior prediction task each individual DC served as

a basis for the generation of data samples. Only for NEDC it was not useful

to prepare any data since driving mode changes do not tend to oscillate that

much, also min ∆T is greater than 1 s in NEDC which makes the prediction

task meaningless.

Furthermore it was found out that an appropriate selection of input data has

a high impact on the performance of the ANN as well. Since the distribution

of the switching recommendation is not equal for various DC in general (ca.

70 % samples for δp,target = 1), it is necessary to limit all input samples to

4Cf. [Maa08; ZHP; Bis06] for further details on various improvement methods for ANNs.
5http://www.mathworks.de/de/help/nnet/ref/trainscg.html (03/21/2013)
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the same amount for each class. Otherwise an undesired behavior appears, so

that the network tends to prefer a certain class or in the worst case totally

neglects one class in advance.

Data normalization

Referring several authors in ANN research area, data normalization is often

performed before the training process begins. Advantages include the possi-

bility to avoid computational problems and to facilitate the overall network

learning. Furthermore benefits in terms of the classification rate and MSE

could be measured [ZHP].

For the given prediction task all inputs have been normalized separately based

on a linear transformation (”along channel normalization”):

xnorm =
x0 − xmin
xmax − xmin

(3.23)

where x0 is a single input value for a specific training example, xmin and xmax

are the minimum and maximum value of the corresponding channel (e.g. all

pedal travel values), and xnorm is the normalized version of x0.

Results

In order to perform realistic testing as far as possible, it is useful to divide

the existing data sets in a smart way to show the effects separately for dif-

ferent DC. For example, in case of testing the ANN on DCx, it is reasonable

to train the network on all other DC without DCx to achieve fair and mean-

ingful results. Moreover eq. (3.22) claiming disjunct training and test sets is

guaranteed here.

Consider fig. 3.17, which illustrates a single training cycle of the network

designed for the driving behavior prediction task. Typical for ANN-learning

in general, the MSE on training and test set decreases as the number of

epochs rises. At some point the network is considered as best fitted when

the MSE starts growing again. This indicates a potential overfitting process

which can be avoided if the method of ”Early stopping” is applied. It means
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that training is stopped at the point where the MSE on the test set (or a

dedicated validation set) reaches a minimum.

Figure 3.17: Typical ANN learning process. Here, the corresponding training set con-
sists of FTP75-, Urban- and Highway data samples, test was performed on
Extraurban-DC. Early stopping point at 91 epochs.

In table 3.5 the final classification rates of the designed ANN are presented

for various DC. Note, that these results denote the percentage of correct

predictions for test sets formed by each DC individually.

FTP75 Urban Extraurban Highway

Correct prediction 69 % 73 % 75 % 78 %

Table 3.5: Classification rates for test sets indicated by the correspondent DC. Training
was applied by providing data of the remaining cycles, respectively.
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3.3.3 Integration and simulation results

For demonstration of the EM-synchronization effects described in section 3.3

together with real vehicle simulations, the powertrain model in AVL CRUISE

had to be adapted accordingly. Note that due to these changes, results of the

time- and threshold hysteresis benchmarks cannot be directly compared to

the results presented in this section. However, BM13 as the best design for

the direct calibration method will serve again for simulations with the up-

dated model to ensure final comparisons between both introduced calibration

approaches. It is important to say that the selection process in section 3.2

is not becoming void thereby, since the updated model would not have any

impact on the benefits an implementation of hysteresis effects would bring

with it.

The upper diagram in fig. 3.18 illustrates an undesired EM synchronization

process which generally occurs if two mode changes are requested within a

very short time frame. The green curve denotes the rear EM speed, which is

proportional to the vehicle speed since the rear clutch is always closed during

driving. At first the torque split factor uf equals 0 which implies that the front

clutch is open during this time, so that the corresponding EM speed (black

line) decreases steadily due to various drag forces appearing at the motor. At

the point where uf changes to 0.5, the front EM has to be synchronized with

the current rear EM speed to avoid any adverse transitions at the front clutch.

This behavior is also indicated by the associated control variable (red line),

which suddenly jumps to a high value to initiate the requested synchronization

process.

It is clear that such preparation phases lasting for around 500 ms would have a

negative impact on the overall energy efficiency, if the next switching request

follows almost instantly as it is the case in fig. 3.18. Since the front clutch can

not be closed until time Tx, the overall optimality would be comprised due

to additional lags caused by the synchronization phase. Summarized, despite

the fact that uf always indicates an optimal switch, it is not reasonable to

follow this request at any time.

The predictive ANN designed in the previous section is able to detect such un-
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Figure 3.18: Above: Several powertrain states for the suboptimal design in a short time
frame of FTP75 to show required synchronization phases when changes of the
torque split factor occur. Note the front clutch cannot be closed until time Tx.
Below: Improved behavior for the corresponding time frame if a correct pre-
diction value is assumed. Energy improvement ≈ 2 %; two switches avoided.
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desired switches especially to prevent oscillating mode changes. The improved

driving behavior with respect to a correct prediction value is visualized in the

lower diagram of fig. 3.18.

Simulations in AVL CRUISE have shown that the amount of energy ∆Eimp,

which can be saved in this example having one unnecessary switch, is about

2 % in terms of ∆SOC.

Choice of an optimum prediction interval

In the beginning of this section it was defined, that the prediction value δp

is estimated for the future driving behavior over a dedicated time interval

of N steps. Thus, it is important to figure out if certain time spans should

be preferred since they would probably have an impact on the prediction

accuracy especially with respect to the total energy consumption.

Figure 3.19: ∆SOC improvement against BM5 (const. distribution) for different prediction
designs to select the optimum time interval.

From the logical point of view it does not make sense to choose very short

prediction intervals since possible benefits resulting from avoided synchro-

nizations would clearly diminish if upcoming switches are close to appear.

On the other hand too long intervals would compromise the overall energy

efficiency especially for wrong predictions, because the system would have to

stay at non-optimal operating points for a rather long time.
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Cf. fig. 3.19 which shows the energy improvement results for AVL CRUISE

simulations on real-life DC with different prediction intervals. It was found

out that a time span of 4 s could achieve the best results.

Simulation results

Subopt. (BM2) Prediction (4s) Perfect prediction

∆SOC (%) 7.771 7.749 7.735
∆SOCimp,BM5 (%) 3.74 4.01 4.18
# switches 336 82 60
min ∆T (s) 0.025 4 4

Table 3.6: Simulation results for Extraurban-DC considering the suboptimal and predictive
design (with≈ 75 % classification rate) compared with a theoretical design where
all predictions are defined to be correct.

In general, all expectations regarding the implementation of a predictive

torque split control algorithm have been widely fulfilled, both in terms of

energy consumption and the reduction of the number of unnecessary driving

mode switches. It is clear that a forecasting algorithm always relies on its ca-

pability of producing accurate and correct predictions, and especially in case

of the presented task consecutively wrong decisions would lead to a relatively

high decline of energy efficiency.

As a consequence the improvement parameter ∆SOCimp,BM5 deviates around

the values for the suboptimal design approach. If the majority of all predic-

tions were correct, this algorithm was able to achieve quite large benefits due

to the avoidance of unnecessary switches.

Consider table 3.6 which shows the simulation results for the Extraurban

DC. All designs can reach large improvements compared to BM5 (constant

distribution). Also min ∆T increases for the prediction case due to the cor-

respondent implementation of the algorithm.

Given the fact that synchronization effects are added to the simulation model,

the suboptimal design achieves rather moderate results. In contrast, a (theo-

retical) perfect prediction algorithm with 100 % classification rate is able to

avoid every unnecessary change of the driving mode. Thus, the corresponding
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number reduces from 336 to 60 essential switches and ∆SOCimp,BM5 improves

up to 12 % compared to the suboptimal design.

In the best case results of the implemented prediction design with a 70 % clas-

sification rate typically lie somewhere in the middle, which means that energy

benefits are reached due to the improved control strategy, however, possible

wrong decisions also compromise the overall optimality. Cf. Appendix B for

the complete table of results.
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3.4 Conclusion

In the first part of this chapter two approaches as a possibility to deal with

the torque split calibration problem have been introduced, each of them using

hysteresis effects to improve the overall control strategy. It turned out that

a simple time restrictive algorithm clearly reduces the number of switches

and also increases the interval between them, however, those benefits are

largely reached at the expense of energy efficiency which prevents a further

application of this method.

In the threshold-based hysteresis approach one particular design was selected

which achieved the best simulation results for the considered metrics. Both

in terms of energy improvement as well as for the reduce of driving mode

switches this design could fulfill most of the expectations towards potential

practical applicability and a more safe and comfort driving style.

The last method tried to investigate if a possible prediction of the future

driving behavior was able to prevent unnecessary changes of the torque split

factor in an efficient way. The basis for the development of this algorithm

was not primarily formed by decreasing the number of switches, rather by

the avoidance of inefficient EM-synchronization phases at certain times.

Energy imp. (%) FTP75 Urban Extraurban Highway

Suboptimal design 3.49 3.77 3.74 5.19
Predictive design 3.71 3.64 4.01 4.46
Hysteresis design 3.41 4.00 4.27 2.25

Table 3.7: Energy improvement results (∆SOCimp,BM5) over real-life DC as a comparison
between the best fitted designs selected for each calibration methodology versus
the ordinary suboptimal design approach.

# Switches FTP75 Urban Extraurban Highway

Suboptimal design 156 172 336 234
Predictive design 78 83 82 15
Hysteresis design 72 37 49 75

Table 3.8: Number of driving mode switches over real-life DC for major tq split designs.
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Consider table 3.7 and 3.8 illustrating final comparisons of the best fitted

designs together with the ordinary suboptimal version for the most crucial

parameters - energy efficiency and driving mode switches. Note that these re-

sults are based on the model with EM speed synchronization, and thus, they

are not directly comparable to the results presented in the Direct Calibration

section.

For all conducted simulations a 50:50 constant torque split distribution leads

to the worst results in terms of energy consumption so that all investigated

designs can reach improvements up to 5 % for various driving cycles. BM2, the

suboptimal design, forces the system to stay at the theoretical optimum op-

erating point for every time, implicating the compromise of energy efficiency

due to several synchronization phases realized in the updated model.

BM13 with the hysteresis parameters α = 40 Nm, β = 10 Nm generally

achieves convincing results for different driving profiles. Compared to other

benchmarks the number of switches also reaches a minimum which has a pos-

itive impact on comfort, safety and durability issues. Only the minimum time

between two switches probably needs to be enhanced by further restrictions

(e.g. time hysteresis approach), since this aspect is not considered explicitly

within the threshold based calibration technique.

The predictive design with an interval of 4 s turned out to become a real

alternative to BM13, if appropriate training data for the control algorithm

is provided and a possible risk to wrong decisions can be overcome. Trying

to generate more precise and adequate data (e.g. also from other sensors)

which could be linked to the driving behavior, would most likely increase the

prediction accuracy and help to improve the overall efficiency. The presented

algorithm produces results deviating around the suboptimal design, also the

number of switches stays at an acceptably low amount.

In summary, an application of the presented threshold-based hysteresis design

can be generally recommended in order to calibrate the discussed suboptimal

torque split algorithm in a sufficient way. However, predictive approaches can

truly produce comparable or even better results if appropriate implementa-

tions of the algorithm are provided with meaningful and consistent input

data.
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”Nothing at all takes place in the universe in which some rule of

maximum or minimum does not appear.”

Leonhard Euler (1707-1783)

Temperature as a fundamental physical quantity plays an important role in

all fields of natural science and needs to be carefully observed to gain opti-

mum control of the system itself. For instance, many physical properties rely

on temperature very strongly, chemical processes do not start to react until

certain heat levels are reached and also metabolic processes of human beings

are broadly influenced by temperature.

The proposed OpEneR prototype vehicle introduced in chapter 2 is equipped

with two permanent magnet synchronous machines (PMSM) to drive each

axle of the car separately. According to the literature, PMSM are widely used

for hybrid and electric vehicles since they provide good efficiencies including

high power density and fast dynamics. However, due to ambient thermal

conditions and the process of heating during operation the temperature of

an EM can vary between −40 ◦C and 150 ◦C which puts the motor under

excessive thermal stress and can even cause a total failure in the worst case.

More detailed, as the temperature is rising a successive demagnetization of

the permanent magnet happens inside the EM causing irreversible damages to

the motor if certain limits are exceeded. Especially this brings up the need for

an adequate design of motors and a suitable observation of the EM operating

temperature. [GK]

With respect to the upcoming study in this chapter the most interesting

aspect is the fact that the efficiency drops the more an EM is heating up,

which means a lower torque output for the same consumed electric energy. It
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is evident that there is a need to design an adequate controller which takes

into account the current EM temperature to generate a more accurate and

realistic system model in order to develop further optimum energy strategies.

The objective for an efficient torque split algorithm obtaining the optimum

temperature behavior for both EM used in the proposed EV will be introduced

in the following section.

4.1 Problem definition

Based on a specified road and speed profile the correspondent torque demands

for the proposed electric vehicle can be precalculated using a simulation en-

vironment like AVL CRUISE. The idea is to develop an algorithm which gen-

erates the optimum temperature trajectories for both EM over a predefined

time span with respect to the listed conditions concerning the application of

the correct torque and speed demands. In this case, optimality refers again to

the minimization of energy consumption for the specified running time. The

objective is to gain the optimum rotor and stator temperature behavior for

front and rear EM considering the optimum load distribution over time in or-

der to maximize the overall efficiency and to obtain a minimum of consumed

electric energy in the end. Cf. fig. 4.1 illustrating an example for optimum

temperature trajectories of the front EM between time t0 and tend.

Figure 4.1: Exemplary optimum stator temperature trajectories of both EM during a cer-
tain time frame with initial temperature T(0) at time t0.
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From a mathematical point of view the optimization task is described as:∫ tend

t0

Pel · dt → min (4.1)

Since Pel = f(η2EM) and η2EM is a nonlinear function f(ηf , ηr, uf ) as it

was already derived in chapter 3, it has to be pointed out that the problem

defined in (4.1) becomes a highly nonlinear optimization task. Given the

fact that the efficiencies of front and rear EM also represent a nonlinear

relation of the correspondent inputs and need to be estimated online using

the Matlab/Simulink-model during optimization, the problem becomes even

more difficult to solve. As a consequence the time span (tend − t0) has to be

limited adequately in order to prevent too long computation times.

Since the temperature cannot be influenced directly from outside and all other

variables are predetermined due to the specifications, obviously the torque

split factor uf represents the only control variable being left. Based on the

definition in (3.1) uf has to satisfy the condition for all times:

0 ≤ uf ≤ 1 (4.2)

Furthermore, the integral in problem 4.1 must be replaced by a summation

since in general, simulations require a system to be discretized both in the

time domain as well as in value domain in order to be executed on a digital

computer. The claim of an adequate time frame for the specified problem can

now be changed to an appropriate division of the time span into a sufficiently

large amount of n time steps with length ∆T .

In summary the presented nonlinear optimization task with linear inequality

constraints can be expressed as follows:

min
uf∈Rn

J :=
n−1∑
k=0

Pel,k(uf,k) ·∆T

subject to:

0 ≤ uf ≤ 1

(4.3)
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In this case J : Rn → R denotes the objective function which has to be

minimized, uf represents the vector of n optimization variables, and the

constraints 0 ≤ uf ≤ 1 define a set of lower and upper bounds on uf .

The optimum solution of the problem will yield to a minimum energy con-

sumption J∗ which directly results from the optimum torque split factor

uf
∗ obtained through the minimization algorithm. As a consequence, hav-

ing knowledge about the load distribution Mf
∗ and Mr

∗ will automatically

lead to the optimum temperature behavior of front and rear EM over time,

such as Tf,stat
∗, Tf,rot

∗, Tr,stat
∗ and Tr,rot

∗. Note that all variables except J

have been grouped to vectors with n elements each.

The main part of the proposed nonlinear optimization problem is formed

by a deep analysis and subsequent modeling process regarding the thermal

behavior of both EM integrated in the vehicle’s dedicated cooling system. It

is important to note that the specific logic for controlling the cooling system

itself is subject to particular conditions as well, however, cannot be controlled

independently and integrated into the optimization problem. The approach

for modeling the thermal behavior of front and rear EM during the drive is

described in the following section.
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4.2 Thermal model

A suitable thermal model for the electric machines integrated in the proposed

EV with respect to the correspondent EM cooling circle forms the basis for the

upcoming optimization process introduced in the beginning of this chapter. It

is helpful to recall fig. 2.6 in section 2.3, which describes the relationship of the

EM-efficiency as a function of several inputs: f(MEM , ωEM , Trot, Tstat, VDC).

In contrast to the developed energy strategies in chapter 3, now the EM-

temperature will not be kept constant over time and needs to be considered

in further calculations. Regarding the difference between rotor and stator of

an EM implicating the basic mode of operation for PMSM it is hereby referred

to section 2.3 in chapter ”Vehicle model”.

Thermal model requirements:

• Representing a control oriented functional model of the EM temperature

behavior

• Easy integration into the selected optimization method

• Preferably fast to facilitate computations

• Successful validation with different measurement data in the best case
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Figure 4.2: EM cooling system layout for the OpEneR prototype vehicle (left), simplified
version for deriving a suitable thermal model for optimization strategies (right)

To start from scratch it is essential to analyze both the heating of the EM

as well as the underlying cooling system since an adequate model of inducing

and dissipating of heat will reflect the final temperature behavior in a good
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way. Consider the left system in fig. 4.2 representing the actual EM cooling

circuit used in the OpEneR prototype vehicle. Two pumps control the mass

flow of the coolant for each EM separately, resulting in a combined mass flow

ṁw at the conjunction point. Heat exchange happens at the radiator which is

supported by a fan running at different stages (different ṁa) and giving the

impact for cooling down the radiator itself. The heat flow Q̇f and Q̇r caused

by the correspondent power loss of each EM is responsible for a positive

change of temperature. Note, that this model would consist of a relatively

large amount of inputs (Q̇f , Q̇r, ṁWf , ṁWr, ṁa, Tamb) and system states

representing the temperature of each subsystem itself.

With respect to the modeling purpose the presented layout was reduced to

the system visualized on the right side of fig. 4.2. It consists of rear EM,

front EM, radiator, one pump and the correspondent connections reflecting

the flow of the coolant. Considerably good approximations to a set of real

measurement data finally justify the performed simplification of the cooling

structure. Note, that in this model the EM temperature needs to be split

onto stator and rotor temperature to serve the proposed EM model in Mat-

lab/Simulink. Furthermore, besides Tamb the inputs to the system comprise

torque, speed and supplied battery voltage to approximate the correspondent

power loss being mainly responsible for the heating process in the EM.

Summarized, the presented EM cooling system can be described with

states:

Tf,stat . . . . . . . stator temperature of front EM (◦C)

Tf,rot . . . . . . . .rotor temperature of front EM (◦C)

Tr,stat . . . . . . . stator temperature of rear EM (◦C)

Tr,rot . . . . . . . . rotor temperature of rear EM (◦C)

Tcooling . . . . . . temperature of coolant (◦C)

and inputs:

Mf ,Mr . . . . . desired torque at front/rear EM (Nm)

ωf , ωr . . . . . . . desired speed at front/rear EM (rad/s)

VDC . . . . . . . . battery voltage (V)

Tamb . . . . . . . . ambient temperature (◦C)
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4.2.1 Stator temperature model

Basically a simple thermal model needs to consider factors for heating up and

cooling down the EM, respectively. Furthermore it is important to check sta-

bility issues (implicating eigenvalues < 0 ) and other aspects concerning the

time discretization of the system which is described later on. The presented

model in this section has been adapted from [Kit10].

Generally it can be said that the stator of an electric machine heats up ac-

cording to the power loss an EM is exposed during its operation over time.

Especially with respect to modeling issues, this power loss can be approxi-

mated by the mechanical power PEM due to proportionality of both terms.

For instance, if an EM is running in motor mode the correspondent power

loss yields to:

Ploss = Pel − PEM = PEM ·
1− ηEM
ηEM

(4.4)

Ploss ∝ ωM (4.5)

The thermal interaction between EM and coolant surrounding the correspon-

dent stator (which forms the chassis of the EM) results in a continuing heat

exchange between both structures. For simplicity it can be assumed that the

coolant heats up according to the mean temperature of both EM and cools

down with respect to the ambient temperature. To some degree this behav-

ior reflects the impact of the fan in the original circuit in fig. 4.2, which is

responsible for the heat release of the radiator. Finally, a simplified thermal

state space model can be derived according to (4.6):

dTf,stat
dt

= −α (Tf,stat − Tcooling) + β |ωf (t)Mf (t)|

dTr,stat
dt

= −α (Tr,stat − Tcooling) + β |ωr(t)Mr(t)|

dTcooling
dt

= γ

(
Tf,stat + Tr,stat

2
− Tcooling

)
− δ (Tcooling − Tamb)

(4.6)

The parameters (α, β, γ, δ) have been adjusted accordingly with respect to

validation against the provided measurement data.

(α = 3, 85 · 10−3 1
s
, β = 1, 375 · 10−5 ◦C

Nm
, γ = 0.03 1

s
, δ = 0.07 1

s
)
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Stability

Since real temperature trajectories would always follow a good-natured be-

havior if no external forces were applied (system is called stable), it is impor-

tant to check if certain conditions are satisfied for the derived model as well.

In order to guarantee stability for the proposed dynamical system, real parts

of the eigenvalues calculated for the system-matrix A have to be less than

zero. For the state space model described in (4.6) A equates to:

A =

−α 0 α

0 −α α

γ/2 γ/2 −γ − δ

 (4.7)

For the specified data following eigenvalues can be retrieved:

λ1 = −0.1012, λ2 = −0.0039, λ3 = −0.0027 (4.8)

4.2.2 Rotor temperature model

Several studies have been conducted to analyze rotor losses of PM syn-

chronous motors used in high speed applications. Generally, the role of rotor

losses have to be carefully investigated since they are responsible for heating

up the internal permanent magnet resulting in a decrease of torque and total

efficiency. Furthermore there is a danger of non-reversible demagnetization of

the PM caused by exceedingly high rotor temperatures [ZAS; SB]. According

to the literature the main heat source is formed by iron losses pFe which can

be divided into hysteresis and eddy current losses at the rotor [Acq12; SB]:

pFe = physt + pec = chystfB̂
2 + cecf

2B̂2, (4.9)

where f and B̂ denote frequency and peak value of the flux density. The con-

stant coefficients chyst and cec are used to model the losses.

Assuming that inverters for PMSM usually implement Pulse Width Mod-

ulation (PWM) to generate AC out of the provided battery current, high

frequencies due to significant harmonics in the output current would conse-

quently lead to high iron losses in the rotor [BJ]. Furthermore, changes of the
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reluctances in the air-gap between stator and rotor as well as the geometrical

shape of the rotor have an additional effect on the losses [ZAS].

Since the attempt of developing a suitable mathematical model based on the

speed dependency of the iron losses does not fit to the provided measurement

data, also because further models were found out to correlate hardly with the

complex physical thermal behavior, it was suggested to analyze a secondary

approach with respect to an appropriate implementation for the optimization

task. Thus, in order to study the impact of temperature variation with respect

to the resulting EM-efficiency a sensitivity analysis was conducted. Consider

fig. 4.3 for the results of this analysis.

Figure 4.3: Sensitivity analysis of rotor/stator temperature variation against EM-efficiency.
Torque and speed values have been chosen so that an average power of 30 kW
was applied for high speeds.

∆η1 . . . . max. efficiency deviation caused by variation of Tstat (Trot = 60 ◦C)

∆η2 . . . . max. efficiency deviation caused by variation of Trot (Tstat = 60 ◦C)

Different torque and speed values close to the maximum EM operating curve

(see fig. 2.5) have been used as inputs to the EM model together with constant

stator and varying rotor temperatures (and vice versa) covering the whole

range of operation. For clarity in fig. 4.3 only the curves for 30 ◦C and 150 ◦C

are visualized since they represent the outer boundaries for all investigated
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temperatures.

Based on the given relation it was found out that the sensitivity of the rotor

temperature ∂η
∂Trot

is about 20 % lower compared to the stator’s, meaning:

∆η1 −∆η2

∆η1

≈ 20 %, and sensitivity in general: (4.10)

∂η

∂Trot
<

∂η

∂Tstat
(4.11)

Hence, a variation of the rotor temperature has generally less influence on the

overall EM efficiency compared to the impact of the stator’s temperature. As

a consequence, with respect to the thermal EM-model used in the proposed

optimization task the rotor temperature of both EM Tf,rot and Tr,rot is as-

sumed to stay constant within the typical range obtained in the measurement

data. As it will be proved in the validation section 4.5 later on, this assump-

tion can truly be justified since the error of the complete thermal model is

kept in an acceptable range.

4.2.3 Time discretization

For any continuous system with differential equations of the form

ẋ = f(x,u), (4.12)

the easiest way to transform the relation into the time-discrete domain with

step ∆T is to use the approximation of the differential quotient:

dx

dt
≈ x((k + 1) ∆T )− x((k) ∆T )

∆T
(4.13)

Perceiving the derived thermal models of stator and rotor temperature as a

system like described in (4.12) with states x = (Tf,stat, Tr,stat, Tf,rot, Tr,rot)

and input u = (Mf ,Mr, ωf , ωr, VDC), the correspondent temperature at time

(k+ 1) ∆T can be calculated using the previous state values of time k∆T :

xk+1 = xk + f(xk,uk) ·∆T (4.14)
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Since this approximation reflects the Euler method for the numerical solution

of ordinary differential equations, further conditions concerning the continu-

ous state space model have to be satisfied. In order to guarantee ”absolute

stability” of the algorithm, all eigenvalues λi of the system-matrix A need to

meet following equation [Hof04]:

|1 + ∆T λi| < 1

−2 < ∆T λi < 0 for real valued λi
(4.15)

Given the fact that eigenvalues are determined by the system itself, the con-

straint defined in (4.15) especially restricts the choice of ∆T to a set of ad-

missible time discretizations in order to fullfil stability requirements of the

algorithm. For the proposed model with eigenvalues obtained in eq. (4.8), ∆T

is subject to following boundary condition:

∆T < 20 s (4.16)

4.3 NLP formulation

After all necessary aspects regarding the nonlinear optimization problem

stated in 4.3 have been analyzed, the procedure for solving the NLP for a

given torque and speed profile can be derived in the following.

For a specified set of torque splits defined for all steps in the considered

time interval, the correspondent torque demands of front and rear EM can

be calculated. The previously developed thermal model is used to simulate

a realistic temperature behavior based on the current load distribution. Re-

call the EM model implemented in Matlab/Simulink (cf. section 2.3), which

implies the need for simulating the EM efficiencies for a given set of inputs

online during the optimization process. After calculating the overall electrical

energy consumption it can be decided if the current result leads to a solution

of the optimization problem - or, if the process has to be repeated using a

modified torque split configuration.
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In summary the process of solving the NLP can be formulated as follows:

Algorithm 1: Formal description for solving the proposed NLP

Data: torque demand M2EM , speed ω over complete time interval

Result: J∗, uf
∗, Tr,stat

∗, Tf,stat
∗

repeat

1.) set uf accordingly

check boundary constraints

2.) calculate torque demand for both EM based on torque split

obtain: Mf ,Mr

3.) simulate temperature behavior for both EM

use the developed thermal model

obtain: Tr,stat, Tf,stat

4.) provide necessary inputs to EM model in Simulink

obtain: efficiencies of front and rear EM over time

5.) calculate Energy consumption J over complete time interval

until J is a minimum;

Difficulties emerge due to various nonlinearities caused by obtaining the ef-

ficiencies through the simulation of the EM model in Matlab/Simulink. Fur-

thermore calculating the overall energy consumption is done by using eq.

(3.5), which implicates additional nonlinearities included in the optimization

problem. In general locating the global optimum for such a complex NLP is

regarded as a rather challenging task and thus, needs the application of a

powerful and efficient methodology at least.

According to the literature ”Sequential Quadratic Programming” is likely

to be used for solving nonlinear optimization problem with constraints and

was therefore selected as a suitable method for the proposed optimization

task. General aspects and the mathematical approach towards SQP will be

introduced in the following section.
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4.4 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) refers to an effective method for

solving nonlinear optimization problems with constraints. The basic idea

is to approximate the nonlinear objective function locally by a quadratic

problem which is easier to solve, and finally to iterate subsequently until

an optimum solution is obtained by checking predefined tolerance limits.

Figure 4.4: SQP visualization [Kal]

With respect to SQP it is necessary that all

appearing functions are continuously differ-

entiable around the neighborhood of the cor-

respondent optimum point. The quadratic

problem during each iteration is derived us-

ing a related 2nd order Taylor approxima-

tion of the Lagrange functional together with

linearized constraints. The solution of this

intermediate optimization task produces a

step size which is used within the main it-

eration to converge successively towards the local minimum [Kal]. Consider

fig. 4.4 illustrating an exemplary quadratic approximation for several itera-

tions.

4.4.1 Introductory definitions

The standard form for a nonlinear optimization problem (NLP) is expressed

as follows:

min
x∈Rn

f(x)

subject to:

gi(x) = 0, i = 1, .., p

hj(x) ≤ 0, j = 1, .., q

(4.17)

with f : Rn → R (objective function), gi : Rn → R, i = 1, .., p (equality

constraints), hj : Rn → R, j = 1, .., q (inequality constraints).
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Definition 4.4.1. Feasible set

The set of points where all equality and inequality constraints are satisfied

X = {x ∈ Rn | gi(x) = 0, i = 1, ..p, hj(x) ≤ 0, j = 1, ..q}

is called ”feasible set” and contains all admissible points for x.

Definition 4.4.2. Linear Independent Constraint Qualification

(LICQ)

Let x̂ be a feasible point x̂ ∈ X .

The set of indexes A(x̂) := {j ∈ {1, 2, ..,m} |hj(x̂) = 0} is referred to as the

set of active inequality constraints.

It is supposed that gi and hj are differentiable, then LICQ is satisfied in x̂ if

the gradients

∇gi(x̂) i = 1, .., p,

∇hj(x̂) j ∈ A(x̂)

are linearly independent for all active constraints in x̂. According to the lit-

erature x̂ is also said to be regular.

Definition 4.4.3. Lagrange functional

Let λ ∈ Rp, µ ∈ Rq. Then the Lagrange functional L corresponding to the

NLP (4.17) is defined as:

L(x,λ,µ) := f(x) + λTg(x) + µTh(x)

with g = [g1 g2 .. gp] and h = [h1 h2 .. hq]. λ and µ are called the Lagrangian

multipliers.

Throughout the following it is assumed that f(x), g(x) and h(x) are at least

two times differentiable. The definition of first order necessary optimality

conditions are referred to as the ”Karush-Kuhn-Tucker” (KKT)-conditions

and are satisfied for any critical point in the NLP stated in (4.17).
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Theorem 4.4.1. KKT-conditions of first order

Let x∗ be a local minimum of NLP (4.17). Furthermore it is assumed that

LICQ holds at x∗ (x∗ is regular). Then, there exists a Lagrangian multiplier

((λ∗)T , (µ∗)T ) which is unique and satisfies following conditions:

∇xL(x∗,λ∗,µ∗) = ∇f(x∗) +∇g(x∗)λ∗ +∇h(x∗)µ∗ = 0 (4.18)

µ∗ ≥ 0 (4.19)

hT (x∗)µ∗ = 0 (4.20)

h(x∗) ≤ 0 (4.21)

with ∇g = [∇g1∇g2 ..∇gp] and ∇h = [∇h1∇h2 ..∇hq].

Cf. [Kug, p. 62] for proof of theorem 4.2.1.

Note, that a critical point does not necessarily need to be a local minimum.

Sufficient conditions have to be checked to confirm the actual characteristic.

Although many optimization methods rely on the calculation of KKT-points,

this approach is still sufficient if it can be assumed that local maximums do

not occur or initial estimates for x are close to the local minimum. Otherwise

several strategies can be applied which try to avoid this problem by globalizing

the SQP-algorithm [Kal, p. 7].

4.4.2 Lagrange-Newton method

Newton-Raphson iteration

The Newton-Raphson iteration refers to a common way for numerical calcu-

lation of local extrema solving equations of the form ∇f(x) = 0.

Let F (x) := ∇f(x), then the Taylor approximation of F (x) at a certain point

x(k) is valid for a sufficient small area ∆x(k) = (x− x(k)) around x(k).

F (x) = F (x(k)) + F ′(x(k)) (x− x(k)) +O((x− x(k))2) (4.22)
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Setting F (x) = 0 and neglecting terms of order ≥ 2 leads to a converging

iteration with initial value x(0):

F ′(x(k)) ∆x(k) = −F (x(k)) (4.23)

x(k+1) = x(k) + ∆x(k) k = 0, 1, 2, ... (4.24)

NLP optimization

Since all definitions and prerequisites have been clarified in the previous sec-

tions, the approach for finding a local minimum of the NLP stated in (4.17)

can now be derived. Based on the KKT-conditions holding for a regular local

minimum x∗, following nonlinear system of equations can be expressed: ∇xL(x∗,λ∗,µ∗)

∇λL(x∗,λ∗,µ∗)

∇(µj)j∈A
L(x∗,λ∗,µ∗)

 =

 ∇f(x∗) +∇g(x∗)λ∗ +∇h(x∗)µ∗

g(x∗)

h̄(x∗)

 =

 0

0

0


with h̄ including all active inequality constraints defined by the correspondent

set of indexes A. Note, that inactive constraints can be neglected locally [Höm,

p. 131] and µj = 0 for hj(x
∗) < 0 (KKT-conditions 4.6-4.8).

Obviously the KKT conditions require the gradient of the Lagrangian func-

tional to be zero with respect to all active contraints: ∇L(x∗,λ∗,µ∗) = 0.

One option is to solve the proposed system of equations by a Newton iteration

which was previously introduced, so that: xk+1

λk+1

µk+1

 =

 xkλk
µk

+

 dxkdλk
dµk


 Lxx(xk,λk,µk) ∇g(xk) ∇h̄(xk)

(∇g)T (xk) 0 0

(∇h̄)T (xk) 0 0


︸ ︷︷ ︸

Mk

 dxkdλk
dµk

 = −

 ∇xL(xk,λk,µk)

g(xk)

h̄(xk)



with ∇g = [∇g1∇g2 ..∇gp] and ∇h̄ = [∇hj] j ∈ A.
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Lxx(xk,λk,µk) denotes the Hessian matrix ( ∂2

∂x2L)(xk,λk,µk).

The matrix M k is invertible if it has full rank, which is the case when:

• LICQ holds, so that the gradients ∇g and ∇h̄ are linearly independent

• and Lxx(xk,λk,µk) is positive definite, which means for any c 6= 0 with

(∇g)T c = 0: cTLxx(xk,λk,µk)c > 0 is satisfied (true for strictly local

minimum, cf. [Kug, p. 78]).

4.4.3 Derivation of SQP

It is interesting to note that the iteration method can be replaced by an

successive calculation of the quadratic optimization problem stated in (4.25),

which directly leads to the SQP algorithm.

min
dk∈Rn

f(xk) + (∇f)T (xk)dk +
1

2
dTkLxx(xk,λk,µk)dk

subject to:

(∇g)T (xk)dk + g(xk) = 0

(∇h)T (xk)dk + h(xk) ≤ 0

(4.25)

Here, dk is stated as descending direction and is applied at the kth iteration in

order to proceed to the local minimum. Equivalence between the Lagrange-

Newton method and SQP is shown directly by the following derivation.

The KKT-conditions for problem (4.25) with Lagrange multiplicators (λ̄
T
, µ̄T )

can be expressed as: Lxx(xk,λk,µk) ∇g(xk) ∇h̄(xk)

(∇g)T (xk) 0 0

(∇h̄)T (xk) 0 0


︸ ︷︷ ︸

Mk

 d
∗
k

λ̄
∗
k

µ̄∗k

 = −

 ∇f(xk)

g(xk)

h̄(xk)

 (4.26)

Comparing (4.26) with the system of equations stated in the previously

introduced Lagrange-Newton iteration, it can be found out that both sys-

tems are equal except for a single term in the right vector. After replacing

dλk = λk+1 − λk equivalence is established.
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Thus, Newton’s iteration can be conducted using the optimum values gained

by minimizing the quadratic problem at each step, so that: λk+1 = λ̄
∗
k and

xk+1 = xk + d∗k. In other words the descending direction d∗k, which is ob-

tained by solving the QP, equates to the step dxk in the Lagrange-Newton

iteration, both of them used for calculating the next state vector xk+1. Also

the Lagrange multipliers are equivalent for both methods.

Remarks to SQP

• It is important to note that for SQP solving nonlinear problems with

inequality constraints the method of ”active sets” is applied, so that h̄

contains all active inequality constraints at each iteration [Kug, p. 80].

• The convergence rate is proved to be quadratic in a sufficient small area

around the local minimum (x∗,λ∗,µ∗) [Kug, p. 79].

• Since the matrix M k of size ((n + p + |A|) x (n + p + |A|)), where |A|
denotes the number of elements in A (active constraints), can get huge

for large-scale optimization problems, an efficient calculation for the

proposed method is prohibited. According to literature especially the

determination of the Hessian matrix Lxx(xk,λk,µk) by using finite dif-

ferences is rather complex and inaccurate. Furthermore algorithms can

get in trouble if Lxx is not positive definite. As a consequence approxi-

mations are applied using a symmetric matrix H(k) at each step, which

is positive definite also when it is not the case for Lxx. On the one hand

this characteristic possibly leads to a degradation of the convergence

rate, on the other hand superlinear convergence can still be proved for

initial values close to the local minimum [Kug, p. 82].

• The objective functional in QP (4.25) is related to a 2nd order Taylor

approximation of the Lagrangian functional L.

• Global convergence of SQP can be achieved by using certain strategies

regarding the choice of step size for the main iteration. Thus, a new

factor αk is introduced in order to update the next value according to

the equation:

xk+1 = xk + αk d
∗
k (4.27)
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αk is selected based on so called ”merit functions”, which try to validate

if a certain value xk+1 is ”better” than xk. Within SQP it is possible

that inadmissible values x /∈ X can occur, thus, special functions have

to represent a weighted behavior to penalize possible breaking of con-

straints with respect to the minimization of the objective function.

E.g. the ”l1”-merit function is known to be very popular and can be re-

ferred in [Kug, p. 83]. The choice of an optimum step size is now derived

based on a line-search problem:

αk = arg min
α

l1(xk + αd∗k)

According to the literature several strategies exist which try to facili-

tate the calculation efficiency for this intermediate optimization prob-

lem. The most common algorithms are based on the ”Armijo-rule” and

stronger ”Wolfe-Powell” conditions (cf. [Kug, p. 83] and [Kal, p. 14]).

Finally consider fig. 4.5 visualizing the structure of the globalized SQP al-

gorithm. The stopping point is usually reached when differences of function

values or step sizes do not exceed a certain threshold ε.
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Figure 4.5: Flow chart of the globalized SQP algorithm
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4.5 Validation

After a design process has been conducted it is essential to analyze the de-

veloped system with respect to design criteria, fulfillment of specifications

and plausibility of results. This so called verification/validation process shall

now be performed with respect to the previously developed thermal model for

PMSM to estimate the temperature behavior. For this purpose the OpEneR

prototype vehicle was equipped with different sensors to measure various

states of the powertrain as well as the current rotor/stator temperatures of

front and rear EM. During several test runs conducted at Boxberg/Germany,

data series of different maneuvers have been collected and can now be used

for a comparison of model results with respect to real measurement data.

4.5.1 Thermal model validation

Consider fig. 4.6 illustrating temperature trajectories for two exemplary test

runs with ambient temperature of −8 ◦C. In each diagram the stator temper-

ature of front and rear EM is visualized to compare the modeled behavior

with real measurements taken from the correspondent sensor in the vehicle.

Note that the input to the model comprises torque and speed values extracted

from the collected data. A time discretization with ∆T = 1s satisfies condi-

tion (4.15) for eigenvalues derived in eq. (4.8) and also ensures acceptable

accuracy with respect to low computation times especially for the optimiza-

tion algorithm.

It was found out that the resulting temperature behavior obtained by the

thermal model approximates the given measurement trajectories remarkably

well. In both cases the tendency of heating and cooling is clearly evident and

matches the real behavior to a great extend. Also comparing the results with

further test data confirms the assumption that the developed model in (4.6)

is sufficiently precise to satisfy all expectations and to serve as a basis for the

proposed temperature optimization task.

In order to provide a clear measure for the accuracy of the model the error

with respect to EM-efficiency was calculated. More specifically, inputs to the
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Figure 4.6: Comparison between modeled and measured EM stator temperature for two
different real-vehicle test runs (Tamb = −8 ◦C, Tcooling(0) = 5 ◦C).
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Figure 4.7: Efficiency error for thermal model compared to measurement data. Example 1:
Tf,rot = 40 ◦C, Tr,rot = 50 ◦C; Example 2: Tf,rot = 40 ◦C, Tr,rot = 60 ◦C

EM model in Matlab/Simulink were formed by the given torque/speed pro-

file of the driving maneuver and by using temperature values, which could

be obtained by the thermal model and the measurement data, respectively.

Afterwards, efficiency outputs were compared to each other to figure out

whether the error was in an acceptable range. Consider fig. 4.7 illustrating

the correspondent efficiency error between model and measurement data for

front/rear EM and both exemplary test runs.

As expected the error |ηmodeled− ηmeasured| is highly dependent on the quality

of correlation between measured and modeled EM temperature. In case of

example 1, the maximum error is about 0.14 % compared to relatively higher

values for example 2. Comparing again with fig. 4.6 it can be seen, that the

deviation of temperature differs for both examples which naturally has an

impact on the efficiency error. However, according to the results of several

(other) test runs it could be found out that the deviation never exceeded

limits of +/−10 ◦C resulting in a maximum error of efficiency of about 0.8%.

Thus, the validation of the thermal model could be successfully confirmed

especially with respect to the specifications listed in section 4.2.
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4.5.2 Evaluation of SQP

Given the fact that simulation results concerning the optimum torque dis-

tribution are already present from chapter 3, it is reasonable to evaluate

SQP in terms of the optimized torque split behavior and resulting energy

consumption. For this special analysis it is important to request the EM-

temperature staying constant over the optimization interval since all simula-

tions from chapter 3 were conducted with Trot = Tstat = 60 ◦C. Furthermore

the NLP stated in (4.3) has to be adapted so that 0 ≤ uf ≤ 0.5 is satisfied.

After defining initial values uf,0 for the optimization vector, SQP can be per-

formed1 with respect to the torque and speed demands for a certain driving

cycle. Consider fig. 4.8 where the torque split behavior is compared for the

first section of NEDC (0 - 200 s).

Figure 4.8: Torque split factor uf obtained by SQP and optimal design for the first section
within NEDC (0−200 s with ∆T = 1 s, uf,0 = [0.25]). The dotted line indicates
the corresponding speed profile during this interval.

Analysis:

Obviously a good match for the torque split behavior can be achieved ne-

glecting trajectories for u∗f = 0.25 at certain intermediate intervals where the

1In Matlab the correspondent command for performing nonlinear optimization with
SQP is called fmincon(·).
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EM-speed is zero. This does not imply any restrictions since standstill-phases

of the vehicle do not contribute to the energy consumption at all (no auxil-

iaries, only traction is taken into account). Note that the EM speed directly

corresponds to the vehicle speed since both clutches are defined to stay closed

all the time. Given the fact that uf,0 = [0.25] the behavior for those intervals

becomes self-evident.

The remaining differences appearing at around 60 s and 130 s may give clues

about a possible non-perfect optimization of SQP, meaning that the ”global

optimum” which links to the minimum energy consumption during 0− 200 s

has not been found. This problem is well known for SQP since the algorithm

is designed to search for local minimums only which are determined by the

characteristics of a critical point (see also section 4.4 for further details). SQP

would most likely find the best solution in that case if the initial values were

close enough to the global optimum. Taking into account the extended strate-

gies for globalizing the algorithm, it may be expected that the local minimum

obtained through SQP is still satisfactory and fulfills the expectations towards

a minimum energy consumption.

Considering example fig. 4.8, the corresponding energy consumption is:

∆ESQP = 0.11455 kWh

∆Eopt = 0.11416 kWh

Since the energy consumption induced by SQP is only 0.3 % higher compared

to the optimal design, the nonlinear optimization can be regarded as accept-

able and is confirmed for a further application on the combined temperature

optimization task.
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4.6 Simulation results

In this section various simulation results regarding the nonlinear temperature

optimization through SQP shall be illustrated and compared. For this pur-

pose different torque and speed profiles have been extracted from specified

driving cycles, such as FTP75, AVL Urban DC, AVL Extraurban DC and

AVL Highway DC. For simplification, but not for limitation to generality, the

ability of recuperation was also admitted to the front EM, which means that

negative torque values during a braking phase could also be distributed onto

both EM.

Following settings have been applied to all simulations:

• Time discretization: ∆T = 1 s

• Initial optimization vector: uf,0 = [0.5]

• Ambient temperature: Tamb = 25 ◦C

Consider fig. 4.9-4.12 each visualizing the optimal torque split factor for a

given speed profile and on the right side the resulting optimum temperature

trajectories for the stator of front and rear EM.

Figure 4.9: Nonlinear optimization through SQP performed on FTP75-DC between
690 - 1040 s with initial and constant temperature values (in ◦C):
[Tf,stat,0, Tr,stat,0, Tcooling,0, Tf,rot, Tr,rot] = [50, 40, 40, 60, 50].
Left: speed profile and optimized torque split during this time interval
Right: optimized front/rear stator temperature trajectories.
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Figure 4.10: Nonlinear optimization through SQP performed on Urban-DC between
270 - 600 s with initial and constant temperature values (in ◦C):
[Tf,stat,0, Tr,stat,0, Tcooling,0, Tf,rot, Tr,rot] = [40, 30, 30, 35, 30].

Figure 4.11: Nonlinear optimization through SQP performed on Extraurban-DC be-
tween 0 - 300 s with initial and constant temperature values (in ◦C):
[Tf,stat,0, Tr,stat,0, Tcooling,0, Tf,rot, Tr,rot] = [40, 90, 40, 40, 50].

Figure 4.12: Nonlinear optimization through SQP performed on Highway-DC be-
tween 0 - 270 s with initial and constant temperature values (in ◦C):
[Tf,stat,0, Tr,stat,0, Tcooling,0, Tf,rot, Tr,rot] = [40, 45, 50, 50, 60].
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The correspondent energy consumption J∗ according to NLP (4.3) was cal-

culated for all examples:

FTP75 (690 - 1040 s) . . . . . . . . . 0.403 kWh

Urban-DC (270 - 600 s) . . . . . . . 0.128 kWh

Extraurban-DC (0 - 300 s) . . . . 0.767 kWh

Highway-DC (0 - 270 s) . . . . . . . 0.948 kWh

A careful consideration of the temperature behavior in each example might

reveal that during the nonlinear optimization process both trajectories of

front and rear EM try to get closer and approach a common temperature

level after some time. This observation can be supported by the fact that

both EM implemented in the vehicle are build up identically providing the

same power and efficiency for specified inputs at any time. Furthermore it

can be noted that this process needs to be carried out sufficiently slowly since

the attempt of using one EM exclusively at the beginning would cool down

the unused EM quite rapidly, however, it would also cause a non marginal

negative impact on the energy consumption due to possible inefficiencies of

using one EM during this time.

Especially consider the examples of FTP75, Urban- and Extraurban-DC,

where the initial stator temperature of front and rear EM differs significantly.

Here, the harmonization of both trajectories can be figured out clearly. A

closer investigation of fig. 4.11 on the left reveals, that up to 150 s the torque

split factor uf truly tends to stay mainly at 1 in order to cool down the rear

EM, but also to ensure that the front EM is active when it is necessary.

After analyzing the results for Highway-DC in fig. 4.12 it can be observed,

that both temperature trajectories of front and rear EM start to drift at

around 150 s. This behavior is regarded as disadvantageous since additional

energy consumption could be detected based on further simulations. As it was

already mentioned in section 4.4, SQP implies the tracing of local minimums

which usually cannot compensate the solution of a global optimum. Obviously

the integration of a thermal behavior to the complex task of minimizing highly

nonlinear energy functionals does not generate a good-natured optimization
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problem, for which the objective of locating good local minimums is naturally

a nontrivial task.

In summary, taking into account the thermal behavior of EM used to drive

electric vehicles can still be regarded as effective in terms of improving the

overall energy consumption. Given the fact that the efficiency of a PMSM

generally decreases with temperature, non negligible impacts can be observed

for system controllers which do not integrate thermal considerations in their

algorithms.

A closer look on fig. 4.3 (sensitivity analysis) reveals, that a variation of

the EM temperature in a broad range causes efficiency deviations of more

than 5 %. Several simulations have shown that for the presented sections of

driving cycles which have been visualized previously, energy improvements of

usually 0.5 - 5 % could be measured comparing the results of ordinary torque

split strategies where the impact of the EM thermal behavior is neglected.

Naturally those improvements highly depend on the given road and driving

profile causing different speed and torque demands over time which finally

results in a variation of the EM’s internal temperature.
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In this chapter a concluding review regarding the practical applicability of

the proposed torque split strategies shall demonstrate the simulated bene-

fits based on different test tracks in the real world. For this purpose the

OpEneR prototype vehicle was used to collect measurement data of several

test runs performed on dedicated courses of the Bosch proving ground in

Boxberg/Germany. Especially for the evaluation of the applied torque split

algorithms both handling courses on the test track have been selected to serve

for further measurement analysis since they are provided with a variety of dif-

ferent curve radiuses, curve slopes, climbing gradients and downhill slopes.

Consider fig. 5.1, where course No. 1 and 2 have been highlighted with dashed

and solid lines.

Figure 5.1: Two different test tracks in Boxberg/Germany used for practical evaluation of
the proposed torque split strategies.

The outer course No. 1 is designed for higher speeds and comprises curve

radiuses between 54 m and 100 m. In contrast to this rather less demanding
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test track, course No. 2 contains much tighter radiuses and in some cases the

curves even feature an inward or an outward slope. It also includes sections

representing mountain-pass driving with different gradients to show the effects

of consecutive acceleration and deceleration phases.1

Test setup

Mainly to prove the efficiency benefits for the best suited hysteresis design in

practice, following torque split strategies have been implemented in the vehi-

cle’s energy management software and tested on each course independently:

• 50:50 constant torque split (BM5)

• Suboptimal torque split (BM2)

• Threshold based hysteresis with α = 40, β = 10 (BM13)

It is important to note, that clutch control with synchronization as mentioned

in section 3.1 and 3.3 was active during all test runs.

For each strategy performed on both test tracks, measurement data of three

repeating runs has been collected and saved for later analysis. In order to en-

sure maximum fairness between all conducted test runs which, it is necessary

to require that vehicle and powertrain states as well as environmental condi-

tions are formed by approximately the same initial values. For instance, these

states include EM-temperature, battery SOC, battery temperature, weight of

vehicle, weather conditions, ambient temperature, geographical starting point

of the course, etc. Any deviation of initial values would have a different impact

on the overall vehicle’s behavior and thus, the total energy consumption.

It can be assumed that most of the previously mentioned initial states have

been assigned accordingly for all test runs, so that possible deviations of en-

ergy efficiency are small enough to be neglected in the following. However,

there is still a high impact on variation of energy consumption coming from

the natural variance of the driving profile when all test runs are considered.

During some sections the driver may speed up to slowly, in some cases brak-

ing is applied to hard, or even the starting time does not fit compared to

1cf. http://www.bosch-boxberg.de/en/30/index.asp (05/10/2013)
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5 Test track measurements

other test runs. In order to ensure reproducibility with respect to a fair evalu-

ation of the proposed torque split modes as far as possible, it is necessary to

exclude potential misleading driving sections from the further measurement

analysis.

Due to these considerations, a time based evaluation of the speed profile is

rather difficult in general and thus is replaced by a more useful and practical

distance based analysis.

5.1 Distance based analysis

In order to compare velocity profiles of different runs in an efficient way,

all provided measurements with time discretization of Td = 0.01 s need

to be converted to distance based values with a suitable discretization, e.g.

Dd = 0.5 m. Besides the advantages of an easier comparison between mea-

surements, many other benefits can be obtained when a converted analysis

is applied. For instance, any arbitrary signal can be assigned to distance val-

ues which makes it possible to evaluate the driving behavior for dedicated

sections on the road, and thus, giving clues about the energy consumption

compared to other torque split strategies depending on the current distance

from the starting point.

In the following a possible approach to eliminate misleading driving sections

is described, which basically excludes outlying velocity trajectories from the

measurement data and assigns mean power and energy values to this section

instead. Consider fig. 5.2 illustrating all recorded velocity trajectories over

distance for the investigated torque split modes and each run.

In the next step mean values and standard deviation for each distance can be

computed and visualized in the same figure. Thereby, the constructed corri-

dor formed by the mean trajectory and bounded by the estimated standard

deviation of +/- 2 σ represents an acceptable area for the recorded measure-

ment data. All outliers indicated by crosses in fig. 5.2 can now be excluded

from further analysis.
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5 Test track measurements

Figure 5.2: Velocity profiles for every run on both tracks including mean trajectory and
estimated +/- 2 σ deviation. The crosses indicate sections which have to be
excluded since they do not fit to the majority of all measurements.

Figure 5.3: left: original velocity profile and excluded parts for the 3rd run in hysteresis
mode (BM13) on course 1.
right: 2nd run with 50:50-constant split configuration (BM5) on course 2.

Figure 5.4: Relation between time and distance, averaged for each torque split mode
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5 Test track measurements

In fig. 5.3 exemplary trajectories for both courses are visualized in time do-

main, showing the excluded parts for a single measurement run.

The process of explicitly calculating the relationship between distance and

time, again determined for the average values out of 3 runs for each torque

split mode, can be regarded as helpful for further observations. Cf. fig 5.4

illustrating distance as a function of time for both courses and proposed

modes.

5.2 Results

After removing outlying sections of the measurement data, all remaining parts

can be regarded as acceptable since they do not deviate much from the average

velocity. In order to guarantee a proper analysis in the end, power and energy

behavior for all excluded sections need to be assigned to average values occur-

ring within this calculated time and distance interval. If those parts had been

simply neglected, the average energy consumption would have been distorted

and a fair evaluation against other results would be simply prevented.

Finally consider fig. 5.5 showing the total electrical energy consumption for

both courses and all three proposed torque split strategies. The distance based

visualization of the physical energy consumption calculated in time domain

is based on the relation of distance to time according to fig. 5.4.

Figure 5.5: Average energy consumption over distance for both courses and different torque
split modes.
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5 Test track measurements

BM2 BM5 BM13
suboptimal 50:50 const. hysteresis

Energy (kWh) 0.4182 0.4339 0.4131
Energyimp,BM5 (%) 3.6 - 4.8
# switches 31 0 9
Duration (s) 85.3 81.9 89.7
# switches/s 0.36 0 0.1
min ∆T (s) 0.01 - 3.5

Table 5.1: Mean energy results and driving mode characteristics for major torque split
strategies on course 1.

Obviously BM5 with a 50 % constant torque split distribution produced the

worst results in terms of energy consumption for both courses. This observa-

tion complies with the simulation results presented in chapter 3 and confirms

the application of different torque split strategies. Comparing the results in

general, it can be seen that the energy improvement with respect to BM5 is

much higher for course 2. Especially after 1500 m the behavior of the energy

consumption for BM2 and BM13 stay close to each other whereas the trajec-

tory of BM5 starts to drift away. According to fig. 5.2, this section contains

short consecutive acceleration and braking maneuvers due to several serpen-

tines along the road and affords to demonstrate the remarkable potential of

the hysteresis design.

Finally, table 5.1 and 5.2 summarize the overall energy results and torque

split characteristics separately for both courses. Note, that the energy con-

sumption differs slightly from the ending values in diagram 5.5 since the recu-

peration impact caused by the final braking maneuver until vehicle standstill

was included here.

In summary, applying the suboptimal or proposed threshold based hysteresis

design to the vehicle’s powertrain control software essentially improves the

total energy consumption. The number of driving mode changes, but also the

minimum time between two consecutive switches can be reduced drastically

by using an appropriate hysteresis design approach which combines practical

applicability with highest efficiency at any time.

As can be seen from the results presented in table 5.1 and 5.2, improvements
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5 Test track measurements

BM2 BM5 BM13
suboptimal 50:50 const. hysteresis

Energy (kWh) 0.6705 0.6906 0.6400
Energyimp,BM5 (%) 2.9 - 7.32
# switches 87 0 26
Duration (s) 204.1 205.2 217.9
# switches/s 0.43 0 0.12
min ∆T (s) 0.01 - 2.13

Table 5.2: Mean energy results and driving mode characteristics for major torque split
strategies on course 2.

of more than 7 % during 200 s of normal driving can be achieved compared

to the results of a constant 50 % split distribution. Even the hysteresis design

is able to beat the suboptimal approach in terms of energy consumption. The

reason for this might be the wise suppress of unnecessary switches causing

additional energy consumption due to the required synchronization phases

of a possible unused electric machine at certain times. Note that the average

velocity is slightly lower for BM13 due to the longer driving time, nevertheless

all considered measurements are guaranteed to stay within the acceptable

range as illustrated in fig. 5.2.

Since the promising results obtained by simulations in the previous part of this

work entirely reflect the measurement results of various test runs presented

in this chapter, it can be concluded that the proposed hysteresis torque split

approach is regarded as absolutely suitable for a final integration into the

vehicle’s energy management system.
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6 Conclusions and future work

In the present work several effective control strategies have been introduced

to adapt the powertrain control software of a 4-WD electric vehicle in an

energy efficient way. The proposed hysteresis design as well as appropriate

implementations of a suitable predictive control algorithm offer sophisticated

methods to distribute the current torque demand efficiently onto both EM

during the drive.

For a complete understanding of the system itself the underlying model needs

to integrate thermal considerations as well in order to obtain a more targeted

representation of the physical system and to provide further adaptions to the

developed control algorithms. Since the internal temperature of an electric

machine has an additional effect on its efficiency, further improvements of the

overall energy consumption can be achieved.

Within this work a control oriented approach towards the optimum utiliza-

tion of both EM with respect of temperature variations has been conducted.

This procedure comprises an offline calculation of the optimum torque profile

for a predefined time interval, which can only be obtained if future torque

and speed demands are available to the algorithm. For practical reasons this

assumption is naturally hard to reach and requires at least smart sensors in

the vehicle as well as additional telematics services from the environment.

For instance combining information of in-car navigation systems with GPS

data the upcoming road profile could be determined. Together with velocity

regulations and/or current traffic conditions on the road, possible speed tra-

jectories could be calculated and would finally provide the desired torque and

speed profile to the presented control algorithm.
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6 Conclusions and future work

Another approach neglecting estimations of future conditions is to select the

actual torque split factor based on current states of the vehicle. After obtain-

ing the EM temperature through a suitable model or appropriate sensors, the

optimum torque split factor for current conditions can be calculated according

to the described procedure within this work. However, this method requires

important information how to utilize both EM optimally during drive with

respect to the behavior of their own internal temperature. This knowledge

especially needs to be extracted out of dedicated studies e.g. as presented in

chapter 4 and integrated in the correspondent control algorithm.

As a part of the vehicle’s energy management system the developed control

functionalities finally achieve significant improvements with respect to the

overall energy consumption and consequently fulfill the presented objectives

towards an increase of electrical range, safety and driving comfort.
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A Simulink model
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Figure A.1: Simulink model used within the torque split calibration methodology
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B Benchmark results

− Basic design results

− Time hysteresis benchmark results

− Threshold hysteresis benchmark results

− Prediction results
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C Driving cycles

Figure C.1: Velocity profile of all investigated driving cycles

102



Bibliography

[Acq12] Acquaviva. Analytical Modeling of Iron Losses for a PM Traction
Machine. KTH Stockholm, Royal Institute of Technology. Mar.
2012 (cit. on pp. 11, 65).

[Bis06] Bishop. Pattern recognition and Machine Learning. Springer Ver-
lag. 2006 (cit. on pp. 39–45, 47, 48).

[BJ] Bettayeb and Jannot. Analytical Calculation of Rotor-Magnet Eddy-
Current Losses for High Speed IPMSM. url: http://ieeexplore.
ieee.org (visited on 03/20/2013) (cit. on p. 65).

[Bos] Bosch. Kraftfahrzeugtechnik. url: http://www.bosch-presse.
de/presseforum/details.htm?txtID=5291 (visited on 03/09/2013)
(cit. on p. 13).

[Eur09] European Parliament. Verordnung (EG) Nr. 443/2009. Apr. 23,
2009. url: http://eur-lex.europa.eu/LexUriServ/LexUriServ.
do?uri=OJ:L:2009:140:0063:008:de:PDF (visited on 12/02/2012)
(cit. on p. 1).

[GK] Ganchev and Kral. Sensorless Rotor Temperature Estimation of
PMSM. url: http://publik.tuwien.ac.at/files/PubDat_
203021.pdf (visited on 03/13/2013) (cit. on p. 58).

[Gri11] Grießler. Fahrstrategieoptimierung bei Nutzfahrzeugen mit Hilfe vor-
rauschauender Informationen. AVL List GmbH / Johannes Kepler
Universität Linz, Austria. Apr. 2011 (cit. on p. 10).

[GS07] Guzzella and Sciarretta. Vehicle Propulsion Systems. Springer Ver-
lag. 2007 (cit. on p. 12).
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