
Master's Thesis

Optimization of the Security-Related
Development Process for

Secure Smart Cards

Philip Baumgartner, BSc

Institute for Technical Informatics
Graz University of Technology

in cooperation with NXP Semiconductors Austria GmbH

Assessor: Dipl.-Ing. Dr.techn. Christian Kreiner
Supervisor: Dipl.-Ing. Wolfgang Raschke

Graz, September 2014

Masterarbeit

Optimierung des sicherheitsrelevanten
Entwicklungsprozesses für

sichere Smartcards

Philip Baumgartner, BSc

Institut für Technische Informatik
Technische Universität Graz

in Kooperation mit NXP Semiconductors Austria GmbH

Begutachter: Dipl.-Ing. Dr.techn. Christian Kreiner
Betreuer: Dipl.-Ing. Wolfgang Raschke

Graz, September 2014

5

Abstract	

The development process of integrated circuits for secure smart card solutions basically consists
of two processes that need to be handled in parallel: the product development process on the one
hand and the security evaluation process on the other. Both processes are essential parts of the
product development. The second one is especially needed for the Common Criteria for
Information Technology Security Evaluation, and is absolutely necessary for getting a product
certified. The structure of these two processes influences the developers performance and the
effort needed for documentation. In order to maximize efficiency it is absolutely necessary to
combine these two processes and model a clean structured and well elaborated unified process
that covers all aspects of development and security evaluation.

This master's thesis covers the design of the optimized development process with a special focus
on agile development and automatic generation of reusable documentation parts. The
implementation part contains a prototype of a requirements and specification editor based on an
XML model and a mechanism for synchronizing models from several sources.

This project ran in cooperation with NXP Semiconductors Austria GmbH.

7

Kurzfassung	

Der Entwicklungsprozess von integrierten Schaltkreisen für sichere Smartcard Lösungen besteht
im Wesentlichen aus zwei Prozessen, die parallel durchgeführt werden müssen: der
Entwicklungsprozess auf der einen Seite und der Sicherheitsevaluierungsprozess auf der
anderen. Beide Prozesse sind essentielle Teile bei der Produktentwicklung. Speziell der zweite
Prozess wird für die Zertifizierung der Produkte nach dem Common Criteria Standard benötigt
und ist unbedingt notwendig um ein Produkt zertifizieren zu können. Die Struktur dieser beiden
Prozesse hat dabei einen essentiellen Einfluss auf die Zeit, die Entwickler in Entwicklung und
Dokumentation investieren müssen. Um möglichst effizient arbeiten zu können, ist es
notwendig diese beiden Prozesse zu kombinieren und in einem sauber definierten und gut
durchdachten einheitlichen Prozess abzubilden, der schließlich alle Aspekte der Entwicklung
und Sicherheitsevaluierung abdeckt.

Diese Masterarbeit behandelt das Design des optimierten Entwicklungsprozesses, wobei
besonderes Augenmerk auf die agile Entwicklung und die automatische Generierung
wiederbenutzbarer Dokumentationsteile gelegt wird. Die Implementierung beinhaltet einen
Prototypen eines Anforderungs- und Spezifikationseditors basierend auf einem XML Modell
und einen Mechanismus zur Synchronisation von Modelldaten aus unterschiedlichen Quellen.

Dieses Projekt wurde in Kooperation mit NXP Semiconductors Austria GmbH durchgeführt.

9

Danksagung	

An dieser Stelle möchte ich mich bei allen Bedanken, die es mir ermöglicht haben heute an
dieser Stelle zu stehen und mich während des gesamten Studiums immer tatkräftig unterstützt
haben. Mein besonderer Dank geht dabei an meine Eltern, die es mir ermöglicht haben diesen
Weg zu gehen und in dieser Zeit immer hinter mir standen. Außerdem möchte ich mich bei all
meinen Freunden bedanken, besonders bei Andi und Mario, mit denen ich gemeinsam die
letzten sieben Jahre gemeistert habe und die mittlerweile auch zu guten Freunden geworden
sind. Mein weiterer Dank gilt Christian Kreiner und Wolfgang Rasche, die mich bei der
Durchführung dieser Arbeit immer wieder mit konstruktiven Gedanken tatkräftig unterstützt
haben und mir ermöglichten an einem interessanten Thema zu arbeiten. Außerdem gilt mein
Dank natürlich auch Martin Schaffer, der die Kooperation mit NXP möglich gemacht hat und
Georg Stütz, sowie Rainer Doppelreiter für die Unterstützung seitens NXP und auch die ein
oder andere unterhaltsame Stunde im Büro während der Durchführung dieser Arbeit.

Graz, September 2014 Philip Baumgartner

11

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the
declared sources / resources, and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources.

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen / Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und
inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, 04.09.2014 ..

 Signature

Chapter 1. INTRODUCTION 13

Table	of	Contents	

Chapter 1 Introduction .. 18

1.1 General Introduction .. 18

1.2 Starting Point ... 19

1.3 Stakeholder Analysis ... 20

Chapter 2 Problem Definition ... 22

2.1 Development Process and Security Evaluation.. 22

2.2 Reuse of Requirements and Specification ... 23

2.3 IBM Rational DOORS as Requirements Management System 24

2.4 Summary of the Problems .. 26

Chapter 3 Related Work ... 27

3.1 Common Criteria - a Short Overview .. 27

3.2 Different Approaches for Model Differencing .. 29

3.2.1 3DM - a Three Way Differencing and Merging Algorithm 31

3.2.2 EMF Compare ... 32

3.2.3 Discussion of Existing Model Differencing Algorithms..................................... 33

3.3 Requirement Tracing and Referencing in Documents ... 33

3.3.1 Dita XML as Technology for Referencing Design Artifacts in Documents 34

3.3.2 DocBook as Technology for Referencing Design Artifacts in Documents 36

3.3.3 ADE Documentation Framework ... 37

14 Chapter 1. INTRODUCTION

3.3.4 Discussion of the Existing Technologies ... 39

Chapter 4 Concept and Design ... 41

4.1 Goals .. 41

4.2 Requirements ... 44

4.2.1 Specification Artifact Repository .. 44

4.2.2 Interface Synchronization .. 45

4.2.3 Testing and Verification .. 46

4.2.4 Project and Product Configuration .. 46

4.2.5 Documentation... 46

4.2.6 Look and Feel .. 46

4.2.7 Relations of Problems, Goals and Requirements .. 46

4.3 Background .. 47

4.3.1 Meta-Models for Specification Artifacts ... 47

4.3.2 Documentation Engine .. 51

4.4 Tooling and Environment of the Optimized, Unified Process 52

4.4.1 Requirements and Specification Management System .. 52

4.4.2 Import-Export-Sync Layer .. 55

4.4.3 Configuration Management ... 59

4.5 Structure of the Optimized, Unified Process ... 64

Chapter 5 Implementation .. 66

5.1 Implementation of the Meta-Models for Specification Artifacts................................. 66

5.2 Generation of the C# Object Model .. 67

5.3 Generation of the EMF Data Model .. 70

5.4 C# Data Model Access .. 71

5.5 Differencing Engine .. 74

Chapter 1. INTRODUCTION 15

5.5.1 Configuration of the EMF Comparator ... 75

5.5.2 Limitations of the EMF Compare Framework .. 77

5.6 User Interface of the Requirements and Specification Management System 77

5.6.1 Requirements and Specification Editor ... 78

5.6.2 Visualization of Comparison Models.. 79

Chapter 6 Evaluation ... 82

6.1 Export-Performance for Reuse of Data - a Comparison .. 82

6.2 Visualization of Comparison Models .. 83

6.3 Evaluation of the Results with Goals Question Metric .. 89

Chapter 7 Results and Outlook ... 97

Chapter 8 Bibliography ... 99

16 Chapter 1. INTRODUCTION

List	of	Figures	

Figure 1: Stakeholder analysis of the RMS DOORS... 21

Figure 2: Overview of the two separated processes for development and security evaluation. .. 23

Figure 3: Simplified header file generation process. ... 25

Figure 4: EMF Compare merging process. ... 34

Figure 5: DITA XML information types [16]. .. 35

Figure 6: Data flow for documentation engine [20]. ... 38

Figure 7: Concept of agile development. ... 42

Figure 8: Structure of the specification type for requirements. ... 50

Figure 9: Overview of the environment for the optimized development process. 53

Figure 10: Overview of the architecture of the RSMS. ... 54

Figure 11: DM engine use case: review. ... 57

Figure 12: DM engine use case: synchronization. ... 58

Figure 13: DM engine use case: teamwork. .. 58

Figure 14: Data flow for source code synchronization. ... 60

Figure 15: Folder structure of a scope. .. 61

Figure 16: Folder structure of the spec. artifact repository. .. 63

Figure 17: Folder structure of the content repository. ... 64

Figure 18: Overview of the optimized, unified development process [20]. 65

Figure 19: Overview of the RSMS structure. .. 79

Chapter 1. INTRODUCTION 17

Figure 20: DOORS export performance as function of the amount of exported data. 84

Figure 21: Visualization of the comparison model in the RSMS. .. 88

Figure 22: GQM plan. ... 96

18 Chapter 1. INTRODUCTION

Chapter	1

Introduction	

1.1 General	Introduction	

Secure smart cards have been invented in the beginning of the 1970's for the purpose of storing
confidential data on an identification medium. Nowadays, smart cards are used for a huge
number of applications such as for electronic passports [1], ticketing, animal identification,
access control cards or contactless payment systems [2]. According to the World Payments
Report 2013 [3] already in 2012 about 333 billion cashless payments have been processed.

The development process of such Integrated Circuits (IC) for secure smart cards is a complex
process that basically consists of two parts: the development process and the security evaluation
process [4]. Since the products are used for security relevant applications, it is necessary to
certify the final product. In this evaluation process several institutions are involved: the
developing company with its developers, the evaluation facility and the certification authority of
the country, which issues the certificate. The task of the evaluation facility is to investigate and
evaluate the implementation of the product. For this security evaluation there exists several
standards. The so-called Common Criteria for Information Technology Security Evaluation
standard (CC) [5] defines criteria that must be fulfilled by the product to pass the certification
process. Chapter 3 gives an overview of this standard. A product satisfying these criteria gets a
certificate that ensures the product to be secure. Especially for the security evaluation performed
by the evaluation facility evidence must be provided for the security of the product. Therefore,
as a developer you have to make sure your design is well structured. In addition you have to
prove that it fulfills the security requirements and its resistance against attacks.

This master's thesis strives to model a process and to find a suitable tooling environment for the
development of secure smart cards. This includes the support of the requirements and
specification management, of the implementation and of the documentation and certification
process.

This work is structured as follows. Chapter 1 describes the starting point, and the stakeholder
analysis that has been performed to get familiar with the current development situation and to

Chapter 1. INTRODUCTION 19

identify possible problems. Chapter 2 provides a summary of these problems. Afterwards,
existing technologies for producing engineering documents and design documentation have
been analyzed and evaluated. The results of this related work analysis are described in
Chapter 3. Based on the problem definition, goals and requirements for the optimized
development process have been derived, which are listed in Chapter 4. This chapter also
discusses possible solutions and gives an overview of the entire concept and design. Chapter 5
provides a description of the prototype implementation of a requirements management system.
This implementation has been evaluated and the results are described Chapter 6. Finally,
Chapter 7 summarizes the work, describes the known limitations and provides information
about ongoing work.

1.2 Starting	Point	

This master's thesis has been created in cooperation with NXP Semiconductors Austria GmbH
(NXP). This section describes the starting point for this work by analyzing the current situation
of the development and security evaluation process in this company.

In the course of the last years the complexity of the developed ICs increased enormously. In
order to deal with this complexity existing parts of previous developments need to be reused.
Additionally the trend is towards the development of product lines [6] that consist of a number
of product derivates. Product derivates are products that have similar structure and features, but
differ in some detail. As stated in [7], product lines help minimizing the effort among others in
doing the requirements engineering, creating the architecture and design as well as developing
the test plan and documentation of the whole project and implementation. Furthermore, they see
product lines as a strategic reuse of existing parts of products. Such an approach makes it
necessary to change the previous way of work and to optimize the development process. Simple
text processing software such as Microsoft Word cannot be longer used to document the design
and security evaluation of products. Because of the high effort for maintenance, inconsistencies
in the documentation cannot be detected easily.

Especially for security relevant products it is necessary to have a well structured design and a
consistent documentation.

Due to all these circumstances, the development process needed to be optimized. Thus, in the
first step a stakeholder analysis has been performed, which aims to find out the stakeholders
involved in the product development process and their roles and impact on the project. This
facilitates identifying the problems and defining the according actions to be taken.

20 Chapter 1. INTRODUCTION

1.3 Stakeholder	Analysis	

This section describes the stakeholder analysis [8] of the currently used requirements
management system (RMS) IBM Rational DOORS (DOORS)1, which is used to store
requirements and specification artifacts. Each stakeholder has different requirements for the
development process.

During the stakeholder analysis the stakeholders shown in Figure 1 have been identified and are
described below.

 Program Manager, Project Manager

Monitors the project progress and specification changed within a certain period of time.

 Configuration Manager

Defines project templates for a dedicated product.

 System Architect

Defines project requirements on different abstraction levels.

 Test Architect

Defines test specification.

 Security Architect / Common Criteria Engineer

Uses DOORS for storing information necessary for the security evaluation process.

 Developer

Defines interface specification for hardware and firmware; documents the
implementation.

 DOORS Trainer

Informs users about the correct usage of the requirements management tool.

 DOORS DB Administrator

Administrates and maintains the DOORS database.

 Documentation Environment

A system interacting with DOORS in order to generate parts of the documentation
automatically.

1 http://www.ibm.com/software/products/de/ratidoor

Chapter 1. INTRODUCTION 21

Figure 1: Stakeholder analysis of the RMS DOORS.

After the identification of the groups, roles and systems involved in the development process, a
questionnaire has been prepared that is listed below. The aim is to evaluate the problems of the
current development process together with the project members. Since most of the problems are
related to the currently used requirements management system (RMS), the questions put a focus
on this field.

1. What is your role in the development process?

2. For which purpose do you use DOORS and how?

3. What bothers you most when you are working with DOORS?

4. Did you identify any missing functionality in DOORS and which one?

5. How is your preferred way of working when using a requirements management
system?

The result of this evaluation shows that most of the problems are related to the currently used
RMS. The identified problems are discussed in Chapter 2.

22 Chapter 2. PROBLEM DEFINITION

Chapter	2

Problem	Definition	

This chapter provides a short overview of the main problems of the development process that is
going to be optimized. The problems have been identified by evaluating the results and
discussions of the questionnaire described in Section 1.3. Possible solutions are proposed in
Chapter 4 of this work.

2.1 Development	Process	and	Security	Evaluation	

[Problem 1]: Separated processes for development and security evaluation.

One of the main problems is the existence of two separated processes for development and
security evaluation. These processes basically depend on each other, but in the current situation
they are completely disconnected. Thus, there are no links between artifacts of the security
evaluation process and the according artifacts in the development process. This makes it
difficult to analyze dependencies between artifacts of the two processes. However, such
analyses are necessary for the security evaluation and hence, for the certification of a product.

These two separated processes are shown in Figure 2. The left part of the figure shows the
security evaluation process, whereas the development process is depicted on the right hand side.

The development process depicts the entire process from the high-level requirements for a
certain product on a high level of abstraction and a customer’s point of view down to the
definition of all necessary scopes and subscopes needed for the implementation of the product.
This includes all interface specifications, test specifications and user guidance on each level of
abstraction. Since the CC terminology is used in these descriptions, the word scope is used here
to describe a single hardware or software module implementing a certain set of features.

The documents are created as part of the security evaluation process and provide an evidence
for the security of the developed product.

Chapter 2. PROBLEM DEFINITION 23

The structure of this process is defined by the Common Criteria for Information Technology
Security Evaluation standard [5], which specifies criteria for the evaluation of secure IT systems
and is defined in the DIN ISO/IEC 15408-1...3. Section 3.1 gives a short overview of this
standard and the according process.

Figure 2: Overview of the two separated processes for development and security evaluation.

2.2 Reuse	of	Requirements	and	Specification	

[Problem 2]: Reuse of requirements and specification in the documentation is not possible.

Another problem is the missing functionality for referencing requirements and specification
artifacts, defined in the RMS, in the documentation. For the design documentation and the
security evaluation several requirements and specification artifacts need to be referenced or
listed at different locations in the documentation. As a result, equal text parts need to be copied
and pasted on different locations in the documentation.

24 Chapter 2. PROBLEM DEFINITION

The following example should make the scenario more clear. Assume you have a firmware
header file with interfaces defined in it. An interface consists of the interface method, its
parameters and a return value. In the design documentation it is necessary to describe the
interfaces and all its attributes. For this purpose it is necessary to copy the interface from the
source code to the design documentation, where its description is going to be placed.
Furthermore, it might also be required to refer to the interface at some other point in the
documentation. Thus, again you have to copy the interface definition to the location in the
document, where it is needed again.

This way of work is a real copy and paste nightmare. Redundancy and inconsistency are the
consequences. Furthermore, product maintenance and product changes become a very time-
consuming and error-prone process.

2.3 IBM	Rational	DOORS	as	Requirements	Management	System	

In the current development process the commercial software IBM Rational DOORS (DOORS)
is used for requirements and specification management. This software has some major
disadvantages when it is used for the development of secure smart cards. The main problems are
discussed in the following.

DOORS organizes data in modules that basically consist of a simple data table. An arbitrary
number of columns can be configured. A single column represents a data type that can be
defined by the user. Additionally, a level can be assigned to each row, which makes it possible
to store hierarchical information.

[Problem 3]: Missing data validation.

One of the problems is the missing data validation. Sometimes it is necessary to define a set of
attributes for a data object, depicted as row in DOORS, where information needs to be filled in
by the user mandatorily. However this is a behavior that cannot be enforced by this software.
Instead, all columns can be seen as optional and thus they can also be kept empty. It is also not
possible to define different types of data objects with different attributes. Hence, an attribute is
always represented as column, and each column is valid for each row. Thus, it is not possible to
define different data objects (rows) with different attributes, instead all available attributes can
be used for all data objects.

[Problem 4]: Low performance of data export.

Another disadvantage of DOORS is the low performance for data export. Exporting DOORS
modules is a very time-consuming process and needs to be performed in order to convert
module data of the proprietary DOORS database to another file format.

Chapter 2. PROBLEM DEFINITION 25

[Problem 5]: High round trip time for firmware developers.

Interface specification and other specification artifacts are stored in DOORS. Especially for the
software interfaces the C header files are generated by an automated process that works as
shown in Figure 3. In the first step a DOORS export process is triggered and the interface
specification is exported to a CSV file. Then, a conversion process is applied that converts the
resulting CSV file into a defined XML format. This XML file is then used as input for the
header file generation engine, which produces the final C header file for the developer. As a
result, each time a developer wants to change an interface the specification must be changed in
the according module in DOORS and the header file generation process needs to be started
again. Since the DOORS export process is a very time-consuming process the round trip time
for the software development increases tremendously. Especially for the agile firmware
development this is an enormous problem.

Figure 3: Simplified header file generation process.

[Problem 6]: Proprietary database and DXL.

DOORS is based on a proprietary database and is thus very inflexible. For creating queries a
user must be familiar with the complex query language DXL, which is proprietary as well. Thus
it needs much time to create suitable queries and extensions for DOORS.

[Problem 7]: Missing teamwork opportunity.

DOORS produces tremendous amounts of data when more than one user work on the same
module concurrently. To avoid this, it is necessary to lock a module before modifying its data.
Consequently only one user can work on one module at the same time, which slows down the
development process. This is a very inefficient way of work and unsuitable for agile
development.

[Problem 8]: Missing versioning and branching functionality.

Versioning and branching are not supported. DOORS stores only the history of single data
records in a module, but there is no simple way to backup or store the current version of a
module separately. This would be necessary for instance for the recertification of products that
are already brought on the market. Branching is necessary for the development of product

26 Chapter 2. PROBLEM DEFINITION

families. A product family contains product derivates that have a similar structure and features
but differ in some details. This cannot be represented in DOORS and turns out to be another
disadvantage. Therefore, an efficient reuse of existing requirements and specification in a new
product is also not possible in an appropriate way.

2.4 Summary	of	the	Problems	

Table 1 summarizes the problems that have been identified in the development process. Possible
solutions for these problems are provided in Chapter 4.

Problem Description

Problem 1 Separated processes for development and security evaluation

Problem 2
Reuse of requirements and specification in the documentation is not
possible

Problem 3 DOORS: Missing data validation

Problem 4 DOORS: Low performance of data export

Problem 5
DOORS: High round trip time for firmware developers when using DOORS
as single-point-of-source for interface specification

Problem 6 DOORS: Proprietary database and complex query language DXL

Problem 7 DOORS: Missing teamwork opportunity

Problem 8 DOORS: Missing versioning and branching functionality

Table 1: Summary of the identified problems of the development process.

Chapter 3. RELATED WORK 27

Chapter	3

Related	Work	

This chapter presents the results of the related work analysis. It gives a short overview of the
CC standard, compares existing frameworks and technologies for producing engineering
documents and discusses a number of differencing algorithms regarding their suitability for
calculating comparison models of design artifacts.

3.1 Common	Criteria	-	a	Short	Overview	

The Common Criteria for Information Technology Security Evaluation is an international
standard defining criteria for the evaluation and certification of secure IT systems. Herrmann [9]
describes the goals of this project as follows:

"The goal of the CC project was to develop a standardized methodology for specifying,
designing, and evaluating IT products that perform security functions which would be widely
recognized and yield consistent, repeatable results. In other words, the goal was to develop a
full-lifecycle, consensus-based security engineering standard."

The CC standard is basically divided into three parts [5]:

 Part 1: Introduction and General Model.

 Part 2: Security Functional Requirements.

 Part 3: Security Assurance Requirements.

Part 1 describes terminology and concepts, contains a description of the CC methodology, the
history of development and CC sponsoring organizations. Part 2 contains a catalog of
standardized Security Functional Requirements (SFRs) and part 3 lists standardized Security
Assurance Requirements (SARs).

CC [9] divides the security specification into two parts, which are described below.

28 Chapter 3. RELATED WORK

Protection Profile (PP). This is an implementation independent definition of security
functional requirements of the TOE (Target of Evaluation), which is any physical
implementation such as firmware, software, hardware etc. that is going to be evaluated. It
can be seen as a generic security target for a certain class of products. The protection
profile for secure smart cards [10] has been developed by Eurosmart in cooperation with
Inside Secure, Infineon Technologies AG, NXP Semiconductors Germany GmbH and
STMicroelectronics.

Security Target (ST). This is an implementation dependent design that describes security
mechanisms, features and functions to fulfill the requirements defined in the PP for a
certain TOE.

As stated in the CC Standard [5] "[...] the security problem definition defines the security
problem that is to be addressed". This includes the threats and assumptions about the TOE and
its operational environment.

The security objectives are described as "[...] a concise and abstract statement of the intended
solution to the problem defined by the security problem definition".

"The SFRs are a translation of the security objectives for the TOE. They are usually at a more
detailed level of abstraction, but they have to be a complete translation (the security objectives
must be completely addressed). The CC requires this translation into a standardized language
[...]".

"The SARs are a description of how the TOE is to be evaluated. This description uses a
standardized language [...]".

A certification of a product can be performed on different levels, so-called evaluation assurance
levels (EAL). Table 2 gives an overview of all EALs defined in the CC standard. The precision
of investigation of the developed product and the depth of documentation needed for the
certification increases according to the EAL.

When a product is going to be certified, it is submitted to an independent evaluation laboratory,
which evaluates the developed product by applying different attacks. All these attack paths are
then rated in two different manners:

 Effort and knowledge needed to identify an attack.

 Effort and knowledge needed to exploit this known attack to attack all instances of this
device.

Chapter 3. RELATED WORK 29

EAL Description

EAL1 Functionally tested

EAL2 Structurally tested

EAL3 Methodically tested and checked

EAL4 Methodically designed, tested and reviewed

EAL5 Semiformally designed and tested

EAL6 Semiformally verified design and tested

EAL7 Formally verified design and tested

Table 2: Overview of CC evaluation assurance levels [5].

The more difficult it is to perform a specific attack, the higher is the number of points it is rated
with.

For this purpose the evaluation laboratory must be provided with IC samples and the according
documentation, which contains a detailed description of the design and the results of the
security evaluation process.

Not only the product itself is rated, but also the development process. This includes the
development site and its offices, the IT infrastructure and development tools and the production
process. This means that knowledge facilitating the attack needs to be kept confidential to get
additional points for certain attack paths.

The goal is to reach a maximum amount of points or at least the minimum required amount to
get the product certified.

After finishing the evaluation, the results are reported to the certification authority, which then
issues the according certificate.

3.2 Different	Approaches	for	Model	Differencing	

Model differencing or in other words the calculation of comparison models, which shows the
differences of two data models, is not a trivial task and still a quite young field of research.
"Model differencing involves a number of steps starting with identifying matching model
elements, calculating and representing their differences, and finally visualizing them in an
appropriate way" [11].

30 Chapter 3. RELATED WORK

Related to requirements management there are several use cases that have been identified,
which require the calculation of comparison models. Some of them are described in Chapter 4.
Most of the conventional differencing engines, such as the UNIX differencing tool diff2,
compare files on a line by line basis. For text files such as documentation or source code this is
a proper way to find differences and the methods and algorithms for this purpose are well
elaborated, but for data models this is not an applicable way of work. Instead much more
sophisticated algorithms are needed that are aware of the meta-model or at least the language
the model is described in. The meta-model describes the structure how data is stored within the
model.

As Kolovos et al. [11] stated in their paper, the process of model differencing can be divided
into three basic tasks:

 Calculation: Calculation of the model differences and creation of the comparison model.

 Representation: Storing the result of the calculation for further use.

 Visualization: Process data in a way to get a human-readable notation.

The calculation task can again be divided into two phases:

 Matching phase: Finding correspondences between the models.

 Differencing phase: Finding differences between two versions of the same element.

They also describe several basic approaches for model matching, which are summarized below.

Static Identity-Based Matching. The static identity-based matching approach uses unique
identifiers for the identification of corresponding elements. This has the advantage of
being very fast and requires no user configuration. The disadvantage of this approach is
the missing opportunity to compare models that have been developed independently from
each other.

Signature-Based Matching. Another approach is the so called signature-based matching. A
implementation following this approach calculates a signature for each model element
and compares them. Thus, instead of having a unique identifier, a signature calculation
function must be provided by the user.

2 http://www.gnu.org/software/diffutils

Chapter 3. RELATED WORK 31

Similarity-Based Matching. While both of the approaches explained above return a hard
decision if two elements match to each other, the next approach measures only the
similarity of two elements and creates the matching out of these results. Since not all
features of an element have the same importance for the calculation of the matching, this
similarity-based approach uses weighted features to calculate the comparison of elements.

Custom Language-Specific Matching. Finally, they explained custom language-specific
matching algorithms, where the user must specify the entire matching algorithm, which is
not a trivial task. This approach has the advantage of being able to make use of the
semantics of the target language and thus to get more precise results.

What all the presented approaches have in common is their goal. As Cédric and Pierantonio [12]
explain, the main task of matching algorithms is to "[...] consider all the elements of both
versions of the model and decide whether an element in the first version is the same as another
one in the second version". They also explain that finding an element in the second model that is
most similar to the analyzing element in the first model is one of the most complex and time-
consuming tasks when calculating a comparison model.

As part of this work several existing implementations of differencing algorithms have been
analyzed and evaluated. The results are presented and discussed in the following sections.

3.2.1 3DM	-	a	Three	Way	Differencing	and	Merging	Algorithm	

Lindholm [13] explains in his thesis a design and implementation of a three way differencing
and merging algorithm, called 3DM, which stands for 3-way merging, differencing and
matching. This algorithm provides 2-way and 3-way comparisons of XML files as well as a
mechanism for synchronizing them by performing appropriate merge operations. The aim of the
thesis was to design and implement a mechanism for synchronization of data residing in
different sources.

In order to reach this goal 3DM analyses the following operations applied to the data tree of an
XML file by a user:

 Insert: A new node was inserted into the tree.

 Delete: An existing node or subtree was deleted from the tree.

 Update: The content of an existing node changed.

 Move: A node has moved to another position within the tree.

 Copy: A node has been duplicated and inserted at another position of the tree.

32 Chapter 3. RELATED WORK

Since Lindholm's implementation is a prototype there are some limitations in the
implementation of this algorithm. One of them, which is also important for our use cases (see
Section 4.4.2), is that the algorithm is not aware of the XSD schema, when calculating the
differences and performing the merge operations. Thus, after merging XML documents the
resulting document can no longer be guaranteed to contain only valid content structured
according to its XSD schema.

3.2.2 EMF	Compare	

The EMF Compare website [14] gives a good overview of the EMF Compare framework. It
states:

"EMF Compare provides comparison and merge facility for any kind of EMF Model. In a
nutshell this project provides:

 a framework you can easily reuse and extend to compare instances of your models

 a tool integrated in the Eclipse IDE to see the differences and merge them

It includes a generic comparison engine and the ability to export differences in a model patch. It
is integrated with the Eclipse Team API meaning that it enables collaborative work on models
using CVS, SVN and GIT".

Additionally they describe the framework, which has the properties described below.

Extensibility and customization. This means the framework provides mechanisms, which
allow the definition and implementation of custom-specific matching and differencing
algorithms, if this is necessary. The user can put the focus on the implementation of the
important parts such as the matching algorithm itself and trivial parts of the calculation
such as parsing and converting the model are performed by the framework.

Scalability. This means the framework is able "to compare models with millions of elements in
a number of steps proportional to the number of differences". For this purpose it loads
only the important parts of the model, which makes it possible to calculate a comparison
within an optimal amount of time and memory.

Integrability. This means that EMF Compare offers application programming interfaces (APIs)
that facilitate comparing models stored in repositories.

Chapter 3. RELATED WORK 33

As described in the previous sections matching algorithms for model differencing can follow
several approaches. As stated in [11] the generic matching algorithm of the EMF Compare
framework uses a similarity-based matching approach, which is basically based on statistics and
heuristics. Additionally it analyses properties such as name, type, relations to other elements
and the content of an element to find appropriate matches [12]. When using this generic
approach, the calculation of the comparison model is performed without using a unique
identifier and thus, the model elements are not required to contain such a feature. Nevertheless,
the matching and differencing algorithms can be adapted and extended to use a unique
identifier, when necessary for a certain model.

3.2.3 Discussion	of	Existing	Model	Differencing	Algorithms	

Two different existing approaches for differencing and merging models stored in XML
documents have been presented in the sections above.

The advantage of Lindholms 3DM algorithm is that no conversions are needed to be applied to
the XML data models. Thus, since no time-consuming preprocessing has to be performed, the
algorithm operates very fast. The big disadvantage of this approach is the missing knowledge of
the meta-model to the algorithm. Thus, when performing a merge process without knowing the
meta-model, it is not guaranteed that the resulting, merged XML model is still compliant to the
meta-model. This is the reason, why this approach is not suitable for our use cases.

The other solution presented above uses the EMF Compare framework to create comparison
models. The advantage here is that this algorithm is aware of the meta-model and thus, it can
perform a meta-model compliant merge process. The disadvantage of this approach is the need
of conversion processes for the meta-models and data models. In dependence of the model size,
this process can be very time-consuming. The converted meta-model can be stored and reused,
but each time the XSD meta-model changes, the conversion process needs to be executed again.
Figure 4 illustrates this process.

3.3 Requirement	Tracing	and	Referencing	in	Documents	

Tracing and referencing of design artifacts in documents is important for the development of
secure smart cards, especially for the documentation of the design and the security evaluation.

Traceability denotes "[...] documenting the relationships between layers of information - for
instance, between system requirements and software design" [15], which also includes links
between artifacts in the source code and the related documentation.

34 Chapter 3. RELATED WORK

Figure 4: EMF Compare merging process.

The word referencing denotes in this context inserting the content of a design artifact, defined in
a requirements management system (RMS), in the documentation.

Having a mechanism that supports the user in doing such tasks is very important to avoid
inconsistency and redundancy of information when developing a product. The possibility to
reference data e.g. from a RMS also facilitates product maintenance as changing a requirement
in the RMS changes the requirement automatically in each document where it is referenced.
This guarantees consistency in the documentation. Copying and pasting design artifacts within
the documentation instead of using appropriate referencing mechanisms would increase the
effort for maintenance enormously and therefore such a way of work must be strictly avoided.
Doubling a design artifact in the documentation, doubles the effort for product maintenance,
too. Tripling an artifact, triples the effort needed for maintenance, and so on.

Lots of technologies have been found during this research that deal with the traceability problem
of design artifacts. In contrast, the number of technologies that offer support for referencing
design artifacts and reusing their content in documents is still small.

In this section we discuss such technologies that allow tracing and referencing of requirements
and specification artifacts in the documentation.

3.3.1 Dita	XML	as	Technology	for	Referencing	Design	Artifacts	in	Documents	

One of the technologies that puts the focus on the production and reuse of technical information
is DITA XML, which is an abbreviation for Darwin Information Typing Architecture [16].

Chapter 3. RELATED WORK 35

It "is an XML based architecture for authoring, producing and delivering of technical
information" [16]. DITA XML puts the focus on a reuse by reference concept with the main aim
to separate the content from its context. In other words this technology facilitates the reuse of
independent text blocks in different contexts and documents. For this purpose the content needs
to be divided into independent topics and can then be inserted in several contexts without the
need of being rewritten. Thus, the entire documentation stays always maintainable, because a
change of a single text block changes the text in all documents this block is referenced in. In
contrast to the approach using copy and paste for inserting a certain text block multiple times in
one or more documents, the maintenance effort for the documentation does not increase with the
number of reused text blocks when following the described approach with DITA XML.

As stated in [17] DITA XML uses information types for describing the structure and semantics
of a certain kind of content. As shown in Figure 5 for creating content the user can either choose
from a set of predefined standard information types such as topics or concepts etc. or define its
own information types. More specialized information types can be either derived from a
standard type or developed completely from scratch.

Figure 5: DITA XML information types [16].

This technology also allows to organize content in so-called maps. A map is a document, in
which references to several content blocks are structured and organized. This allows managing
related topics and putting them together in a single document.

36 Chapter 3. RELATED WORK

3.3.2 DocBook	as	Technology	for	Referencing	Design	Artifacts	in	Documents	

Jenkins and Heron [18] describe in their paper an approach for including model data in
engineering and design documents by using ontologies and a technology called DocBook.

When using their workflow, for producing a document the following steps need to be
performed. In the first step the model content is exported from an arbitrary requirements
database. The exported data can either be stored in a proprietary or an open data format, but it
must be human readable. This is necessary for being able to convert the obtained data to a
common ontology, which is performed in the next step.

"An ontology is simply a set of classes, properties, and relationships that is useful for some
domain of discourse" [18]. This kind of data representation is basically used to exchange data
between several applications and services.

Then, the data is extracted from the ontology and converted into DocBook instances. DocBook
is an "[...] open, standards-based interchange format for technical documents [...]". It is "[...] a
Document Type Definition (DTD) for the Standard Generalized Markup Language (SGML) or
the eXtensible Markup Language (XML)" [18]. This has the advantage that XSLT
transformations can easily applied to such documents to convert them to another file format.
XSLT is a language that allows to apply transformations to XML documents and convert them
to another format by applying user-defined rules [19].

For defining the structure of the final document, the template engine of the Ruby3 standard
library is used. This is necessary to define, which parts of the document contains informal text
in natural language, and the locations where the formal text blocks, such as requirements from
the database, are inserted.

Finally, a DocBook generator is used to produce the final DocBook instance.

They see lots of advantages by following such an approach:

1. Less effort for producing engineering documentation.

2. Avoiding of inconsistency between a requirements database and the according
documentation.

3. Usage of a file format, that is simple, stable and well documented, which makes sure
the documentation is still readable in the future.

3 https://www.ruby-lang.org

Chapter 3. RELATED WORK 37

3.3.3 ADE	Documentation	Framework	

During a previous work [20] the so-called Advanced Development Environment (ADE) has
been developed, which is a framework that uses LaTeX as technology for producing
engineering documents. LaTeX is a text processing software based on a markup language where
text and design are separated from each other. This technology also allows the user to define its
own macros, which are prefabricated, user-defined text blocks that can be inserted by a self-
defined command [21].

This functionality is used here to create specific commands for referencing and inserting
different kinds of requirements and specification artifacts. ADE generates these commands
automatically out of the specification of a dedicated product. This enables to use them in the
according documents.

The documentation engine supports different formats in which specification can be delivered to
the engine:

 Normalized XML: A special XML format for storing requirements and specification
artifacts.

 IBM Rational DOORS: A commercial requirements management system.

 Microsoft Excel: Specification stored in special structured Excel tables.

 CSV: Specification stored in simple text files, where columns are separated by
semicolons and data records are separated by line breaks.

Figure 6 gives a rough overview of the data flow during the production of the documentation. It
shows how data and figures from different sources flow into the final document. For this
purpose specification data is converted into a so-called normalized XML format. This is a
special structured XML format for storing design artifacts. Based on this data, LaTeX macros
are generated, which allow the developer to insert and reference any design artifacts by using
the according commands. The implementation of the framework is based on several scripts that
are executed by a make4 flow. This ensures that project dependencies between modules are
resolved in the right order.

Table 3 shows examples of commands that can be used for inserting formal parts (requirements,
specification) and combine them with informal text in a document. Basically, for each

4 http://www.gnu.org/software/make

38 Chapter 3. RELATED WORK

specification type there exists a set of commands that allow inserting requirements and
specification artifacts into the documentation.

Framemaker

xml2tex

tex

Latex

xml2vsd

xml2dot

xml2mif

vsd
Normalized

XML

tex

mif

pdf

dot

pdf

pdf

pdf

AttackGraph
CallGraphs

...Design
Validation & Verification

CC Evidence
...

Standard Figures
Autogenerated Flows

...

DataSheet

Interface
Specifications

Specification and Design,
Validation and Verification,

User Guidance,
Security Target, CC Evidence, ...

spec

norm. text (spec)

inform. text

figures

spec

spec

spec
spec

mif

spec

doors2xmlxsd

doors

Requirements
Interface Spec.

Test Spec.
Security Spec.

For quality
checking of XML

excel2xml

csv2xml

xls

csv

Figure 6: Data flow for documentation engine [20].

A similar approach exists for writing data sheets with Adobe FrameMaker5. The documentation
framework also supports the generation of figures for some selected specification types. Thus,
for example the communication between a smart card and the corresponding reader can be
visualized automatically based on the specification. Moreover, the framework also can generate
dot graphs6. This facilitates for instance the insertion a figure in a document containing the
hierarchical structure of the scopes for a dedicated product. This entire process and also the
generation of the final documents are managed by the documentation engine.

5 http://www.adobe.com/at/products/framemaker.html

6 http://www.graphviz.org

Chapter 3. RELATED WORK 39

Listing 1 shows a simple example of a LaTeX document (e.g. design document) in which the
description of the requirement number 21 of scope Bootflow has been inserted.

\begin{document}

This is a sample informal text in the documentation. And this is requirement number 21 of scope Bootflow:
\RSTxt{Bootflow}{21}

\end{document}

Listing 1: Simple example for displaying a requirement in the documentation.

In order to guarantee the documentation engine being able to deal with different kinds of
specification, it implements a plug-in interface, which allows the user to extend the core engine
by defining new specification types. A specification type is implemented as a XSD meta-model
that defines the structure of the normalized XML used to store the according specification.

3.3.4 Discussion	of	the	Existing	Technologies	

As discussed above, DITA XML is a technology that facilitates the reuse of content in
documents. This can also be used to reference and reuse design artifacts stored in a RMS in the
documentation. For this purpose the documentation must be written in DITA XML and design
artifacts would need to be exported and converted to this format and organized in suitable DITA
maps. Each artifact would need to be stored in a predefined information type and related
artifacts would need to be structured in appropriate DITA maps. With this setup it is possible to
create design documentation containing formal and informal content. The formal content
exported from the RMS can then be referenced by using the techniques described above.

What needs to be emphasized is that the problem of the low performance of the data export as
described in Section 2.3 cannot be solved with this approach. A data export and conversion
process is still necessary for the production of the documentation when following this approach.

40 Chapter 5. IMPLEMENTATION

Type Command Description

Reference \RSReq{$Scope}{$Req}
Creates a hyperlink to a requirement
with respect to the given scope and
requirement parameter

Reference \RSAsm{$Scope}{$Assumption}
Creates a hyperlink to an assumption
with respect to the given scope and
assumption parameter

Reference \RSAssert{$Scope}{$Assert}
Creates a hyperlink to an assertion
with respect to the given scope and
assert parameter

Text \TxtRSReq{$Scope}{$Req}
Displays the text of the requirement
with respect to the given scope and
requirement parameter

Text \TxtRSAsm{$Scope}{$Assumption}
Displays the text of the assumption
with respect to the given scope and
assumption parameter

Text \TxtRSAssert{$Scope}{$Assert}
Displays the text of the assertion with
respect to the given scope and
assertion parameter

List \ListRSGroup{$Scope}{$Group} Displays all requirements located in
the given scope and group

List \HListRSGroup{$Scope}{$Group}
Displays all requirements located in
the given scope and group including
all headings

Structure \TreeRS{$Scope} Displays all requirements of the
given scope (recursively)

Structure \TreeRSGroup{$Scope}{$Group} Displays all requirements of a given
scope and group (recursively)

Structure \HTreeRS{$Scope}
Displays all requirements of the
given scope including the headings
(recursively)

Structure \HTreeRSGroup{$Scope}{$Group}
Displays all requirements of the
given scope and group including the
headings (recursively)

Table 3: Selection of possible commands to insert or reference requirements in the documentation.

Chapter 5. IMPLEMENTATION 41

Chapter	4

Concept	and	Design	

This chapter describes the concept and design of the optimized development process. It gives an
overview of its goals and requirements and a detailed explanation of its structure and
architecture.

4.1 Goals	

From the problem definition in Chapter 2 a set of requirements and goals has been derived for
the new, optimized development process, which is discussed in the following.

[Goal 1]: Unified process for development and security evaluation.

A unified process for development and security evaluation facilitates the linking of artifacts
between the development process and the security evaluation process. This supports the user in
creating the evidence for product security. This is part of the security evaluation and thus
necessary for the certification of the product.

[Goal 2]: Process for agile development and security evaluation.

The focus for this process is to depict agile development [22] and security evaluation [23].
Highsmith and Cockburn [24] describe the advantage of agile development in the following
way:

"Working code tells the developers and sponsors what they really have in front of them - as
opposed to promises as to what they will have in front of them. The working code can be
shipped, modified, or scrapped, but it is always real". And further they describe this method as
approaches that "[...] recommend short iterations in the two- to six-week range during which the
team makes constant trade-off decisions and adjusts to new information".

42 Chapter 5. IMPLEMENTATION

For both the development of the product itself and for the security evaluation an agile approach
has several advantages. Breaking a system down to a module level and certifying each module
by following an agile approach makes it easier in the final development phase to get the finished
product certified. The concept of agile development is depicted in Figure 7. It shows the parallel
development of specification, design, implementation, testing and documentation for each scope
in an iterative way.

Figure 7: Concept of agile development.

[Goal 3]: Linking, tracing and referencing of requirements.

A linking mechanism is needed as a basis for tracing of design artifacts.

Traceability of requirements and specification artifacts supports analyzing a product in case of a
change request. The tracing between artifacts of the development process and artifacts of the
security evaluation process helps to produce an evidence that the product is secure.

A mechanism for referencing design artifacts in the documentation is necessary to avoid copy
and paste operations for inserting design artifacts into the documentation. This again avoids
inconsistency and decreases the effort for product maintenance.

[Goal 4]: Support managing of requirements.

During the analysis of the development process, several problems have been identified related to
the RMS DOORS. Thus, one of the goals is to find an appropriate RMS that fulfills the
according requirements listed in Section 4.2.1.

[Goal 5]: Differencing and synchronizing of design models.

In order to be able to reuse interface specification by following a single-point-of-source
approach, it is necessary to synchronize interfaces defined in the source code with the according
design artifacts in the RMS. This facilitates referencing and tracing of interface specification in
the documentation.

Chapter 5. IMPLEMENTATION 43

Furthermore, a generic synchronization mechanism allows to merge similar models. This can be
used to support teamwork. When two developers work on the same model, all changes need to
be merged to get a resulting model containing all changes. See Section 4.4.2 for a detailed
description of these use cases.

Table 4 summarizes all identified goals for the optimized development process and lists the
problems they cover.

Goal Description Covers

Goal 1 Unified process for development and security evaluation Problem 1

Goal 2 Process for agile development and security evaluation
Problem 5
Problem 7

Goal 3 Linking, tracing and referencing of requirements Problem 2

Goal 4 Support managing of requirements

Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8

Goal 5 Differencing and synchronizing of design models
Problem 5
Problem 7

Table 4: Summary of the goals for the optimized development process.

Thus, the development process for secure smart cards is going to be optimized in two
dimensions:

 Tooling and environment used for development, documentation, implementation and
security evaluation. The according optimization steps are described in Section 4.4.

 Structure of the development process and how different specification artifacts are linked
with each other. The according optimization steps are described in Section 4.5.

44 Chapter 5. IMPLEMENTATION

4.2 Requirements	

The requirements for the tooling environment for the optimized development process consider
also the agile development. They can be divided into requirements for the following parts:
specification repository, interface synchronization, testing and verification, project and product
configuration, documentation, look and feel. The requirements for each of these parts are
discussed in the following.

4.2.1 Specification	Artifact	Repository	

[Req. 1] The specification repository should structure requirements and specification artifacts in
reusable intellectual property blocks (IP blocks). These are reusable units of logic used for the
development of ICs.

[Req. 2] Furthermore, this repository should contain all requirements and specification artifacts
necessary for the development and security evaluation process.

[Req. 3] For the purpose of requirements traceability it should be possible to create different
kinds of links between requirements and specification artifacts. Since such links might only be
valid for a certain product, they should be stored in a product configuration and not directly in
the IP block. The types of links that must be supported are listed in Table 5.

[Req. 4] An option to create new and manage existing branches of scopes and IP blocks should
be implemented. This is necessary to be able to define IP blocks that have almost the same
functionality, but differ in some details from each other. Additionally a versioning mechanism
must ensure being able to track and reconstruct changes of an IP block over time.

[Req. 5] A generic approach should allow the user to define arbitrary specification types. These
are meta-models that describe the structure of a requirement or a certain type of specification
such as test specification or interface specification. They must be customizable and extendable
by the user.

[Req. 6] In order to support the user by creating new data items and to reduce the error rate, a
suitable application must be implemented, which allows the user to operate with any kinds of
requirements and specification artifacts. Therefore the data shell be visualized in tabular form.
Additionally a data validation mechanism must ensure all predefined constraints to be satisfied.

[Req. 7] The system should support multi-user access, which means that a mechanism must
ensure that multiple users can work on a module concurrently.

Chapter 5. IMPLEMENTATION 45

[Req. 8] A baselining mechanism should prevent a requirement or specification artifact from
being modified after a product using this artifact is already brought to market. Such a baselined
specification should still be usable in a new product, but cannot be modified anymore.

Type of Link Description

Satisfies e.g. used to link design artifacts of different levels of abstraction

Refines
e.g. used to link refined attack artifacts or security architecture artifacts to
each other

Tests e.g. used to link test specification to the according design artifacts

Guides e.g. used to link user guidance to the according design artifacts

Specified by e.g. used to link interface specification to the according design artifacts

Attacks e.g. used to link attacks to a security architecture

Covers e.g. used to link a security architecture back to a certain attack

Realizes
e.g. used to link security functional requirements to its realization, namely the
according security architecture

Table 5: Overview of link types.

4.2.2 Interface	Synchronization	

[Req. 9] Hardware and software interfaces should be defined in a central specification
repository. This makes it possible to reference them in documents for design and security
evaluation.

[Req. 10] A tool should be implemented that generates C header files and Verilog files out of
the according interface specification in the central specification repository. The C header files
contain the firmware interfaces and the Verilog files contain the hardware interfaces.
Furthermore, it should be possible to synchronize changes of interface definitions in the C
header files and Verilog files with the according artifact in the central specification repository.
This supports the agile development and prevents that developers must regenerate the header
files after each source code modification manually.

46 Chapter 5. IMPLEMENTATION

4.2.3 Testing	and	Verification	

[Req. 11] Since the specification repository should be used for all kinds of artifacts, software
and hardware tests should also be defined there. Similar to the interface specification it must
also be possible to generate basic structures of test implementations out of the according data
objects in the specification repository. The definition of the test function and comments for each
step in the test case should be inserted automatically in the according test implementation.

[Req. 12] A test report generator should be able to create reports that contain the test
specification and their results in a single document. Such documents are then stored in the
content repository.

4.2.4 Project	and	Product	Configuration	

[Req. 13] It should be possible to create a new project and define its structure including the
components, scopes and subscopes.

[Req. 14] It should be possible to manage product configurations. A product configuration
contains all information relevant for a dedicated product including its scope structure and
configuration. A scope can contain either a simple link to an IP block in the specification
repository or product dedicated content, which is then stored directly in the product
configuration.

4.2.5 Documentation	

[Req. 15] A suitable documentation engine should be implemented that allows generating parts
of the documentation automatically by referencing requirements and specification artifacts in
documents. Additionally the system should be able to print lists and tables of groups of related
requirements or specification.

4.2.6 Look	and	Feel	

[Req. 16] The graphical user interface for the overall system should be useable by intuition.

4.2.7 Relations	of	Problems,	Goals	and	Requirements	

Table 6 lists all requirements and the addressed problems and goals.

Chapter 5. IMPLEMENTATION 47

Goal Covered problem Addressed by requirement

Goal 1 Problem 1 Req. 3

Goal 2 Problem 5; Problem 7 Req. 7; Req. 10

Goal 3 Problem 2 Req. 9; Req. 12; Req. 15

Goal 4
Problem 3; Problem 4
Problem 5; Problem 6
Problem 7; Problem 8

Req. 1; Req. 2; Req. 3
Req. 4; Req. 5; Req. 6
Req. 7; Req. 8; Req. 11
Req. 13; Req. 14

Goal 5 Problem 5; Problem 7 Req. 10; Req. 11

Table 6: Relations of problems, goals and requirements

4.3 Background	

This section contains descriptions of systems that have been implemented as part of earlier
works and are reused in the scope of this work. It describes their integration and usage in the
optimized development process.

Since this work has been done in cooperation with a company, there have been some constraints
such as the reuse of the existing meta-models for specification artifacts, which are described
below.

4.3.1 Meta-Models	for	Specification	Artifacts	

As stated in section 4.1 the process should support arbitrary specification types, which can be
adapted as needed by the user. A specification type is a set of attributes that defines the structure
information to be stored for a certain kind of specification. For the development of secure smart
cards and the corresponding security evaluation at least the following specification types are
necessary to define the functional requirements and specification:

Definitions (Def). This specification type contains basic definitions such as maximum supply
voltage, layout area for a certain hardware module etc. for a project.

Requirements (RS). This specification type contains requirements for a certain scope.

48 Chapter 5. IMPLEMENTATION

Test Specification (TS). This specification type contains specification for a test case including
all assumptions preconditions, test steps and test setups.

Test Results (TR). This specification type contains the result of an executed test case including
its name, the version of the test, the execution date, the name of the test engineer and the
verdict (pass, fail, not executed, waived or unknown).

Known Limitations (KL). This specification type describes for a test case with the verdict
waived, why this test case did not pass.

Interface Specification (IS). This specification type describes an interface. Since the
information objects that describe hardware and software interfaces differ from each other,
for each kind of interface a specification type must be implemented.

User Guidance (UG). This specification type allows writing the user guidance in a structured
way.

Furthermore it is necessary to define the requirements for the product from a security point of
view. For this reason the following set of specification types is necessary:

Security Architecture (SA). This specification type contains information that describes the
requirements for the product from a security point of view.

Attacks (AT). This specification type stores information about possible attacks for a certain IC.

The security evaluation process requires also a special set of specification types:

 Common Criteria Security Assurance Requirements (CC-SAR).

 Common Criteria Security Functional Requirements (CC-SFR).

 Common Criteria Security Objectives (CC-SO).

 Common Criteria Security Problem Definition (CC-SPD).

In order to get a closer view on how such a specification type is structured in detail, the meta-
model of the RS specification type is used to describe this approach in a short example. Figure 8
shows the structure of the RS specification type, its elements and attributes. Table 7 contains a
description of the according attributes.

Chapter 5. IMPLEMENTATION 49

Attribute Description

ID An automatically generated unique identifier for the artifact
for referencing and traceability reasons

Label A user defined identifier for the artifact

Status Defines the status of the artifact: Draft, Rejected, Accepted,
Modifying

Priority The priority for the implementation of the addressed feature:
must have, nice to have, negotiable, none

Satisfied Defines if the requirement is satisfied by a lower level
requirement: yes, not

Qualified Defines if the requirement is verified by appropriate tests: yes,
not

Text The description of the requirement

Sources Defines the origin of the requirement, the person or group of
persons who raised the requirement

SourcesText The original text of the defined sources

Rationales Definition of the reason behind the requirement

SatisfactionArgument An argument that the system can meet the defined requirement

QualificationArgument Rationale why a certain test method has been selected for this
requirement

Comments Any other comments that need to be stored together with the
requirement

Links Links between the requirement and other design artifacts

Table 7: Description of the attributes used in the RS specification type.

50 Chapter 5. IMPLEMENTATION

Figure 8: Structure of the specification type for requirements.

Chapter 5. IMPLEMENTATION 51

4.3.2 Documentation	Engine	

Overview	

Another central part that must be considered in the design of the new development process is
the creation of documents for design, security evaluation and user guidance. As stated in
Section 4.1 a suitable documentation engine should implement at least the following features:

 Referencing of requirements and specification artifacts in documents.

 Displaying of requirements and specification texts in documents.

 Displaying of grouped lists of requirements and specification texts in documents.

The goal here is to follow a single-point-of-source concept, which means that requirements and
specification artifacts shall be only defined on a single point. This is in our case the
Requirements and Specification Management System (RSMS), described in section 4.4.1. As a
result copy and paste operations can be avoided. This decreases redundancy and facilitates
product maintenance enormously.

Concept	

In Chapter 3 different existing approaches for creating engineering documents have been
discussed. Due to the requirements for such a documentation environment, listed above and
more detailed in Section 4.2, we decided to use the ADE framework [20] for producing
documents.

ADE can be easily integrated into the optimized development process without the need of
complex modifications and adaptations. Documents are created by using LaTeX in combination
with this engine. This enables documents to contain references to single requirements and
specification artifacts or a lists of them. Such references are then resolved by the documentation
engine. It generates the final documents that are then again stored in the content repository.

Although this framework supports different kinds of data formats, in which design artifacts can
be delivered, in the optimized, unified development process only the normalized XML format is
used as input format for the documentation engine. The reason for this is that all design artifacts
in the specification artifact repository are stored in the normalized XML format.

As described in Section 4.3.1 the user can define an arbitrary set of specification types by
defining the according meta-models. These meta-models are also used by this documentation
engine, which is necessary for dealing with references of design artifacts in the documentation.

52 Chapter 5. IMPLEMENTATION

4.4 Tooling	and	Environment	of	the	Optimized,	Unified	Process	

Figure 9 gives an overview of the tooling environment used for the optimized process. Tools are
represented by rhombs, whereas artifacts such as documents, configurations and source code are
depicted as rectangles. The roles of project members using a certain block are written in red
letters. The following sections describe each single block of this environment.

4.4.1 Requirements	and	Specification	Management	System	

The Requirements and Specification Management System (RSMS) is mainly used by project
managers, system architects, test architects, security architects and security assurance engineers.
They use this application to create and modify requirements and specification artifacts
manually. Additionally, it offers the opportunity to create a comparison model of two design
artifact models and to visualize their differences by analyzing the output of an external
differencing engine. This functionality can be used to review the content changes of a certain
module and to merge them. Since design artifacts are stored in a repository this functionality is
also necessary to check the modifications of a module, when several team members work
together on a single model concurrently.

According to the goals and requirements listed in Section 4.1 and 4.2 a requirements and
specification editor needs to be implemented that supports users in working with requirements
and specification artifacts stored in XML documents. These are located in the specification
artifact repository.

Compared to the use of the commercial requirements management system IBM Rational
DOORS this approach has several advantages. XML “[...] is a simple text-based format for
representing structured information: documents, data, configuration, books, transactions,
invoices, and much more” [25]. It is a non-proprietary and platform independent format. Since
an export process from a proprietary database is no longer needed, it facilitates in our case the
processing of this data for several purposes such as documentation and source code generation
enormously.

The following paragraphs describe the architecture and design of the RSMS.

Figure 10 gives an overview of the architecture and data flow of the RSMS. The meta-models,
which are descriptions of the structure of a model for a certain specification type, are stored as
XML schemas.

“XML Schemas express shared vocabularies and allow machines to carry out rules made by
people. They provide a means for defining the structure, content and semantics of XML
documents” [26].

Chapter 5. IMPLEMENTATION 53

Figure 9: Overview of the environment for the optimized development process.

54 Chapter 5. IMPLEMENTATION

Figure 10: Overview of the architecture of the RSMS.

In the first step the XSD meta-model is imported to the Eclipse Modeling Framework (EMF)
[14] and converted to an EMF ecore meta-model. Then the EMF and the generated ecore meta-
models are used to read the XML specification artifacts and convert them to an ecore model,
which is the basis for the EMF Compare based differencing engine.

In parallel the XSD meta-model is also used as input for the Microsoft XML Scheme Definition
Tool [27] to generate the corresponding C# classes, which represent the structures of the meta-
model in the C# world. These classes are then used together with the XML serializer to create a
C# object model out of the XML specification artifacts.

As a result of these two processes, two types of models correspond to the same XSD meta-
model: an ecore model and a C# object model. The C# object model is basically used for the
operation with specification artifacts in the requirements and specification editor, whereas the
ecore model is used for the differencing and merge engine based on the EMF. The reason for
this way of work is that model comparison is not a trivial task and the EMF offers with its
model comparison toolbox EMF Compare a powerful tool for such operations. In contrast, a
simple data manipulation mechanism is easier to implement by using the C# object model, since
after serialization of the object tree changes are automatically converted back to an appropriate
XML format.

Chapter 5. IMPLEMENTATION 55

The differencing engine, which is based on the EMF Compare libraries shall be implemented as
Java application and should use the generated ecore meta-models. In order to compare two
specification models, the according XML files from the specification artifact repository need to
be loaded into the EMF and converted to an ecore model. Then the EMF Compare based
differencing engine creates a comparison model, which contains all detected differences. This is
used as input for the user interface, which visualizes all model differences.

The engine shall be able to detect at least the following model differences:

 Add: A node has been added to the model.

 Delete: A node of the model has been deleted.

 Update: A property or content of an element has been changed.

 Move: A node has been moved to another (hierarchical) position within the model.

The implementation of the merge engine is not within the scope of this work, but for the sake of
completeness it is also considered in the design and architecture.

The graphical user interface shall include a requirements and specification editor and is to be
implemented as C# application. It should use the generated C# object model to operate with the
data. The created object model is to be visualized and should offer the user an easy and intuitive
way to work with design artifacts. Furthermore, an interface needs to be implemented that
facilitates visualizing comparison models produced by the differencing engine.

The details of the implementation of all these tools and mechanisms are described in Chapter 5.

4.4.2 Import-Export-Sync	Layer	

The Import-Export-Sync Layer can be seen as the interface between the specification artifact
repository and the content repository.

It mainly consists of three tools:

 Synchronization Engine.

 Documentation Engine (ADE Core).

 Test Report Generator.

The synchronization engine is used for generating and synchronizing interface and test
specifications from different sources. Thus, it is possible to generate and synchronize parts of

56 Chapter 5. IMPLEMENTATION

the source code out of the according artifacts in the repository. The synchronization process can
basically be divided into two separate processes:

 Differencing: Calculates a comparison model of two design artifact models.

 Merging: Merges the changes of the second model into the first model.

Thus, a differencing and merge engine needs to be implemented, which is described in the next
section.

Differencing	and	Merge	Engine	

The Differencing and Merge engine (DM engine) is a central part when operating with
requirements and specification artifacts from different sources. Possible technologies for
implementing such an engine and their advantages and disadvantages have been analyzed and
discussed in Section 3.2. Due to the need of the awareness of the meta-models, we decided to
use the EMF Compare framework for the implementation of our DM engine.

The following three use cases have been identified, where a DM engine is needed:

 Use Case 1: Review of changes.

 Use Case 2: Synchronization of requirements and specification between different
sources.

 Use Case 3: Teamwork; usage of a repository with multiple users.

Use Case 1. Figure 11 shows the review use case. Assume that a developer needs to modify the
specification of a certain scope. For this purpose it is necessary to check out the according
module from the specification artifact repository. After this step the module is going to be
modified and checked in again. If an architect wants to review the changes, he can check
out the newest revision and the base revision of the according module and use the DM
engine to make the changes visible. In the next step the architect can decide which
changes he wants to accept and which he declines by using the merge engine. This creates
the new specification file, which then can be checked in again.

Use Case 2. Figure 12 shows the synchronization use case. Assume a software developer needs
to modify a firmware interface. As we follow a single point of source approach for all
kinds of specification to avoid redundancy (see section 4.3.2), interfaces must be changed
in the specification artifact repository and the header files must be regenerated. To avoid
this time consuming scenario the DM engine can be used to synchronize parts of the

Chapter 5. IMPLEMENTATION 57

specification between a source code file and the specification artifact repository. For this
purpose the developer must convert the modified header file to an XML file, which shell
be done by the interface synchronization engine. In the next step the according
specification file must be checked out from the specification artifact repository. Both of
these files are used as input for the DM engine, which analyses the differences and
synchronizes the changes. The output of the DM engine is the synchronized specification
module, which then can be checked in into the repository.

Use Case 3. Figure 13 shows the teamwork use case. It describes a situation where two persons
work together on a single specification module of the specification artifact repository. For
that purpose both team members must check out the specification module to be modified.
When team member B has completed all the editing, the modifications are checked in
again and it succeeds. When team member A is finished with all modifications and tries
to check them in an error occurs. Due to the modifications of team member B the local
copy of team member A is outdated and needs to be merged with the latest version from
the repository. For this purpose the DM engine is used. It shows the differences between
the local copy of team member A and the latest version in the repository containing the
modifications of team member B, merges them into a new specification file, which then
can be check in again.

Figure 11: DM engine use case: review.

58 Chapter 5. IMPLEMENTATION

Figure 12: DM engine use case: synchronization.

Figure 13: DM engine use case: teamwork.

Chapter 5. IMPLEMENTATION 59

Source	Code	and	Test	Case	Generation	and	Synchronization	

This section describes the synchronization process between the interface specification stored in
the specification artifact repository and the actual interface definitions in the source code. In
order to be able to synchronize such specification a number of preconditions must be fulfilled:

 Each interface definition in the source code must contain a comment to be able to identify
the according artifact in the specification artifact repository.

 The comment must comply with a certain structure.

 The comment must at least contain the ID of the according interface specification in the
specification artifact repository.

The minimum set of data in the source code that is to be synchronized with the artifacts in the
RMS shall contain the following values:

 Name of the interface method.

 Name of each interface parameter.

 Type of each interface parameter.

 Type of the return value.

After triggering the synchronization process the following steps need to be performed. The C
header file is parsed and the interfaces of the header file are matched to the according artifacts
of the specification artifact repository. Then the resulting data is used to generate an XML file
following the structure defined in the meta-model for interface specification. The XML file
from the specification artifact repository complies with the same structure. Thus, it is possible to
use the differencing and merge engine described above to calculate a comparison model, which
is then used to merge the two XML files. The resulting data is then restored in the specification
artifact repository. Additionally, this data is also used to refresh the interfaces in the source
code. For this purpose the merged XML data is used to update the parsed interface specification
of the header file. Finally the C header file is regenerated. As a result the C header file and the
interface specification in the specification artifact repository are synchronized. Figure 14
illustrates the dataflow of the described process. The same principle applies to the generation
and synchronization of test cases.

4.4.3 Configuration	Management	

This section describes the folder structure of the specification artifact and content repository and
all details of the product and scope configuration. Following these structures is necessary for the
smooth cooperation of the different systems and tools used in the development process.

60 Chapter 5. IMPLEMENTATION

Figure 14: Data flow for source code synchronization.

Scopes	

Figure 15 shows the folder structure of a single scope. All configurations and content associated
with this scope are stored within this folder structure. The following list describes the content of
each directory.

LatexDocuments. This directory contains the LaTeX projects for the documentation. A
standard scope contains one project for specification and design documentation and
another one for validation and verification. The corresponding tex files are located in
these folders.

Specification. Contains the specification files for the scope. The specification is stored in the
XML format.

Development. Depending on the type of the scope, it contains the software or hardware
implementation (firmware modules, digital design etc.).

Secondary. The secondary directories are used as cache by the documentation framework
(ADE) to store intermediates (e.g. parts of documents compiled as PDF or converted
specification files etc.), used in the end to create the final documentation.

Subscopes. Contains all subscopes of the scope. A subscope has again the same structure as
described here.

Basically, we distinguish between two different types of scopes in a product:

 Product dedicated scopes.

 Linked scopes.

Chapter 5. IMPLEMENTATION 61

Figure 15: Folder structure of a scope.

Product dedicated scopes are product specific and a reuse of such a block in another product
would not make sense. As a result these scopes are directly stored together with the
product in the content repository.

A linked scope is a scope that contains the content of an IP block from the specification artifact
repository. It is a more generic block that can be reused by several products. If a product
uses such a scope the product configuration contains only a link to the according IP block
in the specification artifact repository.

Specification	Artifact	Repository	

Figure 16 shows the folder structure of the specification artifact repository. The specification
artifact repository is the central location where scopes and IP blocks are stored. This repository
has a simple structure, in which such blocks are grouped thematically. The IP library is basically
divided into two parts: hardware IP blocks (HWIPs) and software IP blocks (SWIPs). Within
these folders the IP blocks are again grouped thematically.

The repository depicts variants of a single scope as branches, whereas versions are represented
by tags. It is the task of the RSMS to manage the scopes, variants and versions and thus to keep
the branches and tags consistent.

62 Chapter 5. IMPLEMENTATION

Content	Repository	

Figure 17 shows the structure of the content repository. Whereas the specification artifact
repository contains artifacts that can be used in multiple products, the content repository
contains the configuration and content for a single dedicated product and its documentation and
all development relevant files. Especially the following files are located in this repository:

Scope structure and scope configuration. This contains the structure of a dedicated product
and links scopes to the according block in the specification artifact repository.

Firmware source code. This contains interface definitions (header files) and implementation of
the firmware.

Digital design. This contains Verilog interfaces and descriptions of the digital design.

Test implementations. This contains the implementation of all product related test cases.

Test results and corresponding documentation. This contains the results produced by the test
cases and test reports; a test report is a document that contains the specification of all test
cases as well as their results.

Design documentation. Contains the design of the dedicated product to be developed.

Security evaluation documentation. Contains the documentation needed for the CC security
evaluation process.

In the content repository single products are grouped within each product family. Only product
dedicated scopes are depicted as folders. Linked scopes are only defined in the product
configuration.

Product	Configuration	

A Product configuration defines the structure of a product and is defined in a so-called scope
diagram XML file.

Listing 2 shows an example scope diagram for a simple product. This file contains the
hierarchical structure of all scopes and their attributes used for a certain product. As discussed
above, we have to distinguish between product dedicated scopes and linked scopes in a product.
In case of a linked scope an URL attribute needs to be inserted that stores the link pointing to
the address where the according block is stored in the specification artifact repository.

The product configuration and content creation GUI is used to create such product
configurations and to setup its scopes. Additionally it offers an editor that supports the user in

Chapter 5. IMPLEMENTATION 63

creating LaTeX documentation. This editor is equipped with a auto-completion mechanism that
makes it easy to insert or reference requirements or specification artifacts in the documentation.

<ScopeDiagram>
 <Scope Name="MyPlatform" Type="Mixed" Src=".">
 <Scope Name="Scope1" Type="Mixed" AbstractionType="Subsystem" Src="./Subscopes/Scope1">
 <Scope Name="Scope1_1" Type="Analog" Src="./Subscopes/Scope1/Subscopes/Scope1_1"
 Url="https://repository.mycompany.com/svn/IPLibrary/HWIPs/Coprocessors/
 Symmetric-Ciphers/AES/tags/release/v_1_0"/>
 <Scope Name="Scope1_2" Type="Analog" Src="./Subscopes/Scope1/Subscopes/Scope1_2"
 Url="https://repository.mycompany.com/svn/IPLibrary/HWIPs/Coprocessors/
 Symmetric-Ciphers/DES/tags/release/v_1_0"/>
 <Scope Name="Scope1_3" Type="Software" Src="./Subscopes/Scope1/Subscopes/Scope1_3"
 Url="https://repository.mycompany.com/svn/IPLibrary/SWIPs/OSs/SystemModeOS/tags/
 release/v_1_0" />
 </Scope>
 </Scope>
</ScopeDiagram>

Listing 2: Example of a scope diagram for a simple product configuration.

In order to check out a product from the repository into the local workspace, a special check out
tool must be implemented. This tool populates the basic structure of a certain product from the
content repository, analyses the links in the scope diagram and populates then the entire product
according to its product configuration. This means that all links are resolved and the necessary
IP blocks from the given repository locations are copied into the local workspace.

Figure 16: Folder structure of the spec. artifact repository.

64 Chapter 5. IMPLEMENTATION

Figure 17: Folder structure of the content repository.

4.5 Structure	of	the	Optimized,	Unified	Process	

For the further optimization of the new process the aspects of security evaluation have been
integrated into the development process. A single, unified process covering development and
security evaluation is the result, which is shown in Figure 18.

Artifacts of the security evaluation process such as the security target are linked with the
according customer requirements. Additionally, the requirements on system level are not only
linked to the customer requirements, which they satisfy, but also to the security target. These
links and mappings are necessary for the security evaluation and facilitate proving and
analyzing the security of the product. Furthermore, the validation and verification plan
(V&V plan) is now linked with the according test specification and this is again linked with the
requirements they test on each level.

Chapter 5. IMPLEMENTATION 65

The design of a certain product is split up into several modules and submodules. These
requirements are again linked to the according requirement on a higher abstraction level. Finally
the implementation is linked with the design artifacts.

These merged process with all its links provided a full traceability between all artifacts created
during the development of a product. The advantages of this approach are listed below:

 Simple impact analysis in case of change requests.

 Facilitates providing evidence of the security for a product.

 Linking information can be processed by a documentation engine and displayed
automatically in documents.

Figure 18: Overview of the optimized, unified development process [20].

66 Chapter 5. IMPLEMENTATION

Chapter	5

Implementation	

This chapter describes the implementation of parts of the concept and design that have been
within the scope of this work. Since the effort for implementing the entire process is very high,
the focus was put on two parts: the implementation of a tool for requirements and specification
management based on XML and the implementation of a differencing engine as basis for the
use cases described in section 4.4.2.

This chapter is structured as follows. Section 5.1 describes the implementation of meta-models
for design artifacts with a simple example. Such meta-models need to be implemented for each
specification type needed to develop a product. They are used for the generation of the C#
object model, which is described in Section 5.2, and the ecore data model, described in Section
5.3. Furthermore this chapter describes the access mechanisms for the C# object model, the
implementation of the differencing engine for producing comparison models and the user
interface. The latter allows the user operating with design artifacts and managing them.
Furthermore it offers an interface for controlling the differencing engine and for visualizing the
calculated comparison models.

5.1 Implementation	of	the	Meta-Models	for	Specification	Artifacts	

As described in Section 4.3.1 the development process should support arbitrary specification
types definable and extendable by the user. This section shows the implementation of a
dedicated specification type for defining requirements. For the description of such meta-models
the XML schema definition language (XSD) is used, which has the advantage to be platform-
independent. Apart from that, one of the requirements for our implementation was to be
compatible with existing specification meta-models, which are defined in XSD files.

Chapter 5. IMPLEMENTATION 67

In the optimized development process these meta-models are used by the following tools and
applications:

 Requirements and Specification Editor.

 Differencing Engine.

 Documentation Engine.

For the requirements and specification editor, C# classes are created out of the XSD meta-
model. The differencing engine uses a generated EMF ecore meta-model and the documentation
engine uses the native XSD for the generation of the documentation. All these approaches have
one thing in common: a single-point-of-source approach for the description of meta-models is
followed. The XSD files contain the basic description of the meta-models and all other types of
meta-models needed for different tools and applications are generated automatically out of the
XSD files. Thus, in case the meta-model changes, the XSD files need to be adapted and all other
models can be regenerated automatically. Listing 3 shows the XSD implementation of a
specification type that describes the structure of requirements. The description of the meta-
model can be found in Section 4.3.1.

5.2 Generation	of	the	C#	Object	Model	

For the generation of the specification meta-model in C# the Microsoft XML Schema Definition
Tool (XSD tool) is used. The Microsoft Developer Network describes this tool as follows:

“The XML Schema Definition (xsd.exe) tool generates XML schema or common language
runtime classes from XDR, XML, and XSD files, or from classes in a runtime assembly” [27].
Together with the XmlSerializer class provided by the .NET framework it can be used to create
a binding between XML schema definitions and .NET class definitions. In other words, at
development time C# classes can be created out of XSD schema definitions and at runtime
arbitrary XML documents can be converted to objects by using the XmlSerializer class, which
performs deserialization and serialization automatically [28].

Listing 4 shows a simple XSD schema and the according C# class generated by using the XSD
tool.

This tool also has a number of limitations that need to be considered. One of them is that not all
types and definitions supported by XSD documents can be handled by the XSD tool. A detailed
documentation of this limitations can be found in the MSDN library [28]. Some of the
limitations are also important for our implementation and must be considered in a proper way.
To these belong for instance the interpretations of the maxOccurs and minOccurs attributes that

68 Chapter 5. IMPLEMENTATION

can be used within choice and sequence elements and define the minimum and maximum
occurrence of an element or a sequence of elements on a certain place in the XML document.

A choice element contains a selection of elements, where only one of them can be inserted in
the XML document. In contrast, a sequence element defines a certain number of elements that
must be inserted in the defined order [29].

When using such attributes the XSD tool cannot fully convert the XSD scheme description to
the according C# class definitions. A maxOccurs value of 0 is depicted as value of 1 and each
value greater than 1 is depicted as unbounded. The minOccurs attribute defining the minimum
occurrence of an element or a sequence of elements is completely ignored by the XSD tool and
thus not depicted in the generated C# class.

When operating with the C# object model this leads to the problem that new inserted data items
cannot implicitly be validated to be well formed according to its XSD scheme. Thus, due to
these limitations we lose the implicit XSD schema check when inserting data objects.

<xs:simpleType name="typeEnumStakeholders">
 <xs:restriction base="xs:string">
 <xs:enumeration value="TBD"/>
 <xs:enumeration value="N/A"/>
 </xs:restriction>
</xs:simpleType>

<xs:element name="RS">
 <xs:complexType>
 <xs:sequence>
 <xs:choice maxOccurs="unbounded" minOccurs="0">
 <xs:element name="Req" type="tns:typeReqElements" maxOccurs="unbounded" minOccurs="0"/>
 <xs:element name="Assumption" type="tns:typeAssumptionElements" maxOccurs="unbounded"
 minOccurs="0"/>
 <xs:element name="Info" type="tns:typeInfoElements" maxOccurs="unbounded" minOccurs="0"/>
 <xs:element name="Assert" type="tns:typeAssertElements" maxOccurs="unbounded" minOccurs="0"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:complexType name="typeReqElements">
 <xs:sequence>
 <xs:element name="Text" type="xs:anyType" maxOccurs="1" minOccurs="1" />
 <xs:element name="Sources" maxOccurs="1" minOccurs="0" />
 <xs:element name="SourcesText" type="xs:anyType" maxOccurs="1" minOccurs="0" />
 <xs:element name="Rationales" type="xs:anyType" maxOccurs="1" minOccurs="0" />
 <xs:element name="SatisfactionArgument" type="xs:anyType" maxOccurs="1" minOccurs="0" />
 <xs:element name="QualificationArgument" type="xs:anyType" maxOccurs="1" minOccurs="0" />
 <xs:element name="Comments" type="xs:anyType" maxOccurs="1" minOccurs="0" />
 <xs:element ref="ade:NeighborhoodLinks" maxOccurs="1" minOccurs="0" />
 </xs:sequence>

Chapter 5. IMPLEMENTATION 69

 <xs:attribute name="ID" type="xs:integer" use="required" />
 <xs:attribute name="Label" use="optional" />
 <xs:attribute name="Status" use="required" type="ade:typeEnumStatusOfDefinition" />
 <xs:attribute name="Priority" use="optional" type="ade:typeEnumPriorities" />
 <xs:attribute name="Satisfied" use="optional" type="ade:typeEnumSatisfaction" />
 <xs:attribute name="Qualified" use="required" type="ade:typeEnumQualification" />
</xs:complexType>

<xs:complexType name="typeAssumptionElements">
 <xs:sequence>
 <xs:element name="Text" type="xs:anyType" maxOccurs="1" minOccurs="1" />
 <xs:element name="Sources" maxOccurs="1" minOccurs="0" />
 <xs:element name="SourcesText" type="xs:anyType" maxOccurs="1" minOccurs="0" />
 <xs:element name="Rationales" type="xs:anyType" maxOccurs="1" minOccurs="0" />
 <xs:element name="Comments" type="xs:anyType" maxOccurs="1" minOccurs="0" />
 <xs:element ref="ade:NeighborhoodLinks" maxOccurs="1" minOccurs="0" />
 </xs:sequence>
 <xs:attribute name="ID" type="xs:integer" use="required" />
 <xs:attribute name="Label" use="optional" />
 <xs:attribute name="Status" use="required" type="ade:typeEnumStatusOfDefinition" />
</xs:complexType>

<xs:complexType name="typeInfoElements">
 <xs:sequence>
 <xs:element name="Text" type="xs:anyType" maxOccurs="1" minOccurs="1" />
 <xs:element name="Sources" maxOccurs="1" minOccurs="0" />
 <xs:element name="SourcesText" type="xs:anyType" maxOccurs="1" minOccurs="0" />
 <xs:element name="Rationales" type="xs:anyType" maxOccurs="1" minOccurs="0" />
 <xs:element name="Comments" type="xs:anyType" maxOccurs="1" minOccurs="0" />
 <xs:element ref="ade:NeighborhoodLinks" maxOccurs="1" minOccurs="0" />
 </xs:sequence>
 <xs:attribute name="ID" type="xs:integer" use="required" />
 <xs:attribute name="Label" use="optional" />
 <xs:attribute name="Status" use="optional" type="ade:typeEnumStatusOfDefinition" />
</xs:complexType>

<xs:complexType name="typeAssertElements">
 <xs:sequence>
 <xs:element name="Text" type="xs:anyType" maxOccurs="1" minOccurs="1" />
 <xs:element name="Sources" maxOccurs="1" minOccurs="0" />
 <xs:element name="SourcesText" type="xs:anyType" maxOccurs="1" minOccurs="0" />
 <xs:element name="Rationales" type="xs:anyType" maxOccurs="1" minOccurs="0" />
 <xs:element name="Comments" type="xs:anyType" maxOccurs="1" minOccurs="0" />
 <xs:element ref="ade:NeighborhoodLinks" maxOccurs="1" minOccurs="0" />
 </xs:sequence>
 <xs:attribute name="ID" type="xs:integer" use="required" />
 <xs:attribute name="Label" use="optional" />
 <xs:attribute name="Status" use="required" type="ade:typeEnumStatusOfDefinition" />
</xs:complexType>

Listing 3: Example of a fully implemented specification type for requirements.

70 Chapter 5. IMPLEMENTATION

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://example.org/" xmlns=http://example.org/ elementFormDefault="qualified">
 <xsd:element name="complexInstance" type="MyComplexType"/>
 <xsd:element name="field1" type="xsd:string"/>
 <xsd:element name="field2" type="xsd:string"/>
 <xsd:element name="field3" type="xsd:string"/>

 <xsd:complexType name="MyComplexType">
 <xsd:all>
 <xsd:element ref="field1"/>
 <xsd:element ref="field2"/>
 <xsd:element ref="field3"/>
 </xsd:all>
 </xsd:complexType>
</xsd:schema>

[System.Xml.Serialization.XmlTypeAttribute(Namespace="http://example.org/")]
 [System.Xml.Serialization.XmlRootAttribute("complexInstance", Namespace="http://example.org/",
IsNullable=false)]

public class MyComplexType {

 public string field1;

 public string field2;

 public string field3;
}

Listing 4: C# class generation with XSD-Tool – a simple example [28].

5.3 Generation	of	the	EMF	Data	Model	

Since the specification differencing engine is based on the EMF, it is also necessary to create an
EMF data model out of our XML files. For this purpose the XML schema model importer
included in the EMF must be used to convert the XSD meta-model to an appropriate EMF ecore
meta-model. As for complex meta-models this conversion procedure is a very time-consuming
process. It is performed once during development and the resulting EMF ecore meta-model is

Chapter 5. IMPLEMENTATION 71

stored for further use. Thus, in case the XSD meta-model changes the EMF ecore meta-model
must be regenerated.

After the EMF ecore meta-model has been generated the ResourceSet class can be used to load
content of XML files into the EMF data model and to create the according EObject classes
containing the model data. Once the XML data is imported EMF can operate with the model
data. In our implementation this is used for the generation of comparison models and thus to
detect changes between similar data models.

5.4 C#	Data	Model	Access	

According to the requirements for the optimized development process listed in Section 4.2 the
requirements and specification artifacts shall be visualized in tabular form. As the C# data
model is used for the operation with this data, a mechanism needs to be implemented that
preprocesses the data object tree of the data model and converts it to an according table
representation.

The data model and its preprocessing mechanism is implemented in a separate Data Model
Library (DML), which is described in this section. This DML also contains the C# classes
generated by the XSD tool and uses the XMLSerializer library (XMLSL) to read XML
documents and create the according C# object model.

The XMLSL basically consists of two important classes, which aim to read and deserialize
XML content. The so created data object structure can then be accessed by the DLM for further
processing.

XMLSerializer

This class is responsible to load XML content by using the Microsoft .NET serializer
classes and create an according object structure out of the XML data.

Settings

This class contains the definitions of the standard namespace used in the requirements
and specification artifact XML files.

The DML implements an interface that is described below and allows accessing the
preprocessed data.

72 Chapter 5. IMPLEMENTATION

List<DataRecord> GetData(string filePath)

Uses the XMLSerializer library to read requirements and specification artifacts stored in
XML documents, preprocesses the data and returns a list of DataRecord objects, where
a DataRecord represents a row in the data table.

void StoreData(string filepath)

Uses the XMLSerializer library to store the loaded data object model in an appropriate
XML format.

DataRecord GetDataRootElement()

Returns the DataRecord object containing the highest hierarchical data item, the root
node of the object tree.

string GetXmlStandardNamespace()

Returns the default XML namespace set up in the Settings class of the DML. All
namespaces used in requirements and specification artifact XML files must be
registered in the DML.

List<InsertMenuItem> GetListOfPossibleSubitems(object item)

Returns a list of possible kinds of subitems that can be inserted below the given data
item.

bool IsDisplayedAsRow(PropertyInfo propertyInfo)

Indicates if the given property contained within the data object model is displayed as
row or column in the visualization of the data table. Properties that can contain only a
single element, which is representable as text single cell, are displayed as row, whereas
elements of arrays and objects that are not representable in a single cell are depicted as
row.

string GetItemRowTypeString(PropertyInfo parentItemPropertyInfo,
object item)

Returns a string indicating the type of the object represented by a certain property of the
data object model.

After preprocessing of the deserialized data a single row of the created data table is represented
by a DataRecord object. Such an object basically contains the information listed below.

Chapter 5. IMPLEMENTATION 73

int Level

The hierarchical level of the data item within the data model object tree.

object Content

The actual content of the represented data item.

object ParentItem

The parent data item in the hierarchical structure.

object DirectParentItem

The array or container of the parent item that contains the representing data item.

string ContentPropertyName

The name of the property that contains the representing data item.

string Type

The type of the representing data item as string.

The DataProcessor class included in the DML is basically responsible for data preprocessing.
Its main task is to grab XML data by using the XMLSerializer class and create a list of
DataRecord objects out of the data object tree. For this purpose the data needs to be interpreted
and the implemented logic must decide how the data is represented in the data table of the user
interface. After the preprocessing process a list of DataRecord objects will be returned. Since
each DataRecord object represents a single row of the data table displayed in the user interface,
this data representation facilitates the visualization of the requirements and specification
artifacts in the user interface.

The following criteria are used to decide how data is represented in the data table:

 Properties with an elementary data type (int, bool, double, float, string, char) are
displayed as column.

 Properties with data type object and without an attribute definition of type
XMLElementAttribute are also displayed as column.

 Enums are displayed as column.

 Enum arrays are displayed as column.

 In all other cases data is represented as row in the data table.

74 Chapter 5. IMPLEMENTATION

5.5 Differencing	Engine	

The Requirements and Specification Differencing Engine (RSDE) takes two XML files
containing any requirements and specification artifacts and a pre-generated ecore model as
input. Then, it calculates the comparison model and produces an output containing all
differences between the two models.

The implementation of the RSDE is based on the EMF Compare framework [14], which is also
described in Section 3.2.2. This is a highly customizable framework that facilitates operating
with model data. The RSDE is based on the EMF Compare Standalone example
implementation7, which has been modified and extended to calculate comparison models of
requirements and specification artifacts stored in XML documents. The basic structure of the
implementation is described in this section.

The RSDE basically consists of six classes:

DiffLauncher

This class contains the entry point of the RSDE. It checks the launch arguments, creates
an instance of the DiffEngine class and is responsible to start the calculation of the
comparison model.

DiffEngine

This class contains the implementation of the EMF Compare based differencing
mechanism.

EMFCompareXmlPrinter

This class contains functions to generate an XML document representing the differences
of the comparison model.

AttributeValue

This class represents an attribute value pair of an ecore model and is needed for working
with the content of ecore objects.

7 https://github.com/cbrun/emf-
compare/tree/master/plugins/org.eclipse.emf.compare.examples.standalone

Chapter 5. IMPLEMENTATION 75

Settings

This class contains static settings for the RSDE.

Utils

This class contains helper functions for several purposes.

When the RSDE is started, first all resources such as ecore models and XML documents, that
are to be compared, are loaded. Then, an EMF comparator is instantiated and configured, which
is a processor that calculates the comparison model. The configuration of the comparator is a
very important step and defines the way how models are compared to each other. A detailed
description of the configuration of the comparison mechanism can be found in the next section.
Finally, the comparison model is calculated and the differences stored in an XML document for
further processing. The visualization of the output needs to be done by a separate application.

5.5.1 Configuration	of	the	EMF	Comparator	

The EMF comparator contains the comparison algorithms and must be configured by the
developer. Thus, the way how models are compared to each other must be defined by the
developer. For this purpose either a predefined mechanism can be used or if none of them is
suitable, a so-called custom matcher needs to be implemented.

In our case we would like to compare requirements and specification artifacts to each other.
Since most of them have an identifier, that is unique at least within a single module, a custom
matcher has been implemented that uses these identifiers to find matching artifacts. This way of
work increases the performance of the comparison algorithm tremendously. A matcher is a part
of the differencing engine and is responsible to find matching artifacts that can then be
compared to each other. Listing 5 shows the implementation of the used matching function.
This piece of code defines a function that tries to get and return the ID of the given ecore object.
In the case no ID attribute can be found, null is returned and the fall back matcher will be
triggered.

As fall back matcher the default matching engine of the EMF Compare framework is used. As
stated in [11] and described in more detail in Section 3.2 of this work the default matching
engine uses a similarity-based matching approach. This has also some disadvantages, which are
described in the next section. Listing 6 shows the source code necessary for the configuration of
the EMF Compare matchers. Within the configEMFCompare function a fall back matcher and a
custom ID matcher is instantiated and the matcher engines are configured. The fall back
matcher uses the ID match function defined in Listing 5 to identify appropriate matches. Finally

76 Chapter 5. IMPLEMENTATION

the configEMFCompare function returns an EMFCompare instance that can then be used for the
calculating the comparison model with the selected configuration.

Function<EObject, String> idFunction = new Function<EObject, String>()
 {

public String apply(EObject input)
 {
 String idValue = Utils.getIDAttributeValue(input);

if (idValue != "")
 {

return idValue;
 }

else
 {

return null;
 }
 }
 };

Listing 5: Implementation of the ID match function.

private EMFCompare configEMFCompare()
 {
 // instantiate the fallback for the case that an ID is not available
 IEObjectMatcher fallBackMatcher =
 DefaultMatchEngine.createDefaultEObjectMatcher(UseIdentifiers.WHEN_AVAILABLE);

// instantiate an ID matcher for the case that an ID is available
 IEObjectMatcher customIDMatcher = new IdentifierEObjectMatcher(fallBackMatcher, idFunction);

// configure the matcher engines
 IComparisonFactory comparisonFactory = new DefaultComparisonFactory(

new DefaultEqualityHelperFactory());
 IMatchEngine.Factory matchEngineFactory = new MatchEngineFactoryImpl(
 customIDMatcher, comparisonFactory);
 matchEngineFactory.setRanking(20);
 IMatchEngine.Factory.Registry matchEngineRegistry = new MatchEngineFactoryRegistryImpl();
 matchEngineRegistry.add(matchEngineFactory);
 EMFCompare.Builder emfCompareBuilder =
 EMFCompare.builder().setMatchEngineFactoryRegistry(matchEngineRegistry);
 EMFCompare comparator = emfCompareBuilder.build();

return comparator;
 }

Listing 6: Configuration of the EMF Compare matcher.

Chapter 5. IMPLEMENTATION 77

5.5.2 Limitations	of	the	EMF	Compare	Framework	

The EMF Compare engine has also some limitations that have been experienced during the
implementation of this work.

The experienced limitation concerns the performance of the matching engine. If an artifact does
not contain a unique identifier, the fall back matcher needs to be used. In this case basically an
EMF default matching engine is used, which follows a similarity-based matching approach.
When differencing large models with a huge number of differences by using such an approach,
performance problems have been experienced at runtime. Performance and memory problems
have also been noticed when two large models are compared that have exactly the same content,
but with attributes defined in different orders.

Such kinds of problems can be avoided by making sure that each artifact has its own unique
identifier. Thus, the fall back matcher does not need to be used and the differencing mechanism
works efficiently.

5.6 User	Interface	of	the	Requirements	and	Specification	Management	
System	

The RSMS developed in the scope of this work allows the user to load several projects and to
operate with requirements and specification artifacts. Add, delete and modify operations can be
applied to design artifacts and comparison models can be visualized.

Figure 19 gives an overview of the basic structure of the RSMS. The implementation is
basically structured into the packages described below.

Data

This package basically consists of two classes: the Project class, which represents a
loaded project with all its properties and the ProjectManager class containing all
functions to operate with projects. In order to be able to store project settings in a file and
to recover them when restarting the application, the Project class must implement the
ISerializable interface.

DiffMerge

This package contains mechanisms to control the differencing engine running in an
external process and to manage its output. The differencing engine is described in the
section below. Additionally it implements a parser that reads the output of the
differencing engine and a differences processor that interprets and optimizes differences.

78 Chapter 5. IMPLEMENTATION

ExternalProcesses

This package contains classes that can be used to create, start and control external
processes. Special processes such as that one for the differencing engine are derived from
this class.

UserControls

All user controls such as the requirements and specification editor are located in this
package.

UserInterface

This package contains the implementation (classes and forms) of the graphical user
interface.

Util package

This package contains classes that offer small helper functions for several purposes.

5.6.1 Requirements	and	Specification	Editor	

This section describes the way of work of the requirements and specification editor. In order to
encapsulate the functionality of this editor and to allow multiple instances of the editor it is
implemented as user control element. It builds on the list of DataRecord objects produced by
the DML. Since the data has been preprocessed in a proper way, each DataRecord corresponds
to a single row in the data table visualized in the editor.

The main task here is to interpret the content of each attribute and visualize it in a proper way.

The Requirements and Specification Editor (RSE) uses the DML to get a list of preprocessed
DataRecord objects. Thus, the RSE must only run through the list and add the content of each
DataRecord object to the data table. During this process it is necessary to interpret this content
and to display each property in an appropriate way. In the data table of the user interface data
can be displayed by using one of the following control elements:

 Text field: For properties containing general data.

 Combo box: For properties with type of enum

 Combo box with check boxes: For properties with type of enum array.

Chapter 5. IMPLEMENTATION 79

Figure 19: Overview of the RSMS structure.

5.6.2 Visualization	of	Comparison	Models	

In order to create and visualize a comparison model the external differencing engine is started
by using the DiffManager class. This gets as input the XML files that are to be compared and
the ecore model, which has been generated before (see Section 5.3). Then, the differencing
engine analyzes the differences of the two XML requirements and specification models and
calculates an according comparison model, which is again stored in an XML document.
Listing 7 shows such an example output produced by the differencing engine.

80 Chapter 5. IMPLEMENTATION

<Diffs>
 <Diff>
 <Operation>ADD</Operation>
 <Kind>ReferenceChange</Kind>
 <IDAttribute>ID</IDAttribute>
 <IDValue>25</IDValue>
 </Diff>
 <Diff>
 <Operation>DELETE</Operation>
 <Kind>ReferenceChange</Kind>
 <IDAttribute>ID</IDAttribute>
 <IDValue>25</IDValue>
 </Diff>
 <Diff>
 <Operation>CHANGE</Operation>
 <Kind>AttributeChange</Kind>
 <ChangedAttribute>status</ChangedAttribute>
 <ChangedValue>Rejected</ChangedValue>
 <IDAttribute>ID</IDAttribute>
 <IDValue>1493</IDValue>
 </Diff>
 <Diff>
 <Operation>MOVE</Operation>
 <Kind>AttributeChange</Kind>
 <IDAttribute>ID</IDAttribute>
 <IDValue>1493</IDValue>
 </Diff>
</Diffs>

Listing 7: Example output of the differencing engine.

After that the output of the differencing engine is parsed by using the DiffFileParser class,
which stores each detected difference in a Difference object. This object contains the following
information:

string Kind

Kind of difference.

string Operation

Kind of operation applied to a data object.

string OperationText

Description text for the operation applied to a data object.

string IdAttribute

Name of the attribute that contains the unique identifier.

Chapter 5. IMPLEMENTATION 81

string IdValue

The unique identifier of the data object that contains the difference.

In the next step the DifferenceProcessor class is used to optimize and filter the list of
differences created by the parser. This is necessary due to some limitations of the EMF
Compare engine discussed in section 5.5. The output of the EMF Compare engine contains the
name of the detected operation, the kind of operation, the name of the value, where the ID is
stored in and the ID itself. Based on this information the following optimizations are applied.
For each optimization measure it is described how a certain result must be interpreted. The
optimized list of differences is then used to visualize them in the graphical user interface.

Optimization 1:

Detection: An ADD and DELETE operation has been detected on the same ID and the kind of
operation is AttributeChange.

Interpretation: This means that an attribute of a subordinated data object changed. Thus, these
originally two Difference objects result in a single Difference object with the operation text
“Subcontent Modified”.

Optimization 2:

Detection: An ADD and DELETE operation on the same ID has been detected and the kind of
operation is ReferenceChange.

Interpretation: This means that an attribute of the according data object changed. These
originally two Difference objects result in a single Difference object with the operation text
“Modified”.

Clicking on a difference in the differences list of the differences view in the user interface
highlights and shows the according difference in the RSE. Figure 21 in Chapter 6 shows a
screenshot of this use case.

82 Chapter 6. EVALUATION

Chapter	6

Evaluation	

This chapter evaluates the optimizations designed and implemented during this work. For this
reason the evaluation is divided into three parts. Section 6.1 evaluates the performance of a
DOORS export needed for several operations in the former development process and compares
this to the performance of the optimized development and security evaluation process.
Additionally, Section 6.2 shows the usage of the requirements and specification differencing
tool by calculating the comparison model of two similar example requirements models. Finally,
Section 6.3 evaluates the results of this work by using the goals question metric method.

6.1 Export-Performance	for	Reuse	of	Data	-	a	Comparison	

The first evaluation puts the focus on the export performance of the requirements management
system DOORS, which has been used in the former development process. All kinds of
requirements and specification artifacts have been stored in this system. Thus, for the further
automated processing of any artifacts, the data was needed to be exported into a CSV file. This
is the standard export format of DOORS and it is a file format where a data record consists of a
single line in a text file and values of different columns are separated by a semicolon.

The export process was necessary especially for the following purposes:

 Generation of the documentation.

 Generation of firmware interfaces (C header files).

 Generation of hardware interfaces (Verilog files).

The performance of this export process is quite poor and thus it is very time-consuming. These
problems and their consequences, especially the negative impact on the agile development, are
also discussed in Chapter 2. For this evaluation, we measured the export performance of

Chapter 6. EVALUATION 83

DOORS modules with different amounts of data. In order to establish a remote connection to
the DOORS database a local DOORS Client has been used.

Table 8 lists the export performance dependent on the amount of data exported from DOORS.
The results are also illustrated in Figure 20. A closer view on the result shows that the time
needed for the data export increases linearly with the amount of data transferred from the
DOORS database to the local computer.

Furthermore, it has been evaluated that a project with a size of about 35 Megabyte of
specification data (which corresponds to a project of an average size) needs approximately 9
hours to be exported.

This is one aspect that has been optimized within the scope of this work. Since in the optimized,
unified development process the specification is stored directly in an XML document (see also
Section 4.4.1), an export process is no longer necessary. Instead, the specification is stored in a
text-based format and it is structured in a way that allows accessing the information directly
without the need of applying further time-consuming conversion processes.

The result is an enormous gain of performance and thus, short round trip times, which are
suitable for agile development.

Transferred data in kB DOORS Export Performance in min

11 1.11

110 4.71

669 10.47

980 15.97

Table 8: DOORS export performance.

6.2 Visualization	of	Comparison	Models	

This section describes the use of the RSMS described in Section 4.4.1 for visualizing a
comparison model. This is explained by using a simple example. For this demonstration two
similar XML files with specification artifacts have been created, which differ only in some

84 Chapter 6. EVALUATION

details. These differences are to be analyzed and visualized in the developed requirements
management system.

Figure 20: DOORS export performance as function of the amount of exported data.

The XML document containing the sample requirements is shown in Listing 8. This file
contains a scope TestScope, 3 nested groups and 4 sample requirements.

The modified XML document is shown in Listing 9. All modifications are highlighted in red
and listed below:

 Text of requirement with ID = 1 changed.

 Status attribute of requirement with ID = 3 changed.

 Text of requirement with ID = 3 changed.

 The order of requirement with ID = 3 and ID = 4 changed.

Then, the differencing engine described in Section 5.5 is used to generate a comparison model
of the specification presented above.

Chapter 6. EVALUATION 85

This application can either be started directly out of the requirements management system or in
a console by using the following command:

java –jar diffengine.jar [param1] [param2] [param3]

param1 Path to the ecore model.
param2 Path to the base revision of the XML document containing the design artifacts.
param3 Path to the XML document containing the modified design artifacts.

<Specs>
 <Scope Name="TestScope" Type="Mixed">
 <Source Name="Main">
 <Group ID="10" Name="">
 <Heading>Example Requirements</Heading>
 <RS:RS />
 <Group ID="11" Name="Ext_Del">
 <Heading>My First Group</Heading>
 <RS:RS />
 <Group ID="12" Name="Ext_Del_General">
 <Heading>General</Heading>
 <RS:RS>
 <RS:Req ID="1" Status="Accepted" Priority="must have" Satisfied="N/A" Qualified="not">
 <RS:Text>This is the text of my first requirement.</RS:Text>
 </RS:Req>
 <RS:Req ID="2" Status="Rejected" Priority="must have" Satisfied="yes" Qualified="TBD">
 <RS:Text>This is the text of my second requirement.</RS:Text>
 </RS:Req>
 <RS:Req ID="3" Status="Modifying" Priority="nice to have" Satisfied="yes" Qualified="yes">
 <RS:Text>This is the text of my third requirement.</RS:Text>
 </RS:Req>
 <RS:Req ID="4" Status="Accepted" Priority="must have" Satisfied="yes" Qualified="yes">
 <RS:Text>This is the text of my fourth requirement.</RS:Text>
 </RS:Req>
 </RS:RS>
 </Group>
 </Group>
 </Group>
 </Source>
 </Scope>
</Specs>

Listing 8: Content of the XML file containing the requirements (base revision).

86 Chapter 6. EVALUATION

<Specs>
 <Scope Name="TestScope" Type="Mixed">
 <Source Name="Main">
 <Group ID="10" Name="">
 <Heading>Example Requirements</Heading>
 <RS:RS />
 <Group ID="11" Name="Ext_Del">
 <Heading>My First Group</Heading>
 <RS:RS />
 <Group ID="12" Name="Ext_Del_General">
 <Heading>General</Heading>
 <RS:RS>
 <RS:Req ID="1" Status="Accepted" Priority="must have" Satisfied="N/A" Qualified="not">
 <RS:Text>This is the modified text of my first requirement.</RS:Text>
 </RS:Req>
 <RS:Req ID="2" Status="Rejected" Priority="must have" Satisfied="yes" Qualified="TBD">
 <RS:Text>This is the text of my second requirement.</RS:Text>
 </RS:Req>
 <RS:Req ID="4" Status="Accepted" Priority="must have" Satisfied="yes" Qualified="yes">
 <RS:Text>This is the text of my fourth requirement.</RS:Text>
 </RS:Req>
 <RS:Req ID="3" Status="Rejected" Priority="nice to have" Satisfied="yes" Qualified="yes">
 <RS:Text>This is the text of my third requirement with a modified attribute.</RS:Text>
 </RS:Req>
 </RS:RS>
 </Group>
 </Group>
 </Group>
 </Source>
 </Scope>
</Specs>

Listing 9: Content of the XML file containing the requirements (modified).

Based on the XML documents presented above, this engine generates the XML output
representing the calculated comparison model (see Listing 10).

The user interface parses this comparison model, applies optimizations, which are discussed in
Section 5.6.2, and shows them finally as follows:

ID 1: MODIFIED

ID 3: MODIFIED

ID 3: MOVED

Additionally, the user can select one of these changes and gets a comparison view of the
affected data record in the compared models. Figure 21 shows the visualization of the
comparison model.

Chapter 6. EVALUATION 87

<Diffs>
 <Diff>
 <Operation>ADD</Operation>
 <Kind>ReferenceChange</Kind>
 <IDAttribute>ID</IDAttribute>
 <IDValue>1</IDValue>
 </Diff>
 <Diff>
 <Operation>DELETE</Operation>
 <Kind>ReferenceChange</Kind>
 <IDAttribute>ID</IDAttribute>
 <IDValue>1</IDValue>
 </Diff>
 <Diff>
 <Operation>ADD</Operation>
 <Kind>ReferenceChange</Kind>
 <IDAttribute>ID</IDAttribute>
 <IDValue>3</IDValue>
 </Diff>
 <Diff>
 <Operation>DELETE</Operation>
 <Kind>ReferenceChange</Kind>
 <IDAttribute>ID</IDAttribute>
 <IDValue>3</IDValue>
 </Diff>
 <Diff>
 <Operation>CHANGE</Operation>
 <Kind>AttributeChange</Kind>
 <ChangedAttribute>status</ChangedAttribute>
 <ChangedValue>Rejected</ChangedValue>
 <IDAttribute>ID</IDAttribute>
 <IDValue>3</IDValue>
 </Diff>
 <Diff>
 <Operation>MOVE</Operation>
 <Kind>AttributeChange</Kind>
 <IDAttribute>ID</IDAttribute>
 <IDValue>3</IDValue>
 </Diff>
</Diffs>

Listing 10: Output of the differencing engine.

88 Chapter 6. EVALUATION

Figure 21: Visualization of the comparison model in the RSMS.

Chapter 6. EVALUATION 89

6.3 Evaluation	of	the	Results	with	Goals	Question	Metric	

Goal Question Metric (GQM) [30] is a systematic approach for creating a quality model. In this
section we used such an approach to measure the quality of the results of this work. This
analysis considers not only the implemented parts, but also the overall design described in
Chapter 4.

In the first step we defined measurement goals. Then, we elaborated questions that define the
goals in more detail. Abstraction sheets (see Table 9, Table 10, Table 11 and Table 12) have
been used to collect important data related to the goals. In the next step metrics have been
derived from the questions to measure the goals. The collected data has been evaluated (see
Table 14, Table 15, Table 16, Table 17 and Table 18) and a GQM plan has been derived, which
is shown in Figure 22.

GQM Abstraction Sheet

Goal: G 1.1.1: Shorten the round trip time for FW interface generation.

Point of view: Developer Environment:
Development
process for IC
development

Quality focus Variation factors

1. Number of steps needed until a
changed interface definition is
available in the source code.

2. Number of applications needed in
parallel to change an interface
definition.

1. Number and complexity of the
applications to be used.

2. Amount of exported data.

Baseline hypothesis Environment impact on baseline hypothesis

1. At least 2 applications (DOORS,
Development Environment) are
necessary to generate C header
files.

2. At least 1 export and 2 conversion
processes are necessary to generate
a C header file.

3. DOORS data export processes are
very time-consuming.

1. Number of applications that need to
be used in parallel influences
baseline hypothesis 1.

2. Amount of interface data that need
to be exported influences baseline
hypothesis 3.

3. High number of export and
conversion processes influences
baseline hypothesis 2.

Table 9: GQM abstraction sheet: Round trip time for SW/FW development.

90 Chapter 6. EVALUATION

GQM Abstraction Sheet

Goal: G 1.4.1: Reuse and referencing of design artifacts in the
documentation.

Point of view: Developer Environment:
Development
process for IC
development

Quality focus Variation factors

1. Redundancies of design data in the
development process and in the
documentation.

2. Inconsistencies in the
documentation.

3. High effort for product
maintenance.

1. Need of copy and paste operations
for referencing design artifacts in
the documentation.

2. Missing automation mechanism for
referencing design artifacts in the
documentation.

Baseline hypothesis Environment impact on baseline hypothesis

1. Content of design artifacts
redundantly available in the
documentation.

2. Inconsistent documentation.

1. Referencing of design artifacts by
using copy and paste operations
influences baseline hypothesis 1
and 2.

2. Manual changes of the content of
design artifacts in the
documentation influences baseline
hypothesis 2.

Table 10: GQM abstraction sheet: Resuse and referencing of design artifacts in the documentation.

GQM Abstraction Sheet

Goal: G 1.2.1: Support multi-user access for the requirements editor.

Point of view: Developer Environment:
Development
process for IC
development

Quality focus Variation factors

1. Number of users that can make
changes concurrently in a module.

1. Functionality and mechanisms for
teamwork support in the RMS.

Baseline hypothesis Environment impact on baseline hypothesis

1. Only 1 person can work on a
module.

1. Functionality and mechanisms of
the RMS influences baseline
hypothesis 1.

Table 11: GQM abstraction sheet: Multi-User Access.

Chapter 6. EVALUATION 91

GQM Abstraction Sheet

Goal: G 1.3.1: Support custom meta-model for design artifacts.

Point of view: Developer Environment:
Development
process for IC
development

Quality focus Variation factors

1. Quality of the stored design data.
2. Support for creating new design

data.
1. Data validation

Baseline hypothesis Environment impact on baseline hypothesis

1. Erroneous and incomplete design
data.

2. Additional effort of maintenance
for erroneous and incomplete
design data.

1. Data validation when
inserting/creating new design data
influences baseline hypothesis 1 and
2.

Table 12: GQM abstraction sheet: Custom meta-model support.

GQM Abstraction Sheet

Goal: G 2.1.1: Unified process for development and security evaluation.

Point of view: Developer Environment:
Development
process for IC
development

Quality focus Variation factors

1. Complete linking between design
artifacts and artifacts for security
evaluation.

1. Links between design artifacts and
artifacts of the security evaluation
process.

2. Structure of the process for
development and security
evaluation.

Baseline hypothesis Environment impact on baseline hypothesis

1. Separated documentation for
design and security evaluation.

2. No tracing between design artifacts
and artifacts of the security
evaluation process possible.

1. Missing links between design
artifacts and artifacts of the security
evaluation process influence
baseline hypothesis 2.

2. Two separated processes for
development and security
evaluation influence baseline
hypothesis 1 and 2.

Table 13: GQM abstraction sheet: Unified process for development and security evaluation.

92 Chapter 6. EVALUATION

Goal: G 1.1.1

Description: Shorten the round trip time for FW interface generation

Question Q1:
How much applications are needed in parallel to modify an interface
definition?

Metric M1:
Find the number of applications necessary to modify an interface
definition in the source code.

Answer A1:

Only one application is needed for modifying an interface definition.

Rationale: Interface definitions can directly be modified in the source
code. The synchronization of the source code with the RMS must not
be done at development time. Thus, only a development environment
for editing the source code is necessary.

Question Q2:
How much data export and conversion processes need to be executed to
synchronize the RMS with the source code?

Metric M2:
Find the number of export and conversion processes necessary for
synchronizing the source code and the data in the RMS.

Answer A2:

No data export and one conversion process is needed for the
synchronization.

Rationale: Since specification is stored in XML documents, the
specification can be directly processed without the need of an export
process. A conversion process is necessary to generate source code out
of the XML specification.

Table 14: Analysis of goal G 1.1.1.

Chapter 6. EVALUATION 93

Goal: G 1.2.1

Description: Support multi-user access for the requirements editor.

Question Q 3: How much team members can work on a module concurrently?

Metric M 3:
Find the number of users that can work concurrently on a module in the
RMS.

Answer A 3:

An arbitrary number of users can work concurrently an a module.

Rationale: Each user works on a local copy of the specification. When a
user commits the changes, a merge engine is used to merge the user's
changes into the head revision of the modified module.

Table 15: Analysis of goal G 1.2.1.

Goal: G 1.3.1

Description: Support custom meta-models for design artifacts.

Question Q4: Is the design data validated after the insertion process?

Metric M4:
Find out if new inserted data is validated before storing them in the
RMS.

Answer A4:

No, data is currently not automatically validated before storing them in
the RMS.

Rationale: This is a feature that must be implemented within the scope
of a further work. Nevertheless, specification can be easily validated by
using an XSD check. This return true if the specification data is valid
and false otherwise. A pointer to the erroneous data record cannot be
derived from the output of an XSD check.

Table 16: Analysis of goal G 1.3.1.

94 Chapter 6. EVALUATION

Goal: G 1.4.1

Description: Reuse and referencing of design artifacts in the documentation.

Question Q5:
Can design artifacts be inserted into the documentation without the use
of copy and paste operations?

Metric M5:
Find out if design artifacts can be referenced in documents without
copy and paste operations.

Answer A5:

Yes.

Rationale: Design artifacts can be easily referenced in the
documentation by using special LaTeX commands. A documentation
engine resolved the references and inserts the according content
automatically.

Question Q6:
The content of a design artifact has been changed. On how much
locations must information be adapted in order to avoid
inconsistencies?

Metric M6:
Find the number of locations, where data must be changed if the content
of a design artifact changes.

Answer A6:

1.

Rationale: Since a single-point-of-source approach has been followed,
the content of specification artifacts must only be changed in the
specification repository. All references in the documentation art
updated automatically.

Table 17: Analysis of goal G 1.4.1.

Chapter 6. EVALUATION 95

Goal: G 2.1.1

Description: Unified process for development and security evaluation

Question Q7: How much links contains a module of average size?

Metric M7: Find the number of links a module of average size contains.

Answer A7:

1700 links.

Rationale: A module on system level for a security IC with about 1400
requirements contains approximately 1700 links (inbound and outbound
links).

Table 18: Analysis of goal G 2.1.1.

96 Chapter 6. EVALUATION

Figure 22: GQM plan.

Chapter 7. RESULTS AND OUTLOOK 97

Chapter	7

Results	and	Outlook	

In this work the development and security evaluation process for secure smart cards has been
optimized with regard to the used tooling environment. The goal was to optimize the
development process and to implement tools that support developers in doing their daily work.

Since this work has been created in cooperation with NXP Semiconductors Austria GmbH, it
started with an analysis of the current situation of the development process in this company.
With this analysis, we were able to identify the problems of the existing process. In the next step
we defined a set of goals for the optimized development process. One of the goals was to
combine the development and security evaluation process and to find an appropriate framework
supporting the developers in creating the documentation. Thus, we did a research on existing
technologies for producing engineering documents. We analyzed and compared technologies
that allow referencing and tracing design artifacts in the documentation and we found out that
the ADE development framework suits best for our purposes. This documentation framework
had been developed in the scope of a previous work and was now reused in the optimized
process. Additionally, we needed to find a suitable requirements management system. This
should allow managing different types of design artifacts such as requirements, software
interface specification and test specification. Artifacts needed for the security evaluation process
such as security problem definition or security objectives should also be managed by using this
application. Since we did not find an appropriate existing system, that satisfies all our
requirements, we decided to implement a prototype of such a solution by ourselves. Our
approach allows the user to define meta-models for different specification types, which makes
the system flexible and highly customizable. Furthermore, a differencing engine has been
implemented. This implementation is based on the EMF Compare framework and facilitates the
user to calculate comparison models showing the differences of two models containing design
artifacts. A graphical user interface visualizes the detected differences and makes them
accessible to the user.

Our implementations that have been created within the scope of this work have also some
limitations, which are discussed here. One of them is the missing XSD check of the input in the

98 Chapter 6. EVALUATION

requirements and specification editor. A XSD check is an XML schema validation that
determines if the given XML file follows the rules defined in the XSD. In case of a negative
XSD check the data record that causes the error cannot be identified. Thus, the results of this
check can also not be visualized in the user interface.

Since the effort for implementing the entire process would go beyond the scope of this work,
only a part of the design presented in this work has been implemented.

Chapter 4 describes a differencing and merge engine needed for the implementation of the
synchronization layer shown in Figure 9. Within the scope of this work the differencing engine
has been implemented. It is planned to implement the merge engine in the scope of a further
work. The according process has already been considered in the design described in Chapter 4..
The EMF Compare framework, which is currently used for calculating the comparison models,
offers also comfortable opportunities to merge design artifacts of different sources. Thus, in the
next step the implementation of the differencing engine must be extended. Furthermore it would
be necessary to create an interactive connection between the graphical user interface and the
according merge engine, which allows the user to select the design artifacts that are finally to be
inserted into the merged model.

Furthermore, according to the description in Section 4.5, the two separated processes for
development and security evaluation have been combined to a single, unified process. The
design artifacts stored in XML documents contain now links, which are the basis for the
traceability of design artifacts and for impact analyses. The documentation engine uses also this
information to display linked artifacts in the design and security evaluation documentation. A
user interface to create and modify such links needs still to be implemented and is also within
the scope of a further work.

Parts of the results of this work have also been published in the paper Supporting Evolving
Security Models for an Agile Security Evaluation [31].

Chapter 8. BIBLIOGRAPHY 99

Chapter	8

Bibliography	

[1] G. Matthew Ezovski and Steve E. Watkins. The Electronic Passport and the Future
of Government-Issued RFID-Based Identification. In RFID, 2007. IEEE
International Conference on, pages 15–22, March 2007.

[2] Klaus Finkenzeller. RFID handbook: fundamentals and applications in contactless
smart cards and identification. Hardcover, 2003.

[3] Capgemini and RBS. World Payments Report 2013. Capgemini, 2013.

[4] Damien Sauveron and Pierre Dusart. Which trust can be expected of the Common
Criteria certification at end-user level? In Future Generation Communication and
Networking (FGCN 2007), volume 2, pages 423–428, Dec 2007.

[5] ISO/IEC_JTC1/SC27. Information technology-Security techniques-Evaluation
criteria for ITsecurity. ISO/IEC 15408:2006 (Common Criteria v3.1), 2006.

[6] Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. Dynamic
Software Product Lines. Computer, 41(4):93–95, April 2008.

[7] Linda Northrop. Software Product Lines.
http://http://splc.sei.cmu.edu/library/assets/Philips.04.12.05.pdf, 2001.

[8] Zsuzsa Varvasovszky and Ruairí Brugha. A stakeholder analysis. Health Policy
and Planning, 15(3):338–345, 2000.

[9] Debra S. Herrmann. Using the Common Criteria for IT security evaluation. CRC
Press, 2002.

[10] Security IC Platform Protection Profile, registered and certified by Bundesamt fuer
Sicherheit in der Informationstechnologie (BSI) under the reference BSI-CC-PP-
0084-2014, Rev. 1.0, 2014

[11] Dimitrios S Kolovos, et. al. Different models for model matching: An analysis of
approaches to support model differencing. In Comparison and Versioning of
Software Models, 2009. CVSM'09. ICSE Workshop, pages 1-6. IEEE, 2009.

100 Chapter 8. BIBLIOGRAPHY

[12] Cédric Brun and Alfonso Pierantonio. Model differences in the eclipse modeling
framework. UPGRADE, The European Journal for the Informatics Professional,
9(2):29-34, 2008.

[13] Tancred Lindholm. A 3-way Merging Algorithm for Synchronizing Ordered
Trees–the 3DM merging and differencing tool for XML. Master thesis, Helsiniki
University Of Technology, 2001.

[14] Eclipse Foundation. EMF Compare. http://www.eclipse.org/emf/compare, 2008.

[15] Jeremy Dick. Design traceability. Software, IEEE, 22(6):14-16, 2005.

[16] Michael Priestley. DITA XML: A reuse by reference architecture for technical
documentation. In Proceedings of the 19th annual international conference on
Computer documentation, pages 152-156. ACM, 2001.

[17] Kristen James Eberlein, et al., Darwin Information Typing Architecture (DITA)
Version 1.2. Organization for the Advancement of Structured Information
Standards, OASIS, 2010.

[18] J Steven Jenkins and Vance A Heron. Producing Engineering Documents Using
Semantic Web Tools and DocBook. In Proceedings of the Conference on Systems
Engineering Research (CSER), March, pages 14-16, 2007.

[19] W3C. XSL Transformations (XSLT). http://www.w3.org/TR/xslt, 1999.

[20] NXP. ADE Introduction. 2013.

[21] Helmut Kopka. LaTEX: eine Einfuehrung. Addison Wesley, 1992.

[22] Laurie Williams and Alistair Cockburn. Guest Editors’ Introduction: Agile
Software Development: It's about Feedback and Change. Computer, 36(6):39–43,
2003.

[23] Konstantin Beznosov and Philippe Kruchten. Towards Agile Security Assurance.
In Proceedings of the 2004 Workshop on New Security Paradigms, NSPW ’04,
pages 47–54, New York, NY, USA, 2004. ACM.

[24] Jim Highsmith and Alistair Cockburn. Agile software development: The business
of innovation. Computer, 34(9):120–127, 2001.

[25] W3C. XML Essentials. http://www.w3.org/standards/xml/core, 2010.

[26] W3C. XML Schema. http://www.w3.org/XML/Schema.html, 2014

[27] Microsoft. MSDN article - XML Schema Definition Tool (Xsd.exe).
http://msdn.microsoft.com/en-us/library/x6c1kb0s%28v=vs.85%29.aspx, 2014.

[28] Microsoft. MSDN article - XML Schema Binding Support in the .NET Framework.
http://msdn.microsoft.com/en-us/library/sh1e66zd%28v=vs.85%29.aspx, 2014.

[29] W3C. XML Schema Tutorial.http://www.w3schools.com/schema/default.asp,
2014.

Chapter 8. BIBLIOGRAPHY 101

[30] Heiko Koziolek. Goal, Question, Metric. In Irene Eusgeld, Felix C Freiling, and
Ralf Reussner, editors, Dependability Metrics, volume 4909 of Lecture Notes in
Computer Science, pages 39–42. Springer Berlin Heidelberg, 2008.

[31] Wolfgang Raschke et al. Supporting Evolving Security Models for an Agile
Security Evaluation. In Proceedings of the 1st International Workshop on Evolving
Security & Requirements Engineering, ESPRE’14, pages 31-36, 2014.

