
Institute for Computer Graphics and Vision

Graz University of Technology

Graz

GPU-Accelerated Panoramic

Mapping and Tracking
Master’s Thesis

Georg Reinisch, BSc.

georg.reinisch@student.tugraz.at

December 2012

Supervision:

DI Dr.techn. Clemens Arth

Univ. Prof. DI Dr. techn. Dieter Schmalstieg

Abstract

Creating panoramic images in real-time is an expensive operation for mobile de-

vices. Depending on the size of the camera image and the panoramic image the

pixel-mapping is one of the most time consuming parts. This part is the main fo-

cus of this thesis and will be discussed in detail. To speed things up and to allow

the handling of larger images the pixel-mapping process is transferred from the

Central Processing Unit (CPU) to the Graphics Processing Unit (GPU). The in-

dependence of pixels being projected into the panoramic image allows OpenGL ES

shaders to do the mapping very efficiently. Different approaches of the pixel-mapping

process are demonstrated and confronted with an existing solution. The application

is implemented for Android phones and works in real-time on current generation

devices.

Keywords: Augmented Reality, Open Scene Graph, OpenGL ES 2.0, pixel map-

ping

Zusammenfassung

Das Erzeugen von Panoramabildern auf mobilen Geräten in Echtzeit ist eine rechen-

intensive Operation. Abhänging von der Größe des Kamera- und des Panoramabilds

stellt das Pixelmapping den zeitaufwendigsten Teil dar, auf welchen im Zuge die-

ser Arbeit als Hauptfocus näher eingegangen wird. Um die Geschwindigkeit des

Mapping-Vorganges zu erhöhen und um größere Panoramabilder zu ermöglichen,

wurde der Mapping-Prozess von der Central Processing Unit (CPU) auf die Gra-

phics Processing Unit (GPU) verlagert. Die Unabhängigkeit der zu projezierenden

Pixel begünstigt die Verwendung von OpenGL-Shadern und ermöglicht einen effizi-

enten Mapping-Vorgang. Die Arbeit befasst sich mit verschiedenen Pixelmapping-

Methoden, welche einer bestehenden Methode gegenübergestellt werden. Die An-

wendung wurde für Android-Handys entwickelt und läuft in Echtzeit auf derzeit

gebräuchlichen Geräten.

Keywords: Augmented Reality, Open Scene Graph, OpenGL ES 2.0, pixel map-

ping

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, an-

dere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten

Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht

habe.

Graz, am .

(Unterschrift)

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other

than the declared sources / resources, and that I have explicitly marked all material

which has been quoted either literally or by content from the used sources.

. .

date (signature)

4

Acknowledgements

I would like to thank my supervisor Clemens Arth for supporting me all the way

during writing my thesis and providing a workplace for me at the Institute for

Computer Graphics and Computer Vision (ICG) for the whole time. Therefore also

thanks to my room colleagues Stefanie Zollmann and Jonathan Ventura for letting

me stay. In general I want to thank the ICG at the Graz University of Technology,

especially Markus Tatzgern and Lukas Gruber for their support in OpenGL ES and

OpenSceneGraph.

Special thanks go to my parents that supported me during my whole period of study

and without them all this would not have been possible.

Thanks to my girlfriend and my friends, who always motivated me and listened to

all the problems I had during the development.

5

Contents

1 Introduction 8

1.1 Problem Statement . 9

1.2 Motivation . 10

1.3 Contribution . 11

1.4 Architecture of the Studierstube ES AR framework 11

1.5 OpenSceneGraph . 13

2 Related Work 15

2.1 Panoramic Imaging and Image Mosaics 15

2.2 GPU-acceleration . 16

2.3 Image Refinement . 17

2.4 Demand for Action . 19

3 CPU-Sided Panoramic Mapping and Tracking 20

3.1 Panoramic Tracking . 20

3.1.1 Brightness Offset . 22

3.2 Panoramic Mapping . 22

4 GPU-Accelerated Mapping 26

4.1 Structure of the Mapping and Tracking process 26

4.2 Framebuffer Switching . 29

4.3 Shader Mapping . 29

4.3.1 Mathematical description of the mapping process 30

4.3.2 Shader Optimization . 34

5 GPU-based Mapping for advanced applications 38

5.1 Wiping . 38

5.2 Image Refinement . 39

5.2.1 Brightness Offset Correction 40

5.2.2 Gamma Correction . 42

5.2.3 Pixel-Blending . 42

5.2.3.1 Blending a Frame Area of the Camera Image 43

Contents 6

5.2.3.2 Blending the Running Average of the camera image . 43

5.2.3.3 Blending Values in HSV-Color Space 44

5.2.3.4 Blending/Fading from Completed Cells 46

5.3 Larger panoramic images . 47

6 Evaluation and Experimental Results 48

6.1 Panoramic image refinement . 48

6.2 Robustness . 57

6.3 Render Speed . 62

6.4 Interpretation of the Evaluation Results 64

6.5 Implementation Issues . 67

7 Concluding Remarks and Future Work 69

7.1 Future Work . 70

Contents 7

Chapter 1

Introduction

Mixed Reality (MR) ranges from Virtual Environment (VE) to Real Environment

(RE). Whereas VE, or more commonly called Virtual Reality (VR), is a completely

virtual continuum, RE contains only real objects from a real world scene, e.g., a video

taken by a camera [Milgram94]. In between those two extrema, Augmented Reality

(AR) describes a state of a real environment with virtual objects superimposed or

merged with it. AR systems do not only have to combine virtuality and reality, but

have to be interactive and registered in 3D. The motivation for creating AR-systems

is that they can enhance the human perception through interaction with the real

world [Azuma97].

The fast improving technology on mobile/smart-phones including better cameras,

GPS sensors, gyroscope sensors, faster central processing units with multiple cores

and even graphics processors enables new possibilities for AR. Despite all this inno-

vations, using AR systems outdoors still raises a number of difficulties, because there

is less control over the environment, compared to indoor environments [Wagner10].

Visual tracking methods (e.g., feature point extraction, optical flow) do not work

well if homogenous areas like a gray sky or big, close walls occupy a large amount

of the camera view. Since rotations are the main source of inaccuracy in the track-

ing process, integrating a gyroscope sensor can improve the robustness of trackers

considerably [Schall09].

Real-time tracking in 6DOF on mobile phones for AR purposes stays a difficult and

computationally demanding task for the time being. Tracking in 3DOF (ie., tracking

of rotation only) using panoramic images was demonstrated to work very well for

AR recently [Wagner10].

For creating panoramic images several different kinds of techniques are proposed in

the literature. Hardware intensive approaches for capturing panoramic images are

realized with a lens that has a large field of view, such as the fisheye lens. Other ap-

proaches use parabolic mirrors or mirrored pyramids. Creating panoramic images out

of several regular photographs requires the images to be composed and aligned using

Chapter 1 Introduction 8

stitching or image mosaic algorithms [Szeliski97]. Most of the recent approaches that

generate panoramic images do this in an offline process [Steedly05, Szeliski97]. After

taking pictures with a camera, the images are read in by an application that com-

poses them into one single panoramic image. A good overview of several image align-

ment and stitching algorithms is given in [Szeliski06].

For AR purposes, Wagner el. al. created a method that captures an image with

the camera of a mobile phone and maps it onto the panoramic image in real-time

[Wagner10]. The approach takes the camera live preview feed as input and continu-

ously extends the panoramic image, while the rotational parameters of the camera

motion are estimated. If the panoramic image is filled, it can be saved and no further

post-processing step is required.

While the process of mapping pixels is done by the CPU in the approach of Wagner

et. al., this work is dedicated to the development of a mapping process that runs

entirely on the mobile phone GPU. General purpose programming on the GPU is

a common practice in the field of image processing, since processing a pixel’s color

value can often be heavily parallelized. Furthermore, post-processing steps for en-

hancing the quality of the panoramic images can be performed automatically and di-

rectly on the dedicated graphics processing hardware.

1.1 Problem Statement

In order to achieve a satisfying result in mapping and tracking a panoramic im-

age in real-time, a compromise between render speed and image quality has to be

made. This is especially true when computing the image on a handheld device with

very limited resources. Even the strongly increasing computational powers of mobile

phones cannot fully remove the limits if the amount of image data becomes too

large.

The existing panoramic mapper and tracker by Wagner et. al. solely works on the

CPU. Since mapping a camera image onto a panoramic map is one of the most

expensive operations computed on a CPU, only a small image resolution can be

mapped. Increasing the size of the camera image has a significant and adverse impact

on the render speed of the mapping process. Therefore, the application is accelerated

by only mapping new pixels, to keep the number of pixels to map as low as possible.

A downside of this approach is that it eliminates the chance of blending pixels to

cover seams generated by brightness differences.

Chapter 1 Introduction 9

Additional functionality, like clearing an area of the current state of the panoramic

image, is a costly operation which has to be performed on the CPU. This feature

is of special interest, because it allows the removal of a person or a moving object

covering a part of the panoramic scene. Without this feature a new attempt of taking

an image has to be made, which can be very frustrating and negatively impacts the

usability of the approach.

1.2 Motivation

Due to developments in the last few years, nowadays mobile phones or ’smart-phones’

have faster processors with multiple cores and are equipped with GPUs. Furthermore

the OpenGL ES 2.X standard allows developers to customize the programmable

graphics pipeline using shader programming [Munshi10]. These improvements enable

new possibilities of mapping the camera image onto a panoramic map on mobile

phone GPUs.

Using shader implementations for general purpose computation is very useful for op-

erations that can be heavily parallelized on GPUs. Especially for image processing,

pixelwise calculations are often computed in a fragment shader. If they behave lin-

early, the calculations can be done in the vertex shader, where they are automatically

interpolated between these vertices and accelerated by the devices’ hardware. Both

shader run as separate programs for each vertex (vertex shader) or fragment (frag-

ment shader). Transferring the calculations to the GPU reduces the computational

expenditures of the CPU and partitions computation between the CPU and GPU.

Despite GPUs on mobile phones having very limited computational power compared

to the ones integrated in PCs, generating free resources on the CPU enables to ex-

tend functionality without loosing rendering speed.

Having all these hardware and functionality improvements, the goal of this work is to

complement the CPU-based rendering approach by Wagner et. al. with a GPU-based

implementation and to transfer computational costs from the CPU to the GPU. By

using shaders, one is enabled to calculate the image mapping in parallel. Overlapping

mapping areas can be blended and therefore the visibility of seams and artifacts can

be reduced or eliminated. Furthermore operating with shaders facilitates the removal

of unwanted objects in the scene.

Chapter 1 Introduction 10

1.3 Contribution

In this work we demonstrate a system that tracks the current camera orientation on

the CPU and maps the camera image according to its orientation using the GPU in

real-time.

The tracking part is based on an approach developed by Wagner et. al. [Wagner10].

They introduce a system that realizes the tracking of a camera image and the cre-

ation of a panoramic map in real-time solely on a mobile phone’s CPU. As discussed

in Chapter 3, the rotational movement of the camera is estimated and used for the

mapping process. In contrast to this pure CPU-sided approach the camera orienta-

tion is passed to a shader implementation (in form of a rotation matrix), which is

described in Chapter 4 in detail.

The advantages of this GPU-mapping approach are on the one hand the paral-

lel processing of pixels and on the other hand the efficient way of improving the

image quality. In Section 5.2 image refinement methods are discussed that reduce

or eliminate seams and artifacts generated by mapping camera images of different

brightnesses.

The approaches for improving the image quality are tested with regard to the general

impression of the outcome, the tracking quality of the newly generated panoramic

image and the render speed. The results are interpreted and compared with results

of the CPU-mapping. In terms of speed significantly larger panoramic image sizes

are tested.

To enhance the user-friendliness of taking panoramic images, a wiping function is

added. This function allows the user to remove unwanted areas of the panoramic

image and remap them again. This can be very useful, if a moving object or person

covers an important part of the scene.

1.4 Architecture of the Studierstube ES AR

framework

Because the described work builds upon existing software, the following paragraphs

are dedicated to an overview about the StbES framework, developed by the handheld

AR team [ICG09] of Graz University of Technology.

The predecessor of the AR framework was Studierstube 4, which was not suitable

for mobile phones and therefore was rewritten and optimized to achieve real-time

Chapter 1 Introduction 11

Figure 1.1: Architecture of the Studierstube ES AR framework

frame rates for AR-applications on mobile phones. A detailed description can be

found in [Wagner09a, Wagner09b].

As seen in Figure 1.1 the framework supports several platforms. It abstracts different

hardware types of mobile phones, operating systems and special APIs such as Direct

3D, OpenGL ES, etc. The framework is divided into modules, for which each of it

provides special functionality to the programmer.

The math module can be used for mobile phones that do not have an integrated

Floating Point Unit (FPU). It enables the calculation with fixed point arithmetic,

which can speed up applications on such devices. For PC usage the arithmetic can

be switched between fix-point and floating-point. The core module takes care of the

thread handling, sockets, logging and handles diverse sensors. It also supports gen-

eral data types like vectors and strings to be platform independent. In the IO-module

HTTP-requests and zipping/unzipping of files is handled as well as the implementa-

tion of XML- and string-parsing functionality. The tracker module supports tracking

of different markers and natural feature tracking and is responsible for camera pose

estimation. For efficient rendering of a scene the scence graph module offers func-

tionality for creating a scene graph. To put all modules together and to create an

Chapter 1 Introduction 12

entry point in an application the framework’s Studierstube ES module is used. For

creating an application the initialization, update and render methods, which have to

be inherited from the Application class can be overwritten and customized for one’s

own needs.

In this work however, a different render module is used, since the scene graph module

is very likely to be replaced by the one of the most popular open source cross platform

tool kits, OpenSceneGraph (OSG).

1.5 OpenSceneGraph

OpenSceneGraph is an open source render tool kit that works on several plat-

forms and is used for developing high-performance graphics applications. Similar

to the Studierstube SG module, the OSG is based around the concept of a scene

graph. An object-oriented framework is provided on top of the OpenGL functionality

[OSG07].

The architecture of OSG described in [Wang10] is designed to be highly scalable

to enable runtime access to extended functionality. The core component of OSG

shown in Figure 1.2 consists of four libraries. The first one is the OpenThreads-

library to provide a minimal and complete thread interface. The second library that

provides all the basic elements for building a scene graph, is the osg-library. In the

osgDB-library a plug-in mechanism is responsible for reading and writing from or

to files and stream IO-operations. The osgUtil-library is designed to build the OSG

rendering backend. It traverses the scene graph and performs culling and converts

the scene into OpenGL calls.

In addition to the core component several modular libraries, called NodeKits, sup-

port the framework. These libraries include, for instance, a support to render anima-

tions, special effects, particle-based effects, geographical terrains, text, etc.

In most cases the libraries from the core component are the only libraries required

for building an OSG-based application.

Chapter 1 Introduction 13

Figure 1.2: Architecture of the OpenSceneGraph tool kit by [Wang10]

Chapter 1 Introduction 14

Chapter 2

Related Work

2.1 Panoramic Imaging and Image

Mosaics

The generation of panoramic images is a popular topic in the literature. For image

alignment several approaches exist that are suitable for different types of cases.

A tracking method described by [Lowe04] that searches for scale invariant key

points (SIFT), is used in several offline approaches. To generate such features,

SIFT uses a scale-space extrema detection to search for features over all scales

and image locations. At the candidate’s location key points are selected to mea-

sure the stability in location and scale. In an orientation alignment step orienta-

tions are assigned to the key point locations based on local image gradient di-

rections. A descriptor for each key point is computed by measuring the local im-

age gradients at the selected scale in the area around the key point. Most ex-

isting approaches for panoramic imaging or creating image mosaics work offline

[Brown03, Steedly05, Szeliski97].

Adam et. al. in [Adams08] discuss a method in which the successive images of a

camera’s view finder are aligned online and in real-time. Therefore, by aligning in-

tegral projections of edges in two images, the inter-frame translation is estimated.

For refining this estimation the point features are aligned and a full 2D similarity

transformation is computed. However it does not permit to create closed 360 degree

images and tracking the 3D motion of the phone. In [Xiong09a] the viewfinder al-

gorithm is used for tracking the camera motion to create high resolution panoramic

images. Every time the camera motion exceeds a threshold with respect to the pre-

vious image a high resolution image is captured. The whole approach itself does not

run in real-time and requires offline processing.

A big problem of several approaches for panoramic image creation is that important

parts of the scene are missing in the final image since they have been cut off. This

Chapter 2 Related Work 15

problem arises if the user misses to capture relevant areas or the relevant areas dis-

appear when cropping the panoramic image to its rectangular shape. The panoramic

image preview described by Baudisch et. al. in [Baudisch05] shows a low-resolution

real-time preview while shooting the image that is similar to the approach in this

paper.

A similar real-time tracking method as in [Wagner10] is described by DiVerdi et.

al. in [DiVerdi08]. The system called Envisor is capable of creating environment

maps online. For refining optical flow measurements DiVerdi et. al. use landmark

tracking. The result of the tracking process is frame-wise projected into a cube map.

To avoid having gaps in the final result the user gets a feedback of the current

state of the panoramic image and the remaining gaps are filled by texture diffusion

when finishing the image. Since landmark tracking is a costly operation, it does not

run on mobile phones, but requires extensive GPU resources for real-time process-

ing.

The real-time panoramic mapping and tracking approach by Wagner et. al. combines

the tracking of the camera orienation and panoramic image creation and is still able

to run in real-time. Therefore it can be distinguished from the approaches described

above.

Approaches that do not mainly focus on generating panoramic images, but generate

them in form of a by-product are based on Simultaneous Localization and Map-

ping (SLAM) [Davison03]. An approach that is based on SLAM is a visual compass

created by Montiel et. al. [Montiel06], which is able create a sparse 3D reconstruc-

tion of the environment. Another SLAM-based approach for augmented reality that

even runs on mobile phones was developed by Klein and Murray [Klein07]. Their

approach supports 6DOF and can handle a few hundreds of feature-points, whereas

the tracker described in [Wagner10] has only 3DOF but can handle thousands of

feature-points.

2.2 GPU-acceleration

For the mapping part GPU-accelerated approaches exist that already use the sup-

port of the graphics processor for image blending. López et. al. developed a document

panorama builder, which takes several low resolution viewfinder images from a video

of a document for interactively creating an image mosaic that reduces blurry arti-

facts [López09]. While the quality evaluation and frame selection runs online, the

stitching and blending is done after finishing the video and is accelerated using the

Chapter 2 Related Work 16

GPU. Since López et. al. used OpenGL ES 1.1 they are not able to have the flexi-

bility of programmable shader, but still point out to gain speed for parallelizing the

processes.

Pulli et. al. warp their images via spherical mapping calculated on the GPU [Pulli10].

They use OpenGL ES 1.1 to reduce the computational time in order to run the

application on smart-phones. The input images are divided into a triangular mesh

and the geometrical transformation is calculated for each vertex. The original image

is provided as a texture map to the GPU and after warping the result, it is read

back to the CPU for further calculations.

An approach that creates spherical image mosaics in real-time using graphics pro-

cessors for faster computation is discussed by Lovegrove et. al. [Lovegrove10]. They

realize an efficient second-order method for parallel image alignment and a global

optimization for a map of key frames over the whole viewsphere. Both the CPU

and GPU are used for calculations. For rendering the scene on the GPU, the color

values of each pixel are summed up. Then the current value is divided by the alpha

value, which is used as a mapping counter. However this approach does not run on

mobile phones in real-time, since the computing power of handheld devices is very

limited.

2.3 Image Refinement

Removing the seams of panoramic images that occur if two images with different illu-

mination are stitched together is a widely discussed topic.

Uyttendaele et. al. calculate regions of differences (ROD) to locate dynamic areas of

the scene, which cause ghosting artifacts. By eliminating certain RODs the ghost-

ing artifacts can be removed. To cope with the differences in brightness a transfer

function is applied to the input image to smooth transitions between its neighbors.

If the amount of neighboring images increases, the functions would get too complex.

Therefore a block-based exposure adjustment technique is used to vary the image’s

transfer function [Uyttendaele01].

Tian et. al. introduce a method for color correction that is based on a histogram

map. The method acquires the color histogram of one of the images that share an

overlapping area. An estimated color transform matrix is generated and applied to

the other image of the overlapping area [Tian02].

In the approach of Xiong et. al. graph cut is used for optimal seam finding in the

Chapter 2 Related Work 17

overlapping areas of neighboring images to reduces the appearance of brightness dif-

ferences. If this method is not able to remove the seam completely additional gradient

domain transition smoothing is applied globally. The approach is divided in a sequen-

tial image blending process for mobile devices and a global image blending process

for a better solution on a global scale [Xiong09b].

Xiong et. al. in [Xiong10] discuss a fast stitching approach for composing several

source images into a panoramic image. This approach has little memory consump-

tion and is able to run on mobile phones. The color correction for balancing colors

and luminance in the whole image sequence is achieved through dynamic program-

ming. With this method optimal seams between adjacent images are found in the

overlapping area and merged together. For further smoothing color transitions image

blending is used.

Despite all the offline approaches, no image refinement approach has been found that

completely removes seams and ghosting artifacts and runs in real-time, especially

not on mobile phones. Additionally most of the approaches use all captured images

for refining the panoramic outcome, which requires a lot of memory and is hard to

realize for achieving real-time frame rates.

The real-time approach described by Lovegrove et. al. [Lovegrove10] sums up the

pixels’ color values and divides them through the number of times the pixel has been

mapped. This approach requires an exact tracking algorithm, otherwise edges and

structures appear blurry. Furthermore seams of strong differences in brightness will

be reduced, but are not eliminated completely.

Pulli et. al. in [Pulli10] use a fast image cloning approach for transition smoothing

based on [Farbman09]. Farbman et. al. introduce an alternative coordinate-based ap-

proach to solve a Poisson equation with Dirichlet boundary conditions. The Poisson

equation has to be solved for a large linear system that interpolates the differences

between the boundary of the source image and target image across the cloned area.

In the approach of Farbman et. al. the value of the interpolant of this interpolation

is given by a weighted combination of values along the boundary for each interior

pixel. This mean-value coordinates based image cloning approach runs in real-time

for desktop-GPUs and delivers seamless results, but cannot be computed online on

mobile phones.

[Degendorfer10] implemented a brightness correction method to enhance the image

quality with an extended dynamic range. Therefore they calculate the lighting for

the corresponding feature points and add the average difference to the color values

of the panoramic image (16-bit color channel). Since for saving the image only eight

Chapter 2 Related Work 18

bits per color channel are available, the colors have to be adapted and the image

appears more gray. The strength of the seams is reduced, but they are not eliminated

completely.

2.4 Demand for Action

All approaches mentioned in this chapter are either not running in real-time on mo-

bile phones or cannot eliminate artifacts completely, such as ghosting or brightness

seams. The approach by Wagner et. al. realizes real-time panoramic mapping and

tracking, but does not address removing brightness artifacts. The method described

in [Pulli10] achieves seamless mapping of adjacent images and removes ghosting

artifacts, but is not able to run in real-time.

Since mobile devices have limited resources, the blending approaches discussed in

this paper cannot remove all seams and artifacts completely either, but deliver a

significant improvement of the image quality and mapping and tracking still runs in

real-time on mobile phones.

Chapter 2 Related Work 19

Chapter 3

CPU-Side Panoramic Mapping and Tracking

The starting point for this paper is the already existing mapping and tracking ap-

proach by Wagner et. al. [Wagner10] that is mentioned in the previous chapter. In

this chapter this approach is described in more detail to understand how the CPU-

side tracking and mapping procedure is realized. The main advantage of this tracker

is that it combines the panoramic mapping and orientation tracking on the same

data set on mobile phones in real-time. The approach runs at 30Hz on current mo-

bile phones and is used for various applications, such as the creation of panoramic

images, offline browsing of panoramas, visual enhancements through environment

mapping and outdoor Augmented Reality.

3.1 Panoramic Tracking

To estimate the location of the current camera image for the mapping process, the

new image has to be tracked accurately. Therefore Wagner et. al. [Wagner10] use the

FAST corner detection [Rosten06] for feature point extraction. The found feature

points are ranked by strength. To get a valid tracking result the amount of the corner

points must exceed a given threshold. The strongest corner points (key points) are

kept for further tracking. This procedure is done for a low, medium and high reso-

lution level (see Figure 3.1). If the threshold is not achieved at the medium or high

resolution level, the tracker has to be re-initialized.

For tracking the key points a motion model is used, which estimates the new orienta-

tion of the camera in a new frame. The difference in orientation between the currently

mapped camera image and the previous one is used to calculate the direction and

velocity of the camera. Using the estimated orientation the current frame extents are

projected back onto the map and the key points in the area are extracted. Backwards-

mapping them into the camera image eliminates the key points that are projected

outside of it. As a support area of a feature point, 8x8 pixel patches are used and

are warped back such that they correspond to the camera image. Since template

Chapter 3 CPU-Side Panoramic Mapping and Tracking 20

Figure 3.1: Tracking process for each render cycle

Chapter 3 CPU-Side Panoramic Mapping and Tracking 21

matching is a computational costly operation, the matching is done in lower resolu-

tion images first. The orientation is then refined by matching the key point from the

lower resolution image with the next higher one and finally with the original size.

If not enough correspondences are found the tracker fails to update the orientation

and a re-initialization step is invoked. If the tracking succeeds, the output generated

by this process is a rotation matrix that is further used in the mapping process to

project the current camera image onto the map.

The tracking process searches for matching key points only between the current

camera frame the yet mapped panoramic map. A pure tracker, however, is not able

to re-initialize from an arbitrary orientation. Since the tracker can fail to find the

new orientation for a new frame due to a lack of found or matching key points, a

relocalization procedure is required. The tracker stores low resolution key frames

and their corresponding camera orientation. This background operation runs during

the creation of the map. Once the tracker is lost, normalized cross correlation is

used to compare the current camera image to the key frames. For a more robust

localization of the camera image, both the frame and the image are blurred. This is

similar to the approach of using small blurry images, as it is used in parallel tracking

and mapping (PTAM) for example [Klein07].

3.1.1 Brightness Offset

Degendorfer [Degendorfer10] calculates a brightness offset of the current camera

image to the panoramic map in his master’s thesis to compensate for abrupt bright-

ness changes due to an unexpected change of exposure in the camera image. While

comparing the feature points for correspondences, the brightness values are calcu-

lated from the respective color values at these points. These brightness values are

used to reduce the differences in brightness between the camera images and the

panoramic map by adapting the color values of the newly mapped pixels with this

offset.

This approach is part of the image refinement discussed in Section 5.2.1.

3.2 Panoramic Mapping

Mapping an environment can be done by several types of maps. Cube maps cover

the whole environment but have discontinuities at the edges. To solve that problem

one could use spherical maps at the cost of high non-linearity. As an alternative

Chapter 3 CPU-Side Panoramic Mapping and Tracking 22

Figure 3.2: Map with grid after the first frame has been taken. The green dots rep-

resent the key points found in the frame. [Wagner10]

solution with noticeable computational savings a cylindrical map has been chosen.

A cylinder can easily be mapped to a texture and has only one discontinuity on

the left and right border of the panoramic image. The regions of the environment

pointing to the top and bottom are neglected since they have usually no practical

use in taking a panoramic image.

The panoramic map is split up into a regular grid of 32x8 cells (see Figure 3.2), which

simplifies the handling of an unfinished map. During the mapping process the cells

get filled with mapped pixels. As soon as a cell is completely mapped it is marked

as completed, down-sampled to a lower resolution and key points are extracted for

tracking purposes. To increase the robustness of the tracker, two lower resolution

maps are created as well.

To project the camera image onto a map accurately, the intrinsic and extrinsic cam-

era parameters have to be known. Since the camera used in this approach does not

change the zoom or focus, the intrinsic parameters of the device can be calculated

offline. Recent mobile phones are able to automatically correct radial distortions to

a limited degree. To further adjusting these parameters a calibration toolbox can be

used (e.g. the Caltech camera calibration toolbox 1) that measures the parameters

from pictures taken of a calibration pattern. Additionally artifacts like vignetting

can be corrected as well. Those artifacts arise because camera sensors are depen-

dent of the angle of the incoming light. The further the pixel is away from the

image center the steeper is the incoming light, which results in a darker appear-

ance of pixel. To measure this effect an image of a diffusely lit whiteboard can be

taken.

For mapping the camera image onto the cylinder pure rotational movement is as-

sumed and therefore 3DOF are left to estimate the correct projection of the camera

1http://www.vision.caltech.edu/bouguetj/calib_doc/

Chapter 3 CPU-Side Panoramic Mapping and Tracking 23

http://www.vision.caltech.edu/bouguetj/calib_doc/

Figure 3.3: Projection of the camera image on the cylindric map. [Wagner10]

image. This might not always be true for practical use, but regarding the distance

to the scene the translational movement can be neglected. Especially for a trained

user parallax errors are minimized.

The mapping process starts after estimating the orientation of a camera image in

the map. The rotation matrix calculated by the tracker is used to project the camera

frame onto the map. The corner pixel coordinates of the camera image are forward-

mapped into map space and the put up area by the frame represents the estimated

location of the new camera image. Due to radial distortions during the mapping

process the frame is not rectangular and cannot be accurately represented by only

four corner coordinates. To achieve a smoother frame curve, additional corner points

are added along the edges. Each edge between the four main corners is divided into

three parts where the additional points are integrated in the frame to achieve higher

accuracy.

Since forward mapping the pixels from the camera frame to the estimated location on

the cylinder can cause artifacts, the camera pixel data has to be backwards-mapped.

Even though the mapped camera frame represents an almost pixel-accurate mask,

pixel holes or overdrawing of pixels can occur.

Mapping each pixel of this projection would generate a calculation overload since

for a 320x240 pixel image more than 75,000 pixels have to be mapped. By reducing

the mapping area to the newly mapped pixels (only those pixels where no image

data is available as shown in Figure 3.4), the computational power is reduced sig-

nificantly.

To check whether a pixel is in the projected camera frame and has already been

Chapter 3 CPU-Side Panoramic Mapping and Tracking 24

Figure 3.4: Mask created due to camera rotation marked with a black frame. Blue

is the area that has already been mapped. Red marks the area that has

already been mapped and falls to the mask. Pixels to be mapped are

marked in yellow. [Wagner10]

mapped can solved by using a mask with one entry for each pixel. This method

is sufficient to filter the pixels that need to be mapped, but results in a too slow

and memory intensive process. To avoid this effect a run-length encoded (RLE)

mask is used to store zero or more spans per row. Each span defines which pixels

of the row still needed to be mapped and which is not by storing its left and right

coordinates. Using Boolean operations to compare the left and right coordinates

of two spans, the check if a pixel needs to be mapped or not can be applied very

efficiently.

Chapter 3 CPU-Side Panoramic Mapping and Tracking 25

Chapter 4

GPU-Accelerated Mapping

Since the development of OpenGL ES 2.0 the programmer has more control of

rendering a scene. Especially for general purpose GPU applications it is very useful

to be able to access each vertex and fragment in a respective shader program. During

the mapping process several parts can be easily parallelized and hence are ideal

to calculate on the GPU. Since the forward-/backward-mapping described in the

previous chapter is completely independent for each individual pixel, the idea is to

compute the mapping part in a shader-program on the GPU. Furthermore pixel

operations like blending pixels or clearing certain pixels can be accomplished with

little effort using shaders.

4.1 Structure of the Mapping and Tracking

process

Representing the structure in form of a scene graph shown in Figure 4.1 gives an

overview of the implementation of the GPU-based mapping discussed in this sec-

tion.

Root Node (brown): The Root node connects the CPU-based tracking/mapping

and the GPU-based mapping with the preview nodes. The generated panoramic

maps are acquired by this node and passed along for displaying. Therefore it is

possible to switch between the CPU-based mapping result and GPU-based mapping

result in the preview.

CPU-branch (green): The CPU-node represents the wrapper node for the func-

tionality implemented for the CPU mapping and tracking. It contains the initially

prepared data that is required for the tracker. To initialize the tracker the allowed

window sizes and the calibration file data is read from a configuration file. In the cam-

era calibration file intrinsic camera parameters are defined (focal length, principal

points, distortion parameters) as well as the used camera image size.

Chapter 4 GPU-Accelerated Mapping 26

Figure 4.1: Structure of the GPU-Mapping in a scene graph view. Brown: root-node,

green: CPU-based tracking and mapping, blue: GPU-based mapping,

yellow: preview of the current camera image and the panoramic map

Chapter 4 GPU-Accelerated Mapping 27

The main part of the CPU-based operations is the update traversal of the tracker.

For every camera frame, given that the initialization process has finished successfully,

the image is checked for resizing depending on the entry in the configuration file. If

the input image is the same size as expected the scaling step is skipped. Since the

tracking is realized with gray scale images to achieve higher frame rates, the image

must also be converted into a gray scale image. After that the camera images (colored

and gray) are prepared for the tracker update.

During the tracking process the rotation matrix and the estimated projection area of

the camera image is calculated, which is used by the GPU-based mapping.

GPU-branch (blue): The blue part of Figure 4.1 represents the GPU-based map-

ping part, which is the main focus of this work. The GPU-mapping-node represents

the wrapper node for the GPU-side mapping. It contains the initially prepared data

that is required for mapping, like initializing the background image, the mobile

phone’s camera and the calibration of the camera. Furthermore the rotation matrix

as well as the estimated projection area of the camera image, computed during the

tracking process, are acquired and passed to the Pano-node.

The Pano-node organizes the switching of the framebuffers, where the actual map-

ping process takes place (see Section 4.2). It controls which branch of the switch is

active and used for writing to and which is inactive and used for input information.

Additionally the node passes the CPU-information fetched by the GPU-mapping-

node along to the mapping process.

Scene Background and Panoramic Preview (yellow): In this branch the cam-

era image of the live preview feed as well as the preview of the current state of

the panoramic image is displayed. The displaying process is independent of the

panoramic image generation, since the connection between the generation and dis-

playing of the panoramic images is handled by the Root-node. The scene background

displays the current camera image that represents the input for the creation of a

panoramic image. Besides the background scene the progress of the panoramic im-

age is displayed, which helps the user complete the image without gaps and gives

information about the current location of the camera.

4.2 Framebuffer Switching

To be able to map only those pixels that have not been mapped before, informa-

tion about the current progress of the panoramic image is required. Therefore a

Chapter 4 GPU-Accelerated Mapping 28

render to texture approach using two framebuffers has been chosen. Continuously

updating and displaying one texture in one render cycle using OpenGL ES 2.0 is

not possible. It can either be read from a texture or written to it. Due to this cir-

cumstances the use of a common method also known as ”ping-pong technique” is

required.

To realize this technique two framebuffers and two textures (one input texture and

one output texture) are created. Each texture is assigned to a framebuffer. Whereas

the output texture is used as render target, the input texture is used to determine

which parts of the camera image are already mapped and which parts have to be

updated. In addition information for image refinements can be retrieved from the

input texture. After each render cycle the framebuffers with their respective textures

are switched. The former output texture becomes the new input texture and vice

versa.

The mapping itself is done in the shader OpenGL ES 2.X supports.

4.3 Shader Mapping

Using shaders allows the programmer to manipulate each pixel without being bound

to the fixed function pipeline. As OpenGL ES 2.0 supports vertex and fragment

shaders, these two are used to map the camera image onto the panoramic map.

The vertex shader program is processed for every vertex of a geometry and the

fragment shader program is processed for every fragment of it. A property of the

GPU-mapping is that every mapped pixel can be handled separately, which makes

shader programs ideal for this task. GPUs usually consist of several cores, where pixel

data can be processed in parallel. This increases the speed of the mapping process

considerably. One GPU-core by itself has a much lower computational capacity than

the CPU.

The vertex shader is used to map the panoramic texture coordinates on the respective

vertices of a plane. The texture coordinates between the vertices are interpolated

and passed on to the fragment shader, where each fragment can be manipulated and

written to its coordinate in the framebuffer.

In the fragment shader the color values for each fragment are determined. For the

mapping part the required information consists of the current camera image de-

ployed as a texture, the coordinates of the fragment the shader-program is pro-

cessing, the panoramic image available as another texture and mathematical in-

Chapter 4 GPU-Accelerated Mapping 29

formation of the camera orientation (i.e. the rotation matrix calculated by the

tracker).

In general, every pixel of the panoramic image is mapped separately in its own shader

program run. This means that for each pixel it is calculated if it lies in the area where

the camera image is projected or not. If the pixel lies in this area, the color of the re-

spective pixel of the camera image will be stored at this location. Otherwise the pixel

of the input texture is copied to the output texture.

4.3.1 Mathematical description of the mapping

process

To prepare the shader data, as many of the required calculations as possible are

calculated before the information is passed to the fragment shader. It is crucial to

keep the number of calculations in the shader to a minimum, since it will be ex-

ecuted for each fragment and will amount to huge computational costs in total.

All the information that does not vary across the separate fragments is prepared

outside the fragment shader. This information contains the panoramic image res-

olution, the camera image texture and camera image resolution, the rotation ma-

trix, ray direction, the projection matrix and the angle resolution. Using this in-

formation the mapping calculations can be efficiently performed in the fragment

shader.

To calculate the angle resolution, the model for the parametrization of the surface

needs to be known. As suggested by Wagner et. al. [Wagner10] we chose a cylindrical

model for the mapping procedure. A cylindrical projection can be mapped to a

texture and has only one discontinuity on the left and right border. The radius r of

the cylinder is set to 1 and the circumference C is therefore 2 ·π · r. The ratio of the

horizontal and vertical size is chosen to be 4 by 1 and the height h of the cylinder is

therefore set to C/4.0. The ratio of the panoramic map can be chosen arbitrary (e.g.

8 by 1, 4 by 3, etc.), however, it is recommended to use power-of-two values, since

GPU textures prefer such texture sizes. The angle resolution for the x-coordinate a

is composed by the circumference divided by panoramic texture width W and for

the y-coordinate b it is composed by the cylinder height divided by the panoramic

texture height H as follows:

a =
C

W
(4.1)

Chapter 4 GPU-Accelerated Mapping 30

Figure 4.2: Angle resolution of a cylinder (in degrees). Left: angle resolution about

the y-axis (α); right: angle resolution for the cylinder height (β); where

t is the camera center

b =
h

H
(4.2)

In other words for calculating the 3D-coordinates of the cylinder with regard to the

panoramic map, the cylinder’s C is split up into W parts around the y-axis for

the x-coordinates and into H parts for the cylinder’s height for the y-coordinates.

The angle resolution about the y-axis in degrees is the angle that arises if a circle (a

cylinder from a bird’s eye perspective) is split up like a cake with very thin slices. For

h it is similar, but in a vertical way (see Figure 4.2).

Every pixel of the panoramic map can be transformed into a 3D-vector originating

from the camera center of the cylinder (0,0,0). The ray direction can be imagined as

such a vector pointing in the direction of the camera orientation. To calculate the

ray direction #»r the rotation matrix R is required. Assuming no gyroscope sensor or

compass is used, the initial position of the camera is in the middle of the panoramic

texture, where all rotations are 0. The resulting initial rotation matrix is the identity

matrix. After initialization during the render cycles the rotation matrix will be

calculated externally in the tracking process. In case of using sensors for estimating

the initial orientation of the camera, the location of the camera frame depends on

the camera orientation. The direction vector
#»

d is constantly pointing along the z-

axis and in order to get the ray direction, the transpose of the rotation matrix is

Chapter 4 GPU-Accelerated Mapping 31

multiplied with this vector.

#»r = RT #»

d (4.3)

For the calculation of the projection matrix the calibration matrix K, the rotation

matrix R and the camera location
#»
t are required. Assuming the phone’s camera in-

put is activated, initial values are set for the first cycles until the camera images are

loaded from the phone’s live preview feed. The calibration matrix K is a matrix with

the camera calibration parameters such as the focal length (fx, fy) and the principle

point (px, py). P is then calculated by multiplying the calibration matrix with the ro-

tation matrix in consideration of the camera location.

K =

fx 0 px

0 fy py

0 0 1

 (4.4)

P = K [R| #»t] (4.5)

Since the camera is located in the center of the cylinder (
#»
t (0, 0, 0)), the equation

can be simplified to:

P = K R (4.6)

After preparing this information the data is sent to the fragment shader via uni-

forms. The coordinates of the input/output texture (u,v) are acquired from the

vertex shader. In the fragment shader each fragment is mapped into cylinder space

and checked if it falls into the camera image (backwards mapping). The cylinder

coordinates #»c (x, y, z) are calculated as follows:

cx = sin(u a) (4.7)

cy = v b (4.8)

cz = cos(u a) (4.9)

a and b are the angle resolutions as given in Formula 4.1 and 4.2.

Chapter 4 GPU-Accelerated Mapping 32

Figure 4.3: Projection of the camera image on the front and on the back of the

cylinder (adopted from [Wagner10])

When projecting a camera image on the cylinder it is actually projected twice (once

on the front-side and once on the back-side that is flipped). This is because the cylin-

der behaves like a pinhole camera, whereas the image in the front represents the im-

age plane in front of the lens and the plane behind the lens is where the photo is cap-

tured (see Figure 4.3). To avoid mapping the image two times a check q whether the

cylinder coordinates are in the front of the camera or in the back is performed using

Equation 4.10. If the check (q < 0) fails, the color of the corresponding input texture

coordinate will be copied to the current fragment.

q = rx cx + ry cy + rz cz (4.10)

The next step is to calculate the image coordinates
#»
i (x,y,z) in camera space. There-

fore the projection matrix P is multiplied with the 3D-vector transformed from the

cylinder coordinates. As mentioned above this is possible, because the camera center

is positioned at (0,0,0) and each coordinate of the cylinder can be transformed into

a 3D-vector.

ix = P0,0 cx + P1,0 cy + P2,0 cz (4.11)

iy = P0,1 cx + P1,1 cy + P2,0 cz (4.12)

iz = P0,2 cx + P1,2 cy + P2,0 cz (4.13)

To get the image point the homogenous coordinates are converted to image coordi-

Chapter 4 GPU-Accelerated Mapping 33

nates.

x =
ix
iz

(4.14)

y =
iy
iz

(4.15)

After rounding the result to integral numbers the coordinates can be checked if

they fall into the camera image. If this test fails, the color of the corresponding

input texture coordinate will be copied to the current fragment again. If the test

succeeds the color of the corresponding camera texture coordinate will be copied to

the current fragment.

Without optimization this procedure is performed for all the fragments of the output

texture. For a 2048x512 pixels texture resolution and therefore 2048x512 fragments

every operation done in the shader will be executed over one million times. Even

when discarding the shader program as soon it is known that the current fragment

does not fall into the camera image, a lot of redundancy originates, due to the values

for the checks have to be calculated.

4.3.2 Shader Optimization

Since mapping a camera image onto a panoramic map updates only a small re-

gion of the panoramic image, the shader program should not be executed for ev-

ery fragment. Instead only the area where the camera image is mapped needs to

be passed to the shader. To reduce the size of this area, the coordinates of the

estimated camera frame, calculated in the tracking process, are used to create a

bounding-box. The minimal and maximal coordinates of the bounding-box are then

forwarded to a scissor test, where only the area that passes the test is passed to the

shader (see Figure 4.4). This reduces the maximal number of shader runs from about

1,000,000 (2048x512 pixels) to about 75,000 (320x240 pixels), which is equivalent to

a reduction in computational complexity to about 7.5 % over a naive implementa-

tion.

A second optimization step is to focus only on newly mapped fragments to further

reduce the computing costs. Only those fragments should be mapped that were not

mapped before. Assuming a panoramic image is tracked in real-time the frame is

mapped about 25 times per second. If the camera is not moved too fast, only a very

small area is new in the current frame. To achieve this reduction, newly updated cells

Chapter 4 GPU-Accelerated Mapping 34

Figure 4.4: Black: panoramic map; blue: estimated camera frame; red: bounding-box

that surrounds the camera frame an will be cut out by the scissor test

Figure 4.5: Red: mapped area; blue: current frame; green: small update region that

is cut by the scissor test and passed to the shader. The additional opti-

mization approach saves comptation costs.

that are already calculated by the tracker, are used. Each cell consists of an area of

64x64 pixels. If the cell is touched by the current tracking update, the coordinates

are used to calculate another bounding-box around those cells. Then the intersecting

area of the bounding-box of the whole camera image and the cell-bounding-box is

cut again by the scissor test and passed to the shader as the new mapping area (see

Figure 4.5).

Employing this optimization step does not necessarily reduce computational costs,

because it directly depends on the movement of the camera. The update area can

grow larger if the rotation of the camera results in a diagonal movement within

panoramic space. Similarly, the update areas might become larger if the camera is

rotated about the z-Axis. If more update areas come up at different locations the

bounding-box can stay nearly the same size as in the approach described before,

even if they are very small as shown in Figure 4.6.

Nevertheless processing only the newly mapped areas can reduce the number of

shader runs significantly, since in more frequent cases only one small update area

appears. The second optimization step is an additional improvement to the one

Chapter 4 GPU-Accelerated Mapping 35

Figure 4.6: Red: mapped area; blue: current frame; green: big update region that is

cut by the scissor test and passed to the shader. The additional opti-

mization approach does not save a lot of computation costs.

calculating a bounding-box around the camera frame.

Using this mapping structure it is also important to consider the previous frame. Ig-

noring it could lead to unmapped gaps in the panoramic image due to the framebuffer-

switch as described in the following example:

After a frame is mapped a framebuffer switch follows. The mapped frame is now in

the input texture, but is not yet mapped in the current output texture. If a user

moves the mobile phone too quickly or changes the direction of the camera move-

ment, the newly calculated bounding-box might not include parts of the area of the

previous frame and the mapped pixels of the input texture will not be copied to the

output texture. The same problem can occur if the tracking process fails. This effect

can be visualized as flickering in the panoramic preview.

To avoid these unmapped gaps the new mapping area has to be extended by in-

cluding the coordinates of the previous render cycle for the final mapping-bounding-

box.

The following example is a fragment shader snippet for determining whether a frag-

ment falls into the camera frame or not, that is calculated for each fragment after

passing the scissor test:

1 vec4 tempColor; // corresponding color value of the input texture

2 tempColor = texture2D(s_texture_bg,v_texCoord_bg/vec2(panoW,panoH));

3

4 // x- and y-cooridnate of the panoramic map

5 float x = v_texCoord_bg.x;

6 float y = v_texCoord_bg.y - panoH / 2.0;

7

8 // get cylinder coordinates

9 float xC = sin(x * angleResX);

10 float yC = y * angleResY;

Chapter 4 GPU-Accelerated Mapping 36

11 float zC = cos(x * angleResX);

12

13 // check if frame is in front of the camera

14 float check = (rayDir.x * xC + rayDir.y * yC + rayDir.z * zC);

15

16 if(check < 0.0) {

17 // project

18 vec3 imgCoord;

19 imgCoord.x = P[0][0]*xC + P[1][0]*yC + P[2][0]*zC;

20 imgCoord.y = P[0][1]*xC + P[1][1]*yC + P[2][1]*zC;

21 imgCoord.z = P[0][2]*xC + P[1][2]*yC + P[2][2]*zC;

22

23 // image point

24 float X = imgCoord.x / imgCoord.z;

25 float Y = imgCoord.y / imgCoord.z;

26

27 // round to integral coordinate values

28 vec2 imageCoords = vec2(floor(X + 0.5), floor(realCamH - Y - 0.5));

29

30 // check if image point falls into the camera image

31 if((imageCoords.x >= 0.0 && imageCoords.x < realCamW) &&

32 (imageCoords.y >= 0.0 && imageCoords.y < realCamH)) {

33 vec4 camColor; // copy color value from the camera image

34 camColor = texture2D(s_texture_cam,imageCoords/vec2(camW,camH));

35 color = camColor;

36 } else { // copy the color from the input texture

37 color = tempColor;

38 }

39 } else { // copy the color from the input texture

40 color = tempColor;

41 }

42 gl_FragColor = color;

Chapter 4 GPU-Accelerated Mapping 37

Chapter 5

GPU-based Mapping for advanced applications

The main goal of this work is to exploit the advantages of parallel processing on

the GPU. The possibility to use shader for image processing allows to perform

approaches that are extremly costly to compute on CPUs, however can be real-

ized with little computational effort on the GPU. Such approaches with regard

to the mapping process are for example image refinement methods that require

pixel blending, clearing certain areas or enlarging the amount of pixels to be ren-

dered.

In the following sections approaches are discussed to enhance the quality and us-

ability of panoramic images.

5.1 Wiping

A very powerful feature is the possibility to wipe out areas in the panoramic images

in real-time. Taking a panoramic photograph is a time consuming process compared

to taking a normal photograph. Panoramic images happen to contain unwanted

areas like persons or cars that cover an essential part of the scene. To remove these

unwanted spots the panoramic image can be edited in real-time. For example, by

specifying an area in the preview image of a panoramic map, the coordinates might

be passed to the shader and the region around that coordinate is cleared and marked

as unmapped. A new frame arriving can cover those cleared areas and fill the empty

spots with color information again.

A possible implementation of this feature is a simple swipe operation on a touch

screen. In such an implementation, the area around the coordinates that has been

marked to clear is defined to be circular with a radius of N pixels. The program

simply passes the coordinates to the fragment shader. There the clearing area is cal-

culated using the dot product of the euclidean distance between the current fragment

Chapter 5 GPU-based Mapping for advanced applications 38

Figure 5.1: Circular white spots have been cleared while taking the panoramic image

coordinate
#»
t and the marked wiping coordinates #»w.

(
#»
t − #»w) · (#»

t − #»w) < (N2) (5.1)

If the condition is true and the wiping coordinate lies within the euclidean distance,

the pixel that is currently processed by the fragment shader can be cleared. This

approach can also be computed in a CPU-based mapping process, but the advantage

of the GPU-based wiping is that it runs in real-time.

The shader implementation for a wiping process is realized as follows:

1 vec2 click = v_texCoord_bg-wipeCoords;

2 if(dot(click, click) < N*N)

3 {

4 color = vec4(1.0, 1.0, 1.0, 1.0);

5 }

5.2 Image Refinement

A significant problem while taking panoramic images in real-time is the changing

exposure time of mobile phones’ cameras, due to increasing or decreasing intensity

of the incoming light. Programmers can not manually access and control the ex-

posure time according to the camera orientation and the light source. Moving the

camera towards a light source significantly darkens the input image of the camera’s

live preview feed. Moving the camera away from the light source will brighten the

input image in an unproportional way. The artifacts that arise due to the diverging

exposure time are sharp edges between earlier mapped regions and newly mapped

camera images as seen in Figure 5.2.

The field of taking panoramic images and handling the differences of the exposure

time is widely discussed as described in Section 2, but the problem statement differs

Chapter 5 GPU-based Mapping for advanced applications 39

Figure 5.2: Sharp edges in homogenous areas due to diverging exposure time

from this approach. As Wagner et. al. [Wagner10] mentioned, several approaches

dealing with the exposure problem do not map and track in real-time or need some

pre- and/or post-processing to create a seamless panoramic image. Additionally most

of the other approaches require a lot of memory since they use the taken images

for post-processing and therefore have to store them. Using a GPU-based mapping

approach however, we can directly employ shading and blending effects right while

the panoramic image is recorded. No additional image information has to be stored

on the device. Using the attributes of a GPU, the postprocessing steps therefore

vanish and becomes an active part of the real-time capturing of a panorama for

certain approaches.

Several different approaches are investigated in the following sections to enhance the

image quality.

5.2.1 Brightness Offset Correction

One way to manually correct the differences in brightness values of the current

camera image is to find matching points in the panoramic image and the camera

image and calculate their brightness difference from the color data. The average

offset of these differences is then forwarded to the shader and considered in the

mapping process.

To calculate the brightness offset of matching points the approach implemented

in the thesis of Degendorfer [Degendorfer10] is revised. Degendorfer calculates the

brightness offset for the feature points found by the tracker (see Figure 5.3). This

solution is not ideal, however, as the best areas for comparing brightnesses are

homogenous regions rather than corners. The advantage of this approach is that

it can be performed at almost no additional computational overhead, since the

tracker inherently provides the matches and the actual pixel values are just com-

pared.

Chapter 5 GPU-based Mapping for advanced applications 40

Figure 5.3: Brightness offset correction calculated from feature points

[Degendorfer10]

To avoid using misleading brightness values at feature points, a grid (e.g. 16x12) is

laid over the camera image. The coordinates are forward-mapped onto the panoramic

map to get the corresponding coordinates in the panoramic image. These coordi-

nates are stored in a texture and forwarded to the fragment shader. In the shader

the according color value and brightness offset is calculated, if the fragment of the

panoramic map is already mapped. The resulting average offset is considered in the

process of mapping new pixels. This solution requires some computational effort,

since the forward-mapping of the camera coordinates onto the panoramic map is

a costly operation, which has to be calculated for each grid point. The advantage

of this approach is that the brightness differences are not only measured at corner

points.

Adding or subtracting an offset of a color value can lead to color values below 0 and

above 255. Two different methods of dealing with this circumstance can be realized.

The first one truncates all values lower than 0 (negative values) to 0 and all values

higher than 255 to 255. This leads to very dark and very bright areas depending of

the location of the light source. The second method stores the offset in the alpha

channel of the panoramic map, since it is not used otherwise. Occupying the first

127 values for the positive offset and the second 127 values for negative offset values,

the color of each pixel can be modified during the saving process of the panoramic

image (post processing) and therefore costs no additional computation time during

the mapping process.

For the second method using an extended range for the storing the color value, a

tone mapping is mandatory. Otherwise the panoramic image can suffer from strong

contrast reduction and colors will appear grayish.

Chapter 5 GPU-based Mapping for advanced applications 41

5.2.2 Gamma Correction

Images that are gamma encoded can store tones more efficiently. The reason there-

fore is that cameras do not perceive light the same way the human eyes do. Too

few bits are used to describe darker tones (where the camera is less sensitive)

and too many bits are used for highlights that cannot be differentiated by the hu-

man eye [Plataniotis00]. To compensate this effect a color correction regarding the

gamma encoding is realized using the formula from the ITU-R BT.709 standard

[ITU-R90].

For a red value R, green value G and blue value B, where R,G and B < 0.018

R′ = 4.5 R (5.2)

G′ = 4.5 G (5.3)

B′ = 4.5 B (5.4)

and for R,G and B ≥ 0.018

R′ = 1.099 R0.45 − 0.099 (5.5)

G′ = 1.099 G0.45 − 0.099 (5.6)

B′ = 1.099 B0.45 − 0.099 (5.7)

is used to calculate the gamma corrected color.

5.2.3 Pixel-Blending

Blending the camera image with the panoramic image in the mapping process is a

way to smoothen sharp transitions of different brightness values. To achieve smoother

transitions several different blending approaches are investigated.

All blending operations can be combined with the brightness offset correction and

the gamma correction.

Chapter 5 GPU-based Mapping for advanced applications 42

Figure 5.4: Linearly blending the camera image with the panoramic image in the

frame area (yellow) between the outer (green) and the inner (purple)

blending frame.

5.2.3.1 Blending a Frame Area of the Camera

Image

Since the camera image does not cover 100 % of the already mapped panoramic

map, not every pixel can be blended. The color values of newly mapped pixels

have to be drawn as they appear in the camera image or they would be blended

with the initial white background color. To avoid having sharp edges at the bor-

der to the newly mapped pixels, only a frame area represented by an inner and an

outer frame is blended as shown in Figure 5.4. Pixels at the image border (outer

frame) are taken from the panoramic map. A linear blending operation is used

in the area between the frames along the direction of the normal to the outer

frame. The region inside the blending frame is directly mapped from the camera

image.

To avoid blending the frame with unmapped white background color, new pixels are

mapped without blending directly from the camera image.

Blending two images using the fragment shader is a computationally cheap operation

and can easily be applied to the naive form of pixel mapping. However, the pixel-

blending requires the optimization method where the whole camera image is updated

in every frame, as the area of the whole camera frame is required for the blending

process.

5.2.3.2 Blending the Running Average of the camera

image

This blending approach blends the whole camera image with the panoramic map.

Newly mapped pixels that would be mapped with the white background color are

Chapter 5 GPU-based Mapping for advanced applications 43

completely mapped from the camera image. To avoid having visible edges at the

border to the newly mapped pixels, the mapping process is realized using the average

of the panoramic map and the camera image. The total number of times a pixel has

been mapped, is stored in the alpha value and integrated in the average calculation.

This means that a pixel that has not been mapped before, is simply copied from

the camera image, as mentioned above. The second time the same pixel is mapped

the average of the before mapped color value and the new color value from the

current camera frame is mapped. In the next mapping cycle of this pixel the value

of the camera image is integrated in the average calculation using the cumulative

running/moving average ca:

cai+1 =
xi+1 + i cai

i+ 1
(5.8)

x is the value of the camera image and i is the total number of times the pixel has

already been mapped, fetched from the alpha channel.

Since the alpha value consists of eight bit each pixel can be updated a maximum

time of 255.

5.2.3.3 Blending Values in HSV-Color Space

A similar way of blending the color values to reduce the difference of brightnesses

between the current camera image and the panoramic map is to blend the brightness

values. The RGB-color space (red, green, blue) is converted into the HSV-color space

(hue, saturation, value). The value of the each pixel to be mapped is blended with the

value of the pixel of the panoramic image. The blending approach is combined with

the frame area blending and blending the whole camera image using the cumulative

running average.

The difference between the two color models is that the RGB-model is an additive

color model with its additive prime colors and the HSV-model is based on perceptual

variables [Smith78]. The HSV model is represented in cylindrical form and often

conveniently represented by a hexcone. The primary color red is at 0 degrees of

the cylinder, followed by green at 120 degrees and blue at 240 degrees. The colors

in between are mixed colors. The hue changes around the y-axis, the saturation

increases from the center of the cylinder to the outside and the value lies on the

vertical axis [Plataniotis00].

The conversion from the RGB-model to the HSV-model and vice versa is shown in

the following shader snippet:

Chapter 5 GPU-based Mapping for advanced applications 44

1 vec3 HSVtoRGB(vec3 HSV)

2 {

3 vec3 RGB = vec3(HSV.z,HSV.z,HSV.z);

4 float hi = floor(HSV.x * 6.0);

5 float f = HSV.x * 6.0 - hi;

6 float p = HSV.z * (1.0-HSV.y);

7 float q = HSV.z * (1.0-HSV.y*f);

8 float t = HSV.z * (1.0-HSV.y*(1.0-f));

9

10 if(HSV.y != 0.0)

11 {

12 if (hi == 0.0 || hi == 6.0) { RGB = vec3(HSV.z, t, p); }

13 else if (hi == 1.0) { RGB = vec3(q, HSV.z, p); }

14 else if (hi == 2.0) { RGB = vec3(p, HSV.z, t); }

15 else if (hi == 3.0) { RGB = vec3(p, q, HSV.z); }

16 else if (hi == 4.0) { RGB = vec3(t, p, HSV.z); }

17 else { RGB = vec3(HSV.z, p, q); }

18 }

19 return RGB;

20 }

21

22 vec3 RGBtoHSV(vec3 RGB)

23 {

24 vec3 HSV = vec3(0.0,0.0,0.0);

25 float minimum = min(RGB.r, min(RGB.g, RGB.b));

26 float maximum = max(RGB.r, max(RGB.g, RGB.b));

27

28 if(maximum == minimum) { HSV.x = 0.0; }

29 else if (maximum == RGB.r)

30 { HSV.x = ((RGB.g - RGB.b) / (maximum - minimum))/6.0; }

31 else if (maximum == RGB.g)

32 { HSV.x = (2.0 + (RGB.b - RGB.r) / (maximum - minimum))/6.0; }

33 else if (maximum == RGB.b)

34 { HSV.x = (4.0 + (RGB.r - RGB.g) / (maximum - minimum))/6.0; }

35

36 if(HSV.x < 0.0) { HSV.x += 1.0; }

37

38 if(maximum == 0.0) { HSV.y = 0.0; }

39 else { HSV.y = (maximum - minimum) / maximum; }

40

41 HSV.z = maximum;

42 return HSV;

43 }

Chapter 5 GPU-based Mapping for advanced applications 45

Figure 5.5: States of the cell-grid texture containing blending factors

5.2.3.4 Blending/Fading from Completed Cells

In this approach pixels that have been mapped more often and are located further

in the center of the panoramic map, are blended with less intensity than the newly

mapped pixels at border of the mapped area. New pixels are directly mapped from

the camera image, whereas the further a pixel lies in an already mapped region

the less influence the color values of the camera image have. To achieve a correct

blending, completed cells of the tracking process are used to get the already mapped

areas of the panoramic map. This requires a split of the panoramic map into cells

(e.g. 32x8) as shown Figure 3.2. A texture with the size of the cell grid is created

to store a state value for each cell, which describes how strong the pixels should

be blended. The texture is initialized with a blending factor that directly maps

the camera frame. The first image is simply copied on the panoramic map. For a

new frame, a few cells are already completed and the state of the cell-grid texture is

updated and the blending factor reduced. If a state value in the texture is surrounded

by lower or equal states it decreases its value again. If the same thing happens to

a state that has already been decreased two times before, one could disable the

blending by setting the blend factor to 0 (see Figure 5.5). The values shown in

Figure 5.5 are sample values and can be adjusted to ones needs. However a more

or less linear blending curve with a steeper section between the first and the second

reduction of the blending factor turned out work best.

The texture is passed to the vertex shader and the respective blending factor, taken

from the texture is interpolated and forwarded to the fragment shader. Therefore the

vertex shader has to have the same grid of vertices of the panoramic map as cell-grid

texture. In the fragment shader the interpolated blending factor is integrated in the

mapping process.

Chapter 5 GPU-based Mapping for advanced applications 46

Figure 5.6: The blending map with the interpolated blending factors taken from the

cell-grid texture

The resulting blending map of this approach is shown in Figure 5.6.

5.3 Larger panoramic images

Mapping a panoramic image on a CPU in real-time is possible for medium-size

panoramic images as shown in [Wagner10]. Increasing the panoramic map and the

camera image resolution for real-time CPU-based mapping it will quickly meet its

limits in computational power. The GPU-based mapping approach can handle larger

texture sizes with a neglectable loss of render speed. Reducing the area passed to

the fragment shader in an optimization step, the size of the panoramic map does

not have much influence on the real-time frame rates. The camera image size would

have more influence, however, the live preview feed of recent mobiles, which is about

640x480 pixels can still be rendered in real-time.

A limitation for the GPU-mapping is the limited texture size of a mobile phone’s

GPU. This problem can be avoided by splitting the panoramic texture into several

parts.

Chapter 5 GPU-based Mapping for advanced applications 47

Chapter 6

Evaluation and Experimental Results

In this chapter we describe the results of a variety of experiments using a large num-

ber of different scenarios. Most of the tests were conducted with previously recorded

videos to allow comparing individual approaches directly. Although several field tests

are conducted directly with a mobile phone, a steady test scenario is chosen to com-

pare the individual improvements more objectively.

The evaluation is divided into three main sections. In the first section the image

quality is tested by means of the image refinement approaches discussed in the

previous chapter. The second test section compares the results of the refinement

approaches in terms of robustness of the tracking process and in the third section the

render speed performed for every approach is tested.

The test devices and their hardware specifications used for this evaluation are listed

in the table below:

6.1 Panoramic image refinement

In the first evaluation step five videos are taken for every location. One during a

sunny day (outdoor #1), one on a cloudy day (outdoor #2), one in the evening/-

dawn light (outdoor #3), one indoors using artificial light (indoor #1) and one

indoors with daylight (indoor #2). The location for the outdoor scenes is located

at the University campus and for the indoor scenes a well illuminated room is

chosen. For realizing the test with artificial light, the blends of the windows are

Device CPU GPU Operating System

Samsung Galaxy S II 1.2GHz dual core Mali-400MP Android 2.3.5

LG Optimus 4x HD 1.5GHz quad core Nvidia Tegra 3 Android 4.0.3

Samsung Galaxy S II 1.4GHz quad core Mali-400MP Android 4.0.3

Table 6.1: Hardware specifications of the devices used for the evaluation

Chapter 6 Evaluation and Experimental Results 48

closed.

As reference for every test case the CPU-mapped image is compared with the GPU-

mapped results for improvements.

Outdoor Scenario #1: In this test a panoramic image is taken of a sunny outdoor

scene. As mentioned before the most difficult process of seamlessly mapping the

camera image in the panoramic map is to cover the brightness differences. Having

the sun as a strong light source in the scene complicates it even more. However

distinctive shadow structures enable the tracker to find corresponding points on

otherwise homogenous regions.

Figure 6.1(a) is the reference image created by the PanoMT-application ([Wagner10]).

Brightness differences are significantly visible. Even seams between consecutively

mapped camera images are visible and artifacts appear in the lower region of the

panoramic image.

Reducing the brightness differences with a modified brightness correction version de-

scribed by [Degendorfer10] slightly reduces the differences in brightness between for-

mer mapped camera images and later mapped images, but emphasizes the brightness

seams between consecutively mapped camera images as shown in Figure 6.1(b).

In Figure 6.1(c) the seams between the consecutively camera images as well as

general differences in brightness are smoothed by the blending approach described

in Section 5.2.3.1. The test is a combination of the brightness correction and the

blending process. As a result of the smoothing of the seams the image gets a bit

blurry, however it emphasizes the impression of one continuous image. Artifacts like

lens flares are visible since in this approach the whole camera image is mapped every

time. Approaches that only map new pixels usually do not suffer from these artifacts

since lens flares do not appear at image borders very often. The gray area in the left

half of the image originates from the brightening process of an almost black region,

due to brightness correction.

The algorithm for image refinement that relies on completed cells of the panoramic

map as described in Section 5.2.3.4 generates blurry panoramic images (6.1(d)), due

to inaccuracies of the tracker. Since the camera image is only mapped directly at

the border, edges or details are not blended and mapped on the very same locations

and therefore appear blurry. Furthermore some seams stay visible, due to the lim-

ited blending cycles and lens flares appear because of blending the whole camera

image.

Using gamma correction for image refinement reduces the perceived brightness dif-

Chapter 6 Evaluation and Experimental Results 49

(a)

(b)

(c)

(d)

Figure 6.1: Panoramic images of a sunny scene

Chapter 6 Evaluation and Experimental Results 50

ferences, but brightens the panoramic image too much. The general impression of the

color intensities decreases and seams are still visible.

The grid brightness correction, where the brightness values are not taken from

the feature points, but from a grid laid on the camera image (described in Sec-

tion 5.2.1), does not deliver better results than the brightness offset calculated

by [Degendorfer10] and requires additional computational costs. Therefore, espe-

cially for combinations with other refinement methods, Degendorfer’s approach is

used.

The approach using the frame-blending method for blending HSV-Values creates

similar results compared to the common frame-blending approach, except that the

panoramic image appears a bit grainy in homogenous areas and and it takes addi-

tional computation power to generate the panoramic image.

Calculating the running average of the pixels’ color values results in a blurry image.

The reason for that is the same as for the completed cell approach explained in this

section before.

Outdoor Scenario #2: In the second outdoor test a panoramic image is taken

of a cloudy scene. The difference to the sunny scene is that the sun as light source

is significantly less visible. However larger homogenous regions appear, due to the

absence of shadows and the lesser intensity of colors.

Figure 6.2(a) is the reference image created by the PanoMT-application ([Wagner10]).

Significant brightness differences are visible, similar to the result image (see Figure

6.1(a)) of the sunny scene. Also strong mapping artifacts are visible, especially in

the middle of the left half of the panoramic image.

Similarly to the sunny scene result the brightness correction reduces the differences

in brightness, but seams are still visible as shown in Figure 6.2(b). The artifacts in the

left image half stay unchanged like in the CPU-mapping approach.

Frame-blending (see Figure 6.2(c) reduces most of the seams, but the artifacts cre-

ated by slightly inaccurate tracking result in blurry areas. Due to the covered light

source, there is no unwanted additional gray region created by brightness corrections,

in contrast to the sunny scene.

Using the completed cell image refinement approach brightness differences are par-

tially visible and the image is very blurry (see Figure 6.2(d)).

The general impression of the decreasing color intensities when adding a gamma

correction to the algorithms appears less than in the sunny scene, due to the gray

Chapter 6 Evaluation and Experimental Results 51

(a)

(b)

(c)

(d)

Figure 6.2: Panoramic images of a cloudy scene

Chapter 6 Evaluation and Experimental Results 52

weather conditions. However the image quality is not increased significantly.

Also the other image refinement approaches described in Section 5.2 cannot achieve

better results concerning the visual image quality and produce similar outputs than

in the sunny outdoor scene.

Outdoor Scenario #3: In the third outdoor test a panoramic image is taken in

the evening with dawn light. The difference to the sunny and the cloudy scene is

that there is no light source visible. Larger homogenous regions appear, due to the

absence of shadows, the lesser intensity of colors and dawn light exacerbates the

tracking to find matching points.

Figure 6.3(a) is the reference image created by the PanoMT-application ([Wagner10]).

Significant seams of brightness differences are visible, similar to the result images of

the sunny and the cloudy scene (see Figure 6.1(a) and 6.2(a)). Some artifacts appear

in the lower area of the image.

The brightness correction removes the artifacts and reduces the strength of the

brightness differences. However it generates more visible seams between consecu-

tively mapped camera images as seen in Figure 6.3(b).

The blending approach reduces the number of seams significantly, but some parts

of the image appear a bit more blurry (see Figure 6.3(c)). Even if a few regions of

the image are differently illuminated the general impression of the panoramic image

is improved. Since no sun is in the image, gray areas possibly generated from the

brightness correction are not visible.

The completed cell blending cannot remove all seams and as in the other scenes

the image appears more blurry than using other algorithms as shown in Figure

6.3(d).

Due to the dawn light of the evening, the decreasing color intensities when adding

a gamma correction to the algorithms appear less pronounced than in the sunny

scene. As seen in the case of cloudy weather, the image quality is not increased

significantly.

Also the other image refinement approaches behave similarly to the outdoor scenes

discussed above and are not further discussed for this test.

Indoor Scenario #1: In this test a panoramic image is taken from an indoor

scene with artificial light. Compared to the outdoor environment the scene is much

closer to the camera location and translational movement of the camera caused by

an inexperienced user has a stronger effect on panoramic images than more distant

Chapter 6 Evaluation and Experimental Results 53

(a)

(b)

(c)

(d)

Figure 6.3: Panoramic images of a evening scene

Chapter 6 Evaluation and Experimental Results 54

scenes. Therefore visual artifacts are created more easily. The artificial light gener-

ates an evenly illuminated environment that reduces the significance of brightness

differences.

Figure 6.4(a) is the reference image created by the PanoMT-application ([Wagner10]).

Significant seams of brightness differences are visible, even if the room is illuminated

homogenously. Some artifacts appear in the lower area of the image and cuts arise,

due to the imprecise tracking of close objects.

Since the differences in brightness are less significant for the indoor test using ar-

tificial light, the brightness correction does not achieve a better result in contrast

to the outdoor tests. The brightness correction effort is neglectable and in addi-

tion seams occur between consecutively mapped camera frames as shown in Figure

6.4(b). Artifacts generated in the CPU-mapped image are not visible using GPU-

mapping.

The frame-blending approach creates a very good result concerning the brightness

differences. However the image appears a bit more blurry and a slight deformation oc-

curs, due to imprecise tracking of close objects (see Figure 6.4(c)).

In Figure 6.4(d) the result of the completed cell blending algorithm is shown. The

panoramic image is significantly more blurry than the frame-blending approach.

Furthermore the deformation is stronger and a few brightness seams and cuts are

still visible.

Adding a gamma correction to the panoramic image allows the user to see reflections

on specular surfaces, but brightens the whole image too much and therefore decreases

the color intensities.

The grid brightness correction does not have a significant effect on the image quality

and the HSV-blending achieves a worse result than the frame-blending approach, but

has higher computational costs.

Indoor Scenario #2: In the second indoor test a panoramic image is taken us-

ing natural light. The difference to the artificial light source is that not all areas

of the image are evenly illuminated. Equal to the previous indoor test, the short

distance of the camera to the scene objects is a problem for the tracker. Signifi-

cant brightness differences harden the process of taking a panoramic image even

more.

Figure 6.5(a) is the reference image created by the PanoMT-application ([Wagner10]).

Due to strong brightness differences and close scene objects, significant seams and

cuts are visible. Additionally render artifacts appear in the lower area of the panoramic

Chapter 6 Evaluation and Experimental Results 55

(a)

(b)

(c)

(d)

Figure 6.4: Panoramic images of an indoor scene with artificial light

Chapter 6 Evaluation and Experimental Results 56

image.

Similar to the other tests the brightness correction decreases the general brightness

differences, but generates additional seams between consecutively mapped frames as

shown in Figure 6.5(b). Artifacts that are visible in the CPU-mapped result image

are eliminated.

The strongly visible seams due to brightness differences are smoothed, but still partly

visible. Similar to the result images of the other tests, the image appears a bit more

blurry and deformation occurs, due to imprecise tracking of close objects (see Figure

6.5(c)).

The completed cells algorithm generates a blurry image with brightness seams and

deformations (see Figure 6.5(d)). Additionally the image has a significant red cast.

A tinge of red is also noticeable in the other tests of the indoor scene with natural

light, but not as strong as in the test using the completed cell image refinement

approach.

As in the indoor test using artificial light, adding gamma correction shows more

details in reflecting areas, however the general impression is too bright and the color

intensity is decreased. The grid brightness correction does not have a significant effect

on the image quality and the HSV-blending achieves a worse result than the frame-

blending approach with higher computational costs.

6.2 Robustness

The results of each test run are not only tested visually, but also by forwarding the

GPU-mapped images to the tracker and calculating matching points for the current

camera image. Subsequently the amount of key points found is compared with the

number of key points found using the CPU-mapped image. Getting a higher number

of matching points increases the tracking robustness and confirms an improvement

to the existing PanoMT-application.

The following tables 6.2 - 6.6 show the individual tests listed with the results of the

found key points and the number of matches. For each frame the key points and their

matches are stored and the average value of all found feature points and matches are

taken for comparison. An image refinement approach that reaches a higher score of

averagely found key points and reaches the maximum of 80 matches, is considered

to be more robust than approaches with a lower score.

The most robust tracking for the sunny outdoor scene is achieved by the grid bright-

Chapter 6 Evaluation and Experimental Results 57

(a)

(b)

(c)

(d)

Figure 6.5: Panoramic images of an indoor scene with natural light

Chapter 6 Evaluation and Experimental Results 58

Approach � Matches � Key Points

CPU

Standard Mapping 80.00 1000.30

GPU

No Refinements 80.00 1050.18

Brightness Correction from Feature Points 80.00 1053.41

Gamma Correction 80.00 1025.37

Grid Brightness Correction 80.00 1062.92

Running Average 78.56 753.39

Frame Blending 73.95 1028.54

Frame Blending + Brightness Correction 78.03 1030.62

HSV-Blending 71.29 1042.67

Completed Cell 77.48 1036.53

Completed Cell + Brightness Correction 78.93 1026.57

Table 6.2: Average of found key and matching points for each refinement approach

(sunny)

ness correction image refinement algorithm, with an average of 1062.92 key points

found per frame where the maximum number of 80 matches are found. In general all

GPU-mapping algorithms reached a higher score than the standard CPU-mapping

implemented in the PanoMT-application, except the running average algorithm,

which seems to create panoramic pictures that are too blurry for tracking (see Table

6.2).

For the cloudy outdoor scene the most robust tracking is achieved by the brightness

correction, where the offset is gained from feature points, with an average of 811.74

key points found per frame and a maximum of 80 matches. In general all GPU-

mapping algorithms that do not map the whole camera image, but only the un-

mapped pixels for each frame, reach higher scores than the standard CPU-mapping

implemented in the PanoMT-application. For the other algorithms the tracker suf-

fers from blurry panoramic images and cannot find as much matching points (see

Table 6.3).

For tracking the outdoor scene in the evening the most robust image refinement algo-

rithm appears to be the standard GPU-mapping approach with additional gamma

correction with a score of 773.78 key points and a maximum of 80 matches per

frame. In this test only a few approaches achieve a better score than the CPU-

mapping approach. For taking a panoramic image with dawn light, image refine-

Chapter 6 Evaluation and Experimental Results 59

Approach � Matches � Key Points

CPU

Standard Mapping 80.00 792.54

GPU

No Refinements 80.00 800.72

Brightness Correction from Feature Points 80.00 811,74

Gamma Correction 80.00 729.36

Grid Brightness Correction 80.00 809.32

Running Average 79.98 443.04

Frame Blending 80.00 589.52

Frame Blending + Brightness Correction 80.00 572.80

HSV-Blending 80.00 654.30

Completed Cell 80.00 474.59

Completed Cell + Brightness Correction 80.00 625.83

Table 6.3: Average of found key and matching points for each refinement approach

(cloudy)

Approach � Matches � Key Points

CPU

Standard Mapping 80.00 607.02

GPU

No Refinements 80.00 605.75

Brightness Correction from Feature Points 80.00 595.35

Gamma Correction 80.00 649.32

Grid Brightness Correction 80.00 616.52

Running Average 80.00 518.69

Frame Blending 80.00 485.37

Frame Blending + Brightness Correction 80.00 481.65

HSV-Blending 80.00 488.13

Completed Cell 80.00 490.13

Completed Cell + Brightness Correction 80.00 493.59

Table 6.4: Average of found key and matching points for each refinement approach

(evening)

Chapter 6 Evaluation and Experimental Results 60

Approach � Matches � Key Points

CPU

Standard Mapping 80.00 334.63

GPU

No Refinements 80.00 341.76

Brightness Correction from Feature Points 80.00 348.15

Gamma Correction 80.00 444.45

Grid Brightness Correction 80.00 346.79

Running Average 79.94 284.70

Frame Blending 77.43 364.24

Frame Blending + Brightness Correction 77.87 342.78

HSV-Blending 77.71 363.02

Completed Cell 80.00 443.71

Completed Cell + Brightness Correction 80.00 440.24

Table 6.5: Average of found key and matching points for each refinement approach

(indoor with artificial light)

ments that only update newly mapped pixels seem to be more accurate (see Table

6.4).

The indoor environment illuminated with artificial light appears to be tracked most

robustly by the mapping approach using gamma correction with a score of 444.45 key

points and a maximum of 80 matches per frame. All image refinement algorithms

achieve a higher score than the CPU-mapped version except the running average

algorithm, which seems to create too blurry panoramic images for tracking (see

Table 6.5).

The naturally illuminated indoor scene is most robustly tracked by the standard

CPU-mapping with a score of 450.83 key points and a maximum of 79.98 matches per

frame. The grid brightness correction approach achieves a higher score of 484.35 key

points, but only 72.36 matches can be found (see Table 6.6).

In general the robustness of tracking is higher for approaches that update only pixels

that have not been mapped before. Comparing the results of those GPU-mapping ap-

proaches to the approach developed by Wagner et. al., the GPU-mapping approaches

achieved higher results. The approaches using blending for image refinement gener-

ate images that are a bit blurry and therefore less tracking points and their matches

can be found.

Chapter 6 Evaluation and Experimental Results 61

Approach � Matches � Key Points

CPU

Standard Mapping 79.98 450.83

GPU

No Refinements 72.64 436.95

Brightness Correction from Feature Points 74.42 445.00

Gamma Correction 71.09 465.45

Grid Brightness Correction 72.36 484.35

Running Average 73.38 337.40

Frame Blending 72.22 407.64

Frame Blending + Brightness Correction 76.14 415.42

HSV-Blending 71.99 402.47

Completed Cell 68.75 225.76

Completed Cell + Brightness Correction 68.54 225.02

Table 6.6: Average of found key and matching points for each refinement approach

(indoor with natural light)

6.3 Render Speed

The speed tests discussed in this section measure the averagely rendered frames per

second for each image refinement approach and for different panoramic mapping

sizes. For calculating the frame rate the first 50 frames are dismissed and then the

average of the next 50 frames is taken to determine the speed of the current image re-

finement approach. Each test is run three times for each refinement approach and mo-

bile phone. The average of the results is taken as the render speed result. For testing

the speed differences for different panoramic mapping sizes, two resolutions are cho-

sen. A lower and standard texture resolution of 2048x515 pixels and a higher texture

resolution of 4096x1024 pixels are realized for this test.

The tests are realized with three different testing devices to show possible differences

of render speed in different render sections. Such sections are the calculation on the

CPU-side (data preparation for the shader) and GPU-side (shader runs). Since the

frame rate is dependent of the stronger bottleneck of these sections, one can see if

the application has free resources on the CPU- or the GPU-side. The testing devices

are listed in Table 6.1.

For algorithms that only map pixels that have not been mapped before, the area

that passes the scissor test is set to 0, if the current camera image contains no

new information to map onto the panoramic map. This increases the FPS during

Chapter 6 Evaluation and Experimental Results 62

SGS2 LG-4xHD SGS3

Approach FPS (low/high) FPS (low/high) FPS (low/high)

No Refinements 27.50 / 25.67 27.55 / - 22.46 / 21.15

Brightness Correction from

Feature Points

27.20 / 25.08 26.55 / - 21.94 / 20.77

Gamma Correction 27.32 / 25.23 26.78 / - 22.20 / 21.24

Grid Brightness Correction 24.30 / 18.66 0.85 / - 21.84 / 18.18

Running Average 26.71 / 25.67 21.12 / - 21.37 / 19.95

Frame Blending 27.27 / 24.61 23.30 / - 23.41 / 19.91

Frame Blending + Bright-

ness Correction

25.53 / 23.61 22.53 / - 23.48 / 19.34

HSV-Blending 27.15 / 26.39 23.88 / - 22.81 / 21.05

Completed Cell 26.65 / 25.00 25.89 / - 20.28 / 20.67

Completed Cell + Bright-

ness Correction

27.09 / 25.12 23.53 / - 21.67 / 20.76

Table 6.7: Render speed for the diverse image refinement approaches on the SGS2

with Android 2.3.5 Gingerbread (1st column), LG-4xHD with Android

4.0.3 Ice Cream Sandwich (2nd column) and SGS3 with Android 4.0.3 Ice

Cream Sandwich (3rd column) for resolutions of 2048x512 and 4096x1024

pixels. The maximum texture size of the LG-4xHD is 2048x2048 pixels.

that time. However, since the interest of this work concerning the render speed is

limited to frame rate that is reached when mapping pixels, it is not part of this

test.

Also a tolerance of 1-2 FPS has to be taken into account, due to the varying results

of the tests.

Table 6.7 displays the render speed for the SGS2, the LG-4xHD and the SGS3 for

lower and higher resolution panoramic images.

SGS2: For the lower resolution of 2048x512 pixels the tests for all image refinement

approaches are above or close to 25 FPS and therefore run in real-time. The fastest

mapping approach is the one without any refinements and the slowest approach

is the grid brightness correction, which already indicates slightly more expensive

calculation costs for determining the offset for the brightness correction. This effect

is visible more significantly for the higher resolution panoramic image, in which

the frame rate drops from 24.3 to 18.66 FPS. While the other tests can still be

considered as real-time capable, the grid brightness correction falls a bit below that

Chapter 6 Evaluation and Experimental Results 63

speed limit.

LG-4xHD: With this mobile phone only tests for the lower (standard) resolution

can be made, due to the maximum texture size of 2048x2048 pixels. All tests run

in above 20 FPS, which can be considered as fluent, except the grid brightness

correction. This specific test has a frame rate of under 1 FPS and is not applicable

for practical use. The reason for that is the more expensive calculations in the

fragment shader. This points out that the bottle neck for the LG-4xHD for this

application is the GPU. Whereas the SGS2 does the same test in real-time the LG-

4xHD cannot achieve an acceptable speed. However the tests that also need some

time for preparing the data for the shader, such as the completed cell approach, still

run in real-time.

SGS3: Despite of the higher computational power of this mobile phone, the results

cannot keep up with the SGS2. This is surprising, but the reason for that seems to be

the different Android versions (Ice Cream Sandwich versus Gingerbread). The results

themselves are constantly above 20 FPS for the standard resolution and around 18-

20 FPS for the high resolution panoramic image. In case of the SGS3, no significant

outliers regarding the render speed can be detected.

To get a better overview over all tests Figure 6.6 displays all results for each testing

device and each refinement approach.

6.4 Interpretation of the Evaluation

Results

To interpret the results described in the previous section all aspects, such as image

quality, tracking accuracy and render speed, have to be considered.

Starting with the quality of the panoramic images from the perceptual point of

view the frame-blending image refinement approach with a brightness correction

achieves the most continuous and best results. The result images might seem a

bit blurry in some regions, but seams are significantly reduced and other image

artifacts generated in the CPU-mapping are removed. The approach is dependent

of the movement of the camera, which means it creates different results, concerning

the image quality, by moving the camera differently towards or away from light

sources. This is the case for all approaches that map the whole camera image for

each frame. The camera movement depending from the light source also affects the

image refinement approaches that only map new pixels for each frame, but a seam of

Chapter 6 Evaluation and Experimental Results 64

Figure 6.6: Overview of the render speed results for the diverse image refinement

approaches

Chapter 6 Evaluation and Experimental Results 65

brightness differences will be visible in any way. Since image sequences created from

videos are taken as input for the tests, the blending approaches could not correct all

visible seams in the tests. In practical use the user can always remap areas where

seams appear. The seams can be discovered in the panoramic image preview and

by moving the camera over the scene where a seam has been located, the seam can

possibly be removed.

For tracking the camera image in the panoramic map using the FAST corner detec-

tion algorithm, the sharpness of corners and edges are of most importance. Therefore

image refinement approaches that only map new pixels achieve better results than

the ones mapping the whole camera image. Strong differences in brightness however

can force the tracker to loose its orientation and it needs to relocate the orientation.

This costs additional computation time and is disturbing in practical use. Since all

approaches achieve acceptable tracking results, the image quality and render speed

are used to decide which image refinement approach is to prefer. In general ap-

proaches that update only pixels that have not been mapped before achieve a better

tracking score than in the CPU-mapping.

Concerning the render speed for the standard resolution of 2048x512 pixels, all image

refinement approaches can be used except for the grid brightness correction, since

it does not work fast for the LG-4xHD. All the other approaches run fluently with

a frame rate higher than 20 FPS. Similar to lower resolutions, when rendering a

higher resolution panoramic image (4096x1024 pixels) the frame rate is about 20

FPS or higher for all approaches except the grid brightness correction. Therefore,

when excluding the grid brightness correction approach, all refinement approaches

can be chosen with regard to the rendering speed.

The GPU of the SGS2 and SGS3 (Mali-400MP) seems to operate faster than the

one of the LG-4xHD (Tegra 3) for this application. The grid brightness correction

needs additional calculation for preparing data for the fragment shader and in the

fragment shader as well. Skipping the calculation on the CPU side still results in

similar frame rates than with it.

The conclusion of the evaluation is that most of the approaches achieve a real-time

frame rate for the standard resolution and still show a frame rate above 20 FPS

for the high resolution. The tracking works best using image refinement approaches

that only map new pixels per frame, but is still acceptable for the others. The

image quality is optimized using the frame-blending approach with the feature point

brightness offset correction, which is the most preferable approach regarding the

results.

Chapter 6 Evaluation and Experimental Results 66

6.5 Implementation Issues

An implementation of the GPU-based mapping approach reveals several issues that

have to be taken care of.

Rendering Framework: The most crucial issue emerges using the Open Scene

Graph (OSG) framework. Despite a structured and convenient programming en-

vironment, the maximum render speed cannot exceed 17 FPS using the Samsung

Galaxy S II (SGS2) as a testing device. Even optimizations of the shader’s view-

port by passing it through a scissor test did not achieve real-time frame rates. An

implementation in plain OpenGL ES 2.0 delivers a desired render speed of 25 FPS

and above. We speculate that the overhead in scene graph traversals within OSG is

the reason for the suboptimal behavior.

Texture Size: Increasing the size of the panoramic image requires an enlargement

of the texture resolution. Some mobile phones do not support texture sizes beyond

2048x2048 pixels, which is a hardware dependent limit varying for different kinds of

mobile phones. Whereas the SGS2 has a maximum texture size of 4096x4096 pixels,

the maximum texture size of the LG Optimus 4x HD is only 2048x2048 pixels.

An implementation of the panoramic mapping approach has to take the maximum

texture size supported into account. This can either be done by enforcing a limit on

the maximum size of the panoramic image, or by adapting the implementation to

use multiple textures for example.

Dithering: A device specific problem for the Samsung Galaxy series concerns the

default behavior of the GPU deployed. The graphics chip Mali 400 automatically sets

dithering in Frame Buffer Objects (FBO) to enabled. Creating panoramic images

not disabling this setting result in strange symmetirc patterns that get amplified

through blending the camera images. The difference of the output images can be

seen in Figure 6.7(a) and 6.7(b).

Chapter 6 Evaluation and Experimental Results 67

(a) dithering enabled (b) dithering disabled

Figure 6.7: Snippet of a panoramic image created with and without dithering

Chapter 6 Evaluation and Experimental Results 68

Chapter 7

Concluding Remarks and Future Work

In this work, a GPU-based approach for mapping panoramic images is proposed.

Acquiring the orientation of the camera in a cylindrical environment using a tracker,

a rotation matrix can be generated. This matrix allows to determine the mapping

location of the camera image in the environment in cylinder space. Determining

if a pixel of the panoramic image is in the estimated area of the camera image

can be implemented very efficiently on the GPU using shader, since it is heavily

parallelizable.

A problem for existing real-time systems on mobile phones is handling lighting dif-

ferences, since there is no programmable control of the exposure time. As demon-

strated in this work, a shader implementation automatically allows to blend the

current camera frame with already mapped pixels and therefore generates better

results in terms of image quality. A comparison of several methods for reducing

brightness seams reveals that the most promising approach is to blend the cam-

era image from each side to the panoramic map along the extents of the currently

mapped frame. Most blending methods developed and investigated during this thesis

operate with more than 25 FPS on recent mobile phones. Although it is not possible

to remove all noticeable brightness differences completely, however, the results pre-

sented demonstrate a significantly improvement in image quality still maintaining

real-time performance.

Blending images often results in a bit of blurriness. This is expected to have a neg-

ative influence on the performance of a tracker working in the panoramic space.

To visualize the performance degradation of such a tracker using the method of

[Wagner10], the found feature points per image and the number of matches are

compared between panoramic images mapped on the CPU and on the GPU. As it

is shown, in general the GPU-mapped panoramic images achieved a higher score.

In terms of tracking performance, however, approaches without any kind of pixel-

blending performed a bit better than those that blend images. Nevertheless the im-

ages generated employing blending methods can compete with pure CPU-based map-

Chapter 7 Concluding Remarks and Future Work 69

ping approaches and deliver a better image quality.

A further advantage of GPU-based mapping is the possibility of creating higher

resolution panoramic images without suffering from a significant deterioration in

render speed. As it is shown, on recent mobile phones a frame rate between 20

and 26 FPS is achieved for rendering textures with the size of 4096x1024 pix-

els.

In this work, additional functionality is applied that improves the usability of an

application, while leveraging the benefits of a GPU-based implementation, such as

the proposed wiping function. Since taking a panoramic image is a prolonged process,

parts of the scene can easily be covered by moving objects or become unusable due

to persons that change positions. To cope with that problem the wiping function

enables the user to delete parts of the panoramic image online and remap the cleared

areas.

7.1 Future Work

Enhancements that can be done on recent devices could include changing the track-

ing method to remove CPU-mapping, allowing even bigger panoramic images by

splitting up the texture map into several smaller ones or adding additional function-

ality.

Remove CPU Mapping: The tracking method used in this work is based on

[Wagner10]. This method automatically maps on the CPU and uses the generated

panoramic image for tracking. Simply removing the CPU-based mapping process

is not possible, since reading back the updated panoramic image from the GPU-

memory to the CPU-memory is a very time consuming operation and cannot be

used for real-time mapping and tracking. For instance a tracking approach operating

with key-frames does not require to read the panoramic image back from the GPU-

memory and therefore reduces computational redundancies.

Split Textures for High Resolution Panoramic Images: Proceeding from a

naive implementation, for some devices adaptive shader have to be realized. As

discussed in Section 5.3 the resolution can be increased without a noticeable loss

of render speed. The current implementation. simply enlarges the texture size of

the panoramic map, which works fine for some devices. Due to limited texture

sizes the maximum resolution depends on the hardware. To create even larger

panoramic images, one could split the main panoramic texture into several parts

Chapter 7 Concluding Remarks and Future Work 70

and adapt the calculation for each texture. Due to varying precisions of floating

point values, fixed point calculation can be required for an accurate mapping pro-

cess.

Additional Functionality: Larger dynamic areas can automatically be recognized

by a background model. To determine whether an area is dynamic or not the cur-

rent camera image can be subtracted from the panoramic image, resulting in a

black image region. Areas that exceed a given threshold can be marked as dynamic.

These regions of differences (ROD) can be discarded for mapping or intentionally

marked for remapping on the panoramic image. This procedure can be processed

very efficiently using a shader implementation, since the respective coordinates of

both, the panoramic map and the camera image are known during the mapping

process.

Even if creating panoramic images is a widely discussed topic, new hard- and soft-

ware developments will allow further improvements in the quality of images. Espe-

cially using graphics processors with their programmable pipeline and the steadily

increasing computing power on mobile phones will play major roles in future image

processing on handheld devices.

Chapter 7 Concluding Remarks and Future Work 71

List of Figures

1.1 Architecture of the Studierstube ES AR framework 12

1.2 Architecture of the OpenSceneGraph tool kit by [Wang10] 14

3.1 Tracking process for each render cycle 21

3.2 Map with grid after the first frame has been taken. The green dots

represent the key points found in the frame. [Wagner10] 23

3.3 Projection of the camera image on the cylindric map. [Wagner10] . . 24

3.4 Mask created due to camera rotation marked with a black frame. Blue

is the area that has already been mapped. Red marks the area that

has already been mapped and falls to the mask. Pixels to be mapped

are marked in yellow. [Wagner10] . 25

4.1 Structure of the GPU-Mapping in a scene graph view. Brown: root-

node, green: CPU-based tracking and mapping, blue: GPU-based

mapping, yellow: preview of the current camera image and the panoramic

map . 27

4.2 Angle resolution of a cylinder (in degrees). Left: angle resolution about

the y-axis (α); right: angle resolution for the cylinder height (β); where

t is the camera center . 31

4.3 Projection of the camera image on the front and on the back of the

cylinder (adopted from [Wagner10]) 33

4.4 Black: panoramic map; blue: estimated camera frame; red: bounding-

box that surrounds the camera frame an will be cut out by the scissor

test . 35

4.5 Red: mapped area; blue: current frame; green: small update region

that is cut by the scissor test and passed to the shader. The additional

optimization approach saves comptation costs. 35

4.6 Red: mapped area; blue: current frame; green: big update region that

is cut by the scissor test and passed to the shader. The additional

optimization approach does not save a lot of computation costs. . . . 36

List of Figures 72

5.1 Circular white spots have been cleared while taking the panoramic

image . 39

5.2 Sharp edges in homogenous areas due to diverging exposure time . . . 40

5.3 Brightness offset correction calculated from feature points [Degendorfer10] 41

5.4 Linearly blending the camera image with the panoramic image in the

frame area (yellow) between the outer (green) and the inner (purple)

blending frame. 43

5.5 States of the cell-grid texture containing blending factors 46

5.6 The blending map with the interpolated blending factors taken from

the cell-grid texture . 47

6.1 Panoramic images of a sunny scene 50

6.2 Panoramic images of a cloudy scene 52

6.3 Panoramic images of a evening scene 54

6.4 Panoramic images of an indoor scene with artificial light 56

6.5 Panoramic images of an indoor scene with natural light 58

6.6 Overview of the render speed results for the diverse image refinement

approaches . 65

6.7 Snippet of a panoramic image created with and without dithering . . 68

List of Figures 73

List of Tables

6.1 Hardware specifications of the devices used for the evaluation 48

6.2 Average of found key and matching points for each refinement ap-

proach (sunny) . 59

6.3 Average of found key and matching points for each refinement ap-

proach (cloudy) . 60

6.4 Average of found key and matching points for each refinement ap-

proach (evening) . 60

6.5 Average of found key and matching points for each refinement ap-

proach (indoor with artificial light) 61

6.6 Average of found key and matching points for each refinement ap-

proach (indoor with natural light) . 62

6.7 Render speed for the diverse image refinement approaches on the

SGS2 with Android 2.3.5 Gingerbread (1st column), LG-4xHD with

Android 4.0.3 Ice Cream Sandwich (2nd column) and SGS3 with

Android 4.0.3 Ice Cream Sandwich (3rd column) for resolutions of

2048x512 and 4096x1024 pixels. The maximum texture size of the

LG-4xHD is 2048x2048 pixels. 63

List of Tables 74

Bibliography

[Adams08] A. Adams, N. Gelf, and K. Pulli. Viewfinder alignment. Computer

Graphics Forum (Proc. Eurographics, pp. 597–606, 2008.

[Azuma97] R. T. Azuma. A survey of augmented reality. Presence: Teleopera-

tors and Virtual Environments, volume 6(4):pp. 355–385, 1997.

[Baudisch05] P. Baudisch, D. Tan, D. Steedly, E. Rudolph, M. Uyttendaele,

C. Pal, and R. Szeliski. Panoramic viewfinder: providing a real-

time preview to help users avoid flaws in panoramic pictures. In In

Proceedings of the 17th Australia conference on Computer-Human

Interaction: Citizens Online: Considerations for Today and the Fu-

ture, pp. 1–10. 2005. ISBN 1-59593-222-4.

[Brown03] M. Brown and D.G. Lowe. Recognising Panoramas. In IEEE Inter-

national Conference on Computer Vision, volume 2, pp. 1218–1225.

2003.

[ITU-R90] Recommendation ITU-R BT.709. Basic Parameter Values for the

HDTV Standard for the Studio and for International Programme

Exchange, 1990. Formerly CCIR Rec. 709, Geneva, Switcherland.

[Davison03] A. Davison. Real-Time Simultaneous Localisation and Mapping

with a Single Camera. In ICCV ’03 Proceedings of the Ninth

IEEE International Conference on Computer Vision, pp. 1403–

1410. 2003.

[Degendorfer10] C. Degendorfer. Mobile Augmented Reality Campus Guide. Mas-

ter’s thesis, Graz University of Technology, 2010.

[DiVerdi08] S. DiVerdi, J. Wither, and J. Höllerer. Envisor: Online Environ-

ment Map Construction for Mixed Reality. In In Proc. IEEE VR

2008 (10th Intl Conference on Virtual Reality. 2008.

[Farbman09] Z. Farbman, G. Hoffer, Y. Lipman, D. Cohen-Or, and D. Lischin-

ski. Coordinates for instant image cloning. ACM Transactions on

Graphics, volume 28(12):pp. 1–9, 2009.

Bibliography 75

[ICG09] Institute for Computer Graphics and Vision. Handheld Aug-

mented Reality, 2009. Available at: http://studierstube.

icg.tu-graz.ac.at/handheldar/index.php, last visited:

2013.01.14.

[Klein07] G. Klein and D. Murray. Parallel Tracking and Mapping for Small

AR Workspaces. In Proc. Sixth IEEE and ACM International Sym-

posium on Mixed and Augmented Reality (ISMAR’07), pp. 1–10.

2007.

[Lovegrove10] S. Lovegrove and A. Davison. Real-time spherical mosaicing us-

ing whole image alignment. In The 11th European Conference on

Computer Vision (ECCV 2010), pp. 73–86. 2010.

[Lowe04] D.G. Lowe. Distinctive Image Features from Scale-Invariant Key-

points. International Journal of Computer Vision, volume 60(2):pp.

91–110, 11 2004.

[López09] M.B. López, J. Hannuksela, O. Silvén, and M. Vehviläinen. Graph-

ics hardware accelerated panorama builder for mobile phones. In

Society of Photo-Optical Instrumentation Engineers (SPIE) Con-

ference Series, pp. 72560D–72560D–9. 2009.

[Milgram94] P. Milgram and F. Kishino. A Taxonomy of Mixed Reality Visual

Displays. IEICE Transactions Information Systems, volume E77-

D(12):pp. 1321–1329, 1994.

[Montiel06] J.M.M. Montiel. A visual compass based on slam. In Proceedings

2006 IEEE International Conference on Robotics and Automation,

pp. 1917–1922. 2006.

[Munshi10] A. Munshi and J. Leech. OpenGL ES Common Profile Spec-

ification, 2010. Version 2.0.25 (Full Specification). Available

at: http://www.khronos.org/registry/gles/specs/2.

0/es_full_spec_2.0.25.pdf, last visited: 2013.01.14.

[OSG07] OpenSceneGraph. Introduction. Available at: http:

//www.openscenegraph.org/projects/osg/wiki/

About/Introduction, last visited: 2013.01.14.

[Plataniotis00] K. N. Plataniotis and A. N. Venetsanopoulos. Color image pro-

cessing and applications. Springer-Verlag, New York, first edition,

2000. ISBN 978-3-540-66953-1.

Bibliography 76

http://studierstube.icg.tu-graz.ac.at/handheld ar/index.php
http://studierstube.icg.tu-graz.ac.at/handheld ar/index.php
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.openscenegraph.org/projects/osg/wiki/About/Introduction
http://www.openscenegraph.org/projects/osg/wiki/About/Introduction
http://www.openscenegraph.org/projects/osg/wiki/About/Introduction

[Pulli10] K. Pulli, M. Tico, and Y. Xiong. Mobile Panoramic Imaging Sys-

tem. In Computer Vision and Pattern Recognition Workshops

(CVPRW), 2010 IEEE Computer Society Conference on, pp. 108–

115. 2010.

[Rosten06] E. Rosten and T. Drummond. Machine learning for high-speed

corner detection. In European Conference on Computer Vision,

volume 1, pp. 430–443. 2006.

[Schall09] G. Schall, D. Wagner, G. Reitmayr, E. Taichmann, M. Wieser,

D. Schmalstieg, and B. Hofmann-Wellenhof. Global Pose Estima-

tion Using Multi-Sensor Fusion for Outdoor Augmented Reality. In

Virtual Reality Conference (VR), 2010 IEEE, pp. 153–162. 2009.

[Smith78] A.R. Smith. Color gamut transform pairs. In SIGGRAPH ’78

Proceedings of the 5th annual conference on Computer graphics and

interactive techniques, volume 12, pp. 12–19. 1978.

[Steedly05] D. Steedly, C. Pal, and R. Szeliski. Efficiently Registering Video

into Panoramic Mosaics. In Tenth IEEE International Conference

on Computer Vision, 2005 ICCV, volume 1, pp. 1300–1307. 2005.

[Szeliski06] R. Szeliski. Image Alignment and Stitching: A Tutorial. Founda-

tions and Trends in Computer Graphics and Vision, volume 2:pp.

1–104, 2006.

[Szeliski97] R. Szeliski and H. Y. Shum. Creating Full View Panoramic Image

Mosaics and Environment Maps. In 24th Annual Conference on

Computer Graphics - SIGGRAPH, 1997, pp. 251–258. 1997.

[Tian02] G.Y. Tian, D. Gledhill, D. Taylor, and D. Clarke. Colour correction

for panoramic imaging. In Proceedings Sixth International Confer-

ence on Information Visualisation, pp. 483–488. 2002.

[Uyttendaele01] M. Uyttendaele, A. Eden, and R. Szeliski. Eliminating Ghosting

and Exposure Artifacts in Image Mosaics. In IEEE Computer So-

ciety Conference on Computer Vision and Pattern Recognition, pp.

509–516. 2001.

[Wagner10] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg. Real-Time

Panoramic Mapping and Tracking on Mobile Phones. In Virtual

Reality Conference (VR), 2010 IEEE, pp. 211–218. 2010. ISSN

1087-8270.

Bibliography 77

[Wagner09a] D. Wagner and D. Schmalstieg. Making Augmented Reality Prac-

tical on Mobile Phones, Part 1. In Computer Graphics and Appli-

cations, IEEE 2009, volume 29, pp. 12–15. 2009.

[Wagner09b] D. Wagner and D. Schmalstieg. Making Augmented Reality Prac-

tical on Mobile Phones, Part 2. In Computer Graphics and Appli-

cations, IEEE 2009, volume 29, pp. 6–9. 2009.

[Wang10] R. Wang and X. Qian. OpenSceneGraph 3.0: Beginner’s Guide.

Packt Publishing, Birmingham, 2010. ISBN 978-1-849512-82-4.

[Xiong09b] Y. Xiong and K. Pulli. Gradient Domain Image Blending and Im-

plementation on Mobile Devices. In Mobicase 2009. 2009.

[Xiong10] Y. Xiong and K. Pulli. Fast Panorama Stitching for High-Quality

Panoramic Images on Mobile Phones. In The 7th IEEE conference

on Consumer communications and networking conference, pp. 537–

541. 2010.

[Xiong09a] Y. Xiong, X. Wang, M. Tico, C.K. Liang, and K. Pulli. Panoramic

imaging system for mobile devices. In Poster at the 36th interna-

tional conference and exhibition on Computer graphics and inter-

active techniques (SIGGRAPH 2009). 2008.

Bibliography 78

	Introduction
	Problem Statement
	Motivation
	Contribution
	Architecture of the Studierstube ES AR framework
	OpenSceneGraph

	Related Work
	Panoramic Imaging and Image Mosaics
	GPU-acceleration
	Image Refinement
	Demand for Action

	CPU-Sided Panoramic Mapping and Tracking
	Panoramic Tracking
	Brightness Offset

	Panoramic Mapping

	GPU-Accelerated Mapping
	Structure of the Mapping and Tracking process
	Framebuffer Switching
	Shader Mapping
	Mathematical description of the mapping process
	Shader Optimization

	GPU-based Mapping for advanced applications
	Wiping
	Image Refinement
	Brightness Offset Correction
	Gamma Correction
	Pixel-Blending
	Blending a Frame Area of the Camera Image
	Blending the Running Average of the camera image
	Blending Values in HSV-Color Space
	Blending/Fading from Completed Cells

	Larger panoramic images

	Evaluation and Experimental Results
	Panoramic image refinement
	Robustness
	Render Speed
	Interpretation of the Evaluation Results
	Implementation Issues

	Concluding Remarks and Future Work
	Future Work

