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Abstract

Discriminative learning methods are well-approved techniques in machine learning for pat-
tern classification. In particular, the maximum margin approach, known from state-of-the-art
support vector machine classifiers, can outperform generative and also discriminative learning
schemes under certain conditions. Hidden Markov models (HMMs) are widely used to model
data sequences of variable length. It has been shown that generatively as well as discrimina-
tively trained HMMs can yield good performance in sequence classification tasks. In this work,
the maximum margin approach is introduced to HMMs. We compare maximum margin HMM
training to generative as well as other discriminative HMM training schemes such as maximum
mutual information training. In particular, we use the extended Baum-Welch (EBW) algorithm
for parameter estimation to maximize the objective functions of discriminative training methods
for HMMs. We utilize the Viterbi algorithm to simplify the derivatives of the objective functions
required by the EBW algorithm. Furthermore, robust approximations to these derivatives are
presented. Experimental results for real-world classification problems are provided, showing the
capabilities of maximum margin HMM training. The maximum margin approach is compared
with the generative method of maximum likelihood estimation (MLE) and the discriminative
training scheme of conditional log-likelihood (CLL) parameter estimation. We present results
on the tasks of human speech and handwritten digit classification. The experiments show that
maximum margin learning achieves good classification performance and competes with both
MLE and CLL training.
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Kurzfassung

Diskriminative Lernmethoden sind eine weithin anerkannte Technik maschinellen Lernens zur
Mustererkennung. Im Speziellen kann der Maximum Margin Ansatz, bekannt durch die Klas-
sifikationsmethode der Support Vektor Machines, generative und auch diskriminative Lern-
verfahren unter gewissen Bedingungen übertreffen. Hidden Markov Modelle (HMM) werden
gemeinhin zur Modellierung von Datensequenzen unterschiedlicher Länge verwendet. Es wurde
gezeigt, dass sowohl generativ als auch diskriminativ trainierte HMM gute Ergebnisse bei der
Klassifikation von Sequenzen erzielen können. Diese Arbeit beschäftigt sich mit der Adaptierung
des Maximum Margin Ansatzes für HMM. Wir vergleichen Maximum Margin Training mit gen-
erativen und anderen diskriminativen Lernverfahren für HMM, wie zum Beispiel Maximum
Mutual-Information Training. Im Speziellen verwenden wir den erweiterten Baum-Welch Algo-
rithmus (EBW) zur Parameterschätzung bzw. zur Maximierung der Zielfunktionen von diskrimi-
nativen Trainingsmethoden für HMM. Zur Vereinfachung der vom EBW-Algorithmus benötigten
Ableitungen dieser Zielfunktionen wird der Vitberbi Algorithmus verwendet. Des Weiteren
werden robuste Approximationen dieser Ableitungen vorgestellt. Experimentelle Resultate zu
realen Klassifikationsaufgaben zeigen die Leistungsfähigkeit des Maximum Margin Trainings
für HMM. Der Maximum Margin Ansatz wird mit der generativen Maximum Likelihood Esti-
mation Methode (MLE) und dem diskriminativen Conditional Log-Likelihood Trainigsschema
(CLL) verglichen. Wir präsentieren Resultate zur Klassifikation menschlicher Sprache und
handgeschriebener Symbole. Die Experimente zeigen, dass Maximum Margin Training gute
Klassifikationsergebnisse erzielen und sich sowohl mit MLE Training als auch mit CLL Training
messen kann.
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1
Introduction

The analysis of sequential data and time series covers a wide field of applications, such as speech
analysis [1], financial mathematics [2] and weather forecasts [3], just to name a few of them.
The broad variety of possibilities to utilize sequential data analysis yields interesting tasks in
terms of machine learning, for example the prediction of future events given a time series, data
clustering and pattern classification.
A time series is a set of data samples with a sequential order. Thus, the data samples are
correlated and not independent and identically distributed (i.i.d.). In other words, the obser-
vations in a time series are dependent on previous samples in the sequence. In order of being
able to draw any conclusion of a given time series, it is indeed very helpful to understand the
process which produces that given sequence. Therefore, it is an important task in the analysis
of time series to find an appropriate statistical model that represents the underlying stochastic
process given some data produced by that process. A model where a data sample of an observed
sequence depends on all previous samples would be computationally infeasible, especially when
the sequence has no limit in its length. To overcome this, the assumption is taken that more
recent samples have a greater influence on the present than samples in the farther past. In
particular, a Markov model restricts the influence on the present to a few events in the most
recent past. The number of influencing events in the past determines the order of the Markov
Model. In a first-order Markov model, the present event only depends on its predecessor, in a
second-order Markov model it depends on the two previous events and so forth.
A hidden Markov model (HMM) can be used to describe sequences that cannot be observed
directly. At every time step, the Markov model is in a certain hidden state and produces an
observable data sample. The current state is dependent on the model’s state in one or more
previous time steps, according to the order of the Markov model. The state space of HMMs is
discrete, i.e. they have a finite number of different states [4–6].

1.1 Scope of Research

This thesis concentrates on discriminative training of first-order HMMs with emission proba-
bilities represented by Gaussian Mixture Models (GMMs). The focus of research is on margin
maximization in HMMs. A specific definition of the margin is investigated and compared to
another criterion for discriminative training, namely the conditional log-likelihood (CLL). To
optimize the objective functions of the discriminative training methods, i.e. the conditional
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1 Introduction

log-likelihood (CLL) and the margin criterion, the extended Baum-Welch (EBW) algorithm is
adapted to HMMs. The EBW algorithm uses the derivatives of the objective functions. Robust
approximations to the derivatives are discussed. Experimental results are presented for the tasks
of classifying human speech and handwritten digits. In particular, discriminatively optimized
CLL-HMMs and maximum margin HMMs are compared with state-of-the-art generative HMMs,
where the maximum likelihood objective is optimized. In the experiments, three different data
sets are used, one for speech classification and two for handwritten digit classification.

1.2 Organization of the Thesis

This thesis is organized as follows: The structure and basic algorithms of HMMs are presented
in Chapter (2), as well as their application to classification tasks. Furthermore, the notation is
introduced. Chapter (3) is devoted to HMM learning. First traditional ML learning is intro-
duced. Then discriminative training methods using conjugate gradient methods are discussed.
In particular, we use the CLL criterion and introduce the margin objective. Implementation
issues are also in the scope of this chapter. Chapter (4) presents experimental results of the
application of the introduced HMM training methods for sequence classification tasks. Two
practical tasks in sequence classification are presented, i.e. the classification of speech on a pho-
netic and a word level and handwritten digits. Chapter (5) concludes the thesis and provides a
perspective on future work.
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2
Hidden Markov Models

An HMM can be fully described by two stochastic processes [5,6]. The first is a Markov-process
that produces a sequence of states that cannot be directly observed. The second process produces
an observation at every time step of the state sequence according to a state-dependent probability
distribution. Thus, the observation process is driven by the state process. Fig. (2.1) illustrates
a first-order HMM as graphical model [4]. A state sequence Q = {q1, q2, . . . , qt, . . . , qT }, where
each element qt is drawn from a set S = {1, 2, . . . , S} of S states. The state of element qt
depends only on the state of its preceding element qt−1. At any time-step, an observation xt
is produced, giving an observation sequence x = {x1,x2, . . . ,xt−1,xt, . . . ,xT }, where T denotes
the length of the sequence. The observations are drawn either from a discrete or a continuous
probability distribution. They depend only on the state in the same time-step. Furthermore,
the observation at each time step can be either a vector xt or a scalar xt. Throughout the thesis
it is assumed to observe a continuous vector xt ∈ RD, where D is the number of observations in
each time-step.

q1 q2 qt−1 qt qT

x1 x2 xt−1 xt xT

Figure 2.1: A first order Markov chain. The hidden state sequence Q = {q1, . . . , qT } is shown by shaded
nodes.

At each time step, the variable qt is in one of S states, dependent on the state of the previous
variable qt−1 ∈ S. Hence, there are S times S possible state transitions in every time-step,
where each transition from state i to state j occurs with a certain probability denoted by
ai,j = P (qt = j|qt−1 = i). Fig. (2.2) shows the possible state transitions for a model with three
different states.
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2 Hidden Markov Models

21 3

a1,2

a1,3

a1,1
a2,3

a2,1

a2,2

a3,1

a3,2

a3,3

Figure 2.2: A Markov model with three states.

A transition matrix A ∈ S × S collects all transition probabilities ai,j . It is given by

A =

a1,1 · · · a1,j
... · · ·

...
ai,1 · · · ai,j

 , where
S∑
j=1

ai,j = 1 ∀i ∈ {1, . . . , S}. (2.1)

In an HMM, the state of the model in a particular time-step cannot be observed directly.
Instead, the model emits an observation dependent on the model’s current hidden state. In each
state, the model produces emissions according to a state-dependent probability distribution.
The probability of observing a certain emission while the model is in state i at time t is called
emission or observation probability bi(xt) = p(xt|qt = i). The Markov model of Fig. (2.2) with
the added emission probabilities is shown in Fig. (2.3).

21 3

b1(xt) b2(xt) b3(xt)

a1,2

a1,3

a1,1
a2,3

a2,1

a2,2

a3,1

a3,2

a3,3

Figure 2.3: Emission probabilities depend on the model’s state.

A time series can be modelled as a series of observations that is produced by a HMM while
running through a series of state transitions. In the first time step, there is no transition from
a previous hidden state. The probability of the model being in hidden state i at the beginning
of a sequence t = 1 is called the state prior distribution πi = p(x1|q1 = i).

The state prior can be imagined as the transition from an observable start state the model
is in with a probability of 1 to one of the hidden states at the beginning of the time series. A
hidden Markov model is fully defined by the three parameters discussed above: the state prior
distribution πi, the transition matrix A and the emission probability bi(xt). Fig. (2.4) shows an
HMM with all parameters Θ = {πi, . . . , πS , A, bi(xt), . . . , bS(xt} for modelling a time series.
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2.1 HMM Structures

21 3Start

b1(xt) b2(xt) b3(xt)

a1,2

a1,3

a1,1
a2,3

a2,1

a2,2

a3,1

a3,2

a3,3

π1

π2

π3

Figure 2.4: An HMM with all parameters. The series of state transitions starts in a defined state named
Start.

2.1 HMM Structures

The structure of an HMM is specified by its transition matrix A. State transitions have a
probability between 0 and 1. An HMM where all state transitions are nonzero is called a fully
connected or ergodic HMM.

2.1.1 Left-Right HMMs

In a left-right HMM, transitions to a state with a lower index than the current index are not
possible. An example of such a left-right HMM with three hidden states is depicted in Fig.
(2.5).

21 3Start

b1(xt) b2(xt) b3(xt)

a1,2

a1,3

a1,1

a2,3

a2,2 a3,3

π1

π2

π3

Figure 2.5: A left-right HMM.
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2 Hidden Markov Models

The corresponding transition matrix A and state prior πi probabilities are

A =

a1,1 a1,2 a1,3
0 a2,2 a2,3
0 0 a3,3

 and π =

π1π2
π3

 , respectively.

2.1.2 Linear HMMs

A linear HMM allows transitions from a state only to itself and to the state with an index of
one higher than itself. Therefore, no state can be omitted in a sufficiently long time series.

21 3Start

b1(xt) b2(xt) b3(xt)

a1,2

a1,1

a2,3

a2,2 a3,3

π1

Figure 2.6: A linear HMM.

A linear HMM is depicted in Fig. (2.6) with the associated state prior and transition probabilities

A =

a1,1 a1,2 0
0 a2,2 a2,3
0 0 a3,3

 and π =

1
0
0

 .
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2.2 Observation Probabilities

2.2 Observation Probabilities

As mentioned above, the observations can be either discrete or continuous. Furthermore, at
each time step a single variable xt or a set of variables xt can be observed.

2.2.1 Discrete Observations

If the possible observations are limited to a finite number of K discrete symbols, i.e. xt ∈
{1, . . . ,K}, the observation probabilities for S hidden states can be stated by an S×K matrix:

B =


b1(xt = 1) b1(xt = 2) · · · b1(xt = k)

b2(xt = 1) · · · · · ·
...

... · · · · · ·
...

bS(xt = 1) · · · · · · bS(xt = k)

 , (2.2)

where
K∑
k=1

bi(xt = k) = 1 ∀i ∈ {1, . . . , S}.

2.2.2 Continuous Observations

In a continuous observation space, the observation probabilities can be described by one contin-
uous probability density function (pdf) per state. Often the Gaussian or normal distribution is
used. It is fully specified by only two parameters, the mean and variance. In the case of multidi-
mensional observations, i.e. xt ∈ RD, the multivariate Gaussian distribution for a D-dimensional
observation vector xt of state i is defined as follows:

bi(xt) = N (xt|µi,Σi) =
1√

(2π)D|Σi|
e−

1
2
(xt−µi)TΣ−1

i (xt−µi), (2.3)

where
∞∫
−∞

bi(xt)dx = 1 for all i ∈ {1, . . . , S}.

In Eq. (2.3), µi is the D-dimensional mean vector, Σi is the D×D symmetric covariance matrix
and |Σ| is its determinant.
In case the observations show a multimodal distribution, a multivariate Gaussian mixture model
(GMM) can be used. A GMM is a weighted sum ofM multivariate Gaussians, where the emission
probabilities are defined as follows:

bi(xt) =

M∑
m=1

αi,m · bi,m(xt) =

M∑
m=1

αi,m · N (xt|µi,m,Σi,m), (2.4)

where αi,m are the weights of each Gaussian component such that
∞∫
−∞

bi(xt)dx = 1.

Therefore, 0 ≤ ai,m ≤ 1 and
M∑
m=1

αi,m = 1.

– 9 –



2 Hidden Markov Models

2.3 Problems for HMMs

Basically, there are three problems that have to be solved:

� Evaluation problem
Calculating the probability p(x|Θ) that a given HMM Θ produces a given observation
sequence x is called the evaluation problem. The evaluation problem can be efficiently
solved by the forward procedure as well as by the backward procedure [5, 6].

� Decoding problem
The decoding problem aims at finding the most probable state sequence Q∗ = {q∗1, . . . , q∗T }
given x and Θ. The Viterbi algorithm provides a solution to this problem [5,6].

� Learning problem
Adjusting the parameters of a HMM, i.e. Θ = {πi, . . . , πS , A, bi(xt), . . . , bS(xt}, to optimize
a desired criterion, e.g. to maximize the model likelihood p(x|Θ) for given data, is known
as learning problem. The learning problem is the most complex of the three basic HMM
problems. Various approaches for solving this problem are discussed in Chapter (3).

Before solutions to each of these problems are presented, the trellis diagram is introduced.

2.3.1 Trellis Diagram

A trellis diagram visualizes the state transitions of an HMM over the time. At each time-step,
each state of the HMM is represented by a node. State transitions are represented by edges.
Each path in the trellis diagram is related to a particular state sequence. The trellis diagram in
Fig. (2.7) shows all possible state sequences for the left-right HMM of Fig. (2.5) for a sequence
of five time-steps. The red path marks a state sequence of Q = {1, 1, 2, 3, 3}.

Start

1

2

3

0 1 2 3 4 5

time

state

Figure 2.7: Trellis diagram.

For a given HMM, a transition probability can be assigned to each edge in the trellis. Analo-
gously, for a given observation sequence x = {x1, . . . ,xT }, to each node the observation proba-
bility of the current time step can be assigned. This is shown in Fig. (2.8).

The probability of a state sequence Q = {q1, . . . , qT } and an observation sequence x =
{x1, . . . ,xT } is simply the product of the probabilities along the path of Q. For example,
the probability of an observation sequence x and the state sequence Q = {1, 1, 2, 3, 3} depicted
in Fig. (2.7) given the parameters Θ of an HMM is p(x, Q|Θ) = π1 · b1(x1) · a1,1 · b1(x2) · a1,2 ·
b2(x3) · a2,3 · b3(x4) · a3,3 · b3(x5).
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2.3 Problems for HMMs

Start

1

2

3

· · ·

· · ·

· · ·

b1(x1)

b2(x1)

b3(x1)

b1(xt−1)

b2(xt−1)

b3(xt−1)

b1(xt)

b2(xt)

b3(xt)

· · ·

· · ·

· · ·

0 1 t− 1 t

time

state

a1,3

a1,2

a1,3

a2,2

a2,3

a3,3

π1

π2

π3

Figure 2.8: Trellis Diagram with transition and observation probabilities.

2.3.2 Forward-Procedure

Supposing a fully connected HMM Θ with S hidden states, for an observation sequence Q of
length T , there are ST possible paths through the trellis. For evaluating the probability p(x|Θ)
of a given observation sequence x, the probabilities of all possible paths, i.e. all possible state
sequences, given the observation sequence could be calculated separately and then be summed
up, i.e. p(x|Θ) =

∑
Q p(x, Q|Θ). Therefore, the computational effort would increase exponen-

tially with the number of observations, i.e. O(T · ST ).
Fortunately, the computational complexity can be reduced by making use of dynamic program-
ming. The idea is to store intermediate results that can be reused. For a given observation
sequence x = {x1,x2, . . . ,xt,xt+1, . . . ,xT }, let ωi,t be the forward probability of being in state
i at time-step t for a partial sequence {x1,x2, . . . ,xt}, starting at x1 and ending at the present
observation xt:

ωi,t := p(x1,x2, . . . ,xt−1,xt, qt = i|Θ) (2.5)

To calculate ωi,t, the probabilities of all partial paths that are in state i at time-step t must be
summed up. For t = 1, there is only one path from the Start state to each hidden state:

ωi,1 = πibi(x1), 1 ≤ i ≤ S (2.6)

For the calculation of ωi,t+1, the results of time-step t are reused recursively, i.e.

ωj,t+1 =

[ S∑
i=1

ωi,tai,j

]
bi(xt+1), 1 ≤ j ≤ S, 1 ≤ t ≤ T − 1. (2.7)
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2 Hidden Markov Models

The sum of ωi,T = p(x, qT = i|Θ) over all states at time-step T gives the probability of the
whole observation sequence, i.e.

p(x|Θ) =

S∑
i=1

ωi,T . (2.8)

This solves the evaluation problem efficiently. Each time-step requires the same number of
computations. Thus, using the forward procedure, the computational effort increases linearly
with the sequence length, i.e. O(S2 · T ).

2.3.3 Backward-Procedure

The backward probability is defined as the probability of the observations {xt+1,xt+2, . . . ,xT }
in the future of time-step t, given the state i at time-step t, i.e.

βi,t := p(xt+1,xt+2, . . . ,xT |qt = i,Θ) (2.9)

The backward probabilities can be calculated in the same manner as the forward probabilities,
just starting at the end of the sequences. Hence, the evaluation problem is solved by the following
procedure:

Initialization: βi,T = 1, 1 ≤ i ≤ S (2.10)

Recursion: βi,t =

S∑
j=1

ai,jbj(xt+1)βj,t+1, 1 ≤ i ≤ S, T − 1 ≥ t ≥ 1 (2.11)

Termination: p(x|Θ) =
S∑
i=1

πibi(x1)βi,1 (2.12)

2.3.4 Viterbi-Algorithm

Decoding the most probable state sequence Q∗ for a given observation sequence x can be carried
out in a similar recursive manner as the evaluation problem. The only difference to the forward
procedure is that for each intermediate result, the maximum instead of the sum of the previous
results is taken. For a given observation sequence {x1, . . . ,xt}, let δi,t be the probability of the
most probable partial path to state i at time step t:

δi,t := max
q1,q2,...,qt−1

p(q1, q2, . . . , qt−1, qt = i,x1,x2, . . . ,xt|Θ), 1 ≤ i ≤ S (2.13)

As there is only one path from the Start state to each hidden state, initialization is the same
as for the forward procedure:

δi,1 = πibi(x1), 1 ≤ i ≤ S (2.14)

ψi,1 = 0 (2.15)
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2.4 Classification of Time Series Data by HMMs

For the next time-step t + 1, the maximum of the previous δi,t is used. Additionally, for each
time step t, ψj,t indices the preceding state of the most probable partial path to state j. Hence,
δj,t+1 and ψj,t+1 are calculated recursively according to:

δj,t+1 = max
1≤i≤S

[δi,tai,j ]bj(xt+1), 1 ≤ j ≤ S, 1 ≤ t ≤ T − 1 (2.16)

ψj,t+1 = arg max
1≤i≤S

[δi,tai,j ], 1 ≤ j ≤ S, 1 ≤ t ≤ T − 1 (2.17)

The probability of the most probable path for a given observation sequence is the intermediate
result at the last time-step T . It can be determined as

p∗(x|Θ) = max
1≤i≤S

δi,T . (2.18)

The most probable path Q∗ = {q∗1, . . . , q∗T } ends in q∗T = arg max1≤i≤S δi,T and can be found by
backtracking the indices ψi,t: q

∗
t = ψq∗t+1,t+1, where T − 1 ≥ t ≥ 1.

2.4 Classification of Time Series Data by HMMs

The task of classification is to assign a given observation sequence x = {x1, . . . ,xT } to a class c
out of a finite set of C = {1, . . . , C} classes. For each class, one HMM Θc is trained. According
to Bayes’ rule, the class posterior p(c|x) is given by [4]

p(c|x) =
p(x|c)p(c)
p(x)

=
p(x|c)p(c)

C∑
c′=1

p(x|c′)p(c′)
, (2.19)

where the likelihood is assumed to be a parametric model for class c, i.e. p(x|c) = p(x|Θc). The
class label can be determined by the maximum a-posteriori (MAP) estimate, i.e. by assigning a
sample x to the class c∗ with the highest class posterior probability p(c|x). It is given by

c∗ = arg max
1≤c≤C

p(c|x) = arg max
1≤c≤C

[p(x|Θc)ρc], (2.20)

where the denominator of Eq. (2.19) is obsolete for determining the highest posterior as it
scales every class posterior by the same value and therefore does not influence the choice of c∗.
Similar to the state prior distribution πi, the class prior distribution ρc = p(c) is the initial
probability of a class c. The probability p(x|Θc) is determined by the evaluation problem and
can be computed by using either the forward or the backward procedure discussed in Section
(2.3.2) and (2.3.3). If the most probable state sequence Q∗ producing x is known or estimated
by the Viterbi algorithm, p(x|Θc) can be approximated by p∗(x|Θ), i.e. the product of the
probabilities along the path Q∗ with the highest probability through the trellis of HMM Θc (see
Section (2.3.1)).

The learning problem, i.e. adjusting the HMM parameters Θc given training data, is covered
in Chapter 3.
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3
Training of Hidden Markov Models

If some given data is assumed to be generated from a certain model, it may be desirable to
know the model’s parameters in order to make further use of it, e.g. generating new data or
the classification of samples. Training is the calculation or estimation of the model parameters
for the purpose of making the model most appropriate for its designated use with respect to a
given set of data samples.
Training a model for sequence classification is to estimate the model parameters such that a
sample sequence is assigned to the correct class according to some decision rule. As discussed
in Section (2.4), the MAP estimate can be used as decision rule for sequence classification, i.e.
a sample sequence x is assigned to the class c∗ with the highest class posterior p(c|x). Thus,
using the MAP decision rule, the aim of training is the estimation of the model parameters
such that the correct class posterior of a given sample is higher than all other class posteriors.
Two training schemes are discussed in this work, namely generative and discriminative training.
Generative training fits the model parameters to model the distribution of the training data
whereas discriminative training estimates the parameters to model the class posterior probability
directly.
The aim of generative training is to determine the model parameters such that samples generated
by the model have the same statistical distribution as the training data. When one model per
class is fitted to the corresponding class distribution, it is assumed that a given sample is drawn
from one of these distributions and therefore the model of the sample’s class would give the
highest posterior probability. A generative training method usually maximizes the likelihood of
the model given training data. The maximum likelihood estimation of HMMs is presented in
Section (3.1).
The intention of discriminative training is to optimize the model parameters such that the
classification performance is optimized. For instance, in conditional likelihood (CL) learning
the class posterior of the model is maximized. In maximum margin optimization, the margin
between the class posteriors of the model of the correct class and the most competitive class is
maximized. Both discriminative training schemes are derived for HMMs in Section (3.2) and
(3.3). Usually, discriminatively learned models result in an increase of classification performance.
This is especially true if the model does not fit the underlying distribution well [4].
Throughout this chapter, the variables i and j are used to indicate the hidden states of an HMM
and m indicates the mixture components of a GMM. In all equations where these indices are
used, 1 ≤ i ≤ S, 1 ≤ j ≤ S and 1 ≤ m ≤ M , where S is the number of states of an HMM and
M is the number of mixture components of a GMM.
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3 Training of Hidden Markov Models

3.1 Maximum Likelihood Estimation

Given a set of Nc training sequences Xc = {x1,x2, . . . ,xNc} belonging to the same class c ∈
{1, . . . , C}, the likelihood of Xc given a HMM Θc is

L(Xc|Θc) = p(Xc|Θc) =

Nc∏
n=1

p(xn|Θc) (3.1)

where Θc = {πi, . . . , πS , A, bi(xt), . . . , bS(xt} is the set of parameters that define the HMM of
class c, i.e. state prior, transition matrix and observation probabilities. The aim of maximum
likelihood estimation (MLE) is to find a Model Θ∗c such that

Θ∗c = arg max
Θc

L(Xc|Θc). (3.2)

The analytical approach to Eq. (3.2) , solving

∂L(Xc|Θc)

∂Θc
= 0, (3.3)

does not provide a closed-form solution [6]. Therefore, an iterative scheme, such as the Baum-
Welch algorithm, which is basically an expectation maximization (EM) algorithm, may be ap-
plied.

3.1.1 The Baum-Welch Algorithm

The iterative method of the EM algorithm for maximum likelihood estimation consists of two
steps. In the expectation step (E-step), the expected values of some hidden quantities are
calculated given the current model parameters. In the maximization step (M-step), the model
parameters are updated on the basis of the quantities from the E-step. The updated parameters
are then used for estimating the hidden quantities in the E-step and so on. Further details to
the EM algorithm for HMMs can be found in [7].

� E-step:

In the E-step, two quantities are calculated, given a training set Xc and the current model
Θc. The first is the probability of a state transition from state i to state j given every
sequence xn at every time step t:

ξnc,i,j,t : = p(qt = i, qt+1 = j|xn,Θc) (3.4)

=
p(xn, qt = i, qt+1 = j|Θc)

p(xn|Θc)

=
ωnc,i,tac,i,jbc,j(x

n
t+1)β

n
c,j,t+1

S∑
i=1

S∑
j=1

ωnc,i,tac,i,jbc,j(x
n
t+1)β

n
c,j,t+1

. (3.5)
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3.1 Maximum Likelihood Estimation

The numerator in the last term uses the forward and the backward probability intro-
duced in Chapter (2). In particular, ωnc,i,t = p(xn1 , . . . ,x

n
t−1,x

n
t , qt = i|Θc) and βnc,j,t+1 =

p(xnt+2, . . . ,x
n
T |qt+1 = j,Θc) leads to p(qt = i, qt+1 = j|xn,Θc) = ωnc,i,tac,i,jbc,j(x

n
t+1)β

n
c,j,t+1,

where we add index c to ac,i,j and bc,j(x
n
t+1) to denote the parameters of Θc.

The second quantity is the probability of being in state i at time step t given the observation
sequence xn:

ζnc,i,t : = p(qt = i|xn,Θc)

=
p(xn, qt = i|Θc))

p(xn|Θc)
=

S∑
j=1

ξnc,i,j,t. (3.6)

The last equality is basically the marginalization of ξnc,i,j,t. The contribution of each mixture
component m of bc,i(x

n
t ) to ζnc,i,t is collected in ζnc,i,m,t, i.e.

ζnc,i,m,t : = ζnc,i,t ·
bc,i,m(xnt )

bc,i(xnt )

= ζnc,i,t ·
αc,i,m · N (xnt |µc,i,m,Σc,i,m)

M∑
m′=1

αc,i,m′ · N (xnt |µc,i,m′ ,Σc,i,m′)

. (3.7)

This is essentially the probability that at time-step t the HMM is in state qt = i and that
the mth component of bc,i(x

n
t ) produces xnt given the observation sequence xn and the

model Θc.

� M-step:

In the M-step, the estimated quantities from the E-step can be used to update the param-
eters of the HMM. The updated parameters Θ̄c are given by

π̄c,i ←
1

Nc

Nc∑
n=1

ζnc,i,1, (3.8)

āc,i,j ←

Nc∑
n=1

Tn−1∑
t=1

ξnc,i,j,t

Nc∑
n=1

Tn∑
t=1

ζnc,i,t

, (3.9)

ᾱc,i,m ←

Nc∑
n=1

Tn∑
t=1

ζnc,i,m,t

Nc∑
n=1

Tn∑
t=1

ζnc,i,t

, (3.10)
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3 Training of Hidden Markov Models

µ̄c,i,m ←

Nc∑
n=1

Tn∑
t=1

ζnc,i,m,tx
n
t

Nc∑
n=1

Tn∑
t=1

ζnc,i,m,t

, (3.11)

Σ̄c,i,m ←

Nc∑
n=1

Tn∑
t=1

ζnc,i,m,t(x
n
t − µc,i,m)(xnt − µc,i,m)T

N∑
n=1

Tn∑
t=1

ζnc,i,m,t

. (3.12)

3.2 Conditional log-Likelihood Parameter Estimation

In contrast to generative methods, discriminative training of an HMM Θc of class c ∈ {1, . . . , C}
involves all training samples X = {X1,X2 . . . ,XC}, where N =

∑C
c=1Nc. The conditional log-

likelihood (CLL) is given by

CLL(X|Θ) = log

N∏
n=1

p(cn|xn) = log

N∏
n=1

p(xn|Θcn)ρcn
C∑
c′=1

p(xn|Θc′)ρc′

. (3.13)

Maximizing the CLL criterion is akin to the problem of maximum mutual information estimation
(MMIE) [8,9] and can be maximized by gradient-based optimization methods, e.g. the extended
Baum-Welch (EBW) algorithm [10].

3.2.1 The Extended Baum-Welch Algorithm

The EBW algorithm can be used to optimize rational objective functions

R(Φ) =
Num(Φ)

Den(Φ)
, (3.14)

where Φ = {ϕi,j} is a set of discrete probability parameters constrained by

ϕi,j ≥ 0 ,
∑
j

ϕi,j = 1 and 1 ≤ i, j ≤ S. (3.15)

The EBW update equation for discrete probability parameters is given by [10]

ϕ̄i,j ←
ϕi,j

(
∂logR(Φ)
∂ϕi,j

+D

)
∑
j
ϕi,j

(
∂logR(Φ)
∂ϕi,j

+D

) , (3.16)
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3.2 Conditional log-Likelihood Parameter Estimation

where D is a constant value. Setting D is not trivial and is discussed in Section (3.2.5). The
conditional log-likelihood is a rational function of the form in Eq. (3.14) over the discrete pa-
rameters ρ, π, a and α, thus for these parameters the update of Eq. (3.16) can be used. In the
further notation, ϕ is used synonymously for discrete HMM parameters, i.e. ϕ ∈ {ρ, π, a, α}.

3.2.2 EBW Update Rules for Discrete Parameters

Given the definition of the conditional log-likelihood in Eq. (3.13), and by approximating p(x|Θc)
with the probability of the most probable state sequence of the Viterbi algorithm, i.e.

p(x|Θc) ≈ p∗(x|Θc) = max
1≤i≤S

δi,T , (3.17)

the CLL can be formulated as

CLL(X|Θ) = log

N∏
n=1

p(cn|xn) = log

N∏
n=1

p(xn|Θcn)ρcn
C∑
c′=1

p(xn|Θc′)ρc′

=
N∑
n=1

[
logπcn,i∗,ncn,1

+
Tn∑
t=1

logbcn,i∗,ncn,t
(xnt ) +

Tn∑
t=2

logacn,i∗,ncn,t−1,i
∗,n
cn,t

+ logρcn

− log

[ C∑
c′=1

πc′,i∗,n
c′,1

Tn∏
t=1

bc′,i∗,n
c′,t

(xnt )
Tn∏
t=2

ac′,i∗,n
c′,t−1

,i∗,n
c′,t
ρc′

]]
, (3.18)

where i∗,nc,t is the most probable state of the HMM of class c for a sequence xn at time t (corre-
sponds to q∗t in Chapter (2)).

The derivative of the CLL w.r.t. ρc is

∂CLL(X|Θ)

∂ρc
=

=
N∑
n=1

[
1{c=cn}

ρc
−

πc,i∗,nc,1

Tn∏
t=1

bc,i∗,nc,t (xn)
Tn∏
t=2

ac,i∗,nc,t−1,i
∗,n
c,t

C∑
c′=1

πc′,i∗,n
c′,1

Tn∏
t=1

bc′,i∗,n
c′,t

(xn)
Tn∏
t=2

ac′,i∗,n
c′,t−1

,i∗,n
c′,t
ρc′

]

=
N∑
n=1

[
1{c=cn}

ρc
− p(xn|Θc)

C∑
c′=1

p(xn|Θc′)ρc′

ρc
ρc

]

=
1

ρc

N∑
n=1

(
1{c=cn} − p(c|xn)

)
=

1

ρc

N∑
n=1

(
qnc − wnc )

)
, (3.19)
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where wnc = p(c|xn) = p(xn|Θc)
C∑
c′=1

p(xn|Θc′ )ρc′

and qnc = 1{c=cn} is the indicator function

1{statement} =

{
1, if statement is true,

0, if statement if false.
(3.20)

In this case qnc = 1 if the sequence xn of class cn = c. The partial derivatives of CLL(X|Θ)
with respect to π, a and α are determined analogously:

∂CLL(X|Θ)

∂πc,i
=

1

πc,i

N∑
n=1

[
unc,i,1 − vnc,i,1 · wnc

]
(3.21)

∂CLL(X|Θ)

∂αc,i,m
=

1

αc,i,m

N∑
n=1

Tn∑
t=1

[
γnc,i,m,t

(
unc,i,t − vnc,i,t · wnc

)]
(3.22)

∂CLL(X|Θ)

∂ac,i,j
=

1

ac,i,j

N∑
n=1

[
ync,i,j − znc,i,j · wnc

]
, (3.23)

where

unc,i,t = 1{c=cn,i=i∗,nc,t } (3.24)

vnc,i,t = 1{i=i∗,nc,t } (3.25)

ync,i,j =
Tn∑
t=2

1{c=cn,i=i∗,nc,t−1,j=i
∗,n
c,t } (3.26)

znc,i,j =
Tn∑
t=2

1{i=i∗,nc,t−1,j=i
∗,n
c,t } (3.27)

and

γnc,i,m,t =
bc,i,m(xnt )

bc,i(xnt )
=

αc,i,m · N (xnt |µc,i,m,Σc,i,m)
M∑

m′=1

αc,i,m′ · N (xnt |µc,i,m′ ,Σc,i,m′)

. (3.28)
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3.2 Conditional log-Likelihood Parameter Estimation

3.2.3 Approximation of the Gradient

In practice, computing the gradient can cause numerical problems. Merialdo discovered in
[11] that certain low values of the parameters ϕi,j in Eq. (3.16) can cause high values of the
gradient. Therefore, training would concentrate on low-valued parameters. However, small
parameter values indicate that they are rarely used during the production of an observation
sequence. Hence, there is not sufficient training data for estimating very low probabilities,
and concentrating on low-valued parameters would be unreliable. For gradients of the form
∂R(Θ)
∂ϕi,j

= 1
ϕi,j

(ci,j − c′i,j), as in our case, he suggests to concentrate on high-valued parameters by

replacing the gradient by

∂R(Θ)

∂ϕi,j
≈ ci,j∑

j ci,j
−

c′i,j∑
j c
′
i,j

. (3.29)

The derivatives of the conditional log-likelihood with respect to the discrete HMM parameters
using the approximation in Eq. (3.29) are

∂CLL(X|Θ)

∂ρc
≈

N∑
n=1

qnc

C∑
c′=1

N∑
n=1

qnc′

−

N∑
n=1

wnc

C∑
c′=1

N∑
n=1

wnc′

=
1

N

N∑
n=1

[
qnc − wnc

]
(3.30)

∂CLL(X|Θ)

∂πc,i
≈

N∑
n=1

unc,i,1

S∑
i′=1

N∑
n=1

unc,i′,1

−

N∑
n=1

vnc,i,1 · wnc
S∑
i′=1

N∑
n=1

vnc,i′,1 · wnc

=

N∑
n=1

unc,i,1

N∑
n=1

qnc

−

N∑
n=1

vnc,i,1 · wnc
N∑
n=1

qnc · wnc
(3.31)

∂CLL(X|Θ)

∂ac,i,j
≈

N∑
n=1

ync,i,j

S∑
j′=1

N∑
n=1

ync,i,j′

−

N∑
n=1

znc,i,j · wnc
S∑

j′=1

N∑
n=1

znc,i,j′ · wnc

=

N∑
n=1

ync,i,j

N∑
n=1

Tn−1∑
t=1

qnc · vnc,i,t

−

N∑
n=1

znc,i,j · wnc
N∑
n=1

Tn−1∑
t=1

vnc,i,t · wnc
(3.32)
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∂CLL(X|Θ)

∂αc,i,m
≈

N∑
n=1

Tn∑
t=1

unc,i,t · γnc,i,m,t
M∑

m′=1

N∑
n=1

Tn∑
t=1

γnc,i,m′,t · unc,i,t

−

N∑
n=1

Tn∑
t=1

vnc,i,t · γnc,i,m,t · wnc
M∑

m′=1

N∑
n=1

Tn∑
t=1

vnc,i,t · γnc,i,m′,t · wnc

=

N∑
n=1

Tn∑
t=1

unc,i,t · γnc,i,m,t
N∑
n=1

Tn∑
t=1

unc,i,t

−

N∑
n=1

Tn∑
t=1

vnc,i,t · γnc,i,m,t · wnc
N∑
n=1

Tn∑
t=1

vnc,i,t · wnc
(3.33)

3.2.4 Approximation of the Gaussian Mixture Model

The EBW algorithm requires discrete probability distributions, arising the need of a discrete
approximation of Gaussian distributions. Assuming diagonal covariances, such an approximation
exists [12] and leads to the following update rules for µc,i,m and Σc,i,m:

µ̄c,i,m ←

N∑
n=1

Tn∑
t=1

[
γnc,i,m,t

(
unc,i,t − vnc,i,t · wnc

)
xnt

]
+ µc,i,m ·D

N∑
n=1

Tn∑
t=1

[
γnc,i,m,t

(
unc,i,t − vnc,i,t · wnc

)]
+D

(3.34)

and

Σ̄c,i,m ←

N∑
n=1

Tn∑
t=1

[
γnc,i,m,t

(
unc,i,t − vnc,i,t · wnc

)
(xnt )2

]
+
(
Σc,i,m + (µc,i,m)2

)
·D

N∑
n=1

Tn∑
t=1

[
γnc,i,m,t

(
unc,i,t − vnc,i,t · wnc

)]
+D

− (µ̄c,i,m)2,

(3.35)

where the squares of xnt and µc,i,m are taken element-wise.

3.2.5 Implementation of the CL-HMM EBW Algorithm

Setting the constant D is crucial. Too high values of D slow down convergence whereas too small
values won’t lead to updates that increase the objective function [9, 13]. In [14], an iterative
scheme is applied. An initial value of D = 1 is doubled until all variances in Eq. (3.35) are
positive. The result of this procedure is then multiplied by a convergence-regulating constant
factor F . We propose to initialize D by a small value that guarantees a positive parameter

update in Eq. (3.16), i.e. D ← 1 +

∣∣∣∣min
i,j

∂R(Φ)
∂ϕi,j

∣∣∣∣. A detailed pseudo code of CLL training for

HMM is given in Appendix (A).
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3.3 Maximium Margin Parameter Estimation

The multi-class margin [15] of sample n ∈ {1, . . . , N} is given by

d̃nΘ = min
c 6=cn

p(cn|xn,Θ)

p(c|xn,Θ)
= min

c6=cn
p(cn,xn|Θ)

p(c,xn|Θ)
=

p(cn,xn|Θ)

maxc 6=cn p(c,xn|Θ)
. (3.36)

Hence, a correctly classified time series sample has a margin d̃nΘ > 1.
The EBW algorithm requires a differentiable objective function. Therefore, the max-operator is

replaced by a differentiable approximation [14] maxx f(x) ≈
[∑

x

(
f(x)

)η] 1
η , where η ≥ 1 and

f(x) is non-negative. This leads to the approximation of d̃nΘ, i.e.

dnΘ =
p(cn,xn|Θ)[ ∑

c 6=cn
p(c,xn|Θ)η

] 1
η

=
p(xn|Θcn)ρcn[ ∑

c 6=cn
(p(c,xn|Θc)ρc)η

] 1
η

. (3.37)

A common way is to maximize the smallest margin, i.e. minn d
n
Θ [15, 16]. Pernkopf and

Wohlmayr [14] relax this constraint of the smallest margin by applying a soft margin. They
concentrate on samples with a margin close to one, using the hinge loss function. This leads to
the objective

D̃(X|Θ) =
N∏
n=1

min
[
2, (dnΘ)λ

]
, (3.38)

where λ is a scaling parameter of the margin and h̃(y) = min[2, y] denotes the hinge loss. Setting
λ can be done by cross-validation. Due to the discontinuity of Eq. (3.38), they propose to replace
the hinge h̃(y) function by the following differentiable smooth hinge function:

h(y) =


y + 1

2 , if y ≤ 1,

2− 1
2(y − 2)2, if 1 < y < 2,

2, if y ≥ 2.

(3.39)
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Fig. (3.1) shows the dependency of h((dnΘ)λ) on λ:
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Figure 3.1: Dependency of h(dnΘ) on λ.

For the sake of replacing h̃(y) = min
[
2, (dnΘ)λ

]
in Eq. (3.38) by h(y), the set of samples X

must be divided into three partitions, dependent on the value of y = (dnΘ)λ. The resulting
differentiable objective function is

D(X|Θ) =
N∏
n=1

h
(
(dnΘ)λ

)
=

{ ∏
n∈X 1

(
(dnΘ)λ +

1

2

)}{ ∏
n∈X 2

(
2− 1

2

(
(dnΘ)λ − 2

)2)}
2|X

3|.

(3.40)
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3.3.1 EBW Update Rules for Discrete Parameters

The EBW update rule requires the derivative of the logD(X|Θ). This derivative with respect
to Θ is

∂logD(X|Θ)

∂Θ
=

N∑
n=1

sn
∂logdnΘ
∂Θ

, (3.41)

where sn is a weight depending on the partition X p of sample xn given by

sn =


λ(dnΘ)λ

(dnΘ)λ+ 1
2

, if xn ∈ X 1,

λ
(
2−(dnΘ)λ

)
2− 1

2
(dnΘ)λ

, if xn ∈ X 2,

0, if xn ∈ X 3.

(3.42)

The log of the margin dnΘ of sample xn in Eq. (3.37) decomposes to

logdnΘ = log(p(xn|Θcn)ρcn)− 1

η
log

∑
c′ 6=cn

(p(c′,xn|Θc′)ρc′)
η

= logπcn,i∗,ncn,1
+

Tn∑
t=1

logbc,i∗,ncn,t
(xnt ) +

Tn∑
t=2

logac,i∗,ncn,t−1,i
∗,n
cn,t

+ logρcn

− 1

η
log

[ C∑
c′ 6=cn

(
πc′,i∗,n

c′,1

Tn∏
t=1

bc′,i∗,n
c′,t

(xnt )
Tn∏
t=2

ac′,i∗,n
c′,t−1

,i∗,n
c′,t
ρc′

)η]
, (3.43)

where again p(x|Θc) is approximated by p∗(x|Θc), determined by the Viterbi algorithm, see Eq.

(3.17). Analogously to Eq. (3.19), the derivative
∂logdnΘ
∂ρc

is

∂logdnΘ
∂ρc

=
1{c=cn}

ρc
−
1{c6=cn}(p(x

n|Θc)ρc)
η−1p(xn|Θc)∑

c′ 6=cn
(p(xn|Θc′)ρc′)η

ρc
ρc

=
1

ρc

[
1{c=cn} − 1{c 6=cn}

(p(xn|Θc)ρc)
η∑

c′ 6=cn
(p(xn|Θc′)ρc′)η

]

=
1

ρc

[
qnc − q̌nc · rn,ηc

]
, (3.44)

where

rn,ηc =
(p(xn|Θc)ρc)

η∑
c′ 6=cn

(p(xn|Θc′)ρc′)η
, qnc = 1{c=cn} and q̌nc = 1{c 6=cn}. (3.45)
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The partial derivatives of logdnΘ with respect to πi, ac,i,j and αc,i,m are straightforward to
determine:

∂logdnΘ
∂πc,i

=
1

πc,i

[
unc,i,1 − ǔnc,i,1 · rn,ηc

]
(3.46)

∂logdnΘ
∂ac,i,j

=
1

ac,i,j

[
ync,i,j − y̌nc,i,j · rn,ηc

]
(3.47)

∂logdnΘ
∂αc,i,m

=
1

αc,i,m

Tn∑
t=1

[
γnc,i,m,t

(
unc,i,t − ǔnc,i,t · rn,ηc

)]
, (3.48)

where

unc,i,t = 1{c=cn,i=i∗,nc,t } (3.49)

ǔnc,i,t = 1{c 6=cn,i=i∗,nc,t } (3.50)

ync,i,j =
Tn∑
t=2

1{c=cn,i=i∗,nc,t−1,j=i
∗,n
c,t } (3.51)

y̌nc,i,j =
Tn∑
t=2

1{c 6=cn,i=i∗,nc,t−1,j=i
∗,n
c,t }. (3.52)

3.3.2 Approximation of the Gradient

Unfortunately, approximating the gradient by Eq. (3.29) cannot be applied to the derivatives
of the margin, because the approximated gradient would vanish for any HMM parameter. For
instance, Eq. (3.53) shows Merialdo’s approximation to the derivative of the margin with respect
to the HMM parameter ac,i,j :

∂logdnΘ
∂ac,i,j

≈
ync,i,j
S∑

j′=1

ync,i,j′

−
ync,i,jr

n,η
c

S∑
j′=1

ync,i,j′r
n,η
c

=
znc,i,j1{c=cn}
S∑

j′=1

znc,i,j′1{c=cn}

−
znc,i,j1{c6=cn}r

n,η
c

S∑
j′=1

znc,i,j′1{c 6=cn}r
n,η
c

=
znc,i,j1{c=cn}

1{c=cn}
Tn−1∑
t=1

1{i=i∗,nc,t }

−
znc,i,j1{c 6=cn}

1{c 6=cn}
Tn−1∑
t=1

1{i=i∗,nc,t }

=
znc,i,j

Tn−1∑
t=1

1{i=i∗,nc,t }

−
znc,i,j

Tn−1∑
t=1

1{i=i∗,nc,t }

= 0 (3.53)
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Therefore, an alternative approximation is suggested in order to obtain reliable parameter up-
dates. As the unreliability of the updates is caused by small parameter values due to high
values of the gradients [11], normalizing the gradient by a sum-to-one constraint might keep the

updates reliable. For gradients of the form ∂R(Θ)
∂ϕi,j

= 1
ϕi,j

(ci,j − c′i,j), we propose to approximate

the gradient by

∂R(Θ)

∂ϕi,j
≈


1

ϕi,j
(ci,j−c′i,j)

S∑
j′=1

∣∣∣∣ 1
ϕi,j′

(ci,j′−c′i,j′ )
∣∣∣∣ , if

S∑
j′=1

∣∣∣∂R(Θ)
∂ϕi,j′

∣∣∣ > 1

1
ϕi,j

(ci,j − c′i,j), otherwise

. (3.54)

As an alternative to the parameter update rule in Eq. (3.16), for gradients of the form ∂R(Θ)
∂ϕi,j

=
1
ϕi,j

(ci,j − c′i,j), Woodland and Povey [9] propose to update the parameters using a constrained

nonlinear optimization problem. They suggest to use a generic function-optimization routine,
or, as they do in [9], to use an iterative procedure.

3.3.3 Approximation of the Gaussian Mixture Model

For the continuous parameters of the GMMs, the discrete approximation described in Sec. (3.2.4)
can be used. Hence, the update rules for µc,i,m and Σc,i,m are

µ̄c,i,m ←

N∑
n=1

sn
Tn∑
t=1

[
γnc,i,m,t

(
unc,i,t − ǔnc,i,t · r

n,η
c

)
xnt

]
+ µc,i,m ·D

N∑
n=1

sn
Tn∑
t=1

[
γnc,i,m,t

(
unc,i,t − ǔnc,i,t · r

n,η
c

)]
+D

(3.55)

and

Σ̄c,i,m ←

N∑
n=1

sn
Tn∑
t=1

[
γnc,i,m,t

(
unc,i,t − ǔnc,i,t · r

n,η
c

)
(xnt )2

]
+
(
Σc,i,m + (µc,i,m)2

)
·D

N∑
n=1

sn
Tn∑
t=1

[
γnc,i,m,t

(
unc,i,t − ǔnc,i,t · r

n,η
c

)]
+D

− (µ̄c,i,m)2,

(3.56)

respectively.

3.3.4 Implementation of the MM-HMM EBW Algorithm

The procedure for setting the constant D of EBW is analogous to the procedure for CL-based
training. For details, the reader should refer to Sec. (3.2.4). A detailed-pseudo code of maximum
margin (MM) training for HMM is provided in Appendix (B).
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4
Application of HMMs to Time Series Data

Classification

The generative and discriminative parameter estimations techniques presented in the previous
chapter are compared in time series classification tasks. In particular, we perform broad phonetic
classification and spoken digit classification using the TIMIT corpus. Furthermore, we provide
results for handwritten digit classification. We use the acronym MLE-HMM for generatively
learned HMMs and CLL-HMM and MM-HMM for discriminative CLL and maximum margin
HMM parameter estimation, respectively.

4.1 Experimental Setup

For the experiments conducted in this section, the HMM parameters trained by MLE have been
used as initialization for the discriminative methods, i.e. CLL and maximum margin parameter
learning (see Alg. (1)) and (5)). The classification rate is used as performance measure. The
classification rate (CR) is the ratio of correctly classified to the total number of test samples in
[%], given by

CR =
100

NT

NT∑
n

1{cn=c∗} =
100

NT

NT∑
n

1{cn=arg max
1≤c≤C

p(c|x)}, (4.1)

where NT denotes the number of test samples. As an estimate of the accuracy of the CR, we
state a confidence interval for every result. According to [17], with a probability of approximately
95%, the true classification rate lies within the confidence interval

CR± 1.96

√
CR(100− CR)

NT
. (4.2)
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We perform classification using HMMs with varying numbers of mixture components and states.
We use S ∈ {2, 3, . . . , 7} states and M ∈ {2, 3, 4} mixture components. A large value of S and
M leads to an HMM with many parameters. For a reliable estimation of many parameters a
sufficiently large data set has to be provided.
Discriminative training methods were unstable for too low values for the convergence-regulating
constant F . The minimum value of F that lead to convergence of the objective functions de-
pends individually on the training data and the selected model, i.e. number of states and number
of mixture components.
For MM-HMM, we need the margin scaling parameter λ. This parameter was set by 3-fold
cross-validation on the training set. Furthermore, the parameter η used for the approximation
of the margin in Eq. (3.37) was set to 2.
As convergence is not guaranteed due to the approximation of the objective’s gradients, we
propose two methods to promote convergence. The first strategy is simply to let the EBW algo-
rithm run for a sufficiently large number of iterations and record the classification performance
on a validation set for every iteration. Then, training is repeated and stopped after the number
of iterations with the best classification result of the first run. The second method is to stop
training when the objective function begins to decrease and use the model parameters of the
last training iteration that lead to an increase of the objective function. The latter method was
applied in the experiments of this chapter.
When discriminative HMM training is applied, numerical underflow might occur during the es-
timation of very small HMM parameters, leading to unreliable training results. To overcome
this, we suggest to restrict the parameter values to be greater than a minimum value and rescale
the parameters due to the sum-to-one constraint of Eq. (3.15).
In practice, discriminative training is limited due to a long training time, depending on the
amount of data and the complexity of the model. As for every class the whole training data is
required, the training time increases linearly with the number of different classes.

4.2 Speech Classification

4.2.1 The TIMIT Speech Corpus

The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus has been designed under the
cooperation of Texas Instruments (TI), the Massachusetts Institute of Technology (MIT) and
the Stanford Research Institute (SRI). The database contains a total number of 6300 sentences
in American English. From each of the 630 speakers, 10 sentences have been recorded and
categorized by the sex of the speakers and by eight dialect regions within the United States of
America [18]. The corpus consists of three kinds of sentences: 450 phonetically-compact, 1890
phonetically-diverse and 2 dialect sentences. The latter category is usually left out for training
and testing. The utterances are recorded at a 16 kHz sample rate with a 16 bit resolution [19].
For each utterance, a hand-labelled transcription of the complete orthographic text, of single
words and of single phonemes are available. The phonetic transcription is based on 61 phonemes.
A partition into training and test samples is provided.
For the experiments conducted in this section, the observation vectors xt consist of the first
13 mel-frequency cepstral coefficients (MFCCs), computed with a window length of 25 ms at a
frame rate of 10 ms, and their first and second derivatives [5]. Thus, an observation xt consists
of 39 features. Additionally, principal component analysis (PCA) was applied to whiten the data.
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4.2 Speech Classification

4.2.2 Broad Phonetic Classification

For broad phonetic classification, the 61 phonetic labels are collapsed into broad phonetic groups
as proposed by Halberstadt [20]. In particular, we have the following classes: Vowel/Semivowel
(VS), Nasal/Flap (NF), Strong Fricative (SF), Weak Fricative (WF), Stop (ST) and Closure
(CL). In Table (4.1) the labelling of the TIMIT phones used in this work is shown. The dialect
sentences have been omitted for training as well for testing. The resulting training data consisted
of 140173 sequences. For testing, the ’core’ test set was used [18]. It consists of 7211 sequences.
For maximum margin training, the margin scaling parameter λ was set to 0.05. In Table
(4.2), we present classification results for MLE-HMMs using different numbers of states and
mixture components. The boldface entries in each table point out the best result achieved by
the corresponding training method.

Phonetic class # TIMIT labels Timit labels

Vowel/Semivowel (VS) 25 aa ae ah ao aw ax axh axr ay
eh er ey ih ix iy ow oy uh uw
ux el l r w y

Nasal/Flap (NF) 8 m en eng m n ng nx dx

Strong Fricative (SF) 6 s z sh zh ch jh

Weak Fricative (WF) 6 v f dh th hh hv

Stop (ST) 6 b d g p t k

Closure (CL) 9 bcl dcl gcl pcl tcl kcl epi pau
h#

Table 4.1: Mapping of TIMIT labels into six broad phonetic groups.

# HMM
states

# mixture components

2 3 4

2 86.5 ± 0.79 87.1 ± 0.77 88.2 ± 0.75

3 86.8 ± 0.78 88.0 ± 0.75 88.1 ± 0.75

4 86.3 ± 0.79 88.4 ± 0.74 88.6 ± 0.73

5 86.7 ± 0.78 87.9 ± 0.75 88.4 ± 0.74

6 87.4 ± 0.77 87.8 ± 0.75 88.3 ± 0.74

7 87.5 ± 0.76 88.0 ± 0.75 88.4 ± 0.74

Table 4.2: Classification rates of MLE-HMMs in [%] on TIMIT broad phonetic classification.

We encountered problems with setting the constant D of EBW. As discussed in Section (3.2.5),
after initialization D was repeatedly doubled in order to obtain covariance matrices with non-
negative entries (see Algorithms (3) and (7)). For HMMs with particular numbers of states and
mixture components, it turned out that no large enough value for D was found, no matter how
often the doubling procedure was repeated. Therefore, discriminative training failed on these
HMMs. Nevertheless discriminative training worked for particular HMM settings. Tables (4.3)
and (4.4) state the results of conditional likelihood and maximum margin training for HMMs
with five states and m = {2, 3, 4} mixture components.

– 31 –



4 Application of HMMs to Time Series Data Classification

# HMM
states

# mixture components

2 3 4

5 91.1 ± 0.66 86.8 ± 0.78 88.0 ± 0.75

Table 4.3: Classification rates of CLL-HMMs in [%] on TIMIT broad phonetic classification.

# HMM
states

# mixture components

2 3 4

5 87.6 ± 0.76 86.3 ± 0.79 86.9 ± 0.78

Table 4.4: Classification rates of MM-HMMs in [%] on TIMIT broad phonetic classification.

Having a look at Table (4.2), it turns out that the number of HMM states doesn’t have much
influence classification performance, especially for m = 4 mixture components. This leads to
the assumption that observations xt according to sequences of the same class do not differ much
from each other. Hence, phonetic sequences do not provide significant temporal information in
order to estimate the HMM state transition probabilities well, i.e. the observation sequences
do not resemble a meaningful pattern to be learned. Therefore, classification performance is
dominated by the number of mixture components in this task.

4.2.3 Spoken Digit Classification

For this task, the provided transcription of single words was used. A subset of the data, contain-
ing utterances of 10 different numbers from ’one’ to ’ten’ (no utterance for ’zero’ is available)
has been taken. This set of spoken digits consisted of 165 training and 64 test sequences in total.
In contrast to the broad phonetic task, the full test set has been used, as for some classes no
test samples exist in the ’core’ test set. Again, λ was set to 0.05. Tables (4.5), (4.6) and (4.7)
show the classification results for MLE, CLL and MM training, respectively.

# HMM
states

# mixture components

2 3 4

2 90.6 ± 7.14 87.5 ± 8.10 85.9 ± 8.51

3 93.8 ± 5.93 84.4 ± 8.90 79.7 ± 9.86

4 82.8 ± 9.24 84.4 ± 8.90 75.0 ± 10.61

5 79.7 ± 9.86 76.6 ± 9.86 70.3 ± 11.19

6 82.8 ± 9.24 68.8 ± 11.36 68.8 ± 11.36

7 76.6 ± 10.38 68.8 ± 11.36 67.0 ± 11.50

Table 4.5: Classification rates of MLE-HMMs in [%] on TIMIT spoken digit classification.
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# HMM
states

# mixture components

2 3 4

2 95.3 ± 5.18 96.9 ± 4.26 93.8 ± 5.93

3 90.6 ± 7.14 93.8 ± 5.93 92.2 ± 6.58

4 93.8 ± 5.93 93.8 ± 5.93 90.6 ± 7.14

5 95.3 ± 5.18 89.1 ± 7.65 90.6 ± 7.14

6 90.6 ± 7.14 95.3 ± 5.18 92.2 ± 6.58

7 92.2 ± 6.58 92.2 ± 6.58 92.2 ± 6.58

Table 4.6: Classification rates of CLL-HMMs in [%] on TIMIT digit classification.

# HMM
states

# mixture components

2 3 4

2 95.3 ± 5.18 96.9 ± 4.26 93.8 ± 5.93

3 96.9 ± 4.26 93.8 ± 5.93 92.2 ± 6.58

4 98.4 ± 3.04 93.8 ± 5.93 92.2 ± 6.58

5 95.3 ± 5.18 90.6 ± 7.14 89.1 ± 7.65

6 96.9 ±4.26 93.8 ± 5.93 92.2 ± 6.58

7 93.8 ± 5.93 92.2 ± 6.58 92.2 ± 6.58

Table 4.7: Classification rates of MM-HMMs in [%] on TIMIT digit classification.

In this task, both discriminative methods perform approximately even well, although MM
training achieves the highest classification rate. It is remarkable that the classification perfor-
mance of MLE, CLL and MM decreases with an increasing number of HMM states and mixture
components. Due to the little amount of training samples, these methods are presumably suf-
fering from overfitting, i.e. the number of parameters is too large to be reliably estimated.
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4.3 Handwritten Digit Classification

4.3.1 The Williams Database

The Williams database contains 2858 samples of pen tip trajectories used in [21]. The samples
are categorized into 20 different characters and are all from the same writer. The observation
vectors xt consist of three values: pen velocities in x- and y- direction and pen tip force, captured
at a sample rate of 200 Hz. The trajectories have been captured only for characters written in
one single stroke [22].
To conduct the experiments, the data was divided into 80% training and 20% test samples.
Furthermore, the sample sequences have been compressed to a length of 10 data vectors per tra-
jectory. The compression was done by the following. We partitioned each sample sequence into
10 adjacent sub-sequences and calculated the mean for each sub-sequence. Sample trajectories of
the Williams database for the letters ’a’, ’b’ and ’c’ are illustrated in Fig. (4.1). The parameter
λ for scaling the margin was set to 0.05. Tables (4.8), (4.9) and (4.10) show the classification
performance of MLE-HMM, CLL-HMM and MM-HMM on the Williams database, respectively.
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Figure 4.1: Characters from the Williams database.

# HMM
states

# mixture components

2 3 4

2 95.6 ± 1.69 95.8 ± 1.65 96.5 ± 1.51

3 96.1 ± 1.59 97.2 ± 1.36 97.0 ± 1.40

4 96.6 ± 1.48 97.2 ± 1.36 97.3 ± 1.32

5 97.9 ± 1.18 97.7 ± 1.23 97.3 ± 1.32

6 98.2 ± 1.08 98.1 ± 1.13 97.5 ± 1.27

7 98.2 ± 1.08 98.6 ± 0.97 97.9 ± 1.18

Table 4.8: Classification rates of MLE-HMMs in [%] on Williams handwritten digit classification.
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# HMM
states

# mixture components

2 3 4

2 96.5 ± 1.51 97.3 ± 1.32 96.6 ± 1.48

3 98.2 ± 1.08 98.9 ± 0.84 96.6 ± 1.48

4 98.6 ± 0.97 98.6 ± 0.97 99.1 ± 0.77

5 98.9 ± 0.84 98.4 ± 1.03 98.1 ± 1.13

6 99.1 ± 1.13 99.3 ± 0.69 98.8 ± 0.91

7 99.1 ± 0.77 98.8 ± 0.91 99.5 ± 0.60

Table 4.9: Classification rates of CLL-HMMs in [%] on Williams handwritten digit classification.

# HMM
states

# mixture components

2 3 4

2 91.5 ± 2.28 93.6 ± 2.05 94.9 ± 1.81

3 96.8 ± 1.44 95.4 ± 1.72 95.9 ± 1.62

4 96.6 ± 1.48 96.6 ± 1.48 97.0 ± 1.40

5 97.9 ± 1.18 97.7 ± 1.23 97.3 ± 1.32

6 98.2 ± 1.08 97.5 ± 1.27 98.2 ± 1.08

7 98.2 ± 1.08 98.6 ± 0.07 98.9 ± 0.84

Table 4.10: Classification rates of MM-HMMs in [%] on Williams handwritten digit classification.

Although CLL training achieved the best CR on the Williams database, the top performance
of all methods lies within a range of 1%. The confidence intervals show that these results
are not significantly different. We presume that the true distribution of the given samples
closely resembles the distribution modelled by an HMM. In this case, discriminative learning is
performing similar to generative learning [4]. The 3-fold cross-validation of the scaling parameter
λ for MM training is depicted in Fig. (4.2).
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Figure 4.2: 3-fold cross-validation of λ on Williams database.
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Fig. (4.3) shows the convergence of the objective function of CLL-HMMs and MM-HMMs for
F = {7, 15, 30}.
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Figure 4.3: Convergence of CL-HMM and MM-HMM on Williams database.

4.3.2 The UJI Database

The UJIpenchars2 database contains trajectories of 97 handwritten characters from 60 different
writers [23]. The observation vectors xt consist of 2 values: absolute x- and y-coordinates.
Neither timing information nor pen force was recorded. For each writer, two instances of each
symbol were recorded, giving a total number of 11640 samples. A partition into training and
test samples is provided.
For the experiments a subset of the data, containing the same 20 characters as the Williams
database has been taken. The subset consists of 1830 training and 915 test samples. Additionally,
the velocities in x- and y- direction, obtained by numerically differentiating the coordinates,
were added to the original data. Thus the observation vectors xt used for training and testing
consisted of 4 values. For maximum margin training, in this experiment λ was set to 0.1. Sample
trajectories of the UJIpenchars2 database for the letters ’a’, ’b’ and ’c’ are illustrated in Fig.
(4.4).
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Figure 4.4: Characters from the UJIpenchars2 database.

The classification performances for MLE-HMM, CLL-HMM and MM-HMM are shown in Tables
(4.11), (4.12) and (4.13), respectively.

# HMM
states

# mixture components

2 3 4

2 50.9 ± 3.24 58.5 ± 3.19 65.9 ± 3.07

3 56.8 ± 3.21 64.2 ± 3.11 66.9 ± 3.05

4 58.5 ± 3.19 65.7 ± 3.08 68.9 ± 3.00

5 61.5 ± 3.15 67.3 ± 3.04 69.3 ± 2.99

6 62.8 ± 3.13 69.5 ± 2.98 69.4 ± 2.99

7 63.6 ± 3.12 66.4 ± 3.06 68.5 ± 3.01

Table 4.11: Classification rates of MLE-HMMs in [%] on UJIpenchars2 handwritten digit classification.

# HMM
states

# mixture components

2 3 4

2 56.4 ± 3.21 53.6 ± 3.23 67.1 ± 3.04

3 55.7 ± 3.22 63.9 ± 3.11 68.8 ± 3.00

4 66.9 ± 3.05 67.4 ± 3.04 69.8 ± 2.97

5 66.5 ± 3.06 67.5 ± 3.03 70.8 ± 2.95

6 67.9 ± 3.03 72.2 ± 2.90 72.2 ± 2.90

7 69.2 ± 2.99 71.2 ± 2.94 70.1 ± 2.97

Table 4.12: Classification rates of CLL-HMMs in [%] on UJIpenchars2 handwritten digit classification.
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# HMM
states

# mixture components

2 3 4

2 59.8 ± 3.18 64.2 ± 3.11 69.1 ± 2.99

3 64.7 ± 3.10 67.7 ± 3.03 69.1 ± 2.99

4 66.5 ± 3.06 66.5 ± 3.06 69.8 ± 2.97

5 67.9 ± 3.03 70.3 ± 2.96 73.1 ± 2.87

6 67.9 ± 3.03 71.9 ± 2.91 73.3 ± 2.87

7 68.9 ± 3.00 71.1 ± 2.94 70.4 ± 2.96

Table 4.13: Classification rates of MM-HMMs in [%] on UJIpenchars2 handwritten digit classification.

In this task discriminative training clearly outperforms generative MLE-HMMs. Since there
are many different writers the variation is much larger than for the Williams database, as it
can be seen in Fig. (4.4) when compared to Fig. (4.1). The great variation of the samples
of the same class hardens the challenge of classification for generative MLE-HMMs as well as
for discriminative CLL-HMMs and MM-HMMs. Therefore, classification performance on the
UJIpenchars2 database is worse for all HMMs compared to the performance on the Williams
database. Fig. (4.5) shows the convergence of the objective function of CLL-HMMs and MM-
HMMs for F = {15, 30, 45}.
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Figure 4.5: Convergence of CL-HMM and MM-HMM on UJIpenchars2 database.
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5
Conclusions and Future Work

In this thesis, the discriminative maximum margin learning method of was derived for hidden
Markov models and compared to conditional log-likelihood and maximum likelihood parame-
ter estimation for HMMs. In particular, we use the extended Baum-Welch (EBW) framework.
The EBW algorithm has been developed to optimize rational functions such as the conditional
log-likelihood. We formulate the margin of a sample as the ratio of the class posterior of the
true class and the most competing class. This sample margin is embedded into a hinge loss
function. Since this objective can not be derived, a smooth approximation has been introduced.
The derivatives of this objective function are used in the EBW algorithm to discriminatively
optimize the HMM parameters. In the experiments we provided results for the tasks of classify-
ing human speech and handwritten data using maximum likelihood, conditional likelihood and
maximum margin parameter learning. Three different data sets were used, showing strengths
and weaknesses of the training methods.

The conclusion of this thesis can be summarized by the following:

� Selecting the states and mixture components of an HMM is crucial for a good classification
performance.

� If the true distribution of the data to be classified fits the model distribution well, the
application of discriminative training does not provide much performance gain compared
to using generative learning. This is well known in the machine learning community [4].

� Maximum margin training competes with the conditional likelihood method and slightly
outperforms conditional likelihood training in the experiments.

� The implementation of maximum margin training is not trivial, but can achieve good
classification performance.

In future work, the following issues are treated:
Currently, the probability of an observation sequence p(x|Θc) is approximated by p∗(x|Θc),
of the Viterbi algorithm. This greatly simplifies the derivatives of the discriminative objective
functions, i.e. only one path along the trellis has to be considered instead of the sum of all
possible paths. As shown in the experiments of Chapter (4), this simplification seems to lead
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to good classification performance of the discriminative methods. Nevertheless, it is of interest
to investigate the influence of this approximation on the classification results. Hence, a direct
comparison of using p(x|Θc) and p∗(x|Θc) in the objective functions are focus of future research.
The experiments in this thesis have been conducted by modelling every class by HMMs with the
same number of states and mixture components for every class. As different classes might be
better modelled by HMMs with individual rather than the same number of states and mixture
components, an investigation of this approach is considered in the future.
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A
CLL-HMM EBW algorithm

The implementation of the EBW algorithm for maximizing the conditional log-likelihood (CLL-
HMM EBW algorithm) is stated in Algorithm (1).

Input: {X1, . . .XC}
Output: ρc, πc,i, ac,i,j , {αc,i,m,µc,i,m,Σc,i,m}Mm=1 ∀c ∈ {1, . . . , C}, ∀i, j ∈ {1, . . . , S}
Initialization: For each c, train πc,i, ac,i,j , {αc,i,m,µc,i,m,Σc,i,m}Mm=1 on Xc, using the EM-algorithm. Set ρc to class

frequency in X , i.e. ρc ←
|Xc|
|X|

while CLL(X|Θ) not converged do
E-Step (see Algorithm (2))
Determine D (see Algorithm (3))
M-Step (see Algorithm (4))

end

Algorithm 1 :Discriminative CL-based training of HMMs (CLL-HMM EBW algorithm).

The E-step of the CLL-HMM EBW algorithm using Merialdo’s approximation of ∂CLL(X|Θ)
∂ϕ (see

Eq. (3.29)) is depicted in Algorithm (2).

E-Step:
for c← 1 to C do

wnc ←
p(xn|Θc)ρc∑C

c′=1
p(xn|Θ

c′ )ρc′
∀n ∈ {1, . . . , N}

∂ρc ←
∑N
n=1 q

n
c∑C

c′=1

∑N
n=1 q

n
c′
−

∑N
n=1 w

n
c∑C

c′=1

∑N
n=1 w

n
c′

for i← 1 to S do

∂πc,i ←
∑N
n=1 u

n
c,i,1∑S

i′=1

∑N
n=1 u

n
c,i′,1

−
∑N
n=1 v

n
c,i,1·w

n
c∑S

i′=1

∑N
n=1 v

n
c,i′,1

·wn
c′

for j ← 1 to S do

∂ac,i,j ←
∑N
n=1 y

n
c,i,j∑S

j′=1

∑N
n=1 y

n
c,i,j′

−
∑N
n=1 z

n
c,i,j ·w

n
c∑S

j′=1

∑N
n=1 z

n
c,i,j′

·wn
c′

end
for m← 1 to M do

γnc,i,m,t ←
αc,i,m·N(xnt |µc,i,m,Σc,i,m)

bc,i(x
n
t )

∀n ∈ {1, . . . , C}

∂αc,i,m ←
∑N
n=1

∑Tn
t=1

(
unc,i,t·γ

n
c,i,m,t

)
∑N
n=1

∑Tn
t=1 u

n
c,i,t

−
∑N
n=1

∑Tn
t=1

(
vnc,i,t·γ

n
c,i,m,t·w

n
c

)
∑N
n=1

∑Tn
t=1

(
vn
c,i,t

·wnc
)

end

end

end

Algorithm 2 :E-step of the CLL-HMM EBW algorithm.
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A CLL-HMM EBW algorithm

Algorithm (3) shows the procedure of setting the constant D:

Determine D:

D ← 1 +

∣∣∣∣ min
c,i,j,m

[
∂ρc, ∂πc,i, ∂ac,i,j , ∂αc,i,m

]∣∣∣∣
for c← 1 to C do

for i← 1 to S do
for m← 1 to M do

repeat

µ̄c,i,m ←
∑N
n=1

∑Tn
t=1

[
γnc,i,m,t

(
unc,i,t−v

n
c,i,tw

n
c

)
xnt

]
+µc,i,m·D∑N

n=1
∑Tn
t=1

[
γn
c,i,m,t

(
un
c,i,t

−vn
c,i,t

·wnc
)]

+D

Σ̄c,i,m ←
∑N
n=1

∑Tn
t=1

[
γnc,i,m,t

(
unc,i,t−v

n
c,i,t·w

n
c

)
(xnt )2

]
+
(
Σc,i,m+(µc,i,m)2

)
·D∑N

n=1
∑Tn
t=1

[
γn
c,i,m,t

(
un
c,i,t

−vn
c,i,t

·wnc
)]

+D
− (µ̄c,i,m)2

D ← 2D
until all variances in Σ̄c,i,m positive;

end

end

end
D ← DF

Algorithm 3 :Procedure to determine the constant D of the CLL-HMM EBW algorithm.

In Algorithm (4), the M-step of the CL-HMM EBW algorithm using parameter updates of Eq.
(3.16) is illustrated.

M-Step:
for c← 1 to C do

ρ̄c ←
ρc
(
∂ρc+D

)∑C
c′=1

ρ
c′
(
∂ρ
c′+D

)
for i← 1 to S do

π̄c,i ←
πc,i

(
∂πc,i+D

)
∑S
i′=1

π
c′,i

(
∂π
c′,i+D

)
for j ← 1 to S do

āc,i,j ←
ac,i,j

(
∂ac,i,j+D

)
∑S
j′=1

a
c,i,j′

(
∂a
c,i,j′+D

)
end
for m← 1 to M do

ᾱc,i,m ←
αc,i,m

(
∂αc,i,m+D

)
∑M
m′=1

α
c,i,m′

(
∂α
c,i,m′+D

)
µ̄c,i,m ←

∑N
n=1

∑Tn
t=1

[
γnc,i,m,t

(
unc,i,t−v

n
c,i,tw

n
c

)
xnt

]
+µc,i,m·D∑N

n=1
∑Tn
t=1

[
γn
c,i,m,t

(
un
c,i,t

−vn
c,i,t

·wnc
)]

+D

Σc,i,m ←
∑N
n=1

∑Tn
t=1

[
γnc,i,m,t

(
unc,i,t−v

n
c,i,t·w

n
c

)
(xnt )2

]
+
(
Σc,i,m+(µc,i,m)2

)
·D∑N

n=1
∑Tn
t=1

[
γn
c,i,m,t

(
un
c,i,t

−vn
c,i,t

·wnc
)]

+D
− (µ̄c,i,m)2

µc,i,m ← µ̄c,i,m
end
αc,i,m ← ᾱc,i,m∀m
ac,i,j ← āc,i,j∀j

end
πc,i ← π̄c,i∀i

end
ρc ← ρ̄c∀c

Algorithm 4 :M-step of the CLL-HMM EBW algorithm.
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B
MM-HMM EBW algorithm

The implementation of the EBW algorithm for maximizing the margin (MM-HMM EBW algo-
rithm) is stated in Algorithm (5).

Input: {X1, . . .XC}
Output: ρc, πc,i, ac,i,j , {αc,i,m,µc,i,m,Σc,i,m}Mm=1 ∀c ∈ {1, . . . , C}, ∀i, j ∈ {1, . . . , S}
Initialization: For each c, train πc,i, ac,i,j , {αc,i,m,µc,i,m,Σc,i,m}Mm=1 on Xc, using the EM-algorithm. Set ρc to class

frequency in X , i.e. ρc ←
|Xc|
|X|

while D(X|Θ) not converged do

Determine: X1, X2, X3 based on (dnΘ)λ

Determine: sn ∀n ∈ {1, . . . , N} based on X1, X2, X3

E-Step (see Algorithm (6))
Determine D (see Algorithm (7))
M-Step (see Algorithm (8))

end

Algorithm 5 :Discriminative Margin-based training of HMMs (MM-HMM EBW algorithm).
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B MM-HMM EBW algorithm

The E-step of the MM-HMM EBW algorithm using the sum-to-one approximation of
∂logdnΘ
∂ϕ

(see Eq. (3.54)) is depicted in Algorithm (6).

E-Step:
for c← 1 to C do

rn,ηc ← (p(xn|Θc)ρc)η∑
c′ 6=cn

(p(xn|Θ
c′ )ρc′ )

η

∂logdnΘ
∂ρc
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n
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1
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n
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c

]
, else
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∑N
n=1 s

n ∂logd
n
Θ

∂ρc
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∂logdnΘ
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1
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]
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Θ
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]
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∑N
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n ∂logd
n
Θ
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end
for m← 1 to M do

γnc,i,m,t ←
αc,i,m·N(xnt |µc,i,m,Σc,i,m)

bc,i(x
n
t )

∀n ∈ {1, . . . , C}

∂logdnΘ
∂αc,i,m
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, else
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n=1 s

n ∂logdnΘ
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end

end

Algorithm 6 :E-step of the MM-HMM EBW algorithm.

Algorithm (7) shows the procedure of setting the constant D:

Determine D:

D ← 1 +

∣∣∣∣ min
c,i,j,m

[
∂ρc, ∂πc,i, ∂ac,i,j , ∂αc,i,m

]∣∣∣∣
for c← 1 to C do

for i← 1 to S do
for m← 1 to M do

repeat

µ̄c,i,m ←

N∑
n=1
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n
c,i,t·r

n,η
c

)
xnt

]
+µc,i,m·D

N∑
n=1

sn
Tn∑
t=1

[
γn
c,i,m,t

(
un
c,i,t

−ǔn
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D ← 2D
until all variances in Σ̄c,i,m positive;

end

end

end
D ← DF

Algorithm 7 :Procedure to determine the constant D of the MM-HMM EBW algorithm.
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In Algorithm (8), the M-step of the MM-HMM EBW algorithm using parameter updates of Eq.
(3.16) is illustrated.

M-Step:
for c← 1 to C do

ρ̄c ←
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µc,i,m ← µ̄c,i,m
end
αc,i,m ← ᾱc,i,m∀m
ac,i,j ← āc,i,j∀j

end
πc,i ← π̄c,i∀i

end
ρc ← ρ̄c∀c

Algorithm 8 :M-step of the CL-HMM EBW algorithm.
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