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Abstract

Radio frequency identification (RFID) tags and smart cards already exist for years. These
technologies are used for many different applications. Today, they are on the brink of con-
version. The goal is it to combine the advantages of both technologies. The new generation
of secure RFID tags should still be cheap and passively powered by an electromagnetic
field (which is also used for communication with a reader), but they should also be capable
of strong cryptographic algorithms.

The impact of such a product will be huge. Bar-codes will be replaced. Product piracy
could be completely stopped using cloning-resistant RFID tags.

In order to achieve that goals, elliptic curve cryptography is used. The elliptic curve
digital signature algorithm (ECDSA) requires small keys that result in a very small mem-
ory requirement. This makes ECDSA the best suited public-key authentication scheme
currently known.

This work presents two different designs. One design called Neptun is a full-custom,
embedded processor that can be used to evaluate different algorithms and security mea-
sures. This is especially important because the complex algorithms can be vulnerable to
simple and differential power analysis attacks. Neptun is a programmable processor with
an custom instruction set that was specially optimized for prime fields. The design also
provides a bootloader, an EIA-232 interface, three timers and a parallel I/O. It has been
implemented and fabricated as an application-specific integrated circuit (ASIC) using the
UMC-L180 technology.

The elliptic curve digital signature generation and verification algorithms have been
implemented using a custom built processor simulator. This simulator is capable of parsing
assembler source code and generating executables.

The second design is based on Neptun. The main difference is that it has been stripped
from any unnecessary logic, but no compromise has been made concerning the security of
the algorithms. This design is used to show that the presented architecture is viable for
RFID tags. With the small area usage of only 14230 gate equivalents and a runtime of 1.65
million cycles, the design is competitive with designated co-processors and the smallest
implementation for generating an ECDSA signature for NIST P-192, published so far.

With these results a big step to secure RFID tags has been done.

Keywords: Processor, Radio Frequency Identification, Elliptic Curve Cryptography, Dig-
ital Signature, ASIC
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Kurzfassung

Radio-Frequenz-Identifikations (RFID) Tags und Chipkarten existieren bereits seit Jahren.
Diese Technologien werden für viele verschiedene Anwendungen genutzt. Heute haben sie
den Punkt der Zusammenführung erreicht. Das Ziel ist es die Vorteile beider Technologien
zu kombinieren. Die neue Generation von sicheren RFID-Tags soll billig und über ein elek-
tromagnetisches Feld versorgt sein (dieses Feld wird auch zur Kommunikation mit einem
Lesegerät benutzt). Aber sie sollen auch fähig sein, starke kryptografische Algorithmen zu
berechnen.

Die Auswirkungen eines solchen Produkts werden immens sein. Barkodes werden aus-
getauscht. Produktpiraterie könnte komplett gestoppt werden durch die Benutzung von
kopierresistenten RFID Tags.

Um diese Ziele zu erreichen, wird Elliptische-Kurven Kryptografie verwendet. Der El-
liptic Curve Digital Signature Algorithm (ECDSA) verwendet kurze Schlüssellängen. Dies
bewirkt eine geringe Speicheranforderung. Damit ist ECDSA das am besten geeignete
asymmetrische Authentifizierungsverfahren.

Diese Arbeit präsentiert zwei Designs. Ein Design, mit dem Namen Neptun ist ein
maßgeschneiderter, eingebetteter Prozessor, der zur Evaluierung verschiedener Algorith-
men und Sicherheitsmaßnahmen verwendet werden kann. Dies ist besonders wichtig da die
komplexen Algorithmen anfällig für simple und differentielle Leisungsanalyseattacken sind.
Neptun ist ein programmierbarer Prozessor mit einem maßgeschneiderten Instruction-Set,
das speziell für Primfelder optimiert wurde. Das Design beinhaltet auch einen Bootloader,
eine EIA-232 Schnittstelle, drei Timer und eine parallele I/O-Einheit. Es wurde implemen-
tiert und hergestellt als ein applikationsspezifischer integrierter Schaltkreis (ASIC) unter
der Verwendung der UMC-L180 Technologie.

Die Elliptischen Kurven Signatur-Erzeugung und Verifikations-Algorithmen wurden
unter Verwendung eines maßgeschneiderten Prozessor-Simulators implementiert. Dieser
Simulator ist auch fähig Assembler-Kode zu analysieren und ausführbare Dateien zu erzeu-
gen.

Das zweite Design basiert auf Neptun. Der größte Unterschied ist, dass es von jeglicher
unnötigen Logik befreit wurde, ohne einen Kompromiss bei der Sicherheit der Algorithmen
einzugehen. Dieses Design wird dazu benutzt, dass die aufgezeigte Architektur praktikabel
für RFID-Tags ist. Mit einem geringen Platzverbrauch von nur 14230 Gatteräquivalenten
und einer Laufzeit von 1,65 Millionen Zyklen ist das Design vergleichbar mit dedizierten
Koprozessoren und die kleinste Implementierung zur Erzeugung von ECDSA-Signaturen
(unter der Verwendung der NIST P-192 Parameter), die bis jetzt publiziert wurde.

Mit diesen Resultaten wurde ein großer Schritt zu sicheren RFID-Tags gemacht.

Stichwörter: Prozessor, Radio-Frequenz-Identifikation, Elliptische-Kurven Kryptografie,
Digitale Signatur, ASIC
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Chapter 1

Introduction

The importance of devices that use a combination of radio frequency identification (RFID)
and security technology has grown over the last few years. Several products with security
features already exist nowadays. Several of them have already been broken (MIFARE
Classic, Keeloq). Their security was mainly based on using custom and secret algorithms.
Secure systems should be based on openly available algorithms. Only the key(s) should
be kept secret.

The concept behind RFID is that a very small microchip is attached to an antenna.
The chip is powered via an electromagnetic field of the reader. The field is also used to
communicate with the RFID chip. Because the energy is transferred over a distance, the
power consumption for an RFID tag is critical.

Unlike RFID tags, smart cards are systems that use strong cryptographic algorithms.
To process those complex algorithms, usually powerful processors are used as smart cards.
The power for such cards is usually provided by an active power supply via a galvanic
connection. So it has not been very important to keep the power consumption of such
cards low.

During the last few years, wireless interfaces have been added to the smart cards.
Because of the relatively huge power consumption of smart cards the possible range for
that systems is in the area of centimeters.

The idea is to merge the RFID and smart card technologies. The price and range of
the new product should be similar to RFID tags, but the security of this product should
be as strong as the securtiy of a smart card. To achieve those goals, several restrictions
need to be made. One is to highly optimize the intended target tag for a certain kind of
security method.

Investigations showed that elliptic curve cryptography is well suited for such applica-
tions. It is very resource conservative and based on difficult mathematical problems. The
elliptic curve digital signature algorithm is a well established concept for authentication.
To be compatible to commonly used standards, standardized NIST curves are used in this
design. The set of used domain parameters is called NIST P-192. The advantage of the
used prime field is that very fast reductions are possible. As a result, a reasonably low
total runtime is achievable.

This thesis presents two different designs. One design, called Neptun makes use of
a custom build processor and can be used to evaluate different algorithms and security
measures. The problem with full-custom ASIC designs is that errors are very expensive.
Especially simple and differential power analysis attacks can be used to attack security
devices. So the used algorithms need to be carefully evaluated and possible security flaws
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CHAPTER 1. INTRODUCTION 2

need to be fixed. The second design is based on Neptun. The main difference is that
it is optimized for one cryptographic algorithm. This design is used to show that the
presented concept can be used as an area optimized design. The used silicon area usually
is proportional to the prices of a chip. Because RFID tags are usually intended to be bulk
commodity, the low area requirement is especially important.

The possible applications for such a presented design are immense. It can be used in
every environment, where authentication and access control is important. An example are
the huge losses in the range of billions that are caused by counterfeit products. Security-
enabled RFID tags can be used to identify counterfeit products. This method has the
potential to reduce product piracy.

1.1 Outline

This thesis will start with an introduction to smart cards. Chapter 2 gives a short history
of chip cards. Especially the applications are important. The presented chip can be used
by all of them.

Subsequently this thesis can be split into three parts. The cryptographic algorithms,
the hardware for the specialized processor and the discussion of results. Chapter 3 handles
an introduction to cryptography. Very general topics like definitions and goals of cryp-
tography as well as symmetric- and public-key cryptography are covered. Naturally those
two cryptographic schemes are compared.

Chapter 4 handles digital signatures. The older digital signature algorithm is shortly
discussed for comparison with the elliptic curve digital signature algorithm. Both, the
signature generation and the signature verification process are discussed in detail. Also
the correctness of ECDSA is shown.

To actually understand ECDSA, elliptic curve arithmetic is introduced in Chapter 5.
This chapter describes the basic concepts behind elliptic curves as well as point arithmetic.
The focus is especially on the performance-relevant point multiplication schemes.

Elliptic curves make use of finite fields. Chapter 6 introduces techniques that are
needed to handle prime-field arithmetic on platforms with small data paths. The focus is
especially on the multiplication and reduction methods.

Chapter 7 is used as transition from the used algorithms to the ASIC hardware. It
describes how a design can be developed, optimized and simulated. Different instruction-
set concepts are discussed. Those instruction sets are described in connection with the
design flow used for the Neptun processor.

By having the idea of a certain design in mind, different designs are discussed in
Chapter 8. Size as well as runtime approximations are made.

With the decided design in the back of the mind, a processor is designed in Chapter
9. After the discussion of a general architecture concept and a central processing unit, an
arithmetic-logic unit and all its components are described. With some modifications, the
processor is made reusable. Also an efficient method for testing is described.

All the previous information has been used to implement a processor, called Neptun.
Several attributes of this processor are discussed in Chapter 10. After a detailed runtime
analysis, the area requirement is discussed and compared to different publicly known
designs.

Finally, conclusions are given in Chapter 11. The appendix is used to document various
features of the implemented processor in detail.



Chapter 2

Introduction to Chip Cards

Comprehensive material about chip cards can be find in the book [33]. Especially for this
thesis relevant chapters are 1, 2, 12, 13 and 14 and are summarized at this place.

The popularity of plastic cards began in the beginning of the 50s in the USA. The
cheap plastic PVC made the production of robust and durable cards possible. It was far
superior to the cards made from paper or cardboard.

The first full plastic card for payments was offered by Diners Club in the year 1950. It
was designated for an exclusive group of people. At first the acceptance of the card was
limited to certain hotels and restaurants.

After Visa and MasterCard joined the scene the spread of the plastic money grew
increasingly.

Nowadays, the plastic cards makes it possible to pay worldwide without cash money.
The owner can pay every time and everywhere without the risk of stolen cash.

In the beginning, the used security measures were very simple. They were based on
visual information like an embossed number, an owner and a signature field. This level
of tamper resistance was not enough, once the popularity reached a certain point. A first
improvement was to add a magnetic stripe on the back of the cards. This added machine-
readable data to the cards. This feature reduced the required use of paper but had a flaw.
The information on the magnetic stripe could be read, written and deleted by anybody
who owned the right equipment. So the magnetic stripe cannot be used for the storage of
secret information.

The development of integrated circuits in the 70s and 80s made it possible to integrate
a lot of logic on a tiny chips. The big break through was made in 1984. The french PTT
made a field trial for phone cards. The tested chip cards were very tamper proof and
reliable. The tested chip cards also showed a big flexibility in its applications.

These cards were using simple circuits with security. So they were cheap for produc-
tion. Also the more complex microprocessor chips were first tested in telecommunications.
Because of the positive experience during the use of chip cards in the analog mobile tele-
phone system, chip cards are used for authentication in the GSM network. This was setup
in many European countries in 1991. Currently there are more then 600 million user in
more than 170 countries.

The development of chip cards in the banking industry was slower. Mainly because the
hardware and software for the required mathematical algorithms is very complex. With
the introduction of modern cryptography, chip cards became more and more popular. The
first country with a nationwide introduction of chip cards for payment was Austria. These
chip cards were capable of POS (point of sales) functions, an electronic purse and possible
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CHAPTER 2. INTRODUCTION TO CHIP CARDS 4

extensions.
Chip cards present a very important function: electronic signatures. The European

parliament released a directive in the year 1999 for the legal foundation of digital signa-
tures.

Apart from the galvanic coupled cards also wireless cards were introduced. Their
handling is a lot simpler and more user-friendly. Also the possible fields of applications
extended with their introduction.

2.1 Applications

Debit card. This kind of cards makes it possible to pay at the shop directly. Using the
debit card, a transaction is started from the owners bank account and the money is
transferred to the dealer or service provider.

Electronic purse. Using a terminal of some kind, money can be stored directly on the
card. During payment, the balance of the card is decreased and the balance of the
second party (usually the dealer) is increased.

This system is fairly complex. The properties are:

Automatic process ability. In order to operate such systems profitably the trans-
actions must be processable by machines.

Transferability. The money should not be bound to a certain medium. It must be
transferable via various networks of PCs.

Divisibility. A certain amount of money must be splitable into several parts. This
makes it possible to pay exactly the amount that should be paid.

Non central. A transaction of money should be possible when both parties are
offline and have no connection to a banking system. Debit or credit cards are
usually managed by a central administration.

Monitoring. This requirement is important. There are two cases to consider. In
one case there is somebody attacking the system. In the other case there is an
error in the system and it is malfuctioning. Both of those procedures must be
monitorable or signal some kind of administrator.

Security. The most basic requirement is the protection against forgery. The system
would break down immediately if money can be copied or forged.

Anonymity. This means that it should not be possible to map the payments be-
tween people. There are two positions to be considered: The operator wants a
non-anonymous system, so he can monitor it optimally. The user wants com-
plete anonymity and no traceability.

GSM. The chip card for GSM (Global System for Mobile Communications) telephones
is named SIM (subscriber identity module). It represents the identity of a party.
Its primary function is to secure the authenticity of a mobile station in a network.
Apart from that, a SIM also supports additional functions. It provides the secure
execution of programs, the storage of data (phone numbers, short messages and
personal adjustments for the mobile phone) and other mobile services.

The main task of the SIM is the authentication in the GSM network. This is a
one-way authentication. The network checks the authenticity of the SIM but the
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SIM does not check the authenticity of the network. The identification of the SIM
works with a, for GSM unique, 8-byte number called the IMSI (international mobile
subscriber identity). With this number, the subscriber can be identified worldwide.

UMTS. The Universal Mobile Telecommunication System (UMTS) is declared as the
third generation of mobile telecommunication. From the view of the chip card,
the biggest difference is the new security module: the USIM (universal subscriber
identity module). It uses the ISO/IEC 7816 standards and is backwards compatible
with the old norm (the SIM).

Health insurance card. This card provides two basic functions: On the one hand it is
an authentication of the patient to the doctor. It can be seen as an electronic health
insurance certificate. On the other hand it is a data storage for the computer of the
doctor. It can contain billing information and/or a patient history.

Digital signature. A legally binding signature requires two prerequisites: A law that
binds all participants legally and a powerful chip card. The card must be capable of
numeric operations and the storage of a private key. For that a powerful processor
or co-processor is required.

2.1.1 Wireless Applications

There are two kinds of cards that need to be distinct. Although the requirements and the
applications for those cards are merging.

The first kind are wireless smart cards. Traditionally smart cards have very powerful
embedded processors. These processors are mostly used for various different cryptographic
algorithms. Some applications are already mentioned in the previous section. Because
these embedded systems are so powerful they usually require a lot of power (in the range
of milliwatts). The wireless interface used for those cards is the ISO-14443. Typically the
operation range of such a card is some centimeters.

Another type of cards are RFID (Radio Frequency Identification) cards. They are
designed to have a wider range of up to several meters. To achieve such distances, the
power consumption of such cards must be very low (in terms of microwatts). So the
implementations of RFID cards were very limited. Usually they were used to store several
bytes of data. Later, some manufacturers implemented symmetric algorithms that can be
used to encrypt the connection between a tag and a reader. Many of those algorithms
were broken during the last few years.

Other applications are:

Skiing. The type of cryptography used for skiing traditionally is limited. It is more
important for this application that the range of the used RFID cards is high. Security
is achieved with different methods. Every card contains a unique serial number. All
the readers within a skiing area are connected to a central server. At first the serial
number is checked for its validity. Because the last position within the skiing area is
logged a causality check can be performed. A user cannot be at two distinct places
in the skiing area within several seconds. A third check is that pictures are taken of
the skiers. The readers are equipped with web cams. So the operator can compare
the stored image with the web cam.

Textile industry. Nowadays barcodes are placed on every item sold in a store. The
barcodes are unique for a type of product. So the barcode can be used at the
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cashier for product identification. This information can be used for billing. A goal
of the industry is to replace the barcodes by RFID tags. A product can be uniquely
identified per item and per class. This should result in the following changes:

� RFID reader terminals can be placed at the entries of a stock. In this way the
number of items is always up to date. This procedure simplifies the required
stock management. Pallets of items can be scanned at once.

� RFID readers can be placed at exits of shops. Because every item can be
identified uniquely, every item can be checked if it has been paid for. This
provides a cheap way to prevent shop lifting. This ability causes problems.
The tags can be destroyed or covered in aluminum foil. Then the security
system does not work any more.

� The payment at the cashier can be accelerated. The cashier does not have to
scan each item manually. A whole basket of products can be read at once. It
does not even have to be emptied.

� In the textile industry, a lot of clothes and accessories are forged. A tag, sewed
within the clothing can be used to check that it was produced by the declared
trade mark. The tag can simply contain a digital signature that was issued by
the manufacturer.

Access control. This field of application is huge. It does not only cover the access control
to certain areas of a nuclear reactor, secret agencies, office buildings... It also covers
active tags used as car keys or remote controlled garage door opener. The currently
existing tags are used in a lot of different systems. Usually the systems use some
kind of authentication systems. The elliptic curve digital signature algorithm is well
suited for the most of those applications (see Chapter 4).



Chapter 3

An Introduction to Cryptography

Cryptography already exists for thousands of years. One very popular and old cipher is
the Cesar code. It is a very simple cipher. Every letter in a sentence is rotated by a
number of positions. Modern cryptography is based on hard mathematical problems.

This chapter gives a short introduction to cryptography. Just enough to understand
the basics behind elliptic curve cryptography, described in the next chapter. For more
information about cryptography in general have a look in [30].

3.1 Definition and Goals

Based on [30], cryptography is defined as the study of mathematical techniques related to
aspects of information security such as confidentiality, data integrity, entity authentication
and data origin authentication.

Let us look on this attributes in detail:

Confidentiality stands for secrecy and privacy. This means that nobody, except the
person authorized, should be able to access the unencrypted information.

Data integrity is about the unauthorized change or alteration of data. It must be pos-
sible to detect manipulation of data by unauthorized parties. Manipulation can be
the insertion, deletion or substitution of data.

Authentication and identification go hand in hand. Two different forms of authentica-
tion can be distinguished: Entity authentication is about proving ones authenticity
using certain information about oneself to a second party. Origin authentification
proves that the provided data/message/information is from a certain sender.

Non-repudiation prevents an entity from denying previous commitments or actions. In
the case of a signed contract, this attribute makes sure that a party cannot back
out, by denying that the contract was signed.

The goal of cryptography is it to handle those attributes adequate with the available
algorithm(s). Every available algorithm should be evaluated. There are various criteria
for such an evaluation:

Level of security is usually defined as the number of operations needed to attack the
intended objective (e.g. encryption). Because the best method for ’cracking’ an
algorithm is often discovered over time, the level of security degrades over time.

7
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Most often, the available computational resources for cracking an algorithm are
important as well.

Functionality. [30] describes it as the primitives needed to be combined to meet various
information security objectives. The most effective primitives for a given objective
are determined by the basic properties of the primitives.

Methods of operation. A primitive can have different functionality. This mostly de-
pends on its mode of operation or usage. It also depends on the applied inputs.

Performance refers to the efficiency of the primitive. For an encryption algorithm, this
is the number of cycles or the time it takes to finish the encryption.

Ease of implementation refers to the difficulty of practically implementing a primitive.
This can vary, depending on the available software or hardware environment.

The importance of those criteria is dependent on the application and the used resources.
As an example, let us look at the implemented ECDSA algorithm within this master thesis
(using NIST-P192):

Level of security is comparable to a 96-bit Triple-DES (Data Encryption Standard) or
a 2048-bit RSA (Rivest-Shamir-Adleman) algorithm.

Functionality. An input message can be signed using a private key. A public key can be
used to verify this signature.

Methods of operation. The algorithm can be used for signing a document (message)
and for proofing ones authenticity.

Performance. The performance is evaluated with two parameters: The area needed
for implementing the algorithm in hardware and the number of cycles it takes to
complete one ECDSA signature.

Ease of implementation. In this case it is the time, needed for building the Neptun
processor. Approximately five months.

3.2 Symmetric-Key Cryptography

In this cryptography scheme, both parties share the same secret key k, or one that can
easily be derived from the other one. The plain message is m. The encoded message is c.
An encryption function Ek is used to calculate c = Ek(m). The decryption function Dk

is used to derive the plain message from c: m = Dk(c).
Previously, the Cesar cipher has been mentioned. In this case, the key is the number

of positions that are shifted in the alphabet.
The biggest concern of a symmetric encryption scheme is to find a key that can be

used by both parties. This problem is named as the key distribution problem. A secure
channel is needed to exchange a secret key. Only then, symmetric-key encryption can be
used (see Figure 3.1)

Symmetric-key encryption schemes can be split into two classes:
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key source

e

encryption
E(m) = c

plaintext
source

m

decryption
D(c) = m

destination

m

e

c

SECURE CHANNEL

UNSECURE CHANNEL

Figure 3.1: Encryption using symmetric cryptography.

Block ciphers are encryption schemes that break a plain text message into blocks of
fixed length. Every block is encrypted one by one. A very popular representative
of block ciphers is the AES (Advanced Encryption Standard) algorithm. This is an
algorithm invented by Joan Daemen and Vincent Rijmen (see [32]).

Stream ciphers can be seen as block ciphers with a block length of one. This method
does not need to collect data until a full block length is reached. Every character
of the message can be encoded immediately. Famous examples of newly developed
stream ciphers are Grain [14] and Trivium [6].

3.2.1 Key-Distribution System

There are three methods for managing keys for symmetric algorithms:

Store them all. Every entity stores a secret key used for communication with any other
entity. To be prepared to communicate with (n− 1) other entities, (n− 1) keys are
required. For an RFID tag this is intractable. In total n2−n keys need to be stored
in this system.

Trusted third party. A third party is introduced. This party stores n keys for n partic-
ipants. If two participants want to communicate, they first contact the third party
using an encrypted connection. The third party generates a key that can be used
by both parties. This key can be used for a secure connection between the two
participants.

It is very interesting to review this approach for RFID tags. The third party is a
central server. An RFID tag can encounter different readers and terminals during its
lifetime. The first problem is a political problem because the readers are distributed
throughout different companies. Secondly, all the readers must be online all the
time, so that the tag can initialize a connection with the server. Thirdly, in the case
of a server crash, all the keys can be lost, or the whole system does not work any
more.

Public-key cryptography. Very often, the more calculation intensive, public-key cryp-
tography is used for establishing a secure connection. A key exchange protocol is
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used so that two parties can agree on a common key. This common key is then used
for symmetric cryptography.

3.3 Public-Key Cryptography

Public-key cryptography is also known as asymmetric cryptography. It is asymmetric
because the two parties do not share their private key any more. Instead there is a public
key, which can be used by any entity to encode a message c = Epublickey(m). Encoding
a message is a one-way trap function. Using the public key, the message m cannot be
recovered. To decode the message, the private key is needed: m = Dprivatekey(c). This
means that the private key is only known to the recipient of the encrypted message c.
This scheme is visualized in Figure 3.2.

key source

encryption
E(m) = c

plaintext
source

m

decryption
D(c) = m

destination

m

public key

c
UNSECURE CHANNEL

private key

UNSECURE CHANNEL

Figure 3.2: Encryption using public-key cryptography.

Note the difference between Figures 3.1 and 3.2. Using public-key cryptography, the
public key can be transferred using an insecure channel. The channel for transporting the
public key and the channel for the transportation of the message can also be the same.

A physical analog is a post box. Anybody can put something into the box (encrypt
a message). Only the post officer with the key for the post box can open it (decrypt
a message). The only flaw in this metaphor is that the post officer usually is not the
recipient of the mail.

Usually the term private key is used in connection with public-key cryptography and
the term secret key is used in the case of symmetric cryptography. That is because a
secret needs to be shared by two parties, but a key, which is only known to oneself, is
really private.

3.4 Comparison of Cryptography Schemes

At this point it is interesting to compare the two previously introduced schemes.
Advantages of symmetric-key cryptography:

1. High performance implementations are possible.

2. Short key lengths.
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3. Can be used as pseudo-random number generators.

4. Symmetric-key ciphers can be combined. This results in strong product ciphers.

Disadvantages of symmetric-key cryptography:

1. The key must remain secret within all participating parties.

2. A lot of key pairs need to be managed in large networks. Trusted third parties need
to be used.

3. Cryptographic practice dictates that the key is changed frequently. If possible it
should be even changed within communication sessions.

Advantages of public-key cryptography:

1. The private key must be kept secret by one entity only. (The authenticity of public
keys must be guaranteed).

2. Only a functionally trusted third party is required. Functionally trusted means that
the third party does not have to store any private keys. In many cases an online
connection to a third party is not required at all times.

3. The key pair can remain unchanged for long periods of time (several sessions or
years). This also depends on the mode of usage.

4. There are many efficient digital signature mechanisms. They mostly only require
small public keys.

5. The total number of required key pairs in a large network is much smaller than in a
symmetric-key scenario.

Disadvantages of public-key encryption:

1. In comparison to symmetric-key schemes, the public-key schemes are computation-
ally much more intensive.

2. The required key size is larger compared to symmetric-key encryption methods.

Optimally one should use the advantages of both worlds. Use public-key cryptography
for establishing a secure connection but use symmetric-key cryptography for transferring
the data.

3.5 Digital Signatures

A fundamental component in cryptography are digital signatures. They are essential for
authentication, authorization and non-repudiation. The purpose is to bind an entity to a
piece of information. During the process of signing, some secret information held by the
signing entity is used to generate a signature for some information.

A perfect application for public-key cryptography are digital signatures. Two processes
need to be distinguished:

Signing procedure. The signer creates a signature s for a message m by computing
s = Sprivatekey(m). This results in the pair (m, s).
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Verification procedure. Usually the verifier is not the same entity as the signer. As a
result, the verification (public) key has to be obtained first. Using this information
u = Vpublickey(m, s) can be calculated. The signature is accepted if u is true. Else
the signature is rejected.

3.6 Hash Functions

The book [30] states that a hash function is a computationally efficient function mapping
binary strings of arbitrary length to binary strings of some fixed length, called hash-values.

A hash value can be seen as a compact representation of an input string. During this
compression, the number of bits (from input to hash) gets reduced. This means that it is
theoretically possible to find two input strings that generate the same hash value. This is
called a collision. Hash algorithms are designed in a way that it is hardly possible to find
a collision. It should be also computationally infeasible to find an input x for a predefined
hash-value y so that h(x) = y. This is called a pre-image attack.

As it will be seen later, hash algorithms are very important for digital signatures and
data integrity checks. During a signature generation, not the whole message is signed but
the hash value of the message. So finding a message with the same hash-value as the
originally signed message should be computationally infeasible.

To check the validity of a signature the hash function must be publicly known.



Chapter 4

Digital Signature Algorithms

This chapter gives a very short introduction to the Digital Signature Algorithm (DSA). The
information from this introduction is used for comparison with the Elliptic Curve Digital
Signature Algorithm (ECDSA). This algorithm is described in detail. The information
used for this chapter is taken from [12].

4.1 Digital Signature Algorithm

Back in 1991, the U.S. National Institute of Standards and Technology (NIST) proposed
the Digital Signature Algorithm (DSA). It was declared by the U.S. Government as Federal
Information Processing Standard (FIPS 186) and called Digital Signature Standard (DSS).

DSA is based on Rivest, Shamir and Adleman (RSA). The RSA signature scheme
use the fact that med ≡ m (mod n) for all integers m. A e, d and n must fulfill certain
properties. RSA can also be used for generating and verifying signatures, but they have a
serious flaw. A signature for a defined message always results in the same signature.

This flaw is taken care of in the DSA Algorithms 1 and 2. The signature algorithm
introduces a random ephemeral key. This is a private one-time key. This key is used for the
exponentiation that was introduced by Rivest, Shamir and Adleman. This exponentiation
is followed by some computations in lines 3 to 5, which results in the signature (r, s).

Algorithm 1 DSA signature generation

Require: Domain parameters (p, q, g), private key x, message m.
Ensure: Signature (r, s).
1: Select k ∈R [1, q − 1].
2: Compute T = gk mod p.
3: Compute r = T mod q. If r = 0 then go to step 1.
4: Compute h = H(m).
5: Compute s = k−1(h + xr) mod q. If s = 0 then go to step 1.
6: Return(r, s).

This signature is used for the verification in Algorithm 2. This algorithm uses the
signature, the message, the public key and the domain parameters. It neither uses the
private keys k nor x that are only needed for the signature generation. As a result, the
signature can be verified by doing the (previously introduced) exponentiation in line 5.

13
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Algorithm 2 DSA signature verification

Require: Domain parameters (p, q, g), public key y, message m, signature (r, s).
Ensure: Acceptance or rejection of the signature.
1: Verify that r and s are integers in the interval [1, q − 1]. If any verification fails then

return(“Reject the signature”).
2: Compute h = H(m).
3: Compute w = s−1 mod q.
4: Compute u1 = hw mod q and u2 = rw mod q.
5: Compute T = gu1yu2 mod p.
6: Compute r′ = T mod q.
7: If r = r′ then return(“Accept the signature”);

Else return(“Reject the signature”).

4.2 Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algorithm (ECDSA) is built on elliptic curve arith-
metic, which is based on finite field arithmetic. Those dependencies are shown in Figure
4.1. In the case of this thesis, prime fields are used. So the ’field arithmetic’ and the ’big
number and modular arithmetic’ blocks can be merged.

Elliptic Curve Digital
Signature Algorithm

Random number
generation

Big number and
modular arithmetic

Curve arithmetic

Field arithmetic

Figure 4.1: ECDSA uses curve arithmetic, which uses finite field arithmetic. Further a
random number generator and modular arithmetic is required.

During the life cycle of a signature, several algorithms need to be performed.

1. Generate the domain parameters D. For that a domain parameter generation al-
gorithm should be used (see Chapter 4.2 in [12]). In the case of this thesis, the
parameters are already generated and part of the NIST standard FIPS 186-2 [31].

2. Generate a key pair (Q, d) using a key-generation algorithm. The algorithm used for
Elliptic Curve Cryptography is shown in Algorithm 3. At first, it selects a random
integer as private key. Then a point multiplication is performed with P . P is a
previously selected domain parameter. The resulting point Q is used as public key.
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3. A signature generation algorithm produces a signature, using the domain parameters
D, an input message m and the private key d. It is shown in Algorithm 4.

4. At some point the signature needs to be verified. For that, Algorithm 5 is used.
It uses the domain parameters D, the public key Q, the original message m and a
signature (r, s). Very important is the fact that the verifier does not need the private
key d for its verification. This signature is either accepted or rejected.

Algorithm 3 Key-pair generation

Require: Domain parameters
Ensure: Public key Q, private key d.
1: Select d ∈R [1, n− 1].
2: Compute Q = dP .
3: Return(Q, d).

Before actually looking at the signature algorithm in detail it is necessary to understand
the used parameters.

p The order of the prime field Fp. This is the underlying field used for all
point additions, doublings and multiplications. It is a very important
parameter because it greatly influences the performance of the point
operations. Because the characteristic of p is neither 2, nor 3, a reduction
of the Weierstrass equation can be performed. p is a domain parameter
defined by NIST.

a, b The coefficients of the elliptic curve y2 = x3 + ax + b satisfying
rb2 ≡ a3(modp). In the case of the NIST domain parameters those
parameters are predefined. a = −3. 0 < b < p. Because a = −3 a field
multiplication can be replaced by field additions.

P = (x, y) The base point P is the starting point for each point multiplication, per-
formed during the signature generation algorithm. It is represented with
the two coordinates x, y. They are part of the NIST domain parameters.

n The (prime) order of the base point P . Suppose Q = ∞. Now P is
added to Q. Q = Q + P . This can be done n times, before the identity
∞ is reached again. The parameter n is derived with the selection of P .
So it is a NIST domain parameter.

d, Q d is the private key. Q is the public key. They are generated using
Algorithm 3. The public key Q is a point with two coordinates.

r, s Those two parameters together represent a signature. Separately, they
are useless.

There are additional parameters used for other underlying fields. This thesis uses
prime fields. So only the for prime field important factors are considered.

4.2.1 Signature Generation

A signature is generated using Algorithm 4. It is using the domain parameters, a private
key and a message as inputs. k is selected randomly and used for a point multiplication.
k is an ephemeral key. This is a private key that changes for each signature. From the
resulting point, only the x-coordinate is needed. The conversion of x1 to x̄1 is not needed
if a prime field Fp is used. In this case x̄1 = x1 is valid. Because p > n, a reduction
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needs to be performed. In the following two lines, the second part s of the signature is
calculated.

The major calculation is performed within line two. Usually the point multiplication
takes more time to calculate than all the other operations together.

Algorithm 4 ECDSA signature generation

Require: Domain parameters, private key d, message m.
Ensure: Signature (r, s).
1: Select k ∈R [1, n− 1].
2: Compute kP = (x1, y1) and convert x1 to an integer x̄1.
3: Compute r = x̄1 mod n. If r = 0 then go to step 1.
4: Compute e = H(m).
5: Compute s = k−1(e + dr) mod n. If s = 0 then go to step 1.
6: Return(r, s).

It is interesting to compare the two presented signature Algorithms 1 and 4. A big
difference are the used domain parameters and the different method for producing r. The
second part of the signature generation algorithms, for generating s, is very similar.

4.2.2 Signature Verification

To verify a given signature, Algorithm 5 is used. Apart from the signature itself, it
needs the used domain parameters, the public key and the original message. After the
calculation of u1 and u2, two point multiplications need to be performed. Because of that,
this algorithm uses up to twice the time compared to the signature generation algorithm.

Algorithm 5 ECDSA signature verification

Require: Domain parameters, public key Q, message m, signature (r, s).
Ensure: Acceptance or rejection of the signature.
1: Verify that r and s are integers in the interval [1, n− 1]. If any verification fails then

return(“Reject the signature”).
2: Compute e = H(m).
3: Compute w = s−1 mod n.
4: Compute u1 = ew mod n and u2 = rw mod n.
5: Compute X = u1P + u2Q.
6: If X =∞ then return(“Reject the signature”);
7: Convert the x-coordinate x1 of X to an integer x̄1; compute v = x̄1 mod n.
8: If v = r then return(“Accept the signature”);

Else return(“Reject the signature”).

In comparison with Algorithm 2 the first few lines are similar. Except for a different
modulo, u1 and u2 are calculated identical.

It is very important to understand that the signature verification works without the
private key. Let us assume for now that a signature (r, s) on a message m has been
generated by a legitimate signer.
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s ≡ k−1(e + dr) (mod n)

k ≡ s−1(e + dr)

≡ s−1e + s−1rd

≡ we + wrd

≡ u1 + u2d (mod n)

Thus X = u1P + u2Q = (u1 + u2d)P = kP , and so v = r as required.



Chapter 5

Elliptic Curve Cryptography

Elliptic curve arithmetic got popular in the 80’s of the last century. That was the time
when Neal Koblitz [24] was one of the first to use elliptic curves for cryptography. Since
back then the popularity for elliptic curves grew more and more.

In the Austrian ’Bürgerkarte’ and many other security-relevant environments, elliptic
curves are used nowadays. The question is why they are doing so. The work [11] by
Nils Gura et al. can provide an answer. They compared different RSA and elliptic curve
algorithms on embedded processors. [12] states that a 224-bit elliptic curve and 2048-
bit RSA algorithm have the same level of security. Those two algorithms have been
implemented by Nils Gura et al. on an 8-bit embedded processor (ATmega128). In detail,
the secp224r1 curve (same as NIST P-224) is used for the elliptic curve arithmetic and
the RSA-2048 algorithm is using the public exponent e = 216 + 1. The resulting runtime
of those algorithms has been within a 15%. The code size of both algorithms is also very
similar (RSA is about 30% better). The big difference is in the required size of the data
memory. The data memory of the RSA-2048 algorithm has to be more than three times
larger than the memory of the 224-bit elliptic curve. This example clearly shows that
the elliptic curve algorithms have a clear advantage for embedded devices, although the
required algorithms are more complex.

Because the goal of this thesis is to lead the ECDSA algorithm one step closer to
RFID devices, some basics are given in this section about elliptic curves. After a short
introduction to elliptic curves, important double, add and multiplication algorithms are
shown in this chapter.

5.1 Mathematical Basics

The equation behind each elliptic curve is a Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (5.1)

18
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In order to ensure that the curve is ’smooth’, there is also the discriminant ∆ 6= 0 to
consider. ∆ is the discriminant of E. It is defined with the following equation:

∆ = −d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6 (5.2)

d2 = a2
1 + 4a2

d4 = 2a4 + a1a3

d6 = a2
3 + 4a6

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4 (5.3)

The smoothness of the elliptic curve is necessary, so that there are no points on the curve
with two or more distinct tangent lines.

[12] states that E is defined over K because the coefficients a1, a2, a3, a4, a6 of its defin-
ing equation are elements of K. Sometimes E/K is written to emphasize that E is defined
over K, and K is called the underlying field. Popular choices for those underlying fields
are prime fields Fp and binary extension fields F2m . For both types of fields, parameters
have been recommended by NIST in the FIPS 186-2 standard [31].

A point on the curve has the two coordinates x and y. This point is on the curve only
if it satisfies the Weierstrass equation. This can be also written mathematically: L is an
extension field of K. The set of L-rational points on E is defined as:

E(L) = {(x, y) ∈ L× L : y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0} ∪ {∞} (5.4)

∞ is the point at infinity. This point can be seen as identity. It is important for the
calculation with points.
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Figure 5.1: Elliptic curve represented over R: E : y2 = x3 − x.

Figure 5.1 represents an elliptic curve. In this case E is defined over R, or E/R. The
points that fulfill E(R)\{∞} are drawn.
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A very helpful construct is a transformation. A transformation is performed as an ad-
missible change of variables. Such a transformation can be used to simplify the Weierstrass
equation. It depends on some attributes of the underlying field K.

Dependent on the characteristic of K, the equation can be transformed differently.
The possible simplifications can be done in the cases char(K) 6= 2, 3, char(K) = 2 or
char(K) = 3. Because this thesis uses prime fields Fp we can concentrate on char(K) 6=
2, 3. In this case, the following change of variables can be performed:

(x, y)→

(

x− 3a2
1 − 12a2

36
,
y − 3a1x

216
−

a3
1 + 4a1a2 − 12a3

24

)

(5.5)

This transforms E to the curve:

y2 = x3 + ax + b (5.6)

a, b must be in K. The new discriminant can be written as ∆ = −16(4a3 + 27b2).
It is helpful to recapitulate the information with an example. The characteristic of

F7 is neither 2, nor 3. The used equation is E : y2 = x3 − x. In this case a = 6 ≡ −1
(mod 7) and b = 0. This is the same curve as in Figure 5.1. The resulting discriminant
∆ = −16(4a3 + 27b2) = −13824 ≡ 64 ≡ 1 (mod 7) 6= 0. So the curve is valid and can be
used. The resulting points on E are:

E(F7) = {∞, (0, 0), (1, 0), (4, 2), (4, 5), (5, 1), (5, 6), (6, 0)}

These points can be represented graphically. In Figure 5.2 the points on E : y2 = x3−x
are shown using F7. In Figure 5.3 the points on E : y2 = x3 − x are shown using F541.
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Figure 5.2: Elliptic curve represented over F7: E : y2 = x3 − x.
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Figure 5.3: Elliptic curve represented over F541: E : y2 = x3 − x.

5.2 Adding and Doubling

Adding two points can be done geometrically and with the use of formulas. At first, it is
explained geometrically.

There are two points P = (x1, y1) and Q = (x2, y2) that should be added. Those
two points are connected with a line. This straight line is extended until it intersects the
elliptic curve at a third point. The point of intersection is mirrored along the x-axis. The
resulting point R = (x3, y3) is the solution of the point addition. The addition is shown
in Figure 5.4.

If the two points P and Q are equal, a doubling algorithm has to be applied instead.
To double P , the tangent line at the point P needs to be found. This straight line is
extended, until it intersects with the elliptic curve. The intersection is mirrored along the
x-axis (similar to the addition). The resulting point is visualized in Figure 5.5.

To use points for calculation, several formulas need to be considered. This definition
is taken from [12]. It is required that E\K: y2 = x3 + ax + b, char(K) 6= 2, 3:

Identity. P +∞ =∞+ P = P for all P ∈ E(K).

Negatives. If P = (x, y) ∈ E(K), then (x, y)+(x−y) =∞. The point (x,−y) is denoted
by −P and is called the negative of P ; note that −P is indeed a point in E(K).
Also, −∞ =∞.

Point addition. Let P = (x1, y1) ∈ E(K) and Q = (x2, y2) ∈ E(K), where P 6= ±Q.
Then P + Q = (x3, y3), where

x3 =
(

y2−y1

x2−x1

)2
− x1 − x2 and y3 =

(

y2−y1

x2−x1

)

(x1 − x3)− y1.
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Figure 5.4: Graphical point addition. R = P + Q.
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Figure 5.5: Graphical point doubling. R = 2P .

Point doubling. Let P = (x1, y1) ∈ E(K), where P 6= −P . Then 2P = (x3, y3), where

x3 =
(

3x2

1
+a

2y1

)2
− 2x1 and y3 =

(

3x2

1
+a

2y1

)

(x1 − x3)− y1.

5.3 Point Multiplication

The point addition and doubling formulas can now be used to derive a multiplication
method. A simple multiplication method is displayed in Algorithm 6.

Unfortunately, this multiplication method is not safe from a Simple Power Analysis
(SPA) attack. To the understand the problem of such an attack, a short excursion is
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Algorithm 6 Right-to-left binary method for point multiplication

Require: k = (kt−1, ..., k1, k0)2, P ∈ E(Fq).
Ensure: kP .
1: Q←∞.
2: for i from 0 to t− 1 do
3: If ki = 1 then Q← Q + P .
4: P ← 2P
5: end for
6: Return(Q).

necessary. Let us assume that there is a microprocessor that is used for the calculation
of a point multiplication. Such a processor performs every part of the algorithm step by
step (or line by line). Dependent on ki, the processor will either add P to Q or not. This
changes the runtime of a single loop cycle. This time can be measured. If ki is one, the
runtime is longer than in the case of ki being zero. By measuring the power consumption
during a point multiplication all bits of k can be recovered. This is a problem. Especially
in the case that k is used as temporary private key (an ephemeral key) as it is in Algorithm
5. If k is discovered, the ECDSA signature generation algorithm is not secure any more.

So this vulnerability needs to be taken care of. Algorithm 7 shows a multiplication
algorithm which is safe against SPA attacks. It is important to notice at this point that
the algorithms is still vulnerable. Depending on the accessed addresses, the power trace
changes minimally.

Algorithm 7 SPA safe point multiplication

Require: k = (kt−1, ..., k1, k0)2, kt−1 = 1, P ∈ E(Fq).
Ensure: kP .
1: Q[0]← P .
2: Q[1]← 2P .
3: for i from t− 2 to 0 do
4: Q[1⊕ ki]← Q[ki] + Q[1⊕ ki]
5: Q[ki]← 2Q[ki]
6: end for
7: Return(Q).

In order to optimize this algorithm, the succeeding point addition and doubling can
be merged into a single function that calculates both results at the same time.

5.4 Comparison of Point Multiplication Algorithms

Because of the long runtime of point multiplication algorithms, a lot of research has been
done in optimizing their performance. This overview assumes that char(K) 6= 2, 3. So
the Weierstrass equation can be written as E\K: y2 = x3 + ax + b. The presented
optimizations can be also applied to different underlying fields.

Affine method This is a straightforward implementation of the previously shown formu-
las. The problem with this implementation is the inverse. Calculating an inverse is
computationally much more complex than multiplying or adding two values. Because
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of the resulting, excruciating runtime, it should not be considered for implementa-
tion.

Standard projection The inverse of the affine method can be avoided by introducing
a third coordinate. The point P = (x, y) can be transformed1 to P = (X, Y, Z)
where (x, y) = (X/Z, Y/Z). Firstly, this changes the elliptic curve equation to
Y 2Z = X3 + aXZ2 + bZ. Secondly the addition and doubling formulas need to be
changed.

Jacobian projection Similar to the standard projection, a Jacobian projection can be
used for transformation. In this case the point P can be represented as P = (X, Y, Z).
P = (x, y) = (X/Z2, Y/Z3). The new Weierstrass equation is Y 2 = X3+aXZ3+bZ6.
The resulting formulas for point doubling P3 = 2P1 are:

X3 = (3X2
1 + aZ4

1 )2 − 8X1Y
2
1 (5.7)

Y3 = (3X2
1 + aZ4

1 )(4X1Y
2
1 −X3)− 8Y 4

1 (5.8)

Z3 = 2Y1Z1 (5.9)

The resulting formulas for a point addition P3 = P1 + P2 are:

X3 = (Y2Z
3
1 − Y1)

2 − (X2Z
2
1 −X1)

2(X1 + X2Z
2
1 ) (5.10)

Y3 = (Y2Z
3
1 − Y1)(X1(X2Z

2
1 −X1)

2 −X3)− Y1(X2Z
2
1 −X1)

3 (5.11)

Z3 = (X2Z
2
1 −X1)Z1 (5.12)

Double-and-add Algorithm A lot of computation can be avoided by combining the
point addition and point doubling algorithms. Parts of the formulas do not need
to be calculated twice any more. This is specially advantageous in Algorithm 7 in
which two points are always added and one of them is always doubled.

Montgomery ladder The Montgomery ladder provides a very special optimization. The
key is to keep the difference Q1 − Q0 constant. Algorithm 7 fulfills this property.
Let us look at the example 10100011b · P in table 5.1.

bit formula Q0 Q1 Q1 −Q0

1 initialization P 2P P
0 Q′

1 = Q0 + Q1 Q′
0 = 2Q0 2P 3P P

1 Q′
0 = Q1 + Q0 Q′

1 = 2Q1 5P 6P P
0 Q′

1 = Q0 + Q1 Q′
0 = 2Q0 10P 11P P

0 Q′
1 = Q0 + Q1 Q′

0 = 2Q0 20P 21P P
0 Q′

1 = Q0 + Q1 Q′
0 = 2Q0 40P 41P P

1 Q′
0 = Q1 + Q0 Q′

1 = 2Q1 81P 82P P
1 Q′

0 = Q1 + Q0 Q′
1 = 2Q1 163P 164P P

Table 5.1: Point multiplication 10100011b · P using Algorithm 7. The result is stored in
Q0.

1Lower case letters are used for normal coordinates. Upper case letters are used for projected coordi-
nates.
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Izu, Möeller and Takagi [21] presented a Montgomery Ladder. Their formulas already
have another improvement built in. They are in a X-only point representation (see
next item in this enumeration). The following part is taken from their paper.

Let x1, x2 be x-coordinate values of two points P1, P2 of an elliptic curve E : y2 =
x3 + ax + b. Then the x-coordinate value x3 of the sum P3 = P1 + P2 is given by

x3 =
2(x1 + x2)(x1x2 + a) + 4b

(x1 − x2)2
− x′

3 (5.13)

where x′
3 is the x-coordinate value of P ′

3 = P1 − P2. On the other hand, the x-
coordinate value of x4 of the doubled point P4 = 2P1 is given by

x4 =
(x2

1 − a)2 − 8bx1

4(x3
1 + ax1 + b

. (5.14)

X-only point representation An optimization in connection with the Montgomery lad-
der is to avoid the calculation of the Y-coordinate. Consequently, memory and field
operations can be saved. After the last operation the x-coordinates of kP = (x1, y1)
and (k + 1)P = (x2, y2) have been calculated. If needed, the y-coordinate can be
recovered using kP and (k + 1)P . Izu et al. also presented a formula for y-recovery,
where Q1 = (x1, y1), Q2 = (x2, y2) and P = Q2 −Q1 = (x, y).

y1 =
y2 + x3

1 + ax1 + b− (x− x1)
2(x1 + x2 + x)

2y
(5.15)

Using the previously introduced point projection, this formula works without an
inversion.

Common-Z point representation Another optimization is to merge the z-coordinate
of the two points used in algorithm 7. The points Q1 = (X1, Y1, Z1) and Q2 =
(X2, Y2, Z2) can be represented as Q1 = (X ′

1, Y
′
1 , Z

′) = (X1Z2, Y1Z2, Z1Z2) and
Q2 = (X ′

2, Y
′
2 , Z

′) = (X2Z1, Y2Z1, Z2Z1). Z ′ = Z1 · Z2. Consequently a register can
be saved.

Different point multiplication methods are summed up in table 5.2. No distinctions are
made between field multiplication and squaring algorithms. Usually a field squaring can
be performed faster than a field multiplication. This is not the case for the implementation
used in this thesis. Also the field addition and subtraction algorithms are accumulated.

It is possible to create double-and-add implementations for the affine, standard pro-
jective and Jacobian projective methods. They are not shown in this table. The last three
implementations make use of Montgomery ladders. The last two implementations make
use of a common-Z point representation.

The algorithm by Izu et al. actually needs 7 registers. The problem is that during
multiplications, source registers are used as destination registers (e.g. A = A · B). For
this operation, an extra register is needed as temporary storage.

An in-place field multiplication method does not support A = A ·B. The double and
add algorithm by Auer does not use such multiplications. That is why hardly any extra
memory is required. The cost of the memory reduction comes with the price of extra
computation requirement.
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Method Reference Registers Calculation

Affine Add [12] 1I + 3M
Affine Double [12] 1I + 4M

2I + 7M

Std. Projective Add [12] 14M
Std. Projective Double [12] 10M

24M

Jacobian Add [12] 16M
Jacobian Double [12] 8M

10 24M

Izu, Möller, Takagi [21] 7+1 15M + 23A

Auer [4] 7 18M + 22A
this work see App. D 8 15M + 17A

Table 5.2: Different multiplication Methods compared. ’I’ is an inversion. ’M’ is a multi-
plication. ’A’ is an addition.

The author tried to minimize the number of multiplications required by Auer’s imple-
mentation. The resulting solution uses as many multiplications as Izu et al. An advantage
is the minimized number of required additions. The source and destination registers of
the multiplications are kept separately.

Because of the memory advantage of Auer’s implementation, his algorithm has been
used for all subsequent performance evaluations.



Chapter 6

Prime Field Arithmetic

This chapter provides algorithms to deal with prime fields Fp. This is a special kind of
field because it is finite. A finite field is also called Galois field.

A field can be seen as a set of elements with some properties. The two most impor-
tant operations that can be used on a field are an addition and a multiplication. Other
operations like a subtraction and a division can be derived from those operations. Very
popular fields are the real field R, the complex field C or the field of rational numbers Q.
Those fields are not finite because they define an infinite set of numbers.

For each prime p, there exists a prime fields Fp with p elements. Integer arithmetic
modulo p forms such a prime field Fp. An advantage is that an integer i ∈ Fp can be
represented with a fixed number of bits because Fp contains a fixed number of elements.
Prime fields are also well suited for cryptographic algorithms such as the ECDSA.

Because prime-field arithmetic is required for the elliptic curve digital signature algo-
rithm it is described in this chapter. Or rather prime field arithmetic is described using
an architecture with small word size W .

W usually is a multiple of 8 and is called a word. Because elements of Fp usually
are big integers, several words are needed to store such a big number. t = ⌈ld(p)/W ⌉
words are needed to store an integer i ∈ Fp. In the next sections, a and b are used to
present such integers i ∈ [0, p − 1]. The memory cells used to store a can be written as
(A[t − 1], A[t − 2], · · · , A[1], A[0]). The rightmost bit and word have the index zero. The
index of the leftmost word is t− 1.

This chapter deals with the simpler addition, subtraction and multiplication opera-
tions. Those algorithms result into the majority of the runtime of the ECDSA algorithm.
For the inversion (e.g. the Montgomery inversion) algorithm, the reader is encouraged to
read the Chapter 2.2.5 in the Guide to Elliptic Curve Cryptography [12].

6.1 Addition and Subtraction

The addition and subtraction algorithms usually are very fast and efficient. They are also
a lot easier to implement than the multiplication algorithms, handled in Section 6.2.

One important thing to understand the Algorithm 8 is the carry propagation. When
two W -wide words are added, the result has W + 1 bits. The extra, most significant bit
is stored in the carry bit ε. The algorithm first adds a and b. If the sum is larger than
or equal to p, p is subtracted from the intermediate result stored in c. In the case of the
subtraction, performed within lines 6-9, ε is used as borrow bit.

27
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Algorithm 8 Prime field addition in Fp

Require: Two integers a, b ∈ [0, p− 1] and a modulus p.
Ensure: c = (a + b) (mod p).
1: (ε, C[0])← A[0] + B[0].
2: for i from 1 to t− 1 do
3: (ε, C[i])← A[i] + B[i] + ε.
4: end for
5: if ε = 1 or c ≥ p then
6: (ε, C[0])← C[0]− P [0].
7: for i from 1 to t− 1 do
8: (ε, C[i])← C[i]− P [i]− ε.
9: end for

10: end if
11: Return(c).

Algorithm 9 shows the subtraction procedure. It is very similar to the addition algo-
rithm. A difference is in line 5. The extra check (c ≥ p) is not required for a subtraction
algorithm, because after the subtraction c = a − b, c cannot be larger than p. The al-
gorithm first calculates the difference between a and b. If this difference is negative, p is
added to the intermediate result stored in c.

Algorithm 9 Prime field subtraction in Fp

Require: Two integers a, b ∈ [0, p− 1] and a modulus p.
Ensure: c = (a− b) (mod p).
1: (ε, C[0])← A[0]−B[0].
2: for i from 1 to t− 1 do
3: (ε, C[i])← A[i]−B[i]− ε.
4: end for
5: if ε = 1 then
6: (ε, C[0])← C[0] + P [0].
7: for i from 1 to t− 1 do
8: (ε, C[i])← C[i] + P [i] + ε.
9: end for

10: end if
11: Return(c).

6.2 Integer Multiplication

When two integers a, b ∈ [0, p − 1] are multiplied, the width of the result is 2t1 words.
Because this result is a lot larger than p, it needs to be reduced. The reduction of the
intermediate result is handled in the next section.

There are two possibilities to multiply two numbers: the operand scanning and the
product scanning form.

1 Remember: t is the number words needed to store p.
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In Algorithm 10 the operand scanning form is shown. (UV ) is a temporary register
that uses 2 words of memory. U is the higher and V is the lower word. The advantage
of this algorithm is that every register of a is only read once if its result is buffered. The
disadvantage is that c and b need to be read very often.

Line 5 can give the reader some troubles, because a 2W -bit and two W -bit values are
added and the result still is a 2W -bit value. This can be easily explained by inspecting
the worst-case example: FFFFh · FFFFh = FFFE0001h. FFFE0001h + FFFFh +
FFFFh = FFFFFFFFh. Which can still be represented in a 2W -bit register.

Algorithm 10 Integer multiplication (operand scanning form)

Require: Integers a, b ∈ [0, p− 1].
Ensure: c = a · b.
1: Set C[i]← 0 for 0 ≤ i ≤ t− 1.
2: for i from 0 to t− 1 do
3: U ← 0.
4: for j from 0 to t− 1 do
5: (UV )← C[i + j] + A[i] ·B[j] + U .
6: C[i + j]← V .
7: end for
8: C[i + t]← U .
9: end for

10: Return(c).

The second integer multiplication Algorithm (11) uses a product scanning form. In
the case of an available MULACC (multiply and accumulate) instruction, this algorithm
is faster than the algorithm using operand scanning. This is the reason why the original
algorithm from [12] is modified, so an accumulator ACC is used. It has to be 2W +⌈ld(t)⌉
bits wide. So the lower words ACC[0] and ACC[1] have both W bits.

Algorithm 11 Integer multiplication (product scanning form)

Require: Integers a, b ∈ [0, p− 1].
Ensure: c = a · b.
1: ACC ← 0
2: for k from 0 to 2t− 2 do
3: for each element of {(i, j)|i + j = k, 0 ≤ i, j ≤ t− 1} do
4: ACC ← ACC + A[i] ·B[j].
5: end for
6: C[k]← ACC[0].
7: ACC ← ACC ≫W (ACC[0]← ACC[1], ACC[1]← ACC[2], ACC[2]← 0).
8: end for
9: C[2t− 1]← ACC[0].

10: Return(c).

In the case of a squaring operation Algorithm 11 can be improved. Adding A[i] ·A[j] to
the accumulator is equal to adding A[j] ·A[i]. This can be changed to adding 2 ·A[i] ·A[j]
to the accumulator for every i 6= j. In the best case, this improves the number of required
calculation steps nearly by a factor of two.
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6.3 Reduction

A very interesting reduction technique is the method by Barrett. It is described in the
book [12]. Because it is of limited usage in this thesis, it is neglected.

The big advantage of the NIST primes, used as modulo, are their special forms. They
can be expressed as sum or difference of small numbers and powers of 2:

p192 = 2192 − 264 − 1

p224 = 2224 − 296 + 1

p256 = 2256 − 2224 + 2192 + 296 − 1

p384 = 2384 − 2128 − 296 + 232 − 1

p521 = 2521 − 1

Obviously all the exponents (except for p521) are multiples of 32. This is specially impor-
tant for processors with a words size of 32 bits.

But why are those numbers written in this way. Why is p192 not written as
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFh?
(Consider that there is an ’E’ in this list of ’F’.) The representation with exponents of
two can be perfectly used for the reduction of big integers larger than p. Such big integers
usually occur as a result of a multiplications.

6.3.1 NIST-P192

This thesis uses the NIST-P192 parameters. So let us investigate the prime p192 in more
detail. Multiplying the two integers a, b ∈ [0, p−1] can result in a c with ⌈ld(c)⌉ = 2·192 =
384 bits. This number can be expressed in the following manner:

c = c52
320 + c42

256 + c32
192 + c22

128 + c12
64 + c0 (6.1)

This is a base-264 representation of c. Each ci ∈ [0, 264−1]. Using this representation, the
succeeding reduction algorithm can be performed swiftly. Higher powers can be reduced:

2192 ≡ 264 + 1 (mod p)

2256 ≡ 2128 + 264 (mod p)

2320 ≡ 2128 + 264 + 1 (mod p)

By applying those reductions to c, the result of a reduction is:

c ≡ c22
128+c52

64 + c5

+c42
128+c42

64

+c32
64 + c3

+c22
128+c12

64 + c0

The only inconvenience is that the final result can be larger than p. This can be undone
by a series of subtractions c← c− p, until c is less than p.

By using p192 as a prime, an in-place reduction can be done during a multiplication.
This can be done in four steps:
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1. Use the product scanning method to calculate the higher 192 bits of the multiplica-
tion. These are c5, c4 and c3. The destination memory is used as buffer.

2. Reduce c5, c4 and c3 in place. The overflow is stored in a temporary register.

3. Calculate the lower 192 bits of the integer multiplication. They need to be added to
the reduced higher 192 bits, which are stored in the destination memory. This can
be done in the course of the multiplication, by adding C[i] to the accumulator.

4. At this point, the accumulator is still filled. The accumulator must be added to c
by performing a final reduction, until c < p192.

The advantage of this method is that it is very fast and hardly uses any temporary memory.
The disadvantage is that the following multiplication cannot be performed any more:
c = a · c (mod p).

6.3.2 NIST-P256

The reduction method used for p192 can also be applied to reduce p256. Unfortunately it is
more complex. The reduction is summarized in Table 6.1. For instance the higher power
2256 can be reduced to 2256 ≡ 2224 − 2192 − 296 + 1 (mod p256).

A problem with p256 is that it cannot be reduced in place as simple as p192.

c7 c6 c5 c4 c3 c2 c1 c0

2224 2192 2160 2128 296 264 232 20

c8 2256 1 -1 -1 1
c9 2288 -1 -1 -1 1
c10 2320 -1 -1 -1 1 1
c11 2352 -1 -1 2 1 1 -1
c12 2384 -1 2 2 -1
c13 2416 -1 1 2 2 1 -1 -1 -1
c14 2448 3 2 1 -1 -1 -1
c15 2480 3 2 1 -1 -1 -1

Table 6.1: Fast reduction using modulo p256 = 2256 − 2224 + 2192 + 296 − 1.

Table 6.1 shows how the upper 256-bit of the multiplication must be added to the
lower 256-bit in order to perform a reduction. Right next to ci is its exponent. So in
order to reduce c10, it must be subtracted from c7, c5 and c4 and added to c2 and c1. It is
important to keep track of the carry bits, when a reduction is performed. By adding c10

to c1 also all subsequent words (c2, c3, · · · ) can be affected.

6.4 Montgomery Multiplication

Peter Lawrence Montgomery presented a lot of different methods to improve elliptic curve
related operations. One of those improvements can be used to multiply two numbers and
reduce those numbers at the same time. This can be done by introducing a third term: r.
So if two numbers a, b ∈ [0, p− 1] are multiplied, the result is

c = a · b · r−1 (mod p). (6.2)
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There are two requirements for r. r > p and gcd(r, p) = 1. Usually p is prime and
r = 2Wt2. So p is odd and r a multiple of 2. So those requirements are fulfilled by default.

This method is of advantage when a lot of multiplications need to be done. Only an
initial multiplication with r is needed. ã = a · r mod p. b̃ = b · r mod p. So a Montgomery
multiplication results in

Mont(ã, b̃) ≡ ã · b̃ · r−1 (mod p)

≡ (a · r) · (b · r) · r−1 (mod p) (6.3)

≡ (a · b) · r (mod p)

The result of a·b is also multiplied with r. To recover the desired result, a multiplication
with one is needed:

Mont(ã, 1) ≡ ã · 1 · r−1 (mod p)

≡ (a · r) · 1 · r−1 (mod p) (6.4)

≡ a (mod p)

For the implementation of the Montgomery multiplication, an extra parameter (p′) is
required. It is defined in r·r−1−p·p′ = 1. p′ can be calculated using the extended Euclidean
algorithm. For the Montgomery multiplication in Algorithm 12, only the storage of the
lower W bits of p′ are required: p′0 = p (mod 2W ).

For the ECDSA algorithm, all primes are fixed. So p′0 can be pre-computed and
stored as a constant. Algorithm 12 is known as Finely Integrated Product Scanning Form
(FIPS) from the paper [25] by C. Koç, T. Acar and B. Kaliski. It makes use of the
multiply-accumulate unit and it works in place.

The advantages of a Montgomery multiplication is that it works for all primes.

2Remember: W is the word size of the processor and t = ⌈ld(p)/W ⌉.
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Algorithm 12 FIPS Montgomery multiplication

Require: Integers a, b ∈ [0, p− 1] and pre-computed p′0.
Ensure: c = a · b · r−1 (mod p).
1: ACC ← 0
2: for i from 0 to t− 1 do
3: for j from 0 to i− 1 do
4: ACC ← ACC + A[j] ·B[i− j].
5: ACC ← ACC + C[j] · P [i− j].
6: end for
7: ACC ← ACC + A[i] ·B[0].
8: C[i]← ACC[0] · p′0 (mod 2W ).
9: ACC ← ACC + C[i] · P [0].

10: ACC ← ACC ≫W .
11: end for
12: for i from t to 2t− 1 do
13: for j from i− t + 1 to t− 1 do
14: ACC ← ACC + A[j] ·B[i− j].
15: ACC ← ACC + C[j] · P [i− j].
16: end for
17: C[i− s]← ACC[0].
18: ACC ← ACC ≫W .
19: end for
20: if ACC[0] 6= 0 or c ≥ p then
21: c← c− p.
22: end if
23: Return(c).



Chapter 7

Design Flow for Processor
Creation

In many projects, there are certain restrictions to the design. Usually a certain processor
is chosen dependent on its properties for the required application. Then the algorithm(s)
are implemented on the defined processor. If it is an embedded device, this is usually
done in ’C’ or ’C++’. During a final optimization phase, several performance relevant ’C’
functions are replaced by assembler functions.

This procedure cannot be applied for this thesis. The only requirements have been
that a custom processor should be implemented and optimized for the elliptic curve digital
signature algorithm. So the initial set of processors is infinite. This problem is comparable
with the ’chicken or the egg’ causality dilemma. One of both cannot exist without the
other.

For the Neptun processor this problem has been solved in the four steps:

1. Implement a virtual processor that supports the simplest possible commands.

2. Implement the algorithms using those simple commands.

3. Optimize time critical functions. Those mainly are the field operations. Parallelize
instructions if necessary.

4. Implement an instruction set which provides all necessary operations.

In order to apply those steps a software has been written in Java that is used to execute
those four points. This program in connection with the design flow is described in the
following sections.

7.1 Features of the Simulated Processor

The first step of the design flow is to create a simple processor. This processor can be
reused and improved at a later design phase. The initial set of commands was derived
from the Thumb [2] and AVR [3] instruction sets. These instruction sets only use a 16-bit
command representation and are commonly used for embedded processors with low-power
requirements. The focus was to just use as few commands as possible, but also make them
as reusable as possible.

34
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This initial instruction set must be modifiable and flexible. So, for the Neptun pro-
cessor, it has been decided to implement a processor simulator. This simulator should be
capable of the following use cases:

� Parse assembler source code.

� Generate some sort of data structure.

� Simulate the code.

� Generate statistics that can be used for optimization.

� Generate executable files.

� Use other programs/libraries to verify the assembler programs.

� Use the simulator to verify the VHDL model.

In the following sub-sections the used data structure and important parts of the pro-
cessor simulator are described. Especially the used data structure is important for the
subsequent design steps.

7.1.1 Data Structure

A short declaration of terms is necessary. A command refers to a type of instruction. An
instruction is an instance of a certain command.

Every command is encapsulated in an own class and derived from the common abstract
class GenericCommand. This ensures certain properties of the derived commands. Every
command fulfills the following use-cases:

� Store the parameters (e.g. source/destination register, immediate values, ...) needed
for the command.

� Check during creation of an instance if those parameters are valid.

� Execute the command’s behavior on the virtual processor.

� Generate the control signals needed for this command execution.

� Generate a 16-bit program word used for the 16-bit instruction set.

� Generate a string representation.

Every instruction is stored within its function. Every function is stored in a program.
Only one program can be executed at a time on an instance of the virtual processor. By
having this internal data structure the source format of a program does not matter.

A function is created by adding instances of commands. To avoid writing a file parser
and editor that supports the appropriate syntax highlighting and checking, the way of
writing an assembler program in this thesis is different.

Every assembler function is encapsulated within a Java function (Figure 7.1). It can
also contain several assembler functions within a Java function. Usually that is not re-
quired. With the call of Function.Begin() a new function is started. The parameter is the
internal name of the assembler function. The CommandProvider is used as an additional
abstraction layer. Usually it is named C. By entering ’C.’ an advanced editor like Netbeans
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Figure 7.1: This function adds two numbers. A prime is stored relative to BaseC.

automatically provides a set of available commands. This editor also highlights syntax er-
rors. Logical errors (a register cannot be used as a certain parameter) are checked during
runtime of the simulation. With a call of Function.End(), the end of a function is defined.

Labels are added with a call of F.newLabel(), where F represents the name of the
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function variable.
Because Java can be used as a very powerful preprocessor, programming assembler

functions is a lot less troublesome than usual. As a result a complex topic like ’Preprocessor
Programming’, as it exists in C and C++ can be avoided completely.

Figure 7.2: This code snippet creates an executable program.

At this point a list of instructions is stored within the Function class. The next step
is to use a set of functions and create a program. This is shown in Figure 7.2.

Unfortunately, a program is written for a certain processor. This processor has certain
attributes. These attributes have an influence to the available instructions (the Command-
Provider automatically handles some sort of code conversion). A new program is generated
automatically by creating a new processor. The function calls after the new Processor()
instruction create new assembler functions as it has been mentioned before. The sequence
of those Java function call arranges the assembler functions within the program memory.
Usually the point of entry (e.g. after reset) is the first function.

The next step is very important. By calling PrepareExecution(), the current set of
functions and instructions is compiled. This is done in the following steps:

1. A unique program address is assigned to each command. Because some commands
need several program memory entries, consecutive addresses are reserved for the
command.

2. All labels are collected. These can be labels that mark the beginning of a function or
labels that are used for branching. Each label references an instance of an instruction.
So each label automatically knows the address it is referring to.

3. Certain commands make use of those labels (CALL, JMP and BRA). Because
labels are stored as strings, every reference needs to be checked with the list of
existing labels. If the referenced string is found, the resulting address is stored in
the instruction. If the referenced string is not found, an error message appears.

At this point, a program execution can be simulated by calling Execute().

7.1.2 Virtual Processor

A processor consists of registers, memories and peripheral components. A register is
represented with a variable. This register can be read and written by every command.
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A memory is an array of integers. During a memory access the destination memory or
peripheral is determined and its access function is called.

Designing a peripheral is more complex. Its state can change at each cycle. It is
important to regard the details so that the Java model is equal to the VHDL model.

The virtual execution of a program can be done in the following steps:

1. Before instruction execution: Calculate the default next program counter

2. Find the instruction at the current program counter address.

3. Execute the command’s Execute function that simulates its behavior.

4. Update several statistics.

5. After instruction execution: Set the program counter, test all registers for validity,
update the states of all peripherals.

6. Print debug output.

Because the main simulation of code is done within the commands, the processor is
reduced to a set of registers. Additionally it needs to have some relay properties. In the
case of a memory read, the processor’s Read() function finds the designated module that
covers this address and calls its read function.

There are different kinds of debug output available. A straightforward debug output
is the current register output. Because of the flexibility of the Java model there are a
lot cleverer ways to print debug messages. A debug message can depend on the currently
executed function or command and other factors. An example is to print the state of each
register (12 memory entries, representing a 192-bit number) during a point multiplication.
By comparing the states with the high-level model an error is found more easily.

Something important for the virtual program execution is a stop condition. In the case
of this thesis several have been defined:

� A RET (return from function) command that finalizes the startup function with no
more elements on the stack quits the program execution.

� A cycle counter counts the number of executed program cycles. If a certain bound
is reached the program execution stops.

� The execution of an invalid program address results in an error.

� If any assertion fails an error is logged (and printed) and the execution stops. This
usually happens if there is some sort of error within the Java model.

7.2 Implementation of the Algorithms

The previously described design of the virtual processor is used to implement the first
few algorithms. At this point it is important to keep it simple and start with the easier
algorithms. A natural occurring problem is the presence of errors in the initial virtual
processor. So it is important to use tests for each algorithm. With those tests not only
the algorithms are checked, but also the underlying virtual processor.

It is important to mention that each assembler function must be tested separately and
several times. For that it is good to use two kinds of test cases. Those two kinds are
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Method Cycles

Native P-192 997
Optimized P-192 401

Native Montgomery 1580
Optimized Montgomery 651

Table 7.1: Comparison of native and optimized multiplication functions.

separated by their function arguments used for the test execution. The first set consists of
minima and maxima of the function parameters. The second set uses random numbers. So
each time the function is tested with different numbers. Certain errors can only occur at
certain input parameters. A nice example for such a behavior occurred during the design
of the P-192 field multiplication. Only after about 100,000 tests of the multiplication
function an error occurred. The error was that a carry bit has be handled wrong. This
carry flag was zero for the other 99,999 cases and toggled at one very special combination
of input parameters.

The initial functions and algorithms have been programmed as simple as possible.
The only goal has been to get the system running. Actually, optimizing the implemented
time-critical functions is done in the next design phase.

7.3 Parallelizing the Commands

Up to now, algorithms have been implemented using the most basic instructions: ADD,
SUB, MULACC, ... This initial instruction set is similar to the Thumb or AVR instruc-
tion sets. Unlike the Thumb instruction set, the arguments have not been limited. The
only command that is using two cycles is the LDR command. All other commands can be
executed within one cycle. At this point more complex commands like POP and CALL
are simulated using those more simple commands.

The problem with this initial instruction set is that the resulting functions are very
slow. Most parts of the processor are idle all the time. That is quite a big problem if the
goal is to compete with co-processor presented in previous papers or the master thesis by
Auer in [4].

So the next step has been to parallelize as many time critical operations as possible.
Figure 7.3 shows how this idea has been carried out.

There are several steps in the presented optimizations. The first is to split the LDR
command into an LD and MOVNF (move without flag update) command. The second
optimization is to load a date at each processing cycle and process it as soon as possible.
As a result, all commands can access the result of a memory operation directly. Some new
commands need to be introduced that load/store data as well as process some data.

Especially optimizing the memory read access is important. During field multiplication
a lot more read accesses are needed than write accesses. But also the write accesses can
be optimized. Instead of storing a value into a register and storing it in the next cycle,
these two operations can be unified.

At this point it is interesting to look at actual performance improvements in Table 7.1.
The average speedup achieved with the here presented optimizations is about 2.5.

A further result of this optimization is the reduction of the number of entries in the
program memory. This suggests that the size of the synthesized lookup-table (with 76 bits
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1 LD A1
2 MOVNF
3 LD B11
4 MOVNF
5 MULACC
6 LD A2
7 MOVNF
8 LD B10
9 MOVNF

10 MULACC
11 LD A3
12 MOVNF
13 LD B9
14 MOVNF
15 MULACC
16 STR Acc0
17 RSACC

1 LD A1
2 MOVNF LD B11
3 LD A2 MULACC
4 MOVNF LD B10
5 LD A3 MULACC
6 MOVNF LD B9
7 MULACC STR Acc0 RSACC

Figure 7.3: Part of a field multiplication algorithm. On the left hand side is the unopti-
mized code. On the right hand side is the resulting optimized code. MOVNF is storing
the previously loaded data into a register.

per entry, see 10.3.1) should change accordingly. Unfortunately, the size of the resulted
logic stays the same. This is because the entropy of the table stayed the same. In other
words, the total number of ones stayed the same, even if the number of zeros decreased.

7.4 Generating a Finite Instruction Set

Up to this point every command has been as flexible as possible. Every bit of the control
vector has been modifiable for every instruction. In the sense of performance optimization
this is the best thing possible.

Unfortunately for the generation of the reusable processor design (see Section 9.4), the
number of possible instructions and their arguments needs to be limited. So the first step is
to analyze the used instructions (after the completed optimization process). Therefore the
timing critical commands (like MULACC LD and MOVNF LD) need to be kept. For
other command combinations that are hardly needed, the optimizations can be undone.

It will be decided in Chapter 8 that the register size is 16 bits. So a load immedi-
ate operation needs a 16-bit operand. So there must be a constant representing a load
immediate command and 16 bits of data. There are three solutions to this problem.

One is to increase the size of the instruction word to more than 16 bits. Because of
the low importance of the load immediate command that is not practicable.

The two other solutions split the command into two cycles. One possibility is to load
the higher 8 bits at first and the lower 8 bits during the next cycles. Unfortunately as a
result the load immediate instruction cannot be used as jump instruction any more.

The best solution is to store the destination register during the first cycle. During the
next cycle, the instruction word is directly stored in the destination register. In this case
the load immediate command can also be used as jump command. So the minimum size
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of the program word is 16 bits.
To fit all commands within such a small program word several commands need to be

limited:

Limit the number of parameters. The shift instructions are hardly used within the
algebraic functions. So it is hardly a cutback if the source and the destination register
have to be identical.

Limit the type of parameters. Several operations can be done differently. Adding a
number to a register can be done in two ways. Either an ADDI (add immedi-
ate) command can be used or an immediate is loaded to a register and the ADD
command is used to add the two registers.

In some cases, certain operands for certain commands are not needed. The command
ORI (or immediate), provided by the AVR instruction set (see [3]), has not been
implemented in this thesis.

Limit the bits of an immediate. Naturally, some parameters are automatically lim-
ited. A logical shift of a 16-bit register does not need to use more than a ⌈ld(16)⌉ = 4-
bit parameter. Other parameters like the size of the immediate for an ADDI com-
mand must be limited.

Limit the bits of a register parameter. A MULACC LD (multiply and accumu-
late and load data from the memory) needs a 6-bit parameter for the load and two
4-bit parameters for the multiply accumulate (to access all registers). This results
in 14 bits used for parameters. For a 16 bit instruction set, this is hardly useable.
In the final implementation, the size of the two operands has been reduced to two
times two bits.

Limit the type of commands. Initially an ADD LD (add and load) command has
been part of the design. Investigations have shown that this command is not needed.
An ADD ST (add and store result) command is a lot more useable and improves
the performance of the algorithms.

7.4.1 Neptun Instruction Set

At this point it is interesting to take a look at the actually implemented instruction
set. Table 7.2 shows the 16-bit instruction set used by the Neptun design. Usually, to
describe an instruction set properly, more than 100 pages are needed. In this context, we
concentrate on the program-word representation and not on the commands themselves.

The most important rules during an instruction-set construction it that every command
must be mutually exclusive. It is not allowed that two distinct commands use the same
combination of bits for certain operand combinations.

The properties of the instruction set in Table 7.2 are discussed in the following list:

� SelOpA is used to select operand A for the ALU. It is capable to select every input
register. For that 4 bits are needed. To make the optimization for the synthesizer
easier, the preferred bit indexes for SelOpA are 4-7.

� Not every register can be selected as source for operand B. This can be a small
disadvantage during the design of a circuit, but the advantage is that SelOpB can
be represented as three bits. Saving this one bit is important. Otherwise it would not
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Name Description 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADD Add 0 0 0 0 Result SelOpA 0 SelOpB
ADDC Add with Carry 0 0 0 0 Result SelOpA 1 SelOpB
SUB Subtract 0 0 0 1 Result SelOpA 0 SelOpB
SUBC Subtract with Carry 0 0 0 1 Result SelOpA 1 SelOpB
ADDI Add Immediate 0 0 1 0 OpA/Res immediate
SUBI Subtract Immediate 0 0 1 1 OpA/Res immediate
AND Logical And 0 1 0 0 Result SelOpA 0 SelOpB
OR Logical Or 0 1 0 0 Result SelOpA 1 SelOpB
XOR Logical Exclusive Or 0 1 0 1 Result SelOpA 0 SelOpB
MOVNF Copy a Register, no flag update 0 1 0 1 Result SelOpA 1 0 0 0
MVN Move and Negate 0 1 0 1 Result SelOpA 1 0 1 0
LDI Load Immediate 0 1 0 1 Result X X X X 1 1 1 1
RS Right Shift 0 1 1 0 Result SelOpA 0 SelOpB
LS Left Shift 0 1 1 0 Result SelOpA 1 SelOpB
CMPI Compare Immediate 0 1 1 1 SelOpA immediate
RSI Right Shift Immediate 1 0 0 0 Res/OpA 0 0 0 0 immediate
ASRI Arithmetic Shift Right Immediate 1 0 0 0 Res/OpA 0 0 0 1 immediate
LSI Left Shift Immediate 1 0 0 0 Res/OpA 0 0 1 0 immediate
LDSI Load Small Immediate 1 0 0 0 Result 1 immediate
BRA Branching 1 0 0 1 condition immediate
MUL Multiply 1 0 1 0 0 0 0 0 SelOpA R SelOpB
MULACC Multiply and Accumulate 1 0 1 0 0 0 1 0 SelOpA 0 SelOpB
ADDACC Add to Accumulator 1 0 1 0 0 1 0 0 SelOpA 0 0 0 0
SUBACC Subtract from Accumulator 1 0 1 0 0 1 0 1 SelOpA 0 0 0 0
RSACC Right Shift the Accumulator 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
Custom1 ADDI(PC,4,-) & ST(SP,0) 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1 0
Custom2 ADDI(SP,1,SP) & LD(SP,1) 1 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0
Custom3 SUBI(SP,1,SP) 1 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0
MOV LD Move RamOut and Load 1 0 1 1 0 0 Base Result Mem Rel
STR Store Register in Memory 1 0 1 1 0 1 Base SelOpA Mem Rel
ADDACC LD Add Accumulator and Load 1 0 1 1 1 0 Base SelOpA Mem Rel
SUBACC LD Subtract Acc. And Load 1 0 1 1 1 1 Base SelOpA Mem Rel
ADDACC ST Add Acc. and Store Acc0 1 1 0 0 0 R Base SelOpA Mem Rel
SUBACC ST Subtract Acc. And Store Acc0 1 1 0 0 1 R Base SelOpA Mem Rel
MULACC LD Multiply & Acc. & Load 1 1 0 1 0 0 Base OpA OpB Mem Rel
MULACC ST Multiply & Acc. & Store Acc0 1 1 0 1 1 R Base OpA OpB Mem Rel
ADD ST Add & Store Result 1 1 1 0 0 R Base OpA OpB Mem Rel
ADDC ST Add with Carry & Store Result 1 1 1 0 1 R Base OpA OpB Mem Rel
SUB ST Subtract & Store Result 1 1 1 1 0 R Base OpA OpB Mem Rel
SUBC ST Subtract with C. & Store Result 1 1 1 1 1 R Base OpA OpB Mem Rel
CALL Function Call Custom1, Custom3, LDI
CMP Compare SUB(OpA,OpB,-)
CMPC Compare with Carry SUBC(OpA,OpB,-)
JMP Jump to Address/Label LDI(PC,imm)
LD Load MOVLD(BaseX,Offset) without Move
LDR Load Register from Memory LD(BaseX,Offset), MOVNF(MemOut,Dest)
MOV Copy a Register Res = OpA | NULL
POP Get a Value from the Stack Custom2, MOVNF(MemOut,Dest)
PUSH Store a Value in the Stack STR(Source,SP,0), Custom3
RET Return from Function POP(PC)

Table 7.2: Summary of Neptun instruction-set.
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have been possible to fit all commands within a 16-bit program word. The default
place for SelOpB is the bits 0-2.

� Some important commands have the possibility to use immediates. An immediate
is an integer that is fixed at program compilation. The way the CPU is designed, an
immediate can only be used as operand B. That is why SelOpB and the immediates
are mutually exclusive. All the immediates are right aligned at bit 0. Certain
commands can use larger immediates than other commands. A logical shift left does
not need more than a four bit immediate when the word size is 16-bit.

� Result represents the destination register of the commands. Similar to the other
operands it is placed at the bits 8-11 by default. Something important is that
the indices of the result registers and the indices for the operand A selection are
coordinated. Some commands (ADDI, SUBI, logical shift operations) combine the
Result and the OperandA fields. With one field, both parameters are selected.

� The result of a multiplication can only be stored in the Work registers. Either
Work0 and Work1 or Work2 and Work3 are used. So only one bit is required for
the selection of the destination registers. This is the bit labeled ’R’ of the MUL
command.

� To access the memory for a read or a write operation, a Base register needs to be
selected and a 4-bit immediate offset is required. The Base register is selected with
the Base field. The offset is represented with the Mem Rel field.

� The ’R’ flag, which is used with the ’ ST’ commands, is used to shift the result of
the accumulator by 16 bits.

� The operands of several parallelized commands needed to be greatly limited. The
commands MULACC LD, MULACC ST, ADD ST, ADDC ST, SUB ST
and SUBC ST only use two 2-bit parameters. Those commands are usually used
in connection with very optimized assembler functions. So using only the Work
registers and not being able to access other registers, should not be a problem.

� Some commands do not have their own program word. A compare is the same as
a subtraction without storing the result. An (absolute) jump is identical to a load
immediate. A return is identical to a POP with the program counter as destination
register.

� Some commands need to be split into several other commands. A CALL is split
into three commands. The first stores the return address into the stack (Custom1).
The second updates the stack pointer (Custom2). The third command is a JMP.
A jump is constructed with a load immediate. So the LDI command is used to jump
to the function to call.

The presented instruction set has been optimized for the elliptic curve digital signature
algorithms. Using it, the signature can be calculated very efficiently.



Chapter 8

Evaluation of Platform

Before actually designing the processor in detail, some basic design decisions need to be
made. The most important attribute is the word size of the datapath. This also defines
the word size of the multiplier. The larger the multiplier, the less memory accesses are
needed. A second attribute is whether a single-port or dual-port memory is used. The
advantage of the dual-port memory is that two memory accesses can be done at once.

Figure 8.1: The number represents the word size; DP is dual-port; SP is single-port.

In Figure 8.1 only the size of the datapath is included in the area approximation.
The size of the control logic (the program memory) is neglected. The two contour lines
represent a constant area-cycle product. It has been assumed for this approximation, that
the processor is used to calculate a NIST P-192 elliptic curve digital signature.

8.1 Size Approximation

In the following analysis, a 180 nm technology library from UMC (United Microelectronics
Corporation) is used. Similar architectures are used for the single and the dual port

44
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versions.
One of the two most important factors is the RAM. In many ECDSA designs (like

[4]), this is the major building block. The size of a RAM can be highly reduced by using
a macro block. The bit-per-area density is a lot larger using such a macro block. This
macro block can be generated using a special tool provided by a manufacturer. For this
comparison, the smallest provided, free implementations, by a tool from UMC1, are used.
Nine 192-bit registers are required. So, every RAM in this comparison stores 2048 bits.

The other major building block is the multiplier. It scales quadratically with the word
size of the processor. The formula used for its approximation is given in Chapter 9.3.3.

The other components are mostly registers and multiplexers used for the CPU of the
processor. For this approximation, a basic model of the datapath has been used. This
model has been refined at a later design step and resulted in the model shown in Figure
9.2. This component scales linearly with the word size of the processor. Nevertheless it is
the major component for some of the designs shown in Figure 8.2.

Figure 8.2: This chart shows the size distribution of the various design options.

8.2 Runtime Analysis

The major part of the runtime comes from the scalar multiplications used within the elliptic
curve point multiplication. The algorithm by Auer is used for the point multiplication.
It uses 3456 multiplications and 4224 additions or subtractions. As a result, the number
of field additions, subtractions and multiplications is fixed. The runtime of those field
operations is defined by the number of memory accesses they need. The number of words
needed to represent a 192-bit number is t.

1’UMC L180FSA0A Memory Compiler: 200901.1.1’ was used
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In the case of an addition that uses a single-port RAM the memory accesses can be
broken into the following pieces: 2t reads are required for to read the input registers and
t writes are required to store the added intermediate result. Another t reads and t writes
are required for the reduction. This results in the total 5t memory accesses needed in
Table 8.2.

For the multiplication it is assumed that a multiply-accumulate unit is part of the
design. So a fast product scanning multiplication algorithm can be used. This algorithm
requires t2 multiplications. Each multiplications needs two operands that must be read.
That makes 2t2 read accesses in total. The other parameters are gathered using a sample
implementation of a NIST P-192 field multiplications.

Table 8.2 shows the formulas used for the runtime approximation. The resulting num-
bers are shown in Table 8.1.

The inversion algorithm as well as any other algorithms used in an elliptic curve point
multiplication are neglected for this approximation.

t Mult. Addition Total Cycles

8 SP 24 1360 120 5207040
16 SP 12 392 60 1608192
24 SP 8 198 40 853248
32 SP 6 124 30 555264
8 DP 24 732 96 2935296

16 DP 12 222 48 969984
24 DP 8 116 32 536064
32 DP 6 75 24 360576

Table 8.1: Resulting runtimes of the various implementations. The total runtime is
3456MUL + 4224ADD. It is assumed that CAdd = CSubtract and CSquare = CMultiply

with C being the number of cycles needed by the algorithm.

Write Read Total Memory Accesses

Addition SP 2t 3t 5t
Addition DP 2t 2t 4t
Multiplication SP 4t + t/3 2t2 + 4t + t/3 2t2 + 8t + 2t/3
Multiplication DP 4t + t/3 t2 + 2t + t/6 t2 + 6t + t/2

Table 8.2: Table 8.1 has been generated using the formulas presented here.

8.3 Design Decision

The decision of the design was made using two guidelines: As fast as necessary and as
small as possible. As a result, the 8-bit versions need to many cycles. So, the smallest
design, which will be described in the following chapters, is a design with a 16-bit datapath
and a single-port RAM.



Chapter 9

Processor

In the past years, many different implementations of elliptic curve processors and co-
processors have been made. Some of them (like [1], [29] and [9]) concentrated on speeding
up the elliptic curve operations. Others had the goal to minimize the total chip area
required for their implementations.

A very interesting co-processor with small chip area has been proposed by Auer in
[4]. The design consists of a dual-port memory a datapath and control logic. The dual-
port memory is the largest component. It is made from a synthesized array of registers.
The components used in the datapath are a multiply accumulate unit and several logic
elements (adder, and, or, xor, ...). Most of those components are also used in processors.

Many smart card implementations have embedded processors. So his design would be
used in addition to a processor.

So the idea was to use the components of Auer’s design and build a dedicated processor.
This processor should require a small chip area and in terms of speed, it should be able
to compete with dedicated co-processor designs.

In this chapter all necessary elements for such a processor are described.

9.1 Architecture

The processor uses a standard Harvard architecture. That means that the program and
the data memory are separated. Figure 9.1 shows the basic design of the processor.

The program memory is a table with 76 bits per entry. Each of those entries is used as
control signals for the processor. It should be noted that these control signals are directly
stored in program memory. Currently, the most space-efficient way of implementing the
program memory is to let the synthesizer generate a look-up table using logic elements.
For a more detailed comparison of program-memory implementations, see Section 10.3.1.

The data memory is split into different memory regions. The most important com-
ponent is the RAM. It is used as working storage for the calculation of an elliptic curve
signature. But this algorithm also needs constants. Those are stored in a designated
ROM or look-up table. The third part of the memory region is used for any periph-
eral I/O module. Because their registers are memory mapped, no special commands for
accessing a special I/O bus are required.

The used memory bus can also be used to upgrade the processor with some memory-
mapped logic. Another way of extending the design is to adapt the datapath of the CPU.
This approach is not recommended.
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Figure 9.1: The program counter is used as index for the program memory. The resulting
data is used as control vector for the processor. The memory read/write control signals
are embedded within this control vector. Any I/O is placed within the data memory.

9.2 CPU

A central processing unit (CPU) is the primary element carrying out computer functions.
Usually it has four very important tasks:

� It fetches a new instruction from the program memory. In this case, this is done
by applying the program counter to the program memory.

� The program word gathered from the program memory is decoded. This means
that dependent on an opcode, it is decided what kind of operation to perform. In
the design showed in Figure 9.1 the program word is directly used as control vector
for the CPU.

� The main task is to execute the designated operation. In this step, the different
parts of the CPU are connected. As a result the desired operation is executed.

In this phase, the two operands for the ALU are selected (see Figure 9.2) and the
needed units (see Figure 9.3) are activated. At the end of this phase, new data is
available for storage at the output of the ALU.

� The final step is to write back the new data. The designation can be any register
or a memory address.

A CPU is a vast and complex machine. The following section tries to describe its
parts, starting with the registers:

Program counter A program counter (PC) needs to be included in every processor. It
marks the current position of the execution in the program memory. Usually the PC
is always incremented by one. There are a few operations (Jump, Call, Branch, ...)
that can modify the PC differently. In many implementations, dedicated hardware
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is used to perform those operations. In this processor design, the new value for the
PC is calculated using the ALU.

Stack pointer During execution of programs a stack can be used to store return ad-
dresses, function arguments or temporary values. The two basic operations are
PUSH and POP. The PUSH command stores a value at the current position of
the stack and decrements the stack pointer by one. The POP command increments
the stack first and loads the current value from the stack.

For the elliptic curve algorithms, the stack is not very critical. That is why no special
logic is connected to the stack pointer. Basically the SP is equal to the base pointers
and can also be used as base pointer.

Base pointer The base pointer registers (BaseA - BaseC) are used for memory address
generation. Field additions and multiplications need two arguments and a destina-
tion. 192-bit values can be represented by 12 memory entries (each 16 bits wide).
Because ⌈ld(12)⌉ = 4, the possible offset for indirect memory accesses is 4 bits.

Accumulator A very important part of the whole design is the multiply accumulate unit
embedded within the ALU. The result of a multiplication has 32 bits. For a NIST
P-192 field multiplication 12 of those results are summed up, 36 bits are needed at
least. This results in three accumulator registers (Acc0-2). Acc0 stores the least
significant word. It is defined that every register is 16 bits in size. So a 48-bit
accumulator is used. Other possible operations are: right shift the accumulator
register by 16 bits and add/subtract a 16-bit value to/from the result.

State In this register, all status flags of the processor are stored. These status flags are:
Carry, Zero, Overflow and Negative. Bit 4 is Negative xor Overflow. Bit 5 is the
negated version of the Carry flag. For Subtractions, it can be thought of a Borrow
flag.
This register cannot be written directly. Certain bits can be set/cleared by using
ADD or SUB commands.

Work registers All the previously described registers have a special purpose. From the
requirement of the ECDSA, four work registers (Work0-3) have been defined. These
are the only registers that can be used as ALU operand A and B. The result of a
multiplication can be stored within them.

Why four registers? One register is used to store the second operand of a MULACC
command. Further two registers are needed as temporary storage during the field
multiplication. So at least three registers are needed during a field multiplication.
Nevertheless, using the four registers as cache greatly improved the runtime of the
field multiplication at a small price.

Memory result There is one more 16-bit word. It is not a register but it can be used
similarly as operand for the ALU. The MemDataOutxD data signal contains the
result of the last memory access. It is updated by any new memory access.

This is a very important part of the design! There are two commands to read data
from the memory. The LDR (Load to Register) command loads data from the
memory (e.g. Data RAM) and stores it in a register. It needs two cycles for this
operation. The LD (Load) command is a simplification of the LDR command.



CHAPTER 9. PROCESSOR 50

It simply loads data from the memory. The data can be accessed and processed
directly. This modification reduces the time needed for a memory operation from
two cycles to one cycle.

The size of some of those registers could be reduced in some future designs. Not every
register needs all 16 bits (PC, SP, Base, Acc2). For simplicity of the algorithm design,
they are all 16 bits in the described implementation.
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Figure 9.2: Design of the CPU. Two registers are selected with the two multiplexers and
handled within the ALU. The results are stored within the memory or a register.

Apart from the registers the following facts are important to know about the design
in Figure 9.2:

� Every register can be used as operand A. Additionally the memory result and zero
can be used as operand A.

� Operand B is used for the work registers and a constant. This 16-bit constant
is stored within the control vector. The load immediate (LDI) uses this 16-bit
constants for the register modification. The memory result can also be used as
operand B.
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� For writing values to the memory, the MemDataInxD signal is used. There are two
sources for this signal. The first source is the result of any ALU operation. The
second is the next value for the Acc0 register. This speeds up the multiplication
algorithm. The advantage of this design is that the result of an operation can be
stored directly in the memory. This reduces the number of memory operations. The
disadvantage is that it increases the critical-path delay. Especially the access time
for the memory-mapped I/O is added to the time of the multiply-accumulate unit,
which is always part of the critical path.

Because the clocking frequencies of smart cards are very low, the advantage over-
weights the disadvantage. A solution for the timing problem is to either use operand
A as MemDataInxD signal (bad), to not use the AccxDN signal as a source or to put
a register between the MemDataInxD signal and the Memory Mapped I/O (better).

� The shifter for the accumulator is within the block labeled Acc0-2.

The most important logic element of the CPU is the ALU. This is described in the
next section.

9.3 ALU

The two major inputs of the ALU are the operands A & B. In every cycle, they are
added, ORed, XORed, ANDed and shifted. One of these intermediate results is selected
and passed on to ResultxDO. It is defined that the subtrahend is always OperandBxDI,
because this operand B is invertible.

The other important part of the ALU is the multiply-accumulate unit. The signal
EnMulxSI is a good example for the use of operand isolation. Especially because the
multiplier is the largest logic block in the whole design, this is a big energy safer. The 32-bit
result of the multiplier can be used directly or added to the accumulator. The investigation
of the P-256 multiplication shows the need to subtract values from the accumulator unit.
The logic XOR is used to invert OperandAxD. As a result OperandAxD can be added or
subtracted without the use of extra logic elements.

In the multiplication algorithms, the accumulator needs to be shifted by 16 bits. This
is not done within the ALU. It is part of the register logic in the CPU.

9.3.1 Adder

A central component of each processor is its adder. Adding two values is simple. More
tricky is the carry propagation. The handling of the carry flag is especially important, for
handling big (e.g. 192-bit) numbers with a smaller (e.g. 16-bit) adder

An addition is defined as (C, R) = A + B. An addition with carry propagation is
defined as (C, R) = A + B + Cold. It is very helpful to use an example.

Let us assume, we have a 2-bit adder unit. We want to add two 4-bit numbers. A is
fixed to 1010b. B is varied. B0 are the lower two bits of B. On a processor, this would
be calculated with the following two operations:

ADD 10b, B0

ADDC 10b, B1

This example is shown in Table 9.1.
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Figure 9.3: ALU that is capable of adding, subtracting, multiplying, accumulating, logic
functions and branching.

The carry propagation for an addition is very well defined. But it is different with the
carry propagation of a subtraction. There are two major interpretation of the carry flag
for a subtraction.

One way is the reinterpret the carry flag as a borrow flag. A subtract with borrow
operation is defined as A−B − C.

An other interpretation uses the advantage of two’s complement representation, where
−B = not(B) + 1 and A−B can be computed as A + not(B) + 1.

Let us take a look at another example in Table 9.2. A SUB is followed by a SUBC
command. The −B = not(B) + 1 representation is used. So the subtraction is defined as
(C, R) = A+not(B)+1 and subtraction with carry is defined as (C, R) = A+not(B)+Cold.
Recognize that by inverting the carry flag, the borrow flag, mentioned above, is obtained.
The most significant bit (MSB) of the result is the inverted carry flag.

Another very important operation is the comparison operation. It basically is the same
as a subtraction but the result is not stored. For a comparison of two unsigned integers,
the zero and the carry flag are needed. The zero flag is 1 if the result of the operation is
equal to zero. The behavior of the zero flag after a ADDC or SUBC is a bit different.
It is equal to 1 iff the old zero flag is 1 and the new result is equal to zero.
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A B C ADD C ADDC Result

1010 0000 0 10 0 10 01010

1010 0001 0 11 0 10 01011

1010 0010 1 00 0 11 01100

1010 0011 1 01 0 11 01101

1010 0100 0 10 0 11 01110

1010 0101 0 11 0 11 01111

1010 0110 1 00 1 00 10000

1010 0111 1 01 1 00 10001

Table 9.1: Carry propagation in an addition.

A B not(B) Z C SUB Z C SUBC Result

0101 0000 1111 0 1 01 0 1 01 00101

0101 0001 1110 1 1 00 0 1 01 00100

0101 0010 1101 0 0 11 0 1 00 00011

0101 0011 1100 0 0 10 0 1 00 00010

0101 0100 1011 0 1 01 0 1 00 00001

0101 0101 1010 1 1 00 1 1 00 00000

0101 0110 1001 0 0 11 0 0 11 11111

0101 0111 1000 0 0 10 0 0 11 11110

0101 1000 0111 0 1 01 0 0 11 11101

0101 1001 0110 1 1 00 0 0 11 11100

0101 1010 0101 0 0 11 0 0 10 11011

0101 1011 0100 0 0 10 0 0 10 11010

0101 1100 0011 0 1 01 0 0 10 11001

0101 1101 0010 1 1 00 0 0 10 11000

0101 1110 0001 0 0 11 0 0 01 10111

0101 1111 0000 0 0 10 0 0 01 10110

Table 9.2: An example for a subtraction of two values.

So if the difference is zero, the zero flag is 1 and operand A is equal to operand B.
Additionally by using the carry flag it can be checked in which relation the two compared
numbers are. See also Section 9.3.4 about branching.

The adder unit in Figure 9.4 supports adding and subtracting 4-bit integers. For
subtracting, the −B = not(B) + 1 representation is used. The inverter for operand B
is not shown. Table 9.3 shows the control signals during the ADD, ADDC, SUB and
SUBC operations.

9.3.2 Barrel Shifter

Figure 9.5 shows a barrel shifter. This shifter is capable of the following operations: Left
Shift, Right Shift, Arithmetic Right Shift.

Many other processors provide additional functionality, like rotating and storing the
overflow in the carry flag. This functionality has been omitted in order to reduce the com-
plexity and size of the design. These operations are mainly used during SHA-1 calculation
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Operation UseCarryxSI IncxSI InvOpBxSI

ADD 0 0 0
ADDC 1 0 0
SUB 0 1 1
SUBC 1 0 1

Table 9.3: This truth table needs to be fulfilled by the instructions. InvOpBxSI is used
to invert Operand B.

and this algorithm is not very time critical. However, these use cases can be imitated with
a combination of Left and Right Shifts.

By using the multiplier, the Barrel Shifter can be removed completely. As it is com-
monly known, a left shift with i is the same as a multiplication with 2i. The advantage
of a multiplication with 2i is that it results in two shifts at once. The upper half contains
a right shift with N − i bits. N is the word size. The lower half of the multiplication
result is equal to a left shift by i bits. If these two shifted results are ORed, the result
is a rotation of the original value. Unfortunately, an Arithmetic Right Shift cannot be
modeled that easily.

The Area S required by an N -bit barrel shifter can be approximated easily. log2 N
levels of N multiplexer are required to shift right and left.

Atotal = AMUX3 ·N · log2 N (9.1)

If it should be possible to rotate, several multiplexer with three inputs need to be replaced
by four input multiplexer.
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Figure 9.5: This block diagram shows an implementation of a barrel shifter.

9.3.3 Multiply Accumulate

The resulting output delay of a multiplier is by far larger than the delay of any of the
previously presented modules. A multiplier usually consists of N−1 adders (N is the word
size of the input operands). Each of these adders is N bits wide. By using logical ANDs
as one bit multipliers, the adders are used to sum up all of those intermediate values. As
a result, the total area requirement A is

Atotal = AAND ·N
2 + AFA · (N

2 − 2N) + AHA ·N (9.2)

The here presented formula is valid if carry-safe adders are used to add up the inter-
mediate values. The advantage of this kind of adder is that it is very area efficient. The
disadvantage is its speed. To speed up the multiplier, a different addition scheme should
be used. Reto Zimmermann gives a very good overview of different addition schemes in
[35]. Nowadays the synthesizer can choose a multiplier automatically, dependent on the
required latency.

An accumulator is an adder placed after the multiplier. It is used to quickly sum up
results generated by the multiplier. In order to sum up M results of a N -bit multiplier, a
(2N + ⌈log2 M⌉) adder is required.

9.3.4 Branching

Status Flags

Using Table 9.2, some rules for comparing unsigned integer can be established.
B < A Z xor C = 1 *
B ≤ A C = 1
B = A Z = 1
B 6= A Z = 0
B ≥ A Z xor C = 0 *
B > A C = 0

Some comparisons (marked with *) does not need to be implemented. You only have
to switch order of the parameters A and B, to test those cases.
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Figure 9.6: The ANDs are used as one-bit multipliers. The adders are used to sum up the
intermediate results.

Usually, a processor also provides functionality to compare signed values. In order to
do that, a combination of the negative and the overflow flags are needed.

Executing a Branch

Figure 9.7 shows a very efficient implementation of a branching logic. OperandA is the
program counter. OperandB provides a relative jump address. The result is a new value
for the program counter.

There are two possible cases:

Branch condition is false In this case OperandB is forced to zero. The result is PC+1.
The one is added, by setting the increment input of the adder to one.

Branch condition is true OperandB is represented as a two’s complement number. As
a result PC + OperandB + 1 can also result into a jump to a lower address.

The beauty of this implementation is that the jump is always executed in exactly one
cycle. This can only be achieved, because there is no pipeline used in the whole design.

9.4 Reusable Processor Design

Elliptic curve cryptography is a complex topic. Many of the used algorithms are still under
research. Every year new attacks get published that make certain algorithms vulnerable
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and many implementations unusable. So there is a good chance that an ECC design that
is good now, cannot be used in several months or years.

A good example is Hein’s master thesis sommarized in the paper [13]. All the algo-
rithms are correct but an attack by Hutter et al. in [16] has made his design vulnerable.
The conclusion in the case of this master thesis has been to make the manufactured chip
reusable. With the goal of a platform that can be used to evaluate different algorithms
the following changes has been made to the design:

� The constants and program memory are replaced by RAMs. The input of the pro-
gram counter register is used as program RAM index.

� A 16-bit instruction set is used.

� A bootloader to initialize and test the RAMs has been added.

� Different peripherals (e.g. I/O interfaces) have been added.

Ideally, the program memory should be replaced by a Flash or an EEPROM. Unfortu-
nately neither of these non-volatile memories are available in the used 180 nm technology
from UMC. One possibility is to add an external memory which is used for the design.
The drawbacks of this solution are the resulting disastrous performance and big possibility
to make errors. Such a design should be tested on a FPGA first.

So it has been decided to use a RAM as program memory. This RAM must be
initialized. There are several ways to do this. A bootloader is used in this thesis. This
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Figure 9.8: This block diagram represents the manufactured chip Neptun.

bootloader is a fixed program, stored as a look-up table. The bootloader is started after
the power-up of the processor. It uses two possible sources (a EIA-232 interface and a
SPI) to initialize the RAMs.

Storing a 76-bit control vector in the program memory is not possible any more. The
place provided by a ’MiniAsic’ setup is to small for such a huge program RAM. A program
RAM with a width of 76 bits and about 3500 entries (needed by the signature algorithm)
is too large for the MiniAsic setup available. To use the available space efficiently, a 16-bit
instruction set is used.

The further enhancements of the design are described in the following sections.

9.4.1 Instruction Set

The size of each Program Memory Entry has been reduced from 76 to 16 bits. This
procedure is also described in Section 7.4.

This is possible because most control signals are unused within certain instructions. As
an example: During an addition the direction and result of a logic shift is not important
at all. The most important part of this process is that the speed of the algorithms stays
the same. Nearly as important is the re-usability of the instruction set.

Also the used instruction set is shown in Section 7.4. For now, let us take a look at a
summary of the 40 instructions:

� 22 Arithmetic Instructions (Add, Subtract, Multiply)

� 12 Instructions with Memory Access
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� 11 ’Parallel’ Instructions

9.4.2 Test Strategy

The testing of the chip is split into two phases. In the first phase, the chip is tested using a
scan chain. All test vectors used in this phase can be generated automatically. These test
vectors can be used by a chip tester to test all registers and logic of the design. During
this phase the RAMs are ’block isolated’. This means that the inputs of the RAMs are
artificially made observable and the outputs are made controllable. The RAMs itself must
be tested separately.
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Figure 9.9: Block-isolation of a one-bit RAM.

Block isolation is best described by looking at Figure 9.9. During normal operation
TestModexTI is 0. The inputs are directly connected to the RAM and the output ’DO’ is
passed by the multiplexer.

During Testing, TestModexTI is 1. In this case the added registers are important. If
ScanEnxTI is 0, the input values are loaded into the scanable registers. If ScanEnxTI is
1, the state stored in any register is forwarded to the next register in the scan chain.

Because TestModexTI is 1, the output of the block is controlled by the contents of the
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data input registers. Because these registers are modifiable by the scan chain, the output
is controllable.

One drawback of block isolation is the area overhead. Additionally the scan registers
change the state at every cycle. It is recommended to use a method like operand isolation
or clock gating. This would reduce the power consumption during normal operation. In
the final implementation of Neptun, an AND gate is placed at the inputs of the registers.
As second input, the TestModexTI signal is used.

For RAM testing the bootloader is used. By sending a certain command to the boot-
loader, the RAMs are tested automatically. At first, every entry of the RAM is written
with a certain value. Secondly all stored values are read and checked. This is done three
times. Two predefined constants (AAAAh, 5555h) are used for the first two test cycles.
For the third test cycle, a ’running one’ is used. This means that the test pattern changes
for each RAM address. The initial pattern is 0001h, followed by 0002h, 0004h, 0008h, ...
The previous pattern is always rotated by one bit.

9.4.3 Bootloader

The bootloader is the startup point of every boot process. The detailed description is
given in the attachment. For now, let us look at the use cases:

RAM testing. By sending a certain command, the RAMs are tested. The answer mes-
sage tells the user, if this self test was successful.

RAM initialization. Before actually executing a program, the RAMs need to be initial-
ized. This can be done in two ways. One is to send a certain message via the RS232
control interface. An other way is to configure the bootloader to read an SPI flash
and store its contents in the RAMs.

Starting the program. This can be done by a jump or a call to the designated program
address. In the case of a call, the bootloader is prepared for the case that the
program returns.

9.4.4 I/O Interfaces

The most important rule for memory mapped I/O is to separate control, status and data
register. Memory mapping means that (nearly) all registers used in the peripherals are
accessible via a unique memory address. Once more, a detailed description is given in the
Appendix.

Parallel I/O. This simplest peripheral module connects 32 registers directly to the pins
of the chip. 16 pins are used as inputs. 16 pins are used as outputs. Some of the
pins have a predefined use, defined by the bootloader.

EIA-232. This asynchronous serial interface only provides a receive and a transmit pin.
The most important features are the double buffered receive and transmit bytes and
the freely configurable clock divider1.

1Actually modifying the clock signal raises many problems. As an example, it complicates the testing
of the chip. Instead the clock signal is counted, and every N cycles, the logic is enabled.



CHAPTER 9. PROCESSOR 61

Timer/Counter. In order to be prepared for future protocols (e.g. ISO-14443), three
timers can be used. These timer are capable of using an input trigger signal. Further,
they can output a signal based on the comparison of the counter register with two
comparator registers. Because of that, they can also generate pulse width modulated
(PWM) signals.



Chapter 10

Results

The previous chapters do not only describe a theoretical construct of a processor. The
processor has been implemented and is able to compute the elliptic curve digital signature
generation and verification algorithms. In Section 10.1 the runtime of the used algorithms
is investigated. It is important to know that the used algorithms are currently ’state of the
art’. For this runtime analysis the Neptun processor is used. This very flexible processor
is discussed in Section 10.2.

Section 10.3 discusses the area requirement of two stripped implementations. Only
the most important parts of the processor are used in those implementation. Any I/O or
unused memory cells are removed from the design.

Because no design is perfect in terms of area and runtime requirements, the results
can still be improved (see Section 10.4) and should be compared with other designs (see
Section 10.5).

10.1 Algorithm Analysis

All algorithms analyzed in this section use the 16-bit instruction set. Please keep in mind
that using the 76-bit control vector look-up table results in a faster execution time. This
is because several operations in the 16-bit instruction set are limited and multiple cycles
are used to perform them.

The algorithms described in the next two sections are designed so that the size (number
of code lines) is minimal and the runtime is as fast as possible.

10.1.1 Signature Generation

For the elliptic curve signature generation, introduced in Algorithm 4, a lot of different
algorithms are needed. Some statistics about their runtime is given in Table 10.1. The
number of function calls can be seen as importance factor of the algorithms.

Those algorithms are also described in here:

P192 field algorithms. These are the most optimized algorithms. The execution time
is hardly improvable. The multiplication algorithm’s original runtime is 997 cycles.
After the introduction of the parallelized instruction set it is 401 cycles. By using
the work registers as caches and consequently avoid memory accesses, the runtime
of the algorithm has been reduced to 328 cycles.

62
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Utility functions. These (specially optimized) functions are mainly used by the high-
level functions and the Montgomery inversion algorithm.

Montgomery multiplication. This function has been optimized for speed. Because of
its minor importance, it should be reprogrammed to reduce its size. This is especially
important because of the large program memory synthetization result.

Montgomery inversion. This algorithm makes use of the utility functions. That is the
reason for its small size and its fairly small execution time. The biggest part of the
inversion algorithm is spent in the utility functions. That is the reason for its minor
influence in Table 10.1 and its 8.8% of the execution time in Figure 10.1.

The algorithm is used twice: Once for the recovery of the point coordinate x which
is standard projected and a second time for the inversion of k.

SHA-1 algorithm. This algorithm is used for the calculation of the SHA-1 hash function.

Point multiplication. The main job this algorithm is to call the P-192 field algorithms
in the correct order. The main source for its long execution time are the CALL
commands.

ECDSA signature generation. This function is rather small and simple. Its main duty
is to call all the other algorithms.

Function Calls Code Lines Cycles

P192.Multiplication 3438 328 1127664 67.97%
P192.Add 2865 64 183360 11.05%
P192.Subtract 1337 65 86905 5.24%
PointOperation.Multiplication 1 388 64222 3.87%
Utilities.Div2 535 99 52965 3.19%
Montgomery.Inversion 2 215 39811 2.40%
Utilities.ADD 810 38 30780 1.86%
SHA1.Block 2 371 27510 1.66%
Utilities.Copy 769 26 19994 1.21%
Utilities.CMP 278 38 10564 0.64%
Utilities.SUB 275 38 10450 0.63%
Montgomery.Multiplication 6 656 3900 0.24%
Utilities.CopyExt 1 12 324 0.02%
SHA1.FinalBlock 1 60 207 0.01%
ECDSA.Sign 1 122 108 0.01%
Utilities.Clear 7 15 105 0.01%
SHA1.SetIndex 3 18 50 0.00%
SHA1.Init 1 32 32 0.00%

SUM 10332 2585 1658951 100.00%

Table 10.1: Implemented functions used for generating a signature. ’Function Calls’ is the
number of times, the function is called.

Most of the instructions displayed in Table 10.2 are rather unimportant. They are
needed within the algorithms but rather unimportant in terms of execution time. The top
five commands have an affiliation with the memory. They either load or store data. The
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Cycles Used Total Cycles

MULACC LD 1 386 458772 27.65%
MOV LD 1 421 360666 21.74%
LD 1 177 284790 17.17%
ADDC ST 1 57 154452 9.31%
ADDACC ST 1 14 48132 2.90%
CALL 4 93 41324 2.49%
LDR 2 116 38846 2.34%
MULACC ST 1 22 37884 2.28%
SUBC ST 1 33 32439 1.96%
MOVNF 1 87 21704 1.31%
RET 2 19 20662 1.25%
LDSI 1 135 20425 1.23%
STR 1 129 18949 1.14%
ADDC 1 16 17540 1.06%
ADD ST 1 6 16854 1.02%
ADDACC LD 1 4 13752 0.83%
BRA 1 31 10731 0.65%
CMPC 1 22 8965 0.54%
RSI 1 25 8852 0.53%
LSI 1 26 7864 0.47%
OR 1 25 7559 0.46%
SUBI 1 10 3770 0.23%
MOV 1 38 3153 0.19%
SUB ST 1 3 2949 0.18%
JMP 2 14 2940 0.18%
ADD 1 24 2125 0.13%
CMP 1 5 1754 0.11%
AND 1 17 1697 0.10%
POP 2 9 1544 0.09%
PUSH 2 9 1544 0.09%
LDI 2 35 1460 0.09%
ADDI 1 16 1284 0.08%
CMPI 1 16 1141 0.07%
XOR 1 15 1091 0.07%
SUB 1 6 578 0.03%
RS 1 2 192 0.01%
ASRI 1 1 191 0.01%
MULACC 1 24 144 0.01%
MVN 1 2 80 0.00%
RSACC 1 14 78 0.00%
MUL 1 12 72 0.00%
LS 1 1 2 0.00%

SUM 2117 1658951 100.00%

Table 10.2: Commands used for generating a signature. The total number of commands
does not represent the total number of program memory entries. E.g. CALL needs four
entries per instance.
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Figure 10.1: The total execution time of 1658951 cycles split into its main sources. It is
obvious that the multiplication still (even after all the optimizations) is the main source
for the long execution time.

MOV LD command is used for storing the previously loaded data into a register and
loading some new data.

By investigating this table, the biggest overhead of the implemented processor versus
a dedicated co-processor design becomes obvious. The CALL and RET commands waste
61986 cycles. This is an overhead, you would not have in a dedicated hardware.

The LDR command is a sign for unoptimized code. 38846 cycles are still subject for
optimization.

A limitation of the 16-bit instruction set versus the 76-bit control signals is the limited
use of shift commands. It is not possible to store the result in a register which is not
the source register. Consequently a MOVNF (Move without update of the status flags)
command needs to be used beforehand. This is a waste of 21704 execution cycles.

10.1.2 Signature Verification

Similar to the signature generation algorithm, presented in the previous section, a statistic
can be made for the functions used during the elliptic curve signature verification. This
statistic is given in Table 10.3. The elliptic curve signature verification algorithm is shown
in Algorithm 5.

Extending the implemented signature generation algorithm is not very hard. With a
few extra functions, a signature verification algorithm is implemented. The changes are:

PointOperation.MultiplicationExtended This multiplication method can perform a
point multiplication with a random base point. Similar to the PointOperation.Multiplication
function, this function uses a Montgomery ladder which only uses x-coordinates. The
biggest extension is the manual, initial point doubling. For this algorithm, the x and
y-coordinates of the point are needed. The actual increase in runtime is marginal.

PointOperation.YRecovery Because the multiplication schemes use an x, z represen-
tation of the points, an YRecovery function is necessary. For an universal Point
Addition, the two points must be in a (x, y, z)-representation.
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Function Calls Code Lines Cycles

P192.Multiplication 6843 328 2244504 71.72%
P192.Add 5686 64 363904 11.63%
P192.Subtract 2663 65 173095 5.53%
PointOperation.Multiplication 1 388 63900 2.04%
PointOperation.Mult.Extended 1 485 63166 2.02%
Utilities.Div2 540 99 53460 1.71%
Montgomery.Inversion 2 215 40067 1.28%
Utilities.Copy 1531 26 39806 1.27%
Utilities.ADD 816 38 31008 0.99%
SHA1.Block 2 371 27510 0.88%
Utilities.CMP 280 38 10640 0.34%
Utilities.SUB 277 38 10526 0.34%
Utilities.InitRam 1 13 3572 0.11%
Montgomery.Multiplication 5 656 3256 0.10%
Utilities.CopyExt 1 12 324 0.01%
PointOperation.YRecovery 2 150 300 0.01%
ECDSA.Verify 1 296 292 0.01%
SHA1.FinalBlock 1 60 207 0.01%
Utilities.Clear 7 15 105 0.00%
SHA1.SetIndex 3 18 50 0.00%
SHA1.Init 1 32 32 0.00%

SUM 18664 3407 3129724 100.00%

Table 10.3: Functions used for a Signature Verification.
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Point addition. This algorithm is part of the Verification Algorithm. Because of the
standard projection of the input points, this is done very fast.

Montgomery inverse. Because of the use of projected points throughout the algorithm,
only two inversion algorithms are necessary. One inversion is used for the calculation
of s−1 and one to reverse the standard projection.

93.8% of the resulting total runtime is caused by the two point multiplications. Further
4.7% are caused by the inversion algorithms. The other 1.5% are distributed on the other
parts of the algorithm.

10.2 Area Analysis of Neptun

The chip used for the analysis of the runtime is called Neptun. Compared to a design,
which is optimized for a minimal area requirement, Neptun is different. This chip, which
is currently in production, has a lot more features and is more reusable:

� The CPU is freely programmable.

� The evaluation of different algorithms is possible.

� Different set of constants can be used.

� The RAMs are sized in a manner so that larger NIST fields can be implemented and
evaluated.

� The bootloader can be used to monitor the RAMs after a program is executed. The
bootloader also provides a default interface for an operator.

� A serial I/O is used for the communication with a host PC.

� Three timers can be used to simulate any protocol

� 16 inputs and 16 outputs can be programmed.

The relative area requirements for Neptun are shown in Table 10.4. In order to generate
this summary, the synthesis results are used. The area requirements for pads and power
rings are ignored.

The largest parts of the design are the RAMs. They need more than 85% of the
available chip area. The CPU covers only less than 7% of the design. It needs an area
of 6089 gate equivalents. The bootloader is a synthesized 16-bit look-up table with 649
entries. The rest of the design is filled with peripherals. The smallest peripheral is the
parallel I/O. It consists of two 16-bit registers.

The layout of Neptun is shown in Figure 10.2. A big part of the required area is used
by the pads and the power rings. Whereas the outer power rings were already predefined it
was possible to configure the inner power rings manually. The outer rings are two rings for
the core supply voltage with two additional rings on the metal layers underneath. A net of
supply lines has been placed on top of the program RAM because initial power simulations
have shown a very large voltage drop at the bottom of the RAM. That is caused by the
relatively large power requirement of the power RAM. The actual synthesized logic is
placed between the RAM macros. To decrease the resistance of the horizontal power lines
vertical bars are placed. They are connected to the power rings of the RAM macros.
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Area [µm2] Area [GE]

Program RAM 559173.44 59648.98 67.70%
Constant RAM 74168.17 7911.78 8.98%
Data RAM 74168.17 7911.78 8.98%
CPU 57084.98 6089.45 6.91%
CPU (ALU) 30876.04 3293.66 3.74%
Bootloader 13130.42 1400.67 1.59%
EIA 232 12739.84 1359 1.54%
Timer 0 8152.59 869.67 0.99%
Timer 1 8152.59 869.67 0.99%
Timer 2 8127.59 867 0.98%
Instruction Decoder 3518.53 375.33 0.43%
Parallel I/O 2840.44 303 0.34%

Total 825974.56 88109.59 100.00%

Table 10.4: The area requirements of the Neptun ECC Processor.

10.3 Area Analysis of Low-Area Designs

There are two use cases to consider for the presented processor. The Neptun processor is
designed for flexibility and can be used to evaluate algorithms. The area requirement is not
of any concern. The second use case is a specialized implementation which is designated
for an RFID tag or smart card. A design for such a device should have a low power
consumption and be as cheap as possible. The price usually is proportional to the area
requirement of a design. So it is important to keep the area requirement as low as possible.

The two designs presented here have been removed from any extra logic or flexibility.
They are just used to generate or verify a signature. They have been synthesized but no
power simulation has been performed.

Part Signing Verifying Difference

Execution Time [Cycles]:

Cycles: 1658951 3129724 +88.7%

Number of Entries:

RAM 112 152 +35.7%
Program Memory 2487 3171 +27.5%
Constants 105 151 +43.8%

Area Requirement [Gate Equivalents]:

Program Memory 5861 6991 +19.3%
CPU 5112 5112 -
RAM 2553 2988 +17.0%
Other 704 850 +20.7%

Total 14230 15941 +12.0%

Table 10.5: Comparison of two processor implementations. One is used for signature
generation, the other one for verifying a generated signature.

After investigating Table 10.5 it becomes obvious that the verification algorithm needs
more resources than the signature generation algorithm. But in terms of area, the overhead
is only 12%. Because the CPU is the same in both designs, the only parts with larger
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Figure 10.2: The final layout of the chip: Neptun.

requirements are the memories.
The largest part of the designs is the program memory. That is why it has to be

inspected in detail. This is done in the next section.

10.3.1 Program Memory Implementation

The program memory is used to store all instructions. The program counter is applied
as index for this collection of instructions. After some delay (which is secondary), the
program memory delivers an instruction word that is executed by the CPU. It is the
largest component of the processor. That is a good reason to investigate in different
implementations:

76-bit synchronized look-up table. Suppose the the program has 3000 entries. Then
the task of the synthesizer is it to optimize this huge table. A first approximation
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with 0.1 Gate Equivalent per bit (22800 GE in total), seems to be terribly wrong.
Figure 10.4 shows that only 0.03 Gate Equivalents per bit are necessary.

16-bit look-up table with instruction decoder. The table also needs more entries,
because certain commands (LDI, CALL, JMP, ...) need more cycles in the com-
pressed instruction set. The total size of the table can be reduced from 76x3100
bits (=235kbits) to 16x3400 (=54kbit). Unfortunately, the total size required for
this implementation increased. To use a table with less than 16-bit entries is not
possible. That is the minimum size of an instruction word, required by the LDI
command.

16-bit ROM with instruction decoder. The idea is to replace the synthesized 16-bit
look-up table with a more space efficient ROM. Obviously the sizes of the available
ROMs are too large. So it was not even necessary to perform such a synthetization.
The size of the program word decoder is 345 Gate Equivalents.

There is also a fourth implementation. It is a 76-bit ROM. Unfortunately, this ROM is
huge. So it is not considered for this comparison.

LUT

LUT

ROM

Decoder

Decoder

76

16

16

76

76

a)

b)

c)

Figure 10.3: Different implementations of the program memory. a) 76-bit synthesized
look-up table. b) 16-bit synthesized look-up table with instruction decoder. c) 16-bit
ROM with instruction decoder.

Figure 10.4 shows the results of two different programs. The smaller program is the
signature and the larger program (more entries) the verification algorithm. For comparison
reasons, the sizes of the smallest free 16-bit ROMs1 are given.

Obviously, the smallest implementation is the 76-bit synchronized look-up table. This
implementation is used as program memory for the smallest possible implementation.

1The smallest free ROM generated by ’UMC L180FSA0A Memory Compiler: 200901.1.1’ is used.
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Figure 10.4: Different synthetization results compared. The ROM implementation is
without the instruction decoder. The number of entries differ because various commands
(e.g. LDI) need extra entries in the 16-bit version.

10.4 Possible Improvement

Even though months are spent implementing and optimizing the algorithms, it is always
possible to make them ’better’ and trim them a bit.

� Examine all implemented algorithms and optimize them according to their impor-
tance. Especially focus on large function with a low number of total cycles (e.g.
Montgomery.Multiply. This should result in a reduction of necessary program mem-
ory entries.

� Currently, every multi-cycle instruction (e.g. CALL) is split up into several pro-
gram words. By modifying the instruction decoder less program memory entries are
needed. This should reduce the size of the program memory.

� For multiplication algorithms, a more powerful MULACC command is useful. A
MULACC that automatically in/decrements a base register and executes this se-
quence several times should decrease the number of entries in the program memory.

� In order to reduce the size of the ALU, the 16-bit shifter can be rationalized. The
multiplier can be used as a shifter instead.

� The size of several registers (Base*, Acc2) can be decreased.

� Unify the two separate Point Multiplication algorithms used within the ECDSA
Signature Verification Algorithm. This reduces the number of necessary program
memory entries for the signature verification design.
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� Use a larger RAM and a faster point-multiplication scheme. This will speedup the
execution time of the point multiplication algorithm and result in a better Area-
Cycle product.

� Implement a squaring algorithm. Hankerson et al. suggests in [12] that the squaring
algorithm is up to twice as fast as a multiplication. For that, a change in hardware
is needed.

10.5 Comparison with other Work

Before it is possible to compare this work with work of predecessors we need to introduce
some distinctions. They are all area optimized ECDSA designs. Some of them calculate
a signature using binary extension fields GF (2m). The big advantage of those designs are
the simpler field-multiplication schemes because binary extension fields do not have the
need of carry propagation.

On most smart cards, a processor is part of the design. Most of the designs by com-
petitors are co-processor. These processors are used to speed up the ECDSA calculation.
The Neptun processor already is a processor. There is no need for a co-processor or any
additional processor. This is an advantage, because smart cards usually contain proces-
sors. This bigger picture (the (co-)processors in a smart card) should be considered for
evaluation. A summary of many previous designs is given in Table 10.6. It is important
to note that some of those designs do not calculate an ECDSA signature. Some of them
are only used to do point multiplications.

Area Cycles ECC VLSI Processor
[GE] [kCycles] Curve technology

Kumar 2006 [26] 15094 430 B-163 AMI C35 NO
Hein 2008 [13] 13685 306 B-163 UMC L180 NO
Yong Ki Lee 2008 [27] 12506 276 B-163 UMC L130 YES
Leinweber 2009 [28] 8756 191 B-163 IBM L130 YES

Auer 2009 [4] 24750 1031 P-192 AMS C35 NO
Fürbass 2007 [8] 23656 500 P-192 AMS C35 NO
Neptun 2010 14230 1659 P-192 UMC L180 YES

Table 10.6: Comparison of implementation with related work.

Obviously, in terms of speed the Neptun processor cannot compete with the GF (2163)
implementations. In terms of area, Neptun is comparable with the three oldest GF (2163)
implementations. Leinweber [28], currently has the smallest elliptic curve implementation.

Let us take a look at the other designs using GF (p192). Auer [4] is using a multiply-
accumulate unit with a dual-port RAM. Because his memory unit has two ports it could
be nearly twice as fast. Actually it is 1.6 times faster. The design by Fürbass is a lot
faster but it also is 70% larger than the presented design in this thesis.

As previously mentioned, the most important factor for RFID designs is the area
requirement. By focusing on this requirement, the presented design can compete with all
the other designs. Leinwebers design only is 40% smaller than the stripped Neptun design.
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Figure 10.5: Area vs. runtime of various implementations. The red squares use GF (2163),
the blue squares GF (p192).
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Conclusions

This master thesis had the goal to create an ASIC design that is capable of calculating an
elliptic curve digital signature algorithm. Investigations showed that it is more efficient to
design a dedicated processor. Although writing a processor that is specialized for efficient
prime-field operations is a complex objective, it has been successfully finished. The final
processor architecture is called Neptun. It uses an efficient Harvard architecture and an
optimized 16-bit datapath.

But not only the a processor has been implemented. Also the elliptic curve digital
signature generation and verification functions for a NIST P-192 curve. The signature
algorithm takes 1.65 million cycles to generate a new signature. By synthesizing a stripped
design, the area requirement of the design is only 14230 gate equivalents. This makes it
to our knowledge to the smallest implementation for generating an elliptic curve signature
for NIST P-192, published so far. By modifying the used program, a signature can also
be verified. Only a small increase in area requirement is needed. This can be done in 3.1
million cycles. Previous implementations only concentrated on calculating a scalar point
multiplication or just the signature algorithm. The signature verification feature extends
the possible applications for this processor.

It is also possible to compare the implementation with previous implementations using
embedded processors as platform. An optimized implementation using an 8-bit AVR
processor, doing a NIST P-192 elliptic curve point multiplication used 9.9 million cycles
(see [10]). An other implementation, using a 32-bit TM1300 processor by Trimedia is
using 3 million cycles (see [15]).

A big advantage of the processor is that it comes with a simulator and an assembler.
These tools can be used to easily write new programs for the processor and extend its
capabilities. Because this tool is written in Java it is platform independent and modular.
It can be easily extended to test new instructions or generate extra user-defined statistics.
With the existing framework it is easily possible to extend the existing algorithms. It
would be easily possible to implement an elliptic curve signature algorithm that uses NIST
P-256 parameters. Also a symmetric-key algorithm, such as AES can be implemented,
using the boolean logic of the processor. Admittedly the initial performance would not be
breathtaking but the processor is easily extendable with special features needed for AES
operations.

Because of the complexity of the implemented algorithms it is necessary to evaluate
their vulnerability to simple and differential power analysis attacks. This can be done
with Neptun. This processor brings a bunch of interesting features. It is programmable,
provides a powerful and flexible 16-bit instruction set and also reusable peripherals. The
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implemented timers can be used to simulate any kind of protocol. So the processor is
already prepared for complex protocols like ISO-14443 or ISO-7816 (see [17, 18, 19]).

Neptun can even be used as a stand-alone processor. The only disadvantage is that
no non-volatile memory is available in the used UMC 190L technology. So the program
and constants need to be stored in an external flash, which is connected via SPI. Because
the private key also has to be placed in this flash, the private key is easily discovered by
monitoring the SPI lines. In this sense, the processor is not yet ready for production. But
that was never a goal of this project.

To be ready for production, an efficient test strategy is needed. This is especially
important for low-cost devices that should be produced in large quantities (in term of
millions). Because this processor has a small area footprint it can be classified as a low-
cost design.

The architecture used for this project is well documented with block diagrams (see
Figures 9.2 and 9.3) and designed modularly. This makes it possible to easily reduce the
size of the implementation. Possible approaches and ideas are listed in Section 10.4.

The results of the implementations, resulted by this thesis are summarized in Table
11.1.

Design Area Runtime Technology
[µm2] [GE] [kCycles]

Neptun processor 825974 88109 UMC L180
Signature design 133397 14230 1659 UMC L180
Verification design 149437 15941 3130 UMC L180

Table 11.1: Summary of synthesis results.

After reading all this praise about the Neptun processor, one question might arise:
What is the future of the Neptun processor?

� Firstly, the chip will be tested. All the simulation results will be verified on the
real-world chip.

� A printed circuit board to evaluate different attributes of the chip will be made.

� Algorithms will be evaluated. Different SPA and DPA attacks will be performed to
proof the security of the implemented algorithms.

� The design will be further optimized. 14230 gate equivalents are not yet a lower
bound for the design.

� Further algorithms such as AES will be implemented. The ALU will be extended to
support substitution box operations within one cycle.

� The ISO-14443 and ISO-7816 protocols will be implemented.

� If there is a commercial application for the processor, it is useful to have a ’C’
compiler. Maybe a compiler infrastructure such as LLVM will be used.

� Maybe the processor will be bought by a big semiconductor company and used for
all future RFID tags. If the interested reader is a member of such a company, please
contact the author.



CHAPTER 11. CONCLUSIONS 76

� Most importantly, the Neptun processor will be reused for different future designs
of the author.

It can be said without remorse that the initial goal was not only reached but exceeded.
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Abbreviations

AES Advanced Encryption Standard
ALU Arithmetic Logic Unit
ASIC Application-Specific Integrated Circuit
CPU Central Processor Unit
DES Data Encryption Standard
DPA Differential Power Analysis
DSA Digital Signature Algorithm
ECC Elliptic Curve Cryptography
ECDSA Elliptic Curve Digital Signature Algorithm
EIA Electronics Industries Association
FIPS Federal Information Processing Standard
GE Gate Equivalent
GSM Global System for Mobile Communications
IEC International Electrotechnical Commission
ISO International Organization for Standardization
NIST National Institute of Standards and Technology
PC Program Counter
GFN Quad Flat No Leads Package
RAM Random Access Memory
RFID Radio Frequency Identification
RISC Reduced Instruction Set Computing
ROM Read-Only Memory
RSA Rivest-Shamir-Adleman
SIM Subscriber Identity Module
SP Stack Pointer
SPA Simple Power Analysis
SPI Serial Peripheral Interface
UMC United Microelectronics Corporation
UMTS Universal Mobile Telecommunications System
VHDL Very High Speed Integrated Circuit Hardware Description Language
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Processor

B.1 Features

� High Performance 16 bit Microcontroller

� RISC Architecture

– 40 Instructions - Most Single Clock Cycle Execution

– 12 Registers

� Volatile Program, Data and Constant Memories

– 10K Bytes Program Memory (5120x16)

– 1K Byte Data Memory (512x16)

– 1K Byte Constant Memory (512x16)

� Peripheral Features

– One Full Duplex EIA-232

– Three 16 bit Timer/Counter with Output Compare and Input Capture

– 32 Parallel Programmable I/O (16 Inputs, 16 Outputs)

� I/O and Package

– QFN 56 Package

– 4 Pad Power Supply Pins

– 4 Core Power Supply Pins

– 40 I/O Pins

� Supply Voltages

– 3.3V Pad Supply Voltage

– 1.8V Core Supply Voltage

� Operating Speed: Up to 55.55MHz
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Figure B.1: Pinout of Neptun
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B.2 Pin Configuration

B.2.1 Pin Description

Pin(s) Description

vcc c1, vcc c2 Core Voltage Supply Pins.
gnd c1, gnd c2 Recommended: 1.8V

vcc p1, vcc p2 Pad Voltage Supply Pins.
gnd p1, gnd p2 Recommended: 1.8V

SerialRX, SerialTX Receive and transmit line of EIA-232

Clk Clock Input
Reset System Reset

ParallelOutxD Parallel Programmable Outputs

ParallelOutxD 9 Reconfigurable as Timer0 Output Compare
ParallelOutxD 10 Reconfigurable as Timer1 Output Compare
ParallelOutxD 11 Reconfigurable as Timer2 Output Compare
ParallelOutxD 12 Low after Reset, High in Bootloader, Low in Application
ParallelOutxD 13 High after Reset, Bootloader: SPI Chip Select
ParallelOutxD 14 Low after Reset, Bootloader: SPI Data Output
ParallelOutxD 15 Low after Reset, Bootloader: SPI Clock ≤ Clk/30

ParallelInxD Parallel Programmable Inputs

ParallelInxD 9 Also used as Timer0 Trigger
ParallelInxD 10 Also used as Timer1 Trigger
ParallelInxD 11 Also used as Timer2 Trigger
ParallelInxD 12,13 Bootloader: EIA-232 Frequency Divider:

00 ... 16MHz / 138 → 115200 bps
01 ... 16MHz / 416 → 38400 bps
01 ... 48MHz / 416 → 115200 bps
10 ... 13.56MHz / 117 → 115200bps
11 ... divider: 4 → speed up simulation
(ParallelInxD 13 is the most significant bit)

ParallelInxD 14 If Set, the Bootloader reads the data from an attached SPI
EEPROM and initializes the internal RAM. After that, the
application is started.

ParallelInxD 15 Bootloader: SPI Data Input

ScanEnxTI Input, Enables the Scan Chain, Used for testing.
TestModexTI Input, High during Scan Chain testing, Low during normal

Operation
ScanInxTI Input of the first register in the scan chain
ScanOutxTO Output of the last register in the scan chain

B.3 Memory Mapping

The memory is divided into four sections. They are distinct by the two most significant
bits. See table B.1.

The Data Memory, Constant Memory and the Memory Mapped Registers can be read
or written anytime. There are some special considerations with the Bootloader and the
Program Memory. The Bootloader is not accessible via Memory Accesses. It is used fore



APPENDIX B. PROCESSOR 81

00 0000h - 0289h Bootloader
00 0000h - 0200h Data Memory
01 4000h - 4200h Constant Memory
10 8000h - 9400h Program Memory
11 C000h - FFFFh Memory Mapped Registers

Table B.1: Address regions of internal memories. The first column represents the two
most significant bits of the addresses.

code execution only.
During Bootloader execution, the Program Memory can be read or written like the

other memories. When a program is executed from the Program Memory, the Pro-
gram Memory can neither be read, nor written. In the rare case that this is neces-
sary to access it anyways, the following two bootloader functions can be used: Boot-
loader.ReadProgramMemory and Bootloader.WriteProgramMemory.

B.4 Bootloader

The bootloader supports two major operating modes:

1. Read SPI Flash and store in RAMs

2. Operating Interface via EIA-232

These operating modes are selected with the use of pin ParallelInxD 14. A feature, both
modes have in common is to set the ParallelInxD 12 pin, during bootloader operation.

B.4.1 SPI Flash

As reference, the read protocol of two SPI Flashs by two different manufacturers has been
considered . The command 03h is used, followed by three 00h bytes. After this short

ref datasheets

sequence, 12288 Bytes are read. The first byte are the 8 higher bits of address 0000h. The
second byte are the lower 8 bits of address 0000h. The third byte are the 8 higher bits of
address 0001h. And so on...

The three memories are represented in this order: Data RAM (1024 bytes), Constant
RAM (1024 bytes) and Program RAM (10240 bytes).

The bootloader cannot distinct if the read cycles has been successful or not. Anyways
the program is started using a CALL to address 8000h (the beginning of the program
memory). It is the same behavior as starting the program, using a ’P’ Serial Message.

In the case that the program returns, the ParallelInxD 14 is ignored and the Serial
Interface is reinitialized.

B.4.2 Serial Interface

After the reset of the device and a cleared ParallelInxD 14 pin, the serial interface is
initialized. Because the processor can be operated at different clock rates, the bootloader
supports different clock dividers. Immediately after reset, the pins ParallelInxD 12 & 13
are read. The clock divider for the EIA-232 interface is set accordingly.
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Every character sent to the chip is immediately answered (except in the case of an
error). The Serial interface supports different commands. They are distinct by the first
byte. The command byte:

’T’ Test the memories. Each memory is tested 3 times. Twice with constants (5555h
and AAAAh) and once with a running 1. If a test is finished successfully, a ’+’ is
answered. Else a ’-’ sign. In total, there must be nine ’+’: ’+++++++++’.

’S’ For writing data, a modification of Motorola S-Records are used. Originally, the
address is a byte address. Here, the two address bytes are used as a word address.
Sample: S11380005C0FC0808886B583888EB584580F16911E.
Every record starts with a ’S’. Followed by a ’1’, signalling two address bytes are
used. Followed by two ASCII digits, representing a byte count in hexadecimal.
’Count’ bytes are following. The next two bytes are the designated write address
(8000). The data bytes are following. The first byte is always the high byte. The
second byte is the low byte. Both parts of the word must be written at once. The
final byte (1E) is a checksum. In the case of an error at any point, ’-’ is sent to the
host.

’R’,’K’,’M’ These commands are used to read the Memories. ’R’ reads the Data RAM.
’K’ reads the Constant RAM. ’M’ reads the Program RAM. The representation of
the data is similar to the S-Record used for writing. The ’S’ is replaced by ’R’, ’K’
or ’M’, respectively. Sample: R11300007BCBA2A12E39A1F09DA89802449BEF12AC.

’J’ Orders the processor to execute address 8000h. It is not expected that the processor
returns.

’P’ Call the program memory address 8000h using a CALL command. In the case, the
program returns, the Bootloader reinitializes the Serial Interface.

’I’ Initializes the RAMs with zeros.



Appendix C

I/O Interfaces

This chapter concentrates on the memory mapped interface of the peripheral functions
and not on how they actually work.

Table C.1 shows a summary of all memory mapped registers.

C.1 EIA-232

Control Register Write this register after the Clock Divider Register is configured.
bit name description

0 CONTROL RX ENABLE set to 1 to enable receiver
1 CONTROL TX ENABLE set to 1 to enable transmitter

Status Register This is a read only registers. All flags are reset automatically.
bit name description

0 STATUS RX DATA READY is 1 if new data is ready to read
1 STATUS RX FRAME ERROR is 1 if stop bit was not logic one
2 STATUS RX DATA ERROR is 1 if buffer overwritten before read
3 STATUS RX RECEIVING is 1 if currently receiving new data
4 STATUS TX TRANSMITTING is 1 if currently transmitting
5 STATUS TX BUFFER EMPTY is 1 if transmit buffer is empty

Transmit Buffer Write the lower 8 bits to initialize a byte transfer. Write only, when
STATUS TX BUFFER EMPTY is 1.

Transmit Shift Register Shows, how many bits have already been transmitted.

Transmit Clock Counter This 16 bit counter is used to divide the processor clock.
It is initialized with the ’Clock Divider Register’ and counts down. New bit is
transmitted, when zero is reached.

Receive Buffer Contains the latest received full byte. (lower 8 bits) After read, the
STATUS RX DATA READY is cleared.

Receive Shift Register Displays the current receiving bits.

Receive Clock Counter This 16 bit counter is used to divide the processor clock. Is
initialized with the ’Clock Divider Register’ and counts down. New data is read at
(divider/2). This provides a 10% bitrate tolerance.
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Address Peripheral Read/Write Name

C000 EIA-232 R/W Control Register
C001 EIA-232 R Status Register
C002 EIA-232 R/W Transmit Buffer
C003 EIA-232 R Transmit Shift Register
C004 EIA-232 R Transmit Clock Counter
C005 EIA-232 R Receive Buffer
C006 EIA-232 R Receive Shift Register
C007 EIA-232 R Receive Clock Counter
C008 EIA-232 R/W Clock Divider Register

C040 Parallel I/O R/W Output Register, 2000h after reset
C041 Parallel I/O R Input Register

C080 Timer0 R/W Control Register
C081 Timer0 R Status Register
C082 Timer0 R/W Counter Register
C083 Timer0 R/W Compare Register A
C084 Timer0 R/W compare Register B

C0C0 Timer1 R/W Control Register
C0C1 Timer1 R Status Register
C0C2 Timer1 R/W Counter Register
C0C3 Timer1 R/W Compare Register A
C0C4 Timer1 R/W compare Register B

C100 Timer2 R/W Control Register
C101 Timer2 R Status Register
C102 Timer2 R/W Counter Register
C103 Timer2 R/W Compare Register A
C104 Timer2 R/W compare Register B

Table C.1: Summary of memory mapped registers
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Clock Divider Register The system clock frequency divided by (divider +1) results in
the used communication bitrate.

C.2 Timer

All three timers are built in the same way:

Control Register Write this register, after the compare registers are initialized. In de-
fault, the counter is not counting. Restart overrules Stop. External Trigger overrules
Compare Event. Writing ’force bits’ overrules everything.
bit name description

0 Enable set to 1 to enable timer
1 InvertExternalTrigger set to 1 to invert the external trigger
2 TriggerResetOnPosedge set to 1 to reset counter when pos-

edge detected on trigger signal
3 TriggerCountWhenHigh if 1 counter counts when trigger signal is high
4-5 CompareAEventSelect if ’Counter Register’ = ’Compare Register A’ then:

’00’ - do nothing
’01’ - set output
’10’ - clear output
’11’ - toggle output

6-7 CompareBEventSelect if ’Counter Register’ = ’Compare Register B’ then:
’00’ - do nothing
’01’ - set output
’10’ - clear output
’11’ - toggle output

8 CompareBSTOP set to 1 to stop counting when
’Counter Register’ = ’Compare Register B’

9 CompareBRESTART set to 1 to restart counting (from zero) when
’Counter Register’ = ’Compare Register A’

10 OverrideOutput set to 1 to override the ParallelIO Output
12 StartCounting set to 1 to force the counter to start
13 StopCounting set to 1 to force the counter to stop
14 ResetCounter set to 1 to reset the counter value

Status Register Shows the current operating condition of the processor.
bit name description

0 STATE Counting if 1 counter is counting
1 STATE OutputCompare is 1 if OutputCompare is 1

Counter Register Represents the counter register.

Compare Register A Used for an output compare event.

Compare Register B Used for an output compare event and stop or restart event.

C.3 Parallel I/O

Output Register Every bit represents the state of a parallel output pin. The reset value
is 2000h. The SPI Chip Select line is immediately set after reset.
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Input Register Directly represents the registered state of the parallel input pins.



Appendix D

Montgomery Ladder
Implementation

The implementation presented here makes use of the formulas presented by Izu, Takagi,
...:

x3 =
2(x1 + x2)(x1x2 + a) + 4b

(x1 − x2)2
− x (D.1)

x4 =
(x2

1 − a)2 − 8x1b

4(x3
1 + ax1 + b)

(D.2)

These formulas used here can be transformed using a common-Z standard projection.

X3 = [2(X1 + X2)(X1X2 − 3Z2) + 4bZ3 −XZ(X1 −X2)
2]4(X3

1 − 3X1Z
2 + bZ3) (D.3)

X4 = [(X2
1 + 3Z2)2 − 8X1Z

3b](X1 −X2)
2 (D.4)

Z ′ = Z(X1 −X2)
24(X3

1 − 3X1Z
2 + bZ3) (D.5)

Table D.1 shows the resulting algorithm. Q3 = Q1 + Q2. Q4 = 2Q1. X3 and X4 are
the X-coordinates of Q3 and Q4. x (without index) is the X-coordinate of P = Q2 −Q1.
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T0 T1 T2 T3 T4 T5 T6 T7

Init X1 X2 Z XXX XXX XXX XXX XXX
T3 = T2 ∗ T2 read write XXX XXX XXX XXX
T4 = T3 + T3 read write XXX XXX XXX
T4 = T3 + T4 read write XXX XXX XXX
T5 = T2 ∗ T3 read read write XXX XXX
T3 = b ∗ T5 write read XXX XXX
T5 = T0 ∗ T1 read read write XXX XXX
T5 = T5 − T4 read write XXX XXX
T6 = T0 + T1 read read write XXX
T7 = T6 ∗ T5 read read write
T1 = T0 − T1 read write XXX XXX
T5 = T0 ∗ T0 read write XXX
T6 = T5 − T4 read read write
T4 = T4 + T5 write read
T5 = T0 ∗ T6 read write read
T5 = T5 + T3 read write XXX
T3 = T3 + T3 write XXX
T6 = T0 ∗ T3 read read write
T0 = T4 ∗ T4 write read
T3 = T3 + T7 write XXX read
T4 = T6 + T6 write read XXX
T4 = T4 + T4 write XXX XXX
T0 = T0 − T4 write read XXX XXX
T4 = T1 ∗ T1 read write XXX XXX
T1 = T2 ∗ T4 write read read XXX XXX
T2 = T4 ∗ T0 read X4 read XXX XXX
T0 = T5 + T5 write XXX read XXX XXX
T3 = T3 + T3 write XXX XXX XXX XXX
T4 = x ∗ T1 read write XXX XXX XXX
T3 = T3 − T4 write read XXX XXX XXX
T0 = T0 + T0 write XXX XXX XXX XXX
T4 = T3 ∗ T0 read read X3 XXX XXX XXX
T3 = T0 ∗ T1 read read Z ′ XXX XXX XXX

Result XXX XXX X4 Z ′ X3 XXX XXX XXX

Table D.1: A very fast double and add algorithm.
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Original Assignment

The next two pages show the original assignment for this thesis.

89



Master Thesis at the Department of 
Information Technology and Electrical Engineering 

Autumn Term 2009 

Erich Wenger 
 
 
 

Secure Circuits for RFIDs and Smart Cards 
with Low Power Consumption and Small Size 

Advisors: Norbert Felber, ETZ J84, 044 632 5242,  felber@iis.ee.ethz.ch 
Luca Henzen, ETZ J72.2 044 632 6686, henzen@iis.ee.ethz.ch 
Christoph Roth ETZ J89 044 632 7647, rothc@iis.ee.ethz.ch 
 

Advisor TUG: Martin Feldhofer, martin.feldhofer@iaik.tugraz.at 

Date of Issue: Wednesday, 16-October-2009 
Deadline: Tuesday, 16-April-2010 
 

The written report is to be delivered in two copies for ETHZ and two copies for TU Graz. 
They remain property of the Integrated Systems Laboratory and TU Graz.

Institut für Integrierte Systeme 

Integrated Systems Laboratory 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 

Introduction 
An ASIC implementation of digital circuits for RFID tags and smart cards is the goal of this Master 
Thesis. They have to be optimized for low energy consumption, for low silicon area, and for high 
DPA resilience. 

System Description 

The system specification is one of the first tasks of this project. The core knowledge of TU Graz 
in cryptography and RFID, and of the Integrated Systems Laboratory in VLSI design shall be 
used to get to a realistic specification.  

Tasks 
The main task of the Master Thesis is the development of the ASIC. For the specified functionality, 
the design space has to be explored in order to get a series of near-optimal solutions concerning 
energy consumption. At least one item thereof has to be chosen for integration in silicon. It has 
then to be optimized for DPA resilience. After placement and routing and careful verification, the 
fabrication output for tape-out is to be prepared. For efficient ASIC design, the lecture VLSI II: 
Entwurf von hochintegrierten Schaltungen has to be followed. The book Digital Integrated Circuit 
Design by H. Kaeslin, on which this lecture is based, contains also the topics of the lecture VLSI I: 
Architektur von hochintegrierten Schaltungen (held in Spring Semesters) which are prerequisites 
for a successful chip design. 

A more detailed task description is presented in the document Master Thesis Erich Wenger of the 
TU Graz. 

Organization 
The specification for the result of this thesis comes from IAIK of TU Graz. Martin Feldhofer  plays a 
consulting role in this project. Questions concerning the specifications are to be discussed mainly 
with him. The focus of support from the IIS-ETHZ side is the VLSI implementation of the ASIC. 

Due to this organization, it is important to keep both IIS and IAIK informed on the state of the 
project. While this happens with IIS on the regular weekly meetings. IAIK should be informed, e.g. 
by short e-mails following these meetings, and by exchanging important documents whenever 
actual. In case of questions and problems, we expect the Master Student to contact the advisors 
and/or co-advisors any time. 

Report 
Document your investigations and the results in a written report. Include also attempts that were 
not successful. This report must be formulated such that it is understandable not only by 
specialists, but by any microelectronics engineer. Program and HDL code can be included on a 
CD. 

After the conclusion of the work, the results are to be presented in a talk of 20 minutes duration at 
ETHZ and also at TU Graz.  
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