
C�������� Pichler, BSc

S��	
��
 Test Automation

in the Field of RFID

t� achieve the university degree of

M������� THESIS

Master's degree programme: Computer Science

s����tt�� to

G��� University of Technology

U��� !"#�$ Dipl.-Ing. Dr. techn. Franz Wotawa

I�st�t�t� for Software Technology

Diplom-Ingenieurin

%�&�#��s�#

'()*+ May 2015

Abstract

Although time consuming and complex, testing is an important and frequently
applied process to verify the quality of software. Manual software testing is
error-prone and might be less efficient, especially in terms of regression tests.
Nevertheless, test automation is also challenging and especially in combina-
tion with Radio Frequency Identification (RFID). This master’s thesis elabo-
rates how to automate the test processes for multi-layered, distributed software
frameworks using RFID. Basing on the software detego® SURVEYOR from the
Enso Detego GmbH, functional tests are applied on unit and integration levels.
Traditional unit testing has been used to verify the web service and parts of
the web application, whereas functional Graphical User Interface (GUI) tests
constitutes the greater part for the front-end applications. These are a web
and a desktop application, the latter one communicates with an RFID-printer.
Thus, several testing frameworks have been evaluated for testing the GUI. In
order to be capable to support an automatic test procedure of the desktop
application interacting with an RFID-printer, a hardware simulation has been
used. For the mobile device application neither unit nor GUI tests where ap-
plicable such that an integration test has been developed on the device it-
self.

Keywords: distributed software, test automation, GUI test, graphical user
interface test, unit test, integration test, RFID, Radio Frequency Identifica-
tion

Abstract

Testen ist ein wichtiger, häufig verwendeter Prozess um die Qualität einer
Software zu überprüfen, obwohl dieser zugleich zeitintensiv und komplex ist.
Manuelles testen der Software ist dabei fehleranfällig und möglicherweise weniger
effizient, vor allem in Hinblick auf Regressionstests. Nichtsdestotrotz bietet au-
tomatisiertes Testen genauso Herausforderungen, noch dazu in Kombination
mit Radio Frequency Identification (RFID). Diese Masterarbeit beschäftigt sich
mit der Automatisierung des Testprozesses für ein verteiltes Software System,
welches RFID nutzt. Basierend auf der Software detego® SURVEYOR der En-
so Detego GmbH wurden funktionale Tests auf Komponenten- und Integra-
tionsebene angewendet. Dabei wurden traditionelle Komponententests zur Veri-
fikation des Webservices und Teilen der Webapplikation verwendet. Funktionale
Graphical User Interface (GUI)-Tests bildeten hingegen den größeren Anteil
der Applikationen mit graphischer Benutzeroberfläche. Diese sind einerseits die
Webapplikation, andererseits die Desktopapplikation, welche auch mit einem
RFID-Drucker kommuniziert. Zum Testen der Oberfläche wurden verschiedene
Frameworks evaluiert. Um einen automatisierten Testdurchlauf der Desktopap-
plikation, interagierend mit dem RFID-Drucker, durchführen zu können, wurde
eine Hardware-Simulation genutzt. Die Applikation für das mobile Gerät konnte
weder mit Komponenten- noch GUI-Tests verifiziert werden, daher wurde ein
Integrationstest auf dem Gerät selbst entwickelt.

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the sources
used. The text document uploaded to TUGRAZonline is identical to the present
master’s thesis dissertation.

Date Signature

7

Acknowledgements

First, I would like to thank my supervisor Franz Wotawa for his helpful guid-
ance during this master’s thesis, especially his patience and constructive criti-
cism.

I would also like to thank Matthias Weitlaner for offering me the opportunity
to undertake this academic work in cooperation with the Enso Detego GmbH. I
would like to express my sincere gratitude to the Enso Detego staff – especially
the product development team – for their support, the insightful discussions and
for being amazing colleagues who make it a pleasure to work with. Additionally,
I want to thank Michael Goller for proofreading this master’s thesis and his
helpful comments.

I would like to thank my cousin Conny for her invaluable advice and help, not
only during this master’s thesis but throughout my whole life. I would also like
to extend my thanks to Doris, Manu, Nina and all my other friends for their
friendship and for showing so much understanding and patience during the last
couple of months.

Thanks to my parents Brigitte and Karl, and to my brother Dom, for their
unconditional and perpetual support. I would not be the person I am today
without them.

Last but not least I want to thank my cats Cleo and Kitty for their calm, except
at 5am when they turn into the most effective and perseverant alarm clock in
the world!

9

Contents

1 Introduction 13
1.1 Motivation . 13
1.2 Problem Statement . 14

1.2.1 RFID - Radio Frequency Identification 15
1.2.2 Challenges . 18

2 Software Testing Preliminaries 21
2.1 What is Software Testing? . 21

2.1.1 The Testing Team . 23
2.2 Testing Levels . 24
2.3 Testing Strategies . 25
2.4 Testing Types . 26
2.5 Performing Tests . 27
2.6 Test Automation . 27

2.6.1 Why Automate Tests? 27
2.6.2 Test Case Generation . 28
2.6.3 Test Execution . 29

2.6.3.1 Graphical User Interface 29
2.6.4 Test Evaluation . 31

2.7 Alternatives and Supplements 32

3 Theoretical Concept 35
3.1 detego SURVEYOR Details . 35

3.1.1 Database . 37
3.1.2 Web Service . 38
3.1.3 Applications . 39

3.2 Possibilities to Test . 41
3.3 Actual State of Testing . 43

3.3.1 Hardware . 43
3.3.2 Software . 43

3.4 Test Purposes . 43
3.5 Test Frameworks and Tools . 46

3.5.1 Unit Tests . 46
3.5.2 GUI Tests . 46

4 Implementation 49
4.1 Collaboration Platform - TFS 49
4.2 Web Service . 50

Contents 11

4.2.1 Preliminaries and Prerequisites 50
4.2.2 Test Implementation . 51
4.2.3 Problems . 55
4.2.4 Results . 56

4.3 Web Application . 56
4.3.1 Unit Tests . 57

4.3.1.1 Preliminaries and Prerequisites 57
4.3.1.2 Test Implementation 58
4.3.1.3 Problems . 61
4.3.1.4 Results . 62

4.3.2 Functional GUI Tests . 63
4.3.2.1 Preliminaries and Prerequisites 63
4.3.2.2 Test Implementation 64
4.3.2.3 Problems . 69
4.3.2.4 Results . 69

4.4 Desktop Application . 70
4.4.1 Preliminaries and prerequisites 71
4.4.2 Test Implementation . 72

4.4.2.1 Coded UI Framework 73
4.4.2.2 Ranorex framework 76

4.4.3 Problems . 79
4.4.4 Results . 80

4.5 Mobile Device Application . 81
4.5.1 Preliminaries and Prerequisites 81
4.5.2 Test Implementation . 82
4.5.3 Problems . 83
4.5.4 Results . 84

5 Conclusion 85

Bibliography 87

List of Abbreviations 91

List of Figures 93

List of Tables 94

A Requirements from Specification Sheets 95

B XML Printer Output 100

12 Contents

Chapter 1

Introduction

This master’s thesis concerns automating a software testing process within the
context of multi-layered, distributed software frameworks in the space of supply
chain and article management using Radio Frequency Identification (RFID).
Beyond the advantages of automation within software testing there are also
some challenges to overcome.

1.1 Motivation

Software testing is expensive. About half of the time and money spent on the
development process amounts to testing and debugging (Fraser, 2007; Myers
et al., 2011, Introduction). Whenever the testing procedure is performed man-
ually those costs may increase up to 80% (Burnim and Koushik, 2008). At the
same time, testing is an important step within the software development pro-
cess. The more complex a system becomes the more possibilities of failures and
side effects arise. Those failures range from irrelevant, cosmetical issues up to
serious risks in worst case, if the application is applied for example within a
medical process or the aircraft technology. One well-known example is the fail-
ure of the radiation therapy machine Therac-25 in the 1980s, which leaded to
six known massive overdoses of radiation and caused deaths and serious injuries
(Leveson and Turner, 1993).

Testing is used to strengthen the confidence in the developed software, such
that the requirements are fulfilled and the software product does exactly what
it is supposed to do. At least theoretically, the correctness of any system can
be proven by a complete test run. The test suite, which is a collection of tests,
must consider every possible case a system can run into to fulfill this pur-
pose. In practice, even for small systems, the number of those cases becomes
too large to be traceable. Sometimes formal proofs are suggested as alterna-
tives to show the program’s model correctness. Unfortunately, praxis shows
that this kind of proof is equally not applicable for huge, scalable systems be-
cause formal proofs are too abstract (Fraser, 2007; Myers et al., 2011, Chapter
2).

Chapter 1 Introduction 13

As a consequence to the problems mentioned above, testing is inevitable. Al-
though testing is complicated, in several companies the testing processes are
still performed manually by humans. This leads to high implementation costs
and bears additional challenges and problems (Collins et al., 2012). In general,
complicated processes performed by humans are error-prone and tend to be
incomplete (Fraser, 2007). In order to reduce these problems and the costs test
procedures can be automated. This leads to an increased efficiency, especially
when tests are repeated periodically.

Nevertheless, test automation is not simple either and results in other problems
(Fraser, 2007). Decision problems occur, for example when selecting which tests
belong to the test suite. This selection is needed, since exhaustive testing is
impossible due to the enormous and sometimes even infinite number of possible
tests. In addition to that, every executed test has to be evaluated, whether
it detected a fault or not. In terms of efficiency, these issues should be faced
automatically as well.

1.2 Problem Statement

This master’s thesis aims to automate parts of the testing process for an ex-
isting software solution, namely detego® SURVEYOR, developed by the Enso
Detego GmbH. The comprehensive platform provides configurable and person-
alized solutions with the help of RFID in the area of asset management and
product life cycle management applications. RFID is, like barcodes or Smart-
Cards, an Automatic Identification (Auto-ID) system (Finkenzeller, 2010). A
further description of the technology and advantages of RFID can be found in
Section 1.2.1.

Figure 1.1: Overview of detego SURVEYOR, developed by Enso Detego GmbH

An overview about detego® SURVEYOR is provided in Figure 1.1. The soft-
ware consists of a database as back-end and one or more applications in the
front-end, with a dedicated interface service between the applications and the
database.

14 1.2 Problem Statement

In particular, the applications in the front-end are either web-based or rich client
applications running on traditional PCs or mobile devices with Microsoft based
operating systems. The applications consist of several modules with different
functions for particular use cases in item-level based asset and item manage-
ment. Most of those applications are connected to one or more RFID devices to
interact with RFID transponders (read and/or write data). Currently, the web
application do not perform any direct interaction with the RFID technology and
is used for administration tasks and reporting.

A detailed description of detego® SURVEYOR can be found in Chapter 3,
Section 3.1.

The RFID integration complicates the process of any test automation for the
software additionally. Therefore, apart from a few basics in the back-end, the
detego® SURVEYOR software is mainly tested in manual processes. In order to
highlight the challenges resulting from the multi-layered, heterogeneous system
components faced within this master’s thesis some theoretical background is
provided in the following. The next subsection describes RFID in more detail,
before the challenges are further described.

1.2.1 RFID - Radio Frequency Identification

RFID systems are used to provide information about living beings and objects
(Tamm and Tribowski, 2010, Chapter 1.1). RFID is a contactless technology
which carries information by radio waves and is used for identification (Finken-
zeller, 2010, Chapter 1). There are numerous advantages in comparison to other
Auto-ID systems. Although the technology is similar to those of SmartCards,
the main advantage is a contactless machine readability which does not even
need visual contact. Additionally, dirt and optical covering have only minor
influence on the readability. The read range differs from a few centimeters up
to several meters, depending on the conditions and the used frequency band.
Furthermore the reading speed is very fast and supports simultaneous reads and
higher data-rates compared to barcode technologies.

As shown in Figure 1.2 every RFID system consists of two components - the
transponder and the reader.

The reader or interrogator is a read or write/read device, depending on the
design and technology (Finkenzeller, 2010, Chapter 1). Within this master’s
thesis it is not distinguished between these and the term reader refers to
both types of data capture devices. In general, a reader has a radio frequency
module (transmitter and receiver), a control unit and a coupling element (for
example an antenna). Additionally, many readers contain an interface (se-
rial, ethernet, bluetooth, USB or others) to transmit the data to a host sys-
tem.

Chapter 1 Introduction 15

Figure 1.2: Components of an RFID system (taken from the RFID Handbook1)

The RFID readers existing on the market are similar but differ in ”the type
of coupling (inductive - electromagnetic), the communication sequence (FDX,
HDX, SEQ), the data transmission procedure from the transponder to the
reader (load modulation, backscatter, subharmonic) and, last but not least,
the frequency range” (Finkenzeller, 2010, Chapter 11). FDX means full-duplex,
HDX half-duplex and SEQ sequential in this context. Moreover, the sizes range
from small portable to large industrial reader. The antennas are typically con-
nected to the reader using coaxial cables and mainly determine the read-range
and read-performance. Furthermore, stationary readers typically have multi-
ple antenna ports which are activated sequentially, one at the time. Thus, the
(electro-) magnetic field of the reader can be enlarged with them (Tamm and
Tribowski, 2010, Chapter 2). Figure 1.3 shows some antennas at the top, three
stationary readers with up to eight antenna connectors at the left side next to
two stationary readers with integrated antennas and several mobile devices at
the right side.

RFID systems can be categorized by the operating frequency range. The most
common ranges that are used are Low Frequency (LF), High Frequency (HF),
Ultra High Frequency (UHF) and Super High Frequency (SHF). For different
applications the one or the other frequency may be more practicable.

The transponder, also called tag, is the data-carrying device (Finkenzeller,
2010, Chapter 1), which is typically attached to objects or living beings for the
purpose of identification. Every transponder consists of a coupling element (i.e.
an antenna or coil) and an electronic microchip where the data are stored. A
selection of different transponders is shown in Figure 1.4. Transponders can be
grouped according to their functionality (Finkenzeller, 2010, Chapter 2) (Tamm
and Tribowski, 2010, Chapter 2):

• A passive transponder does not have any energy supply and draws the

1Last retrieved on 30.04.2014 from http://rfid-handbook.de/about-rfid.html

16 1.2 Problem Statement

required energy from the reader field. This energy is used for the data
transfer from the reader to the transponder and vice versa. This implies
that the transponder is not able to communicate when not being located
in the reader’s interrogation zone. In passive transponder systems, the
link between reader and transponder is considered as the limiting factor
within the communication. Transponder readability is influenced severely
by the physical boundary conditions, the orientation between transponder
and reader and the specific material properties of tagged objects. This
introduces additional challenges for automated system testing, since it is
difficult to perform reproducible test scenarios.

• An active transponder has its own power supply on it, for example a bat-
tery or a solar cell used for the microchip’s operations and data trans-
missions. Since the transponder does not have to rely on the energy
drawn from the reader field, communication ranges are usually signifi-
cantly larger with active transponders.

• A semi-active transponder has an integrated energy supply like the active
ones but do not use it for the data transmission from the transponder to
the reader.

In this master’s thesis the focus lies on passive transponders. Thus, the reader
is the link between a transponder and a software application. All components
operate together on the basis of the master-slave principle (Finkenzeller, 2010,
Chapter 11). Therefore, the software application as master initiates every activ-
ity of the reader or transponder. The reader as slave receives the command and
enters, now as master, into the communication with the transponder (slave).
Figure 2.1 illustrates these relations.
Passive transponder only acts upon the reader’s command and never indepen-
dently. The only exception represents a simple read-only transponder which
continuously transmit its own identification number whenever it enters the in-
terrogation zone of a reader.

A simple read command from the application software may trigger several com-
munication steps between the reader and a transponder (Finkenzeller, 2010,
Chapter 11). The reader’s main functions are the transponder activation, to
structure the communication sequence with the transponder and to transfer
data between the transponder and the application. The reader handles the low-
level communication with the transponder in an autonomous way according to
the specific protocol that is used in an application.

Another hardware within this context is the printer . An RFID printer has the
ability to print transponders optically and digitally. This means that the visual
print occurs besides the programming of the transponder’s identifier.

Chapter 1 Introduction 17

Figure 1.3: A selection of readers and antennas

1.2.2 Challenges

The first goal of this master’s thesis is to set up a conceptual test run which
evaluates how the different parts of detego® SURVEYOR can be tested in an
effective way. In particular, the focus lies on automated testing and an inves-
tigation, which system components can be tested automatically. As described
above, the test automation of any complex software application is difficult.
There are even more challenges in this case, due to the peculiarities of RFID
and because of the main parts of detego® SURVEYOR depend on interactions
with RFID. According to the software it may make a difference in some points
if none, one or more than one transponders are in the readers field. Therefore
the processes which can be either tested

• fully automated,

• automated, with the help of hardware simulations or

• manually only

have to be identified first. Within this master’s thesis the focus lies on functional
tests. Nevertheless, the developed functional tests may be used for regression
tests where applicable in the future. Depending on that knowledge, the appro-
priate test levels for specific test cases will be evaluated.

18 1.2 Problem Statement

Figure 1.4: Different kind of transponders

Another challenge provides the web application. There are no RFID devices
integrated and the design is built with Telerik’s Kendo UI2. Especially for the
reports, functional GUI tests would be helpful, because some data are calculated
at the client’s side. The problems with GUI tests are described in Chapter
2, Section 2.6. Special features of Telerik’s Kendo UI may complicate them
further.

The theoretical part of this thesis gives an overview of software testing in gen-
eral, including testing levels, strategies and types. Furthermore, some details
about the automation, including the advantages and challenges are mentioned
as well as alternatives to software testing.
The practical part of this theses presents the implementation of automated tests
within the detego® SURVEYOR platform. For this purpose, the implementa-
tion, Microsoft Microsoft Team Foundation Server (TFS) is used as collabora-
tion and implementation framework.

2Last retrieved on 30.04.2015 from http://www.telerik.com/kendo-ui

Chapter 1 Introduction 19

Figure 1.5: Master-slave principle within an RFID system (taken from Finken-
zeller (2010, p. 318))

20 1.2 Problem Statement

Chapter 2

Software Testing Preliminaries

The aim of every software developer is, among others, to develop a useful and
robust software. The reliability and quality of software can be verified by test-
ing, which continues to be the most important method for this. (Fraser et al.,
2009)

2.1 What is Software Testing?

The history of software testing is as long as that of software development. At the
beginning software testing had been a manageable process where test scenarios
were written down on paper. With the development of the personal computer,
software applications were subject to change and led to an increase of commer-
cial software applications and concurrently to more competition. Consequently,
the software test processes which nowadays map a huge number of combinations
and permutations of test procedures changed too. (Dustin et al., 1999, Chapter
1)

There are several definitions for the process of software testing:

”Testing is the process of establishing confidence that a program or
system does what it is supposed to.” (Hetzel, 1988, Chapter 1)

”Software testing is the process of analysing a software item to detect
the differences between existing and required conditions (that is,
bugs) and to evaluate the features of the software item.” (IEEE,
1990)

”Testing is the process of executing a program with the intent of
finding errors.” (Myers et al., 2011, Chapter 2)

Summarizing these, testing aims to detect failures within software and to assure
that the software does what it is supposed.

The frequently used terms error, fault, failure, bug or defect are sometimes used
inconsistently in the literature. This master’s thesis adheres to the definition

Chapter 2 Software Testing Preliminaries 21

of Grindal and Lindström (2002), where a ”failure is defined as a deviation of
the software from its expected delivery or service” and its cause is called fault.
The terms error, bug and defect are used as synonyms for fault within this
document.

According to Dustin et al. (1999, Chapter 1) the earlier a failure is discovered,
the less cost result during the development and test process. Table 2.1 gives
an impression of the costs of a failure, detected in different stages of develop-
ment.

Phase Cost
Definition $ 1
High-Level Design $ 2
Low-Level Design $ 5
Code $ 10
Unit Test $ 15
Integration Test $ 22
System Test $ 50
Post-Delivery $ 100+

Table 2.1: Prevention is cheaper than cure (table taken from Dustin et al. (1999,
Chapter 1))

Software testing is the process of verification and validation of particular soft-
ware components. Both, verification and validation aim to detect as many errors
as possible.

Validation refers to the software purpose and is usually performed on the
complete software system. It answers the question if the implemented software
is the right program with respect to intentions and wishes of customers. For this
purpose, requirement documents specify the supposed purpose of the software.
Verification, in contrast, aims to investigate on the correct implementation of
the software with respect to the design. This process can be performed on the
entire software system or individual components, for example in early stages of
development. Nevertheless a complete run of the verification process does not
guarantee 100% of correctness (Fraser, 2007).

Today’s software systems are typically characterized by complex, multi-layered
architectures and consist of several components (Dustin et al., 1999, Chapter 1).
Within typical client-server architecture, as sketched in Figure 2.1, the client-
side is executed on different devices or applications, for example as desktop ap-
plication, mobile application or web application. Consequently, the network link
between the individual components is one critical aspect and therefore needs to
be part of the testing and validation process.

22 2.1 What is Software Testing?

Software testing can be performed in different ways, on either individual compo-
nents or the whole system, from different points of view as well as with diverse
methods. All these decisions depend on the software itself, as well as the pur-
pose of the actual test case. The execution also may differ heavily, depending
on whether it is performed manually or automatically. The following sections
provide an overview of the testing processes, levels, strategies, methodologies
and test automation.

Database

Server

Client
(Mobile)

Client

(Desktop)

Client
(Web)

Figure 2.1: A possible client-server architecture

2.1.1 The Testing Team

The first and fundamental aspect within software development and testing pro-
cesses is the organizational structure and the assignment of responsibilities
among a team. Especially in small companies it might be easier if the project’s
developer is also responsible for its quality assurance. However there are good
reasons to avoid such a situation. Actually, source code should not be written
and tested by the same person. The developer is too intimately involved into
the system in order to take an objective look at it. (Benetley et al., 2005) Addi-
tionally, according to Benetley et al. (2005) a good developer is not necessarily
a good tester and vice versa. This does not imply that a tester does not need
programming skills though according to Whittaker (2000) they do.
Consequently, software testers should build their own team within the software
development process. The success - or failure - is widely influenced by the team’s
potential. Ideally, the team consists of several members with experience levels
from beginners to experts which have a blend of technical and domain exper-
tise and, depending on the subject matter, technology and testing techniques
(Dustin, 2002, Chapter 3).

Chapter 2 Software Testing Preliminaries 23

2.2 Testing Levels

During the development process, different testing levels can be identified which
either belong to the verification or validation sector. The five testing levels
visualized in Figure 2.2 - Unit, Integration, System, Acceptance and User-
Interface testing - map the entire software testing process. Starting with tests
on small and individual software components (units) towards complete inte-
gration tests (Pan, 1999; Software Testing Fundamentals; Myers et al., 2011,
Chapter 5 and 6). Thereby, Unit, Integration and System tests are verification
processes, whereas Acceptance and User-Interface tests belong to the validation
sector.

Unit

testing

Integration

testing

Acceptance

testing

System

testing

User-Interface

testing

Figure 2.2: The five testing levels

• Unit testing
This level of software testing refers to the smallest individual components,
called units, of a software system. The purpose is to ensure that every
piece of the software system works correctly based on a set of assumptions
(Osherove, 2009, Chapter 1).

• Integration testing
Integration tests are a combination of several unit tests depending on
each other. The purpose of integration tests is hence to identify failures
resulting from unit interaction. (Osherove, 2009, Chapter 1).

• System testing
System testing means to test the complete software system within an in-
tegrated environment. The system is evaluated against the software spec-
ification and the specific functional requirements (Fraser, 2007).

• Acceptance testing
This kind of software testing evaluates whether the system fulfils the
business requirements and the current needs of the end-users (Myers et al.,
2011, Chapter 6).

• User-Interface testing
User-Interface (UI) tests aim to verify that the requirements are fulfilled
and that non-functional aspects like usability or performance are met by
the UI (Baker et al., 2008).

The definition of the term unit as smallest individual and testable compo-
nent of a program is not consistent throughout the literature. Osherove (2009,

24 2.2 Testing Levels

Chapter 1) defined a unit as method or function, in contrast to Myers et al.
(2011, Chapter 5), who refer to the individual sub-programs, subroutines, or
procedures in a program. In Object-Oriented (OO) programs, a unit is defined
as a method which normally belongs to any kind of abstract or derived class.
When talking about procedural programs units typically refer to concerns to
a module, although a module might in turn consist of several individual units
(Software Testing Fundamentals).

According to Labiche et al. (2000) the categorization of Unit and Integra-
tion testing can not be separated in the same way for OO Software like for
procedural software. Object operations can also be tested individually but in
most cases the objects’ behavior is more complex and depends on other ob-
jects.

2.3 Testing Strategies

According to Myers et al. (2011, Chapter 2) there are several testing strategies
that differ in the initial situations as well as the execution and therefore yield in
different results (Pan, 1999; Myers et al., 2011; Software Testing Fundamentals).
The most commonly used strategies are:

• Black-Box testing
In this context Black-Box means that the internal structure, design and
source code is hidden from the tester. One can imagine a opaque box
covering the program under test. Usually these are functional tests but
do not necessarily need to be. This procedure is also called data-driven
or input/output-driven testing.

• White-Box testing
Contrary to Black-Box techniques, the tester knows the internal structure,
design and source code of the program when using this strategy. The term
White-Box is referred to a transparent box covering the source code. As a
direct consequence, the tester needs to have programming skills in order
to understand and evaluate the internal system structure. The input has
to be specified depending on the software parts to test.

• Gray-Box testing
A Gray-Box test is the combination of Black- and White-Box test meth-
ods. The tester knows the internal structure, design and source code while
designing and creating the test cases. The test execution is performed from
a user’s point of view who does not know the software details. Accord-
ing to Dustin (2002, Chapter 4), Gray-Box testing is more efficient for
companies than Black-Box tests.

Chapter 2 Software Testing Preliminaries 25

2.4 Testing Types

Tests can be divided into different types depending under which aspect the
software is tested. The different aspects may exclude each other partly, for
example a high-performance system might not be as secure as possible and
vice versa. In this case, humans have to decide which aspect is more important
within the content to be proofed (Pan, 1999; Myers et al., 2011; Software Testing
Fundamentals).

• Functional tests
This test type refers to the reliability of a software program. The goal is
a failure-free program as possible in terms that the application fulfils the
requirements. Input (data, user interaction) is provided, executed and the
received output is evaluated. Since functional tests are dominantly driven
by an input-output evaluation, the most commonly used test method is
Black-Box testing.

• Security tests
Security is getting more and more important, especially for web-based
applications. Security tests aim to identify and remove weak points in the
software which can lead to violations. Another aspect is the analysis of
security measurements effectiveness.

• Performance tests
These tests assess a system’s performance in reference to responsiveness
and stability under certain conditions. The main term performance tests
can be divided into several types. The four basic types thereof are:

– Stress tests

– Load tests

– Endurance tests

– Spike tests

• Regression tests
Regression tests prevent a system from negative effects caused by software
improvements and other changes which may occur in a systems lifetime.
For this purpose, automated tests ()see Section 2.6) are useful to verify
that already working parts of the software behave in the same manner
after any changes.

Whereas functional and regression tests will be treated within the practical
part, both, security and Performance tests are considered out of scope of this
master’s thesis.

26 2.4 Testing Types

2.5 Performing Tests

In praxis the test levels, strategies and types mentioned in the previous chapters
operate together. However, the tester has to decide whether to use a random
or a structural approach for the whole test procedure. Several studies had been
conducted about the weaknesses and strengths of those in the past. (Duran and
Ntafos, 1984; Gutjahr, 1999; Hamlet, 1994, 2006; Janhunen et al., 2011; Ntafos,
1998) According to Hamlet (1994), random tests are the most used and less
useful ones at the same time.

An example are Monkey tests, which are random tests based on model tests
without any test specifications. They are executed in the way of Black-Box
testing, hence the internal structure itself is not of interest hereby. They are
usually operated at the level of system testing.

Agile tests are a special type of testing which is bound to the agile software de-
velopment methodology. That include pair-programming, extreme-programming,
test-driven development, among others. Hence, agile development and therefore
agile testing as well, are dynamic processes, which are performed parallel to each
other.

2.6 Test Automation

Test automation can be divided into different categories, reaching from test
management to test execution and result interpretation. The two most impor-
tant processes are the Test-case generation (Section 2.6.2) and the Test-
execution(Section 2.6.3). Whereas automated tools for test organization and
execution are quite common nowadays, an automated creation of test-case
generation is still not widespread (Fraser et al., 2009; Wissink and Amaro,
2006).

2.6.1 Why Automate Tests?

All kinds of tests mentioned above can - and traditionally are - executed man-
ually. The majority of software intensive systems nowadays are indeed tested
manually, irrespective of the components being new developments or established
programs. This applies for both large-scale systems as well as individual and
small projects (Wissink and Amaro, 2006).

Dustin et al. (1999, Summery of Chapter 1) state that

”the use of automated test tools to support the test process is prov-

Chapter 2 Software Testing Preliminaries 27

ing to be beneficial in terms of product quality and minimizing
project schedule and effort.”

The manual development of test cases is tedious, time-consuming and error-
prone (Fraser et al., 2009). Automation can improve this process significantly.
Burnim and Koushik (2008) mention that typically the costs for manual test-
ing amount to 50 - 80% of the total software development costs. According
to Collins et al. (2012), automated tests increase the efficiency by saving time
especially when test have to be executed repeatedly after any changes to the
software, for example when performing regression tests. Besides, the sets of
test cases are often more complete because of a systematically generation.
Therefore, automation can be seen as an attempt to gain more and invest
less.

Another reason to use test automation is the fact that in, among others, indus-
trial applications the way of testing has to be systematic and traceable. This
especially applies for software which acts in a safety-related system (Fraser
et al., 2009).

Nevertheless, the test automation strategy of any software project or product
has to be defined and analysed carefully. Depending on it, test automation might
not be applicable or more expensive, whereas in other cases it can reduce soft-
ware testing costs drastically. Consequential to benefit from automated tests,
the tester has to be involved as early as possible in the development process.
Besides, the testers have to know the testing tools and verification of test re-
sults in order to and compare the costs of automated and manual tests (Collins
et al., 2012; Dustin et al., 1999, Chapter 2).

2.6.2 Test Case Generation

Software test research activities resulted in several different approaches to gen-
erate test cases automatically. Achieving a useful test run is important to find
appropriate test cases. The generation can be either base on a modelling ap-
proach or may be derived directly from the software source code. (Boghdady
et al., 2011).

• Model-based
This is the most common test-case generation technique used today. Nev-
ertheless, it is a challenge to define a formal model which can later be con-
verted into a concrete set of test cases. Boghdady et al. (2011) categorize
all different types of formal models into the main categories requirements
models, usage models and source code dependant models.
A non-deterministic model can lead to an inconclusive verdict because
neither the pass nor the fail of the test can be concluded. This case may
occur when the tests for non-deterministic model finally run on possible,

28 2.6 Test Automation

deterministic choices of the model. Consequently, when an executed test
case fails because of a different but valid decision at the nondeterminis-
tic branching points, this can result in an erroneous fault detection and
therefore an inconclusive test result (Fraser and Wotawa, 2007; Fraser
et al., 2009).

• Code-driven
Deriving test cases from the source code of the application started with
randomly-generated test inputs approximately 30 years ago. This solution
scales well but it is highly improbable that every possible situation is
considered. Related techniques are concolic testing and comparable, which
run simultaneously concrete and symbolic executions. A relatively young
example is Microsofts automatic tool PEX for White-Box test generations
(Burnim and Koushik, 2008; Tillmann and Halleux, 2008).

One has to keep in mind that generated test cases are abstract. To be able to
execute such a generated test set, suitable test data are needed. Therefore, the
test data selection or generation can be considered at least a problem, probably
as important as the test-case generation (Fraser et al., 2009; Boghdady et al.,
2011).

2.6.3 Test Execution

The next issue is a decision problem which is also known as oracle problem.
Whether the test-case execution detected a fault or not has to be decided
somehow. To reach a useful automated test execution, this issue and the test
data generation should be treated with an automated mechanism too. (Fraser,
2007)

2.6.3.1 Graphical User Interface

Today, the GUI build an essential part of software. The way of interacting
with computer programs has become much easier with the use of graphical
user interfaces. At the same time, GUIs increase the complexity of any System
Under Test (SUT) and present new challenges. Ruiz and Price (2007) list six
issues in this context:

• GUIs are not designed for computer programs, such as automated tests,
but for humans. Nevertheless, tests have to be automated.

• Traditional unit tests isolated in small components are not applicable for
GUIs. In terms of GUI applications, a component can consist of more
than one class and furthermore several components form a unit.

Chapter 2 Software Testing Preliminaries 29

• GUIs are driven by user-generated events. In order to test GUIs auto-
matically, these events have to be simulated in any way. Later, the test
program has to wait until the event has been transmitted to all listen-
ers and the action’s result are displayed to the user. Transforming such
interactions to code can be a tedious and error-prone process.

• The number of interactions a person can perform within a GUI is high
and there are a lot of potential paths from feature to feature, too. This
increases the risk of developers introducing new bugs.

• Robust tests should not be affected by any changes of the GUI’s layout.

• Test evaluations based on coverage code line criteria as used for conven-
tional tests might not consider all user interaction scenarios. Besides of
the tested code lines, the amount of possible states, testing each part of
the application, is important too.

There are two common types of automated GUI testing. The first method is
called record/playback. Its main advantage is creating a test suite, which is a
set of tests, in a short time span which can later be replayed by developers. The
greatest disadvantages are expensive maintenance after any software changes
and the need of existing GUIs to capture the user-generated events. After any
changes in the GUI the recordings for according tests must be repeated.
The second possibility is to program GUI tests. This technique also supports
test-driven development approaches where tests are written before the actual
source code (Ruiz and Price, 2007).

Independent of the chosen type, GUI test automation faces several challenges
and is considered as a highly complex domain. Jim Holmes1 suggests some
general principles to use this technique to bring a great benefit. Automat-
ing functions which do not change frequently, low-value features and third
party functionality (for example the browsers HTML5 implementation) should
be avoided. Using test infrastructure APIs minimize impacts of change by
hiding complexity. Finally just high-value functional parts should be auto-
mated.

This leads to another approach namely functional GUI tests. According to
Zhu et al. (2008), this ”means validating GUI objects, checking functional flows
by operating GUI objects, and verifying output data which are generated in
back-end and then displayed in front pages”. Within this context a GUI object
refers to an GUI element, such as a text, button, checkbox and so on. Contrary
to traditional GUI tests these do not evaluate the look of the graphical interface
but the software’s behavior. The intent is to find failures within the software
because the behavior after the interaction with GUI elements is not correct.

1Last retrieved on 1.05.2015 from http://blogs.telerik.com/kendoui/posts/13-06-19/four-ui-
test-automation-tips-for-html5-applications

30 2.6 Test Automation

For example, if the GUI presents unexpected data after submitting a request
by clicking a button.

2.6.4 Test Evaluation

Concluding the fact that software testing only detects, more or less successfully,
existing bugs but does not show their absence, there is no decidedly end for
testing. Theoretically, a program is tested to 100% if one or more tests have
been executed for every possible case. If no more failures appear, the software
is referred to as bug free. Unfortunately this is simply impossible in most cases.
Hence the number of test possibilities is usually huge, sometimes even infinite.
Whenever the testing process is profit-driven, the testing end occurs if either
time, budget or the test cases are exhausted. Another rule to stop could be the
reliability of the SUT or if the testing costs exceed the benefits (Fraser et al.,
2009; Pan, 1999).

For this reason, one important aspect in sofware testing processes is to define
economically and technically viable success criteria. At the same time, the SUT
has to be reliable in order to meet the requirements. For this, the quality of test
suites is measured. Two deterministic and commonly used methods are the cov-
erage analysis and the mutation analysis (Fraser, 2007).

Coverage analysis concerns the parts of code which are covered by the tests.
The result gives information about the amount of executed parts of the SUT
while running the test suite. The common forms are based on the source code,
but there are also others which analyse the lifetime of variables (data flow cov-
erage), loops, race conditions, object code, formal models or even specifications.
To name two common methods, the statement coverage reports on the lines of
executed source code and function coverage depends on the executed functions
to complete a test set.

Mutant analysis, in contrast, is used to evaluate the test set. Therefore, one
has to create a set of mutants, either manual, or with a tool. A mutant is
an altered version of the original software program where a fault, a so-called
mutation operator, has been introduced, for example by changing one binary
operator. The goal now is to determine if the test set can kill all mutants. A
mutant is killed, i.e. detected, whenever at least one test case of the test set
fails instead of passing. The success is measured by the mutation score. Due to
numerous problems, especially the high computational costs, mutant analysis
is not widely distributed in commercial use (Fraser et al., 2009; Mottu et al.,
2006; Smith and Williams, 2009).

Chapter 2 Software Testing Preliminaries 31

2.7 Alternatives and Supplements

What Dijkstra (1972) already stated in the 1970s still applies nowadays:

”Program testing can be a very effective way to show the presence
of bugs, but is hopelessly inadequate for showing their absence.”

Actually, only about 50% of the errors within a program are found by a combi-
nation of unit, integration and system testing. Therefore, tests have a limit. One
idea to deal with this issue is to use formal proofs. With a formal verification one
can prove property violation or satisfaction. Unfortunately, this is mostly not
sufficient in practice, since formal proofs do not include the environment (plat-
form, compiler and so on) which directly influence the implementation. Precisely
such a proof just shows that a given model fulfils a property. Furthermore,
complex software programs can usually only be mapped to an abstract model.
Consequently this technique does not avoid software testing, but those models
help to derive test cases (Fraser et al., 2009).

Another approach are review techniques in order to read the code with the inten-
tion to find bugs. According to Dooley (2011, Chapter 15) those techniques can
increase the percentage of found faults in the code to 93% - 99%. There are three
important methods to review, namely code walk-throughs, reviews and inspec-
tions. They differ in the way of execution but are all based on the same principle
”Two heads are better than one” and attempt to find failures. Depending on the
amount of changes done within the code one or the other should be chosen. The
best time to do the review is right after the first run of unit test set according
to the new code part. In some cases it might be useful to do the review in a
step between finishing the code and unit testing.

Code walk-throughs are the most informal review method. They apply for
small bug fixes up to a few (not more than ten) lines of code. Typically, this
method involves just the code author and one or two reviewers. The author
explains the changes made to the code and their purpose to the reviewer. The
reviewer should understand them and read the affected code. The reviewer
either declines the change if there are any failures found, or accept it. In the
case of detected failures the procedure repeats such that the author fixes the new
found bugs and a new walk-through will be done afterwards. Once evaluated as
failure-free, the code can be merged to the code base for further testing (Dooley,
2011, Chapter 15).

Code reviews are already more formal and designed for larger changes or new
features within up to 500 lines of code. They are really meetings which involve
between three and five participants with distinct perspectives. One of those is
the code author, who moderates the review and takes notes. At least one of
the attendees should be a developer who has a detailed knowledge about the

32 2.7 Alternatives and Supplements

project. As counterpart an experienced developer should also be present, who
does not work on the same project to assume the quality perspective. The last
part should be covered by a tester who considers the ways of testing the new
code. Although the attempt is not to fix found failures within the review, the
participants should go through the changed code and set up a list of found
errors before the review takes place. This step is essential in order to make the
review effective (Dooley, 2011, Chapter 15).

Code inspections are more expensive in terms of time and effort than the
other two review techniques because a code inspection is not processed within
one single meeting. (Dooley, 2011, Chapter 15) Therefore, they are mostly used
in huge organizations. According to Eagan (1986), this process is separated into
several phases and has distinct roles similar to code reviews. The phases are
planning, giving an overview, preparing, the inspection itself, rework and follow
up, where only the overview operation can be omitted in some cases. In contrast
to code reviews, the author and the moderator are distinct persons, developers
have either the task to paraphrase (the reader) or review (the reviewers) the
code. Testers do not play a role here, but a recorder who takes notes and merges
the failure list of the reviewers instead.

Chapter 2 Software Testing Preliminaries 33

Chapter 3

Theoretical Concept

This chapter discusses in which manner the components of the software detego®

SURVEYOR, which is used for the practical part of this master’s thesis, may
be tested.

3.1 detego SURVEYOR Details

This section describes the platform detego® SURVEYOR in more detail. The
SURVEYOR platform provides intelligent article management functionalities
tailored for the fashion retail industry. In particular, item management across
the entire supply chain is implemented in softwar processes across the entire
fashion supply chain.

The detego® SURVEYOR is a distributed system which can be separated into
three main parts - a database, a web service component and several different
applications. An architectural overview is shown in Figure 3.1, wherein the
parts treated in this master’s thesis are colored blue. The database builds the
backbone and communicates with the clients (applications) via a web service.
There are going to be some tests concerning the data provided by the database’s
views as well. Nevertheless, the database itself is not tested excessively and
therefore it is not highlighted.

The detego® SURVEYOR platform is capable of dealing with complex busi-
ness processes. For this reason, uniquely identified items (using the EPCglobal
framework) are tracked within a state space model. The different states are il-
lustrated in the workflow of Figure 3.2, where the possible states of an item are
the circles and the rectangles describe different processes. In this example, the
state machine covers the typical process in a retail store from goods inbound
to the point of sale.

Chapter 3 Theoretical Concept 35

Internet/Intranet

C
u

s
to

m
 I

n
te

rf
a

c
e
s

W
e

b
 S

e
rv

ic
e

IT-

Backend

Master

Data

Web Service

Database

Web Application

Dashboard

Administration

Reporting

Desktop

Application

Label Reprinting

Relocation

Hand-

held

Appli-

cation

Goods In

Goods Out

Retagging

Stocktaking

RFID-PrinterRFID-Reader

RFID-Tag

Figure 3.1: Architectural overview of detego SURVEYOR, developed by Enso
Detego GmbH

Sellable

Sold

Stolen

Shipping

Label Printing
Item Print

POS
Item Sell

EAS
Item Alarm

POS
Item Return

Goods Out
Redistribution

Goods In

Stock taking

Not
Sellable

Disposing

Mostly to another data store

Available Relocation

Not Sellable, Shipping, Stolen
and Sold set the item expired.

This means, the item is not part
of the stock report anymore.

TeachIn

Book Out

Inventory

Figure 3.2: Workflow of items, developed by Enso Detego GmbH

36 3.1 detego SURVEYOR Details

3.1.1 Database

The used database (detego® Data Store) is a relational Structured Query Lan-
guage (SQL) database managed by a Microsoft SQL Server 2012. The relational
programming language SQL is designed to communicate with a Database Man-
agement System (DBMS). Select, Insert, Update and Delete statements are
used to query, define and manipulate the data. The origins of SQL date back to
the early 1970s. (Sumathi and Esakkirajan, 2007)

Table 3.1 shows the most important entities of the detego® Data Store, which
are used within this master’s thesis.

Entity Description

BusinessStep
Possible actions which may be performed on items (Ini-
tialize, Relocation...). Every item has exactly one busi-
ness step, at a particular time instant.

Group
A collection of items. Used, for example, to define the
item group performing a specific business steps.

Item
A unique entity with an Electronic Product Code
(EPC). Every item represented by a transponder, is a
product.

GroupItem
The mapping between groups and items. The amount
of items of each product for each group is specified here
too.

Product
The basis for every item. Used to define a product for
which an arbitrary number of item instances may be
available.

Site The site defines a physical facility, such as a retail store.

State
Every item has a state, for example ”sellable” or ”in-
bound”.

Location
The location is a child entity of the site property. It
defines areas of a site, i.e. sales floor or back room.

Readpoint
Used to identify the system component (i.e. PC or mo-
bile device) where a software component is running on.

Table 3.1: Most relevant entities of detego Data Store

Most of the data needed by the applications is organized within database
views. To retrieve these data, the applications are not allowed to access the
database directly, but interact via a web service. The web service queries the
database via the .NET entity framework1, which is an object-relational map-
per that allows developers to work with relational data using domain-specific
objects.

1Last retrieved on 17.04.2015 from http://msdn.microsoft.com/en-us/data/aa937723

Chapter 3 Theoretical Concept 37

3.1.2 Web Service

By the definition of Booth et al. (2004) a web service is a software system,
which supports machine-to-machine interaction over a network. Its interface
can be , for example, described by the Web Services Description Language
(WSDL), a machine-processable format, based on the Extensible Markup Lan-
guage (XML). To interact with the web service, other systems use the Sim-
ple Object Access Protocol (SOAP), also based on XML, or the JavaScript
Object Notation (JSON). Both types have advantages and restrictions. JSON
uses the Open Data Protocol (OData), initially defined by Mircosoft, which
”is a standardized protocol for creating and consuming data APIs”2. OData
uses Hypertext Transfer Protocol (HTTP) as core protocol and accepts Rep-
resentational State Transfer (REST) (Booth et al., 2004; Christensen et al.,
2001).

”The purpose of a Web service is to provide some functionality on
behalf of its owner.” (Booth et al., 2004)

Therefore, in the case of detego® SURVEYOR, the web service basically pro-
vides a well defined database-access layer in order to encapsulate critical func-
tionality. To retrieve or modify data, the clients connect to the web service
which than fetches the data from the database. This web service is provided by
the Windows Communication Foundation (WCF) and hosted on Microsoft’s
Internet Information Service (IIS)3. WCF4, a set of APIs, is part of the .NET
framework to build service-oriented applications.
The web service of detego® SURVEYOR is written in C# and provides several
interfaces for the applications.

The Authentication Service provides the authentication processes of any
user within the detego® SURVEYOR environment. Some use cases are:

• Log in with username and password

• Change the password of an existing person

• Create a new login

• Log out

2Last retrieved on 17.04.2015 from http://www.odata.org/
3Last retrieved on 30.04.2015 from http://www.iis.net/
4Last retrieved on 30.04.2015 from http://msdn.microsoft.com/en-

us/library/dd456779(v=vs.110).aspx

38 3.1 detego SURVEYOR Details

The Configuration Service provides the configuration processes of the mod-
ules within the applications of the detego® SURVEYOR. Some use cases are:

• Select the language (German, English) and load the according language
strings

• Load specific application modules depending on the configuration

• Display service and reader status

The Data Service and OData Service provide the data exchange between
the applications and the database. The Data Service provides the functionality
for SOAP calls, where every access to the database must be implemented in
dedicated methods, which allows for more flexibility and an advanced business
logic. The OData Service deals with JSON calls, where Select, Insert, Update
and Delete statements are supported by default.

3.1.3 Applications

As already stated above, detego® SURVEYOR has several front-end applica-
tions for different purposes. Those which are relevant for this master’s thesis
are briefly explained in this subsection.

Web Application
The web application is used for administration and reporting purposes. A dash-
board gives a quick overview about the stock level in a retail store, whereas the
reports represent the whole stock information in detail, including the actual
items’ location, stock takings and performed item actions. In approximately 20
different reports the user can trace the movements of items and extract detailed
stock information. To get an insight about the reports, have a look at Figure
3.3.
The main feature of the reports is their dynamic content. In this context dy-
namic means at one hand that actual data are retrieved on demand (open or
refreshing the report) and on the other hand that the user can apply filters,
show/hide columns, sort by column and open/close pre-grouped selections. An-
other feature is the PDF/CSV export of the reports’ content. The adminis-
tration area allows the user to perform special actions, for example write off
individual items or configure modules and users. The displayed content within
this area depends on the user’s permissions.
It should be noted that the web application is not connected to any RFID de-
vice. The web application displays the data stored in the database and retrieved
over the web service. Most of the functionality (i.e. manipulating the retrieved
data by means of hiding and sorting the data, or providing the export of these
and among others) is implemented using JavaScript (JS) on the client side. The

Chapter 3 Theoretical Concept 39

graphical visualization uses features of Kendo UI from Telerik5 for displaying
the data.

Figure 3.3: Some screenshots of the dashboard and reports

Desktop Application
The desktop application is a software installed on typical desktop PCs or work-
stations running on a Microsoft Windows Operating System (OS). Depending
on the projects configuration, a desktop application contains a variety of mod-
ules that provide the desired functionality. This master’s thesis focuses on one
module named label printing. Some screenshots thereto are shown in Figure
3.4.
The application is connected to an RFID-printer, and is used to print new
RFID-transponders, also called labels, if transponders are defect or lost. This
process can be initiated by the mobile device application or within the label
printing module itself. The user can define the product and the desired quantity
for which labels shall be printed and has to start this prints actively by clicking
a button. The system then prints and encodes RFID-labels with a specific opti-
cal design and layout and programs a unique identifier on every label. The GUI
shows the current status of the printer and the web service (connected or not)
and the print progress of the actual print. Furthermore, an amount of errors
exists the application and/or printer may run into, and which must be handled

5Last retrieved on 17.04.2015 from http://www.telerik.com/kendo-ui

40 3.1 detego SURVEYOR Details

correctly. For example, like every printer, also an RFID-Printer may run into a
paper jam or has no color ribbon left and others. The programming language
here is C#.

Figure 3.4: Printing a couple of labels

Mobile Device Application
Similarly, the mobile application consists of several modules and runs on top
of a Windows CE driven, RFID enabled mobile device. These devices typically
feature an RFID-reader and a barcode scanner and provide WIFI connectivity.
For most of the features the mobile device has been preferred because of the
portability, which has been a desired property. As already mentioned above,
the modules inbound and label reprinting can trigger the reprint event of a
transponder which is then handed over to the desktop application. Other fea-
tures are the modules stock taking, article search, clarification of stock differ-
ences, write off and outbound. Again, this application is implemented in C#.
Figure 3.5 shows some screenshots of the modules inventory verification and
article search.

3.2 Possibilities to Test

There is a high number of test possibilities within the detego® SURVEYOR.
The system consists of several components (applications, web service, database)

Chapter 3 Theoretical Concept 41

Figure 3.5: Screenshots of different processes of the mobile device application

which interact with each other. The functional requirements of the system are
specified in specification sheets. Therefore, it is a good point to start there
because these functionalities have to be guaranteed. These use cases illustrate
a sequence of events. To get an insight about the usual procedures, a selection of
the most significant use cases is presented in the appendix A. Those do not cover
the whole process nor all of the available modules and features. These use cases
are taken as originals from the specification sheets of the Enso Detego GmbH.
Hence, the project used as basis for this master’s thesis has been designed for
a German speaking company, the specification sheets are in German too. The
order of the use cases is in an order, as they could be part of the life cycle of a
label.

Other test cases arise from the experience with the applications. The reporting
functionality is the most frequently used system component and thus the most
important feature within the web application. It has to be verified that the right
data are displayed after any changes. Hence, there are more than 20 different
reports available, this lasts some time and even more if the verification has to
be performed manually.

42 3.2 Possibilities to Test

3.3 Actual State of Testing

3.3.1 Hardware

detego® SURVEYOR is capable to integrate several different RFID-devices,
depending on the project’s purpose. Within this master’s thesis the following
hardware is used:

• RFID-Printer: Zebra printer (desktop application)

• RFID-Reader: NordicID Merlin (mobile device application)

The hardware is bought in addition, such that the devices themselves are not
tested by the Enso Detego GmbH. Of course they are tested as soon as they have
been integrated within the software. For the integration an RFID-Middleware
developed by Enso Detego GmbH is used. Within this middleware the RFID-
Printer is tested with unit tests. The mobile device is not tested with unit
tests. The reason for this is that testing the operations of the devices in an
automatic way is challenging, hence they require one or more interactions, for
example placing a transponder into the reader’s field. Furthermore, the OS on
the mobile device is still a Windows CE 6.0, which does not simplify the process
either.

3.3.2 Software

Actually, the main part of the detego® SURVEYOR software is tested manu-
ally too. This includes all interactions with the applications. There have been
trials with QUnit within the web application but due to time reasons, these
have not been progressed further. However, the web service is tested with
unit tests. Unfortunately, due to resource reasons these are neither complete
nor maintained regularly. Hence, detego® SURVEYOR have been improved
continuously in the past, parts of the unit tests fail and there is a need to
adapt these. The actual code coverage of the web service amounts to about
40%.

3.4 Test Purposes

In general, the purpose within this master’s thesis is to automate the suitable
parts of the actual manual tests, such that the testing processes get more effi-
cient. In this context suitable parts refers to those, which are cost-intensive
to test manual at one hand, and relatively easy to automate at the other
hand.

Chapter 3 Theoretical Concept 43

Web service
Hence, the web service is the central component of detego® SURVEYOR, bugs
in this component are critical for the entire functionality. Therefore, it seems
logical to test these functions thoroughly. Additionally, the service has no user
interface, such that it could be tested manually. Consequently, the whole func-
tionality has to be tested in an automated way and most effectively using unit
tests. Hence, there is no user interface, GUI tests would not make any sense.
For component or system tests encapsulated for the web service the same ap-
plies, because these are implicitly performed whenever these kinds of tests are
executed on the applications’ level.

Web application
The main usage and therefore also effort of test automation for the web ap-
plication lies within the reporting section. There is also a dashboard and an
administration part available, but their functionality is manageable. Neverthe-
less, tests for these parts might be automated in the future. Furthermore, the
tests covered within this master’s thesis will focus on the client-sided code.
Parts of the functionality, provided within JavaScript code, will be tested using
QUnit. This avoids for example cumbersome and cost-intensive tests concerning
the displayed data and depending on the set filters. The data export function
(PDF/CSV) is affected by the filters too, hence it exports the data represented
within the web browser at the moment of the export.
Another aspect regarding automated tests of the web application is the data
representation within the GUI (Kendo UI in this case) and the resulting fea-
tures. This involves a data grid displaying the data retrieved from the service as
well as the filter possibilities applied on the grid’s columns. Testing of features,
such that showing or hiding columns, showing data within pre-grouped levels
for every grid as well as trying out every filter manually is time-intensive. All
these functionalities could be tested as component tests with GUI tests. From
now on, the term GUI tests refers to functional GUI tests (Chapter 2, Section
2.6.3.1).
The intent of these tests is to verify the displayed data before and after any
user actions. Therefore, not every sequence of user interactions is tested but
rather the main functionality. Implementing tests for each possibility of user
input combinations is not feasible due to complexity reasons and the possible
number of combinations and permutations. Additionally, most of the web appli-
cation’s features are independent from each other and as a consequence most of
the tests perform an action and evaluate the displayed data directly afterwards.

Desktop application
The current implementation of the Desktop application does not follow the
Model-View-Controller (MVC) pattern, which makes automated testing using
unit tests highly complex and practically intractable. As a consequence, the
whole functionality has to be tested together with the GUI. Nevertheless, the

44 3.4 Test Purposes

application needs to be tested in both communication directions - to the web
service/database and to the RFID-Device. Thereby, the first case is rather usual,
but the second is special in some kind hence it depends at least partly on a
device simulator. Such a simulator is part of the software framework provided by
the Enso Detego GmbH to simulate typical use-cases and facilitate automated
testing routines.

The label printing module is used to print new RFID-transponders. This in-
cludes printing data visually and programming the EPC onto the label. Au-
tomated tests are useful, although in most cases any kind of device simula-
tion will be needed. Otherwise no full automation can be achieved, whenever
a user-device-interaction needs to be performed. The printer device is already
simulated in several ways. Two versions of which are quite interesting for the
test automation.
The first one is to write the data, which are normally sent to the printer into
a file instead of printing and programming the real transponder. This can be
used to test whether the ”print-event” occurred and the correct data has been
submitted or not. The other option is to simulate the actual RFID-printer itself.
In this case, the simulator sends the same responses back to the label printing
application like a real printer would do. This could be either a success message
or one of several error notifications for each transponder to print.
Verifying the GUI is also useful in a small number of cases. This can, for in-
stance, be used to verify the correct handling of the application when a print
error occurred.
Other kinds of tests still have to be performed manually in the near future. As
an example, the optical print of a label needs to be verified manually because
although the right information is submitted, the information might be moved
over the printing borders or blurred, as well as undesirable ink lines, dots and
similar might be printed due to the printer’s configuration. Whereas, this step
could be automated, for example with an optical verification system, this is con-
sidered out of scope within this master’s thesis.

Mobile device application
Known from previous attempts within the Enso Detego GmbH, debugging and
test automation in form of unit tests is not practicable on the Windows CE 6.0
OS. Nevertheless, certain automatic system tests would be a great feature. The
mobile device application can be updated automatically from a central place
with a deploying mechanism over the network. As part of that, the configuration
is done automatically and might run into an error for several reasons. In this
case, an automatic start of the mobile device application, performing just one
example task would give already a huge amount of confidence.
To perform any process correctly, the application has to work properly and
the connection to the web service and the database must be established. It
has to be evaluated whether any kind of functional GUI test could be applied
in this case. The idea is to start the application via a remote tool while the

Chapter 3 Theoretical Concept 45

mobile device is connected to a PC via a cable. Although testing the application
running on the mobile device, the test would be executed on a PC using a
capture-reply tool in combination with a remote-control software for the mobile
device.

3.5 Test Frameworks and Tools

There is a high number of possibilities for test frameworks and test tools on the
market for different purposes. Each of them has more or less features and might
be useful or not, depending on the use case. The selection of the appropriate
test environment is important, since this determines whether the desired test
cases can be implemented efficiently or not.

3.5.1 Unit Tests

As previously stated in Section 3.3.2, a number of unit tests has already been
implemented for the web service. These are based on the Visual Studio Unit
Testing Framework. An alternative would be for instance the NUnit tests, but
the testing framework of Visual Studio has been evaluated as sufficient previ-
ously and might be easier to integrate into the automated build process within
the TFS, too. Hence, the TFS will be used in this thesis, as there are no reasons
to change the framework from the author’s point of view.
The web application is naturally separated into code executed on the server-
and the client-side. There are only a few basic functionalities implemented on
the server, such that the unit tests within this master’s thesis will focus on the
client-side. For the test of the client-side functionality, the QUnit6 framework
is used.

3.5.2 GUI Tests

For the web application these kind of tests will be based on the Telerik Test-
ing Framework (TTF)7. This framework allows a code-based implementation
of functional GUI tests and supports the Telerik and some of the Kendo UI
features.
Unfortunately, the TTF only supports Windows Presentation Foundation (WPF)
applications but not those which use WinForms, like the desktop application.
Such applications can be tested with Microsoft’s Coded UI tests8.

6Last retrieved on 30.01.2015 from http://qunitjs.com/
7Last retrieved on 18.04.2015 from http://www.telerik.com/teststudio/testing-framework
8Last retrieved on 07.11.2014 from http://blogs.telerik.com/winformsteam/posts/12-10-

12/build-stronger-applications-with-coded-ui-tests-for-winforms-today.aspx

46 3.5 Test Frameworks and Tools

For the mobile device application, the intent is to use a GUI test to ensure
an established connection between the application and the web service, as the
mobile device can not be addressed directly for GUI tests. The idea hence to
perform remotely driven tests on the mobile device using EveryWAN as remote
connection tool.

Chapter 3 Theoretical Concept 47

Chapter 4

Implementation

This chapter discusses the practical part of this master’s thesis. The imple-
mented tests as well as several issues are described in detail.

4.1 Collaboration Platform - TFS

As briefly stated in Chapter 1, Section 1.2.2 the collaboration platform used
within this master’s thesis is a TFS. This platform can either be used as service
within the cloud, which is kept up to date automatically, or may be hosted
on a dedicated server on premises. For the purposes of this master’s thesis,
a dedicated TFS within the corporate network is used as collaboration plat-
form.

This platform needs a domain controller. To provide collisions with the in-
house network, a TFS 2012 and a client have been set up as virtual machines
in an isolated network. In this case, after the installation the domain controller
including the users and permissions must be configured. A number of tutorials
for this are available on the Internet.
The TFS has a quite complex architecture and the configuration turned out
a bit challenging, as some actions are not intuitive at least for the author of
this master’s thesis. To clarify, the configuration is divided into three different
parts. The basic TFS features can be configured within the Administration
Console. Later on Team Projects, which contain the projects’ source code, can
be created within a Visual Studio installation connected to the TFS and only
there. Such instances are typically clients, whereas the configuration of those
Team Projects, including the permissions of the persons working with the code
or the configuration and maintenance of so-called Work Items must be done via
the web view of the Team Project. Work items are the fundamental elements of
the TFS’ ticket system. Nevertheless, adding and changing work items can be
done either via the web view as well as any Visual Studio instance as described
above.
The version control has to be specified when adding a new Team Project - Team
Foundation Version Control (TFVC) and Git are supported. The first approach
was to use Microsoft’s own version control TFVC. This is a centralized version

Chapter 4 Implementation 49

control system similar to Apache Subversion (SVN), which had been used up to
now by the Enso Detego GmbH. It turned out that the migration of the already
existing code from the existing SVN repository to TFVC is an extremely tedious
and error-prone process. The most effective migration seemed to be from SVN
to Git and later on from Git to TFVC. Git is, as a decentralized source control
system, more complex but has several advantages compared to a centralized
system from the development team’s view. Therefore it has been decided to
use Git as version control system within the TFS. It turned out that only
the cloud solution of the TFS 2012 supports Git, but not the native one. The
newer version 2013 does, therefore, the server was updated. It should also be
mentioned that only the Visual Studio 2013 or a newer version can connect to
the TFS 2013 via the team explorer.

4.2 Web Service

Since the web service is the heart of the detego® SURVEYOR, those tests were
developed first.

4.2.1 Preliminaries and Prerequisites

As described in Chapter 3, Section 3.3.2, a number of unit tests regarding
the web service have been implemented in the past but not all of them still
work as expected. Therefore, the initial step in order to complete them was to
identify which use cases are already unit tested and to select those which do
not work as expected. The existing tests already covered the most important
processes but have been designed while implementing and improving the func-
tionality of the web service. They are not suitable for automated tests because
nearly all of them were positive tests and assertion statements were hardly
used. Accordingly, all of the existing tests have to be revised and at least ex-
panded with assertions to determine automatically whether the test runs pass
or fail.

Another issue is the independence of the unit tests. The already existing tests
had been built up depending on each other, and they needed either a certain
order or a manual revision. Although unlikely for unit tests, there may be
reasons for dependence, for example if the test initialization takes a long time
or a huge amount of data has to be transferred. No such reason could be found
for this software project. Therefore, the tests will be reworked such that they
can be executed separately. This implies that a test initialize method is required,
where items are transferred into certain states.

50 4.2 Web Service

The back-end of the detego® SURVEYOR is a database and all the applications
interact with this database over the web service. The instance of this database,
needed for the tests, is created as an empty database in the correct form at first
and to insert some predefined values, which are always the same for this soft-
ware project (i.e. business steps and read points), in a second step by executing
a script. It had been decided to make the tests executable independently from
any additional manufacturing data stored in the database. This assures that
the tests can be executed for example on a live system if any problems occur.
Nevertheless, if the amount of stored data is huge, the tests may become slow.
Therefore, commonly, the tests will be executed against a database created with
the script mentioned before.
Some data (in the following called master data) are needed initially. In practice,
these data are imported from the merchandise information system but to en-
sure their independence, they are created automatically before the first test is
started. Additionally, with this independent master data the assert statements
in the individual tests are easier to express. As an example, products and items
have a 1:n relation in the system. Whenever using a product which has been
created immediately, one can be sure that there are no other items stored as
those created within the actual tests. Otherwise, the assertions would need to
include the time span of the running tests, which makes them more compli-
cated. These values, especially those which have to be unique in the database,
are chosen unrealistic although valid, such that collisions with perhaps already
stored data are unlikely.

4.2.2 Test Implementation

Unit test frameworks nowadays provide class and test initialize methods.
It was decided to use a class initialize method to create the used master data
mentioned above, which are used for the whole test run. For the purpose of this
master’s thesis two different products, a supplier and some other associated
data like the supplier’s address and site are stored during the initialization.
Within the test initialize method, several items are brought into a certain
state, e.g. sold or available on the stock, and so on. The service tests de-
pend on the state of the items, therefore not each operation is valid for each
state.

In the first step, the existing test methods have been evaluated regarding
whether they are still applicable or not due to the change of functionality. The
ones still valid have been extended with assertions. These two steps cost the
most time effort for the service unit tests within this master’s thesis. Assertions
are done by evaluating the state of the item after the test within the database.
Since the existing tests were nearly completely positive, the test suite has been
expanded with negative tests for these existing methods. Finally, some missing
tests have been written.

Chapter 4 Implementation 51

The tests are performed according to the following principle: a service method
is called for a specific item, and later on the state of the item is verified. Thus,
only a few of the tests are described in the following. In this section, a product
is equal to an article.

public void InitializeItemValid()
The item initialization is the first operation within an item’s life cycle. The
product corresponding to the item’s identifier (EPC) must be stored within the
database. Listing 4.1 shows the test, which verifies first whether the product
is stored in the database and then calls the service method with one specific
identifier. Since the identifier is new to the system, it must be stored in the
database as initialized item. Subsequently, a so called Track and Trace event
(for logging and monitoring purposes) is stored in the database.
The tables and views of the database are used to verify the item’s state. The
chosen product as well as the right business step, read point and location for
the initialization are verified.

1 [TestMethod]
2 public void I n i t i a l i z e I t e m V a l i d ()
3 {
4 string g t in = gt in2 ;
5 using (var e n t i t i e s = new SurveyorDataStoreEnt i t i e s ())
6 {
7 Assert . I sNotNul l (e n t i t i e s . Products . F i r s tOrDe fau l t (p

=> p . Gtin == gt in)) ;
8 Lis t<string> i d e n t i f i e r s = new List<string >() ;
9 i d e n t i f i e r s . Add(”303487 A23815B38000000001 ”) ;

10 using (var c l i e n t = new DataServ i ceC l i ent ())
11 {
12 c l i e n t . I t e m I n i t i a l i z e E p c (
13
14 b u s i n e s s S t e p I t e m I n t i a l i z e ,
15 l o c a t i o n S a l e s F l o o r ,
16 readPointRelocat ion ,
17 DateTime . UtcNow , i d e n t i f i e r s) ;
18 }
19 Assert I temCreat ion (i d e n t i f i e r s , gt in , e n t i t i e s) ;
20 }
21 }
22 private void Assert I temCreat ion (Lis t<string> i d e n t i f i e r s ,

string gt in , SurveyorDataStoreEnt i t i e s e n t i t i e s)
23 {
24 using (var e n t i t i e s R e p o r t = new

SurveyorDataStoreEnt i t i e sReport ())

52 4.2 Web Service

25 {
26 foreach (var i d e n t i f i e r in i d e n t i f i e r s)
27 {
28 var itemEntity = e n t i t i e s . Items . F i r s tOrDe fau l t (i =>

i . I d e n t i f i e r == i d e n t i f i e r) ;
29 var product = e n t i t i e s . Products . F i r s tOrDe fau l t (p =>

p . Gtin == gt in) ;
30 var stockByItem = e n t i t i e s R e p o r t . StockByItems .

F i r s tOrDe fau l t (s t => s t . I d e n t i f i e r == i d e n t i f i e r
&& s t . Culture == ”de−DE”) ;

31 var trackAndTrace = e n t i t i e s R e p o r t .
TrackAndTraceBriefs . F i r s tOrDe fau l t (t t => t t .
I d e n t i f i e r == i d e n t i f i e r && t t . Culture == ”de−DE
”) ;

32 var movemByItemAndBS = e n t i t i e s R e p o r t .
MovementByItemAndBusinessSteps . F i r s tOrDe fau l t (
mib => mib . ItemId == itemEntity . ItemId && mib .
Culture == ”de−DE”) ;

33
34 Assert . AreEqual (product . ProductId , i temEntity .

ProductId) ;
35 Assert . AreEqual (b u s i n e s s S t e p I t e m I n t i a l i z e ,

stockByItem . BusinessStepName) ;
36 Assert . AreEqual (b u s i n e s s S t e p I t e m I n t i a l i z e ,

trackAndTrace . BusinessStepName) ;
37 Assert . AreEqual (l o c a t i o n S a l e s F l o o r , stockByItem .

LocationName) ;
38 Assert . AreEqual (readPointRelocat ion , stockByItem .

ReadPointName) ;
39 Assert . I s N u l l (i temEntity . Expired) ;
40 Assert . AreEqual (b u s i n e s s S t e p I t e m I n t i a l i z e ,

movemByItemAndBS . BusinessStepName) ;
41 }
42 }
43 }

Listing 4.1: Valid initialization of an item

As a negative test, the same method is called with an identifier of an unknown
product, which just has to be ignored. After the test the identifier is not allowed
to exist within the database. Another negative test tries to initialize an existing
item currently being in another business step. Again, this initialization has to
be ignored. This is verified, such that the business step has not been updated
by the test.

These kind of tests have been implemented for the most critical components of

Chapter 4 Implementation 53

the SURVEYOR platform to ensure that the basic functionality can be tested
in an automated way. Implementing tests for the whole service would be out of
scope of this master’s thesis.

public void DoubleBulkInsert()
This test is used to simulate two stock takings performed simultaneously. Due
to the architecture of detego® SURVEYOR it is possible that the stock tak-
ing process is completed on two mobile devices at the same time. It has to
be assured, that the data of both processes are handled correctly. Thus, this
multi-threaded test calls the same method with the same 1000 items. Within
the database two distinct groups with the same items must be stored. Listing
4.2 shows the according code.

1 [TestMethod]
2 public void DoubleBulkInsert ()
3 {
4 DataServ i ceC l i ent c l i e n t = new DataServ i ceC l i ent (”

Bas icHttpBinding IDataServ ice ”) ;
5 var t1 = System . Threading . Tasks . Task . Run (() =>

InsertStockTaking (c l i e n t)) ;
6 var t2 = System . Threading . Tasks . Task . Run (() =>

InsertStockTaking (c l i e n t)) ;
7 System . Threading . Tasks . Task [] t a sk s = { t1 , t2 } ;
8 System . Threading . Tasks . Task . WaitAll (t a sk s) ;
9 Thread . S leep (3000) ;

10
11 using (var e n t i t i e s = new SurveyorDataStoreEnt i t i e s ())
12 {
13 DateTime now = DateTime . UtcNow . AddSeconds(−3) ;
14 var groups = e n t i t i e s . Groups . Where (g => g . GroupType

== 3 && g . TimeStampCreated >= now) ;
15
16 Assert . AreEqual (2 , groups . Count ()) ;
17 Guid Id1 = groups . F i r s tOrDe fau l t () . GroupId ;
18 var groupItems = e n t i t i e s . GroupItems . OfType<

GroupItemIdent i f i e r >() . Where
19 (g i i => g i i . GroupId == Id1) ;
20
21 Assert . AreEqual (1000 , groupItems . Count ()) ;
22 Guid Id2 = groups . OrderByDescending (g => g . GroupId) .

F i r s tOrDe fau l t () . GroupId ;
23 groupItems = e n t i t i e s . GroupItems . OfType<

GroupItemIdent i f i e r >() . Where
24 (g i i => g i i . GroupId == Id2) ;
25

54 4.2 Web Service

26 Assert . AreEqual (1000 , groupItems . Count ()) ;
27 Assert . AreNotEqual (Id1 , Id2) ;
28 }
29 }
30
31 private bool InsertStockTaking (DataServ i c eCl i ent c l i e n t)
32 {
33 Lis t<string> i d e n t i f i e r s = new List<string >() ;
34 for (int i = 8000 ; i < 9000 ; i++)
35 {
36 i d e n t i f i e r s . Add(”303443D11C0AD9C06B” + i . ToString (”D2

”) . PadLeft (6 , ’ 0 ’)) ;
37 }
38 c l i e n t . I n s e r tS to c k tak ing (bus inessStepItemInventory ,

locationBackroom , readPointHandheld , GroupType . L i s t ,
DateTime . UtcNow , null , i d e n t i f i e r s) ;

39 return true ;
40 }

Listing 4.2: Simultaneous performed stock taking with 1000 items

As previously described, each business step has in and out states. These are also
mapped within a database view. To verify that these conditions are still fulfilled,
the business steps are performed on items in specific states.

To gain some confidence about the data delivered by the database views and
to ensure that these are still working after a modification, one integration test
was developed in addition to the unit tests described above. As it is performed
within the service, it is mentioned here. Initially, an ordered test of the ser-
vice tests mentioned above is executed, and later on the test verifies whether
the data in the database views are still correct. For this, these views are used
which display the actual amount of items within the stock. For the verifica-
tion values from other database views, providing the same information, are
used.

4.2.3 Problems

The only problem occurred at the start of the multi-threaded test development.
At first, it has been tried to start as 4.3 shows, but the threads did not run
simultaneously.

Chapter 4 Implementation 55

4.2.4 Results

The implemented unit- and integration tests cover the critical functionality
within the detego® SURVEYOR platform and build the foundation for au-
tomated regression testing. In particular, the tests provide a code coverage of
about 40%. This is due to the fact that this master’s thesis does not cover all pro-
cesses of detego® SURVEYOR and because there is still death code available.
The code coverage needs to be extended in the course of further developments.
Additionally, the tests concerning the database views might be revised in order
to get more but smaller tests and to expand them on the other database views
in the near future. Nevertheless, the approach and implementation described
above increases the efficiency and provides a considerable speed-up compared
to the previously used, manual testing procedures.

1 public void DoubleBulkInsert ()
2 {
3 Thread thread1 = new Thread (new ThreadStart (

InsertStockTaking)) ;
4 Thread thread2 = new Thread (new ThreadStart (

InsertStockTaking)) ;
5 thread2 . S ta r t () ;
6 thread1 . S ta r t () ;
7 }

Listing 4.3: Erroneous try of a multi-threaded test

4.3 Web Application

The web application is tested with a unit testing framework for JS and func-
tional GUI tests.
The unit tests are used to test the functionality implemented on the client-
side with JS code, for example whether the request’s response provides the
correct data. The aim of the functional GUI tests is to verify the displayed
data after any user interaction and that no unexpected behavior occurs af-
ter a user’s action. Some use cases might be treated with both kinds of tests.
Since unit tests can be performed faster than any GUI tests, they should be
preferred.

The web application communicates via the web service with the database.
Thus, the web application tests can only be executed if the web service and
database are installed and configured accordingly and the connection is estab-
lished.

56 4.3 Web Application

Again, initial data are necessary for both kinds of tests. The main focus for
testing the web application lies on the various reports that require initial data
in order to be tested in a meaningful way. There are two other possibilities
for an initial data set-up. The first approach is to use a database which has
been populated by a series of preceding actions (method calls). In contrast,
the second approach involves the backup of a productive database. In the first
case, the service tests would not be allowed to clean-up the database after their
execution, which endangers the independence of the web service unit tests and
makes them more complicated. At the same time, these web service tests do not
insert that amount of data which might be useful or even necessary for some of
the web application tests. Therefore, it was decided to use a specific backup of
an already productive system of this project.

4.3.1 Unit Tests

QUnit is the used framework for this kind of tests. Since the tests use the
web service and database as backend instead of a mock-up, the definition of
unit test must be reconsidered. Nevertheless, one test always deals with one
unit or, respectively, one function of the JS code. It would be possible to pro-
vide such a mock-up as backend, but this is beyond the scope of this the-
sis.

4.3.1.1 Preliminaries and Prerequisites

When starting to implement the first QUnit test, the question how to integrate
the tests into the web application the best way was faced. Developing the test
script within the web application itself, as it is done within several tutorials,
was no possibility. The tests would be executed at the customer’s installation
too, which is not desired. Taking a copy of the web application for the test
implementation would implicate high maintenance costs and is error-prone,
because with each modification the copy has to be updated too. Finally, it was
decided that the best solution would be to load the content of the web page
dynamically into the tests’ Hypertext Markup Language (HTML) file when
starting them.

Within this subsection the terms web page and page refer to one page within the
web application, i.e. the report Stock by Articles which lists all available items
grouped by the article. The functionality of the reports is mainly the same.
Certain data are displayed and may be filtered or exported. It should be able
to adapt the tests of one report easily to the others. The functionality of the
reports is divided into different JS files. There is one general script file (surve-
jor.js) providing basic functionalities used within the whole web application,
and each web page has an own JS-file too. Within the scope of this master’s

Chapter 4 Implementation 57

thesis two kinds of tests have been developed. On the one side functionality
within the general script file has been tested with several input possibilities
for a function. On the other side, the assertions of the individual page tests
were done with hard-coded values as it was defined to set-up the database
with the same backup every time. Nevertheless, these assertions could be ex-
tended to query the database for the right value. This would cost additional
time and since the data for the assertions are known, it was decided to use
those.

4.3.1.2 Test Implementation

The most time for the test implementation has been investigated at the begin-
ning until the content of a report could be loaded dynamically into the test’s
HTML-file. A minimalistic QUnit example is shown in Listing 4.4. To test this
web application, the content of the script surveyor.js can be added by including
the script into the HTML’s body. To get access to the response of any Asyn-
chronous JavaScript and XML (AJAX) request and therefore to the retrieved
data, the content of the page’s JS-file has to be appended to the HTML-tag
<div id=”qunit-fixture”>. This lasted several days, although the resulting code
is simple. The occurring problems are elaborated in more detail within Section
4.3.1.3.

1 < !DOCTYPE html>
2 <html>
3 <head>
4 <meta charset=”utf−8”>
5 <t i t l e>QUnit Tests</ t i t l e>
6 <l ink rel=” s t y l e s h e e t ” href=”// code . jquery . com/ qunit /

qunit −1 .16 .0 . c s s ”>
7 </head>
8 <body>
9 <div id=”qunit ”></div>

10 <div id=”qunit−f i x t u r e ”></div>
11 <script src=”// code . jquery . com/ qunit / qunit −1 .16 .0 . j s ”><

/ script>
12 <script>
13 QUnit . t e s t (”my f i r s t t e s t ” , f unc t i on (a s s e r t) {
14 a s s e r t . ok (1 == ”1 ” , ”Passed :) ”) ;
15 }) ;
16 </ script>
17 </body>
18 </html>

Listing 4.4: A basic example for a QUnit test

58 4.3 Web Application

QUnit provides a ”beforeEach” and ”afterEach” function, which are executed
before and after each test. These were not necessary for this test purposes, but
to assure that all scripts are loaded completely before starting the first test and
the session was renewed by passing an authentication process, the tests were
configured not to start automatically.

The web page’s script to test has to be adapted in a slightly way, such that the
data source is no longer accessible just for internal methods. The data source
fills the data grid of each report and is probably needed in each test. Thus, the
viewModel of Kendo must be expanded. How to access the data source is shown
in line seven of Listing 4.5.

QUnit.test(”load data source”, function (assert){...}
The basic functionality of a report is verified within this test. When calling the
page, the data source to display within the grid is requested from the database.
This test verifies whether the first grid page (per default containing 20 columns)
is filled with data. Since, JS acts asynchronously, the test must be stopped until
the data source has been loaded. Otherwise the assertion might be done before
the request to the database is completed. Listing 4.5 shows the test with two
assertions.

1 QUnit . t e s t (”load datasource ” , f unc t i on (a s s e r t) {
2 expect (2) ;
3 var done = a s s e r t . async () ;
4 var done1 = a s s e r t . async () ;
5
6 setTimeout (func t i on () {
7 a s s e r t . notEqual (ds . page . viewModel . productsSource ,

undef ined , ”viewModel loaded c o r r e c t l y ”) ;
8 done1 () ;
9 } , 10000) ;

10
11 ds . page . viewModel . productsSource . bind (”change ” ,

f unc t i on (e) {
12 a s s e r t . equal (e . i tems . length , 20 , ”20 items loaded

in to datasource ”) ;
13 done () ;
14 }) ;
15 ds . page . viewModel . productsSource . read () ;
16 }) ;

Listing 4.5: QUnit example stopping the test while loading data

QUnit.test(”download PDF”, function (assert){...}
The PDF download queries the data source for the report from the database

Chapter 4 Implementation 59

and exports it to a PDF-file. This functionality is verified in two steps. First,
the test has to wait until the data grid has been filled with the data. Usually
the PDF is exported when the user clicks on a specific button but the test
performs the AJAX-call directly. It verifies if the response of the request is
valid. To check the amount of data items in the response, the URL is modi-
fied, such that the response is of the type JSON and the amount can be re-
trieved.

QUnit.test(”download CSV”, function (assert){...}
This test does nearly the same as the one above but exports the data source as
CSV-file.

QUnit.test(”Multiselect supplier”, function (assert){...}
This test has been implemented as example for testing the multi-select filters.
As for the tests above, the data source must be loaded first, later on a supplier is
selected and the data source is filtered such that only articles from this supplier
are shown. The test verifies the name in the supplier’s column of each row in
the data source with the selected name.
Executing this test together with the other tests sometimes leads to a timing
problem. The assertion starts before the data source is loaded completely. What
the problem is could not be figured out until now.

The following tests describe how to verify general functionalities within the
surveyor.js and without loading a specific page. Thus, the code within Listing
4.6 (the dynamic page load) is not necessary here. The QUnit tests start right
after the authentication process. These tests aim to verify the words/sentences
displayed on the page.
To support different languages the detego® SURVEYOR uses a lookup mecha-
nism. Within the source code is the key, which is replaced with the appropriate
language term at run time (localization). There is also a fallback, if the key
does not exist in the database. If the given key can not be found, the fallback
splits the given key at the first point and searches for the second part of the
key in the lookup table. This is repeated until a value is found or the string is
empty.
Another feature is the tooltip displaying the whole term for column headers,
whenever the values’ abbreviation is used.

QUnit.test(”Test localizing fallback - Displayname found”, function (assert){...}
The test selects the first string including .Column. within the key from the
database and adds a prefix, which definitely does not exist. With the resulting
string the localise-function is called. It must return the according value of the
key selected before.

QUnit.test(”Test localizing - Displayname found”, function (assert) {...}
This test does the same without prefix. This is the default case and should
never fail, otherwise it must be suggested that the whole web page is displaying

60 4.3 Web Application

the keys instead of the appropriate localization.

QUnit.test(”Test tooltip of short header - Abbreviation != null”, function (as-
sert) {...}
As the tests above the database is queried for a string. The tooltip function is
(at the moment) only used for the columns headers, thus the used key has to in-
clude the term .Column. again, and additionally, the abbreviation must not be
NULL. The function - gridHeaderTemplate(...) - which returns the appropriate
HTML-tag is called and the result is compared with a partly hardcoded HTML-
tag which uses the same key and abbreviation.

The HTML-tag for the grid’s column headers depends on the parameters of
the gridHeaderTemplate-function. The icon-class and the key are obligatory
and the third optional parameter defines the header’s text if a tooltip should
be shown. Without optional parameter the header has an icon and the value,
otherwise a single icon or an icon and the abbreviation is shown. These cases
are each tested within an own test, where both cases, whether the abbreviation
in the database is NULL or not, are considered. Additionally one test exists
handing over an invalid string as optional parameter, which has to results in an
icon and the value.

4.3.1.3 Problems

The main problem at the beginning was, that the page content could not be
loaded dynamically, and it was difficult to figure out, what the problem was.
At the beginning it has been supposed, that the problem occurs in combination
with the KendoUI framework of Telerik, which turned out unfoundedly. The
finally and working function which append the content is provided in Listing
4.6. The first problem, which still has not been solved, was the identification of
the html <div id=”content”> of the web page to append. The workaround for
this can be seen in line six of Listing 4.6. Later on, to get the script an AJAX-call
as in Listing 4.7 has been used and failed.

After these problems have been solved, the test started before the content
had been loaded completely. Fortunately, QUnit provides a configuration which
causes the tests not to start immediately when the test-HTML is called. Ini-
tially the tests’ start has been called to early, which caused a race-condition
sometimes.

Additionally, the web application takes over the browser’s default culture at
the beginning. For some reason this failed within the tests. This issue could be
easily fixed by setting the culture to english within the surveyor.js, whenever
the culture-object is null at the page load.

Chapter 4 Implementation 61

1 func t i on loadStockByProducts () {
2 $. a jax ({
3 u r l : ’ . . / . . / . . / Reports / stockByProducts ’ ,
4 dataType : ’ html ’ ,
5 s u c c e s s : f unc t i on (re sponse) {
6 var div = $ (re sponse) [7 5] ;
7 $(’# qunit−f i x t u r e ’) . append (div) ;
8 $. g e t S c r i p t (’ . . / r e p o r t s / stockByProductsViewModel . j s ’)
9 . done (func t i on (s c r i p t , t ex tS ta tus) {

10 conso l e . l og (t ex tS ta tus) ; // Success
11 conso l e . l og (”ViewModel loaded ”) ;
12 QUnit . s t a r t () ; // C a l l here to prov ide a race

c o n d i t i o n
13 })
14 . f a i l (f unc t i on (jqxhr , s e t t i n g s , except ion) {
15 conso l e . l og (except ion) ;
16 conso l e . l og (jqxhr . s t a t u s) ;
17 conso l e . l og (” f a i l u r e ”) ;
18 }) ;
19 }
20 }) ;}

Listing 4.6: Function loading the page’s content dynamically

1 $. a jax ({
2 u r l : ’ . . / r e p o r t s / stockByProductsViewModel . j s ’ ,
3 dataType : ’ s c r i p t ’ ,
4 s u c c e s s : f unc t i on (e) {
5 conso l e . l og (ds . page . viewModel) ;
6 kendo . bind ($(’# content ’) , ds . page . viewModel) ;
7 }}) ;

Listing 4.7: Failing AJAX-call to load the web page’s script

Another issue has been faced while the test’s implementation, caused by a wrong
authentication process within these. This resulted in an expired session after
some time of testing and the browser’s console showed the failure ”Uncaught
TypeError: Cannot read property ’dataSource’ of undefined@ 1351 ms”. Hence
the failure occurred within the source code of a library, it took some time to
figure out what the problem was.

4.3.1.4 Results

Once the problems at the beginning have been solved, the tests could be imple-
mented without heavily problems. One aspect which must be kept in mind is

62 4.3 Web Application

the asynchrony nature of JS and thus also QUnit. The tests must be stopped at
certain steps, to wait for a result. QUnit is going to deprecate several core meth-
ods and replaces them, within the release 2.x. Nevertheless, the new methods
can be used since QUnit 1.16.x, which has been used for this master’s thesis.
One of these methods is QUnit.asyncTest(). Instead var done = assert.async()
is used within a synchronously test, which waits until done() is called. Most
of the cases a test fails while the development it is caused by the asynchro-
nism.

4.3.2 Functional GUI Tests

For the GUI tests the TTF is used. These tests are implemented to verify
that specific user interactions do what they are supposed to do, i.e. the web
browser displays the correct data after any actions have been performed by a
test.

4.3.2.1 Preliminaries and Prerequisites

For the first tests one of the simpler reports was chosen. Since the TTF was new
to the author of this master’s thesis, the initial training should base on some
simple actions. Furthermore, it was not certain at the beginning whether the
implementation of the tests would be possible with this framework, although
it seemed to be the best alternative. Nevertheless, the idea was to adapt these
first tests to more complex reports afterwards. The reports which should be
tested have some features in common. Each provides the data in a grid with up
to three levels and the possibility to hide the lower levels. Some of the grid’s
columns are hidden by default and the user can show and hide all individual
columns via a drop-down menu. Additionally every report provides two ways of
filter options. The first one are multi-selects or time-picker for some predefined
columns. These are easier to apply for the user as the second method, which
is the default filter option within the grid and available for nearly all columns.
The last consistent feature is a export function of the displayed data as PDF-
or CSV-file.

In general, the tests should verify that the web page behaves accordingly after
any user actions, such that the file exports, show/hide columns and every filter
are working correctly. The latter one means that the data changes according
to the filtered values. It is not the aim of these tests to verify every possible
combination of the filters. Hence this can be done much easier and faster within
QUnit tests. For the multi-select filters it is sufficient to test with two different
values, because there should be no reason why the multi-select works for two
selections but not for any more.
The columns’ filters are constructed differently depending on the data-type

Chapter 4 Implementation 63

of the value. For example a string value can be filtered whether it ”contains”,
”starts with”, ”ends with”, ”is equal to” or ”is not equal to” any given string. The
filters are performed via typical select queries in the database and therefore it is
not necessary to test every possibility. It is assumed that the SQL functionalities
work by default and consequently, that if one selection works as required, the
others do as well. The typical problem which occurred in the context of these
filters until now has been that a table or view within the database changed and
does not correspond to the web application anymore. Whenever this happens,
at least one filter does not work at all.
The file export tests have the purpose to verify the download of files (PDF or
CSV). The content of the downloaded files will not be parsed and evaluated as it
is completely out of scope for this master’s thesis.

The TTF supports four web browsers, namely the Internet Explorer, Mozilla
Firefox, Safari and Chrome. Considering the every-increasing market share
of Google’s Chrome browser, the tests are carried out mainly using Chrome
throughout this thesis. Nevertheless, changing the web browser for the tests can
be performed easily (changing one line of code within the test initialization) and
the tests should work in the other browser too. Since the distinct web browsers
sometimes work differently, some other adaptations might be necessary that the
individual tests work correctly.
Additionally, it is recommended to adapt the web browser’s settings on the
testing machine as described in the documentation of the TTF1. Especially the
provided download functions, which are going to be used within this master’s
thesis, behave differently depending on the settings of the used browser. For
Chrome it is recommended to set the download option to ”Ask where to save
each file before downloading”.

4.3.2.2 Test Implementation

The TTF provides a basis test class which facilitates the set up and tear down
methods and provides some other functionalities for example getting the active
browser. To run the unit test using the TTF, an initialization code is needed.
This initialization is executed before each test.
At first, the Initialize()-method from the base class is called. This method has
several overloads, but for this master’s thesis the one in Listing 4.8 is used. The
parameters define whether the browser is going to be reused, the log location
and a write line delegate to call when logging from Log.WriteLine. The first
parameter is set to true which means that the opened web browser for the first
test is reused for all other tests within the test-run. This behavior saves time for
each executed test which otherwise would be consumed by opening, navigating

1Last retrieved on 09.05.2015 from http://docs.telerik.com/teststudio/testing-
framework/getting-started

64 4.3 Web Application

through and closing the web browser. This feature will be used because GUI
tests need quite some time anyway while performing AJAX calls, displaying the
data and so on. As a consequence, the login has to be performed after launching
the browser before the first test run is started. The web browser will be closed
after all tests has been executed.
Next, the function SetTestMethod() is called. Together with the Initialize Method,
this procedure is responsible for the WebAii initialization which is used by the
TTF.
Finally some additional initialization actions are performed. First, a new Chrome
browser is launched. This line of code will be ignored if a browser has been al-
ready launched within the test run, caused by the Initialize()-method described
above. Afterwards, the options to automatically refresh the DOM-Tree and to
wait until the browser is ready are set to true. Finally the web browser navigates
to the report to test (Listing 4.8). This last statement causes, for all except the
first test, a page reload, which is necessary to undo the actions performed in
the test before.

1 I n i t i a l i z e (true , ”C: / WebAiiLog ” , new TestContextWriteLine
(this . TestContext . WriteLine)) ;

2
3 SetTestMethod (this , (string) TestContext . P ro pe r t i e s [”

TestName ”]) ;
4
5 Manager . LaunchNewBrowser (BrowserType . Chrome) ;
6 ActiveBrowser . AutoDomRefresh = true ;
7 ActiveBrowser . AutoWaitUntilReady = true ;
8 ActiveBrowser . NavigateTo (TESTPAGE) ;

Listing 4.8: Test Initialization within the TestInitialize()-method

1 KendoGrid productsGrid = Find . ById<KendoGrid>(”
productsGrid ”) ;

2 Element headers = productsGrid . Find . ByNodeIndexPath (”
1/0/0/1/0 ”) ;

3 IReadOnlyCol lect ion<HtmlAnchor> pdfUr l s = Find .
Al lByAttr ibutes<HtmlAnchor>(”data−bind=a t t r : { h r e f :
exportUrlPdf } ”) ;

4 HtmlButton bttn = f i l t e r . Find . ByExpression<HtmlButton>(”
type=submit ” , ” c l a s s=k−button k−primary ”) ;

Listing 4.9: Some of TTF’s methods to find an object

The inevitable feature for GUI tests is to identify any element within the
Document Object Model (DOM) tree. Therefore, the TTF provides a number
of methods to identify any HTML element on the displayed page in the web
browser. These methods can either be applied on the whole page or any already

Chapter 4 Implementation 65

identified element, for example a <div>. Listing 4.9 shows some of the identi-
fication possibilities, either returning exactly one or all elements matching the
criteria. These are handed over as parameters.

The implemented tests are described below and base on some reports. In the fol-
lowing, the terms article and product are used synonymously.

Report: Stock Overview by Articles
The first report, Stock Overview by Articles, is shown in Figure 4.1 and lists all
articles in a table. Additionally, a bar chart represents the amount of articles,
as a bar for every row in the grid.

Figure 4.1: Screenshot of the report ”Stock Overview by Articles”

StockByProdBasisTest()
This test calls the stock overview by articles’ report and identifies the data grid
in it. Based on that, it evaluates whether the initial data are displayed correctly
and some basic features of the report.
At first, the data grid is identified and the displayed data of the grid are eval-
uated. This evaluation focuses on the data representation. To clarify, some
properties are mapped as integers in the database, but must be displayed as
humanized string. As an example, the ProductGroup.100 should be displayed
as Heavy knit. There are five such mappings in the database. The test iterates
through every cell of the grid, regardless whether the column is hidden or not.
The reports have a paging system where, per default, 20 rows are displayed on

66 4.3 Web Application

each page. While iterating through the rows, the bar chart is inspected too.
Every displayed row has to be represented there. The uniqueness of a row is
given visibly through the article number, the color number and the size, which
are also the labels for each bar in the chart.

Next, the test iterates through all available columns and verifies that some spe-
cific ones have a filter option. The columns’ representation in the database is
defined hard-coded in an array. First, it was considered to access and reuse
Kendo’s data source, where the columns of the report are defined. Unfortu-
nately, the TTF does not provide this feature at the moment, or at least it
could not be figured out how to access these data. This implies, whenever the
columns of the data grid change, for example after implementing a new feature,
the test must be updated too. However, the test does not depend on the dis-
played names of the columns which may change several times within a project’s
lifetime. Columns, which have a filter option are identified over the class at-
tribute ”k-filterable” in the column header. In return, all the other columns are
not allowed to have this attribute. Those, for which the filter option is available,
are predefined and therefore also hard-coded.

The third important functionality in this context is the PDF and CSV export
of the data. For this, the name of the file and the path to save are defined
within the test. Unfortunately, the download function of the TTF depends on
the browsers settings. As described above, it is recommended to change the
settings such that the browser asks where to save the file. In a first try, this
has not be done. The download has been performed accordingly, but the given
file path has been ignored completely and the default path defined within the
web browsers settings has been used. This makes it more complicated to verify
whether the file has been downloaded or not. Whenever this path is not the
same as used in the code, the code has to be adapted, which obviously is not
required for automatic tests. Therefore, the browsers settings on the testing
machine used for this test have to be changed. The test creates the given path
if it does not exist and deletes the file with the given name if it exists. It verifies
again that the file does not exist before the download is performed and verifies
the contrary afterwards.

All the above described functionalities for this test method belong to posi-
tive testing. Hence, they test the basic functionality of this report and do not
depend on user input, negative tests would not provide any additional informa-
tion.

StockColumnsTest()
This test verifies whether every column, which is hidden by default, can be dis-
played. All columns are shown in a drop-down menu and the user can hide/show
the column by clicking on the according column name.
The test iterates through all columns, recognizes, which is not shown and clicks
on it. After that, it verifies that for each row in the grid all columns are set to

Chapter 4 Implementation 67

be visible. At the end, the reverse test is executed, such that all columns are set
to be hidden to the user and the verification of that is done too. Again, these
are positive tests.

MultiSelectArticleNumberTest()
This test filters the grid data using the multi-select option of article numbers.
A drop-down offers all article numbers for user selection.
The test selects two article numbers (one after each other as it would be done
manually) and verifies the data in the grid afterwards. The grid must not show
any rows with other article numbers. At this point, it is not necessary to repeat,
for example, the verification of the humanized string format, which is tested in
the StockByProdBasisTest(), because the filtered data are just a subset of data.
The verification, whether the amount of displayed data is correct, can be done
much easier within a QUnit test.
In some rare cases the selection has not been done. The reason for this has not
been found. As a workaround, in case of a failure, the test must be done man-
ually again to verify whether there is actually a bug in the application or not.
Nevertheless, whenever the test passes, the developer can be sure that the ap-
plication is working correctly within this aspect.

Duplications: Since multi-selects are available in most reports, the duplica-
tion of this test would be useful and necessary. This report has, for example,
eight multi-selects. Two of them are special cases; hence, the selection is ex-
cluded from the displayed data. It is easy to reproduce and adapt the tests
accordingly.

MultiSelectWithoutProdGroupTest() is an adaptation which provides all articles
without two specified product groups (Accessories and Dress).

StockColumnsFilterTest()
This test filters the grid data using the filter option within the column’s header.
For some columns this option is disabled by design, the others provide a filter
depending on the data’s type in the database. The filter value can either be a
string, a numeric value, or a predefined value picked from a list.
The test has been implemented for all columns with filter options. Unfortu-
nately, side-effects occurred while implementing and testing the test. The key
value sent to the input form has not been recognized correctly in approximately
every fifth test run. The reason for this failure has not been found. It is sug-
gested, that there is a bug in the TTF, and the test might be used in the future.
At the moment this makes the tests useless, because it reports a failure although
there is none. Thus, it has just be implemented with one test value for every
column. Once a solution for the problem described above has been found, an
implementation of negative tests would be useful and necessary. Nevertheless,
this would only mean an adoption of the forms’ input and therefore not too
much work.

68 4.3 Web Application

4.3.2.3 Problems

The TTF seemed to be a powerful tool at first glance but the provided doc-
umentation and examples cover mainly some of the basic features. A forum is
available, however, more complex actions must be given a trial. Existing bugs
within the TTF are mostly recorded in the TTF’s forum, including a described
workaround as temporary solution.
Additionally, Telerik’s Kendo UI generates a complex code structure. For exam-
ple, the available options for a multi-select filter exist twice within the generated
code, both as option-tags within a select statement and as unordered list-items.
Another problem concerns the load of the web page and have occurred es-
pecially at the beginning of the test implementation. Whenever the test was
not explicitly halted until the load progress has been terminated, the test was
continuing immediately. This resulted in (partly just occasional) failed tests be-
cause any action or assertion was performed too early. In this connection it has
been recognized that the TTF’s command to wait for AJAX calls is ignored, at
least within this web application. As workaround, the tests have been designed
to wait either until the page is ready or a specific element within the page is
loaded.

As mentioned in the section above, the input for a textbox is not always recog-
nized correctly but no solution was found for this problem. Additionally, it has
been stated within the description of the StockByProdBasisTest that the Kendo
data source cannot be reused and must be defined hard-coded.

The test execution engine of Visual Studio has stopped working at times during
the execution of the tests. This was mostly caused by a missing wait statement,
too. An unsolved problem was the occasionally changing focus. When working
with two monitors, it occurred that the Visual Studio was opened in one screen
and the started test opened in the other. Instead of writing a string or number
to the opened test browser, the test wrote the value into the opened file within
Visual Studio.

It is possible that a project specific problem might occur in the future because
the data for product groups and other predefined values are imported from the
merchandise information system. As these imported names are displayed in the
web application and must not be unique, there might also be equal selection
options within the filter tests. The test assertions might get more complex for
such values.

4.3.2.4 Results

Although the TTF supports a lot of features and especially those of Telerik’s
Kendo UI, in-depth usage revealed unfixed bugs and consequently, it is practi-

Chapter 4 Implementation 69

cally unusable except for simple operations. All these circumstances and known
issues mentioned above imply that writing the tests may take more time than
assumed. It must be estimated for every test whether the test automation
brings a benefit compared to manual tests or not. Because of this, only a
few tests have been implemented in this section and all of them are positive
tests.

Nevertheless, during the implementation of the StockColumnsFilterTest() a bug
within the detego® SURVEYOR system had been found. Actually, the bug oc-
curred when importing the data from the merchandise information system.
Some of them have not been processed correctly. As consequence, the filter
option for one column did not provide any of the predefined values for select-
ing.

To conclude, the TTF would be a rich tool to test the Web Application with
functional GUI tests if some of the issues concerning the indefinable behavior
would be solved.

4.4 Desktop Application

Functional GUI tests have been used to test this application. The TTF was not
applicable for these tests because it does not support Windows Forms.
Four different frameworks were tried out, whereby two (White2 and Test Au-
tomation FX3) manifested themselves from the beginning as useless for this
desktop application. At least some of the essential Telerik controls have not
been found when executing a simple test with those frameworks.
Thus, Microsoft’s Coded UI Tests framework4 was used. This framework also
does not support all, but at least the necessary Telerik controls and actions5.
Nevertheless, after implementing some tests, it turned out that Coded UI was
also not usable for all kinds of tests within this desktop application.
At last, the Ranorex6 test framework has been used to implement the complete
tests suite.

2Last retrieved on 07.05.2015 from http://teststack.azurewebsites.net/white/index.html
3Last retrieved on 07.05.2015 from http://www.testautomationfx.com/
4Last retrieved on 07.05.2015 from http://msdn.microsoft.com/en-

us/library/dd286726.aspx
5Last retrieved on 07.05.2015 from http://www.telerik.com/help/winforms/codedui-

supported-controls-and-actions.html
6Last retrieved on 07.05.2015 from http://www.ranorex.com/

70 4.4 Desktop Application

4.4.1 Preliminaries and prerequisites

As stated above, the desktop application communicates with the database via
the web service. Consequently, the database and the web service must be in-
stalled and configured accordingly to run the tests successfully. The connection
between the desktop application and the backend as well as the RFID-printer
must be established and the database has to be initialized with the same backup
as the web application tests.

The desktop application is used to order new print jobs on one hand and on
the other to print the RFID-transponders of these. However, new print jobs
also can be ordered outside of the application too, for example with the mobile
device, the Registration area of the desktop application provides the same fea-
ture. The user selects the article to print based on the article number or the
Global Trade Item Number (GTIN). Within an Overview area, the application
provides a list of all configured printers including their state (offline, ready,
busy, or error) and a list of new print jobs. Additionally, for each printer, a
dedicated area is available, where the print progress is displayed. Whenever
an error occurs it is shown here too. Within this master’s thesis one printer is
configured, namely RFIDZ01. After a successful printing process, the transpon-
ders are written to the database and the processed print jobs are marked as
completed there.

In order to work appropriately, some configurations in a XML-file must be
adapted, for example the host, where the web service is running, as well as
the IP-address of the printer and so on. The configurations to write within a
TXT-file instead of printing onto a label or to use the printer simulator are set
within this file too.

The label printing module can be categorized into the three parts Overview,
Printer and Registration, which already have been mentioned above.
The first one presented here deals with the print job registration. There, the
article to print can be selected either by inserting the article number at least
partly and picking the desired article from a list or by inserting the exact GTIN.
Using the article number option, the user has to reduce the amount of corre-
sponding articles to 100 or less in order to open the list of available articles.
This can be achieved by inserting the first digits of the article number, as shown
in Figure 4.2. The reason for this is that more than 900 000 articles are saved
within the database and selecting one out of all these is not realistic.
The GTIN can be inserted with two ways, either manually or by means of
a barcode scanner. Depending on this, the application behaves differently by
design. Technically, both numbers are inserted over the keyboard buffer. The
application differs between those two types by evaluating the amount of the
inserted digits and the time interval between two pressed keys. If the amount of
digits is eight or more and the interval is below 100 ms, the application assumes

Chapter 4 Implementation 71

that the barcode scanner was used and inserts the article directly to the list, if
the GTIN is valid. Whenever the GTIN is inserted manually, the user has to
click on an Add-button additionally.
The amount of labels to print (the default is one) can be changed before adding
the article to the list or afterwards within the list. To send the article list as
new print job to the database, a reason why the label(s) should be printed,
must be selected too.

Figure 4.2: Screenshot of the label printing registration tab

4.4.2 Test Implementation

Again, the class initialization code is used to start the desktop application. It is
assumed that the application is installed with the set-up at the default location.
Nevertheless, the path to the executable is defined as a static variable within the
test source code and may be changed to any other location easily. The tests are
integration tests but still independent from each other.

In order to test print errors, the printer simulator - a tool from Enso Detego
GmbH - has to run with the error probability set to zero percent.

72 4.4 Desktop Application

4.4.2.1 Coded UI Framework

To generate a Coded UI test, the sequence to test must be recorded with the
test framework’s Test Builder. This tool allows to record sequences and later
on C# code may be generated from those. Additionally, the tool provides the
functionality to evaluate any GUI element within the application.
In general, every recorded action or evaluated element corresponds to one line
of generated code. Nevertheless, in some cases, several simple actions are com-
bined. One example would be clicking into a textbox and inserting a number
results in one code line. Listing 4.10 shows a few lines of the generated code for
one test case.

The generated code may be expanded by hand. Therefore, it is possible to use
the TestInitialize() section to start the desktop application before each test from
a specific location directly. This saves time while the usual test’s execution,
in contrary, starts the application over a recorded action, navigating to the
executable.

For the generated assert statements any GUI element of the application may be
selected. One or more properties must be chosen and the required results have to
be defined within the GUI of the Test Builder. Then the test evaluates exactly
these properties of a specific element, for example whether the cell in the third
row and fourth column of a table has a certain value.

The tests within the registration tab do not cover the whole functionality. Nev-
ertheless, the main use cases are implemented. The assertions are partly done
with the values of GUI elements within the application others use the database
entries to verify a user’s action.

AddNewPrintJobArticleNum()
Within this test the first six digits of an article number are inserted to limit
the amount of suitable articles to eighty. The button to open the articles’ list
becomes active immediately and is clicked. The fourth row is selected and con-
firmed, whereby the article is then displayed in a table. In the next step the
reason for the print is selected from a combo-box and the print job is sent to
the database by clicking the OK-button.
The assertion whether the new print job was inserted could be done in the
label printing as well because after a maximum of ten seconds, the new print
job has to be displayed in the overview area. However, if there would occur,
for example, a failure when fetching new print jobs from the database, this
test would fail, although the print job insertion was successful. Thus, and also
to save the ten seconds idle time, the verification is done by the data stored
within the database, see Listing 4.11. There must be a new entry in the Group
table of type 9 - RePrintJob and exactly one according entry (independent of
the amount of labels to print) in the GroupItem table, inserted within the last

Chapter 4 Implementation 73

minute.

1 public void AddNewPrintJobMissingReason ()
2 {
3 #reg ion Var iab le Dec l a ra t i on s
4 WinEdit uIItemEdit = this . UIReprintWindow .

UITbArticleNumberWindow1 . UIItemWindow . UIItemEdit ;
5 UITestControl uITbArticleNumberEdit = this .

UIReprintWindow . UIPnlTopWindow .
UITbArticleNumberWindow . UITbArticleNumberEdit ;

6
7 [. . .]
8 #endreg ion
9

10 // Type ’12302 ’ in t e x t box
11 uIItemEdit . Text = this .

AddNewPrintJobMissingReasonParams . UIItemEditText ;
12
13 // Wait f o r 1 seconds f o r user d e l a y between a c t i o n s
14 Playback . Wait (1000) ;
15
16 // C l i c k ’ tbArtic leNumber ’ t e x t box
17 Mouse . C l i ck (uITbArticleNumberEdit , new Point (266 , 16)) ;
18
19 [. . .]
20 }
21
22 [GeneratedCode (”Coded UITest Bui lder ” , ”1 1 . 0 . 6 0 3 1 5 . 1 ”)]
23 public class AddNewPrintJobMissingReasonParams
24 {
25 #reg ion F i e l d s
26 /// <summary>
27 /// Type ’12302 ’ in t e x t box
28 /// </summary>
29 public string UIItemEditText = ”12302 ” ;
30 #endreg ion
31 }

Listing 4.10: A code snip from a generated Coded UI test

AddNewPrintJobMissingReason()
This test does the same as the test above (AddNewPrintJobArticleNum) but
does not select a reason from the combo-box. This leads to a pop up window
when the OK-button is clicked.
In this case, the assertion of the test is done by verifying whether the GUI
element (the pop up) exists.

74 4.4 Desktop Application

1 private void v a l i d a t e P r i n t J o b I n s e r t i o n ()
2 {
3 detego . S e rv i c e .DAL. SurveyorDataStoreEnt i t i e s e n t i t i e s =

new Se rv i c e .DAL. SurveyorDataStoreEnt i t i e s () ;
4 TimeSpan timespan = new TimeSpan (0 , 1 , 0) ;
5 var group = e n t i t i e s . Groups . Where (g => g .

TimeStampCreated . Value . CompareTo(DateTime . UtcNow .
Subtract (timespan)) > 0 && g . GroupType == 9) . Take (1)
;

6 Assert . I s F a l s e (group . F i r s tOrDe fau l t () . Processed .
HasValue) ;

7
8 var groupItem = e n t i t i e s . GroupItems . Where (g i => g i .

GroupId == group . F i r s tOrDe fau l t () . GroupId) ;
9

10 Assert . AreEqual (1 , groupItem . Count ()) ;
11 Assert . I sNotNul l ((groupItem . F i r s tOrDe fau l t () as

GroupItemProduct) . ProductId) ;
12 }

Listing 4.11: Verification of the new print job

AddNewPrintJobGtin()
By using a GTIN, the article can be identified directly and must not be selected
from a list. This test inserts a GTIN, adds the resulting print job by clicking
on the Add-button and verifies the insertion in the same manner the AddNew-
PrintJobArticleNum() test (Listing 4.11) does.

AddNewPrintJobBarcode()
This test simulates the barcode scan of a GTIN. The barcode scan is inserted
via the keyboard buffer. As already mentioned, the application distinguishes
between a manual insertion and a barcode scan by the delay between the digits
and their amount. A short delay of below 100 ms and a series with at least
eight digits is evaluated as barcode scan. In this case, and of course only if the
GTIN is valid, the article is directly added to the list. After selecting a reason
and sending the print job to the database, the assertion is done the same way
as for the other tests.

PrintToXMLValid()
The purpose of this test was to start the print of a label. Instead of a real label
the printer should write into a XML-file, which could be parsed and verified
afterwards. However, it turned out that the button to start the print could
not be executed automatically. This problem is described in more detail within
Section 4.4.3.

Chapter 4 Implementation 75

4.4.2.2 Ranorex framework

The Ranorex framework generates C# or VB code from recorded sessions, as an
example see Listing 4.12. This code may be edited or expanded within the Ra-
norex Studio itself or otherwise Ranorex may be integrated into Visual Studio
to write the automation code. Within this master’s thesis the Ranorex environ-
ment has been used. Every recorded sequence (module) results in two code files
(C# in this case): one with the generated code, which might be overwritten
in time, and another one for the user specific code. Modifications within the
latter will never be overwritten automatically. Again, any GUI element might
be evaluated, similar to Coded UI tests.

The Ranorex framework provides a GUI for the test recordings. A recording
results in a module, which may be expanded or split up into smaller ones af-
terwards easily. Additionally, within the GUI, the actions of a module may be
changed, for example, the mouse click position or the entered value of a text
box. Written user code may be called from there too, by adding a code module
to a test or a user code action to a recording module.
All tests are organized within a Ranorex solution file. Each project within the
solution represents a test suite. A suite, as well as every test case, has a set up
and a tear down phase. These phases, equally like a test, may contain one or
more modules. Figure 4.3 shows a test suite including some tests with recording
and code modules, partly within the set up and tear down phases.
A recording module can only be changed within the GUI, not within the gener-
ated code. Figure 4.4 shows an example to change a mouse click event.

For these tests, the set up phase of the whole test suite is used to start the
desktop application with the label printing module, respectively to close the
application in the tear down phase. Only for some tests the application must
be closed and started additionally within the test’s set up phase. This is neces-
sary because in order to execute the test correctly, the data within the database
has to be modified. Any potential open print jobs are cancelled and a specific
new print job is created. Since, these data are only loaded at the application
start and not at runtime, a restart is inevitable. Generally, the application could
be started and closed in each test case’s set up and tear down phase. The dis-
advantage in this case is the unnecessary time consumption of a few seconds
for each test case.

The implemented test cases are similar to the Coded UI tests mentioned above.
The previously written C# code for the Coded UI tests concerning the asser-
tions of the data in the database and the creation of any needed print job have
been reused completely for the Ranorex tests.
Additionally, as there was no problem to start a print job within this framework,
the print execution has been tested too. In the following, the tests explained

76 4.4 Desktop Application

Figure 4.3: Test Suite within the Ranorex Studio

Figure 4.4: Recording module to add a print job within the Ranorex Studio

above within the Coded UI section are not mentioned again. They had been
implemented within the Ranorex framework too, but the logic behind is more
or less the same.

PrintToXMLValid()
This test closes the SUT, cancels all open print jobs within the database and
inserts a new one for a specific article in the set up phase, to assure that the
right article will be printed. In case of an already existing file with data from an
elapsed print, this file will be deleted. Additionally, before the SUT is started
again, some properties (the file path and a boolean) in a XML-file are changed
in order to write the data into the file (see an example in appendix B) instead

Chapter 4 Implementation 77

of onto a label.
The test starts the print process by clicking a specific button and changes to
the printer’s area. First, the successful print is verified within the GUI. Next,
the XML file with the printer’s output is parsed and the resulting values are
evaluated. As the label to print is known and always the same, the output is
compared with hard coded reference values. In the future, if, for some reasons,
the printed article should not be the same each time, these reference values could
also be taken from the database dynamically.

1 [System . CodeDom . Compiler . GeneratedCode (”Ranorex ” , ” 5 . 2 . 0 ”
)]

2 void ITestModule . Run()
3 {
4 Mouse . DefaultMoveTime = 300 ;
5 Keyboard . DefaultKeyPressTime = 100 ;
6 Delay . SpeedFactor = 1 . 0 ;
7
8 I n i t () ;
9

10 Report . Log (ReportLevel . Info , ”Mouse ” , ”Mouse Le f t Cl i ck
item ’MainForm . Pr int . HostedTextBoxBase ’ at 5 5 ; 9 . ” ,

repo . MainForm . Pr int . HostedTextBoxBaseInfo , new
RecordItemIndex (0)) ;

11 repo . MainForm . Pr int . HostedTextBoxBase . C l i ck (”55 ;9 ”) ;
12 Delay . M i l l i s e c o n d s (200) ;
13
14 Report . Log (ReportLevel . Info , ”Keyboard ” , ”Key sequence

’{NumPad1}{NumPad2}{NumPad3}{NumPad0}{NumPad6} ’ with
f ocus on ’MainForm . Pr int . HostedTextBoxBase ’ . ” , repo

. MainForm . Pr int . HostedTextBoxBaseInfo , new
RecordItemIndex (1)) ;

15 repo . MainForm . Pr int . HostedTextBoxBase . PressKeys (”{
NumPad1}{NumPad2}{NumPad3}{NumPad0}{NumPad6} ”) ;

16 Delay . M i l l i s e c o n d s (0) ;
17
18 Report . Log (ReportLevel . Info , ”Mouse ” , ”Mouse Le f t Cl i ck

item ’MainForm . Pr int . Text12306 ’ at 2 6 1 ; 1 8 . ” , repo .
MainForm . Pr int . Text12306Info , new RecordItemIndex (2)
) ;

19 repo . MainForm . Pr int . Text12306 . C l i ck (”261 ;18 ”) ;
20 Delay . M i l l i s e c o n d s (200) ;
21
22 Report . Log (ReportLevel . Info , ”Mouse ” , ”Mouse Le f t Cl i ck

item ’ InfoForm . Row3ColumnArticleNumberValueDBNul ’
at 1 1 3 ; 9 . ” , repo . InfoForm .

78 4.4 Desktop Application

Row3ColumnArticleNumberValueDBNulInfo , new
RecordItemIndex (3)) ;

23 repo . InfoForm . Row3ColumnArticleNumberValueDBNul . C l i ck (”
113 ;9 ”) ;

24 Delay . M i l l i s e c o n d s (200) ;
25
26 Report . Log (ReportLevel . Info , ”Mouse ” , ”Mouse Le f t Cl i ck

item ’ InfoForm . Take ’ at 6 0 ; 1 0 . ” , repo . InfoForm .
TakeInfo , new RecordItemIndex (4)) ;

27 repo . InfoForm . Take . Cl i ck (”60 ;10 ”) ;
28 Delay . M i l l i s e c o n d s (200) ;
29 }

Listing 4.12: Resulting code of module in Figure 4.4

PrintErrorValid()
The print must be prepared in the same way as described in the test above. The
properties within the XML file are modified, such that instead of printing to a
file, a printer simulator is used. The simulator has an error probability, which
refers on a printer error while the print. This probability must be set in a first
step from 0 to 100 percent, to assure a print error occurs in the next print.
After executing the print job, the state of the desktop application is evaluated
and the test verifies whether the print error is shown correctly. Usually, a print
error (for example a paper jam) has to be resolved at the printer itself. The
application resumes the print, when the printer sends the signals to be ready
again. Therefore, after the evaluation of the error, the error probability of the
simulator is set back to 0 percent to verify that the printer gets into the ready
state and the print continues. Finally, the successful print is verified within the
GUI.

4.4.3 Problems

Two types of issues occurred while working with Coded UI tests.
On the one side, the default configuration of Coded UI caused the test AddNew-
PrintJobGtin() to fail. The test treated the input as the GTIN barcode scan
feature mentioned in Chapter 4.4.1 and the Add-Button did not become click-
able while executing the test. By default a replayed test inserts the number with
a short delay between the digits, and the application interpreted the insertion
as a barcode read. To fix this, the delay was set to 101 ms. Nevertheless, this
behavior has been used within the AddNewPrintJobBarcode() test to verify the
feature.
On the other side, working with the Coded UI framework has been tedious
at times. The test sequence, once generated, cannot be changed easily. The
recorded actions are mapped exactly to this element (for example the cell in

Chapter 4 Implementation 79

the first row and third column of a table) and changing the element afterwards
is time consuming. Therefore, in the purpose of the maintainability it is neces-
sary to record and generate short test sequences, which might be replaced in
the future if the behavior of the application changes.
One bug regarding the delay time between actions exists in the framework. Due
to load times, a short delay has to be simulated at some points too. Otherwise
the needed data are not available in the application. The test generates such a
delay as:

// Wait for 1 seconds for user delay between actions

Playback.Wait(10);

The Playback.Wait()-method expects an integer describing the ”milliseconds to
wait” as argument. As the example above the comment describes a delay of
one second, but just 10 instead of 1000 milliseconds are handed over, the test
always fails. This implies that whenever a delay is necessary, the test has to be
adapted manually after the generation. The problem is that a new generation
of any test case re-generates each Coded UI test. Therefore, changes made to
the generated code will be probably overwritten over time, which makes a bug,
like the one just described, annoying.

As the last, and probably most important issue, one button within a table nec-
essary to start the print job execution, could not be found by the test frame-
work and therefore could not be clicked automatically whenever the test was
replayed. It could not be figured out how to recognize this button within this
test framework, even by changing the application or testing code. As this is the
only possibility to start a print job execution within the application, and the
Coded UI framework seems to not support an event invocation, the print itself
could not be tested.

In contrast, there have not been any problems with the Ranorex framework to
test the label printing module of the desktop application.

4.4.4 Results

Due to the problems described above, the Coded UI framework has been eval-
uated as not practicable within this master’s thesis. The delay function is
needed in nearly every test case. Additionally, the print function, which is
the major feature of the module, cannot be tested, at least not at the mo-
ment.

In contrary no major issues occurred using Ranorex framework. The tests could
be generated easily and if the tests are split up into small parts after the gener-
ation, a modification after some time (i.e. exchanging a button for any reason)

80 4.4 Desktop Application

or reusing those parts within another test may be done easily. Additionally, this
framework is very intuitive to work with, and the company provides a helpful
documentation.

4.5 Mobile Device Application

The mobile device tests in this context have been kept to a minimum. The pur-
pose is to perform an inventory of one transponder automatically.

4.5.1 Preliminaries and Prerequisites

Some properties within two XML-files must be set before deploying the package
to the mobile device. This assures that the application tries to connect to an
existing and running web service, and will be updated automatically whenever
a new version is available. This is a feature, which may be used for regression
tests in the future. A nightly version may be deployed automatically in this way.
In detail, within the entities.xml the following properties must be configured:

• <entity name=”General.DataWebServiceUrl” value=
”http://<hostname>/detego.Service/DataService.svc/Json” [...]/>

• <entity name=”General.ReportServiceUrl” value=
”http://<hostname>/detego.Service/ReportServiceOdata.svc/” [...]/>

• <entity name=”General.OdataServiceUrl” value=
”http://<hostname>/detego.Service/DataServiceOdata.svc/” [...]/>

• <entity name=”General.AuthenticationWebServiceUrl” value=
”http://<hostname>/detego.Service/AuthenticationService.svc/Json”[...]/>

• <entity name=”General.ConfigurationWebServiceUrl” value=
”http://<hostname>/detego.Service/ConfigurationService.svc/Json”[...]/>

• <entity name=”General.UpdateManagerActive” value=”true” [...]/>

Thereby <hostname> has to be replaced by the host of the server. Additionally,
within the applications.xml the following parameters are necessary:

• <Username>sp</Username>

• <Password>sp</Password>

• <TestMode>true</TestMode>

Chapter 4 Implementation 81

To deploy the package and later on to perform the test, the mobile device must
be connected to the network. Of course, as for all the other tests, the service
and database specified as host within the entities.xml must be running and
a transponder must be placed within the reader’s field. In order to save the
inventory run to the database, the EPC of this transponder must correspond
to an article existing in the database.

The system has already a deploy mechanism implemented which, if set to true,
compares the deployed version with the actual one within the database. When-
ever the versions are different, the application is going to be deployed and
automatically started.

4.5.2 Test Implementation

Since all evaluated tools for GUI testing do not support (remote) testing of
mobile applications, a dedicated test-mode was implemented within the mobile
application. This causes the application to login automatically, start the process
”Inventory Registration” and select the location ”Salesfloor”. By design, the
application does not activate the RFID-reader automatically. This must be
done manually via the trigger-button (hardware) on the mobile device and can
not be performed through the touch screen.
Therefore, in every case, the activation of the RFID-reader must be done within
the source code:

if (ControlLogic.GetInstance().TestMode)

{

Tools.Instance().RfidReader.Activate();

}

The test was implemented as such, that the RFID-reader gets deactivated af-
ter at least one transponder has been read. Due to a high reading rate more
than one transponders might be read, which does not matter. The next step is
to send the read data to the web service/database, which is done by clicking
the OK-Button within the application. The application changes automatically
back to the location selection screen. The verification of the test occurs on the
mobile device itself. After performing the inventory registration, the database
is queried for a group entry with the given timestamp and verifies that such a
group exists. According to the result an info or error message is logged. There-
fore a new class had been implemented, see Listing 4.13. This verification may
be expanded to verify the location and group type if necessary in future. The
test has to navigate back to the main screen, in order to bring the application
into a state, where the automatic update mechanism has the rights to deploy
a newer software version in case. The test does not start again from the main

82 4.5 Mobile Device Application

menu, except the module is started again for example by hand. In this case the
test would start again and perform the whole test run.

1 public class T e s t V e r i f i c a t i o n
2 {
3 #reg ion Constructors
4 private T e s t V e r i f i c a t i o n ()
5 {
6 }
7 #endreg ion
8
9 #reg ion F i e l d s

10 private stat ic readonly ILog l o g g e r = LogManager .
GetLogger (typeof (T e s t V e r i f i c a t i o n)) ;

11 #endreg ion
12
13 #reg ion Methods
14 public stat ic void V e r i f y I nve n to ryR eg i s t r a t i on (

DateTime datet ime)
15 {
16 Group group = Tools . In s tance () .

GetGroupByTimeStampEvent (datet ime) ;
17
18 i f (Tools . In s tance () . GetGroupByTimeStampEvent (

datet ime) == null)
19 l o g g e r . Error (”Error automated t e s t : V e r i f i n g

Inventory R e g i s t r a t i o n f a i l e d ”) ;
20 else
21 l o g g e r . In f o (”In f o automated t e s t : V e r i f i n g

Inventory R e g i s t r a t i o n ok ”) ;
22 }
23 #endreg ion
24 }

Listing 4.13: Test class to verify the inventory registration

4.5.3 Problems

The main problem occurring at the beginning, was the fact, that the test could
not be started with a GUI test and that the RFID-reader could only be activated
from a hardware trigger. The solution to both issues had been to introduce
the property ”TestMode” and program the whole test within the application
itself. Within the application code it is possible to activate the RFID-reader.
This affected also the test verification, hence, in this case, it must be done on

Chapter 4 Implementation 83

the mobile device as well instead of doing it within the GUI test, as thought
before.

4.5.4 Results

Whereas the integration of dedicated hardware in the test-loop poses some
challenges, the overall test method proofs to be highly efficient and easily
manageable. By using the described approach of a dedicated test-mode, ba-
sic functions can be repeatedly tested in an automated way which is an im-
portant cornerstone for regression tests within the software development cy-
cle.

84 4.5 Mobile Device Application

Chapter 5

Conclusion

This master’s thesis proposes a feasible way to automate tests for multi-layered
and distributed software frameworks using RFID. The basis for this work builds
the software system detego® SURVEYOR, developed by the Enso Detego GmbH.
In a conceptual run the possibilities in order to test this system automatically
have been evaluated. Within the practical work of this master’s thesis several ad-
ditional challenges occurred, which partly could be solved.

The Web service has been tested with unit tests. Those tests are now usable for
regression tests too. Thereby no major problems occurred. As a future work,
it might be considered to implement integration tests for the web service and
test several units in a specific dependency. Especially those tests concerning the
database views might be expanded further.

The test use cases for the Web application have been divided into unit and
functional GUI tests, depending on the test’s purpose.
Several issues were encountered concerning the tests developed with the QUnit
framework in the beginning. Since the implemented tests would be also usable
for regression tests, one future work will be the integration into an automatic
build process within the TFS. A viable solution for this might be the open source
JS Test Runner Chutzpah1. Moreover, since most of the tests are the same for
each report, a lot of effort could be avoided if the scripts of the web pages could
be loaded automatically into the tests, each after the last one terminated. The
test results of a web page should not be overridden by the next results. A quick
solution was not found and finding one solution for both issues is out of scope
for this master’s thesis.
The framework used for the functional GUI tests was only usable to test simple
operations. There might be further improvements of this framework, such that
the tests could be expanded in the future. As alternative the Ranorex framework
could be evaluated for these tests too.

For the Desktop application several test frameworks have been evaluated as
unusable until the tests could be realized with the Ranorex test framework.
It is a future task to develop this kind of tests for the remaining modules

1Last retrieved on 06.05.2015 from http://blogs.msdn.com/b/visualstudioalm/archive/2012/
07/09/javascript-unit-tests-on-team-foundation-service-with-chutzpah.aspx

Chapter 5 Conclusion 85

of the desktop application, which were not covered within this master’s the-
sis.

The first try to use a functional GUI test for the mobile device application was
not applicable. Instead, an integration test has been implemented on the device
itself, which starts if a specific property is set. Since this works smoothly, it
would be possible to write such tests for other modules of the application too.
As a consequence, this is only useful within an continuous integration test, as
the evaluation has to be modified, such that the test result is not only display
within the log file of the mobile device.

Concluding, although there occurred several issues, some of the frameworks were
practically not usable and there are still opportunities to improve the tests fur-
ther, they do reduce the manual testing effort significantly.

86

Bibliography

Paul Baker, ZhenRu Dai, Jens Grabowski, Øystein Haugen, Ina Schieferdecker,
and Clay Williams. User-interface testing. In Model-Driven Testing, pages
117–124. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-72562-6. doi:
10.1007/978-3-540-72563-3\ 9.

John E. Benetley, Wachovia Bank, and Charlotte NC. Software testing funda-
mentals - concepts, roles, and terminology. SUGI 30, Apr 2005.

Pakinam N. Boghdady, Nagawa L. Badr, Mohamed Hashem, and Mohamed F.
Tolba. Test case generation and test data extraction techniques. International
Journal of Electrical & Computer Sciences IJECS-IJENS, 11(03):82–89, June
2011.

David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion,
Chris Ferris, and David Orchard. Web services architecture. W3c note, World
Wide Web Consortium, February 2004. URL http://www.w3.org/TR/2004/

NOTE-ws-arch-20040211.

J. Burnim and Sen Koushik. Heuristics for scalable dynamic test generation. In
Automated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM Inter-
national Conference on, pages 443–446, Sept 2008. doi: 10.1109/ASE.2008.69.

Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-
awarana. Web services description language (wsdl) 1.1. W3c note, World
Wide Web Consortium, March 2001. URL http://www.w3.org/TR/2001/

NOTE-wsdl-20010315.

E. Collins, A. Dias-Neto, and V.F. de Lucena. Strategies for agile software
testing automation: An industrial experience. In Computer Software and Ap-
plications Conference Workshops (COMPSACW), 2012 IEEE 36th Annual,
pages 440–445, July 2012. doi: 10.1109/COMPSACW.2012.84.

Edsger W. Dijkstra. The humble programmer. Communications of the ACM, 15
(10):859–866, October 1972. doi: 10.1145/355604.361591. 1972 ACM Turing
Award Lecture.

John Dooley. Software Development and Professional Practice. Apress, Berkely,
CA, USA, 1st edition, 2011. ISBN 1430238011, 9781430238010.

BIBLIOGRAPHY 87

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

Joe W. Duran and S.C. Ntafos. An evaluation of random testing. Software En-
gineering, IEEE Transactions on, SE-10(4):438–444, July 1984. ISSN 0098-
5589. doi: 10.1109/TSE.1984.5010257.

Elfriede Dustin. Effective Software Testing: 50 Ways to Improve Your Software
Testing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002. ISBN 0201794292.

Elfriede Dustin, Jeff Rashka, and John Paul. Automated Software Testing: In-
troduction, Management, and Performance. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1999. ISBN 0-201-43287-0.

M E Eagan. Advances in software inspections. IEEE Trans. Softw. Eng., 12
(7):744–751, July 1986. ISSN 0098-5589.

Klaus Finkenzeller. RFID Handbook: FUNDAMENTALS AND APPLI-
CATIONS IN CONTACTLESS SMART CARDS, RADIO FREQUENCY
IDENTIFICATION AND NEAR-FIELD COMMUNICATION. John Wiley
& Sons, Inc., 3 edition, 2010. ISBN 0470695064.

Gordon Fraser. Automated Software Testing with Model Checkers. disserta-
tion, Graz University of Technology, October 2007. URL http://www.ist.

tugraz.at/staff/fraser/papers/dissertation.pdf.

Gordon Fraser and Franz Wotawa. Test-case generation and coverage anal-
ysis for nondeterministic systems using model-checkers. In Proceedings of
the International Conference on Software Engineering Advances, ICSEA ’07,
page 45, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-
7695-2937-2. doi: 10.1109/ICSEA.2007.71.

Gordon Fraser, Franz Wotawa, and Paul E. Ammann. Testing with model
checkers: A survey. Journal for Software Testing, Verification and Reliability,
19(3):215–261, September 2009. ISSN 0960-0833. doi: 10.1002/stvr.v19:3.

Mats Grindal and Brigitta Lindström. Challenges in testing real-time sys-
tems. In Proceedings of the 10th International Conference on Software Test-
ing Analysis and Review, EuroSTAR ’02, 2002.

W.J. Gutjahr. Partition testing vs. random testing: the influence of uncertainty.
Software Engineering, IEEE Transactions on, 25(5):661–674, Sep 1999. ISSN
0098-5589. doi: 10.1109/32.815325.

Dick Hamlet. When only random testing will do. In Proceedings of the 1st

88 BIBLIOGRAPHY

http://www.ist.tugraz.at/staff/fraser/papers/dissertation.pdf
http://www.ist.tugraz.at/staff/fraser/papers/dissertation.pdf

International Workshop on Random Testing, RT ’06, pages 1–9, New York,
NY, USA, 2006. ACM. ISBN 1-59593-457-X. doi: 10.1145/1145735.1145737.

Richard Hamlet. Random testing. In Encyclopedia of Software Engineering,
pages 970–978. Wiley, 1994.

Bill Hetzel. The Complete Guide to Software Testing. QED Information
Sciences, Inc., Wellesley, MA, USA, 2nd edition, 1988. ISBN 0894352423,
9780471565673.

IEEE. IEEE standard glossary of software engineering terminology. IEEE Std
610.12-1990, December 1990.

Tomi Janhunen, Ilkka Niemelä, Johannes Oetsch, Jörg Pührer, and Hans Tom-
pits. Random vs. structure-based testing of answer-set programs: An experi-
mental comparison. In JamesP. Delgrande and Wolfgang Faber, editors, Logic
Programming and Nonmonotonic Reasoning, volume 6645 of Lecture Notes
in Computer Science, pages 242–247. Springer Berlin Heidelberg, 2011. ISBN
978-3-642-20894-2. doi: 10.1007/978-3-642-20895-9 26.

Y. Labiche, P. Thévenod-Fosse, H. Waeselynck, and M.-H. Durand. Testing
levels for object-oriented software. In Proceedings of the 22Nd International
Conference on Software Engineering, ICSE ’00, pages 136–145, New York,
NY, USA, 2000. ACM. ISBN 15811320692. doi: 10.1145/337180.337197.

N.G. Leveson and C.S. Turner. An investigation of the therac-25 accidents.
Computer, 26(7):18–41, July 1993. ISSN 0018-9162. doi: 10.1109/MC.1993.
274940.

Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. Mutation analysis
testing for model transformations. In Proceedings of the Second European
Conference on Model Driven Architecture: Foundations and Applications,
ECMDA-FA’06, pages 376–390, Berlin, Heidelberg, 2006. Springer-Verlag.
ISBN 3-540-35909-5, 978-3-540-35909-8. doi: 10.1007/11787044 28. URL
http://dx.doi.org/10.1007/11787044_28.

Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software Test-
ing. Wiley Publishing, 3rd edition, 2011. ISBN 1118031962, 9781118031964.

Simeon Ntafos. On random and partition testing. SIGSOFT Softw. Eng. Notes,
23(2):42–48, March 1998. ISSN 0163-5948. doi: 10.1145/271775.271785.

Roy Osherove. The Art of Unit Testing: With Examples in .Net. Manning

BIBLIOGRAPHY 89

http://dx.doi.org/10.1007/11787044_28

Publications Co., Greenwich, CT, USA, 1st edition, 2009. ISBN 1933988274,
9781933988276.

Jiantao Pan. Software testing. Technical report, Carnegie Mellon University,
1999. http://www.ece.cmu.edu/k̃oopman/des s99/sw testing/.

A. Ruiz and Y.W. Price. Test-driven gui development with testng and abbot.
Software, IEEE, 24(3):51–57, May 2007. ISSN 0740-7459. doi: 10.1109/MS.
2007.92.

Ben H. Smith and Laurie Williams. Should software testers use mutation anal-
ysis to augment a test set? Journal of Systems and Software, 82(11):1819–
1832, November 2009. ISSN 0164-1212. doi: 10.1016/j.jss.2009.06.031. URL
http://dx.doi.org/10.1016/j.jss.2009.06.031.

Software Testing Fundamentals. Last retrieved on 03.02.2014 from
http://softwaretestingfundamentals.com/, Dec 2010.

S. Sumathi and S. Esakkirajan. Structured query language. In Fundamen-
tals of Relational Database Management Systems, volume 47 of Studies
in Computational Intelligence, pages 111–212. Springer Berlin Heidelberg,
2007. ISBN 978-3-540-48397-7. doi: 10.1007/978-3-540-48399-1 4. URL
http://dx.doi.org/10.1007/978-3-540-48399-1_4.

Gerrit Tamm and Christoph Tribowski. RFID. Informatik im Fokus. Springer,
2010. ISBN 9783642114601.

Nikolai Tillmann and Jonathan Halleux. Pex–white box test generation for .net.
In Bernhard Beckert and Reiner Hähnle, editors, Tests and Proofs, volume
4966 of Lecture Notes in Computer Science, pages 134–153. Springer Berlin
Heidelberg, 2008. ISBN 978-3-540-79123-2. doi: 10.1007/978-3-540-79124-9
10.

J.A. Whittaker. What is software testing? and why is it so hard? Software,
IEEE, 17(1):70–79, Jan 2000. ISSN 0740-7459. doi: 10.1109/52.819971.

T. Wissink and C. Amaro. Successful test automation for software mainte-
nance. In Software Maintenance, 2006. ICSM ’06. 22nd IEEE International
Conference on, pages 265–266, Sept 2006. doi: 10.1109/ICSM.2006.63.

Xiaochun Zhu, Bo Zhou, Juefeng Li, and Qiu Gao. A test automation solution
on gui functional test. In Industrial Informatics, 2008. INDIN 2008. 6th
IEEE International Conference on, pages 1413–1418, July 2008. doi: 10.
1109/INDIN.2008.4618325.

http://dx.doi.org/10.1016/j.jss.2009.06.031
http://dx.doi.org/10.1007/978-3-540-48399-1_4

List of Abbreviations

Term Description

AJAX Asynchronous JavaScript and XML

Auto-ID Automatic Identification

API Application Programming Interface

DBMS Database Management System

DOM Document Object Model

EPC Electronic Product Code

GUI Graphical User Interface

GTIN Global Trade Item Number

HH RFID-Handheld

HTML Hypertext Markup Language

IIS Internet Information Service

JS JavaScript

JSON JavaScript Object Notation

LF Low Frequency

HF High Frequency

HTTP Hypertext Transfer Protocol

OData Open Data Protocol

OO Object-Oriented

OS Operating System

REST Representational State Transfer

RFID Radio Frequency Identification

BIBLIOGRAPHY 91

SC Stockroom Coordinator

SHF Super High Frequency

SOAP Simple Object Access Protocol

SP Sales Person

SQL Structured Query Language

SUT System Under Test

SVN Apache Subversion

TFS Microsoft Team Foundation Server

TFVC Team Foundation Version Control

TTF Telerik Testing Framework

UHF Ultra High Frequency

WCF Windows Communication Foundation

WPF Windows Presentation Foundation

WSDL Web Services Description Language

WWS Warenwirtschaftssystem

XML Extensible Markup Language

92 BIBLIOGRAPHY

List of Figures

1.1 Overview of detego SURVEYOR, developed by Enso Detego GmbH 14

1.2 caption . 16

1.3 caption . 18

1.4 caption . 19

1.5 Master-slave principle within an RFID system (taken from Finken-
zeller (2010, p. 318)) . 20

2.1 A possible client-server architecture 23

2.2 The five testing levels . 24

3.1 Architectural overview of detego SURVEYOR, developed by Enso
Detego GmbH . 36

3.2 Workflow of items, developed by Enso Detego GmbH 36

3.3 Some screenshots of the dashboard and reports 40

3.4 Printing a couple of labels . 41

3.5 Screenshots of different processes of the mobile device application 42

4.1 Screenshot of the report ”Stock Overview by Articles” 66

4.2 Screenshot of the label printing registration tab 72

4.3 Test Suite within the Ranorex Studio 77

4.4 Recording module to add a print job within the Ranorex Studio 77

LIST OF FIGURES 93

List of Tables

2.1 Prevention is cheaper than cure (table taken from Dustin et al.
(1999, Chapter 1)) . 22

3.1 Most relevant entities of detego Data Store 37

94 LIST OF TABLES

Appendix A

Requirements from Specification Sheets

Receipt of goods (complete) - mobile device (Handheld)
application

Actors Sales Person (SP), Stockroom Coordinator (SC), RFID-
System, Warenwirtschaftssystem (WWS)

Pre-
conditions

RFID-Handheld (HH) ist eingeschaltet und aufgeladen.
Lieferscheine wurden elektronisch von WWS an das RFID
System übermittelt.
Die Artikelstammdaten der Warensendung sind dem RFID
System bekannt. Sind keine Artikelstammdaten bekannt,
werden die Artikel ignoriert.
Aufrechte Verbindung zu WWS zur Übertragung der
RECADVs vom zentralen RFID System.
Die Warensendung ist vollständig. (alle Kartons und alle
EPCs sind vorhanden)

Success end
condition

Alle Kartons und deren Inhalt wurden vollständig erfasst.
RECADVs wurde an WWS zurückgemeldet.

Main Success Scenario

1. SP/SC nimmt die Warensendung an.

2. SP/SC startet das Modul ”‘Wareneingang”’ am HH.

3. SP/SC bringt Ware zum Warenerfassungsort.
Kann dies in der Filiale sowohl eine ”‘Verkaufsfläche”’ als auch ein ”‘Nach-
schublager”’ sein, wählt der SP/SC den entsprechenden Warenerfassung-
sort aus. Gibt es nur eine Möglichkeit, wird dieser Warenerfassungsort
voreingestellt und muss nicht händisch ausgewählt werden.

4. SP/SC drückt die Scan Taste am HH, um den Scan Vorgang zu starten.

Appendix A Requirements from Specification Sheets 95

5. Am HH werden alle erfassten EPCs automatisch den SSCCs zugeordnet
und farblich markiert dargestellt (Listendarstellung).

6. SP/SC scannt solange bis kein akustisches Signal mehr hörbar ist.
SP/SC stellt per Sichtkontrolle fest, dass die Anzahl der gescannten Liefer-
scheine/SSCCs mit der tatsächlich angelieferten Anzahl übereinstimmt
und auch alle gelieferten Kartons für diese Filiale bestimmt sind.

7. SP/SC stellt fest, dass alle Zeilen grün sind und die Anzahl bei ”‘Unvoll-
ständig”’ 0 ist.

8. SP/SC drückt ”‘Vollständige bestätigen”’. Die Liste am Handheld wird
leer.

9. SP/SC drückt ”Zurück” um in den Start-Screen zu wechseln.

Inventory with check against target list - mobile device
(Handheld) application

Actors SP, SC, RFID-System (Handheldapplikation), WWS

Pre-
conditions

RFID-Handheld ist eingeschaltet und aufgeladen.
Alle Transponder sind vorhanden und funktionsfähig.

Success end
condition

Die Bestandsaufnahme(n) wurden erfolgreich durchge-
führt.

Main Success Scenario

1. SP/SC startet das Modul ”‘Bestandsprüfung”’

2. SP/SC wählt aktiv die Lagerfläche aus, auf der eine Bestandsaufnahme
erfolgen soll. Standardmäßig ist das Feld leer. Bleibt es leer kommt es zu
einer Fehlermeldung.

3. SP/SC kann auf Division, Liefertermin, Warengruppe oder Artikelnum-
mer oder GTIN, die Bestandsaufnahme einschränken. Bleiben die Felder
leer, werden alle erfassten Artikel auch auf der Handheld Oberfläche
angezeigt. (Anmerkung: im detego Data Store werden alle erfassten Ar-
tikel gespeichert – in der Reporting-Oberfläche kann dann wieder gefiltert
werden.)

4. SP/SC klickt auf ”‘Weiter”’

96

5. SP/SC erhält eine Liste aller erwarteten, dem Filter entsprechenden Ar-
tikel. SP/SC scannt im Idealfall so lange bis alle Artikel grün dargestellt
sind – d.h. ”‘Soll”’ und ”‘Ist”’ gleich sind.

6. SP/SC schließt die Bestandsaufnahme durch Drücken von ”‘Bestätigen”’
ab und gelangt wieder in die Filter-Auswahl.

7. SP/SC wählt eine neue Lagerfläche und/oder Filter aus und wiederholt
die Schritte 3 bis 7 bis keine Bestandsaufnahme mehr durchgeführt werden
soll.

8. SP/SC drückt ”‘Zurück”’ und gelangt in den Start-Screen.

Reprint with reference label - mobile device (Handheld)
application

Actors SP, SC, RFID-System (Handheldapplikation), WWS

Pre-
conditions

RFID-Handheld ist eingeschaltet und aufgeladen.
Artikelinformation wird anhand eines Referenzetiketts er-
mittelt. Größe und/oder Farbe sollen geändert werden.

Success end
condition

Nachdruck-Etiketten wurden erfolgreich erfasst.

Main Success Scenario

1. SP/SC startet das Modul ”‘Etikettennachdruck”’

2. SP/SC scannt den EAN Barcode des Referenz-Etiketts.

3. SP/SC drückt ”‘Weiter”’

4. Der EAN mit all der ermittelten Artikelinformation wird angezeigt. SP/SC
hakt ”‘Größe/Farbe ändern”’ an.

5. SP/SC drückt auf ”‘Weiter”’ und gelangt zur Größenauswahl.

6. SP/SC wählt auf die gewünschte Größe aus dem entsprechenden drop-
down-Feld.

7. SP/SC wählt auf die gewünschte Farbe aus dem entsprechenden drop-
down-Feld.

8. SP/SC drückt auf ”‘Weiter”’ und gelangt in den Nachdruck-Screen.

Appendix A Requirements from Specification Sheets 97

9. SP/SC ändert gegebenenfalls die Anzahl der nachzudruckenden Etiketten
für diesen EAN.

10. SP/SC drückt ”‘Druckauftrag senden”’. Ein bereitgestelltes Webservice
nimmt den Druckauftrag entgegen.

Print of the ordered label - Desktop application

Actors
SP, SC, RFID-System (Desktopapplikation - Etiketten-
nachdruck), WWS

Pre-
conditions

Aufrechte Verbindung zum WWS zur Übertragung der
Druckaufträge.
RFID Drucker angeschlossen, eingeschaltet und über Net-
zwerkverbindung erreichbar.
RFID Drucker mit Farbband und RFID Transpondern
bestückt.

Success end
condition

RFID Etiketten sind korrekt, vollständig und eindeutig
gedruckt.
Generierte EPCs sind an das ERP-System zurückgemeldet.

Main Success Scenario

1. SP/SC startet das Modul ”‘Etikettennachdruck”’ an der Nachdruckstation
(PC).

2. In der Übersicht der GUI werden die ausstehenden Druckaufträge angezeigt.

3. SP/SC wählt gegebenenfalls einen Drucker (Default-Drucker standard-
mäßig ausgewählt) und drückt ”‘Drucken”’.

4. RFID-System beginnt die Kommunkation mit dem RFID-Drucker, berech-
net und sendet die zu druckenden Daten der einzelnen Etiketten. RFID-
Drucker beginnt die Etiketten zu drucken, und gibt für jedes Etikett eine
Erfolgsmeldung an das RFID-System zurück.
In der Übersicht und der Detailansicht der GUI wird der Druckfortschritt
angezeigt.

5. RFID-System schließt den Druck ab und meldet die generierten EPCs an
das WWS zurück.

98

Error handling while printing - Desktop application

Actors
SP, SC, RFID-System (Desktopapplikation - Etiketten-
nachdruck), WWS

Pre-
conditions

Aufrechte Verbindung zum WWS zur Übertragung der
Druckaufträge.
RFID Drucker angeschlossen, eingeschaltet und über Net-
zwerkverbindung erreichbar.
RFID Drucker mit Farbband und RFID Transpondern
bestückt.

Success end
condition

RFID Etiketten sind korrekt, vollständig und eindeutig
gedruckt.
Generierte EPCs sind an das ERP-System zurückgemeldet.

Main Success Scenario

1. SP/SC startet das Modul ”‘Etikettennachdruck”’ an der Nachdruckstation
(PC).

2. In der Übersicht der GUI werden die ausstehenden Druckaufträge angezeigt.

3. SP/SC wählt gegebenenfalls einen Drucker (Default-Drucker standard-
mäßig ausgewählt) und drückt ”‘Drucken”’.

4. RFID-System beginnt die Kommunkation mit dem RFID-Drucker, berech-
net und sendet die zu druckenden Daten der einzelnen Etiketten. RFID-
Drucker beginnt die Etiketten zu drucken, und gibt für jedes Etikett eine
Erfolgsmeldung an das RFID-System zurück.
In der Übersicht und der Detailansicht der GUI wird der Druckfortschritt
angezeigt.

5. Etikettendruck wird durch einen Druckerfehler (leeres Farbband, leere
Tag-Rolle, Papierstau) unterbrochen.

6. Der entsprechende Fehler wird am Drucker und in der GUI des Etiket-
tennachdrucks angezeigt und fordert eine manuelle Interaktion.

7. SP/SC behebt den Fehler am Drucker (durch Ersetzen des Farbbandes
bzw. der Tag-Rolle oder Beheben des Papierstaus) und quittiert gegebe-
nenfalls den Fehler am Drucker und/oder in der GUI.

8. RFID-System fährt mit dem Drucken der Etiketten fort.

9. RFID-System schließt den Druck ab und meldet die generierten EPCs an
das WWS zurück.

Appendix A Requirements from Specification Sheets 99

Appendix B

XML Printer Output

1 [. . .]
2 {PC000 ;0043 ,0074 ,1 , 1 , J , 0 0 ,B, P1=S i z e | }
3 {PC001 ;0145 ,0074 ,1 , 1 , J , 0 0 ,B=XS | }
4 {PC002 ;0043 ,0111 ,05 ,05 , I , 0 0 ,B, P1=|}
5 [. . .]
6 {PC009 ;0043 ,0332 ,05 ,05 , I , 0 0 ,B=Countr ies8 | }
7 {PC010 ;0215 ,0111 ,05 ,05 , J , 0 0 ,B, P1=SEK| }
8 {PC011 ;0215 ,0142 ,05 ,05 , J , 0 0 ,B, P1=|}
9 [. . .]

10 {PC018 ;0366 ,0111 ,05 ,05 ,T, 0 0 ,B, P3=1999 ,00 |}
11 {PC019 ;0366 ,0143 ,05 ,05 ,T, 0 0 ,B, P3=|}
12 [. . .]
13 {XB00;0045 ,0220 ,Q,20 ,08 ,05 ,0=3034F766CC009D401E28F2A2 | }
14 {PC026 ;0205 ,0370 ,05 ,05 , I , 0 0 ,B, P2=empfohlener

Verkau f sp r e i s | }
15 {PC027 ;0205 ,0393 ,05 ,05 , I , 0 0 ,B, P2=recommended r e t a i l p r i c e

| }
16 {PC028 ;0205 ,0414 ,05 ,05 , I , 0 0 ,B, P2=Prix c o n s e i l l e s | }
17 {PC029 ;0205 ,0458 ,1 , 1 ,T, 0 0 ,B, P2=209501161505 |}
18 {PC030 ;0050 ,0503 ,1 , 1 ,T, 0 0 ,B=679|}
19 {XB01;0087 ,0523 ,5 ,3 ,03 ,0 ,0044 ,+0000000000 ,017 ,1 ,

00=405342700629 |}
20 {PC031 ;0205 ,0645 ,05 ,05 , I , 0 0 ,B, P2=506|}
21 {PC032 ;0135 ,0496 ,05 ,05 ,T, 0 0 ,B=679|}
22 {PC033 ;0205 ,0668 ,05 ,05 , I , 0 0 ,B, P2=3034F766CC009D401E28F2A2

| }
23 {XB02;0000 ,0000 , r , P5 , F0 , T24 ,G2, R00000000 , K00000000 , L11111

, J00000000 , V1 | }
24 {RB02;3034 F766CC009D401E28F2A2 | }
25 {XS; I ,0001 ,0003 C3101 | }

Listing B.1: Shortened output of a label print to file

100

	Introduction
	Motivation
	Problem Statement
	RFID - Radio Frequency Identification
	Challenges

	Software Testing Preliminaries
	What is Software Testing?
	The Testing Team

	Testing Levels
	Testing Strategies
	Testing Types
	Performing Tests
	Test Automation
	Why Automate Tests?
	Test Case Generation
	Test Execution
	Graphical User Interface

	Test Evaluation

	Alternatives and Supplements

	Theoretical Concept
	detego® SURVEYOR Details
	Database
	Web Service
	Applications

	Possibilities to Test
	Actual State of Testing
	Hardware
	Software

	Test Purposes
	Test Frameworks and Tools
	Unit Tests
	GUI Tests

	Implementation
	Collaboration Platform - TFS
	Web Service
	Preliminaries and Prerequisites
	Test Implementation
	Problems
	Results

	Web Application
	Unit Tests
	Preliminaries and Prerequisites
	Test Implementation
	Problems
	Results

	Functional GUI Tests
	Preliminaries and Prerequisites
	Test Implementation
	Problems
	Results

	Desktop Application
	Preliminaries and prerequisites
	Test Implementation
	Coded UI Framework
	Ranorex framework

	Problems
	Results

	Mobile Device Application
	Preliminaries and Prerequisites
	Test Implementation
	Problems
	Results

	Conclusion
	Bibliography
	List of Abbreviations
	List of Figures
	List of Tables
	Requirements from Specification Sheets
	XML Printer Output

