
Georg Göri, BSc

Erlang-based Execution and Error Handling for
Abstract Behavioural Specifications

MASTER’S THESIS

Graz University of Technology

Institute for Software Technology

Supervisor: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Bernhard Aichernig
Co-Supervisor: Professor Dr. Einar Broch Johnsen, University of Oslo

Graz, May 2015

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources. The text document uploaded
to TUGRAZonline is identical to the present master‘s thesis.

Graz,

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in
TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit iden-
tisch.

Graz, am

Datum Unterschrift

iii

Abstract

Software Modeling allows to verify a system’s correctness and compliance to non-func-
tional requirements in a highly abstracted setting. Writing correct and reliable software
for distributed systems is very hard, especially when they have to operate under non-
optimal conditions. Some faults are unavoidable in a distributed setting, like node failures
or partial network dysfunctions. Therefore, we argue that it is essential for distributed
models to include error handling. In this work we add error handling to the Abstract
Behavioural Specification (ABS) modeling language. ABS supports modeling distributed
systems with active objects, which interact via asynchronous invocations. The invoca-
tion returns a future, which resembles a transferable container, which will contain the
result after the call’s completion. The error handling is inspired by successful concepts
of the Erlang programming language. We therefore support Erlang’s principles of error-
propagation, fail fast systems and restarts in case of an error via error-containing futures,
object termination and implicit rollbacks. These primitives allow us to implement Erlang-
style linking between objects and on top of that supervision trees in ABS. Supervision
trees are a concept, where objects are automatically recreated if they terminate. These
changes are implemented on a newly written Erlang backend, which is a part of the ABS
compiler infrastructure and generates an executable Erlang program from an ABS model.
We represent the key entities in ABS with Erlang’s lightweight processes and asynchro-
nousmessage passing. Due to conceptional similarities in Erlang’sActors andABS’s active
objects and a large overlap in functional parts of both languages, the backend’s translation
can be relatively direct and therefore has successfully been the basis of other’s work. In
certain models it has shown a performance gain in the order of one magnitude in compar-
ison to the other default backends. The translation and the error handling were evaluated
in a case study, that functioned as running example in this work. Results show that in an
unchanged model of the case study the error handling covers most of the discussed errors
and with the addition of object linking in the model all of them can be handled. We also
evaluated the error handling in a distributed modeling approach, that was introduced
here and implemented on top of Erlang’s built-in distribution capabilities. Network er-
rors for asynchronous calls can be reliably handled, whereas distributed futures still pose
a problem.

v

Kurzfassung

Mittels Software Modellierung kann die Korrektheit und die Erfüllung von nicht-funk-
tionalen Anforderungen in einer abstrakten Art und Weise überprüft werden. Das Erstel-
len von korrekter und zuverlässiger Software für verteilte Systeme ist im Allgemeinen
schwierig, insbesondere wenn diese nicht unter optimalen Bedingungen operieren. Man-
che dieser Bedingungen sind nicht kontrollierbar bzw. unvermeidbar, wie z.B. ausfallende
Knoten oder partielle Netzwerkverbindungsverluste. Daher ist die Fehlerbehandlung in
verteilten Systemen essentiell und sollte auch in deren Modellen berücksichtigt werden.
In dieser Arbeit wird die Abstract Behavioural Specification (ABS) Sprache um eine Fehler-
behandlung erweitert. ABS ermöglicht die Modellierung von verteilten Systemen mittels
aktiver Objekte und asynchronen Aufrufen zwischen diesen. Zum Zeitpunkt des Aufrufs
wird ein Future an den Aufrufer zurückgegeben. Dieser transferierbare Platzhalter wird
am Ende des Aufrufs mit dem Ergebnis befüllt. Erfolgreiche Konzepte der Programmier-
sprache Erlang inspirierten die Fehlerbehandlung. Daher werden Erlang Konzepte wie
Fehlerpropagierung, Terminierung im Fehlerfall und automatischer Neustart, durch Feh-
lerspeicherung im Future, Objektterminierung und implizite Wiederherstellung des Ob-
jektzustands unterstützt. Diese grundlegenden Operationen ermöglichen die Implemen-
tierung von Linking zwischen Objekten und darauf aufbauend Supervision Trees in ABS.
Supervision Trees ermöglichen den automatisierten Neustart von Objekten im Fehlerfall.
Diese Änderungen sind im neu erstellten Erlang Backend implementiert, welches Teil des
ABS-Compilers ist und ein ausführbares Erlang Programm aus einemABSModell generie-
ren kann. Die grundlegenden ABS Komponenten werden mit Erlangs leichtgewichtigen
Prozessen und asynchronemNachrichtenaustausch realisiert. Aufgrund der konzeptionel-
len Ähnlichkeit von ABSes aktiven Objekten und Erlangs Aktoren und der funktionalen
Sprachelemente, ist die Übersetzung relativ direkt und konnte daher schon als Basis für
weiterführende Arbeiten herangezogen werden. In manchen Modellen können auch Ge-
schwindigkeitssteigerungen um den Faktor 10 erreicht werden. Die Übersetzung und die
Evaluierung des Fehlermodells wird in der vorliegenden Arbeit anhand einer Fallstudie
gezeigt. Die Resultate zeigen, dass in einem ungeänderten Modell die meisten, und mittels
Linking alle, Fehlerfälle abgedeckt werden können. Weiters wurde die Fehlerbehandlung
in einem verteiltenModell überprüft. DiesesModellierungskonzept wurde hier eingeführt
undmittels Erlangs eingebauter Verteilungsmechanismen implementiert. Netzwerkfehler
können imAllgemeinen gut behandelt werden, wohingegen Fehler im Zugriff auf verteilte
Futures noch unzureichend behandelt werden können.

vii

Acknowledgments

I want to thank all people, who supported me in the creation of this thesis and throughout
my studies.

My first and foremost thanks goes to my supervisors, Professor Bernhard Aichernig in
Graz and Professor Einar Broch Johnsen in Oslo. Both guided me through this endeavor.
Prof. Aichernig supported me in the creation of the thesis and the formulation of ideas.
Prof. Johnsen introduced me to ABS and gave important input for the error handling.

I would like to express my sincere gratitude to Dr. Rudolf Schlatte and Dr. Volker Stolz.
They supported me throughout my exchange semester at the University of Oslo, helped
me understand the details of ABS and its implementation, and encouraged my first steps
into scientific writing and presentation.

In addition, I would like to thank the whole Precise Modeling and Analysis Research
Group at the University of Oslo. They welcomed me cordially, gave me advice and in
general made my stay very pleasant.

Last, but not least, I want to thank my girlfriend, my friends and my family, especially my
parents. All of them, who did not only support me while studying and writing this thesis,
but support me on the journey called life. Thank you very much for that.

Georg Göri
Graz, May 2015

ix

Contents

Abstract v

Kurzfassung vii

Acronyms xiii

1. Introduction 1
1.1. Motivation . 1
1.2. Problem Statement . 2
1.3. Methodology . 3
1.4. Structure and Notation . 4

2. Background 7
2.1. Erlang . 7
2.2. Abstract Behavioural Specification . 13

2.2.1. Core ABS . 14
2.2.2. Full ABS . 18

3. Case Study 21
3.1. The Video Transcode Server . 21
3.2. Modeling the Case Study in ABS . 25

4. Mapping of ABS to Erlang 29
4.1. Translation Concept . 29
4.2. ABS entities in Erlang . 35

5. The Translation Backend 43
5.1. Existing Infrastructure . 44

5.1.1. Parsing . 44
5.1.2. Semantic Analysis . 46

5.2. Code Generation to Erlang . 47
5.3. Testdriver . 56
5.4. Execution of a Model . 57
5.5. Comparing Backends . 60

xi

Contents

6. Error Handling 65
6.1. Faults, Errors and Failures and why model them? 65
6.2. Erlang’s Error Handling . 68
6.3. Error Handling for ABS . 70
6.4. Implementation of Error Handling for ABS 74
6.5. Error Handling in the Case Study . 76
6.6. Supervision in ABS . 80

6.6.1. Introduction of a General Supervisor 80
6.6.2. Supervisor Tree in the Case Study 82

7. Distribution 87
7.1. Erlang Distribution Concepts . 87
7.2. Enabling Distribution in the Erlang ABS Backend 88
7.3. Error Handling and Network Errors . 90

8. Related Work 93
8.1. Related Work on Error Handling in Concurrent Object-Oriented Systems 94
8.2. Related Work on Distributed Models . 95

9. Concluding Remarks 97
9.1. Summary . 97
9.2. Conclusion . 98
9.3. Future Work . 99

Bibliography 101

A. The Video Transcode Server ABS model 109

xii

Contents

Acronyms

ABS Abstract Behavioural Specification

AST Abstract Syntax Tree

COG Concurrent Object Group

FIFO First In First Out

HATS Highly Adaptable and Trustworthy Software using Formal Models

IEEE Institute of Electrical and Electronics Engineers

JVM Java Virtual Machine

LOC Lines of Code

OTP Open Telecom Platform

PID Process Identifier

SLA Service Level Agreement

SDL Specification and Description Language

VTS Video Transcode Server

xiii

Chapter 1.
Introduction

1.1. Motivation

Softwaremodeling can give confidence in a system’s correctness and conformance to non-
functional requirements, like response time or throughput, by resembling a more abstract
version of a target system. Amodel’s level of detail has to be finely balanced, to be concise
and abstract enough to still show the desired properties.

As modern applications have become larger and more globally accessible, they are run in
a distributed and/or virtualized setting to handle the higher and more volatile load. Due
to the dynamic nature of these runtime conditions, these applications have to be more
aware of their environment and be able to react on changes.

Modeling can help to test application designs regarding their throughput under certain
resource limitations [JST12], but this also requires that the model is aware of its environ-
ment. For distributed systems, representing the distribution itself should be considered in
the modeling phase.

Part of the environmental awareness is that nodes in distributed environments can be
temporarily or permanently unreachable. The analysis of production failures in distributed
data-intensive system, like databases and map reduce frameworks by Yuan et al. [YLZ+14]
showed based on bug reports that in 24% of the examined failures an unreachable node
was one of the causes. This is notably as it is a condition, which is encountered at a high
rate in a large distributed system according to Gray [Gra86] and therefore a failure-free
system needs to be fault tolerant. Furthermore, Yuan et al. state that 63% of the failures
only occur on a system with at least two nodes, which strengthens the argument that one
has to consider modeling distribution more thoroughly.

As a certain kind of theses errors are unavoidable in physical systems, they have to include
routines to handle those. A study by Guo et al. [GMY+13] on outages by major cloud
applications likeMicrosoft’s Azure, Amazon’s EC2, Facebook andGoogle’s Gmail, showed
how a faulty error recovery leads to system failures. This highlights that error handling
is an integral part of a distributed application.

1

Chapter 1. Introduction

When one wants to model and analyze real-world usage scenarios regarding their re-
source consumption and error handling, potentiallymore interactions and execution steps
need to be included, which results in larger models and longer execution time.

1.2. Problem Statement

The Abstract Behavioural Specification (ABS)1 language is a statically typed object-ori-
ented modeling language and toolsuite for distributed systems [JHS+10]. It facilitates the
concept of concurrent objects [JOA03], where an object is concurrent in the sense that it can
handle multiple method invocations with cooperative scheduling between those. For ar-
chitectural reasons a set of objects can be grouped into a Concurrent Object Group (COG).
Between COGs calls can only be placed asynchronously. A future [dBCJ07], a shareable
single-assignment container for the results, decouples the callee from the caller and al-
lows to retrieve the computed value. Furthermore, ABS’s objects can be active by provid-
ing a special method representing the object’s inherent behavior, which is activated upon
its instantiation. A wide range of analysis tools for ABS exist. They support test gener-
ation, property based testing, resource analysis and formal analysis based on invariants
[ABG+12].

ABS’s design allows to model distributed systems by concurrent objects, but lacks a nota-
tion of errors and handling of them. As discussed above it is crucial to consider errors
in a more detailed distributed model, as they have to be part of an implementation and
therefore need to be verified as well.

Moreover, if a system’s model should be closer to the implemented system, or even be the
basis for it (by generating implementation level code from a model), error handling is also
aworthwhile addition to a non-distributedmodel. An implemented system should contain
error handling, because in such an environment runtime errors like division by zero or out
ofmemory errors or even software faults in underlying components can happen.Therefore
it can make sense to have a less abstract model including error handling.

Due to the reasons stated above, we want to design and implement an error model and
error handling primitives for ABS, which enables in further steps to model a distributed
system, where errors are well defined and can be handled. To simulate models with the
introduced error handling primitives, the ABS toolsuite has to be extended with support
for error handling.

1Even though this work is written in American English, for ABS we use the British English spelling,
chosen by the HATS project

2

1.3. Methodology

1.3. Methodology

Concurrent objects are comparable to actors, a model for concurrent computation [AZ98].
An actor represents a unit of execution, that can exchange messages with other actors and
create new actors. A concurrent object can therefore be represented by an actor with fields
as local state and asynchronous activations via messages.

Erlang is a widely used implementation language resembling the actor concept. It is es-
pecially known for its error handling capabilities and being the basis of high availability
distributed software [Vin07, Arm03]. Therefore we want to look at the successful error
model of Erlang and adapt it for ABS with its active concurrent object groups.

On top of the new error handling constructs in ABS, wewant to be able to use supervision,
a key concept for the failure-tolerance in Erlang. Supervision allows to structure the actors
in Erlang and restart parts of them in case of an error.

The ABS toolsuite provides a framework, that parses and generates a type-checked in-
termediate representation of a model. It can be used for analysis or be translated by a
so-called backend to an executable representation. Part of the ABS toolsuite are backends
for Java and Maude. As the Erlang runtime comes with built-in distribution that also re-
spect the error handling primitives, we design an Erlang backend as a means to evaluate
ABS with the new error model in a distributed setup.

Motivated by the similarities of the actor and concurrent object models, we hope to gain
with the Erlang backend for ABS a translation that can be simpler and more native to
the target language. This should in turn result in clearer output code, that can be easily
extended with more features in the future. Furthermore, as for larger distributed models
execution runtime can be a limiting factor. We want to achieve a faster execution by us-
ing a simpler Erlang representation, which preserves the same level of concurrency as
present in ABS and executes on the Erlang runtime, which is known for its good concur-
rent performance.

The path to an error model and further to an evaluation of it in a distributed manner, will
be taken by firstly providing a translation to Erlang, then creating an error model with
an Erlang implementation and lastly showing an approach to distribution with errors.
We will do so alongside using and extending a case study. For a better understanding of
especially the concurrent capabilities of ABS, the case study will be first described as a
model. After introducing the translation and error model, the default error handling will
be examined and new constructs plus supervision will be added.

3

Chapter 1. Introduction

1.4. Structure and Notation

The rest of this thesis is structured in the following way:

Chapter 2 introduces the necessary background knowledge. The ABS and Erlang lan-
guages are described and key concepts are explained.

Chapter 3 outlines the used case study and its requirements. Furthermore, shows how
to model it in ABS, which highlights the simplicity of the concurrency model.

Chapter 4 covers the mapping of ABS to Erlang. First, the high level translation aspects
and then a more detailed description of the Erlang representation of a model are pre-
sented. We take a close look at the runtime functions and processes, which support
the execution of the Erlang translation.

Chapter 5 shows the Erlang backend, which translates a model to Erlang. How the new
backend is implemented and in which way it integrates with the existing ABS tool-
suite will be covered in this chapter. Some translation areas are highlighted and then
a ABS class of the case study and its translation are presented.With the implementa-
tion in place the unit testing of the new translation and a guide for executing an ABS
model on the Erlang backend will be given. The chapter closes with a comparison
of the new backend with the standard backends of the ABS toolsuite.

Chapter 6 discusses errors, faults and failures. After outlining key concepts in Erlang,
the ABS error handling and its implementation will be shown. An evaluation of the
presented idea happens by introducing it to the case study and by building supervi-
sion in ABS on top of it. The latter will then be used to expand the case study.

Chapter 7 focuses on distribution. A concept how to represent distributed execution in
ABS and an implementation in the Erlang backendwill be discussed.Then the behav-
ior of the new error model in a distributed error-facing execution will be evaluated
and open obstacles discussed.

Chapter 8 looks at related work on error handling in concurrent systems and distributed
models.

Chapter 9 summarizes the thesis and discusses the findings. Finally, an outlook on future
and ongoing work will be made.

4

1.4. Structure and Notation

Notation Throughout this work code and examples inmultiple languages are referenced
and explained. To improve readability and understanding especially when referring to
multiple languages in the same paragraph, different styles are used for themain languages,
ABS, Erlang and Java, in this work. Examples of the used styles are shown below.

All three languages use different distinguishable fonts. Additionally different colors are
used to improve readability. ABS snippets are presented on a green background and the
keywords are highlighted in black. For Erlang code a white background is used instead.
The background for Java source code is colored gray and keywords are printed in light
blue. These styles are also used embedded in descriptive text and graphical illustrations
following the same style like ABS code, Erlang code and Java code.

1 Object new_object = new Object()

ABS code notation

1 Pid = spawn(fun() −> object end).

Erlang code notation

1 Object new_object = new Object ()

Java code notation

Context of this work The Erlang backend and the ABS additions were developed as part
of an exchange semester from August 2013 to February 2014 at the Precise Modeling and
Analysis Research Group at the University of Oslo. There, Professor Einar Broch Johnsen
supervised the conception and implementation. The thesis itself was mostly written in
Graz under supervision of Professor Bernhard Aichernig.

5

Chapter 2.
Background

In this chapter we introduce the principle technologies the following work is based on.
The Erlang programming language and ABS modeling language will be examined. For
both we highlight key concepts that are usually not found in other common languages.

2.1. Erlang

Erlang is a dynamically typed concurrent functional programming language [Arm10].
The functional paradigm is represented by supporting single assignments, pattern match-
ing, first and higher order functions. To enable concurrent programs, Erlang provides
lightweight processes as means of evaluating a function. The processes are able to com-
municate by using asynchronous messages [AS88].

Erlang is shipped tightly coupled with the standard library Open Telecom Platform (OTP),
which provides, besides a lot of other functionality, the necessary runtime components to
execute a program distributed over multiple hosts.

These distribution facilities and the error handling capabilities, which will be explained
and used in this work in Chapter 5 and 6, allow to build highly reliable and scalable ser-
vices like Ericsson’s AXD 301 telecommunication switch [Arm03] or WhatsApp [Wha12,
Vin07].

Erlang’s development was started in 1987 at the Laboratory at Ericsson TelecomAB by Joe
Armstrong [Arm07a].The goal of this research project was to develop a programming lan-
guage, which better suited the application in telecommunication switching systems than
existing ones did. It was used successfully internally at Ericsson, but after a strategy shift
the runtime and language was released under an open-source license in 1998. Following
that, a larger audience became aware of Erlang and its advantages.

7

Chapter 2. Background

The Actor Model forms the theoretical basis for Erlang processes and their commu-
nication. The concepts introduced by Hewitt et al. in [HBS73] can be used to model a
concurrent system. Actors are the principle unit of computation in this model. They are
independent of other actors and communicate via asynchronousmessages.When an actor
receives a message from another actor, it performs a local computation, which is indepen-
dent of the other actors. The computation is a concurrent composition of the following
base operations:

• Send messages to other actors
• Create new actors
• Specify the behavior on how to handle the next arriving message

Processes are the mechanism that allows concurrent execution in Erlang. A process
is started by the spawn(<Function>) function, which takes either a function name or an
anonymous function (often also referred to as lambda expression) as parameter. A Process
Identifier (PID) referencing to the newly created process is returned at creation. The PID
can later be used to send messages to this process (see below).

As the name hints, processes do not share memory amongst each other. Therefore a pro-
cess can be seen as function evaluation with its own stack, heap and mailbox. This simple
design does not require any costly interaction with the operating system, which allows to
implement processes solely in Erlang’s virtual machine with a very small memory foot-
print of a few hundred bytes.

Modules are Erlang’s concept for structuring and grouping code. A module resides in
a file named modulename.m and contains attributes and function declarations. These at-
tributes allow to specify records (a named tuple data type) and exports and imports, which
control the visibility of functions from and to other modules.

The code for one kind of processes is normally placed in a single module. Only functions
for startup and interaction with these processes are exported from this module. Thus one
can hide internals in the messaging systems by using this kind of modules. In documen-
tation and explanations, such a process is often referred to by its module name, as it
represents this module’s behavior.

Message passing and its guarantees A process A can asynchronously send a message
containing an arbitrary term T to another process with the PID B, by using the send ! op-
erator in the following way: B!T . This message will then be put in B’s mailbox, which is a
queue of dynamic length. Messages in the mailbox can be fetched by a receive statement,
which allows to specify multiple patterns, where a message has to match one of those pat-
terns to be retrieved from the mailbox. If no timeout is specified the receive statement
will block until a matching message is received.

8

2.1. Erlang

The Erlang runtime system does neither guarantee a global order of messages in the mail-
box nor that messages are reliably sent. It ensures however that messages, sent from one
process to another, will arrive there in the same order. This aspect is highly important,
when implementing correct protocols. Formal semantics for Erlang and its distributed
execution were also proposed by Svensson and Fredlund in [SF07, Fre01].

An Example is used to illustrate the Erlang concepts presented in the previous para-
graph. In the code, shown in Figure 2.1, two processes exchange messages. The example
consists of multiple expressions. A single expression ends with a dot (.), as can be seen
for the expression over the Lines 1–5. They can be evaluated by pasting them in the inter-
active Erlang shell (a binary called erl) and will be discussed expression by expression in
the following paragraph.

1 Responder_fun=fun () −>
2 receive {Other,ping} −>
3 Other!pong
4 end
5 end.
6 Responder=spawn(Responder_fun).
7 Responder!{self(),ping}.
8 receive pong −>
9 io:format(”success~n”)
10 end.

Figure 2.1.: A ping-pong example in Erlang

The first statement over Line 1–5 creates a function. It contains a receive statement, that
waits for a message, which is a two-element-sized tuple. The receive performs the same
kind of pattern matching a case expression does. One can specify different patterns with
bound and unbound variables. The received message has to match such a pattern with its
bounded variables. In case of a match, unbounded variables will be bound to the specific
value of the expression. In our example the first element is bound to the variable Otherand
the second element has to be the atom ping. Should such a message be received, Line 3
is executed, where the atom pong is send to the PID bound in Other. A new process, eval-
uating this function is then created in Line 6. The spawn function returns the PID of this
newly created process, which is stored in the variable Responder.

In Line 7 a message is send to the Responder. It matches what is expected by the function
in Line 2. The first element of the sent tuple is the PID of the current process, which is
retrieved by a call to self. As discussed above, the Responder replies to such a message
with a message of the atom pong. After that the initial process waits in the receive state-
ment over Lines 8–10. When it receives a message matching pong, it prints success to the
standard output. Note that after the Responder has evaluated the receive, the function
end is reached and therefore the server is terminated.

9

Chapter 2. Background

Behaviors are important design patterns in Erlang.The concept consists of a generic im-
plementation for a structure that is often needed, like a long-running process that replies
to messages. These implementations come along with a rich set of API functions to use
them. The business logic of those is then provided by a so-called behavior module, which
has a well defined set of callback functions.

The long-running process above is provided by the gen_server module. It handles in-
ternally asynchronous and synchronous messages with a return value to the caller, and
additionally provides functions for hot-code upgrade and handling timeouts. Moreover, it
maintains a term representing its internal state.The behavior module has in principle only
a function to initialize this state, and a function that is called, when a message is received.
This function is supplied with the internal state and has to return a term representing the
updated internal state and an optional reply to the sender.

Other Erlang/OTP behaviors used in this thesis are gen_fsm and gen_event. The first is
like a gen_server with an additional internal finite state machine, where the callbacks
depend on the internal state. The gen_event process resembles the observer pattern. One
can add multiple gen_event behavior modules, which get called when an event is fired.

A gen_server example shows how this behaviors can be used. In Figure 2.2 we display a
gen_server-based version of the ping-pong of Figure 2.1 on the previous page. In addition
to the previous example, in this one the Responder maintains a list of processes it has
replied to.The script, starting and using the server, is shown in Figure 2.2(a). The behavior
module used for this server is shown in Figure 2.2(b). First the script and then the behavior
module will be explained.

In the first line the gen_server process is created via the start function. Here we have to
pass the name of the module, containing the behavior callbacks, and we could pass addi-
tional arguments and options. If the startup was successful, the start function returns a
reference to the new process as a tagged tuple. The call in Line 2 sends a message to the
server and waits for a reply. An asynchronous alternative to this is the gen_server:cast
function. The call function is invoked with the reference to the ping_server and a mes-
sage, which is in our case the atom ping. The returned value of the call is the answer of
the gen_server, which we expect in Line 7 to match the atom pong. After that success
is printed to the standard output, to conform to the behavior of the previous ping-pong
example.

The ping_server module has to provide a set of callback functions, as defined by the
gen_servermodule. These functions are called for a specific situation or event and have a
set of allowed return values. Via the compiler directive in Figure 2.2(b) Line 2, the compiler
checks if all required functions are provided by this module. These methods also have to
be exported to be available, which happens in Line 3. We will now discuss each of these
functions.

10

2.1. Erlang

1 {ok,Responder}=gen_server:start(
ping_server, [], []).

2 pong=gen_server:call(Responder,
ping).

3 io:format(”success~n”).

(a) Startup and call of the ping_server

1 −module(ping_server).
2 −behavior(gen_server).
3 −export([init/1, handle_call/3,

handle_cast/2, handle_info/2,
terminate/2, code_change/3]).

4

5 init([]) −>
6 {ok, []}.
7

8 handle_call(ping, {From,_}, State) −>
9 {reply, pong, [From|State]}.
10

11 handle_cast(_Msg, State) −>
12 {noreply, State}.
13

14 handle_info(_Info, State) −>
15 {noreply, State}.
16

17 terminate(_Reason, _State) −>
18 ok.
19

20 code_change(_OldVsn, State, _) −>
21 {ok, State}.

(b) The ping_server behavior module

Figure 2.2.: A gen_server implementation of the ping responder

The init function is called after the startup and has to return the initial state of this
server. As we want to maintain a list of clients, the server has replied to, an empty
list ([]) is set as the initial state. The handle_call function is invoked, when a client
executes gen_server:call. The message of the client is the first parameter and the sender
the second. As third parameter the term representing the server’s internal state is passed.
In this example we match only messages of the form ping. In Line 9 the return value
{reply,pong,[From|State]}, indicates that pong should be returned to the caller and the
server’s new state is the list [From|State], where the caller’s PID is appended in the
front of the previous list. The handle_cast and handle_info functions work similarly.
The former is called, when gen_server:cast is invoked and the latter is invoked for every
message the gen_server process receives, which is not handled by any of the other two
functions.

When the gen_server process terminates, the terminate function is invoked. Its return
value is ignored. The code_change function is used to update the internal state in case of
an code hot-swap, an Erlang feature which is not covered in this work.

11

Chapter 2. Background

The Responder as tail-recursive process is an extension of the ping-pong server in
Figure 2.1. We extend the above shown process to respond to messages in an infinite loop.
These kinds of processes are called long-running.

There are no actual loops supported in Erlang, but instead one implements equal behavior
with recursive calls. If these calls are the last statement in a function, they are called tail-
recursive. In that case the invoking (or callers) stack frame can be discarded, as no return
to this function can happen.

In Figure 2.3, we show the implementation of the Responder as tail-recursive process,
which in the same manner as the gen_server example above stores a list of processes,
it has replied to. It can maintain this list, by having a State variable, which is updated
with New_State=[Other,State] in every recursive invocation, shown in Lines 2–4. The
updated state is then passed on to the next invocation. The tail-recursive call can be seen
in Line 6. In Lines 7–9, an anonymous function, which initializes the loop with an empty
list, is defined and can be used in the same way as in Figure 2.1.

1 loop (State) −>
2 New_State=receive {Other,ping} −>
3 Other!pong,
4 [Other,State]
5 end,
6 loop(New_State).
7 Responder_fun=fun()−>
8 loop([])
9 end.

Figure 2.3.: A tail-recursive ping-pong example

12

2.2. Abstract Behavioural Specification

2.2. Abstract Behavioural Specification

The ABS language1 was developed as part of the EU FP7 HATS (Highly Adaptable and
Trustworthy Software using Formal Models) project to allow the modeling and analysis
of adaptable distributed concurrent software. Alongside a toolsuite to support develop-
ment was created, which provides an Eclipse plugin, Unit testing, package/dependency
management and visualization tools [WAM+12].

ABS is an object-oriented language with functional expressions on a statement level. Con-
currency is enabled by providing asynchronous calls and cooperative scheduling of those
calls in groups of objects. Furthermore, components can be reused and newly combined
to adapt modern software to the ever changing requirements it has to fulfill.

Cooperative scheduling is a concept on how a set of executable units manage to share
a single execution slot, where one unit is executed. When scheduling cooperatively the
current executing unit has to willfully give up its computation, to allow another unit to
be scheduled. This is called to suspend in ABS. In such a system a unit cannot be forced to
pause its computation.Therefore all units have to cooperate to achieve the desired system
behavior.

The language is split into two levels: The Core ABS language [JHS+10], which contains
functional, sequential, object-oriented, concurrent and distributed concepts to describe a
single model. The syntax is inspired by the Java language where applicable. The second
level is Full ABS, which allows the description of variable composable models via delta-
oriented programming [SBB+10] and software product lines [PBvdL05]. One composition
of variable model parts is called a product. A single product, selected by a set of features
and generated by Full ABS results in a model only containing Core ABS elements. So one
merely has to consider Core ABS models for execution. Therefore, this work focuses on
Core ABS and will discuss that in detail and than give a short overview about Full ABS.

1http://abs-models.org

13

http://abs-models.org

Chapter 2. Background

2.2.1. Core ABS

ABS supports algebraic data types and first order functional expressions.They can be com-
posed with sequential and object-oriented constructs. Concurrency modeling capabilities
are added on top of object-oriented concepts. This layered design supports formal reason-
ing on models, as lower layers are less complex and therefore easier to reason about. Like
the functional layer, which is side-effect free and has immutable state. We now have a
look at all these layers and how to compose them to form a powerful modeling language.
More information can be found in a tutorial by Hähnle [Häh12] or the current language
documentation under http://docs.abs-models.org

Built-in Types and Algebraic Data Types ABS has besides the common built-in types
String, Int and Bool also the following types:

Unit : has only a single value, used if no value should be returned from a method
Rat : represents a rational number, with arbitrary large numerator and denominator
Fut<A>: a future containing potentially a value of type A (see the paragraph on asynchro-

nous calls on Page 16)

1 data List<A> = Nil |
2 Cons(A head,
3 List<A> tail);
4 def Int length<A>(List<A> list) =
5 case list {
6 Nil => 0 ;
7 Cons(p, l) => 1 + length(l) ;
8 };

(a) Functional parts of ABS

1 {
2 ListServer dl= new l o c a l

DuplicatingList(42);
3 dl.add();
4 Fut<Int> res= dl ! length();
5 await res?;
6 }

(b) Main block with concurrent parts of ABS

1 module Lists;
2 export ListServer , DuplicatingList;
3 i n t e r f a c e ListServer {
4 Unit add();
5 Int length();
6 }
7 c l a s s DuplicatingList(Int value)

implements ListServer{
8 List<Int> store;
9 {
10 store= Cons(value,Nil);
11 }
12 Unit add(){
13 store= Cons(value,store);
14 }
15 Int length(){
16 return length(store);
17 }
18 }

(c) A module with a class and an interface

Figure 2.4.: Example language constructs in ABS

14

http://docs.abs-models.org

2.2. Abstract Behavioural Specification

Algebraic data types allow the specification of composed immutable values, using con-
structors and other data types. Those can also be parametric typed as can be seen in
Figure 2.4(a) Lines 1–3, where a list is defined over the parametric type A. This list type
can either contain the empty constructor Nil or a Cons cell over an element of A and a
List<A>.

Functional Expressions and Functions Next to standard side-effect free expressions like
let, if and function application, ABS supports pattern matching via the case expression.
An example can be seen in Figure 2.4(a) Lines 5–8, where one list cell is matched against
two different patterns. The second pattern Cons(p,l) contains the not previously used
variables p and l, which will be bound in case of a match. When evaluating a case ex-
pression, the expression on the right-hand-side of the arrow => of the first match will be
evaluated for the value. A functional expression can be defined as a function like shown
in Line 4 of the Figure 2.4(a) .

Sequential Programming Next to expressions, which can be evaluated to a value, ABS
supports statements like assignments, variable declarations and other control flow state-
ments like if, case pattern matching, while loops and blocks of statements. They can be
composed to form the method’s body.

Interfaces and Classes To support object-oriented programming ABS supports classes
and interfaces. Interfaces support multiple inheritance of other interfaces and classes can
implement multiple interfaces. Only interfaces are used as types of objects (instead of
classes). Subtyping for derived interfaces is supported. As object references are only typed
on interfaces one can also only refer to methods and not to fields. There is no class inher-
itance in ABS. A different approach for specialization is provided by supporting delta
modules (see Full ABS). This leads to the fact that no member visibility specifications are
required as everything in an interface is public and in a class private.

Classes do not have normal constructors, but instead support class parameters, which
represent the values that have to be passed to a newly created object. Additional initial-
ization code can be placed in an optional init block. Furthermore, classes can be active as
proposed by Johnsen et al in [JOA03]. The optional method, named run, will be executed
after instantiation to represent the active behavior of an object.

The example in Figure 2.4(c) shows the definition of an interface with two methods over
Lines 3–6. The interface ListServer is implemented by the class DuplicatingList,
which maintains a list of integers. Each of these list elements has the same value. This
value is set via a class parameter (Int value). An init block (Lines 9–11) initializes the
internal list with a single element. The implemented methods make use of functions and
data types defined in Figure 2.4(a). No import statements are needed for them, as they are
part of the standard library.

15

Chapter 2. Background

Modules and the Main Block The module system allows to structure code elements
similar to the one found in Python. A module consists of definitions of functions, classes,
interfaces, algebraic data types and imports from other modules. Furthermore, one can
define via exports, which definitions are available to other modules. A module can also
contain a block of statements, the so-called main block, which will be executed after the
startup of the model.

Concurrent Object Groups and Tasks/Processes Concurrent Object Groups (COGs)
are one central aspect how concurrency can be handled in ABS. They represent the small-
est unit of distribution in ABS. Following the concept of CoBoxes by Schäfer et al. [SP10]
a COG is a group of objects with a set of tasks that are processed by those objects. Only
one of the COG’s tasks can be execute at a time and therefore, as all fields are private,
there can be no concurrent access to the objects in a group.

A task represents the execution of sequential code in an object and can either be:

• An active object’s run method
• An asynchronous call (see below)
• Execution as part of the main block

In between objects of a COG, calls can be performed synchronously, whereas intra-COG
calls have to be asynchronous. COGs do not have a syntactical representation in the ABS
language, so they are not themselves directly visible as a grouping mechanism in a model.
There is also no COG type that one could refer to. Instead one can control, if a new object
is placed in a new COG or in the object’s creator’s COG by using either new <Class> or
new local <Class> construction operation.

In Figure 2.4(b) a main block is depicted that uses the above explained class and interface.
In Line 2 we instantiate a new object, which will run in the same COG as the main block.
Therefore, we can use a synchronous call to the add method in Line 3.

Tasks are also called processes in ABS-related literature. We choose to stick with the
slightly less used term task, because ABS tasks and Erlang processes appear throughout
this work in the same context, which could easily lead to confusion.

Asynchronous Calls and Cooperative Scheduling Asynchronous calls are not only nec-
essary to invoke methods on objects in different COGs, but also allow to make multi-
ple calls concurrently. An asynchronous call will return immediately a future [dBCJ07],
which is a container for the result value of this call. Unless the result is already contained
in the future, the future is unresolved. In ABS the result of a future f can be accessed with
the get expression. In case the future is still unresolved, the get expression blocks until
the future resolves. Thus an asynchronous call with an immediate get on the future can
be used to simulate a synchronous call.

16

2.2. Abstract Behavioural Specification

By using cooperative scheduling ABS offers a way to handle concurrency in a COG, which
allows simplified reasoning over models and avoids the need of locks or mutexes. At ex-
plicit scheduling points the execution in the COG can change from one task to another.
There are two different statements for that in ABS: the unconditional suspend and the
await C, where a task suspends and is only allowed to resume if the condition C holds. A
condition can either be an expression that evaluates to a Bool, the operator ? that can be
applied on a future and resolves to true if the future is resolved, or a conjunction of two
conditions with the operator &.

The combination of await and asynchronous calls allows us to implement concurrent
systems, where the awaits can function as synchronization points. This is depicted in
Figure 2.4(b), where in Line 4 the asynchronous call is performed and in Line 5 an await
on that future happens.

How cooperative scheduling with await statements can ease the specification of concur-
rent systems, can be seen in Figure 2.5(a). In the example a buffer is shown, which has
a fixed capacity and stores the data in an internal list. It allows concurrent calls to the
read and write methods, which as the name indicates put or retrieve a value from this
buffer in First In First Out (FIFO) order. The await statements in Lines 6 and 13 help to
guarantee that the methods only continue, if the buffer is either non-empty or still has
available capacity.

The ABS model is here also compared with an implementation in Java, depicted in Fig-
ure 2.5(b).We can guaranteemutual exclusive access bymaking the read and writemethods
synchronized. The conditions, which are checked with awaits in ABS, are implemented by
a while loop, wait and notifyAll invocations. A condition is checked in the while loop and
in case it does not hold the waitmethod is invoked, as can be seen in Lines 7–9 and 18–21.
The waitmethod leaves the monitor, so allows another thread to enter a synchronized block,
and resumes if it is notified by a notifyAll invocation. The notifyAll calls have to be placed,
wherever a waiting thread’s condition could have changed, which is in our case after a
read in Line 13 or after a write in Line 24.

Annotations are additional markup that can be placed in front of all definitions of func-
tions, classes, interfaces and type usages. They allow to easily extend the modeling, by
providing additional information, without the necessity to implement a new special syn-
tax. A single annotation is composed of a side-effect free expression and an optional type
specification.

For example an object can be in the same or a different COG, so the references to this
object are tracked in the compiler as near or far, to ensure that no synchronous calls
are attempted on a far reference. Normally this information is inferred by the compiler.
In cases where this is not possible, like when an object is created outside of a method’s
scope, one can annotate these references with [LocationType: Far] or when omitting
the type specification with [Far].

17

Chapter 2. Background

1 c l a s s IntBuffer{
2 Int capacity= 10;
3 List<Int> buffer=Nil;
4

5 Int read(){
6 await ~isEmpty(buffer);
7 Int val= head(buffer);
8 buffer= tail(buffer);
9 return val;
10 }
11

12 Unit write(Int val){
13 await length(buffer)<capacity;
14 buffer= appendright(buffer,val);
15 }
16 }

(a) A buffer in ABS

1 public class IntBuffer{
2 private int capacity= 10;
3 private List <Integer > buffer=
4 new ArrayList <>();
5

6 public synchronized int read(){
7 while(buffer.isEmpty ())
8 try{
9 wait();
10 }
11 catch(InterruptedException e){}
12 int val=buffer.remove (0);
13 notifyAll ();
14 return val;
15 }
16

17 public synchronized void write(int
val){

18 while(buffer.size() >=capacity)
19 try {
20 wait();
21 }
22 catch(InterruptedException e){}
23 buffer.add(val);
24 notifyAll ();
25 }
26 }

(b) A buffer in Java

Figure 2.5.: A comparison between two concurrent buffer implementations

2.2.2. Full ABS

Modern software needs to be adapted to a wide range of uses by potentially different cus-
tomers. Therefore, one wants to reuse components, which can speed up and improve the
development process. Reusabilty and variability can also be beneficial whenmodeling and
testing a system, as it allows to test different software components. Full ABS implements
the concept of software product line engineering [PBvdL05, CMP+10], allowing for this
kind of modeling.

A product is a Core ABS model, which fulfills a set of features. Features can be modeled
by applying a set of changes to a minimal model. These changes, like adding or changing
methods, adding types and classes, are expressed as delta modules. An example for a
delta module can be seen in Figure 2.6. In Line 26-31 a delta is defined that modifies the
sayHello method of the Greater class. Another delta is shown in Line 7-19, which also
changes the same method, but calls via original the version of the method before applying

18

2.2. Abstract Behavioural Specification

1 module Hello;
2 c l a s s Greeter implements Greeting {
3 String sayHello() {
4 return "Hello world";
5 }
6 }
7 de l ta Rpt (Int times);
8 modif ies c l a s s Greeter {
9 modif ies String sayHello() {
10 String result= "";
11 Int i= 0;
12 whi le(i < times) {
13 String orig= o r i g i n a l ();
14 result= result + " " + orig;
15 i = i + 1;
16 }
17 return result;
18 }
19 }

20 de l ta De;
21 modif ies c l a s s Hello.Greeter {
22 modif ies String sayHello() {
23 return "Hallo Welt";
24 }
25 }
26 de l ta Nl;
27 modif ies c l a s s Greeter {
28 modif ies String sayHello() {
29 return "Hallo wereld";
30 }
31 }
32 product l ine MultiLingualHelloWorld;
33 f eatures English, German, Dutch,

Repeat;
34 de l ta Rpt(Repeat.times) a f t e r De, Nl

when Repeat;
35 de l ta De when German;
36 de l ta Nl when Dutch;
37 product P1 (English);
38 product P2 (Dutch,Repeat{times=10});

Figure 2.6.: Multilingual Hello World shipped with the ABS frontend found under
tests/abssamples/deltas/Hello.abs licensed under the Modified BSD License

the delta. This highlights how multiple deltas can be stacked, but also the importance of
the order of the application. Furthermore, the second delta also has a parameter times,
which allows for build-time parameterization of ABS models.

All deltas necessary for applying a feature, are specified by a productline definition as
can be seen in Figure 2.6 Line 33-36. First all available features are listed, which are in
our example: English, German, Dutch and Repeat. With the when keyword a list, which
defines when it should be applied, is specified for each delta. Optionally also the order
can be configured with the after clause.

To generate a product we first specify different kinds, like the products P1 and P2 in
Figure 2.6 Line 37-38, where the part in the brackets represents the selected features with
parameters. Such a product can be built at the code generation step by adding a parameter
-product=P1.

In the shownmodel we could also specify a product that would have the feature dutch and
german, which is kind of nonsensical in this example as this program can only greet in one
language. Therefore one can also specify a feature model, that allows to put constraints
on the set of selected features and their parameters. For details see the reference manual
or the case study by Helvensteijn et al. [HMW12].

19

Chapter 3.
Case Study

In the following pages we present the case study this work is built upon and its require-
ments.Thenwe show how this case study can bemodeled in ABS and how its concurrency
model allows to fulfill the requirements.

3.1. The Video Transcode Server

The Video Transcode Server (VTS) is a facility, allowing a user to request a video file,
which is stored in a codec known to the server. It will be on the fly encoded in a codec
known by the client.The server could havemore codecs available, which enable the clients
to receive files, they normally would not be able to decode.

A video consists of a sequence of frames, which only can be consumed linearly, so no
jumps or reverse playback is supported. The following terminology will be used to de-
scribe the encoding in the server: a Block refers to one encoded Frame of a video and is
one element of a BlockStream, which represents the linear access to the video file.

The communication between both parties is quite simple: The client requests a file by
sending its name to the server. In response the server sends transcoded blocks to the client
until the end of the file is reached. To maintain simplicity, the used codecs are hardcoded
in this version.

The server has multiple requirements:

• it should be able to serve multiple clients
• as encoding is expensive, only those parts of a video file that will be retrieved by
the client should be processed

• to enable continuous lag-free playback some transcoded frames should be precom-
puted and cached before they will be retrieved

As encoding, decoding and file access go beyond the scope of this work and a model in
general, they will be only simulated by resource consuming functions.

21

Chapter 3. Case Study

Connection model Further simplificationswill be used formodeling the server-to-client
communication. We want to have a model, that can be fully represented in ABS with-
out the use of calls to other programming environments or operating system routines,
which could provide a real networking stack. The communication of a client and a server
is modeled by a connection object, synchronizing via asynchronous send and retrieve
calls. In Figure 3.1 one can see the interfaces and classes used to model a connection.
The SyncConnection class represents the connection, which is accessed either via the
ServerConnection or ClientConnection interface, depending on the usage side.

Figure 3.1.: Classes used to model a typed bidirectional synchronous connection

A connection is established by calling the Acceptor’s acceptNew method, which is imple-
mented by the Server. This method will create a SyncConnection object in a new COG
and return the object to the client. On the server-side it is passed along to a newly created
ConnectionHandler, which performs the communication with the client. This simulated
bidirectional synchronous connection has fixed data types for sending and retrieving in
the following way: a client can only send messages of type String, the server can only
send Blocks.

For instance, server to client communication through this SyncConnection object is done,
by the server invoking Unit serverSend(Block s), which will wait until the client call-
ed Block clientRetrieve(). The order could also be reversed, as both calls perform a
barrier synchronization by using await statements. Barrier synchronization means that a
group of executable units (here objects) waits at a barrier and they can only continue, after
all executable units have reached this barrier. In the connection the barrier is represented
by the pair of send and retrieve methods.

22

3.1. The Video Transcode Server

Implementation of the Connection The SyncConnection object provides two indepen-
dent channels – one for each direction. As they are conceptionally equivalent we describe
how the connection from the server to the client works.

The implementation of the operations serverSend and clientReceive for the channel
from the server to the client is depicted in Figure 3.2. This channel sends data of the type
Block. It requires two fields: a server_count, representing howmanymessages the client
has consumed, and a bufferS, which can contain a single message or is otherwise empty.
The latter is implemented with the Maybe<T>=Just(T t)|Nothing type shipped with the
standard library, where the functions isJust and fromJust return in case it is filled true
or respectively the contained data.

1 Unit serverSend(Block msg){
2 await bufferS==Nothing;
3 bufferS=Just(msg);
4

5 Int oldVal = server_count;
6 await server_count == 1+oldVal;
7 }

(a) Send

1 Block clientRetrieve(){
2 await isJust(bufferS);
3 Block msg= fromJust(bufferS);
4 server_count = server_count+1;
5 bufferS = Nothing;
6 return msg;
7 }

(b) Retrieve

Figure 3.2.: Operations on a single direction connection

The serverSend method has to ensure that the previous content was read from the
bufferS before it fills the bufferS and waits until the server_count is incremented by
one, which indicates the read from the client. The clientRetrieve method just has to
wait until the bufferS is filled, retrieve the content, increment the server_count and
empty the bufferS.

The connection model is also depicted in the sequence diagram in Figure 3.3. In that ex-
ample a client opens a connection and sends one message to the server-side, which is
represented by the ConnectionHandler object.

23

Chapter 3. Case Study

.. Client.. Server.. SyncConnection.. ConnectionHandler....

acceptNew

...

<< create >>

.....

<< create >>

........

clientSend

......

serverRetrieve

...

Figure 3.3.: Messaging in Video Transcode Server

Usage of the case study in this work TheVideo Transcode Server will be implemented
and adapted throughout this work. In the next section it will be modeled in ABS, while
especially considering the above stated requirements. After we have introduced the new
error handling primitives, we analyze possible runtime errors and extend the model to
handle those in Section 6.5. In Section 6.6.2 we then implement a supervised global pool
of encoders to regulate the amount of parallel encoding, while still ensuring an error-
tolerant system.

24

3.2. Modeling the Case Study in ABS

3.2. Modeling the Case Study in ABS

The above introduced case study will be translated to an object-oriented model for ABS.
The classes and interfaces of the server are depicted in Figure 3.4. Those and other design
decisions will be explained in the next paragraphs.

Each object is in its own COG to enable concurrent execution. The Server class, which is
depicted in Figure 3.1, enables the Client to retrieve a connection by calling its acceptNew
method. This connection, which is, as described on the previous page, represented by an
object, is observed by a ConnectionHandler object. It is created by the server for each
connection and will in its active behavior await an initial message from the client and
then fill the stream with transcoded blocks from the requested file. In order to produce
the transcoded blocks, the connection handler will create an instance of the Transcoder.
After the initialization transcoded blocks can be retrieved by calling nextBlock().

A Transcoder can use realizations of the interfaces Encoder and Decoder to fulfill its
transcoding task. Those interfaces are defined in a very abstract manner to enable im-
plementations supporting various codecs. Furthermore, the input is abstracted by using
the BlockStream interface, which provides methods to check if more input is available
and retrieve it. The three interfaces BlockStream, Decoder and Encoder are together re-
ferred as the pipeline, because blocks pass through these elements sequentially and will be
transformed in this process. The end product of the pipeline’s application is a sequence of
differently encoded blocks. No implementation of the interfaces is depicted, as we want
to focus on the architecture of the server and the pipeline in general. For testing we use
dummy implementations for each of the interfaces.

Figure 3.4.: Class diagram of the transcoding server

The CacheTranscoder is the realization of a Transcoder, which implements the desired
properties, that blocks should only be encoded on demand and that a cache of the next few
blocks should bemaintained. An instancemust be initialized with an object for each of the

25

Chapter 3. Case Study

pipeline elements (see previous paragraph). The CacheTranscoder’s active object behav-
ior will try to cache a configurable amount of blocks. In between this effort to fill the cache,
the transcoder also has to serve the Client, by processing nextBlock()invocations. Both
goals can be easily achieved by using asynchronous calls and await statements.

Next, we discuss in detail the run method shown in Figure 3.5a. In a loop the run method
tries to fill the cache. In order to maintain a fixed cache size, the whole loop executes
only if the first await in Line 3, which checks that the cache size is smaller than the fixed
maximum size, holds.

To handle the scenario, when the BlockStream bs does not provide further blocks, the
behavior’s main loop has a shutdown flag. In the check in Lines 4–8, the BlockStream’s
hasNext method is called and if no more blocks are available, the shutdown flag is set to
True. This stops also the loop in Line 2, which in turn ends the active behavior.

Looking at the normalmode of operation, one sees the caching behavior over the Lines 10–
15. The pipeline is not strictly built one pipeline stage after the other. Instead all steps are
called asynchronous and the necessary result of the previous step is passed to the calls as
a future. This architecture is built in the Lines 10–13 and leads to the following behavior.
A pipeline operation can perform some precomputation, when invoked (e.g., some pat-
tern analysis of the previous frames) and only synchronizes with the previous step when
accessing the future’s value. In case that is not computed yet, the access operation will
block. This behavior is also depicted in Figure 3.6, where all three operations are shown
over the time of transcoding one frame. Blue phases show precomputation. In red phases

1 Unit run(){
2 whi le (~shutdown){
3 await length(cache) < cacheSize;
4 Fut<Bool> fNext= bs ! hasNext();
5 await fNext?;
6 Bool next= fNext.get;
7 i f (~next)
8 shutdown= True;
9 e l s e {
10 Fut<Block> block = bs ! nextBlock();
11 Fut<Frame> frame = d ! decode(block);
12 Fut<Block> result= e ! encode(frame);
13 await result?;
14 Block store= result.get;
15 cache= appendright(cache,store);
16 }
17 }
18 }

(a) run

1 Maybe<Block> nextBlock(){
2 await ~isEmpty(cache) ||

shutdown;
3 Maybe<Block> retval= Nothing;
4 case cache {
5 Cons(x,xs) => {
6 cache = xs;
7 retval= Just(x);
8 }
9 / / R e t va l s t a y s Nothing
10 Nil => sk ip ;
11 }
12 return retval;
13 }

(b) nextBlock

Figure 3.5.: Key methods of the CacheTranscoder

26

3.2. Modeling the Case Study in ABS

Figure 3.6.: Pipeline execution phases over time

a operation is blocked by waiting on the previous result and in green phases the compu-
tation involving the data happens. At the end of a green phase, the arrow indicates the
data, that is passed on, by filling the future.

To retrieve the transcoded frame the CacheTranscoderwaits in Line 13 until the future of
the last pipeline step is completed. In the following lines the value is retrieved and stored
in the cache.

The CacheTranscoder’s nextBlock method is depicted in Figure 3.5b. It retrieves the
next transcoded block from the cache. An await statement ensures that either the cache
is not empty or the shutdown flag is set. In case of a shutdown, no more frames will be
produced so waiting for an non-empty cache is nonsensical. After continuation at the
await a pattern match retrieves and removes the first cache element or results in a special
Nothing term, if the last block was already retrieved. This value is then returned.

How values are passed from one object to another in the Video Transcode Server, can be
seen in Figure 3.7. The blue arrows are directed from a value’s source to its accessor. For
instance, the ConnectionHandler accesses the return value of the CacheTranscoder’s
nextBlock method and the result of the SyncConnection’s serverRetrieve.

Figure 3.7.: Value propagation in the Video Transcoder Server’s Objects

27

Chapter 3. Case Study

We have shown, that the CacheTranscoder provides concurrent filling and accessing of
the cache, by the use of simple await statements. The complete listing of all modules can
be found in the Appendix A.

28

Chapter 4.
Mapping of ABS to Erlang

In this chapter we present a concept to translate and execute an ABS model to Erlang
code [GAJ+13]. To generate this code it is important to determine how to represent basic
ABS constructs, like objects, COGs, futures and tasks in Erlang. One has to consider how
their structure looks at execution or runtime. Furthermore, a static code organization view
dealing with ABS classes, modules and functions has to be considered as well.

First, we present the translation concept, then we look closer into the runtime, which
provides a framework for the generic components of translated model. The chapter closes
with an example, which highlights how all the different Erlang processes interact and
which messages they exchange.

4.1. Translation Concept

First ideas Different ideas how an ABS program can be translated come to mind. We
will discuss some of them.

One approachwould be to have one Erlang process per COG.This process would execute a
single task at a point in time and hold the state of all objects and tasks.This is motivated by
the simplicity in scheduling for the Erlang runtime and that therewould be a small number
of processes, which are in an executable state for most of their lifetime. The concept and
advantages/disadvantages are quite similar to an user space multithreading solution for
an operating system.

This idea would require a relatively complex logic in the COG process. Furthermore, one
has to store all objects states and tasks with their stacks in one COG. Scheduling would
still be needed to be implemented because the COG process has to select and execute
a task. As advantage can be seen that this one process has a full and consistent view
of the whole COG state, but it also leads to one very complex process, which should be,
following Erlang principles (see Chapter 3 of [Arm03]), be avoided. Moreover it also limits
the possibilities to use features provided by the Erlang runtime, like linking and process
independence, which in later stages of this workwill be used to introduce new concepts.

29

Chapter 4. Mapping of ABS to Erlang

Chosen approach A different concept, which seems more appealing, could be summa-
rized as, everything is a process. The core idea is to structure all key elements of a software
in self-contained processes that communicate with each other. This design’s benefits are:
a clear communication structure, as a process’s data is encapsulated; isolation of errors in
the processes, with the ability to observe such if needed. The choice of this key elements
is similar to what one would choose as classes for an object oriented language, while
omitting those classes, that are only used to structure data. In general, the granularity of
processes is a design choice and has to be guided by experience. For the translation, we
chose to represent objects, COGs, tasks and futures by processes.

By using the everything is a process concept, we hope to reach a better code/data separation
in multiple modules and processes, leading overall to smaller and simpler components.
The basic runtime entities will be represented in the following way:

Object: a process holds the object’s state (all member variables). Field access is performed
by synchronous messaging.

COG: a process manages all tasks and schedules them by handing around a token via
messages. Further it has to keep track of all tasks’ execution state.

Task: a process representing one execution unit, so either a main block, a remote object
initialization, an active object’s run method or asynchronous method invocation.

Future: a process, which is on one side the synchronous execution part of an asynchro-
nous call in the called object’s COG and on the other side it is the container for the
result of the execution. As part of that it has to support the access and waiting of
other process on the result, which is once again done via messaging.

Figure 4.1 shows a graphic mapping of ABS components and references between them to
Erlang processes. In this illustration two objects in a COG are represented as Erlang pro-
cesses. The sample objects are taken from the Video Transcode Server case study. Dotted
lines show which component transforms to what Erlang counterpart, where solid lines
with arrows above show a reference from one entity to another. On the ABS side one can
see the active CacheTranscoder referring to the Encoder, which in Erlang is translated to
a COG process, which references a Task process executing the run method. The task itself
has a reference to the object (CacheTranscoder) it is working on. All necessary references
can be represented by the PID of the target process in Erlang.

Code organization There exists not only this dynamic or runtime scoped view, but also
a static view on how to translate ABS to Erlang.Themain idea is to represent a class by one
code module. The constructors and the methods of a class are each translated into a func-
tion, which is invoked with a reference to the called object as first parameter. For example,
the method serverSend(Block block) of the class SyncConnection is represented by
the function m_serverSend(Obj,V_block) in the module class_SyncConnection. The Obj
is a parameter, that is bound on the invocation to an object of the class SyncConnection.
One can also see that all names need to be prefixed when translated to Erlang, because the

30

4.1. Translation Concept

Figure 4.1.: Dynamic view on a sample translation

capitalization determines the difference between types or function names (or more gen-
erally atoms) and variables. Furthermore, the clashing of internal used names and ABS
names can be avoided by prefixing. The namespaces built-up by ABS modules are also
part of the prefix of classes and functions.

At first it was considered to model method visibility – public methods in ABS are specified
in interfaces – by only exporting these publicmethods by a classmodule. As asynchronous
calls in ABS can also be invoked on private (non-interface) methods, those need to be
externally accessible as well. Therefore visibility is not modeled in the Erlang backend
and all functions are exported. One has to note, that this does not allow a faulty model to
execute calls to internal methods, as such would be rejected by the compiler frontend.

Due to Erlang’s dynamically typed nature, interfaces are ignored in the backend, but the
conformance of interfaces and classes is checked by the frontend.

In addition to classes and interfaces an ABS module can also contain pure functions and a
main block. All functions are generated into a special module m_moduleName_funs, while
a main block is put into a main function in an Erlang module called like the ABS module
with an additional prefix. This main method can then be started as main_task.

The runtime, with code for all the above mentioned processes and utility functions, is also
organized in separate modules. As concrete tasks or object modules have some common
functionality (like scheduling callbacks or object initialization), they are implemented as
behaviors. This OTP concept splits a problem in a process with generic functions and a
callback module with a defined set of functions, modeling the custom behavior of each

31

Chapter 4. Mapping of ABS to Erlang

realization. In the runtime the actual task execution, object initialization or field access
code is part of a callback module, whereas management or the process execution loop can
be implemented in a general fashion.

In Figure 4.2 a translation of the ABS class CacheTranscoder with its methods and at-
tributes to the equivalent Erlang module is shown. In the class_CacheTranscodermodule,
we see additional functions, besides those representing the methods nextBlock and run.
With the init(Obj,[P_cacheSize]) function the object is initialized, the P_cacheSize pa-
rameter represents the class parameter for the field cacheSize. The callback functions
get_val_internal, set_val_internal and init_internal are part of the mechanism to
handle object fields, and are described in more detail in Section 4.2.

Furthermore, the most important runtime modules with their exported functions are vi-
sualized. They cover the four kinds of processes, presented above. With the <<behavior>>
stereotype we highlight the modules, which are implemented as Erlang behavior and re-
quire a callback module. For the object module, the class_CacheTranscoder is such a
callback module. Details of the runtime modules are discussed in Section 4.2.

Figure 4.2.: Static view on a sample translation

32

4.1. Translation Concept

Data types TheABS data types canmostly be translated to data types available in Erlang.
Bool, Int and String are mapped to their equivalent Erlang type. As there is no built-in
data type to represent rational numbers, the Rat type has to be handled separately (see
the paragraph on rationals on Page 50).

Algebraic data types in ABS are built out of data constructors. Those have a value de-
scribing the type (TypeId) and optional parameters. Constructors that take parameters
are represented by a tuple, where the first element is the TypeId, followed by all other
parameters as elements. A constructor without parameters is instead represented directly
by its TypeId. All TypeIds, which are not built-in types, are represented as an atom with
the literal value of the TypeId and the prefix data. An example of this can be seen in Fig-
ure 4.3, where we show the definition of the type Set, an empty set Set1 and a set Set2
containing the values 2 and 3. On the left hand side the ABS code and on the right hand
side the Erlang translation is shown. We also see that the type definition is omitted on
the Erlang side.

1 data Set<A> = EmptySet |
2 Insert(A, Set<A>);
3 Set1=EmtpySet;
4 Set2=Insert(2,Insert(3,EmptySet));

(a) ABS set definition and ex

1 Set1=dataEmptySet,
2 Set2={dataInsert,2,
3 {dataInsert,3,dataEmptySet}}

(b) Example sets in Erlang

Figure 4.3.: The type Set: definition and a translation of values

33

Chapter 4. Mapping of ABS to Erlang

Fi
gu
re

4.
4.
:O

ve
rv
ie
w
of

ru
nt
im

e
co
m
po
ne
nt
s

34

4.2. ABS entities in Erlang

4.2. ABS entities in Erlang

The Erlang realizations of the fundamental ABS entities object, COG, task and future will
now be described inmore detail. A translatedmodel is split into two parts: a static runtime
that provides generic functions and processes, and the part that is specific to the model
like its functions and classes.The objects of the classes are represented by using the Erlang
behavior pattern. With this pattern a general object process is implemented, and a class
module, acting as behavior module, has only to provide callbacks, which implement the
access to the object’s fields.

In Figure 4.4 we give an overview of the most important runtime modules by using a
component diagram. The modules are depicted as rectangles, with provided functions as
circles, and expected callbacks in a behavior as semicircles.

In the overview, we also see that the task module is implemented following the behavior
pattern, where the specific behavior for the different kinds of tasks is implemented by
callback modules. All the shown modules will be discussed in detail over the following
pages.

Object An object is realized through an Erlang process, that will run in a tail-recursive
loop and handles the object’s state. The general concept is explained in Section 2.1 in the
paragraph The Responder as tail-recursive process on Page 11. The object process accepts
messages to retrieve and set values. The handling of member fields is done by calling
the callbackmodule’s get_val_internal, set_val_internal and init_internal functions.
They return a state term, which is passed to the next invocation of one of those callback
functions and is stored by passing it along in the object process’s tail-recursive loop.

Those callbacks are generated in the class module and represent the state as a record,
where every member variable and class parameter is a field.

New objects are created by the function object:new(Cog,Class,Args,Async), where the
Args parameter is a list of arguments that are passed to the init block of this class. If an
object is created on a COG different from the caller’s COG, the last parameter has to be
true. In that case the object is not directly initialized, but this is done via an initialization
task on the remote COG. Therefore, the init function, which is the starting point of a
newly created object process, has to be exported as well.

Furthermore, a mechanism is needed to check if the object is already initialized and can
be used. Otherwise an asynchronous call to an uninitialized object could be executed. By
calling the function object:await_active, the callee will block until the invocation of
object:activate, which is performed at the end of the initialization.

35

Chapter 4. Mapping of ABS to Erlang

1 new(Cog,Class,Args,false)−>
2 O=start(Cog,Class),
3 object:activate(O),
4 Class:init(O,Args);
5 new(Cog,Class,Args,true)−>
6 O=start(Cog,Class),
7 cog:add(Cog,init_task,{O,Args}),
8 O.
9

10 start(Cog,Class)−>
11 O=spawn(object,init,[Cog,Class,
12 Class:init_internal()]),
13 #object{class=Class,ref=O,cog=Cog}.
14

15 activate(#object{ref=O})−>
16 O!activate.
17

18 await_active(#object{ref=O})−>
19 O!{is_active,self()},
20 receive active−> ok end.
21

22 init(Cog,Class,Status)−>
23 receive
24 activate−> loop(Class,Status)
25 end.
26

27 loop(Class,Status) −>
28 receive
29 {is_active,P}−>
30 S=Status,
31 P!active;
32 {O=#object{class=C},Field,Val,Pid}−>
33 S=C:set_val_internal(Status,Field,

Val),
34 Pid!{reply,O},
35 {O=#object{class=C},Field,Pid} −>
36 {S,Val}=C:get_val_internal(Status,

Field),
37 Pid!{reply,O,Val},
38 end,
39 loop(Class,S).

(a) The object module

1 init(O=#object{class=
class_CacheTranscoder},[
P_cacheSize])−>

2 set(O,cacheSize,P_cacheSize),
3 O.
4

5 set(O=#object{class=
class_CacheTranscoder=C,ref=
Ref,cog=Cog},Var,Val)−>

6 Ref!{O,Var,Val,self()},
7 receive
8 {reply,O} −> ok
9 end.
10

11 get(O=#object{class=
class_CacheTranscoder=C,ref=
Ref,cog=Cog},Var)−>

12 Ref!{O,Var,self()},
13 receive
14 {reply,O,Val} −> Val
15 end.
16

17 −record(state,{cacheSize=null}).
18 init_internal()−>
19 #state{}.
20

21 get_val_internal(S=#state{
cacheSize=G},cacheSize)−>

22 {S,G}.
23

24 set_val_internal(S,
25 cacheSize,V)−>
26 S#state{cacheSize=V}.

(b) The behavior module representing the
CacheTransoder, with only a single

field cacheSize

Figure 4.5.: The object module and a concrete class

36

4.2. ABS entities in Erlang

In Figure 4.5 the objectmodule and the CacheTranscoder class’s generated callbackmod-
ule are shown. The CacheTranscoder from the VTS case study is described in detail in
Section 3.2. In the shown translation, we use a down-sized version of the class with only
the field cacheSize.

An object in the Erlang backend is created by invoking the new function.This calls an inter-
nal start function, which creates the process, and either activates and initializes the object
or otherwise adds an init_task, if it runs on a new COG, as can be seen in Figure 4.5(a)
Lines 1–8. The start function spawns a process, which executes the init_task function.
The COG, the class module and the initial state are passed as parameters to this process.
The initial state is created by invoking the callback init_internal in Line 12. This state
term, which is passed along to the callback functions in all field accesses, is represented
by a record as can be seen in Figure 4.5(b) Lines 17–19.

Records are syntactic sugar built on top of tuples and are defined like in Figure 4.5(b)
Line 17. The tuples first element is an atom with the record type, followed by all other
fields. A special syntax allows to access a field by its name, which is translated by the
compiler to its position. A field can be matched by #state{cacheSize=S}, where the field
cacheSize is matched to the variable S.

A new object process executes the init function, which waits on an activate message.
This message is sent by the exported activate function, shown in Figure 4.5(a) Lines 15–
16. Upon receiving such a message the loop function is executed. This function handles
messages, updates the internal state and then loops tail-recursively with the new state S. It
responds on is_active requests in Lines 29–31, which are used for the await_active func-
tion. The two other receive clauses over the Lines 32–37, receive field access messages
and invoke the callback functions. These messages are sent by the get and set functions
in Figure 4.5(b) Lines 5–15.The exported functions are generated in the CacheTranscoder
class module, because they validate via the match in the function headers, if an object of
the right class is passed. The update of the fields is performed by the get_val_internal
and set_val_internal functions, by modifying the record S.

A complete translation of the class CacheTranscoder is shown in Figure 5.6 and Figure 5.7
on the Pages 53–54.

37

Chapter 4. Mapping of ABS to Erlang

Concurrent Object Group ACOG has to manage and keep track of all its tasks, which is
done by a tail-recursive looping process. New tasks can be added via the functions cog:add
and cog:add_and_notify, where the latter automatically sets the caller up for a notifica-
tion about the task’s termination. To schedule a task, the COG passes a token to the to-be-
scheduled task and waits then for the return of the token. When a task reaches a schedule
point or terminates, it passes the token back. Correct implementation of this behavior
allows only one process in a COG to execute. With the new_state(Cog,Task,State) func-
tion a task can set its execution status (described in the following paragraph on tasks) to
State.

Task A task is one scheduling unit. Different kinds of tasks are implemented by a be-
havior module, which requires the functions init and start. They are called by the task
module. init gets the parameters, the task is started with and performs necessary initial-
ization. For instance for an asynchronous call, the check and wait for the object’s initial-
ization status happens in this phase. After that, a task’s state will be set to Ready, allowing
it to be scheduled. At the first schedule the start function is invoked. If this function re-
turns, the task state Done is reported back to the COG. For a description of the task states
see below.

Implementation-wise we distinguish between three task types:

main_task is given a module with a main method and it invokes this method. This task
is created when the runtime starts.

init_task initializes an object by calling the <class>:init(Obj,Args) function. This task
is used to initialize an object on a newly created COG.

async_call_task represents an asynchronous call. It takes as parameters the object, the
method’s name and parameters. The future is also represented by this process (for
further description see below).This task can further be used to implement the active
object behavior, by asynchronously calling the runmethod at the end of the object’s
initialization.

For each task a COG stores a value describing its execution status, which influences
scheduling decisions. Following states exist:

Running: task is allowed to execute by the COG, so it has currently the token
Ready: task is ready to be executed, therefore it waits on the run token
Waiting: task is actively waiting on a condition to fulfill (e.g., awaiting the termination

of an asynchronous call)
Waiting_poll: task is waiting on a condition to fulfill. To check this condition the task

has to be polled. For further explanation see the paragraph on the await statement’s
implementation on Page 52.

Done : task’s execution is finished. Cleanup has to be done, before it is destroyed.

38

4.2. ABS entities in Erlang

The task module provides functions for the task behavior’s implementation to handle a
change of its state. Furthermore, the taskmodule provides functionality to await a task’s
termination. By calling task:notifyEnd a process will receive a message on the termina-
tion of this process. Afterwards the callee can block with the function task:join until the
specified task terminates. This functionality is for example used to start a main task and
await its termination.

Future A future is realized as part of an async_call_task. After this task is finished,
it passes the token back, but does not terminate. Instead it waits for messages in a loop.
To support the get expression and the await statement, messages can either ask if the
computation is finished or fetch the value of the future. The latter is performed by the
exported function get(Task). As long as the task is still computing, it does not respond
to these messages, therefore the process’s mailbox is effectively used as a wait queue.

The communication and process structure in an example In the following exam-
ple the realization of an ABS program, using the above described structure, is shown. A
sequence diagram shows the used processes, the messages exchanged by them and the
creation of processes.

A simple asynchronous call is used as an example. It depicts object creation, usage of
futures, scheduling and setting of an object member variable. In Figure 4.6 the ABS model
is shown.Themain block, shown on the left, is the starting point of the model’s execution.
It creates an object of the class Output_i, calls the print method asynchronously and
waits for the future to resolve.

The class Output, shown on the right, has a single very simple method. As ABS has no
print functionality, that – as onewould expect – writes to stdout, the shown printmethod
sets just a member variable to remember the last value.

The sequence diagram in Figure 4.7 shows the execution of this model in Erlang. Arrows
with filled heads represent synchronous messages (in Erlang implemented via an asyn-
chronous message with an immediate selective receive), while unfilled arrow heads rep-
resent asynchronous messages. Parameters in messages were omitted in favor of clarity.
The diagram and the corresponding behavior in the model will now be discussed from top
to bottom.

At the beginning of an execution, an initial COG is created. This COG is initialized with
the MainBlock task. After the startup of the initial components, the MainBlock task is
scheduled by sending a token message to this task.

The creation of the object in Line 1 involves creating a new Output:Object process, which
holds the object’s state. As this object is created in the same COG, any code in the con-
structor is executed at this point by the MainBlock task. For this class this is only the

39

Chapter 4. Mapping of ABS to Erlang

1 {
2 Output o = new l o c a l Output_i();
3 Fut<Bool> f= o ! print("Hello World");
4 await f?;
5 }

(a) Main block

1 c l a s s Output_i implements Output
2 {
3 String last= "";
4 Bool print(String s){
5 last= s;
6 return True;
7 }
8 }

(b) The class Output

Figure 4.6.: Simple asynchronous print call

initialization of the member last with the literal "". If an object is created on a new COG
(with the new expression), the initialization has to be performed by a new task running
on the newly created COG. In that case the init_task is used.

The asynchronous call in Line 2 requires to start a new process, which executes this
AsyncCall(print) task. This is done by a synchronous message startAsync to the COG,
where the Output:Object resides. In our case those COGs are the same. On such a call
the COG will start a new process. The PID, which is used as a reference to the future, is
then returned to the calling MainBlock.

In Line 3 of the MainBlock an await on the previously returned future is executed. To be
notified if the future is resolved, the MainBlock sends an await to the AsyncCall, which
also represents the future. After that, the MainBlock task returns the token to the COG
and its state is changed toWaiting.

As the COG received the token, it can now schedule a different task. In this example the
only other task in the state Runnable, is the previously created AsyncCall task.

The call to print only sets the member field last to the value supplied by the parameter
of print. A field is set by a single message to the Object process. As the method returns
after that, the execution part of the AsyncCall task is finished. In consequence the token
can be returned to the scheduler and all processes, which were waiting on the future to
resolve, can be notified via a message result.

By receiving the resultmessage, the MainBlock task can successfully check that its await
condition is fulfilled. Therefore, it notifies its COG via a setStatemessage, that it is now in
the Runnable state. Following from this, the Runnable task is scheduled by the COG. As
there is no more code to execute in the MainBlock task, this task also finishes and thus
returns its token.

40

4.2. ABS entities in Erlang

.. COG.. MainBlock.. Output:Object.. AsyncCall(print)....

token

...

<< create >>

......

startAsync

...

<< create >>

.........

await

.....

token

...

token

...

set

.....

token

...

result

.....

setState

.....

token

...

token

Figure 4.7.: Sequence diagram of Erlang execution of the model in Figure 4.6

41

Chapter 5.
The Translation Backend

To realize the concepts presented in the previous chapter, an ABS model needs to be
parsed and translated to its Erlang representation. This is performed by the Erlang back-
end, which is covered in this chapter.

As other backends already exist, the Erlang backendwill be integrated in the same existing
parsing infrastructure, whichwill be described in the first section. In the section following,
an overview of the translation process will be given and concepts, requiring a non-trivial
solution, will be presented. This section closes with a side-by-side presentation of an ABS
class and its Erlang translation.

Integrating the backend into the existing unit testing framework of the toolsuite increases
the confidence, that the Erlang backend behaves according to the semantics.The testdriver
required for this integration is explained in Section 5.3. Lastly, it is described how a trans-
lated ABS model can be executed and how this backend compares to the Java and Maude
backends, which were initially shipped with the ABS toolsuite.

43

Chapter 5. The Translation Backend

5.1. Existing Infrastructure

The Highly Adaptable and Trustworthy Software using Formal Models (HATS)1 project
developed a toolsuite for ABS in Java, which has tools for analysis, development support,
parsing and code generation [WAM+12]. As the Erlang backend and further language
additions integrate in some of those tools, an overview of their internal workings will be
given.

The process of code generation consists of three steps.The first two are called the frontend
and the last is performed by one of the backends:

Parsing: The textual representation of an ABS model is tokenized and transformed to an
Abstract Syntax Tree (AST).

Semantic Analysis: At this step the AST is only known to be syntactically valid. There-
fore, to verify the semantic correctness, checks like the following are performed: if
all used types are defined and used in a compatible way; that only defined methods
are called; that there is only a single declaration of an element.

Code Generation: Starting from a correctly typed AST an executable description of this
model can be generated by traversing the tree.

5.1.1. Parsing

Parsing is a problem supported by a variety of tools, of which several were used in the
toolsuite. The tools use an input specification and generate a parser for ABS. They are
now introduced in a step by step description of the parsing of an ABS model’s text.

The first step in parsing the model’s text is to tokenize it, which means to split the text in
parts, so that the text is transformed into a stream of tokens. A token can be an identifier,
a literal, a keyword or any other special character (like a bracket or operator symbol). The
definition of the tokens can be found in the Abs.flex file. From this definition the JFlex
tool2, a lexical analyzer generator, generates the ABSScanner class. This lexer can then be
used to tokenize the model’s text.

The token stream is in return used by a parser to build the AST. The AST can only be
composed of elements defined by an abstract syntax in the ABS.ast file. The JastAdd tool3

used in this work, declares itself as ameta-compilation system. It allows to generate a class
hierarchy from an abstract syntax, supports attributed grammars, allows to add methods
to the classes of the abstract syntax via aspect-oriented programming and integrates with
parser generators.

1http://www.hats-project.eu
2http://jflex.de
3http://jastadd.org

44

http://www.hats-project.eu
http://jflex.de
http://jastadd.org

5.1. Existing Infrastructure

1 abstract Exp;
2 abstract PureExp: Exp;
3 abstract EffExp : Exp;
4 GetExp : EffExp ::= PureExp;

Figure 5.1.: AST Elements of ABS

The JastAdd tool generates a class hierarchy representing the AST elements from the
abstract syntax defined in the ABS.ast file. These elements can be ordered in hierarchies
of types and can have elements as children themselves. In Figure 5.1 a small extract of
the abstract syntax, written in JastAdd’s abstract syntax language, can be seen. It shows,
that the abstract element of Exp has two abstract subclasses. Likewise one can interpret it
as a grammar, where the nonterminal PureExp produces the nonterminal Exp. Further it
shows that the element GetExp is hierarchical below EffExp, so it can be used everywhere
where EffExp can be used. In Line 4 a child is added to the GetExp via the ::= expression.
The child, a PureExp, is the expression, which represents the future, the get operates on.

The parser classABSParser is generated by using a combination of the JastAddParser4 and
the Beaver Parser Generator5. The JastAddParser unifies the JastAdd tool and Beaver. The
latter builds a parser from a grammar, where the class hierarchy from the JastAdd tool is
used as AST elements.

The parser is built from a grammar definition in ABS.parser, which contains rules that
match terminals and nonterminals and in case of a match produce an element of the AST.
The rule for the get statement can be seen in Figure 5.2, which parses an expression in
the form p.get, where p is any expression of the type future. On the left hand side of the
equation in Line 1, is the name and return type of the rule. The right hand side shows the
part that needs to be matched, where pure_exp_prefix.p is a nonterminal or a reference
to the rule pure_exp_prefix and its result is available here under the name p. DOT and
GET are terminals. If this rule matches, the part in the curly braces is evaluated, which will
subsequently return as result of this rule new GetExp(p), where p is a PureExp.

1 Exp eff_exp =
2 pure_exp_prefix.p DOT GET {: return new GetExp(p); :}

Figure 5.2.: Grammar rule for the get expression

Summing up: First the classes describing the AST elements are generated. After that the
ABSScanner, which tokenizes the input, and the ABSParser, which matches rules according to
a grammar and produces the AST, are generated and can then be used to parse a program
to an AST.

4https://bitbucket.org/jastadd/jastaddparser
5http://beaver.sourceforge.net

45

https://bitbucket.org/jastadd/jastaddparser
http://beaver.sourceforge.net

Chapter 5. The Translation Backend

5.1.2. Semantic Analysis

Analysis of the model starts with an AST that complies to the defined grammar, but there
are a lot of semantic criteria that need to be fulfilled to have a valid model. Some of those
requirements are:

• That all referenced variables are reachable in the current scope.
• That only calls to functions or methods existing in the scope are performed.
• That no fields or methods are defined multiple times in one class.
• That classes provide the methods required in the implemented interfaces.
• That types match their usages. For example, the condition expression in a while loop
must result in a value of type Bool.

All these checks can be implemented by traversing the AST. As the elements of the AST
are auto generated, JastAdd supports aspect oriented programming to add extra function-
ality to the resulting classes. There are two different kinds of aspects. Imperative aspects
consist of a set of fields and methods, that are appended to the generated classes. Declar-
ative aspects allow to add synthesized and inherited attributes and equations for these.
Extra analysis and tree traversing methods are added in this way.

Analysis is performed by invoking the method typeCheck(SemanticErrorList e) on the top-
most node, which checks, if this element is clean and invokes typeCheck on all possible
children. Errors are added to the given SemanticErrorList. Therefore, an error-free model is
equivalent to an empty SemanticErrorList after typeCheck was called on the root element of
the AST. In Figure 5.3 the part of the TypeChecker aspect for the WhileStmt is shown. One
sees that typeCheck is invoked on its children and it is ensured that the condition is of type
Bool.

1 public void WhileStmt.typeCheck(SemanticErrorList e) {
2 getCondition ().typeCheck(e);
3 getCondition ().assertHasType(e,getModel ().getBoolType ());
4 getBody ().typeCheck(e);
5 }

Figure 5.3.: Adding typeCheck method to WhileStmt

Generation of code in a different language can be done by transforming one or a set
of AST elements to valid code in the target language. Similar to the analysis, the tree
needs to be traversed, so the traversal methods are also added by new aspects. Instead of
accumulating errors in a list as in the analysis phase, parts of the target code are produced.
This is now explained in detail in the following section.

46

5.2. Code Generation to Erlang

5.2. Code Generation to Erlang

After an overview of the code generation process for Erlang is given, we will have a more
detailed look on parts of the code generation, which need more attention or are of higher
interest. This section closes with a side-by-side printing of an ABS class and its Erlang
translation.

Overview The Erlang backend should translate a well-typed AST to a set of modules,
which conform to the ideas proposed in Section 4.1. The translation application is rep-
resented by the ErlangBackend main class. It is a subclass of the abstract Main class, which
subsumes the common frontend parts in all backends.

The Main class already provides functionality for parsing of compiler options, loading the
given ABS modules and generating a type-checked AST. A subclass, like the ErlangBackend

only has to provide processing from this AST onward. The ErlangBackend does so by cre-
ating first an instance of the class ErlApp, which represents an Erlang application as a set
of modules. It allows the creation and tracking of this set, which will contain the model
components. The ErlApp object provides for a newly created module an instance of the
ErlangCodeStream. It supports linear writing to this new module’s file and has some built-in
logic to manage indentation levels.

The core part of the code generation is the traversal of the AST. Therefore, a new aspect
GenerateErlang is added that adds tree traversal methods, which generate Erlang modules
and code, to the AST elements of interest. This is an alternative to the usually used visitor
pattern, when using an object oriented language to traverse an AST.

Generation is started by traversing all children of the Model AST element. A Model element
is always the root of an ABS AST. It contains declarations of modules, which can involve
imports, exports, an optional main block, and function, class, interface and data type defi-
nitions. As stated before, we ignore types and therefore ignore imports, exports, interfaces
and data type definitions. For all other elements a method generateErlangCode(ErlApp ea) is
defined in the aspect.

The method generateErlangCode generates and fills the Erlang modules for class, function
and main block declarations, according to the naming scheme presented in Section 4.1.
All of these are specially named functions, where the translations of the sequences of
statements and expressions form these functions’ bodies.

The Erlang modules, which represent the generic parts of the translation like the cog,
object and builtin (containing all functions defined as builtin in the standard ABS
library) and reside in the runtime folder in the backend implementation, have also to be
part of the resulting Erlang application. Therefore, all those files and some helpers for
compilation and execution, are copied to the output location by the ErlApp object after the
translation is completed.

47

Chapter 5. The Translation Backend

Statements & Expressions After the generation of a function header for a declara-
tion of a main block, a function or a method, according to concepts presented in Sec-
tion 4.1, the actual code, consisting of statements and expressions, needs to be trans-
formed. Through the GenerateErlang aspect an abstract method is added to the abstract
classes Statement and Expression. The subclasses are required to provide an implementa-
tion for the generateErlangCode(ErlangCodeStream ecs,Vars vars) method. It should write an
expression’s or statement’s Erlang representation to the ErlangCodeStream.

The Vars object is used to implement variable tracking, which is required to resolve dif-
ferences in both languages treatment of mutability and scoping of variables. These differ-
ences and the chosen solution are presented in the next paragraphs.

Single-assignment variables Erlang provides only single-assignment variables, realized
through pattern matching to unbound variables. ABS instead supports multi-assignment
to local variables and object fields.The latter are not in conflict with this limitation because
they are stored in the object process, but for local variables a solution is needed. We need
a mutable variable environment, which allows us to map an identifier to a value. In Erlang
mutable variables for a process can be simulated either by using the process dictionary or
an external storage (database or process).

The process dictionary is a process-wide mutable key value store. If used to simulate local
variables, this would require a stack emulation, as in a recursive evaluation an equally
named local variable could be encountered. So this adds some complexity andmakes every
variable access costly. Furthermore, a general advice in the Erlang community is to use
the process dictionary with care, because it undermines the locality of a process’s state,
which is normally only defined by the current function and the contents of the process’s
mailbox.

The other option is an external storage, as it is used for objects. This can be done by a
looping process, which represents one stack-frame, where value access is done by mes-
sages or some other stack emulation in a database. This allows a relative clear design, but
would lead to lots of messages, which need to be passed around, and once again locality
of function evaluation would not be guaranteed. This is an acceptable approach for ob-
jects, as they need to be accessed by multiple tasks, so some kind of reference or sharing
is necessary.

Instead of implementing a mutable environment, the chosen purely functional approach
is based on how one would manually reassign a value in an Erlang function: Introducing a
new variable with a similar name or one that reflects the updated meaning of the variable
(e.g. NewState=State+1). In the automatic translation, this is done by tracking all variables,
and use a counter, which is appended to the variable. A reassignment then results in
an increment of this counter, and therefore in the use of a new Erlang variable. Such a
representation is also used in the field of compiler optimizations and is called static single
assignment form [CFR+91].

48

5.2. Code Generation to Erlang

For example the ABS code a=a+23 would be translated to V_a_1=V_a_0+23, where V_ is a
prefix for all ABS variables. This requires to keep track of all local fields and their coun-
ters through different scopes and control flow influencing statements on the translation
level.

Variable scope ABS uses variable scoping that is similar to Java’s, where a new block in-
troduces a new scope. Erlang instead has only a single scope, which is per function clause,
where a clause is the expression (which includes sequential composition of expressions)
after a function header [Eri15a]. Therefore, the generator has to ensure that a variable
introduced in an inner scope is not used outside of this scope, neither as a read variable,
whichwould violate theABS scope, nor as awrite variable, whichwould result in a pattern
match with an already bound variable and would in consequence fail most probably. This
is achieved by tracking all variables used in an inner scope with their respective counter
and on a new declaration in an outer scope a new variable with an increased counter
value is used. Additional attention needs to be paid, when the number of reassignment’s
of a variable in different branches varies. At the end of the whole control flow statement,
there must exist a single variable, which holds the most recent value, independently of
which branch was executed. The generator ensures this requirement by inserting variable
assignments at the end of a branch if less assignments were made then in another branch.
Such an assignment just copies the value from the last used variable in a branch to the
variable with the maximum counter value used over all branches. An example translation
with an update copy at the end of a branch can be seen in Figure 5.4.

1 Int size= 0;
2 i f (a == null){
3 size= size - 1;
4 } e l s e {
5 size= size + length;
6 size= size + 1;
7 }

(a) Simple if

1 V_size_0=0,
2 case a==null of
3 true −>
4 V_size_1=V_size_0−1,
5 V_size_2=V_size_1;%Copy
6 false −>
7 V_size_1=V_size_0+V_length_0,
8 V_size_2=V_size_1+1
9 end

(b) Erlang variable tracking

Figure 5.4.: Variable counter tracking

Variable tracking is required to implement the solution shown in the previous para-
graphs. An instance of the class Vars is passed around to every translation of a statement
or an expression. This class stores the usage status for each ABS variable. The status is
defined by a counter, which represents the number of assignments to this name, and by
a Boolean flag indicating if the variable is reachable in this scope.

49

Chapter 5. The Translation Backend

One ormultiple new variables can be registered by invoking Vars:nV(<Variables Names>).The
methods Vars:inc(String name) and Vars:incAll() allow to increment one or all (see expla-
nation of the while loop on the following page) variable’s counters, in case they get reas-
signed. The current Erlang variable name can be retrieved by calling Vars:get(String name)

with the variable’s ABS name as parameter, which returns the variable’s Erlang name in
the following pattern: V_<name>_<counter>.

Handling branched code flows and nested scopes by the previously introduced concepts,
requires additional tracking facilities. The method Vars:pass() returns a new instantiation
of Vars, which copies all scope information from the called object. It can be used for a single
branch. The Vars instances for all branches can, when the code flows converge again, be
merged back in the original scope by invoking Vars:merge(List<Vars> branches). This will
update the original Vars instance’s tracking status in the following way: newly introduced
variables are marked as not valid in this scope, counters of valid variables are updated to
their maximum value. In addition to that the mergemethod returns for each branch/passed
Vars instance, a code segment, which updates variables in a branch to the version with the
maximum counter value.

Rational numbers are a built-in data type in ABS, but no primitive data type and arith-
metic operations for rationals are available in Erlang/OTP. Thus an external library6 is
used to represent them. It provides very simple implementations of the arithmetic oper-
ations on rationals. In the module cmp also relational operators, which convert automati-
cally between integer and rational numbers, were added.

The case expression canmatch different patterns and return an expression. An example
and an explanation of the case can be found in Section 2.2.1 on Page 14. The Erlang rep-
resentation is for the most parts straightforward, as Erlang has a similar case statement.
Nevertheless, there are two differences regarding patterns, that need special considera-
tion.

First, the ABS patterns can be matched to the object’s fields. As they are part of a different
Erlang process’s state, namely the one representing the object, they must be retrieved and
stored in a local variable, before they can bematched.Therefore, the variable tracking code
has to provide previously unused names for temporary variables (prefixed with T_), which
then can be used in the pattern.

Furthermore, if a pattern contains new unused variables, theymust be tracked andmarked
in the outer scope to be not further used. Reuse would result in a compile-time error
in the Erlang code, as a variable has to be introduced in all case branches, to be used
afterwards.

6http://github.com/sdanzan/erlang-tools/tree/master/src/rationals.erl

50

http://github.com/sdanzan/erlang-tools/tree/master/src/rationals.erl

5.2. Code Generation to Erlang

The while statement There is no while statement in Erlang, because loops are prefer-
ably implemented by using tail-recursion or list comprehensions. To implement thewhile
statement, we have to follow a tail-recursive approachwith an inline function, where each
loop iteration represents one function invocation. Through the lack of static analysis we
do not know which variables could change inside of the while loop, therefore we have to
pass all variables in scope to each function invocation. To be still able to use these possible
changed values after the last iteration (function invocation), they need to be stored in new
variables in the scope outside the while statement.

In Figure 5.5 one can see a sample translation of a while loop to Erlang. As it is rather
complex, we explain it in detail. The syntax of anonymous functions (lambda expressions)
in Erlang is presented before that, to ease the understanding of the translated while loop
below. An inline function starts with fun and is terminated with end. It can have multiple
clauses in the form (<Pattern>) −><Expression>, where the <Expression> is evaluated
if the <Pattern> matches.

1 Int unchanged=1;
2 Int mult=1;
3 Int i =2;
4 whi le(i <= 10){
5 mult= mult*i
6 i = i+1;
7 }

(a) Factorial

1 V_unchanged_0=1,
2 V_mult_0=1,
3 V_i_0=2,
4 [V_unchanged_1,V_mult_1,V_i_1] =(
5 (fun(Inner)−> fun(Param)−> Inner(Inner,Param) end

end)
6 (fun (Self,V_unchanged_0,V_mult_0,V_i_0) −>
7 case V_i_0 <= 10 of
8 true −>
9 V_mult_1=V_mult_0*V_i_0,
10 V_i_1=V_i_0+1,
11 Self(Self,V_unchanged_0,V_mult_1,V_i_1);
12 false −>
13 [V_unchanged_0,V_mult_1,V_i_1]
14 end
15 end)
16) (V_unchanged_0,V_mult_0,V_i_0)

(b) Erlang while translation

Figure 5.5.: Factorial as While

Due to the lack of named inline functions, we have to construct a closure to have an
inline function referring to itself. Therefore, in Line 5 we create a higher-order function.
Its application on a function f returns a function which takes parameters and calls f with
the given parameters and a reference to the function f. This enables the function f to
perform self-recursive calls.

In Lines 6–15, the real loop function is passed to the previously defined higher-order func-
tion. The loop function executes, in case the condition is still true, the given statements
and invokes itself afterwards recursively. In case the condition no longer holds, the recur-

51

Chapter 5. The Translation Backend

sion is ended in Line 13 and the new values of the variables are returned.The starting point
for this recursive invocation can be seen in Line 16, where the values before the while are
passed to the wrapper function generated by the higher order function over Lines 5–15.
The resulting possible new values of the variables returned in Line 13 are then stored in
incremented variables in Line 4.

The await statement is a conditional suspension point, where a process can only re-
sume after the await statement’s condition evaluates to true.

At an await statement a process will in general pass back its token, set its status to waiting
and wait on the condition to fulfill. As we have already mentioned in the description of
process states, the waiting on this condition can either be active or passive.

Active waiting can happen as a process waits until a future is resolved. Here the process
at the await statement, will ask the future about its status and wait for a positive response
message. Due to themonotonic nature of those conditions, the reception of such amessage
allows the waiting process to report to the scheduler that the condition is fulfilled and the
task can be scheduled again. Therefore, the scheduler does not need to take any action for
an active waiting process.

Passive waiting means that the scheduler has to poll this process to determine, if its condi-
tion is currently fulfilled. So before scheduling a new process, it will invoke a check on all
passive waiting processes via a message. On such a message the processes then reevaluate
their await condition and report the result back to the COG. Non-resumeable processes
will stay in the waiting state, whereas processes with a fulfilled condition will be in an
intermediate state, where they wait for the scheduler’s response. After the scheduling de-
cision, such a process receives either the token or a message indicating that it has to stay
in the polling mode. In this case it has to check again in the next scheduling cycle, if the
condition still holds.

As conditions can also be conjunctions of conditions, they are grouped in active and pas-
sive conditions. First the process will wait until all active conditions are fulfilled, then the
group of passive conditions can be checked by polling as described above.

Full Example On the following pages, we show the CacheTranscoder class and its Er-
lang translation side-by-side to put the previously shown concepts in perspective. Each
ABS statement on the right-hand side is shifted to the same line, where the corresponding
translation starts on the Erlang side. We have omitted a few field access methods on the
first page (highlighted via inline comments) and only show the run method. The trans-
lation is split above two pages. The first covers the code for initialization and the object
fields. The second presents the run method. Now we discuss the Erlang representation
from top-to-bottom and how it relates to the ABS model.

52

5.2. Code Generation to Erlang
1
−
mo

du
le

(c
la

ss
_S

er
ve

r_
Tr

an
sc

od
e_

Ca
ch

eT
ra

ns
co

de
r)

.
2
−
in

cl
ud

e_
li

b(
”a

bs
_t

yp
es

.h
rl

”)
.

3
−
be

ha
vi

or
(o

bj
ec

t)
.

4
−
co

mp
il

e(
ex

po
rt

_a
ll

).
5
in

it
(O

=#
ob

je
ct

{c
la

ss
=c

la
ss

_S
er

ve
r_

Tr
an

sc
od

e_
Ca

ch
eT

ra
ns

co
de

r=
C,

re
f=

Re
f,

co
g=

Co
g}
,[

P_
bs

,P
_e

,P
_d

,P
_c

ac
he

Si
ze

])
−
>

6
se

t(
O,

bs
,P

_b
s)

,
7

se
t(

O,
e,

P_
e)

,
8

se
t(

O,
d,

P_
d)

,
9

se
t(

O,
ca

ch
eS

iz
e,

P_
ca

ch
eS

iz
e)

,
10

se
t(

O,
ca

ch
e,

da
ta

Ni
l)

,
11

se
t(

O,
sh

ut
do

wn
,f

al
se

),
12

co
g:

ad
d(

Co
g,

as
yn

c_
ca

ll
_t

as
k,

[O
,m

_r
un

])
,

13
O.

14 15
se

t(
O=

#o
bj

ec
t{

cl
as

s=
cl

as
s_

Se
rv

er
_T

ra
ns

co
de

_C
ac

he
Tr

an
sc

od
er

=C
,

re
f=

Re
f,

co
g=

Co
g}
,V

ar
,V

al
)−

>
16

Re
f!

{O
,V

ar
,V

al
,s

el
f(

)}
,

17
re

ce
iv

e
{r

ep
ly

,O
}

−
>
ok

en
d.

18 19
ge

t(
O=

#o
bj

ec
t{

cl
as

s=
cl

as
s_

Se
rv

er
_T

ra
ns

co
de

_C
ac

he
Tr

an
sc

od
er

=C
,

re
f=

Re
f,

co
g=

Co
g}
,V

ar
)−

>
20

Re
f!

{O
,V

ar
,s

el
f(

)}
,

21
re

ce
iv

e
{r

ep
ly

,O
,V

al
}

−
>
Va

l
en

d.
22 23

−
re

co
rd

(s
ta

te
,{

bs
=n

ul
l,

e=
nu

ll
,d

=n
ul

l,
ca

ch
eS

iz
e=

nu
ll

,c
ac

he
=n

ul
l

,s
hu

td
ow

n=
nu

ll
})

.
24

in
it

_i
nt

er
na

l(
)−

>
25

#s
ta

te
{}

.
26 27

ge
t_

va
l_

in
te

rn
al

(S
=#

st
at

e{
bs

=G
},

bs
)−

>
{S

,G
};

28
ge

t_
va

l_
in

te
rn

al
(S

=#
st

at
e{

e=
G}

,e
)−

>
{S

,G
};

29
%%

om
mi

te
d

30
ge

t_
va

l_
in

te
rn

al
(S

=#
st

at
e{

sh
ut

do
wn

=G
},

sh
ut

do
wn

)−
>
{S

,G
}.

31 32
se

t_
va

l_
in

te
rn

al
(S

,b
s,

V)
−
>
S#

st
at

e{
bs

=V
};

33
se

t_
va

l_
in

te
rn

al
(S

,e
,V

)−
>
S#

st
at

e{
e=

V}
;

34
%%

om
mi

tt
ed

35
se

t_
va

l_
in

te
rn

al
(S

,s
hu

td
ow

n,
V)

−
>
S#

st
at

e{
sh

ut
do

wn
=V
}.

1
cl

as
s

Ca
ch

eT
ra

ns
co

de
r(

Bl
oc

kS
tr

ea
m

bs
,

En
co

de
r

e,
De

co
de

r
d,

In
t

ca
ch

eS
iz

e)
im

pl
em

en
ts

Tr
an

sc
od

er
{

2 3 4 5 6 7 8
Li

st
<B

lo
ck

>
ca

ch
e=

Ni
l;

9
Bo

ol
sh

ut
do

wn
=

Fa
ls

e;

Fi
gu
re

5.
6.
:Th

e
C
ac
he
Tr
an
sc
od
er

ob
je
ct

53

Chapter 5. The Translation Backend

36
m_

ru
n(

O=
#o

bj
ec

t{
cl

as
s=

cl
as

s_
Se

rv
er

_T
ra

ns
co

de
_C

ac
he

Tr
an

sc
od

er
=C

,r
ef

=
Re

f,
co

g=
Co

g}
)−

>
37

[]
=(

(f
un

(I
nn

er
)−

>f
un

(P
ar

am
)−

>I
nn

er
(I

nn
er

,P
ar

am
)

en
d

en
d)

(f
un

(
Se

lf
,[

])
−
>

38
ca

se
no

t
(g

et
(O

,s
hu

td
ow

n)
)

of
39

fa
ls

e
−
>[
];

tr
ue

−
>t
as

k:
re

tu
rn

_t
ok

en
(C

og
,w

ai
ti

ng
),

40
ta

sk
:w

ai
t_

po
ll

(C
og

),
41

((
fu

n(
In

ne
r)

−
>f
un
(P

ar
am

)−
>I
nn

er
(I

nn
er

,P
ar

am
)

en
d

en
d)

(
fu

n
(S

el
f,

[]
)−

>
42

re
ce

iv
e

ch
ec

k
−
>

43
ca

se
cm

p:
lt

(m
_A

BS
_S

td
Li

b_
fu

ns
:f

_l
en

gt
h(

ge
t(

O,
ca

ch
e)

)
,g

et
(O

,c
ac

he
Si

ze
))

of
44

tr
ue

−
>
Co

g!
{s

el
f(

),
tr

ue
},

45
re

ce
iv

e
wa

it
−
>
Se

lf
(S

el
f,

[]
);

46
to

ke
n

−
>
ok

en
d;

47
fa

ls
e

−
>
Co

g!
{s

el
f(

),
fa

ls
e}

,
Se

lf
(S

el
f,

[]
)

48
en

d
en

d
en

d)
)(
[]

),
49

V_
tm

p2
81

50
36

65
_0

=
co

g:
ad

d(
(f

un
(#

ob
je

ct
{c

og
=T

})
−
>
T

en
d(

ge
t(

O,
bs

))
),

as
yn

c_
ca

ll
_t

as
k,

[g
et

(O
,b

s)
,m

_h
as

Ne
xt

])
,

50
ta

sk
:r

et
ur

n_
to

ke
n(

Co
g,

wa
it

in
g)

,
51

V_
tm

p2
81

50
36

65
_0
!{

wa
it

,s
el

f(
)}

,
52

re
ce

iv
e
{o

k}
−
>
ok

en
d,

53
ta

sk
:r

ea
dy

(C
og

),
54

V_
ne

xt
_0

=
as

yn
c_

ca
ll

_t
as

k:
ge

t(
V_

tm
p2

81
50

36
65

_0
),

55
ca

se
no

t
(V

_n
ex

t_
0)

of
56

tr
ue

−
>
se

t(
O,

sh
ut

do
wn

,t
ru

e)
;

57
fa

ls
e

−
>
V_

bl
oc

k_
0

=
co

g:
ad

d(
(f

un
(#

ob
je

ct
{c

og
=T

})
−
>

T
en

d(
ge

t(
O,

bs
))

),
as

yn
c_

ca
ll

_t
as

k,
[g

et
(O

,b
s)

,
m_

ne
xt

Bl
oc

k]
),

58
V_

fr
am

e_
0
=

co
g:

ad
d(

(f
un

(#
ob

je
ct

{c
og

=T
})

−
>
T

en
d(

ge
t(

O,
d

))
),

as
yn

c_
ca

ll
_t

as
k,

[g
et

(O
,d

),
m_

de
co

de
,V

_b
lo

ck
_0

])
,

59
V_

tm
p4

98
48

28
5_

0
=

co
g:

ad
d(

(f
un

(#
ob

je
ct

{c
og

=T
})

−
>
T

en
d(

ge
t(

O,
e)

))
,a

sy
nc

_c
al

l_
ta

sk
,[

ge
t(

O,
e)

,m
_e

nc
od

e,
V_

fr
am

e_
0]

),
60

ta
sk

:r
et

ur
n_

to
ke

n(
Co

g,
wa

it
in

g)
,

61
V_

tm
p4

98
48

28
5_

0!
{w

ai
t,

se
lf

()
},

62
re

ce
iv

e
{o

k}
−
>
ok

en
d,

63
ta

sk
:r

ea
dy

(C
og

),
64

V_
st

or
e_

0
=

as
yn

c_
ca

ll
_t

as
k:

ge
t(

V_
tm

p4
98

48
28

5_
0)

,
65

se
t(

O,
ca

ch
e,

m_
AB

S_
St

dL
ib

_f
un

s:
f_

ap
pe

nd
ri

gh
t(

ge
t(

O,
ca

ch
e)

,V
_s

to
re

_0
))

66
en

d,
67

Se
lf

(S
el

f,
[]

)
en

d
en

d)
)

68
([

])
.

10
Un

it
ru

n(
){

11
w

hi
le
(~

sh
ut

do
wn

){
12 13 14 15

aw
ai

t
le

ng
th

(c
ac

he
)<

ca
ch

eS
iz

e;
16 17 18 19 20 21 22 23 24 25 26 27

Bo
ol

ne
xt

=a
w

ai
t

bs
!h

as
Ne

xt
()

;
28 29 30 31 32 33 34

if
(~

ne
xt

)
35

sh
ut

do
wn

=T
ru

e;
36

el
se

{
37

Fu
t<

Bl
oc

k
>

bl
oc

k
=

bs
!

ne
xt

Bl
oc

k(
);

38
Fu

t<
Fr

am
e
>

fr
am

e
=

d
!d

ec
od

e(
bl

oc
k)

;
39

Bl
oc

k
st

or
e=

aw
ai

t
e

!e
nc

od
e(

fr
am

e)
;

40 41 42 43 44 45
ca

ch
e=

ap
pe

nd
ri

gh
t(

ca
ch

e
,s

to
re

)
;

46
}

47
}

48
}

Fi
gu
re

5.
7.
:Th

e
ru
n
m
et
ho
d

54

5.2. Code Generation to Erlang

The init function in Lines 5–13 initializes the object members with the class parameters
(passed as variables with the prefix P_ or with the value specified at the field declaration
in the ABS code at Lines 8 and 9. In Line 12, the asynchronous call to the run method is
placed to start the object’s active behavior.

The set and get functions over the Lines 15–21, check with the match in their function
headers that the passed object reference O has the right class field. Then they send a
message with the field access to the object process and await its response.

In Line 23 a record representing the internal state is defined. It contains a field for each
object member field. This record is manipulated in the behavior callbacks: init_internal,
get_val_internal and set_val_internal. The init_internal function returns an empty
state record. In the get_val_internal function a field name is matched in the record and
then returned. A field update is performed by the set_val_internal function, which sets
the value V for the corresponding record field and returns it.

The run method translated in Lines 36–68, has no parameters in the ABS model, therefore
the translated version’s only parameter is the reference to the object. The while loop is
translated as described above via a recursive anonymous function. This translation spans
from Lines 37–68. We see that the function is invoked with an empty list in Line 68 and
should return such in Line 37. The purpose of this list is to update all variables in the
scope outside the function. In this specific case none such exist and therefore the list is
empty.

The while loop’s condition is checked in Line 38. In case it holds, the await statement’s
passive polling is executed by a self recursive function similar to a while loop, over the
Lines 39–48. In Lines 49–54 an asynchronous call with an immediate await is executed.
This statement uses a temporary variable called tmp281503665.

In Lines 55–66 we see how an if statement is translated. In the if branch in Line 56 the
object’s field shutdown is set. The else branch is bigger and includes the placement of
three asynchronous calls. We wait for the last one of them over the Lines 60–64. The
result store is then stored in the cache be invoking the appendright function.

55

Chapter 5. The Translation Backend

5.3. Testdriver

Part of the tooling, provided by the HATS project, are a vast number of testcases for
unit testing. They check syntactic and semantic compliance of the frontend and different
backends.

A testdriver is the backend testing interface for the JUnit-based test framework. It has to
generate the code and execute it. To check if a test resulted in the intended behavior some
observations have to be made by the test framework. In case of ABS, it was decided that
a model has to terminate without an error and the result of the testcase can be found in
the Boolean variable testresult. Therefore, the testdriver has to implement a method to
retrieve the value of this variable. A very simple test from the collection of tests, which
check primitive data types and operations on them, is shown below:

1 { Int x = 10/4; Bool testresult = x == 2; }

Testing integer division

The testdriver for the Erlang backend is implement in the class ErlangTestDriver. The code
generation and compilation is straightforward, as it only requires to call the right backend
method and build the resulting Erlang code using the generatedMakefile.

Retrieving the result requires more engineering work. The execution of the main block is
implemented in the runtime in a way, that a possible return value from the main block
will also be the return value of the function runtime:start, which is used to execute a
model. So we just have to change the main block to return the testresult. This is done
via manipulating the model’s AST before code generation. The necessary nodes for the
return are just appended to the main block’s statement list. The returned value can then
be printed to the standard output stream via Erlang’s io:format.

So a unit test is executed by starting an Erlang process, which starts the model with the
modifications explained above. Then the JUnit part has to monitor the process’s output
and see if it complies to the expected result. In case a model gets stuck, e.g by a dead-
lock or livelock, there is a watchdog thread, that terminates the execution after a certain
timeout.

56

5.4. Execution of a Model

5.4. Execution of a Model

To generate Erlang code from an ABSmodel and execute it, the backend provides different
commands. They will be discussed in the first part of this section. Then a closer look will
be taken on the runtime’s start-up process. Furthermore, the monitoring options that the
runtime provides, will be discussed in greater detail.

Commands

generateErlang is a bash script, which resides in an ABS toolsuite build under bin/bash.
It takes a list of options and a list of ABS module filenames. The options can be used
to enable or disable different checks and features or generate a specific product
according to the feature models. All options are explained with the -help option.
The script just invokes the Java runtime for the class ErlangBackendwith all necessary
libraries. The Erlang code alongside with a Makefile will be generated as presented
in Section 5.2 and placed in the gen/erl directory. To compile the Erlang code and
generate the commands to execute the model (see below) the default target of the
Makefile should be called via make.

start [--debug] <main-module> This bash script launches an Erlang shell and exe-
cutes the ABSmodel by starting at the givenABSmodule’smain block. After the exe-
cution is finished, one stays in the launched shell, with all the necessary runtime and
model code loaded.Themodel can be restarted via runtime:start([<main−module>])
or inspect the model in more detail by using the Erlang process monitor or debug-
ger. Via the debug option, one can enable a more verbose output that will show all
task creations, scheduling, object access and more.

run [--debug] <main-module> Is the non-shell version of start script, so it will print
all output to stdout and exit afterwards.

57

Chapter 5. The Translation Backend

Startup process The runtime and subsequently also the execution of a model is started
via the function runtime:start. The essential parts of the startup logic are depicted in
Figure 5.8 and will now be described in detail. In Line 1 the given MainModule argument
is converted to the chosen Erlang module naming scheme (e.g., VideoTranscode.Tester
→ m_VideoTranscode_Tester). The eventstream module used in Lines 2–7 and 12 is the
monitoring facility explained in greater detail in the following section.

1 Module=list_to_atom(”m_”++re:replace(MainModule,”[.]”,”_”,[{return,list},
global])),

2 eventstream:start_link(),
3 case proplists:get_value(debug,Arguments) of
4 true −> eventstream:add_handler(console_logger,[]);
5 false −> ok
6 end,
7 eventstream:add_handler(cog_monitor,[self()]),
8 Cog=cog:start(),
9 MainTask=cog:add_and_notify(Cog,main_task,[Module,self()]),
10 RetVal=task:join(MainTask),
11 cog_monitor:waitfor(),
12 eventstream:stop(),
13 RetVal.

Figure 5.8.: Model startup logic in the runtime module

For the runtime it is necessary to know if all COGs have finished their work. This cannot
be fully determined, as one does not know if awaiting task ever becomes executable again,
as there are await conditions that can be dependent on system time.

The cog_monitor, which is added to the monitoring system in Line 7, observes events
regarding the scheduling state of all COGs. After all COGs stayed idle for configurable
time span (default 1 second), a call to the function cog_monitor:waitfor() (in Line 11)
returns and therefore, the model is assumed to be terminated.

In Line 8 we start the initial COG. As we want to receive the return value of the main
block (see Section 5.3), we start the main_task with the add_and_notify function. This
function sends a messages to the COG and performs the following there: The COG starts
the task and puts a message in the newly started task’s mailbox, which allows the caller
to block on the termination of this task. The waiting and the subsequent retrieval of the
return value happens in Line 9, by waiting on a message of the terminated task.

58

5.4. Execution of a Model

Monitoring the backend To easily implement different monitoring tools, the runtime
facilitates an event systemwithmultiple listeners.The abovementioned cog_monitor uses
that, as does a simple console logger. It can be extend to other visualizations or analysis,
for instance of scheduling decisions, the current COG, the object hierarchy or profiling
of runtime costs.

The module is called eventstream and based on OTP’s gen_event behavior. All relevant
runtime events, like the creation of entities, scheduling and asynchronous calls, are prop-
agated through this system to the listeners.

If the runtime is started with the debug parameter, the console logger gets attached to the
eventstream. It outputs all events to the console. In Figure 5.9 we see the output produced
by running the minimal example from Figure 4.6 on Page 40. The output is structured as
triplets, containing the sending subsystem, the senders identifier (the PID, e.g <0.34.0>)
and the event. It shows a similar but more detailed textual description of the sequence
diagram in Figure 4.7 on Page 41.

1 {cog,<0.34.0>,{new}}
2 {cog,<0.34.0>,{new_task,<0.35.0>,main_task,[m_M,<0.2.0>]}}
3 {cog,<0.34.0>,{state_change,<0.35.0>,waiting,runnable}}
4 {cog,<0.34.0>,{schedule,{task,<0.35.0>,runnable}}}
5 {cog,<0.34.0>,{state_change,<0.35.0>,runnable,running}}
6 {cog,<0.38.0>,{new}}
7 {object,<0.39.0>,{new,{cog,<0.38.0>,<0.37.0>},class_Output_Output_i}}
8 {cog,<0.38.0>,{new_task,<0.40.0>,init_task,{{object,
9 class_Output_Output_i,<0.39.0>,{cog,<0.38.0>,<0.37.0>}},[]}}}
10 {cog,<0.38.0>,{state_change,<0.40.0>,waiting,runnable}}
11 {cog,<0.38.0>,{schedule,{task,<0.40.0>,runnable}}}
12 {cog,<0.38.0>,{state_change,<0.40.0>,runnable,running}}
13 {object,<0.39.0>,{set,last,[]}}
14 {object,<0.39.0>,{commit}}
15 {cog,<0.34.0>,{state_change,<0.35.0>,running,waiting}}
16 {cog,<0.38.0>,{new_task,<0.43.0>,async_call_task,[<0.42.0>,
17 {object,class_Output_Output_i,<0.39.0>,{cog,<0.38.0>,
18 <0.37.0>}},m_print,”Hello␣World”]}}
19 {object,<0.39.0>,{new_task,<0.43.0>}}
20 {cog,<0.38.0>,{state_change,<0.43.0>,waiting,runnable}}
21 {cog,<0.38.0>,{schedule,{task,<0.43.0>,runnable}}}
22 {cog,<0.38.0>,{state_change,<0.43.0>,runnable,running}}
23 {object,<0.39.0>,{set,last,”Hello␣World”}}
24 {object,<0.39.0>,{commit}}
25 {object,<0.39.0>,{rem_dead_task,<0.43.0>}}
26 {cog,<0.34.0>,{state_change,<0.35.0>,waiting,runnable}}
27 {cog,<0.34.0>,{schedule,{task,<0.35.0>,runnable}}}
28 {cog,<0.34.0>,{state_change,<0.35.0>,runnable,running}}

Figure 5.9.: Debug output when running the model from Figure 4.7

59

Chapter 5. The Translation Backend

5.5. Comparing Backends

The ABS compiler is designed to allow different backends to generate code in different
styles or languages. Before the arrival of the Erlang backend in the ABS compiler, it was
shipped with two other backends, one using Maude, the other using Java. In the following
paragraphs both will be introduced and their characteristics in terms of execution time,
model and runtime size will be compared to the Erlang backend.

The Maude backend translates an ABS model to the Maude rewriting logic system
[CDE+02], which has language support for equational logic, sorts, subsorts and allows
high-performance rewriting and searches over the state space. The classes, objects and
functional definitions of ABS are represented using equational logic. Simulation of a
model is done by rewriting the global model state, following the rewriting rules speci-
fied in the abs-interpreter.maude file. In the beginning, the global model state contains
only the task for the main block, but in general all objects, COGs and tasks are part of this
global state term. A rewrite in this model represents the execution of a single statement
in an executable task.

TheMaude backend is especially suitable to analyzemodels inmore detail, control their ex-
ecution and/or extend the ABS language for the following reasons [JHS+10, WAM+12]:

• As syntax fragments get translated almost one to one to Maude, it is easy to extend
the interpreter with the rules covering additional or changed syntax and semantics.

• The global model state is a single term, and can therefore be easily inspected. A
single simulation run can be represented as a sequence of state terms, which can be
recorded and analyzed after completion.

Due to this structure and the ease with which one can add new rewriting rules in Maude,
a lot of extension to ABS, like the user-defined scheduling by Bjørk et al. [BdBJ+13] or
a cost simulation for the analysis of resource management in the cloud by Johnsen et al.
[JST12], were implemented in the Maude backend.

The Java backend translates an ABS model, the standard library, all data types and
the necessary runtime to Java classes. The translation and execution scheme is based on
the work done with JCoBox by Schäfer et al. [SP10]. Concepts similar in ABS and Java
are translated to their counterparts, like classes, objects and synchronous calls. The non-
overlapping parts had to be reimplemented as new classes. For example: primitive data
types, as ABS’s support arbitrary size, or functional expressions, like pattern matching
via the case expression as there is no counterpart for that in Java.

60

5.5. Comparing Backends

A main block is directly translated to an executable main class in Java, so translated ABS
models can be used in the same manner, as one would expect to use a standard Java
program. Running on the Java Virtual Machine (JVM) also allows ABSmodels to use other
existing Java libraries, which can handle network and system operations, via a foreign
function interface.

The Eclipse ABS plugin, developed as part of the ABS toolsuite, uses the Java backend to
support debugging and visual inspection of a model’s execution. Furthermore, the back-
end is also used when models become larger, as it is significantly faster than the Maude
backend, as one can see in the results below.

The model and platform used for evaluation In the following paragraphs we want to
evaluated execution time and model size for the Erlang backend and the previously exist-
ing backends. The used model contains two different classes, providing an implementa-
tion, that calculates the n-th element of the Fibonacci series. The calculation methods of
those classes are shown in Figure 5.10.

1 Int calc(Int n){
2 Int retval=0;
3 i f (n==1 || n==2)
4 retval=1;
5 e l s e {
6 Fut<Int> n1=this ! calc(n-1);
7 Fut<Int> n2=this ! calc(n-2);
8 await n2? & n1?;
9 Int r1=n1.get;
10 Int r2=n2.get;
11 retval= r1+r2;
12 }
13 return retval;
14 }

(a) Simple: An inefficient recursive
implementation

1 Int calc(Int n){
2 Int i=3;
3 Pair<Int,Int> state = Pair(1,1);
4 whi le(i<=n){
5 state= case state {
6 Pair(fst,snd) =>
7 Pair(snd,fst+snd);
8 };
9 i=i+1;
10 }
11 return case state { Pair(_,snd)=>

snd;}
12 }

(b) Loop: A loop-based implementation

Figure 5.10.: Test functions to calculate the n-th element of the Fibonacci series

Thefirst implementation called Simple, shown in Figure 5.10(a), computes recursivelywith
asynchronous calls. As widely known, this is very inefficient as exponentially manymeth-
od calls of calc happen. Still this a very good test of futures and asynchronous calls, as it
allows the creation of very big asynchronous call trees and corresponding futures.

The implementation called Loop depicted in Figure 5.10(b) just performs an addition in
a loop to produce the next element. It starts with the first and second elements and cal-
culates the following element from these two. So it only needs O(n) potentially very

61

Chapter 5. The Translation Backend

large additions and therefore is significantly more efficient then the Simple version. This
implementation’s performance is mostly influenced by arithmetical and control flow per-
formance.

All tests were performed with the latest available development version7 of the ABS tools
from the 5th of January 2015. The Erlang backend, as presented here, does not perform
garbage collection of the processes, representing the objects and COGs. As there is always
a speed penalty for performing garbage collection, the version used for this benchmark
contains a garbage collector, developed by Hansen [Han14]. The tests were run on an
amd64 Linux-3.18 kernel with an AMD Phenom™ II X6 1055T six-core processor with
following software versions: Oracle Java 7 Update 71, Maude 2.6 and Erlang/OTP 17.4.

Execution time comparison To compare the execution time characteristics, we com-
puted the n-th Fibonacci number and averaged over 10 runs and incremented the n until
the overall runtime for 10 tries was larger than 1000 seconds. In Figure 5.11, we see the
runtime for all problem sizes that have completed before this timeout. One has to note,
that the increment of the problem size is chosen so that the algorithmic complexity for
both computations grows exponentially.

2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

S
ec

on
ds

Erlang
Java
Maude

(a) Using Simple

0

10

20

30

40

50

60

70

80

90

100

 20 25 210 215 220 225

S
ec

on
ds

Erlang
Java
Maude

(b) Using Loop

Figure 5.11.: Average execution time for calculating n-th Fibonacci number for Maude, Java and Erlang
backend

In the result we clearly see that in both tests theMaude backend is for larger computations
by far the slowest. Further we also see that the Erlang and Java backend perform quite
similar for the Loop test, as its performance is mostly determined by arbitrary precision
arithmetic.

Instead for the Simple algorithm, the Erlang backend outperforms the Maude and Java
backend by far. If one ignores the benchmarking results for small n, where one measures
mostly time spent in startup routines, we see a minimal speedup from Java to Erlang in
the order of one magnitude and from Erlang to Maude in the order of two magnitudes.

7Git version: bccdb82ece154767dbd2980b1d0a4f6fdca3e337

62

5.5. Comparing Backends

So this backs our expectation, that Erlang’s good performance regarding a high number
of processes and messages would result in a better ABS execution performance. One has
to note that the Erlang backend had a slightly higher CPU load on the operating system,
than the other two. Erlang puts 1.5 cores under load, whereas Java uses 1.25 and Maude
exactly one. This happens even though the Simple algorithm runs in a single COG and is
therefore single threaded.This can be explained by the fact, that a few tasks, like resolving
a future and its state change in the COG, run concurrent to the active task in the COG.

Model and runtime size in the backends We also want to compare howmuch bigger a
translatedmodel gets in the target languages.Therefore, we count the Lines of Code (LOC)
for the Fibonacci model and the model of the VTS case study from Section 3.2 in ABS and
each of the backends. Additional we count the size of the runtime library, that is required
to execute a model in a backend. We use as definition for a LOC a physical line in a file,
while omitting whitespace and comments.This cannot be seen as a measure of complexity
as code can be very differently written and each language has a different, but hard to
determine, expressiveness per LOC.

The results for the model, containing both Fibonacci implementation classes, are shown
in Table 5.1. In the first column we see the size of the model in ABS and in the backend
translations. In parenthesis the growth in percentage in comparison to the ABS source
is shown. We see the Maude backend produces output that is smaller than the original
source. This happens due to the fact, that type information is omitted in the information
and all code of a class or function is printed into a single line. The Java output is sig-
nificantly larger, as it contains a lot of code for the visual debugger and needs verbose
wrappers for asynchronous calls. In the Erlang backend the size roughly triples, which
seems not surprising, as we saw in the detailed description of the translation, that very
few statements require a more complex multiple lines long translation.

For the runtime size we see a slightly different trend than before for the model size. The
Erlang andMaude runtime have a similar LOC count, even though from experienceMaude
code is much more compact. This observation can be explained by the bigger feature-set
supported by the Maude runtime. It supports extensions for timed models, user-defined
scheduler [BdBJ+13] and modeling resources [JST12]. The Java backend has again the
largest code base, as it needs classes to support built-in types and expressions.

VTS LOC Fibonacci LOC Runtime LOC
ABS 185 57
Maude 109 (-41%) 49 (-14%) 2193
Java 1411 (662%) 400 (+601%) 7192
Erlang 581 (+214%) 138 (+142%) 2185

Table 5.1.: Sizes of Models and Runtime in different backends

63

Chapter 6.
Error Handling

In this chapter we introduce an error handling concept for ABS. The ABS toolsuite lacked
any notation of runtime error or error handling in the version available in mid 2013. The
error handling introduced here and also presented in [GAJ+13, GJSS14], is inspired by
concepts found in the Erlang programming language. Erlang’s actor-style processes are
conceptional similar to active objects with asynchronous message invocation. Moreover,
Erlang is well known for its fault tolerance and successful use in high availability sys-
tems.

After we show how we define errors and why error handling is a worthwhile addition to
the ABS language, the Erlang error handling capabilities, the proposed language modifi-
cations and their implementation is presented.

These new capabilities will then be used to enhance the Video Transcode Server case study.
Furthermore, the error handling primitives allow the implementation of supervisors, an
Erlang concept for overseeing other processes or, in case of ABS, objects.

6.1. Faults, Errors and Failures and why model them?

First, we want to define what an error is. To solidify our understanding we show a defini-
tion for each of the three terms, faults, failures and errors, and the relations between them.
The definitions give also reasoning that errors are actually a concept we want to include.
The terminology, used in this thesis, is based on overlapping concepts of Johnson [Joh88]
and Lee et al. [LA90]. There exist a variety of slightly different definitions by others, and
we compare ours with an Institute of Electrical and Electronics Engineers (IEEE) standard.
In the later parts of this section, we argue why we want to have the possibility to include
errors and error handling in a model.

65

Chapter 6. Error Handling

Faults are manifestations of incorrect behavior, that in turn could lead to errors, which
are defined as an erroneous state (see below). A fault is observable at some internal level,
like a malfunction circuit or a faulty part of the source code. Faults reside in hardware
or software and can be introduced in different phases of a system lifetime. They can be
caused by specification, implementation and runtime mistakes or disturbances. If a fault
is present, it does not have to lead to an error, for instance if it is located in a part of a
model that is never executed.

Removing a fault can be very hard or is potentially not possible at all. Specification and
implementation mistakes are introduced in the design and construction phase of a system
and thus can only be removed by a redesign. It is even more difficult to eliminate faults
that happen through the physical representation during the runtime of a system. Each
system needs to have such a physical representation to be used. Such faults can be in
the electrical components, power supply and input from the environment. Some of the
sources, leading to such faults, cannot be eliminated.

Errors are defined as the occurrence of an erroneous state in a model. Such a state is
internally visible in the model and can manifest itself, for example, as a wrong value
or behavior caused by a fault. If an error can be detected, a model could reach in some
situations again an error-free state via choosing the right transitions. Such a model is able
to correct certain errors. In general, there are errors that can, depending on the capabilities
of the system, not be detected.

Failures are deviations of the observed system’s behavior from the expected behavior
caused by an error. Errors are internally visible error states, whereas failures are observ-
able from the outside, as the model’s output or behavior. Other literature does not distin-
guish as clearly between a failure and an error

The relationship of faults, errors and failures has a lot of different perspectives. There
is a causal relationship that a fault can cause an error, which in return can cause a failure.
Johnson [Joh88] proposed a three universe view. A fault happens in the physical universe,
an error in the information universe, as it affects the state of a system and a failure is visible
in the external universe.

Furthermore, if one views a model as a composition of components, one can also say that
a failure of a component is a fault in the model using this component. So these definitions
also depend on the detail with which one looks at a system. An example should further
clarify this. A distributed model runs on two machines, exchanging messages via a serial
connection. If now an environment related fault happens, like somebody trips over the
wire between those machines, the missing signal will result in an error. Following that,
the connection cannot transmit anymore and the expected behavior of the connectionwill
not match the observed behavior. So we have a failure in the connection. If the distributed

66

6.1. Faults, Errors and Failures and why model them?

model only sees the connection as a component, where the correct behavior is shown by
the timely transmission of messages, this kind of failure will show up as a connection
fault in the model. This fault could, when the model tries to use the connection, bring the
model in an erroneous state and potentially lead to a failure.

From the relationship between errors and faults, other equivalent definitions can be de-
rived. Software systems are often attributed as fault tolerant. Because an error is a man-
ifestation of a fault, these systems can also be seen as capable of error handling or error
recovery.

The IEEE standard over the Classification for Software Anomalies [IEE10] is compared
to the above introduced definitions. The IEEE standard focuses solely on software in con-
trast to the definitions used in this thesis, that stem from embedded systems, which have
to focus on hardware as well. The failure term is defined similarly as behavior outside of
defined limits. The error term is omitted and instead a fault is defined as a defect that is
encountered during an execution. Defects are a supertype of faults and are in general ob-
servable causes in software system. A defect is not a fault, if it is found via other analysis
tools, like static analysis or manual inspection. The IEEE’s defect definition is therefore
closer to our fault definition.

Including errors in modeling is interesting and valuable from multiple perspectives.
First, it allows to make errors that are caused by unavoidable faults in the physical en-
vironment explicit. An analysis of failures in distributed computing and the underlying
causes by Gray [Gra86], clearly shows that errors are common and one has to take them
into account. He points out that especially communication failures are a common problem
as there are a lot of communication paths in a distributed system.

Communication or data processing in a distributed setting are special areas, where one
has to consider malfunctions in a system. Algorithms used there have to take a certain rate
of communication failures and unavailability of hosts into account as shown by Lamport
[Lam78] or Schneider [Sch90].Therefore, one should also include these kinds of failures in
a model, when one wants to specify a distributed software system. One could also model
such potential transmission errors via timeouts and introduced delays in a custom way,
but we believe that an explicit specification of errors is more concise and allows analysis
targeted at the built-in error semantics.

Furthermore, it is also interesting to include error handling code in models to end up with
a model, which is closer to an implementation used in production systems as those always
have to include error handling.

67

Chapter 6. Error Handling

6.2. Erlang’s Error Handling

One of the requirements while designing Erlang was Fault tolerance both to hardware
failures and software errors. Joe Armstrong had a specific idea on how to support fault
tolerance [Arm07a]:

You can not build a fault-tolerant system if you only have one computer. The
minimal configuration for a fault tolerant system has two computers. These
must be configured so that both observe each other. If one of the computers
crashes, then the other computer must take over whatever the first computer
was doing.
This means that the model for error handling is based on the idea of two com-
puters that observe each other.

This concept was transferred to Erlang. Instead of computers, processes need a facility to
observe other processes. The primitives provided by the runtime are linking and moni-
toring between processes, which then enable a process to supervise other processes and
automatically restart them. These concepts will be discussed in detail in the following
paragraphs.

Errors An error in an Erlang process can occur at any point and is raised by the built-
in functions error, exit and throw. These can be handled by the well-known try catch
exception mechanism, or, in the case of an unhandled exception, lead to the process’s
termination, where the exception’s value will be the process’s exit reason.

Link and Monitor To enable mutual observation of processes, a process can link itself
to another process. If one of these two processes terminates, the runtime environment
sends an EXIT message to the other process, which contains an exit reason. Unless this
exit reason is normal (termination because the process reached the end of the function),
the linked process will terminate too and in consequence propagate its own EXIT message
to its other linked processes. With this feature, referred as error propagation, it is possi-
ble to let groups of processes or even the whole system crash, which enables automatic
termination and clean up of components, consisting of multiple processes.

To enable processes to observe EXIT messages and react on them, a process can bemarked
to be a system process with the trap_exit process flag. Such processes will not terminate
when receiving an EXIT message, instead they can retrieve this message from their mail-
box.

68

6.2. Erlang’s Error Handling

A monitor is an asymmetric form of a link, where no exit messages are propagated but
special monitor messages, which indicate, if the monitored process did not exist at the
point of observation or has terminated. This feature is used for example, when processes
communicate synchronously in a Request-Acknowledgment style, to monitor if the other
process stays alive, while waiting for an acknowledgment.

Supervision Tree With the trap_exit flag and links, it is possible to build a network of
processes, with some dedicated processes observing and automatically restarting others.
In Erlang this is organized as a tree. This so called supervision tree, consists of supervisor
processes, which manage a set of children that can be worker processes or supervisor
processes themselves [Eri15b] .

A supervisor is started with a list of child specifications and a strategy for restarting its
children. The strategy defines, in case a child terminates, if only this child, all children or
only children started after this child, should be terminated and restarted. Combined with
the tree structure, this allows to build a variety of scenarios of shared and independent
components, one normally has in a software system.

69

Chapter 6. Error Handling

6.3. Error Handling for ABS

The presented error handling concept takes the principle of error propagation between
execution units (processes) from Erlang and adds some primitives for termination of a
process and a notion of error, which enables an implementation of an Erlang-style linking
between objects.

In ABS an error will be propagated by the future, which is normally used to retrieve
the computed value. Furthermore, an automatic rollback from the object’s possibly faulty
state is executed in case of an error. Reasoning for these choices and details are presented
in the following paragraphs.

New language constructs are introduced to enable the envisaged error handling:

• a notion of user-defined error types
• a generalization of the future mechanism to propagate either return values or errors
• a statement abort e, which raises an error e and thereby terminates the process
• a statement f.safeget, which can receive both errors and values from a future f
• a statement die, which terminates the current object and all its processes

The occurrence of an error is represented in the model by means of the statement
abort e, where e is a user defined error. These errors should be represented by a special
data type. Due to the lack of extendable types in ABS, those are represented instead as a
String. The abort statement is inspired by the work of Johnsen et al. [JLZ11].

Such an abort can either be explicit in the model or can be seen as implicit error in the
internals of the execution. It could represent a distribution, system (e.g., out of memory)
or runtime (e.g., division through zero) fault.

The semantic interpretation of such an error is dependent on the kind of ABS process that
encounters it. We have defined the following behaviors:

Active Object: If the active object’s process evaluates abort, all current asynchronous
calls to this object will abort with the error e and the references to this object will
become invalid. Further synchronous or asynchronous calls to this object will re-
sult in an DeadObject error on the caller side. This behavior was chosen, as the
object’s behavior is seen as an integral part of its correctness, and like an invalid
state also an unexpected termination of this behavior leads to an inconsistent object
and therefore the object cannot be further used.

Asynchronous Call: After terminating the process, an abort e statement will set the er-
ror e in the associated future. Moreover, in the callee’s COG an automatic rollback
(see next page) will be performed.

70

6.3. Error Handling for ABS

Main Task: As the main task represents the beginning of the execution, an abort there
will not be further handled and the runtime system will terminate.

The automatic rollback discards all changes to the COG’s objects’ values since the last
scheduling point, which can either be an await or suspend, when an error occurs in a
task in the COG. This guarantees that objects only evolve from one well-defined state at
a scheduling point to another and that, in case of an error, an object is not left in a faulty
state. This is inspired by how one would handle an error in Erlang, where error recovery
is performed by a restart with a previously error free state. Furthermore, it enables also
to reason about the correctness of a model by using invariants over scheduling points as
proposed in [DDJO12], even if the model faces runtime errors.

Extending futures to contain either the computed value or a potential error, raised ei-
ther by an abort on the callee side or in the internals (e.g., by a distribution failure), enables
error propagation over invocations. Following this, also the semantics of the Future.get
statement needs do be adjusted. Inspired by Erlang’s fast failing mentality and the default
error propagation, a get will, in presence of an error e in the future, lead to an implicit
abort e on the caller side.

The newly introduced Future.safeget allows to stop this propagation and to react on
errors. The statement Future<T>.safeget returns the type Result<T>, which can either
be of type Value<T>(T v), where v is the result of the computation, or of type Error(e),
where e is the contained error.

The die statement allows, in asynchronously called methods, to terminate the active
object they are acting upon. Its semantic meaning is the same as an abort in the execution
context of an active object task. In other words: all active asynchronous calls and the
active object’s task are terminated. This behavior is in contrast to the evaluation of an
abort in the context of an asynchronous call, where only this call would terminate and an
automatic rollback would happen. This statement allows to forcefully terminate an object
by an asynchronous call and is added to implement object linking.

Implementing linking Previously presented primitives enable us now to implement a
Erlang-style linking between two objects, where one gets terminated in case the other
terminates. The abstract implementation idea is to represent a link by two asynchronous
calls, one to each of the objects. Both calls will block forever in an awaitwith the condition
false. So the future only gets resolved by an error propagated through it and thus enables
the caller to perform an action in case of the termination of an object.

71

Chapter 6. Error Handling

1 c l a s s Link(Linkable f,Linkable s){
2 Int done=0;
3 Unit setup(){
4 f ! waitOn(this,s);
5 s ! waitOn(this,f);
6 await done==2;
7 }
8 Unit done(){
9 done=done+1;
10 }
11 }

(a) The Link class

1 c l a s s Linkable() implements
Linkable{

2 Unit waitOn(Link l,Linkable la){
3 Fut<Unit> fut=la ! wait();
4 l ! done();
5 await fut?;
6 case fut. safeget {
7 Error(e) => die e;
8 }
9 }
10 Unit wait(){
11 await false;
12 }
13 }

(b) A sample Linkable implementation

Figure 6.1.: Implementation of Links in ABS

In Figure 6.1 a sample implementation is shown, which assumes that each class imple-
ments code similar to the Linkable class. A link can be established by creating a new
object of Link, where the link gets initialized with references to both objects (referred as
f and s), and then calling setup on this new link. The setup method initiates the calls
between the objects, by calling waitOn and then waits until both calls are processed. A
finished call can be seen by observing the counter done.

The waitOn method implemented in the Linkable class, places the normally nontermi-
nating asynchronous call in Line 3 to the other Linkable it should link to. The nonter-
mination is achieved by a simple await false, as can be seen in the wait method. After
these calls are made, the waitOn method reports back to the Link that it has succeeded.
Then it will await the termination of the call in Line 5.

Should this future ever contain a value, it must be an error. In Line 7 we can perform an
action, in case the other object has terminated, which will trigger in return a subsequent
termination of the executing object via the die e statement. To achieve the same behavior
as in Erlang, where a system process handles an exit message, one could insert custom
code instead of the die statement in Line 7.

The setup of a link and the behavior in case of a termination of one of the Linkables is
also depicted in the sequence diagram in Figure 6.2. It should help to get a better under-
standing of the interaction between the Linkables and the Link. The diagram illustrates
a scenario where we already have the existing objects a and b of type Linkable, as shown
in Figure 6.1, and an object of the type Link.

First, the main block calls setup(a,b) on the link. This method then places an asynchro-
nous waitOn call to a and b. Subsequently both perform the same operation: they call
wait on the other end of the link. This pending call is for clarity reasons depicted as a

72

6.3. Error Handling for ABS

.. Main.. a : Linkable.. Link.. b : Linkable....

setup

...

waitOn

...

wait

.....

done

........

waitOn

...

wait

......

done

......

die

........

Figure 6.2.: A sequence diagram of the creation and termination of a link

green colored thread. The wait and waitOn call, which waits on the return of the former,
will now run and wait till the termination of the linked object. To notify the Link of the
completed setup, each Linkable is calling the done method. After this happened on both
sides, the setup call returns and a link is established. The Link class was only necessary
for the setup of the links and can now be terminated.

The interactions after the setup call returned, show the behavior of the termination of
the object a and the propagation over the link. As a terminates, which is highlighted by a
red cross, all pending tasks are terminated, therefore the green colored thread of the wait
call returns with an error. In consequence the waitOn call on b calls die, which leads to
its own termination.

As said before, a class needs to implement the behavior shown in the Linkable class. In
future versions it could also be feasible to make this a default option, so that each class
will be supplied with this behavior by the runtime or the compiler.

73

Chapter 6. Error Handling

6.4. Implementation of Error Handling for ABS

Adding the above presented error semantics, requires changes in the existing translation
and the addition of concepts to handle the failures. There are basically four areas, which
have to be changed: extending futures to contain an error, the semantics of a failing task,
object rollback, and termination of an object. In the following paragraphs we first will
have a look on how errors are represented and then how those areas change.

Errors are translated to Erlang exceptions. An abort("division_zero") is translated
to an exit(”division_zero”) statement. If such an exception is not handled, the process
will terminate.These errors can be caught, but also observed in other processes via linking
or monitoring.

Futures and Errors Previously the async_call_task also represented the future. As this
task now can fail or be forcefully terminated by a die, these two different usages of the
async_call_task process have to be separated. Thus we introduce a new process repre-
senting the future.

If now an asynchronous call is performed, first its future is created, which will in turn add
and create the async_call_task process in the COG. To detect a shutdown of the COG
while adding the task, the future obtains a monitor on the COG.

When the async_call_task is initialized by the COG, it links itself to the future. By setting
the trap_exit system flag in the future, it is able to detect an error in the async_call_task.
The future then just has to wait either on a message that the process has shutdown like
{’EXIT’, _, Reason}, where the Reason represents the error, or on a message with the
result, that the async_call_process will send in case the call completes successfully. The
result will be stored in the future by using a tail-recursive function, which takes the result
as parameter and replies to messages from the await or safeget/get statements.

The error propagation of the future’s get is implemented in the corresponding Erlang get
function of the future module. There we retrieve the value of the future by sending a
message and waiting for a reply. In case it contains an error value, exit(Reason) with
the retrieved reason will be immediately called. The implementation here behaves in the
same way as for an abort, which was also a goal defined by the error model.

Errors in Tasks The proposed semantics have differing rules for the occurrence of an
error in each kind of task. In the translation, shown in Chapter 4, an object’s active be-
havior was implemented by performing an asynchronous call to the run method after
the initialization. As we now have to distinguish between the active behavior and other

74

6.4. Implementation of Error Handling for ABS

asynchronous calls, a new active_object_task module was created. This process calls
object:die in case of an error, whereas the async_call_task calls task:rollback (both
are explained in the following paragraphs).

Also the COG’s list of tasks has to stay in sync, when tasks face errors and terminate.This
can be easily done via linking the task with the COG process and trap system messages
there. So if it receives an EXIT message from the running process, it can remove it from
the list and assume that its run token has been returned.

Object rollback To enable the automatic rollback in case of an error, both the previous
and current state have to be saved until a scheduling point is reached and the previous
state can be discarded. As the state covers all objects of a COG, a full copy of it could
be costly, therefore an incremental checkpoint approach, as defined by Elnozahy et al.
[EAWJ02], was implemented. For this we have to track firstly changes in objects and
secondly which objects have changed.

The first part was implemented by storing updates to object’s members in a key-value
datastructure. These updates are only applied to the object’s fields at a commit. As the ob-
ject process was already quite complicated, it was changed to be a gen_fsm behavior. This
is an Erlang/OTP pattern for implementing a server with an internal finite state machine.
It allows to have an object in two states (uninitialized or active), and have synchronous
and asynchronous method calls with simple call handlers.

To track which objects have changed in a COG, each COG got an object_tracker process.
It is a simple gen_server, which is another Erlang/OTP pattern for a plain looping process
with an internal state. It allows to add objects to a dirty set, which represents all objects
with a changed state, and retrieve and clear this set.

Every time an object’s field is changed, this value is stored in an updates map, and it is
marked dirty by the object_tracker. If task:rollback is invoked, the dirty set of the COG
is retrieved and cleared and the updates map gets emptied for each object in the set.

Object’s die An object terminates, if an error occurs in the active object behavior or
the die statement is applied on an object. The new semantics define that in case of a
termination all incomplete asynchronous calls are aborted with the same error and the
object reference becomes invalid. Every synchronous and asynchronous call to such an
invalid object results in an implicit abort("DeadObject").

To terminate each pending asynchronous call on an object, we have to track those per
object. Therefore, when an async_call_task checks, if an object is already active, it is put
in a list saved in the object’s internal state. By having a monitor from the object to the
async_call_task, the termination of a task is easily detected and the list is kept up-to-
date. In case of the object’s termination, only an EXIT message has to be sent to each of
these processes and then the object process can terminate.

75

Chapter 6. Error Handling

Now we still have to handle the scenario where one tries to access an invalid object. Such
a reference is represented by a non-existing object process. For an asynchronous call this
check happens implicitly as it is checking if an object is already in an initialized state.
Whereas a synchronous call normally only executes the corresponding class’s code and
only interacts with the object process when a field access happens. Therefore, we have to
make a simple synchronous communication attempt with the object process before each
synchronous call in order to check if this process is still running and otherwise execute
an abort("DeadObject").

6.5. Error Handling in the Case Study

Before error handling is introduced in themodel of the case study, possible error scenarios
should be discussed. In this model following errors are considered:

Read errors occur when the BlockStream is accessed and for instance the source file is
not available anymore or cannot be read.

Decoding errors occur when a successfully read block will be decoded but somehow this
block does not correspond to the specified codec.

Network errors on the client side occur when either a transmission error happens be-
tween client and server or somehow the client connection is unexpectedly closed.

The first two errors occur both in the pipeline, hence these will be further referred to as
pipeline errors.

The new error-aware semantics allows to inspect the case study’s behavior in previ-
ously presented error scenarios. As the pipeline elements (BlockStream, Decoder and
Encoder) are blackboxes from the perspective of the transcoding server, we will not re-
gard them in detail and only assume that an error there is correctly expressed by an
abort.

In Figure 6.3 all objects used in the Video Transcode Server are depicted. It is a extended
version of Figure 3.7 from Chapter 3. It illustrates how an error, which will be discussed
below, spreads through the objects. Blue Arrows are pointing from the callee to a con-
sumer of its future’s value. Along this arrow, a potential error will propagate. The green
arrows show a link between two objects, which are introduced on the following page.

Important in case of an error is, that either all used objects are cleanly terminated or
another fault-handling action is taken, but errors must not happen unnoticed. Especially
active objects like the CacheTranscoder and ConnectionHandler need to be explicitly
terminated as their running active behavior does not allow to garbage collect these objects.
Other nonactive objects like the Encoder can be automatically destroyed, after the last
reference to them is gone (e.g., when the CacheTranscoder is terminated).

76

6.5. Error Handling in the Case Study

Figure 6.3.: Call structure and linking of the Video Transcode Server’s Objects

Looking at pipeline errors, we see that an error in one of the elements will be propagated by
using a get on the future, containing the previous result, through the end of the pipeline.
So a pipeline error will lead to an implicit abort in the CacheTranscoder, where the result-
ing block is accessed. This will further result in the termination of the CacheTranscoder,
where all pending asynchronous calls from the ConnectionHandler will terminate with
the propagated error and all future calls will raise a DeadObject error. One way or an-
other, an error will bubble up in the ConnectionHandler’s run method, where it also will
terminate this object, but the connection will stay untouched and will not receive notice
that the server handling part has shutdown. As we see, without changing the model the
error would propagate through the server-side objects and terminate them, but leave the
connection stalled.

Considering now a network error, which could only be observed by either sending or
receiving a message on the Connection. Once again, we assume that such an error is
contained in the future attached to those calls. An error stored there would lead to the
termination of the ConnectionHandler (by using get and a following implicit abort).
Because of the one-way communication pattern between the ConnectionHandler and
the CacheTranscoder, the latter will never take notice that its consumer has terminated
and therefore the CacheTranscoder and its pipeline will produce frames until the cache
is full and then wait.

After looking at both error scenarios, we see that the principle of error propagation leads
to a fail-fast system, but not all objects are cleanly terminated.

Introducing linking in the model allows to better resolve the parts in the error handling,
which were not correctly solved before. This was due to the fact that parts of the model
like the ConnectionHandler and the CacheTranscoder are mutually dependent, but this
fact is not represented in the model.

77

Chapter 6. Error Handling

A link between the ConnectionHandler and CacheTranscoder is implemented, so that
both classes implement the behavior shown in the Linkable class in Figure 6.1 on Page 72.
This link is established by adding the setup of the link in the ConnectionHandler, after the
instantiation of the CacheTranscoder. This is done via new Link(this,transcoder),
where transcoder refers to the newly created object.

A second link is added between the ConnectionHandler and the SyncConnection. A fail-
ing link should not lead to the termination of the Connection object, but should call the
SyncConnection:close method, to signal a failed connection to the client side. There-
fore, we implement a changed version of the standard Linkable implementation, shown
in Figure 6.1, in the Connection class. As depicted in Figure 6.4, we modified Line 7,
which determines the behavior in case of a terminating partner to call close() instead
of die e.

By adding these links we gain a model, where errors are distributed through all related
objects and necessary cleanup can be performed.This can also be seen in Figure 6.3, where
the arrows showing links (green) and future error propagation (blue) form a path that
communicates an error from either the network or transcoding to all active objects.

1 c l a s s SyncConnection() implements Linkable
{

2 Unit waitOn(Link l,Linkable la){
3 Fut<Unit> fut= la ! wait();
4 l ! done();
5 await fut?;
6 case fut. safeget {
7 Error(e) => close();
8 }
9 }
10 / * R e s t o f SyncConnec t ions members * /
11 }

Figure 6.4.: Changed link behavior in SyncConnection class

A more tolerant error handling The previously shown model was able to handle an
error correctly by informing and cleaning up all objects. Now we want to show a version
of the transcoder, which employs a different error handling strategy. This new model is
based on the model with links shown in the previous paragraph.

Assuming we have an unstable source for the video streams, we want to ignore some
errors up to a certain error rate, where continuing the transcoding seems not desirable
anymore.The error rate at the iteration n is represented by the n-th sum of an exponential
decaying sequence depicted in Figure 6.5. This error rate is also called exponential moving
average in the field of signal processing. This rate allows to detect, if a significant number
of errors occurred in recent iterations.The constant values could also be chosen differently
as long as they preserve the decaying form.

78

6.5. Error Handling in the Case Study

xi =

{
1/4 if error
0 if no error

error_rate(n) =
n∑

i=1

xi

(
3

4

)n−i

Figure 6.5.: Exponential moving average error rate

To compute the error rate, pipeline errors have to be detected in the transcoder. Therefore,
the computation’s results are now retrieved via the new safeget statement, which places
the result in either an Error or Value data type. Figure 6.6 depicts on the left hand side
the previous code, which was used in the transcoder presented in Figure 3.5a on Page 26
to retrieve and store the result.The right hand side shows the replacement of this previous
behavior, which now computes the error rate for each iteration. This rate is stored in a
newly added Integer rate field.

1 Block store=result.get;
2 cache=appendright(cache,store);

(a) Old

1 Result<Block> r =res. safeget;
2 case r : {
3 Error(err) => {
4 rate=rate*3/4+1/4;
5 i f (rate > 2/3)
6 abort "InputCorrupt";
7 }
8 Value(store)=>{
9 rate=rate*3/4;
10 cache=appendright(cache,store);
11 }
12 }

(b) Active error handling

Figure 6.6.: Old behavior replaced by active error handling

These changes allow now the computation of the error rate. Should this surpass a defined
threshold, the transcoding process will be aborted, as can be seen in Lines 5–6.

79

Chapter 6. Error Handling

6.6. Supervision in ABS

As linking in Erlang enables the implementation of supervision trees, we want to show
this step for ABS, which is now able to support linking as well. This allows to model a
statically typed supervision tree, which maintains active objects.

6.6.1. Introduction of a General Supervisor

To achieve a versatile and reusable supervisor implementation, we require some abstrac-
tions:

• configuration of the supervisor has to be done without altering or adapting the
supervision code

• abstraction of how a child gets started, as different children will need different setup
routines

• different restart strategies, which define how the supervisor behaves in case of a
deceased child

In consideration of these requirements, we implement a class Supervisor, which takes a
list of SupervisibleStarter objects. They represent specifications on how a child can be
created. The interface’s only method is Unit start(Linkable s), which should create a
new child and build a link with the given Linkable s, which is one side of a link. To use
a Supervisor as a child, an implementation of the SupervisorSupervisibleStarter is
included.

A restart strategy is passed to the supervisor as an additional parameter. The following
strategies are provided:

restart one: Only the terminated child is restarted.
restart all: If a child dies, all children will be restarted.
propagate: The supervisor and all children will terminate and the error will be thereby

propagated to the next supervisor or, in case it is the root node, to the runtime
system.

Managing a child requires special considerations, as the supervisor has to keep track
of each child, needs to detect a link failure and be able to forcefully terminate a child for
the restart all strategy. The standard implementation of the link mechanism, shown in
Figure 6.1, has on the error receiving side no indication about the source of the link error.
Therefore, we build the link not directly with the supervisor, but with an intermediate
object of the class SupervisorLink that allows to store extra information. This class is
conceptionally an association class, but instead for an association it stores additional data

80

6.6. Supervision in ABS

for a link. The structure of objects and their links is depicted in Figure 6.7, where a super-
visor with three children is shown. Rectangles represent objects and the green connecting
lines between them represent the links.

..

:Supervisor

.

:Child

.

:Child

.

:Child

.

:SupervisorLink

.

:SupervisorLink

.

:SupervisorLink

Figure 6.7.: Classes used to model a typed bidirectional synchronous connection

The SupervisorLink object starts the child and keeps the reference to the child spec-
ification, the SupervisibleStarter object, and is the other endpoint of the link, that
the SupervisibleStarter object creates with the started child. The SupervisorLink’s
waitOn method, depicted in Figure 6.8 is modified so that in case of a link error, caused
by the child, it will pass the error along with the SupervisibleStarter object to the
Supervisor’s died method.

1 / / Ob j e c t member
2 SupervisibleStarter ss;
3

4 Unit waitOn(Link l,Linkable la){
5 Fut<Unit> fut=la ! wait();
6 l ! done(this);
7 await fut?;
8 Result<Unit> r= fut. safeget;
9 case r {
10 Error(e) => s.died(ss,e);
11 }
12 }

Figure 6.8.: Adapted waitOn of SupervisorLink

81

Chapter 6. Error Handling

This design also allows to forcefully kill a child as required for the restart all strategy.
By terminating the child’s SupervisorLink object, the linked child will be terminated as
well.

The Supervisor class has to start each of the children on startup. The start method,
shown in Figure 6.9(a), creates for each specification a SupervisorLink, which in turn
starts the child. In this method and the illustration of the linking scheme in Figure 6.7, we
also see that the Supervisor establishes a link with the SupervisorLink object. The link-
ing allows, in case the Supervisor itself terminates (e. g. when the strategy is propagate),
to terminate all SupervisorLinks and children as well.

When the Supervisor’s died method is called by a SupervisorLink, it can take action
according to the defined strategy. This behavior is also shown in Figure 6.9(b). The prop-
agate strategy results in the termination of the supervisor and all its children. For restart
one the old child’s specification is removed from the internal list and the child is then
started again like on startup. In case the supervisor behaves following the restart all strat-
egy, all current SupervisorLinks are terminated and then for each specification start is
called.

1 Unit start(SupervisibleStarter child){
2 SupervisorLink sl=
3 new SupervisorLink(this,child);
4 Link l=new Link(sl,this);
5 await l ! setup();
6 links=Cons(sl,links);
7 sl.start();
8 }

(a) Start a child

1 Unit died(SupervisibleStarter ss,
2 String error){
3 case strategy {
4 RestartAll => this.restart();
5 RestartOne => this.start(ss);
6 Prop => die error;
7 }
8 }

(b) Handle a deceased child

Figure 6.9.: Key methods of the Supervisor

6.6.2. Supervisor Tree in the Case Study

The Video Transcode Server was implemented in Section 3.2 and enhanced with error
handling through linking in Section 6.5. In these models for each connection a decoder
and encoder pair is started and it tries to fill the cache. Should the Video Transcode Server
now face a large number of connections, each of them would start its own encoding task.
This would lead to contention on the CPU, up to a level, where the tasks responsible for
communication potentially run infrequently and thus make the service unusable. We will
first have a look at other extensions of ABS that tackle this problem. After that we will
present our solution using resource pooling and supervision.

82

6.6. Supervision in ABS

Other approaches In the ABS modeling world the above discussed problem can be ap-
proached with two different concepts. The Envisage FP7 project and other work done by
Johnsen et al. [JST15] focus on modeling of costs for different operations. The available
resources in a time slice are limited for a set of COGs. Therefore, one can measure and
simulate resource utilization or, in case of the Envisage project, also check if the resource
usage conforms to formalized service level agreements, the model should hold. One could
limit the encoding activity by assigning only limited resources to it.

Real-Time ABS by Bjørk et al. [BdBJ+13] approaches the topic of providing a guaranteed
throughput by concepts of real-time scheduling. It is an extension to ABS, where one can
assign deadlines to tasks running on a COG. These deadlines can either be hard or soft
real-time. Furthermore, the language was extended with a construct to specify a scheduler
for the tasks of a COG. Deadlines are very suitable to guarantee a certain responsiveness
of an object, but as all scheduling decisions happen only in a single COG, we would end
up with a design where only one encoding job can be executed concurrently.

Encoder pool The alternative approaches presented before are more usable for model-
ing, but are not easily implementable on fast programming language execution environ-
ments like the JVM or Erlang’s BEAM (the virtual machine of the Erlang/OTP distribu-
tion). Moreover, we want to implement a solution that is closer to how it would be done
in other languages.

We use the pattern of resource pooling, which globally limits the available number of
a resource, in our case the encoder objects. So the pool holds a predefined number of
encoders, and encoding tasks from connections are submitted to encoders of this pool.

As queuing can be easily implemented via asynchronous calls and await statements, the
Pool class, shown in Figure 6.10(a) is quite simple. Its only member is a List of available
encoders defined in Line 2. By calling returnEncoder, either after creation or after usage
of an Encoder, this list is filled. The encode function just has to wait for an available
encoder as seen in Line 7, remove it from the list, and start the encoding process.

The Pool and its Encoders are now a model-wide resource, which needs to be available
for all connections. To achieve fault tolerance, they are put in a supervision hierarchy.
An error in a crashing Encoder is propagated through the Pool’s encode method to the
caller. But to circumvent the slow depletion of the pool, the Encoders need to be restarted.
Therefore, we employ a supervision structure, depicted in Figure 6.11 around the pool and
its workers, where all Encoders are part of a supervisor with an RestartOne strategy and
this supervisor and the Pool object are supervised with a RestartAll strategy. This two
layered structure allows a restart of the Encoders and the Pool in case of a crash. When
the latter restarts, a new set of Encoders will be made available to the newly started Pool
by a subsequent restart of the RestartOne supervisor and its Encoders, performed by the
RestartAll supervisor.

83

Chapter 6. Error Handling

1 c l a s s Pool(PoolReg pr) implements
Pool,Linkable {

2 List<Encoder> available = Nil;
3 Unit run(){
4 pr ! setPool(this);
5 }
6 Block encode(Fut<Frame> f){
7 await available !=Nil;
8 Encoder e=head(available);
9 available=tail(available);
10 return await e ! encode(f);
11 }
12 Unit returnEncoder(Encoder e){
13 available=Cons(e,available);
14 }

(a) The Pool to manage the Encoders

1 c l a s s EncoderStarter(PoolReg pr)
implements SupervisibleStarter{

2 Unit start(Linkable s){
3 Encoder la= new

PoolDiffEncoder(pr);
4 Link l=new Link(la,s);
5 await l ! setup();
6 Pool p=await pr ! getPool();
7 p ! returnEncoder(la);
8 }
9 }

(b) Specialized starter, which registers Encoder by
the Pool

1 PoolReg pr= new PoolReg();
2 SupervisibleStarter ps= new PoolStarter(pr);
3 SupervisibleStarter es1=new EncoderStarter(pr);
4 SupervisibleStarter es2=new EncoderStarter(pr);
5 SupervisibleStarter es3=new EncoderStarter(pr);
6 SupervisibleStarter sup=new SupervisorSupervisibleStarter(Cons(es1,Cons(es2,

Cons(es3,Nil))),RestartOne);
7 new Supervisor(Cons(ps,Cons(sup,Nil)),RestartAll);

(c) Construction of the supervisor tree

Figure 6.10.: Additions to the VTS for the Encoder Pool and its supervision structure

Two more minor obstacles still need to be resolved before one is able to use the encoder
pool. First, as mentioned above, the Encoder has to register at the Pool after startup. This
is done via invoking the Pool’s returnEncoder method after the start of an encoder by
the Supervisor, as shown in the class EncoderStarter Lines 6–7 in Figure 6.10(b).

The second problem to overcome is the reference to the Pool object. Should the Pool crash,
a new one has to be started, so a new object of the class Pool is created automatically by
the supervisor. For all further uses until the next restart, this object should be used, thus
all references to the previous object have to be updated.

Erlang faces a similar challenge as the PID changes on a process’s restart.This is solved by
allowing processes to register a name and provide a deeply integrated lookup mechanism
for this registry. The solution in our case is heavily inspired by that. As it is not possible,
due to strong typing without casts to subtypes, to implement this kind of registry in
general, a simple class PoolReg is added. It only holds the latest reference to Pool, which

84

6.6. Supervision in ABS

..

:Supervisor

.

strategy=RestartAll

.

:Encoder

.

:Encoder

.

:Encoder

.

:Pool

.

:Supervisor

.

strategy=RestartOne

Figure 6.11.: Supervision structure for the Encoder pool of the VTS

can be accessed via setPool(Pool p) or getPool(). So all places, which need to access
the Pool, have to retrieve the current reference from the PoolReg, as can be seen in the
EncoderStarter in Figure 6.10(b) Lines 6–7.

Figure 6.10(c) shows the code that needs to be added to themain block for the initialization
of the supervisor hierarchy depicted in Figure 6.11. We see how for each child a starter
is specified and necessary parameters for the instantiation of an object (in our case the
PoolReg object) are included. Furthermore, the construction of a supervisor as child by
using the SupervisorSupervisibleStarter is shown in Line 6. To this starter we pass
a list of children, that are started by the created supervisor, and its restarting strategy.

85

Chapter 7.
Distribution

Below we show a basic distribution approach for ABS, that allows to include distribution
properties in a model and to execute it in that way. It uses an annotation to specify the
location, which was introduced in a published work for simulating resource consumption.
As distribution errors, occurring in this execution setting, are a main motivation for the
introduced error handling, the distribution extension is built on top of the work from the
previous chapter.

To understand the translation we first introduce the distributed execution in the Erlang
language. Then we present a translation scheme for the Erlang backend. Finally, we look
at how errors are handled in the current implementation and what further work is needed
to enable a full distributed and error-aware execution of a model.

7.1. Erlang Distribution Concepts

The Erlang/OTP runtime ships with built-in distribution. Each independent Erlang run-
time execution is called a node with a fixed identifier. This identifier, the nodename, can
look like testnode@testmachine.example.org and consists of a name, chosen at startup,
and the hostname. These nodes can run on the same host or a different one, reachable via
a network connection [Arm07b].

Upon sending the first message to another node, these two nodes form a fully meshed
network with all other known nodes via the standard distribution protocol of the runtime.
To detect node failures or network errors, the nodes observe each other with heartbeat
messages.

A process is normally started on the local node. Alternatively a node, where a process
should execute, can be specified as an additional parameter in the spawn function. In the
distributed runtime a process identifier contains not only a reference to the process, but
also information on which node this process is running. Therefore, message passing be-
tween distributed processes works from an application perspective in the same way as it
does on a single host. The message transport between the nodes is handled transparently
by the distribution protocol and the runtime.

87

Chapter 7. Distribution

Also the error handling primitives like link, EXIT messages andmonitor, presented in Sec-
tion 6.2, work in the same manner. But if a node is network-wise unreachable and does
not answer the heartbeat messages, the runtime also considers all processes on this node
terminated, even though if the networking works later again as expected, and this node’s
processes can be contacted again.This and other pitfalls are covered in the work by Svens-
son and Fredlund [SF07].

7.2. Enabling Distribution in the Erlang ABS Backend

We first have to define a unit of distribution that we want to execute on different nodes.
As it could be beneficial for a model to steer the placement of components, we want a
representation and control of the distribution location in the model.

COGs were chosen as a unit of distribution, as they already represent a component with
an asynchronous interface. Choosing a small unit like objects, does not seem advisable,
as the dependence between elements of a COG could be large and therefore a lot of intra-
node communication would be required. Also, as only one task is running in a COG, no
benefit in terms of execution time can be expected if tasks and/or objects are distributed.

When we want to execute a COG A on node N, all task and object processes should be
executed on the node N. This behavior is already implemented in the existing runtime, as
all objects and tasks are started by the COG and therefore execute on the same node. In
consequence, we only have to make sure when starting a new object on a new COG, that
the latter is started on the desired node.

Deployment Components A way of encoding the execution node is still required. We
chose the concept of deployment components introduced by Johnsen et al. [JOST11], as
it represents the same idea of specifying the physical resource a COG is executed on.
They used deployment components to model available computational resources in discrete
time at a physical computation unit. To run those timed models, they used the extensions
provided by Real-Time ABS [BdBJ+13].

The deployment components are represented by a special class/interface, depicted in Fig-
ure 7.1, which is shipped with the ABS runtime. They have a given amount of a resource,
which is specified as value of type DCData, and methods to manipulate it. One can create a
new deployment component in the same way as a new object, even if the runtime system
could interpret this in a special way, e.g., starting a new cloud instance. To start a COG
at a given deployment component, one has to specify it as annotation, when the COG is
created.

In Figure 7.2 we see a part of the construction of the supervisor tree from Figure 6.10c.
Line 1 shows the creation of a new DeploymentComponent, where the first parameter is
its description and the second the available resources. It is set to InfCPU, which represents

88

7.2. Enabling Distribution in the Erlang ABS Backend

1 data DCData = InfCPU
2 | CPU(Int capacity);
3 i n t e r f a c e DeploymentComponent {
4 DCData available();
5 Rat load(Int periods);
6 DCData total();
7 Unit transfer(DeploymentComponent target, Int amount);
8 Unit decrementResources(Int amount);
9 Unit incrementResources(Int amount);
10 }
11 c l a s s DeploymentComponent (String description , DCData cpu)
12 implements DeploymentComponent
13 / * Implementat ion omi t t ed * /

Figure 7.1.: Definition of the DeploymentComponent

infinite resources, aswe do not consider the amount of resources available in thismodel. In
Line 2 we create a new object at the newly created deployment component. Via the build-in
function thisDC(), one gets a reference to the DeploymentComponent of the current task’s
COG. In Line 3 of the example this is used to start another COG on the same deployment
component, even though that is equivalent to starting a COG without an annotation.

1 DeploymentComponent secondNode = new DeploymentComponent("second",InfCPU);
2 [DC: secondNode] SupervisibleStarter es1 = new EncoderStarter(pr);
3 [DC: thisDC()] SupervisibleStarter es2 = new EncoderStarter(pr);

Figure 7.2.: Extension of the VTS supervisor startup from Figure 6.10c: starting on different deployment
components

Mapping Deployment Components to Nodes We use deployment components to en-
code the physical computation unit, but ignore the resource tracking. Deployment com-
ponents are mapped to Erlang nodes by interpreting the description class parameter of
the deployment component as Erlang nodename.

To provide easier extensibility the mapping is done by an additional Erlang process, the
nodemanager. It is implemented as a gen_server behavior, which serializes the mapping
operations to prevent concurrent startup of two nodes. In Figure 7.3 one sees the current
logic that translates the description of a COG to a nodename. It does check if a node is
reachable and otherwise tries to start this node.

The nodemanager parses descriptions from deployment components that either look like
node or node@hostname. For the former it assumes that the node should reside on the local-
host. After that, it tries to contact the node or start a new node by calling check_or_start,
which is depicted in Lines 10–18. This function first attempts to ping the other node, so
that, if it is not part of the meshed network, the other node will join it. Should the desired

89

Chapter 7. Distribution

node not be in the network after the check in Line 12, it tries to startup a new node on
this host. Functionality for this is provided by Erlang/OTP’s slave module. It basically
tries to connect via SSH to the other host and start up an Erlang runtime there. This is
only a very simple method of starting another node, as it requires a working public-key
SSH authentication and the code of the ABS runtime and model has already to be in place.
Still, it shows how dynamic startup of nodes could be integrated.

1 handle_call({get,Description}, _From, State) −>
2 Node=case string:tokens(Description,”@”) of
3 [Nodename,Host] −>
4 check_or_start(Description,Nodename,Host);
5 [Description] −>
6 Host=net_adm:localhost(),
7 check_or_start(list_to_atom(Description++[$@|Host]),Description,

list_to_atom(Host));
8 end,
9 {reply,Node , State}.
10 check_or_start(Full,Nodename,Host)−>
11 net_adm:ping(Full),
12 case lists:member(Full,[node()|nodes()]) of
13 true −> Full;
14 false −>
15 {ok,Node}=slave:start_link(Host,Description,”␣−pa␣ebin␣”),
16 timer:sleep(500),
17 Node
18 end.

Figure 7.3.: nodemanager’s logic to retrieve a reference to a node

7.3. Error Handling and Network Errors

The error handling primitives, introduced in Chapter 6, will work due to transparent dis-
tribution of the Erlang runtime in the sameway. But as components of the system are now
distributed, we have to take network errors into account. As the nodes are connected via
TCP channels, simple network failures, like packet loss, are mitigated. So we have to con-
sider only cases where a node loses its connection to all or a group of nodes for a longer
time period. In the following paragraphs, we examine different operations’ behaviors un-
der such a network error.

A running asynchronous call is always performed at the location of the object’s COG,
so no network related error can occur there. Furthermore, an asynchronous call com-
municates with its future process. These two processes are linked together in the Erlang
translation. Following a network disconnect, detected by a missing heartbeat signal, the

90

7.3. Error Handling and Network Errors

local runtime sends error messages for all links to the disconnected nodes. So on the asyn-
chronous call side, this will lead to the termination of this task in the sameway as an abort
would, if the call is currently running, otherwise it will just be removed from the list of
tasks of a COG. As the future receives the EXIT message sent from a failing link, it will
take a network error as resolved value.

Placing an asynchronous call on an object that is on a disconnected node will behave
in the same way as a call to a terminated object, as in both ways the object process cannot
be reached. Therefore, it will result in an abort(DeadObject). If such a network error
is only temporary and the nodes get connected again, new calls to this object will work
normally again.

Accessing a future at a remote node is also a special case to consider.This happenswhen
a reference to a future, which is created at the location of the caller’s COG, is passed
to a COG on a different node. Communication with a future happens when using it in
an await guard or accessing its value via get or safeget. The existing Erlang backend
implementation does not assume that this communication can fail, as the future is a very
simple process.

The existing semantics does not cover the case of facing a network error and not being
able to communicate with the future. In the current implementation a task can fail with an
abort, when accessing such a future. This design could lead to unexpected errors and also
breaks the encapsulation of errors in futures, as there is no safe way to access a future.

Current status of the distribution We have shown that the error primitives cover net-
work related errors already quite well. One can model and test distributed systems, where
COGs can live independently on different nodes. Asynchronous calls and futures provide
a way to interact with other objects in network-error-aware manner. Models have to con-
sider that objects may be unavailable for a certain timespan only, which makes the dis-
tribution model more complex, but also reinforces the actor principle, that active objects
are close to. The semantics with error handling can mostly express an error-aware dis-
tributed execution, but currently lacks the proper handling of access to remote executed
futures.

Further work considering network errors is required to allow the execution of dis-
tributed and error-aware models. We have to look at futures and their location in the
network and other resources that are shared over all nodes and which are potentially not
reachable.

91

Chapter 7. Distribution

As stated above, the access to a future, if it resides on a different node, cannot be guaran-
teed and including errors at the level of future access would require a lot of caution and
another layer of error handling by the programmer. Therefore, we envision a different
design, which facilitates a node-local copy of a future.

The eager message-based strategy, defined by Henrio et al. [HKRZ10], could be imple-
mented in the following way: every time a future reference is passed to a process on
a different node, it has to be copied. This requires to scan all parameters, when a COG
on another node is accessed. Moreover, an asynchronous call would need to be able to
communicate with a set of futures, which are all linked to the call. The protocol could be
formed in different ways, depending on how the semantics for futures and network errors
are chosen.

If the asynchronous_call_task sends a message containing the value to all future copies,
one cannot guarantee that all messages are received before a potential network error
occurs, which would terminate all futures through linking. This behavior would violate
the future’smonotonicity property, which states that once a future has a value, it keeps it.
To get rid of this undesired property, one could implement the state update of all future
copies by using a two-phase commit [AHS09], which would guarantee that all futures
resolve to the same value. This would require additional messages and synchronization
for each asynchronous call that completes.

Another problem arises when one tries to use a globally named process that only resides
on a disconnected node. At the moment only two resources are shared that way. One is
the eventstream described in Section 5.4, which distributes events from all processes to
listeners. As the listeners assume now to get all events, which is just not possible if a node
is not reachable, one needs to define a new concept in case one wants to monitor nodes
in that scenario as well. A solution could be node-local logs, but in general the solution is
very use case dependent.

The other globally named process is the nodemanager introduced in this chapter, which
translates the descriptions from a deployment component to a node and starts up a new
node.The first functionality can easily be run locally, but should a net-split occur, one has
to define which process is allowed to start a new node, so that one does not end up with
a system containing duplicate nodes.

Due to the high complexity, open questions in the semantics and different viable ap-
proaches, above problems are not yet solved or implemented in the current Erlang dis-
tributed backend.

92

Chapter 8.
Related Work

Next to the Erlang backend, the ABS toolsuite ships two other backends that translate
ABS models to an executable language. The Java and Maude backends are discussed and
compared to the Erlang backend extensively in Section 5.5.

As ABS is an active research language, a lot of different extensions, besides the error han-
dling introduced here, exist. The Real-Time ABS and User-defined Schedulers extensions
are discussed in Section 6.6.2. A different approach on error handling for ABS’s active
objects is discussed below.

The author only knows of a single other work, that translates a modeling language to
Erlang. Fröberg presented in [Frö93] an approach to translate the Specification and De-
scription Language (SDL) to Erlang. SDL is a specification language, used for distributed
real-time systems. In his work SDL processes and messages were translated to an Erlang
equivalent. Besides using dedicated processes as message channels and timer processes,
the translation is straightforward, as the concepts in both languages are similar. In con-
sequence, his work has shown the ease and suitability of this translation, and that the
resulting code is almost equal in size to the textual SDL specification. Due to the very
different nature of the SDL and ABS language no proper comparison of the translation
approach is possible.

93

Chapter 8. Related Work

8.1. Related Work on Error Handling in Concurrent
Object-Oriented Systems

A lot of different approaches exist to handle errors in a concurrent object-oriented system.
The concurrency aspect makes it very different from standard solutions to error handling
like exceptions, as it requires the coordination of independent processing parts. We first
discuss some general concepts and then approaches, that explicitly integrate error han-
dling with futures.

Transactions and conversations Transactions are a concept initially emerged from data-
base management systems. They allow to group a set of actions into one – as perceived
from the outside – atomic action. So a transaction system performs these actions over a
group of objects in a non-overlapping way. In case of an error occurring during a transac-
tion, all performed changes are discarded by using some kind of checkpoint and rollback
mechanism. Such kinds of systems perform a backward recovery, by returning to a pre-
vious state [Lis88, XRR+95].

In the conversation scheme a group of objects concurrently performs multiple actions.
Correct execution can be tested in each object by some acceptance test. Only if all the
tests are passed, a conversation has ended successfully. Failed acceptance tests lead to an
error, which can be handled either by a rollback to a recovery point or all involved parties
can perform a coordinated forward recovery to a new valid state [XRR+95].

Error-Handling in futures is approached in different ways. Futures, as introduced in
Java 5 [LBG+05], handle an error on the client side, raised by an exception, in a similar
way as in this work. The error is stored in the future and raised on the access by the caller.
An ongoing or not yet started method call can also be stopped via a future’s method.

In [JLZ11], Johnsen et al. proposed an error handling extension for active objects that is
designed for ABS.The abort statement and the notation of the future containing the error
is similar to the one of this work, but instead of error propagation and rollbacks they pro-
pose a concept of explicit compensatory actions on the caller side and additionally on the
callee side. Compensation on the callee side is triggered, when the asynchronous call is
canceled by the caller via using the new f.kill expression on a future f. Their work does
not mention any special handling of the active behavior or of internal errors like network
connectivity problems or resource shortage. Using compensations and explicit termina-
tion is reminiscent of conversations, as they provide means for forward error recovery.

Fabry and Noguera show an approach that only considers a volatile network connection,
but not errors in general. Their approach allows to resume computation by tagging a
future with a default value that is delivered, while a node is disconnected [FN08]. Should

94

8.2. Related Work on Distributed Models

the future resolve, in case of a reconnect, interested parties can be notified. In case of a
disconnect after the future is already resolved, they integrated a mechanism that allows
to reset the future’s value to the tagged default.

ABS’s operational semantics, which can be found in [JHS+10], is extended by an oper-
ational semantics for the new error handling primitives, presented in this work, in the
work by Göri et al. in [GJSS14].

8.2. Related Work on Distributed Models

Johnsen et al. categorize modeling languages in the following way [JHS+10]:

Design-oriented languages use different kinds of representation to model the structure
and the interactions and dynamics of a model.

Foundational languages are formal specifications, which use precise semantics to model
certain concepts.

Implementation-oriented languages are closest to a real implementation and sometimes
work as additional markup in existing programs to establish invariants.

According to Johnson et al. [JHS+10], ABS is a foundational and implementation-oriented
language, as it has a formal defined operational semantics, but a model is also specified
similar as in an object-oriented implementation language and can easily be translated to
an implementation language as shown in this work.

A design-oriented approach that also allows to simulate resource usage in a distributed
model is provided by Menascé and Gooma [MG00]. On top of a UML model one can add
performance annotations, that allow to describe the used CPU time and bandwidth by a
message. The model also includes explicit communication ports of a component and net-
work resources between them. By parameterizing the network’s latency and bandwidth,
one can run different simulations that compute the request’s response time and the num-
ber of requests per second.

The work on ABS-NET by Palmskog et al. [PDLJ13] adds a distribution model to the ABS
language. In their work they focus on the communication structure and analysis of the
performance and object mobility. They make nodes and arcs, which represent a network
link between the nodes, a part of their model. Interaction between objects on different
nodes happens transparently, by using a routing mechanism for invocations over the
nodes. Their work is more focused on modeling the network and finding a good structure
and communication mechanism, but does not, in contrast to this work, consider network
or node failures.

95

Chapter 9.
Concluding Remarks

9.1. Summary

In this work, we introduced a translation to Erlang and error handling for the ABS lan-
guage. Error handling is a necessary functionality for the modeling of distributed systems
with unavoidable faults, that can occur in such systems.The Erlang translation formed the
basis that allowed to include the new error primitives and it could be further utilized to
implement distribution with support of the Erlang runtime system’s distribution features.
Therefore, this work started off with the Erlang translation.

First, a high level concept had to be defined for the translation. As Erlang processes re-
semble the Actor model and ABS’s active objects are also close to this model, objects and
their executing task were chosen to be represented by an Erlang process. The Concurrent
Object Groups (COGs) work essentially as scheduler for all tasks in a group, so they have
to be represented as independent components (processes) as well.

The translation to Erlang was integrated in the existing compiler infrastructure, which is
part of the ABS toolsuite. From a type-checked ASTwe generate an Erlang representation.
In this process, we had to find solutions for the following problems: multi-assignment vs.
single-assignment variables; variable scoping; rational numbers as built-in type; await
statements. The first two are handled in the compile step via tracking of all used variables.
The others are handled in the runtime part of the Erlang backend, which provides utility
functions and implementations for generic behavior like objects, COGs and tasks. All
steps of the translation process are shown in a case study, the Video Transcode Server.

Translation is only one part of the Erlang backend. It also integrates in the unit-testing
infrastructure to raise confidence in the semantic compliance of the backend. Furthermore,
it provides a monitoring infrastructure and utility scripts for compilation and startup.

The error handling capabilities are heavily inspired by Erlang and support the following
principles: fail fast; observe and handle errors non-locally (outside of the object/task it
is occurring); restart from a previous state. This is integrated in ABS by: termination in

97

Chapter 9. Concluding Remarks

case of an error; storing errors in futures; default error propagation via the get statement;
error handling via a new safeget statement; an implicit rollback to the state before the
failing task was scheduled.

The added die statement, which forcefully terminates an object, allows, along with the
other error handling primitives, to implement linking between objects and, in conse-
quence, to implement Erlang’s supervision trees in ABS.

The error handling capabilities were introduced to the Video Transcode Server case study.
We looked at how the error semantics behaves in an unchanged model and then adapted
it via linking. Furthermore, we introduced a different error handling strategy and super-
vision to parts of the case study.

To get closer to the goal of a distributed model with error handling, we showed an ap-
proach to modeling distribution via deployment components and executing such a model
distributed on the Erlang backend. The error model was then examined on how it would
capture distribution errors in the form of a network connection loss.

9.2. Conclusion

The main contribution of this work is an error model for active objects. The set of in-
troduced primitives adhere to the Erlang principles of default error propagation and fast
failing systems (also known as let it crash mentality). This relation is further manifested,
as the primitives allow to implement linking and supervision for active objects, which is
also shown in this work.

The error handling was evaluated by introducing it in the case study that is used as run-
ning example in this work. When introducing the error handling semantics, some error
scenarios are already handled correctly in an unchanged model of the case study. To han-
dle the case, where an object A stays alive, even though a terminated object B is the only
referrer to and user of A, we introduced linking between these pairs of objects. With link-
ing in place all considered error scenarios are handled by the new error semantics.

The Erlang backend provides a translation, that allows not only to executemodels with the
introduced error handling, but also provides a faster execution of certain kinds of models.
Furthermore, the Erlang backend is now included in the official ABS toolsuite and seems
to be a viable basis for additional contributions. On top of this work, Hansen [Han14] built
a garbage collector for the object processes, which was a missing element of this work.
Additionally, the members of the Envisage project work currently on an implementation
of Real-Time ABS as a discrete time simulation for the Erlang backend.

The suitability of the error handling capabilities for distributed models is another prop-
erty we have discussed. The distributed modeling and the distributed execution of such
models was included in the backend. We discussed the occurrence of network errors for

98

9.3. Future Work

such a system. In general, we are able to represent distribution errors and can express
routines to handle such errors. In the error scenario, where futures are used distributed
and therefore, represent non-local storage, the current semantics and the error model are
not well-defined and leave open how to represent the inaccessibility of such futures.

9.3. Future Work

The introduced error model has only been used in the small VTS case study thus far. To
better judge its suitability and applicability, it would be interesting to integrate it in a
larger case study and compare it with other approaches to error handling.

Furthermore, fault injection seems to be a worthwhile addition to test models with error
handling. When applying fault injection, faults are introduced with a certain rate at fixed
points. Fault injection is also used in large scale deployed cloud applications like Netflix’s
Chaosmonkey [Net13], which kills random cluster nodes in low-load situations, while
monitoring the system’s health. An equal approach could be chosen for ABS.

The fault injection could also be combined with current work in the Envisage project,
where they check if models conform to their Service Level Agreements (SLAs). One could
test if a model conforms to an SLA under a certain error rate.

The Erlang virtual machine comes with a set of tracing features, which allow to analyze
at runtime: function invocations and returns, process creation, receiving and sending of
messages and other events. With match specifications one can define an Erlang pattern
to select events that should be reported back. Implementing visualization or further anal-
ysis would be an interesting addition to the backend. For instance, visualizing all alive
objects can be done by observing invocations of object creation functions and process
terminations.

As stated in Section 7.3, the semantics for futures are not well-defined in case of a distri-
bution error, therefore it would be interesting to define and implement such. This would
then allow to implement distributed algorithms and analyze them in an error scenario,
especially with fault injection in place.

99

Bibliography

[ABG+12] Elvira Albert, Richard Bubel, Samir Genaim, Elena Giachino, Miguel Gómez-
Zamalloa, Stijn de Gouw, Reiner Hähnle, Karl Meinke, Germán Puebla, and
Peter Y.H. Wong, Deliverable D2.7 Analysis Final Report, Tech. report, FP7-
231620 Highly Adaptable and Trustworthy Software using Formal Models,
HATS Project, December 2012.

[AHS09] Yousef J. Al-Houmaily and George Samaras, Two-phase commit, Encyclope-
dia of Database Systems (Ling Liu and M. Tamer Özsu, eds.), Springer, 2009,
pp. 3204–3209 (English).

[Arm03] Joe Armstrong,Making reliable distributed systems in the presence of software
errors, Ph.D. thesis, The Royal Institute of Technology, 2003.

[Arm07a] Joe Armstrong, A history of Erlang, Proceedings of the Third ACM SIGPLAN
History of Programming Languages Conference (HOPL-III), San Diego, Cal-
ifornia, USA, 9-10 June 2007 (Barbara G. Ryder and Brent Hailpern, eds.),
ACM, 2007, pp. 1–26.

[Arm07b] Joe Armstrong, Programming Erlang: Software for a Concurrent World, Prag-
matic Bookshelf, 2007.

[Arm10] Joe Armstrong, Erlang, Communications of the ACM 53 (2010), no. 9, 68–75.

[AS88] William C. Athas and Charles L. Seitz, Multicomputers: Message-passing con-
current computers, Computer 21 (1988), no. 8, 9–24.

[AZ98] Gul A. Agha and Reza Ziaei, Security and Fault-Tolerance in Distributed Sys-
tems: An Actor-Based Approach, Computer Security, Dependability and As-
surance: From Needs to Solutions, 1998. Proceedings, 1998, pp. 72–88.

[BdBJ+13] Joakim Bjørk, Frank S. de Boer, Einar Broch Johnsen, Rudolf Schlatte, and
Silvia Lizeth Tapia Tarifa, User-defined Schedulers for Real-Time Concurrent
Objects, Innovations in Systems and Software Engineering 9 (2013), no. 1,
29–43.

[CDE+02] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-
Oliet, José Meseguer, and Jose F. Quesada,Maude: specification and program-
ming in rewriting logic, Theoretical Computer Science 285 (2002), no. 2, 187–
243.

101

Bibliography

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck, Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph, ACM Transactions on Programming Languages
and Systems 13 (1991), no. 4, 451–490.

[CMP+10] Dave Clarke, Radu Muschevici, José Proença, Ina Schaefer, and Rudolf
Schlatte, Variability modelling in the ABS language, Formal Methods for Com-
ponents and Objects - 9th International Symposium, FMCO 2010, Graz, Aus-
tria, November 29 - December 1, 2010. Revised Papers (Bernhard K. Aichernig,
Frank S. de Boer, and Marcello M. Bonsangue, eds.), Lecture Notes in Com-
puter Science, vol. 6957, Springer, 2010, pp. 204–224.

[dBCJ07] Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen,A Complete Guide to
the Future, Programming Languages and Systems, 16th European Symposium
on Programming, ESOP 2007, Held as Part of the Joint European Conferences
onTheory and Practics of Software, ETAPS 2007, Braga, Portugal, March 24 -
April 1, 2007, Proceedings (Rocco De Nicola, ed.), Lecture Notes in Computer
Science, vol. 4421, Springer, 2007, pp. 316–330.

[DDJO12] Crystal Chang Din, Johan Dovland, Einar Broch Johnsen, and Olaf Owe, Ob-
servable behavior of distributed systems: Component reasoning for concurrent
objects, Journal of Logic and Algebraic Programming 81 (2012), no. 3, 227–
256.

[EAWJ02] Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B.
Johnson, A survey of rollback-recovery protocols in message-passing systems,
ACM Computing Surveys 34 (2002), no. 3, 375–408.

[Eri15a] Ericsson AB, Erlang/OTP System Documentation 6.4, http://www.erlang.
org/doc/pdf/otp-system-documentation.pdf (visited May 2, 2015),
March 2015.

[Eri15b] Ericsson AB, OTP Design Principles User’s Guide 6.4, http://www.erlang.
org/doc/design_principles/users_guide.html (visited May 2, 2015),
March 2015.

[FN08] Johan Fabry and Carlos Noguera, Abstracting connection volatility through
tagged futures, Developing Ambient Intelligence, Springer, 2008, pp. 2–12.

[Fre01] Lars-Åke Fredlund,A framework for Reasoning about Erlang code, Ph.D. thesis,
Royal Institute of Technology, 2001.

[Frö93] Magnus W Fröberg, Automatic code generation from SDL to a declarative pro-
gramming language, SDL’93 – Using Objects, Proceedings of the sixth SDL
Forum (O. Faergemand and A. Sarma, eds.), North-Holland, 1993.

102

http://www.erlang.org/doc/pdf/otp-system-documentation.pdf
http://www.erlang.org/doc/pdf/otp-system-documentation.pdf
http://www.erlang.org/doc/design_principles/users_guide.html
http://www.erlang.org/doc/design_principles/users_guide.html

Bibliography

[GAJ+13] Georg Göri, Bernhard K. Aichernig, Einar Broch Johnsen, Rudolf Schlatte,
andVolker Stolz, Extending abstract behavioral specifications with Erlang-style
error handling, Proceedings of the 25th Nordic Workshop on Programming
Theory, Tallinn, Estonia (Tarmo Uustalu and J uri Vain, eds.), Institute of Cy-
bernetics, 2013, Extendend Abstract, pp. 34–36.

[GJSS14] Georg Göri, Einar Broch Johnsen, Rudolf Schlatte, and Volker Stolz, Erlang-
Style Error Recovery for Concurrent Objects with Cooperative Scheduling, Lever-
aging Applications of Formal Methods, Verification and Validation. Special-
ized Techniques and Applications (Tiziana Margaria and Bernhard Steffen,
eds.), Lecture Notes in Computer Science, vol. 8803, Springer, 2014, pp. 5–21.

[GMY+13] Zhenyu Guo, Sean McDirmid, Mao Yang, Li Zhuang, Pu Zhang, Yingwei Luo,
Tom Bergan, Madan Musuvathi, Zheng Zhang, and Lidong Zhou, Failure Re-
covery: When the Cure Is Worse Than the Disease, 14th Workshop on Hot Top-
ics in Operating Systems, HotOS XIV, Santa Ana Pueblo, New Mexico, USA,
May 13-15, 2013 (Petros Maniatis, ed.), USENIX Association, 2013.

[Gra86] Jim Gray,WhyDo Computers Stop andWhat Can Be Done About It?, Fifth Sym-
posium on Reliability in Distributed Software and Database Systems, SRDS
1986, Los Angeles, California, USA, January 13-15, 1986, Proceedings, IEEE
Computer Society, 1986, pp. 3–12.

[Häh12] Reiner Hähnle,The Abstract Behavioral Specification Language: A Tutorial In-
troduction, Formal Methods for Components and Objects - 11th International
Symposium, FMCO 2012, Bertinoro, Italy, September 24-28, 2012, Revised
Lectures (Elena Giachino, Reiner Hähnle, Frank S. de Boer, and Marcello M.
Bonsangue, eds.), Lecture Notes in Computer Science, vol. 7866, Springer,
2012, pp. 1–37.

[Han14] Sigmund Hansen, Implementing Garbage Collection for Active Objects on Top
of Erlang, Master’s thesis, University of Oslo, 2014.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger, A Universal Modular ACTOR
Formalism for Artificial Intelligence, Proceedings of the 3rd International Joint
Conference onArtificial Intelligence. Standford, CA, August 1973 (Nils J. Nils-
son, ed.), William Kaufmann, 1973, pp. 235–245.

[HKRZ10] Ludovic Henrio, Muhammad Uzair Khan, Nadia Ranaldo, and Eugenio Zimeo,
First Class Futures: Specification and Implementation of Update Strategies,
Euro-Par 2010 Parallel Processing Workshops - HeteroPar, HPCC, HiBB,
CoreGrid, UCHPC, HPCF, PROPER, CCPI, VHPC, Ischia, Italy, August 31-
September 3, 2010, Revised Selected Papers (Mario R. Guarracino, Frédéric
Vivien, Jesper Larsson Träff, Mario Cannataro, Marco Danelutto, Anders

103

Bibliography

Hast, Francesca Perla, Andreas Knüpfer, Beniamino Di Martino, and Michael
Alexander, eds.), Lecture Notes in Computer Science, vol. 6586, Springer,
2010, pp. 295–303.

[HMW12] Michiel Helvensteijn, Radu Muschevici, and Peter Y. H. Wong, Delta mod-
eling in practice: a Fredhopper case study, Sixth International Workshop on
Variability Modelling of Software-Intensive Systems, Leipzig, Germany, Jan-
uary 25-27, 2012. Proceedings (Ulrich W. Eisenecker, Sven Apel, and Stefania
Gnesi, eds.), ACM, 2012, pp. 139–148.

[IEE10] IEEE, IEEE Standard Classification for Software Anomalies IEEE Std 1044-2009
(Revision of IEEE Std 1044-1993), Institute of Electrical and Electronics Engi-
neers, Inc., Jan 2010.

[JHS+10] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin
Steffen, ABS: A Core Language for Abstract Behavioral Specification, Formal
Methods for Components and Objects - 9th International Symposium, 2010,
Graz, Austria, November 29 - December 1, 2010. Revised Papers (Bernhard K.
Aichernig, Frank S. de Boer, and Marcello M. Bonsangue, eds.), Lecture Notes
in Computer Science, vol. 6957, Springer, 2010, pp. 142–164.

[JLZ11] Einar Broch Johnsen, Ivan Lanese, and Gianluigi Zavattaro, Fault in the Fu-
ture, Coordination Models and Languages - 13th International Conference,
2011, Reykjavik, Iceland, June 6-9, 2011. Proceedings (Wolfgang De Meuter
and Gruia-Catalin Roman, eds.), Lecture Notes in Computer Science, vol.
6721, Springer, 2011, pp. 1–15.

[JOA03] Einar Broch Johnsen, Olaf Owe, and Marte Arnestad, Combining Active and
Reactive Behavior in Concurrent Objects, Proceedings of the Norwegian Infor-
matics Conference (NIK’03) (Dag Langmyhr, ed.), Tapir Academic Publisher,
November 2003, pp. 193–204.

[Joh88] Barry W. Johnson, Design & Analysis of Fault Tolerant Digital Systems,
Addison-Wesley Longman, 1988.

[JOST11] Einar Broch Johnsen, Olaf Owe, Rudolf Schlatte, and Silvia Lizeth Tapia Tar-
ifa,Validating timedmodels of deployment components with parametric concur-
rency, Procedings International Conference on Formal Verification of Object-
Oriented Software (FoVeOOS’10) (B. Beckert and C. Marché, eds.), Lecture
Notes in Computer Science, vol. 6528, Springer, 2011, pp. 46–60.

[JST12] Einar Broch Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia Tarifa,Modeling
resource-aware virtualized applications for the cloud in real-time ABS, Formal
Methods and Software Engineering - 14th International Conference on For-

104

Bibliography

mal Engineering Methods, ICFEM 2012, Kyoto, Japan, November 12-16, 2012.
Proceedings (Toshiaki Aoki and Kenji Taguchi, eds.), Lecture Notes in Com-
puter Science, vol. 7635, Springer, 2012, pp. 71–86.

[JST15] Einar Broch Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia Tarifa, Integrat-
ing deployment architectures and resource consumption in timed object-oriented
models, Journal of Logical and Algebraic Methods in Programming 84 (2015),
no. 1, 67–91.

[LA90] Peter A. Lee and Tom Anderson, Fault tolerance: Principles and practice, 2nd
ed., Springer, 1990.

[Lam78] Leslie Lamport, The implementation of reliable distributed multiprocess sys-
tems, Computer Networks 2 (1978), no. 2, 95–114.

[LBG+05] Doug Lea, Joseph Bowbeer, Brian Goetz, David Holmes, and Tim Peierls, Java
specification request (JSR) 166: Concurrency utilities, https://jcp.org/en/
jsr/detail?id=166 (visited May 2, 2015), 2005.

[Lis88] Barbara Liskov, Distributed programming in Argus, Communications of the
ACM 31 (1988), no. 3, 300–312.

[MG00] Daniel A. Menascé and Hassan Gomaa, AMethod for Design and Performance
Modeling of Client/Server Systems, IEEE Transactions on Software Engineer-
ing 26 (2000), no. 11, 1066–1085.

[Net13] Netflix Inc, Chaosmonkey, https://github.com/Netflix/SimianArmy (vis-
ited May 2, 2015), 2013.

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank van der Linden, Software Product Line
Engineering - Foundations, Principles, and Techniques, Springer, 2005.

[PDLJ13] Karl Palmskog, Mads Dam, Andreas Lundblad, and Ali Jafari, ABS-NET:
Fully Decentralized Runtime Adaptation for Distributed Objects, Proceedings
6th Interaction and Concurrency Experience, ICE 2013, Florence, Italy, 6th
June 2013. (Marco Carbone, Ivan Lanese, Alberto Lluch-Lafuente, and Ana
Sokolova, eds.), EPTCS, vol. 131, 2013, pp. 85–100.

[SBB+10] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico
Tanzarella, Delta-oriented programming of software product lines, Software
Product Lines: Going Beyond - 14th International Conference, SPLC 2010,
Jeju Island, South Korea, September 13-17, 2010. Proceedings (Jan Bosch and
Jaejoon Lee, eds.), Lecture Notes in Computer Science, vol. 6287, Springer,
2010, pp. 77–91.

[Sch90] Fred B. Schneider, Implementing Fault-Tolerant Services Using the State Ma-
chine Approach: A Tutorial, ACM Computing Surveys 22 (1990), no. 4, 299–
319.

105

https://jcp.org/en/jsr/detail?id=166
https://jcp.org/en/jsr/detail?id=166
https://github.com/Netflix/SimianArmy

Bibliography

[SF07] Hans Svensson and Lars-Åke Fredlund, A more accurate semantics for dis-
tributed erlang, Proceedings of the 2007 ACM SIGPLANWorkshop on Erlang,
Freiburg, Germany, October 5, 2007 (Simon J. Thompson and Lars-Åke Fred-
lund, eds.), ACM, 2007, pp. 43–54.

[SP10] Jan Schäfer and Arnd Poetzsch-Heffter, JCoBox: Generalizing Active Objects to
Concurrent Components, ECOOP 2010 - Object-Oriented Programming, 24th
European Conference,Maribor, Slovenia, June 21-25, 2010. Proceedings (Theo
D’Hondt, ed.), Lecture Notes in Computer Science, vol. 6183, Springer, 2010,
pp. 275–299.

[Vin07] Steve Vinoski, Reliability with Erlang, IEEE Internet Computing 11 (2007),
no. 6, 79–81.

[WAM+12] Peter Y. H. Wong, Elvira Albert, Radu Muschevici, José Proença, Jan Schäfer,
and Rudolf Schlatte,TheABS tool suite: modelling, executing and analysing dis-
tributed adaptable object-oriented systems, International Journal on Software
Tools for Technology Transfer 14 (2012), no. 5, 567–588.

[Wha12] Whatsapp Inc, 1 million is so 2011, http://blog.whatsapp.com/196/
1-million-is-so-2011 (visited May 2, 2015), 2012, Blog post.

[XRR+95] Jie Xu, Brian Randell, Alexander B. Romanovsky, Cecília M. F. Rubira,
Robert J. Stroud, and Zhixue Wu, Fault Tolerance in Concurrent Object-
Oriented Software Through Coordinated Error Recovery, Digest of Papers:
FTCS-25,The Twenty-Fifth International Symposium on Fault-Tolerant Com-
puting, Pasadena, California, USA, June 27-30, 1995, IEEE Computer Society,
1995, pp. 499–508.

[YLZ+14] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yon-
gle Zhang, Pranay U. Jain, and Michael Stumm, Simple testing can prevent
most critical failures: An analysis of production failures in distributed data-
intensive systems, Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI’14, USENIX Association, 2014,
pp. 249–265.

106

http://blog.whatsapp.com/196/1-million-is-so-2011
http://blog.whatsapp.com/196/1-million-is-so-2011

Appendix

107

Appendix A.
The Video Transcode Server ABS model

Below we show the full model of the Video Transcode Server, introduced in Chapter 3,
without any of the additions introduced later in this thesis. The added error handling is
depicted throughout Chapter 6.

The main module M.abs

1 module M;
2 import * from Server.Connection;
3 import Block from Server.IO;
4 {
5 Acceptor a= new Server();
6

7 ClientConnection c= await a ! acceptNew();
8 await c ! clientSend("movie.mpeg");
9 await c ! clientRetrieve();
10

11 ClientConnection c1= await a ! acceptNew();
12 await c1 ! clientSend("movie.mpeg");
13 await c1 ! clientRetrieve();
14 }

The Connection module

1 module Server.Connection;
2 export Block;
3 export ClientConnection;
4 export Acceptor;
5 export Server;
6 import * from Server.Transcode;
7 import * from Server.IO;
8

9 i n t e r f a c e ClientConnection{
10

11 Unit clientSend(String s);
12

13 Block clientRetrieve();
14 }
15

16 i n t e r f a c e ServerConnection{

109

Appendix A. The Video Transcode Server ABS model

17

18 Unit serverSend(Block s);
19

20 String serverRetrieve();
21 }
22

23 i n t e r f a c e ServerClientConnection extends ServerConnection ,ClientConnection{
24 }
25

26 i n t e r f a c e Acceptor{
27

28 ClientConnection acceptNew();
29 }
30

31 c l a s s Server implements Acceptor{
32

33 ClientConnection acceptNew(){
34 ServerClientConnection c= new SyncConnection();
35 new ConnectionHandler(c);
36 return c;
37 }
38 }
39

40 c l a s s ConnectionHandler(ServerConnection con){
41

42 Unit run(){
43 String fileName = await con ! serverRetrieve();
44 BlockStream bs= new SimpleBlockStream();
45 await bs ! open(fileName);
46 Encoder e= new DiffEncoder();
47 Decoder d=new RawDecoder();
48 Transcoder t= new CacheTranscoder(bs,e,d,2);
49 Bool closed=False;
50 whi le (~ closed){
51 Maybe<Block> b= await t ! nextBlock();
52 case b {
53 Just(block) => {
54 con ! serverSend(block);
55 }
56 Nothing =>
57 closed=True;
58 }
59 }
60 }
61 }
62

63 c l a s s SyncConnection implements ServerClientConnection{
64

65 Int client_counter=0;
66 Int server_counter=0;
67 Maybe<String> bufferC=Nothing;
68 Maybe<Block> bufferS=Nothing;
69

110

70 Unit clientSend(String s){
71 await bufferC==Nothing;
72 bufferC=Just(s);
73 Int oldVal = client_counter;
74 await client_counter==1+oldVal;
75 }
76

77 Block clientRetrieve(){
78 await isJust(bufferS);
79 Block loc=fromJust(bufferS);
80 server_counter=server_counter+1;
81 bufferS=Nothing;
82 return loc;
83 }
84

85 Unit serverSend(Block s){
86 await bufferS==Nothing;
87 bufferS=Just(s);
88 Int oldVal = server_counter;
89 await server_counter==1+oldVal;
90 }
91

92 String serverRetrieve(){
93 await isJust(bufferC);
94 String loc=fromJust(bufferC);
95 client_counter=client_counter+1;
96 bufferC=Nothing;
97 return loc;
98 }
99 }

The IO module

1 module Server.IO;
2 export Block;
3 export BlockStream;
4 export SimpleBlockStream;
5

6 data Block= Block(List<Int>);
7

8 i n t e r f a c e BlockStream{
9

10 Unit open(String name);
11 Block nextBlock();
12 Bool hasNext();
13

14 }
15

16 c l a s s SimpleBlockStream() implements BlockStream{
17 List<Block> source= Nil;
18 Bool open=False;
19 Unit open(String name){
20 case name {

111

Appendix A. The Video Transcode Server ABS model

21 "movie.mpeg" => {
22 List<Int> l=Cons(2,Cons(4,Cons(8,Cons(6,Nil))));
23 source=Cons(Block(l),Cons(Block(l),Nil));
24 open=True;
25 }
26 _ => sk ip ;
27 }
28 }
29

30 Bool hasNext(){
31 await open;
32 return ~isEmpty(source);
33 }
34

35 Block nextBlock(){
36 Block ret=head(source);
37 source=tail(source);
38 return ret;
39 }
40 }

The Transcode module

1 module Server.Transcode;
2 export *;
3 import * from Server.IO;
4

5 data Frame= Frame(List<Int>);
6

7 i n t e r f a c e Decoder{
8

9 Frame decode(Fut<Block> block);
10 }
11

12 i n t e r f a c e Encoder{
13

14 Block encode(Fut<Frame> frame);
15 }
16

17

18 i n t e r f a c e Transcoder{
19

20 Maybe<Block> nextBlock();
21 }
22

23 c l a s s CacheTranscoder(BlockStream bs, Encoder e, Decoder d, Int cacheSize)
implements Transcoder{

24 List<Block> cache=Nil;
25 Bool shutdown = False;
26

27 Unit run(){
28 whi le (~ shutdown){
29 await length(cache)<cacheSize;

112

30 Bool next = await bs ! hasNext();
31 i f (~next)
32 shutdown=True;
33 e l s e {
34 Fut<Block> block = bs ! nextBlock();
35 Fut<Frame> frame = d ! decode(block);
36 Block store= await e ! encode(frame);
37 cache=appendright(cache,store);
38 }
39 }
40 }
41

42 Maybe<Block> nextBlock(){
43 await ~ isEmpty(cache) || shutdown;
44 Maybe<Block> retval=Nothing;
45 case cache {
46 Cons(x,xs) => { cache=xs; retval= Just(x);}
47 Nil => sk ip ;
48 }
49 return retval;
50 }
51

52 }
53

54 c l a s s RawDecoder implements Decoder{
55

56 Frame decode(Fut<Block> f){
57 Block block=f.get;
58 return case block {
59 Block(list) =>
60 Frame(list);
61 };
62 }
63 }
64

65 c l a s s DiffEncoder implements Encoder{
66

67 Block encode(Fut<Frame> f){
68 Frame frame=f.get;
69 List<Int> input=case frame { Frame(list) => list;};
70 List<Int> result= Nil;
71 Int prev=0;
72 whi le (input != Nil){
73 result=Cons(prev-head(input),result);
74 input=tail(input);
75 }
76 return Block(reverse(result));
77 }
78 }

113

