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Abstract

The number of European customers becoming victims of product piracy is increasing. One
technical solution to restrict the distribution of counterfeited products is Radio Frequency
Identification (RFID) and authentication with asymmetric ECC. The calculation of ECC
is computationally-intensive. Since the resources of an RFID tag are extremely limited,
the design and implementation of ECC on RFID tags is a challenging task.
To achieve a reasonable computation time, previous implementations of ECC on RFID
base mainly on pure hardware solutions. However, development teams need flexible sys-
tems to react quickly on changing demands of the market, which can be achieved with a
lightweight microprocessor.
The goal of this master thesis is to answer the question ”Is RFID ready for software-based
ECC?”. During this work several options of partitioning hardware and software are de-
signed, implemented and evaluated. The first task is to find an efficient way to implement
ECC in software. Then hardware is designed to accelerate the software implementation. A
big challenge in hardware/software codesign is a trade-off between performance and area.
Based on these metrics the different options are compared during this work.
In this thesis a new binary multiplication algorithm with a good performance/storage
trade-off is proposed. Furthermore, a new and innovative hardware/software codesign
method with virtual addressing is presented. Finally, a coprocessor is proposed that is
unmatched by the other variants in terms of performance and area.
The evaluation of the implemented versions shows that the proposed approaches compare
well to related work. Additionally, this work shows that software-based ECC is practicable
for RFID.
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Kurzfassung

In den letzten Jahren stieg die Anzahl an europäischen Konsumenten, die Opfer von
Produktpiraterie wurden. Eine technische Lösung um dieses Problem zu bekämpfen, ist
die Authentifizierung der Produkte mit Radio Frequency Identification (RFID). Elliptic
Curve Cryptography (ECC) stellt ein dazu geeignetes Verschlüsselungsverfahren dar. ECC
ermöglicht eine asymmetrische Verschlüsselung mit relativ hoher Sicherheit. Die Längen
der dazu benötigten Schlüssel halten sich jedoch in Grenzen.
Dennoch ist ECC sehr rechenintensiv, da viele arithmetische Operationen in einem großen
endlichen Feld ausgeführt werden müssen. Das ist der Grund, warum bisher RFID Tags
mit ECC Funktionalität hauptsächlich als spezielle Hardwarelösungen entwickelt wurden.
Jedoch wird dadurch der Grad an Flexibilität bei der Entwicklung stark eingeschränkt.
Um schnell auf neue Anforderungen des Marktes reagieren zu können, wurde von Infineon
Technologies Austria AG ein 8-Bit Mikroprozessor mit sehr kleinen Flächenanforderungen
speziell für RFID Produkte entwickelt.
Das Ziel dieser Masterarbeit ist es herauszufinden, ob eine softwarebasierte Implemen-
tierung von ECC auf diesen Mikroprozessor praktisch anwendbar ist. Dazu werden ver-
schiedene Implementierungsvarianten präsentiert und unterschiedliche Möglichkeiten der
Hardware/Software Partitionierung aufgezeigt. Eine große Herausforderung bei Hard-
ware/Software Codesign ist der Kompromiss zwischen Performanz und Fläche. Deshalb
werden die Implementierungsvarianten bezüglich dieser Kenndaten verglichen.
Es wird ein neuer Algorithmus zur Multiplikation im binären Feld mit einem guten Perfor-
manz /Speicher-Verhältnis vorgestellt. Des Weiteren wird eine neue und innovative Hard-
ware/Software Codesign Methode mit Virtueller Adressierung präsentiert. Abschließend
wird eine Koprozessor Variante beschrieben, die von den anderen Varianten ungeschlagen
ist was Rechenzeit und Fläche anbelangt.
Eine Analyse der implementierten Versionen zeigt, dass die vorgeschlagenen Methoden
im Vergleich zu ähnlichen Implementierungen in der Literatur, ansprechende Ergebnisse
liefern. Des Weiteren wird gezeigt, dass die Implementierungsvarianten auch praktisch
einsetzbar sind.
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Chapter 1

Introduction

The subject of this thesis is to investigate the feasibility of Elliptic Curve Cryptography
(ECC) on a lightweight microprocessor for Radio Frequency Identification (RFID). Differ-
ent hardware/software partitioning variants will be designed and implemented. Thereafter
the proposed options will be compared regarding performance and area.
This chapter provides a brief introduction to the theoretic background related to this the-
sis. First, a use case and the advantages of public-key and software-based cryptography
describe the motivation of the work. The basic principles of RFID are outlined in Section
1.3. Since the implementation will be realized on a microprocessor, Section 1.4 provides
an introduction to microprocessors. Section 1.5 describes the principles of cryptography.
Finally, Section 1.6 introduces the reader to ECC.

1.1 Goals

The aim of this work is to answer the question
”
Is RFID ready for software-based ECC?“.

The implementation is based on a lightweight microprocessor for RFID developed at In-
fineon Technologies Austria AG. Several hardware/software partitioning variants will be
designed during this theses to combine the flexibility of software with the performance
of hardware. Furthermore, these variants will be implemented and evaluated in terms of
area and performance.

1.2 Motivation

This section describes the main motivation for this thesis by presenting a use case of the
target implementation and showing the advantages of public-key cryptography.

1.2.1 Application-Scenario: Brand Protection

There is a high risk that physical products are not what they should to be. Authentication
via RFID systems has a potential to restrict the distribution of counterfeited products.
Intellectual Property Rights (IPR) have been established to protect the rewards of in-
vestments in innovation. However, infringements of IPR are a widespread phenomenon.
Reports about IPR presented in July 2012 by the European Commission [1, 2] show that

13
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there is a big underground industry producing and distributing illegal product copies all
over the world. The statistics in the report illustrate the impact of product piracy in
Europe. There is still an upward trend of the number of interception cases reported by
customers. In the year 2011 this number increased by 15% compared to 2010, and more
than 1000% over the past decade (see Figure 1.1).

Figure 1.1: Number of IPR detentions presented by the total number of cases represented
by an interception by customs over the past decade. Adapted from [1].

In total the value of the equivalent genuine products of the detected infringing articles
are estimated to be over 1.2 billion US dollars. The reduced business could cause job losses
and reduction of wealth creation. The most affected product categories were medicines
(24%), cigarettes (18%), clothing (4%), accessories for mobile phones (3%) and labels,
tags and stickers (2%). A worrying trend is that the proportion of products that could
be potentially dangerous to the health and safety of customers (i.e. food and beverages,
body care articles, medicines, toys) increased from 15% of the total amount in 2010 to
29% in 2011.
The trade of infringing good affects nearly everyone in Europe. The business suffers from
a lower demand for legitimate products resulting in lower business revenues. Additionally,
enterprises investing in research and development lose their benefits, since others copy
their inventions without investment costs. The cloned products are of a lesser quality
than the original products- Thus the enterprises selling the genuine goods, often suffer
from a damaged reputation. Customers are concerned, because they buy expensive cloned
goods, which often do not fulfill the quality standards of the original. Finally, violations
of IPR cause declining research and innovation. In addition governments loose revenues
of duties and taxes.
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The authentication of a product could be realized by attaching the RFID tag to the prod-
uct. This means that the originality of the product can be verified by the authentication
of the tag. Authenticity can be proved by showing the knowledge of a certain secret key
by successfully executing a challenge-response protocol. The basics of challenge-response
protocols are described in Section 1.5.
The following reasons show that an authentication of products via RFID tags may be an
efficient technological option as a protection against counterfeiting [3]:

• Today, RFID systems are able to perform secure authentication of tags using cryp-
tography.

• RFID is already widespread in many applications for logistic purposes.

• Near Field Communication (NFC) technology spreads out in mobile phones. With
NFC enabled phones the consumers can directly verify the authenticity of tagged
products.

1.2.2 Why ECC?

Public-key cryptography provides a simpler key management than symmetric cryptogra-
phy, since no secret key is required on the reader’s side [4]. Thus public-key cryptography
is more reasonable in open-loop applications.
However, public-key cryptography is computationally expensive and the implementation
on resource limited RFID tags is challenging. ECC relies on a very hard mathemati-
cal problem and thus offers a suitable security with low key sizes. Therefore, ECC can
be executed faster and requires smaller area and less energy compared to conventional
integer-based public-key algorithms like RSA [4].

1.2.3 Why software-based ECC for RFID?

Implementations in literature show that ECC is practical on RFID tags ([5, 6, 7, 8, 9] etc.).
However, these implementations are realized as hardware solutions in form of Application
Specific Integrated Circuits (ASICs). Customized ASICs are able to satisfy specific con-
straints concerning size, performance and power consumption [10]. This can be achieved,
since an optimal architecture is used for a specific application.
The manufacturing of an ASIC is a long and expensive process. Shrinking geometry causes
the design complexity to grow exponentially. Low development costs and time-to-market
are becoming increasingly important for semiconductor companies. Microprocessors are
easily programmable and support a broad range of possible applications. Thus designers
are able to implement complex systems in an efficient and fast way in software. This
flexibility eases to change the design and the development team is able to react quickly
on specific customer requirements [10]. Figure 1.2 gives an overview of the target system
and the advantages of the approach of this theses.
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Figure 1.2: Overview of the target system.

1.3 Introduction to Radio Frequency Identification

RFID systems are one of the most pervasive computing technologies. They offer a diverse
range of applications enabled by their low cost and broad applicability [11].
RFID has become popular for achieving automatic identification. RFID systems can pro-
vide information about people, animals, goods and products in transit. Common appli-
cations are supply chain management, transport ticketing, access control, animal tracking
and key-less entry for automobiles.
This section does not attempt to convey all of the details of RFID, but gives a brief
introduction. A full comprehensive source about RFID is the ”RFID Handbook” [12].

1.3.1 Operating Principle of RFID Systems

An RFID system consists of two components: a transponder and a reader [13, p.7–9].
The working principle of a passive RFID system is illustrated in Figure 1.3.
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Figure 1.3: Basic scheme of a passive RFID system. Adapted from [13, p.7] and [14].
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The transponder is located on the object, which should be identified. Another name
for the transponder is tag. The reader reads or writes the tag and contains a Radio
Frequency (RF) transmitter and receiver, a control unit and a coupling element to the
tag. The tag normally includes a coupling element (like a microwave antenna) connected
to an electronic microchip.
The reader can be connected to a back-end database that collects information of the
tagged objects or works stand-alone [14]. The energy is transmitted over the air by means
of an electromagnetic field. This field is generated by the reader and is also used for the
communication to the tag.
In contrast to active RFID systems, in passive systems the RFID tag is not equipped
with an internal power source [13, p.13]. Passive tags extract the required energy from
the electromagnetic field. The tag is only activated within the interrogation zone of the
reader. A big challenge for the designers of RFID systems is that the power supply of the
tag is limited, since the energy is transmitted over the air.

The RFID Tag

The tag consists of an antenna attached to an Integrated Circuit (IC). The tag archi-
tecture can range from a low-capability device (e.g. for pet identification) to a powerful
contactless smartcard (e.g. for biometric passports)[15].
The modules of a typical tag IC are shown in Figure 1.3. The Analog Front End (AFE)
provides power supply and performs the communication using a modulator and a demod-
ulator. Furthermore, the AFE recovers the clock signal out of the field.
The digital part of the tag realizes the decoding of the data and creates answers. Addition-
ally, an anticollision algorithm is implemented in the digital control unit. An anticollision
enables the support of several tags located in the interrogation zone of the reader at the
same time.
The NVM holds all the information that needs to be stored, even if the tag is not supplied
with power. For RFID tags an Electrically Erasable Programmable Read-Only Mem-
ory (EEPROM) is the most common way to realize the NVM. In general, tags with
advanced security features also have a own crypto module [14].

Classification of RFID Systems

According to their mode of transmission RFID systems, there is a differentiation between

• full duplex (FDX),

• half duplex (HDX) and

• sequential (SEQ)

systems [13, p.11–25]. A transponder in full and half duplex systems answers to a broad-
cast, if the RF field is activated. In sequential systems the field of the reader is briefly
switched off periodically. When the tag recognizes such a gap it sends the data. The main
drawback of these procedure is the loss of power.
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Another differentiation criteria is the range resulting from the transmission frequency
of the reader (operating frequency). These frequencies are classified into

• LF (low frequency, 30-300 kHz),

• HF (high frequency, 3-30 MHz) and

• UHF (ultra high frequency, 300 MHz - 3 GHz).

The categories of ranges are close-coupling (0-1 cm), remote-coupling (0-1 m) and long
range (>1 m).

Near Field Communication

NFC is a relatively new technology combining RFID and mobile communication [12]. An
NFC enabled mobile phone can emulate both, an RFID reader and a contactless smart
card. Furthermore, mobile phones can communicate with each other over the NFC inter-
face in a similar way as it is done via Bluetooth. Data transmission with NFC is done
with magnetic fields at a transmission frequency of 13.56 MHz and a maximal range of 20
cm.
The NFC communication standard is compatible with some RFID communication stan-
dards. Thus relative cheap RFID readers become available to everyone. This is the reason
why, NFC offers new application scenarios for RFID technology.

1.3.2 RFID Security

In [16] RFID security is defined as the ability of keeping the information transmitted
between the tag and the reader secure from non-intended receptions.
In the early years of RFID development security was not emphasized, because RFID
technology was seen as an alternative identification method to barcode systems for a
supply chain management [17].
Nowadays the capabilities of RFID systems have increased and they are used more often
in high security applications such as access control, contactless payment or ticketing [12].
RFID tags not only send a Unique Identification Number (UID) to the reader, but they
are able to perform complex calculations and protocols.
According to their cryptographic functionality RFID systems can be classified as follows
[17]:

• Tags without cryptographic functions

• Tags with weak cryptographic operations such as pseudonumbergenerators or hash-
ing

• Tags implementing symmetric ciphers (such as Advanced Encryption Standard (AES))

• Tags implementing asymmetric ciphers (such as ECC)

There have been several RFID solutions based on a custom security algorithm. One fa-
mous example of such an RFID system that gained attention because of a weak security
mechanism is the widely used Mifare Classic [18]. In [19] Garcia et al. showed an easy
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hack of the proprietary Crypto-I algorithm used in Mifare Classic tags.
A better approach is not to use proprietary algorithms, but to follow the Kerchoff’s prin-
ciple. This principle states that a cryptosystem should not be based on the secrecy of the
algorithm, but on the key [20]. Thus, on-tag encryption should use standardized crypto-
graphic algorithms (such as AES or ECC).
To enable security for low-cost tags, there is a possibility of ”light-weight cryptography”
meaning the redesign of existing cryptographic primitives especially for resource limited
tags [21]. Until today there is no proof that these security mechanisms provide the same
security as standard solutions. Thus, RFID systems using standard security algorithms
are still considered as a preferred option.

1.4 Introduction to Microprocessors

The basic model of a computer is the Von Neumann model as shown in Figure 1.4 [22,
Ch.1].
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Figure 1.4: Von Neuman model. Adapted from [22, Ch.1].

In the so-called Harvard architecture, there are separate memories for instructions and
data [23, p.3].
The microprocessor consists of a datapath and a control unit. The datapath is responsible
for the execution of all data operations, which are performed by the microprocessor (e.g.
adding two numbers inside the Arithmetic Logic Unit (ALU)) [22, Ch.1]. Furthermore,
the datapath includes registers for temporary storing data [24].
The control unit is responsible for fetching the instruction to be executed from the memory,
decoding and executing it [23, p.83]. The performance of a program executed by a
microprocessor is analyzed with clock cycles [23, p.6]. The execution time can be defined
as

execution time =
clock cycles

frequency
⇒ clock cycles = execution time · frequency (1.1)
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To compare different design alternatives the speed-up is determined with the following
equation [23, p.10]:

speed-up =
execution time before enhancement

execution time after enhancement
(1.2)

1.4.1 Instruction Set Architecture

Instruction Set Architecture (ISA) defines the boundary between hardware and software
[25, p.11–15]. The instruction-set is visible to a software programmer. The basic clas-
sification of ISAs is according to their type of internal storage. The major options are a
stack, an accumulator or a set of registers. The stack and accumulator approaches define
the operands implicitly on top of the stack or at the accumulator.
Register architectures can be divided into register-memory architecture and load-and-store
architecture. The first is to access memory as part of a instruction. The load-and-store
architecture only allows to access memory with load and store instructions. The archi-
tecture is also defined by the operand size, which is today typically between 8 bit and 64
bit.

Register Set

There are two basic types of registers: general-purpose registers for multiple purposes
and special-purpose registers restricted to specific functions [23, Ch.5]. For fetching an
instruction and executing it, there are two registers: the Program Counter (PC) and the
Instruction Register (IR). The PC contains the address of the next instruction. The IR
holds the current instruction. After one instruction has been fetched, the PC is updated
to point to the next instruction, which should be executed. Processors can support further
registers to maintain status information or special-purpose address registers.

1.4.2 General-purpose Microprocessors vs. ASICs

ICs can be designed with General-Purpose Processors (GPPs) or dedicated hardware [22].
GPPs are able to perform a variety of computations. Not every computation is hardwired
into the processor, but represented by a stored sequence of instructions. This program
is executed by the microprocessor and can be easily changed. The drawback of general-
purpose microprocessors is that the performance and power consumption is in general
worse than dedicated hardware.
When designing ASICs, the developer has the full control over every aspect of architecture,
circuit and layout design. This is the reason why it is possible to optimize the performance
and energy efficiency.
The development often simultaneously requires performance, agility, low power and a
modest design effort. Therefore, it is desirable to combine the throughput and energy
efficiency of dedicated hardware for demanding computations with the convenience and
flexibility of a microprocessor.
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Coprocessors

One option to combine the flexibility of software with the performance of hardware is to
use a software-controlled microprocessor cooperating with dedicated hardware units. As
shown in Figure 1.5, coprocessors are specialized hardware units controlled by a software-
programmable host. Each coprocessor accepts a limited number of instructions.
To exchange data the host can send the input data to the coprocessor. Another possibility
is to keep the data in memory and the coprocessor accesses the memory via Direct Memory
Access (DMA).

Coprocessor 

dedicated to 

subtask A

Program-

controlled 

Processor 

(Host)

Coprocessor 

dedicated to 

subtask B

Coprocessor 

dedicated to 

subtask C

Input Data Output Data

Data Exchange and Control Bus

Figure 1.5: Principle of general-purpose processor with specialized coprocessors.

Instruction-Set Extension

Another option to accelerate the software is Instruction Set Extension (ISE). As stated
in [26], there are several processors with an enhanced support for ISE available on the
market (for example Lx designed by Helwett-Packard and STMicroelectronics [27]). Also
standard microprocessor platforms can be extended by instructions to accelerate the pro-
cessing of a specific problem, such as multimedia or cryptography.
Compared to coprocessors, extending the instruction set involves less communication over-
head. In general the area of instruction set extensions is smaller, since the additional
instructions are tightly coupled to the processor. Another advantage is that the flexibility
and scalability of an additional instruction is higher than a coprocessor [28]. The major
challenge of ISE is the identification of these additional instructions, which provide the
largest speed-up.

1.5 Introduction to Cryptography

This section describes the basic principles of cryptography to help understanding the role of
ECC in the wide range of cryptographic approaches. For more detailed information the two
books ”Introduction to Cryptography” [29] and the ”Handbook of Applied Cryptography”
[30], are recommended.
The basic scenario of secure communications is the following: two parties, for example
Alice and Bob, want to talk over an insecure channel, but they do not want other parties
to understand their messages. Furthermore, there is a potential eavesdropper called Eve.
Alice and Bob agree to a certain method of how to obscure the information. Alice creates a
ciphertext by encrypting the plaintext with a key. The ciphertext is sent over the insecure
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channel to Bob, who decrypts the message using a decryption key to get the plaintext.
There are four goals of cryptography [29]:

• Confidentiality: Eve should not be able to read the message

• Data integrity: Eve should not be able to manipulate the message without Alice
and/or Bob noticing it

• Authentication: Deals with the identification of the two parties. For example Bob
wants to be sure that only Alice could have sent the received message.

• Non-reputiation: A party cannot deny having sent a message.

The subject of this master thesis is to establish authentication.

1.5.1 Symmetric and Asymmetric Cryptography

Symmetric cryptography means that both parties share the same secret key K for encryp-
tion and decryption, or one key can be easily derived from the other [31]. The principle
of symmetric cryptography is shown in Figure 1.6.

unsecure 

channel
Encryption

E(K, m) = c

symmetric key K

cipher text c

Alice

cipher text c

Decryption

D(K, c) = m

Bob

symmetric key K

secure channel key exchangekey exchange

plain text m plain text m

Figure 1.6: Principle of encryption using symmetric cryptography.

To send an encrypted message, Alice uses an encryption function E to calculate the
cipher text based on the shared key K and the plain message m and sends it over an
insecure channel. Bob calculates the plain text with the decryption function D using
the shared key. The main drawback of symmetric cryptography is the key distribution
problem caused by the need of both parties knowing the same key. For this key distribution
a secure channel would be required. The most popular block ciphers are Data Encryption
Standard (DES) [32] and the more secure Advanced Encryption Standard (AES) [33].
Stream ciphers do not collect data until a full block length is reached, but encode every
character immediately.
In the year 1976 Diffie and Helmann revolutionized cryptography by presenting the idea of
public-key cryptography, which is also called asymmetric cryptography [31]. The approach
is to publish an encryption key, which is also called a public-key. It is computationally
impossible to calculate the decryption key out of this public information, without an
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additional information (private key), which is only known by the owner.
The security is not based on the secrecy of the key, but on the computational impossibility
of calculating the private key. The asymmetric encryption scheme is illustrated in Figure
1.7.
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Figure 1.7: Principle of encryption using asymmetric cryptography.

Alice uses Bob’s public-key Kbob to generate a cipher text c. This cipher text c can be
sent over an insecure channel and is decrypted by Bob using his private key kbob.
The first realization of such a system was Rivest, Shamir and Adleman (RSA) [34] pre-
sented in the year 1978. The mathematical problem of RSA is based on factoring large
integers. Other versions of public-key cryptography are the ElGamal system based on the
discrete logarithm problem, the lattice based Number Theorists aRe Us (NTRU) [35] and
the error correcting codes based McEliece system [36]. ECC is a public key cryptosystem
based on the discrete logarithm problem of a random elliptic curve. Public-key systems are
very powerful but require much more computational effort than symmetric cryptography
[31]. Thus, these methods are only recommended for encrypting small amount of data.

1.5.2 Principle of Authentication with Asymmetric Cryptography

Authenticity can either be assured on something known (i.e. a password), something pos-
sessed (i.e. a passport) or something the claimant is (i.e. proved by special biometrics)
[6]. Most popular authentication methods are based on the challenge-response principle,
which proves the authenticity by something known.
The basic procedure of the challenge-response authentication using asymmetric cryptog-
raphy is illustrated in Figure 1.8.

If Bob wants to authenticate of Alice, he generates a random challenge and sends it to
Alice. This challenge is then encrypted with the private key kalice of Alice. The cipher text
is sent to Bob, who decrypts the message using the public key kalice of Alice. Only if the
message is encrypted with the right private key, the output corresponds to the previous
generated challenge. Since Bob can now be sure that Alice knows the right private key,
the authentication of Alice is achieved.
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Figure 1.8: Principle of authentication using asymmetric cryptography.

1.5.3 Side-channel Attacks

When designing hardware performing cryptographic operations based on a secret key one
has to keep side channel attacks in mind. This section presents a short overview of some
Side-Channel Attack (SCA)s as described in [37] and [38]. An SCA does not attack the
mathematical basis of the cryptographic system, but on implementation-specific aspects
by analyzing physical characteristics. Examples for such characteristics are processing
time, power consumptions, electromagnetic emission or faulty outputs.

Timing Attacks

Timing attacks analyze the execution time of an cryptographic algorithm processing a set
of messages to get the secret parameters. To prevent timing attacks, the calculation time
of the cryptographic algorithm should not depend on the secret.

Power Analysis Attacks

Power analysis attacks exploit the fact that the processed data of a cryptographic device
has an impact on the power consumption [39]. The simplest form is the Simple Power
Analysis (SPA), where a single power trace is visually analyzed to guess the secret.
A more advanced method is the Differential Power Analysis (DPA), which uses statistical
analysis of the power consumption of different measurement for several cryptographic
operations. To prevent DPA attacks, the power consumption should not depend on the
processed secret data.

Fault Induction Attacks

Fault injection attacks examine cryptographic algorithms under malfunctioning. Informa-
tion about the secret data can be reconstructed by analyzing the faulty output calculations.
Faults can be introduced for example by freezing memory cells, by white light or by an
abnormally high or low clock frequency or voltage in the power supply, etc. [40].
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One method against fault induction attacks is to perform the calculation two times and
compare the results.

1.6 Introduction to Elliptic Curve Cryptography

This section presents the basic principle of ECC. A comprehensive book about ECC is
the ”Guide to Elliptic Curve Cryptography” written by Hankerson et al. [41].
Already hundreds of years ago mathematicians deal with the specific properties of elliptic
curves [41, p.1]. In the year 1985 Neal Koblitz and Victor Miller proposed independently of
each other the use of elliptic curves in public-key systems. Five years later ECC attracted
public attention, several standards for ECC were published and some private companies
integrated ECC in their security devices.
Mathematically, an elliptic curve is defined as follows [41, Ch.3.1]:

Definition 1 An elliptic curve E over a field K is defined by the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ K and ∆ 6= 0, where ∆ is the discriminant of E and is defined
as follows:

∆ = −d22d8 − 8d34 − 27d26 + 9d2d4d6,
d2 = a21 + 4a2,
d4 = 2a4 + a1a3,
d6 = a23 + 4a6,

d8 = a21a6 + 4a2a6−a1a3a4 + a2a
2
3 − a24,

The variables x and y cover a plane and are defined over a underlying field K, the resulting
elliptic curve is written as E(K). The field can be any finite field like complex, integers,
prime fields or binary fields. What makes the mathematic of elliptic curves deep is this
underlying field [42, Ch.5.1]. Example plots of elliptic curves over real numbers on a real
plane are illustrated in Figure 1.9.
An elliptic curve consists out of the points that fulfill the equation and the point at infinity.
The order of an elliptic curve over a finite field Fq is written as #E(Fq) and denotes the
number of points on the curve [41, Ch.3.1.3]. It can be shown that #E(Fq) ≈ q. The
higher the order of the curve, the more security a curve provides.
A famous choice of elliptic curves are non-supersingular curves, which are defined with a
simplified Weierstrass equation [41, Ch.3.1.1].

Definition 2 A non-supersingular curve is defined as

E : y2 + xy = x3 + ax2 + b

where a, b ∈ K.

The mathematical problem ECC is based on, is the Elliptic Curve Discrete Logarithm
Problem (ECDLP), which relies on the non-invertibility of the elliptic curve point multi-
plication [41, Ch.4.1]. The ECDLP describes that if Q and P are two given points on an
elliptic curve and Q = k · P , k ∈ Z it is hard to find k. All cryptographic functions like
encryption, signature generation/verification and key agreement are based on this point
multiplication.
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Figure 1.9: Elliptic curves over a real field [41].

1.6.1 Advantages of ECC

Asymmetric cryptosystems have different underlaying mathematical problems. Crypto-
graphical methods with weaker mathematical problems require larger parameter sizes to
provide the same level of security. Higher parameter sizes influence the performance nega-
tively. The ECDLP is a very hard problem and thus ECC achieves high security with low
parameters compared to other public-key systems like RSA. For example, ECC with a key
length of 160 bits provides about the same security as RSA with 1024 bit keys. Therefore,
ECC is faster and requires less space and energy than RSA [43]. This makes ECC an ideal
candidate for systems like RFID, where processing power, storage, bandwidth and power
consumption is constrained.
Furthermore, ECC has received commercial acceptance and is included to standards of
accredited standard organizations such as American National Standards Institute (ANSI),
Institute of Electrical and Electronics Engineers (IEEE), International Organization for
Standardization (ISO) and National Institute of Standards and Technology (NIST).

1.6.2 Finite Fields

Thus the choice of the underlying Galois Field (GF) is essential for the efficiency of the
implementation [44]. A GF is a finite set of values with the operations addition, multi-
plication and inversion. These operations always result in new values that are also in the
field. The order of a field describes the number of elements in it.
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From the mathematical point of view the underlying finite field has to fulfill the prop-
erties of an Abelian group which is defined as follows

Definition 3 An Abelian group (G, ∗) consists of a set G with a binary operation *:
G×G→ satisfying the following properties ∀a, b, c ∈ G:

1. Associativity a ∗ (b ∗ c) = (a ∗ b) ∗ c

2. Existence of an identity ∃e ∈ G, such that a ∗ e = e ∗ a = a

3. Existence of inverses ∃i ∈ G, such that a ∗ b = b ∗ a = e

4. Commutativity a ∗ b = b ∗ a [41, Ch. 1.2.3]

An overview of the most popular fields for ECC is illustrated in Figure 1.10.

Elliptic Curves

GF(p)

Prime Fields

GF(2
m

)

Binary Fields

Polynomial Basis

Normal 

Basis

Figure 1.10: Common used underlying finite field options for ECC. Adapted from [44].

The set of a prime field is made up of every value between one and the prime number
and is denoted by Fq [42, Ch. 5.1]. To put it simply, all operations in a prime field are
performed modulo the prime number.
A binary field consists of all numbers that can be represented by a set of bits [44]. Binary
fields are written as F2m . If m ≥ 2 the field is called binary extension field. For simplicity,
throughout this text such fields will also be called binary fields. To indicate the property
of being a GF, prime fields and binary fields can also be indicated by writing GF (p) or
GF (2m).
There are two basis representations for binary fields: polynomial and normal basis. Poly-
nomial basis representation means that the elements of the field are constructed with
binary polynomials.

Definition 4 A binary polynomial is a polynomial of degree at most (m− 1) of the form

F2m = {am−1zm−1 + am−2z
m−2 + . . .+ a1z

+a0 : ai ∈ {0, 1}}

where the coefficients are elements of the prime field F2, where a, b ∈ K [41, p.26].

It is easy to directly convert the binary polynomial to a bit representation by setting the
bit m to the value of the coefficient am [44]. For example the bit representation 01100101

would be represented by the polynomial z6 + z5 + z2 + 1.
For polynomial basis representation of a modulus similar to the prime number in prime
fields is necessary [41, Ch. 2.1]. The modulus is represented by an irreducible polynomial
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with properties comparable to prime numbers. An irreducible polynomial with degree
m cannot be factored as a product of binary polynomials with a degree less than m.
Another basis for binary field is the normal basis. In normal basis representation elements
are expressed in terms of a basis of the form {b, b2, b22 , ..., b2m−1}. For example, the bit
sequence 01100101 would be represented by the polynomial b2

6
+ b2

5
+ b2

2
+ b.

1.6.3 Elliptic Curve Arithmetic

The elliptic curve arithmetic is the arithmetic involving the points of the curve [41, Ch.3].

Group Law

The so called chord-and-tangent role defines how to add and double points on an elliptic
curve. The addition and doubling rules can be expressed graphically (see Figure 1.11).
If P and Q are two points on the curve, the sum of these points can be determined by
first drawing a line trough P and Q. This line intersects a point at the elliptic curve. The
reflection of this point about the x-axis is the summation point of P and Q.
The doubling of a point can be explained similarly. If P should be doubled draw the
tangent of P and reflect the intercepted point of the tangent about the x-axis. This point
equals two times the point P .

Figure 1.11: Geometric addition and doubling of elliptic curve points [41].

Together with these operations, the set of points of E defined over K forms an Abelian
group with the point at infinity ∞ serving as identity element. Next, the group law for
non-supersingular curves are defined.
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Definition 5 Group law for non-supersingular elliptic curves over binary fields F2m:

1. Identity: P +∞ =∞+ P = P ∀P ∈ E(K)

2. Negatives: If P = (x1, y1) ∈ E(K), then also −P ∈ E(K), −P = (x1, y1 + x1)

3. Point addition: Let P = (x1, y1) ∈ E(K) and Q = (x2, y2) ∈ E(K), where P 6= ±Q.
Then P +Q = (x3, y3), where

x3 = ( y2−y1
x2−x1

)2 − x1 − x2 and y3 = ( y2−y1
x2−x1

)(x1 − x3)− y1

4. Point doubling: Let P = (x1, y1) ∈ E(K) , where P 6= −P . Then 2P = (x3, y3),
where

x3 = (3x1+a
2y1

)2 − 2x1 and y3 = ((
3x2

1+a
2y1

)(x1 − x3)− y1

Projective Coordinates

Definition 5 shows that addition and doubling calculations require the calculation of in-
verses. The coordinates used in definition 5 are called affine coordinates.
In most implementations performing an inversion is significantly more expensive than a
multiplication. The number of inversions that have to be calculated for a point multipli-
cation can be reduced by using projective coordinates.
For the projective representation of a point a further coordinate Z is introduced. The
projective point (X,Y, Z) corresponds to the affine point (X/Zc, Y/Zd). If c and d are
chosen to be one, the coordinates are called standard projective coordinates and the non-
supersingular form of the elliptic curve is defined as

Y 2Z +XY Z = X3 + aX2Z + bZ3

Point Multiplication

The ECDLP involves the calculation of Q = k · P , where Q,P ∈ E and k ∈ Z [41]. Since
ECC is based on the ECDLP, the point multiplication is the essential calculation in elliptic
curve cryptosystems. Another name for the point multiplication is scalar multiplication.
In some protocols, the point P is known a priori and thus the multiplication can exploit
precomputed data depending on P .
The easiest form of multiplying an unknown point is the double-and-add method. For
example to calculate 5P one can calculate 2P by point doubling, then again double the
point 2P to get 4P and then calculate one point addition to get 5P = 4P + P .
Montgomery found in [45] a faster method for performing the point multiplication. He
showed that the sum of two points with a known difference can be computed without the
y-coordinate. In [46] it is described how the y-coordinate can be recovered out of the result
of the Montgomery multiplication. For the Montgomery multiplication the calculation of
6log2(k) field multiplications and 5log2(k) squarings are required [47].
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1.6.4 Domain Parameter

ECC domain parameters describe an elliptic curve E over a finite field K, a base point
P ∈ E(K) and its order n [41, Ch. 4.2]. The domain parameter of an elliptic curve define
the security of the curve. Special mathematical attacks can be prevented or complicated
by choosing the right domain parameters. Furthermore, implementation issues influence
the domain parameter choice. For example, the domain parameters are comprised of:

• The field order q

• The field representation K for the elements

• The coefficients a, b ∈ K defining the equation of the elliptic curve E (e.g. E :
y2 + xy = x3 + ax2 + b)

• The base point P having prime order

• The order n of P

Well known attacks to ECC are the Pohling-Hellman attack [48] and the Pollard’s rho
attack [49]. The computational effort of calculating the ECDLP depends on the group
order #E(K).
The Pohling-Hellmann attack reduces the calculation complexity to the greatest factor of
#E(K). The challenge of this attack is to find the prime factorization of the group order,
which is hard to achieve in general [41].
Pollard rho methods are algorithms to determine the period lengths of number sequences,
which can be applied to calculate the discrete logarithm. Exhaustive key search of a k-bit
block cipher is expected to take roughly the same time as the solution of an instance of
the ECDLP using Pollard’s rho algorithm over a finite field whose order has bit length 2k.
For example the 128-bit AES version can be compared to ECC over binary fields with an
dimension of 283 bit [50].
According to [51] the largest broken ECDLP had a key size of 109 bit. About 2600
workstations took 17 months for the calculation. Thus, it is recommended to take a key
size higher than 109 bit to ensure computational security.
To be resistant against the Pohling-Hellman and the Pollard rho attacks, #E(K), which
is about m if K = GF (2m) has to be divisible by a sufficiently large prime. The maximum
resistance to the mentioned attacks can be achieved by selecting E, such that #E(K) is
prime.
Standard organizations like ANSI, IEEE, ISO, Standards for Efficient Cryptography (SEC)
and NIST offer elliptic curve parameters [52].

1.7 Outline

This Chapter provided a basic introduction to several topics related to this thesis. The
next chapter describes the related work. The design developed in this thesis is described
in detail in Chapter 3. Chapter 4 provides details about the implementation. The results
of the evaluation of the different algorithm variants are presented in Chapter 5. Finally,
Chapter 6 concludes this thesis.



Chapter 2

Related Work

In recent years many researchers analyzed the practicability of ECC in low-end devices.
This chapter describes the related work classified into different levels of hardware/software
codesign.
To provide a meaningful comparison of different systems the timings are given in clock
cycles, which are determined according to Formula 1.1 in the introduction. The unit of
the area is the normalized NAND Gate Equivalent (GE).

2.1 Software Implementations of ECC

Many publications describe how to efficiently implement ECC in software based on high-
end processors. For example, Taverne et al. recently showed in [53] that an elliptic point
multiplication using binary fields of an order of 233 can be achieved in 157 thousand clock
cycles on Intels Sandy Bridge Core i7 64-bit processor [54]. The following section offers an
overview of 8-bit ECC implementations in software for constrained environments, which
is still time demanding.
In the year 1999, Michael Rosing published the book ”Implementing ECC” [42]. The book
offers an introduction to ECC with the programming language C. However, the book does
not describe how to implement ECC in an efficient way.
Hankerson et al. described in [50] a detailed study of software implementations with el-
liptic curves over binary fields recommended by NIST. They proposed several efficient
algorithms for binary field operations such as the right-to-left and the left-to-right comb
method for a polynomial multiplication.
In terms of software-based ECC for RFID tags, there is little literature available. How-
ever, many authors studied the efficiency of ECC in software for the Wireless Sensor
Networks (WSNs) application. Although the majority of the implementations are real-
ized on processors, which are too large for RFID tags, the comparison provides a basic
understanding of the time and memory requirements. This section starts with a presen-
tation of 8-bit microprocessors used for ECC implementations and then outlines software
implementations classified with respect to the underlying field.

31
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8-Bit Microcontroller used ECC Software Implementations

Woodbury et al. have been the first describing how to implement ECC on low-cost micro-
processors [55]. They focused on the Intel 8051 family, especially on the Siemens controller
SLE44C23S. Smart cards and other devices often use 8-bit microprocessors derived from
the 1970s families like Intel 8051. The SLE44C23S offers only 256 bytes of internal RAM,
where the lower half can be addressed directly and the upper bytes have to be referenced
through a pointer register. Due to this overhead, it takes more time to address this upper
part of the memory. Gura et al. compared the performance of ECC and RSA on two
8-bit processors in [56]. The first one was the Chipcon CC1010 supporting the Intel 8051
instruction set. The microprocessor contains 32 kByte Flash memory, 2 kByte external
data memory and 128 bytes of internal data memory. For temporary data storage 32 bytes
of the internal memory are available.
The second proposed processor was the high-performance low-power ATmega128. This
processor implements the AVR architecture from Atmel [57]. The AVR family is based
on a highly structured Reduced Instruction Set Computer (RISC) design [58]. The AT-
mega128 provides 133 instructions - most of them can be executed in one clock cycle.
AVR controllers implement the Harvard architecture. The AVR pipeline has two stages:
The first stage fetches an instruction and the second one executes it. The most interesting
feature, especially for ECC implementations, is a large register set offering 32 8-bit general
purpose registers. Most of the 8-bit ECC implementations in literature use this processor.
The most similar approach to the work presented here was recently published by Wenger et
al. [59]. Their architecture also targets resource-constrained RFID tags. They presented
a clone of the ATmega128 called JAAVR (Just Another AVR) with a low power consump-
tion (11 uW/MHz) and a small silicon-footprint (6.5 kGE). They showed the practicability
of the ISO 14443 protocol and implemented the cryptoalgorithms AES, Grostl and ECC.

2.1.1 Software Implementations over Prime Fields

Many authors assume that software implementations of elliptic curves over prime fields
can be executed faster than those over binary fields. Table 2.1 shows a summary of the
performance and resource requirements of several implementations, which are presented
below.
Woodbury et al. presented an ECC implementation on the Intel 8051 architecture. Using
the built-in multiplier they achieved a general point multiplication in 8.37 seconds at a
frequency of 12 MHz which equals to 100.44 million clock cycles.
Gura et al. showed that software based public-key cryptography is viable on a small de-
vice [56]. The evaluation of their implementation variants showed that the performance
advantage of ECC over RSA increases with the decrease of the word size. They presented
a hybrid multiplication algorithm, which exploits the advantages of the operand scanning
and product scanning algorithm with the goal to reduce the number of memory accesses.
They evaluated assembler implementations of ECC on the CC1010 and the ATmega128
processor. The execution of one scalar multiplication on the CC1010 with a frequency
of about 3.7 MHz required 4.56 seconds. The CC1010 is only able to access one bank of
eight registers at a time and switching between register banks requires multiple instruction
cycles. This limitation does not exist on the ATmega128. Thus, the implementation on
the ATmega128 was significantly faster with a runtime of 0.81 seconds at a frequency of
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8 MHz, which equals to 6.5 million clock cycles. However, they used the Non-Adjacent
Form (NAF)-method for point multiplication. In contrast to the Montgomery multiplica-
tion, this algorithm does not include any side channel attack countermeasures.
Kargl et al. compared in [58] implementations of ECC over different fields. They showed
that binary field arithmetic can be faster on 8-bit processors. Their fastest point multi-
plication using prime fields had a runtime of about 13.8 million clock cycles.
In the year 2012, Wenger et al. presented several implementation variants of ECC on
the JAAVR over prime fields. Their slowest point multiplication was implemented in C
and used the operand scanning method for a field multiplication. This implementation
variant is quite memory efficient with a code size of 3.7 kByte. However, regarding the
performance of 35.1 MCycles this implementation variant is not practical. Thus, they ac-
celerated their implementation using the operand-caching field multiplication as proposed
in [60]. Furthermore, they optimized the efficiently of the code with an assembler. With
this approach they reached a runtime of about 13 MCycles, but increased the ROM size
to 7.6 kBytes.

Implementation Processor
Lan- Length Runtime Codesize RAM

guage of scalar [MCycles] [KB] [Byte]

Woodbury SLE44C23S C 134 111.4 13 523
et al. [55] (8051 arch.)

Guara et al. [56] CC1010 asm 160 16.9 2.1 266
(8051 arch.)

Guara et al. [56] ATmega128 asm 160 6.48 3.6 280

Kargl et al. [58] ATmega128 asm 165 13.8 9.8 -

Wenger et al. [59] JAAVR asm 190 13 7.6 384

Table 2.1: Comparison of existing ECC implementations over prime fields in software on
8-bit architectures. The presented values relate to one point multiplication.

2.1.2 Software Implementations over Binary Fields

Malan et al. investigated the feasibility of implementing ECC over binary fields for sensor
nodes based on the algorithms presented in [42], [50] and [61]. The authors were the first
presenting a performance evaluation using elliptic curves over binary fields. Their imple-
mentation is based on the MICA2 mote, which supports the ATmega128 microprocessor.
They used an ECC calculation to provide a key distribution mechanism for UC Berke-
ley’s TinySec module. For point multiplication, they used the double-and-add algorithm
as proposed in [62]. For performing a polynomial multiplication they implemented the
left-to-right method as described by López and Dahap in [63]. Their implementation was
realized with C++ and a Java library. Their implementation was quite inefficient requir-
ing 34 seconds for one point multiplication. Since they performed the calculation with
7.3825 MHz, this means that they needed about 2,512 million cycles.
Blaß and Zitterbart implemented a version of ECDSA over GF2113 [51]. As starting point
for their implementation they used Rosings book [42]. They accelerated their implementa-
tion with a handcrafted optimization and a precomputation of certain points. Using this
approach they achieved a runtime of 6.74 seconds.
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Shi and Yan showed that a sophisticated implementation of the inversion algorithm im-
proves the performance of the ECC calculation [43]. They presented a software imple-
mentation with a performance of 13.9 seconds at a clock rate of 8 MHz. Furthermore,
they analyzed the effect of different word sizes on the execution time. They showed that
in general a higher word size means less time for performing one field operation. An
exception is the right-to-left multiplication algorithm which is faster using 16-bit word
size than 32-bit words, since the number of shift operations is smaller. In their paper
they also compared different binary field algorithm variants. Their fastest version of the
scalar point multiplication requires about 111 million cycles execution time and 12kByte
memory. In [4] Shi and Yan improved their work. They implemented point multiplication
with projective coordinates on ATmega128, which required about 97 million cycles.
One feature of the ATmega128 is the large register set of 32 8-bit general purpose regis-
ters. The authors of [64] used this feature in TinyECCK to reduce the number of memory
accesses required for the binary field multiplication. They observed that the intermediate
results of the polynomial multiplication are frequently stored in the same memory posi-
tions. They reduced the number of memory operations. combined additions needed for the
polynomial multiplication They reduced the number of memory operations by combining
two consecutive intermediate additions performed to calculate the polynomial multiplica-
tion. Using this approach they reached a runtime of about 8 million clock cycles for a scalar
multiplication on a binary field with an order of 163. Furthermore, they showed that a field
multiplication over binary fields can be faster than over prime fields on the ATmega128
processor requiring a comparable code size. NanoECC presented from Szeczechowiak et al.
in [65] uses the same parameters as TinyECCK. NanoECC implements ECC with projec-
tive coordinates over prime and binary fields on the WSN motes MICA2 and Tmote Sky.
However, NanoECC does not reach high performance of TinyECCK and requires about 16
million clock cycles for one scalar multiplication. Furthermore, their implementation has
high memory requirements, since they used a comb method with pre-computed points.
Kargl et al. [58] improved the approach of Seo et al. [64] by writing the code in assembly
language using the CPU registers in an optimal way. They managed to execute the binary
field multiplication in about 5,000 cycles, which is the reason for the fast execution time
of 6.1 million clock cycles.

Implementation Processor
Lan- Length Runtime Codesize RAM

guage of scalar [MCycles] [KB] [Byte]

Malan et al. [61] Mica2 C 163 2,512 34 1059
(ATmega128)

Blaß and Mica2 C 113 47.18 75 208
Zitterbart [51] (ATmega128)

Yan et al. [43] ATmega128 C 163 111 11.6 820

Szczechowiak ATmega128 C 163 15.95 32.4 1741
et al. [65]

Seo et al. [64] ATmega128 C 163 8.42 5.6 618

Kargl et al. [58] ATmega128 asm 163 6.1 11 -

Table 2.2: Comparison of existing ECC implementations over binary fields in software on
8-bit architectures. The presented values relate to one point multiplication.
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2.2 Hardware/Software Codesign of ECC

In recent years it has been shown that custom hardware can increase the performance off
ECC significantly with low cost and energy requirements [26]. This section gives a basic
overview of different hardware/software methodologies available in literature. Thereby it
has to be considered that the comparison of different hardware implementations is not
straight forward, since different key sizes and technologies are used.
The hardware/software codesign approaches on 8-bit processors can be classified into three
levels of granularity [66]:

• Implement hardware performing the operations for the point multiplication as de-
scribed in [67]. The high amount of hardware leads to very fast execution times but
requires much area and limits the flexibility of the system.

• Implement the field operations in hardware and execute them in a dedicated copro-
cessor.

• Extend the instruction set of the microprocessor to accelerate the field arithmetic.

Much research concerning the last two points has been made. Thus these implemen-
tations using these options are discussed more detailed below.

2.2.1 Coprocessors

Available publications concerning coprocessor designs for ECC target mainly software
implementations based on the Atmel AVR or the Intel 8051 architecture. Table 2.3 sum-
marizes the performance parameters of several approaches in literature.
A popular processor supporting the AVR instruction set is the AT95K offering 62 instruc-
tions. A fast coprocessor design for the AT95K processor is reported in [68] by Ernst
et al. Their implementation is scalable supporting reconfigurable parameter sizes. The
hardware accelerators execute field multiplication, addition and squaring.
A coprocessor for the 8051 architecture was presented by Aigner et al. in [69]. The authors
implemented all field arithmetic operations including inversion in hardware and used affine
coordinates.
Kumar et al. examined in [52] if standardized elliptic curves are feasible on RFID. They
assumed that there is a need for a stand-alone hardware module to meet the timing require-
ments of standard protocols for RFID systems. In their ECC hardware implementation
they recognized that the majority of area is required to store points and temporary vari-
ables. Their processor supports multiply, square and inversion instructions. They used
affine coordinates and their implementation required about 10 kGE. They used an algo-
rithm optimized for low memory requirements.
In some works the focus of the coprocessor design is on scalability. This means that
the process operands can be changed to any size without the need of re-designing the
implementation. The authors of [70] designed a highly scalable and unified multiplier
architecture. They showed that it is possible to design dual-field arithmetic supporting
both, prime and binary fields. Their hardware accelerator was able to speed-up an ECC
prime field implementation based on the ARM processor by a factor of about 4.5 requiring
15 kGE area.
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A limited scalable microprocessor was designed by Koschuch et al. in [66]. They developed
a system where the parameter size is scalable in hardware and software. They proposed
an efficient interface between the coprocessor and the host processor via DMA.

Implementation Processor
Length Runtime

of scalar [MCycles]

Ernst et al. [68] AT94K (AVR) 113 0.014

Kumar et al. [52] AT94K (AVR) 163 0.452

Janssens et al. [67] AT94K (AVR) 192 0.450

Aigner et al. [69] SLE66CX (8051) 163 0.444

Koschuch et al. [66] Dalton (8051) 163 1.19

Table 2.3: Comparison of existing ECC coprocessor implementations over binary fields on
8-bit architectures. The presented values relate to one point multiplication.

2.2.2 Instruction Set Extension (ISE)

Hardware coprocessors for public-key cryptography often lead to a big area. This is the
reason why designers of ECC tried to achieve hardware acceleration with smaller area
requirements. The instruction set of a general-purpose processor can be extended with a
few application-specific instructions with low-silicon footprint. Especially the acceleration
of the inner loop operations of ECC can result in significant performance gains [28].
In the years 1995 and 1998 the authors of [71] and [72] were the first presenting a special
multiplication instruction for binary fields called MULGF2. This instruction performs a
multiplication of two binary polynomials of a degree (W − 1), where W is the word size
of a processor. Many authors use this instruction to accelerate ECC. Two years later
Drescher presented the idea of an unified multiply instruction [73]. This instruction inte-
grates the MULGF2 instruction into an available integer multiplication instruction. They
analyzed the implementation using short key lengths smaller than 8-bit with a Digital
Signal Processor (DSP). Polynomial arithmetic was also integrated into the datapath of
modulo multipliers of cryptographic co-processors in [74] and [70].
In 2003 the authors of [47] showed that the integration of binary multiplication in the
datapath of an integer multiplier does not increases the critical path significantly. The
silicon area of a unified multiplier is just marginally larger than that of a conventional mul-
tiplier. Additionally, they presented a squaring algorithm, which just uses the instructions
MULGF2 and XOR. Their approach achieved a fast execution time of 3 million cycles for
one Montgomery multiplication with projective coordinates.
One year later Grossschaedl et al. presented five custom instructions for the 32-bit RISC
architecture Microprocessor without Interlocked Pipeline Stages 32 (MIPS32) [75] to ac-
celerate arithmetic operations in prime and binary fields. They described the algorithm
selection process in detail and demonstrated that it is possible to find custom instructions
in an efficient manner.
The authors of [76] showed that in 64-bit systems the MULGF2 instruction can achieve a
speed-up of up to 20. The result of the MULGF2 instruction is two bytes long. They cat-
egorized the possibilities of implementing the MULGF2 instruction into three approaches:
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• to store the higher and lower byte in parallel in two registers,

• to implement two separate instructions for the higher and the lower byte or

• to just process the lower byte.

Kumar and Paar presented a proof-of-concept implementation for a low-cost ISE on an
8-bit processor using reconfigurable logic [77]. They were able to offer an 8-bit micro-
controller with full size ECC capabilities practical for low-cost applications. They imple-
mented a standard-compliant 132-bit point multiplication over binary fields on the AVR
microcontroller AT94K. Their extension is similar to a coprocessor consisting of a ded-
icated serial multiplier for binary field multiplications, which can be accessed through
instructions. This instructions are multiple-cycle instructions operating on operands in
memory. This approach requires about 5000 extra Configurable Logic Blocks (CLBs) and
offers a runtime, which is 30 times faster than the software-only version.
In contrast to [77] the implementation described in [78] fully reuses the existing data
path of an 8-bit microprocessor and uses instructions, which are consistent to the existing
instruction set. The authors of [78] showed that an even faster ECC calculation as the
prime field implementation in [56] is possible with binary fields and ISE. They were the
first quantifying the performance of standard NIST and SECG curves on an 8-bit proces-
sor equipped with a uniform multiplier.
The authors of [26] pointed out how an ISE changes the algorithm design. First, they
confirmed the fact that binary fields could be accelerated more than prime fields with an
ISE. Second, they showed that the availability of an ISE can have an impact on the ef-
fectiveness of different algorithmic variants to implement the same binary field operation.
Although in general the world level multiplication is much slower than the shift-and-add
method, the availability of the MULGF2 instruction makes the world level multiplication
to be the faster approach.
Beside the MULGF2 instruction, Shi et al. evaluated two additional instructions: shift
by multiple bits and the determination of the Most Significant Bit (MSB) [4]. These
instructions were able to achieve a speed-up of 3.9 compared to the pure software ECC
implementation.
The above outlined implementations show that only a few additional instructions can lead
to a significant improvement of the calculation of a ECC point multiplication.

2.3 Hardware Implementations of ECC for RFID

In terms of ECC hardware implementations, there are many publications available. How-
ever, only a few of them focus on low-resource designs for RFID [60]. Table 2.4 shows a
comparison of different implementations for RFID.
In 2005, Wolkersdorfer tried to answer the question

”
Is Elliptic-Curve Cryptography suit-

able to secure RFID tags?“ [5]. He presented an ECC processor implemented in a full-
precision architecture. The dual-field architecture supports prime and binary fields. This
dual-field capability was achieved with almost no overhead. He showed that the power
and area constrains of an RFID tag can be met, but also stated that there is room for
improvement concerning the performance. The fastest implementation calculated a Mont-
gomery multiplication in 0.8 seconds at a frequency of 545 kHz.
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In 2003, Batina et al. published a survey of RSA and ECC hardware implementations
[79]. They pointed out that there is room for improvement concerning ECC hardware
on smart cards. Three years later they published an ECC design for RFID [80]. They
presented binary field implementations and higher-layer authentication protocols based on
the Schnorr and Okamoto scheme
Fürbass and Wolkersdorfer proposed an ECC processor with low die size for RFID au-
thentication. The hardware calculates the Elliptic Curve Digital Signature Algorithm
(ECDSA) over prime fields [9]. The implementation requires 23.6 kGE executing a
point multiplication in 502 kCycles. Furthermore they considered several countermea-
sures against SPA and DPA.
One year later Lee et al. presented a processor including a tiny microcontroller for per-
forming the Schnorr protocol for a tag authentication [7]. Their implementation is based
on binary fields with a parametersize of 163. They designed an efficient modular operation
algorithm with a little control overhead. Their fastest implementation performed an ECC
point multiplication in 80 kCycles and required about 15 kGE area.
The same type of elliptic curve was used by Hein et al. [81] for the implementation of an
ECC coprocessor.
A similar architecture was proposed by Bock et al. [8]. They used a challenge response pro-
tocol for a one way authentication based on the Diffie-Helmann key exchange and requires
only one multiplication calculation on a tag. The point multiplication is realized with a
slightly modified Montgomery multiplication. The modifications increased the resistance
against SCAs concerning power analysis, differential power analysis and fault attacks.
The architecture of the ECC tag presented in [8] is derived from Infineons commercially

available my-d
TM

light [82]. Bock et al. applied several techniques to reduce the area.
The short-term storage was implemented using latches instead of flip-flops and the irre-
ducible polynomial was hardwired. Furthermore, they optimized the number of required
multiplexers and applied several measurements for energy reduction techniques, like clock
gating. To enhance the performance different parallelization variants of the multiplication
were evaluated. They reported that an 8-bit parallel multiplication in the arithmetic unit
requires less energy than a degree of parallelization of four. Energy can be saved due to
the short calculation times. The presented ECC engine is able to calculate one addition
in one clock cycle and a multiplication in 41 clock cycles.
To keep the chip area small, Wenger et al. proposed a special microprocessor architecture
for ECC [83]. They designed a custom architecture for a NIST elliptic curve over GF(p192)
and implemented the ECDSA. Although, their hardware is smaller than the architecture
proposed in [8] their runtime is significantly higher requiring 1,377 kCycles execution time.

2.4 Comparison of Implementation Variants in Literature

Figure 2.1 shows a comparison of the different implementation variants of ECC presented
in this chapter. All implementations are based on binary fields with a parameter size
of 163. The fastest implementations available in literature are compared. One can see
that a simple ISE as described in [78] can result in a significant performance improvement
compared to a pure software implementation [58]. A coprocessor requires more area,
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Implementation
Area Runtime Finite

[kGE] [kCycles] field

Wolkersdorfer [5] - 436 GF (2191)

Hein et al. [6] 13.7 306 GF (2163)

Lee et al. [7] 15.0 80 GF (2163)

Bock et al. [8] 16.2 47 GF (2163)

Fürbass et al.[9] 23.7 502 GF (p192)

Wenger et al. [83] 11.7 1,377 GF (p192)

Table 2.4: Comparison of existing ECC implementations in hardware. The presented
runtime relates to one point multiplication.

but can again lead to a considerable speed-up of the execution time. A pure hardware
implementation (like in [8]) is unmatched in terms of performance. However, in general
such an approach requires the largest area.
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Figure 2.1: Comparison of implementation variants of 163-bit ECC in literature.

2.5 Summary

This chapter provides a survey of the related work. In particular, available software im-
plementations of ECC on 8-bit processors are outlined. These software implementations
mainly target the application of Wireless Sensor Networks. Only a few authors discussed
the implementation of software-based ECC for RFID.
Many authors also studied hardware/software partitioning variants of ECC implementa-
tions. This chapter focused on literature describing hardware acceleration with instruction
set extension and coprocessors.
Finally, it has been outlined that many works found in literature focus on custom designed
hardware for ECC on RFID. The hardware implementations described in literature are
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fast and energy efficient. Nevertheless, the high amount of special-purpose hardware in-
troduces inflexibility.
It followed a presentation of several hardware acceleration methods. First, an innovative
hardware/software partitioning approach was presented by introducing virtual addressing
for ECC. Thereafter it has been shown, which additional instructions of the enhanced
version of Ameba could accelerate the ECC calculation.
Finally, an implementation approach using a coprocessor was presented. It has been shown
that the availability of a certain hardware influences the algorithm design and thus a new
binary field multiplication algorithm was introduced. A possible way of realizing the com-
munication with the coprocessor was outlined. Furthermore, a coprocessor architecture
was proposed.



Chapter 3

Design

This chapter describes the concept of the ECC implementation. For an efficient imple-
mentation, it is important to consider the target microprocessor platform. Therefore, this
chapter first presents the microprocessor Ameba. Then the chapter continues with a de-
tailed description of the design considerations.
Figure 3.1 illustrates the procedure of this work. First, the ECC calculation is designed
and optimized for software. Then hardware acceleration methods are identified. The im-
plementation is first realized with the Ameba microprocessor and then adapted to the
enhanced version of Ameba called Ameba2.
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3.1 Special Purpose Microprocessor for RFID

Ameba is a special purpose microprocessor for RFID and was developed by Infineon Tech-
nologies. The purpose of Ameba is to offer an instruction set tailored for a typical RFID
product. The processor has low requirements concerning area (about 3 kGE) and energy.
The power consumption, while performing an AES encryption, is between 11.6 µW/MHz
and 25.9 µW/MHz. Compared to ad-hock state machines, the flexible and programmable
framework supports a more efficient development of RFID products.

Architectural Description

The Ameba is based on the Harvard architecture with separate pathways for instructions
and data. The processor can address up to 8 Kbytes of read-only instruction memory with
16 bit instruction paths. Ameba is realized with a single stage pipeline. All instructions,
except memory accesses to the ROM, are executed in one clock cycle.
The Ameba supports 16 one-byte GPRs for temporal storage. According data accessing
mode, Ameba can be classified as a load-and-store architecture.
The size of directly addressable data memory is 64 kBytes. For the addressing 8-bit data
pathways are used. A special register called Data Pointer High (DPH) is used to hold the
upper 8 bits of the address. When the RAM size is for example 512 bytes, the DPH has
to be set to zero to address the lower half of the RAM. If the higher address range should
be selected, then the DPH is set to one.
The Ameba also supports indirect accesses to the ROM. This could be used to implement
LUTs (Look-up Tables). The position of the LUT in the ROM can be defined. This star-
taddress has to be a multiple of 256. At every address of the LUT two bytes are stored.
Instructions MOVCH and MOVCL are used to fetch either the higher or the lower byte.
Furthermore, the Ameba offers a Program Counter Stack (PCS) for subroutine instruc-
tions. When a call instruction is executed, the value of PC+1 is stored on the PCS. To
return to this position the instruction ret is used. The execution then continues at the
stored position on the stack.
Although the Ameba does not support interrupts, there is a halt signal to suspend the
execution.

Instruction Set

The Ameba offers ALU operations with constant and variable operands, program branch-
ing and memory access with direct and indirect addressing. Table 3.1 shows a summary of
the instruction set offered by the Ameba processor. Thereby, #dataN stands for an N-bit
constant, Rx and Ry for the working registers R0 to R15 and addrN for a N-bit address. The
symbol CY is used to indicate the carry bit. Although the processor includes a shift-left
operation, there is no shift-right instruction. Furthermore, the Ameba does not include a
multiplication operation.
For a better support of the symmetric cryptoalgorithm AES, an enhanced version of
Ameba was designed by Infineon Technologies Austria AG. This version is called Ameba2
and includes additional instructions, which are listed in Table 3.2.
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Instruction Description

ADD Rx, #data8 Add immediate data and CY to register Rx
ADD Rx, Ry Add register Ry and CY to register Rx
AND Rx, #data8 Logical AND of immediate data and register Rx
AND Rx, Ry Logical AND of register Ry and CY to register Rx
CALL addr12 Call subroutine at addr12
JEQ addr12 Jump if CY is set
JMP addr12 Jump
JNE addr12 Jump if CY is not set
LD Rx, Ry Load byte indirect addressed
LD Rx, addr8 Load byte
MOV Rx, #data8 Move immediate data to register Rx
MOV Rx, Ry Move register Ry to register Rx
MOVCH Rx, Ry Move code byte high
MOVCL Rx, Rx Move code byte low
NOT Rx Bitwise complement of register Rx
OR Rx, #data8 (Logical) OR of register Rx with immediate data to register Rx
OR Rx, Ry (Logical) OR of register Rx with register Ry to register Rx
RET Return from subroutine
ROL Rx Rotate left
SEQB Rx, #data3 Set CY if bit Rx.n equals 1, n = #data3
SEQB Rx, Ry Set CY if bit Rx.n equals 1, n = Ry[2:0]
SEQ Rx, #data8 Set CY if immediate data equals register Rx
SEQ Rx, Ry Set CY if register Ry equals register Rx
SL Rx Shift left
SLT Rx, #data8 Set CY to 1 if register Rx is less then immediate data
SLT Rx, Ry Set CY to 1 if register Rx is less than register Ry
ST Rx, @Ry Store byte indirect addressed
ST Rx, addr8 Store byte
SUB Rx, #data8 Subtract immediate data and CY from register Rx
SUB Rx, Ry Subtract register Ry and CY from register Rx
XOR Rx, Ry XOR of register Ry and register Rx

Table 3.1: Ameba Instruction Set.

Instruction Description

SETB Rx, Ry Set bit Ry of Rx
RLC Rx Rotate Rx left with carry Rx = {Rx[6 : 0], CY }, CY = Rx[7]
RR Rx Rotate Rx right, Rx = {Rx[0], Rx[7 : 1]}
RRC Rx Rotate Rx left with carry Rx = {CY,Rx[7 : 1], CY = Rx[0]}
SR Rx Shift Rx right
LDXR Rx, addr8 XOR of register Rx and direct addressed byte
LDXR Rx, @Ry XOR of register Rx and indirect addressed byte

Table 3.2: Additional instructions of Ameba2.
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3.2 ECC Design Decisions

Designing an ECC system includes decisions at different hierarchical levels (see Figure 3.2).
The elliptic curve parameters and algorithms for field arithmetic, elliptic curve arithmetic
and protocol arithmetic have to be selected.
The design decisions are influenced by

• security considerations,

• application platform (software, hardware or hardware/software codesign),

• constraints of the particular computing environment (processing speed, code size
(ROM), memory size (RAM), gate count, power consumption, etc.) and

• constraints of the communications environment [41, p. 226].

An existing highly optimized hardware implementation developed at Infineon [8] provides
the basis for the software implementation presented in this work. Ergo, the choice of the
underlying field, protocol and point multiplication algorithm is adapted from [8].

Binary field arithmetic

Point

multiplication

Protocol

 

Figure 3.2: ECC design decisions. Adapted from [41, p. 226].

3.2.1 C Model

To evaluate different algorithm variants, a software model in C is written. The software
models all hierarchical layers of the operations needed for authentication such as the
protocol, the point multiplication and the field operations are implemented.
The data values are organized in arrays with 8-bit elements to emulate the target 8-bit
architecture. The model serves as decision-support tool for the choice of the binary field
operations implementation variants. Additionally, this program is used as a golden model
to generate testvectors and ease the debugging.

3.2.2 Protocol

The chosen authentication protocol is a state-of-the art approach based on a Diffie-Hellman
key exchange as described in [8] and illustrated in Figure 3.3. Each tag stores a random
private key ξt and a certificate (xT , st) consisting of the public key xT and the signature
sT . The public key corresponds to the affine x-coordinate of the point T = ξT · P . All
RFID readers know the signature key. There is no need to store any additional secret
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information in the reader.
To establish an authentication of the tag, the reader first picks a random number µ. Then
the reader computes A = µ · P and sends the affine x-coordinate xA of the point A to
the tag. The tag calculates ξT · xA and sends the projective X- and Z-coordinate back to
the reader. Additionally, the tag sends the certificate. The reader performs several checks
with the received data and declares if the authentication of the tag was successful or not.
The approach is very effective, since only one Montgomery multiplication with projective
coordinates is required on the tag.
The presented work does not include the full protocol. Only the Montgomery multipli-
cation is implemented. It is assumed that the challenge has already been received and is
stored in RAM. The value of the challenge test vector will be initialized before starting
the calculation. The results of the scalar multiplication are again written into the RAM.
With the C model the correctness of these values is verified by checking if XcZb = XbZC .
Both, the C model and the assembler implementation perform calculations with different
values of the challenge and the private key.

Figure 3.3: Chosen one-way authentication protocol [8].

3.2.3 Point Multiplication

To establish the authenticity of a tag, the tag has to calculate a point multiplication.
Therefore, a Montgomery multiplication based on the approach described in [8] is used (see
Algorithm 1). The algorithm includes several protections against SCAs. Both branches of
the if-else statement require the same time for execution. Furthermore, several variables
are initialized with a random number.
The generation of the random number is omitted in the presented work. The random
variable is initialized with a constant value.
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Algorithm 1: Montgomery point multiplication (for elliptic curves over F2m).

Input: k = (kt−1, . . . , k1, k0)2 with kt−1 = 1, P = (xp, yp) ∈ E(F2m)
Output: kP

1 pick random value r
2 X1 ← r, Z1 ← 0, X2 ← rxp, Z2 ← r.
3 for i← t− 2 downto 0 do
4 if ki = 1 then
5 T ← Z1, Z1 ← (X1Z2 +X2Z1)

2, X1 ← xZ1 +X1X2TZ2.
T ← X2, X2 ← X4

2 + bZ4
2 , Z2 ← T 2Z2

2 .
6 else
7 T ← Z2, Z2 ← (X1Z2 +X2Z1)

2, X2 ← xZ2 +X1X2Z1T .
T ← X1, X1 ← X4

1 + bZ4
1 , Z1 ← T 2Z2

1 .
8 if ∆(X1, Z1, X2, Z2, xp) 6= 0 then return error else return (X1, Z1)

3.3 Finite Field Operations

The performance of ECC is significantly determined by the field arithmetic [47]. This
section presents the design considerations of the finite field algorithms.

3.3.1 Finite Field Choice

The choice of the underlying finite field is one of the most important decisions when de-
signing an ECC system [47]. Basically there are two options defined in standards: prime
fields GF (p) or binary fields GF (2m) [56].
The hardware support of certain processors to calculate integer multiplication favours the
usage of prime fields, as outlined by [41, 56, 59]. However, Seo et al. demonstrated that
software-based ECC can achieve better performance results, if binary fields are used. The
Ameba does not feature a hardware multiplier. Furthermore, the usage of binary fields
eases future hardware accelerations [41, 47]. As a consequence, binary fields GF (2m) are
chosen.
There are two options for the binary field basis: the normal and the polynomial basis.
The main advantage of normal basis representation is that the squaring is a linear oper-
ation. The squaring can be implemented by a circular shift of the coefficients [84]. The
disadvantage of normal basis is that the multiplication is more complicated. Since an
efficient implementation of the multiplication is essential for the overall performance, the
polynomial basis representation is used in this work.

3.3.2 Binary Field Operations

There are many different ways to implement each binary field operation [4]. This section
reviews a selection of candidate methods and introduces algorithm variants.
To calculate the Montgomery point multiplication the following binary field operations
are required:
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• Addition/subtraction c(z) = a(z)⊕ b(z)

• Reduction c(z) = c(z) mod p(z)

• Multiplication c(z) = a(z) · b(z) mod p(z)

• Squaring c(z) = a(z)2 mod p(z)

Another binary field operation is the inversion c(z) = a(z)−1 mod p(z). The Mont-
gomery multiplication operates with projective coordinates. To recover the affine coordi-
nates out of the projective coordinates would require an inversion. However, the authenti-
cation protocol does not need to recover affine coordinates on the tag. Consequently, the
expensive inversion can be omitted and will not be discussed further.
For the estimation of the runtime of algorithms, the variable t[instruction] presents the time
required to execute an instruction.

3.3.3 Binary Field Element Representation

An element in the field GF (2m) is represented in polynomial basis in the form

a(z) = am−1z
m−1 + ...+ a2z

2 + a1z + a0, ai ∈ {0, 1} [6].

The degree of a polynomial a(z) is written as deg{a(z)} and is the power of the highest
order term in a(z). Thus the maximum degree of a polynomial in the field GF (2m) is
m− 1. Consequently, the associated binary vector a = (am−1, ..., a2, a1, a0) of the polyno-
mial a(z) has the length m. The calculation zka(z) means shifting the vector k-times left.
The degree determines how many bits are required to store the element. Hence, in a W -bit
architecture one element can be stored in an array A with t words, where t = dm/W e [41,
p. 47]. The chosen degree of the elliptic curves in this work is 163, thus t = d163/8e = 21
words are required to store one polynomial field element.
In this thesis, a common notation found in many programming languages is used: A[i]
stands for the ith word of the array storing the vector representation of a(z). As illustrated
in Figure 3.4 the coefficients are stored in descending order, thus the rightmost bit of A[20]
stores a0 and the leftmost unused bits of A[0] are always set to zero.

... a7 … a1 a0

A[20]

a15 … a9 a8

A[19]

 a162 a161

A[0]
0 0 0 0 0 0

Figure 3.4: Representation of a ∈ GF (2163) as an array A of 8-bit words. Adapted from
[41, p. 47].

3.3.4 Polynomial Addition

Adding elements in GF (2m) can be obtained by adding the polynomials and reducing the
coefficients modulo two [41, p. 27]. For example:

a(z) = z3 + z2 + 1, b(z) = z2 + z + 1

c(z) = a(z) + b(z) = z3 + 2z2 + z + 2 mod(2) = z3 + z



CHAPTER 3. DESIGN 48

Addition modulo two can be done with a bitwise Exclusive Or (XOR) operation.
Consequently, the addition above would be calculated in vector representation as follows:

a = 1101

b = 0111

c = 1010

Note, that the addition and subtraction of two elements is the same in binary field arith-
metic. Since the operation needs no carry propagation, it can be implemented with a
word-wise XOR function.

3.3.5 Polynomial Reduction

The results of multiplication and squaring operations are elements with a maximum degree
of (2m − 2). This means that the results have twice the length of a standard element.
Throughout this text such an element is called ”double element”.
The representation of a double element is shown in Figure 3.5. The lower order terms are
stored in A[2t− 1] and the higher order terms in A[0].

 a170 … a168 a7 … a0...0 0 0 0 a175 … a171

A[19]...
 a162 … a160a167 … a163

A[20]
...

A[40]...
 a322 … a320a324, a323

A[0]

Figure 3.5: Representation of a ∈ GF (22m−1), where m = 163 as an array A of 8-bit
words.

Mathematical Background

To reduce the double elements, modular reduction a(z) = ad(z) mod p(z) is used. The
irreducible polynomial p(z) is defined by the domain parameters.
From a mathematical point of view, the result of the modulo calculation is the remainder
of a division by p(z) [42, p. 58–64]. The degree of the remainder is always less than the
prime polynomial. The following example illustrates the paper and pencil method of a
polynomial division:
The polynomial a(z) = z164 + z163 + z6 + z is reduced using the NIST prime polynomial
p(z) = z163 + z7 + z5 + 1 as follows

(z164 + z163 + z6 + 1) : (z163 + z7 + z5 + 1) = z + 1

z164 + z8 + z6 + z

z163 + z8 + z + 1

z163 + z7 + z5 + 1

z8 + z7 + z5 + z

First, the difference n between the degrees of the divisor and prime polynomial is cal-
culated. Then, the divisor is multiplied with zn. In a binary vector representation this
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multiplication is achieved by shifting the vector n times left. The result of the multiplica-
tion is subtracted from the dividend, which cancels out the highest order term.
The next step is to check the degree of the intermediate result and repeating the previous
steps. This is done until the intermediate result has a degree less than the degree of the
divisor. The last calculated subtraction is the remainder.
The ideas of the reduction using a fixed prime polynomial described in [41, p. 53–54;
231–232] form the basis of the reduction algorithms, which are presented below. For an
efficient implementation, the following observation is used:
If p(z) = pmz

m + r(z), then any polynomial ad(z) with deg{ad(z)} ≤ 2m − 2 can be
expressed as

ad(z) = a2m−2z
2m−2 + ...+ a1z + a0

≡ (a2m−2z
m−2 + ...+ am)r(z) + am−1z

m−1 + ...+ a1z + a0 mod p(z)
(3.1)

Hankerson et al. propose to precompute the polynomials zkr(z), where 0 ≤ k ≤W −1
[41, p. 53]. The shifts zjr(z), where j ≥ 8, can be achieved with array indexing. Most
ECC parameters define p(z) so that r(z) is a low-degree polynomial, which leads to small
memory requirements [43]. In this work p(z) is specified so that two bytes can represent
every shift of r(z) denoted by zkr(z), where 0 ≤ k ≤ 7. R denotes the vector representation
of r(z) and R[k] the kth shift of r(z). The higher and the lower byte of R[k] are indicated
by Rh[k] and Rl[k].

Interleaved vs. Stand-alone Reduction

In general, there are two methods to perform the reduction [6]:

• Interleaved reduction: Reduce the intermediate results of a multiplication or squaring

• Stand-alone reduction: Reduce only the final result of a multiplication or squaring

The main advantage of the first option is that the length of the intermediate results is
limited to one single element. Hence, intermediate result can be stored in 21 bytes of
RAM.
Stand-alone reduction reduces only the final result of multiplication and squaring. This
result is a double element and requires 41 bytes storage.

Bitwise Reduction

One state-of-the art reduction method is the bitwise reduction [41]. The higher terms of
a(z) are eliminated by processing all coefficients ai, where i ≥ 163. According to Equation
3.1 the following calculation has to be performed if ai is set [43]:

a(z) = a(z) + r(z) · zi−m

This is achieved by shifting r(z) (i − m) bits left and adding the result to a(z). It is
assumed, that the values R[0], R[1],...,R[7] are precalculated. Shifting a multiple of eight
times, can be achieved by changing the indexes of the array when performing the addition.
Figure 3.6 illustrates the calculation of n = (i−m) for several bits of an array A if W = 8
and m = 163.
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a179

A[19]...

 a162 … a167  a166  a165  a164  a163

A[20]A[18] ...
Array A of 

coefficiants ai

6 5 4 ...

  a170  a169  a168a175  a174  a173  a172  a171  a170  a169  a168  a178  a177  a176...

Position k of bit in word 72 1 03 36 5 472 1 0

n=i-deg{p(z)} 3 2 147 6 58 08+3 8+2 8+18+48+7 8+6 8+5

3

2•8

...

... ...

Figure 3.6: Calculation of n, where n = i − deg{p(z)} = i − 163 to reduce the bit ai by
adding znr(z) to a(z).

For example, if bit a170 is set, then n = 170 − 163 = 7 and thus R[7] is added to A.
More precisely, this means that Rl[7] is added to A[40] and Rh[7] is added to A[39]. When
considering the next bit a171, then n = 171− 163 = 8. The required shifting is done with
indexing. This means that, Rh[0] is added to A[39] and Rl[0] to A[38].
It is assumed that the values are equally distributed and thus every second bit is one.
The control overhead is estimated to be 20%. Thus the calculation time is estimated as
follows: tred bitwise = [21tLD + 163 · (tSEQB + tJNE + 1

2(2tLD + 2tXOR + 2tST ))]1.2 ≈ 1, 005
cycles

Bytewise Reduction

To achieve a faster runtime, the author of this work proposes an approach to perform the
reduction bytewise.
When looking at an illustration of the reduction procedure described above (see Figure
3.7), one can observe that it is necessary to change three bytes of A to reduce one byte.

More specifically, for the reduction of one byte A[i], where i ≤ 19, which is presented
by the bits {a7, ..., a1, a0}, it is necessary to perform the following calculations:

A[i+ 21] ← A[i+ 21]⊕R0(a2, a1, a0) (3.2)

A[i+ 20] ← A[i+ 20]⊕R1(a2, a1, a0)⊕R2(a7, ..., a4, a3) (3.3)

A[i+ 19] ← A[i+ 19]⊕R3(a7, ..., a4, a3) (3.4)

The functions R0 and R1 depend on least significant three bits of the byte A[i]. The value
of the other two functions R2 and R3 is determined with the most significant five bits of
A[i].

The values of R0, R1 and R2 can be determined, as stated below:

R0(a2, a1, a0) = a2 ·Rl[7]⊕ a1 ·Rl[6]⊕ a0 ·Rl[5]

R1(a2, a1, a0) = a2 ·Rh[7]⊕ a1 ·Rh[6]⊕ a0 ·Rh[5]

R2(a7, ..., a4, a3) = a7 ·Rl[4]⊕ a6 ·Rl[3]⊕ a5 ·Rl[2]⊕ a4 ·Rl[1]⊕ a3 ·Rl[0]

R3(a7, ..., a4, a3) = a7 ·Rh[4]⊕ a6 ·Rh[3]⊕ a5 ·Rh[2]⊕ a4 ·Rh[1]⊕ a3 ·Rh[0] (3.5)

The used r(z) is defined so that the value ofR3(a7, ..., a4, a3) always equals to {a7, ..., a4, a3}.
There are several options how to determine R0, R1 and R2. They could be either calculated
at runtime or implemented as a Look Up Table (LUT) in Read Only Memory (ROM).
Different implementation variants are discussed below.
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... c7 … c0

C[40]
c15 …  c8

C[39]C[20] C[38]
c15 …  c8c167…c163

RlRh

⊕

Rh[1]

c163 (=bit 3 of C[20]) • 

...

Rl[4]Rh[4]

⊕

⊕...

⊕

Rl[5]Rh[5]

⊕

⊕

Rl[7]Rh[7]
⊕

Rl
⊕

...

Rl[7]Rh[7]

⊕

⊕

...

a7 … a0

c(z) mod p(z)

...

Rl[1]

Rh

c159 …  c151

C[21]

... c7 … c0c15 …  c8c15 …  c8c167 … c163 c159 …  c151  c162 ...c160

  c162...c160

⊕

...
⊕

Rl[4]
⊕

Rh[4]
⊕

...
⊕

Rl[6]Rh[6]

R0R1

R2

c164 (=bit 4 of C[20]) • 

c167 (=bit 7 of C[20]) • 

c168 (=bit 0 of C[19]) • 

c169 (=bit 1 of C[19]) • 

c170 (=bit 2 of C[19]) • 

c171 (=bit 3 of C[19]) • 

c175(=bit 7 of C[19]) • 

c322(=bit 2 of C[0]) • 

...

⊕

R3

Figure 3.7: Illustration of required additions for bytewise reduction.

Variant 1 One option is to store the different possible values of R0, R1 and R2 in LUTs.
Table red low lut could store R0 in the lower bytes and R1 in the higher bytes. The values
of the table are addressed by the bits {a2, a1, a0}.
Additionally, the different values of R2 could be stored in a separate table red high lut,
which is addressed with the five bits {a7, ..., a4, a3}. This address can be calculated by
shifting C[i] three bits to the right, which corresponds to R3. Algorithm 2 illustrates this
procedure.

Algorithm 2: Reduction using two LUTs.

1 for i← 0 to 19 do
2 l← A[i] & 0x07
3 h← A[i]� 3
4 A[21 + i]← A[21 + i]⊕ red low lut(l)highbyte
5 A[20 + i]← A[20 + i]⊕ red low lut(l)lowbyte

6 A[20 + i]← A[20 + i]⊕ red high lut(h)highbyte
7 A[19 + i]← A[19 + i]⊕ h
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Ameba does not support a shift-right instruction, thus line 3 is realized with five rotate
left instruction and clearing the upper three bits with an AND. The runtime of Algorithm
2 is estimated as follows:

tlines2,3 = tLD + 2tAND + 5tROL = 8 cycles

tlines4,5,6 = 3 · (tLD + tMOV CH/MOV CL + tXOR + tST ) = 15 cycles

tline7 = tLD + tXOR + tST = 3 cycles

tred v1 = 20 · (tlines2,3 + tlines4,5,6 + tlines8...1) + tlines8...11 ≈ 520 cycles (3.6)

The overhead for pointer calculation is approximated by tpointer = 100 cycles. Inclusive
control overhead, the estimated execution time of this variant is

talgo v1total = (talgo2 + tpointer) · 1.2 ≈ 745 cycles (3.7)

The ROM size required for each half of the LUT red low lut is 23 bytes. The table
red high lut requires 25 bytes. Hence, the total LUT size is 48 bytes.

Variant 2 Another option is to combine R1 and R2 in a new table called red r4 lut that
stores

R4(a7, ..., a1, a0) = R1(a3, a2, a1)⊕R2(a7, ..., a4, a3). (3.8)

This table stores 28 possible values of R4, which are addressed by the bytes of A. This
means that lines 5 and 6 of Algorithm 2 could be replaced by

A[20 + i]← A[20 + i]⊕ red r4 lut(l)lowbyte. (3.9)

The execution time of tlines4,5,6 can be estimated as

tlines4,5,6 = 2 · (tLD + tMOV CH/MOV CL + tXOR + tST ) = 10 cycles.

(3.10)

These lines have been accelerated by five clock cycles and are executed 20 times. Thus
the total runtime is reduced by 100 cycles. Considering the control overhead, the runtime
of this variant is estimated as follows:

talgo v2total = (tred v1 − 100 cycles+ tpointer) · 1.2 ≈ 625 cycles (3.11)

The lower bytes of the table red low lut and the table red r4 lut require 28 = 256
bytes. To sum it up, 264 bytes for the LUTs are necessary for this reduction variant.

Variant 3 The fastest variant is to determine all values of R0, R4 and R3 with LUTs.
Each table requires 256 bytes. Thus, 768 bytes have to be stored in ROM. The required
R0, R3 and R4 can be looked up in tables without the need to manipulate the current
processed byte of A. Thus, the lines 2 to 7 of Algorithm 2 could be replaced by the
following calculations:

a ← A[i]

A[21 + i] ← A[21 + i]⊕ red r0 lut(a)

A[20 + i] ← A[20 + i]⊕ red r4 lut(a)

A[19 + i] ← A[19 + i]⊕ red r3 lut(a) (3.12)
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The following runtime is expected

txorLUT = tLD + 3(tLD + tMOV CH/MOV CL + tXOR + tST ) = 16 cycles. (3.13)

The total runtime of this variant is approximately:

tred v3 = 20 · (txorLUT ) ≈ 320 cycles (3.14)

Considering the control overhead and pointer calculations, this results in the following
estimated runtime:

tred v3total = (tred v3 + tpointer) · 1.2 ≈ 505 cycles (3.15)

Comparison of Reduction Methods

Both time and storage requirements have to be considered when choosing the reduction
algorithm. Looking at Table 3.3, the word-wise reduction variant 2 offers a good trade-off
and is thus chosen for implementation.

Method Time [Cycles] LUT [Byte]

Bitwise 1,005 0

Wordwise variant 1 745 48

Wordwise variant 2 625 264

Wordwise variant 3 505 768

Table 3.3: Comparison of stand-alone reduction methods regarding approximated execu-
tion time and ROM storage requirements.

3.3.6 Polynomial Multiplication

Multiplication accounts for the majority of runtime and should be implemented in an
efficient way [64].
The multiplication of two polynomials a(z) and b(z) can be written as

c(z) = a(z) · b(z) = am−1z
m−1b(z) + ...+ a2z

2b(z) + a1zb(z) + a0b(z) [41, p. 48].

The most straight-forward method for GF (2m) multiplication is the shift-and-add algo-
rithm [43]. To multiply two polynomials a(z) and b(z), the product c(z) is first set to zero
if a0 = 0 or to b(z) if a0 = 1. Then the algorithm scans the bits of a(z) from a1 to am−1.
Whenever a bit of a(z) is processed, b(z) is shifted to the left by one bit. If the scanned
bit in a(z) is one, the new value of b(z) is added to the product c(z). Typically, a hard-
ware implementation can shift the whole element in one clock cycle. Thus this method
is well-suited for a hardware implementation. A software implementation requires many
memory accesses to perform the shift. This results in a poor performance. Therefore, this
section presents more efficient methods for a polynomial multiplication in software.
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Left-to-right multiplication

The left-to-right (l-t-r) multiplication is based on the observation that if zkb(z) has been
computed for k ∈ [0,W−1], then zWj+kb(z) can be determined by appending j zero words
to the right of the vector zkb(z) [41, p. 53–54]. This observation is used to reduce the
number of required shifts from (m− 1) to (W − 1).
The approach is shown in Algorithm 3. Unlike the shift-and-add algorithm, which scans
the bits in a(z) one by one sequentially, the l-t-r algorithm first tests the most significant
bit of all the words in a(z) from A[t − 1] to A[0]. If the scanned bit is one, the shifted
value of b(z) is added to c(z). Note, that c(z) + b(z) · zjW can be performed by aligning
b(z) with proper words in c(z). Then the product c(z) is shifted left by one bit. Then the
second most significant bit is processed, and so on.

Algorithm 3: Left-to-right polynomial multiplication. Adapted from [41, p.50].

Input: Binary polynomials a(z) and b(z) of degree at most m− 1
Output: c(z) = a(z) · b(z)

1 C ← 0
2 for k ← 7 to 0 do
3 for j ← t− 1 to 0 do
4 if kth bit of A[j] is 1 then
5 for i← 0 to t− 1 do C[i+ j]← C[i+ j]⊕B[i]

6 if k 6= 0 then C ← C · z

Runtime estimation The first step in Algorithm 3 is to initialize all words of c(z) to
zero and requires tresetC = 41 · tST = 41 cycles.
The check in line 4 can be achieved by the following steps:

• load A[j]

• check if the bit is set with a SEQB instruction

• skip the four-loop with a JNE instruction if the bit is not set

Hence, inclusive pointer addition the runtime for this line can be estimated as follows:

tcheckbit = tLD + tSEQB + tJNE + tADD = 5 cycles.

The addition in line 5 requires twordadd = 2tLD + tXR + tST + 2tADD = 6 cycles.
The shift in line 6 could be implemented in Ameba as follows:

LD R1, address of C[n]

SEQB R2, #7

MOV R2, R1

SL R1

ADD R1, #0 (add carry)

ST R1, address of C[n]
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Therefore, the runtime of shifting a double element is approximately:

tshiftC = 41 · (tLD + tSEQB + tMOV + tSL + tADD + tST ) ≈ 250 cycles.

Assuming that every second bit is one and 20% control overhead, the runtime of this
approach is approximated as follows:

tl−t−r = (tresetC + 8 · 21(tcheckbit + 1
2 · 21 · twordadd) + 7 · tshiftC) · 1.2 ≈ 15, 830 cycles.

The result is 41 byte long and has to be reduced with a stand-alone-reduction algorithm.
Hence, the total runtime is approximately

tl−t−rtotal = tl−t−r + tred v2total ≈ 16, 455 cycles.

Left-to-right Multiplication with Windows

At the expense of some storage overhead, the l-t-r multiplication method can be accelerated
[85]. The multiplication u(z) · b(z) for all polynomials u(z) of degree less than the window
size W is calculated (see Algorithm 4) [41, p.50-51].
Then the algorithm steps through all words of a(z). If a window size of w is chosen, the
windowing method processes w bits of every word at once. The processed w bits of a word
of A represent the coefficients of u(z). According to this u(z), the appropriate Bu is added
to C. After processing the first window of every word, the result is shifted left by w bits.
This procedure is repeated until all windows are processed.
The choice of w comes with a trade-off between memory requirements and performance.
The number of precalculated elements is 2w−1. A small w leads to low RAM requirements,
but has a negative impact on the performance, since the loop at line 3 of Algorithm 4 is
executed more often.

Algorithm 4: Left-to-right multiplication with windows of width w [41, p.50].

Input: Binary polynomials a(z) and b(z) of degree at most m− 1
Output: c(z) = a(z) · b(z)

1 C ← 0
2 Compute Bu = u(z) · b(z) for all polynomials u(z) of degree at most w − 1
3 for k ← (W/w)− 1 to 0 do
4 for j ← t− 1 downto 0 do
5 Let u = (uw−1, ..., u1, u0), where ui is bit (wk + i) of A[j]
6 for i← 0 to t− 1 do C[i+ j]← C[i+ j]⊕Bu[i]

7 if k 6= 0 then C ← zw · C

Example: An example of a l-t-r multiplication with w = 4 is presented below. The
vector of a(z) is shown in Figure 3.8. The factor b(z) can take any value in GF (2163).

... 1101  0010

A[20]

 0000  0110

A[0] A[1]

0101 1100

Figure 3.8: Value of factor a(z) for l-t-r multiplication with windows example.
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In the precalculation phase 15 elements are calculated and stored in RAM. Table
3.4 shows the polynomial, binary vector and integer representation of the precalculated
elements.

Precalculated Representation
Element bu Polynomial Binary vector Integer

b1 b(z) 0001 · b 1 · b
b2 z · b(z) 0010 · b 2 · b
b3 (z + 1) · b(z) 0011 · b 3 · b
b4 z2 · b(z) 0100 · b 4 · b
b5 (z2 + 1) · b(z) 0101 · b 5 · b

...

b15 (z3 + z2 + z + 1) · b(z) 1111 · b 15 · b

Table 3.4: Precalculated elements of l-t-r multiplication with windows example.

After the precalculation, four bits of every word determine u. The words are processed
as follows:

• The outer loop in line 3 of Algorithm 4 starts with k = 1:

– Process A[0]⇒ u = 0000⇒ continue

– ProcessA[1]⇒ u = 0101⇒ add (B5[0], B5[1], ..., B5[20]) to (C[19], C[20], ..., C[40])

– ...

– ProcessA[20]⇒ u = 1101⇒ add (B13[0], B13[1], ..., B13[20]) to (C[0], C[1], ..., C[20])

• Shift all words of C four times left (see line 7 of Algorithm 4)

• Repeat the loop with k = 0:

– ProcessA[0]⇒ u = 0110⇒ add (B6[0], B6[1], ..., B6[20]) to (C[20], C[21], ..., C[41])

– ProcessA[1]⇒ u = 1100⇒ add (B12[0], B12[1], ..., B12[20]) to (C[19], C[20], ..., C[40])

– ...

– ProcessA[20]⇒ u = 0010⇒ add (B2[0], B2[1], ..., B2[20]) to (C[0], C[1], ..., C[20])

Multiplication with Windows of Width w=2 The l-t-r multiplication with windows
of width w = 2 is illustrated in Algorithm 5. Three 21-byte elements (B1, B2 and B3)
have to be precalculated and stored in RAM. This means that, including the storage
requirement for the result, 104 bytes of RAM is needed. Thereafter, the algorithm steps
through all words of a(z) and processes two bits each time.

The runtime of the algorithm can be estimated as described below.
Copy one element to another (see line 3 of Algorithm 5) requires about

tcopy = 21(tLD + tST + 2tADD) = 84 cycles
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Algorithm 5: Left-to-right multiplication with windows of width w = 2.

Input: Binary polynomials a(z) and b(z) of degree at most m− 1
Output: c(z) = a(z) · b(z)

1 C ← 0
2 B0 ← 0
3 B1 ← B
4 B2 ← B · z
5 B3 ← B2 ⊕B1

6 for d← 3 downto 0 do
7 for j ← t− 1 downto 0 do
8 switch d do
9 case 0 u← A[j] & 0x03

10 case 1 u← (A[j] & 0x0C)� 2
11 case 2 u← (A[j] & 0x30)� 4
12 case 3 u← (A[j] & 0xC0)� 6

13 for i← 0 to t− 1 do
14 C[i+ j]← C[i+ j]⊕Bu[i]

15 if d 6= 0 then
16 for j ← 0 to 1 do
17 C ← z2 · C

// Shift C � 2

The shift operation in line 4 operates on 21 bytes and can be approximated with tshift
as follows:

tshift = tshiftC/2 = 125 cycles.

The addition in line 4 is a simple word-wise addition and thus the whole precalcuation
requires approximately:

tprecalc = tcopy + tshiftC/2 + 21 · twordadd = 335 cycles.

Again, the shift-right operations in lines 11 to 12 have to be realized with ROL instruc-
tions. These runtimes are estimated as follows:

tline9 = tLD + tAND = 2 cycles.
tline10 = tLD + tAND + 6tROL = 8 cycles.
tline11 = tLD + tAND + 4tROL = 6 cycles.
tline12 = tLD + tAND + 2tROL = 4 cycles.

The runtime including 20 % control overhead is approximately:

tltr w2 = [tresetC+tprecalc+21·(tline9+tline10+tline11+tline12+4·21·twordadd)+3·tshiftC ]·1.2
≈ 14, 555 cycles.

The total runtime inclusive stand-alone reduction can be estimated as follows:

tltr w2 total = tltr w2 + tred v2total = 15, 180 cycles.

The runtime approximation shows that a speed-up compared to the l-t-r method with-
out windows can be achieved.
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Multiplication with Windows of Width w=4 The performance can be improved
further by increasing the window with to w = 4. Then the algorithm steps through all
words of a(z) only twice, but requires 15 precalculated elements. Thus, 315 bytes of RAM
are needed.
Algorithm 6 shows the determination of all Bu, where u is even. The remaining Bu can be
calculated as shown in Algorithm 7. The remaining procedure is the same as in Algorithm
4.

Algorithm 6: Precalculation of even Bu = u(z) for window multiplication with
width w = 4.

Input: Binary polynomial b(z)
Output: bu = b(z) · u(z) for all u(z)
with even degree lower than 4

1 B1 ← B
2 B2 ← B · z
3 B4 ← B2 · z
4 B6 ← B2 ⊕B4

5 B8 ← B4 · z
6 B10 ← B8 ⊕B2

7 B12 ← B8 ⊕B4

8 B14 ← B12 ⊕B2

Algorithm 7: Precalculation of odd Bu = u(z) for window multiplication with width
w = 4.

Input: Binary polynomial b(z)
Output: bu = b(z) · u(z) for all u(z)
with even degree lower than 4

1 for u← 1 to 7 do
2 B2u+1 ← B2u ⊕B1

The runtime of the precalculation is estimated as follows:

tprecalceven = 4 · 21 · twordadd + 3 · tshift ≈ 950 cycles

tprecalcodd = 72̇1 · twordadd ≈ 880 cycles.

The shift in line 6 of Algorithm 4, where w = 4, is achieved by shifting every byte of
C four bits left. With Ameba this is realized by executing a rotate-left instruction four
times. Then the upper nibble of the byte already represent the right values and lower
nibble equals the carry to the next byte. The estimated runtime of the shift operation
overhead is

tshift4C = 41 · (tLD + 4tROL + 2tMOV + 2tAND + tOR + tST ) ≈ 375 cycles.
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Assuming a control overhead of 20% the runtime is approximately

tltrw4 = [treset+tprecalcodd +tprecalceven +21 ·(tAND+4 ·tROL+ ·2 ·21 ·twordadd)+tshift4C ] ·1.2
≈ 9, 170 cycles.

Considering the state-alone reduction the runtime increases to:

tltrw4total = tltrw4 + tred v2total = 9, 795 cycles.

The estimation shows that increasing the windowsize achieves a significant performance
increase.

Adapted Left-to-right Multiplication with Windows

The author of this work designed an algorithm to reduce the storage requirement of the l-t-r
multiplication and provide a better performance/storage trade-off. This can be achieved by
performing fewer precalculations and calculating more on runtime as shown in Algorithm
8.
The idea is to ignore the last term of u(z) during precalculation phase. Thus, only Bu

satisfying

deg{u(z)} < w and u(z) = uw−1z
w−1 + ...+ u2z

2 + u1z + 0z0

are determined. In vector representation this means that Bu, where u is even and B1, are
precalculated. As a consequence, only (2w/2− 1 + 1) = 2w−1 elements have to be stored.
The inner loop has to be executed only W/w times. If the processed window of a(z) is
even, it is necessary to add the corresponding Bu, to the accumulator c(z). If the value of
the window is odd, the last bit of u is set to zero for the determination of the required Bu.
Additionally, the value of B1 is added to c(z). This can be done efficiently, since every
manipulated word of c(z) has to be loaded and stored only once.

Algorithm 8: Adapted window method with windows of width w.

Input: a(z) and b(z) of degree at most m− 1
Output: c(z) = a(z) · b(z) of degree at most 2m− 2

1 C ← 0
2 Compute bu = b(z) · u(z) for all u(z) with even degree lower than w − 1
3 for k ← (W/w)− 1 downto 0 do
4 for j ← t− 1 downto 0 do
5 Let u = (uw−1, ..., u1, 0), where ui is bit (wk + i) of A[j]
6 if bit wk of A[j] is set then
7 if u = 0 then u← 1
8 for i← 0 to t− 1 do C[i+ j]← C[i+ j]⊕Bu[i]

9 else if u 6= 0 then
10 for i← 0 to t− 1 do C[i+ j]← C[i+ j]⊕B1[i]⊕Bu[i]

11 if k 6= 0 then C ← zw · C
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Example: The example value of A is shown in Figure 3.8 at page 59.
First B1, B2, B4, B6, B8, B10, B12 and B14 are precalculated as shown in Table 3.4.
Thereafter, three bits of every word are considered to determine u as follows:

• The outer loop in line 4 of Algorithm 8 starts with k = 1:

– Process A[0]⇒ u = 000⇒ bit 4 of A[0] is not set ⇒ continue

– Process A[1]⇒ u = 010⇒ bit 4 of A[1] is set⇒ add (B4[0], B4[1], ..., B4[20])⊕
(B1[0], B1[1], ..., B1[20]) to (C[19], C[20], ..., C[40])

– ...

– ProcessA[20]⇒ u = 110⇒ bit 4 ofA[20] is set⇒ add (B13[0], B13[1], ..., B13[20])⊕
(B1[0], B1[1], ..., B1[20]) to (C[0], C[1], ..., C[20])

• Shift all words of C four times left

• Repeat the loop with k = 0:

– Process A[0]⇒ u = 011⇒ bit 0 of A[1] is not set⇒ add (B6[0], B6[1], ..., B6[20])
to (C[20], C[21], ..., C[41])

– ProcessA[1]⇒ u = 110⇒ bit 0 ofA[1] is not set⇒ add (B12[0], B12[1], ..., B12[20])
to (C[19], C[20], ..., C[40])

– ...

– ProcessA[20]⇒ u = 001⇒ bit 0 ofA[1] is not set⇒ add (B2[0], B2[1], ..., B2[20])
to (C[0], C[1], ..., C[20])

Runtime Analysis First, the general runtime of the new multiplication method is
analyzed. Thereafter, the runtime of an Ameba implementation with a window size of
w = 4 is approximated.
The performance of the precalculation was accelerated from O(2wt) to O(2w−1t) and is
twice as fast.
The runtime of the addition loop of the left-to-right multiplication is estimated to be
O(Ww t

2). Below, the average, worst and best case of the runtime of the adapted additions
in the loop are approximated.

Average Case For the average case estimation, it is assumed that the values of A
are equally distributed (which should be the case in cryptography, where the values are
like random values). Thus in the average case bit wk of the words A is set every second
time, which causes an additional addition. Thus, the addition loop of the adapted version
(lines 3 to 10 of Algorithm 8) requires a runtime of

O(Ww t(
1
2 t+ 1

22t)) = O(Ww
3
2 t

2).

This means that the runtime of the addition loop is in average case 1.5 times slower as the
state-of-the art windowing approach. However, the storage requirement is reduced almost
by a half.
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Worst Case In the worst case the bit wk of every word in A, and every possible value
of w is set. This means that each iteration of the addition loop requires one additional
addition of B1 and thus the runtime is:

O(Ww t(2t)) = O(2W
w t

2).

In the worst case the runtime is two times slower as the state-of-the-art approach.

Best Case In the best case bit wk of every word in A, and every possible value of
w is zero. Since no further additions are required, the runtime stays the same.

Adapted Multiplication with Windows of Width w=4 When using a window size
of four, only eight elements (168 bytes) have to be stored in RAM.
The runtime estimation can be done similarly to the left-to-right window method with
w = 4. Additionally the check of the bit wk of the current processed word of A has to be
considered. A SEQB and a conditional jump-instruction can realize the if-branch in line 6
of Algorithm 8. It is assumed the check is fulfilled every second time.
The overall runtime can be approximated as follows:

tltr adapted w4 = (treset + tprecalceven + 2 · 21 · (4tROL + tAND + tSEQB + tJNE + 1
2 · (4 ·

tROL + +tAND) + 21 · (12 tadd + 1
2 · (2 + tadd)) + tshift4C) · 1.2 ≈ 9, 400 cycles.

Inclusive the stand-alone reduction one adapted multiplication requires approximately:
tltr adapted w4 total + tred v2 total = 10, 025 cycles.

This means that this approach is estimated to be about 20% slower than the standard
windowing method with windows of a width w = 4. However, the storage requirement for
the precalulated values has been reduced by almost a half.

Comparison of Polynomial Multiplication Methods

Table 3.5 shows a comparison between different polynomial multiplication methods. To
implement the fastest multiplication method 356 bytes of RAM are required. Since the
goal is to implement ECC with very small silicon-footprint this storage requirement is
considered to be too high.
The windowing method with windows of width w = 2 and the adapted window method
with windows of width w = 4 offer good storage/performance trade-offs. Thus, these two
variants will be implemented and evaluated.

Method Time [Cycles] Data Memory [Byte]

Left-to-right 15,180 41

Window Method (w=2) 16,075 104

Windows Method (w=4) 9,795 356

Adapted Window Method (w=4) 10,025 209

Table 3.5: Comparison of variants of the left-to-right polynomial multiplication algorithm.
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3.3.7 Polynomial Squaring

Squaring of a polynomial can be achieved much faster than multiplying two polynomials,
due to the following fact [41, p. 52]:
If a(z) = am−1z

m−1 + ...+ a2z
2 + a1z + a0, then

a2(z) = am−1z
2m−2 + ...+ a2z

4 + a1z
2 + a0

A binary vector representation of a2(z) can be determined by inserting zeros between two
consecutive bits of the binary representation of a(z).
Several variants of squaring with stand-alone and interleaved reduction are discussed be-
low.

Squaring with Stand-alone Reduction

This method first expands an array A to the 41-byte counterpart A2 by inserting zeros
between two consecutive bits of the vector representation. Thereafter, A2 is reduced with
the stand-alone reduction method. An efficient way to expand the element is to use a
LUT [41, p. 52]. Different variants concerning the size of the LUT are discussed below.

Variant 1 A 512 byte LUT can be used to hold the expanded 16-bit value of every
possible 8-bit binary vector. The resulting 16-bit value can be stored in the higher and
lower byte of the table.
Consequently, to extend one byte of A it is necessary to load this byte, fetch the corre-
sponding higher and lower bytes from the LUT and store them into the result array A2.
Thereafter, the expanded array A2 is reduced with the stand-alone reduction method.
To address the bytes of A and A2 several pointer additions are necessary. When accessing
the ROM the DPH of the Ameba has to be set to the startaddress of the LUT with a
MOV instruction. Afterwards the RAM is accessed and thus the DPH has to be resetted
again. In sum, this requires four MOV instructions. The runtime can be estimated as
follows:

tsquare sa v1 = 21(tLD + tMVCL + tMV CH + 2tST + 3tADD + 4tMOV ) = 315 cycles.

Estimating 20% control overhead and using the stand-alone reduction variant 2 as de-
scribed in section 3.3.5, the following runtime is estimated:

tsquare sa v1total = tsquare sa v1 · 1.2 + tred v3total ≈ 1, 005 cycles.

Variant 2 Another approach is to expand every nibble of a byte separately to eight
bits. A 32-byte LUT is necessary to expand four bits to one byte. Again, the procedure
processes every byte as shown in Algorithm 9. The shift-right operation in line 3 can be
implemented with four rotate-left instructions.

The runtime of this method, can be estimated similar to the variant described above:

tsquare sa v2 = [21 · (tLD + 2tMVCL + 5tMOV + 2tAND + 4tROL + 2tST + 3tADD)] · 1.2 ≈
530 cycles.
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Algorithm 9: Squaring with stand-one reduction. The 32-bythe LUT square table
contains 8-bit counterparts with inserted zeros between consecutive bits of a 4-bit
value.

Input: c(z) = {cm−1zm−1 + · · ·+ c1z + c0}
Output: c2(z)

1 for i← 20 downto 0 do
2 C[2i− 20]← square table[C[i] & 0x0F ]
3 C[2i− 21]← square table[C[i] >> 4]

4 C[0]← square table[C[10] & 0x03]
5 Stand-alone reduction of C

Considering the time for the stand-alone reduction, the performance of this variant is
approximately:

tsquare sa v2 total = tsquare sa v2 + tred v3 total ≈ 1, 155 cycles.

Although the estimated runtime of this variant is higher, it needs 480 bytes less storage
for the LUT.

Squaring with Interleaved Reduction

The author of this work proposes an approach for squaring with interleaved reduction
using the fact that every second bit is zero. The lower half of the vector representation

a(m−1)/2z
(m−1)/2 + ...+ a1z + a0

stored in A[ t−12 ]...A[t−1] is expanded with LUTs similar to the squaring with stand-alone
reduction. The result is the array A2[0]...A2[t − 1]. If a 16-bit LUT is used, then the
execution time of this step is approximately:

tsquare int step1 = tsquare sa v2 total/2 ≈ 265 cycles.

The reduction is performed interleaved with a reduction rule similar to the standard
reduction. If one bit ki of A[j], where j ≤ 10, should be squared and reduced interleaved,
it is necessary to add Rh[n] to A[indexhigh] and Rl[n] to A[indexlow] according to Table
3.3.7.

i 0 1 2 3 4 5 6 7

n 5 7 1 3 5 7 1 3

indexlow 2j 2j-1 2j-1 2j-2

indexhigh 2j+1 2j 2j 2j-1

Table 3.6: Interleaved reduction rule for squaring.

It can be seen that five bytes have to be manipulated to reduce one byte. More
precisely, to reduce A[j] represented by the bits {a7, ..., a1, a0}, the following calculations
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A[11]

   a95   a94   a93   a92   a91   a90  a89  a88

 a178 0  a176

... ...

Array A² of 

coefficiants aj
0 a1800 a1820 a1840 a1860 a1880 a1900 ......

Position k of bit in word 7 6 5 4 3 2 1 0

A[22]A[23]

Array A of 

coefficiants ai

d=j-deg{p(z)} 8+58+72•8+12•8+32•8+52•8+73•8+13•8+2

Figure 3.9: Squared counterpart of byte A[11] and determination of the corresponded
reduction rule. To reduce the squared bit of ai the binary vector representation of r(z)
has to be shifted d times left and added to A2.

have to be performed:

A[2j + 1] ← A[2j + 1]⊕Rs0(a1, a0)

A[2j ] ← A[2j ]⊕Rs1(a5, ..., a1, a0)

A[2j − 1] ← A[2j − 1]⊕Rs2(a7, ..., a3, a2)

A[2j − 2] ← A[2j − 2]⊕Rs3(a7, a6) (3.16)

The values of Rs0, Rs1 and Rs2 can be obtained as follows:

Rs0 = a1 ·Rh[7]⊕ a0 ·Rh[5]

Rs1 = a5 ·Rh[7]⊕ a4 ·Rh[5]⊕ a3 ·Rh[3]⊕ a2 ·Rh[1]

⊕ a1 ·Rl[7]⊕ a0 ·Rl[5]

Rs2 = a7 ·Rh[3]⊕ a6 ·Rh[1]⊕ a5 ·Rl[7]⊕ a4 ·Rl[5]

⊕ a3 ·Rl[3]⊕ a2 ·Rl[1]

Rs3 = a7 ·Rl[6]⊕ a6 ·Rl[1]

Similar to the standard reduction operation, there are several variants to implement
the calculation of Rs0, Rs1, Rs2 and Rs3.

Variant 1 The first option is to calculate the values of Rs0, ..., Rs3 at runtime. It is
assumed that the values of Rh[0],...,Rh[7] and Rl[0],...,Rl[7] are stored as constants. To
determine Rs0,...,Rs3 all bits of the current processed word of A are scanned. The values
of Rs0,...,Rs3 are stored in temporary registers. If the current processed bit is one, the
corresponding value of Rh or Rl is XORed to the registers according to Equation 3.17.
For example the code segment written in Ameba assembler to perform the calculation
Rs0 ← Rs0 ⊕ a1 ·Rh[7] could look like:

LD Rc, C[j]

SEQB Rc, #1

JNE next calculation
XOR Rs0, #value of Rh[7]
...
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The runtime of this code segment can be estimated as taddR = 4 cycles.
As a result the runtime to calculate Rs0, ..., Rs3 can be approximated as follows:

tRs0 = 2taddR = 8 cycles

tRs1 = 6taddR = 24 cycles

tRs2 = 6taddR = 24 cycles

tRs3 = 2taddR = 8 cycles (3.17)

Considering the load and store instructions, pointer additions and overhead required
for Equation 3.16 and the first step for squaring, the estimated runtime of this variant is

tsquare int v1 = 10 · (5tLD + 4tST + 4tADD + tRs0 + tRs1 + tRs2 + tRs3) · 1.2
+ tsquare int step1 ≈ 1, 420 cycles (3.18)

Variant 2 The usage of LUTs can accelerate the interleaved squaring method. The
calculation of Rs1 and Rs2 require many cycles. One option is to store the values of Rs1

in the lower column and Rs2 in the higher column of a LUT. This requires 128 bytes of
ROM.
Then the runtimes tRs1 and tRs2 are tMOV CL/MOV CH +2tMOV = 4cycles. Performing the
same estimation as in Equation 3.18 with the new values of tRs1 and tRs2, the runtime is
approximated as follows:

tsquare int v2 = ≈ 930 cycles (3.19)

The runtime of this option is estimated to be about 40% faster than the first variant.

Comparison of Squaring Methods

Since interleaved reduction do not extend the result to a double element, this method is
used. The second interleaved reduction variant seems to offer the best trade-off between
the ROM size and execution time.

Method Time LUT [Byte]

Stand-alone V1 850 512

Stand-alone V2 1,010 32

Interleaved V1 1,470 32

Interleaved V2 920 160

Table 3.7: Comparison of squaring methods.
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3.4 Virtual Addressing

Typically, acceleration of ECC is achieved by dedicated coprocessors or instruction set ex-
tension (ISE). Here, the author of this work explores an innovative acceleration approach
by using Virtual Addressing (VA).
Many procedures access memory consecutively causing many pointer calculations. This
could be avoided by encoding the manipulated memory positions with fixed values. How-
ever, this would require duplicated code, which would increase the code size enormously.
Virtual addressing allows to write a code segment with fixed virtual addresses without
significantly increasing the code size.
Typically, a microprocessor has an address bus (addr o) and a data bus (data o), which
are directly connected to RAM as shown in the upper part of Figure 3.10. In case of a vir-
tual addressing, additional logic is implemented between the microprocessor and the RAM.

Microprocessor

Microprocessor RAM

RAM

addr_o addr_i

data_o data_i

addr_o addr_o addr_i

data_idata_o data_o

Without Virtual Addressing

With Virtual Addressing

Virtual 

Address 

Logic

Figure 3.10: Principle of Virtual Addressing. By default the output-address of the micro-
processor is connected to the RAM. Virtual addressing manipulates the address before it
forwards it to the RAM.

3.4.1 Address Organization

The Ameba is able to address 256 bytes of memory using a single load or store instruc-
tion. To increase the memory space an additional data pointer is available (DPH), which
determines the upper bits of the memory address. In this work two memory banks of 256
bytes are used.
The temporary values of the Montgomery multiplication are stored in the lower bank. The
upper bank is used by the polynomial multiplication.

3.4.2 Virtual Addressing for Addition, Copying and Resetting

A Virtual Element (VE) represents continuous address range of 21 words. The virtual ad-
dressing logic maps these addresses to 21 adjoined physical words. The conversion between
virtual element and physical addresses is influenced by parameters. These parameters can
be set from the microprocessor by writing to certain addresses.
Figure 3.11 shows the principle of VA.

The parameters element0 and element1 indicate to which addresses the VEs point to.
The remaining parameters are used for polynomial multiplication and will be discussed
later in this section.
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Figure 3.11: Virtual addressing with two virtual elements and six parameters.

The VA allows to write procedures with fixed addresses of the VEs. An example of an
addition using the VA is shown in Algorithm 10. Virtual addressing can also be used for
copying one element to the position of another and initializing elements.

Algorithm 10: Addition of binary field elements with virtual addressing.

Output: X1 = X1 + Z1

1 MOV r0, #20 // loop counter

2 ST #6, ELEMENT0 SEL // X1 has the element number 6

3 ST #8, ELEMENT1 SEL // Z1 has the element number 8

4 MULT LOOP: // addition loop

5 LD Ra, VE0[i]
6 LD Rb, VE1[i]
7 XOR Ra, Rb,
8 ST Ra, VE0[i]
9 SUB r0, #1

10 JNE MULT LOOP // jump if r0 > 0
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3.4.3 Virtual Addressing for Polynomial Multiplication

VA accelerates the word-wise additions of the adapted l-t-r multiplication by reducing the
number of pointer calculations and memory accesses. Figure 3.12 shows the additions
required to process the first window and how they are realized with VA. The algorithm
steps through all words of A, determines u and adds Bu to C. If the processed window is
odd, also B1 is added.

Registers R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

C  0 1 2 3 4 5 6 7 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Bu, u={A[0][7:5],0} 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 * bit 4 of A[0]

Bu, u={A[1][7:5],0} 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 * bit 4 of A[1]

Bu, u={A[2][7:5],0} 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 * bit 4 of A[2]

… …

Bu, u={A[9][7:5],0} 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 * bit 4 of A[2]

Registers R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

C  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 31 32 33 34 35 36 37 38 39 40

741

Bu, u={A[10][7:5],0} 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 * bit 4 of A[0]

Bu, u={A[11][7:5],0} 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 * bit 4 of A[1]

Bu, u={A[12][7:5],0} 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 * bit 4 of A[2]

… …

Bu, u={A[19][7:5],0} 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 * bit 4 of A[19]

Bu, u={A[20][7:5],0} 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 * bit 4 of A[20]

Figure 3.12: Visualization the first window of the adapted l-t-r multiplication using virtual
addressing. The processing of the second window is similar. However, A[i][3 : 1], 0 defines
u and the bit 0 of A[i] determines if an additional addition of B1 is necessary.

Normally, for each word-wise addition pointer additions are necessary to calculate the
addresses of the processed words. These pointer calculations can be omitted by using VEs.
Figure 3.12 shows that the operations on these bytes of C, which are altered most fre-
quently, are performed with registers: instead of loading values from memory and storing
the altered content back to the same position, all operations targeting these addresses are
performed with registers. This significantly reduces the number of memory accesses.
The pattern for the addition of the first ten and the second eleven additions is similar
and thus is implemented only once. The processing of the first half is implemented and
whenever the second half is considered, the addresses of C are increased by an offset of
10.
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The details of the VA concept for polynomial multiplication are described below.

Concept Details

For polynomial multiplication only one VE (Virtual Element 0) and five parameters are
used. This section first describes the parameters and then shows how the l-t-r algorithm
is executed step-by-step.

Processing of the Windows The software implementation requires several instruc-
tions to determine u and calculate the startaddress of Bu. This can be outsourced to the
virtual address logic.
The VA includes two parameters element0 and addr mode. The parameter element is
set to the processed word of A. The parameter addr mode defines which bits are used
to determine u. If addr mode is one, the value of u is {element[7:5],0} else u is
{element[3:1],0}. The VE points to the associated Bu.

Shifting Bu As stated above, the parameters addr mode and element determine, to
which Bu the virtual element points to. However, there are two additional parameters,
which influence the address mapping.
A parameter neg offset is subtracted from the virtual address and the parameter offset
is added to the address. Figure 3.13 illustrates the mapping of the virtual addresses. Some
addresses of the virtual element could point to the words in the RAM, which do not belong
to Bu. However, these addresses are never used.

Bu[0]

Bu[1]

Bu[n]

Bu[n+1]

Bu[20]

VE[0]

VE[1]

VE[n+1]

VE[20]

VE[n+2]

Bu  

RAM
Virtual RAM

Virtual

Element

n = neg_offset+offset

Figure 3.13: Address mapping using the virtual element.

Subroutines for Word-wise Addition of Bu to C The word-wise additions are
implemented in four subroutines, which offer several entry points. The number of word-
wise additions performed by one subroutine depends on the entry point, which is called.

ADD B1 E [n] This subroutine implements the addition of the VE to C from left-
to-right as shown in Figure 3.14. If the entry point ADD B1 E [n] is called (21 − n)
additions are executed. The last 13 additions are done with registers representing the
values of C[8] to C[20].
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Figure 3.14: Illustration subroutine ADD B1 E [n] for the multiplication with virtual ad-
dressing.

ADD B1 O [n] This subroutine is called, if the window is odd. It is similar to the
subroutine ADD B1 E [n]. However, it additionally adds the element B1.

ADD B2 E [n] This subroutine implements nine word-wise additions and processes
the VE from right-to-left as shown in Figure 3.15. If the entry point ADD B2 E [n] is
called, n additions are executed.

Figure 3.15: Illustration of subroutine ADD B2 E [n].

ADD B2 O [n] This subroutine is implemented in the same way as ADD B2 E [n].
However, also B1[20] to B1[12] is added.

Shifting the Accumulator C To shift C, there is a parameter offsetC. Whenever an
address of C is accessed, this parameter is added to the pointer. Figure 3.16 illustrates
the memory additions of the subroutine ADD B1 EVEN with the setting offsetC = 10.

Algorithm for Binary Field Multiplication with Virtual Addressing The adapted
l-t-r multiplication algorithm is designed for a windowsize of w = 4, a wordsize of W = 8
and 13 available register.
To calculate C = A · B the algorithm precalculates eight different Bu’s and stores them
in to RAM. Thereafter, the algorithm steps through all words of A twice and performs
several additions of Bu and B1. The addressing of A is not influenced by VA. The result
is 41 bytes long and is stored at a fixed RAM location as shown Figure 3.11.

Step 1: Process the first window The algorithm starts processing the first win-
dow of every word of A. Therefore, the parameter addr mode is set to one.
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Figure 3.16: Illustration subroutine ADD B1 EVEN with a shifted C by setting offsetC =

10.

Step 1.1: Process the first half (A[0] to A[9]) All registers, which store the in-
termediate results in the subroutines are set to zero. The subsequent addition subroutines
are executed without shifting C. Thus, the offsetC is set to zero.

Step 1.1.1: Process A[0] The algorithm starts processing the first word of A as
shown in Figure 3.17.

Figure 3.17: Illustration of processing the first word of A for the case that the analyzed
window is even. All word-wise additions of the first subroutine are executed. The 21 words
of the virtual element point to the 21 words of Bu in RAM.

To address the right Bu, the parameter element is set to A[0]. Thereafter, the bit 4 of
A[0] is analyzed. If it is one, the addition of the element Bu to {C[0]...C[20]} is done by
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calling the first subroutine at the entry point ADD B1 E 0. Otherwise, ADD B1 O 0 is called.
The parameters neg offset and offset are set to zero. Thus, all words of the VE point
to the words of Bu.

Step 1.1.2: Process A[1] The next step is to analyze the second word of A. There-
fore, the value of A[1] is loaded from RAM. Again, the addressing of Bu is achieved by
setting element to A[1].
Thereafter, the words {Bu[0], Bu[1], ..., Bu[20]} have to be added to {C[1], C[2], ..., C[21]}.
The following text describes the process if the window is even. If the window is odd, the
procedure is the same, but ADD B1 O 1 and ADD B2 O 1 are called.
Figure 3.18 illustrates the processing of A[1]. It is not necessary to manipulate the value of
C[0]. Thus, the algorithm jumps into the second word-wise addition of the first subroutine
by calling ADD B1 E 1. Thus the subroutine starts adding V E[1] to C[1], then adds V E[2]
to C[2] and so on. However, Bu[0] should be added to C[1], B[1] to C[2] and so on. This
can be achieved by setting neg offset=1. Then the words {Bu[0], Bu[1], ..., Bu[19]} are
added.
The addition of Bu[20] is done with the second subroutine. The algorithm jumps in to the
last word-wise addition, which adds V E[12] to C[21]. To achieve the mapping of V E[12]
to Bu[20], offset is set to 9. Before the subroutine returns this parameter is set to zero
again.

Figure 3.18: Illustration of processing the second word of A for the case that the processed
window is even.
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Step 1.1.3 to Step 1.1.10: process A[2] to A[9] The next steps are done in
the same way as step 1.1.2. The difference between the executions is that the number of
word-wise additions performed by the first and the second subroutine is different. The
additions in Figure 3.12, which are illustrated in blue color are performed by the subrou-
tines ADD B1 [E/O] [n] from left-to-right. The additions, which are yellow, are done
from right-to-left with the subroutines ADD B2 [E/O] [n]. For processing the word A[i]
the subroutine is called at the entry points ADD B1 [E/O] [i] and ADD B2 [E/O] [i]. Be-
fore calling the first subroutine the parameter neg offset is set to the value of i. The
parameter offset is set to 9 before calling the second subroutine.

Step 1.2: Process the second half (A[10] to A[20]) Before processing the
second half, the registers keeping the intermediate values are stored to C. The value of
R1 is stored to C[8], R2 is stored to C[9] and so on.
The next step is to process the second half. The additions can be done in the same way
as described so far, but the accumulator C has to be shifted by setting offsetC=10 (see
Figure 3.12). The registers R1 to R12 now represent the intermediate values of C[18]
to C[30]. Thus, these values are first loaded from RAM. Thereafter, the same code that
performs the additions of step 1.1 can be executed.

Step 2: Process the second window Next, the accumulator C is shifted four bits
left. This shifting is not influenced by the virtual addressing mechanism.
Thereafter, the second window of every word in A is analyzed. This is achieved by setting
addr mode=0. The remaining procedure is the same as the steps 1.1 and 1.2. A summary
of the whole procedure is shown in Algorithm 11.
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Algorithm 11: Algorithm for implementing the polynomial multiplication using
virtual addressing.
1 ADDR MODE SEL← 1
2 call PROCESS WINDOW
3 call SHIFT C
4 ADDR MODE SEL← 0
5 call PROCESS WINDOW
6 ret

7

8 PROCESS WINDOW:
9 Reset registers

10 OFFSETC SEL← 0
11 for k ← 0 to 9 do call MULT LOOP
12 Store and load registers from/to C
13 OFFSETC SEL← 10
14 for k ← 0 to 10 do call MULT LOOP
15

16 MULT LOOP:
17 ELEMENT SEL← value stored in Aptr // Aptr... address of A
18 Aptr ← Aptr + 1
19 NEG OFFSET SEL← k
20 if bit wk of ELEMENT SEL is one then
21 call ADD B1 ODD[k]
22 else call ADD B1 EVEN[k] if k 6= 0 then
23 OFFSET SEL← 9
24 if bit wk of ELEMENT SEL is one then
25 call ADD B2 ODD[k]
26 else call ADD B2 EVEN[k]

27 ret
28

29 ADD B1 EVEN 0: C[0]← C[0]⊕ V E[0]
30 ADD B1 EVEN 1: C[1]← C[1]⊕ V E[1]
31 ...
32 ADD B1 EVEN 7: C[7]← C[7]⊕ V E[7]
33 ADD B1 EVEN 8: R0← R0⊕ V E[8]
34 ADD B1 EVEN 9: R1← R1⊕ V E[9]
35 ...
36 ADD B1 EVEN 20: R12← R12⊕ V E[20]
37 ret
38

39 ADD B2 EVEN 9: C[29]← C[29]⊕ V E[20]
40 ADD B2 EVEN 8: C[28]← C[28]⊕ V E[19]
41 ...
42 ADD B2 EVEN 1: C[21]← C[21]⊕ V E[12]
43 OFFSET SEL← 0
44 ret
45 ADD B1 ODD 0: C[0]← C[0]⊕B1[0]⊕ V E[0]
46 ADD B1 ODD 1: C[1]← C[1]⊕B1[1]⊕ V E[1]
47 ...
48 ADD B1 ODD 7: C[7]← C[7]⊕B1[0]⊕ V E[7]
49 ADD B1 ODD 8: R0← R0⊕B1[0]⊕ V E[8]
50 ADD B1 ODD 9: R1← R1⊕B1[0]⊕ V E[9]
51 ...
52 ADD B1 ODD 20: R12← R12⊕ V E[20]
53 ret
54

55 ADD B2 ODD 9: C[29]← C[29]⊕B1[0]⊕ V E[20]
56 ADD B2 ODD 8: C[28]← C[28]⊕B1[0]⊕ V E[19]
57 ...
58 ADD B2 ODD 1: C[21]← C[21]⊕B1[0]⊕ V E[12]
59 OFFSET SEL← 0
60 ret
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3.5 Coprocessor

In this section an implementation variant using a coprocessor is proposed. The approach
is to accelerate the calculation by outsourcing the field multiplication to dedicated hard-
ware. The coprocessor works independently of the microprocessor and consists of a 4x8-bit
multiplier and control logic.
First, the multiplication algorithm used by the coprocessor is described. Then, the concept
of the communication and the architecture of the coprocessor is presented.

3.5.1 Comba’s Method

In literature [47, 28, 26] it is proposed to use the Comba’s method, if a partial multiplica-
tion is supported by the hardware. The procedure of the Comba’s multiplication is shown
in Algorithm 12. Each word of the result C is calculated at a time starting at the least
significant word C[41]. The algorithm includes two nested loops: the first one calculates
the least significant words C[20] to C[40] and the second one calculates the remaining
words C[0] to C[19].
The difference to the l-t-r multiplication is the order in which the products are generated
[26]. Figure 3.19 shows the multiplication of two elements, which are four words long.
The order of the l-t-r algorithm is the same as the order of the schoolbook method, which
writes several times to several words of the result [26]. The Comba’s method needs store
operations by writing every word of the result only once. However, the amount of partial
multiplications stays the same.
Two words are multiplied in each iteration. The product is two words long and is stored
u (higher word) and v (lower word).
In summary each iteration of the inner loop performs a multiply operation and accumu-
lates the result. Therefore, two load operations are executed. In the outer loop the store
operations are performed.

Figure 3.19: Comparison of schoolbook and Comba multiplication [26].



CHAPTER 3. DESIGN 76

Algorithm 12: Comba’s method for binary field multiplication. Adapted from [47].
The operator ⊗ stands for a word-level multiplication.

Input: Binary polynomials a(z) and b(z) of degree at most m− 1
Output: c(z) = a(z) · b(z)

1 (u, v)← 0
2 for i← 20 downto 0 do
3 for j ← 20 downto i do
4 (u, v)← (u, v)⊕ (A[j]⊗B[i− j + 20])
5 C[i+ 20]← v
6 v ← u, u← 0

7 for i← 19 downto 0 do
8 for j ← i downto 0 do
9 (u, v)← (u, v)⊕ (A[j]⊗B[i− j])

10 C[i]← v
11 v ← u, u← 0

12 C[0]← v

3.5.2 Comba’s method with interleaved reduction

The second outer loop of the Comba’s method calculates the most significant words of the
result which have to be reduced. Interleaved reduction can be applied efficiently. Instead
of storing a word of the result and reading the word again in the subsequent reduction
procedure, the reduction of the word can be done immediately.
Note that the reduction of one word of the result C[i] requires the following calculations:

C[i+ 21] ← C[i+ 21]⊕R0(c2, c1, c0) (3.20)

C[i+ 20] ← C[i+ 20]⊕R4(c7, ..., c1, c0)

C[i+ 19] ← C[i+ 19]⊕R3(c7, ..., c4, c3)

The second outer loop of the Comba’s method can be changed to perform these cal-
culations.
The loop first calculates C[20], then C[19] and so on. This means that if one word C[i]
is processed, only the value of C[i + 21] remains unchanged in the next iteration. This
is the reason why it is only necessary to store this value. The results of the remaining
calculations R4(a7, ..., a1, a0) and R3(a7, ..., a4, a3) can be stored in the registers. This
means that the number of store operations remains the same as in the standard Comba’s
method.
Algorithm 13 shows the approach. Since the interleaved reduction is performed, the result
is just 21 bytes long. Thus the indices of the result C are adapted in line 5 and 10.
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Algorithm 13: Comba’s method for binary field multiplication with interleaved
reduction.The operator ⊗ stands for a word-level multiplication.

Input: Binary polynomials a(z) and b(z) of degree at most m− 1
Output: c(z) = a(z) · b(z)

1 (u, v)← 0
2 for i← 20 downto 0 do
3 for j ← 20 downto i do
4 (u, v)← (u, v)⊕ (A[j]⊗B[i− j + 20])
5 C[i]← v
6 v ← u, u← 0

7 for i← 19 downto 0 do
8 for j ← i downto 0 do
9 (u, v)← (u, v)⊕ (A[j]⊗B[i− j])

10 C[i]← C[i]⊕R0(v2, v1, v0)⊕ r2
11 r2← R1(v7, ..., v1, v0)⊕ r1
12 r1← R3(v7, ..., v1, v0)
13 v ← u, u← 0

14 C[19]← C[19]⊕R1(r1)⊕ v
15 v ← v ⊕ r2
16 C[20]← C[20]⊕R1(v & 0xF8)⊕R0(r1)
17 C[0]← v & 0x07

3.5.3 Memory Access and Communication

The Ameba, the RAM and the coprocessor are connected at top level as shown in Figure
3.20. Direct Memory Access (DMA) for the coprocessor is used.

To keep the communication overhead low, DMA is used. The coprocessor directly
communicates with the RAM. The coprocessor multiplies two elements, which are stored
in the RAM, and writes the result back to RAM.
The Ameba provides the information, where the elements, which have to be multiplied,
are located in the RAM. Furthermore, the Ameba also determines the memory location
of the result. The Ameba transfers this information by writing to predefined addresses.
The address logic forwards the data to the coprocessor. The coprocessor has several ports
for the communication with RAM. Hence, it is able to directly read the values of the two
factors, which should be multiplied. Additionally, the coprocessor writes the result to the
specified position.
The coprocessor has halt o signal to indicate that the microprocessor should be halted.
When the halt signal is set the clock of the Ameba is disabled. Thus the Ameba pauses
the processing. This ensures that there is only the coprocessor or the Ameba that can
access the RAM at the same time.

3.5.4 Coprocessor Architecture

The coprocessor is implemented as a stand-alone hardware block with ports as shown in
Figure 3.20. It consists of a combinatorial and control logic.
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Figure 3.20: Interfaces between Ameba, RAM and coprocessor. The connection of the
modules is realized in the topfile.

Partial multiplication

The partial 8x8-bit multiplication required for the Comba’s multiplication algorithm is
realized as combinatorial logic. The partial multiplier calculates A · B = C, where the
lengths of A and B is 8 bit and the length of the result C is 16 bit. The coprocessor uses
registers to store the values of A, B and C.
To keep the area small not a 8x8-bit multiplication, but the control logic of a 4x8-bit
multiplier is implemented. The interfaces of the multiplier are illustrated in Figure 3.21.
The multiplier calculates a · b = c, where a is four bit, b is eight bit and c is ten bits long.

Multiplication Function

8

4

11

register A

register B

result C

Figure 3.21: Illustration of inputs and outputs of a 4x8-bit multiplication.

Figure 3.22 shows how the multiplication is realized. There are 32 AND and 12 XOR
gatters required.
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Figure 3.22: Combinatorial logic of a 4x8-bit multiplication.

The 8x8-bit partial multiplication, which is required in the Comba’s multiplication
algorithm is realized with the 4x8-bit multiplication function as shown in Figure 3.23.

First, the most significant nibble of the 8-bit register that stores the value of the first
multiplicand A is taken as input of the multiplication function. The second input is the 8-
bit register that stores B. The 4x8-bit multiplication function generates a ten bit output.
The most significant three bit of this output represent the higher three bit of the final
result.
Then, the multiplication function is used again. Now, the lower nibble of the register A is
used as input. The function again generates ten bits. The least significant three represent
the least significant three bits of the final result. The other bits have to be XORed with
the least significant seven bits of the previous multiplication.
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Multiplication 
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register A[7:4] register B

4 8
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Multiplication 

Function

8

register A[3:0] register B
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37

14:11 10:4 3:0

register C

Figure 3.23: Construction of a 8x8-bit partial multiplication with a 4x8-bit multiplication
function.

3.5.5 Reduction

The reduction functions R0, R4 and R3 are implemented hardwired. These functions
depend on the least significant 8-bits of the register holding the result C.
The functions R0 and R4 require several XOR gatter. The interfaces of these two functions
are illustrated in Figure 3.24. It is assumed that about 15 XOR gatters will be required
to implement these two functions.
The function R3 can simply be realized by rewiring the least significant four bits of the
register storing C.

Reduction 

Function R0

3 3
register C[0:2] r0 Reduction 

Function R4

8register C[0:7]
8r4

Figure 3.24: Illustration of inputs and outputs of the reduction functions.

Control Logic

The Comba’s algorithm is implemented as Finite State Machine (FSM). The coprocessor
gets the startaddresses of the factors for the multiplication and the address, where the
result should be stored, from the Ameba. As shown in Figure 3.20 the coprocessor has
three inputs to get these addresses. Whenever one of these inputs is changed, the input
value is stored into a register.
The Ameba microprocessor first provides the addresses of the factor A and the result C.
The memory mapping forwards these values to the inputs addr a i and addr c i of the
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coprocessor. Then the Ameba gives the address of the second factor B, which is forwarded
to the port addr b i. Three 8-bit registers are used to store these addresses. Whenever
the value of one of these inputs changes, the value is either stored in the register addr a s,
addr b s or addr c s.
The FSM stays in an idle state until the input addr b i is changed. Then the FSM starts
processing Algorithm 13.
Two registers are provided to count the iterations of the outer and inner loop. Whenever
an iteration of the inner loop is executed, new bytes from the 21-byte elements A and B are
required (see Line 4 of Algorithm 13). Therefore, the required addresses are calculated and
the registers addr a s and addr b s are updated. The coprocessor directly communicates
with the RAM and gets the values stored in the memory locations addr a s and addr b s.
These values are stored in two separate registers b s and c s. Each read access is realized
in an own state.
The temporary values of u and v are stored in one 16-bit register c s. If the outer loop is
executed, then the lower byte of the register gets the value of the higher byte. The higher
byte is set to zero. This implements the lines 6 and 13 of Algorithm 13. Furthermore,
the byte of the result C, which has been determined in the current outer loop has to be
stored. Again, this is done by directly communicating with the RAM.
The 8x8-bit partial multiplication in line 4 is realized with the 4x8-bit multiplication
functions in the control logic with two states as described above. The reduction functions
in the lines 10 to 12 use the reduction functions R0 and R4, which are implemented as
logical circuits.

3.6 Summary

When designing an ECC system many decisions have to be made during the design phase.
In this chapter, the design decisions made for the ECC implementation are presented.
The chapter provided a detailed description of the main issues relating to the algorithm
design of binary field operations. Several implementation variants were analyzed by esti-
mating the performance and storage requirements. The focus lied on the most demanding
operation: the binary field multiplication. The state-of-the art method for binary field
multiplication in software was introduced. In addition, a new multiplication approach that
provides a better performance/storage trade-off as the standard method was presented.
This was followed by the presentation of possible ways of accelerating the implementa-
tion with hardware extensions. First, an innovate hardware/software codesign approach
of virtual addressing for ECC was proposed. Thereafter a coprocessor that performs the
binary field multiplication in hardware was introduced.



Chapter 4

Implementation

The performance of the proposed algorithms in Chapter 3 was proven with implementation
and simulation. This chapter shows how the hardware extensions and the software were
implemented. The implementation is named ”Genuine verification with Elliptic Curve
Cryptography One-way authentication (GECCO)”.
The implementation procedure is shown in Figure 4.1. First, a golden model was written
with C using the Eclipse development environment. The book ”Implementing Elliptic
Curve Cryptography” [42] served as primary source for the C model.
Thereafter the proposed software versions were implemented using the Ameba. Finally,
the calculation was accelerated with hardware extensions.

1

Golden model in CVersion

Language

Tools

C

Eclipse

Version with l-t-r 

multiplication with 

windows w=2

ECC Software 

Implementation
Reference Model

Version with adapted 

multiplication with 

windows w=4

Ameba2 version

Ameba assembler

Ameba compiler

Simulation with ModelSim

2
Hardware

 Extentions

SystemVerilog

Compilation and simulation 

with ModelSim

Synthesis with Synopsis tool

3

Virtual addressing

Coprocessor

Figure 4.1: Illustration of the implemented versions and the development environment.

4.1 Development Environment

This section presents the languages and tools used during the implementation phase.

82
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4.1.1 Software Implementation

Figure 4.2 provides an overview of the implementation tool chain.

gecco.asm

Compiler

gecco.cod

ROM

gecco.sv

RAM

Ameba

Simulation with 

ModelSim

Waveform

Virtual 

addressing

Coprocessor

Figure 4.2: Toolchain for software implementation.

An assembler converts the source code into machine code and stores it in a .cod file.
The machine code is loaded into the ROM and is executed by the Ameba microprocessor.
The implementation was evaluated with simulation.

Common Optimization Considerations for Assembler Implementation

Several optimization techniques described in [41, p. 215–217] and [86] were considered
during the implementation phase:

• Loop Unrolling: Loop unrolling is one of the most basic and profitable strategies to
improve the performance. This extends the loops in such a way that more operations
are done per iteration. Thus, the condition of the loop has to be checked less often.
Hence, the number of executed instructions is reduced, but the code size is increased.

• Duplicated Code: Sometimes it can be effective to duplicate code. The perfor-
mance can be improved by writing case-specific code fragments to reduce the number
of conditionals. However, duplicated coding can involve significant code expansion.

• Optimum Use of Registers: An enhanced use of registers can prevent frequent
accesses to RAM.

4.1.2 Hardware Implementation

The software implementation was accelerated with hardware extensions as described in
Chapter 3. The hardware was implemented at Register Transfer Level (RTL) with the
SystemVerilog language.
SystemVerilog extends the Hardware Description Language (HDL) Verilog and can be
used for simulation, verification and synthesis. [87, p. 8]. The language can describe
different levels of abstraction ranging from a system to gate level.

Modules

SystemVerilog provides modules, which are similar to Verilog modules. These modules
can be seen as black boxes with inputs, outputs and internal logic [88].
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Variable Assignment

To model combinatorial elements SystemVerilog offers assign and always statements [88].
For sequential elements, only always statements can be used.
An always block has a sensitivity list. A change of an variable in the sensitivity list causes
the execution of the block.
Combinatorial logic is modeled with assign statements, which are executed continuously.

4.1.3 Simulation

The implementation was verified with simulation. Additionally, time measurements were
performed with the simulation results. Therefore, the tool ModelSim [89] from Mentor
Graphics was used.
ModelSim allows a clock synchronous simulation and shows the values of the different
signals over the time in a waveform (see Figure 4.3).

Figure 4.3: Screenshot of a ModelSim simulation including a waveform.

4.2 Software Implementation

The algorithms discussed in Chapter 3 were implemented using the Ameba.

4.2.1 Binary Field Operations

The entry point of the ECC calculation is the Montgomery multiplication. Each binary
field operation was implemented in a separate subroutine. The Montgomery multiplication
calls these subroutines according to Algorithm 1. This section presents details about the
implementation of the binary field operations.
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Addition

The addition routine adds one 21-byte element to another one. The routine steps through
all words of both elements, XORs the words and stores the result. To avoid overhead
caused by a loop, each of the 21 word-wise additions, were implemented separately. Thus,
duplicated code was used.

Reduction

The reduction was realized with the second proposed variant using a 264-byte LUT as
described in Section 3.3.5. The implementation uses registers to prevent frequent memory
accesses.
To reduce the ith byte of an element C, it is necessary to alter the three bytes C[i+ 21],
C[i+ 20] and C[i+ 19]. The algorithm steps through the 21 most significant words of C
starting at C[0]. This means that C[i + 21] and C[i + 20] are changed again at the next
iteration. Hence, these values were stored in registers and to avoid accesses to memory.

Multiplication

Two variants of the binary field multiplication were implemented. The following section
describes implementation details of these variants with a special focus on the word-wise
additions, which mainly determine the performance.

Left-to-right multiplication with windows of width w=2 Recall that for the cal-
culation of C = A · B, the algorithm first calculates B1 = B, B2 = 2 · B and B3 = 3 · B
and stores these values into the RAM.
Thereafter, an addition loop, which processes each byte of the element A, is executed four
times. The value of the current window of A determines the value of u. The associated
Bu is added to the accumulator C. Depending on the number of iterations of the loop,
the 21 bytes of Bu are added to 21 subsequent bytes of C. The address of the word of C,
to which the first byte of Bu should be added, is written into a register.
To avoid pointer calculations, three subroutines were implemented. Each of the subrou-
tine either adds B1, B2 or B3 to C. These routines use hard coded values indicating the
addresses of the words of B1, B2 and B3. Figure 4.4 shows an extract of the subroutine
adding B1.

. . . ; r 2 . . . a d d r e s s o f curren t processed word o f C
ADD r2 , #1 ; determine addr . o f next word o f C
LD r11 , B1 1 ; l oad B1 [ 1 ]
LD r12 , @r2 ; l oad C
XOR r12 , r11 ; word−wise add i t i on
ST r12 , @r2 ; s t o r e C
. . . ; t he pa t t e rn i s repea ted f o r the remaining add i t i on s

Figure 4.4: Assembler implementation of word-wise addition for left-to-right algorithm
with windows of width w=2.
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Adapted multiplication with windows of width w=4 The second multiplication
algorithm was implemented as described in Section 3.3.6.
The implementation is similar to the first version. One difference is that eight elements
(B1, B2, B4,B6, ..., B14) are first precalculated and stored. In contrast to the previous
version, a separate subroutine for each possible addition of a precalculated element would
significantly expand the code size. Again, each iteration of the addition loop determines
the value of u depending on the current processed word of A. The implementation of this
version stores the startaddress of the required Bu in a register. The address of the word
in C, where the addition of Bu should start, is also written into a register.
For the addition two subroutines were implemented. One subroutine adds Bu to C and
the other one adds Bu and B1 to C. During each iteration of the addition loop, one of
these addition routines is called depending on the last bit of the processed window of A.
The two registers storing the addresses are used in the subroutines. The first subroutine
adds Bu to C and is called if the processed window is even. The implementation is similar
to the addition subroutines of the previous presented multiplication version. However, the
subroutine needs one additional instruction. The reason for this is that the address of Bu

is not hard coded any longer (as shown in Figure 4.4). Thus, the address of the current
processed word of Bu has to be determined for each word-wise addition (see Figure 4.5).
If the processed window of A is odd, a subroutine that also adds B1 is called. This requires
two additional instructions per word-wise addition as shown in Figure 4.5.

; r 1 . . . a d d r e s s o f curren t processed word o f Bu
; r 2 . . . a d d r e s s o f curren t processed word o f C
ADD B EVEN:
. . . ; add f i r s t words
; the f o l l ow i n g code sequence i s repea ted 20 t imes
ADD r2 , #1 ; determine addr . o f next word o f C
ADD r1 , #1 ;<−− add. i n s t r . to determine addr . o f next word o f Bu
LD r11 , @r1 ; l oad Bu
LD r12 , @r2 ; l oad C
XOR r12 , r11 ; word−wise add i t i on
ST r12 , @r2 ; s t o r e C
. . .

ADD B ODD:
. . . ; add f i r s t words
ADD r2 , #1 ; determine addr . o f next word o f C
ADD r1 , #1 ; determine addr . o f next word o f Bu
LD r11 , B1 1 ;<−− l oad B1 [ 1 ] ( f i x address )
LD r12 , @r1 ; l oad Bu [ 1 ]
XOR r11 , r12 ;<−− B1 [ 1 ] XOR Bu [ 1 ]
LD r12 , @r2 ; l oad C
XOR r12 , r11 ; word−wise add i t i on
ST r12 , @r2 ; s t o r e C
. . . ; t he pa t t e rn i s repea ted f o r the remaining add i t i on s

Figure 4.5: Assembler implementation of the addition subroutines for the adapted multi-
plication with windows of width w=4.
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Squaring

The squaring operation was implemented with two LUTs as described in Section 3.3.7.
The 32-byte LUT was integrated in the free available columns of the LUT used for the
reduction.
To square element A, the squaring routine starts expanding the first ten bytes using the 32-
byte LUT. The remaining bytes are expanded with the interleaved reduction. To expand
byte A[i], the bytes A[2i + 1], A[2i], A[2i − 1] and A[2i − 2] have to be changed. The
expansion is done byte per byte. Similar to the reduction procedure, it can be observed
that when scanning the next byte A[i + 1], only the byte A[2i − 2] remains unchanged.
Thus, the values of A[2i+ 1], A[2i] and A[2i− 1] are kept in registers and are used again
at the next iteration step. This approach reduces the number of memory accesses.

4.3 Implementation in Ameba2

The source code implementing the adapted multiplication with windows of width w=4,
was adapted to the Ameba2 instruction set.
The sequences where a XOR follows a LD instruction are substituted by one LDXR
instruction. Such sequences frequently occur at the addition loop of the field multiplica-
tion. Furthermore, the Ameba2 offers a shift-right instruction (SR). This instruction was
mainly used to accelerate the squaring operation.

4.4 Virtual Addressing

The address logic for the VA was implemented in the top module. It manipulates the out-
put address of the microprocessor before forwarding it to the RAM. The address conversion
is influenced by several parameters. The VA implementation stores these parameters in
registers. Table 4.1 shows a list of these registers. The values of the registers are set by the
microprocessor. For the setting of each parameter a specific address is reserved. When-
ever the microprocessor writes to such an address, the output is stored in the associated
register.

Register Width Purpose
name [Bits]

elem1 v 8 Start address of VE 1

elem2 v 8 Start address of VE 2

offset s 5 Positive offset added when addressing one of the Bu’s

neg offs s 4 Negative offset added when addressing one of the Bu’s

offsetC s 5 Positive offset added when addressing the accumulator C.

addr mode s 1 Indicates the window.

Table 4.1: Registers for the virtual addressing mechanism.

As described in Chapter 3, the virtual addressing (VA) concept includes two virtual
elements (VEs) within a range of 21 words. Each physical 21-byte address range is asso-
ciated with an element number. Whenever such an element number is set, the physical
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start address of the element is determined. For example, if the element number is two,
the start address is 21, if the element number is four the start address is 42, and so on.
If the element number of the first VE is set, also the parameter addr mode has to be
considered. This parameter defines which bits are used to determine the start address.

The address logic was implemented as described in Section 3.4. Therefore, an assign

statement that defines the input address of the RAM was used as shown in Figure 4.6.
The logic first analyses the range of the given address. If the address is a virtual address,
the corresponding physical address is calculated.

// ram addr s . . . input address o f the RAM
// addr s . . . output address o f the Ameba
assign ram addr s =

//upper address range
( addr s >= 10 ’ h01E7 & addr s <= 10 ’h01FB) ? //VE 1

({ addr s [ 8 ] , e lem1 v [ 7 : 0 ] + ( addr s [ 4 : 0 ] − 5 ’ h07 )} ) +
o f f s e t s − n e g o f f s s :

( addr s >= 10 ’h01A8 & addr s <= 10 ’h01D1) ? // accumulator C
addr s + o f f s e t c s :

// lower address range
( addr s >= 10 ’ h00E7 & addr s <= 10 ’h00FB) ? //VE 1

({ addr s [ 8 ] , e lem1 v [ 7 : 0 ] + ( addr s [ 4 : 0 ] − 5 ’ h07 )} ) :

( addr s >= 10 ’h00D2 & addr s <= 10 ’ h00E6 ) ? //VE 2
({ addr s [ 8 ] , e cc e l em2 v [ 7 : 0 ] + ( addr s [ 4 : 0 ] − 6 ’ h02 )} ) :

addr s ; //not a v i r t u a l address −−> forward unchanged address

Figure 4.6: Implementation of the virtual address mapping. The output address of the
microprocessor is manipulated before forwarding to the RAM.

4.4.1 Software Implementation with Virtual Addressing

The software implementation was adapted to take advantage of VA as described in Section
3.4. The number of instructions required for the word-wise additions are reduced as shown
in Figure 4.7.

. . .
ADD B1 E 7 : LD r11 , VE 7 ; a dd i t i on wi th memory acce s s e s

LD r12 , C 7 ; l oad 8 th word o f C and XOR with Bu
XOR r11 , r12
ST r11 , C 7 ; s t o r e C

ADD B1 E 7 : LD r11 , VE 8 ; a dd i t i on wi th r e g i s t e r
XOR r0 , r11

. . .

Figure 4.7: Assembler implementation of addition subroutines for VA as described in
Algorithm 11.
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4.5 Coprocessor

Finally, the most hardware-intense version was implemented. Therefore, the software im-
plementation is altered to use a coprocessor for the field multiplication.
The coprocessor was implemented as a dedicated SystemVerilog module. To store tempo-
rary values, the registers listed in Table 4.2 were used.

Register Width Purpose
name [Bits]

addr a s 8 Stores the address of current processed byte of element A

addr b s 8 Stores the address of current processed byte of element B

addr c s 8 Stores the address of current processed byte of result C

c s 16 Stores the partial product of an 8x8-bit multiplication

a s 8 Stores the value of the current processed byte of factor A

b s 8 Stores the value of the current processed byte of factor B

red r0 s 8 Stores the temporary result of the reduction function R0

red r4 s 6 Stores the temporary result of the reduction function R4

red r3 s 8 Stores the temporary result of the reduction function R3

half s 1 Shows if the first or the second outer loop of the
Comba’s multiplication is executed.

counter i 5 Counter for the outer loop of the Comba’s multiplication

counter j 5 Counter for the inner loop of the Comba’s multiplication

state 6 Stores the current state of the FSM.

next state 6 Stores the future state of the FSM.

Table 4.2: Registers used by the coprocessor.

4.5.1 Combinatorial Part

The combinatorial part was implemented with assign statements. Figure 4.5.1 shows the
implementation of the 4x8-bit binary multiplication.
The reduction functions are implemented in a similar way.

//4x8 b i t mu l t i p l i c a t i o n
assign c w [0 ]=( a s [ 0 ] & b s [ 0 ] ) ;
assign c w [1 ]=( a s [ 0 ] & b s [ 1 ] ) ˆ ( a s [ 1 ] & b s [ 0 ] ) ;
assign c w [2 ]=( a s [ 0 ] & b s [ 2 ] ) ˆ ( a s [ 1 ] & b s [ 1 ] ) ˆ ( a s [ 2 ] & b s [ 0 ] ) ;
assign c w [3 ]=( a s [ 0 ] & b s [ 3 ] ) ˆ ( a s [ 1 ] & b s [ 2 ] ) ˆ ( a s [ 2 ] & b s [ 1 ] ) ˆ ( a s [ 3 ] & b s [ 0 ] ) ;
assign c w [4 ]=( a s [ 0 ] & b s [ 4 ] ) ˆ ( a s [ 1 ] & b s [ 3 ] ) ˆ ( a s [ 2 ] & b s [ 2 ] ) ˆ ( a s [ 3 ] & b s [ 1 ] ) ;
assign c w [5 ]=( a s [ 0 ] & b s [ 5 ] ) ˆ ( a s [ 1 ] & b s [ 4 ] ) ˆ ( a s [ 2 ] & b s [ 3 ] ) ˆ ( a s [ 3 ] & b s [ 2 ] ) ;
assign c w [6 ]=( a s [ 0 ] & b s [ 6 ] ) ˆ ( a s [ 1 ] & b s [ 5 ] ) ˆ ( a s [ 2 ] & b s [ 4 ] ) ˆ ( a s [ 3 ] & b s [ 3 ] ) ;
assign c w [7 ]=( a s [ 0 ] & b s [ 7 ] ) ˆ ( a s [ 1 ] & b s [ 6 ] ) ˆ ( a s [ 2 ] & b s [ 5 ] ) ˆ ( a s [ 3 ] & b s [ 4 ] ) ;
assign c w [8 ]= ( a s [ 1 ] & b s [ 7 ] ) ˆ ( a s [ 2 ] & b s [ 6 ] ) ˆ ( a s [ 3 ] & b s [ 5 ] ) ;
assign c w [9 ]= ( a s [ 2 ] & b s [ 7 ] ) ˆ ( a s [ 3 ] & b s [ 6 ] ) ;
assign c w [10]= ( a s [ 3 ] & b s [ 7 ] ) ;

Figure 4.8: SystemVerilog implementation of the 4x8-bit multiplication.
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4.5.2 Control Logic

The control logic was realized with an FSM.The start addresses of the processed elements
are stored in the registers addr a s, addr b s and addr c s. If the address of the element
B is updated, the FSM starts.
Figure 4.9 shows the state machine implementing the Comba’s multiplication as shown in
Algorithm 13. The coprocessor reads the values of the elements directly from RAM and
stores the result back to RAM by using the given addresses. STATE MUL LOW handles the
processing of the first outer-loop and STATE MUL HIGH handles the second outer-loop of
the Comba’s algorithm. The latter implements the interleaved reduction.
The states STATE M1 and STATE M2 determine the 8x8-bit multiplication by using the
combinatorial 4x8-bit multiplication.
The calculation of the last byte has to be handled differently. The reduction of the last byte
is performed as described in the lines 14 to 17 of Algorithm 13 and isrealized with the states
STATE RED0, STATE RED19, STATE RED19 STORE, STATE RED20 and STATE R20 STORE.
Finally, the FSM goes into an idle state and the microprocessor is resumed.

4.6 Summary

In this chapter, the implementation aspects were outlined. The languages and tools used
for the implementation of hard- and software were presented.
Furthermore, implementation details of the binary field operations with the Ameba were
described. It has been shown how the different implementation options of the field mul-
tiplication influence the word-wise addition, which occurs frequently. The adapted multi-
plication version needs more instructions to perform one word-wise addition.
Thereafter, it is shown how the VA mechanism was implemented in SystemVerilog.
Finally, the coprocessor implementation was described. A detailed description about the
implementation of the combinatorial part and the control logic was provided.
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Figure 4.9: FSM of the coprocessor.



Chapter 5

Results

This chapter presents an evaluation of the different implementation variants and compares
the performance and storage requirements to similar implementations available in litera-
ture. The execution times are determined with simulation and are scaled to clock cycles
using the Equation 1.1 described in Chapter 4.

5.1 Software Implementation

This section presents the results of the software implementation without hardware exten-
sions. First, the performance and storage requirements of each binary field operations is
analyzed. Then the requirements of the whole implementation are regarded.

5.1.1 Binary Field Operations

The measured runtimes and storage requirements of the binary field operations addition,
reduction, multiplication and squaring are described below.

Addition

The field addition is the field operation that requires the least amount of storage and
execution time. The addition needs about 115 bytes of code and the execution of one
addition is done in about 150 cycles. Te runtime is data independent.

Reduction

The implemented reduction variant does not depend on the input data. Thus, every
reduction requires the same amount of time. The measured execution time is about 590
cycles. This measured time is close to the estimation in Chapter 3. The execution is done
about 6% faster as approximated.
The code size is about 235 bytes and requires a 264 byte LUT.

Multiplication

This section compares the two implemented field multiplication variants.

92
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Multiplication with windows of width w=2
The three precalculated elements need 105 bytes of RAM. Additionally, 41 bytes of

RAM are needed to store the result.
The code size of the implementation is 1,745 bytes. Compared to the other field operations,
this storage requirement is by far the highest.
The implementation first performs the precalculation, executes the addition loop four
times and shifts C three times left by two bits. The simulation of this field multiplication
is shown in Figure 5.1. The waveform shows the accumulator in RAM, which stores the
result. It can be seen clearly that the addition loops frequently write to the RAM and
that they count for the majority of runtime.

addition loop 

iteration 1

s
h

ift C
<

<
2

re
d
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addition loop 

iteration 2

s
h
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<

<
2

addition loop 

iteration 4

Figure 5.1: Simulation of one left-to-right multiplication with windows w=2. The wave-
form shows the content of the accumulator in the RAM storing the result.

The average runtimes of the calculation steps are outlined in Table 5.1. The word-wise
additions can be done relatively fast by using three separate subroutines. This accelerates
the addressing of the Bu’s. This is the reason why the measured runtime is about 50 %
faster as estimated in the design phase in Section 3.3.6. The total average time required
for one field addition is 9,750 cycles.
The execution time of the precalculation and shifting steps are data independent. However,
the loop addition depends on the scanned window. If the window is zero, the addition of
a precalculated element can be skipped. This causes data dependency. To evaluate the
dependency, the runtimes of 20 field multiplications operating on different elements are
measured. The highest measured execution time is about 10,550 cycles and the fastest
execution is done in about 9,630 cycles. Furthermore, the standard deviation is calculated
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to show how widely the measured times are dispersed from the average execution time
[90]. The value of the standard deviation is determined with the following equation, where
x is the average time, x is the sample and n is the number of measurements [90]:

s =

√∑
x− x
n− 1

. (5.1)

The calculation of the standard deviation for the measured execution times gives s = 100.
This shows that the spreading of the execution times is within relative small ranges.

Calculation Runtime # executions Total runtime % of
step [clock cycles] [clock cycles] runtime

Precalculation 250 1 250 2

Loop Addition 2,150 4 8,600 88

Shift C 300 3 900 10

Total runtime 9,750

Table 5.1: Performance of the left-to-right multiplication with windows of width w = 2.

Adapted multiplication with windows of width w=4
It is expected that the performance of this field multiplication variant is better than the

field multiplication with windows of width w = 2.
However, the method needs more RAM. It requires 210 bytes RAM, which is 105 bytes
more than the previous presented version. The code size can be reduced by 250 bytes,
since less duplicated code for the loop addition is used.
An analysis of the runtime of this method is shown in Table 5.2.

Calculation Runtime # executions Total runtime % of Speed-up1

step [clock cycles] [clock cycles] runtime

Precalculation 780 1 780 10 0.36

Loop Addition 3,290 2 6,580 86 1.47

Shift C 300 1 300 4 3.5

Total runtime 7,640 1.43

Table 5.2: Performance measures of adapted left-to-right polynomial multiplication with
windows of width w = 4.
1The speed-up relates to the left-to-right multiplication with windows of with w = 2 (see
Table 5.1).

The addition in the loop is about 1.47 times slower. This is due to the additional
instructions required for one word wise addition. However, the addition loop has to be
executed half as often. This results in a total performance speed-up of about 1.28 for the
multiplication. The implementation uses a duplicated code for the word-wise addition.
Thus, the runtime is about 25% faster as approximated in Section 3.3.6.
Again, the execution time of the addition step depends on the value of the processed data.
Compared to the standard left-to-right multiplication with windows w = 2, additional data
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dependency is introduced by treating the last bit of a window differently. If this bit is one,
additional calculations have to be performed. This increased data dependency can be seen
by looking at twenty different execution time measurements. The highest measured time
is about 6,790 cycles and the lowest about 5,565 cycles. The calculation of the standard
deviation according Equation 5.1 gives s = 260. This shows that the measured execution
times are more widespread. One has to keep this in mind, when considering side channel
attacks, which exploit the data dependency of execution times.

Squaring

The total average runtime measured for one squaring operation is 1,560 cycles. The
implementation is about 35% slower as estimated during the design phase (see Section
3.3.7). This can be reasoned by the control overhead. The runtime of a square operation
does not depend on the data.
The simulation of one square operation is shown in Figure 5.2.

Figure 5.2: Simulation of one square operation. The waveform shows the content of an
element in RAM, which is squared.

The waveform shows the content of an element in RAM, which is squared. It can
be seen that write operations are performed on all words of the RAM twice. First, the
intermediate results computed from the squaring of the first half of the element are written.
Thereafter, the upper half is squared with the interleaved reduction. This is the reason
why the squaring of the upper half takes longer than the squaring of the lower half. Finally,
the most significant five bits are reduced, which requires two write operations.
The code size for storing the square procedure is about 300 bytes. Additionally, the two
LUTs require 160 bytes.

5.1.2 Montgomery multiplication

The Montgomery multiplication calls the binary field operations. The code size of the
Montgomery multiplication implementation is about 170 byte. The algorithm requires ten
21-byte elements stored in RAM.
The code size of the whole implementation using the adapted multiplication method is
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about 2.3 kBytes without LUTs. Figure 5.3 shows the composition of the required ROM
size. It can be seen that the field multiplication is the determining factor regarding the
storage requirements.
The average runtime of a Montgomery multiplication is about 9.4 million cycles. Table
5.3 and Figure 5.3 show the partitioning of the runtime. It can be seen clearly that the
multiplication is also the determining factor for the overall performance. The polynomial
multiplication and reduction, which is only needed for the multiplication, require more
than 85% of the runtime.

Multipication
80%

Reduction
6%

Squaring
13%

Addition
1%

Composition of the runtime

Multipication
55%

Reduction
18%

Squaring
17%

Addition
4%

Montgomery 
Multipliation

6%

Composition of code size

Figure 5.3: Composition of runtime and code size. The code sizes of the binary field
operations include the associated LUTs.

Field Runtime # executions per Total runtime % of
Operation [clock cycles] Montgomery mult. [clock cycles] total runtime

Multiplication 7,660 978 7,491,480 79.7

Reduction 580 978 567,240 6.0

Squaring 1,560 815 1,271,400 13.5

Addition 150 489 73,350 0.8

Total runtime for one Montgomery multiplication 9,403,470

Table 5.3: Partitioning of runtime for one Montgomery multiplication with Ameba.

5.2 Virtual addressing

The virtual addressing approach requires additional hardware. The area of this hardware is
estimated to be about 1kGE. Furthermore, the assembler code was adapted and extended.
However, the additional code requires only 46 bytes of ROM.
At the expense of this small area overhead, a significant performance improvement was
achieved. The composition of the runtime is shown in Table 5.4.

The virtual addressing approach reduces the time for inner loop addition by almost a
half. This is the most expensive step of the field multiplication. The total runtime of the
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Calculation step Runtime [clock cycles] Speed-up2

Precalculation 750 1.04

Loop Addition 4,230 1.56

Shift C 300 1

Total runtime 5,280 1.45

Table 5.4: Performance measures of polynomial multiplication virtual addresses.
2The speed-up relates to the software implementation using the left-to-right multiplication
with windows of with w = 4 (see Table 5.2).

multiplication with virtual addressing is about 44% faster compared to the multiplication
without any hardware acceleration.
Figure 5.4 shows the simulation of one adapted field multiplication with virtual addressing.
Compared to the previous multiplication variants (see Figure 5.1), fewer write operations
during one addition loop are performed. This can be achieved since registers are used to
store the intermediate values as shown in Figure 3.12.

addition loop iteration 1 shift C<<4 addition loop iteration 2 reduction

Figure 5.4: Simulation of one field multiplication with virtual addressing. The waveform
shows the content of those words in the RAM, where the result is written to.

The binary field operations reduction and addition were accelerated as shown in Table
5.5. The virtual addressing approach achieves an execution time for one Montgomery
multiplication, which is 23% faster than without virtual addressing.
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Field Runtime # executions per Total runtime Speed-up3

Operation [clock cycles] Montgomery mult. [clock cycles]

Multiplication 5,280 978 5,163,840 1.45

Reduction 570 978 557,460 1.02

Squaring 1,540 815 1,255,100 1.01

Addition 90 489 44,010 1.67

Total runtime for one Montgomery multiplication 7,020,410

Table 5.5: Performance measures of the virtual addressing implementation.
3The speed-up relates to the software implementation using the adapted field multiplica-
tion (see Table 5.3).

5.3 Ameba2 implementation

The extended instruction set of Ameba2 allows combining several consecutive instructions
to one single instruction. This decreased the storage requirement for the program code by
171 bytes.
Furthermore, the performance was improved. Mainly the word-wise additions were accel-
erated by the LDXR instruction. The execution time of one addition loop is about 33%
faster to the previous presented version. Table 5.6 outlines the execution times of every
step required for one field multiplication.

Calculation step Runtime [clock cycles] Speed-up3

Precalculation 700 1.07

Loop Addition 2,820 1.5

Shift C 300 1

Total runtime 3,820 1.38

Table 5.6: Performance measures of polynomial multiplication virtual addresses and
Ameba2.
3The speed-up relates to Ameba implementation with VA (see Table 5.4).

Table 5.7 summarizes the measured runtimes of the finite field operations using Ameba2
and compares these runtimes to the previous version. The multiplication and addition
operation were mainly accelerated with the LDXR instruction. However, Ameba2 also
enables a significant performance improvement of the squaring algorithm. This is due to
the implementation of the missing shift-right instruction.
In sum, these two additional instructions lead to a total runtime, which is about 27%
faster as the previous implementation.

5.3.1 ROM Storage Requirements

The implementation of the Montgomery multiplication using the adapted field multiplica-
tion and virtual addressing with Ameba2 requires in total about 4 kBytes ROM. About
3kBytes are required to store the program and the LUTs need about 1kByte (see Figure
5.5). The field multiplication requires by far the most size of the ROM.
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Field Runtime # executions per Total runtime Speed-up4

Operation [clock cycles] Montgomery mult. [clock cycles]

Multiplication 3,820 978 3,735,960 1.38

Reduction 500 978 489,000 1.14

Squaring 1,070 815 872,050 1.44

Addition 75 489 36,675 1.2

Total runtime for one Montgomery multiplication 5,133,685 1.37

Table 5.7: Performance measures of binary field operations virtual addresses and Ameba2.
4The speed-up relates to Ameba implementation with virtual addresses (see Table 5.5).

The startaddress of a LUT has to be a multiple of 256 and is organized in two halves. This
introduces unused storage gaps as shown in Figure 5.5. The total size of unused ROM is
about 850 bytes.
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5.4 Coprocessor

This section presents the area and performance requirements of the coprocessor imple-
mentation.

5.4.1 Area

To synthesize the coprocessor the Synopsis Design Compiler tool was used. The values
given by the tool only represent the space needed for the standard cell area alone. Addi-
tionally about 20% for routing has to be considered.
The result of the synthesis shows that the coprocessor requires about 2.13 kGE area. Table
5.8 shows how the combinational and non-combinational parts influence the area.

Area [kGE] [%] of total cell area

Combinational area 1.416 79

Non- combinational area 364 21

Total cell area 1.78

Total area incl. routing 2.13

Table 5.8: Combinational and non-combinational area of the coprocessor. The total area
includes an overhead of 20% for the cell interconnections.

Since the field multiplication with interleaved reduction is outsourced to the coproces-
sor, the assembler code for the multiplication and reduction is not required anymore. This
reduced the code size to about 1 kByte.
Additionally, the virtual addressing for the field multiplication is not needed either. This
means that just the virtual addressing that has an effect on the lower 256 byte RAM is
implemented. This reduces the area of VA to approximately 0.4 kGE. The RAM required
to store temporary values for the field multiplication can also be omitted. The total re-
quired RAM storage amount is now 214 bytes.

5.4.2 Performance

As expected, the performance of the hardware executing one field multiplication is un-
matched by the other implementation versions.
Figure 5.6 shows the simulation of one multiplication with the coprocessor. It can be
seen that the calculation of the most significant and least significant words is fast. The
calculation of the words in the middle takes longer, since the inner loop is executed more
often (also see Figure 3.19). The coprocessor writes twice to each of the 21 words in RAM,
which store the result. First, the intermediate result of the first outer loop is written and
thereafter the second outer loop writes the final result.
Every calculation performed by the coprocessor needs the same amount of time. The co-
processor is able to calculate the field multiplication with the interleaved reduction in 1,830
cycles. The previous fastest implementation version (Ameba2 with virtual addressing) re-
quired 4,320 cycles for multiplication and reduction. This means that the coprocessor
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achieves a runtime for field multiplication, which is about 2.4 times faster than the previ-
ous version.
How the field operations influence the total performance is shown in Table 5.9.

Operation Runtime [clock cycles] Speed-up4

Multiplication with interleaved reduction 1,830 2.4

Squaring 1,070 1

Addition 75 1

Montgomery multiplication 2,698,460 1.9

Table 5.9: Performance measures of binary field operations using Ameba2 and the copro-
cessor for multiplication.
4The speed-up relates to the software implementation with virtual addresing (see Table
5.7).

It can be seen that the percentage of the time required for a multiplication is reduced
compared to the previous versions. A Montgomery multiplication can be calculated in
about 2.7 million cycles using the coprocessor. This is about 47 % faster than the fastest
version without the coprocessor.

Figure 5.6: Simulation result of one mutliplication with the coprocessor. The waveform
shows the content of those words in the RAM, where the result is written to.
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5.5 Comparison of Implementation Variants

Table 5.10 and Figure 5.7 summarizes the performance of the Montgomery multiplication
using the different previously presented methods.

Implementation Code Size RAM Extensions Area Runtime
Variant [Byte] [kGE] [Byte] [kGE] [kGE] [kGE] [MCycles]

L-t-r mult. 3,205 3.41 318 4.1 - 7.51 12.1

Adapted mult. 3,123 3.32 423 5.46 - 8.92 9.4

Virtual addr. 3,840 4.09 423 5.46 1 10.55 7.0

Ameba2# 3,594 3.83 423 5.46 1 10.29 5.1

Coprocessor 1,023 1.09 214 2.76 2.53∗ 6.38 2.7

Table 5.10: Comparison of implementation variants.
∗coprocessor and virtual addressing for lower half of the RAM
#Ameba2 and virtual addressing

Figure 5.7 shows, that the improved variants mainly reduced the execution time of the
most expensive field operation - the multiplication. The fastest implementation is about
4.5 times faster than the slowest one. The area requirements are summarized in Figure
5.8.
Furthermore, the area of the implementation variants is outlined in Table 5.10. The area
of the microprocessor was not considered. The adapted field multiplication requires 95
bytes of RAM more than the left-to-right multiplication with windows of width w = 2.
However the execution time is decreased by about 22%.
Adding VA causes a small additional area overhead, but the performance improves by a
factor of about 1.34.
Using two additional instructions of Ameba2 improves the computation performance even
further to 5.1 MCycles. In sum, the virtual addressing and Ameba2 extensions improve
the performance by a factor of 1.9.
Table 5.10 shows that the implementation always includes a trade-off between performance
and area. The faster the execution gets, the more area is needed. However, the imple-
mentation with a coprocessor is an exception. The outsourcing of the field multiplication
significantly lowers the storage requirements. The area reduction caused by the lower stor-
age requirement is higher than the additional area needed by the proprietary hardware.
This makes that the coprocessor variant a very good option. It is unmatched in terms of
performance and area.
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Figure 5.8: Comparison of area requirements for the different implementation variants.
The areas include the area for storage (RAM and ROM) and extensions.

5.6 Comparison to Implementations in Literature

This section compares the implementation presented in this thesis with available software
implementations in literature.

5.6.1 Comparison of Low-area Processor Architectures

Most of the 8-bit ECC software implementations found in literature are based on the
ATmega128 processor. Compared to the 30 instructions of the Ameba, the ATmega128
features 133 instructions and is therefore larger and more powerful. Among these 133
instructions, there is also an area-intensive on-chip multiplication. Furthermore, this pro-
cessor provides a larger register set consisting of 32 GPRs, which is twice as large as the
register set of the Ameba.
The most similar approach compared to this work was published by Wenger et al. [59].
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Their architecture also targets resource-constrained RFID tags. They presented a clone
of the ATmega128 called JAAVR. The silicon-footprint of JAAVR is 6.5 kGE, which is
more than two times larger than the Ameba.

5.6.2 Comparison to Prime Field Implementations

The ECC hardware/software architectures designed and implemented during this work
compares favorably with works described in literature. Table 5.11 highlights different
8-bit ECC software implementations. The table does not consider the coprocessor im-
plementation, since a comparison to other software implementations without hardware
acceleration would not be meaningful.

Implementation GF ROM RAM Runtime
Variant [kBytes] [Bytes] [MCycles]

Guara et al. [56] p160 3.6 280 6.48

Wenger et al. [59]
slowest version p160 3.86 384 35.1
fastest version p160 7.76 384 13.0

Yan et al. [43] 2163 11.6 820 111
[43] with ISE 2163 - - 13.5

Szczechowiak et al. [65] 2163 32.4 1741 15.95

Kargl et al. [58] 2167 11 >588 6.1

This work
Software implementation with the Ameba 2163 3.05 423 9.7
Ameba2 and virtual addressing 2163 3.51 423 5.1

Table 5.11: Comparison to implementations available in literature.

All listed implementations base on the ATmega128 processor [57]. The implementa-
tions over prime fields exploit the ATmega128’s hardware multiplier.
Guara et al. [56] reached considerable performance results. However, they used a Non-
Adjacent Form (NAF)-method for point multiplication, which is in contrast to the Mont-
gomery multiplication not resistant against side channel attacks [59].
The most similar approach compared to this work was published by Wenger et al. [59],
since their target application is also RFID. Their slowest point multiplication is imple-
mented in C with operand scanning. Their fastest presented version was optimized in
assembler and used the operand-caching, as described in [60]. The approach presented in
this work requires comparable memory resources. However, their execution time for one
point multiplication is about 3.3 MCycles higher. The Ameba2 with virtual addressing is
even able to execute an ECC calculation about 2.6 times faster as the presented JAAVR
implementation. Although the area of the Ameba2 and virtual addressing (∼4kGE) is
smaller than the area of the JAAVR processor (6.5 kGE).

5.6.3 Comparison to Binary Field Software Implementations

The ECC calculations in [65] and [58] were performed over binary fields. Consequently,
they could not take advantage of the multiplier. Szczechowiak et al. used a comb method
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with pre-computed points for point multiplication, which causes high memory require-
ments.
The implementation of Kargl et al. [58] is comparable to the implementation presented
in this work, since they use a similar field and point multiplication method. By fully uti-
lizing the 32 registers available on the ATmega128, they reduced the number of memory
accesses and reached a runtime of 6.1 MCycles. Thus, the execution time is faster than
the software approach presented in this thesis, but requires significantly more ROM.

5.7 Summary

In this chapter the implementation versions were evaluated. The total execution time of
the enhanced version was mainly reduced by accelerating the expensive field multiplication.
The analysis of the performance and area of the implementation variants showed that the
versions, which offer better performances introduce a bigger area. Thus, the choice of an
implementation variant includes a trade-off between performance and area.
It is remarkable that the coprocessor implementation variant constitutes an exception. The
availability of a hardware multiplier influenced the algorithm design. This resulted in the
lower storage requirements, which made it possible that the most hardware-intense version
requires the smallest silicon footprint. As expected, the performance of the coprocessor
version is unreached by the other proposed implementation versions.
Finally, it has been shown that the approaches presented in this thesis compare well to
other 8-bit software implementations available in literature.
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Conclusion

The ambition of this thesis was to answer the question ”Is RFID ready for software-based
ECC?”. Up to this date not much research has been done in the field of software-based
ECC for RFID. The thesis proposes several hardware/software implementation variants
and evaluates the approaches in terms of area and performance.
Different algorithm variants were specifically designed for the implementation on a light-
weight 8-bit microprocessor for RFID. First, two software-based field multiplication vari-
ants were evaluated: The first one is the left-to-right multiplication with windows, which
is the state-of-the art approach. The other one was designed by the author of this work
to improve the storage/performance trade-off of the standard method.
Furthermore, an innovative hardware/software codesign approach was presented by in-
troducing virtual addressing for ECC. The proposed hardware acceleration decreases the
execution time of one ECC calculation by about a quarter, while introducing very little
area overhead.
Next, the implementation was adapted to an enhanced instruction set of the Ameba. The
evaluation shows that the availability of only two additional instructions, leads to a 27
percent faster execution time.
Finally, the binary field multiplication was outsourced to a hardware coprocessor. The
availability of a certain hardware functionality has an impact on the algorithm design. The
change of the binary field multiplication algorithm reduced the size of the needed RAM
storage. Furthermore, outsourcing of functionalities reduced the required ROM for storing
the machine code to one third. The impact on the storage requirements makes this most
hardware-intense version to be the option with the lowest silicon footprint. Additionally,
the execution time of the proposed coprocessor version is nearly twice as fast as the virtual
addressing approach. Thus, this implementation variant is unmatched in terms of area
and performance.
The performance and storage requirements of the presented implementations compare fa-
vorable to other 8-bit software ECC implementations in literature. The version with only
a little additional hardware (Ameba2 and Virtual Addressing) needs about 5.1 million
clock cycles for one authentication. If the frequency of the RFID tag is for example 13.56
MHz, this corresponds to 0.38 seconds. The fastest version with a coprocessor would take
0.2 seconds (2.7 million clock cycles).
This might be too slow for applications, which require fast response times, such as tick-
eting applications. However, the runtime is suitable for other applications such as brand
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protection. These applications have relaxed requirements in terms of performance.
To sum up, it can be concluded that software-based ECC on RFID tags is applicable. By
using a lightweight microprocessor and the presented hardware extensions, a good runtime
performance and low memory requirements are possible. Furthermore, software-based ap-
proach maintains a high level of flexibility.

6.1 Future Work

In this thesis a flexible design approach of ECC on an RFID tag was presented. Different
implementation versions were proposed and analyzed in terms of performance and area.
Future work could evaluate the energy efficiency of the proposed variants with power sim-
ulation.
Furthermore, the quality of the approach could be reviewed by manufacturing the im-
plementation and analyze the chip in terms of performance, energy consumption and
side-channel attack resistance.
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