Network Traffic Analysis
of
Android Applications

NF4Droid - A Network Forensics Tool for Android Security
Experts

Lumper Christian, BSc

Network Traffic Analysis of Android Applications

NF4Droid - A Network Forensics Tool for Android Security Experts

Master’s Thesis
at

Graz University of Technology
submitted by

Lumper Christian, BSc

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology
A-8010 Graz, Austria

October 15, 2012

© Copyright 2012 by Lumper Christian

Advisor: Univ.-Prof. M.Sc. Ph.D. Bloem Roderick
Co-Advisor: Dipl.-Ing. Dr.techn. Teufl Peter

TU

Grazm

Netzwerkverkehr Analyse von Android Applikationen

NF4Droid - Ein Netzwerk-Forensik Tool fir Android Sicherheitsexperten

Masterarbeit
an der

Technischen Universitit Graz
vorgelegt von

Lumper Christian, BSc

Institut fiir Angewandte Informationsverarbeitung und Kommunikationstechnologie (IAIK),
Technische Universitidt Graz
A-8010 Graz

15. Oktober 2012

© Copyright 2012, Lumper Christian

Diese Arbeit ist in englischer Sprache verfasst.

Begutachter: Univ.-Prof. M.Sc. Ph.D. Bloem Roderick
Mitbetreuender Assistent: Dipl.-Ing. Dr.techn. Teufl Peter

TU

Grazm

Abstract

Modern mobile devices in combination with sophisticated mobile platforms opened up new possibilities
for the development of mobile applications (apps). However, new threat types did arise with the new
capabilities. Apps which harm the privacy of the user or even show malicious behaviour (malware) were
created. This required the development of app analysis and malware detection methods.

This thesis outlines threat types for mobile platforms and describes the integrated security measures
of the platforms. Furthermore, it addresses the issue that the Android platform is one of the primary
targets for malware. Subsequently, it describes current Android app analysis and malware detection
methods and their requirements on the analysis environment.

Since less research on the analysis of the network from Android apps could be found, it highlights
the great potential to reveal possible unwanted or even malicious behaviour of apps through the analysis
of the network traffic. Consequently, the tool NFADroid (Network Forensics For Android), specialised
for the analysis of network traffic captured from Android apps, was developed in the scope of this the-
sis. NF4Droid provides rich presentations and visualisations of the network traffic and applies in-depth
analysis for the identification of data exposure, what should help to understand the behaviour of apps.

To study the network traffic of Android apps and to evaluate the capabilities of NF4Droid the top
50 free apps from Google Play and some known malicious apps were analysed. The analysis allowed to
gain more knowledge about the general communication behaviour apps and did yield to the result that
both apps commonly expose information to advertising companies, frequently without notice of the user.

Keywords: Network Traffic Analysis, Mobile Platform Threat Types, Android, App Analysis Methods,
Malware Detection, Grayware, Privacy, Mobile Advertising

Kurzfassung

Mobile Endgerite und die dazugehdrigen Plattformen haben weitreichende Moglichkeiten fiir die Ent-
wicklung mobiler Anwendungen (Apps) erdffnet. Mit den neuen Moglichkeiten sind aber auch neue
Gefahren entstanden. Apps sind entwickelt worden, die die Privatsphire des Benutzers missachten oder
bosartiges Verhalten zeigen (Malware). Daher ist es notwendig App Analyse- und Malware Erkennungs-
methoden zu finden.

Im Rahmen dieser Arbeit werden die Sicherheitsmainahmen und Bedrohungstypen fiir mobile Platt-
formen beschrieben. Weiters wird erldutert warum die Android Platform eines der Hauptziele fiir Mal-
ware ist. Nachfolgend werden aktuelle Android App Analyse- und Malware Erkennungsmethoden und
deren Anforderungen an die Testumgebung besprochen.

Da wenig Forschung in Richtung der Analyse des Netzwerkverkehrs von Android Apps betrieben
worden ist, beschreibt die Arbeit das Potential dieser Methode fiir die Erkennung von unerwiinschtem
oder sogar bosartigem Verhalten von Apps. In weiterer Folge ist im Rahmen dieser Arbeit das Tool
NF4Droid (Network Forensics For Android) entwickelt worden, das auf die Analyse des Netzwerkver-
kehrs von Android Apps spezialisiert ist. Das Tool bietet umfangreiche Darstellungsformen und Visua-
lisierungen fiir den Netzwerkverkehr und wendet eine umfangreiche Analyse zur Erkennung von Infor-
mationen im Netzwerkverkehr an. Damit soll NF4Droid Experten helfen das Verhalten von Apps besser
zu verstehen.

Zur Auswertung des Netzwerkverkehrs von Android Apps und zur Evaluierung von NF4Droid sind
die Top 50 der kostenlosen Apps von Google Play zusammen mit einigen als Malware bekannten Apps
getestet worden. Die Analyse ermoglicht das Sammeln allgemeiner Erkenntnisse iiber das Kommunikati-
onsverhalten von Apps und hat zu dem Resultat gefiihrt, dass Apps hdufig Informationen an Werbefirmen
weitergeben - meist ohne das Wissen des Benutzers.

Schliisselworter: Netzwerkverkehr Analyse, Mobile Plattformen Bedrohungstypen, Android, App Ana-
lyse Methoden, Malware Erkennung, Grayware, Privatsphire, Mobile Werbung

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources / resources, and that I have explicitly marked all material which has been quoted either literally
or by content from the used sources.

Eidesstattliche Erklarung

Ich erklire an Eides statt, dass ich die vorliegende Arbeit selbststindig verfasst, andere als die angegebe-
nen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wortlich und inhaltlich entnommene
Stellen als solche kenntlich gemacht habe.

Signature Value

OHTt bDui HDGDY TWG61WLEBQOp2Juxa?PRpzd5T7L2ME02x 84KHTSRbs YCCAYL MYV G3gW8r 4+My 2f 1MIQuZGQEA

Signatory

Christian Lunper

<3 |NFo
/@‘k '94, Issuer-Certificate | CN=a- si gn- Prem um Si g- 02, OU=a- si gn- Preni um Si g- 02, O=A-Trust Ges. f.
I LA Si cherhei tssysteme imel ektr. Datenverkehr GrbH, C=AT
2 EEE gJ Serial-No. | 656614
\\ /
\\ / Method urn: pdfsigfilter:bka.gv.at:text:v1.2.0
~— Parameter etsi-nmoc-1. 1@c052507
Verification Signature verification at: http://ww.signature-verification.gv.at
Note This docurment is signed with a qualified electronic signature. According to section 4

para 1 of the
si gnature.

Signature Act it in principle is legally equivalent to an handwitten

Date/Time-UTC

2012-10-14T23:

05: 447

Acknowledgements

First of all, I would like to thank my co-advisor, Peter Teufl, from Graz University of Technology for
proposing this thesis and his dedicated help throughout the whole project. Especially for his openness
and flexibility to let me finish my thesis from my hometown.

Moreover, I would like to thank the Institute for Applied Information Processing and Communica-
tions (IAIK) from Graz University of Technology and my supervisor, Roderick Bloem, for giving me the
chance to do this work at the institute.

Many thanks to Bernhard Mentler for proof reading this document. I would also like to thank David
Gstir, Matthias Kegele and Mathias Winder for their inspiration and help over the whole years of study-
ing.

Special thanks go to my girlfriend, Martina Groder, who has always been there for me. Finally I
would like to thank my father, Alfred Lumper, and the rest of my family (Heidi and Manfred) for their
long-standing aid over the course of my academic studies.

Lumper Christian
Vorderhornbach, Austria, October 2012

XIII

Contents

Acknowledgements XTIIT

Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Motivation o e e e e e e e e e e e e e

1.2 Background e e 2

1.3 Contribution e e e e e e e 3

1.4 Outline e 4

2 Mobile Platforms, Apps and Malware 7

2.1 Threat Typesand Motives o i it e e e 7

2.1.1 Malware e e e e e e e e e 8

2.1.2 Personal Spyware e 8

213 Grayware e e 8

2.1.4 Motives for Malware Development 9

2.14.1 Novelty and Amusement 9

2.1.42 Financial Gain 9

2.1.4.3 Premium Rate Services 9

2.14.4 UserCredentials 10

2.1.4.5 UserInformation 10

2146 Spying oL 11

2.14.7 Utlise Resources 11

2.2 Security Measures e e e e 12

221 PermiSsions i e e e e e e 12

2.2.2 Application Distribution Channels 13

2.22.1 Official Markets 13

2.2.2.2 Alternative Markets and Direct Download 14

2.3 Reasons for Targeting Android L L 15

23.1 MarketShare 15

2.3.2 Openness and Technical Features 15

2.3.3 Version Fragmentation and Heterogeneous Devices 16

3 Android App Analysis Methods and Malware Detection

3.1 Analysis Environment

3.1.1 Execution Environment. L o
3.1.2 System Behaviour oo
3.13 AvailableData
3.1.4 Interaction
3.1.5 Application Scope
3.2 Analysis and Detection Methods L oL
321 TheUser e
32.1.1 DefaultUser
3212 AdvancedUser
3213 ExpertUser e
3.2.2 Mobile Security Appso
323 Static AnalySis e
3231 Techniques
3232 Toolso
3.24 Dynamic Analysis L
3241 Techniques
3242 Tools o
3.2.5 Market Metadata Analysis
3251 Techniques
3252 Reports/Tools L
3.2.6 Network Traffic Analysis
3.2.6.1 Techniques
3262 Reports.
327 Summary e e e e e

4 Potential of Specialised Network Traffic Analysis for Android Applications

4.1 General Network Traffic Analysis
4.2 In-Depth Network Traffic Analysis
4.3 Which Threat Types Can Be Detected

5 Network Traffic Analysis with Network Forensics for Android (NF4Droid)

5.1 Traffic Capturing (external) L
5.1.1 Capturing Methods
511 tepdump ...

5.1.1.2 Emulator

5.1.1.3 Virtual Private Network (VPN) service

5.1.14 Wi-Fisetup o

5.1.2 Automation and User Interaction

5.1.3 Test Environment Properties

5.2 Data Processing

5.2.1

ii

17
17
17
18
19
19
19
20
20
20
21
21
21
22
23
23
24
25
25
26
27
27
27
28
28
29

31
31
32
33

522 Processing . . . oL ..o 38

5221 Parsing e e e 39

5222 Enrichment 40

5223 Persisting 40

5.23 In-Depth Analysis 40
5.2.3.1 Whattolookoutfor? 41

5232 AnalysisMethod L 50

5.2.3.3 Currently Analysed Test Environment Properties 51

5.2.3.4 Analysis Limitations oL, 51

5.3 Data Presentation & Visualisationo 52
5.3.1 Capture Management and Archiving 53
S3LL APPS . . e e e 53

5.3.1.2 AppVersions e e 54

5.3.1.3 Trafficcaptures 54

5.3.2 Capture Dashboard 55

533 TrafficTimeline. e 56

534 TrafficGeochart 58

535 HTTPRequests e 58

5.4 The Use of NF4Droid for Other Mobile Platforms 59
6 Implementation Details 63
6.1 General Conceptual Design 63
6.2 Implementation of NF4Droid 64
6.2.1 Google Web Toolkit (GWT) based Web Application 64
6.2.1.1 Client-Server Communication 64

6.2.1.2 Activities, Places and Model View Presenter MVP) 65

6.2.1.3 UserInterface (UI) 65

6.2.2 Rapid Application Development with SpringRoo 66

6.2.3 Network Traffic Information Import 66

6.2.4 Data Persistence, object-relational mapping (ORM) and Data Retrieval 67

6.2.5 Further Processing 67

6.2.6 Exposure Analysis e 67

6.2.7 Data Visualisation e 68

6.2.8 ProjectBuild 68

6.3 Design of NF4Droid 68
6.3.1 Server 68

6.3.2 Package Overview e 69

6.3.3 Client e 70

6.3.4 Package Overview 71

6.3.5 Shared 73

6.4 Deployed Technologiesand Tools 73
6.4.1 SpringRoo e 73

6.4.2 Google Web Toolkit (GWT) 73

iii

6.4.3
6.44
6.4.5
6.4.6
6.4.7
6.4.8
6.4.9
6.4.10
6.4.11
6.4.12
6.4.13
6.4.14
6.4.15
6.4.16

Hibernate
Java Persistence APL(JPA)
QueryDSL o e
GWTUpload e e
Kraken e
jar-netdb L oL oL oL L e
MaxMind IP Database Lo
Twitter Bootstrap
GWT-Bootstrap o e
Highcharts JS o
GWT Highcharts
Google Chart Tools
Aspect] . .. L e e

7 Case Study and Results

7.1 Testing Method
7.2 Top50Free Applications e
721 Resultso e
7.2.1.1 General L

7.2.1.2 Information Exposure

7213 Conclusion

7.3 Known Malicious Applications
7.3.1 Resultso
7.3.1.1 General

7.3.1.2 Information Exposure

7.3.1.3 Conclusion L

8 Conclusion and Outlook

8.1 Summary e e
8.2 Future Work e

A Acronyms

Bibliography

v

77
77
77
78
78
78
80
84
84
84
84
85

89
89
91

93

111

List of Figures

1.1

5.1

5.2

5.3

54

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

Screenshot of the “Traffic Timeline” section in NF4Droid, presenting the network traffic
amount over the time with flag markers denoting exposure of information. The given
visualisation presents the results for the “Cut the Rope - Free” application indicating the
extensive transmission of sensitive data for advertising purposes. 4

Graphic, illustrating the workflow of NF4Droid, consisting of three main steps: First,
the capturing of the network traffic (external, not part of NF4Droid). Next, the data
processing with the subtasks import, processing and analysis for the preparation of the
data. Finally, the presentation and visualisation of the gathered data. 35

Graphic, presenting the workflow of NF4Droid highlighting the first, network traffic
capturing, step. The traffic capturing is actually not done by NF4Droid as illustrated
in the graphic, but still part of the overall process. 36

Graphic, presenting the current data processing step in the overall workflow of NF4Droid,
consisting of the subtasks: import, processing and analysis. 38

Screenshot of the view for the import of traffic captures and the according test environ-
ment properties in NF4Droid. As further detail, the autocomplete feature, which presents
possible matches of existing application package names available in the database for se-
lection, is visible in the screenshot. L. 39

Graphic, illustrating the workflow of NF4Droid with the final, data visualisation and
presentation, step highlighted. o 0oL 52

Screenshot of the “Apps” site in NF4Droid presenting the list of applications for the
search term “google”. L L 53

Screenshot of the “App Versions” site in NF4Droid presenting the list of versions for the
“shazam” application. e e e e e e 54

Screenshot of the “Traffic Captures” site NF4Droid listing all traffic captures for the
“Mobile calls query” application with the version code “14”. 54

Screenshot of the “Capture Dashboard” site in NF4Droid consisting of three sections,

namely “App”, “Exposure” and “Traffic” for the information presentation and visualisa-
tion. Results are presented for the traffic capture of the “shazam” application. 55

Screenshot of the “Traffic Timeline” site in NF4Droid consisting of the two sections
“Traffic Timeline” and “Exposure”. The data shown is from an traffic capture of the
“shazam” application. L e 57

Screenshot of the modal box for adding a new series underlying certain criteria to the
“Traffic Timeline”. e 57

Screenshot of the modal box presenting detailed information about a data exposure and
the related Hypertext Transfer Protocol (HTTP) request. This specific entry points out
the exposure of the Android ID in the HTTP request parameter by the “shazam” application. 58

5.13 Screenshot of the “Traffic Geochart” site in NF4Droid presenting the geographical net-
work traffic distribution for the Internet Protocol (IP)v4 traffic. Results are presented for
the traffic capture of the “shazam” application.

5.14 Screenshot of the “HTTP Requests” site in NF4Droid consisting of a tabular view for the
HTTP requests with various filter and search possibilities and a section with statistical
information about the HTTP requests. The data shown is from a traffic capture of the
“Cut the Rope - free” application.

5.15 Screenshot of the modal box presenting detailed information about HTTP requests. This
specific HTTP requests is part of the traffic captured from the “shazam” application. . . .

6.1 Graphic, illustrating the general conceptual design of NF4ADroid. NF4Droid is designed
as a desktop web application, consisting of a web based client, a server and a database.
The user externally captures the network traffic of the Android applications and imports
the gathered data to NF4Droid for the further analysis.

6.2 Graphic, illustrating the main components of the NF4Droid server. Moreover, it illus-
trates the internal and external interaction of the server components.

6.3 Graphic, illustrating the main Java packages and their categorisation according to their
functionality at the server side of NFADroid.

6.4 Graphic, illustrating the most important components at the client side of NF4Droid and
thelrinteraction. o

6.5 Graphic, illustrating the most important Java packages, categorised by their functionality,
atthe client side of NFADroid. o oo

7.1 Chart, illustrating the number of the top 50 free applications, exposing information in
the network traffic. The inner circle indicates the percentage of applications, where we
detected exposure of information. The outer circle around the exposed data denotes the
ratio between the different exposure types. L.

7.2 Chart, illustrating the advertising providers, to which the tested top 50 free applications
exposed information. Additionally, the number of applications, which used a certain
service, are denoted. L L e

7.3 Screenshot, showing the advertisement for the Cut the Rope application on the Android
website [98]. e

7.4 Chart, illustrating the number of tested malicious applications, exposing information in
the network traffic. The inner circle indicates the percentage of applications, where we
detected exposure of information. The outer circle around the exposed data denotes the
ratio between the different exposure types. Lo Lo

vi

List of Tables

3.1

5.1

7.1

7.2

Categorisation of the environment properties for malware analysis/detection methods in
five groups (redrawn from Teufl etal. [181]).

Overview of the currently analysed test environment properties in NF4Droid, including
information about the point, where the analysis is applied in the HTTP request and which
obfuscation methods are imitated. oL oL

Table of the top 50 free applications at Google Play on the 29¢" of June 2012 analysed
with NF4Droid.The column Hypertext Transfer Protocol Secure (HTTPS) indicates if
an application used, to some extent, secure communication. The columns Location,
Android ID, International Mobile Equipment Identity (IMEI) and International Mobile
Subscriber Identity (IMSI) denote how many times an application exposed a certain in-
formation. Applications incompatible with the test device (ZTE Blade) or the service
provider (tele.ring) have been omitted and replaced with subsequent applications in the
ranking. L. e e e e

Table enumerating the 19 different types of malware and the according applications,
which we tested. The column HTTPS indicates if the malware used, to some extent,
secure communication. The columns Location, Android ID, IMEI, IMSI and Phone
number denote how many times an application exposed a certain information. 6 of the 19
tested malicious applications we tested did not produce any network traffic. Accordingly,
the are omitted in the overall result. oo L.

vii

83

viii

Chapter 1

Introduction

This chapter will give an overview of the motivation for this work and present some background informa-
tion about mobile platforms their threats and security measures, and briefly describe application analysis
methods. Additionally, we describe our contribution to the subject of network traffic analysis and outline
the further structure of the thesis.

1.1 Motivation

The technical features of modern mobile devices and the development of sophisticated mobile platforms
led to a significant increase in the sale of smartphones and tablets over the past years [52, 96]. Besides
technical improvements such as high-resolution touchscreens and location services, the development of
mobile platforms with a rich feature set and the extendibility through third-party applications mainly
contributed to the success of smartphone, as well as, tablets. According to analysis by Gartner Inc. [95]
in May 2012 especially the mobile platforms Android from Google [98] with a market share of 56.1%
and i0S from Apple [34] with 22.9% could register a success over previously established platforms like
Symbian [178] (8.6%) and the BlackBerry OS from Research In Motion (RIM) [163] (6.9%). Although
Windows Phone from Microsoft [142] has currently a low market share (1.9%) predictions indicate that
Windows Phone will be able to catch up till 2013 as the third biggest mobile platform [94].

Modern mobile platforms offer developers Software Development Kits (SDKs) which support the
creation of applications and allow to easily use the technical features provided by the devices like the
Global Positioning System (GPS) or the camera and access data like contacts or short messages. Addi-
tionally, the platform providers offer digital-distribution channels like the Apple App Store [35], Win-
dows Phone Marketplace [140] or Google Play [99] (formerly Android Market) which allow the develop-
ers to easily present, distribute and sell their applications. This comprehensive environment and the big
market pushed the development of applications for mobile platforms. This led to an impressive amount
of available applications, with each of the two biggest official markets (Apple App Store and Google
Play) offering more than 600,000 applications [125].

Unfortunately, the popularity of the mobile platforms and the presence of sensitive information on
the devices make the platforms an attractive target for developers of malicious applications (malware)
and consequently new security threats arise. Malware might harm the privacy of the user by exposing
private data like contacts or reveal sensitive information like the location. Moreover, attackers utilise
their applications to spy on the user or contact premium services, which cause financial charges. Besides,
free applications commonly share various sensitive information with advertising companies without the
knowledge of the user. The rapid growth of mobile malware in the recent years, with an increase of
155% in 2011 and solely 46.7% of the overall malware target for Android, emphasises the importance of
measures to identify possible malicious applications [128].

2 1. Introduction

1.2 Background

Mobile platforms take various security measures to protect their system and prevent the development
and distribution of malware. Platforms use established security architectures adapted and extended for
the use case on mobile devices. Extensions include methods such as sandboxing, application signing
and permission systems for the access of sensitive data and hardware features. Furthermore, platforms
like i10S from Apple rely on manual approval processes at the distribution channel to identify malicious
applications [37]. On the contrary, Android with a different security architecture and a more open phi-
losophy does not apply such approval methods. Android uses a tool called Bouncer for the automated
analysis of applications on Google Play and relies on the community to identify and report malicious
applications [114]. All the mentioned security measures try to limit the risk of malware but can not guar-
antee a total protection. As a consequence mobile platforms integrate methods which allow to remotely
remove malicious applications from the devices [148, 164].

Additionally to applications showing direct malicious behaviour there exists a variety of applications
which show possible unwanted but not yet malicious behaviour. However, those are not covered by this
protection methods. For example, a lot of free applications use information like unique identifiers and
the device location for advertising purposes without the direct knowledge of the user.

Hence, different methods for the analysis of applications and the detection of malware exist and are
continuously developed by researchers with the aim to limit the impact of malicious applications. The
distinct methods have, however, different requirements on the analysis environment. In some cases they
can only be deployed on rooted devices or require modifications of the system, whereas others can be
run on standard devices or even emulated environments. Furthermore, the methods very in the demand
of user interaction and the possibility to be automated. In addition, further requirements influence the
applicability and the selection of adequate analysis methods.

Especially for Android a variety of analysis methods have been developed by the community, on
the one hand because Android is currently the main target of malware [128], on the other hand because
the openness of the system offers researches many possibilities for the development and deployment of
analysis methods. In the following we briefly describe some of the established analysis and detection
methods:

The user is one of the first members in the chain of the malware detection. An experienced user
might identify, if the required permission of an application are reasonable and match the context of the
application. The unexpected behaviour, like the crash of an application, might raise the suspicion of the
user, but without any further tools the possibilities are quite limited.

Mobile security applications offer functionality, known from desktop computer antivirus software,
to scan the system for malicious applications. The capabilities of such applications are however limited
by the mobile system and their system resources. As a consequence they can usually just identify known
malware.

Static analysis helps to identify new malware by analysing the source code of an application or the
reverse engineered binary installation package of the application. The methods include simple signature-
based malware detection and range over call-graph analysis up to the simulation of execution chains. The
static analysis does not rely on a device or emulator and usually no interaction of the user is required.
However, methods for obfuscating the source code can make it hard to restore the actual source code and
reproduce the behaviour.

The dynamic analysis monitors the execution of an application on a physical or emulated device. It
is usually implemented by either instrumenting the application code or executing the application in a
modified environment. Although only the monitored behaviour can be analysed, the advantage is that
detailed information about the current execution path and the according system status is available. For
the effective dynamic analysis the executed application must be provided with sufficient input by either
the user or automatically generated input.

1.3. Contribution 3

The metadata analysis tries to find malicious applications by applying knowledge discovery tech-
niques on the information provided on the markets to describe the applications. Such information in-
cludes the required permissions, the textual description of the application, the assigned category or the
user rating. The analysis can be considered as high-level method since it does not require the application
package and there is no need to execute the application on a real or emulated device.

The process of capturing and analysing the network traffic between applications and their contacted
servers does deliver a broad range of information about what data leaves the device. The traffic might
include various sensitive data available on the mobile platform like unique device identifiers, the location
or the phone number. The examination of this information could help to detect leakage of private data
without the approval and notice of the user. Moreover, malicious activities of applications might be
observable through the network traffic.

Besides established and well researched methods, like the static- and dynamic analysis, less research
can be found on the analysis of the network traffic produced by applications. The Wall Street Journal
[183] in cooperation with the technology consultant David Campbell published an article, where they
analysed 101 popular iOS and Android applications relating to data privacy. While the report reveals
interesting details about the misuse of private data by applications for advertisement purposes, there is
no information given about the exact testing method and the results are limited to the tested applications.
Fulton [92] presented on the DEF CON 19 [67] his general work on the analysis of the network traffic of
Android applications and points out some examples of private data exposed by applications.

Since the network is one of the main interfaces to the outerworld of today’s devices, it has great poten-
tial to reveal the behaviour of applications. With various applicable network traffic capturing techniques,
the analysis method is independent of the underlying test environment and can be deployed, regardless if
a standard, rooted or even emulated device is used. Furthermore, it only requires the installed application
and it does not matter if manual user interaction or simulated user input is utilised for testing.

With the automated network traffic analysis we could get a deeper insight about the general function-
ing of applications and answer question like, how much and what data is transmitted to which servers.
Furthermore, we could unveil what protocols are deployed by the application and if secure communi-
cation channels are used. Besides this general obtainable information, the detailed examination of the
transmitted data could reveal the misuse of sensitive data and the exposure of private information, and
thus help to identify undesired or even malicious behaviour of applications.

1.3 Contribution

For the purpose of this thesis we developed a tool called NF4Droid which allows to analyse the network
traffic of Android applications. NF4Droid offers functionality to manage different traffic captures of
applications and offers extensive features for the visualisation of the network traffic. The visualisations
should give the user deeper insight about what connection are established by the applications and reveal
the usage of the different network protocols and secure communication. Furthermore, it allows to easily
identify the location of the contacted servers. The visualisation of the network traffic over time shows
at which point an application does establish connections and how much data is transferred (as demon-
strated in Figure 1.1). This summarised representation of the traffic information enables the user to better
understand the behaviour of the application.

Besides the more general presentations and visualisations of the network traffic, offers NF4Droid
specialised capabilities to identify the exposure of sensitive information related to Android as the under-
lying mobile platform. The network traffic is inspected by NF4Droid for the leakage of information such
as unique identifiers of the device, the location, the phone number or the contacts. The possible exposure
of data is as well visualised in a manner that should make it easy for the user to identify the suspicious
actions of applications as shown in Figure 1.1.

4 1. Introduction

Traffic timeline Traffic amount and data exposure visualization.

Traffic amount over time Series
Click and drag in the plot area to zoom in
150 ke @ Total trafiic o x
Reset zoom
@ Hitp Requests) x
125 kB
@ Android ID o x
100 kB IMEI ~ x
|
® ms v x
8
s x

£ ! Location

+ Add filtered series

Figure 1.1: Screenshot of the “Traffic Timeline” section in NF4Droid, presenting the network traffic
amount over the time with flag markers denoting exposure of information. The given visualisation
presents the results for the “Cut the Rope - Free” application indicating the extensive transmission of
sensitive data for advertising purposes.

The overall information about the network traffic of an application presented by NF4Droid should
assist expert users in the process of identifying applications which disregard the privacy of the user and
help to reveal malicious behaviour of applications.

To test and demonstrate the capabilities of NF4Droid we analysed the network traffic of the top 50
free applications on Google Play and moreover from known malicious applications. The results show
that NF4Droid could reveal application with aggressive advertisement practices which harm the privacy
of the user. Furthermore, the tool proofs its partial ability to identify malicious action of malware utilising
the network.

1.4 Outline

The remainder of this thesis is structured as follows. Chapter 2 gives background information about mo-
bile platforms, applications and malware. We present an overview of the different threat types for mobile
platforms, including samples of malware, and identify motives for the development of malicious applica-
tions. Next, the security measures of the mobile platforms and their distribution channels are highlighted.
Furthermore, we point out reasons for attackers to target malware for Android and emphasise why this
work is focused on Android.

Chapter 3 presents existing methods for the analysis of Android applications and the detection of
malware. The chapter begins with the characterisation of the underlying environment of the analysis
methods. Next, the role of the user in the detection process and the use of mobile security applications
is described. Furthermore, work related to static, dynamic and metadata analysis is presented in more
detail. Finally, the currently existing work on the analysis of the network traffic is presented and we
discuss advantages and disadvantages of all analysis methods.

Chapter 4 highlights the problem that currently established methods for the analysis of network
traffic are not well suited for the inspection of the traffic from Android applications. We point out
which information general network traffic analysis could unveil and describe the potential of the in-
depth analysis for the detection of data exposure. Finally, we enumerate threat types which might be
detectable with network traffic analysis.

Chapter 5 introduces the chosen approach for the analysis of the network traffic using the developed
web application NF4Droid. First, some information about the process of capturing the network traffic

1.4. Outline 5

is given. Next, the data processing steps involving the data import, the further processing and the in-
depth analysis for data exposure are described. Finally, the pursued methods for the visualisation and
representation of the network traffic are presented.

Chapter 6 reveals implementation details of the developed web application NF4Droid. Including the
parsing of the traffic capture, the storage of the gathered information and the designed data model behind
it. Furthermore, we present some details about the realisation of the web application and refer to the
libraries used for the implementation of the user interface and the visualisation of the network traffic.

In Chapter 7 a case study, were we analysed the network traffic of the top 50 free applications from
Google Play and a set of known malicious applications with the developed tool NF4Droid, is presented.
This chapter demonstrates the capabilities of NFADroid and reveals some interesting findings related to
the privacy of the user.

In Chapter 8 we conclude over the whole work presented in this thesis and discuss the results. We
finish the thesis with a future perspective on the possibilities to extend the capabilities of NF4Droid and
the integration into test frameworks. Moreover, we propose some different approaches for the analysis
of the network traffic of Android applications.

1. Introduction

Chapter 2

Mobile Platforms, Apps and Malware

Modern mobile operating systems like iOS from Apple and Android from Google gained a significant
market share over the past years and overtook classical platforms like Symbian or the BlackBerry OS
[95]. Similarly, Microsoft try’s to catch up on this numbers with the new platform Windows Phone. In
contrast to previous established platforms, the new systems focus on usability and offer greater possi-
bilities for the creation of applications by third-party developers. SDKs provided for mobile platforms
support developers in the development process and allow to easily create apps that make use of the
technical features offered by today’s smartphones. Furthermore, digital distribution platforms like the
Apple App Store, Windows Phone Marketplace [140] and Google Play (formerly Android Market) allow
developers to easily present, distribute and sell their applications.

The comprehensive environment and the big market pushed the development of applications for
mobile platforms. However, not only developers are attracted by the opportunities of the new devices,
the mobile platforms and their distribution channels, they also arouse the interest of attackers to create
malicious applications. Different threat types for the user arise from such malicious applications. For
example, some applications harm the user’s privacy through exposure of sensitive data, whereas others,
can be utilised to spy on the user, still others try to gain financial benefits.

The mobile platforms try to limit the risk of such incidents by taking different security measures
including the use of hardware and software security features on the Operating System (OS) level and ap-
proval and verification steps at the distribution channels [5, 38]. Although various security measures have
been taken, malicious applications exist for all platforms. Reports actually indicate a large increase in
mobile malware over the past years utilising even more sophisticated vulnerabilities and mainly targeting
the Android platform [128, 136].

Before we go into the details of application analysis and malware detection methods, we want to
give the reader a short introduction to the general topic of malicious applications on mobile platforms.
Therefore, the next section does point out common threat types and the motives behind them, as well
as it describes the security measures taken by the platforms against them. Since this thesis focuses on
the analysis of network traffic from Android applications, we consequently highlight some reasons for
attackers to target their attacks against the Android platform.

2.1 Threat Types and Motives

Felt et al. [81] identifies three threat types for mobile platforms: malware, spyware and grayware. The
classification is based on their distribution method, legality and notice to the user. The paper further gives
deeper insight into the current and potential future motives of attackers to develop such applications and
describes possible defence mechanisms.

This section will briefly present this categorisation and highlight the most important motives for the

8 2. Mobile Platforms, Apps and Malware

attackers. In this thesis, not only applications are referenced with the term application, but also games,
widgets and other kind of utilities for mobile platforms. Accordingly, all the mentioned threats even
apply to software of this kind.

2.1.1 Malware

Malware is considered to pose a significant security risk to the users’ system and information [79].
Developers of malware deceive users to install malicious applications or try to use other system vulner-
abilities to gain unauthorised access. Malicious actions include the destructive behaviour to the system
or data, the stealing of user credentials or the collection of user information and other sensitive data.
Consequently, malware does not provide any legal notice to the user for the actions carried out.

Trojans, worms, botnets and viruses belong to the category malware [80], and in the Section 2.1.4
we present some example and describe they motives for the development of such malicious applications.

Although the expression malware references to the specific threat type described above it is often
used as umbrella term to characterise even the following two threats.

2.1.2 Personal Spyware

In contrast to regular malware with spying capabilities, which does not proclaim its spying functionality
and hides it behaviour in any way, dose personal spyware actively advertise its ability to spy a person
and requires physical access to the device for installation. However, personal spyware hides itself as
well from the user while collecting personal information like the call history, text messages or tracking
the location. Various threat types arise from the capabilities of such applications which are described in
Section 2.1.4.6. Unlike for malware, the information from personal spyware is, however, gathered for
the person which initialised the spying, rather than the application developer.

For the Android platform various such applications (e.g. MobiStealth [145], Spy Control [187]) are
available on Google Play and advertise themselves as spyware. A common but controversial use case
of such applications is the spying on the significant other or the parental control. Following the open
philosophy of Android, there is no reason for Google to ban such applications from the market, since
only the installation and use of the application without the device owners authorisation is prohibited. In
contrast such applications are not permitted in the App Store due to the restrictions specified by Apple
[36].

Teufl et al. [181] highlights that besides from apps which proclaim themselves as spyware, a widge
range of security related software (e.g. Lookout [133], Norton Mobile Security [59]) exists with the aim
to increase the security of the user’s phone and data. Such utilities commonly offer features like to locate
or remotely wipe a stolen phone, but sometimes even allow to remotely control the device which allows
things like to play an alarm sound, record audio, take pictures or read text messages.

Although the main intention of spyware and such security applications is completely different, only
the context in which they are used defines if they can be considered as malicious application or harmless
software [181]. If spyware or security tools are installed under the user’s behalf, both types of applica-
tions cannot be judged as malware. However, if such applications are used without the knowledge of
the device owner, the behaviour must be classified as malicious, since they actively allow to spy the user
without any notice.

2.1.3 Grayware

Smartphones commonly contain a lot of personal information and allow to gain detailed knowledge
about the user. Grayware spies on users to collect such information, although the companies that dis-
tribute grayware do not aim to directly harm the users by this activities [188]. Hence, grayware usually

2.1. Threat Types and Motives 9

provides real functionality and value to the user, but often uses the personal information for advertising
purposes or user tracking. Reliable companies openly disclose their data collection habits but others
use misleading and unclear privacy policies or end-user license agreements (EULAS) to deceive users,
therefore is grayware often on the borderline of legality [64].

Developers of free applications often use advertisement to finance the development and monetise
their applications. Mobile advertising companies (e.g. AdWhirl [2], JumpTap [127]) provide SDKs
which support developers to easily integrate advertisement into applications. To maximise the revenue
the advertisement is targeted to the user by supplying additional information like the location, gender,
or age. Some advertisers are further interested in identifiers (e.g. IMEI, Android ID; see Section 5.2.3.1
for more details) which allow to uniquely identify a device and track the behaviour of the user over time,
accordingly raising privacy concerns for the user.

For the user it is often hard to know in which way the information, an application is permitted to
access, is used. The user relies to some extend on the fidelity of the developers, especially that they
proclaim for what they use the personal data and how they handle the disclosure of such information.
An application might, for example, use the location information to present the position of the user on a
map, but at the same time and without notice of the user send the information together with some unique
identifiers to an advertising company or remote server.

2.1.4 Motives for Malware Development

Developers have different motives and pursue different objectives for the development of malware. Fol-
lowing some possible motives, which have been seen at malware in the wild to some extent, are high-
lighted.

2.1.4.1 Novelty and Amusement

Especially in the beginning of the mobile malware development applications have been found which
seem to have the intention to amuse the author by doing mischief. For example, Eeki . A [154] changes
the wallpaper of infected iPhones or Smspacem [177] sends various short messages with anti-religious
content from Android devices. Such malicious applications mainly cause discomfort for the user and can
often be seen as proof of concept for new attacks and for the demonstration of vulnerabilities.

2.1.4.2 Financial Gain

Research by Zhou [198] shows that gaining financial benefits from malicious applications is one of the
driving forces for the development of malware. The practices for making money range from direct meth-
ods like premium rate calls and short messages to indirect methods where user credentials are misused
or sensitive information is sold.

2.1.4.3 Premium Rate Services

One profitable way for attackers is to develop malware which secretly contacts premium rate services
using short messages or by calling them in the background. Legitimate premium rate services offer
phone numbers for technical support, TV show votings or adult chat lines, or provide short message
services for digital content like news alerts, ringtones or wallpapers. A part of the higher fee for the call
or short message are paid to the service provider, allowing a payment of the offered service. If attackers
set up such premium services for their malicious activities they can directly make money out of it by
forcing the malware to contact the service.

Android allows applications to send and intercept incoming short messages in the background with-
out any notice to the user after granting the required permissions at install time (see Section 2.2.1). This

10 2. Mobile Platforms, Apps and Malware

allows malicious applications to contact such services with ease if they got installed once. FakePlayer
is the first known malware which uses this methodology [198]. Since then various malware of this kind
was developed including more sophisticated ones like GGTracker which use better techniques to hide
their behaviour, allow the attackers to remotely change the premium service number and even register
users to premium service subscriptions [198]. Geinimi and others have similar functionality but as
well allow to call premium numbers in the background [198].

2.1.4.4 User Credentials

Smartphones are nowadays often used for online shopping, banking, email and other services which
require user credentials including passwords and credit card data. Besides, offer banks two-factor au-
thentication relying on the smartphone as second channel. Moreover, users store even password and
payment credentials on their phone using password managers. Accordingly, this kind of usage make
mobile platforms a profitable target for theft of user credentials [80] , since gathered credentials like
credit card numbers, bank account credentials, email passwords can be sold on the black market or used
directly by attackers to make profit [84].

Zitmo and Spitmo are examples for malware previously seen on the Symbian platform and ported
to Android [50, 198]. Both applications defeat the second channel of a two-factor banking authentica-
tion by intercepting all incoming short messages. Subsequently, the forward the information to a remote
server over the network or by using short messages. Besides, the two malicious applications work to-
gether with a desktop malware which steals the user’s login credentials and deceives the user to install
the malicious applications on their smartphone.

2.1.4.5 User Information

Besides user credentials a lot of user related information resides on smartphones and is accessible
through the Application Programming Interfaces (APIs) of the mobile platforms or might be obtain-
able by malware through vulnerabilities. Contacts, browsing history, installed applications, the location,
personal information (phone number, mail address, postal address, et cetera.) or unique device identi-
fiers to mention only some of the most important ones (A more detailed list can be found in Section
5.2.3.1.). Although it is hard to tell why malicious applications collects such informations, Felt et al.
[80] hypothesises that this data is sold by malware distributors for financial gain.

Collected information which allows a detailed profiling of the user might be bought by advertisers or
marketing companies to improve product placement and targeted advertisement. Nevertheless, legitimate
applications already include advertising libraries which commonly collect personal data, but maybe offer
less detailed information about the individuals.

Similarly, detailed information about the device owner or the contacts like the full name, the phone
number or the mail address can be sold on the black market [84]. Where such detailed user information
is offered and sold for spamming purposes and phishing attacks.

Unique device identifiers like the IMEI have value for the black market of stolen phones [80]. Since,
if a phone gets stolen the IMEI is blacklisted by the network providers and thus prevented from connect-
ing to the network. Nevertheless, gathered IMEIs can be used to alter the black listed phones IMEI by
a valid one and consequently allow to connect to the network again. However, it is common practice
of applications and advertisers to collect IMEIs, meaning the possible large supply of IMEIs lowers the
revenue for attackers.

For example, the dubious Android applications known as SndApps uploads information about the
user’s email accounts, the IMEI as well as the phone number to a remote server in the background
[193,200]. Due to the fact that such behaviour is typical for grayware the applications have been removed
from Google Play. Nevertheless, as the G Data Software AG [93] points out, after integrating an EULA

2.1. Threat Types and Motives 11

and encrypting the data before transmission, these applications made it on to Google Play again and
remain there. This shows another case of misleading EULA and highlights the risk of downloading
grayware from the official market.

The stealing of user information or credentials and the usage of premium rate services, as described
and affirmed by various actual samples, show common methods used by attackers to gain financial ben-
efits. However, depending on the intention of the attacker financial interests might not only be limited to
the motives listed above, even other attacks could be indirectly utilised to acquire money. For example,
information gathered by spying or providing resources for spamming activities might as well be sold on
the black market.

2.1.4.6 Spying

Use cases for personal spyware in the private area are the spying of the partner or the parental control of
the children. This allows to find out if your significant other is cheating on you, or to verify that children
follow your rules [145].

Companies might use the functionality for business espionage allowing to gain information about
the developments of the competitor or to get insight into upcoming business deals, and thus enable to
achieve competitive advantage [162]. Another use case for personal spyware is the sneaky monitoring of
employees by company executives [145].

Governments could use spyware for monitoring citizens in the large or target it to observe suspected
criminals. The threat of the governmental usage might be even more powerful assuming their ability to
force network carriers or device manufactures to distribute spyware on all devices [80].

Even though not all of this scenarios have yet been seen in the wild or became known, they show that
the privacy of the user is not respected by such spying applications if they are installed and used without
the consent of the device owner.

2.1.4.7 Utilise Resources

Research by Zhou [198] shows that a high percentage of malware integrates functionality which allows
to remotely control the compromised phone through the network or by short messages using command
and control (C&C) servers. This features are used by attackers to create botnets for utilising smartphone
resources. The resources can, for example, be used for spamming or distributed denial-of-service (DDoS)
attacks.

Short Message (SMS) and email spam is often used for advertisement or phishing attacks [80]. Since
spam messages are illegal in most countries, spammers commonly use botnets to spread the messages.
Since the usage of multiple compromised devices obscures the origin of the original message and thus
reduces the risk for the spammers to get caught.

Since Android allows to send SMS in the background without any notice, malware could misuse this
functionality to send SMS spam. The user might only realise the malicious activities after he receives
the monthly bill for all the sent messages, or maybe never notice it if he has an unlimited messaging
plan. P japps [176] is an example for malware offering such functionality. It further allows to force the
compromised devices to open a certain web address. Accordingly, if the botnet is large enough it allows
to attempt DDoS attacks by simultaneously contact a web address with all hijacked devices.

The utilisation of the resources of a smartphone could cause additional costs for the user for sent
messages or high data traffic. Further the device is misused without the knowledge of the user in an
unwanted manner and might, moreover, get blacklisted for its behaviour.

12 2. Mobile Platforms, Apps and Malware

2.2 Security Measures

The developers of mobile platforms have taken various security measures to reduce the risk for possible
threats. Although the measures vary for the different platforms they can roughly be divided into three
steps depending on the time they take place:

First, preventive measures should make it difficult to develop malware. Mobile platforms have a
security architecture designed with the aim to protect user data, system resources, applications and the
device [5]. To achieve this security objectives the platforms choose slightly different approaches, but
roughly all provide the following key features [5, 38, 141]:

* The usage of established, robust security architectures at the OS level (Linux kernel for Android).

 Utilisation of hardware security features for data encryption, cryptographic operations and mem-
ory management.

» Sandboxing of applications to restrict access to system resources and data as well as others appli-
cations data.

* Mechanisms for secure inter-process communication (IPC) between applications, allowing to
safely share data between applications.

* Application signing to identify the application author and to build trust-relationships between ap-
plications.

* A permission system restricting the access to system resources, user data and credentials.

Second, various detection methods should help to identify malware that circumvents the preventive
measures. The detection of malicious behaviour of applications starts on the distribution channel, it
further relies on automated testing of applications, security applications and especially the community to
find malware. Such analysis and detection methods are presented in more detail in Chapter 3.

Third, recovery methods are required to remove possible threats if they have been detected. Since
none of the previous steps can give a total guarantee for the prevention of malware distribution, measures
which allow to lower the impact by removing such applications are necessary (more details in Section
2.2.2.1).

This brief description presents the security measures modern mobile platforms are build on. Follow-
ing, we will describe permissions and distribution channels and their role as security measure in more
detail, since both are especially interesting for this work. Permissions have the aim to protect sensi-
tive parts of the devices and restrict the access to certain information, still we want to make the user
aware of the remaining risk. Different distribution channels pose different risk of downloading malicious
applications and deploy different security measure that we want to highlight.

2.2.1 Permissions

Permissions are used to restrict the access to security and privacy relevant system resources like the
network connection, the camera or the GPS and user related data like SMS, contacts or user credentials.

The security architecture of Android heavily relies on the permission system which regulates the
access to protected APIs. By default, an Android application is only allowed to access a very basic set of
system resources and some of the sensitive capabilities are not made accessible at all by an intentional
lack of an API [5]. Prior to the installation of an application the specific permissions required by the
application are pointed out to the user. Following a user-centric strategy, the user can decide whether to

2.2. Security Measures 13

grant all this permissions for the application or decide to not install the application at all [182]. Accord-
ingly, there exists no possibility to grant just a subset of permissions or to revoke certain permissions
after the installation.

The decision, whether to trust an application or not, can essentially just be made by verifying if
the required permissions fit into the context of the application [189]. The process of deciding whether
the required permissions are appropriate, can be challenging. Lets, for example, consider a camera
applications for taking pictures. It is obvious that the application has to access the camera hardware. If
the application also wants the permissions to access the Internet and read contact data, an experienced
user might get suspicious. However, these permissions could just be needed to upload pictures to the
Internet, or to directly add pictures to contacts in the user’s address book. Nevertheless, a malicious
version of the application might as well upload all your contacts to a server in the Internet without your
knowledge. So even after granting an application certain permissions, it is hard to track in which way
they are used and if private data is secure.

On the iOS platform the user is asked for permission to access restricted resources at the time an
installed application first uses the protected feature. Currently, only the use of push notifications, the
access to the location information and the Twitter account is protected. However, it has been announced
that contacts, calendars, reminders and the photo library will be protected by permission in the upcoming
10S version 6 [126]. The different usage of permissions in the security architecture of Android and iOS
reveal the distinct concepts behind them.

The Windows Phone OS follows a similar approach as Android, but uses a coarser categorisation of
the permissions. However, for further details about the different deployed permission models of mobile
platforms we reference to the paper of Au et al. [42].

Permissions try to limit the risk that applications incorrectly or maliciously access sensitive data.
Although this an important security measure the user should be aware of the risk that applications might
misuse the access to sensitive data for other purposes like advertising or even malicious activities.

2.2.2 Application Distribution Channels

Mobile platforms provide the user different solutions to download and install third-party applications.
The different platforms differ heavily in their security measures and the risk they pose to the user.

2.2.2.1 Official Markets

Apple, Microsoft and Google operate their official markets App Store, Windows Phone Market and
Google Play for the distribution of third-party apps [35, 99, 140]. Developers who would like to distribute
their applications over the market need to register for a developer account. The fee-based registration
(US$90 per year for the Apple App Store and 998 for the Windows Phone Marketplace, US$25 one-time
for Google Play) creates a first small barrier for the distribution of malware over the official markets,
since a malicious developer must at least acquire a fake credit card for the payment [137].

To publish an application on the market it first has to be digitally signed by the developer. The
signing of the application allows to identify the author of the application and enables to establish trust
relationships between applications. For iOS and Windows Phone the certificate used for signing must be
issued by Apple or Microsoft respectively and is related to the developer account whereas Google allows
the developer to use self-signed certificates [23, 39, 139]. If applications show malicious behaviour all
others applications created by a developer can easily identified by the certificate of the developer and
perhaps removed.

Apple and Microsoft follow a contrary philosophy than Google according to the release of applica-
tions on their market. Apple rigorously approves application prior release on the App Store. Although
not all details about the approval process are known, Apple describes that submitted applications are

14 2. Mobile Platforms, Apps and Malware

tested by two reviewers for software bugs, instabilities of the app, privacy violations, exposure of chil-
dren to inappropriate content and the use of unauthorised protocols [37]. Whereas Microsoft deploys
a similar approval process as Apple [49, 139], Google in contrast follows the open philosophy and has
no formal review process, but as well conveys in the term’s of service that it is not allowed to distribute
malware on the market [137].

The markets allow the community to rate and write reviews for applications. Users can decide based
on the reputation, if the trust an application. On Google Play users can moreover flag applications as
inappropriate what might initialise a inspection by Google. Especially the open market of Android relies
on the community as another security layer to identify and report broken or malicious applications [188].
Still, to submit a review a user first has to install the application and might thus already expose sensitive
information.

In 2012 Google introduced Bouncer a tool providing automated scanning of Google Play for po-
tentially malicious applications [114]. The service automatically analyses new and already published
applications for known malware and also looks for misbehaviour of applications that could indicate ma-
licious activities.

Since none of the prevention and detection methods can guarantee totally security, Apple, Microsoft
and Google integrated technologies into their platforms which allow to quickly remove malicious ap-
plication on discovery [143, 148, 164]. With the remote application removal feature (or kill switch)
dangerous applications can be removed rapidly from all devices to prevent further exposure to the user
and limit the impact. However, this feature can only ensure its functionality on unmodified systems
which are not rooted or customised in any way. Furthermore, malware might block the functionality on
a compromised system.

The official markets are certainly the most secure way to find and install applications. Nevertheless,
previous incidents show that markets, even with their measures, can not ensure that no malicious appli-
cation are released [68]. This is especially dangerous since they give the user a sense of security. Hence,
it is important to raise the awareness of the risk to download malware even from an official market.

2.2.2.2 Alternative Markets and Direct Download

By default, Android blocks the installation of applications not coming form the official market. The user
has to activate an option to allow the installation of non-market applications. Alternative markets for
Android like the Amazon Appstore [3] or AppBrain [33] offer developers another distribution channel
for their applications. They often advertise their markets with higher revenue for the developer or better
marketing, search and recommendation features. Although some alternative markets have approval pro-
cesses and test applications before they get released, research by Zhou et al. [199] shows that the risk of
downloading malware his higher for alternative markets.

Besides markets, the user can directly download and install Android application packages (APKs)
from platforms like SlideMe [171] or GetJar [97], or any other website. This distribution channel for
applications pose a high risk for the user since there is generally no validation and approval through an
official authority.

As opposed to this, Apple and Microsoft follow a closed strategy for their mobile platforms and
do not allow the usage of other markets or the direct installation of applications. To install third-party
applications this devices require a jailbreak (iOS) [119] or unlock (Windows Phone) [161], but doing so
does void warranty and poses the risk of damaging the device.

The manual download of applications or the use of alternative markets comes generally with a higher
risk of installing malicious applications. Consequently, users need to be aware that attackers might prefer
this distribution channels since less effort is required to circumvent security measures on the distribution
channel.

2.3. Reasons for Targeting Android 15

2.3 Reasons for Targeting Android

This section investigates reasons why Android got one of the main targets for developers of malicious
applications.

2.3.1 Market Share

Potential attackers try to get the best benefit out of their efforts and one way to achieve this is to target
the largest audience [128]. Similar to the computer world, there is a relation between market leadership
and the interest of attacker to target their attacks on them. Recent market analysis by Gartner Inc. [95]
indicate that Android got the largest mobile platform with a market share of 56.1% followed by iOS and
Symbian. Furthermore Google Play is the second biggest market (behind the Apple App Store) offering
more than 600,000 applications and a total of 20 billion application downloads [125]. This numbers lead
to the speculation that targeting malware for the Android platform might be especially interesting for
attackers. This is reflected by the report from Juniper Networks [128] which reveals that most of the
malware of 2011 is targeted for Android and the numbers are constantly increasing. At the same time
there have not been any significant incidents of malware targeting the iOS platform [181] and even less
is known about malware for Windows Phone.

Although this significant market share of Android most probably provides the incentive for the de-
velopment of malware for Android, it can not be seen as the only reason for the dominance. Factors
like the market where the phones are sold, the variety of phones in different price ranges, the underlying
platform and other aspects might as well play a role.

2.3.2 Openness and Technical Features

Android offers APIs which allow deeper system integration than other platforms like iOS. This open ap-
proach, which is often highly regarded by the developer community, brings drawbacks and opportunities.
It allows developers to create applications with features not possible on other platforms, but at the same
time this capabilities might be misused by malware developers.

A considerable example are background services. The iOS platform limits background activities to
certain services provided by the system for things like the location or notifications, in contrast Android
allows any process to run in the background [181]. Another example for a feature only available for
Android is the sending and intercepting of incoming short messages without any further notice to the
user (assuming the user granted the required permissions). This opportunities allow the development of
sophisticated application and made the platform attractive for developers. However, not only developers
of legitimate applications are tempted by these possibilities.

As described in Section 2.2.2 Google Play has no strict approval of submitted applications like the
Apple App Store or the Windows Phone Marketplace. Furthermore, Google is less restrictive in the types
of application which can be published on Google Play. For example, applications which openly state that
their purpose is spying are allowed on Google Play. Such application are in contrast prohibited in the
App Store. The openness and the vague approval of applications on Google Play in comparison to the
App Store is another factor which makes it more interesting for attacker to target malware for Android.

Besides the official market, Android allows the installation of applications from other sources like
alternative markets or direct downloads by just activating a certain option in the settings menu. Although
it might be more difficult to target a that big user base by this distribution channels, attackers have
the advantage that there are only limited or no security measures, for validating published applications,
integrated by the platform owners. Hence, an Android device might be unconsciously exposed by the
user to distribution channels without a legitimate authority approving the published applications.

16 2. Mobile Platforms, Apps and Malware

2.3.3 Version Fragmentation and Heterogeneous Devices

Android is not bound to a certain hardware or manufacturer of a device like i0OS with the iPhone. Google
only develops the mobile platform and relies on hardware manufactures for the distribution of their OS.
Google leaves many options to hardware manufacturers which typically extend the stock Android OS
with a customised user interface and additional features. While the possibility for such modifications
offer a large flexibility and might give the user more opportunities it arouses some problems. Hardware
manufactures which customise their OS need to integrate every operating system update released by
Google into their custom variant. This leads to delays in the deployment of security fixes. Further,
manufactures tend to not delivery any updates for older hardware caused by the effort needed to integrate
the updates. This facts leads to the problem that many Android devices do not receive security updates
fast enough or at all and thus can be targeted by malware.

Even if other platforms are currently not so affected by malicious application as Android, there
already exist certain proof of concept attacks for jailbreaked iOS [128] devices and also vulnerabilities
for Windows Phone [166] have been found. This indicates the general risk for malicious applications,
regardless of the deployed platform.

Although various security measures are taken by the platforms different threat types exist and remain.
No matter if the motives behind the development of malicious applications are to gain financial benefit,
collect personal information or only novelty and amusement, they all pose a certain risk for the user.
Hence, it is important to analyse applications to identify their real behaviour. Especially, the Android
platform got a main target for the development of malicious applications through facts like the high
market share, the openness and the technical features. Accordingly, different application analysis and
malware detection methods with varying capabilities and requirements have been developed, which we
explain in the next chapter.

Chapter 3

Android App Analysis Methods and Mal-
ware Detection

In this chapter we will present Android application analysis and malware detection methods. However,
to be able to explain the analysis methods in detail, we first define the underlying analysis environment.

3.1 Analysis Environment

Before we discuss the application analysis and malware detection methods, we have to determine the
characteristics of the test environment in which the methods are applicable. The condition of the test
system and the possibilities to modify or interact with the system do affect the usage of different analysis
methods and limit their capabilities.

If the test environment is already predefined, a suitable analysis method has to be chosen, according
to the properties of the environment or must be adapted for the use within it. For example, mobile
security applications, used to scan mobile systems for malware similar to antivirus software on desktop
computers, have to cope with the properties of the test environment. Hence, limitations like limited
resources might lower their malware detection capabilities.

On the contrary, if the analysis environment does not impose any restrictions and allows modifi-
cations and advanced interaction, more sophisticated test methods can be applied. Still every analysis
method has its advantages and disadvantages: Some allow a detailed application analysis, but rely on the
interaction of the user and require a real device, while others offer less detailed analysis capabilities, but
only require metadata from the application market and can run autonomously.

Teufl et al. [181] divides the environment properties, crucial for the selection of the analysis method,
into five categories as illustrated in Table 3.1 and described below.

3.1.1 Execution Environment

The underlying execution environment of application analysis and malware detection methods can be
divided into four different types (see first row of Table 3.1): The system of a standard phone is not
modified in anyway and is in the state as delivered by the device manufacturer. Depending on the
manufacturer and the age of the device it might be provided with an up-to-date system version or lag
behind with software updates. Additionally, the manufacturer might provide Over-the-air (OTA) updates
for the system to upgrade to newer versions or apply security patches. Such an environment is typically
used by a default user and mobile security applications are commonly deployed on this environment.

A rooted phone is modified by the user to attain privileged control and enable additional features of
the device. This root access allows to overcome limitations enforced by carriers and hardware manufac-

17

18 3. Android App Analysis Methods and Malware Detection

Execution Standard Rooted Mod. .
. system Emulation None
environment phone phone .
image
Syste.m Superficial Detailed None
behavior state state
Available data Ext. app. Store Installed App Network Side
metadata metadata app package traffic channels
Interaction . User. . Systerp None
interaction interaction
Application One app Some apps Arbitrary
scope apps

Table 3.1: Categorisation of the environment properties for malware analysis/detection methods in five
groups (redrawn from Teufl et al. [181]).

turers. Applications can run with root-level permissions, allowing them to bypass security features like
the sandbox, file system permissions and limitations of the API. This more sophisticated environment is
frequently used by advanced users, and expert users use this privileged execution environment for their
advanced application analysis methods. Moreover, malicious applications might use security leaks to
gain root access on a phone, however, we only consider the intentional rooting of a device at this point.
Side note: The similar process of gaining privileged access on the iOS platform is called jailbreaking.

Modified system images are customised and extended versions of the mobile system. Arbitrary func-
tion can be added to the OS and the provided APIs to extend the functionalities. For the detection of
malware, modified systems allow to get a deeper insight into the behaviour of applications by tracking
the interaction with the system. Advanced dynamic application analysis methods can be deployed on
modified system images.

Emulation of devices, as commonly used by developers during the development of applications, is
beneficial for detection of malware. It allows to run automated analysis of applications on powerful
machines, emulating a large number of devices with different deployed system images. However, not all
aspects of real devices can be emulated and sophisticated malware might detect that it is executed on a
emulated environment [149].

Finally, the case (None), where no execution environment is available or required for the analysis,
has to be considered. An example is the static analysis, where no execution of the application, neither on
a real nor on an emulated device, is required.

3.1.2 System Behaviour

The information, available in correspondence to the behaviour of the system can be categorised into the
following three groups (second row of Table 3.1): The superficial state refers to information available
and understandable by a default user. The user might recognise unexpected behaviour, like application
and system crashes or a increased battery drain (caused by intensive use of background services through
malicious applications). Furthermore, the user might notice high bills caused by malware contacting
premium services or extensive data transfers over the mobile network.

The detailed state indicates that analysis methods have access to additional information such as
running processes, the network traffic or inter-process communication (IPC) between applications. The
availability and amount of this detailed information is limited by the execution environment as described
previously.

None implies that the system behaviour can not be analysed, for example, if there is no execution
environment available at all.

3.1. Analysis Environment 19

3.1.3 Available Data

The available or obtainable information about an application can be classified as follows (third row of
Table 3.1): The application markets, offered by the mobile platforms, reveal information (store metadata)
about the application prior the installation, such as a textual description, the required permissions or the
user rating. The market metadata analysis is based on this information. Since the metadata is not included
in the application installation package, there is no need for the package file, but if analysis methods want
to relate the store metadata with the information from the application package, both data must be acquired
separately.

The following three methods require the application package file or the installed version of the ap-
plication. With access to the application package the software can be analysed prior installation. Static
analysis is an example for an analysis method which can be applied at this point. For extended applica-
tion metadata additional data, such as information about the IPC-interfaces for the communication with
other application or the application entry points are extracted from the package. Again, static analysis
uses this extended metadata as well as mobile security applications. An installed application denotes
an already installed application package on a mobile device or emulator. Dynamic analysis requires
the execution of the application and thus relies on the installation of the application. However, an in-
stalled application does not necessarily reveal the same information as available from the package file,
since some data might be omitted during installation, but on the other hand the execution reveals other
important information.

Information, which is not directly available for analysis methods, can sometimes be obtained through
side channels. For example, the evaluation of system log files could reveal important information about
the actions of applications.

The network traffic refers to the incoming and outgoing data on the network interfaces caused by the
installed applications or the OS of the mobile device. The network traffic might, depending on the limi-
tations of the execution environment, be directly captured on the mobile device or intercepted externally
(more details in Section 5.1). The analysis of the network traffic might reveal crucial information about
the external communication of applications and the transfer of sensitive data. The network traffic is the
main focus of the analysis method, developed and presented in this work.

3.1.4 Interaction

Each analysis method has different requirements on the level of interaction with the application during
a test (see fourth row in Table 3.1): Methods like the static analysis require no interaction (None) of the
user or the test environment with the application and can run autonomously. Whereas methods, such
as the dynamic analysis or the network traffic analysis, require system or user interaction. Automated
analysis interacts with the system by means of starting and instrumenting applications and simulating
user input. Certain analysis methods even require the time-consuming interaction with the application
through a real user.

However, generally the more complex the interaction with the system is, the more information can
be gathered by the analysis method. At the same time, the high level of interaction requires sophisticated
test systems or the interaction of humans, as a result this methods are classified as time-consuming and
expensive processes.

3.1.5 Application Scope

As last property of the analysis environment we consider the number of different applications, which can
be covered by the different analysis methods (last row in Table 3.1): Certain analysis methods are only
able to check one application at a time and can not give information about potential interaction with other

20 3. Android App Analysis Methods and Malware Detection

applications. Moreover, although methods like the network traffic analysis can capture and inspect the
traffic of multiple applications, they can not associate the gathered information to a certain application.

Other methods allow to analyse some applications in the same scope at the same time, but are limited
to a certain number of applications due to the technical capabilities of the analysis method or by the
number of available applications. A typical example for a method, applied in such an environment, are
mobile security applications, which can only examine the applications present on the device.

The access to an arbitrary number of applications, as possible by application store providers, allows
to apply analysis methods on a multitude of various combinations of applications. The analysis of several
applications in the same scope can help to identify malware, that distributes its malicious behaviour over
multiple applications or exploit capability leaks caused by unprotected IPC-interfaces or weak system
applications [53, 109, 153].

All the denoted properties of the analysis environment heavily influence the selection of analysis
methods and impacts their capabilities. The overview of the properties should help to identify important
characteristics of the contemplated system and assist in the selection of applicable analysis methods,
presented in the next sections.

3.2 Analysis and Detection Methods

In the following, we describe application analysis and malware detection methods in greater detail.

3.2.1 The User

Although the user can not be considered as analysis method, he plays an important role in the identifi-
cation of malware. A user might get suspicious prior the installation of an application, if the required
permissions are doubtful in the context of the application, or he might identify unwanted and mali-
cious behaviour of already installed applications. Furthermore, security experts play a key-rule in the
application of in-depth analysis methods, thus the user can intervene at various stages to detect mali-
cious applications. The capabilities to recognise unwanted or malicious activities heavily depends on the
knowledge of the user about the mobile platform and existing threats for it, hence we divide into default-,
advanced- and expert-users.

3.2.1.1 Default User

We consider that a default user is generally only capable to use a mobile device and its applications in
the intended manner without considering the related security risks. The default user has generally no
in-depth knowledge about the permission and their ramifications as well as he does not know about the
aggravated risk of downloading applications from alternative markets. Default users are easily tempted to
install malicious applications, which use misleading descriptions or masquerade as popular applications.
Moreover, such user’s are only able to recognise very obvious malicious behaviour and most of the time
only in the aftermath.

The default user can be classified as follows, relating to the properties of the analysis environment
we discussed in the Section 3.1.1: The default user works on a standard phone without any modifications
and can only observe the superficial state of the system, including information like crashing applications
or high bills. Since the user directly interacts with the application, he might cause the execution of
the malicious functionality. Nevertheless, the user might eventually be able to identify the interaction
between some applications on a very superficial level, such as if one application ask for the credentials
of the other one. The default user generally only works with the installed application and does not bother
to work with application packages. The most helpful information available for a default user is the store
metadata including data like the description of the application, the user rating, comments or the required

3.2. Analysis and Detection Methods 21

permissions. If an application has a low rating and comments include complaints, even a default user
might be convinced to not install such an application. On the other hand, if only the information from
the description and the required permissions are available, a default user might be overwhelmed with the
task of deciding weather an application is trustworthy.

Besides user with basic understanding, we can classify users with advanced knowledge, described in
the next section.

3.2.1.2 Advanced User

Advanced users have more knowledge about the mobile platform and know about general threats arising
from alternative markets and third-party applications. The advanced knowledge allows the user to better
understand the required permissions of applications and to judge upon the danger of approving certain
permissions. Advanced users further know how to install customised and modified system versions,
which allow to access additional features. Moreover, mobile security application and other security tools
are typically deployed by user’s with this proficiency. Although, the greater knowledge lowers the risk of
installing malicious applications and allows to identify malware, the chance of being exposed to malware
remains.

Advanced users are related the following properties of the analysis environment: Depending on the
know-how, the user might use a rooted phone or even a modified system image to enable desired features
and to deploy additional security features. Such security related modifications of the system include
functionality like the fine-grained permission management at the run-time [46, 115, 147, 195]. Further-
more, the use of additional tools such as mobile security applications or process monitors allows the
advanced user to obtain a more detailed state of the device. Since advanced users download applications
from various sources, they get in touch with application packages, but do not have the capabilities to
analyse them. Especially the market metadata can be interpreted better by advanced users. Finally, the
application scope and the user interaction remains the same as for a default user.

Alongside, advanced users, there are expert users with even more profound knowledge, described in
the following.

3.2.1.3 Expert User

Expert users have a profound knowledge about the mobile platform and develop or work with tools for the
analysis of applications and the detection of malware. With the in-depth knowledge their possibilities are
primarily limited by the methods used for the analysis and the available resources. Thus, the properties
for the analysis environment are hard to define at that point and we reference to the analysis method
applied by the expert. The research by experts on different security threats and the development of
counter-measures are very important to lower the risk, for default and advanced users, of getting exposed
to malicious applications.

The user will always play a key role in the identification of malicious applications. Just like malware
is developed by users, only users are able to develop detection methods and defence mechanisms. Es-
pecially the decision, at which point the behaviour of an application is considered as unwanted or even
malicious can only be done by a user in a first step. Expert users fine-tune their analysis methods with
their knowledge to provide optimal detection functionality and best possible protection.

3.2.2 Mobile Security Apps

Mobile security applications, like Lookout [133], Norton Mobile Security [59] or Kaspersky Mobile Se-
curity [130], offer similar functionality, known from anti-virus software deployed on desktop computers.
The anti-virus part of such applications mainly uses signature-based malware detection. Signature-based

22 3. Android App Analysis Methods and Malware Detection

detection [116, 190] searches for previously defined characteristic (signatures), unique for certain mal-
ware, during the detection. The process of creating signatures, that represent the malicious behavior
exhibited by applications, is done by human experts. This defined signatures are all stored in a central
repository, where they can be retrieved by the security applications. A major drawback of this method-
ology is, that depending on its capabilities, it can only detect known malware with a signature stored in
the repository, and thus might be vulnerable for zero-day attacks.

The improved performance of modern devices allow to deploy heuristic analysis to overcome this
drawback and provide better detection capabilities. In contrast to signature-based detection, heuristic
analysis tries to identify common functionality and features of malware [190]. This method should allow
to even recognise new malware based on the features, known from previous malware.

Besides this anti-virus capabilities mobile security application commonly offer additional features
like anti-theft and missing device services (e.g. locate device, remote-wipe) or number based call and
SMS filtering. However, the capabilities vary for different mobile platforms, according to their function-
alities and restrictions.

Concerning our analysis environment in Table 3.1 following properties hold for mobile security ap-
plications: They can run a standard phone, but might offer even more functionality, if deployed on a
rooted phone. They have knowledge about the superficial state, but might even use the detail state to
observe running processes. They run their test on installed applications and are as well able to test
application packages. Mobile security applications automatically scan all installed applications (some
applications) and require in general no user interaction (None), only if they detect certain threats they
might ask for user input.

Mobile security applications are important for the detection of known malware and can even be used
by novice users. However, they often fail in the detection of new malware and research is required to
identify new threats and keep the repository up-to-date.

3.2.3 Static Analysis

During the static analysis the source code of an application or the corresponding installation package is
examined, to inspect the behaviour of the application and detect possible malicious actions. The thereby
applied methods vary in their functionality and capabilities, depending on the available resources: If
only the application installation package is available, just general methods like signature-based malware
detection, as commonly used by mobile security applications, can be applied. However, to deploy more
advanced methods, reverse engineering tools are required, which extract data from the binary installation
packages, such as the Android manifest file, the compiled class files and other resources.

The Android manifest is a binary Extensible Markup Language (XML) file [6] that contains infor-
mation, required by the system to run the application. The manifest describes the components of the
application like activities and services. Furthermore, the permissions, required by the application to ac-
cess protected parts of the API, are declared. Additionally, it is possible to define which permissions
other applications are required to have in order to interact with this application. The binary XML is con-
vertible to human-readable XML with special tools such as AXMLPrinter [169], android-apktool [165]
or Androguard [32].

The class files, included in the application package, are provided in the Dalvik Executable (DEX)
format to be directly executable on Dalvik, a process virtual machine optimised for mobile platforms
and used by the Android OS. Since Android applications are commonly written in Java and compiled to
Java bytecode (only executable in the Java Virtual Machine), they have to be further converted to Dalvik-
compatible executables. To apply static analysis on the data of this executables, they have to be reverse
engineered and decompiled to reconstruct the former source code of the application or to at least extract
abstract information about the program functionality.

Special tools such as smali/baksmali [44], dex2jar [192], ded [77], android-apktool [165], Andro-

3.2. Analysis and Detection Methods 23

guard [32], and APKInspector [57] together with already established Java decompiling software like JAD
[158] or JD [75] accomplish this task, but with certain limitations. This limitations arise from code ob-
fuscating techniques, which complicate or prevent the reverse engineering process [29, 167]. Such code
obfuscation methods are commonly applied by developers to protect their applications and the corre-
sponding implementation from being copied by others. However, obfuscation methods are even applied
by attackers to hide malicious code and hamper the detection of malware [40, 150, 194].

3.2.3.1 Techniques

The static analysis of the original or reconstructed source code of an application allows to identify various
aspects of an application by applying different analysis techniques without requiring the execution of the
program [77, 168]:

The control flow analysis enables to construct a control flow graph (CFG), representing all possible
execution paths of an application. The specification of certain unwanted execution sequences allows to
detect undesired behaviour of applications (e.g. if an intent contains sensitive data and is sent unprotected
without specifying the target component).

The data flow analysis allows to calculate the possible set of values at a certain point of the program
and its propagation according to the CFG. The definition of rules, regulating the flow of sensitive infor-
mation from one point in the application to another (e.g. from reading the phone number and using it at
a point where data is sent over the network), helps to identify suspicious behaviour of applications.

The structural analysis allows for declarative pattern matching on the abstraction of the source code
without taking the execution path or data flow into account. For example, a pattern for the call of a certain
function in a specific class could be defined (e.g. calling getDeviceId () in TelephonyManager).

The semantic analysis allows to specify a limited set of constraints for the source code of the appli-
cation. For example, a constraint could be that a parameter of a method is not a constant (e.g. to proof
that the phone number used in sendTextMessage () is not hard-coded).

Besides this more general static code analysis methods, Android specific methods can verify the use
of the properties, defined in the Android manifest. Especially the use of the permission and the related
call of the system API is of great interest.

The static analysis can be categorised, according to our analysis environment (in Table 3.1), as fol-
lows: No execution environment (None) is required, since the application is not executed during static
analysis. Accordingly, the system behaviour can not be analysed (None) and no interaction (None) of the
user with the application is required. The application package or even the source code is required to ap-
ply static analysis. Extend application metadata can be extracted from the application package and some
analysis tools might even take the store metadata into account. The scope of the analysis ranges from
one application and might extend to some applications, depending on the application and the definition
of interfaces for the communication with other applications.

3.2.3.2 Tools

A variety of static analysis tools for Android exist, applying different techniques and observing different
aspects during their analysis:

Stowaway [82] determines the set of API calls of an application and maps them to the according permis-
sions. Afterwards, the used permissions are compared with the predefined permission to identify
overprivileged applications.

Kirin [78] offers a advanced application installer, which extracts a security configuration from the An-
droid manifest of an application and matches it against a collection of defined security rules.

24 3. Android App Analysis Methods and Malware Detection

ComDroid [53] examines the application interaction and identifies potential component and intent vul-
nerabilities by applying flow analysis and inspecting the Android manifest.

SCanDroid [91] offers automated security certification of applications by analysing the data flow through
and across components.

woodpecker [109] aims to identify leaked permissions or capabilities, using a combination of data- and
control-flow analysis.

DroidMOSS [197] extracts certain features of the application code and applies fuzzy hashing (as fin-
gerprinting) to identify modification and repackaging of applications.

DroidRanger [199] combines static and dynamic analysis, where the static part uses a permission-based
filtering, behavioural footprint matching and heuristics-based filtering to identify known and un-
known malware.

AASandbox [47] uses sandboxing to have an isolated and observable test environment and deploys
static and dynamic analysis. The static analysis part scans the code for suspicious patterns and
clusters the extracted patterns to identify relevant indicators for suspicious behaviour.

Androguard [32] is a toolkit for the analysis of applications offering a broad variety of functionality,
such as reverse engineering capabilities, diffing of applications to identify repackaging, risk indi-
cation of possible malicious applications and the possibility to develop new static analysis on top
of it.

dexter [134] is an upcoming project with the aim to provide a platform for the collaborative analysis of
android applications. Furthermore, automated control- and data-flow analysis, automatic semantic
based tagging and code classification should allow to gather a comprehensive set of information
about an application.

The static analysis allows to quickly test applications without requiring a execution. Different anal-
ysis techniques allow to get an insight about the behaviour of applications and to identify possible ma-
licious actions. However, every analysis relies on the availability or reconstruction of the original code
or an abstraction of it. Furthermore, certain malicious behaviour might, through obfuscating or other
measures, not be identifiable with static analysis. As a consequence some tools try to use the knowledge,
gathered in the static analysis, to instruct the dynamic analysis or combine the result of both methods.

3.2.4 Dynamic Analysis

During the dynamic analysis the application is executed on a real or an emulated device and the be-
haviour of the application is monitored. The execution of an application is quite time consuming and
requires certain resources, to overcome this drawback the use of emulated devices allows to simultane-
ously execute different tests on a large number of virtual devices. However, a virtual device can never
emulate all aspects of a real device.

An advantage over other analysis methods, like static analysis, is the access to all the available data
on the device on the possibility to analyse the detailed state of the device. Profound knowledge about
the data, like unique identifiers, the phone number or the stored contacts, opens up further opportunities
to track the flow of the information throughout the system. Furthermore, exact runtime information,
like pointer addresses or parameter values at a certain point of the program execution, allows to better
understand and analyse the behaviour of applications.

3.2. Analysis and Detection Methods 25

3.2.4.1 Techniques

To gather additional information or change the behaviour of the application and the execution environ-
ment, code instrumentation or an instrumented environment is used. Instrumentation code is used to
intervene at a certain point of the program, whether to log the information at this execution stage or to
modify some data to change the behaviour of the application. The addition of such instrumentation code
can however be quite difficult, if only the installation package is available, and might cause side effects
resulting in unpredictable behaviour.

The instrumentation of the environment requires extension or modification of the original system.
Thus, this method might not be applicable in every case, since it presumes to use of a modified system
image or the root access to modify certain parts of the system. However, it allows to augment analysis
code or to modify parts of the system like the API. The latter is commonly used by tools to log the access
to privacy sensitive parts of the API or to return empty or modified data.

To provide a comprehensive test of an application, most applications require the interaction of the
user to cover all execution paths of the program and to activate every functionality. However, the manual
user interaction is very time consuming, thus many dynamic analysis methods try to simulate the user
input. The user input simulation reaches from code instrumentation, based on the information from
static analysis to random generated input, known as monkey testing. Since only executed paths of the
applications will be considered during the analysis, it is important to cover all execution paths, since
otherwise malicious behaviour might be undiscovered.

Considering our analysis environment, described in Table 3.1, the properties of dynamic analysis
are as follows: The requirements on the execution environment vary heavily, depending on the specific
deployed analysis method. Methods, where code instrumentation on the application package is applied,
can use real devices, no matter if they are rooted or standard phones. Others, which for example use
instrumented environments, might utilise emulated devices to run automated tests. Independently, mod-
ified system images, including instrumented test environments, might be deployed on emulated or real
devices. The access to all available data during dynamic analysis allows to gain information about the
detailed state of a phone. The interaction, required for the dynamic analysis, might be done by the user,
but for automated testing simulated input or the interaction with the system is needed. An advantage of
dynamic analysis is the possibility to analyse some applications at the same time and thus to identify
communication between them.

3.2.4.2 Tools

Following we list some dynamic analysis tools with different aims and capabilities:

Apex [147] modifies the permission framework of Android to allow for selectively granting and revok-
ing permissions at runtime and imposing constraints on the usage of resources.

AppFence [115] extends the Android OS with two additional privacy controls: First, it substitutes data,
that the user wants to keep private with fake data. Second, the transmission of data that is permitted
to be used by an application on the device only, is blocked from being transferred over the network.

MockDroid [46] is a modified version of the Android OS, which allows the user to mock an applica-
tion’s access to a resource. At this approach the access to a certain resource can be revoked during
the run-time by reporting to the application, that the resource is empty or not available.

TaintDroid [76] is an extension to the Android platform, that tracks the flow of sensitive data through
and out off the system by automatically applying labels (taints) to the data from privacy-sensitive
sources.

26 3. Android App Analysis Methods and Malware Detection

DroidBox [155] aims to offer a sandbox for the automated testing of applications, using TaintDroid
and to supply a tool, which filters relevant data and provides a rich representation of the results.
Besides various other results, a list of the contacted servers is presented.

TaintDroid Runner [65] is as well an extension of TaintDroid for the automated analysis of applications
in an emulated environment with simulated input. Furthermore, the tool should indicate leakage
of privacy sensitive information and the generation of costs for the user.

DyAna [131] uses the static instrumentation approach to inject logging code into the application instal-
lation package. The log generated during the run of the application on a device or a emulated
system can be analysed with the framework to present a static structure tree, call graphs, heuristics
and histograms.

DroidRanger [199] as mentioned before, DroidRanger has a dynamic and static analysis part. The
dynamic analysis part uses the information about untrusted code, gathered by the heuristic from
the static analysis, to deploy dynamic execution monitoring to inspect the runtime behaviour of
this suspicious parts.

AASandbox [47] executes the application in a sandbox, which intervenes and logs low-level interac-
tions with the system during the dynamic analysis. The log file is summarised and reduced to the
important information for better analysis.

Bouncer [114] is a tool, developed by Google, which provides automated analysis of applications sub-
mitted to Google Play. Although not all technical details are publicly available, Google announced
that all applications are tested on emulated devices in their cloud infrastructure for hidden mali-
cious behaviour and are compared to known malware. A major advantage of Bouncer is the access
to a broad range of additional information, including meta data from the store, other applications
and information about the developer account.

A drawback of dynamic analysis is that malicious application might detect that they run on a em-
ulated device or a modified system and prevent the execution of their malicious code. Furthermore,
attackers might identify the characteristics of the test environment and adopt their malicious behaviour
to circumvent the detection mechanisms. Oberheide and Miller [149], for example, presented meth-
ods for the dissection of Bouncer and O’Kane et al. [150] explains methods for obfuscating malicious
behaviour.

Although dynamic analysis is quite expensive, it might present the most realistic environment for
an application and especially for malware. The real execution of the application and the analysis of
the information monitored during the execution might provide solid information to identify possible
malicious behaviour.

3.2.5 Market Metadata Analysis

The market metadata analysis focuses on the aspect, that most of the malware relies on the user to get
installed. Since the user decides, mainly based on the metadata information available on the market,
whether to install an application or not, metadata analysis aims to analyse exactly this information.

The metadata, available on Google Play, includes details about the application such as a textual de-
scription, the category, the required permissions, the user rating and the developer. Metadata analysis
should help to get a better understanding about the offered applications, the used permissions, the dif-
ferent application types, the application developers and especially the relation between the application
and the required permissions. Furthermore, it should help to get an idea about what is an anomaly or
suspicious constellation of this information belonging to a malicious application.

3.2. Analysis and Detection Methods 27

3.2.5.1 Techniques

As a first step the metadata, provided on the market, must be gathered. To identify interesting correlations
between the information it is important to have a big information base. However, the huge amount of
data requires the use of sophisticated methods to gain knowledge from the metadata.

Simple statistic approaches allow to easily gain first information, but can only focus on very specific
aspects. An example would be: How many applications require three or more privacy related permissions
[189]?

To furthermore extract yet unknown relations more sophisticated knowledge discovery techniques
are required. Teufl et al. [181] shows an approach, using machine learning in combination with a new
semantic-aware transformation to identify semantic patterns. The extracted semantic patterns build the
base for the further analysis and allow to identify interesting correlations between properties of the meta-
data.

The following properties of the analysis environment apply to the market metadata analysis (see Table
3.1): Since the application is not executed and no system is observed there is no execution environment
(None), no knowledge about the system behaviour (None) and no user or system interaction (None). The
data, available for the analysis is, limited to the store metadata and the application scope ranges from
one application up to arbitrary applications.

3.2.5.2 Reports/Tools

Vennon and Stroop [189] presents in “Android Market: Threat Analysis of the Android Market” a sim-
ple statistical analysis of the permission usage of Android applications based on the market meta-
data.

Teufl et al. [181] presents in the paper “Malware Detection by Applying Knowledge Discovery Pro-
cesses to Application Metadata on the Android Market (Google Play)” statistical approaches for
the analysis of the market metadata as well as the application of machine learning in combination
with a new Semantic Pattern Transformation as sophisticated knowledge discovery technique for
the store meteadata.

The market metadata analysis provides a high-level method to quickly identify patterns in the meta-
data description, leading to traces for malicious applications. However, without further in-depth analysis
the results might be quite general and include many false alarms. Still, metadata analysis plays an im-
portant role to identify and limit the number of possible candidates for more detailed analysis methods.

3.2.6 Network Traffic Analysis

The network traffic analysis is actually a subfield of the dynamic analysis. Since the network traffic is
captured or immediately analysed during the execution of an application we still highlight this analysis
method separately due to the importance for this work. Besides SMSs and calls, the network is the main
communication channel of mobile platforms and their applications with the outerworld. No matter if the
device is connected over the mobile- (3G, GPRS) or the wireless-network (Wi-Fi), data is commonly
transmitted by applications to servers on the Internet. To study the behaviour of applications, the net-
work traffic can reveal important information about, which servers are contacted, what communication
protocols are used or especially how much and which (possible sensitive) information is transmitted by
the applications.

The analysis of network traffic in general is already well researched and comprehensive analysis tools
like Wireshark [191] exist. However, to target the analysis on the special aspects of mobile platforms
like the leakage of private information by malicious applications, the remote control of malware by

28 3. Android App Analysis Methods and Malware Detection

C&C servers or the misuse of devices for DDoS attacks, the adoption to the underlying environment is
required. A detailed knowledge about the characteristics of the environment is essential for the in-depth
analysis of the network traffic. For example, only if you know about the unique identifiers of a mobile
platform, you can look for them in the network traffic. Less research and tools can be found for this
special task, thus this thesis will focus on this area and provide a tool for the network traffic analysis.

3.2.6.1 Techniques

Most of the currently deployed techniques for the analysis of the network traffic pursue the following
concept: First, the traffic is captured, whether directly on the device using a cross-compiled version
of tcpdump [179] and on new versions of Android by using the VPN-service [54], or externally by
connecting the device to a special Wi-Fi setup for capturing network traffic. A real device can be used
as well as an emulated device during capturing, where the emulator of the Android platform even offers
the possibility to directly capture the traffic!. The advantage of the external capturing is that man-
in-the-middle attacks can additionally be used to decrypt secured network traffic. However, for well
implemented applications this method might not work and such a test-setup complicates (especially
automated) testing.

Second, the network traffic, captured in the first step, can be analysed, regarding various aspects.
A general/statistical analysis might give answers to questions, such as: How much data is transmitted?
Which servers are contacted? Where are the servers located? What protocols are used? Furthermore,
a in-depth analysis of the transmitted data reveals, what data is actually transmitted. To apply a more
detailed analysis, knowledge about the tested environment, the device and its state are required.

Although, established tools like Wireshark offer a broad functionality for this kind of analysis, they
must be seen as tool for manual analysis. There is no functionality available, to directly highlight the
exposure of private information, leaked from the test device. Testing must be done thoroughly and
requires profound knowledge.

During the analysis of the network traffic it is, like for the dynamic analysis, important to reach all
parts of the application during the execution, to provide a comprehensive test result. As a consequence,
the manual interaction of the user with the application or methods for simulated user input are required.

Related to our analysis environment in Table 3.1 the following properties hold for the network traffic
analysis: A standard phone is sufficient for external capturing or new VPN-service based methods,
whereas the use of tcpdump requires a rooted phone. Emulation of devices is especially useful for
the automated analysis of the network traffic. Although not required for general network traffic analysis,
knowledge about the detail state of the system might help during the in-depth analysis. The available data
is limited to the network traffic, but user interaction or system interaction is essential for a comprehensive
testing. The scope is limited to one application, since it is impossible to distinguish based on the network
traffic, between multiple applications.

3.2.6.2 Reports

Following we present some research found for the analysis of the network traffic from Android applica-
tions. Since, not that much research can be found yet, we even briefly present some related tests, done
for the iOs platform:

The Wall Street Journal [183] in cooperation with the technology consultant David Campbell, anal-
ysed the network traffic of 101 popular iOS and Android applications for their article “What They
Know - Mobile”. The analysis covered the transmission of private data like the username, pass-
word, contacts, age, gender, location, unique device identifies and the phone number to servers

"Example usage to directly capture the network traffic at the emulator: emulator —tcpdump <output-file>.cap

3.2. Analysis and Detection Methods 29

of the application developer and other third parties. The report shows that applications share this
personal data widely and regularly, especially with advertising companies. As a result of the inves-
tigative series the Wall Street Journal released an interactive browser for the acquired data, which
visualises the transmission of sensitive data to the different servers. Furthermore, the journal asked
the application developers, in which way the transmitted information is used and presents this in-
formation.

Unfortunately, not all details about the analysis and its methodology are released. The following
is known: The traffic was captured externally from the devices on the Wi-Fi, hence, presenting an
isolated network environment. Only one application was tested at a time, and to simulate normal
use, every application was used for five minutes by a human. Encrypted-traffic was decrypted, us-
ing the tool mallory [118]. Details, about how the private information was detected in the network
traffic, were not revealed.

Fulton [92] held the talk “Cellular Privacy: A Forensic Analysis of Android Network Traffic” at the
DEF CON 19, where he presented his forensic analysis of the network traffic from Android appli-
cations. In his investigation he analysed the transmission of private user information to application
authors and third parties. Furthermore, he presented a list of the most contacted servers and his
findings on the leakage of sensitive information by various applications. Further, he hypotheses
that sensitive data is transmitted mainly for advertising purposes.

The 10 selected applications were tested manually similar to the approach from the Wall Street
Journal. The test device was connected to a Wi-Fi where he captured the network traffic and
used SSL Strip [146] to decrypt secured traffic. For the manual analysis of the captures he used
Wireshark [191] to get a first insight and identified leakage of information, using simple string
matching tools.

Smith [172] presented in his paper “An Analysis of Application Transmission of iPhone UDIDs” the use
of the unique device identifiers on the iOS platform, following a similar approach as Fulton. The
analysis of the unencrypted network traffic reveals the common use of such identifiers and Smith
points out the risk to unintentionally correlate this unique identifiers with personally-identifiable
information.

Cortesi [61] extended in “How UDIDs are used: a survey” the research from Smith to even analyse
encrypted network traffic, using mitmproxy [62] to decrypt the traffic. The survey revealed, as
expected, that applications even transmit such identifiers over secure channels.

The analysis of the network traffic is a simple, but efficient method for the identification of exposure
of sensitive information and reveals a lot about the behaviour of an application. Not only might the
analysis help to detect malware, but especially uncover the use of sensitive data for advertising purposes.
Currently released research only tested a limited number of applications and used tools from general
network traffic analysis. The development of tools, specialised for the analysis of the network traffic
from Android application, could help to easily identify data exposure and present the results in a decent
way. Furthermore, automated network traffic analysis could allow to test a large number of applications.

3.2.7 Summary

This chapter presented a wide range of existing application analysis and malware detection methods for
Android applications. Each method focus on different objectives during the analysis and is applicable in
different analysis environments. Some applications require the expensive interaction of the user, however
they reveal comprehensive information about the application and its behaviour. Whereas others run
completely automated, but deliver less detailed information. Nevertheless, none of the methods is far

30 3. Android App Analysis Methods and Malware Detection

superior to any other. Thus, the user has to decide, based on his desired result, the analysis environment
and the available time and resources, which analysis methods suites his requirements the best.

Since every method has its advantages and disadvantages a combination of different analysis methods
is another approach to systematically identify unwanted and malicious behaviour. High-level methods,
which require no user interaction, like market metadata analysis, allow to narrow down the number
of applications interesting for more detailed analysis. A user assisted in-depth analysis, with methods
like network traffic analysis, could verify in a next step the unwanted behaviour of the circumscribed
applications.

Although, there was already quite some research in the field of application analysis and malware
detection, there is still space for improvements. Especially, the research by The Wall Street Journal and
Fulton [92] demonstrated the potential of the network traffic analysis. However, their research results
are limited to a small set of applications and no tool, which could assist in the analysis process was
developed.

Chapter 4

Potential of Specialised Network Traf-
fic Analysis for Android Applications

The research, presented in Section 3.2.6.2, demonstrates the heavy use of sensitive user data for advertis-
ing purposes by Android applications and shows the potential of the network traffic analysis to identify
the leakage of information over the network. Furthermore, the general inspection of the network traf-
fic allows to gather various information about the communication of applications and the thereby used
technologies. Therefore, the network traffic analysis plays an important role in the application analysis
process and the identification of malicious behaviour.

Researchers currently utilise generally known tools (e.g. Wireshark [191]) for the network traffic
analysis of Android applications. Such tools are not specialised for this specific use case and must
be operated from expert users with detailed knowledge about the platform, the available data and the
possible transmission channels for thorough testing. Without any automation the manual analysis limits
the number of applications that can be tested. Consequently, the manual network traffic analysis is
costly in terms of time and the results heavily depend on the analysis methods deployed by the expert.
Additionally, with various applied tools it might even be hard for an expert to determine all important
characteristics and recognise certain correlations.

Following we will first highlight some general aspects about the network communication of an appli-
cation, which can be enlightened with network traffic analysis. Subsequently, we describe the potential
of the in-depth analysis to reveal unwanted behaviour, especially the leakage of sensitive information.
Finally, we point out, which of the threat types arising from Android applications can be identified with
network traffic analysis. For all this topics we emphasise the importance of a tool integrating all the
described methods and undergird how a specialised tool could assist the experts in the analysis of the
network traffic of Android applications.

4.1 General Network Traffic Analysis

Network traffic analysis in general is capable to reveal basic information about the external communica-
tion of an application. This information can be used to understand and reconstruct the internal behaviour
of the application and enables to get a first impression of an application. Following we will highlight
some of the general obtainable information, especially interesting in the application analysis.

How much data is transmitted? The information if and how much data is transmitted is a first indicator
during the network traffic analysis. It reveals the unwanted extensive use of the network, resulting
in charges for the user by exceeding the data plan. Furthermore, it is a first hint for the undesired
transmission of sensitive data. A fictional example would be that a camera application, claiming

31

32 4. Potential of Specialised Network Traffic Analysis for Android Applications

that it requires the Internet permission for advertising purposes only, sends private data like pictures
over the network to a dubious server.

Although, the information in general is quite vague, since certain applications (e.g. YouTube,
Skype) require the extensive use of the network, and new Android versions (since 4.0) already
have a tool included to monitor the traffic amount produced by every application. This information
should anyway be considered in the overall analysis process.

What kind of traffic is produced? The information about the protocols used for transmission uncovers
the underlying technologies, used by the applications. Particularly, it is of interest, if applications
with access to sensitive information use secure protocols for the transmission of the data. More-
over, the use of inappropriate protocols for certain applications could reveal malicious behaviour.
For example the use of the Simple Mail Transfer Protocol (SMTP) to transmit private data via
mail.

Where is data transmitted to? Information about the contacted servers helps to track the flow of data
and allows to identify communication patterns. A statistical representation of this data could help
to quickly interpret the information. In addition, the contacted servers could be matched against a
database of servers known for advertising or malicious activities to characterise their behaviour.

In the same manner information about the geographical location of the contacted servers could
help to identify countries with a higher potential risk of malicious activities.

At which point of the execution? The exact information about, at which point of the program execu-
tion how much data was sent, can be utilised to narrow down the moment at which an application
shows its malicious behaviour. Similarly, it could put on display that a application sends data over
the network in the background without the interaction and knowledge of the user.

This summary of selected points, which can be taken into account during the general analysis of the
network traffic, should highlight the potential of the method. Although, a variety of already established
tools for the analysis of this general aspects exist, there was till now no tool available, which automati-
cally aggregates all this information and is well adapted for the special use case of Android application
network traffic analysis. A tool providing a rich presentation of the information with additional features
like filters for certain information and the possibility to compare the result with previous tests and other
applications, is able to provide a solid platform for the analysis of applications and detection of malware.

Even if the general analysis allows to identify first signs of malicious behaviour, the detection capa-
bilities are quite limited. The in-depth analysis of the transmitted data, presented in the next section, is
however able to reveal more details.

4.2 In-Depth Network Traffic Analysis

The network is the main interface to the outerworld of a mobile device and almost all data leaving the
device has to pass through this point. This fact reinforces the great possibility to identify leakage of
sensitive information with the network traffic analysis. However, to detect sensitive information in the
network traffic, thorough inspection methods and comprehensive knowledge about the used communi-
cation technologies and the available data on the device are required.

Communication Protocols Different technologies and protocols, used for the transmission of data, re-
quire individual methods to inspect the transmitted data for certain information. Some protocols
transmit the data in simple plain-text format easy to scan, others however use specialised formats,
obfuscation or even encryption for the payload and hamper the analysis. Nevertheless, a analy-
sis tool implementing automated inspection methods for crucial protocols is already capable to
identify leakage in the most important data transmission channels.

4.3. Which Threat Types Can Be Detected 33

Available Information To inspect the network traffic for leakage of sensitive data, one has to first know
which information resides on the device that could be exposed. The determination of this analysis
parameters requires profound knowledge about the platform and is a work-intensive task. A tool
aggregating established and important analysis parameters helps to automatically analyse the net-
work traffic for this specific aspects and facilitate the work of expert users. Experts would only
need to adjust the prescribed analysis parameters for the currently tested system and could focus
on the results and the identification of new analysis parameters.

A comprehensive list of the available information on a common device running the Android plat-
form will be given in Section 5.2.3.1.

Inspection Methods The knowledge about the exact information present on the device can be utilised
by an inspection method to directly match the available data against the transmitted data to identify
information leakage. However, the data might be modified, formatted differently or even obfus-
cated before transmission. For example, the location information could be formatted in different
geographical units or only the hash value of a unique device identifier could be transmitted. To still
be able to identify such modified information during the analysis, the inspection methods have to
be adapted with the knowledge of experts to cover as many modified versions of the data as pos-
sible. For instance, the transmitted data should not only be scanned for the exact unique device
identifier, but also for common hash values of it.

Other inspection methods could use regular expressions to match data of a certain structure to iden-
tify information leakage. Common expressions could be defined for very specific data like mail
addresses, phone numbers or even for certain identifiers. Nevertheless, both inspection methods
cannot cover all variations of data modification or define expressions for all kind of information.
Consequently, not every data exposure might be revealed by the inspection methods and incorrect
matches could lead to false alarms. Still, a automated analysis tool with different implemented
inspection methods is able to present all found records to the user and leaves the final decision
about the correctness and importance of the gathered information to the judgement of the expert.

In-depth network traffic analysis, utilising the information about the available data on the device
during the analysis, is able to simply but still efficiently inspect the traffic for exposure of sensitive
information. However, the manual identification of the available and relevant information and the in-
spection of this aspects with different methods is time-consuming and requires profound knowledge. A
tool, combining established inspections methods in an automated analysis process and providing a rich
representation of the results, could help experts in the fast analysis of applications. Automation allows
to test a large number of applications and experts could focus on the improvement and detection of new
analysis aspects and the identification of correlations in the results.

4.3 Which Threat Types Can Be Detected

Following we describe, which threat types for mobile platforms (presented in Section 2.1) can be detected
with network traffic analysis methods.

Grayware Previous research by The Wall Street Journal [183] and Fulton [92] already demonstrates
the great potential of in-depth network traffic analysis to identify behaviour typical for grayware
(see Section 3.2.6.2). Especially grayware with aggressive advertising practices, for example,
transmitting unique identifiers together with the location of the user to advertising companies,
can be discovered. Since grayware usually does not devote that much effort to cover its habits,
inspection methods with direct matching are already capable to reveal transmission of sensitive
information over the network.

34

4. Potential of Specialised Network Traffic Analysis for Android Applications

In-depth network traffic analysis helps expert users to identify applications showing characteristic
typical for grayware and a rich representation of the result might help to raise the awareness of the
user about privacy concerns outgoing from such applications.

Furthermore, reports and statistics about things like the contacted domains and servers, gathered
during the general network traffic analysis, allow to recognise patterns in the network traffic com-
mon for grayware.

Malware The methods used to identify grayware can be applied in the same manner to discover mal-

ware. However, the different aim of malware and the thereby deployed methods, with more sophis-
ticated techniques to obscure and hide the behaviour, limit the detection capabilities of network
traffic analysis. Still, in-depth traffic analysis might uncover in some cases malicious activities,
where private data is exposed over the network.

The insight into the traffic gained with general traffic analysis could help to discover communica-
tion between malware and C&C servers or reveal the misuse of a device for DDoS attacks.

A comprehensive tool, providing automated analysis of the network traffic, could help to detect the

different threats arising from Android applications. Since modern devices contain a multitude of private
information and can reveal a lot about the user, it is especially of interest to identify the exposure of
sensitive data. The combination of general and in-depth network traffic analysis in a tool could help
expert users to efficiently analyse a large number of applications and allow to quickly assess the risk
outgoing from an application. The next chapter will present our developed tool NF4Droid, which aims
to exactly fulfil this task.

Chapter 5

Network Traffic Analysis with NF4Droid

The previous chapter highlighted various aspects affirming the potential of specialised network traffic
analysis for Android applications. As part of this thesis we developed a tool called Network Forensics
for Android (NF4Droid) with the aim to provide exactly such adapted analysis functionality for the
network traffic captured from Android applications. NF4Droid is a comprehensive tool, implemented
as desktop web application which provides basic functionality like test archiving and management. It,
furthermore, supplies in-depth analysis capabilities and offers features like the rich presentation and
visualisation of the test results. The tool is meant for security experts and provides assistance in the
analysis of application behaviour and the detection of malicious applications based on the information
from the network traffic.

In this chapter we will present all the steps involved in the workflow of NF4Droid as illustrated in
Figure 5.1. First, we will present methods for the capturing of the network traffic with external tools.
Secondly, we describe the whole data processing involved with NF4Droid, starting at the data import,
followed by the further processing and completed with the in-depth analysis. Finally, we present the
selected approach for the intuitive and rich presentation and visualisation of the network traffic and the
analysis results.

Data Processing

Data
C;;?Lfr';g — > [Import):D[Processing):D[Analysis) — > Presegtatlon
Visualisation

external ' NF4Droid

Figure 5.1: Graphic, illustrating the workflow of NF4Droid, consisting of three main steps: First, the
capturing of the network traffic (external, not part of NF4Droid). Next, the data processing with the
subtasks import, processing and analysis for the preparation of the data. Finally, the presentation and
visualisation of the gathered data.

5.1 Traffic Capturing (external)

The Figure 5.2 highlights the traffic capturing step of the overall workflow of NF4Droid, discussed
subsequently. NF4Droid centres upon the analysis of packet capture (PCAP)-files to be independent of

35

36 5. Network Traffic Analysis with NF4Droid

Data Processing

Data

[Import):D[Processing):D[Analysis) —_— F’resegtanon

Visualisation

Traffic >
Capturing

external ' NF4Droid

Figure 5.2: Graphic, presenting the workflow of NF4ADroid highlighting the first, network traffic captur-
ing, step. The traffic capturing is actually not done by NF4Droid as illustrated in the graphic, but still
part of the overall process.

the underlying capturing method. Accordingly, the actual process of capturing the network traffic during
the run of an application and the automation of the test process is not part of NF4Droid.

In Section 3.2.6.1 we already briefly described some of the existing network traffic capturing meth-
ods. Now we explain them more detailed. Additionally, we highlight the problems of automated testing
and the associated simulation of user interaction and point out, why we need to record the test environ-
ment properties.

5.1.1 Capturing Methods

In the following we describe common network traffic capturing methods deployed for Android devices
and highlight their advantages and restrictions.

5.1.1.1 tcpdump

tcpdump [179] is a multi-platform command-line packet analyser, which includes functionality to capture
the network traffic and store it into PCAP-files. Cross-compiled versions of the tool are available for
Android, which allow to directly capture the traffic on the device and enable to easily automate the
capturing process. Through the execution on the device it is even possible to capture the traffic, no matter
which network interface (e.g. 3G or Wi-Fi) is used. However, the execution requires root permissions
and is thus only applicable on rooted devices.

5.1.1.2 Emulator

The Android emulator can be instructed with the command-line parameter

emulator —-tcpdump /path/to/output-file.pcap

to directly capture the traffic and write it to a PCAP file. With this method you do not have to bother

about the use of the tcpdump tool since the emulator has a dump tool integrated, which is automatically
instructed.

5.1.1.3 VPN service

Since the version 4.0 the Android API offers the possibility to integrate custom VPN services [70] what
can be utilised to directly capture the network traffic on standard devices without requiring root access.

5.1. Traffic Capturing (external) 37

tPacketCapture [54] is an Android application providing exactly such capturing functionality. Neverthe-
less, capture capabilities are limited with this method to the Internet Protocol and no traffic information
about the link layer is available [54, 70], but similar to tcpdump, it does not matter which network inter-
face is used.

5.1.1.4 Wi-Fi setup

With this method the device is connected to a special set up Wi-Fi where all the produced traffic is
captured with common network traffic capturing tools like tcpdump [179] or Wireshark [191]. Therefore,
an advantage of this method is that it does not pose any restrictions on the device and the deployed system.
Not only no root permissions or certain system versions are required, the method is even independent
of the deployed OS. Moreover, the external setup allows to apply advanced tools and methods for
traffic interception and manipulation, especially interesting for man-in-the-middle attacks on secured
communication (see Chapter 5.2.3.4). A drawback is the more complicated test setup which complicates
automated testing. Furthermore, sophisticated malware might only show its malicious behaviour if it is
connected over the 3G network. Accordingly, that could not be detected with this method.

Every capturing method has different requirements on the test system and all methods vary in their
possibilities to be instructed during automated testing. According to deployed system and the used
approach for test automation, the most suitable method should be selected.

5.1.2 Automation and User Interaction

For thorough testing of an application it is important to reach and trigger every functionality provided by
the application. Especially malware might only show its malicious behaviour at a certain point or after
some time of the program execution. A manual test of an application by an human is certainly the most
thorough test methodology. However, manual testing is a time-consuming process and thus limits the
number of applications that can be tested.

While automated application testing allows to analyse a large number of applications it requires best
possible simulation of the user interaction for thorough testing. As mentioned in Chapter 3 different
approaches for the simulation of user interaction exist ranging from random user input known as monkey
testing to code instrumentation based on the information from the static analysis. Additionally to the
automation of the application testing, it is important for us that a network traffic capturing method can
be integrated in this process, which delivers traffic captures for the analysis with NF4Droid.

5.1.3 Test Environment Properties

For the in-depth analysis of the network traffic with NF4Droid (described in the subsequent Section
5.2.3) we require certain information about the environment of the tested system. Properties of the
test environment like unique identifiers, the phone number or the device location are essential for our
in-depth analysis and must be logged with the test. In general, the more information we have about
the tested system, the more aspects can be analysed. Thus, for thorough analysis with NF4Droid it is
important to not only capture the network traffic, but also log the environment properties. In Section
5.2.3.1 we enumerate such properties present on Android devices which should be logged with the traffic
capture.

The capturing of the network traffic and the test automation is a wide-ranging topic which is left to
other projects. NF4Droid focuses on the analysis of the traffic captures produced by such methods and
only states which properties need to be logged for the in-depth analysis.

38 5. Network Traffic Analysis with NF4Droid

5.2 Data Processing

Data
ey - - = laein
Visualisation

external ' NF4Droid

Figure 5.3: Graphic, presenting the current data processing step in the overall workflow of NF4Droid,
consisting of the subtasks: import, processing and analysis.

For the later use in the data presentation and visualisation of NF4Droid, the traffic capture files and
the logged environment properties must be imported into the platform and further processed. In the
following we will describe the subtasks import, processing and analysis of data processing stage in the
overall workflow illustrated in Figure 5.3.

5.2.1 Import

The first step after the capturing process is the upload of the traffic capture file onto the NF4Droid
platform together with the information about the according test environment properties. The Screenshot
5.4 shows the view of NF4Droid for this step in the workflow.

Since NF4Droid offers test management and archiving functionalities, a traffic capture must be asso-
ciated to a certain application and application version. The user must enter the application package name
(unique for every application) and the related application name. As assistance for the user, while typing
the application package name a autocomplete feature will present possible matches of applications al-
ready available in the database (see Screenshot 5.4) for selection. Further on, the information about the
exact application version, consisting of the application version code (specific for a certain application
version) and the related application version name, must be entered. As with the application package
name, an autocomplete feature is offered for the application version code.

Additionally, the user should enter the test environment properties related to the traffic capture. This
information is essential for the in-depth analysis of data exposure with NF4Droid. The preselection and
enumeration of the environment properties, required for the analysis, facilitates the work of the expert
user, and it outlines which environment properties are important and required for the analysis. However,
without this data NF4Droid can not apply in-depth analysis and thus only provide general information
about the network traffic.

5.2.2 Processing

For the in-depth analysis and for the rich presentation and visualisation of the traffic data, further pro-
cessing of the information from the traffic capture and the test environment is required. The data must
be structured and enhanced, to be suitable for the various analysis and easily retrievable for advanced
representations.

As a first step the uploaded PCAP-file must be parsed, enriched with additional data and persisted in
a object model together with the information about the application and the test environment properties.

5.2. Data Processing 39

Add app

> Add app

Add app
Traffic capture Choose File...

Traffic capture file (peap) recorded during the usage of an app
App infos

App package | com.sh e.g. com.facebook katana

e e B . i icentifier of the app.

com.shootinggames.bowman
App name [Shazam e.g. Facebook for Android

App version code e.g. 21878

The app version code uniquely idtenifies a certain version of an app.

App version name e.g. 198

Test Environment

Phone number e.g. +436507230030
IMSI e.g. 232072502440490
IMEI e.g. 353160040532967
Android ID e.g. e345846ceb0c6153
User e.g. nfadroid@gmail.com
Password
LY Please only enter if you use a test account! Will be stored in plaintext!
Location |atitude e.g. 47.07
SSID e.g. Linksys1234
BSSID e.g. 06:24:FE:05:95:00

Figure 5.4: Screenshot of the view for the import of traffic captures and the according test environment
properties in NF4Droid. As further detail, the autocomplete feature, which presents possible matches of
existing application package names available in the database for selection, is visible in the screenshot.

Subsequently, can the in-depth analysis run various tests on this rehashed data. In the following we
present this processing steps in greater detail.

5.2.2.1 Parsing

The traffic capture files must be provided in the PCAP format used by tcpdump any many other network
traffic capturing tools. PCAP-files represent the complete captured network traffic in a format that allows
to reconstruct every single part of the communication. By parsing the file the whole information about
each data unit from all involved network layers, independent from the utilised communication technology
and the involved network protocols, can be extracted for further processing.

This comprehensive information about the communication of an application builds the data source
for the in-depth analysis and the presentation and visualisation part of NF4Droid. To model structural
connections and relevant characteristics of the network traffic information, maps NF4Droid the infor-
mation gained from the parsed traffic capture file into its own data model. This data model reflects the
network traffic information in a form easy to access and use in the in-depth analysis process and which

40 5. Network Traffic Analysis with NF4Droid

allows to easily retrieve the information for various statistical representations.

5.2.2.2 Enrichment

To provide extensive information about the network traffic, NF4Droid enriches the basic data from
the traffic capture with various additional data. For example, NF4Droid makes use of IP geolocation
databases to provide information about the location of the servers contacted by an application. Besides,
we extract data like the host part of contacted Uniform Resource Locators (URLSs) to be able to create
certain statistics. Moreover, we make the presented information easier to understand for the user by
supplying additional facts. For instance, we denote the underlying service, belonging to a particular port
number.

5.2.2.3 Persisting

NF4Droid follows the strategy to keep all the imported and aggregated data stored in a centralised
database, where each traffic capture is associated with a certain application and version of an application.
This approach enables quick data access during the in-depth analysis and allows to run comprehensive
queries on a large set of information in the data presentation and visualisation step. Moreover, it is easy
to compare analysis results from multiple traffic captures of an application or from different application
versions.

Additionally, the storage of all traffic information might allow to run newly added analysis on previ-
ously tested applications. Similarly, future enhancements of the data presentation and visualisation parts
can directly utilise the large set of existing information.

The parsing, enrichment and persisting steps are crucial in the preprocessing of the data for the later
use in the in-depth analysis and data presentation and visualisation. Only a well-conceived model for
the large amount of data as deployed in NF4Droid makes quick access and retrieval of the important
information possible.

5.2.3 In-Depth Analysis

The in-depth analysis of the transmitted data plays a key role in the network traffic analysis of Android
applications with NF4Droid. The network is the main interface of today’s devices to the outerworld. Ac-
cordingly, all most all information leaving the device has to pass through this point. This fact emphasises
the potential to identify exposure of sensitive information in the network traffic. Hence, the thorough
analysis of the transmitted data helps to identify unwanted or even malicious behaviour of applications.

To know about which information should be considered during the analysis it is important to be aware
about what information is actually present on modern devices. As part of this thesis we tried to identify
the most important data generally present on devices running the Android platform. From this com-
prehensive list we selected those information, considered sensitive or private enough and, furthermore,
analysable with our deployed methods for the in-depth analysis.

Applications might use different protocols for the communication over the network. However, to
be able to identify certain information in the transmitted data, the in-depth analysis method needs to be
adapted for every protocol. Currently, NF4Droid supports the commonly deployed HTTP, where we
analyse the parameters and header fields of the HTTP requests for the transmission of sensitive data.

The analysis method deployed in NF4Droid relies on the test environment properties, provided to-
gether with the traffic capture, to identify exposure of information. The pursued method simply searches
for occurrences of the environment properties in the parameters and header fields of the HTTP requests
of the network traffic. However, applications commonly use data obfuscations methods like data hash-
ing to protect or hide information. Accordingly, the differently represented information could not be

5.2. Data Processing 41

detected with the simple analysis method. To counteract this problem, the analysis of NF4Droid tries to
imitate the obfuscation methods to achieve improved results, for example, by applying the same hashing
functions on the original data.

In the following we first present the list of information, which we might consider during the in-depth
analysis. Next, we describe the deployed analysis method in greater detail and provide a overview table
for the currently implemented properties we support in the in-depth analysis. Finally, we point out certain
limitations of the analysis method.

5.2.3.1 What to look out for?

To answer the question “What to look out for?” during the analysis of data exposure it has to be generally
considered, what data is present on modern devices and how sensitive it is.

One starting-point is the security architecture of the Android platform. It is, beside others security
measures, primarily is built upon a permission system which restricts the access to sensitive parts. It
is designed in a manner that no application has, by default, permissions to perform any operations that
would adversely impact other applications, the operating system, or the user [31]. Therefore every
application, which wants to access the user’s private data (such as contacts or text messages) or certain
hardware (e.g. camera) has to state up front the required permissions. At install-time the user can decide
whether to grant the application all the demanded permissions or to not install it at all [81].

By examining the list of available permissions in the Android SDK [28] it is already possible to
enumerate a large number of critical data, which it is worth to look at during the analysis. For exam-
ple, the ACCESS_FINE_LOCATION permission, which allows an application to enquire the position
using the GPS-sensor, leads to the idea to check for transmitted GPS-coordinates [28]. Permissions like
READ_PHONE_STATE need further investigation to identify the accessible data. By studying all the
Java classes of the Android SDK (which are related to the permission), it can be determined that among
other things the phone number can be obtained (see Paragraph II.).

Besides the data which is protected by permissions, it is even of interest to investigate the usage of
other generally available data. The reference of the Android SDK helps to identify which data is present
and how it can be accessed. This leads to the investigation of things like the information about the system
or data located on the external storage.

Furthermore, it is important to always check for all possible exposures of data, even if an applica-
tion does not have permission to access it, since research showed that there are ways to circumvent the
permission system. Security researchers created a proof-of-concept zero-permission' application, which
can gather data located one the external storage, a list of all installed applications and some basic in-
formation about the system [156, 157]. Additionally, the application uses a trick to transmit the whole
information to a server without a direct permission to access the Internet (although certain limitations
exist).

The following summary of data, available on a Android device, should give an overview and help
to select important information, which should be taken into account during an in-depth analysis of data
exposure. Although the list is quite extensive it might still not be complete and for simplification it
is limited to the typical environment for Central Europe. Slight differences might exist for countries
where other technologies are more established. For example, Global System for Mobile Communications
(GSM) versus Code Division Multiple Access (CDMA) based mobile networks.

. System Information about the hardware and software of the device.

Android ID [22] A 64-bit quantity, that is generated and stored when the device first boots or a factory
reset is made, which is commonly used as unique device identifier. However, it is not completely

! An application which requests and requires no permissions.

42 5. Network Traffic Analysis with NF4Droid

reliable as unique identifier at older Android SDK versions and due to bugs from major device
manufacturers [184].
e.g. €345846¢ceb0c6153

Locale [17] A language/country combination used to select the regional representation of information
like numbers or dates.
e.g. en_GB/English/GB, de_DE/German/Germany

Manufacturer / Brand / Product / Model / Device [9] Information about the manufacturer of the pro-
duct/hardware, the brand (e.g., carrier) the software is customised for, the name of the overall
product, the end-user-visible name for the end product and the name of the industrial design.

e.g. Samsung / Google / Nexus S / Nexus S / crespo

Android SDK version [10] Build version of the installed Android SDK represented by a user-visible
version string, a corresponding integer constant or a internal value used by the underlying source
control system to identify a certain build.

e.g. 4.0.3, 15 (for 4.0.3), IML74K (for 4.0.3)

Kernel version [25] OS kernel version.
e.g. 3.0.8-g6656123

Radio firmware version (Baseband version) [9] The version string for the radio firmware (often called
baseband).
e.g. P729BB01

Serial number [9] A hardware serial number for the device unique within the manufacturer.
e.g. 90016442894F00FC

Identifiers are of special interest for advertisers and even attackers since they allow to almost uniquely
identify a device or even user. If an identifier can be aggregated with personal information about the
device owner and data like its location it is possible to track the user and analysis his behaviour an habits.

Furthermore, might information about the hardware and the installed software version give attackers
hints about possible security vulnerabilities they can exploit [112].

Il. Cellular Information about the cellular module of the device and the connection established with
it [26].

Phone Number The phone number of the Subscriber Identity Module (SIM) card also referenced as
Mobile Subscriber Integrated Services Digital Network Number (MSISDN) consisting of a C&C
(e.g. 43), National Destination Code (NDC) (e.g. 650) and Subscriber Number (SN) (e.g. 7230030)
[122].
e.g. +436507230030

Required permissions: READ_PHONE_STATE

Mobile Country Code (MCC) Unique identifier specifying the mobile network country [123].
e.g. 232 (for Austria)

Mobile Network Code (MNC) Unique identifier used to specify a carrier within a country [123].
e.g. 03 (for T-Mobile in Austria)

Location Area Code (LAC) Unique identifier which specifies a group of GSM cells within an Location
Area (LA) [123]. MCC, MNC and LAC form together the Location Area Identity (LAI).
e.g. 2520

Required permissions: ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION

5.2. Data Processing 43

Cell-ID (CID) Unique number identifying a GSM cell within an LA [185]. LAl and CID combined
allow to globally identify GSM cells [185].
e.g. 46929

Required permissions: ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION

Network Country Network country as International Organization for Standardization (ISO) 3166-2
[121] code derived from the MCC.
e.g. AT (for Austria)

Service Provider Name (SPN) Network carrier name.
e.g. T-Mobile Austria

Required permissions: READ_PHONE_STATE

International Mobile Equipment Identity (IMEI) A 15-digit number associated to a device to uniquely
identify it internationally as a mobile station. It is allocated by the manufacturer and registered by
the network operator which maintains a Equipment Identity Register (EIR). Network operators
have the capability to maintain “blacklists” of IMEIs to block the access to the network, for exam-
ple, if the device got stolen [185].

e.g. 353160040532967

Required permissions: READ_ PHONE_STATE

International Mobile Subscriber Identity (IMSI) The IMSI consists of the MCC, MNC and Mobile
Subscriber Identification Number (MSIN) and is stored on the SIM card. Each user/contract can
be internationally uniquely identified by this number. To access a network the IMSI (together with
the IMEI) will be verified by the network operator [185].

e.g. 232032502440490

Required permissions: READ_PHONE_STATE

SIM serial number Unique serial number of the SIM card often referenced as Integrated Circuit Card
Identifier (ICCID).
e.g. 89430700001180095600

Required permissions: READ_PHONE_STATE

Voice-mail number Number which is called to retrieve voice-mails (sometimes includes the phone
number).
e.g. +43650117230030

Required permissions: READ_PHONE_STATE

The IMELI is often used by developers, advertisers and attackers as unique identifier for a device. Further-
more, the phone number and IMSI allow to uniquely identify a user. Therefore, such unique identifiers
can be used to track users and thus pose a risk for the user’s privacy.

In addition, the voice-mail number (and if not included the phone number) can together with the
IMSI be used by attackers to access voice-mail recordings using a method called “Caller ID Spoofing”
[45, 66].

ll. Wi-Fi Information about the Wi-Fi module of the device and the connection established with it
[27].

Required permissions: ACCESS_WIFI_STATE

Service Set Identification (SSID) The name of a Wireless Local Area Network (WLAN).
e.g. nf4droid

44 5. Network Traffic Analysis with NF4Droid

Basic Service set identification (BSSID) Usually the Media Access Control (MAC)-Address of the
Access Point (AP) used to uniquely identify the WLAN.
e.g. 06:24:FE:05:95:D0

IP Address Internal IP address assigned to the device.
e.g. 192.168.179.15/24

MAC Address MAC-address of the device Wi-Fi network interface.
e.g. 00:24:fe:24:e7:62

The BSSID could be used to obtain coarse location of the device by querying a online geo location service
(e.g. Google Location Server (GLS) [101], Skyhook Location [170]), independently of the integrated
location API of Android (see section V.), and thus approximately locate a device without any permission
regarding location services.

IV. Network Information about the currently connected network regardless of the connection type
(Wi-Fi, 3G) [19].
Required permissions: INTERNET

IP Address IP address assigned to the device.
e.g. 192.168.179.15/24

MAC Address MAC-address of the currently used network interface of the device.
e.g. 00:24:fe:24:e7:62

V. Location Depending on the availability of hardware, the granted permissions and the desired
accuracy, speed and battery-efficiency the following methods can be used to obtain the location of a
device [18, 20]:

Cell-ID (CID) Google maintains a crowd-sourced database of mobile network CIDs with according
GPS coordinates [124]. By querying the database for the CID of the currently connected network
station an approximate position can be retrieved from the GLS [101].

Required permissions: ACCESS_COARSE_LOCATION (or ACCESS_FINE_LOCATION) and
INTERNET

Wi-Fi A similar database, like for the Cell-ID (CID), exists for the BSSID of Access Points [1]. Query-
ing the database for the information of the connected/nearby Wi-Fi can provide approximate loca-
tion information.

Required permissions: ACCESS_COARSE_LOCATION (or ACCESS_FINE_LOCATION) and
INTERNET

GPS / A-GPS The Global Positioning System (GPS) uses satellites to provide precise location data.
Assisted GPS (A-GPS) speeds-up the positioning progress.
Required permissions: ACCESS_FINE_LOCATION and INTERNET (for A-GPS)

The enumerated positioning methods may yield to the following data [43]:

Latitude Geographic coordinate that specifies the north-south position of a point on the earth’s surface
in degree. Values: Degrees from -90 (south) to 90 (north).

Longitude Geographic coordinate that specifies the east-west position of a point on the earth’s surface
in degree. Values: Degrees from -180 to 180, positive values represent the eastern hemisphere.

5.2. Data Processing 45

Altitude True altitude describing the elevation above the mean sea level in meters.

Bearing Direction of travel in degrees east of true north. Values: Degrees from -180 to 180, 90 degrees
for east, -90 degrees for west and +180 or -180 for south.

Speed Speed of the device over ground in meters per second.

Accuracy Accuracy of the location information in meters.

Location is a very valuable information for advertisers since it allows location-aware advertisement.
The location information gets even more valuable if you can correlate it to a certain device or user and
maybe track it over time [73, 108]. Since modern smartphone devices are our daily companions and
often carried around with us all the time, they can give a deep insight in our life and expose various
sensitive information. For example, it can reveal where you live and work, where you usually buy your
groceries, how often you go to the fitness centre and a good deal more. This shows that it is of great
interest to investigate if the location is used and which information is send over the network together
with the location, especially information, which could identify us as a certain user like unique identifiers.

VI. Accounts Android offers a centralised registry for the management of the user’s online accounts
[4]. The user enters credentials (username and password) once per account and simple grants application
permission to access them using a “one-click” approval. By a modular concept a variety of authentication
methods can be supported. Commonly servers support authentication tokens to authenticate requests to
the server without sending the user’s actual password. The account management can create such tokens
directly for applications, thus applications do not need to handle passwords themselves.

Name Login name for the account.
e.g. nf4droid@gmail.com

Required permissions: GET_ACCOUNTS

Type Account type defining the underlying service.
e.g. com.google, com.facebook.auth.login, com.skype.contacts.sync

Authentication Token Authentication token (auth token) for the specified account type and a particular
account. The user has to enter the credentials if no entry exists yet. If a previously generated, still
valid, auth token exists it is directly returned. Otherwise a new auth token will be requested from
the corresponding server. If a saved password is available it will be used for the request, otherwise
the user is prompted to enter his password.

Required permissions: USE_CREDENTIALS

User Metadata Arbitrary additional data stored with the account used for things like the full name of
the user.
e.g. Joe Bloggs

Required permissions: AUTHENTICATE_ACCOUNTS
Additionally to the permission the password will only be available to an application which has the
same Unique User Identifier (UID) as the one which authenticated (created) this account [16].

Password The password of the account.
e.g. 123456

Required permissions: AUTHENTICATE_ACCOUNTS
Additionally to the permission the password will only be available to an application which has the
same UID as the one which authenticated (created) this account [16].

46 5. Network Traffic Analysis with NF4Droid

VIl. Calendar Calendars available on the device ranging from subscribed/synchronised private and
public calendars to locally stored ones [11].

Required permissions: READ_CALENDAR

Title and Description Title and description for the event.
e.g. “Meeting with Joe Bloggs”, “Release of SuperPhone 7~

Event Organiser Email Address Email address of the event organiser.
e.g. nf4droid @gmail.com

Start/End Date/Time, Duration, Repeated, Time zone Information about the date and time when the
event occurs, how long it takes and which time zone is referenced. For repeating events (e.g
birthdays) the interval.

e.g. 15/05/2012 9:12am (GMT) every year

Location Location where the event takes place.
e.g. “Office of Mr. Bloggs”, “1600 Amphitheatre Parkway, Mountain View, CA 94043

Reminders Additional reminders for an event.
e.g. Alert 10 minutes before

Attendees Persons invited to the event and their according information (Name, Email,...) and atten-
dance status.
e.g. Joe Bloggs (joe@bloggs.com, speaker, required) - declined

Calendars are used to organise our daily lives and give a deep insight in our schedule. Additionally, they
might include business information which should be kept private (e.g. the release of a new product).

VIIl. Contacts / Profile Information obtainable for all contacts on the device and the user profile of
the owner [13]. The information might by synchronised with multiple servers (Google, Skype,...) and
aggregated from various external sources (Facebook, Google+, Skype. ..).

Required permissions: READ_CONTACTS (for contacts), READ_CONTACTS and READ_PROFILE
(for the user profile)

Name (Given name, Family name, Title,...) Data representing the contacts proper name.
e.g. Bloggs John Joe, Ph.D.

Nickname Nickname of the contact.
e.g. Joy

Email addresses Email addresses (work, private,...) of the contact.
e.g. joe@bloggs.com

Groups Groups to which the contact is assigned.
e.g. Co-worker, family

Instant messenger addresses (ICQ, Skype,...) Number or user name for an instant messaging service.
e.g. joel23, 12312311

Notes Personal notes for the contact.
e.g. Met first on DEFCON 2011.

Organisation (Company, Department, Office location,...) Information about the organisation the con-
tact works for.
e.g. Pear Inc., CEO, Room E231

5.2. Data Processing 47

Phone numbers (Mobile, Home, Work, FAX,...) Phone numbers of the contact.
e.g. +436507230030

Photo Profile picture of the contact.

SIP addresses Voice over IP telephony address based on Session Initiation Protocol (SIP).
e.g. +18012345678 @sip.voice.google.com

Postal addresses Addresses (work, home,...) of the contact containing information like country, re-
gion, city, postcode, street (with house number), post office box number.
e.g. 1600 Amphitheatre Parkway, Mountain View, CA 94043

Website Website of the contact.
e.g. www.bloggs.com

Relation Relation to the contact.
e.g. Father, Brother, Domestic Partner

Events (Birthday, Anniversary,...) Events related to the contact.
e.g. Born 15/05/1985

Social Stream data Data (status updates, likes,...) aggregated from social streams of the contact.
e.g. Joe likes android.com

Required permissions: READ_SOCIAL_STREAM

Our profile and the list of our contacts can reveal a lot of information ranging from phone numbers to
addresses. Exposure of the contacts means not only exposing our own private data but also information
about our family, friends or co-workers. It is important to consider carefully which applications should
be allowed to access this information and even more it might be of interest to evaluate where this data is
send to if an application has the permission for it.

IX. Bookmarks and Browser History Bookmarks and the history of visited websites of the in-
tegrated web browser of Android [8].

Required permissions: READ_HISTORY_BOOKMARKS

URL The Uniform Resource Locator (URL) of the website.

Title The title of the website or for a bookmark the user entered title.
Number of visits Counter for the number of visits for this URL.
Last visited Date and time when this URL was last visited.

Created Date and time when this entry was created.

The bookmarks and the browsing history can reveal a lot information about our interests and habits and,
moreover, the might include personal stuff like certain search terms we used.

X. Android Logs [30] Logs are used by developers to help identifying bugs during debugging. The
following categories of logs exists for Android [74]:

Main The main log for applications.

Events For system events information.

48 5. Network Traffic Analysis with NF4Droid

Radio For radio and phone-related information.

System For low-level system messages and debugging.

Required permissions: READ_LOGS

Research showed that sensitive data like the browsing history, SMS, contacts and location were
accessible through logs which included to much detail [132]. Therefore, the permission to read logs
allowed to access information which should actually be protected by other permissions.

Xl. Call Log [12] The history of phone numbers which have been called.
Required permissions: READ_CONTACTS

Number The phone number which was called.
Date/Time The date and time when the number was called.
Duration The duration of the call.

Type Defines if the call was incoming, outgoing or missed.

Similar to the contacts this information gives insight about with whom we stay in contact. For example,
it might be undesired for a business man that somebody knows about the companies he stays in contact
with.

Xll. SMS/MMS Short Message (SMS) or Multimedia Message (MMS) stored on the device [24].

Required permissions: READ_SMS or RECEIVE_SMS (for intercepting incoming SMS) or
RECEIVE_MMS (for intercepting incoming MMS)

Body (Message, Data) Body of the message containing the text and additionally files (pictures, sounds,...)
for MMS.

Subject Message subject (only for MMS).
Originating/Recipient address Phone number of the originator or recipient.
Type (Sent, Received, Draft,...) Defines if the message was sent, was received, is a draft,.. ..

Date/Time Date and time when the message was sent/received/created.

SMS and MMS often include very personal information like the messages you send to your partner or
pictures you send to some friends. Thus this information might be considered highly private.

XIll. Files / Data Android offers primarily the following possibilities to store data on the device
[15]:

Internal Storage Stores arbitrary data on the internal memory of the device. By default (and with
MODE_PRIVATE) all files stored to the internal storage are private to the application and no
other application can access them (nor can the user). By using the MODE_WORLD_READABLE
or MODE_WORLD_WRITEABLE during the file creation it will be accessible by everybody. When
an application gets uninstalled all files stored on the internal storage are removed.

External Storage The shared external storage, which can be a removable storage media like an SD-card
or an internal (non-removable) storage, can be used to store any desired data. However, the data is
not protected and can be accessed by all applications and the user.

5.2. Data Processing 49

Shared Preferences Used to store primitive data like booleans, floats, ints, longs, and strings as key-
value-pairs. Similar to the internal storage the data can just be made accessible to the application
itself by using MODE_PRIVATE and shared with others by using MODE_WORLD_READABLE,
MODE_WORLD_WRITABLE or MODE_MULTI_PROCESS.

SQLDatabase A SQLite[175] database private for an application to store structured data and easily
query it.

Shared preferences and the SQLDatabase are mainly used to store smaller amounts of data like
settings and textual-data whereas internal- and external storage can be used to store larger data and
especially files. Since the internal storage is often limited in space, files like pictures, music or downloads
are commonly stored on the external storage.

Since no permission management is available for the external storage, the data is easily accessible by
every application and thus developer should consider carefully what to store at this place. To emphasise
what this means, any arbitrary application can access images, stored on the external storage, without any
permission [48]. Additionally, if the application has the permission to access the Internet, it can even
upload it in the background to some server.

XIV. Applications A list of all installed applications/packages can easily be retrieved (without per-
mission) and yields to the following information [7, 21]:

Package Name The Java package name which serves as a unique identifier for the application.
Version Code / Name The version number and name of the package.

Unique User Identifier (UID) The assigned kernel UID which is used to run the application and to
enforce filesystem permissions. Might not be unique if it is a shared UID which allows multiple
applications to share certain data or run in the same process. However, in this case the applications
have to be signed with the same signature.

Install Time / Last Updated Date and time when the application was installed and last updated.
Permissions The requested permissions of the application.

Providers Declared content providers that supply structured access to data managed by the application
[14].

Activities Declared activities which implement parts of the application’s visual user interface.
Features Hardware or software features used by the application.

Services Declared services which are used to implement long-running background operations or com-
munication APIs.

Signature The signature of the application signed with the developer account and used to identify the
author of the application and to, furthermore, establish trust relationships between applications
[23].

Data Directory Full path to a directory assigned to the package for its persistent data.

Source Directory The full path to the location of this package.

This information might help attackers to get knowledge about which data is available on a device if
certain applications are installed and which permissions are granted to an application. For example, it is
more likely to find pictures on a phone where an application with the permission to access the camera is

50 5. Network Traffic Analysis with NF4Droid

installed. Moreover, information about the software version of installed applications could lead attackers
to security vulnerabilities they can utilise. Additionally, attackers might even be interested to scan the
accessible directories of an application for files which include sensitive data.

XV. Email Since the mail application is not directly integrated into the Android SDK, there is no
API, which allows direct access to mails. Mail clients store mails by themselves and it underlies to the
application to provide a content-provider to access them.

However, mails often include a lot of private or business information and it is thus important to
protect the included information. Since the protection depends on the deployed mail application it is of
interest to inspect if any information included in the mails leave the device without the knowledge of the
user.

XVI. Conclusion This enumeration present a comprehensive list of data available on Android de-
vices and helps to identify the environment properties for the in-depth analysis. However, for the in-depth
analysis not every information is equally interesting and important. Furthermore, the information differs
in the complexity and ability to be detected with the deployed in-depth analysis methods. For exam-
ple, more sophisticated methods are required to identify the leakage of pictures than the transmission of
unique identifiers.

5.2.3.2 Analysis Method

The large amount of information, available on modern devices and the quite varying format of the data,
puts different demands on the analysis method for the identification of the information in the network
traffic. The currently implemented in-depth analysis of NF4Droid pursues the straightforward approach
to apply a textual search for the occurrence of certain information in the header fields and parameters
of the HTTP requests. This simple, but still quite effective method is not applicable for all types of
information, but particular suited for number-sequences or textual-information.

The analysis method uses the values from the test environment properties, logged together with the
traffic capture and searches for occurrences in the HTTP requests. However, information like unique
identifiers or passwords are commonly obfuscated, using data modifications and hash methods before
they are transmitted over the network. Such data manipulations would make it already impossible to
detect the information with the textual search. Still, to overcome this drawback NF4Droid tries to imi-
tate the obfuscation methods by applying the same modifications on the properties, given from the test
environment. In the moment NF4Droid supports the following frequently used hashing methods: MDS5,
SHA1 and SHA26. Additionally, we try to imitate more specific obfuscation methods. For example, the
AdWhirl [2] advertising company appends a constant string to the Android ID before hashing it, leading
to a different hash value. To still be able to detect the exposure of the Android ID, we imitate the exact
same behaviour. Similar, we always generate the hash value of the lower- and upper-case version of a
string property, since they lead to different hash values.

If the exposure of a property from the test environment is detected during the network traffic analysis,
it is persisted in database together with the information about the according HTTP request it has been
exposed in and the applied obfuscation method for the subsequent presentation and visualisation with
NF4Droid.

Although the analysis method of NF4Droid has certain limitations (see Chapter 5.2.3.4), it already
leads to considerable results. NF4Droid especially shows its strength in the detection of unique identi-
fiers. Still, the analysis is designed to be applied on different test environment properties and the currently
integrated test are listed in the following section.

5.2. Data Processing 51

5.2.3.3 Currently Analysed Test Environment Properties

The large number of information present on today’s devices makes an analysis for all properties very
difficult. NF4Droid focus mainly on the analysis of those properties, which are concerning the privacy of
the user and are easily detectable with the deployed analysis method. Currently, only a small number of
tests are included in the analysis which, already lead to good results relating to heavy advertising habits
of applications (see Chapter 7). Still, the goal is to add further tests, thus NF4Droid is designed in such
a way that it can quite easily be extended with further analysis tests.

Property Type Exposure Point Data Obscuring
Parameter Header Fields | Plaintext MD5 SHA1 SHA256

Android ID X X X X X X
IMEI X X X X X X
IMSI X X X X X X
Location X X X - - -
Phone number X X X - -
User name X X X - - -
Password X X X X X X
SSID X X X - - -
BSSID X X X - - -

Table 5.1: Overview of the currently analysed test environment properties in NF4Droid, including in-
formation about the point, where the analysis is applied in the HTTP request and which obfuscation
methods are imitated.

The Table 5.1 shows the different property types from the test environment, which are currently
tested during the in-depth analysis with NF4Droid. These properties have been selected since they are
commonly used for advertising purposes, reveal the position of the device and concern the privacy of the
user. Furthermore, they are quite easily detectable with the deployed analysis method. For every property
we search for the exposure in the HTTP requests parameters and header fields. Moreover, we not only
search for the exact same value (plaintext), but also for different hash values of the original value if it
might be interesting for a property.

5.2.3.4 Analysis Limitations

Although the straightforward analysis approach deployed in NF4Droid leads to considerable good results
(see Chapter 7), it has certain limitations. Currently, we only search for occurrences of certain properties
in the parameters and header fields of HTTP requests. For a more comprehensive analysis the method
should not only analyse the parameters and header fields of HTTP requests, but also the transmitted body
content like files. Moreover, the in-depth analysis should cover more different network protocols, which
could be used by malicious applications.

Besides the limitation on the places we search for exposure of information, even the way we try to
identify the information in the transmitted data has certain limitations. NF4Droid directly searches for
occurrences of the environment properties in the parameters and header fields. However, if the infor-
mation is formatted differently, slightly changed or even obfuscated it might not be detectable with the
deployed analysis method. We try to lower this impact by imitating obfuscation methods, especially the
hashing of values. Still, we are not able to cover all possible obfuscation techniques and thus certain data
exposure might remain undetected. Moreover, certain information is better suited for the analysis than
other, for example, the direct search is not so qualified for long texts as for short and specific strings,
since slight changes in a long text would make it already undetectable.

52 5. Network Traffic Analysis with NF4Droid

Furthermore, encryption of data or the use of secured communication protocols like HTTPS makes
the detection with the deployed analysis method impossible. However, for HTTPS it might, depending on
the quality of the protocol implementation in the application, be possible to apply a man-in-the-middle
attack if the Wi-Fi setup capturing method is used. With this technique the intercepting point makes
independent connections with the application and the servers and relays messages between them, thus
making them believe the communicate directly with each other. At the intercepting point the unencrypted
network traffic can thereby be captured and accordingly analysed with NF4Droid. Nevertheless, proper
and secure implemented applications will not trust the intercepting point and refuse the connection.

Another problem we are facing is the mistakenly identification of information exposure. For example,
if we search for a certain property, the same value might, without any relation to the actual value, occur in
the transmitted data. In that case it would be incorrectly marked as data exposure. Therefore, we always
denote that we found only a possible data exposure and leave the final decision about the correctness to
the user.

Similarly, detected data exposure might correlate to actual wanted and required transmission of in-
formation of an application. For example, if you use a location based service the information about the
position of the device has to be transmitted. Again, we leave the decision about, if the transmission of
certain information is justified, to the user. Nevertheless, NF4Droid offers the possibility to identify to
which severs the information is actually transmitted and thus assists the user in the decision.

The currently implemented in-depth analysis method of NF4Droid has limitations and there is cer-
tainly room for improvement. Still, the method is with its quite simple approach achieving quite good
results and already able to reveal interesting facts about the exposure of information as presented in
the Chapter 7. Additionally, NF4Droid is designed to be in the future extended with further tests and
different analysis methods.

5.3 Data Presentation & Visualisation

To understand the behaviour of an application and to fast and easily identify malicious application,
NF4Droid provides a rich presentation and visualisation of the information gathered and processed in
the previous steps. With tables for the detailed examination of the information, filter and search ca-
pabilities to inspect certain aspects and various graphical visualisations of the comprehensive amount
of information, NF4Droid aims to provide a solid network traffic analysis platform, specialised for the
traffic of Android applications and the exposure of information.

Data Processing

Data
C-ar[r)?:fr'ic;g — > [Import):D[Processing):D[Analysis) — > Prese;tatlon
Visualisation

external ' NF4Droid

Figure 5.5: Graphic, illustrating the workflow of NF4Droid with the final, data visualisation and presen-
tation, step highlighted.

The Figure 5.5 highlights the final data presentation and visualisation step in the workflow of NF4Droid.
In the following, we present all the user interfaces, their according functionalities and their use in the
overall analysis process, for this step. First, the general management and archiving user interfaces. Sec-

5.3. Data Presentation & Visualisation 53

ondly, the overview dashboard presenting the first test results and acting as starting point for the more
detailed analysis. Next, the traffic time line as comprehensive visualisation of the network traffic and the
data exposure. Thereafter, the visualisation for the location of the contacted servers. Finally, the tabular
and statistic information about the HTTP requests.

5.3.1 Capture Management and Archiving

NF4Droid offers functionality to manage and archive traffic captures of applications. Every imported
traffic capture is assigned to the according application and application version for later retrieval. This
allows to compare different traffic captures from different applications or different versions and captures
of the same application. Furthermore, future versions of NF4Droid can run new analysis on the existing
data or even taken multiple applications into account during the analysis.

Subsequently, we present the management sites of NF4Droid, which allows to hierarchically browse
through the traffic captures of the applications.

5.3.1.1 Apps

The “Apps” site shown in Figure 5.6 presents the list of all applications, for which traffic captures exist
in the database and allows to browse through the applications. Furthermore, the integrated incremental
search enables to search for application and package names to present only matching entries in the table
(see search for the term “google” in Figure 5.6). By clicking on an entry you are forwarded to next site,
where the different application versions are presented for the selected application.

google Q X

4 App name
Barcode Scanner
Cut the Rope Free
Garfield's Diner
Google Mail

Google Maps
Google Search
Google Uebersetzer
Google+

Key Ring

Street View in Google Maps

2 »

Total: 13

App package

com.google.zxing.client.andorid
com.zeptolab.cir.lite.google
com.webprancer.google.GarfieldsDiner
com.google.android.gm
com.google.android.apps.maps
com.google.android.googlequicksearchbox
com.google.android.apps.transiate
com.google.android.apps.plus

com.froogloid. kring.google.zxing.client.android

com.google.android.street

Figure 5.6: Screenshot of the “Apps” site in NF4Droid presenting the list of applications for the search
term “google”.

54 5. Network Traffic Analysis with NF4Droid

5.3.1.2 App versions

The “App Versions” site as presented in Figure 5.7 lists all versions available in the database for the ap-
plication selected one the “Apps” site. The incremental search can be used to filter for certain application
version codes or names. By selecting an application version you are directed to the “Traffic Captures”
site containing all traffic captures for the specific version.

’ NF4Droic B Apps + Add Capture

App versions

> Apps » App (Shazam) » Versions

Q X
App version code App version name
73576 3.7.2.-BB73576
73851 3.9.0-BB73851
75008 3.9.3-BB75008

Total: 3

Figure 5.7: Screenshot of the “App Versions” site in NF4Droid presenting the list of versions for the
“shazam” application.

5.3.1.3 Traffic captures

The “Traffic Captures” site shown in Figure 5.8 presents the traffic captures, stored in the database for a
specific application and version of an application. The incremental search can be used to filter for traffic
captures from a certain date or where the description matches the search term. By clicking on a traffic
capture you are forwarded to the according “Capture Dashborad” site.

* NF4Droic B Apps + Add Capture

Traffic captures

#& > Apps » App (Mebile calls query) » Version (14) » Traffic Captures

Q X
Capture date Capture description
2012-09-10 16:30 Test of known malware.
2012-09-10 16:38 Test of known malware. Long runtime.

Total: 2

Figure 5.8: Screenshot of the “Traffic Captures” site NF4ADroid listing all traffic captures for the “Mobile
calls query” application with the version code “14”.

The implemented user interfaces for the management of archived traffic captures allows to fast an
easily browse through the available traffic captures and facilitate the organisation of a large test base.

5.3. Data Presentation & Visualisation 55

5.3.2 Capture Dashboard

The “Capture Dashboard” site shown in Figure 5.9 presents the first traffic capture specific information
and acts as starting point for the further analysis by the user. It consists of the three following sections:

= Apps

Capture Dashboard oeriew of the traffic capture.

#& > Apps > App (Shazam) > Version (F5008) > Capture (2012-07-02 19:54) > Dashboard

App Information summary.

Info Value FURTHER VISUALIZATIONS

App name Shazam Traffic Timeline

App package com.shazam.android Cennection Country Map
App version code 75008

App version name 3.9.3-BB75008 EITABLES

HTTP R t
Link to Geogle Play equests

?s oogle

Total traffic

Possible exposures 49

Expose Amount of possible data exposure

Possible Data Exposure

30

Number of (possible) exposures

D
p
%
p
4{,/
%
4&
"o
D
o3

Traffic Network traffic amount ratios.
Ratio - Network Layer Ratio - Transport Layer Port ratio - IP & UDP
W iPv4 8 TCP over IPv4 W 80-hup
W Pve W UDP over IPv4 W 443-https
W ARP M 53-domain
B 67-bootps

Figure 5.9: Screenshot of the “Capture Dashboard” site in NF4Droid consisting of three sections, namely
“App”, “Exposure” and “Traffic” for the information presentation and visualisation. Results are pre-
sented for the traffic capture of the “shazam” application.

“App” Gives a general summary about the application tested in this capture. It outlines the information
about the application and application version, offers a link to Google Play and presents the total
amount of traffic produced by the application and the number of possible data exposures.

The information about the total traffic amount, could help the user in the application analysis
process, to already reveal malicious application causing suspicious or inappropriate high traffic.
Moreover, the total number of possible exposures indicates the potential risk outgoing from an
application.

56 5. Network Traffic Analysis with NF4Droid

Additionally, this section includes the links to further visualisations and tables for the more detailed
inspection.

“Exposure” Consists of a bar chart illustrating the number of data exposures per test environment prop-
erty. This visualisations should make at first sight visible, if and how much information is exposed
by an application. The data for the visualisations comes from the in-depth analysis during the data
processing step of NFADroid.

“Traffic” Presents general statistical information about the traffic type ratio per layer or protocol as pie
chart based on the traffic amount. The left chart denotes the ratio on the network layer (e.g. IPv4,
IPv6), the chart in the centre presents the ratio on the transport layer (e.g. Transmission Control
Protocol (TCP) over IPv4, User Datagram Protocol (UDP) over IPv6) and the right chart shows
the ratio of the used TCP and UDP ports. This information should help the user to find out which
protocols are generally deployed by the application, and it especially reveals ,if an application uses
secure communication protocols like HTTPS.

The “Dashboard” is the starting point for the analysis and should help to quickly get a first impression
of an application and build the knowledge base for the detailed analysis on the sites containing more
detailed information and further visualisations.

5.3.3 Traffic Timeline

The “Traffic Timeline” site shown in Figure 5.10 is one of the main analysis views in NF4Droid. It
consists of following two sections, one for the graphical visualisations of the network traffic and data
exposure, and the other for the tabular representation of the data exposure information:

“Traffic Timeline” Presents the produced traffic amount over the time of the application execution in
an area chart. Initially, the series for the total traffic amount and for the amount of the HTTP
requests are displayed. This information allows to identify exactly at which point of the application
execution how much traffic is produced. This knowledge could, for example, be used to figure out,
which part of an application must be accessed, that certain malicious behaviour is shown.

Additionally, it is possible to add series underlying certain criteria by clicking on the “Add filtered
series” button. A modal box, as shown in Figure 5.11, will pop up for the definition of the cri-
teria for the new series. Afterwards, the new series will be added to the existing chart to allow
comparison of different series. The possibility to compare different series should assist the user
in the identification of certain aspects, for example, how much traffic is coming from a certain IP
and going to a specific country. In addition, every series can be deactivated or activated for better
visibility in the chart, and manually added series can even be removed.

Another very important functionality is the visualisation of the data exposure in the “Traffic Time-
line”. For every exposed information a flag marker is added to HTTP requests series at the exact
point of the application execution, when the data was exposed. For better visibility every exposure
type gets its own series in a different colour and the flags include a letter denoting the exposure
type. By selecting one of the markers, detailed information about the data exposure and the related
HTTP request is presented in a modal box, as shown in Figure 5.12. This intuitive illustration of
the data exposure enables to directly recognise what an application is doing during its execution
and should help to identify malicious behaviour.

“Exposure” Additionally to the graphical presentation of the information exposure in the area chart we
provide a tabular overview of the data exposures. This direct data representation allows to provide
more detailed information about the exposure like the actual value and the deployed obscuring
method on first sight.

5.3. Data Presentation & Visualisation

Traffic timeline

> Apps > App (Shazam) » Version (75008) > Capture (2012-07-02 19:54) » Traffic timeline

Traffic timeline

Traffic amount over time

Click and drag in the plot area to zoom in
250 kB
7
200 kB
-
5
E 150kB
F 100 kB
kB
0B N30
Expose
4 Time

2012-07-02 19:54:16.640

2012-07-02 19:54:17.952

2012-07-02 19:54:33.696

2012-07-02 19:55:15.680

2012-07-02 19:55:15.680

2012-07-02 19:55:22.240

2012-07-02 19:55:31.424

2012-07-02 19:55:31.424.

2012-07-02 19:55:53.728

2012-07-02 19:55:56.352

Total: 49

Type
Android D [A]
Android D [A]
Android D [A]
Android D [A]
Android D [A]
Android D [A]
Android D [A]
Android D [A]
Android D [A]

Android D [A]

17:56:00

Time

Obscuring
plain text
plain text
plain text
plain text
plain text
plain text
plain text
plain text
plain text

plain text

7:56:30

L
17:57:00 17:57:30

Value

9BECOA120584870C
9BEC0OA120584870C
9BECOA120584870C
9BEC0OA120584870C
9BECOA120584870C
9BEC0OA120584870C
9BECOA120584870C
9BEC0OA120584870C
9BECOA120584870C

9BEC0OA120584870C

17:58:00

17:58:30

Series.
@ Total traffic ™ X
@ tHipRequests @ x
@ Android ID & %
Location o] x

+ Add filtered series

57

Figure 5.10: Screenshot of the “Traffic Timeline” site in NF4Droid consisting of the two sections “Traffic

Timeline” and “Exposure”. The data shown is from an traffic capture of the “shazam” application.

Add filtered series...

IPv4 ¢ | Match any |+
Source Ip | % | | LIKE

+

] -

Figure 5.11: Screenshot of the modal box for adding a new series underlying certain criteria to the

“Traffic Timeline”.

The “Traffic Timeline” provides a rich presentation of the traffic information in relation to the appli-
cation execution. Moreover, it intuitively illustrates data exposure in a graphical and tabular representa-
tion. Hence, this view, with the interactive filter possibilities, should assist the user in the analysis of the
application behaviour and detection of malware.

58 5. Network Traffic Analysis with NF4Droid

Data expose

Expose value: 9BECDA120584870C
Expose type: Android 1D

Expose obscuring: plain text

Expose point: Hitp parameter
Source IP; 10.0.0.11

Source Port: 57929

Dest. IP: 107.21.230.93

Dest. Port: BO

Dest. Country: United States

Dest. City: Seattle

http://ads.admarvel.com/fam/androidGetAd.php
Full URL:

:null; device_systemversion:2.3.7; max_image_height:800; sdk_version_date:2012-04-17; resolution_height:800; version:1.5; device
_os:Android; device_model:Blade; device details:brand:zte,model:Blade, width:480, height:800,0s:2.3.7,ua:Mezilla/5.0 (Linux; U; Androi
d 2.3.7; en-gb; Blade Build/GRJ22) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1; device_name:GRJ22; de
vice_orientation:portrait; max_image_width:480; excluded_banners:null; sdk_supported:_admob; partner_id:efBa30bB41b36346; targ
et_params:UNIQUE_ID=>9bec0a120584870c||GEOLOCATION=>47.2609746%2C10.3574745||appv=>5||[co=>AT||screencrient=>p||losv=>
2.3.7|lappvn=>3.9.3||la=>en|| RESPONSE_TYPE=>xml_with_xhtml; sdk_version:2.3.2.3; site_id:14483; adtype:banner; format:android
: retrynum:0; device_connectivity:wifi; language:java; timeout:5000; resolution_width:480;

Hitp Parameters:

Host:ads.admarvel.com; Content-Length:930; Accept-Encoding:gzip; User-Agent:Mozilla/5.0 (Linux; U; Android 2.3.7; en-gb; Blade Bu
ild/GRJ22) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1; Connection:Keep-Alive; Content-Type:application/

Figure 5.12: Screenshot of the modal box presenting detailed information about a data exposure and the
related HTTP request. This specific entry points out the exposure of the Android ID in the HTTP request
parameter by the “shazam” application.

5.3.4 Traffic Geochart

The “Traffic Geochart” site shown in Figure 5.13 presents the geographical distribution of the IPv4
network traffic in a geo chart. As mentioned in section 5.2.2.2 does NF4Droid lookup the location
of every IP in an geolocation database. Based on this information, we present the distribution of the
traffic amount, coming from and going to every country, in the chart. Additionally, we present the total
IPv4 traffic amount and the amount of traffic for which we were not able to identify the location. This
statistical information should give the user a general overview of the location of the servers contacted by
an application.

5.3.5 HTTP Requests

The “HTTP Requests” site shown in Figure 5.14 is another comprehensive view for the detailed analysis
of the HTTP requests traffic with NF4Droid. It consists of two interacting sections where the upper part
of the view is a tabular representation of the HTTP requests and the section below presents statistical
information about the corresponding HTTP requests.

“HTTP Requests” table The tabular presentation of the HTTP requests directly displays important
facts like the URL, remote IP or the country. Moreover, detailed information about an HTTP
request will be presented in a modal box, as shown in Figure 5.15, after selecting an entry. Besides
that the view allows to browse and search for specific HTTP requests, it offers the possibility to
filter for HTTP requests exposing certain information. This filter capability is especially useful to
thoroughly analyse all HTTP requests, which expose information to find out facts like, where the
information was transmitted to or what else was transferred in the same request.

5.4. The Use of NF4Droid for Other Mobile Platforms 59

Traffic geochart

» Apps > App (Shazam) » Version (75008) > Capture (2012-07-02 19:54) > Traffic geochart
Traffic geochart

Total IPv4 traffic amount: 2.6 MIB

‘The connection country information

‘wasn't available for all IPv4 packets.

0.22% (6 KiB) of data have been
A omitted.

2,400 S 2,598,917

Figure 5.13: Screenshot of the “Traffic Geochart” site in NF4Droid presenting the geographical network
traffic distribution for the IPv4 traffic. Results are presented for the traffic capture of the “shazam”
application.

“HTTP Requests Statistics” In this section, statistic information about HTTP requests are presented
in a bar chart. The ten most contacted URLs, hosts, remote IPs or countries can be visualised.
Additionally, the filter from the table above even applies for the statistical visualisation enabling to
provide specific results for certain exposure types. This statistic information could, for example,
reveal URLs, which are very frequently contacted and thus suspicious. In the same manner, it
might allow to identify servers of advertising companies, which are commonly contacted and
transmit the location information.

NF4Droid provides a solid platform for the analysis of the network traffic from Android applications.
It is independent of the deployed traffic capturing technique and it only requires the logging of certain
test environment properties for the in-depth analysis. With a database in the background for the archiving
of the further processed and enriched traffic capture information, it allows to run in-depth analysis for
data exposure. Moreover, it is possible to run sophisticated queries on the data, for the rich presentation
and visualisation of the traffic and exposure information. NF4Droid follows an elaborated strategy for
the data presentation to allow experts to easily analyse the behaviour of applications and immediately
recognise malicious behaviour. Therefore, we present in the Chapter 7 a case study to demonstrate the
capabilities of NF4Droid. Prior, we will explain some implementation details of NF4Droid in the Chapter
6.

5.4 The Use of NF4Droid for Other Mobile Platforms

NF4Droid is currently build for the analysis of Android applications. One motivation was the fact that
Android is currently one of the main targets for malicious applications (see Section 2.3). Additionally, at
the Android platform advertising financed applications are commonly used, which concern the privacy

60 5. Network Traffic Analysis with NF4Droid

Http Requests

#& > Apps > App (Cut the Rope Free) > Version (1) » Capture (2012-07-03 11:52) » Hitp Requests

Q X
Expose Filter: | None
URL Method Local Port Remote Port Remote IP Country
http://adsx. trip P -php GET 60604 80 8.18.45.86 United States
http:#/adsx.greystripe.com/openx/www/delivery/lg.php GET 53337 80 8.18.45.86 United States
http://adsx.qgreystripe.com/openx/www/delivery/lg.php GET 49422 80 8.18.45.86 United States
http! ads.mp.mydas. o .php5 GET 46984 80 216.157.12.18 United States
http:. ads.mp.mydas.| 0 .phpS GET 56741 80 216.157.12.18 United States
http! ads.mp.mydas. o .php5 GET 56420 80 216.157.12.18 United States
http: ads.mp.mydas.| ¢ .phpS GET 34762 80 216.157.12.18 United States
http! ads.mp.mydas. o .php5 GET 48044 80 216.157.12.18 United States
http:#/c.greystripe.com/blank.gif GET 39030 80 2.20.182.9 Austria
http:#/c.greystripe.com/blank.gif GET 33188 80 2.20.182.9 Austria
4 5 6 8 9 »
Total: 194
Http Requests Statistics
Http Requests Top 10 Grouping: | Host -

ajumptap.com 64

saturn.appads.com 36

i.w.inmobi.com

androidsdk.ads.np.mydas.mobi NI 2°
careystripe.com [11
media.admob.com [JI 10

pagead2.googlesyndication.com [°

ads2.greystripe.com - g
(] 40 80
Number of requests

Figure 5.14: Screenshot of the “HTTP Requests” site in NF4Droid consisting of a tabular view for the
HTTP requests with various filter and search possibilities and a section with statistical information about
the HTTP requests. The data shown is from a traffic capture of the “Cut the Rope - free” application.

of the user. Accordingly, it is of great interest to analyse the behaviour of such applications. Another
reason was that the Android platform offers more possibilities for the capturing of the network traffic,
which are even easier to automate in the overall testing process (see Section 5.1).

However, the only platform specific parts of NF4Droid are the test environment properties, which
we use for the in-depth analysis. Accordingly, to support other platforms, NF4Droid would only need
to adapt the test environment properties to the one specific for the new platform. For example, the i0OS
platform uses different unique identifiers as Android. Furthermore, the deployed obfuscation methods
might vary for different platforms and would need to be adapted.

Summarising, although NF4Droid currently focuses on the analysis of Android applications, the
design would allow to easily adopt new platforms.

More details about the implementation and design of NF4Droid are given in the subsequent section.

5.4. The Use of NF4Droid for Other Mobile Platforms 61

Http request

Source IP: 107.21.230.93
Source Port: 10.0.0.11
Dest. IP: 80

Dest. Port: 57059

Dest. Country: United States
Dest. City: Seattle

HTTP method POST

HTTP version HTTP_1_1

http://ads.admarvel.com/fam/androidGetAd.php
Full URL:

:null; partner_id:ef8a30b841b36346; device systemversion:2.3.7: target_params:appv=>5||GEOLOCATION=>47.2609746%2C10.357474
5||co=>AT||screenorient==p|lappvn=>3.9.3|losv=>2.3.7||la=>en; site_id:14488; sdk_version:2.3.2.3; max_image_height:800; get_cached

Hitp Parameters: _ads:true; format:android; sdk_version_date:2012-04-17; resolution_height:800; version:1.5; device_os:Android; device_model:Blade;
device_name:GRJ22; max_image_width:480; language:java; resolution_width:480; timeout:5000;

Host:ads.admarvel.com; Content-Length:503; Accept-Encoding:gzip; User-Agent:Mozilla/5.0 (Linux; Us Android 2.3.7; en-gb; Blade Build
JGRJ22) AppleWebKit/533.1 [KHTML, like Gecko) Version/4.0 Mobile Safari/533.1; Connection:Keep-Alive; Content-Type:application/x-w

Header Fields: ww-form-urlencoded;

Figure 5.15: Screenshot of the modal box presenting detailed information about HTTP requests. This
specific HTTP requests is part of the traffic captured from the “shazam” application.

62

5. Network Traffic Analysis with NF4Droid

Chapter 6

Implementation Details

This chapter discusses the implementation details of NF4Droid. We will outline the technologies and
tools we used for the implementation and realisation of NF4Droid. Furthermore, we briefly describe the
design and implementation of NF4Droid.

6.1 General Conceptual Design

NF4Droid is implemented as a browser-based desktop web application. The conceptual design to this
approach is illustrated in Figure 6.1. Accordingly, NF4Droid consists of a client side web application for
the data management, presentation and visualisation. Moreover, it provides a server component for the
data processing and provisioning, which additionally persists all the gathered information in a database
(DB) for archiving and fast data retrieval. The network traffic and test environment information, gathered
during the external capturing, are imported into NF4Droid by the user. Subsequently, the network traffic
information can be thoroughly analysed by the expert using NF4Droid.

| NF4Droid !
|
: ~a—
| Client Server !
: Web Application | <> > !
| |
! I
! |
___ 1
Import
1 & Capturin
\@ Analysis apturing
2
Expert
User

Figure 6.1: Graphic, illustrating the general conceptual design of NF4Droid. NF4Droid is designed as a
desktop web application, consisting of a web based client, a server and a database. The user externally
captures the network traffic of the Android applications and imports the gathered data to NF4Droid for
the further analysis.

We choose the web application approach since it allows to provide the user a platform-independent

63

64 6. Implementation Details

centralised analysis tool. One of the benefits is, that the user does not need to install anything on his
computer to analyse the network traffic captured from Android applications. Furthermore, the centralised
concept allows to easily update existing or integrate new features. Consequently, we can re-run the
analysis on the existing data set. Another advantage is that, the browser-based web application can be
used independent of the underlying OS and it runs on all modern browsers. However, it is optimised for
the use with Google Chrome [100] version 20.0 or higher.

Although, NF4Droid is build as web application, it is not designed for the use on mobile devices.
Mainly, because it has a different aim, which is the use as analysis tool by security experts. Accordingly,
no optimised mobile version was developed, mainly because restrictions like small screen sizes would
limit the possibilities for the data presentation and visualisation.

The server side stores all the imported traffic captures and the related test environment properties
in a object-model persisted in a database. For this purpose, the imported PCAP-files are parsed and the
thereby gathered information is further processed and subsequently transferred into our object-model.
Subsequently, we apply in-depth analysis for exposure of data on the extensive set of information ob-
tained during the import. Moreover, the server provides interfaces for the fast and easy retrieval of the
acquired information for the rich presentation at the front-end.

The client side provides an intuitive and interactive Ul for the representation of the information
processed from the server. The rich presentation of the large amount of information for the thorough
analysis by the expert user is achieved using interactive charts for the data visualisation and tables for
the detailed enumeration of the extensive information. Additionally, the web application allows to add
traffic captures together with the test environment properties to the server. Furthermore, it provides
management functionality for the fast and easy retrieval of the archived traffic captures from the server.

In the following we present the design and the technologies, we pursued in NF4Droid for the tasks
denoted above, in more detail.

6.2 Implementation of NF4Droid

In this section we describe how we implemented NF4Droid and which technologies we used for this
task.

6.2.1 GWT based Web Application

For the implementation of the NF4Droid web application we used the GWT development toolkit (see
Section 6.4.2). GWT allows to build advanced browser-based Asynchronous JavaScript and XML
(AJAX) applications. GWT facilitates the development of web based application, since it allows the
developer to code in purely object-oriented Java and the client side code is automatically translated into
optimised JavaScript. Furthermore, it allows to easily communicate between the server and client side,
providing different communication technologies. Additionally, it provides widgets and components for
the creation of the web based UL

6.2.1.1 Client-Server Communication

In NF4Droid we use two different approaches provided by GWT for the communication between the
client and server side. Both allow to asynchronously communicate with the server, however, they vary in
the level of abstraction and the underlying communication method.

On the on hand we use GWT-Remote Procedure Call (RPC) [106] for service-oriented communi-
cation. The basic building block of GWT-RPC are remote methods (similar to Java Remote Method
Invocation (RMI) [152]). GWT-RPC provides automatically generated proxy classes at the client side
for the server side service methods. It handles the transmission and serialisation of the the Java objects

6.2. Implementation of NF4Droid 65

passing back and forth as method parameters and return values. However, the transmitted data types have
to either be primitive data types or classes that are serialisable (implement the “Serializable” interface)
and provide a default constructor. Hence, it is possible to define arbitrary Data Transfer Objects (DTOs)
which encapsulate certain information for the transmission between client and server.

On the other hand we use the RequestFactory [104] for the creation of data-oriented services. In
contrast to GWT-RPC, RequestFactory takes a more prescriptive approach and uses domain entities and
services as basic building block. It uses entity proxy interfaces for the client-side definition of server-
side entities. RequestFactory implements its own protocol for data exchange between client and server.
Additionally, it keeps track of objects that have been modified and sends only changes to the server.
However, there are certain limitations on the data types that can be transmitted. The transmitted types
must either be primitive data types or entity proxy interfaces itself.

For the direct use of our domain model classes at the client side we use the ReqeustFactory approach.
However, for the visualisation of certain information we have services which provide none domain spe-
cific data, accordingly we transmit the data using GWT-RPC with custom DTOs for the payload.

6.2.1.2 Activities, Places and Model View Presenter (MVP)

In NF4Droid we use the Activities and Places framework [103] from GWT for browser history manage-
ment, in conjunction with a slightly modified MVP design for the construction of the Ul

Activities represent actions performed by the user. Activities contain no Ul specific code, but however
typically restore a certain state, perform initialisation and load a corresponding UI. Activities are started
and stopped by ActivityManagers, which are itself associated with a certain Widget of the Ul. The
ActivityManagers select the corresponding Activity based on the the mapping defined for Places in the
ActivityMapper. Hence, a ActivityMapper is associated to a specific ActivityManager.

Places are objects representing a particular state of the UI. For example, they often include identifiers
of the currently presented objects. Moreover, Places can be converted to and from a URL specific for
the Place. This means, if a certain Place gets active (a URL gets called), the ActivitiyManager selects
and starts the corresponding Activity, based on the mapping defined in the associated AcitivityMapper.
Subsequently, the Activity initialises and loads its associated Ul and presents it in the Widget associated
with the ActivitiyManager.

With NF4Droid we tried to follow the MVP user interface design pattern with the aim to create
a maintainable and established software structure and to follow the “separation of concerns” concept.
In our case, the model consists of the domain model data, represented by the entity proxy interfaces
of the RequestFactory and the DTOs from GWT-RPC. The views contains all of the Ul components
representing our application. However, the views do not directly interact with the model. The presenter
provides the views with the information from the model. Furthermore, it handles the user interaction from
the view and performs the required actions on the model. In contrast to the classical MVP concept, with
a separate presenter, in NF4Droid the presenter is combined with the class implementing the Activity.
Furthermore, our views do not handle certain events by themselves. The views provide interfaces for the
registration of predefined handlers. Accordingly, the class implementing the presenter functionality can
register itself to this events and directly implement the event handling.

6.2.1.3 User Interface (Ul)

For the creation of the web technology based Ul we used GWT’s UiBinder [102] framework. UiBinder
can be used to build Uls in a declarative manner using a mixture of XML and HyperText Markup Lan-
guage (HTML). Certain XML tags allow to directly use the Widgets and Components provided with
GWT. Moreover, attributes can be used within the layout to designate fields for the later binding with
the related data types in the Java class. Accordingly, style definitions files are bind to corresponding

66 6. Implementation Details

Java classes. This concept allows to separate the construction of the UI and the implementation of the
application behaviour.

To create a intuitive Ul and for a nice look and feel we used GWT-Bootstrap (see Section 6.4.11) in
addition to the UI components of GWT. GWT-Bootstrap offers various great looking UI components and
widgets. Moreover, it provides grid based layout mechanisms for the creation of structured web pages.
GWT-Bootstrap can seamlessly be used together with GWT and it supports the UiBinder framework.

6.2.2 Rapid Application Development with Spring Roo

To fast and easily create the domain model for NF4Droid and for the generation of the initial GWT
project setup, we used Spring Roo (see Section 6.4.1) as rapid application development tool. Spring Roo
provides a command line tool where you can easily define your domain entities and the corresponding
properties. Subsequently, the tool generates the according domain classes and the project setup. The
project setup contains general boilerplate code and files required for the use of the domain classes in
a GWT project and provides Maven (see Section 6.4.16) build files for the project compilation and
deployment.

Additionally, Aspect] files (see Section 6.4.15) are generated which add functionality to the domain
classes required for the ORM and the use within a persistence framework, based on the JPA (see Section
6.4.4) standard. Moreover, Spring Roo can automatically initialise Hibernate (see Section 6.4.3) as
persistence framework for the ORM of the domain classes into a relational database. Furthermore, it
creates all the therefore required entity management classes. Moreover, Aspect] files which extend the
entities with basic methods, like for the retrieval from the persistence framework, are generated.

Besides, Spring Roo automatically generates the classes and interfaces used in GW'T to communicate
between the server side domain objects and the client side code, based on the GWT RequestFactory
approach.

Although Spring Roo allowed to quickly create the initial GWT project following established design
patterns, certain manual modifications of the generated code were required. It was especially necessary
to optimise the mapping between the different classes in the domain model. Furthermore, we needed to
extend the basic functionality, to allow more sophisticated queries on the data (see Section 6.2.4).

6.2.3 Network Traffic Information Import

To import and use the network traffic information gathered by the user we have to upload the PCAP-files
to the server and subsequently extract the information from the files.

Since GWT does not provide file upload handling, we use the GWTUpload Servlet (see Section 6.4.6)
for the upload of the PCAP-files to the server. GWTUpload is a Java Servlet providing functionality like
file upload progress information and file handling on the server. It facilitates the integration of files
upload in GWT based applications.

For the parsing of the PCAP-files we use the purely Java based Kraken library (see Section 6.4.7).
Kraken allows to extract the complete network traffic information from the PCAP-files, including all
packets (respectively segments, frames and data) for every layer of the Open Systems Interconnection
(OSI)-Model [120]. Additionally, the library provides functionality to reconstruct the connection streams
and sessions from the network traffic using Decoders.

The comprehensive network traffic information acquired in this processing steps builds the main data
for NF4Droid. The data is subsequently used for all data analysis and visualisations.

6.2. Implementation of NF4Droid 67

6.2.4 Data Persistence, ORM and Data Retrieval

To have access to the extensive network traffic information captured for every application, we store
the complete data acquired during the import in our domain model. The model is designed in a way
that the traffic information is easily accessible for our in-depth analysis and quickly retrievable for the
comprehensive data visualisations. Furthermore, we deploy an ORM on the domain model to persist the
network traffic information in a relational database.

As persistence layer and for the ORM of the data we use Hibernate (see Section 6.4.3). It allows to
easily map our domain model following the JPA standard and provides a solid persistence framework.

To more easily build the complex queries necessary for the data visualisation we use QueryDSL
(see Section 6.4.5). QueryDSL provides a fluent API which allows to build type-safe syntactically valid
queries, which are subsequently translated into JPA standard conform queries. All domain types and
properties can be referenced safely and no direct Structured Query Language (SQL) is involved. More-
over, it is easy to incrementally define queries. Additionally, QueryDSL can directly uses the EntityMan-
ager provided by Hibernate to access the persisted data.

However, Hibernate has certain restrictions on the queries that can be executed on the mapped data.
For example it does not support SQL like “Union All” queries. Since we require such specialised queries
for some of our visualisations in NF4Droid, we have to use a workaround. QueryDSL provides a code
generation feature which extracts the schema in the database and generates according Java classes [159].
This Java classes can subsequently be used to directly build native but type-safe SQL queries. Through
the extraction of the model information from the database schema we achieve type-safety for the SQL
queries, since the schema is generated by Hibernate according to the domain model and the ORM.
However, a update of the domain model might require the regeneration of the related SQL query classes.

6.2.5 Further Processing

During the further processing we extend the traffic data by additional information like the geographical
location of the IP address. For this purpose we use the MaxMind IP Database (see Section 6.4.9), which
allows to approximately obtain the location of an IP address with an simple API and geo IP database
files. The database files are freely available and updated every month. Hence, it is important to update
the database files every month to achieve more accurate results.

Moreover, to provide the user with service names for TCP and UDP ports we use jnr-netdb (see
Section 6.4.8) for the retrieval of the information. The further processing allows to provide additional
informations and visualisation and makes the information easier to understand for the user.

6.2.6 Exposure Analysis

To analyse the network traffic for exposure of data, we directly search in the HTTP request parameters
and header fields, extracted from the network traffic captures during the import. Like all traffic informa-
tion, the HTTP request data is represented in the domain model and persisted in the database, so that it
can quickly be retrieved. Accordingly, we directly search on the database over the domain model, using
SQL based “LIKE” queries. In the HTTP request data we search for certain information using the test
environment properties provided by the user together with the traffic capture.

To imitate certain obfuscation methods, data hashing methods are required. We directly use the Java
implementations of the hashing algorithms, since they are as well used on the Android platform and
accordingly deliver the same results.

To easily add new analysis we designed the tests in a abstract way, which makes definition of new
test-cases very easy. To create a new test, the developer only has to implement an abstract class, which
already provides basic functionality necessary for the analysis. In the new test class the user just has

68 6. Implementation Details

to load the required test environment data from the model and define the analysis parameters. The
parameters define which traffic information should be analysed (HTTP parameters or header fields) and
which obfuscation methods (none, MDS5, SHA1 or SHA-256) should be applied on the data during the
test.

6.2.7 Data Visualisation

For the rich visualisation of the large amount of information we use different kind of charts and maps.
To provide great looking and interactive charts we use GWT Highcharts (see Section 6.4.13) and Google
Chart Tools (see Section 6.4.14). Both libraries provide different kinds of chart types and can be directly
be used in GWT. We utilise pie charts to illustrate ratios between information like the used network
protocols. Moreover, we use line charts to visualise the traffic amount over time. Additionally, we
add flag markers denoting the exposure of information. Column bar charts are used to illustrate how
much information of a certain type was exposed. Furthermore, geo charts represent the geographical
distribution of the contacted servers.

This different visualisation support the security expert in the analysis of the network traffic informa-
tion and make certain aspects easer to recognise.

6.2.8 Project Build

For the build automation and the management of external libraries we deployed Maven (see Section
6.4.16). In the XML based Maven Project Object Model (POM) files all project dependencies are defined
and the generation, compilation and deployment steps are automated.

The different tools and concepts used for the implementation of NF4Droid allowed to create a sophis-
ticated analysis tool for security experts. The intuitive web application provides rich visualisations and
allows the user to thoroughly analyse the network traffic. Moreover, the server side provides solid data
provisioning functionality for the client. To achieve this performance and functionality a well considered
design of NF4Droid was crucial. In the next section we present this design in more detail.

6.3 Design of NF4Droid

In the following we will describe the design of NF4Droid. Since a detail description would go beyond the
scope of this thesis, we only roughly provide an overview of the the important components and design
approaches.

The Java and GWT based implementation of NF4Droid consists of a client and server side. For
the seamless communication between the both sides we used established design concepts, supported
and deployed by GWT. Furthermore, we applied common design patterns on each side for different
functionalities, to build a efficient and easily maintainable application.

6.3.1 Server

The server side builds the core of NF4Droid. The graphic in Figure 6.2 outlines the main server compo-
nents of NF4Droid, in an abstracted manner.

The server contains the Domain Model representing a structured view of the network traffic informa-
tion, the test environment properties and the application specific informations. Furthermore, the server
handles the data storage and provisioning of the information. Therefore, the Domain Model is saved
in a relational database (DB), using Hibernate for the ORM and as persistence framework (see Section
6.2.4).

6.3. Design of NF4Droid 69

Domain

Services
Domain
Model

Client
Web Application

Servlet

Request
Factory

Figure 6.2: Graphic, illustrating the main components of the NF4Droid server. Moreover, it illustrates
the internal and external interaction of the server components.

The information for the model is acquired from the network traffic capture files and test environment
properties provided during the import by the user. The upload and import of the data is handled at the
server side by the UploadServlet (see Section 6.2.3). Subsequently, the Parsing, Processing and Analysis
components further process the imported data (see Sections 6.2.3, 6.2.5 and 6.2.6).

Afterwards, the information stored in the Domain Model is directly made accessible by the Request-
Factory and its service proxy interfaces for the Client Web Application (see Section 6.2.1.1). Besides,
Domain Services provide methods which run various queries on the Domain Model data, required for the
data visualisation on the client side. For some complex queries the Domain Services even directly inter-
act with the DB (see Section 6.2.4). Subsequently, the rehashed and aggregated data from the Domain
Services is made available for the client, using RPC Services and DTOs.

We will not describe the concrete implementation of the server in all detail. However, in the next
Section we outline some of the important packages and describe their functionality.

6.3.2 Package Overview

The graphic in Figure 6.3 gives an overview of the most important Java packages at the server side. The
packages group the classes according to their functionality and represent the main components of the
server. This overview should help to better understand the general structure of NF4Droid. However, for
greater detail we refer to the source code of the project.

Subsequently, we describe the packages and the functionalities of the included classes:

at.tugraz.iaik.server Main package, which contains all the server related components.

at.tugraz.iaik.server.domain.model Package containing the classes representing our domain model.
Additionally, the package includes Aspect] files generated from SpringRoo, which extend the
basic domain classes with functionality for the persistence with Hibernate (see Section 6.2.2 and
6.2.4).

at.tugraz.iaik.server.domain.service Package including the domain service classes, providing complex
query methods required for the visualisations on the client side.

at.tugraz.iaik.server.service.requestfactory RequestFactory service interface which maps the incom-
ing requests to the according entities. Moreover, it provides the client side direct access to the
domain entities over the proxy interface.

70 6. Implementation Details

at.tugraz.iaik.nf4droid.server
E— I
domain service
model service rpc request
factory
upload analysis process common

Figure 6.3: Graphic, illustrating the main Java packages and their categorisation according to their func-
tionality at the server side of NF4Droid.

at.tugraz.iaik.server.service.rpc Classes implementing GWT-RPC services. The RPC services provide
the clients indirect access to the domain service methods. However, for the data transmission we
use DTOs like classes.

at.tugraz.iaik.server.upload UploadServlet class, for the handling of the traffic capture file upload and
test environment properties import from the client side.

at.tugraz.iaik.server.process Package containing classes for the parsing and further processing of the
uploaded network traffic capture files. Additionally, it includes classes which extend the processors
and decoders classes of the Kraken library (see Section 6.2.3) for the different network protocols.

at.tugraz.iaik.server.analysis Package which includes the base class for the data exposure analysis and
all the currently implemented analysis test cases. To define new data exposure tests, this is the
place to start off for the developer.

at.tugraz.iaik.server.analysis Package with classes containing common functionality.

The package structure represents the logical grouping of the components at the server side of NF4Droid.
The overview should help developers to understand the design of NF4Droid and assist to quickly find
where certain functionality is implemented.

The server is the knowledge base of NF4Droid. It processes and brings the imported network traffic
information in a format suitable for the further analysis and the fast retrieval by the client. Moreover, the
server side implements the crucial analysis for the data exposure. Furthermore, it provides the data for
the rich representation on the client side. The used technologies provide a solid persistence management
of the data and support the communication between the client and server side using modern web tech-
nologies. Hence, the server plays a key role for the information preparation and provisioning. The client,
presented in the next section, has the aim to provide comprehensive presentations and visualisations of
this information.

6.3.3 Client

The client side of NF4Droid provides a web based Ul for the representation and visualisation of the
rehashed network traffic information form the server. The GWT based implementation uses the GWT

6.3. Design of NF4Droid 71

Activities and Places approach and a MVP like structure (see Section 6.2.1.2). The graphic in Figure 6.4
illustrates the main components at the client side and their interaction.

()
RequestFactory

Entity
Proxy
Interfaces

RPC Services

Entity
DTOs Requests
Y,
Model
Requests Site I
> > ACthltly "Presenter"
User || Mapper ||} ==
N View

Figure 6.4: Graphic, illustrating the most important components at the client side of NF4Droid and their
interaction.

If a user requests a certain site, the ActivityManagers associated to certain display regions makes a
lookup in the ActivityMapper, for the Place associated to the requested site. Subsequently, the Activity-
Manager starts the Activity related to the Place. The Activity is like the presenter in the MVP concept.
It communicates with the server using the the RequestFactory or the GWT-RPC services and loads the
Model data for the View. In our case the model data is represented by the entity proxy interfaces and
DTOs. Additionally, the Activity starts its associated View and handles the interaction between the Model
and the View.

The implementation of the NF4Droid client side is similar to the established MVP design pattern and
follows the “seperation of concerns” approach. In the next section we will describe the Java packages
and their functionality at the client side.

6.3.4 Package Overview

The graphic in Figure 6.5 represents the Java packages at the client side. The packages group classes im-
plementing certain related functionality. In the following we briefly describe the different responsibilities
of the packages:

at.tugraz.iaik.client Main package, which contains the client components.

at.tugraz.iaik.client.place Package including all the Place classes, which represent a certain URLs and
a corresponding state of the UL

72 6. Implementation Details

at.tugraz.iaik.nf4droid.client
1 1 |
activity place service
1
— requestfactory
—1 rpc — —
general proxy request
view
— — — — | 1
app timeline appversion httpreq common
1 1 — 1 —
geochart | | addapp dashboard trafficcap | [breadcrumb

Figure 6.5: Graphic, illustrating the most important Java packages, categorised by their functionality, at
the client side of NF4Droid.

at.tugraz.iaik.client.activity Package containing the Activity classes. These classes describe certain
actions of the user and manage the interaction between the views and the model classes, similar to
the presenter in the MVP concept.

at.tugraz.iaik.client.service.rpc Package, which includes the GWT-RPC service interfaces. The actual
return types used at the service methods are DTOs, situated in the shared package.

at.tugraz.iaik.client.service.requestfactory Package containing the RequestFactory and the related en-
tity proxy and request interfaces. This classes (together with the DTOs) present the model part of
the MVP concept.

at.tugraz.iaik.client.service.views Package, which contains the different view interfaces, classes and
UiBinder files of the UI. This files represent the view part of the MVP concept.

at.tugraz.iaik.client.service.views.app Package for the applications list view.
at.tugraz.iaik.client.service.views.appversion Package for the application versions list view.
at.tugraz.iaik.client.service.views.trafficcap Package for the traffic captures list view.
at.tugraz.iaik.client.service.views.dashboard Package for the dashboard view.
at.tugraz.iaik.client.service.views.geochart Package for the traffic geo chart view.
at.tugraz.iaik.client.service.views.timeline Package for the traffic timeline view.

at.tugraz.iaik.client.service.views.httpreq Package for HTTP requests list view.

6.4. Deployed Technologies and Tools 73

at.tugraz.iaik.client.service.views.breadcrumb Package for the breadcrumb part of the UL

at.tugraz.iaik.client.service.views.common Package containing common view classes and general Ul
components.

at.tugraz.iaik.client.general Package, which includes general classes for the Ul like for the the setup
of the communication between the client and server or for the history management.

The client side has to aim to provide the user a rich presentation of the visualisation of the data
provided by the server. With the concepts provided by GWT and the use of general design patterns,
NF4Droid implements a well structured design.

6.3.5 Shared

Beside the server and client package, we have a package (at.tugraz.iaik.shared) containing classes which
are used by both sides. It contains DTOs used by GWT-RPC and some constant enum types.

We tried to design NF4Droid in a way that it follows established design patterns and is easily main-
tainable. The various tools we deployed during the development like GWT or SpringRoo supported as
in this task. The use of modern web technologies allowed us to build a interactive and intuitive network
traffic analysis tool for security experts.

6.4 Deployed Technologies and Tools

In this section we enumerate and briefly describe all the technologies and tools used for the development
and implementation of NF4Droid.

6.4.1 Spring Roo

Spring Roo [174] is rapid application development tool for Java. It allows developers to fast and eas-
ily create applications and the corresponding object models, compliant with established design patterns.
Therefore, Spring Roo integrates and supports various Java technologies like the JPA, the Spring Frame-
work, Hibernate and Google Web Toolkit. Spring Roo is licensed under the Apache License version 2.0
[87].

6.4.2 Google Web Toolkit (GWT)

Google Web Toolkit (GWT) [72] is open source development toolkit for the creation of front-end web
applications and the corresponding server back-ends. The Java APIs and widgets provided with the GWT
SDK allow to write AJAX based applications in Java. The Java code is subsequently compiled to highly
optimized JavaScript that runs across all browsers. This level of abstraction, on top of common AJAX re-
lated data manipulation and communication concepts, allows to easily build sophisticated browser-based
applications. Hence, developers can design and develop their applications in a pure object-oriented fash-
ion, with Java as high-level programming language. GWT provides solutions for tasks like asynchronous
remote procedure calls (RCPs), history and bookmark management, internationalisation, localisation and
cross-browser compatibility. Moreover, include libraries of the GWT SDK dynamic and reusable Ul
components, which allow to quickly build rich UIs. GWT is licensed under the Apache License version
2.0 [87].

74 6. Implementation Details

6.4.3 Hibernate

Hibernate [113] is a open source persistence framework, which includes functionality for the ORM of
Java object-oriented domain models to traditional relational databases. It generates the data definition
language (DDL) scripts for the creation of the database schema, according to the domain model and the
defined mapping. The mapping can be defined by the developer using XML configuration files or Java
annotations. Furthermore, Hibernate offers high-level object handling functionalities, which facilitate
and automate the create, read, update and delete (CRUD) operations. Additionally, it supports various
relational database management systems (RDBMSs) and provides connection, session and transaction
management. Hibernate is licensed under the GNU Library General Public License version 2.1 [86].

6.4.4 Java Persistence API (JPA)

The Java Persistence API (JPA) [151] is a framework providing standardised interfaces and implemen-
tations for the ORM of entity classes and the creation of criteria queries. JPA is supported by multiple
persistence frameworks like Hibernate and, accordingly, it improves the exchangeability of the underly-
ing persistence framework.

6.4.5 QueryDSL

QueryDSL [160] is a open source framework for the creation of type-safe SQL-like queries using a Java
API. Hence, domain types and properties can be referenced safely and syntactically invalid queries are
avoided. Moreover, it supports various Java relational data management back ends including the JPA.
QueryDSL is licensed under the Apache License version 2.0 [87]

6.4.6 GWTUpload

GWTUpload [144] is a open source Java library, which allows to provide advanced file uploads with
progress bars in GWT. It consists of a servlet at the server side and a client side component made
with GWT. The two components communicate using AJAX to exchange the current upload status.
GWTUpload is licensed under the Apache License version 2.0 [87].

6.4.7 Kraken

Kraken [129] is a open source Java information security suite. The network forensic part of the suite
offers a Java based PCAP parser, a TCP/IP stack implementation and various decoders for application
layer protocols. In contrast to most libraries for the processing of PCAP files, it is purely Java based.
Kraken is licensed under the Apache License version 2.0 [87].

6.4.8 jnr-netdb

jnr-netdb [138] is a open source library, which provides a Java API for the mapping between TCP
and UDP service ports and corresponding service names. It tries to use the native system functions
getservbyname and get servbyport. Additionally, it provides fallback methods, which parse the
/etc/services system file or use a inbuilt mapping table. jnr-netdb is licensed under the Apache
License version 2.0 [87].

6.4.9 MaxMind IP Database

“GeoLite Country” and “GeoLite City” are freely available IP geolocation databases, offered by the
MaxMind company [117]. The databases allow to approximately map IP address to locations. Updated

6.4. Deployed Technologies and Tools 75

versions of the database are published every month. The databases are licensed under Creative Commons
Attribution-ShareAlike 3.0 License [56].

Additionally, a Java API, for the access of the information stored in the database files, is available
[135]. The API is licensed under the GNU Library General Public License version 2.0 [85].

6.4.10 Twitter Bootstrap

Bootstrap [186] is a open source project from Twitter, with the aim to provide a powerful front-end
framework for the fast and easy web development. It allows to build intuitive and great looking web
Uls, by supplying grid layouts, dozens of components, form controls and plugins. Twitter Boostrap is
licensed under the Apache License version 2.0 [87].

6.4.11 GWT-Bootstrap

GWT-Bootstrap [111] is a open source toolkit, which allows to directly use the Twitter Bootstrap inter-
face library in GWT. It provides a Java API for the access and use of the UI components provided from
Bootstrap. GWT-Bootstrap is licensed under the Apache License version 2.0 [87].

6.4.12 Highcharts JS

Highcharts JS [41] is a JavaScript charting library, which allows to easily create great looking interactive
charts. It supports various chart types like pie, line, area, bar and many more, which are rendered using
HTMLS5/Scalable Vector Graphics (SVG)/Vector Markup Language (VML) technologies. Highcharts JS
is free for non-commercial use and licensed under the Creative Commons Attribution-NonCommercial
3.0 license [55].

6.4.13 GWT Highcharts

GWT Highcharts [110] is a open source toolkit, which allows to directly use the Highcharts JS visualisa-
tions library in GWT. It offers a Java API for the use of the JavaScript based visualisations of Highcharts
JS.

6.4.14 Google Chart Tools

Google Chart Tools [71] is a free library for the creation of well-designed interactive charts. The differ-
ent chart types like pie, line, bar or geo can be created using a JavaScript API and are rendered using
HTML5/SVG/VML technologies. To use the Google Chart Tools library you have to accept the Google
APIs Terms of Service [105]. The Chart Tools API Library for GWT [107] allows to directly use the
Google Chart Tools in GWT with a Java APL

6.4.15 Aspectd

Aspect] [89] extends Java with Aspect-Oriented Programming (AOP) features. The AOP features can be
used to increase the modularity of the software and to provide separation of cross-cutting concerns. Use
cases are error handling and checking, context-sensitive behaviour or monitoring and logging. Aspect]
is licensed under the Eclipse Public License 1.0 [90].

76 6. Implementation Details

6.4.16 Maven

Apache Maven [88] is a software project management and comprehension tool. It provides functionality
to manage and automate project building, reporting and documentation. Additionally, it offers features
for the management of internal and external dependencies. XML based POM files allow the define the
complete configuration of the project, including things like the build process or the project dependencies.
Maven is licensed under the Apache License version 2.0 [87].

All the deployed tools did support the development process and allowed to build NF4Droid with
all its features and functionalities. Technologies like GWT offer comprehensive functionality for the
creation of modern web applications. Tools like SpringRoo allow to quickly create projects following
established design patterns. Moreover, only the use of the various libraries for the creation of the Ul
and the visualisations enabled us to build the great looking and informative network traffic analysis tool
NF4Droid.

However, the incomplete documentation of some projects and the use of various frameworks, new
for us, made it sometimes hard to focus on the real task, the analysis of the network traffic from Android
applications.

Chapter 7

Case Study and Results

To analyse the behaviour of applications and to test the capabilities of NF4Droid, we examined popular
applications and known malware in a case study. In the first part of the study we will examine the top 50
free applications from Google Play, since they are commonly installed and used by a large user base. In
the second part we analyse known malware, to test the malware detection capabilities of NF4Droid.

Before we present our analysis results, we describe the deployed testing method in the next section.

7.1 Testing Method

As test device for the analysis of the applications we used a rooted ZTE Blade [60] smartphone run-
ning CyanogenMod-7.1.0-Blade [63] with Android version 2.3.7. The device was connected with the
Internet using the Wi-Fi, and a SIM card of the Austrian network provider Tele.Ring [180] was inserted.
Subsequently, we manually and separately tested every application.

For the capturing we used the tcpdump-tool (see Section 5.1.1.1), which we instructed with the
Android Debug Bridge (adb) [69] command line tool and shell scripts. Similarly, we automated the
installation and uninstallation of the APK files and the launch and stop of the applications. Therefore,
user interaction was only required to generate user input for the application.

Every application was executed for at least 30 seconds and provided with user input, to simulate nor-
mal application use. However, due to the amount of analysed applications we only tested the rudimentary
functions, what might leave some parts of the application unexposed.

To provide a realistic test environment and to be able to run further analysis, we prepared the system
with some sample user data like user accounts, contacts, SMS, mails and calendar entries. Besides, we
logged all the test environment properties, required for the in-depth analysis with NF4Droid.

Subsequently, we imported the network traffic captures of the applications together with the test
environment properties to the NFADroid platform, where the further processing took place. Afterwards,
NF4Droid was deployed to thoroughly examine the gathered results and to understand and inspect the
application behaviour. The according results are presented in the next section.

7.2 Top 50 Free Applications

The Table 7.1 presents the top 50 free applications at Google Play on the 29" of June 2012, which we
analysed in the first part of our case study. The exact ranking algorithm of Google Play is not revealed,
however, it is likely based on information like user ratings, total downloads and install/uninstall rates
[51]. Accordingly, the applications are a representative test base for our analysis, since they are com-
monly used by many users. Some of the applications have been omitted and replaced with subsequent

77

78 7. Case Study and Results

ones in the ranking, since they were incompatible with the test device (ZTE Blade [60]) or network
provider (Tele.Ring [180]) we used.

We deployed the testing method, described in the previous section, to thoroughly analyse the appli-
cations for various aspects. Thereby, we looked into general aspects like the total traffic amount, the
deployed protocols and the locations of the contacted servers. Furthermore, we examined the results of
the in-depth analysis for information exposure. Additionally, since previous work by The Wall Street
Journal [183] and Fulton [92] already indicated, that some applications commonly share sensitive infor-
mation for advertising purposes, we especially investigated this issue.

7.2.1 Results

The Table 7.1 lists the complete “application name” and “application version” information from the
tested applications and presents the detailed results of our analysis. The column HTTPS denotes, if an
application uses the secure communication protocol to some extent. Furthermore, the columns location,
Android ID, IMEI and IMSI indicate, how often certain information is exposed by an application in the
captured network traffic.

In the following, we briefly describe some general aspects about the applications, which we identified
during the analysis with NF4Droid.

7.2.1.1 General

The general analysis reveals, that 42 (84%) out of the 50 tested applications use secure communica-
tion (HTTPS). However, from the overall TCP and UDP traffic only an average amount of 19.6% per
application is HTTPS traffic. Whereas the majority of the traffic is HTTP with an average off 76.5%.
Additionally, we identified, that applications developed by bigger companies like Google, Facebook or
Dropbox more likely, and with a greater share in the overall network traffic, deploy secure communica-
tion technologies.

Besides the analysis of the general network traffic information, we evaluated the results from the
in-depth analysis, presented in the next section.

7.2.1.2 Information Exposure

Our investigation for exposure of sensitive information uncovered the following “alarming” facts. As
illustrated in the Figure 7.1, at least 29 (58%) of the 50 tested applications expose information in the
HTTP network traffic. From all the tested applications 29% exposing the Android ID, 15.1% the IMEI,
12.6% the location and 1.3% the IMSI. Furthermore, 13 (26%) of the 50 applications expose information
of more than one type.

However, for none of the applications we detected the exposure of the phone number, the user name,
the password, the SSID or the BSSID. At this point, we have to mention, that information, which is
exposed over secure communication channels, is not detectable with the deployed analysis and capturing
method (see Section 5.1). Furthermore, since the analysis method of NF4Droid has certain limitations
(see Section 5.2.3.4), applications might expose even more information, than we could find with our
analysis.

To gain more knowledge about the reasons, for what applications expose certain information, we
examined the results in greater detail. This led to the results, presented subsequently.

I. Advertising The further inspection of the results led to the discovery that 26 (89.7%) of the 29
applications, which expose information, share the information solely for advertising purposes. Only the

7.2. Top 50 Free Applications 79

/ Android ID: 29%

Nothing Detected:
42%

Exposed Data:
58%

AN IMEI: 15.1%
st 1.3% —

Location: 12.6%

J

Figure 7.1: Chart, illustrating the number of the top 50 free applications, exposing information in the
network traffic. The inner circle indicates the percentage of applications, where we detected exposure of
information. The outer circle around the exposed data denotes the ratio between the different exposure

types.

applications “Google Voice Search”, “Google Search” and “Barcode Scanner” use the detected informa-
tion for desired purposes, required for the full functionality of the application. These findings are in line
with the research results from The Wall Street Journal [183] and Fulton [92], which as well identified,
that applications commonly share information with advertisers.

The chart in Figure 7.2 enumerates the domain names of all advertising providers, to which the tested
applications send information. Furthermore, it shows the number of applications, which used a certain
service, where some of the applications used more than one advertising provider.

This results show that developers of free Android applications heavily use advertising to finance their
development and earn money. However, the privacy of the user is threatened if various information is
shared with advertising companies. Advertisers use the information to gain detailed knowledge about
users and to track their behaviour, as described in more detail in Section 2.1.3. To emphasise our findings,
we present in the following some concrete examples.

Il. Selected Examples In the following we will examine some examples in greater detail, to rein-
force our general results, presented before. The selected applications are popular Android applications,
which however show heavy advertising habits or unexpected behaviour.

Magic Piano is a virtual piano application/game, downloaded more than 5 million times. However,
the free version of the application integrates three different advertising providers (mydas .mobi,
mopub.com and doubleclick.net), to which the Android ID, the IMSI and the location is
exposed. An interesting fact is, that the application requires the permission to access the coarse
location. The permissions is used in a sharing feature, where users can share their songs with
others. In spite of that, the application even uses the permission to share the location information
with advertising companies. At least, the application developers provide a detailed privacy policy,
where the use of the information for advertising purposes is denoted [173].

Cut the Rope is a very popular game, which is even advertised on the official Android website [98] (see
Screenshot 7.3). The free version of the brain and puzzle game was downloaded more than 1 mil-

mydas.mobi
mopub.com
doubleclick.net

80 7. Case Study and Results

20

Used by # of applications

‘ o O X e R ¢ X & g QL F KRS
\Qz(}\ *Sb &(\o & Q Q’bz> FLegd &S e;f\Q S 600\ &° o&’b o
& & 7 RS T ECF NS TS &
S ° S &L

Figure 7.2: Chart, illustrating the advertising providers, to which the tested top 50 free applications
exposed information. Additionally, the number of applications, which used a certain service, are denoted.

lion times. Our analysis, however, reveals that the game exposes the Android ID, IMEI, IMSI and
location to five different advertising providers (greystripe.com, jumptap.com, inmobi.com
and doubleclick.net). With this result it is the application, exposing the most information in
our test. Additionally, the manual inspection showed, that the game exposes even more informa-
tion like the size of the external memory. Nevertheless, the developers provide a privacy policy,
where they denote, that they collect and share none-personal information [196]. The Screenshot
1.1, presented in the introduction chapter, shows a part of our analysis results for this application.

wetter.com is a weather forecast application, downloaded more than 5 million times. It is under-
standable, that the application requires the permission to access the location to provide local
weather information. Nevertheless, the application exposes the location information to an ad-
vertiser (amobee.com). Accordingly, this is an example for the use of a permission, and the
according sensitive information in a possible unexpected way for the user. Furthermore, this ad-
vertising habits are not directly denoted in the imprint. However, the developers state that the track
information for statistical analysis (see imprint in the application).

Although some applications have EULASs or privacy policies, where they declare their behaviour,
many applications do not provide any information about their advertising habits. Furthermore, the ques-
tion remains, if users read the policies and are able to understand the conditions and their consequences.
Additionally, some developers claim, that they only expose non-personal information by sharing only
unique identifiers. However, if advertisers get more detailed information from other applications, they
are able to correlate it to the specific unique identifier, exposed from one application.

The selected examples should highlight some of our findings and help to understand the results of
the study. In the following we give a summary about the study results.

7.2.1.3 Conclusion

The results show, that the majority of the tested top 50 free applications expose information. The infor-
mation is in almost 90% of the cases, transmitted solely for advertising purposes. Although, most of the
applications “only” expose unique identifiers, some already reveal more sensitive information like the

greystripe.com
jumptap.com
inmobi.com
doubleclick.net
amobee.com

7.2. Top 50 Free Applications 81

(a[gm={e] Discover Android Browse Devices Get Apps Q

Cut the Rope

Don't be fooled, Cut the Rope may look like a simple game, but giveita
1ry and hours later you may find what over 55 million other players
already know...that this game is addicting.

Download from Google Play >

Share s

Getting Started Getting Started with Tablet
New to Android? Whether you are looking for a Start using your tablet to have more fun, stay
great game, ways to stay connected or waysto more informed and be more productive with this
stay informed on the go, these apps will helpyou collection of stellar tablet apps
Explore Google Play
== With hundreds of thousands of apps, the Google Play store has the right ones for you. When you download apps, they're delivered directly to
your device — instantly. You can also find your nextfirst-rate read, a hot new album, or a flick from a catalog that includes everything from
movie blockbusters and best selling e-books to millions of songs
Start Exploring >
Google Privacy & Terms Android on Google+ Share this site:

Figure 7.3: Screenshot, showing the advertisement for the Cut the Rope application on the Android
website [98].

location. Such advertising behaviour of applications is, however, hard to identify for the user. Only some
applications provide privacy policies or EULAs, denoting the advertising. In most cases the users might
never notice the exposure of the sensitive information.

It is worth to mention, that many very popular applications like “Cut the Rope free”, which are even
advertised by Google (see Screenshot 7.3), heavily integrate advertising in their applications. In our
study, the most popular applications were those, which expose the most information with a large number
of advertisers.

Furthermore, the study reveals, that applications use their required permissions not only for their
offered functionality, but also for advertising purposes. This makes it even harder for the user to judge,
if certain permissions are legitimate for an application.

A positive fact is, that we did not find an application in the test, which exposed highly sensitive
information like the phone number or user passwords. However, since our analysis method has certain
limitations (see Section 5.2.3.4), the probability exists, that we just did not detect further exposure.

Another observation is, that in the top 50 free applications 8 applications are developed by Google,
which do not expose information in a undesired way. Accordingly, the statistic might have been even
worse, if we would have omitted the applications from Google in the ranking.

Relating to NF4Droid we can conclude, that it provides great functionality for the analysis of the
network traffic. It was especially useful for the analysis of the general behaviour of the applications and
allowed to thoroughly inspect their advertising habits. In the following section we will test the analysis
capabilities of NF4Droid for malicious applications.

7. Case Study and Results

X 6600¢ 007 apm3s100Q[~proipue sdderqo) woo syeayd [BIOQIO SI00[J 001 | ¢
L 9 - 011¢ I're SpIIqAIS UL OIAOT WOD spug A1suy | ¢¢
ve Y4 X 800SL 800SLdd-€6'C ploJpue wrezeys wod wezeys | ¢e¢
X 87509 1'col 1opearaqope mos Iopesy 2qopy | [¢
6 ¥ X € I'1 UBWIMOQ SOWEZIUNOOYS WO ueI\ MOq | OF
1€ X 81 6¢1 JUSI[OPIOIPUL I3}OM UI0D wooIanam | 67
e X 12 9¢'] soyorew T8adsON[90 WO SOUOIBIAl YA S9[ZZnd | ST
¢l X cel ey WYSI[YSEY TUNASD WOD a1 pue wsiyserd Aull, | L7
71 X €1 T uIBQ[saweu [euoneu-prom - zmb-3ey s3e[q plIop - zInQ) 0307 | 9T
X 00S1T S'1¢C proipue-xoqdoip wod xoqdoiq | ¢z
¥ 81 X L 91 zmbo3o[pmo1oproipue-ap zmQ) 0307 | €7
Ll X €1 €1 SOS0[IBD SOLISNPUIPUB[ABM UIOD zmQ) soSo1Ie) | 7T
Al Al S X 201 701 ouerdorSew a[nws wod oueld J18e]N | 12
X 0¥96L01€ 026'0'8°C TopreradAys'wos s[[ed 09pIA 29 NI 221 - 2dKYS | 0T
81 X S €07 SYOOO SHomn ey Wod owred adeoss woo1 - s1000(J | 6]
6 € - € Tl Ud3UNIIPIO[q SUONN[OSESTY WD d21f +(H ueSun3iprofog 1001 | LI
X Sl S6'1 d1300n1emajodpey sniddde 310 uononpoipday Jo Iep | 91
X 9 T grogomaouewrwod dde 11 0dNd VAN [BOYWO | SI
X LOYFIE00E TOLOYFIE00'E snjd'sdde-prospue-2[3005-wod +o[3000) | ¥]
€ - €O6LYTEET €96LYT € ET | YoreasyoInbo[3003-proipue-o[3003-wod yoreag 9[3000 | ¢
9 X 1 10°1 mnojooysAyeuad-([x0q wod [1eqi00j InQOr00ys Afeusd | 71
X € 007¢ PIOIPUE ISEq YMBIYSTUUOU WO dwnlAS | 11
- 810¢C 0cCc B001~proipue-sdderqo)wod SI00[4 00T | OI

¥ X y12 ¥1°e [OIB3SOI0A PIoIpuL 9[S008 UI0d [oIBag 90I0A | 6

X Y01 A 9qMINOA proipue 23003 WO aqnnox | L

9Z X o Sy owed soruedw oo zinb so3o] zmmb 0307 | 9

X 20100609 069 sdewrsdde-proipue-9[3003-woo sdejy | ¢

X 8/817 961 BUBIEY Y00qa08) WO ploIpuy 10J J00qaoe] | ¥

X 9L1 9€7T w3 proipue (3003 WO [rewn | ¢

X 9€.67 €L6'LT ddesyeym woo Io3uassoy ddysieym | ¢

- 00181 0181 J9a118°proipue 3[3003 W09 sdeA 9[S000) U0 MAIA 1991S | |

al apo) dureN ageyoeq dweN
& ISINI | THIAI | ploapuy | uoneso] | SALLH uorsiaa ddy ddy | #

83

‘Supyues oy} ur suonedrdde Juanbasqns yjim pase[dar pue papIwo uaaq aAey (SuLI9[a))
1oprao1d 901AIS o) 10 (Spe[d H.LZ) 90TAIP 159) oy} M d[qnedwoosur suonedrddy "uorewIojur urelrad
e pasodxa uoneordde ue sowmn Auewr moy 910udp [SIAI PUe THINI ‘dI PIOIPUY ‘UONEIOT SUWN[0d YT,
“UONEBITUNUITIOD AINJIS ‘JUIIX SWOS 03 ‘pasn uonedrdde ue J1 sajeorpul S LH UWN[od oy] proidyAN
PIm paseue 10z dunf Jo ,,6g Y uo Kefd 9[3009 Je suonedrdde va1 0g doy oys Jo 9[qeL, "L J[qBL

7.2. Top 50 Free Applications

%T %Y %Y %0¢ %Y8 :sdde [re woy yuadIdg
I 4! €2 6 9% :sdde jo JaqunN
91 v1¢ LO¢ 68 ‘[8J0L,
¥ X 8 €'G | usamorey azew yueld SpuUSLIJINOA 9IBIS iSIDOHS SpusLl INox 91edS | 8¢
9 Z X €9 ST 9[IqOWLIBPURBIAW BIPAULIO}IRIY WO Qo1 Jepue[eDAN | LS
I X 4% 90°¢ o1pms 1esdId wod OIpmi§ o104yd Mysold | 96
- €01 i Jre[suen) sdde proipue-9]3003 wod Jre[suel], 9[3000D) | ¢G
¥C Q 1 X 0121 121 spe-aoedsspaiqAI3ue 01A0I WO soedg spag A1Suy | |G
X So1 7’81 ddepreoqdiy urze3epy smapN Inox :preoqdi | 0§
9 1 - 73 Ty proapue-juar[d-urxz-9[S003 wod Jouueds spooreq | 6
X 1¥020¢ vt qQQo0°ploIpue’sejel-ap [rqowr A L.LOOS | 8%
L X ¥ €'l 100ySo[qqng-owes wo looys 9[qqnyg | Ly
S X I 0071 0INIYONYa31) TnJadeadnx wod oing Yory 991 | 9%
S LE X 751 S1'e Ioyuim-gx[erjjossogedee3 woo IQWUIAM 7 Qwany [eUl, | ¢
L 01 X €091 01C91 oaryelurm NIy YOLqyey Wod oarf eluiN I | ¢f
S - w T anomoy sndjelre wod QI B OIL, 0} MOH | Tt
¥ S X L TIU1 | 1¢ugspreyren 913003 1eouridqam wod Ioul(] S, pleyIen | 1y
X YE0TT 200°8°T B210°)00Q08} UI0D JOZUISSIIN N00qaded | OF
X 4l SO’ Xa1ayoune[03 nes wod Xd Ieyoune | OO | |¢
9] I8 99 01 X I I 9[3003"911"1no°qe[03dez wod Qrnyadoyj o)y | /¢
ré X 9C Il [pordwrs-sddeje33nuuspo3-31o0 Iopeopumop ¢dw ofdwig | 9¢
X 701 201 ploipue-ainay-ie Sunyrozsade], (] - ANSH | S¢
al apo) dueN Jageyoeyq dwreN
ISINI | TANI | proapuy | uonedxoy | SALLH uorsoA ddy ddy | 4

84 7. Case Study and Results

7.3 Known Malicious Applications

For this part of our case study, we analysed known malicious applications with NF4Droid. The Table
7.2 lists the different types of malware and the according applications, we analysed with the test method,
described in Section 7.1. The different types of malware have been selected, based on the description,
given at the “forensic blog” [83] and their according probability to expose information over the network.

The malicious applications for our analysis where mainly provided from the Android Malware
Genome Project [198]. Additionally, some malware samples where downloaded from “contagio mo-
bile” website [58].

During the analysis, we looked into general aspects of the network traffic and tried to identify the
exposure of information with the in-depth analysis capabilities of NFADroid. The results are presented
in the following section.

7.3.1 Results

The Table 7.2 enumerates the 19 different types of malware, from which we selected applications and
tried to analyse the network traffic. However, at 6 out of the 19 categories the selected application did not
produce any network traffic. To confirm, that this type of malware does really not produce any network
traffic, we tried two more applications of the same category, leading to the same result. Accordingly,
for 6 types of malware we could not analyse the network traffic and the categories are in the following
omitted.

The Table 7.2, additionally presents the detailed results from our analysis. Similarly to our previous
case study the column HTTPS denotes, if an application uses the secure communication protocol to
some extent. The columns location, Android ID, IMEI, IMSI and phone number show, how often certain
information is exposed by an application.

To identify the malicious behaviour of the tested applications, we first evaluated general aspects,
presented in the next section.

7.3.1.1 General

The general analysis shows that only 3 (23.1%) of the 13 malicious applications use secure communi-
cation (HTTPS). Moreover, the majority of the TCP and UDP traffic per application is HTTP traffic
with an average of 84.9%. This results highlight, that most of the analysed malicious applications use
conventional network protocols and do not deploy secure communication technologies.

Although the general analysis enabled us to get a first insight about the network traffic, produced by
malicious applications, it did not allow us to directly identify malicious behaviour. Further knowledge
about the malware and thorough manual inspection would be required. Hence, we examined the results
of the automated in-depth analysis from NF4Droid, presented in the following section.

7.3.1.2 Information Exposure

To determine the malicious behaviour of our tested applications, we evaluated the results of the in-depth
analysis. As presented in the Figure 7.4, we detected that 10 (76.9%) of the 13 analysed applications
exposed information in the network traffic. From all tested applications, 25.6% expose the IMEI, 18.3%
the Android ID, 14.7% the location, 11% the phone number and 7.3% the IMSI. Still, for none of the
applications we detected the exposure of the user name, the password, the SSID or the BSSID, with the
deployed analysis.

The further investigation about, to whom the malicious applications send the information, shows that,
7 (70%) of the 10 applications expose information to advertising companies. The remaining 3 (30%) of

7.3. Known Malicious Applications 85

o~ IMEL: 25.6%

Nothing Detected:
23.1%

IMSI: 7.3% —

Exposed Data:
76.9%

N

Location: 14.7% J

\ H . 0
Phone Nr.: 11% _ Android ID: 18.3%

Figure 7.4: Chart, illustrating the number of tested malicious applications, exposing information in the
network traffic. The inner circle indicates the percentage of applications, where we detected exposure of
information. The outer circle around the exposed data denotes the ratio between the different exposure

types.

the 10 send the information to websites, which seem to have a legal purpose. Accordingly, we could not
identify direct malicious behaviour at any of the tested applications. Still, we were able to reveal, that
even malware integrates advertising.

The fact, that malware exposes information to advertisers, raises even more concerns about the pri-
vacy of the user, since 3 of the malicious applications share the phone number with advertising compa-
nies. Hence, advertisers can match the unique identifiers, sent together with the phone number, with the
unique identifiers sent from “normal” applications. This allows advertisers to aggregate more and more
information specific for a certain device and person. Accordingly, it makes the non-personal information,
collected from “normal” applications to some degree personal.

Although the in-depth analysis could not reveal direct malicious behaviour, it revealed interesting
facts about malware, summarized in the next section.

7.3.1.3 Conclusion

The analysis of the 19 different types of known malware in this part of the case study led to following
results.

The tested malware mainly (84.9%) uses HTTP for the communication over the network and only
12% of the traffic per application where secured (HTTPS). This reinforces the possibility to detect ma-
licious behaviour in the network traffic. Nevertheless, the risk remains, that malware transmits sensitive
information, using secure communication.

The analysis for exposure of information was not able to identify the direct malicious behaviour
of applications. However, it revealed that 7 (70%) out of 10 malicious applications integrate advertis-
ing. Malware exposes not only unique identifiers to advertisers, but also data like the phone number
and the location. The information, gathered by advertisers from malicious applications together with
information from “normal” applications, allows to already present a quite personal profile of individuals.
Accordingly, this concerns the privacy of the user.

NF4Droid was not able to directly reveal malicious behaviour. However, it allowed to get insights
about the the behaviour of malware. Moreover, the general analysis capabilities could be used to manu-
ally inspect the network traffic of malicious applications. Nevertheless, this would be a time-consuming
process and detailed knowledge would be required.

86 7. Case Study and Results

Our overall case study presents interesting results from the network traffic analysed for different types
of applications. With a test base, consisting of popular free applications and known malware, we could
test different kind of applications, which led to the same result, that applications commonly integrate
advertising in their applications. NF4Droid was able to reveal this advertising habits and allowed to
investigate general aspects of the network traffic. However, NF4Droid could not directly reveal malicious
behaviour. Still, NF4Droid provides a solid platform for the thorough analysis of the network traffic from
Android applications.

87

7.3. Known Malicious Applications

*J[NSAI [[BISA0) UT POPTWO Ik 9y} ‘A[SUIPIOIDY "OLJeI) I0om)u

Aue 9onpoid j10u pIp paysa) am suonedrjdde snororew paIsal g Yl JO 9 "UONBULIOJUI UTBIISD B Pasodxa
uonesijdde ue sowmn Auew moy 9j0uap Jaquinu auoyd pue [SIAT ‘THINI ‘dl PIOIpUY ‘UOnEBI0 SUWN[OD
9U, "UOTIEOIUNWIUIOD 9INJIS U)X QWIOS 0} ‘Pasn IeM[BW Y} JI SABIIPUI SJ L LH UWN[OD Y], PIIs
am yoym ‘suonesrjdde urpioooe oy pue arempewt Jo sad£) JUIAPIP ¢ 9yl SuneIWNUS J[qR], 17"/ qRL

el €T WY ST | BYES | WS E %8 0¢ 1'€C :sdde [[e woay JuddIRg
€ 4 L S ¥ ¢ :sdde jo Jaquny
Y4 81 68 61 14! [eioL,
I 101 dysep woo puImasni))
1 01 w3 Juar(oradnsiaswey JHZA
*J[NSAI [[BISAO) UI PaNIWI() “OYJel) YI0mIau ou paonpoid Inq ‘paisay, NNW ¢ M# oxa:m@ﬂ”wm% %MOMVWMHMMM owwwwmwm
1 01 wsAs prorpue310 ounidg
1 01 [eruawuoIiAud-auoydoIurpruns-jou Joprysws(
12 g 9 X ¥ 121 UnIA0qQuUNI SOIPNIS[BALI'BD weaI(p[on
9 4 X € 71 991} IQUIIAIP[OD) UOPURY THOD [WIUIAD)
9 71 o)mbsowrsorpmsgdA) wod sddepug
G¢ 1 001 Jasn inuwrspaiq A1ue sddeAzerd wod uopue[d
[I 1 01 uioy ury NI
Sl 60°'1 ()92UOZ WO | SPUOIISOQUIUOL)
Ll L1 L1 X +001 01 19ysewdde romodowre3r woo I9)SeJAIo3uIn)
9 9 ¥ 6 600TA J9SUBS WOD n Suny] proiq
L 1 711 1'0°C | 19seunres[orradns proipue-epdo wod ud | JYSryuweaIpIoiq
S 4 14! CC 9800 I °[IqoWBUI S’ PIOIPUE IISITATHOD A19S3g
€ S1 7'C LOghuep 1oy wod a3pLqeseq
[43 80°¢ gzonuep oy wood jogIeAlasuy
[4 I 8% 'l oyjenaueyeyxxerl-3io SddvId
Jaquinu aI apo)H dwieN

uoyq ISINI | THIAI | proapuy | uonedo| | SALLH uorsmA ddy ageyped ddy AdL], daBmIBIA

88

7. Case Study and Results

Chapter 8

Conclusion and Outlook

In this chapter we will summarise the general results of the thesis and outline some future work.

8.1 Summary

The aim of this thesis was the development of a network traffic analysis method for Android applications.
The analysis method should reveal general information about the network traffic like how much data
was transmitted to which servers and what protocols were deployed by the applications. Beside the
general aspects, we wanted to be able to identify the exposure of sensitive information through detailed
examination of the network traffic. All this analysis result should help security experts to understand the
functionality of applications and to unveil possible unwanted or even malicious behaviour.

We started with the identification of the threat types for mobile platforms and categorised them into
personal spyware, malware and grayware according to their behaviour and objective. Moreover, we
highlighted the different motives for the development of malicious applications, where the gathering of
user information was one of the most important facts relating to the network traffic analysis. Since mobile
platforms provide security measures which should prevent the development of malicious applications and
lower the possible impact, we gave a short description of the different measures and pointed out their
limitations. Aspects like the openness and the high market share made the Android platform to one of
the main targets for the development of malicious applications. Accordingly, our work focuses on the
analysis of the network traffic captured from Android applications. Additionally, the Android platform
offers more technical possibilities for the capturing of the network traffic.

Different application analysis and malware detection methods have been developed by researchers,
which should help to identify malicious applications. The methods follow different approaches and vary
in their requirements on the analysis environment. Methods like the static analysis require almost no
interaction of the user and are fast, but however reverse engineering technologies need to be applied to
reconstruct the source code. In contrast, the dynamic analysis requires the time consuming execution
of the application and the interaction of a human or the simulation of the user input. However, during
the direct execution, the applications show their real behaviour. High-level methods like the market
metadata analysis even do not require the application package, but are only able to provide general
results. Accordingly, no analysis methods is superior to any other. Each of them has different advantages
and disadvantages in terms of complexity, the requirement of human interaction and the comprehension
of the results.

The examination of existing network traffic analysis methods revealed that only less research has
been made on the analysis of the network traffic of Android applications. Since the network is the
main interface to outerworld of today’s mobile devices, it has great potential to reveal the behaviour of
applications. However, security experts just used standard network traffic analysis tool, which were not

89

90 8. Conclusion and Outlook

specialised for the use case of the Android application network traffic analysis. Hence, we pointed out
that a specialised network traffic analysis method could not only reveal general communication aspects
of applications, it might further be able to identify the exposure of sensitive information.

Motivated by this results, we developed the network traffic analysis tool NF4Droid. NF4Droid is spe-
cialised for the analysis of the network traffic captured from Android applications. It provides various
presentations and visualisations of the network traffic information, which should allow security experts
to understand the behaviour of applications. Moreover, it offers in-depth analysis features for the iden-
tification of information exposure. NF4ADroid is implemented as desktop web application an developed
for security experts. Although the capturing of the network traffic is not part of NF4Droid, we describe
possible capturing methods. The implemented automatic analysis features follow the simple approach,
to search in the network traffic for occurrences of the test environment properties provided by the user,
together with network traffic capture file. Additionally, to achieve better results during the identification
of data exposure, we imitate obfuscation methods deployed by applications, like hashing.

To examine the network traffic of Android applications and to evaluate the capabilities of NF4Droid
we analysed the top 50 free applications from Google Play and some known malicious applications.
The analysis yield to general results like how much data was transmitted by the applications, what
protocols where deployed or which servers have been contacted. Additionally, the in-depth analysis of
the traffic identified the exposure of information. For the free applications we found out that 84% of
the applications use secure communication, but still the average ratio of the secured traffic of the overall
TCP and UDP traffic per application is less than 20%. Hence, HTTP is still the protocol used the most
by the tested applications. This fact reinforces our approach for the in-depth analysis, which scans the
HTTP request traffic. With our analysis, we uncovered that 58% of the top 50 free applications expose
information. Although we did not the detected the exposure of highly sensitive information like phone
numbers or passwords, we revealed that applications commonly share unique device identifiers (45.4%)
and the location (12.6%) with advertising companies. Especially the alarming fact that some of the most
popular Android applications like the Cut the Rope Free application, shared the most information with
advertising companies confirms the importance of the network traffic analysis.

For the known malicious applications we were only able to gain general knowledge about the com-
munication with the automated traffic analysis. Accordingly, to directly identify malicious behaviour,
the thorough manual analysis by an expert would be required. Still, we found out that even malware fre-
quently (70%) integrates advertising. Beside the exposure of unique identifiers (51.2%) and the location
14.7% , 11% of the malicious application even exposed the phone number to advertisers.

We want to emphasise that many applications do not provide any notice to the user for their heavy
advertising habits, and even if it is denoted in the EULA, it is hard for the user to understand the conse-
quences. The transmission of unique device identifiers allows advertisers to track the behaviour of the
users over time. Together with information like the location or even the phone number it allows to reveal
quite personal facts about the user. For example, it could unveil where you live, where you work, who
is your employer and what you commonly do in your free time. Although the information might not
be directly related to you as a individual person, it already shows the implications of such advertising
behaviour and the danger for the privacy of the user. We even more want to stress, if advertises at one
point get to more detailed user information, they can relate it to your whole history using the unique
device identifiers.

Although we could not directly identify malicious applications with our quite simple network traffic
analysis approach, we were already able to reveal interesting facts about the advertising habits of Android
applications. Still, we want to mention that our analysis method has certain limitations. We currently
only analyse the HTTP request parameters and header fields for the exposure of information. We apply
direct search for the limited set of information provided with test environment properties. Furthermore,
we only imitate a limited number of obfuscation methods. Accordingly, the applications might have
exposed even more information, which we just did not detected with our analysis method. Moreover,

8.2. Future Work 91

in our case study we did not apply any man-in-the-middle attacks, to analyse the secure communication
of the applications. In the next section, we will mention some possible improvements and give some
thoughts on the future work.

8.2 Future Work

To improve the data exposure detection capabilities of NF4Droid, it would be necessary to imitate more
obfuscation methods. Additionally, the investigation of more test environment properties could reveal
exposure of further information. Regarding to the collecting of the test environment properties, which
currently has to be done manually by the user, we propose the development of a small Android ap-
plication. The application could automatically extract all the necessary informations and pass them to
NF4Droid.

Since the manual testing and capturing of the applications is a time-consuming process, we reference
to other projects, which automate the testing of applications. Automated testing methods could easily
capture the network traffic and the test environment properties during the test run of an application,
accordingly, a large number of applications could subsequently be analysed with NF4Droid.

The use of external capturing methods and the deployment of man-in-the-middle attacks could re-
veal the exposure of sensitive information from applications using secure communication. However,
certain limitations exist for this approach, depending on the implementation and security measures of the
applications.

NF4Droid is currently designed for the analysis of the network traffic from Android applications.
However, it could easily be extended for the use with other mobile platforms like iOS or Windows
Phone. The according possibilities for the capturing of the network would need to be evaluated and the
test environment properties, used during the in-depth analysis, would need to be adapted.

NF4Droid provides a first implementation of a network traffic analysis method for Android appli-
cations. It demonstrates the general potential of the network traffic analysis and builds a base for the
development of further analysis methods.

92

8. Conclusion and Outlook

Appendix A

Acronyms

OS Operating System

GPS Global Positioning System

MSISDN Mobile Subscriber Integrated Services Digital Network Number
CC Country Code

NDC National Destination Code

SN Subscriber Number

SIM Subscriber Identity Module

MCC Mobile Country Code

MNC Mobile Network Code

LAC Location Area Code

GSM Global System for Mobile Communications
LA Location Area

LAI Location Area Identity

CID Cell-ID

ISO International Organization for Standardization
SPN Service Provider Name

IMSI International Mobile Subscriber Identity
MSIN Mobile Subscriber Identification Number
IMEI International Mobile Equipment Identity
EIR Equipment Identity Register

ICCID Integrated Circuit Card Identifier

SSID Service Set Identification

93

94

BSSID Basic Service set identification
WLAN Wireless Local Area Network
MAC Media Access Control

AP Access Point

IP Internet Protocol

A-GPS Assisted GPS

SIP Session Initiation Protocol

URL Uniform Resource Locator

SMS Short Message

MMS Multimedia Message

SD Secure Digital

GLS Google Location Server

UID Unique User Identifier

CDMA Code Division Multiple Access
API Application Programming Interface
NF4Droid Network Forensics for Android
RIM Research In Motion

SDK' Software Development Kit
EULA end-user license agreement
C&C command and control

DDoS distributed denial-of-service
APK Android application package
GWT Google Web Toolkit

OTA Over-the-air

IPC inter-process communication
XML Extensible Markup Language
DEX Dalvik Executable

CFG control flow graph

VPN Virtual Private Network

SMTP Simple Mail Transfer Protocol

PCAP packet capture

A. Acronyms

HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
TCP Transmission Control Protocol

UDP User Datagram Protocol

adb Android Debug Bridge

GWT Google Web Toolkit

AJAX Asynchronous JavaScript and XML
RCP remote procedure call

UI User Interface

SQL Structured Query Language

JPA Java Persistence API

ORM object-relational mapping

DDL data definition language

RDBMS relational database management system
SVG Scalable Vector Graphics

VML Vector Markup Language

HTML HyperText Markup Language
RPC Remote Procedure Call

RMI Remote Method Invocation

DTO Data Transfer Object

MYVP Model View Presenter

OSI Open Systems Interconnection

SQL Structured Query Language

AOP Aspect-Oriented Programming
POM Project Object Model

DB database

95

96

A. Acronyms

Bibliography

[1]

(2]

[5]

(8]

[10]

[11]

[12]

Adel Youssef, Arunesh Mishra [2008]. My Location now with Wi-Fi - Official Google Mobile
Blog. http://googlemobile.blogspot.com/2008/10/my-location—now-with—wi-
fi.html. Last visited on 2011-10-14. (Cited on page 44.)

AdMob [2012]. AdWhirl. https://www.adwhirl.com/. Last visited on 2011-10-14. (Cited
on pages 9 and 50.)

Amazon [2012]. Appstore for Android. http://www.amazon.com/appstore. Last visited on
2011-10-14. (Cited on page 14.)

Android [2012]. Account | Android Developers.
https://developer.android.com/reference/android/accounts/Account.html.

Last visited on 2011-10-14. (Cited on page 45.)

Android [2012]. Android Security Overview | Android Open Source.
http://source.android.com/tech/security/index.html. Last visited on
2011-10-14. (Cited on pages 7 and 12.)

Android [2012]. The AndroidManifest.xml File | Android Developers. https:
//developer.android.com/guide/topics/manifest/manifest—intro.html. Last

visited on 2011-10-14. (Cited on page 22.)

Android [2012]. ApplInfo | Android Developers. https://developer.android.com/
reference/android/content/pm/ApplicationInfo.html. Last visited on 2011-10-14
(Cited on page 49.)

Android [2012]. Browser.BookmarkColumns | Android Developers. https://developer.
android.com/reference/android/provider/Browser.BookmarkColumns.html.

Last visited on 2011-10-14. (Cited on page 47.)

Android [2012]. Build | Android Developers.
https://developer.android.com/reference/android/os/Build.html. Last visited
on 2011-10-14. (Cited on page 42.)

Android [2012]. Build. VERSION | Android Developers.
https://developer.android.com/reference/android/os/Build.VERSION.html.
Last visited on 2011-10-14. (Cited on page 42.)

Android [2012]. CalendarContract | Android Developers. https://developer.android.

com/reference/android/provider/CalendarContract.html. Last visited on
2011-10-14. (Cited on page 46.)

Android [2012]. CallLog.Calls | Android Developers. https:
//developer.android.com/reference/android/provider/CalllLog.Calls.html.

Last visited on 2011-10-14. (Cited on page 48.)

97

http://googlemobile.blogspot.com/2008/10/my-location-now-with-wi-fi.html
http://googlemobile.blogspot.com/2008/10/my-location-now-with-wi-fi.html
https://www.adwhirl.com/
http://www.amazon.com/appstore
https://developer.android.com/reference/android/accounts/Account.html
http://source.android.com/tech/security/index.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/reference/android/content/pm/ApplicationInfo.html
https://developer.android.com/reference/android/content/pm/ApplicationInfo.html
https://developer.android.com/reference/android/provider/Browser.BookmarkColumns.html
https://developer.android.com/reference/android/provider/Browser.BookmarkColumns.html
https://developer.android.com/reference/android/os/Build.html
https://developer.android.com/reference/android/os/Build.VERSION.html
https://developer.android.com/reference/android/provider/CalendarContract.html
https://developer.android.com/reference/android/provider/CalendarContract.html
https://developer.android.com/reference/android/provider/CallLog.Calls.html
https://developer.android.com/reference/android/provider/CallLog.Calls.html

98

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Bibliography

Android [2012]. ContactsContract | Android Developers. https://developer.android.

com/reference/android/provider/ContactsContract.html. Last visited on
2011-10-14. (Cited on page 46.)

Android [2012]. ContentProvider | Android Developers. https :
//developer.android.com/reference/android/content/ContentProvider.html.

Last visited on 2011-10-14. (Cited on page 49.)

Android [2012]. Data Storage | Android Developers.
https://developer.android.com/guide/topics/data/data-storage.html. Last
visited on 2011-10-14. (Cited on page 48.)

Android [2012]. Designing for Security | Android Developers.

https://developer.android.com/guide/practices/security.html#UserData
Last visited on 2011-10-14. (Cited on page 45.)

Android [2012]. Locale | Android Developers.
https://developer.android.com/reference/java/util/Locale.html. Last visited
on 2011-10-14. (Cited on page 42.)

Android [2012]. Location | Android Developers.
https://developer.android.com/reference/android/location/Location.html.
Last visited on 2011-10-14. (Cited on page 44.)

Android [2012]. NetworklInterface | Android Developers.
https://developer.android.com/reference/java/net/NetworkInterface.html.

Last visited on 2011-10-14. (Cited on page 44.)

Android [2012]. Obtaining User Location | Android Developers.
https://developer.android.com/guide/topics/location/obtaining-user—
location.html. Last visited on 2011-10-14. (Cited on page 44.)

Android [2012]. Package Info | Android Developers. https:
//developer.android.com/reference/android/content/pm/PackageInfo.html.

Last visited on 2011-10-14. (Cited on page 49.)

Android [2012]. Settings.Secure | Android Developers. https://developer.android.com/
reference/android/provider/Settings.Secure.html#ANDROID_ID. Last visited on
2011-10-14. (Cited on page 41.)

Android [2012]. Signing Your Applications | Android Developers.

https://developer.android.com/guide/publishing/app-signing.html. Last
visited on 2011-10-14. (Cited on pages 13 and 49.)

Android [2012]. SmsMessage | Android Developers. https:
//developer.android.com/reference/android/telephony/SmsMessage.html.

Last visited on 2011-10-14. (Cited on page 48.)

Android [2012]. System | Android Developers. https://developer.android.com/

reference/java/lang/System.html#getProperty (java.lang.String). Last visited
on 2011-10-14. (Cited on page 42.)

Android [2012]. TelephonyManager | Android Developers. https://developer.android.

com/reference/android/telephony/TelephonyManager.html. Last visited on
2011-10-14. (Cited on page 42.)

https://developer.android.com/reference/android/provider/ContactsContract.html
https://developer.android.com/reference/android/provider/ContactsContract.html
https://developer.android.com/reference/android/content/ContentProvider.html
https://developer.android.com/reference/android/content/ContentProvider.html
https://developer.android.com/guide/topics/data/data-storage.html
https://developer.android.com/guide/practices/security.html#UserData
https://developer.android.com/reference/java/util/Locale.html
https://developer.android.com/reference/android/location/Location.html
https://developer.android.com/reference/java/net/NetworkInterface.html
https://developer.android.com/guide/topics/location/obtaining-user-location.html
https://developer.android.com/guide/topics/location/obtaining-user-location.html
https://developer.android.com/reference/android/content/pm/PackageInfo.html
https://developer.android.com/reference/android/content/pm/PackageInfo.html
https://developer.android.com/reference/android/provider/Settings.Secure.html#ANDROID_ID
https://developer.android.com/reference/android/provider/Settings.Secure.html#ANDROID_ID
https://developer.android.com/guide/publishing/app-signing.html
https://developer.android.com/reference/android/telephony/SmsMessage.html
https://developer.android.com/reference/android/telephony/SmsMessage.html
https://developer.android.com/reference/java/lang/System.html#getProperty(java.lang.String)
https://developer.android.com/reference/java/lang/System.html#getProperty(java.lang.String)
https://developer.android.com/reference/android/telephony/TelephonyManager.html
https://developer.android.com/reference/android/telephony/TelephonyManager.html

Bibliography 99

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Android [2012]. Wifilnfo | Android Developers.
https://developer.android.com/reference/android/net/wifi/WifiInfo.html.
Last visited on 2011-10-14. (Cited on page 43.)

Android Developers [2012]. Manifest.permission | Android Developers. https:
//developer.android.com/reference/android/Manifest.permission.html. Last

visited on 2011-10-14. (Cited on page 41.)

Android Developers [2012]. ProGuard | Android Developers.
https://developer.android.com/tools/help/proguard.html. Last visited on
2011-10-14. (Cited on page 23.)

Android Developers [2012]. Reading and Writing Logs| Android Developers. https:

//developer.android.com/guide/developing/debugging/debugging—log.html.
Last visited on 2011-10-14. (Cited on page 47.)

Android Developers [2012]. Security and Permissions | Android Developers.
https://developer.android.com/guide/topics/security/security.html. Last

visited on 2011-10-14. (Cited on page 41.)

Anthony Desnos [2012]. androguard - Reverse engineering, Malware and goodware analysis of
Android applications. https://code.google.com/p/androguard/. Last visited on
2011-10-14. (Cited on pages 22, 23 and 24.)

AppBrain [2012]. AppBrain. http://www.appbrain.com/. Last visited on 2011-10-14.
(Cited on page 14.)

Apple [2012]. Apple - iOS 5. https://www.apple.com/ios/. Last visited on 2011-10-14.
(Cited on page 1.)

Apple [2012]. See apps and games from the App Store.
https://www.apple.com/uk/iphone/from—the-app-store/. Last visited on
2011-10-14. (Cited on pages 1 and 13.)

Apple Developer [2012]. App Store Review Guidelines.
https://developer.apple.com/appstore/guidelines.html. Last visited on
2011-10-14. (Cited on page 8.)

Apple Inc. [2012]. Apple Answers the FCC’s Questions.
https://www.apple.com/hotnews/apple-answers—-fcc—questions/. Last visited on
2011-10-14. (Cited on pages 2 and 14.)

Apple Inc. [2012]. iOS Security.
http://images.apple.com/ipad/business/docs/i0S_Security_Mayl2.pdf. Last
visited on 2011-10-14. (Cited on pages 7 and 12.)

Apple Inc. [2012]. Technical Note TN2250.
https://developer.apple.com/library/ios/#technotes/tn2250/_index.html.
Last visited on 2011-10-14. (Cited on page 13.)

Apvrille, Axelle [2011]. Cryptography for mobile malware obfuscation. In RSA Conference
Europe. October. http://365.rsaconference.com/docs/DOC-3039. (Cited on page 23.)

AS, Highsoft Solutions [2012]. Highcharts - Interactive JavaScript charts for your webpage.
http://www.highcharts.com/. Last visited on 2011-10-14. (Cited on page 75.)

https://developer.android.com/reference/android/net/wifi/WifiInfo.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/tools/help/proguard.html
https://developer.android.com/guide/developing/debugging/debugging-log.html
https://developer.android.com/guide/developing/debugging/debugging-log.html
https://developer.android.com/guide/topics/security/security.html
https://code.google.com/p/androguard/
http://www.appbrain.com/
https://www.apple.com/ios/
https://www.apple.com/uk/iphone/from-the-app-store/
https://developer.apple.com/appstore/guidelines.html
https://www.apple.com/hotnews/apple-answers-fcc-questions/
http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf
https://developer.apple.com/library/ios/#technotes/tn2250/_index.html
http://365.rsaconference.com/docs/DOC-3039
http://www.highcharts.com/

100 Bibliography

[42] Au, Kathy Wain Yee, Yi Fan Zhou, Zhen Huang, Phillipa Gill, and David Lie [2011]. Short
Paper: A Look at SmartPhone Permission Models. In Proceedings of the 1st ACM workshop on
Security and privacy in smartphones and mobile devices - SPSM ’11, page 63. SPSM "11, ACM
Press, New York, New York, USA. ISBN 9781450310000. doi:10.1145/2046614.2046626.
http://dl.acm.org/citation.cfm?doid=2046614.2046626. (Cited on page 13.)

[43] Basic4Android [2012]. Basic4android - GPS.
http://www.basicdppc.com/android/help/gps.html. Last visited on 2011-10-14.
(Cited on page 44.)

[44] Ben Gruver [2012]. smali - An assembler/disassembler for Android’s dex format.
https://code.google.com/p/smali/. Last visited on 2011-10-14. (Cited on page 22.)

[45] Benco, David S., Paresh C. Kanabar, John C. V. Nguyen, and Huixian Song [2008]. US Patent
Application Publicaiton: Caller ID Spoofing. (Cited on page 43.)

[46] Beresford, Alastair R, Andrew Rice, and Nicholas Skehin [2011]. MockDroid : trading privacy
for application functionality on smartphones Categories and Subject Descriptors. Manager.

http://www.cl.cam.ac.uk/~acr31l/pubs/beresford-mockdroid.pdf. (Cited on
pages 21 and 25.)

[47] Blaesing, Thomas, Leonid Batyuk, Aubrey-derrick Schmidt, Seyit Ahmet Camtepe, and Sahin
Albayrak [2010]. An Android Application Sandbox system for suspicious software detection. In
2010 5th International Conference on Malicious and Unwanted Software, pages 55-62. IEEE,
IEEE, Berlin. ISBN 978-1-4244-9353-1. doi:10.1109/MALWARE.2010.5665792.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5665792.
(Cited on pages 24 and 26.)

[48] Brian X. Chen, Nick Bilton [2012]. Et Tu, Google? Android Apps Can Also Secretly Copy Photos
- NYTimes.com. http://bits.blogs.nytimes.com/2012/03/01/android-photos/.
Last visited on 2011-10-14. (Cited on page 49.)

[49] Brixx, Todd [2012]. Four ways we’re improving Marketplace.
http://windowsteamblog.com/windows_phone/b/wpdev/archive/2012/04/30/
four-ways—-we-re—improving-marketplace.aspx. Last visited on 2011-10-14. (Cited
on page 14.)

[50] Carlos Castillo [2011]. Spitmo vs Zitmo. Banking Trojans Target Android - McAfee Labs.
http://blogs.mcafee.com/mcafee-labs/spitmo-vs—zitmo-banking-trojans-
target-android. Last visited on 2011-10-14. (Cited on page 10.)

[51] Charles, Ryan [2010]. Android Market Ranking Algorithm: The New Black Box.
http://ryenyc.tumblr.com/post/942264066/android-market-ranking—
algorithm-black-box. Last visited on 2011-10-14. (Cited on page 77.)

[52] Charles Arthur [2012]. Android over 50% of smartphone sales as Nokia and RIM feel strain |
Technology | guardian.co.uk.
http://www.guardian.co.uk/technology/2012/may/16/android-smartphone—
market-50-percent. Last visited on 2011-10-14. (Cited on page 1.)

[53] Chin, Erika, Adrienne Porter Felt, Kate Greenwood, and David Wagner [2011]. Analyzing
Inter-Application Communication in Android. In MobiSys, pages 239-252. MobiSys 11, ACM
Press. ISBN 9781450306430. doi:10.1145/1999995.2000018.
http://www.eecs.berkeley.edu/~emc/papers/mobilé8—chin.pdf. (Cited on
pages 20 and 24.)

http://www.amazon.com/exec/obidos/ASIN/9781450310000/keithandrewshcic
http://dx.doi.org/10.1145/2046614.2046626
http://dl.acm.org/citation.cfm?doid=2046614.2046626
http://www.basic4ppc.com/android/help/gps.html
https://code.google.com/p/smali/
http://www.cl.cam.ac.uk/~acr31/pubs/beresford-mockdroid.pdf
http://www.amazon.com/exec/obidos/ASIN/978-1-4244-9353-1/keithandrewshcic
http://dx.doi.org/10.1109/MALWARE.2010.5665792
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5665792
http://bits.blogs.nytimes.com/2012/03/01/android-photos/
http://windowsteamblog.com/windows_phone/b/wpdev/archive/2012/04/30/four-ways-we-re-improving-marketplace.aspx
http://windowsteamblog.com/windows_phone/b/wpdev/archive/2012/04/30/four-ways-we-re-improving-marketplace.aspx
http://blogs.mcafee.com/mcafee-labs/spitmo-vs-zitmo-banking-trojans-target-android
http://blogs.mcafee.com/mcafee-labs/spitmo-vs-zitmo-banking-trojans-target-android
http://ryenyc.tumblr.com/post/942264066/android-market-ranking-algorithm-black-box
http://ryenyc.tumblr.com/post/942264066/android-market-ranking-algorithm-black-box
http://www.guardian.co.uk/technology/2012/may/16/android-smartphone-market-50-percent
http://www.guardian.co.uk/technology/2012/may/16/android-smartphone-market-50-percent
http://www.amazon.com/exec/obidos/ASIN/9781450306430/keithandrewshcic
http://dx.doi.org/10.1145/1999995.2000018
http://www.eecs.berkeley.edu/~emc/papers/mobi168-chin.pdf

Bibliography 101

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Co., Taosoftware [2011]. tPacketCapture.
http://www.taosoftware.co.jp/en/android/packetcapture/. Last visited on
2011-10-14. (Cited on pages 28 and 37.)

Commons, Creative [2012]. Aftribution-NonCommercial 3.0 Unported - CC BY-NC 3.0.
https://creativecommons.org/licenses/by-nc/3.0/. Last visited on 2011-10-14.
(Cited on page 75.)

Commons, Creative [2012]. Attribution-ShareAlike 3.0 Unported - CC BY-SA 3.0.
https://creativecommons.org/licenses/by-sa/3.0/. Last visited on 2011-10-14.
(Cited on page 75.)

Cong Zheng [2012]. apkinspector - APKinspector is a powerful GUI tool for analysts to analyze
the Android applications. https://code.google.com/p/apkinspector/. Last visited on
2011-10-14. (Cited on page 23.)

contagio [2012]. contagio mobile. http://contagiominidump.blogspot.co.at/. Last
visited on 2011-10-14. (Cited on page 84.)

Corporation, Symantec [2012]. Norton Mobile Security.
http://us.norton.com/norton-mobile-security/. Last visited on 2011-10-14. (Cited
on pages 8 and 21.)

Corporation, ZTE [2012]. ZTE Corporation. http://wwwen.zte.com.cn/en/. Last visited
on 2011-10-14. (Cited on pages 77 and 78.)

Cortesi [2011]. How UDIDs are used: a survey.
http://corte.si/posts/security/apple—udid-survey/. Last visited on 2011-10-14.
(Cited on page 29.)

Cortesi [2011]. mitmproxy. http://mitmproxy.org/. Last visited on 2011-10-14. (Cited on
page 29.)

CyanogenMod [2012]. CyanogenMod | Android Community Rom.
http://www.cyanogenmod. com/. Last visited on 2011-10-14. (Cited on page 77.)

Dan Goodin [2009]. Backdoor in top iPhone games stole user data, suit claims.
http://www.theregister.co.uk/2009/11/06/iphone_games_storm8_lawsuit/.

Last visited on 2011-10-14. (Cited on page 9.)

Daniel Baeumges [2012]. TaintDroid Runner - TaintDroid 2.3.
https://sites.google.com/site/taintdroid23/taintdroid_runner. Last visited
on 2011-10-14. (Cited on page 26.)

David Rogers [2011]. blog.mobilephonesecurity.org: Voicemail hacking and the phone
hackingscandal - how it worked, questions to be asked and improvements to be made.
http://blog.mobilephonesecurity.org/2011/07/voicemail-hacking—-and-
phone-hacking.html. Last visited on 2011-10-14. (Cited on page 43.)

DEF CON Communications [2012]. DEF CON 19 Hacking Conference.
http://defcon.org/html/defcon-19/dc-19-index.html. Last visited on 2011-10-14.
(Cited on page 3.)

Denis Maslennikov [2012]. Find and Call: Leak and Spam - Securelist. https:
//www.securelist.com/en/blog/208193641/Find_and_Call_Leak_and_Spam. Last
visited on 2011-10-14. (Cited on page 14.)

http://www.taosoftware.co.jp/en/android/packetcapture/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://code.google.com/p/apkinspector/
http://contagiominidump.blogspot.co.at/
http://us.norton.com/norton-mobile-security/
http://wwwen.zte.com.cn/en/
http://corte.si/posts/security/apple-udid-survey/
http://mitmproxy.org/
http://www.cyanogenmod.com/
http://www.theregister.co.uk/2009/11/06/iphone_games_storm8_lawsuit/
https://sites.google.com/site/taintdroid23/taintdroid_runner
http://blog.mobilephonesecurity.org/2011/07/voicemail-hacking-and-phone-hacking.html
http://blog.mobilephonesecurity.org/2011/07/voicemail-hacking-and-phone-hacking.html
http://defcon.org/html/defcon-19/dc-19-index.html
https://www.securelist.com/en/blog/208193641/Find_and_Call_Leak_and_Spam
https://www.securelist.com/en/blog/208193641/Find_and_Call_Leak_and_Spam

102

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Bibliography

Developers, Android [2012]. Android Debug Bridge | Android Developers.
https://developer.android.com/tools/help/adb.html. Last visited on 2011-10-14.
(Cited on page 77.)

Developers, Android [2012]. VpnService.
https://developer.android.com/reference/android/net/VpnService.html.

Last visited on 2011-10-14. (Cited on pages 36 and 37.)

Developers, Google [2012]. Google Chart Tools.
https://developers.google.com/chart/. Last visited on 2011-10-14. (Cited on
page 75.)

Developers, Google [2012]. Google Web Toolkit.
https://developers.google.com/web-toolkit /. Last visited on 2011-10-14. (Cited on
page 73.)

Dhar, Subhankar and Upkar Varshney [2011]. Challenges and business models for mobile
location-based services and advertising. Communications of the ACM, 54(5), page 121. ISSN
00010782. doi:10.1145/1941487.1941515.
http://dl.acm.org/citation.cfm?id=1941515. (Cited on page 45.)

eLinux.org [2012]. Android Logging System - eLinux.org.
http://elinux.org/Android_Logging_System. Last visited on 2011-10-14. (Cited on
page 47.)

Emmanuel Dupuy [2012]. JD | Java Decompiler. http://java.decompiler.free.fr/.
Last visited on 2011-10-14. (Cited on page 23.)

Enck, William, Landon P Cox, Peter Gilbert, and Patrick Mcdaniel [2010]. TaintDroid : An
Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones. In 9th
USENIX conference on Operating systems design and implementation. Berkley.
http://www.usenix.org/event/osdil0/tech/full_papers/Enck.pdf. (Cited on
page 25.)

Enck, William, Damien Octeau, Patrick Mcdaniel, and Swarat Chaudhuri [2011]. A Study of
Android Application Security. In 20th USENIX Security Symposium. San Francisco.
http://www.enck.org/pubs/enck-secll.pdf. (Cited on pages 22 and 23.)

Enck, William, Machigar Ongtang, and Patrick McDaniel [2009]. On lightweight mobile phone
application certification. Security, pages 235-245. ISSN 15437221.
doi:10.1145/1653662.1653691.
http://portal.acm.org/citation.cfm?doid=1653662.1653691. (Cited on page 23.)

F-Secure [2012]. Mobile Threat Report. Technical Report, F-Secure.
http://www.f-secure.com/weblog/archives/MobileThreatReport_Q1_2012.pdf.
(Cited on page 8.)

Felt, Adrienne Porter, Matthew Finifter, Erika Chin, Steven Hanna, and David Wagner [2011]. A
Survey of Mobile Malware in the Wild. Technical Report, University of California, Berkley.
http://dl.acm.org/citation.cfm?1d=2046618. (Cited on pages 8, 10 and 11.)

Felt, Adrienne Porter, Greenwood Kate, and David Wagner [2010]. The Effectiveness of
Install-Time Permission Systems for Third-Party Applications. Technical Report, University of
California, Berkeley.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-143.pdf. (Cited
on pages 7 and 41.)

https://developer.android.com/tools/help/adb.html
https://developer.android.com/reference/android/net/VpnService.html
https://developers.google.com/chart/
https://developers.google.com/web-toolkit/
http://worldcatlibraries.org/wcpa/issn/00010782
http://dx.doi.org/10.1145/1941487.1941515
http://dl.acm.org/citation.cfm?id=1941515
http://elinux.org/Android_Logging_System
http://java.decompiler.free.fr/
http://www.usenix.org/event/osdi10/tech/full_papers/Enck.pdf
http://www.enck.org/pubs/enck-sec11.pdf
http://worldcatlibraries.org/wcpa/issn/15437221
http://dx.doi.org/10.1145/1653662.1653691
http://portal.acm.org/citation.cfm?doid=1653662.1653691
http://www.f-secure.com/weblog/archives/MobileThreatReport_Q1_2012.pdf
http://dl.acm.org/citation.cfm?id=2046618
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-143.pdf

Bibliography 103

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Felt, A.P., Erika Chin, Steve Hanna, Dawn Song, and David Wagner [2011]. Android permissions
demystified. Technical Report, Technical Report UCB/EECS-2011-48, University of California,
Berkeley. http://www.eecs.berkeley.edu/~emc/papers/EECS-2011-48.pdf. (Cited
on page 23.)

forensic blog [2012]. forensic blog - Current Android Malware.

http://forensics.spreitzenbarth.de/android-malware/. Last visited on
2011-10-14. (Cited on page 84.)

Fossi, Marc, Eric Johnson, and David Mckinney [2008]. Symantec Report on the Underground
Economy. Technical Report november, Symantec.
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-
whitepaper_underground_economy_report_11-2008-14525717.en-us.pdf. (Cited
on page 10.)

Foundation, Free Software [2012]. GNU Library General Public License v2.0.
https://www.gnu.org/licenses/old-licenses/lgpl-2.0.html. Last visited on
2011-10-14. (Cited on page 75.)

Foundation, Free Software [2012]. GNU Library General Public License v2.1.
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. Last visited on
2011-10-14. (Cited on page 74.)

Foundation, The Apache Software [2012]. Apache License, Version 2.0.
https://www.apache.org/licenses/LICENSE-2.0.html. Last visited on 2011-10-14.
(Cited on pages 73, 74, 75 and 76.)

Foundation, The Apache Software [2012]. Maven. https://maven.apache.org/. Last
visited on 2011-10-14. (Cited on page 76.)

Foundation, The Eclipse [2012]. The AspectJ Project. http://eclipse.org/aspectij/.
Last visited on 2011-10-14. (Cited on page 75.)

Foundation, The Eclipse [2012]. Eclipse Public License - v 1.0.
http://eclipse.org/legal/epl-v10.html. Last visited on 2011-10-14. (Cited on
page 75.)

Fuchs, Adam P, Avik Chaudhuri, and Jeffrey S Foster [2010]. SCanDroid : Automated Security
Certification of Android Applications. Read, 10, page 328. doi:10.1.1.164.6899.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.148.2511&
rep=repl& type=pdf. (Cited on page 24.)

Fulton, Eric [2011]. Cellular Privacy - A Forensic Analysis of Android Network Traffic. In DEF
CON 19. Las Vegas.
http://www.triskt.com/research/Eric_Fulton_Defcon_2011_export.pdf. (Cited
on pages 3, 29, 30, 33, 78 and 79.)

G Data Software AG [2012]. Malware Or Not Malware - That’s The Question.
https://blog.gdatasoftware.com/blog/article/malware-or-not-malware-
thats—the—question.html. Last visited on 2011-10-14. (Cited on page 10.)

Gartner Inc. [2011]. Gartner Says Android to Command Nearly Half of Worldwide Smartphone
Operating System Market by Year-End 2012.
http://www.gartner.com/it/page.jsp?id=1622614. Last visited on 2011-10-14.
(Cited on page 1.)

http://www.eecs.berkeley.edu/~emc/papers/EECS-2011-48.pdf
http://forensics.spreitzenbarth.de/android-malware/
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_underground_economy_report_11-2008-14525717.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_underground_economy_report_11-2008-14525717.en-us.pdf
https://www.gnu.org/licenses/old-licenses/lgpl-2.0.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
https://www.apache.org/licenses/LICENSE-2.0.html
https://maven.apache.org/
http://eclipse.org/aspectj/
http://eclipse.org/legal/epl-v10.html
http://dx.doi.org/10.1.1.164.6899
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.148.2511&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.148.2511&rep=rep1&type=pdf
http://www.triskt.com/research/Eric_Fulton_Defcon_2011_export.pdf
https://blog.gdatasoftware.com/blog/article/malware-or-not-malware-thats-the-question.html
https://blog.gdatasoftware.com/blog/article/malware-or-not-malware-thats-the-question.html
http://www.gartner.com/it/page.jsp?id=1622614

104

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Bibliography

Gartner Inc. [2012]. Gartner: Sales of Mobile Phones 2012.
http://www.gartner.com/it/page. jsp?id=2017015. Last visited on 2011-10-14
(Cited on pages 1, 7 and 15.)

Gartner Inc. [2012]. Gartner Says Worldwide Media Tablets Sales to Reach 119 Million Units in
2012. http://www.gartner.com/it/page.jsp?id=1980115. Last visited on 2011-10-14.
(Cited on page 1.)

GetJar [2012]. GetJar. http://www.get jar.com/. Last visited on 2011-10-14. (Cited on
page 14.)

Google [2012]. Android. http://www.android.com/. Last visited on 2011-10-14. (Cited on
pages vi, 1, 79 and 81.)

Google [2012]. Android Apps on Google Play. https://play.google.com/. Last visited on
2011-10-14. (Cited on pages 1 and 13.)

Google [2012]. Chrome Browser.
https://www.google.com/intl/en/chrome/browser/. Last visited on 2011-10-14.
(Cited on page 64.)

Google [2012]. Location-based services.
https://support.google.com/maps/bin/answer.py?hl=ensanswer=1725632. Last

visited on 2011-10-14. (Cited on page 44.)

GoogleDevelopers [2012]. Declarative Layout with UiBinder - GWT.
https://developers.google.com/web-toolkit/doc/2.4/DevGuideUiBinder. Last
visited on 2011-10-14. (Cited on page 65.)

GoogleDevelopers [2012]. Development with Activities and Places - GWT.
https://developers.google.com/web-
toolkit/doc/latest/DevGuideMvpActivitiesAndPlaces. Last visited on 2011-10-14
(Cited on page 65.)

GoogleDevelopers [2012]. Getting Started with RequestFactory - GWT. https:

//developers.google.com/web-toolkit/doc/2.4/DevGuideRequestFactory. Last
visited on 2011-10-14. (Cited on page 65.)

GoogleDevelopers [2012]. Google APIs Terms of Service.
https://developers.google.com/terms/. Last visited on 2011-10-14. (Cited on
page 75.)

GoogleDevelopers [2012]. Making Remote Procedure Calls - GWT.
https://developers.google.com/web-toolkit/doc/latest/tutorial/RPC. Last
visited on 2011-10-14. (Cited on page 64.)

GoogleDevelopers [2012]. Using the Google Chart Tools with GWT. https:
//code.google.com/p/gwt—google—-apis/wiki/VisualizationGettingStarted.
Last visited on 2011-10-14. (Cited on page 75.)

Grace, Michael, Wu Zhou, Xuxian Jiang, and Ahmad-reza Sadeghi [2011]. Unsafe Exposure
Analysis of Mobile In-App Advertisements. Security, 067(Section 2).
http://www.csc.ncsu.edu/faculty/jiang/pubs/WISEC12_ADRISK.pdf. (Cited on
page 45.)

http://www.gartner.com/it/page.jsp?id=2017015
http://www.gartner.com/it/page.jsp?id=1980115
http://www.getjar.com/
http://www.android.com/
https://play.google.com/
https://www.google.com/intl/en/chrome/browser/
https://support.google.com/maps/bin/answer.py?hl=en&answer=1725632
https://developers.google.com/web-toolkit/doc/2.4/DevGuideUiBinder
https://developers.google.com/web-toolkit/doc/latest/DevGuideMvpActivitiesAndPlaces
https://developers.google.com/web-toolkit/doc/latest/DevGuideMvpActivitiesAndPlaces
https://developers.google.com/web-toolkit/doc/2.4/DevGuideRequestFactory
https://developers.google.com/web-toolkit/doc/2.4/DevGuideRequestFactory
https://developers.google.com/terms/
https://developers.google.com/web-toolkit/doc/latest/tutorial/RPC
https://code.google.com/p/gwt-google-apis/wiki/VisualizationGettingStarted
https://code.google.com/p/gwt-google-apis/wiki/VisualizationGettingStarted
http://www.csc.ncsu.edu/faculty/jiang/pubs/WISEC12_ADRISK.pdf

Bibliography 105

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Grace, Michael, Yajin Zhou, Zhi Wang, Xuxian Jiang, and Oval Drive [2012]. Systematic
Detection of Capability Leaks in Stock Android Smartphones. North.
http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf. (Cited
on pages 20 and 24.)

Group, Moxie [2012]. GWT Highcharts.
http://www.moxiegroup.com/moxieapps/gwt—highcharts/. Last visited on
2011-10-14. (Cited on page 75.)

GWT-Bootstrap [2012]. GWT-Bootstrap. http://gwtbootstrap.github.com/. Last
visited on 2011-10-14. (Cited on page 75.)

Harry, Sverdlove [2011]. The Most Vulnerable Smartphones of 201 1. Technical Report, Bit9.
https://www.bit9.com/files/Bit9Report_SmartPhones2011.pdf. (Cited on
page 42.)

Hat, Red [2012]. Hibernate - JBoss Community. http://www.hibernate.org/. Last visited
on 2011-10-14. (Cited on page 74.)

Hiroshi Lockheimer [2012]. Android and Security.
http://googlemobile.blogspot.co.at/2012/02/android-and-security.html.
Last visited on 2011-10-14. (Cited on pages 2, 14 and 26.)

Hornyack, Peter, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wetherall [2011].
These aren’t the droids you're looking for. In Proceedings of the 18th ACM conference on
Computer and communications security - CCS "11, page 639. CCS ’11, Microsoft Research,
ACM Press, New York, New York, USA. ISBN 9781450309486. do0i:10.1145/2046707.2046780.
http://dl.acm.org/citation.cfm?doid=2046707.2046780. (Cited on pages 21

and 25.)

Idika, Nwokedi [2007]. A Survey of Malware Detection Techniques. Purdue University, page 48.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.459%94&
rep=repl& type=pdf. (Cited on page 22.)

Inc., MaxMind [2012]. GeoLite Databases. https://www.maxmind.com/en/geolite. Last
visited on 2011-10-14. (Cited on page 74.)

Intrepidus Group [2012]. Mallory: Transparent TCP and UDP Proxy.
http://intrepidusgroup.com/insight/mallory/. Last visited on 2011-10-14. (Cited
on page 29.)

iPhone Dev Team [2012]. Dev-Team Blog. http://blog.iphone-dev.org/. Last visited on
2011-10-14. (Cited on page 14.)

ISO [2012]. Publicly Available Standards - ISO/IEC 7498-1:1994.
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html.
Last visited on 2011-10-14. (Cited on page 66.)

ISO - International Organization for Standardization [2012]. ISO - Maintenance Agency for ISO
3166 country codes - ISO 3166-2. http:

//www.iso.org/iso/country_codes/background_on_iso_3166/iso_3166—2.htm.

Last visited on 2011-10-14. (Cited on page 43.)

ITU - International Telecommunication Union [2012]. E.164: The international public
telecommunication numbering plan. https://www.itu.int/rec/T-REC-E.164/. Last
visited on 2011-10-14. (Cited on page 42.)

http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf
http://www.moxiegroup.com/moxieapps/gwt-highcharts/
http://gwtbootstrap.github.com/
https://www.bit9.com/files/Bit9Report_SmartPhones2011.pdf
http://www.hibernate.org/
http://googlemobile.blogspot.co.at/2012/02/android-and-security.html
http://www.amazon.com/exec/obidos/ASIN/9781450309486/keithandrewshcic
http://dx.doi.org/10.1145/2046707.2046780
http://dl.acm.org/citation.cfm?doid=2046707.2046780
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.4594&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.4594&rep=rep1&type=pdf
https://www.maxmind.com/en/geolite
http://intrepidusgroup.com/insight/mallory/
http://blog.iphone-dev.org/
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://www.iso.org/iso/country_codes/background_on_iso_3166/iso_3166-2.htm
http://www.iso.org/iso/country_codes/background_on_iso_3166/iso_3166-2.htm
https://www.itu.int/rec/T-REC-E.164/

106

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

Bibliography

ITU - International Telecommunication Union [2012]. E.212: The international identification
plan for public networks and subscriptions. https://www.itu.int/rec/T-REC-E.212/.
Last visited on 2011-10-14. (Cited on page 42.)

Ji Zhengrong, Jain Ravi [2008]. Google enables Location-aware Applications for 3rd Party
Developers - Official Google Mobile Blog. http:
//googlemobile.blogspot.com/2008/06/google—enables—location—aware.html.
Last visited on 2011-10-14. (Cited on page 44.)

Jon Fingas [2012]. Google Play hits 600,000 apps, 20 billion total installs - Engadget.
http://www.engadget.com/2012/06/27/google-play-hits-600000-apps/. Last
visited on 2011-10-14. (Cited on pages 1 and 15.)

Jordan Golson [2012]. Apple Requires User Permission Before Apps Can Access Personal Data
in iOS 6 - Mac Rumors. http://www.macrumors.com/2012/06/14/apple-requires-
user—permission-before—apps—can-access—-personal-data-in-ios—6/. Last

visited on 2011-10-14. (Cited on page 13.)

Jumptap [2012]. Jumptap - The leader in targeted mobile advertising.
http://www. jumptap.com/. Last visited on 2011-10-14. (Cited on page 9.)

Juniper Networks [2012]. 2011 Mobile Threats Report. Technical Report February, Juniper
Networks. https://www. juniper.net/us/en/local/pdf/additional-
resources/jnpr-2011l-mobile-threats-report.pdf. (Cited on pages 1,2, 7, 15
and 16.)

Kraken [2012]. Kraken. http://krakenapps.org/. Last visited on 2011-10-14. (Cited on
page 74.)

Lab, Kaspersky [2012]. Kaspersky Mobile Security.
http://www.kaspersky.com/kaspersky_mobile_security. Last visited on
2011-10-14. (Cited on page 21.)

Lemoine, Hanno [2012]. The DyAnA Framework. In SIGINT. (Cited on page 26.)

Lineberry, Anthony, David Luke Richardson, and Tim Wyatt [2010]. THESE AREN’T THE
PERMISSIONS YOU’RE LOOKING FOR. In DEF CON 18. Las Vegas.
https://www.defcon.org/images/defcon-18/dc-18-presentations/Lineberry/
DEFCON-18-Lineberry—Not-The-Permissions—You-Are—-Looking-For.pdf. (Cited
on page 48.)

Lookout, Inc. [2012]. Droid Mobile Security & Security for all Smartphones.
https://www.mylookout.com/. Last visited on 2011-10-14. (Cited on pages 8 and 21.)

Matenaar, Felix, Patrick Schulz, Andreas Galauner, and Mark Schlosser [2012]. Android
Analysis Framework dexter. In SIGINT. https://program.sigint.ccc.de/fahrplan/
system/attachments/27/original/dexlabs.pdf. (Cited on page 24.)

MaxMind [2012]. MaxMind APIs. https://dev.maxmind.com/geoip/downloadable
Last visited on 2011-10-14. (Cited on page 75.)

McAfee [2012]. McAfee Threats Report : First Quarter 2012. Technical Report, McAfee Labs.
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat—-ql-
2012 .pdf. (Cited on page 7.)

https://www.itu.int/rec/T-REC-E.212/
http://googlemobile.blogspot.com/2008/06/google-enables-location-aware.html
http://googlemobile.blogspot.com/2008/06/google-enables-location-aware.html
http://www.engadget.com/2012/06/27/google-play-hits-600000-apps/
http://www.macrumors.com/2012/06/14/apple-requires-user-permission-before-apps-can-access-personal-data-in-ios-6/
http://www.macrumors.com/2012/06/14/apple-requires-user-permission-before-apps-can-access-personal-data-in-ios-6/
http://www.jumptap.com/
https://www.juniper.net/us/en/local/pdf/additional-resources/jnpr-2011-mobile-threats-report.pdf
https://www.juniper.net/us/en/local/pdf/additional-resources/jnpr-2011-mobile-threats-report.pdf
http://krakenapps.org/
http://www.kaspersky.com/kaspersky_mobile_security
https://www.defcon.org/images/defcon-18/dc-18-presentations/Lineberry/DEFCON-18-Lineberry-Not-The-Permissions-You-Are-Looking-For.pdf
https://www.defcon.org/images/defcon-18/dc-18-presentations/Lineberry/DEFCON-18-Lineberry-Not-The-Permissions-You-Are-Looking-For.pdf
https://www.mylookout.com/
https://program.sigint.ccc.de/fahrplan/system/attachments/27/original/dexlabs.pdf
https://program.sigint.ccc.de/fahrplan/system/attachments/27/original/dexlabs.pdf
https://dev.maxmind.com/geoip/downloadable
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2012.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2012.pdf

Bibliography 107

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

McDaniel, Patrick and William Enck [2010]. Not So Great Expectations: Why Application
Markets Haven't Failed Security. IEEE Security & Privacy Magazine, pages 76-78.

http://www.patrickmcdaniel.org/pubs/sp-markets10.pdf. (Cited on pages 13
and 14.)

Meissner, Wayne [2012]. jnr-netdb. https://github.com/wmeissner/jnr—netdb. Last
visited on 2011-10-14. (Cited on page 74.)

Microsoft [2012]. Application Certification Requirements for Windows Phone.
http://msdn.microsoft.com/en—

us/library/windowsphone/develop/hh184843 (v=vs.92). Last visited on 2011-10-14.
(Cited on pages 13 and 14.)

Microsoft [2012]. Marketplace. http://www.windowsphone.com/en-US/marketplace
Last visited on 2011-10-14. (Cited on pages 1, 7 and 13.)

Microsoft [2012]. Security for Windows Phone. http://msdn.microsoft.com/en-
us/library/windowsphone/develop/£f£402533 (v=vs.92). Last visited on 2011-10-14
(Cited on page 12.)

Microsoft [2012]. Windows Phone. http://www.microsoft.com/windowsphone/. Last
visited on 2011-10-14. (Cited on page 1.)

Mitchell, Stewart [2010]. Microsoft details Windows Phone 7 kill switch - PC Pro.
http://www.pcpro.co.uk/news/security/362485/microsoft-details-windows-—
phone-7-kill-switch. Last visited on 2011-10-14. (Cited on page 14.)

MoA=ino, Manolo Carrasco [2012]. GWTUpload.
https://code.google.com/p/gwtupload/. Last visited on 2011-10-14. (Cited on
page 74.)

MobiStealth [2012]. Cell phone spy and monitoring software.
http://www.mobistealth.com/. Last visited on 2011-10-14. (Cited on pages 8 and 11.)

Moxie Marlinspike [2012]. ssistrip.
http://www.thoughtcrime.org/software/sslstrip/. Last visited on 2011-10-14.
(Cited on page 29.)

Nauman, Mohammad, Sohail Khan, and Xinwen Zhang [2010]. Apex: Extending Android
Permission Model and Enforcement with User-defined Runtime Constraints. In Proceedings of
the 5th ACM Symposium on Information, Computer and Communications Security - ASIACCS
’10, page 328. Number ¢ in ASIACCS *10, ACM Press, New York, USA. ISBN 9781605589367.
doi:10.1145/1755688.1755732.
http://portal.acm.org/citation.cfm?doid=1755688.1755732. (Cited on pages 21
and 25.)

Nick Wingfield [2008]. IPhone Software Sales Take Off: Apple’s Jobs.
http://online.wsj.com/article/SB121842341491928977.html. Last visited on
2011-10-14. (Cited on pages 2 and 14.)

Oberheide, Jon and Charlie Miller [2012]. Dissecting the Android Bouncer. In SummerCon. New
York, New York, USA.

http://jon.oberheide.org/files/summerconl2-bouncer.pdf. (Cited on pages 18
and 26.)

http://www.patrickmcdaniel.org/pubs/sp-markets10.pdf
https://github.com/wmeissner/jnr-netdb
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh184843(v=vs.92)
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh184843(v=vs.92)
http://www.windowsphone.com/en-US/marketplace
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402533(v=vs.92)
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402533(v=vs.92)
http://www.microsoft.com/windowsphone/
http://www.pcpro.co.uk/news/security/362485/microsoft-details-windows-phone-7-kill-switch
http://www.pcpro.co.uk/news/security/362485/microsoft-details-windows-phone-7-kill-switch
https://code.google.com/p/gwtupload/
http://www.mobistealth.com/
http://www.thoughtcrime.org/software/sslstrip/
http://www.amazon.com/exec/obidos/ASIN/9781605589367/keithandrewshcic
http://dx.doi.org/10.1145/1755688.1755732
http://portal.acm.org/citation.cfm?doid=1755688.1755732
http://online.wsj.com/article/SB121842341491928977.html
http://jon.oberheide.org/files/summercon12-bouncer.pdf

108 Bibliography

[150] O’Kane, Philip, Sakir Sezer, and Kieran McLaughlin [2011]. Obfuscation: The Hidden
Malware. doi:10.1109/MSP.2011.98.
http://ieecexplore.ieece.org/xpls/abs_all.jsp?arnumber=5975134. (Cited on
pages 23 and 26.)

[151] Oracle [2012]. JSR-000317 Java Persistence 2.0.
http://jcp.org/aboutJava/communityprocess/final/jsr317/index.html. Last
visited on 2011-10-14. (Cited on page 74.)

[152] Oracle [2012]. Trail: RMI.
http://docs.oracle.com/javase/tutorial/rmi/index.html. Last visited on
2011-10-14. (Cited on page 64.)

[153] Orthacker, Clemens, Peter Teufl, Stefan Kraxberger, Alexander Marsalek, Johannes Leibetseder,
and Oliver Prevenhueber [2011]. Android Security Permissions - Can we trust them. Accepted
but not yet published at MobiSEC. https:
//online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=57576. (Cited
on page 20.)

[154] Panda Security [2009]. Virus Encyclopedia - Eeki.A.
http://www.pandasecurity.com/homeusers/security—-info/215107/Eeki.A. Last
visited on 2011-10-14. (Cited on page 9.)

[155] Patrik Lantz [2011]. droidbox - Android Application Sandbox.
https://code.google.com/p/droidbox/. Last visited on 2011-10-14. (Cited on page 26.)

[156] Paul Brodeur [2012]. Zero-Permission Android Applications - Leviathan Security Group.
https://leviathansecurity.com/blog/archives/17-Zero—Permission—
Android-Applications.html. Last visited on 2011-10-14. (Cited on page 41.)

[157] Paul Brodeur [2012]. Zero-Permission Android Applications part 2 - Leviathan Security Group.
https://www.leviathansecurity.com/blog/archives/18-Zero-Permission—
Android-Applications-part-2.html. Last visited on 2011-10-14. (Cited on page 41.)

[158] Pavel Kouznetsov [2012]. JAD Java Decompiler. http://www.varaneckas.com/jad/. Last
visited on 2011-10-14. (Cited on page 23.)

[159] QueryDSL [2012]. Querying SQL. http://www.querydsl.com/static/querydsl/2.8.
O0/reference/html/ch02s03.html#d0e607. Last visited on 2011-10-14. (Cited on
page 67.)

[160] QueryDSL, Mysema [2012]. QueryDSL. http://www.querydsl.com/. Last visited on
2011-10-14. (Cited on page 74.)

[161] Rafael Rivera, Long Zheng, Chris Walsh [2010]. ChevronWP7.
http://www.chevronwp7.com/. Last visited on 2011-10-14. (Cited on page 14.)

[162] Ramu, Srikanth [2012]. Mobile Malware Evolution, Detection and Defense.
http://blogs.ubc.ca/computersecurity/files/2012/04/SRamu_EECE572_
SurveyPaper—-SrikanthRamu.pdf. (Cited on page 11.)

[163] Research in Motion [2012]. Cell Phones, Smartphones & Mobile Phones from BlackBerry.com.
http://worldwide.blackberry.com/. Last visited on 2011-10-14. (Cited on page 1.)

[164] Rich Cannings [2010]. Exercising Our Remote Application Removal Feature.
http://android-developers.blogspot.co.at/2010/06/exercising—our—
remote—application.html. Last visited on 2011-10-14. (Cited on pages 2 and 14.)

http://dx.doi.org/10.1109/MSP.2011.98
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5975134
http://jcp.org/aboutJava/communityprocess/final/jsr317/index.html
http://docs.oracle.com/javase/tutorial/rmi/index.html
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=57576
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=57576
http://www.pandasecurity.com/homeusers/security-info/215107/Eeki.A
https://code.google.com/p/droidbox/
https://leviathansecurity.com/blog/archives/17-Zero-Permission-Android-Applications.html
https://leviathansecurity.com/blog/archives/17-Zero-Permission-Android-Applications.html
https://www.leviathansecurity.com/blog/archives/18-Zero-Permission-Android-Applications-part-2.html
https://www.leviathansecurity.com/blog/archives/18-Zero-Permission-Android-Applications-part-2.html
http://www.varaneckas.com/jad/
http://www.querydsl.com/static/querydsl/2.8.0/reference/html/ch02s03.html#d0e607
http://www.querydsl.com/static/querydsl/2.8.0/reference/html/ch02s03.html#d0e607
http://www.querydsl.com/
http://www.chevronwp7.com/
http://blogs.ubc.ca/computersecurity/files/2012/04/SRamu_EECE572_SurveyPaper-SrikanthRamu.pdf
http://blogs.ubc.ca/computersecurity/files/2012/04/SRamu_EECE572_SurveyPaper-SrikanthRamu.pdf
http://worldwide.blackberry.com/
http://android-developers.blogspot.co.at/2010/06/exercising-our-remote-application.html
http://android-developers.blogspot.co.at/2010/06/exercising-our-remote-application.html

Bibliography 109

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

Ryszard Wisniewski [2011]. android-apktool - A tool for reverse engineering Android apk files.
https://code.google.com/p/android-apktool/. Last visited on 2011-10-14. (Cited on
page 22.)

Salameh, Khaled [2011]. Windows Phone SMS attack discovered, reboots device and disables
messaging hub - WinRumors. http://www.winrumors.com/windows—-phone-sms-
attack-discovered-reboots-device-and-disables-messaging-hub/. Last visited

on 2011-10-14. (Cited on page 16.)

Schulz, Patrick [2012]. Code Protection in Android.
https://net.cs.uni-bonn.de/fileadmin/user_upload/plohmann/2012-Schulz-

Code_Protection_in_Android.pdf. (Cited on page 23.)

Schwartzbach, Michael []. Lecture Notes on Static Analysis.
http://www.itu.dk/people/brabrand/UFPE/Data-Flow-Analysis/static.pdf.
(Cited on page 23.)

Skiba Dmitry [2008]. android4me - J2ME port of Google’s Android.
https://code.google.com/p/android4me/. Last visited on 2011-10-14. (Cited on
page 22.)

Skyhook [2012]. Skyhook: Location Technology.
http://www.skyhookwireless.com/location-technology/. Last visited on
2011-10-14. (Cited on page 44.)

Slideme [2012]. Slideme. http://slideme.org/. Last visited on 2011-10-14. (Cited on
page 14.)

Smith, Eric [2010]. iPhone Applications & Privacy Issues : An Analysis of Application
Transmission of iPhone Unique Device Identifiers (UDIDs). New York, pages 1-19.
http://www.kompatscher.biz/phocadownload/iPhone—-Applications—-Privacy-
Issues.pdf. (Cited on page 29.)

Smule [2012]. Magic Piano - Privacy Policy (updated March 27, 2012).
https://www.smule.com/privacy. Last visited on 2011-10-14. (Cited on page 79.)

SpringSource [2012]. Spring Roo. http://www.springsource.org/spring—roo. Last
visited on 2011-10-14. (Cited on page 73.)

SQLite [2012]. SQLite Home Page. https://www.sglite.org/. Last visited on 2011-10-14
(Cited on page 49.)

Symantec Corporation [2011]. Android.Pjapps.
http://www.symantec.com/security_response/writeup.jsp?docid=2011-
022303-3344-99. Last visited on 2011-10-14. (Cited on page 11.)

Symantec Corporation [2011]. Android.Smspacem.
http://www.symantec.com/security_response/writeup.jsp?docid=2011-
052310-1322-99. Last visited on 2011-10-14. (Cited on page 9.)

Symbian Foundation [2012]. Symbian Foundation. http://licensing.symbian.org/. Last
visited on 2011-10-14. (Cited on page 1.)

Tepdump/Libpcap [2011]. TCPDUMP/LIBPCAP public repository.
http://www.tcpdump.org/. Last visited on 2011-10-14. (Cited on pages 28, 36 and 37.)

https://code.google.com/p/android-apktool/
http://www.winrumors.com/windows-phone-sms-attack-discovered-reboots-device-and-disables-messaging-hub/
http://www.winrumors.com/windows-phone-sms-attack-discovered-reboots-device-and-disables-messaging-hub/
https://net.cs.uni-bonn.de/fileadmin/user_upload/plohmann/2012-Schulz-Code_Protection_in_Android.pdf
https://net.cs.uni-bonn.de/fileadmin/user_upload/plohmann/2012-Schulz-Code_Protection_in_Android.pdf
http://www.itu.dk/people/brabrand/UFPE/Data-Flow-Analysis/static.pdf
https://code.google.com/p/android4me/
http://www.skyhookwireless.com/location-technology/
http://slideme.org/
http://www.kompatscher.biz/phocadownload/iPhone-Applications-Privacy-Issues.pdf
http://www.kompatscher.biz/phocadownload/iPhone-Applications-Privacy-Issues.pdf
https://www.smule.com/privacy
http://www.springsource.org/spring-roo
https://www.sqlite.org/
http://www.symantec.com/security_response/writeup.jsp?docid=2011-022303-3344-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-022303-3344-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-052310-1322-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-052310-1322-99
http://licensing.symbian.org/
http://www.tcpdump.org/

110

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

Bibliography

tele.ring [2012]. tele.ring. https://www.telering.at/. Last visited on 2011-10-14. (Cited
on pages 77 and 78.)

Teufl, Peter, Michaela Ferk, Andreas Fitzek, Daniel Hein, Stefan Kraxberger, and Clemens
Orthacker [2012]. Malware Detection by Applying Knowledge Discovery Processes to
Application Metadata on the Android Market (Google Play). doi:10.1002/sec. (Cited on
pages vii, 8, 15, 17, 18 and 27.)

Teufl, Peter, Stefan Kraxberger, Clemens Orthacker, Alexander Marsalek, Johannes Leibetseder,
and Oliver Prevenhueber [2011]. Android Market Analysis with Activation Patterns. Work.
https:
//online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=57577. (Cited
on page 13.)

The Wall Street Journal [2010]. What They Know - Mobile.
http://blogs.wsj.com/wtk—mobile/. Last visited on 2011-10-14. (Cited on pages 3, 28,
30, 33, 78 and 79.)

Tim Bray [2011]. Identifying App Installations. http://android-
developers.blogspot.com/2011/03/identifying—app-installations.html. Last
visited on 2011-10-14. (Cited on page 42.)

tutorialspoint [2012]. GSM - Addresses and Identifiers (IMEIL, IMSI, TMSI, LMSI, MSISDN,
MSRN). http://www.tutorialspoint.com/gsm/gsm_addressing.htm. Last visited on
2011-10-14. (Cited on page 43.)

Twitter [2012]. Twitter Bootstrap. http://twitter.github.com/bootstrap/. Last visited
on 2011-10-14. (Cited on page 75.)

UAS [2012]. Spy Control.
https://play.google.com/store/apps/details?id=com.uas.smscontrol&hl=en.
Last visited on 2011-10-14. (Cited on page 8.)

Vennon, Troy [2010]. Android Malware A Study of Known and Potential Malware Threats.
Engineer, pages 1-13. http://globalthreatcenter.com/wp-
content/uploads/2010/03/Android-Malware-Whitepaper.pdf. (Cited on pages 8
and 14.)

Vennon, Troy and David Stroop [2010]. Android Market: Threat Analysis of the Android Market.
Technical Report, SMobile Systems, Columbus.
http://threatcenter.smobilesystems.com/wp—
content/uploads/2010/06/Android-Market-Threat-Analysis-6-22-10-v1l.pdf.
(Cited on pages 13 and 27.)

Venugopal, Deepak and Guoning Hu [2008]. Efficient signature based malware detection on
mobile devices. Mobile Information Systems, 4(1), pages 33—49. ISSN 1574017X. (Cited on
page 22.)

Wireshark Foundation [2012]. Wireshark - Go deep. http://www.wireshark.org/. Last
visited on 2011-10-14. (Cited on pages 27, 29, 31 and 37.)

Xiaobo Pan [2012]. dex2jar - Tools to work with android .dex and java .class files.
https://code.google.com/p/dex2jar/. Last visited on 2011-10-14. (Cited on page 22.)

https://www.telering.at/
http://dx.doi.org/10.1002/sec
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=57577
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=57577
http://blogs.wsj.com/wtk-mobile/
http://android-developers.blogspot.com/2011/03/identifying-app-installations.html
http://android-developers.blogspot.com/2011/03/identifying-app-installations.html
http://www.tutorialspoint.com/gsm/gsm_addressing.htm
http://twitter.github.com/bootstrap/
https://play.google.com/store/apps/details?id=com.uas.smscontrol&hl=en
http://globalthreatcenter.com/wp-content/uploads/2010/03/Android-Malware-Whitepaper.pdf
http://globalthreatcenter.com/wp-content/uploads/2010/03/Android-Malware-Whitepaper.pdf
http://threatcenter.smobilesystems.com/wp-content/uploads/2010/06/Android-Market-Threat-Analysis-6-22-10-v1.pdf
http://threatcenter.smobilesystems.com/wp-content/uploads/2010/06/Android-Market-Threat-Analysis-6-22-10-v1.pdf
http://worldcatlibraries.org/wcpa/issn/1574017X
http://www.wireshark.org/
https://code.google.com/p/dex2jar/

Bibliography 111

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

Xuxian Jiang [2011]. Questionable Android Apps - SndApps - Found and Removed from Official
Android Market. http://www.csc.ncsu.edu/faculty/jiang/SndApps/. Last visited on
2011-10-14. (Cited on page 10.)

You, IIsun and Kangbin Yim [2010]. Malware Obfuscation Techniques: A Brief Survey. In 2010
International Conference on Broadband, Wireless Computing, Communication and Applications,
pages 297-300. IEEE. ISBN 978-1-4244-8448-5. doi:10.1109/BWCCA.2010.85.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5633410.
(Cited on page 23.)

Zayed Rehman [2011]. The Complete Review Of CyanogenMod 7.

http://www.addictivetips.com/mobile/the—complete-review—of-
cyanogenmod—-7-walkthrough-guide/#5. Last visited on 2011-10-14. (Cited on page 21.)

ZeptoLab [2012]. ZeptoLab - Privacy Policy. http://www.zeptolab.com/pp.htm. Last
visited on 2011-10-14. (Cited on page 80.)

Zhou, Wu, Yajin Zhou, Xuxian Jiang, and Peng Ning [2012]. Detecting repackaged smartphone
applications in third-party android marketplaces. In Proceedings of the second ACM conference
on Data and Application Security and Privacy - CODASKY ’12, page 317. 16th ACM
Conference on Computer and Communications Security, CCS’09, ACM Press, New York, New
York, USA. ISBN 9781450310918. ISSN 15437221. doi:10.1145/2133601.2133640.
http://portal.acm.org/citation.cfm?doid=1653662.1653690. (Cited on page 24.)

Zhou, Yajin [2012]. Dissecting Android Malware: Characterization and Evolution.
http://www.ieee-security.org/TC/SP2012/papers/4681a095.pdf. (Cited on
pages 9, 10, 11 and 84.)

Zhou, Yajin, Zhi Wang, Wu Zhou, and Xuxian Jiang [2012]. Hey, You, Get Off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets.
http://www.csd.uoc.gr/~hy558/papers/mal_apps.pdf. (Cited on pages 14, 24
and 26.)

Zimry, Irene, Raulf, Leong [2011]. On Android threats Spyware:Android/SndApps.A and
Trojan:Android/SmsSpy.D. - F-Secure Weblog.
http://www.f-secure.com/weblog/archives/00002202.html. Last visited on
2011-10-14. (Cited on page 10.)

http://www.csc.ncsu.edu/faculty/jiang/SndApps/
http://www.amazon.com/exec/obidos/ASIN/978-1-4244-8448-5/keithandrewshcic
http://dx.doi.org/10.1109/BWCCA.2010.85
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5633410
http://www.addictivetips.com/mobile/the-complete-review-of-cyanogenmod-7-walkthrough-guide/#5
http://www.addictivetips.com/mobile/the-complete-review-of-cyanogenmod-7-walkthrough-guide/#5
http://www.zeptolab.com/pp.htm
http://www.amazon.com/exec/obidos/ASIN/9781450310918/keithandrewshcic
http://worldcatlibraries.org/wcpa/issn/15437221
http://dx.doi.org/10.1145/2133601.2133640
http://portal.acm.org/citation.cfm?doid=1653662.1653690
http://www.ieee-security.org/TC/SP2012/papers/4681a095.pdf
http://www.csd.uoc.gr/~hy558/papers/mal_apps.pdf
http://www.f-secure.com/weblog/archives/00002202.html

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.3 Contribution
	1.4 Outline

	2 Mobile Platforms, Apps and Malware
	2.1 Threat Types and Motives
	2.1.1 Malware
	2.1.2 Personal Spyware
	2.1.3 Grayware
	2.1.4 Motives for Malware Development
	2.1.4.1 Novelty and Amusement
	2.1.4.2 Financial Gain
	2.1.4.3 Premium Rate Services
	2.1.4.4 User Credentials
	2.1.4.5 User Information
	2.1.4.6 Spying
	2.1.4.7 Utilise Resources

	2.2 Security Measures
	2.2.1 Permissions
	2.2.2 Application Distribution Channels
	2.2.2.1 Official Markets
	2.2.2.2 Alternative Markets and Direct Download

	2.3 Reasons for Targeting Android
	2.3.1 Market Share
	2.3.2 Openness and Technical Features
	2.3.3 Version Fragmentation and Heterogeneous Devices

	3 Android App Analysis Methods and Malware Detection
	3.1 Analysis Environment
	3.1.1 Execution Environment
	3.1.2 System Behaviour
	3.1.3 Available Data
	3.1.4 Interaction
	3.1.5 Application Scope

	3.2 Analysis and Detection Methods
	3.2.1 The User
	3.2.1.1 Default User
	3.2.1.2 Advanced User
	3.2.1.3 Expert User

	3.2.2 Mobile Security Apps
	3.2.3 Static Analysis
	3.2.3.1 Techniques
	3.2.3.2 Tools

	3.2.4 Dynamic Analysis
	3.2.4.1 Techniques
	3.2.4.2 Tools

	3.2.5 Market Metadata Analysis
	3.2.5.1 Techniques
	3.2.5.2 Reports/Tools

	3.2.6 Network Traffic Analysis
	3.2.6.1 Techniques
	3.2.6.2 Reports

	3.2.7 Summary

	4 Potential of Specialised Network Traffic Analysis for Android Applications
	4.1 General Network Traffic Analysis
	4.2 In-Depth Network Traffic Analysis
	4.3 Which Threat Types Can Be Detected

	5 Network Traffic Analysis with NF4Droid
	5.1 Traffic Capturing (external)
	5.1.1 Capturing Methods
	5.1.1.1 tcpdump
	5.1.1.2 Emulator
	5.1.1.3 VPN service
	5.1.1.4 Wi-Fi setup

	5.1.2 Automation and User Interaction
	5.1.3 Test Environment Properties

	5.2 Data Processing
	5.2.1 Import
	5.2.2 Processing
	5.2.2.1 Parsing
	5.2.2.2 Enrichment
	5.2.2.3 Persisting

	5.2.3 In-Depth Analysis
	5.2.3.1 What to look out for?
	5.2.3.2 Analysis Method
	5.2.3.3 Currently Analysed Test Environment Properties
	5.2.3.4 Analysis Limitations

	5.3 Data Presentation & Visualisation
	5.3.1 Capture Management and Archiving
	5.3.1.1 Apps
	5.3.1.2 App versions
	5.3.1.3 Traffic captures

	5.3.2 Capture Dashboard
	5.3.3 Traffic Timeline
	5.3.4 Traffic Geochart
	5.3.5 HTTP Requests

	5.4 The Use of NF4Droid for Other Mobile Platforms

	6 Implementation Details
	6.1 General Conceptual Design
	6.2 Implementation of NF4Droid
	6.2.1 GWT based Web Application
	6.2.1.1 Client-Server Communication
	6.2.1.2 Activities, Places and Model View Presenter (MVP)
	6.2.1.3 User Interface (UI)

	6.2.2 Rapid Application Development with Spring Roo
	6.2.3 Network Traffic Information Import
	6.2.4 Data Persistence, ORM and Data Retrieval
	6.2.5 Further Processing
	6.2.6 Exposure Analysis
	6.2.7 Data Visualisation
	6.2.8 Project Build

	6.3 Design of NF4Droid
	6.3.1 Server
	6.3.2 Package Overview
	6.3.3 Client
	6.3.4 Package Overview
	6.3.5 Shared

	6.4 Deployed Technologies and Tools
	6.4.1 Spring Roo
	6.4.2 Google Web Toolkit (GWT)
	6.4.3 Hibernate
	6.4.4 Java Persistence API (JPA)
	6.4.5 QueryDSL
	6.4.6 GWTUpload
	6.4.7 Kraken
	6.4.8 jnr-netdb
	6.4.9 MaxMind IP Database
	6.4.10 Twitter Bootstrap
	6.4.11 GWT-Bootstrap
	6.4.12 Highcharts JS
	6.4.13 GWT Highcharts
	6.4.14 Google Chart Tools
	6.4.15 AspectJ
	6.4.16 Maven

	7 Case Study and Results
	7.1 Testing Method
	7.2 Top 50 Free Applications
	7.2.1 Results
	7.2.1.1 General
	7.2.1.2 Information Exposure
	7.2.1.3 Conclusion

	7.3 Known Malicious Applications
	7.3.1 Results
	7.3.1.1 General
	7.3.1.2 Information Exposure
	7.3.1.3 Conclusion

	8 Conclusion and Outlook
	8.1 Summary
	8.2 Future Work

	A Acronyms
	Bibliography

