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Abstract:

This master’s thesis describes a method to automatically recognize hand gestures us-
ing a webcam to record the workspace, skin colour extraction from the LUV colour
space, artefact removal using morphological image processing, a feed forward neural net-
work and linear correlation for training and recognition. In the context of the Chair for
Human-Machine Systems (FG MMS) at the Technical University Berlin and the Institute
of information systems and computer media (IICM) at the Technical University Graz,
a method was created to extract the user’s hand from the webcam stream, identify sig-
nificant points of the hand, build up sequences of movement and train a neural network
on these data. For recognition of gestures, the previously trained network is fed with
new incoming data. Furthermore, a linear correlation technique is used to verify the out-
put of the neural network. Therefore, master templates are generated over the recorded
movement sequences and data to classify is correlated to those master templates. The
project was implemented in C++ using the libraries OpenCV for image processing and
SNNL for neural network functionality. An extensive k-fold cross validation process was
implemented as well, in order to prove validity of the project’s methods. Results demon-
strate the quality of the approach.

Keywords:

gesture recognition, colour space extraction, neural network, linear correlation, cross
validation



Kurzfassung:

Diese Masterarbeit beschreibt eine Methode für die automatische Erkennung von Hand-
gesten mittels einer Webcam, Hautfarbenextraktion aus dem LUV Farbraum, Artefakt-
bereinigung mittels morphologischer Bildbearbeitung, einem Feed Forward neuronalem
Netzwerk und linearer Korrelation für das Training und die Erkennung. In Zusammen-
arbeit mit dem Fachgebiet Mensch Maschine Systeme (FG MMS) der Technischen Uni-
versität Berlin und dem Institut für Informationssysteme und Computer Medien (IICM)
der Technischen Universität Graz wurde eine Methode entwickelt, um die Hand aus dem
Videostream der Webcam zu extrahieren, signifikante Punkte der Hand zu identifizieren,
Bewegungssequenzen zu erfassen und anhand dieser Daten ein neuronales Netzwerk zu
trainieren. Weiters wurde eine lineare Korrelation implementiert, um die Ergebnisse des
neuronalen Netzwerks zu verifizieren. Dafür wurden anhand der aufgenommenen Bewe-
gungssequenzen Grundschablonen erzeugt, mit denen bei der Klassifizierung neue Daten
korreliert werden. Dieses Projekt wurde in C++ implementiert, wobei die Bibliotheken
OpenCV für die Bildverarbeitung und SNNL für die neuronalen Netzwerke verwendet
wurden. Weiters wurde eine umfassende Kreuzvalidierungsmethode implementiert, um
die Gültigkeit der verwendeten Methoden zu überprüfen. Die Resultate zeigen die Qua-
lität der Herangehensweise.

Schlüsselwörter:

Gestenerkennung, Farbraumextraktion, Neuronales Netzwerk, Lineare Korrelation, Kreuz-
validierung
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Abbrevations

ANN Artificial Neural Network
ANNL Artificial Neural Network Library
BCI Brain Computer Interface
C The programming language C
C# The programming language C#
C++ The object oriented programming language C++
CIE Commission Internationale de l’Eclairage
CIE XYZ The colour space CIE XYZ
CMY(K) The colour space CMY(K)
Ctrl-d The keyboard key control plus the key d
Ctrl-e The keyboard key control plus the key e
Ctrl-f The keyboard key control plus the key f
e.g. exempla gratia, used for: “for example”
EEG Electroencephalography
ESC The keyboard key escape
FFNN Feed Forward Neural Network
FG-MMS Fachgebiet Mensch-Maschine Systeme
GRM Gesture Recognition Module
GUI Graphical User Interface
HCI Human Computer Interaction
HSL The colour space HSL
HSV (1) Human visual system
HSV (2) The colour space HSV
i.e. id est, used for: “it is” or “that is”
ibid. ibidem, used for: “see last used citation for reference”
iCOMMIC Integrated Controller for multimodal Interaction
Lab The colour space Lab
LED Light Emitting Diode
LLE Locally Linear Embedding
LTSA Local Tangent Space Alignment
LUV The colour space LUV
MCP McCulloch & Pitts
mEyeInt multimodal Eye Interaction
ms milliseconds
MSE Mean Squared Error
NN Neural Network
OpenCV Open Source Computer Vision Library



PC Personal Computer
PCA Principle Component Analysis
px pixel
RGB The colour space RGB
SNNL Simple Neural Network Library
UIS User Information System
USB Universal Serial Bus
XML Extensive Markup Language
YCC The colour space YCC
YES The colour space YES
YIQ The colour space YIQ
YUV The colour space YUV
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1 Introduction

Multi modal user interfaces allow a new approach to human computer interaction (HCI),
meaning a more intuitive and more flexible way of communication between humans and
machines. Differing from the contemporary form of interaction, namely that of using the
mouse and keyboard, the multi modal approach allows humans to use their natural senses
and means of communication, such as voice and gestures, setting the focus of attention
(fixation of the eye) and maybe even thinking to interact with the interface. The multi-
modal approach may allow new insights into human communicational behaviour as well
as into more natural and hence more intuitive ways. As an additional important benefit,
the abilities of disabled human-beings could be significantly improved via the introduction
of new, handicapped-accessible interfaces.
This thesis is based upon an idea evolved in the FG MMS (“Fachgebiet Mensch-

Maschine-Systeme”, or translated, “Chair for Human-Machine Systems”) at the Technis-
che Universität Berlin. The idea is to build a system including different modules in order
to control the computer with different modalities, straying from the mouse/keyboard con-
cept which is predominant in our time. The system is called iCOMMIC, which stands for
integrated COntroller for Multi Modal InteraCtion. The work was conducted in asso-
ciation with the interdisciplinary group Team mEyeInt (multi modal Eye Interaction)
that has been developing the iCOMMIC system over the past few years (Dzaack et al.,
2009).
As the integration of eye tracking systems is as good as done, the next modality is about

to be introduced and this thesis holds the concepts, the design and the implementation
documentation for this modality carrying the name Gesture Recognition Module or
short GRM.

1.1 Scope of this thesis

The scope of this thesis includes the analysis of how to implement, all of the relevant
theoretical concepts in order to be able to implement and the implementation itself of a
module for gesture recognition or rather gesture based interaction with a computer system
in any form. The idea is to create a system that is able to understand hand gestures
acted out in front of a simple webcam. Therefore, the image from the webcam is read,
the hand extracted from the image (using skin colour as a distinguisher), relevant values
selected and a machine learning algorithm is trained. After training, new gestures can
be recognized by sending it’s values to the machine learning algorithm, which classifies
the incoming gesture. With the gesture recognized, a command is sent to the iCOMMIC
system, which then performs previously defined commands like the pressing of a certain
key.

1



1 Introduction

Therefore, currently available similar systems are assessed, the main concepts thor-
oughly examined and possibilities of the required fields real-time image processing, ma-
chine learning and pattern recognition are explored. The goal is to create a modular
and independent user interface module for hand gesture recognition that can easily be
connected to the iCOMMIC for multi modal user interaction.

1.2 Structure of the thesis

The thesis is built up in five chapters. In Chapter 2, the theoretical concepts needed for
the implementation of the system are introduced, including Section 2.1 to Section 2.3
presenting the basics of human computer systems such as human-computer interaction,
gestures, and eye tracking methods. Furthermore, Section 2.4 describes required fields
of image processing like colour spaces, filters, morphological operations and histograms.
Chapter 2.5 demonstrates methods needed for pre-processing spatial and sequential data.
Additionally, Section 2.6 explains the basic concepts of machine learning, especially neu-
ral networks. Section 2.8 elaborates on the basic concepts of linear correlation.
In Chapter 3, first the basic features of the system are analyzed, such as hardware

analysis, time frame analysis, the hand tracking method and the analysis of the expert
interviews in the basic analysis (Section 3.2). In Section 3.3, the requirements of the
gesture recognition module are set up regarding usability, feedback mechanisms, interac-
tion methods, recording, security, configurability and the selected gestures. Additional
requirements in the form of external libraries used are discussed in Section 3.4 leading
to the system concept as described in Section 4.1. This includes design documents, the
idea of how to integrate the GRM into the iCOMMIC and the test setup. Section 4.2
describes the configuration, the logging methods as well as the different program modes
needed for the system.
Chapter 5 discusses the quality of the system, including verification, validation as well

as the conclusions that can be drawn from the results. Chapter Chapter 6 draws final
conclusions and points out a future outlook on the iCOMMIC program as well as the
GRM.
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2 Theoretical Concepts

This chapter provides the theoretical concepts that were used to create the Gesture
Recognition Module, from theoretical concepts about communication in general to math-
ematical aspects which were used to implement the GRM system.
In order to solve the posed problem as posed in 1.1, several fields of interest have to

be assessed thoroughly. As the idea is to create a real-time hand gesture recognition
module by assessing a video camera, these fields include human-computer systems in
general, hand gestures as well as eye-movement and -tracking for assessing how to be
able to combine the two modalities. The more technical concepts are image processing
for extracting the region of interest from the video stream as well as data-preprocessing
for the data extracted from the video. Machine learning and last but not least validation
methods for validating the correctness of the system conclude the necessary fields of
interest.

2.1 Human-computer systems

The communication between man and machine has been an issue from the beginning of
the information age. The first computers were fed information by punched tape, inputting
basic binary data by paper slips also called punch cards. As computers evolved, the need
for faster and more convenient input methods arose. Typewriter keyboards as well as
the mouse were introduced and ever since have been the devices used for input. The
current key layout of the keyboards however was patented as early as 1870 by Christopher
Sholes, who invented the first commercially successful typewriter. The problem was that
the initially alphabetic order of the keys constantly led to colliding and stuck type bars,
so Sholes was forced to adapt his keyboard layout to reduce the possibility of jams and
collisions (David, 1985). In other words, the current layout of the keyboard can be seen
as a result of trying to optimize the writing process as far as jams and collisions are
concerned, but not as far as speed is concerned, which has indeed remained unimproved
or changed since the late 19th century. This means that the possibilities of human-
computer interaction are limited to a more than 100 year old system in combination
with the computer mouse introduced in the 1960s as a pointing device (English et al.,
1965) and finally distributed in a marketed fashion in the early 1980s with the Xerox 8010
Information System (Smith and Alexander, 1988). This leads to the conclusion, that the
methods of human-computer interaction may be improved significantly by introducing
new modalities. This thesis aims at helping to confirm this hypothesis.
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2.1.1 Human computer interaction

Human computer interaction (HCI) means the communication between human and com-
puter and vice versa. This interaction covers user generated input as well as the response
by the computer. Modern day computers are generally controlled using three main types
of interaction by the user, namely textual and conceptual input, navigational input and
manipulative input.
This thesis will mainly focus on navigational and manipulative input, textual input

might however be the next modality included in the system currently developed at the
FG-MMS at the TU Berlin, the iCOMMIC.

2.1.1.1 Textual and conceptual input

The main input modality for text and content is, as was already mentioned in Section
2.1, the keyboard. Other known text input systems include the virtual keyboard, punch
cards (as used mainly in the 1960s and 70s), the stylus pen (mainly for mobile devices),
data gloves and last but not least voice recognition software.

2.1.1.2 Navigational input

Navigational input signifies input concerning navigation on computer systems in order to
set the focus of interest to a certain area of the system. This input is produced by pointing
devices such as the computer mouse, touchscreens, touch-pads, trackballs, joysticks or
eye tracking systems. Also, keys of the keyboard can be used for navigation on the screen.
The main advantage of pointing devices is the quick and limitless movement potential.
While the keyboard navigation cannot be used to quickly change the centre of focus on
the screen, navigational devices allow for this movement to be completed swiftly. In a
few studies (Schrepp, 2006; Van Buskirk and LaLomia, 1995; Sears et al., 2003), speech
recognition is suggested for navigation, though these systems have to date not emerged
as serious competitors for the mouse and keyboard combination.
Most pointing devices are two dimensional input devices, feeding back the relative

movement of the last state to the computer. The navigation using either of the above
mentioned pointing devices generally works in similar ways. A pointer is used to show the
user the place of focus where manipulation of information can be executed at the moment.
Most of current input devices hold some kind of manipulative device like buttons in order
to directly act out physical gestures. In the case of the mouse, these include point, click
and drag.
Additional navigational devices are (among others) light pens (used normally in combi-

nation with light sensitive displays), palm, foot and gyroscopic mice (gyroscopes sensing
the movement of the mouse through the air), steering wheels (one dimensional pointing
device only) and the Wii remote (sending infrared light to a receiver placed on top of the
system to be controlled). (Tuttle, 1986; Schou and Gardner, 2007)
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2.1.1.3 Manipulative input

Manipulative input denotes active user input in order to interact with things on the
screen such as activating or deactivating buttons. Also, scrolling text, zooming images,
grabbing a symbol in order to drag it as well as deleting certain components on screen
can be seen as manipulative input. These actions could also be conducted by activating
a certain button on the screen or pressing a particular keyboard key while having the
focus on the desired object. In other words, manipulative input is any kind of input a
user provides to the machine which is not navigational or textual in nature (Harrison
et al., 1998).

2.2 Hand Gestures

First, we need to define what gestures are. The Oxford English Dictionary (2009) for
example defines gestures to be expressive movements of any part of the body, which would
include everything a human being could do with its body. More specifically, gestures are
bodily movements used for communication, displaying feelings or thoughts. Gestures
refer to expressive movements acted out when the use of language would interfere, when
the communication partner is too far away or also to stress the spoken word. Gestures
are defined as deliberately acted out movements, so nervous hair patting or clothing
adjustments are not to be seen as gestures, even though those movements might show
signs of feelings or thoughts (Turk, 2002).

2.2.1 Gesture based communication

There are two types of gestures, the codified and conventionalized form of gestures that
can replace speech as well as the informal, non-codified hand movements, generated dur-
ing the course of speaking (Goldin-Meadow, 1999). Speech-accompanying gestures may
allow the speaker and the listener to reflect the thoughts and feelings of the speaker even
though they may be relatively unexamined by speaker and listener. Speech-substituting
gestures however are intentionally used to consciously communicate, namely to emit em-
blems in order to insult, praise or regulate the behaviour of a communication partner,
as for example the flat raised hand as a sign for stop. Emblems, however, are rarely
combined gesture strings and thus generally don’t form a linguistic system (with a few
exceptions like sign language in stock exchange). The manual modality can however sup-
port a system of gestures with a linguistic structure, as for example seen in sign language.
This form of communication is generally based on the spoken language of the surround-
ing hearing culture and is structured at syntactic, morphological and phonological levels
(ibid.). For example, in sign language (a form of silent communication used for exam-
ple in military settings), several gestures might be combined to form whole sentences or
commands and thus generate a linguistic system.
Many fields of research use the starting point of gestures and communication. However,

in this work the focus will be set on intentionally posed emblems without attention paid
to the linguistic system. See the Section 6.2 for more on this topic.

5



2 Theoretical Concepts

2.3 Eye movement

Eye movements consist of both the movement of the eyeball as well as the moving of
the eyelid and the pupil. The human eye is capable of moving in several different ways.
Although those movements are always controlled by six muscles sitting on the outside of
the eyeball, they differ by the stimuli causing the movement, the characteristics of the
movement and the processes involved in steering the movements. Three classes have to
be distinguished:

1. Saccades: Movement of the eye in order to prevent shifting of the information on
the retina. Those movements are reactions to either movements of the body, of an
object or of the surrounding environment.

2. Fixations: Target acquiring movements to orient the fovea onto (new) objects.

3. Microsaccades: Micro-movements of the eye.

For further reading please see both the works of Joos et al. (2003) and Roetting (1999).

2.3.1 Methods of eye tracking

Generally, eye tracking is based on anatomical and physiological properties of the eye
which are discoverable in technical observations. Retinal and limbal properties, cornea-
retinal potential, corneal curvature as well as reflections at different boundary areas of
the di-optic apparatus can be used for assessment of the eye movement (Joos et al., 2003).
The aforementioned reflections of a infra red light source included into the system are
recorded via a stereo-camera pair and after a calibration process can be translated to a
position the user is looking at on screen.
Since this thesis will focus on video based eye tracking only, other methods are volun-

teerly omitted.

2.3.1.1 Video based eye tracking

Using a video camera or another light sensitive sensor, an image of the eye is recorded
where computer aided image processing extracts the most significant properties of the
eye. In practical usage, infra red cameras have proven to be a usable method to track
the movement of the eye (ibid.).

2.3.2 Scopes of application

Duchowski (2002) summarized the application of eye tracking where he reports from
the domains neuroscience, psychology, industrial engineering and human factors, mar-
keting/advertising and computer science.
Generally, Duchowski states that eye tracking has proven to be valuable in diagnostic

studies of reading and other information processing tasks, which he considers to be the
mainstay application. Also, as eye trackers are able to quantitatively measure real-time
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overt attention, they are well suited for interactive systems, where especially for disabled
users, eye tracking can be an essential and indispensable form of communication.
However, Duchowski also mentions ongoing debates about the idea of giving a per-

ceptual organ like the eye an additional motorical task such as pointing. The eye might
be more useful as an indirect indicator of the user’s current intention than as an actual
interaction method.

2.4 Image processing

Any form of signal processing where the input is an image like a photograph or video
frame is called image processing. The output of image processing can be an image,
extracted image characteristics or parameters related to the image. The image is usually
treated as a two dimensional signal on which standard signal processing techniques are
applied.

2.4.1 Digital image representation

Images are stored in computer memory in various ways. Generally, either a two dimen-
sional matrix or an array of values is used, with other types of representations possible.
Depending on the type of image (binary, grey scale, three channel, ...), the values inside
the storage container vary. For example in binary images, the values are either 0 or 1,
marking a foreground (1), or background (0) respectively. In three channel images (see
2.4.2 for more information) on the other hand, the values can consist of hexadecimal val-
ues with six digits (0x000000 for white, 0xFFFFFF for black and all values in between),
each two digits representing one channel. Another representation for three channel im-
ages could also be a three layered two dimensional matrix, each layer holding the channel
information consisting of real values depending on the definition of the colour space.

2.4.2 Colour spaces

The choice of colour space is a very important decision in image processing and can
dramatically influence the outcome of the processing, thus it is important to make a
careful choice of which colour space to use.
Colour is defined as the way the human visual system measures a part of the elec-

tromagnetic spectrum, namely the range between 300 and 830 nm wavelengths. For
computer representation of colour, the following colour space classifications were intro-
duced by Tkalcic and Tasic (2003):

• Human visual system (HSV) based colour spaces include the RGB (red, green, blue)
colour space, the opponent colours theory based colour spaces and the phenomenal
colour spaces. These colour spaces are motivated by the properties of the HVS.

• Application specific colour spaces including the colour spaces adopted from TV
systems (YUV, YIQ), photo systems (Kodak PhotoYCC) and printing systems
(CMY(K))
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• CIE colour spaces are spaces proposed by the CIE (Commission Internationale de
l’Eclairage, the International Commission on Illumination) and have some prop-
erties which are of high importance such as device-independency and perceptual
linearity (CIE XYZ, Lab and LUV)

Some selected colour spaces are (with the others mentioned above being either really
similar or not used frequently):

RGB
The most common way of image acquisition is done via digital cameras using the

RGB colour space, which creates an image consisting of three channels, namely the
red channel, the green channel and the blue channel. By super positioning these three
channels, the actual colour image is generated.

YUV/LUV
A different principle is used in the YUV and LUV colour spaces, namely the concept

of illumination or luminance. A YUV or LUV image also consists of three channels,
but differing from RGB (where all three channels hold colour information), in the YUV
colour spaces, the colour information is only stored in the U and V channel responsible
for chrominance while the Y channel (or L channel respectively) holds the luminance or
lighting for each pixel (Gomez, 2002).

YES
Another colour space is the YES colour space, where the luminance component (Y) is

a weighted sum of the RGB values, while the chrominance factors are spectral differences:
the signal in the E factor is proportional to the difference of the red and green colour
channels, while the S colour factor is proportional to “yellow minus blue”.

HSV/HSL
The HSV colour space is a representation of points in a RGB colour model that

attempts to describe colour relationships more accurately than RGB. H stands for hue, a
main component of colour, defined technically by Pattanaik et al. (1998) as “the degree
to which a stimulus can be described as similar to or different from stimuli that are
described as red, green, blue and yellow”. S is short for saturation, meaning the difference
of a colour against its own brightness and V finally stands for value or L for lightness
(thus the alternative abbreviation HSL) meaning that a colour with a low value is nearly
black while a colour with a high value is the pure, fully-saturated colour (ibid.).

2.4.2.1 Human skin colour detection

In order to extract the hand from the video, skin colour detection is an essential part of
this thesis. This becomes even more important as the idea of the project is to develop a
hands-free system, where no additional markers, gloves or similar auxiliary means should
be used.
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Selection of the most suitable colour space is essential for detecting skin colour in
digital images. Skin colour detection by itself is a complex topic, as the colour of skin
in an image is influenced by various factors. Ambient light, particularities, shadows,
daylight and other factors can significantly influence the skin values. Also, different
cameras return different values for the same scene and the same light conditions (Gomez
et al., 2002).
As it is vital to select a fitting and usable algorithm for the extraction of skin colour

from the video frames, the algorithms found in literature have to be thoroughly assessed.
The RGB colour space is widely used for skin colour detection even though RGB

is quite sensitive to intensity variations. Here, two three dimensional histograms are
computed, one for skin and the other for non-skin areas. Dividing every slot by the
total number of elements, associated probabilities on an [r,g,b] index are received. The
conditional probabilities for skin and non-skin are hence:

P (rgb|skin) =
Histskin[r, g, b]
Totalskin

(2.1)

and
P (rgb|!skin) =

Histnon−skin[r, g, b]
Totalnon−skin

(2.2)

where a new pixel can be labelled as skin or non-skin if it satisfies a certain threshold θ:

P (rgb|skin)
P (rgb|!skin)

≥ θ (2.3)

Thus, the recognition ratio is a trade-off between reducing false positives and increasing
correct skin classification.
The quality of this method was assessed in a recent survey which showed, that for 95%

of skin detection 20% of false positives were identified, a naturally unsatisfying result
(Brand and Mason, 2000). This could be related to the initial idea that skin colour
forms a cluster in one single colour space, in this case the raw RGB space. Hence, a more
appropriate method has to be found (Gomez et al., 2002).
A similar approach is using the YUV colour space, where the Y stands for luminance,

while the U and the V channels hold the chrominance information. Luma (or luminance)
represents the brightness in an image and is thus the “black and white” (or achromatic)
portion of the image while the chroma (or chrominance) represents the colour informa-
tion. This colour space is mostly used for compressing the information of brightness and
colour in an image in order to optimize the performance for the human visual system.
Chrominance is received by a simple transformation from RGB to YUV colour space,
with U = B − Y (blue - luma) and V = R − Y (red - luma). When this colour space
is used for transmission of data for television purposes, the chrominance bandwidth is
generally decreased (as in digital systems by chroma sub-sampling; Valensi, 1961).
The usage of the CIELUV (also known as CIE(L*,U*,V*) or short LUV) colour space

is based on a similar idea, where the L component holds the brightness portion of an
image, while the U and the V components hold information about the colour information

9



2 Theoretical Concepts

itself (Smith and Guild, 1931).
Disregarding the luminance channel and only focusing on the colour components of an

image is a very simple approach to pre-emptively eliminate lighting differences between
scenes, so that the skin colour detection can be compiled based on this information
only: colour based features of skin can easily be extracted by applying simple threshold
algorithms on both U and V channel, however with a trade-off for accuracy to other
known methods (Stark et al., 1995).
Another very powerful method for skin extraction is the combination of several different

values from different colour spaces, as proposed in 2002 by Gomez et al. (Gomez et al.,
2002). The idea is to combine the E values from the YES colour space, the ratio of
red/green from the RGB colour space as well as the H values from the HSV colour space.
This way, a three dimensional cluster is spanned where 95% of skin colour points share a
nearly convex area with a minimal overlap to non-skin colour points. Using this method,
a correct classification of 96% of skin points with only 11% of false positives can be
achieved by sorting new points into this 3D raster resulting in a 95% overall recognition
rate for both indoor and outdoor images.

2.4.3 Filters

Filtering is one of the most important fields of signal and thereby of image processing.
Generally speaking, filtering is a process, which removes unwanted components from a
signal, meaning that some frequencies are removed while others remain untouched in
order to suppress interfering signals and reduce background noise. In image processing,
filtering does not only affect the frequency domain, but can be used to additionally
impact many other areas.
In the project described in this thesis, filters are used for thresholding the U and the

V channel of the LUV colour space (threshold filters, 2.4.3.1), reducing background noise
(Gaussian filters, 2.4.3.2) as well as edge detection (Sobel and Canny edge detection,
2.4.3.3).

2.4.3.1 Threshold filter

A threshold filter is a very simple filter setting where all image values exceeding a certain
threshold and all image values below the threshold (to a minimum allowed value) for the
component are assessed (see figure 2.1 for an example). There exist several variations
of this filter, for example a two-threshold filter (also called hysteresis threshold filter),
which sets all values lower than the lower bound to the minimum value and all values
higher than the upper bound to the maximum value, leaving the values in between at the
same level. This is often used to preliminarily segment an image into fields of interest
(see figure 2.2 for an example). These threshold filters can be applied to a whole image
or to certain channels of the image (if available) depending on the need of the processing
step (Weeks, 1996).

10



2 Theoretical Concepts

Figure 2.1: An example of a threshold filter applied to a grey scale image, the original
image on the left, the image processed with a threshold of t = 128 on the
right. The values exceeding the grey-value threshold are set to the maximum
(255), while the ones equal or below the threshold are set to zero.

Figure 2.2: An example of a threshold filter with upper and lower bounds (hysteresis
threshold) applied to a grey scale image. The left image shows the original
input image while the right picture was processed with a hysteresis threshold
of t1 = 100 and t2 = 150. The values between those two thresholds remain
unchanged.

2.4.3.2 Gaussian filter

“The Gaussian filter is a two dimensional convolution operator, with convolution mean-
ing multiplying together two arrays of numbers of generally different sizes but the same
dimensionality in order to produce a third array of numbers of the same dimensionality.”
(from Fisher et al., 1994). Convolutional operators in general are used to implement op-
erators whose output pixel values are simple linear combinations of certain input pixel. In
mathematics, the Gaussian function (named after mathematician Carl Friedrich Gauss)
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is a function of the form:
f(x) = ae−

(x− b)²
2c² (2.4)

for real constants a > 0, b, c > 0 and e ≈ 2.718281828 (Euler’s number).
The graph for a Gaussian function has the characteristic symmetric bell shape that
quickly falls off towards plus/minus infinity. a is the curve’s peak, b is the position of
the centre of the peak and c controls the width of the bell. Generally used for statistics
describing the normal distributions, the Gaussian function can be used as two dimensional
filter in order to perform the Gaussian blur operation. This operation produces a smooth
blur, typically used to reduce image noise and also to reduce detail. Since the Fourier
transform of a Gaussian is another Gaussian, the Gaussian blur applied to an image
reduces the image’s high-frequency components and is thus a low pass filter.
The one dimensional Gaussian function has the form:

G(x) =
1√
2πσ

e−
x²
2σ² (2.5)

where σ is the standard deviation of the distribution. In this case, it is assumed that
the mean of the distribution is zero, meaning that it is centered about the line x = 0 as
shown in figure 2.3 a). In two dimensional space, an isotropic (i.e. circularly symmetric)
Gaussian has the form:

G(x, y) =
1

2πσ²
e−

x² + y²
2σ² (2.6)

as shown in figure 2.3 b).

a) b)

Figure 2.3: One and two dimensional Gaussian distributions

In theory, the Gaussian distribution would be non-zero everywhere to infinity which
would require an infinitely large convolution element. In practical usage however, it is
effectively zero from about the distance of three times the standard deviation from the
mean, so it is possible to truncate the mask at this point. A suitable two dimensional
integer valued mask that approximates a Gaussian function with σ = 1.4 is shown in
figure 2.4.
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Figure 2.4: Discrete approximation to a Gaussian function with σ = 1.4

The Gaussian function can be decomposed in such a way that the two dimensional
convolution can be performed by first convolving with a one dimensional Gaussian in
the x direction and then convolving with another one dimensional Gaussian in the y
direction. It is because of that fact that the two dimensional isotropic Gaussian shown
above is separable into x and y components. It is the only completely circular symmetric
operator that can be discomposed in such a way. Figure 2.5 shows the 1D x component
mask used to produce the full mask shown in figure 2.4, where the y component looks
exactly the same but is vertically oriented.

Figure 2.5: The 1D x component convolution mask used to calculate the full mask shown
in figure 2.4

Using the Gaussian filter means smoothing the image (see figure 2.7 a) and c) for
an application example). The degree of smoothness depends on the standard deviation
of the Gaussian where larger standard deviations require larger convolution masks in
order to be represented correctly. The Gaussian output is a “weighted average” of the
neighbourhood of a pixel, with the average weighted to the centre of the mask, providing
a focus on the pixel itself as well as the direct neighbours, but also taking into account
the neighbors farther away. In this way, the Gaussian filter represents an excellent noise
filter.

2.4.3.3 Edge detection

Edge detection is a very important field of image processing, as it can be used to find
borders between areas of colour in the image. This can be used for point-of-interest
detection by finding crossing points of lines, as well as to preliminarily winnow insignifi-
cant areas from the image. In this project, point-of-interest detection is implemented for
better understanding the interesting points of the hand.
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Sobel operator
The Sobel filter is a discrete differentiation operator, which computes the approxi-

mation of the gradient of the image intensity function invented by Sobel and Feldman
(1968). The Sobel operator calculates the image intensities gradient for each point, re-
turning the direction of the largest increase from light to dark and the rate of change
in the calculated direction. In other words, the result of the Sobel operator is an image
showing how smoothly or abruptly an image changes in colour at a certain point. In this
way, the Sobel operator can be used as an edge detection operator, as it convolves the
image with a small, separable and integer valued filter in both vertical and horizontal
directions and thus returns an edge image holding all abrupt changes of the original
image.

(a) (b)

Figure 2.6: The Soble operator applied to a colour image of a valve with (a) being the
original image, (b) the output of the process. Images taken from Wikipedi-
aUser:SimpsonsContributer (2010)

Canny edge detector
Another edge detection filter is the canny edge detection operator invented by Canny

(1986). This operator is a multi-stage algorithm to detect all kinds of edges in images.
First, a Gaussian filter is applied (see 2.4.3.2), returning a slightly blurred image not
affected by a single noisy pixel to any significant degree. Then, the canny algorithm uses
four filters to detect horizontal, vertical and two diagonal edges in the blurred image.
The filters used in this step might be any of the known edge detection operators like
the above mentioned Sobel operator. From the image returned by this step, the edge
gradient G and direction Θ can be determined as:

G =
√
Gx² + Gy² (2.7)

Θ = arctan(
Gy

Gx
) (2.8)

where the edge direction angle is rounded to one of four angles representing vertical,
horizontal and two diagonals (for example to one of the degrees 0°, 45°, 135°, 225°).
Given these estimates of the image gradients, a search is carried out in order to assess if
the gradient magnitude assumes a local maximum in the gradient direction. Referred to
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as non-maximum suppression, a binary image is returned holding edge points which are
sometimes referred to as “thin edges”. This binary image is then filtered by a hysteresis
threshold, where the high bound is applied first, marking out those edges that most
probably are genuine. Using the directional information received earlier, edges can be
traced throughout the image. While tracing an edge, the lower threshold is applied,
allowing the tracing of faint sections of edges as long as a starting point is found. This
way, a binary image is received with all the pixel marked as edge or as non-edge (ibid.).
The Canny operator has a couple of adjustable parameters affecting computational

time and effectiveness of the algorithm, namely the size of the Gaussian filter, as smaller
sizes cause less blurring and thus enable small, sharp line detection. Larger sizes cause
more blurring, enabling larger, smoother edge detection. Also, the thresholds of the hys-
teresis threshold filter can be adjusted, where a threshold set too high can miss important
information, while a threshold set too low will falsely identify irrelevant information such
as noise. A generic threshold working well on all images has so far been difficult to find
and no tested approach to this problem yet exists. See figure 2.7 for an example.

(a) (b)

(c) (d)

Figure 2.7: The Canny operator applied to a colour image of a valve. Image (a) is the
original, (b) the result of the Canny operator. (c) and (d) show intermediate
images, with (c) being the image after applying the Gaussian filter and (d) the
binary image after thresholding with hysteresis (colour coded by direction).
Images taken from WikipediaUser:SimpsonsContributer (2010).

2.4.4 Morphological operations

The term morphology when used in a biological context means the study of form and
structure. Image processing has a slightly different definition of morphology. Mathemat-
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ical morphology is a branch of nonlinear image processing and analysis that concentrates
on the geometric structures within an image (Comer and Delp, 1999).
The scope of morphology includes various image processing methods including en-

hancement, segmentation, restoration, edge detection, textural analysis, skeletonization,
shape analysis, compression and many more.
Morphological processing is geometrically based, meaning that an image is probed by

a structuring element (which by itself is an image) in order to quantify how well the
structuring element fits or does not fit. This fitting of course depends on the shape and
size of the structuring element (probe), so a careful selection of the probe layout is needed.
All morphological processing of images depends on fitting structure elements. In fact,
there is only one primary operation in morphology, and that is a formal characterization
of the probing concept as shown in figure 2.8 (Dougherty and Lotufo, 2003).

Figure 2.8: Probing an image A with a square structuring element B shown on the right

Marking the positions of where a probe fits or does not fit already returns basic struc-
tural information about the image.

2.4.4.1 Erosion

A fundamental operation of morphology is called erosion. In general, erosion means
the gradual decline of something like soil (geology), which can be adopted in image
processing as well. Erosion in image processing thus means the gradual decline of an
area A by using a structuring element B, where only those areas of A remain where the
structuring element B fits into A completely.
The erosion of a set A (image) by a set B (structuring element) is denoted by the term

A 	 B and is defined by
A 	 B = {x : Bx ⊂ A} (2.9)

where ⊂ denotes the subset relation. A 	 B thus consists of all the points x for which
the translation of B by x fits inside of A. If B is called template, A 	 B consists of
all template origin positions for which the whole template fits into A. Another way of
describing (and also using) erosion is with robotics. Let a robot B be a probing element,
trying to explore surrounding A. Wherever the robot is able to walk, he leaves a mark
on the floor at the centre of his body. Since the robot is not able to reach the corners
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of A, the marks he leaves are naturally smaller than A. See figure 2.9 a) for an example
(ibid.).

2.4.4.2 Dilation

Dilation literally means the stretching beyond normal dimensions and is hence the con-
verse operation to erosion. Dilating an area A by a structuring element B thus signifies
the act of expending A by moving the center of B, adding the exceeding area of the
element B to A. An image A is convoluted and thus coiled or winded together with some
structuring element B.
Dilation is denoted by the term A ⊕ B and is defined by

A ⊕ B = (Ac 	 B̆)c (2.10)

where Ac denotes the set-theoretic complement of A. To dilate A by B, B is rotated
around the origin to obtain B̆, after which Ac is eroded by B̆. The result of the dilation
A ⊕ B is then the complement of the erosion of Ac by B̆. Since dilation involves a fitting
into the complement of an image, it represents a filtering on the outside while erosion
represents a filtering on the inside. The process can also be seen in a different way,
namely that the centre of the structuring element B is moved on area A, and whenever
a point is set in image A, the structuring element B leaves a full imprint of itself. See
figure 2.9 b for an example (ibid.).

(a) (b)

Figure 2.9: Examples of morphological erosion (a) and dilation (b)

2.4.4.3 Opening

Opening is a morphological operation and means the dilation of the erosion of a set A
by a structuring element B or expressed via the mathematical term

A ◦ B = (A 	 B) ⊕ B (2.11)

with the denotations 	 and ⊕ used as explained in 2.4.4.1 and 2.4.4.2, respectively.
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Together with closing (see chapter 2.4.4.4), opening is a basic noise removal tool in
image processing and computer vision. Small objects from the foreground are removed,
placing them into the background. A good way to imagine opening is that the structuring
element B sweeps along the inside of the boundary of A, so that it does not extend beyond
boundary, and shaping the A boundary around the boundary of the element B (ibid.).

See figure 2.10 a for an example.

2.4.4.4 Closing

Closing is a morphological operation applying an erosion to the dilation of an image A
by a structure element B. In mathematical terms:

A • B = (A ⊕ B) 	 B (2.12)

where ⊕ represents the dilation and 	 denotes the erosion as explained in 2.4.4.2 and
2.4.4.1 respectively. Closing removes small holes inside connected areas and connects
previously unconnected areas at close range (ibid.).
See figure 2.9 b for an example.

(a) (b)

Figure 2.10: Examples of morphological opening (a) and closing (b).

2.4.5 Histograms

A histogram is a standard statistical description of a distribution of the number of oc-
currences of colours of a colour space as shown in figure 2.11.
Histograms (colour as well as grey scale histograms) are thus obtained by counting the

number of times each colour (or grey level) occurs in the image. In general, a histogram
consists of a horizontal and a vertical axis, with the horizontal axis depicting the different
colors (or grey levels) while the vertical axis represents the number of occurrences of each
colour/grey level (Swain and Ballard, 1990).
Grey scale images normally bring forth one histogram with horizontal values from 0

to 255 for the 256 grey levels applied. Figure 2.11 shows a grey scale image with its
histogram, where a position close to 0 on the horizontal axis describes the number of
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black or dark grey values, while a position close to 255 on the horizontal axis describes
light grey and white values.
Colour images return an independent histogram for each of the channels used. Thus

the RGB colour space would return three histograms, one for each the R, the G and the
B channel.
This thesis will use only grey scale histograms, hence when the word histogram is used,

it refers to grey scale histograms only.

Figure 2.11: A grey scale image and its histogram.

2.4.5.1 Vertical and Horizontal sum

Another way of representing (especially binary, also called black and white) images is
counting the number of active pixel in each row and also in each column respectively,
resulting in two sum images, the horizontal sum and the vertical sum. Figure 2.12 shows
a real life example from the project belonging to this thesis. To the right and bottom of
the image showing the extracted hand, one can see the vertical and the horizontal sums
built over the lines and columns of the image (Søgaard and Olsen, 2003).
It is easy to see that the basic structural information returned by both the vertical

and the horizontal sums can change significantly as the hand shape changes.

19



2 Theoretical Concepts

Figure 2.12: An extracted hand from a video frame with a resolution of 320x240pixel
with its horizontal (right) and vertical (down) sums.

2.4.6 Bounding boxes

A bounding box is a box surrounding all points of a point set S with a minimum measure.
This can be an area, volume or hyper volume in higher dimensions. In a two dimensional
case, this box can be called minimum bounding rectangle, though in this thesis the term
bounding box is also used for the 2D case.
Two different alignments of this box are possible: the axis-aligned minimum bounding

box, where the edges of the bounding box are parallel to the axis of the Cartesian coor-
dinate system. The other possibility is the arbitrarily oriented minimum bounding box,
where the edges of the bounding box are not constrained to being parallel to the axis of
the coordinate system, but can spread in any direction as long as all the edges of the box
are either parallel or right-angled to each other (Barequet and Har-Peled, 1999).

2.4.6.1 Centre points

The centre of this bounding box can be easily computed by using vector arithmetics.
Taking the lowest x and y values (and more if the dimension exceeds 2) values of the
bounding box and adding half the distance to the highest x and y (and more if not 2D)
will return the centre point of the bounding box.

−→
C = −−−→minP +

−−−−→
maxP − −−−→minP

2
(2.13)

where −→C denotes the centre point and −−−→minP and −−−−→maxP denote the minimum and the
maximum edge point of the bounding box.
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Figure 2.13: A point set S, it’s bounding box in green and its centre point in red.

2.4.7 Image acquisition in C++

For this thesis, it is necessary to retrieve images from a camera in order to recognize the
posed gesture. In C++, there are several libraries available on the Internet to read data
from a camera. Generally, the camera is started by the C++ application and is requested
to take a frame every few milliseconds. Depending on the library used, the image taken
gets stored in a container object which may give various options on what to do with the
image. Some libraries return the raw image in a 1D vector, while others return three 2D
matrices, one for each colour channel, depending on the colour space used.
Many image acquisition libraries are actually image processing libraries, which bring

several useful features with them, facilitating image processing. The focus on image
acquisition and processing is set to speed, consistency and handling of errors, as well as
the includability to C++ projects. Thus, it is wise to use libraries as mentioned above,
since they are optimized with a special regard to exactly these requirements.

2.5 Data pre-processing

Data pre-processing is an essential method for reducing the dimensionality of data, clean-
ing of outliers or removing offsets in data. It is necessary to bring several data sets to
equivalent bases so if classification methods are used, the different classes can be more
easily distinguished. Several methods can be found in literature, such as offset correction,
cluster analysis, dimensionality reduction, data transformation like normalization and ag-
gregation as well as data discretization and data integration. A basic flow chart for data
pre-processing and classification can be found in figure 2.14, displaying an optimization
method for both data pre-processing and classification (Candolfi et al., 1999).
Some selected pre-processing methods are presented in 2.5.1 to 2.5.4.
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Figure 2.14: A flow chart for pre-processing and classification method optimization. Im-
age taken from Candolfi et al. (1999).

2.5.1 Dimensionality reduction

Data is often received in high dimensional forms, such as matrices with thousands of
values for each of the observations. These data often include redundant data or closely
correlated data. As this redundancy can significantly slow down the classification meth-
ods and as it often ambiguously obscures the data, it is important to reduce the dimen-
sionality by two main methods, namely feature selection and feature extraction.
Feature selection tries to find a subset of the original variables by either filtering or

wrapping the data. The methods used here are for example the information gain, also
called Kullback–Leibler divergence for filtering. For further readings see Kent (1983).
Another method is the genetic algorithm for wrapping, see Mitchell (1998) for further
readings.
On the other hand, feature extraction tries to map the original data from a multidi-

mensional space down to a space with fewer dimensions. Some methods to be mentioned
here are the PCA (Principle Component Analysis) as explained by Jolliffe (2002), the
LLE (Locally Linear Embedding) as mentioned by Roweis and Saul (2000) as well as the
LTSA (Local Tangent Space Alignment) as explained by Zhang and Zha (2004).
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2.5.2 Offset removal

Offset removal can mean different things in different fields of application. For waveform
analysis (e.g. signal processing) for example, a time offset often exists, which has to be
removed in order to assess similarities of the waveform, namely amplitude, wavelength
and so on. See Abidi (1995) for further readings.
On the other hand, and this is more relevant for the project described in this thesis,

offset removal can mean “bringing the movements to the same starting or ending point”,
as movements are not always acted out on the same position in the camera’s field of
view. The idea here is to analyze the values of a movement (for example the movement
of the center point of the bounding box) and subtracting the minimum value of the whole
movement from all values both for the x-axis and for the y-axis separately. This leads
to a new movement vector of the same size and form at a different place of the image as
demonstrated in figure 2.15.

(a) (b)

Figure 2.15: Offset removal of a movement. (a) showing the movement at it’s original
place, and (b) showing the new movement with the spatial offset removed
(indicated by the red arrows in (a)).

2.5.3 Cluster analysis

Cluster analysis stands for a couple of methods for both classification as well as data
pre-processing. Clusters are built over a data set - normally consisting of point sets
in either 2, 3 or higher dimensional spaces - using manifold techniques. Outliers that
cannot be classified as being of any introduced cluster can be filtered out easily, in case
the clusters can be easily distinguished (Anderberg et al., 1973). Figure 2.16 shows a
simple example where the outlying samples (not included in the encircled areas) are
excluded from further usage.
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Figure 2.16: A simple example of a cluster analysis

2.5.4 Normalization, standardization

Normalizing or standardizing data means indicating how many standard deviations an
observation is above or below the mean. To do so, some preliminary calculations over
the whole data need to be conducted.
First, the population mean has to be calculated by summing up all values of all samples

and then dividing the result by the number of values:

µ =
1
n

n∑
i=1

xi (2.14)

Then, the standard deviation of the population has to be calculated by summing up
the square of all the raw values of all of the samples minus the population mean, dividing
the result by the number of values and finally taking the square root

σ =

√√√√ 1
n

n∑
i=1

(xi − µ)2 (2.15)

Once those two values are calculated, a new value is normalized to a standard score (or
so called z-score) by subtracting the mean value µ from the raw value to be standardized
and finally dividing the difference by the standard deviation σ.

z =
x− µ
σ

(2.16)

This way, we receive a quantity z which represents the distance between the raw score
x and the population mean µ in units of the standard deviation σ.
It is important to understand, that neither the sample mean nor the sample deviation

can be used here, but both the population mean and population standard deviation are
required. Often, knowing those two required values is unrealistic, so in a lot of cases
- where the entire population can not be measured - the standard deviation may be
estimated by using a random sample (Larsen and Marx, 2001).
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Changing the interval
Another way to normalize data is by changing the interval in which they reside. For

an interval [−1, 1], this can be done by applying the formula

x̂ =
x −midrange

range
(2.17)

to each of the values. The midrange and range stand for the formulas

midrange =
(min(~x) + max(~x))

2
(2.18)

and
range = max(~x) − min(~x) (2.19)

For this method, no knowledge about the the complete set is necessary, as only the
current example is taken for further calculations. Using previously offset corrected data,
midrange and range change to midrange = max(~x)

2 and range = max(~x), as the
minimum value of an examples is zero for all examples.

2.6 Machine learning

Machine learning is a scientific discipline for developing methods which allow a computer
to learn complex relations based on data. It is mainly used to automate certain processes
such as pattern recognition and to make intelligent decision based on data presented to
the computer. Thus, machine learning is closely related to the fields of statistics, artificial
intelligence, pattern recognition, data mining and probability theory (Michie et al., 1994).

2.6.1 Neural Networks

A neural network (NN), also called artificial neural network (ANN), is a computational
paradigm whose structure is based on biological nervous systems, such as the human
brain. Composed of neurones, highly interconnected processing elements, NN’s learn by
example. NN’s are configured for each specific application by a learning process, implying
adjustments of synaptic connections existing between the neurones.
Neural networks are often used to identify the intent in complex or imprecise data and

are therefore able to extract patterns and detect trends too complex for human beings.
Depending on the layout of the network (as described in 2.6.1.3), neural networks can
generalize and classify well after a structured training (Haykin, 1994).

2.6.1.1 Simple Neurons

In the human brain, typical neurons collect signals from others through a host of fine
structures, called dendrites (figure 2.17). The neuron sends out spikes of electrical activity
through the main strand, called an axon. The axon then splits into thousands of branches
and at each end connects with the dendrite of another neuron. This connection is called a
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synapse. When a neuron receives enough input surpassing a certain inhibitory threshold
(also received from other neurons), the neuron sends a spike of electrical activity down
its axon. Learning now occurs via the changing of the influences of the synapses (Cross
et al., 1995).

Figure 2.17: A neuron and its components. Image taken from CedarCrestCollege (2010).

The same basic idea is also used for artificial neurons, namely the essential features
of neurones and their interconnections, where a computer is programmed to simulate
these features. However, since the knowledge of biological neurones is incomplete and
computing power is limited, the models generated are gross idealizations of real neural
networks.

2.6.1.2 MCP Neuron and Perceptron

McCulloch and Pitts (1943) introduced a new model, the MCP neuron, since the simple
version of an artificial neuron was not very useful . The difference from the previous
model is the weighting of the inputs, meaning that the decision making is dependent on
the weight of the particular input. This weight is a number which is multiplied with the
input, resulting in the weighted input. These weighted inputs are then added together
and if this sum exceeds a certain threshold, the neuron fires.
Adaptation to particular situations by this very flexible and powerful neuron is done

by changing its weight and threshold. Various algorithms for this adaptation exist,
for example the Delta rule (in feed-forward networks, see 2.6.1.5) and the back error
propagation (in back propagation NNs, see 2.6.1.6) (McCulloch and Pitts, 1943). In
1958, Rosenblatt introduced a new concept building on the ideas of McCulloch and
Pitts: the perceptron. The perceptron (figure 2.18) is essentially an MCP neuron where
the inputs are first passed through some pre-processors, also called association units.
These association units detect the presence of certain specific features in the inputs. In
fact, as the name suggests, a perceptron was intended to be a pattern recognition device,
and the association units correspond to feature or pattern detectors (Rosenblatt, 1958).
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Figure 2.18: A single-layer perceptron. Inputs xn are weighted by weights wnj , summed
up by the transfer function

∑
. The activation function ϕ in combination

with the threshold θj finally leads to the activation oj . Image taken from
WikipediaUser:Chrislb (2010).

2.6.1.3 Layouts of Neural Networks

Figure 2.19 shows the standard layout of a neural network. From left to right, we have
the input layer, the hidden layer and finally the output layer returning the result. The
hidden layer is so named because it works like a black box, processing data internally
without the possibility to actually measure the outcome at the hidden unit directly. Of
course, more than one hidden layer can be implemented (Haykin, 1994).

Figure 2.19: A simple feed-forward network. Image taken from Intel (2009).

Feed-forward Neural Networks
Feed-forward Neural Networks (FFNN’s) allow signals to travel in one direction

only, from input to output (figure 2.19). No feedback machanisms or anything similar
are implemented, meaning that the output of one layer has no influence on the same
layer. FFNN’s tend to associate inputs to outputs and are thereby extensively used in
pattern recognition (Haykin, 1994).

Feedback Neural Networks
In feedback NN’s, a signal can travel both ways, back and forward in the network,

meaning that the outcome of one layer may influence the same layer in the next step.
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Their states are constantly changing until they reach a point of equilibrium. These NN’s
are also referred to as recurrent or interactive NN’s (ibid.).

2.6.1.4 Activation functions

Activation functions are the functions that decide whether a neuron fires or not. Several
different functions are used in neural networks, where the identity function is the most
simple. The input equals the output. Another possibility is a threshold function (figure
2.20) which changes inputs higher than some threshold to a maximum value (normally
1.0) and inputs lower than that threshold to a minimum (normally -1.0 or 0.0). This is
often used in perceptrons (Stone, 1986).

Figure 2.20: Linear activation function, hard transition.

A third activation function is a “soft” threshold function, also called sigmoid (figure
2.21 with x and y axis from -1 to 1, smooth transition), which smoothes out the values
near the threshold, with the formula

g(h) =
1

(1 + e − h)
(2.20)

where h is the input to the unit (ibid.).

Figure 2.21: Sigmoid activation function.

2.6.1.5 The Delta Rule

The Delta Rule is used in supervised learning with feed-forward networks with multiple
output units and continuous activation functions and is also called the least mean squares
rule (Stone, 1986). When the activation function of the output unit is the identity
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function, the delta rule looks like this:

4wji = η(tj − xj)xi (2.21)

where xi represent activations, t represents a target, and η is a learning rate between
0.0 and 1.0 with i and j being the indices (Stone, 1986). To derive the delta rule for
the more general case, i.e. when the activation function is a differentiable function, the
gradient descent learning is used. Gradient descent learning means learning by moving
in the direction that seems to be the best locally (Stone, 1986). For supervised neural
network learning, the best direction to move in weight space is found by watching the
change of global error according to the weight, for each weight.
A global error function is used in order to find the “best” direction for each pattern.

First, we calculate the sum of the errors over all outputs with
∑

1/2(tj − xj)².
Then, we want to move in “weight space” in the direction opposite to the direction of

the slope of the error function, which will move us towards a region with a lower error.
The size of the move should be related to the descent of the slope, otherwise we might
step over the error minimum we want to find. This could lead to oscillation around this
minimum (ibid.).
The following describes the calculation process (ibid.):

1.) To find the slope, we take the partial derivative of the error with respect to the
weight. But the only element in the sum of error terms that depends on the weight is
the one for the output unit where that weight ends (j in what follows).

∂E

∂wji
=

∂[12(tj − xj)²]
∂wji

(2.22)

2.) Using the chain rule, we can decompose this derivative into two that are easier to
calculate:

(∂[1/2
(tj − xj)²

∂xj
)(
∂xj

∂wji
) (2.23)

3.) The first derivative is easy to figure; it is

− (tj − xj) (2.24)

4.) The second derivative can be decomposed using again the chain rule, if we remem-
ber that the activation of unit j is a function of the input to the unit, hj , which is in
turn a function of the weights into the unit.

∂xj

∂wji
= (

∂xj

∂hj
)(
∂hj

∂wji
) (2.25)
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5.) Since the activation of an output unit is the activation function g applied to the
input h, the first derivative on the right-hand side of 4.) is just

g′(hj) (2.26)

that is, the derivative of whatever the activation function is at the value of the current
input to unit j.

6.) The second derivative on the right-hand side of 4.) can be derived as follows:

∂hj

∂wji
=

∂(
∑
xkwjk)
∂wji

= xi (2.27)

since none of the other weights or input activations depend on wji.

7.) Putting all of the parts together, we get

∂E

∂wji
= −(tj − xj) g′(hj)xi (2.28)

8.) Remember that we want the weight change to be proportional to the negative of
the derivative with respect to the weight. So, with a learning rate to control the step
size for weight changes, we get the more general delta (least mean squares) learning rule

4wji = η(tj − xj) g′(hj)xi (2.29)

For the identity activation function the derivative is 1, so equation 2.21 is just a special
case of equation 2.29 (ibid.).

2.6.1.6 Backpropagation

Backpropagation is a method suggested in 1974 by Paul Werbos (Werbos, 1974), but
ultimately introduced in the mid 80’s, among others by Rumelhart, Hinton and Williams
(Rumelhart et al., 2002). The general idea is to have feedback from the output of a
network as to how the weights and biases are updated. In order to do so, the output
of the network for a backpropagation set is compared to the actual values of this set,
where the difference is called error signal d of the output layer neuron. Since the output
values of the internal neurons in the hidden layers are not known, it is impossible to
directly calculate the error signal for those neurons. The way to train a multi-layered
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network efficiently is by propagating the error signal δ back to all neurons which had an
influence on the output layer neuron in question (figure 2.22). The weight coefficients
are the same as in the direction of learning, the only parameter changed is the direction
of the data flow. For each neuron reached, a new error signal δn is computed and the
weight coefficient of this neuron might be modified (ibid.).

Figure 2.22: The first step of the backpropagation algorithm. Image taken from Bernacki
(2005).

When all the neurons are updated, the next training step is conducted and the next
backpropagation step follows.

2.6.1.7 Overfitting, early stopping and stopping criteria

Overfitting means the effect when a network trains on the training set and gets better as
far as the output is concerned. At some point, this only relates to the training set and
not to unseen examples, where the error actually increases with the training frequency.
The network thus becomes very good in dealing with one set (the training set) while it
becomes poorer dealing with any other set, namely the test set (Prechelt, 1998).
In order to avoid this effect, the training set is split into a rather large new training set

and a smaller validation set. Then, early stopping is used to abort the training as soon
as the error on a validation set increases (figure 2.23: vertical axis: validation set error,
horizontal axis: time (in training epochs)). The network with the best performance (e.g.
with the lowest error) on the validation set is then also used for actual testing with a
separate set of data (ibid.).

Figure 2.23: A real validation error curve.
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Early stopping is often used in neural network training and often results in well gener-
alizing networks while it does not do so in a mathematically well defined way. The time
to actually stop the training early is hard to define, since the performance on a validation
set can increase during a short instance and decrease afterwards to an even lower level.
In order to avoid stopping too early, different stopping criteria can be used. Stopping
criteria can be divided into several classes, according to how the criterion is calculated
(ibid.):
The first class of stopping criteria is defined by stopping as soon as the loss of general-

ization exceeds a certain threshold. Sometimes however, if the training is still progressing
very rapidly, it is better to avoid stopping. The cause is explained easily. When the train-
ing error still decreases quickly, loss of generalization has a higher chance to be “mended”.
Overfitting often only sets in when the error starts to decrease slowly. To write this down
in a formal way, a training strip of length k is defined to be a sequence of k epochs num-
bered n+ 1 : n+ k with n divisible by k. E signifies the training error with Etr(t) being
the error calculated on the training set up to the epoch before the current one. The
measurement of the progress of training Pk(t) (in thousands) after such a training strip
is then

Pk(t) = 1000 ∗ [
∑t

t′=t−k+1 Etr(t′)
k ∗ mint

t′=t−k+1Etr(t′)
− 1] (2.30)

That is, how much larger the average training error during the strip was than the min-
imum training error. Note that this measurement of the progress of training is high for
unstable phases of training, meaning phases where error on the training set goes up rather
than down. This is intended, because a lot of training algorithms sometimes oscillate by
taking steps too large in weight space. The measurement of progress Pk(t) will, however,
approximate zero in the long run if the training is globally stable (ibid.).
Thereby we can define the second class of stopping criteria, which is using the quotient

of generalization loss and progress. The third class of stopping criteria is completely dif-
ferent: it stops when the generalization error increases in a number of s successive strips.
When the validation error increases more than once (in this case during s consecutive
strips), such increases indicate the beginning of final overfitting and due to this fact,
training is stopped.
Because neither of these criteria can guarantee abortion of training, we need a further

rule, namely that training is stopped when the progress drops below a threshold or after
a certain amount of epochs. Stopping criteria are all used the same way: When they stop
the training after some t epochs, the result of training is the set of weights that showed
the lowest validation error (ibid.).

2.7 Mean squared error

In order to be able to implement early stopping and also for training and validation
output assessment, an error estimator has to be used. A standard error estimator is the
so called mean squared error (short MSE), which is the difference between the real value
and the output of the neural network. In mathematical terms, the error value e can be

32



2 Theoretical Concepts

described by:
ei = Yi − Ŷi (2.31)

where Yi is the real value and Ŷi stands for the output of the neural network. This ei is
now first squared and then summed up over the number of occurences and then divided
by the number of occurences. Thus, a mean of the squared error estimator is calculated:

MSE =
1
n

n∑
i=1

e2i (2.32)

Using this error estimator, the output error of the neural network can be assessed for
the training error and the validation error as well as for the test set output, which can
in combination be used as a measure of quality of the training (Allen, 1971).

2.8 Linear correlation

Linear correlation indicates the relationship between two variables, especially the strength
and the direction of this relationship. There exist several correlation coefficients for
different situations. The best known is probably the Pearson product-moment correlation
coefficient, which is obtained by the dividing the covariance of the two variables by the
product of their standard deviations (Rodgers and Nicewander, 1988).
In mathematical terms, the correlation coefficient ρX,Y between two random variables

X and Y with expected values µX and µY and the standard deviations σX and σY is
defined as:

ρX,Y =
cov(X,Y )
σXσY

=
E((X − µX)(Y − µY )

σXσY
(2.33)

where E is the expected value operator and cov stands for covariance. The correlation
is defined only if both standard deviations are finite and both of them are nonzero. The
correlation cannot exceed 1 in absolute value due to the corollary of the Cauchy-Schwarz
inequality (please see Buskes and Van Rooij (2000) for further reading). The correlation
will be 1 in case of an increasing linear relationship, and -1 in case of a decreasing linear
relationship. It will become 0, if there is no linear dependence between the two variables.
The closer the correlation value is to either 1 or -1, the higher is the degree of the linear
relationship between the two variables.
In case there are n measurements of X and Y (written as xi and yi with i =

1, 2, 3, ..., n), then the Pearson product-moment correlation coefficient can be used as
a measure of the linear relationship of the two variables X and Y . In this case, the
Pearson correlation coefficient is written:

rxy =
∑

(xi − x̄)(yi − ȳ)
(n − 1)sxsy

(2.34)

where x̄ and ȳ are sample means ofX and Y , sx and sy are the sample standard deviations
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of X and Y and the sum is from i = 1 to n. This can be also written in the form:

rxy =
∑
xiyi − n̄xȳ

(n − 1)sxsy
=

n
∑
xiyi −

∑
xi

∑
yi√

n
∑
x2

i − (
∑
xi)2

√
n

∑
y2

i − (
∑
yi)2

(2.35)

The square of the sample correlation coefficient rxy, R2 is also known as the coefficient
of determination and gives some information about the goodness of fit of a model and
is thus used for assessing the quality of the linear relationship. It is important to state,
however, that correlation does not imply causation, which means that correlations may
provide valuable information about causal relationships among variables, but a high
correlation does not necessarily provide evidence, that the change in one variable results
in the change of the other variable as well (Rodgers and Nicewander, 1988).

2.8.1 Master templates

In order to correlate any values, there has to be some kind of template to correlate to
(sx and sy in equation 2.35). These templates are patterns built up over several real
life examples of values. The values are for example summed up and then divided by the
number of patterns used. This way, a mean curve can be deducted of how for example
a signal normally looks like (see figures 2.24 and 2.25 for real life examples from this
project). Hence, new examples of the same or different patterns can be correlated to
these master or mean templates as shown in figure 2.26.

Figure 2.24: The master templates of the centre point movement for selected gestures.
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Figure 2.25: The master templates for the form vector (horizontal sum only) for selected
gestures.

Figure 2.26: Correlations of a new movement vector to the single master template of a
few movements.
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2.9 Validation methods

The validation techniques used in prediction systems are essential for creating a working
system. Without validation, the system with the best concept is prone to failure, as it
would not be sufficiently tested for correctness. Both the integrity of the system in itself
as well as the validity of the systems output have to be extensively tested, preferably
in an automated way. This is especially true when using classification methods, as the
automated decision making processes of the machine have to be thoroughly tested, so that
as few as possible false positive predictions or recognitions may occur. Several validation
methods are suggested in literature, only a few used should be mentioned here.

2.9.1 Cross-validation

Introduced by Geisser (1974), cross-validation is a method commonly used in machine
learning in order to estimate error rates of prediction rules. For this method, the training
set is split into one, new training set and a validation set, which is then used to estimate
the error on the outcome of a prediction rule by testing the machine learning algorithm
with the validation set and comparing the output with the actual values related to the
single observation.

2.9.1.1 Leave-one-out cross-validation

If only a few training examples are available or new training examples are costly to get,
the leave-one-out method may be applied. As the name suggests, one training example
is extracted from the rest of the training set and stored as a test example. The rest of
the training set is used for training of the used algorithm while the test sample is then
used for assessing the quality of the prediction method. This method is then applied
incrementally on the whole training set, so that every training example is used as a test
example once with the remaining set used for training. So if for example a training set
with a size of n = 25 examples is given, applying the leave-one-out method would lead to
24 separate training/testing combinations. The overall validation error is then calculated
by dividing the number of wrongly estimated values by the number of total examples
(Kohavi, 1995).

2.9.1.2 K-fold cross-validation

The idea is to split up the training set into some number of n equal parts, for example
k = 10 (called 10-fold cross-validation in this case). From these parts, one is selected as
a validation set, while the other k − 1 subsets are concatenated to a new training set.
The cross-validation process is then applied k times with each of the subsets used once
as a validation set. The results of these k cross-validations can then be averaged to have
one single prediction. The main advantage of this method lies in the fact that all of the
observations of the training set are actually used for training as well as for validation,
which suggests a high possibility to have a well generalized machine learning algorithm
for predicting new samples (ibid.).
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As already mentioned earlier, the idea is to create a gesture recognition module that
can react to hand gestures in order to support the already existing eye tracking system
implemented in the iCOMMIC. In the first part of this chapter, the analysis of the current
situation and currently available systems is conducted. Deducing from the analysis, the
basic requirements are built up and analyzed as well. Building up on the analysis of the
requirements, the functional requirements are set up and are analyzed. As a last step, the
final requirements are computed and the systems concept, design and implementation
are built up.

3.1 Strategy of the analysis

There exist several systems that could be used to build up a gesture recognition module.
By assessing the available ideas, the most suitable combination of methods should be
found to implement a system as close to the requirements as possible. As a main source
of information, expert interviews have been conducted to be able to assess the main
requirements of the application. Furthermore, a detailed hardware analysis is done,
deciding about the hardware aspects of the system. Additionally, a time frame analysis
is conducted in order to assess the time given for each of the processing steps, further
examining the possibilities of the project as far as (for example) programming language is
concerned. With relation to the time frame analysis, available hand tracking methods are
analyzed and decisions about which methods to use are made. Assessing the possibilities
of the recognition/classification methods as well, the analysis is concluded. Deducting
from the expert interviews and the complete analysis (hardware, time, hand tracking
and recognition methods), the requirement analysis and finally the functional analysis
are conducted leading to the final concept and thus, the design of the project.

3.2 Preliminary Analysis

3.2.1 Expert interviews

In the course of the build-up of this project, expert interviews were conducted concerning
several aspects of gesture recognition. The idea was to interview experienced computer
users - spending eight or more hours on the computer per day - about their thoughts
about gesture recognition, their ideas for usable gestures and the ideas for usage of the
gestures. Furthermore there was a second part, where similar questions about gesture
recognition in combination with eye tracking were asked. The goal was to get an overview
about the possible usage of the system, about some basic features needed at any cost
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and if the idea of gestures as an input modality would be accepted by the interviewees
(and thus the greater public) at all.
The questionaire (see Appendix A) was developed in cooperation with Mag.rer.nat.

Sandra Trösterer, a specialist on work psychology at the FG-MMS.

3.2.1.1 Interviewees

The fields of interest of those interviewed range from work psychology to web develop-
ment, software design and software development. All of the interviewees thought of their
computer knowledge as advanced to highly advanced, so that the expert criteria was met.
As far as education was concerned, all of the questioned experts finished their diploma
in their related field being in their doctorate studies with one in a post doctorate year.
All in all, five experts were interviewed.

3.2.1.2 Gesture device experience

Half of the interviewees had experience with these kind of tools, while half did not. Of
the half of the interviewees, all of the group has experience with both single touch devices
as well as with multi touch devices. Asked about the amount of time they use gesture
based user interfaces per day, our interviewees answered to using the devices one hour
per day on average.

3.2.1.3 Commands and related hand gestures

After a short introduction about the field of hand gesture recognition and the planned
set up as mentioned in 3.2.2 to 3.2.4, the first questions about possible commands and
the corresponding hand gestures were asked. The setup of the system suggested usage
of one hand only, as the field of view of the camera prefered such a usage. All of the
experts came up with similar ideas about which commands should be implemented, of
course with slightly different gestures for each of the commands. Those commands were:

• activate:
to activate a certain button or something similar as used with the mouse, the single
click, pressing enter.

• next :
to go to the next element in a list, to turn a page, to the right.

• last :
to go to the prior element in a list, to go back one step, to the left.

• up:
to turn up the volume, to zoom in, to scroll up.

• down:
to turn down the volume, to zoom out, to scroll down.
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• mark/select/grab:
to mark or select an element on the screen, also: to grab an element for moving or
removing.

• unmark/deselect/release:
opposite gesture to mark/select/grab, to release an object.

• stop:
to stop a certain action.

Further commands included delete, rotate and copy as well as some application related
commands like open inventory in games, start chat in games and begin spell check in
word processing.
Please see 3.3.7 for the commands and gestures derived from the interviews as well as

from the additional analysis.

3.2.1.4 Usability

The next question was about the usability of the system and how well fitted the user
would see a hand recognition module for every day use. The answers were unambiguous
about this topic; all of the experts answered with either very usable or rather usable
without failing to note, that they would need a certain amount of time to get used to
the system.
Asked about whether the experts would use such a system themselves, all of the inter-

viewees answered with yes and asked about the reason for this, the answers all pointed in
the same direction, namely, that the system would allow a more natural, more intuitive
control of the computer.
Finally, the question about whether it should be possible to modify the gestures by

themselves, all of the experts answered with a definite yes and when prompted for a rea-
son, said that it is comfortable to be able to set up their own gestures for the commands,
just like (for example) setting up their own short cut keys on the keyboard.

3.2.1.5 Combination with eye tracking, usability

The second part of the questionnaire concerned the combination of the hand gesture
recognition system with an already existing eye tracking system. Introducing the idea
shortly, the experts were asked about whether they would see a benefit of combining
those two modalities, where the answer was a uniform definitely benefitting. Asked about
why they would think so, the interviewees answered, that the eye tracking could be used
for navigation which they already discovered was not favoured by the gesture recognition
system in and of itself. In order to decrease the need for the mouse, eye tracking could
be used for navigational input while gestures could be used for modificational input and
thus this combination would be very favourable.
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3.2.1.6 Combined commands

Subsequently, the experts were asked, if they could imagine additional commands and
thus gestures that could come along with the combination of gesture recognition and
eye tracking. The outcome was similar in all the users as well, where they imagined the
following additional commands:

• zoom in:
as the gesture up described in 3.2.1.3, but with its own gesture and related to the
position of the centre of attention as returned from the eye tracking.

• zoom out :
same gesture as zoom in, but other direction (down).

• delete:
deleting the element in the focus of attention.

• move:
move an element first selected by mark/grab/select, looking at the destination,
releasing the element by unmark/deselect/release.

• close:
close a certain window or application.

3.2.1.7 Application examples

As the next question, the experts were asked to think about certain application examples
and more general, the fields of application which they could imagine such a system being
used in. Depending on the field of interest of the individual users, the answers naturally
differed slightly, but again, there was a consensus reached with regards to several fields:

• Reading text:
using scrolling, zooming, next and last to navigate while reading text.

• Image viewing:
using next, last, rotating and zooming for browsing image catalogues.

• File browsing:
using the combination of eye tracking and gesture recognition to browse files in (for
example) Windows Explorer. Includes copying, moving and deleting of files.

• Internet browsing:
using the navigational commands like scrolling and zooming to read internet pages,
while using command activate to follow links or show images, next and last to go
back and forth in the browsing history.
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3.2.1.8 Projected acceptance of the system in public

The final question of part two of the questionnaire asked the interviewees about their
feelings concerning the acceptance of the gesture recognition module in combination
with eye tracking in widespread public usage. The answers here were similar, but not
unanimous. However, the range of public acceptance was generally seen as high to
very high, where most of the experts said, that it would definitively take some time to
introduce the system to the public and that acceptance would only come about after a
certain amount of time went by, seen as the inducing phase. Furthermore, the system
would have to work flawlessly; otherwise acceptance would not rise at all.

3.2.1.9 Further modalities

The last part of this interview was about the future of this project and thus about further
modalities to be included into the iCOMMIC. Various additional fields were mentioned:

• Emotions:
Recognize facial expressions and further indicators for emotional state such as heart
rate and skin resistance in order to understand the current emotional state of the
user.

• Speech recognition:
Including speech recognition software could make interaction even more intuitive
and make the system a real challenger to the current mouse and keyboard combi-
nation.

• Electroencephalography (EEG) and the brain computer interface (BCI):
Reading the brainwaves of the user could reveal to be a powerful tool to understand
the user’s ideas faster. BCI is already in a progressed state of development, it would
however work against the touchless principle of the iCOMMIC.

• Projected keyboard:
A keyboard that only appears if necessary for textual input.

Generally, speech recognition was mentioned as to be seen as the next modality to be
implemented into the iCOMMIC, as this would already cover the main output of the
human body, namely voice and gestures with the eye movement used as a navigational
device. All of the experts suggested that the acceptance of the system would further
rise by implementing another modality, mentioning that in the time of introduction, the
system could be used as an addition to the current modalities of mouse and keyboard
only.

3.2.2 Hardware analysis

The hardware analysis assesses the up to date methods as described in the theoreti-
cal concepts chapter (see Chapter 2) and deducts the necessary hardware requirements
from there. Furthermore, some project specific decisions are made and substantiated by
reasoning. As a final part, the decisions made are summarized in 3.2.2.5.
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3.2.2.1 Touch based gesture recognition and (multi-)touch pads

In the past few years, more and more touch based gesture recognition modules have come
on to the market such as touch screens for portable computers and multi-touch pads such
as those present in the iPhone and iPod touch. These modules react on gestures executed
with fingertips on the surface of the screen, where sensors included into the surface track
the touch and react accordingly. Gestures used in this field include navigational and
modificational commands such as browsing multiple page entries, selecting icons and
entries, inputting text on a virtual keyboard as well as other similar actions.

3.2.2.2 Vision based hand gesture recognition

Several methods of video based gesture recognition have already been published. Several
of these take advantage of wearable devices and appendages to the human body, such
as data gloves or other markers fixed on the fingers for quick hand detection (Takahashi
and Kishino, 1991) while others try to segment the image into hand and non-hand by
simply assessing the colour image (Stark et al., 1995). Additionally, different methods of
classification have been used, such as neural networks (Nolker and Ritter, 1998), hidden
Markov models (Liu and Chen, 2003) as well as pure correlation (Stark et al., 1995).
Some try to assess postures (i.e., static gestures) (Assan and Grobel, 1998), while others
try to recognize movements of the hand, namely sequence gestures (Rigoll et al., 1997).
The general idea though is mostly the same. Gestures posed in front of a camera should

be detected and recognized. In only a few of the articles mentioned above however, is
the system used for actual feedback to the computer in the form of commands issued to
control the computer.

3.2.2.3 iCOMMIC multimodal interaction

iCOMMIC so far is a system that allows a touch free communication between human
and computer. By using an infra red camera to get the position of the eyes on screen, the
user can sit in front of the system without needing to touch either a keyboard, mouse or
anything else for that matter. In keeping with this idea, the gesture recognition module
should be touch free as well, eliminating the touch based gesture recognition modules
from further consideration and adapting to use a vision based approach instead.

3.2.2.4 Camera positioning

Another main issue of the system is where to position the camera. Since the system
should combine gesture recognition and eye tracking, the position of the eye tracking
system has to also be considered.
The eye tracking module is fixed under the screen of the system, which leaves the

camera used for hand tracking only a position on the top of the screen. Since the idea is
to use colour for the tracking of the hand (see 3.2.4 for deduction), it seems favourable
to position the camera so that it points downwards in order to avoid the head of the user
obstructing the field of view of the camera so as to provide for easier tracking. Figure
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3.1 shows an example of how the camera could be set up with the field of view marked
in red. To set up the camera on one side of the screen might also be favourable, since
there is no need to extract the second hand, so long as it does not appear in the image.
Regardless, if a second hand appears in the field of view, it has to be extracted from the
image.

Figure 3.1: Positioning of the camera

3.2.2.5 Deduction of the hardware analysis

Deducting from the gesture recognition module analysis in 3.2.2, the hardware has to be
some kind of camera. As connectivity is also an issue for one-for-all systems, the camera
should be connectable to the PC via a simple interface such as the USB 2.0 interface.
Furthermore, it would be practical to use low cost cameras, suggesting that simple we-
bcams should be used. Since different webcams return a different quality of images, the
cameras should be high-end webcams. To be able to change the basic settings of the cam-
era, the market leader Logitech was chosen, as there exists a good interface for changing
the camera’s settings. Furthermore, a very important benefit of the Logitech high-end
webcams is, that they include a natural light feature, returning a very good image illu-
mination and thus colour representation, only gradually influenced by the surrounding
lighting of the scene.
A very important decision that has to be made is about which method to use to extract

the hand from the image. Since the main idea of this thesis is to implement a touch free
system, hand tracking gloves will not be used. Furthermore, no additional sensors or
coloured patches should be needed in order to make the system a one-for-all system.
Thus, the skin colour segmentation method should be used for the realization of the
system.

3.2.3 Time frame analysis

To meet the needs and standards of the iCOMMIC the gesture recognition method has
to be a real time application, meaning that recognition has to respond to input very
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quickly. As the frame rate for webcams can be up to 30 frames per second, that would
leave a calculation time of as little as 33 milliseconds for image processing (step one),
movement detection (step two) and recognition (step three). As we don’t have to trick
the eye though, high frame rates are not especially needed. To stick with the idea of
having a real-time system, however, and in order to have a timely resolution of the hand
gestures, the frame rate will be set to 15 frames per second, leaving the system a time
frame of 66 milliseconds to process all three steps mentioned before.

3.2.3.1 Programming language

Additionally, the timing of the system is greatly influenced by the programming language
chosen. Different languages have different time concepts. For example Java, which is a
very convenient programming language, as there is no need for memory handling, brings
a major timing setback with itself. The concept of the garbage collector, which collects
and recycles unused memory used for variables, objects and containers, greatly influences
the timing of the system. Without the programmer having significant influence on the
timing, the garbage collector uses some processing time every 150 milliseconds to recycle
the collected memory. Since the timing of this cannot be influenced greatly, Java is not
a language for real time systems as is needed for this project.
Thus, another language has to be chosen. Since in C# the concept of the garbage

collector exists as well and as C is very low level and has little library support for webcam
connections and image processing, C++ is the language of choice. The object oriented
approach (also an advantage to C) combined with the possibility to manage the memory
by hand and thus not be dependent on the garbage collector makes this language ideal
for this project as it satisfies all necessities.

3.2.4 Hand tracking and recognition method analysis

As already suggested in 3.2.2.5, the hand tracking should be implemented by extracting
colour components from the video frames. The only question remaining is that of which
method to use. As the conversion of images to different colour spaces is generally a time
consuming process, the method suggested by Gomez et al. (2002) and shortly described
in 2.4.2.1 might not be the best solution for this time critical pre-processing step. The
RGB extraction rate as described in 2.4.2.1 does not look very promising either due to
the high occurrence of false positive recognition. Hence, the third method suggested in
2.4.2.1 and by (Stark et al., 1995) - the extraction of the colour components from the
YUV/LUV colour-space - seems to be the most promising and will be considered to be
the method of choice.

3.2.4.1 Quality assessment of the hand tracking module

The hand tracking module is the combination of first the image processing for each frame,
extracting the hand features and returning an image holding the shape of the hand, as
well as the bounding box and the centre point for each frame. Secondly, the movement
detection and thus the hand tracking have to be calculated as well.
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Hand tracking has to be of high quality, meaning that tracking of the hand can never
be lost as long as it is in the field of view of the camera. Furthermore, the calculations
needed have to be done as quickly as possible, so that the frame rate achieved by the
system can be seen as real time. Since these two steps have to be handled in two thirds
of 66 milliseconds (as deducted from 3.2.3), the time frame given for the hand tracking
module is about 44 milliseconds.
Automatic validation is very difficult here, so the quality has to be determined by

hand, meaning assessing the extraction quality by inspection of each and every frame.
In order to be able to assess the quality of the hand extraction, a video debug mode
needs to be implemented showing the binary output image of the extraction algorithm if
wanted. This way, it is possible to recalibrate the camera during runtime of the program
by shifting camera settings using the camera’s own lighting settings.
As high resolution images are not needed for this task, the resolution of the camera

can be set to a low 320x240 pixel, speeding up the process by a factor of 4 as compared
to the next highest resolution setting (640x320 pixel), with an image 4 times the size of
the lower resolution to be processed.

3.2.4.2 Static gestures or gesture sequences?

The next question that has to be answered is which kind of gestures the system should
be able to recognize, rather static postures as suggested by Assan and Grobel (1998) or
sequences of movement as suggested in Rigoll et al. (1997).
Since the static postures demand a recognition phase for every single frame and as

there are fewer possibilities for overall gestures, the idea would be to implement a gesture
sequence classifier instead of the static gesture recognition. The benefits of either one
of the methods are multifarious; however, moving the hand is a more natural form of
communication then posing static gestures.

3.2.4.3 Recognition method analysis

For the recognition method, there exist various possibilities. Hidden Markov models
as proposed by Liu and Chen (2003) could be one option, as could be neural networks
(Nolker and Ritter, 1998). Additionally, a simple correlation in combination with pre-
built master templates for each of the gestures as described in (Stark et al., 1995) might
also be a method with a satisfying outcome.
In order to get satisfying results, a combination of two methods will be used. Neural

networks will by used as a pattern recognition method. However, this method is not
flawless, as previous experiences have shown, especially, since classification via a neural
network returns probabilities, not only of which class the input could be of, but assigns
a class for input which is itself classless. Thus, a simple correlation for pre-filtering will
be used in order to decide if an incoming gesture is in fact a gesture at all or not. Also,
a combination of the output of the neural network and the output of the correlation
might be an interesting approach, as this approach will probably yield a more accurate
classification than using just one of the methods.
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3.2.4.4 Problems of gesture recognition

Three main sources of problems can be differentiated:

• Speed of gestures:
A very important issue that might occur in gesture usage is that gestures are not al-
ways acted out in the same speed and that different gestures need different amounts
of time to be conducted, which might interfere severely with the recognition pro-
cess. In order to prevent problems, sequences have to be recalculated to a certain
length, omitting surplus frames if a gesture takes longer than the predefined num-
ber of frames or adding blank frames to the end of a gesture if the gesture needs
less frames for execution.

• Bad lighting:
Another problem to be removed is bad lighting of the scene, which can interfere with
the tracking of the hand as the colour of the hand could be altered significantly
by bad lighting. As artificial light has a high share of red components, it will
change the colour perception decisively, so white light has to be used. Examples
of white light include that emitted by the sun, but also by fluorescent lamps and
light emitting diodes (LED’s). Also, hardware including the “natural light” feature
can help significantly in improving this issue.

• Background of the scene:
The background of the scene is vital, as background colours can be similar to the
colour of skin. Hence, the background of the scene has to be a uni-colour board or
desk with a high difference to colours with high red/green proportions. Black or
white colours without any traces of colour are definitely preferential.

3.2.5 Discussion

Finishing the analysis, several important decisions have been made. First, the hardware
decision was made, where the decision came to using an average (but not too simple)
webcam. Secondly, the frame rate used for this project was set to be at 15 frames per
second, leaving the system enough time to pre-process every frame, detect movement and
if necessary classify a gesture.
Furthermore, the method of hand extraction was determined, bringing forth the deci-

sion of using the extraction of the hand by colour assessment in the YUV/LUV colour
space. Choosing between static postures and gesture sequence analysis, the decision was
made to use gesture sequences, as the form of gesturing by moving the hand seems more
natural than posing fixed gestures.
With regards to the recognition method, the decision came to using neural networks

in combination with correlations with master templates.
Furthermore, some decisions about the workspace for which this system is designed

have been made, namely the surrounding lighting settings and the background of the
scene filmed by the video camera.
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This allows a short overview of the system. It will be a real-time gesture sequence
analyzer using a USB webcam with a timely resolution of 15frames/second and an image
resolution of 320x240pixel. The hand tracking will be done by colour property extraction
and the gesture recognition will be conducted by a neural network in combination with
a correlation of a new incoming gesture and master template gestures built up by using
the data also used for the training of the neural network. The output of the module will
then be fed back to the iCOMMIC, which is responsible for acting out the recognized
commands.
The only thing missing up to now is a name for the project. Since it is going to be a

gesture recognition module made in Germany, it will carry the name GRM.

3.3 Requirement analysis

Here, the requirements of the project are deducted by considering the main demands
assessed in the expert interviews (3.2.1) and some own thoughts about how the system
should work. The fields considered here are usability, feedback mechanisms, interaction
methods, recording, security and configurability of the application with a strong focus
on usability (to which also the feedback mechanisms in some way relate) and the inter-
action methods, so that the system will be as usable as possible while covering the main
requirements (interaction methods).

3.3.1 Usability

Usability is one of, if not the most important factor in human computer interfaces. This
is due to the fact that the usability of any system has major influences on the design
of the system, especially with regards to the user interface of the device. The user
interface (or graphical user interface) has to be easy to use, and is optimally intuitively
comprehensible without the need for instructions. Additionally it is important for the
system to have feedback mechanisms to guide the user securely through the application.
Holzinger (2005)
More concretely speaking, the user interface will always give details about its current

internal state to the user (compare 3.3.2) and thus will guide the user through execution
of the application without the need for the extensive study of manuals. If the graphical
user interface will be available, it will be set up in a way that unclickable items will be
greyed out, the current mode the system is running in (see 3.3.3) will be shown at any
time and furthermore, the system will return information about the quality of recognition
by showing a green/orange/red bar, where green means high quality of recognition by
the currently loaded correlation/neural network combination, orange means mean quality
and red means low quality of recognition.

3.3.2 Feedback mechanisms

Feedback mechanisms are mechanisms, that either feed back information about the cur-
rent state of the system to the system so that the system can handle program errors. On
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the other hand, feedback can also be given to the user of the system in order to guide
the user through the usage of the application. Both parts of the feedback mechanisms
have to be implemented thoroughly in order to guarantee a safe and stable running of
the application as well as safe and stable guidance of the user as already implied in 3.3.1.
In other words, it is necessary to implement an internal feedback mechanism for cre-

ating a fail safe application on the one hand, and on the other hand a well balanced info
system for the user needs to be implemented.

3.3.2.1 Internal feedback mechanism

The internal feedback mechanism will be implemented in a way, that the calling methods
always know whether the called function terminated correctly or with errors. This will
be done either by an integer number returned by the called function holding a negative
value for an error state and zero or a positive number for a correct state. Or, if the
function returns a variable, this variable can be checked for correctness, so if an array or
vector of values is not empty, a pointer is not null and so on. This way, segmentation
violations can be avoided and with an additional exception handling implemented this
should lead to a robust and stable system.

3.3.2.2 User information system

The user information system should be implemented in such a way, that the user always
knows, what is going on in the application without giving too much information to avoid
confusion. The user should be able to immediately see what state the program is in at
any point of execution, namely the mode the system is currently running in, the state in
which the system is running in (for example the paused state during the recording and
recognition mode) and maybe the possibilities the user has to change the current state
or mode. Please see 3.3.3 and 4.2.4.1 to 4.2.4.4 for further details about the different
modes and states.
This user information system (UIS) will be implemented either in a dialogue box inside

of the GUI (if available) or as textual output on the console.

3.3.3 Interaction methods

Generally, two different methods of user input exist. Interaction with the system can
be seen as the first kind of user input. This input is fed to the system by executing
hand gestures in front of the camera and is used for issuing commands to the test bed
or operating system, but not to the system itself. This input could be generally be
seen as either manipulative or navigational input, between which we will have to decide.
As the iCOMMIC already uses a very capable system for navigational input, namely
the eye tracking module, the gesture recognition module and thus this thesis focuses on
manipulative input only with navigational input completely set aside.
Controlling the functionality of the system and thus issuing commands to the system

itself is the second kind of interaction with the system. The control of the system is
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managed by either pressing keys of the keyboard or using the mouse to control the
graphical user interface (GUI) if available.
Both interaction methods have to be defined clearly and stated in some kind of user

manual for easy introduction of the system to novice users. For commands issued by
hand gestures, please see 3.2.1 and 3.3.7 for further details. As far as the control of the
system itself is concerned, the following questions have to be considered:

1. How should the control of the system work?
As the system should send recognized commands issued by executing hand gestures
in front of the camera to the operating system or the test bed, the other modalities
(mouse and keyboard) can be used for direct control of the system. Shortcut keys
or mouse control can be used to switch modes, switch the display of the video
window and enable or disable the recognition mode. Please see 3.3.3.1 for details
about the shortcut keys.

2. What are the different modes the system needs to run in and how can the modes be
changed during runtime?
For the different modes, it is important to know, what the system is able to do.
Five modes are needed to have a complete running system, including the three main
modes recording mode, training mode and recognition mode. The fourth mode is
a debug mode for program debugging only, which the user will not be able to
start. The fifth mode is a so called autotest mode (4.2.4.5), which uses prerecorded
sequence information (see 4.2.4.1) for testing the quality of the recognition system.
During runtime, the user will be able to switch between modes by simple key
commands issued on the keyboard or activated by the mouse using the GUI (if
available). For a complete list of those keys, please see 3.3.3.1.

3. What does the recording mode do?
First, as described in more detail in 3.3.6, the system has to be configurable in
many ways. This means that the user should be able to introduce new and different
gestures for existing commands. This necessitates a recording mode in order to save
self recorded gestures in a file which can then be read in training mode.

4. What does the training mode do?
For the training mode, the system has to either load an existing, already trained
network from file or load a previously recorded training set. The network will be
trained by the methods suggested in Chapter 4.2.2 and master templates for the
correlation based approach described in chapter 4.2.3.4 will be created. Both the
network and the master templates will then be held in storage or saved to a new
or existing file for the recognition phase.

5. What does the recognition mode do?
The recognition phase is the actual core of the system, as all classification is done
in this module. Gestures which are acted out by the user are translated into the
right format and finally fed to the recognition module consisting of the correlation
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module and the neural network; once again, both are either loaded from file or
trained in the training phase.

6. What does the debug mode do?
The debug mode consists of all three modes mentioned before. The only difference
of the debug mode is the amount of (debug) information written to the console
about the inner state of the program. This will generally only be used by program-
mers working on the GRM.

3.3.3.1 Keyboard control and hot keys

The following keys are defined for controlling the system:

key function key function
+ pause/unpause ESC quit

ctrl-d toggle debug video mode ctrl-e toggle overlay video mode
ctrl-f toggle debug line detection mode

Table 3.1: Keyboard controls and hot keys

These commands can only be issued while the video window is active.

3.3.4 Data recording and Logging

Recording data can mean different things. First, there is a recording mode for the
gestures, where new gestures can be recorded for later training of the system. See 4.2.4.1
for more information. Furthermore, statistics about the usage of the system can be
recorded, meaning storage in (for example) XML (Extensive markup language) files.
This information could possibly include timestamps of gestures issued and the kind of
gesture recognized. Please see 4.2.6 for further details.

3.3.5 Security

Security of the system is also a must. Both stability and security have to be mentioned
here. The system must never fail disgracefully, so in other words, it must not terminate
with a segmentation violation or something similar without feeding the error back to the
user. To assure this, C++ exceptions should be introduced in order to always know,
where the program fails and under which condition. Additionally, no person from the
outside should be able to manipulate the system in order to compromise data on the
host computer. Most of those issues are solved by the operating system itself. However,
it has to be made sure, that the socket connection used to connect to the iCOMMIC
system (as described in 4.1.2) can not be tampered with. However, as this is an outgoing
connection, the risk is minimal.
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3.3.6 Configurability

The system has to be as configurable as possible, meaning that the user can change and
modify many of the settings. As this system is fairly straight-forward, there are not many
things to be configured about the system itself, thus configurability means something a
bit different.
The idea is to allow the users to record their own movements for the existing commands

(or even add completely new commands) as the expert interviews (see 3.2.1) demanded.
This means, that it has to be possible to go to record mode, select the file you want to
save to and start recording. For detailed information about this, please see 4.2.4.1.
Additionally, the user has to be able to select the foldernames for the logging file(s)

and change them during runtime or at least before starting a new test. This can either be
done by inputting the desired foldername in the text mode on the console or by clicking
and creating a new file or selecting an existing file in a GUI (if available).

3.3.7 Gestures

The predefined gestures to be implemented were deducted from the commands defined by
the expert interviews as well as from the suggested gestures by the experts (see 3.2.1 for
the starting point of this deduction). As far as commands are concerned, the focus was
set on the most relevant commands for manipulation, as the gesture recognition module
should be primarily used for manipulation (as described in 2.1.1.3 as well as 3.3.3).
The commands are:

1. activate:
used for activating (=”clicking”) buttons and similar events.

2. grab:
for picking up symbols, images, files.

3. release:
for releasing previously picked up items.

4. next/last:
the commands for going to the next item (next) or the previous item (last), also
usable as right/left.

5. rotate left/right:
generally used for rotating pictures.

6. zoom in/out:
used to either zoom in or out of pictures, text or similar events. Can also be used
as a replacement for the up and down keys for example for scrolling.
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Figure 3.2: The selected gestures for the deducted commands. From left to right, top to
bottom: rotate right, rotate left, grab, release, zoom in, zoom out, next, last,
activate.

3.4 Additional requirements

In order to not implement already existing libraries all over again and thus not to reinvent
the wheel, several libraries are used. This way, well tested and secure libraries are
introduced, minimizing the possibility of faulty programming in important modules of
the software. User libraries (as well as professional libraries) are available for a lot of
fields in programming, as many programmers code a project for themselves and publish
the results on the internet. In order to find out, which kind of libraries are needed a
quick assessment is conducted.

3.4.1 Available libraries

3.4.1.1 Image Processing

First, the field of image processing has to be considered. As this will be the core part of
the hand tracking of the system, it has to be implemented in a clean way with optimized
functions as far as speed, processor usage and memory usage are concerned. Additionally,
the images coming from the webcam should already be in the right format in order to
spare costly transformation calculations. In other words, a library is needed that can both
capture frames from a camera (or video) as well as perform the needed image processing
operations in a time effective way. Additionally, the library should include an extensive
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documentation in order to be able to read into the usage of the library quickly and to
understand how the principles described in Section 2.4 are implemented in this software.
Several libraries like that exist on the World Wide Web, from the CImg Library over to
Mathtools (as known from Matlab programming) to the Open Computer Vision library
(also known as OpenCV).
Considering time efficiency and memory usage of the libraries mentioned in 3.4.1.1, the

difference of the libraries is first and foremost difficult to assess before actual usage and
furthermore, they are all optimized according to those requirements, hence, they should
be not so far apart. As the documentation of the OpenCV library extends the rest of
the libraries and the usage appeared to be fairly straightforward, this library was chosen
for later usage.

3.4.1.2 Machine learning

The second large and important part of the software that is available already in libraries
is the machine learning part. Since neural networks are going to be used, libraries holding
only this aspect are sufficient for the system. Considerations about the different types
of neural networks are influencing the choice of library, as well as speed and memory
usage. Again, the speed and memory usage are difficult to assess before actually using
the library, so the main focus lies on the functionality and documentation of the software.
Here, several libraries are available for usage, from SNNL (the Simple Neural Network
Library), the ANNL (Artificial Neural Network Library) over to professional (and often
costly) libraries.
From the libraries mentioned above, the integration of the SNNL seems the most simple

and the documentation is rather good and readable. Additionally, the structure, which
can be fed to the SNNL is easy to build up from the way the data is stored on drive.
These attributes helped in making the final decision to utilize this library.

3.4.1.3 Data recording and logging system

Recording and logging important data is another very important aspect of this project,
so a well structured way of saving data in any form has to be found. Using the XML
(Extensible Markup Language) file format seems to be a viable solution to this problem,
hence, a library which is both easy to use and integrate has to be selected.
Only basic XML features are needed to implement data recording, thus the tinyXML

library is the library of choice here.

3.4.2 Discussion

For the calculation intensive parts of the GRM project, external libraries are used as
they are generally well tested and easy to integrate into new systems. These libraries
will take over the main calculation parts concerning image processing (OpenCV), machine
learning (SNNL) and logging/recording data (tinyXML) and thus will guarantee correct
and time-efficient calculations in those key fields of the project.
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4.1 System concept and design

Deducting from the analysis in Chapter 3, the system has to consist of several self con-
tained parts. The main parts indicated by the analysis are the extraction of the hand
from the live video, a system that understands to form complete movement sequences
and finally the recognition module recognizing the executed gesture. Furthermore, there
has to be a central structure that makes the parts work together smoothly.
Additional functionality required is a tool to pre-process new incoming data, so that the

recognition can always work with the same form of data. In order to conveniently store
important information for both single frames and sequences as well as previously cal-
culated pre-processing information, a few additional components have to be introduced.
Furthermore, for debugging information and to see whether the timing as described in
3.2.3 can be achieved, an additional part responsible for timing has to be introduced.
For the output, an additional section will be needed, so that output to both files (i.e.

for storage) and the debugging console can be done easily and uniformly. Additionally,
the usage of three external open source libraries is suggested in order to facilitate the
implementation of image processing, XML output as well as machine learning as described
in 3.4.1.
Summing up these requirements, 11 main classes, 2 additional structs for storage as well

as the connection to the three external libraries have to be implemented. A more detailed
overview of the classes and their functionality will follow in the upcoming Chapters.

4.1.1 Classes and functionality

As described in Section 4.1, the GRM - Gesture Recognition Module is built up by 11
parts or in this case classes all in all, combined with a few structs for storage and three
external libraries for image processing, XML support and neural networking functionality.
The core components are the GRMImagePreprocessor, responsible for extracting the

hand from the video image and the GRMClassifier, responsible for teaching the system
using the implemented learning algorithms as well as the online classification of sequence
images created by the GRMSequencer. This GRMSequencer uses the previously pre-
processed images returned from the GRMImagePreprocessor to build up sequences of
frames where movement has occurred.
Furthermore, the class GRMDataPreprocessor is an essential part of the system, as it

pre-processes both the sequence images received by the GRMSequencer as well as the
stored data for learning. In order to be able to store information of single frames, the
class GRMImage was created, holding information about width, height, the horizontal
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sum, the vertical sum, the bounding boxes and the frame id of each frame. Derived from
this class, there are two more specialized classes, the GRMFrame for storing information
about single frames as received from the GRMImagePreprocessor (including the original
IplImage, the binary image and an optional line image), as well as the GRMSequen-
ceImage, storing a vector of bounding box points for each of the frames included in the
sequence and a classifier name for the relevant sequence.
The connection between the single parts is implemented in the GRM class as described

in 4.1.1.6. See 4.1.1.1 to 4.1.1.6 for the details of the classes. Additionally, a full class
diagram including the connections between the different parts is displayed in figure 4.1
on the next page.
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Figure 4.1: The class diagram
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4.1.1.1 GRMImage, GRMFrame, GRMSequenceImage

Figure 4.2: The class GRMImage and its derived classes GRMFrame and
GRMSequenceImage

These three classes are container classes created for storage of vital information about
either single frames or sequences of frames. The base class GRMImage includes informa-
tion about the width and height of an image, as well as the the struct RCGBoundingBox
for storage of the centre point and the corner points of the bounding box surrounding
the extracted hand. Additionally, it holds two vectors holding both a horizontal and a
vertical sum. Being a container class, the GRMImage also provides methods for manip-
ulation of its content. This class is never actually instantiated, instead its two derived
classes are used.
Derived from this base class, two additional classes are used in this project, namely

the GRMFrame and the GRMSequenceImage. Consisting of the same basic functional-
ity as the GRMImage, both are more specialized for their purposes. The GRMFrame

57



4 GRM - Gesture recognition module

is a container for single frames which will later be used to build up sequence images.
It includes storage facilities for IplImages as received from the OpenCV library for the
original image, the calculated binary image and the line image. Furthermore, the GRM-
Frame includes a vector of connected components, so information about all connected
areas in the binary image of the current frame. Please see the description of the GR-
MImagePreprocessor in 4.1.1.2 for how these images are created and how the connected
components are assessed.
The GRMSequenceImage on the other hand includes additional information about

the classification of the current sequence, so a string containing the associated class if
available (which is the case only in recording mode). This class is put together in the
GRMSequencer using GRMFrames where movement has been detected. Please see the
description of the GRMSequencer in 4.1.1.3 for details about how these sequence images
are created.

4.1.1.2 GRMImagePreprocessor

Figure 4.3: The class GRMImagePreprocessor

Fired up by the GRM class by calling the autoAnalyseImage method, the GRMImagePre-
processor receives a single frame from the capture device which is an IplImage pointer as
returned by the OpenCV library. This frame is then copied to a new IplImage for further
processing while the original is stored inside of a GRMFrame object. Using the copied
frame, the image is transformed from the basic RGB colour space to the LUV colour
space by using the OpenCV command cvCvtColor inside the method transformToLUV.

cvCvtColor(img, img, CV_BGR2Luv);

A hysteresis threshold is then applied to the U and the V channel of the thereby trans-
formed frame inside of the applyUVFilter method. In order to do so, the frame is split up
into it’s channels by the OpenCV command cvCvtPixToPlane, which takes the original
image as well as three new image pointers as arguments and writes the single channels
into the three new image pointers (also from the type IplImage). As already described
in 2.4.2.1, the L channel is not used, thus it is set to zero immediately. The U and
the V channel of the image however are manipulated by applying two filters on each of

58



4 GRM - Gesture recognition module

the channels by the OpenCV command cvThreshold, which writes the thereby resulting
image into a new IplImage.

// apply threshold to U
cvThreshold(uImg, upper, 106, 255, CV_THRESH_BINARY);
cvThreshold(uImg, lower, 118, 255, CV_THRESH_BINARY_INV);
IplImage* destU = cvCreateImage(cvGetSize(img), img->depth, 1);
cvAnd(upper, lower, destU);

// apply threshold to V
cvThreshold(vImg, upper, 125, 255, CV_THRESH_BINARY);
cvThreshold(vImg, lower, 135, 255, CV_THRESH_BINARY_INV);
IplImage* destV = cvCreateImage(cvGetSize(img), img->depth, 1);
cvAnd(upper, lower, destV);

The values for the thresholds were assessed by previous manual tryouts for the method
in the software Adobe Photoshop.
After rebuilding the image to its previous state of a three channel image by the OpenCV

command cvCvtPlaneToPix, an binary image containing all the pixel set in either the
U or the V channel is generated by using the OpenCV command cvXor inside of the
calcBinaryImage method. Returning a new IplImage pointer containing an image with a
single black and white channel only, this new image is then stored in the same GRMFrame
object as the original IplImage before.
The binary image is then morphologically processed in the method performMorpho-

logicalOpening by applying a morphological opening (as described in 2.4.4.3) in order
to diminish noise in the image. This is done by performing the OpenCV commands
cvErode and cvDilate with a previously generated structuring element as can be seen in
the following code section:

IplConvKernel* kernel = cvCreateStructuringElementEx(element_size,
element_size, (element_size-1)/2, (element_size-1)/2,
CV_SHAPE_CROSS, 0);

cvErode(img, img, kernel, 1);
cvDilate(img, img, kernel, 2);
cvReleaseStructuringElement(&kernel);

The now “clean” image is then handed over to the next pre-processing step, namely the
method getConnectedComponents, which runs through all pixel, checking if a pixel is set
(recognized by the value 0xFF, so all binary digits set to 1) and then performing the
OpenCV command cvFloodFill on this pixel. This command marks all N4 connected
pixel of the current pixel with a given index. N4 neighborhood means the adjacent pixel
to the left, right, up and down of the current pixel. If the thereby received area of active
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pixel has a bigger height and width then 10 pixel, the current component is saved into a
vector of cvConnectedComp’s.

for(int count = 0; count < width*height; count++)
{

uchar pixval = data[count];
// if this pixel has the value of 0xff
// this component has not yet been recorded
if(pixval == 0xff)
{

// fill this component in with the next lowest value
CvConnectedComp current;
cvFloodFill(img, cvPoint(count%width, count/width),

cvScalar(currentCompVal+1), cvScalar(0),
cvScalar(0), &current, 4);

if((current.rect.width >= 10)
&& (current.rect.height >= 10))

comps->push_back(current);
}

}

The next step is to extract the bounding box points from the hand. In order to do
so, the following assumption is made: The largest area of “active” pixel is seen as to
be the area of interest, thus the hand. The values of this area (as received from the
cvConnectedComp) is then used to set the values in the same GRMFrame object as the
two other images before.
Finally, the horizontal and vertical sums are calculated in the method calculateHori-

zontalAndVerticalSums and also stored in the GRMFrame object, which is then returned
to the calling GRM class.

4.1.1.3 GRMSequencer

Figure 4.4: The class GRMSequencer
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The GRMSequencer is responsible for creating clearly defined sequences out of a series
of frames with movement detected. Since the duration of a gesture can be different
between users as well as the different gestures also differ as far as their number of frames
are concerned, it is necessary to define an upper limit of frames per gestures, otherwise
it is very difficult to train any classification method to deliver satisfying results. Taking
this information, sequences are limited to 10 frames per sequence, which means that an
average gesture is considered to be about 700ms long.
The GRMSequencer is created by the GRM and whenever a frame considered to

hold motion in relation to one of the two preceding frames, the GRM adds the frame
to the sequencer. This incoming frame is stored in a vector called _currentSequence.
When a sequence stops (so no more motion is detected), the GRM calls the method
calculateSequenceImage, where the sequence is preprocessed. Please see Chapter 4.2.3.1
for details of internal calculations.
When the sequence is created and returned to the GRM, the _currentSequence vector

is emptied by the GRM by calling the method clearCurrentSequence in order to be able
to process the next incoming sequence.

4.1.1.4 GRMDataPreprocessor

Figure 4.5: The class GRMDataPreprocessor

For the GRMDataPreprocessor, the name is program. Data loaded either from disk
or coming from the GRMSequencer get pre-processed by previously calculated pre-
processing information. The PreprocessingInfo struct is used to hold the necessary in-
formation for pre-processing both the movement vectors as well as the form vectors (=
horizontal and vertical sums) such as the minimum and maximum values of a vector and
the mean and the standard deviation for the same vector.
For pre-processing of sequences to classify (coming from the GRMSequencer), it is
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necessary to pre-process that data with the same information used for pre-processing
the recorded data, otherwise the system will not be able to classify any of the incoming
gestures/commands.
First, the movement data is pre-processed by offset removal as described in 2.5.2. To

do so, the minimum values of both x and y values for each of the three movement vectors
(centre point movement vector, bounding box lower point and bounding box upper point
movement vectors) calculated using the method calcMinMaxOfVector using the following
algorithm (after setting the min to the maximum value of a double and max to 0):

for(unsigned int count = 0; count < vec.size(); count++)
{

if(min > vec.at(count))

min = (double)vec.at(count);

if(max < vec.at(count))

max = (double)vec.at(count);

}

The minimum value of x and y values are then subtracted from the movement vectors,
leaving values independent from the location of movement in the field of view of the
camera. Then, the values created this way are normalized to the interval [-1, 1], as
described in 2.5.4, so that they can be used as input for the neural network.
Finally, the form vectors (e.g. horizontal and vertical sum vectors) are also sent to the

calcMinMaxOfVector method. In this processing step, the positions of all the zero points
of the form vectors are calculated by:

// if the first entry of the vector is not 0.0, add position
if(vec.at(0) != 0.0)

positions.push_back(0);

for(unsigned int count = 1; count < vec.size(); count++)
{

// if current != 0 & before == 0, push back a minimum
if((vec.at(count) != 0.0) && (vec.at(count-1) == 0.0))

positions.push_back(count);

// if before != 0 & current == 0, push back a maximum
if((vec.at(count) == 0.0) && (vec.at(count-1) != 0.0))

positions.push_back(count-1);

// since after a min there always has to be a max
// at pos x%2 = 0, there always has to be a minimum
// and at position x%2+1 = 0, there has to be a maximum
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}
// if the last entry of the vector is not 0.0, add position
if((vec.at(vec.size()-1) != 0.0) && (positions.size()%2 != 0))

positions.push_back(vec.size()-1);

This returns a vector holding positions of the beginning of an incline followed by the end
of an area. Now, the distances between those min/max tuples are calculated and only
the one with the biggest distance is seen to be the relevant area holding the movement
of the hand. This area is now centered onto the 320 (for the horizontal sum) or 240 (for
the vertical sum) entries vector, so that the highest peak is set to the position

int new_centre_position = vec.size()/2;

Copying the values from the old positions to the new positions relative to whether the
new center is more to the left or right of the old centre, we receive a vector holding form
information centered onto the middle position of the vector which can be easily compared
to other form vectors pre-processed in the same way.

4.1.1.5 GRMClassifier

Figure 4.6: The class GRMClassifier

The classifier is started up by the GRM when the recognition mode, the training mode
or the autotest mode are started. The classifier is set up by the method clearAndCon-
figureClassifier, which deletes all previous instances of classification methods, clears the
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contained vectors holding the training sets, validations sets and test sets and finally starts
up new instances of the network and the data pre-processor.
For each of the modes, there are different methods used. Training of the network occurs

in the two trainNetwork methods, where one is specialized for the training mode and the
other one handles the k-fold cross-validation of the autotest mode. The build-up of the
correlation data occurs in the method setUpClassifier, which receives a vector of sequence
images and a foldername where to store the relevant information. Before any training
can occur, templates, train sets and/or correlation test sets have to be loaded or created
from the incoming data (if no files are available for loading) and the data pre-processor
has to be fed with the same data via the setUpPreprocessor method. Then, depending
on the mode, either a network is trained (as described later in this chapter), the k-
fold cross validation is started for either network or correlation validation or a loaded
network and/or correlation set is made available for classification of new incoming data
in recognition mode.
Recognition is made available by the two public methods recall, where one is set up

for network usage, while the other one takes care of correlation recognition only.
Training is started by calling the startTraining method, which starts both network

training and the calculation of the correlation master templates. The output of both are
then stored to file for later usage. Training of the network is done for a maximum of 500
epochs with early stopping implemented. To have early stopping available, the train set
of the network has to be split into two parts, one large one with about 90% of the test
cases and a random selection of validation examples, which make up about 10% of the
complete training set. In case the training error drops below 0.0005, the validation error
drops below 0.005 or the validation error doesn’t change for more than 0.00001 for three
circles of validation (so 30 epochs maximum), training is stopped and the last settings
of the network are used either directly for classification (if in recognition mode) or the
information is stored to a file for later loading (in training mode).
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4.1.1.6 GRM

Figure 4.7: The class GRM main class

The GRM is the core part of the system presented. It combines all the other parts,
and thus controls the socket for iCOMMIC connection, the image pre-processor, the
sequencer, the classifier, the input/output module and is additionally responsible for
camera handling and the viewing of the video stream. It starts up a console, that
displays a menu of available actions for the user. These actions are:

• connect/disconnect to/from the iCOMMIC:
Takes care of the socket connection to the iCOMMIC if needed. Should be called
first if connection to the iCOMMIC is wanted. This mode includes a preset con-
nection (available by pressing the button “d” when suggested) which connects to
the iCOMMIC on the localhost (127.0.0.1) with the iCOMMICs default port 1111.
Alternatively, other IP-addresses, hostnames and port numbers can be entered.

• recognition:
Starts up the recognition mode which asks for a foldername from where to load the
classification algorithms if the classifier is not set up yet.

• data acquisition:
Starts up the data acquisition mode, which initially prompts for a foldername to
where it should save the recorded data.
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If the folder and the sequence-information.grm file are already available, it will
continue the saving after the last sequence recorded previously. This mode starts
up in paused mode, so that no unwanted gestures are recorded.

• training:
This mode as well asks for a foldername first in order to know which previously
recorded data should be used for training. This way, it very easy to specify several
profiles by just changing between recording folders. In training, the data is loaded
from disk and depending if network and/or master templates are already available,
only the missing ones are calculated.

• autotest:
Fires up the autotest mode in which there are three available options: the k-fold
cross-validation of the correlation, the leave-one-out cross-validation for correlation
and the k-fold cross validation method for the neural network. Also here, the user
is prompted to specify a foldername from where to load the data.

Image acquisition and recognition
For both the image acquisition and the recognition mode, additional functionality

is needed from the GRM, namely the motion detection between frames, as it handles
the camera and the image pre-processor and additionally holds all necessary information
about the previous and current frames. Whenever a frame is identified to represent a
motion to the frame before or the frame before that one, the current frame is added
to the sequencer by calling the function addImageToSequence. Whenever there is no
more movement for at least two frames, the sequencer is run with the input stored
inside of itself, processing the sequence and returning a GRMSequenceImage as described
in 4.1.1.1. This image is then sent to either the GRMIO responsible for saving the
information to disk or to the classifier for classification. Then, the used sequence is
deleted and the process can start from the beginning.

4.1.2 Integration of the GRM into the iCOMMIC

The GRM and the iCOMMIC communicate via a TCP/IP connection established by
a socket as already shortly described in 4.1.1.6. The iCOMMIC needs to be running
on a machine reachable via networking, preferably on the same machine as where the
GRM is running. As iCOMMIC listens on port 1111 for incoming connections, the
GRM connects by default to the localhost (127.0.0.1) on port 1111. Once connected, the
iCOMMIC accepts incoming messages from the GRM with the following encoding:

command : timestamp

This means, that the iCOMMIC waits for a string holding the command bundled with
a number that is interpreted as a timestamp in milliseconds, so a string of numbers. If
either of the values is not of the format the iCOMMIC expects, an error is printed on
iCOMMIC (= server) side and the connection is dropped.
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A correct example of such a command/timestamp tuple would be activate : 1234 which
would lead to the iCOMMIC simulating a pressKey action followed by a releaseKey action
of the keyboard button previously defined in the iCOMMIC setup. The timestamp is for
logging affairs only.
The iCOMMIC setup is predefined in the systemProperties.xml file which can be found

in the configuration folder of the iCOMMIC_gesture.

4.2 System details

In this chapter, details about the internal processes are explained more explicitly.

4.2.1 External configuration

Configuration of the system is loaded from the programs sub folder config, from the file
config.cfg. In this file, all known commands are specified. Additional commands can be
inserted here, for the connection to the iCOMMIC it is necessary to additionally specify
the new commands in the iCOMMIC_gesture’s sub folder configuration inside of the file
systemProperties.xml.
Additional external configuration of the system is not necessary and thus not available.

4.2.2 Neural network configuration

4.2.2.1 Input units

As already described in 4.1.1.3, sequences always consist of 10 frames and hold informa-
tion about three movements, namely the movement of the centre-, the lower bounding
box- and the upper bounding box point, meaning 30 points of movement are available.
With x and y values for each of these movements, 60 input units are necessary for the
network.

4.2.2.2 Output units

Deciding about the output encoding of the network, it is necessary to assess the number
of gestures that should be allowed. For the moment, at least 9 gestures are needed (as
described in 3.3.7), which makes it difficult to just use one output unit, as an output
unit produces only one number in the range of 0 to 1. This would make it very difficult
to decide between gestures. A better idea is to encode the output by using binary
numbers, so to have a combination of binary numbers to represent a gesture. As we have
9 gestures to encode, at least four bits are necessary to encode the gestures with binary
codes. This also leaves some room for five additional gestures if needed. Gestures thus
can be represented as 0000 up to 1111. This would suggest 4 output units necessary.
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4.2.2.3 Hidden units

As there exist no calculation methods to fix the number of hidden units, educated guesses
have to be made. There are several rules of thumb which influence the number of hidden
units to be selected. One rule of thumb was introduced by Blum (1992), which says
that the number of hidden units should lie somewhere between the number of input
units and the number of output units. Generally, the number of hidden units influences
the performance of the network to a great extent. Too many hidden units can make
the network prone to overfitting, while a too low number of hidden units can make the
network to be prone to underfitting and thus both way may lead to bad generalization
results.
As these are very vague rules, the ideal number of hidden units has to be assessed by

testing networks with varying numbers of hidden units and the network setup with the
lowest generalization error (on the test set) should be selected.
Extensive testing has shown that a network with one hidden layer with 20 hidden units

produces the lowest test set error, so this is the number of hidden units used.

4.2.2.4 Further network settings

Additional settings have to be selected for the network in order to perform in a satisfying
way, namely the learning parameter and the momentum term parameter. These values
also significantly influence quality of training and thus have to be tested thoroughly as
well in order to have the optimal settings for the neural network used. After testing, the
following settings were established:

• The learning parameter, defining the stepping distance of one epoch to the next is
set to 0.11.

• The momentum term parameter defining the persistence of a weight change for
several adjustment cycles has allowed values between 0.5 to 0.9 and is set to 0.7
after testing.

4.2.3 Calculations

This section gives an overview of how which kind of calculations were conducted, start-
ing with the sequence compression calculations, over to the pre-processing of the same
information for later usage in the training mode over to the calculation of the master tem-
plates, the correlation of new gestures to those master templates and the neural network
output.

4.2.3.1 Sequences

Sequences are built up by comparing each frame grabbed by the camera to the one before.
If the bounding box or the centre point has moved from one frame to the next, the frame
is seen as part of a sequence and thus added to a vector of images. Movement is defined
by the movement of at least one of the points by at least 5 pixel from one frame to the
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other. When the next frame is processed, it is again checked for movement. In case this
frame contains no movement, but the frame before contains movement, it is still added
to the sequence vector in order to fill gaps in the movement which sometimes occur.
Then, the next frame is assessed. If movement occurred, the frame is again added to
the sequence vector. If no movement occurred, the frame is still added to the sequence
image due to the same argument as before. Only if three frames in a row do not contain
any movement, the frame is not added and the resulting sequence vector is analyzed.
For sequence analysis, the it is checked, how many frames were added to the current

sequence. Three possibilities arise here:

1. If the sequence contains more than the standard ten frames, the distances between
the single centre points of each of the frames in the sequence is calculated. This is
conducted by calculating the Euclidean distance between centre point of frame fi

to the centre point of frame fi+1 (with i from 1 ... n− 1 and n being the maximum
number of allowed frames per sequence, in this case 10) with the formula

disti =
√

(xi+1 − xi) + (yi+1 − yi)

keeping only those ten frames with the nine biggest distances between one to the
next, omitting the others.

2. If the sequence contains less than ten frames, empty frames are added to the se-
quence until the sequence is filled up. By definition, the bounding box (as well
as the centre point) of the last frame is used as the bounding box (and centre
point respectively) for the new frames, as it facilitates the next steps of further
processing.

3. If the sequence contains exactly ten frames, nothing is done in this step.

The next step of sequence calculations is the summing up of the horizontal and the
vertical sums of the single frames as described in 2.4.5.1. This way, the horizontal and
vertical sums of the resulting sequence image holds the information about the whole
sequence in two vectors, one with the size 1 ∗ width and one with the size 1 ∗ height of
the image.
After this processing step, the sequence image thus consists of three vectors of ten

points each for the centre points and the lower and upper bounding box points, with
each one of the points holding two values for x and y. Additionally, the sequence image
consists of two vectors holding the horizontal and the vertical sums of the frames with
the dimensions 1 ∗ width and 1 ∗ height respectively.

This is also the format in which data is stored on disk when recording gestures in the
data acquisition mode.

4.2.3.2 Pre-processing of data

Pre-processing of the data is maybe the most important step in enabling recognition at
all. If the data are not pre-processed thoroughly, even the most powerful recognition
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algorithms may fail in classifying anything. Thus, the methods used have to be well
considered.
As far as the bounding box and centre points are concerned, a way is needed to allow

for all the movement to start at the same initial points in both axis (x and y) as described
in 2.5.2. In order to do so, the minima of each of the x and the y of all vectors (lower
bounding box points, upper bounding box points and the centre points) have to be
subtracted from each of the x and y values using the formulas xni = xi − min(xn) and
yni = yi − min(yn). This way, an example movement A with the centre points

PA1 = (110, 200), PA2 = (120, 200), PA3 = (140, 215)

and another example vector B with

PB1 = (202, 110), PB2 = (222, 110), PB3 = (242, 125)

would both return a movement vector of

P1 = (0, 0), P2 = (20, 0), P3 = (40, 15)

which makes classification independent from the place where the gesture was posed. See
figure 4.8 for an example containing the centre movement vector of example sequences
with at two different locations with the third one near the 0 point of the axis being the
pre-processed movement vector of both examples.

Figure 4.8: Example pre-processed movement vector (offset removed)

Furthermore, the data are preprocessed by bringing them to an interval [-1, 1], so
that zero values always become -1 while maximum values become 1 respectively, with all
values in between possible. See figure 4.9 for an example using the same values as in the
example above.
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Figure 4.9: Example pre-processed movement vector (normalized to interval [-1, 1])

A completely different method is used to pre-process the horizontal and the vertical
sums in order to make the position of execution of the gesture spatially irrelevant, as
described in chapter 4.1.1.4. The idea is to find the highest peak of both the horizontal
and the vertical sum, centering this peak on the centre of the sum vector (at the positions
width

2 and height
2 respectively). This way, any performed gesture appears to be acted out

in the centre of the image, if it was acted out in the lower left quadrant of the image or
anywhere else. Thus, it becomes absolutely irrelevant, where inside of the boundaries of
the field of view of the camera a gesture was performed.
Furthermore, the values of the sums are pre-processed as described in 2.5.4. Previ-

ously recorded sequence information is used to build up the population mean µ and the
standard deviation σ as described by the equations 2.14 and 2.15, which are then used
to pre-process incoming raw values of new samples to get the corresponding z-scores as
described by equation 2.16.

4.2.3.3 Master templates

The master templates are generated by using the previously pre-processed data. For all
available examples of a single gesture/command (activate, grab, last, next, release, scroll
down, scroll up, zoom in, zoom out), the values for all available data (the two bounding
box points, the centre point and the horizontal and vertical sums) are summed up and
afterwards divided by the number of occurrences of each of the gestures/commands. In
this way, master templates for each of the gestures/commands are built up which can
then be used for the calculation of the correlation between two gestures. Figure 4.10
shows the master templates of the centre point movement. The gestures/commands
demonstrated here are: last (dashed line), zoom out (wide dashed) and release (ultra
fine dashed). Clearly visible are the significant differences between the single movement
templates, suggesting a promising output for the calculation of correlations.
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Figure 4.10: The master templates of the centre point movement for selected gestures

Figure 4.11 shows the master templates for the form vector of some gestures/commands
with the left 320 values showing the horizontal-sum master templates while the right 240
values show the vertical sum master templates. As can be seen already, the differences
are not as significant as hoped for, suggesting that this approach of the form vectors does
not contain enough significant information for a real usage of this part.

Figure 4.11: The master templates for the form vector (horizontal sum only) for selected
gestures

4.2.3.4 Correlation

The correlation between each master template and a new gesture vector is calculated
as described in Section 2.8 by formula 2.35. Each of the relevant vectors are correlated
separately, meaning the x values of the centre point, the y values of the centre points,
the x and y values of both the lower and the upper bounding box points as well as the
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form vectors.
As negative correlations mean different gestures as well, only positive r values are

then squared to receive the term R2 with negative r values being omitted and further
correlation for this the current gesture and the current master template stopped.
Testing has shown that the R2 values returned by this calculation lie in the range of

0.90 and 1 in case of a positive match, while the results stay at a low 0.0 to 0.55 for
negative matches. This is why a threshold has been introduced classifying a gesture only
if the R2 value is higher than 0.90 for each and every one of the separate correlations,
while it returns an empty result for any lower R2 value. Figure 4.12 shows the correlations
of the x values of the center movement of new gestures/commands “grab”, “last”, “zoom
in” and “rotate left” with the master templates of the gesture/command “grab”. Easy to
see is the high positive correlation between the master template of “grab” and the new
incoming gesture of the same type with a R² of 0.98. On the lower left, a high negative
correlation is shown; as mentioned before, results like this are immediately omitted from
further consideration.

Figure 4.12: Correlations of a new movement vector to the single master template of each
movement
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4.2.4 Program modes

Different modes of program execution are available. This chapter shortly describes their
functionality, output and the outputs interpretation.

4.2.4.1 Recording mode

The recording mode also known as data acquisition mode enables the user of the program
to specify his or her own gestures for the previously defined commands as described in
3.3.7. The idea is to make available an easy to use recording mode where the user can
define at start up where the new gestures should be saved. This way, several different files
of examples can be created, for example for storing the individual gestures of different
users of the systems.
The system starts up in a paused state until the pause button is pressed so that the

user can position the hand to the initial position of the gesture. When the user presses
the pause button (as described in 3.3.3.1), the system unpauses and starts recording one
single sequence of frames, defined by the start of the movement to the end of movement.
Depending on the length of the gesture issued, the program then assesses the gesture
and either deletes excessive frames or adds empty frames to get to the standard gesture
length of 10 frames as explained in 4.2.3.1. After this, the system immediately changes
back to the paused state and directly requests the user to classify the current gesture.
Here, all available commands are listed (loaded from the file ..\config\commands.cfg), as
well as a return entry, in case the quality of the gesture doesn’t satisfy the needs of the
user. In order to allow the user to assess the gesture just posed, the last frame of the
sequence is displayed in the video window. If the user is satisfied with the gesture issued
and hence classifies the gesture, the sequence information is directly written to the folder
specified at start-up of the recording mode, into the file sequence_info.grm.
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Figure 4.13: Data acquisition mode

4.2.4.2 Training mode

The training mode is the counterpart to the recognition part. Here, files containing
sequence information as created in the data acquisition phase as well as network layouts
and master templates can be loaded by the user at start up of the training mode. First,
the user is asked to specify the name of the folder to use. Then, the user is asked if
he or she wants to update the master templates and the neural network files if existing.
If they are not existing, training is started automatically. This is particularly useful,
for example if additional gestures have been recorded in the same file. Several different
situations have to be considered here:

1. If no folder with the specified name exists, an error message is returned to the user.

2. If a the file sequence_info.grm in a folder with the given name exists but no other
file, the sequence information contained in this file is pre-processed (as described in
4.2.3.2) and with this information master templates are calculated (as described in
4.2.3.3) and stored to a file within the given folder under the name templates.grm.
Finally, the neural network is trained using the information from the sequence
file. The obtained network layout is then saved to a file with the name neu-
ral_network.grm.
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3. If the sequence information file and only a master template file exists inside of the
given folder, the user is asked if he wants to update the master templates file. In
case the user answers with “yes”, the system updates the master templates using
the sequence information, loads the new master templates into memory and saves
the new master templates to file. Then, the neural network is trained with the
data from the sequence information, stored in memory for later usage and saved to
a file with the name neural_network.grm.

4. If a sequence info file and a neural network file exist, the master templates are
calculated, stored in memory and saved to file with the name templates.grm. For
the neural network file, the user is asked if he would like to update the neural
network (and thus start new network training and saving the results in the existing
file), otherwise the neural network information is loaded into memory from file.

5. If only the master template file and the neural network files exist, the information
is loaded into memory for later usage, but no information is saved to file as well as
no user input is demanded if updating is wanted (as no sequence info is available
to do so).

Figure 4.14: Training mode work flow
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4.2.4.3 Recognition mode

The recognition mode is the core part of the system, the mode that this system is built for.
Internally, it works similar to the recording mode, as it starts up the image acquisition and
processing modules. If the classifier has not been set up yet, the system inquires the user
which folder to use. Classification information is then loaded into memory for later usage.
Movement is detected, sequences are built up and assessed for length with excessive
frames deleted or additional frames added. However, the recognition mode does not save
any information to sequence information files, but calls the recognition module, handing
over the information previously recorded and pre-processed as described in 4.2.3.2. The
recognition mode then calculates the neural network output of the incoming new gesture.
If the recognition module returns a positive result, this information is then put out to
screen and handed over to the iCOMMIC via the socket connection if available.
The recognition mode is started up in a paused state just as the recording mode and

is activated by pressing the pause key (as specified in 3.3.3.1).

Figure 4.15: Recognition mode work flow

4.2.4.4 Debug mode (optional)

As the system presented is a prototype only, the debug mode is switched on at all times,
so no separate debugging mode was included into this project as premediated.

4.2.4.5 Autotest mode

In this mode, the system uses either k-fold cross-validation (for both the neural network
and the correlation) or the leave-one-out method (for correlation only) as described in
2.9.1 to assess the system’s quality. To do so, the sequence information is loaded from
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the file sequence_info.grm in order to use the data stored in it as the complete test
set. Furthermore, the master templates are loaded from the file templates.grm. The
calculations are done as described in 4.2.3.4 for the correlation and 4.2.2 for the neural
network.
The output produced here is both written to the console as well as it is stored in a file in

the same folder as the example set named after the method used, so validation_output-
k_fold_valid.txt and validation_output-network.txt for the k-fold cross-validation and
validation_output-leave_one_out.txt for the leave-one-out method. 4.2.5.4 shows exam-
ples of the output of the k-fold cross-validation for both methods.

4.2.5 Output

For each of the modes, different output is created. This includes video output, output
send to the iCOMMIC via TCP as well as debugging and validation output. This chapter
will specify the output given by each of the system’s modes and explain the meaning and
interpretation methods for each of the modes output.

4.2.5.1 Recording mode output

Both video output and textual output is generated in this mode. The video output
initially shows the normal image with a superposed green bounding box around the area
recognized as the hand and the corresponding center point of the bounding box. Using
the hotkey commands as described in 3.3.3.1, the video output may be altered to the
video debug mode, showing the binary image with a superposed black bounding box.
Furthermore, the output can be set to a different video debug mode, the overlay mode,
where the red channel is set to the binary image, turning the rest of the image green
with the areas recognized as being hand colour in a brownish shade.
The textual output of the data acquisition mode is very important for all the other

modes, as movements are recorded and the corresponding information is stored as se-
quence information in single entries in the output file sequence_info.grm as already
described in 4.2.4.1. The file is built up in a basic XML style. See the following section
for an example.
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<?xml version="1.0" ?>
<SequenceImages>

<sequence>
<id>0</id>
<classifier>grab</classifier>
<num_bbs>10</num_bbs>
<center_points_x>
180 175 163 160 154 154 156 166 170 178
</center_points_x>
<center_points_y>
145 144 146 149 161 166 175 183 185 185
</center_points_y>
<bb_points_lower_x>
150 143 130 126 119 119 122 131 135 145
</bb_points_lower_x>
<bb_points_lower_y>
106 105 110 114 129 135 145 153 154 153
</bb_points_lower_y>
<bb_points_upper_x>
211 207 197 194 189 189 191 201 205 211
</bb_points_upper_x>
<bb_points_upper_y>
184 183 183 185 193 197 205 214 216 217
</bb_points_upper_y>
<horizontal>
0 0 0 0 0 0 ... 0 0 0 0 0 0
</horizontal>
<vertical>
0 0 0 0 0 0 ... 0 0 0 0 0 0
</vertical>

</sequence>
<SequenceImages>

Each of the sequence entries holds an id value, an according classifier name (equals
a command) and 10 values for each the centre x, the centre y, the lower bounding box
x, the lower bounding box y, the upper bounding box x and the upper bounding box
y. Furthermore, it holds 320 values for the horizontal sum as well as 240 values for the
vertical sum.

4.2.5.2 Recognition mode output

The video output of this mode is quite the same as in the data acquisition mode with all
the possibilities of using the hotkey commands as described in chapter 3.3.3.1.
The more relevant output of the system in recognition mode is composed of two sepa-

rate entries, one for the gesture recognized and one holding the timestamp of the begin-
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ning of the movement of the current gesture. These two values are then send to the iCOM-
MIC via a TCP connection (as described in 4.1.2) in the format command : timestamp.
The iCOMMIC then handles the incoming input according to the predefined key map-
pings for each of the commands.

4.2.5.3 Training mode output

In the training mode, the data previously recorded in the data acquisition mode is pro-
cessed as described in 4.2.3. The output is the correlation file templates.grm which holds
the master templates for each of the gestures/commands on the one side and the neural
network file neural_network.grm on the other hand.

For the master template file, each template for a gesture/command is written in a
single line with the name of the command as the first entry. The next 6x10 values are
for the x and y movement of the center point, the x and y movement of the lower left
bounding box point and the x and y movement of the upper right bounding box point
respectively. The next 320 values hold the horizontal sum, while the next 240 values
hold the vertical sum. Each of the subsets is marked by an ending semicolon, while the
numbers themselves are separated by commas.
The neural_network.grm file holds the internal configuration of the neural network

training, meaning the layer information, the activation functions and the unit weights
determined via training.
In both recognition mode and autotest mode, these two file are parsed (e.g. loaded) and

then used for the neural network or correlation calculations needed for the corresponding
mode.

4.2.5.4 Autotest mode output

In this mode no video out is present as the system only produces validational output.
Two different methods can be used here, firstly the neural network autotest and secondly
the correlation autotest.
As already described in 4.2.4.5, the output of this mode, independent if it comes from

the neural network or the correlation autotest, is written to console and to files.

Neural network autotest output
Table 4.1 demonstrates the output of the neural network training. The MSE (as

described in 2.7) is calculated both for the training set as well as for the validation set
during training. The output is written on console as well as to the file validation_output-
network.txt.

epoch training error/MSE validation error/MSE
i etrain evalid

Table 4.1: Neural network training output
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Table Table 4.2 on page 81 describes the output of neural network testing, as done
in auto test mode after every fold of the k-fold validation algorithm. For each entry
of the test set the classification of the network just trained on the training sets (with
early stopping by the validation set) is estimated, the MSE for each of those entries is
calculated and finally, the real classification keyword is received by translating the binary
output back to the original gesture/command name.
The first row of the output demonstrates the actual binary encoding of the current test

case (b1, b2, b3, b4), the second line shows the classification by the network as a floating
point numbers (w, x, y, z) between 0 and 1. If a value is close to 0 (and lower than 0.65),
it is seen to be binary 0, if the value is close to 1 (or above or equal 0.65), it is seen to
be binary 1. The third line now shows the MSE e for the current example. If this MSE
exceeds a certain threshold, classification is stopped and an empty classification string is
returned (and thus line 4 remains empty). This threshold was set to 0.1, so about 10%
deviation is allowed for a classification to be still valid. The fourth line shows the actual
command the current test case represents, while the last line displays the interpretation
of the classification result from line two by the machine and remains empty if the MSE
of the current example tested is above the threshold 0.1.

current test optimal output b1 b2 b3 b4
classification result w x y z
current test MSE e

current test command command1
classification command command2

Table 4.2: Neural network testing output

This output is created for all k folds of the algorithm with a short summary at the end
of each of the folds as can be seen in table Table 4.3 on page 81. The report represents
the testing results of the current test set with x + y + z = sizeof(testset). e is again
the MSE, but this time the mean over the complete test set.

num correctly classified x
num not classified y

num incorrectly classified z
total mean squared error e

Table 4.3: Neural network k-fold report

At the end of the k-fold validation of the neural network, a final report is shown with
the same form as the interim reports, but showing the results over all test sets with the
mean squared error over all test entries.

Correlation auto test output
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Table 4.4 shows the output produced for each of the examples. The first two columns
indicate the current split index and the current example index, both starting at 0. The
third column shows the actual classification of the current example and the fourth column
the classification predicted by the correlation method. The last column shows the highest
R² for the current example.

Split index Example index Actual command Recognized command Highest R²
i j command command maxR²

Table 4.4: Output example for k-fold cross-validation

Table 4.5 shows the summary output for the same examples with an entry for each of
the commands and a summary for the complete set. For each of the commands, the total
number of examples m, the number and percentage of the correctly classified examples a
(s as the according percentage), the number and percentage of the not classified examples
b (t the according percentage) with a too low R² for classification and the number and
percentage of the incorrectly classified examples c (u the according percentage) are shown.
Additionally, the mean R² of all the correctly classified examples is shown. The following
formulas have to be fulfilled:

m = a + b + c

s + t + u ≡ 100%

In the complete summary, the total number of examples and the numbers and per-
centages of the correctly-, not- and incorrectly classified examples are shown, with the
formulas n = d + e +f and x + y +z = 100%. n signifies the number of all examples, d
the number of the correctly classified examples (with x being the according percentage),
e the number of not classified (with y being the according percentage) and f the number
of incorrectly classified (with z being the according percentage).

command
total num of examples m

num recognized a percentage s%
num not recognized b percentage t%
num false positives c percentage u%

mean R² (recognized) meanR²
Summary

total num of examples n
num recognized d percentage x%

num not recognized e percentage y%
num false positives f percentage z%

Table 4.5: Summary output for the k-fold cross-validation

Interpretation of the output is quite straight forward. If the percentage of the number
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of recognized values in each of the command outputs as well as in the summary is high,
the generalization of the system has a high relevance and the system is thus likely to
produce usable output for manipulative input by gesture recognition. If any of the
percentages from the command output of the number of recognized values is low (i.e.
below 70%), the system is likely to fail on recognizing the according gesture/command.
If there is a percentage different to 0 for any of the incorrectly classified gestures for any
of the commands, it is very likely that the system will produce faulty output for the
according gesture/command. It can also mean, that two gestures are too much alike in
both movement and form of the hand, thus a quick solution for the problem would be in
deleting the entries of the command from the sequence information file and choosing a
different gesture for the command.

4.2.6 Logging

Logging of the recognized gestures and thus the outgoing commands sent to the iCOM-
MIC is done via the iCOMMIC system. Internal logging of correlation output and similar
information is currently done by printing to the console. No additional logging of internal
processes was planned. Please see the chapter future outlook (Section 6.2) for further
details.
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A very important step of every software developing process is the verification and val-
idation of the system implemented. As any system is split up into smaller groups of
problems, these smaller groups can be assessed independently. Automated tests should
be used where possible to ensure highest possible correctness of the single sub-solutions
to the given problems. Sometimes automated testing is very costly as far as time and
calculational power is concerned, especially when trying to do so online. In such situa-
tions it is necessary to find other understandable and unquestionable methods to prove
correctness.

5.1 Verification

Image pre-processing
Image pre-processing was visually examined at every step of the implementation of

this part of the project. The correctness of the image processing and hand extraction
was non-automatically verified by assessing each and every recorded frame by visual
inspection. The feedback mechanism used here is the video debug mode as described in
3.2.4.1. Please see the future outlook in Section 6.2 for further ideas on this topic.

Data recording and loading
As far as correct data recording is concerned, online self-checking was used to ex-

amine recorded data for length of entries, in other words it was verified that the size of
the entries lies within the given boundaries. For example, the number of entries of form
vectors was not allowed to exceed the image height for the horizontal vector and the
width for the vertical form vector. The number of movement points per sequence was
not allowed to exceed the self defined number of frames per movement (10 in this case).
Furthermore, the movement vectors were checked for valid entries, so that no entry

of the movement vectors would exceed the height or width of the image. For the form
vectors, it was checked that the contained entries would not exceed the 10 frames times
the activation of maximum 320 entries for the horizontal vector and 240 entries for the
vertical form vector. In other words, no entries with values higher than 3200 for the
horizontal and 2400 for the vertical form vector were allowed.
The same process was also used to verify that data is loaded correctly. Additionally,

the loading of data was conducted using the XML loading mechanisms of the external
tinyXML library, where the structure of the XML file is checked for correctness online,
returning a failed state if incorrect.
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Connection to iCOMMIC
As far as the connection to the iCOMMIC and thus the correct transmission of data

is concerned, the verification was conducted by assessing the immediate output of the
iCOMMIC, that means if the correct gesture recognized and transmitted from the GRM
to the iCOMMIC led to the pressing of the correct button. For follow-up ideas on this
topic, please see the future outlook in Section 6.2.

5.2 Validation

For validation of the program, it was necessary to thoroughly execute validation steps
throughout the development of the project.
The part most relevant for validation is definitely the recognition module itself. Vali-

dating the recognition process was done implementing automatic testing in form of the
validation methods described in Section 2.9. The following two chapters show the output
of automatic testing (and thus validation) for a self recorded data set using the gestures
as described in 3.3.7. For the output format and its interpretation details please see
4.2.5.4.
The data set used contains 179 recordings of the presented gestures, with at least 20

examples each. By using k-fold cross-validation with k = 10, a data set of 179 examples
leads to 9 sets of 18 examples and one of 17. Before splitting the data set, the order of
sets is randomized so that it is implausible that any gesture/command is not represented
in a subset.

5.2.1 Validation of the neural network method

In the k-fold algorithm for neural network testing, there are always one subset of data
used for validation and one subset of data for testing. This is due to the fact, that with
the validation set, early stopping is performed on the neural network learning process as
described in chapter 2.6.1.7. An actual significant statement about the quality of training
can thus only be obtained by using a specific test set. Accordingly, the complete data are
still split into 10 parts, however only eight sets are used for training of the network, the
two remaining sets are used for validation and subsequent testing. This leaves a training
set of either 142 or 143 examples, with both the test and the validation set containing
either 17 or 18 examples.
The validity of the neural network method as shown by table Table 5.4 on page 87

can be seen as very high with 178 examples correctly classified (99.5%), 1 example not
classified as a valid gesture (0.5%) and 0 sequences classified as a wrong gesture (0.0%).
This suggests that the setup of the network (as described in chapter 4.2.2) was chosen
such that the network is able to generalize very well and thus can be very well used for
classification of new incoming gestures.
Tables 5.1 to 5.4 show the example output for one of the training/validation/test set

combinations, namely with the validation set #4 and the test set #5, with #1-3 and
#6-10 used as the training set.
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Table 5.1 demonstrates the training output for this one fold of the k-fold algorithm,
where neither the training error goal (0.0005) nor the validation error goal (0.005) was
hit. Early stopping occured after 100 epochs due to the insignificant change of less than
0.00001 of the validation MSE for three validation rounds (so 30 training epochs).

epoch training error/MSE validation error/MSE
10 0.0504695 0.0105454
20 0.00922807 0.0186824
30 0.00511237 0.026321
40 0.00374059 0.0173212
50 0.00307116 0.0175942
60 0.00311905 0.00836974
70 0.00319815 0.00812515
80 0.00250864 0.0124869
90 0.00248192 0.0124869
100 0.00248192 0.0124869

Table 5.1: Training output

After this fold of training was finished, the current test set (#5) was used for testing.
The whole set of 18 was used for testing. For demonstration purposes, two examples
will be explained in more detail. In 5.2, the correct classification was achieved with a
low MSE of 0.0022, while for the example in table 5.3, the classification failed due to
incorrect outputs from the network and a thus too high MSE of 0.15. Line 4 in table 5.3
thus remains empty, as the MSE exceeds the maximal level of error allowed for correct
classification (0.1).

current test optimal output 0 1 0 0
classification result 0.0110 0.9067 -0.002 0.0023

current test command zoomOut
classification command zoomOut

current test MSE 0.0022048

Table 5.2: Example output correctly classified
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current test optimal output 1 0 0 0
classification result 0.7116 0.1844 0.4615 0.5557

current test command rotateLeft
classification command

current test MSE 0.159775

Table 5.3: Example output not classified

Subtable a) in table 5.4 shows the summary for the test set #5, where 17 of the 18 test
examples where correctly classified, while one was not classified. Subtable b) shows the
complete summary over all test sets, with 178 of 179 examples correctly classified while
one example could not be classified correctly.

a)

Test set #5 summary
num correctly classified 17

num not classified 1
num incorrectly classified 0
total mean squared error 0.0141777

b)

Complete summary
num correctly classified 178

num not classified 1
num incorrectly classified 0
total mean squared error 0.0054874

Table 5.4: Summaries for a single test set (left) and the complete summary for the whole
process (right)

5.2.2 Validation of the correlation method

In this method, we use 9 subsets for building up the master templates and one subset
for validation, so either 161 or 162 examples for training with 17 or 18 examples to test.
This way, all of the examples of the data set are used 9 times for training and get tested
once without being used for training in this turn.
The validity and thus the quality of the correlation method for classification can be

easily assessed by inspecting the summary output (last subtable in Table 5.5 on page 88)
and shows to be very high in this example (and thus the prime setup of the system) with
a recognition rate of 97.2%, with only 2.8% not recognized at all and 0.0% false positives
(so no classification of a gesture as a different type of gesture). More detailed output for
the single commands can be seen in the rest of Table 5.5 on page 88.
Additionally, it is possible to see the quality of each of the commands/gestures by itself

with additional information about the mean R² (for further reading on the R², please
see Section 2.8). Assessing the single gestures/commands, you can see that each of the
gestures is recognized with a rate of at least 95.2% with not more than 1 example not
recognized and (as can be already seen from the summary output), with no false positive
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recognitions. This shows that the recognition method returns very usable results for the
given data set.

grab
total num of examples 20

num recognized 20 % 100,0
num not recognized 0 % 0
num false positives 0 % 0

mean R² (recognized) 0,938386

last
total num of examples 22

num recognized 21 % 95,45
num not recognized 1 % 4,54
num false positives 0 % 0

mean R² (recognized) 0,90157
next

total num of examples 23
num recognized 22 % 95,65

num not recognized 1 % 4,35
num false positives 0 % 0

mean R² (recognized) 0,932658

release
total num of examples 23

num recognized 23 % 100,0
num not recognized 0 % 0
num false positives 0 % 0

mean R² (recognized) 0,930146
rotateLeft

total num of examples 25
num recognized 24 % 96,00

num not recognized 1 % 4,00
num false positives 0 % 0

mean R² (recognized) 0,886338

rotateRight
total num of examples 23

num recognized 22 % 95,65
num not recognized 1 % 4,35
num false positives 0 % 0

mean R² (recognized) 0,914984
zoomIn

total num of examples 21
num recognized 20 % 95,24

num not recognized 1 % 4,76
num false positives 0 % 0

mean R² (recognized) 0,914984

zoomOut
total num of examples 22

num recognized 22 % 100,0
num not recognized 0 % 0
num false positives 0 % 0

mean R² (recognized) 0,914984
Summary

total num of examples 179
num recognized 174 % 97,2

num not recognized 5 % 2,8
num false positives 0 % 0%

Table 5.5: Example of the k-fold validation for the correlation method
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In this thesis, an approach towards hand gesture recognition for multi-modal user in-
terfaces was presented. Using low cost equipment, the idea was to generate a system
that recognizes previously defined gestures, making it possible to pass commands to the
computer without having to use either mouse or keyboard. As navigational input was
already available from the iCOMMIC system and it is furthermore difficult to cover nav-
igational input without using extensive calibration and three dimensional imaging, the
focus was set upon manipulative input.
Following the idea of creating a “one-for-all” and “hands-free” system, a simple, single

webcam is used to record the working space of the user. Hand extraction is done by a
simple colour space transformation and hysteresis thresholds on the colour channels of the
LUV colour space. The extracted hand is tracked, sequence images are created and the
sequence information is stored onto the hard drive. For training, the stored data is loaded
from disk, the data is preprocessed, a neural network is trained which is used to classify
gestures acted out in the field of view of the camera. Additionally, master templates
are created from the stored, to which new data can also be compared for recognition.
Commands associated to the recognized gestures are sent to the iCOMMIC system which
finally acts out the actual command by emulating the pressing of a previously defined
key.

6.1 Conclusion

The project presented in this thesis fulfills the requisitions as established during the
planning phase, including the expert interviews. The system is able to extract the hand
from the video, build up sequence images and recognize moved gestures in real-time
and is invulnerable to incorrect user input. External tempering of recorded data has
not been dealt with, but as this is a prototype for scientific purposes only, this fact is
negligible. Thus, the system presented here is ready to be used in controlled environments
for scientific purposes, but not yet for broad public usage. This is also to the fact, that
the user interface is currently controlled by textual input via the console only and not
via a graphical user interface.
In a controlled environment (as far as lighting, background colour and camera posi-

tioning is concerned) the quality of recognition can be described as very high. As soon
as the environmental conditions change however, the quality of recognition suffers, as
the hand extraction method is prone to become unstable when either the lighting or the
background colour changes as artifacts in image processing may occur. Furthermore, it is
vital to make sure that recorded gestures are acted out in a rather similar way every time,
as the training system is susceptible to faults and cannot deal with outliers. Additionally,
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the form recognition of the hand is not of much relevance, as the idea of summing up
the hand form over time blurs the actual hand form for single frames and thus makes it
almost impossible to differ between different postures. Due to this fact it is important to
make sure that the gestures chosen for the system differ significantly as far as movement
is concerned while the form of the hand is not as relevant at the moment. Please see the
next Section 6.2 for ideas about how to improve the system regarding stability of hand
extraction and recognition methods as well as some other ideas.
Generally speaking, the system can be seen as very fit for classification of previously

recorded hand gestures. By the possibility of recording own gestures easily and training
the system with the new gestures quickly, the system presented here might be one of the
most configurable systems for hand gesture recognition there is. By the connection to
the iCOMMIC which is also connected to an eye tracker, manifold possibilities for usage
arise, from ease-of-use-testing of user interfaces to complete control of both navigational
as well as manipulative computer input. In combination with the speech recognition as
suggested in the future outlook (Section 6.2), this system is definitely a very interesting
working base for a new alternative of computer control, both for “normal” as well as and
especially for impaired computer users.

6.2 Future outlook

There are manifold possibilities to better the presented system.

Hand extraction
For example, the method for extraction of the hand from the image can be improved

significantly by using the combinational approach using information from the HSV, the
RGB and the YES colour spaces presented in 2.4.2.1 and proposed by Gomez et al in 2002
(Gomez et al., 2002). This was not done due to the fact that the transformation from
one colour space to another needs time and computing power, so that three conversions
and the extraction of the necessary information from those colour spaces may surmount
the time available for single frame analysis. The paper doesn’t treat the timing issue at
all as this approach was implemented for offline usage, so no deduction could be drawn
from there. It would definitively be interesting to find out how much the hand extraction
could be improved by using such a combinational approach.

Significant point extraction
Instead of using the bounding box points for the movement, significant points could

be extracted from the point cloud of the hand directly. For example it would be an inter-
esting approach to calculate the center of gravity and the extremas of the hand, namely
the fingertips. Creating vectors from the center of gravity to each of the extremas, it
would be possible to calculate the angles between the extremas, thus allowing a more
detailed description of the form of the hand. and thus allowing a more precise classifica-
tion of smaller changes of the hand. This way, also fixed postures of the hand could be
recognized easily, as the angles could be identified and an additional neural network could
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be used to classify the postures. This would significantly improve the level of recognition
as well as the possibilities of gestures to be used.

Logging
Logging could be essentially improved, as the current logging system depends heavily

on the logging system of the iCOMMIC, which was so far not really used for logging
incoming gesture commands, but rather for eye tracking input.

Validation of image processing & hand extraction
Automatic validation of the image processing and the hand extraction is so far not

done at all, but there would be manifold possibilities to do so. One way would be to
feed predefined images into the frame acquisition system with a certain amount of hand
coloured pixel, calculate the output of the system and finally examine the actual number
of valid pixel with the number of pixel extracted by the image processing process.

Validation of iCOMMIC connection
A simple test to validate the connection between the GRM and the iCOMMIC

systems would be to store the command and the timestamp sent from the GRM to the
iCOMMIC in a file, do the same on the server side (so at the iCOMMIC) and finally
compare the two files.

Combination with linguistic systems
It would be very interesting to see if the additional modality of speech recognition

would further enhance the comfort of usage of the system. As systems used for speech
recognition are already available for many years, their quality can be seen as very high.
Thus, a combination of eye tracking, gesture recognition and speech recognition might be
the most interesting possibility for future projects focusing on new ways of communicating
with computers.
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