Andrea Temmel

Derivatisierung von Neopentasilan

MASTER THESIS DIPLOMARBEIT

zur Erlangung des akademischen Grades einer Diplom-Ingenieurin der Studienrichtung Technische Chemie erreicht an der

Technischen Universität Graz

in Zusammenarbeit mit der

Evonik Industries AG

Ao. Univ. Prof. Dr. Harald Stüger

Institut für Anorganische Chemie

Technische Universität Graz

Graz, November 2012

Danke!

Zuerst gilt mein Dank meinem Betreuer Herrn Professor Harald Stüger für die Überlassung des interessanten Themas, für das entgegengebrachte Vertrauen und für die stets vorhandenen Ratschläge bei diversen Problemstellungen.

Für die sehr schöne Zeit und das gute Betriebsklima während meiner Diplomarbeit bedanke ich mich vor allem bei meinen Kollegen des gesamten Institutes für Anorganische Chemie und insbesondere der Arbeitsgruppe von Professor Harald Stüger, die während und des Öfteren auch nach der Arbeit zu anregenden fachlichen und nichtfachlichen Gesprächen und Diskussionen stets bereit waren.

Bei Frau Birgit Ehmann bedanke ich mich für die Einführung in die doch sehr heikle praktische Arbeitsweise der Hydrosilanchemie. Herrn Dr. Christoph Walkner und Herrn Dr. Thomas Mitterfellner gebührt mein Dank für die Offenlegung ihres profunden Fachwissens und die überaus großen Hilfsbereitschaft während meiner Zeit am Institut.

Frau Monika Filzwieser gilt mein Dank für die Durchführung der Elementaranalysen. Außerdem möchte ich mich bei Herrn Dr. Roland Fischer und Frau Dr. Anna Torvisko für die Röntgenstrukturanalysen bedanken.

Mein Dank möchte ich auch dem Institut für Anorganische Chemie für die Bereitstellung von Institutsmitteln sowie der Evonik Industries AG für die Zusammenarbeit entgegen bringen.

Bedanken möchte ich mich vor allem bei meiner gesamten Familie, insbesondere meiner Mutter Karin und meiner Schwester Johanna, deren Unterstützung während meines gesamten Studiums unaufhaltsam war!

Andi dir danke ich besonders für die immer währende mentale Unterstützung und die vielen aufbauenden Worte die du mir stets entgegengebracht hast!

Abstract:

The cost-intensive methods of the deposition of silicon layers and the low efficiency of photovoltaic components require intensive research. Investigation of the Si deposition from liquid phase is insufficient at that time. Moreover the synthesis of doped components to optimize the bandgap is still in the initial stage. For this reason different germanium doped hydrosilane derivatives were synthesized to examine the semiconductor properties. For the implementation in photovoltaic components it is necessary to reduce the carbon content considerably after successful synthesis. Therefore, derivatization of phenyl germanium bonds in germasilanes with triflic acid followed by hydrogenation with diisobutlylaluminumhydride were accomplished in order to investigate the reactivity of the Ge-Si-bond.

Kurzfassung:

Die kostenintensiven Methoden der Abscheidung von Siliziumschichten und die schlechten Wirkungsgrade von Solarzellen erfordern auf diesem Gebiet intensive Forschung. Besonders im Bereich der Si-Abscheidung aus flüssiger Phase befindet sich die Forschung im Bereich der Dotierung zur Bandlückenoptimierung mit verschiedenen Elementen jedoch noch im Anfangsstadium. Aus diesem Grund wurden verschiedene phenylsubstituierte germaniumhaltige Hydrosilane synthetisiert um deren Halbleitereigenschaften zu untersuchen. Dotierstoffe sollen einen möglichst geringen Kohlenstoffanteil aufweisen, daher war es nötig organische Substituenten nach erfolgreicher Synthese zu entfernen. Um zu zeigen, ob das in Gegenwart der äußerst reaktiven Ge-Si-Bindung überhaupt möglich ist, wurden an Phenylgermasilanen Derivatisierungsversuche mit Trifluormethansulfonsäure (CF₃SO₃H) mit anschließender Hydrierung mit Diisobutylaluminiumhydrid (DIBALH) durchgeführt. Dadurch war es möglich Erkenntnisse über die Reaktivität von Ge-Si-Bindungen zu gewinnen.

Inhaltsverzeichnis:

1.	Einleitung und Problemstellung		7
2.	Literaturüber	sicht	12
,	2.1.	Synthese höherer Hydrosilane	12
	2.1.1.	Synthese durch saure Hydrolyse von Siliziden	13
	2.1.2.	Synthese durch Einwirkung von Energie auf SiH ₄	15
	2.1.3.	Synthese durch Hydrierung von Chlorsilanen	16
	2.1.4.	Weitere Synthesemethoden	18
,	2.2.	Synthese von Hydrogermaniumverbindungen	18
,	2.3.	Synthese von substituierten Oligogermanen	22
	2.3.1.	Synthese durch Wurtz-Kupplung	22
	2.3.2.	Synthese über Grignardverbindungen	24
	2.3.3.	Synthese durch Salzeliminierung	25
	2.3.4.	Synthese durch Hydrogermolyse	26
	2.3.5.	Synthese aus Ge(II)-Verbindungen	26
,	2.4.	Synthese von Halogengermanen	27
	2.4.1.	Organohalogenoligogermane	27
	2.4.2.	Perhalogenoligogermane	29
	2.4.3.	Hydrierung von Organooligogermanen	31
,	2.5.	Synthese von Polysilagermanen	32
3.	Ergebnisse u	nd Diskussion	35
	3.1.	Synthese von Triphenylgermylisotetrasilan	36
	3.2.	Synthese von 2-Triphenylgermyl-2-triphenylsilyltrisilan	37
	3.3.	Synthese von 2,2-Bistriphenylsilyltrisilan	40
	3.4.	Synthese von 2,2-Bistriphenylgermyltrisilan	42
	3.5.	Derivatisierung von Triphenylneopentasilan	43

	3.6.	Derivatisierung von Triphenylgermylisotetrasilan	45
	3.7.	Derivatisierung von 2-Triphenylgermyl-2-triphenylsilyltrisilan	48
4.	Strukturanaly	/sen	51
	4.1.	Triphenylgermylisotetrasilan	51
	4.2.	2-Triphenylgermyl-2-triphenylsilyltrisilan	53
	4.3.	2,2-Bistriphenylsilyltrisilan	55
5.	Experimentel	ler Teil	58
	5.1.	Arbeitstechnik und Analysenmethoden	58
	5.1.1.	Allgemeines	58
	5.1.2.	Analysen	58
	5.2.	Synthesen	61
	5.2.1.	Triphenylgermaniumchlorid	61
	5.2.2.	Triphenylneopentasilan	62
	5.2.2.1.	Mit LDA und Triphenylchlorsilan	62
	5.2.2.2.	Mit Methyllithium und Triphenylchlorsilan	63
	5.3.	Synthese neuer Verbindungen	64
	5.3.1.	Triphenylgermylisotetrasilan	64
	5.3.1.1.	mit Kaliumtertbutanolat und Triphenylgermyltrifluormethansulfonat	64
	5.3.1.2.	mit Kaliumtertbutanolat und Triphenylgermaniumchlorid	65
	5.3.1.3.	mit Lithiumdiisopropylamid und Triphenylgermaniumchlorid	66
	5.3.1.4.	mit Methyllithium und Triphenylgermaniumchlorid	66
	5.3.2.	2-Triphenylgermyl-2-triphenylsilyltrisilan	67
	5.3.2.1.	mit Lithiumdiisopropylamid bei -30°C	68
	5.3.2.2.	mit Methyllithium bei 0°C	69
	5.3.3.	2,2-Bistriphenylsilyltrisilan	70
	5.3.4.	2,2-Bistriphenylgermyltrisilan	71
	5.3.5.	Derivatisierung von 1,1,1-Triphenylneopentasilan	73
	5.3.6.	Derivatisierung von Triphenylgermylisotetrasilan	73
	5.3.7.	Monofunktionalisierung von 2-Triphenylgermyl-2-triphenylsilyltrisilar	ı.74

	5.3.8.	Difunktionalisierung von 2-Triphenylgermyl-2-triphenylsilyltrisilan75
	5.3.8.1.	aus 2-(Diphenylgermyl)-1,1,1-triphenyl-2-silyltrisilan75
	5.3.8.2.	durch Zugabe von zwei Äquivalenten Trifluormethansulfonsäure
	5.3.8.3.	durch zweimalige Zugabe von einem Äquivalent
		Trifluormethansulfonsäure76
6.	Zusammenfas	ssung
7.	Abbildungsverzeichnis	
8.	Tabellenverzeichnis 8	
9.	Lebenslauf	

1. Einleitung und Problemstellung

Die Photovoltaik stellt einen Industriezweig mit enormem Wachstumspotential aufgrund der in absehbarer Zeit zur Neige gehenden fossilen Energiequellen dar. Trotz der konstanten Zuwachsraten der weltweiten Energieproduktion aus Photovoltaik bzw. Solarzellen, ist diese aufgrund der hohen Kosten weiterhin nicht konkurrenzfähig¹.

Zur Kostenreduktion werden zwei Strategien verfolgt: Aufgrund der Tatsache, dass die Kosten einer photovoltaischen Anlage zu 70 % proportional zur Modulfläche sind, kann durch Erhöhung des Wirkungsgrades der Solarzellen, für eine bestimmte elektrische Leistung die benötigte Modulfläche verkleinert und eine Einsparung auch bei gleichbleibenden Herstellungskosten erzielt werden².

Ein weiterer längerfristiger Ansatz zur Reduktion der Herstellungskosten, sieht zum einen die Verwendung von kostengünstigeren Rohstoffen wie zum Beispiel blockgegossenes, multikristallines Silizium anstatt von einkristallinen Siliziumwafern (Czochralski-Si) und andererseits eine Weiterentwicklung von Dünnschichtsolarzellen vor.

Im Allgemeinen werden dünne Siliziumschichten (in der Größenordnung einiger μ m) konventionell aus SiH₄ durch CVD (chemical vapour deposition) auf einem Trägermaterial wie etwa Metallblech, Glas oder Kunststoff abgeschieden. Die Vorteile dieser Methoden liegen im Wesentlichen bei der Tatsache, dass weniger Silizium verarbeitet wird und außerdem kein Zersägen von Siliziumblöcken notwendig ist, das mit hohen Materialverlusten verbunden ist. Grundsätzlich können Dünnschichtsolarzellen wesentlich kostengünstiger hergestellt werden, haben jedoch den Nachteil, dass sie im Allgemeinen niedrigere Wirkungsgrade als auf Wafern basierende Solarzellen aufweisen.

Weiters wird zwischen der Hochtemperaturabscheidung bei etwa 1100°C, die multikristallines Silizium ergibt, jedoch auch entsprechende Anforderungen an das verwendete Substrat stellt, und der Niedertemperaturabscheidung bei Temperaturen unter 600°C, die (ohne anschließende Rekristallisation) zu mikro- bzw. nanokristallinem oder amorphem Silizium führt.

¹ S. Bau, *Dissertation*, Universität Konstanz 2003

² J. Schmidt, Vortrag FVS Workshop Photovoltaik: Materialforschung in Deutschland 2003, 8

Solarzellen aus amorphem Silizium (a-Si bzw. a-Si:H, Silizium enthält noch ca. 10 - 20 % Wasserstoff) haben die Vorteile, dass sie aufgrund der niedrigen Abscheidungstemperaturen (Energieverbrauch, kostengünstige Substrate) weniger Kosten verursachen und außerdem in großen Abmessungen vor allem für gebäudeintegrierte Photovoltaikanlagen verwendet werden können. Darüber hinaus nimmt bei höheren Betriebstemperaturen der Wirkungsgrad weniger stark ab als bei Solarzellen aus kristallinem Silizium.

Eine weitere Methode zur Herstellung von Halbleitermaterialien bietet die Abscheidung aus der Flüssigphase, die bisher hauptsächlich auf dem Gebiet der organischen Elektronik eingesetzt wurde, jedoch auch für siliziumbasierte Systeme großes Potential bietet. Im Vergleich zum CVD-Verfahren könnten die Kosten durch effizientere Nutzung des Materials, geringeren Energieverbrauch und Vereinfachung des Herstellungsprozesses und der benötigten Fertigungsanlagen deutlich gesenkt werden.³ Außerdem ermöglicht diese Art der Abscheidung die großflächige Herstellung von Schichten.

Eine Möglichkeit wird in Schema 1 schematisch dargestellt und geht von einem Cyclopentasilan (Si₅H₁₀) Precursormaterial als Basis aus⁴. Durch UV-Bestrahlung kommt es zur Bildung eines Silangemisches mit einer mittleren Molmasse (M_w) von ca. 2600 g/mol aufgrund der stattfindenden ringöffnenden Oligomerisierung. In organischen Lösungsmitteln sind diese Silane weitgehend unlöslich, können jedoch in Cyclopentasilan und auch in einer Mischung aus Cyclopentasilan und Toluol gelöst werden, welches das sogenannte "liquid silicon material" darstellt. Dieses kann mittels konventioneller Beschichtungsmethoden, wie etwa Spincoating oder Tintenstrahldruck, auf ein Substrat aufgebracht und bei 300 – 400°C in amorphes Silizium umgewandelt werden. In weiterer Folge wird durch Kristallisation mittels Laserbestrahlung polykristallines Silizium mit günstigeren elektronischen Eigenschaften erhalten.

³ S. Wieber, M. Patz, R. Carius, T. Bronger, M. Cölle, WO 2011/061106 A2, 2011

⁴ T. Shimoda, Y. Matsuki, M. Furusawa, T. Aoki, I. Yudasaka, H. Tanaka, H. Iwasawa, D. Wang, M. Miyasaka, Y. Takeuchi, *Nature* **2006**, 440, 783

Schema 1: Herstellung von Siliziumschichten ausgehend von Si₅H₁₀

Eine Schichtenabscheidung aus Flüssigphasen zeigten auch *Tanaka et al.* indem sie ebenfalls wie in Schema 1 dargestellt das "liquid silicon material" aus CPS synthetisierten. Anschließend stellten sie auf zwei unterschiedlichen Wegen phosphordotierte Halbleiter (n-Typ) her. In der ersten Methode wurde weißer Phosphor im ""liquid silicon material" nach dem Polymerisationsprozess gelöst, mittels Spincoating abgeschieden und getempert. In der zweiten Methode wurde der weiße Phosphor bereits im CPS gelöst und war Bestandteil der Polymerisation.⁵

Ein US-Patent von 2003 zeigt die Herstellung von qualitativ hochwertigeren und temperaturresistenteren Siliziumschichten mittels hochmolekularen Siliziumpolymeren aus einer Flüssigphase ausgehend von CPS. Die erforderlichen hochmolekularen Polymere werden hierbei durch UV-Bestrahlung bei bestimmten Wellenlängen hergestellt.⁶

Eine weitere Methode zur Herstellung von Siliziumschichten aus der Flüssigphase bietet die Methode von *Han et al.* deren Idee es war Si₆H₁₂ als Precursormaterial für die Herstellung von anorganischen Halbleitermaterialien zu verwenden.⁷ Um p- bzw. n-Halbleiter herzustellen wurde Si₆H₁₂ zum einen mit Organoborverbindungen und zum anderen mit Phosphorderivaten dotiert. Eine geeignete Synthese von Si₆H₁₂ mit einer Ausbeute von 95 % lieferten *Boudjouk et al.* über die Synthese von [pedeta'H₂SiCl⁺]₂[Si₆Cl₁₄²⁻] durch Umsetzung

⁵ H. Tanaka, H. Iwasawa, D. Wang, N. Toyoda, T. Aoki, I. Yudasaka, Y. Matsuki, T. Shimoda, M. Furusawa, *Jpn. J. Appl. Phys.* **2007**, 46, L886

⁶ T. Aoki, M. Furusawa, Y. Matsuki, H. Iwasawa, Y. Kateuchi, US 7,223,802 B2, 2007

⁷ S. Han, X. Dai, P. Loy, J. Lovaasen, J. Huether, J. M. Hoey, A. Wagner, J. Sandstrom, D. Bunzow, O. F. Swenson, I. S. Akhatov, D. L. Schulz, *J. Non-Cryst. Solids* **2008**, 354, 2623

von HSiCl₃ und pedeta in CH₂Cl₂ bei 40 - 45 °C für 48 h (Gleichung 1) und anschließender Reduktion dieses Komplexes mit LiAlH₄.⁸

Einen weiteren Fortschritt bezüglich Bandlückenoptimierung in der Solarzellentechnologie zeigt ein US - Patent von 2007 von Nakajima et al.. Sie beobachteten, dass eine optimale Bandlücke durch Dotierung mit Germanium hervorgerufen werden kann. In einem energieintensiven Prozess stellten sie eine multikristalline Silizium-Germanium-Legierung her, die zur Schichtenherstellung von Solarzellen verwendet wurde. Die Dotierung mit Germanium bewirkte eine Verbesserung der elektrischen Eigenschaften des verwendeten Materials, sodass es möglich war eine erhöhte Absorption im roten Spektralbereich zu erreichen, was eine höhere Lichtausbeute zur Folge hatte. Die Abscheidung der Schichten wurde in diesem Fall aus der Gasphase unter Vakuum durchgeführt, was sehr hohe Kosten und großen apparativen Aufwand mit sich brachte. Daher kam 2010 von Stützel und Fahrner im Auftrag der Evonik Degussa GmbH die Idee die Abscheidung der Schichten aus der Flüssigphase durchzuführen und eine polymorphe Silizium-Germanium-Schicht zu erstellen indem Formulierungen verwendet werden, die Silizium- und Germaniumverbindungen enthalten. Den polymorphen Charakter erreichten sie mit einer abschließenden UV-Bestrahlung und/oder thermischen Behandlung.⁹

Eine elegantere und kostenreduzierende Methode wäre die Schichtenherstellung aus flüssiger Phase unter Verwendung von germaniumdotierten Hydrosilanen die bereits eine kovalente Bindung des Germaniums zum Silizium aufweisen. Die wesentlichen Anforderungen an

 ⁸ S. B. Choi, B. K. Kyu, P. Boudjouk, D. G. Grier, J. Am. Chem. Soc. 2001, 123, 8117
 ⁹ B. Stützel, W. Fahrner WO 2010/125081 A2, 2010

potentielle Dotierstoffe sind dabei: Eine möglichst geringe Flüchtigkeit der Verbindung, um eine Verdampfung vor der thermischen Zersetzung zu vermeiden, ein möglichst geringer Kohlenstoffgehalt und ein definierter Gehalt sowie eine möglichst homogene Verteilung des Dotierelementes.

Aus diesem Grund war das Ziel der vorliegenden Arbeit verschiedene Hydrosilane und Hydrosilylgermane zu synthetisieren, wobei das leicht verfügbare Neopentasilan (Si_5H_{12}) den Ausgangsstoff darstellen sollte. Bei erfolgreicher Synthese sollten diese Verbindungen zur Abscheidung von germaniumdotierten Siliziumschichten aus der flüssigen Phase herangezogen und deren Halbleitereigenschaften untersucht werden. Eine große Problematik stellt dabei im Syntheseverlauf die Instabilität der Ge – Si - Bindung dar. Aus diesem Grund kommt ein großer Teil dieser Arbeit der Untersuchung der Stabilitäten und Reaktivitäten aller synthetisierten Silylgermaniumverbindungen zu.

2. Literaturübersicht

2.1. Synthese höherer Hydrosilane

Aufgrund der Weiterentwicklungen in der Halbleitertechnik stieg das Interesse an Hydrosilanen und deren Derivaten rasant an. Hydrosilane, vor allem solche, die mit funktionellen Gruppen verknüpft sind, waren lange Zeit hauptsächlich Gegenstand theoretischer Untersuchungen. Die wichtigsten Ausnahmen bildeten unter anderem einerseits die von *F. Fehér* an der Universität Köln, andererseits die an diesem Institut durchgeführten Arbeiten, auf die in der folgenden Literaturübersicht noch näher eingegangen wird.

Die Chemie der Siliziumwasserstoffverbindungen, der Silane, wird vor allem unter dem Gesichtspunkt der Analogie zu den Kohlenwasserstoffen betrachtet. Vor allem die unsubstituierten Silane, in Abgrenzung zu ihren Derivaten wie den Organosilanen auch als Hydrosilane bezeichnet, zeigen jedoch besonders deutlich die Unterschiede zwischen Silizium und Kohlenstoff.^{10,11} Entgegengesetzt zu den analogen Kohlenstoffverbindungen (Alkane), die chemisch weitestgehend inert sind, stellen die Hydrosilane hochreaktive Verbindungen dar, wobei kürzerkettige Silane mit Luftsauerstoff unter spontaner Selbstentzündung reagieren.

Bei der Betrachtung der Elektronegativitäten, die für Kohlenstoff 2,50, für Silizium 1,74 und für Wasserstoff 2,20 betragen (nach *Allred* und *Rochow*), zeigt sich der Grund für dieses gänzlich unterschiedliche Verhalten. Somit ergibt sich für Silizium eine umgekehrte Polarität der Element-Wasserstoffbindung, nämlich Si^{δ +}-H^{δ -} im Vergleich zum Kohlenstoff C^{δ -}H^{δ +}. Folglich kann durch nukleophilen Angriff auf das Siliziumatom im Gegensatz zur C-H-Bindung eine Spaltung der Si-H-Bindung stattfinden.

Weiters kann Silizium im Gegensatz zum Kohlenstoff tetravalent als koordinativ ungesättigt angesehen werden. Die Neigung, mit geeigneten Donoren hypervalente Verbindungen bzw. Addukte zu bilden, ermöglicht am Silizium eine besonders rasch ablaufende Substitution vom Typ $S_N 2$.

¹⁰ J. Y. Corey, in: S. Patai, Z. Rappoport (Ed.): *The Chemistry of Organic Silicon Compounds*, Wiley, John & Sons, Inc. **1989**, 1

¹¹ R. Janoschek, Chem. unserer Zeit 1988, 22, 128

Schließlich ist die Si-Si-Bindung aufgrund der unterschiedlichen kovalenten Radien (Kohlenstoff: 77 pm; Silizium: 111 pm) im Vergleich zur C-C-Bindung wesentlich schwächer. Demgegenüber sind Bindungen zu elektronegativen Elementen wie Halogenen, Stickstoff oder Sauerstoff bei Silizium wesentlich stärker als bei Kohlenstoff. Eine der stärksten bekannten Einfachbindungen stellt die Si-F-Bindung dar. Diese Tatsache stellt eine starke Tendenz der Siliziumverbindung zur Bildung der äußerst stabilen Si-Halogen- oder Si-O-Bindungen auf Kosten der schwächeren Si-Si-, Si-C-, Si-N- oder Si-H-Bindungen dar.

Aus diesen Gründen stellt die Synthese höherer Hydrosilane ein Problem dar, für das nach wie vor keine vollauf zufriedenstellende Lösung gefunden wurde; aus der Fachliteratur ist eine Reihe von Methoden bekannt, von denen allerdings bis heute keine im technischen Maßstab umgesetzt wurde. Aus diesem Grund und angesichts der in Aussicht stehenden Anwendungen im Bereich der Halbleitertechnik wird das Gebiet gerade in jüngerer Zeit relativ intensiv beforscht, ohne dass allerdings ein entscheidender Durchbruch erzielt worden wäre. Im Folgenden soll ein Überblick über die vorliegende Literatur geboten werden, wobei kein Anspruch auf Vollständigkeit erhoben wird. Vorwiegend werden Arbeiten zitiert, die entweder für die vorliegende Arbeit oder für die Chemie der Silane im Allgemeinen von besonderer Relevanz sind; eine umfassendere Aufstellung vor allem auch der neueren Literatur findet sich an anderer Stelle.^{12,13,14}

2.1.1. Synthese durch saure Hydrolyse von Siliziden

Bereits 1902 konnten *Moisson* und *Smiles* als erstes höheres Hydrosilan, Disilan (Si₂H₆) neben Monosilan (SiH₄) in dem aus der Zersetzung von Magnesiumsilizid mit wässriger HCl erhaltenen Produktgemisch nachweisen (Gleichung 2).^{15,16}

¹² C. Walkner, *Diplomarbeit*, TU Graz 2007

¹³ C. Walkner, *Dissertation*, TU Graz **2011**

¹⁴ a) E. Hengge in: *Gmelin Handbook of Inorganic Chemistry*, *15(B1)*, (Ed.: U. Krüerke), Springer, Berlin, Heidelberg, New York, **1982**, 203; b) J. H. Lorenz, *Sol. Energy Res. Inst., Report, Energy Res. Abstr.* **1984**, *9*, Abstr. No. 18359; c) H. G. Horn, *Chemikerzeitung* **1986**, 4, 142

¹⁵ H. Moisson, S. Smiles, *Compt. Rend.* **1902**, 134, 569

¹⁶ H. Moisson, S. Smiles, Compt. Rend. 1902, 134, 1549

$$Mg_2Si \xrightarrow{H_3O^+} SiH_4 + Si_2H_6 + Si_3H_9 + Si_4H_{10} etc.$$

2

Lebeau fand heraus, dass das auf diese Weise erhaltene Disilan mit höheren Silanen verunreinigt war, hielt diese allerdings fälschlicherweise für Disilen (Si_2H_4) .¹⁷ *Stock* führte weitere umfassende Untersuchungen der Reaktion durch und konnte die Silane bis zum Tetrasilan (Si_4H_{10}) isolieren und charakterisieren sowie Pentasilan (Si_5H_{12}) und Hexasilan (Si_6H_{14}) nachweisen.^{18,19,20} *Johnson* stellte fest, dass die Verwendung einer Lösung von NH₄Br in flüssigem Ammoniak anstelle von wässriger HCl die Ausbeute an Silanen deutlich erhöht, den Anteil höherer Silane im Produktgemisch allerdings erheblich verringert.^{21,22}

Der Einsatz der präparativen Gaschromatographie ermöglichte es, die Silane bis zum Octasilan (Si₈H₂₀) einschließlich einer Reihe von verzweigten Isomeren aufzutrennen und zu identifizieren.²³ *Fehér* beschäftigte sich intensiv mit der Weiterentwicklung der Hydrolyse von Mg₂Si unter Verwendung wässriger Schwefel- oder Phosphorsäure. Die Umsetzung wurde auch in halbtechnischem Maßstab durchgeführt, um größere Mengen an höheren Silanen, deren Anteil am entstehenden Silangemisch sehr gering ist, zu erhalten; dadurch konnten die Silane bis zum Pentadecasilan (Si₁₅H₃₂) identifiziert werden.^{24,25,26} Die unverzweigten Silane bis zum Heptasilan (Si₇H₁₆) sowie die verzweigten Verbindungen 2-Silyltrisilan, 2-Silyltetrasilan und 2-Silylpentasilan wurden isoliert und charakterisiert.^{27,28}

¹⁷ P. Lebeau, *Compt. Rend.* **1909**, 148, 43

¹⁸ A. Stock, C. Somieski, Ber. Deut. Chem. Ges. 1916, 49, 111

¹⁹ A. Stock, P. Stiebeler, F. Zeidler, Ber. Deut. Chem. Ges. 1923, 56, 1695

²⁰ A. Stock, Z. Electrochem. **1926**, 32, 341

²¹ W. C. Johnson, T. R. Hogness, J. Am. Chem. Soc. 1934, 56, 1252

²² W. C. Johnson, S. Isenberg, J. Am. Chem. Soc. 1935, 57, 1349

²³ K. Borer, C.S.G. Phillips, Proc. Chem. Soc. 1959, 189

²⁴ F. Fehér, G. Kuhlborsch, H. Luhleich, Z. Anorg. Allgem. Chem. 1960, 303, 283

²⁵ F. Feher, D. Schinkitz, J. Schaaf, Z. Anorg. Allgem. Chem. **1971**, 383, 303

²⁶ F. Fehér, H. Baier, B. Enders, M. Krancher, J. Laakmann, F. J. Ocklenburg, D. Skrodski, Z. Anorg. Allgem. Chem. **1985**, 530, 191

²⁷ F. Fehér, P. Hädicke, H. Frings, Inorg. Nucl. Chem. Letters 1973, 9, 931

²⁸ F. Fehér, D. Skrodzki, Inorg. Nucl. Chem. Letters 1974, 10, 577

2.1.2. Synthese durch Einwirkung von Energie auf SiH₄

Eine weitere Möglichkeit der Synthese höherer Silane besteht in der Einwirkung verschiedener Formen von Energie auf Monosilan, wodurch es unter Abspaltung von Wasserstoff zum Aufbau längerer Silanketten kommt:

$$SiH_4 \xrightarrow{\text{Energie}} H_2 + Si_2H_6 + Si_3H_9 + Si_4H_{10} + (SiH_x)_n$$

Auch die Umsetzung von Di- oder Trisilan zu noch höheren Silanen ist möglich. Der Vorteil dieser Methoden liegt darin, dass keine weiteren Reagenzien benötigt werden, wodurch im Vergleich zu anderen Methoden weniger Verunreinigungen im Produktgemisch zu erwarten sind. Allerdings werden im Allgemeinen polymere Siliziumsubhydride bzw. amorphes Silizium als Nebenprodukte gebildet.

Die einfachste Möglichkeit besteht darin, die Energie thermisch zuzuführen: Bereits 1952 gelang es *Fritz*, durch Pyrolyse von Monosilan Disilan zu erhalten.²⁹ Unter Verwendung von Disilan als Ausgangsmaterial konnte Trisilan und durch Pyrolyse von Trisilan wiederum Tetrasilan hergestellt werden.³⁰ Kinetische Untersuchungen der Pyrolyse von Mono-³¹ Di-³² und Trisilan³³ führten zur Formulierung von Reaktionsmechanismen, die die intermediäre Bildung von Silylen (:SiH₂) und dessen anschließende Insertion in Si-H-Bindungen unter Bildung höherer Silane beinhalten. Für die Zersetzung von Monosilan wurde auf der Basis von Experimenten unter Verwendung von Gemischen aus Monosilan und deuteriertem Monosilan (SiD₄) allerdings auch ein radikalischer Mechanismus postuliert.³⁴

Eine weitere Möglichkeit der Energiezufuhr besteht darin, Monosilan in einem Ozonisator einer stillen elektrischen Entladung auszusetzen, wodurch ebenfalls ein Gemisch aus Di- und

²⁹ G. Fritz, Z. Naturforsch. B 1952, 7, 507

³⁰ E. M. Tebben, M. A. Ring, *Inorg. Chem.* **1969**, 8, 1787

³¹ J. H. Purnell, R. Walsh, Proc. Chem. Soc. A 1966, 293, 543

³² M. Bowrey, J. H. Purnell, J. Am. Chem. Soc. 1970, 92, 2594

³³ A. J. Vanderwielen, M. A. Ring, H. E. O'Neal, J. Am. Chem. Soc. 1975, 97, 993

³⁴ M. A. Ring, M. J. Puentes, H. E. O'Neal, J. Am. Chem. Soc. **1970**, 92, 4845

Trisilan sowie geringen Mengen an höheren Silanen erhalten werden kann.^{35,36} Aus einem Gemisch aus Mono- und Disilan konnten unter ähnlichen Bedingungen höhere, hauptsächlich verzweigte Silane mit bis zu sieben Siliziumatomen gewonnen und gaschromatographisch aufgetrennt werden.³⁷ Eine ähnliche Methode wurde verwendet, um - in Hinblick auf Anwendungen in der Halbleitertechnik - hochreines Di- und Trisilan herzustellen.³⁸

Schließlich kann Monosilan auch photochemisch zu höheren Silanen umgesetzt werden, beispielsweise wurden nach Bestrahlung mit UV Licht unter Verwendung von Quecksilber als Photosensibilisator Di- und Trisilan neben geringen Mengen an höheren Silanen erhalten.³⁹ Auch durch Bestrahlung im Infrarotbereich mittels eines gepulsten TEA-CO₂ - Lasers konnten Gemische von höheren Silanen hergestellt werden.⁴⁰ Experimente, in denen Gemische aus SiH₄ und SiD₄ photochemisch sowie unter Einwirkung von elektrischen Entladungen umgesetzt wurden, führten ebenfalls Formulierung zur eines Reaktionsmechanismus unter Beteiligung von Silylen,⁴¹ allerdings konnte auch ein radikalischer Mechanismus nicht ausgeschlossen werden.³⁴

2.1.3. Synthese durch Hydrierung von Chlorsilanen

$$Si_nCl_m \xrightarrow{LiAlH_4 / {}^{l}Bu_2AlH} Si_nH_m$$

4

Einen einfachen Zugang zu den entsprechenden Hydrosilanen stellt die Umsetzung von Chlorsilanen mit verschiedenen Hydrierungsmitteln dar (Gleichung 4). Diese Methode ist jedoch einerseits durch die Verfügbarkeit der chlorierten Vorstufen, andererseits gerade bei höheren Silanen durch das Auftreten von Nebenreaktionen unter Spaltung von

³⁵ E. J. Spanier, A. G. MacDiarmid, *Inorg. Chem.* **1962**, 1, 432

³⁶ S. D. Gokhale, J. E. Drake, W. L. Jolly, J. Inorg. Nucl. Chem. **1965**, 27, 1911

³⁷ T. D. Andrews, C. S. G. Phillips, J. Chem. Soc. A, **1966**, 1, 46

³⁸ M. Akhtar, Synth. React. Inorg. Metal-Org. Chem. 1986, 16, 729

³⁹ H. Niki, G. J. Mains, J. Phys. Chem. **1964**, 68, 304

⁴⁰ P. A. Longeway, F. W. Lampe, J. Am. Chem. Soc. 1981, 103, 6813

⁴¹ M. A. Ring, G. D. Beverly, F. H. Koester, R. P. Hollandsworth, *Inorg. Chem.* 1969, 8, 2033

Si-Si-Bindungen limitiert. *Schlesinger* führte erstmals 1947 eine derartige Synthese durch, wobei unter anderem Hexachlordisilan (Si₂Cl₆) mit Lithiumaluminiumhydrid (LiAlH₄) zu Disilan umsetzt wurde.⁴² In analoger Weise konnte später aus Octachlortrisilan (Si₃Cl₈) Trisilan hergestellt werden.⁴³ n-Tetrasilan wurde aufgrund der mangelnden Verfügbarkeit der Vorstufe $n-Si_4Cl_{10}$ in reiner Form durch Hydrierung von 1,4-Dibromsilan mit LiAlH₄ synthetisiert.⁴⁴

Durch Hydrierung von Dodecachlorneopentasilan ((SiCl₃)₄Si), das durch katalytische Umlagerung von Si₂Cl₆ oder Si₃Cl₈ zugänglich ist erhielt *Höfler*⁴⁵ mit LiAlH₄ Neopentasilan ((SiH₃)₄Si).⁴⁶ Die Ausbeuten waren allerdings gering, da bei der Reaktion mit LiAlH₄ durch Spaltung von Si-Si-Bindungen große Mengen an Nebenprodukten gebildet wurden. Diisobutylaluminiumhydrid anstelle von LiAlH₄ stellte eine entscheidende Verbesserung der Synthese von Neopentasilan dar, da die Hydrierung praktisch ohne Nebenreaktionen ermöglicht wurde.⁴⁷ *Hengge* konnte mit Cyclopentasilan (Si₅H₁₀)^{48,49} und Cyclohexasilan (Si₆H₁₂)⁵⁰ erstmals zyklische Silane darstellen; hierbei konnten deutlich höhere Ausbeuten erzielt werden, da es bei der Hydrierung von zyklischen Halogensilanen kaum zur Spaltung von Si-Si-Bindungen kommt. Allerdings ist die Synthese der Ausgangsmaterialien nicht unproblematisch, da hierfür zunächst Si₅Ph₁₀ bzw. Si₆Ph₁₂ durch Kupplung von Ph₂SiCl₂ mit Alkalimetallen hergestellt und dann zu Si₅Cl₁₀ oder Si₅Br₁₀ bzw. Si₆Cl₁₂ halogeniert werden müssen.

Einen einfacheren Zugang zu Si₆H₁₂ bietet ein von *Boudjouk* entwickelter, alternativer Syntheseweg für Si₆Cl₁₂:⁵¹ Durch Disproportionierung von Trichlorsilan in Gegenwart von Pentaethyldiethylentriamin (pedeta) bildet sich der Komplex [pedeta H₂SiCl⁺]₂[Si₆Cl₁₄²⁻]. Das Anion Si₆Cl₁₄²⁻, ein Komplex aus Si₆Cl₁₂ und zwei Chloridionen, kann mit LiAlH₄ in guten Ausbeuten zu Si₆H₁₂ umgesetzt werden.

⁴² A. E. Finhold, A. C. Bond, Jr., K. E. Wilzbach, H. I. Schlesinger, J. Am. Chem. Soc. 1947, 69, 2692

⁴³ P. P. Gaspar, C. A. Levy, G. M. Adair, *Inorg. Chem.* **1970**, 9, 1272

⁴⁴ A. Haaland, K. Rypdal, H. Stüger, H. V. Volden, Acta Chem. Scand. 1994, 48, 46

⁴⁵ G. Urry, J. Inorg. Nucl. Chem. **1964**, 26, 409

⁴⁶ F. Höfler, R. Jannach, Inorg. Nucl. Chem. Letters 1973, 9, 723

⁴⁷ J. P. Cannady, X. Zhou, *WO/2008/051328*, **2008**

⁴⁸ E. Hengge, G. Bauer, Angew. Chem. **1973**, 85, 304

⁴⁹ E. Hengge, G. Bauer; *Monatsh. Chem.* 1975, 106, 503

⁵⁰ E. Hengge, D. Kovar; Angew. Chem. **1977**, 89, 417

⁵¹ S. B. Choi, B. K. Kim, P. Boudjouk, D. G. Grier, J. Am. Chem. Soc. 2001, 123, 8117

2.1.4. Weitere Synthesemethoden

Neben den bereits genannten wurden in der Literatur noch einige weitere Methoden zur Synthese höherer Hydrosilane vorgeschlagen, die allerdings auf vergleichsweise geringe Bedeutung besitzen.

Die Direktsynthese von Silanen aus den Elementen Silizium und Wasserstoff in Gegenwart schwefelhaltiger Katalysatoren wird von einem japanischen Patent aus dem Jahr 1962 beschrieben.⁵² Durch Umsetzung von SiO mit wässriger HF konnte ein Gemisch von Monosilan und höheren Silanen erhalten werden;⁵³ auch die Behandlung von polymerem (SiF₂)_n mit HF führte zu ähnlichen Ergebnissen.⁵⁴ Eine weit verbreitete Methode zur Darstellung von oligomeren und polymeren Organosilanen ist die katalytische dehydrierende Kupplung von organosubstituierten Monosilanen; welche ebenso für die Synthese von höheren Hydrosilanen durch Oligomerisierung von SiH₄ eingesetzt wurde.^{55,56}

2.2. Synthese von Hydrogermaniumverbindungen

In den Synthesemethoden von Germanium- und Siliziumwasserstoffen besteht große Ähnlichkeit. Die Zahl der bekannten Germaniumhydride ist jedoch auf Grund der Instabilität vieler Verbindungen wesentlich kleiner als die entsprechender Silane. Des Weiteren bestehen wie im Falle der Homolgen C und Si auch zwischen Si und Ge signifikante Unterschiede im chemischen Verhalten. So ist durch die im Vergleich zu Si deutlich höhere Elektronegativität des Germaniumatoms der hydridische Charakter von Germaniumhydriden beträchtlich verringert. Dies äußert sich z.B. in der unerwartet geringen Oxidationsempfindlichkeit der Germane. Beispielsweise ist GeH₄ bei Kontakt mit Luft im Gegensatz zu SiH₄ nicht pyrophor, O_2/GeH_4 -Gemische niedrigen Druckes reagieren erst bei 320 °C langsam miteinander. Auch Ge₂H₆ reagiert deutlich langsamer mit Sauerstoff als Disilan, die Oxidation zu GeO₂ erfolgt

⁵² K. Tachiki, Y. Yamashita (Showa), JP 36021507, 1961

⁵³ P. L. Timms, C. S. G. Phillips, *Inorg. Chem.* **1964**, 3, 606

⁵⁴ P. L. Timms, R. A. Kent, T. C. Ehlert, J. L. Margrave, J. Am. Chem. Soc. 1965, 87, 2824

⁵⁵ Y. Okumura, K. Takatsuna, J. Yagihashi (Tonen Sekiyukagaku KK), JP 0218451, 1990

⁵⁶ N. Brausch, A. Ebbers, G. Stochniol, M. Trocha, Y. Önal, J. Sauer, B. Stützel, D. Wolf, H. Stüger, WO/2010/003729 A1, **2010**

erst bei T > 100 °C. Ebenso unerwartet ist die stark herabgesetzte Hydrolyseempfindlichkeit sowohl des Monogermans (stabil auch gegen 30 % NaOH und 1 M HBr) als auch der höheren Germane wie Ge₂H₆ und Ge₃H₈.⁵⁷ Weiters lassen sich Moleküle des Typs H_xGeCl_{4-x} auf Grund der geringen Elektronegativitätsdifferenz von H und Ge als schwache Säuren beschreiben.⁵⁸ Für HGeCl₃ existiert dabei ein Gleichgewicht entsprechend Gleichung 5 das durch Zugabe von koordinierenden Reagenzien nach rechts verschoben wird, wodurch sich die Reaktivität deutlich veränderte.

HGeCl₃
$$\longrightarrow$$
 H⁺[GeCl₃]⁻ \longleftarrow GeCl₂ + HCl
5

Das Etheraddukt $(Et_2O)_2$ ·HGeCl₃ reagiert daher im Gegensatz zu reinem HGeCl₃ mit Magnesium unter Wasserstoffentwicklung. Mit Aminobasen B wie Pyridin bildet HGeCl₃ salzartige Verbindungen des Typs $[BH]^+GeCl_3^{-}$.⁵⁹

Germylene sind auf Grund der höheren Neigung des Germaniums zur Ausbildung der Oxidationsstufe 2 stabiler und leichter zugänglich als die entsprechenden Silylene. So ist monomeres Cl_2Si : nur bei geringem Druck in der Gasphase oder bei niedriger Temperatur für kurze Zeit beständig und lässt sich nur in Komplexen stabilisieren, während Cl_2Ge : bei Raumtemperatur stabile Adukte mit einfachen Donormolekülen wie Dioxan bildet, die als Germylenquelle verwendet werden können und typische carbenoidanaloge Folgereaktionen wie Insertion in Metall-Halogenbindungen⁶⁰ zeigen. Im Gegensatz zu Diorganogermylenen R_2Ge : oder Cl_2Si : insertiert Cl_2Ge : jedoch nicht in Si-H-Bindungen.⁶¹

Auf Grund der geringeren Bindungsenergien der Ge-Ge bzw. Ge-H-Bindung zerfallen Germaniumwasserstoffe bei deutlich niedrigeren Temperaturen als die analogen Siliziumverbindungen. So beginnt der thermische Zerfall von Ge₂H₆ bereits bei 200°C

⁵⁷ a) E. G. Rochow in *Comprehensive Inorganic Chemistry*, A. F. Trotman-Dickinson (ed); Pergamon Press **1973**, S. 19. b) H. G. Horn, *Chemikerzeitung* **1986**, Nr. 4, 142

⁵⁸ a) V. F. Mironov, T. K. Gar, *Organometal. Chem. Rev. A*, **1968**, 3, 311. b) S. Kolesnikov, S. N. Tandura, O. M. Nefedov in *The Chemistry of Organic Germanium Tin and Lead Compounds*, (Ed. Z. Rappoport), Wiley **2002**, p. 1485

⁵⁹ S. Nogai, A. Schriewer, H. Schmidbaur, *DaltonTrans.* 2003, 3165

⁶⁰ A. C. Filippou, J. G. Winter, G. Kociok-Ktihn, L. Hinz, J. Organomet. Chem. 1997, 542, 35

⁶¹ K. S. Nosov, P. S. Koroteev, M. P. Egorov, *Russ. Chem. Bull., Int. Ed.* **2002**, 51, 1325

(Zerfallstemperatur $Si_2H_6 > 300^{\circ}C^{62}$), höhere Germane wie Ge_5H_{12} zersetzen sich bereits bei 100°C rasch zu GeH₄ und hochpolymeren Polygermanen.^{57a}

Die erste Germaniumhydridverbindung konnte *Vögelen* 1902 nachweisen.⁶³ Dazu versetzte er eine schwefelsaure Germaniumlösung mit Natriumamalgam oder Zink, wobei auf die Bildung von Germaniumwasserstoffen geschlossen werden konnte. Eine exakte Analyse des erhaltenen Produktes gestaltete sich jedoch als sehr schwierig. *Paneth* und *Schmidt-Hebbel* gelang es erst 1922 durch eine alternative Analysenmethode GeH₄ eindeutig nachzuweisen und die Bildung höherer Hydrogermaniumverbindungen in Mengen über 2 % auszuschließen.⁶⁴

Die Anfangsglieder der Reihe Ge_nH_{2n+2} konnten durch saure Hydrolyse von Mg_2Ge in wässrigem Medium oder in flüssigem Ammoniak erstmals im Grammmaßstab hergestellt werden (Gleichung 6).⁶⁵

$$Mg_{2}Ge \xrightarrow{HCl/H_{2}O} H_{2} + GeH_{4} + Ge_{2}H_{6} + Ge_{3}H_{8} + Ge_{4}H_{10} + Ge_{5}H_{12}$$

$$6$$

Diese wurden kondensiert und aufwändig fraktioniert destilliert. Es stellte sich heraus, dass außer 74% an Monogerman und geringen Mengen an höheren Germanen auch das bisher unbekannte Di- und Trigerman mit einem Anteil von 22% und 1% entstanden waren.

Die Synthese von Mono-, Di- und Trigerman kann auch über die langsame Zugabe einer alkalischen Lösung von Kaliumtetrahydroborat und Germaniumdioxid zu HCl erfolgen (Gleichung 7).⁶⁶ Eine Auftrennung der entstandenen Hydrogermaniumverbindungen wird durch fraktionierte Destillation ermöglicht.

⁶² Gmelin Handbook of Inorganic Chemistry 1982, 15(B1), Springer Verlag, S. 193

⁶³ E. Voegelen, Z. Anorg. Chem. 1902, 30, 325

⁶⁴F. Paneth, E. Schmidth-Hebbel, Ber. dtsch. Chem. Ges. 1922, 55B, 2615

⁶⁵ A. Stock, K. Somieski, Ber. dtsch. Chem. Ges. **1916**, 49, 111

⁶⁶ a) J. E. Drake, W. L. Jolly, Proc. Chem. Soc. **1961**, 379; b) J. Chem. Soc. **1962**, 2807

$$GeO_2 \xrightarrow{HCl} H_2 + GeH_4 + Ge_2H_6 + Ge_3H_8 + Ge_4H_{10} + Ge_5H_{12} + Ge_1H_4 + Ge_3H_8 + Ge_4H_{10} + Ge_5H_{12} + Ge_1H_4 + Ge_2H_6 + Ge_3H_8 + Ge_4H_{10} + Ge_5H_{12} + Ge_1H_4 + Ge_2H_6 + Ge_3H_8 + Ge_4H_{10} + Ge_5H_{12} + Ge_1H_4 + Ge_2H_6 + Ge_3H_8 + Ge_4H_{10} + Ge_5H_{12} + Ge_1H_4 + Ge_2H_6 + Ge_3H_8 + Ge_4H_{10} + Ge_5H_{12} + Ge_1H_4 + Ge_2H_6 + Ge_3H_8 + Ge_4H_{10} + Ge_5H_{12} + Ge_1H_4 + Ge_2H_6 + Ge_3H_8 + Ge_4H_{10} + Ge_5H_{12} + Ge_2H_6 + Ge_3H_8 + Ge_4H_{10} + Ge_5H_{12} + Ge_5H_{1$$

7

Während es nach einem der angegebenen Wege ohne weiteres möglich ist, größere Mengen an GeH₄ herzustellen, erwies sich für die Synthese höherer Germane in ausreichenden Ausbeuten die Einwirkung von elektrischen Entladungen⁶⁷ auf GeH₄ als besser geeignet:

$$GeH_4 \xrightarrow{\text{Entladung}} Ge_2H_6 + Ge_3H_8 + Ge_nH_{2n+2} (n < 10) < 40\% < 30\% < 10\%$$

Auf diesem Wege wurden aus 100 mmol GeH4 unter optimierten Bedingungen zumindest 10 mmol von Ge_nH_{2n+2} (n < 10) pro Stunde erhalten, gaschromatographisch⁶⁸ aufgetrennt und spektroskopisch charakterisiert werden. In Tabelle 1 sind die Mengen von Ge₂H₆ bis Ge₄H₁₀ angegeben, wobei diese je nach angelegter Spannung, Druck und Reaktionszeit variieren. Die angegebenen Ausbeuten beziehen sich auf 10 kV, 133 mbar und 1 h Reaktionszeit.

Verbindung	Ausbeute [g]
Ge ₂ H ₆	1
Ge ₃ H ₈	0,5
Ge_4H_{10}	0,1
Ge ₅ H ₁₂	0,02
$Ge_{6}H_{14} - Ge_{9}H_{20}$	<0,02

Tabelle 1: Produktverteilung nach gaschromatographischer Auftrennung des Reaktionsgemisches nach Gleichung 8

 ⁶⁷ J. E. Drake, W. L.Jolly, *J. Chem. Soc.* **1962**, 2807
 ⁶⁸ S. D. Gokhale, J. E. Drake, W. L. Jolly, *J. Inorg. Nucl. Chem.*, **1965**, Vol. 27, 1911

Höhere Germane lassen sich nach einer 1973 publizierten Patentschrift auch durch die gezielte Pyrolyse von Ge₃H₈ bei T < 300 °C herstellen.⁶⁹ Der für die gezielte Darstellung von höheren Siliziumwasserstoffen so bedeutende Zugang über die Reduktion geeigneter perhalogenierter Vorstufen mit geeigneten Reduktionsmitteln wie LiAlH₄ besitzt in der Chemie des Germaniums praktisch keine Bedeutung, da keine geeigneten Ausgangstoffe vorhanden sind. So lässt sich zwar GeH₄ durch die Reduktion verschiedenster Precursoren wie GeCl₄, GeO₂ oder Germanaten GeO₃²⁻ mit Al oder B-Hydriden herstellen,^{57a,b} eine Anwendung dieser Methoden für die Synthese höherer Germane scheitert bereits bei Ge₂H₆ an der mangelnden Verfügbarkeit von Ge₂Cl₆.

2.3. Synthese von substituierten Oligogermanen

Generell kommt es bei der Synthese von höheren Germaniumhydriden zu großen Problemen in Bezug auf Ausbeuten und Nebenproduktbildung. Daher ist in vielen Fällen die Stabilisierung mit organischen Substituenten oder Halogenen essentiell um Oligogermangerüste erfolgreich zu synthetisieren. Es ist eine Vielzahl an verzweigten und unverzweigten, linearen und cyclischen Oligogermanderivaten mit Aryl- und/oder Alkylsubstituenten von Di-, Tri- bis zu Octagermanen bekannt. Des Weiteren konnten Polygermane mit einem mittleren Molekulargewicht von bis zu 7,4 x 10^4 g/mol synthetisiert werden. Die nachfolgende Literaturübersicht aus dem Review von Amadoruge und Weinert soll einen Überblick über die Synthesemethoden der zuvor genannten Verbindungen geben.⁷⁰

2.3.1. Synthese durch Wurtz-Kupplung

Die Wurtz-Kupplung, die für die C-C-Bindungsknüpfung eine gute Methode darstellt, findet ebenso bei der Synthese von höheren Organogermanen Verwendung. Erste Organodigermane

⁶⁹ P. Plichta, *DE2139155*, **1973**

⁷⁰ M. L. Amadoruge, C. S. Weinert, *Chem. Rev.* **2008**, 108, 4254

wie zum Beispiel Ph₃GeGePh₃ wurden auf diesem Weg von *Morgan* und *Drew* hergestellt, wobei die Behandlung von Ph₃GeBr mit Na-Metall zur Zielverbindung führte (Gleichung 11).⁷¹

2 Ph₃GeBr + 2 Na
$$\longrightarrow$$
 Ph₃GeGePh₃ + 2 NaBr

11

1972 zeigten *West et al.* die Synthese von Permethylcyclohexagerman (Me₂Ge)₆ (Gleichung 12) über Me₂GeCl₂ mit Li-Metall.⁷² Das perphenylierte Cyclohexa- und pentagerman wurde in gleicher Weise mit Ph₂GeCl₂ und Natriumnaphtalinid (Gleichung 13) von *Neumann* und *Kühlein* 1963 und 1965 dargestellt^{73,74}.

12

13

⁷¹ G. T. Morgan, H. D. K. Drew, J. Chem. Soc. **1925**, 127, 1760

⁷² E. Carberry, B. D. Dombek, S. C. Cohen, J. Organomet. Chem. 1972, 36, 61

⁷³ W. P. Neumann, K. Kühlein, *Tetrahedron Lett.* **1963**, 4, 1541

⁷⁴ W. P. Neumann, K. Kühlein, *Liebigs Ann. Chem.* 1965, 683, 1

Auch Octaethyltrigerman und Decaethylpentagerman wurden durch die Wurtz-Kupplung von Organogermaniumhalogeniden hergestellt (Gleichung 14).^{75,76}

14

2.3.2. Synthese über Grignardverbindungen

Eine weitere Methode zur Synthese von Oligogermanderivaten stellt die Umsetzung von Grignardverbindungen mit entsprechenden Chlorgermanen dar, wie in Schema 2 am Beispiel von Ph₃GeGePh₃, Ph₃GeGePh₂GePh₃ und Ph₃GeGePh₂GePh₂GePh₃ gezeigt wird.⁷⁷

⁷⁵ E. J. Bulten, J. G. Noltes, J. Organomet. Chem. 1969, 16, P8

⁷⁶ E. J. Bulten, J. G. Noltes, Recl. Trav. Chim. Pays-Bas 1972, 91

⁷⁷ S. Roller, D. Simon, M. J. Dräger, J. Organomet. Chem. 1986, 301

Schema 2: Synthese von phenylierten Oligogermanen über Grignardverbindungen

2.3.3. Synthese durch Salzeliminierung

Als Beispiel sei die nucleophile Substitution von Ph_2GeCl_2 mit Ph_3GeLi genannt, die zur Synthese von $Ph_3GeGePh_2GePh_3$ in hohen Ausbeuten von 91% führt (Gleichung 15). Auf ähnlichem Weg wurden auch die Trigermane $Ph_3GeGeEt_2GePh_3$ und $Et_3GeGeMe_2GeEt_3$ erhalten.⁷⁸

⁷⁸ A. Castel, P. Rivière, B. Saint-Roch, J. Satgé, J. P. Malrieu, J. Organomet. Chem. 1983, 247, 149

$$2 \operatorname{Ph_3GeLi} + \operatorname{Ph_2GeCl_2} \xrightarrow{\operatorname{Et_2O}} \operatorname{Ph} \xrightarrow{\operatorname{Ph}} \operatorname{Ph} \xrightarrow{\operatorname{Ph}} \operatorname{Ph} \xrightarrow{\operatorname{Ph}} \operatorname{Ph}$$

$$33 \,^{\circ}\text{C}, 1 \, \text{h}$$

$$Ph \xrightarrow{\operatorname{Ge}} \operatorname{Ge} \xrightarrow{\operatorname{Ge}} \operatorname{Ge} \xrightarrow{\operatorname{Ph}} + 2 \, \text{LiCl}$$

$$Ph \xrightarrow{\operatorname{Ph}} \operatorname{Ph}$$

$$Ph \xrightarrow{\operatorname{Ph}} \operatorname{Ph}$$

$$Ph \xrightarrow{\operatorname{Ph}} \operatorname{Ph}$$

$$Ph \xrightarrow{\operatorname{Ph}} \operatorname{Ph}$$

Synthese durch Hydrogermolyse 2.3.4.

Wie 2008 Weinert et al. zeigten, stellt die Hydrogermolysereaktion eine Methode zur Herstellung von verschiedenen verzweigten Tetragermylderivate wie (Ph₃Ge)₃GePh dar⁷⁹. (Gleichung 16).

PhGeH + 3 Ph₃GeNMe₂
$$\xrightarrow{CH_3CN, 85 \circ C}$$
 \xrightarrow{Ph}
- 3 HNMe₂ \xrightarrow{Ph} $\xrightarrow{Ph$

16

Synthese aus Ge(II)-Verbindungen 2.3.5.

In manchen Fällen lassen sich Oligogermangerüste auch ausgehend von Ge(II)-Verbindungen synthetisieren. Zum Beispiel wurde (Ph₃Ge)₃GeH aus der Reaktion von Ph₃GeLi mit GeI₂ in Diglyme erhalten (Gleichung 17)⁸⁰.

 ⁷⁹ M. L. Amadoruge, J. A. Golen, A. L. Rheingold, C. S. Weinert, *Organometallics* 2008, 27, 1979
 ⁸⁰ F. Glockling, K. A. Hooton, J. Chem. Soc. 1963, 1849

Bicyclische Pentagermanderivate stellten *Richards et al.* 2004 aus Chlorgermylenen und GeCl₂[·]Dioxan unter Anwesenheit von metallischem Mg her (Gleichung 18).⁸¹

18

2.4. Synthese von Halogengermanen

2.4.1. Organohalogenoligogermane

Unter entsprechenden Bedingungen lassen sich Alkyl- und Arylgruppen in Organooligogermanen unter Erhaltung der Ge-Ge-Bindung halogenierend abspalten. So ergibt

⁸¹ A. F. Richards, M. Brynda, M. M. Olmstead, P. P. Power, Organometallics 2004, 23, 2841

z. B. die Chlorierung von Me₃GeGeMe₃ durch Behandlung mit Schwefelsäure und NH₄Cl 1,2-Dichlortetramethyldigerman. (Gleichung 19).⁸²

$$Me_{3}Ge - GeMe_{3} \xrightarrow{1) H_{2}SO_{4}, 25 \text{ °C}, 30 \text{ h}} Me_{2}ClGe - GeClMe_{2}$$

19

Höfler und Brandstätter synthetisierten außerdem die tetrahalogenierten Phenyldigermane mittels wasserfreier HCl bzw. HBr (Gleichung 20).83

Ph₃GeGePh₃
$$\xrightarrow{HX} X_2$$
PhGeGePhX₂
 $X = Cl, Br$
20

Organohalogenoligogermane sind ringöffnende Halogenierung auch durch von Cyclogermanen zugänglich. So entsteht nach Reaktion von Octaphenylcyclotetragerman mit einem Äquivalent I₂ 1,4-Diiodoctaphenyltetragerman, aus dem mit PhLi das offenkettige Decaphenylpentagerman herstellbar ist (Gleichung 21).⁸⁴

 ⁸² K. Triplett, M. D. Curtis, *J. Organomet. Chem.* **1976**, 107, 23
 ⁸³ F. Höfler, E. Brandstätter, *Monatsh. Chem.* **1975**, 106, 893

⁸⁴ C. A. Kraus, C. L. Brown, J. Am. Chem. Soc. 1930, 52, 4031

2.4.2. Perhalogenoligogermane

Auch bei der Synthese von Halogengermanen finden sich die Stabilitätsunterschiede zwischen Si-Si- und Si-Ge-Bindungen. Somit konnte festgestellt werden, dass die Umsetzung von Si₂H₆ mit HCl, HBr oder HI unter Anwesenheit eines Aluminiumhalogenkatalysators zur Bildung von Si₂H₅X führt (Gleichung 22)⁸⁵, wohingegen die Ge₂H₆ bei gleicher Behandlung einen Ge-Ge-Bindungsbruch unterliegt.⁸⁶

Si₂H₆ + HX $\xrightarrow{Al_2X_6}$ Si₂H₅X + H₂ HX, Al₂X₆ Ge₂H₆ $\xrightarrow{HX, Al_2X_6}$ Ge₂H₅X + H₂ $\xrightarrow{HX, Al_2X_6}$ GeH₄ + GeH₃X Ge-Ge-Bindungsbruch

⁸⁵ H. J. Emeléus, A. G. Maddock, C. Reid, J. Chem. Soc. 1941, 353

⁸⁶ L. M. Dennis, P. R. Judy, J. Am. Chem. Soc. **1929**, 51, 2321

1972 wurde von *Curtis* und *Wolber* und 1975 von *Höfler* und *Brandstätter* die Synthese von Hexabromdigerman durch die Insertion von GeBr₂ in GeBr₄^{87,83} beschrieben (Gleichung 23).

In Gleichung 24 bis 26 sind einige Reaktionswege angegeben, die zur Synthese weiterer Halogendigermane⁸⁸ eingesetzt werden können:

 $Ge_{2}H_{6} + AgX \longrightarrow Ge_{2}H_{5}X + Ag + 1/2 H_{2} (X = Cl, Br)$ 24 $Ge_{2}H_{6} + X_{2} \longrightarrow Ge_{2}H_{5}X + HX (X = Br, I)$ 25 $Ge_{2}H_{5}I + AgX \longrightarrow Ge_{2}H_{5}X + AgI (X = Cl, Br)$

26

Es zeigte sich, dass die direkte Synthese von Ge₂H₅I mit I₂ bei niedrigen Temperaturen am besten funktionierte. Reines Ge₂H₅Br konnte durch Umsetzung von Ge₂H₅I mit AgBr hergestellt werden.⁸⁹

⁸⁷ M. D. Curtis, P. Wolber, *Inorg. Chem.* **1972**, 11, 431

⁸⁸ K. M. Mackay, P. Robinson, E. J. Spanier, A. G. MacDiarmid, J. Inorg. Nucl. Chem. 1966, 28, 1377

⁸⁹ K. M. Mackay, P. J. Roebuck, J. Chem. Soc. 1964, 1195

2.4.3. Hydrierung von Organooligogermanen

Die Hydrierung von Organogermaniumverbindungen unter Erhaltung der Ge-Ge Bindung ist prinzipiell sowohl mit DIBALH als auch mit LiAlH₄ möglich.⁹⁰ *Weinert et al.* beschrieben die Umsetzung von ethoxyethylsubstituierten Digermanen mit DIBALH, was zur Abspaltung der Ethoxyethylgruppe führt (Gleichung 27). Das entstehende reaktive Hydridzentrum kann nachfolgend durch Hydrogermolyse für einen weiteren Ge-Ge-Bindungsschluss verwendeten werden.⁹¹ Diese Methode eignet sich zur Synthese verschiedenster höherer organosubstituierter Oligogermane.

Gleichung 28 zeigt als Beispiel die erfolgreiche Hydrierung von 1,2-Dibromtetraphenyldigerman mit LiAlH₄.⁹²

BrPh₂Ge—GePh₂Br
$$\xrightarrow{16 \text{ eq LiAlH}_4}$$
 HPh₂Ge—GePh₂H
Et₂O, 1,5 h

28

⁹⁰ M. L. Amadoruge, C. S. Weinert, *Chem. Rev.* 2008, 108, 4254

⁹¹ E. Subashi, A. L. Rheingold, C. S. Weinert, Organometallics 2006, 25, 3211

⁹² W. Metlesics, H. J. Zeiss, J. Am. Chem. Soc. 1960, 82, 3321

2.5. Synthese von Polysilagermanen

Aufgrund unterschiedlicher Größe, Elektronenanzahl, Elektronenaffinität und Ionisierungspotential ist die Elektronenverteilung in Bindungen verschiedener Atome ungleichmäßig. Dieser Umstand verursacht eine Polarität zwischen zwei Atomen und ist auch einer der Gründe für die im Vergleich zur Si-Si-Bindung noch niedrigere Stabilität der Ge-Si-Bindung. Ein zusätzlicher Einfluss kommt vom größeren kovalenten Radius den das Germaniumatom im Vergleich zum Siliziumatom aufweist: Silizium: 111 pm, Germanium: 122 pm. Diese Umstände führen dazu, dass Silagermane chemisch instabiler als Polygermane oder Polysilane sind und Syntheseversuche oft unter Spaltung der Si-Ge-Bindung verlaufen.

Prinzipiell sind die in der Polysilansynthese erfolgreichen Methoden auch zur Darstellung von Silagermanen geeignet. So lassen sich Gemische von Verbindungen des Typs $H_xSi_yGe_z$ durch saure Hydrolyse von Magnesium- oder Calciumsilicidgermaniden $M_xSi_yGe_z$ oder stille elektrische Entladung in Silan/German-Gemischen gewinnen. Außerdem entstehen Silagermane bei der sauren Hydrolyse aus SiO/GeO-Cokondensaten mit Fluorwasserstoffsäure^{57a} und bei der Umsetzung von Natriumsilaniden NaSiH_n(SiH₃)_{3-n} mit GeH₄.⁹³ In den auf einem dieser Wege hergestellten Silagermangemischen konnten gaschromatographisch verschiedenste Si/Ge-Spezies identifiziert werden (Tabelle 2).

Si(GeH ₃) ₄
HSi(GeH ₃) ₃
H ₂ Si(GeH ₃) ₂
H ₃ Si(GeH ₃)
Si ₂ GeH ₈
Si ₃ GeH ₁₀
Si ₄ GeH ₁₂
$Si_2Ge_2H_{10}$
SiGe ₂ H ₈

Tabelle 2: Auflistung aller synthetisierten Silagemane

⁹³T. Lobreyer, W. Sundermeyer, *DE4306106*, **1994**

Gezielt lassen sich Silagermane durch die Umsetzung von Alkalimetallgermaniden mit Chlorsilanen darstellen. So liefert die Umsetzung von MGeH₃ (M = Na, K) mit ClSiH₃ oder SiCl₄ geringe Mengen an H₃SiGeH₃ bzw. Si(GeH₃)₄ (Gleichung 29, 30):⁹⁴

$$H_{3}SiBr + KGeH_{3} \longrightarrow H_{3}GeSiH_{3}$$

$$5\%$$

$$29$$

$$SiCl_{4} + NaGeH_{3} \longrightarrow Si(GeH_{3})_{4}$$
Spuren

30

Deutlich bessere Ausbeuten erhält man bei der Umsetzung von KGeH₃ mit Perfluoralkylsulfonsäuresilylestern $H_xSi(SO_3CF_3)_{4-x}$ and $H_xSi(SO_3C_4F_9)_{4-x}$ (x = 1, 2, 3) (Gleichung 32). Auf diese Weise konnte die komplette Reihe der Silagermane $H_xSi(GeH_3)_{4-x}$ in präparativen Mengen rein dargestellt und vollständig charakterisiert werden.⁹⁵

$$H_{x}Si(C_{6}H_{5})_{4-x} + HR \longrightarrow H_{x}SiR_{4-x} + xC_{6}H_{6}$$
$$R = SO_{3}CF_{3}, SO_{3}C_{4}F_{9}$$

31

$$H_{x}SiR_{4-x} + (4-x)KGeH_{3} \longrightarrow SiH_{x}(H_{3}Ge)_{4-x} + (4-x)KR$$

32

 ⁹⁴ a) W. A. Dutton, M. Onyszchuk, *Inorg. Chem.* **1968**, 7, 1735; b) B. F. Fieselmann, *US4777023*, **1988** ⁹⁵ a) C. J. Ritter, C. Hu, A. V. G. Chizmeshya, J. Tolle, D. Klewer, I. S. T. Tsong, J. Kouvetakis, *J. Am. Chem. Soc.* **2005**, 127, 9855. b) J. Kouvetakis, C. J. Ritter, C. Hu, *WO2007062056*, **2007**

Da Alkalimetallgermanide durch Umsetzung des relativ leicht handhabbaren GeH₄ mit Na, K oder KOH in flüssigem NH₃ oder in etherischen Lösungsmitteln viel leichter zugänglich sind als die entsprechenden Alkalimetallsilanide,^{57b} besitzt die Methode sicherlich beträchtliches Potenzial auch zur Herstellung größerer Mengen an Silagermanen unterschiedlicher Stöchiometrie.

3. Ergebnisse und Diskussion

Die zuvor beschriebenen Möglichkeiten der Abscheidung von Siliziumschichten beinhalten zum Teil sehr energieintensive und apparativ aufwändige Methoden, die eine zukünftige industrielle Produktion von Solarzellen aufgrund der sehr hohen Kosten ausschließt. Außerdem gilt es den Wirkungsgrad der Solarzellen zu verbessern. Dazu ist es erforderlich einen größeren Bereich des Sonnenlichtspektrums für die Energiegewinnung zu nutzen, wozu eine Bandlückenoptimierung der verwendeten Halbleitermaterialien notwendig ist. Besonders im Bereich der Si-Abscheidung aus flüssiger Phase befindet sich die Forschung im Bereich der Dotierung mit verschiedenen Elementen jedoch noch im Anfangsstadium. Die vorliegende Arbeit soll daher einen Beitrag zur Entwicklung entsprechend geeigneter Dotierstoffe liefern.

Die durchgeführte Versuchsreihe umfasst die Synthese verschiedener germaniumhaltiger Hydrosilane, deren Halbleitereigenschaften bei erfolgreicher Synthese untersucht werden sollen. Im Detail wurden ausgehend von Neopentasilan Ph₃Ge(SiH₃)₃, Ph₃GeSi(SiH₃)₂SiPh₃, und Ph₃GeSi(SiH₃)₂GePh₃ hergestellt, wobei die bekannte Instabilität der Ge-Si-Bindung phenylsubstituierte Derivate erforderte um eine erfolgreiche Synthese der Zielverbindungen zu ermöglichen. Da, wie unter Abschnitt 1 bereits erwähnt, Dotierstoffe einen möglichst geringen Kohlenstoffanteil aufweisen sollten, war es nötig die Phenylsubstituenten nach erfolgreicher Synthese zu entfernen. Um zu zeigen, ob das in Gegenwart der äußerst reaktiven Ge-Si-Bindung überhaupt möglich ist. wurden an den Phenylgermasilanen Derivatisierungsversuche mit Trifluormethansulfonsäure (CF3SO3H) mit anschließender Hydrierung mit Diisobutylaluminiumhydrid (DIBALH) durchgeführt.

Schließlich wurden als Referenzstoffe die entsprechenden Silylverbindungen $Ph_3Si(SiH_3)_3^{98}$ und $Ph_3SiSi(SiH_3)_2SiPh_3$ hergestellt und analog zu den analogen Ge-Verbindungen derivatisiert, was wichtige Rückschlüsse auf die relativen Stabilitäten von Ge-Si- und Si-Si-Bindungen erlauben sollte.
3.1. Synthese von Triphenylgermylisotetrasilan

Die Darstellung von $Ph_3GeSi(SiH_3)_3$ erfordert zunächst die Synthese von Ph_3GeCl^{96} (Schema 3) aus Ph_4Ge durch die Abspaltung einer Phenylgruppe mit CF_3SO_3H und die anschließende Chlorierung mit LiCl. Die Ausbeute dieser Synthese betrug durchschnittlich 94 % und verlief stets zufriedenstellend. In Schema 3 sind die verschiedenen Synthesewege von $Ph_3GeSi(SiH_3)_3$ schematisch dargestellt.

Schema 3: Synthese von Ph₃GeSi(SiH₃)₃

Zufriedenstellende Ausbeuten von etwa 85 % lassen sich allerdings in diesem Fall nur erzielen, wenn MeLi zur Herstellung der Silanidlösung verwendet wird. Beim Einsatz von KO'Bu oder LDA kommt es laut GC/MS-Analyse und NMR-Spektroskopie aufgrund von Ge-Si-Bindungsspaltung und Abspaltung von SiH₃-Gruppen zur Bildung von Nebenprodukten, wobei vermutlich Ph₃GeH (δ^{1} H = 5,6 ppm), Ph₃GeSi₃H₇ (δ^{29} Si = -146,2 ppm) und iso-Si₄H₁₀ (δ^{1} H = 3,2 ppm, δ^{29} Si = -136,1 ppm)⁹⁷ gebildet werden, wodurch die Abtrennung des Zielproduktes aus dem Reaktionsgemisch durch Kristallisation deutlich erschwert wird.

⁹⁶ K. V. Zaitsev, A. A. Kapranov, Y. F. Oprunenko, A. V. Churakov, J. A. K. Howard, B. N. Tarasevich, S. S. Karlov, G. S. Zaitseva, *J. Organomet. Chem.* **2012**, 207

⁹⁷ J. Hahn, Z. Naturforsch. **1980**, 35b, 282

Vermutlich kommt es im Falle von KO^tBu oder LDA unter dem Einfluss der stark basischen Sekundärprodukte KOSiH₃ bzw. LiNiPr₂, wenn auch in geringem Maße, zu Redistributionsreaktionen des primär gebildeten Silanids und somit in weiterer Folge zur Bildung der oben erwähnten unerwünschten Nebenprodukte, während MeSiH₃ wegen seines unpolaren Charakters in dieser Hinsicht kein Problem darstellen sollte.

3.2. Synthese von 2-Triphenylgermyl-2-triphenylsilyltrisilan

Schema 4: Methoden zur Synthese von Ph₃GeSi(SiH₃)₂SiPh₃

Die Synthese von Ph₃GeSi(SiH₃)₂SiPh₃ erfolgte wie in Schema 4 gezeigt zum einem mit LDA bei -30°C und zum anderen mit MeLi bei 0°C. Mit der Umsetzung von Ph₃Si(SiH₃)₃⁹⁸ mit einem Äquivalent eines der beiden Metallierungsreagenzien soll die Abspaltung einer SiH₃ Gruppe zu 1,1,1-Triphenylisotetrasilanid erfolgen. Um eine Derivatisierung zur Zielverbindung durchführen zu können erfolgt eine anschließende Umsetzung des Silanids mit Ph₃GeCl. Bei Verwendung von LDA entstanden überraschenderweise neben dem zu erwartenden Ph₃GeSi(SiH₃)₂SiPh₃ noch zwei weitere Produkte im Verhältnis 2 : 1 : 1, die mittels ²⁹Si-NMR Spektroskopie als Ph₃GeSi(SiH₃)₂GePh₃ und Ph₃SiSi(SiH₃)₂SiPh₃ identifiziert werden konnten.

⁹⁸ H. Stueger, T. Mitterfellner, R. Fischer, C. Walkner, M. Patz, S. Wieber, Chem. Eur. J. 2012, 18, 7662

Abbildung 1: ²⁹Si-Spektrum (¹H entkoppelt) des SiH₃-Bereiches des SiH₃-Bereiches der Reaktionslösung nach Schema 4

Schema 5: Mögliche Ursache der Bildung der Nebenprodukte Ph₃GeSi(SiH₃)₂GePh₃ und Ph₃SiSi(SiH₃)₂SiPh₃ durch Si-Si-Bindungsbruches nach Schema 4

Eine mögliche Ursache wird in Schema 5 gezeigt. Dabei bewirkt das hochreaktive Silanid, welches bei -30°C vermutlich zu langsam mit Ph₃GeCl reagiert und daher im Überschuss vorhanden ist, Ge-Si- und Si-Si-Bindungsspaltungen am primär gebildeten Ph₃GeSi(SiH₃)₂SiPh₃, wobei die vorhandenen Produkte nur durch Bindungsbruch zwischen zwei Si-Atomen entstehen können. Bei Ge-Si-Bindungsbruch, der vermutlich ebenso stattfindet, da die Reaktivität der Ge-Si-Bindung höher ist als die der Si-Si-Bindung, kommt

es wieder zur Bildung der gewünschten Zielverbindung. Die entstehenden Fragmente des Si-Si-Bruches reagieren zum einen mit Ph₃GeCl und bilden Ph₃GeSi(SiH₃)₂GePh₃ und zum anderen mit dem Silanid zu Ph₃SiSi(SiH₃)₂SiPh₃.

Allerdings könnten auch Umlagerungsreaktionen bei der Umsetzung von $Ph_3Si(SiH_3)_3$ mit LDA zum Silanid für die Bildung der Nebenprodukte verantwortlich sein.

Die selektive Synthese von Ph₃GeSi(SiH₃)₂SiPh₃ gelingt, wenn 1,1,1-Triphenylisotetrasilanid zum Ph₃GeCl sehr langsam bei 0°C zugetropft und MeLi zur Metallierung eingesetzt wird (Schema 4). In diesem Falle konnte Ph₃GeSi(SiH₃)₂SiPh₃ durch Kristallisation aus Diethylether mit einer Ausbeute von 95 % isoliert und vollständig charakterisiert werden. Abbildung 2 zeigt das protonengekoppelte ²⁹Si-NMR-Spektrum von Ph₃GeSi(SiH₃)₂SiPh₃. Der Bereich um -11 ppm zeigt ein Multiplett des phenylsubstituierten Siliziumatoms welches mit den Protonen der Kohlenstoffsubstituenten koppelt. Die Signale der SiH₃-Gruppen im Bereich zwischen -80 und -95 ppm sind aufgrund der drei gebundenen Wasserstoffatome am Silizium (¹J_{Si-H}) zu Quartette aufgespalten, wobei jeder Peak einer weiteren Aufspaltung in ein Quartett aufgrund der Fernkopplung zu den Protonen der zweiten SiH₃-Gruppe (³J_{Si-Si-Si-H}) unterliegt. Das Signal des quarternären Siliziumatoms befindet sich im Spektrum zwischen -140 und -150 ppm und wird aufgrund der ²J-Kopplung mit den Protonen der SiH₃-Gruppen in ein Septett aufgespalten (²J_{Si-Si-H}). Ein weiterer Strukturbeweis gelang mit Hilfe einer Einkristallröntgenstrukturanalyse (siehe Abschnitt 4.2.).

Abbildung 2: ²⁹Si-NMR-Spektrum von Ph₃GeSi(SiH₃)₂SiPh₃ in C₆D₆.

3.3. Synthese von 2,2-Bistriphenylsilyltrisilan

Wie in Gleichung 33 beschrieben gelingt die selektive Synthese von Ph₃SiSi(SiH₃)₂SiPh₃ durch die Umsetzung von 1,1,1-Triphenylisotetrasilanid mit Ph₃SiCl bei 0 °C.

Das Zielprodukt konnte durch Kristallisation aus Diethylether mit einer Ausbeute von 94 % isoliert und vollständig charakterisiert werden. Das protonengekoppelte ²⁹Si-NMR-Spektrum

ist in Abbildung 3 dargestellt. Der Bereich um -11 ppm zeigt ein Multiplett des phenylsubstituierten Siliziumatoms welches mit den Protonen der Kohlenstoffsubstituenten koppelt. Die Signale der SiH₃-Gruppen im Bereich zwischen -80 und -95 ppm sind aufgrund der drei gebundenen Wasserstoffatome am Silizium (${}^{1}J_{Si-H}$) zu Quartettes aufgespalten, wobei jeder Peak einer weiteren Aufspaltung in ein Quartett unterliegt aufgrund der Fernkopplung zu den Protonen der zweiten SiH₃-Gruppe (${}^{3}J_{Si-Si-Si-H}$). Das Signal des quarternären Siliziumatoms befindet sich im Spektrum um -150 ppm und wird aufgrund der ${}^{2}J$ -Kopplung mit den Protonen der SiH₃-Gruppen in ein Septett aufgespalten (${}^{2}J_{Si-Si-H}$).

Ein weiterer Strukturbeweis gelang mit Hilfe einer Einkristallröntgenstrukturanalyse (siehe Abschnitt 4.3.).

Abbildung 3: ²⁹Si-NMR-Spektrum von Ph₃SiSi(SiH₃)₂SiPh₃ in C₆D₆.

3.4. Synthese von 2,2-Bistriphenylgermyltrisilan

Auf analogem Weg gelingt auch die selektive Synthese von $Ph_3GeSi(SiH_3)_2GePh_3$ (Gleichung 34).

Es stellte sich heraus, dass das aus der Reaktionslösung (Diethylether) durch Kristallisation isolierte Produkt noch etwa 5 - 10 % Ph₃GeCl beinhaltete, die auch durch Umkristallisation aus verschiedenen Lösungsmitteln wie etwa Pentan, Heptan oder Toluol bzw. Lösungsmittelgemischen mit Diethylether nicht vollständig abgetrennt werden konnten.

Das protonengekoppelte ²⁹Si-NMR-Spektrum ist in Abbildung 4 dargestellt und zeigt die Signale der SiH₃-Gruppen im Bereich zwischen -80 und -100 ppm. Die Aufspaltung in ein Quartett erfolgt aufgrund der drei gebundenen Wasserstoffatome am Silizium (¹J_{Si-H}), wobei jeder Peak wegen der Fernkopplung zu den Protonen der zweiten SiH₃-Gruppe (³J_{Si-Si-Si-H}) einer weiteren Aufspaltung in ein Quartett unterliegt. Das Signal des quarternären Siliziumatoms befindet sich im Spektrum zwischen -130 und -150 ppm und wird aufgrund der ²J-Kopplung mit den Protonen der SiH₃-Gruppen in ein Septett aufgespalten (²J_{Si-Si-H}).

Abbildung 4: ²⁹Si-NMR-Spektrum von Ph₃GeSi(SiH₃)₂GePh₃ in C₆D₆.

3.5. Derivatisierung von Triphenylneopentasilan

Die Synthese von Ph₃Si(SiH₃)₃ ist bereits literaturbekannt und wurde lediglich in Bezug auf Selektivität und Ausbeute optimiert. Um einen Vergleich der Reaktivitäten von Hydrosilanverbindungen und deren Germaniumanaloga durchführen zu können, wurden die in Gleichung 35 dargestellten Derivatisierungsversuche an Ph₃Si(SiH₃)₃ durchgeführt.

Wie aus den in Abbildung 5 und Abbildung 6 gezeigten NMR- und GC/MS-Spektren ersichtlich ist, liefert die Umsetzung von $Ph_3Si(SiH_3)_3$ mit einem Äquivalent CF_3SO_3H nach Hydrierung des dabei entstehenden Trifluormethansulfonats mit DIBALH mit hoher Selektivität $HPh_2SiSi(SiH_3)_3$, das bis jetzt allerdings nicht in kristalliner Form erhalten werden konnte.

Abbildung 5: ²⁹Si-NMR-Spektrum (¹H entkoppelt) von HPh₂SiSi(SiH₃)₃ (erhalten aus der Reaktionslösung nach Gleichung 35 nach wässriger Aufarbeitung mit 10 % H_2SO_4

Abbildung 6: GC/MS der Reaktionslösung aus Gleichung 35 nach wässriger Aufarbeitung mit 10 % H₂SO₄

3.6. Derivatisierung von Triphenylgermylisotetrasilan

Die Derivatisierung von Ph₃GeSi(SiH₃)₃ erfolgte unter den gleichen Bedingungen wie unter Abschnitt 3.5. beschrieben (Gleichung 36).

In Abbildung 7 und Abbildung 8 sind die ¹H- und ²⁹Si-NMR-Spektren des nach der Hydrierung erhaltenen Reaktionsgemisches dargestellt. Im ¹H-NMR-Spektrum kann durch Vergleich mit Literaturdaten Ph₂GeH₂ ($\delta^{1}H = 5,18 \text{ ppm}$)⁹⁹ identifiziert werden. Eine Zuordnung der Signale bei $\delta^{1}H = 3,3 - 3,4 \text{ ppm}$ (-Si*H*₃) und $\delta^{1}H = 5,72 \text{ ppm}$ (Ph₂*H*Ge) zur

⁹⁹ A. Castel, P. Riviere, J. Satgé, H. Y. Ko, Organometallics 1990, 9, 205.

Zielverbindung HPh₂GeSi(SiH₃)₃ erscheint zumindest wahrscheinlich.¹⁰⁰ Das ²⁹Si-Spektrum unterstützt diese Interpretation und zeigt zwei Signale im SiH₃-Bereich, die der Zielverbindung (δ^{29} Si = 91,502 ppm) und einem weiteren nicht identifizierbaren Oligo-H-Silan zugeordnet werden können.

Abbildung 7: ¹H-Spektrum (Si-H-Bereich) der nach Gleichung 36 erhaltenen Reaktionslösung

¹⁰⁰ vergleiche HPh₂GeGePh₂H: $δ^1$ H = 5,58 ppm (*H*Ge): M. L. Amadoruge, E. K. Short, C. Moore, A. L. Rheingold, C. S. Weinert *J.Organomet. Chem.* **2010**, 695, 1813

Abbildung 8: ²⁹Si-Spektrum (¹H entkoppelt, SiH₃-Bereich) der nach Gleichung 36 erhaltenen Reaktionslösung

Schema 6: Vermuteter Mechanismus zur Bildung der Spaltprodukte nach Gleichung 36

Schema 6 zeigt einen möglichen Mechanismus für die Bildung der identifizierten Spaltprodukte. Im Gegensatz zu den in Abschnitt 3.5. beschriebenen analogen Derivatisierungsversuchen an $Ph_3SiSi(SiH_3)_3$ kommt es in diesem Fall offenbar zumindest teilweise zur Spaltung der Ge-Si-Bindung und zur Bildung der beobachteten Nebenprodukte.

Die Isolierung einzelner Reaktionsprodukte durch Kristallisation aus Lösungsmitteln wie Toluol, Heptan oder Pentan gelang nicht.

3.7. Derivatisierung von 2-Triphenylgermyl-2triphenylsilyltrisilan

Schema 7 zeigt die an Ph₃GeSi(SiH₃)₂SiPh₃ durchgeführten Derivatisierungsversuche.

Schema 7: Derivatisierungsversuche an Ph₃GeSi(SiH₃)₂SiPh₃

Setzt man Ph₃GeSi(SiH₃)₂SiPh₃ mit einem Äquivalent an CF₃SO₃H um, erfolgt die Abspaltung der Ph-Gruppe selektiv am Germaniumatom. Abbildung 9 zeigt das protonenentkoppelte ²⁹Si-Spektrum des hydrierten Rohproduktes. Im Einklang mit der Struktur von HPh₂GeSi(SiH₃)₂SiPh₃ sind drei Signale zu erkennen. Das Signal für das Ph-substituierte Siliziumatom liegt bei ca. -11 ppm, die Signale der SiH₃-Gruppen bei -90 ppm und das des quarternären Siliziumatoms bei -145 ppm. Somit war die Synthese der Zielverbindung selektiv. Das protonengekoppelte ²⁹Si-Spektrum ist in Abbildung 10

dargestellt und bestätigt die selektive Bildung von HPh₂GeSi(SiH₃)₂SiPh₃. Das Signal des phenylsubstituierten Siliziumatoms erscheint als Multiplett bei -10 ppm, woraus auf die selektive Hydrierung am Germaniumatom geschlossen werden kann, da dieser Peak bei Hydrierung am Siliziumatom in zwei Signalgruppen mit einer Kopplungskonstante von ¹J_{Si-H} ~ 200 Hz aufgespalten sein müsste. Die Signale der SiH₃-Gruppen liegen im Bereich zwischen -80 und -100 ppm. Die Aufspaltung in ein Quartett erfolgt aufgrund der drei gebundenen Wasserstoffatome am Silizium (¹J_{Si-H}), wobei jeder Peak wegen der Fernkopplung zu den Protonen der zweiten SiH₃-Gruppe (³J_{Si-Si-Si}) und dem Wasserstoffatom am Germaniumatom (³J_{Si-Si-Ge-H}) einer weiteren Aufspaltung in ein Pentett unterliegt. Das Signal des quarternären Siliziumatoms befindet sich im Spektrum zwischen -140 und -150 ppm und wird aufgrund der ²J-Kopplung zu den Protonen der SiH₃-Gruppen (²J_{Si-Si-H}) und dem Proton am Germaniumatom in ein Multiplett aufgespalten (²J_{Si-Ge-H}). Kristallisationsversuche zur Isolierung der Zielverbindung, die eine ölige Konsistenz aufweist, aus Lösungsmitteln wie Toluol, Heptan, Pentan oder Diethylether waren bis jetzt nicht erfolgreich.

Abbildung 9: ²⁹Si-NMR-Spektrum (¹H entkoppelt) der Reaktionslösung nach Monohydrierung von Ph₃GeSi(SiH₃)₂SiPh₃ nach Schema 7.

Abbildung 10: Gekoppeltes ²⁹Si-NMR-Spektrum des Rohproduktes der Monohydrierung von $Ph_3GeSi(SiH_3)_2SiPh_3$ nach Schema 7 (Lösung in C_6D_6).

Der Versuch durch Zugabe von zwei Äquivalenten CF₃SO₃H zu Ph₃GeSi(SiH₃)₂SiPh₃ um in einem Schritt zwei Phenylgruppen zu substituieren führt zu ausgeprägten Abbaureaktionen des Si-Si-Ge-Gerüstes. Nach Hydrierung der primär erhaltenen Trifluormethansulfonate mit DIBALH konnten mittels ¹H- und ²⁹Si-NMR eine Vielzahl an nicht identifizierbaren Verbindungen erkannt werden. Verbindungen die aufgrund Literaturdaten eindeutig bestimmt werden konnten waren: Ph₂GeH₂ (δ^{1} H = 5,12 ppm)⁹⁹ und Ph₂SiH₂ (δ^{1} H = 5,9 ppm)¹⁰¹.

Ein weiterer Versuch, das zweite Äquivalent der Säure erst nach einer Reaktionszeit von 24 h zuzusetzen, brachte im Wesentlichen dasselbe Ergebnis. Auch die Variante, durch Zugabe von einem Äquivalent an CF₃SO₃H eine weitere Phenylgruppe von HPh₂GeSi(SiH₃)₂SiPh₃ abzuspalten, ergab eine Reihe von Spaltprodukten.

¹⁰¹ J. Garcia, D. J. M. Meyer, D. Guillaneux, J. J. E. Moreau, M. W. C. Man, *J. Organomet. Chem.*, **2009**, 694(15), 2427

4. Strukturanalysen

4.1. Triphenylgermylisotetrasilan

Abbildung 11 stellt die Kristallstruktur von $Ph_3GeSi(SiH_3)_3$ dar und Tabelle 3 und Tabelle 4 enthält die Bindungslängen und –winkel.

Abbildung 11: Kristallstruktur von Ph₃GeSi(SiH₃)₃

Summenformel	C ₁₈ H ₂₄ Ge	eSi ₄	
Molekulargewicht [g/mol]	425.32		
Kristallgröße [mm ³]	0.23 x 0.21	x 0.18	
Kristallsystem, Raumgruppe	Monoklin, F	22(1)/c	
	a = 15.2366 Å	$\alpha = 90^{\circ}$	
Zellparameter	b = 15.2366 Å	$\beta = 90^{\circ}$.	
	c = 16.4081 Å	$\gamma = 120^{\circ}$	
Zellvolumen [Å ³]	3298.9(4)	
Formeleinheit pro Zeile	6		
Dichte (berechnet) [mg/cm ³]	1.285		
Absorptionskoeffizient [mm ⁻¹]	1.608		
F(000)	1320		
Θ Bereich [°]	1.98 to 24.97		
Indexbereich	-18<=h<=17, -18<=k<=15, -19<=l<=19		
Anzahl Reflexe gesamt / unabhängig	1293 [R(int) =	0.0165]	
Vollständigkeit bis $\Theta = 26,96^{\circ}$ [%]	100.0		
Daten / restraints / Parameter	1293 / 3 / 82		
Goodness-of-fit on F^2	1.064		
R-Werte I> 2σ (I)	R1 = 0.0212, $wR2 = 0.0533$		
R-Werte (alleDaten)	R1 = 0.0242, wR2 = 0.0552		
Rasterelektronendichte [e.Å ⁻³]	0.373 and -	0.240	

Tabelle 3: Kristallographische Daten von Ph₃GeSi(SiH₃)₃

Bindungslängen [Å]		Bindungswinkel [°]	
Ge(1)-C(1)	1.9518(18)	C(1)-Ge(1)-C(1)#1	107.94(6)
Ge(1)-C(1)#1	1.9518(18)	C(1)-Ge(1)-C(1)#2	107.94(6)
Ge(1)-C(1)#2	1.9518(18)	C(1)#1-Ge(1)-C(1)#2	107.94(6)
Ge(1)-Si(1)	2.3788(9)	C(1)-Ge(1)-Si(1)	110.97(5)
Si(1)-Si(2)#2	2.3296(7)	C(1)#1-Ge(1)-Si(1)	110.97(5)
Si(1)-Si(2)	2.3296(7)	C(1)#2-Ge(1)-Si(1)	110.97(5)
Si(1)-Si(2)#1	2.3297(7)	Si(2)#2-Si(1)-Si(2)	112.60(2)
Ge(1)-C(1)	1.9518(18)	Si(2)#2-Si(1)-Si(2)#1	112.59(2)
Ge(1)-C(1)#1	1.9518(18)	Si(2)-Si(1)-Si(2)#1	112.60(2)
Ge(1)-C(1)#2	1.9518(18)	Si(2)#2-Si(1)-Ge(1)	106.13(3)
		Si(2)-Si(1)-Ge(1)	106.13(3)
		Si(2)#1-Si(1)-Ge(1)	106.13(3)

Tabelle 4: Bindu	ngslängen und -	winkel von	Ph ₃ GeSi(SiH ₃) ₃

4.2. 2-Triphenylgermyl-2-triphenylsilyltrisilan

Abbildung 12 zeigt das Ergebnis einer Einkristallröntgenstrukturanalyse, wobei die kristallographischen Daten, Bindungslängen und -winkel in Tabelle 5 und Tabelle 6 dokumentiert sind.

Summenformel	C ₃₆ H ₃₆ GeSi ₄		
Molekulargewicht [g/mol]	653,60		
Kristallgröße [mm ³]	0.3 x 0.2 x 0.1		
Kristallsystem, Raumgruppe	Monoklin, P2(1)/c		
	$a = 20.0530(7) \text{ Å}$ $\Box = 90^{\circ}$		
Zellparameter	$b = 10.3670(4) \text{ Å}$ $\Box = 112.5220(10)^{\circ}.$		
	$c = 17.9157(6) \text{ Å} \qquad \gamma = 90^{\circ}$		
Zellvolumen [Å ³]	3440.4(2)		
Formeleinheit pro Zeile	4		
Dichte (berechnet) [mg/cm ³]	1.262		
Absorptionskoeffizient [mm ⁻¹]	1.053		
F(000)	1360		
Θ Bereich [°]	1.10 to 25.00		
Indexbereich	-23<=h<=23, -12<=k<=12, -21<=l<=21		
Anzahl Reflexe gesamt / unabhängig	6058 [R(int) = 0.1038]		
Vollständigkeit bis $\Theta = 26,96^{\circ}$ [%]	100.0		
Daten / restraints / Parameter	6058 / 0 / 394		
Goodness-of-fit on F ²	2.598		
R-Werte I> 2σ (I)	R1 = 0.1419, wR2 = 0.4730		
R-Werte (alleDaten)	R1 = 0.1478, $wR2 = 0.4914$		
Rasterelektronendichte [e.Å ⁻³]	7.890 and -2.905		

 Tabelle 5: Kristallographische Daten von Ph₃GeSi(SiH₃)₂SiPh₃

Bindungslängen [Å]			Bindungswinkel [°]	
Ge(1) - C(31)	1.926(8)		C(31) - Ge(1) - C(1)	108.7(3)
Ge(1) - C(1)	1.939(7)	(C(31) - Ge(1) - C(25)	110.4(3)
Ge(1) - C(25)	1.956(7)		C(1) - Ge(1) - C(25)	105.1(3)
Ge(1) - Si(1)	2.361(2)		C(31) - Ge(1) - Si(1)	112.8(2)
Si(4) - C(19)	1.895(8)		C(1) - Ge(1) - Si(1)	111.7(2)
Si(4) - C(7)	1.913(7)		C(25) - Ge(1) - Si(1)	108.0(2)
Si(4) - C(13)	1.924(9)		C(19) - Si(4) - C(7)	109.2(3)
Si(4) - Si(1)	2.371(2)		C(19) - Si(4) - C(13)	106.5(3)
Si(1) - Si(2)	2.333(3)		C(7) - Si(4) - C(13)	106.1(3)
Si(1) - Si(3)	2.337(3)		C(19) - Si(4) - Si(1)	109.8(2)
			C(7) - Si(4) - Si(1)	111.5(2)
			C(13) - Si(4) - Si(1)	113.5(2)
			Si(2) - Si(1) - Si(3)	103.30(12)
			Si(2) - Si(1) - Ge(1)	115.64(10)
			Si(3) - Si(1) - Ge(1)	106.08(10)
			Si(2) - Si(1) - Si(4)	109.82(10)
			Si(3) - Si(1) - Si(4)	108.43(10)
			Ge(1) - Si(1) - Si(4)	112.83(9)

Tabelle 6: Bindungslängen und -winkel von Ph₃GeSi(SiH₃)₂SiPh₃

4.3. 2,2-Bistriphenylsilyltrisilan

Abbildung 13 zeigt das Ergebnis einer Einkristallstrukturanalyse. Kristallographische Daten, Bindungslängen und –winkel können aus den TabellenTabelle 7 und Tabelle 8 entnommen werden.

Summenformel	$C_{36}H_{36}Si_5$		
Molekulargewicht [g/mol]	609,1	0	
Kristallgröße [mm ³]	0.19 x 0.15	x 0.14	
Kristallsystem, Raumgruppe	Monoklin, I	P2(1)/c	
	a = 10.3664(6) Å	$\alpha = 66.872(4)^{\circ}$	
Zellparameter	b = 17.8438(9) Å	$\beta = 90^{\circ}$	
	c = 20.0794(12) Å	$\gamma = 90^{\circ}$	
Zellvolumen [Å ³]	3415.70	(3)	
Formeleinheit pro Zeile	4		
Dichte (berechnet) [mg/cm ³]	1.184		
Absorptionskoeffizient [mm ⁻¹]	0.233		
F (000)	1288		
Θ Bereich [°]	1.24 - 27.22		
Indexbereich	-13<=h<=12, -22<=k<=22, -24<=l<=25		
Anzahl Reflexe gesamt / unabhängig	14936 [R(int)	= 0.3210]	
Vollständigkeit bis $\Theta = 26,96^{\circ}$ [%]	98,0		
Daten / restraints / Parameter	14936 / 0 / 787		
Goodness-of-fit on F^2	0.876		
R-Werte I> 2σ (I)	R1 = 0.0890, wR2 = 0.1308		
R-Werte (alleDaten)	R1 = 0.4016, $wR2 = 0.2237$		
Rasterelektronendichte [e.Å ⁻³]	0.294 and -0.295		

Tabelle 7: Kristallografische Daten von Ph₃SiSi(SiH₃)₂SiPh₃

Bindungslängen [Å]			Bindungswinkel [°]	
Si(1) - Si(5)	2.330(4)		Si(5) - Si(1) - Si(4)	102.25(15)
Si(1) - Si(4)	2.331(4)		Si(5) - Si(1) - Si(2)	115.57(13)
Si(1) - Si(2)	2.354(3)		Si(4) - Si(1) - Si(2)	106.62(13)
Si(1) - Si(3)	2.365(3)		Si(5) - Si(1) - Si(3)	109.60(13)
Si(2) - C(7)	1.871(9)		Si(4) - Si(1) - Si(3)	108.25(13)
Si(2) - C(1)	1.872(8)		Si(2) - Si(1) - Si(3)	113.64(12)
Si(2) - C(13)	1.860(9)		C(7) - Si(2) - C(1)	106.3(4)
Si(3) - C(25)	1.861(9)		C(7) - Si(2) - C(13)	109.2(4)
Si(3) - C(36)	1.851(9)		C(1) - Si(2) - C(13)	110.2(4)
Si(3) - C(19)	1.859(9)		C(7) - Si(2) - Si(1)	111.7(3)
Si(6) - Si(9)	2.321(4)		C(1) - Si(2) - Si(1)	107.1(2)
Si(6) - Si(10)	2.327(4)		C(13) - Si(2) - Si(1)	112.2(3)
Si(6) - Si(7)	2.352(3)		C(8) - C(7) - Si(2)	126.5(7)
Si(6) - Si(8)	2.367(3)		C(12) - C(7) - Si(2)	116.6(7)
Si(7) - C(49)	1.868(8)		C(14) - C(13) - Si(2)	121.4(7)
Si(7) - C(43)	1.869(8)		C(18) - C(13) - Si(2)	121.3(8)
Si(7) - C(37)	1.866(9)	C(25) - Si(3) - C(36)		108.2(4)
Si(8) - C(55)	1.858(9)		C(25) - Si(3) - C(19)	
Si(8) - C(67)	1.846(9)		C(36) - Si(3) - C(19)	109.1(4)
Si(8) - C(61)	1.871(9)		C(25) - Si(3) - Si(1)	111.4(3)
			C(36) - Si(3) - Si(1)	110.1(3)
			C(19) - Si(3) - Si(1)	109.6(3)
			C(24) - C(19) - Si(3)	122.7(8)
			C(20) - C(19) - Si(3)	120.0(9)
			C(30) - C(25) - Si(3)	120.7(7)
			C(26) - C(25) - Si(3)	123.5(8)
			C(35) - C(36) - Si(3)	122.9(8)
			C(31) - C(36) - Si(3)	121.2(8)
			Si(9) - Si(6) - Si(10)	102.47(15)
			Si(9) - Si(6) - Si(7)	106.66(13)
			Si(10) - Si(6) - Si(7)	115.72(14)
			Si(9) - Si(6) - Si(8)	108.06(13)

Si((10) - Si(6) - Si(8)	109.67(13)
Si((7) - Si(6) - Si(8)	113.38(12)
C(4	49) - Si(7) - C(43)	105.9(4)
C(4	49) - Si(7) - C(37)	110.8(4)
C(4	43) - Si(7) - C(37)	109.1(4)
C(4	49) - Si(7) - Si(6)	107.1(3)
C(4	43) - Si(7) - Si(6)	111.4(3)
C (2	37) - Si(7) - Si(6)	112.3(3)

 Tabelle 8: Bindungslängen und -winkel von Ph₃SiSi(SiH₃)₂SiPh₃

5. Experimenteller Teil

5.1. Arbeitstechnik und Analysenmethoden

5.1.1. Allgemeines

Aufgrund der starken Sauerstoff- und Feuchtigkeitsempfindlichkeit des Großteils der eingesetzten Verbindungen wurden sämtliche Synthesen unter hochreiner Stickstoffatmosphäre durchgeführt. Die sogenannte Schutzgastechnik nach Schlenk stellte dafür eine geeignete Methode dar, die empfindlichen Reaktionen durchzuführen. Zur Sicherstellung der Trockenheit des verwendeten Schutzgases, wurde der Stickstoff durch zwei Phosphorpentoxidtrockentürme geleitet. Die Reaktionsapparaturen wurden zur Entfernung der am Glas haftenden Restfeuchtigkeit nach dem Zusammenbau evakuiert, mit einem Bunsenbrenner oder einer Heatgun erhitzt und nach dem Abkühlen mit Stickstoff belüftet. Als Schlifffette wurden die temperatur- und chemikalienresistente Teflonpaste Triboflon III von Merkel eingesetzt, sowie das für Vakuumapparaturen geeignete Apiezonfett der Firma Shell. Die Chemikalien wurden ohne weitere Aufreinigung in handelsüblicher Qualität eingesetzt. Die verwendeten Lösungsmittel wurden einer Trocknungsanlage der Firma Innovative Technology entnommen, in der das jeweilige Lösungsmittel zur Trocknung über Al₂O₃-Säulen unter Druck geleitet wird. Lösungsmittel die nicht durch die Trocknungsanlage gewonnen werden konnten, wurden 24 h mit dem entsprechenden Trockenmittel (Na, Na/K-Legierung) unter Schutzgas auf Rückfluss erhitzt und anschließend destilliert.

5.1.2. Analysen

Gaschromatographie

Zur Reinheitsbestimmung und Identifikation der synthetisierten Verbindungen wurden gaschromatographische Analysen mit einem System der Firma Agilent durchgeführt. Das Gerät wird mit einer Kapillarsäule vom Typ HP-5MS, mit einer Länge von 30 m, und einen

massenselektiven Detektor vom Typ Agilent 5975C (Elektronenstoßionisation, 70 eV) betrieben. Als Trägergas dient Helium.

Massenspektroskopie

Ein Großteil der synthetisierten Verbindungen wurden aufgrund des hohen Molekulargewichtes mit einem Gerät vom Typ Waters GCT Premier mit Direkteinlass (Elektronenstoßionisation, 70 eV) vermessen.

Elementaranalyse

Die Elementaranalysen (C, H, N) wurden mit einem Gerät des Typs Vario Elementar EL (Hanau) durchgeführt.

Schmelzpunktbestimmung

Zur Bestimmung der Schmelzpunkte wurde ein Apparat vom Typ Mel-Temp der Firma Electrothermal, wobei sich die Proben in mit Teflonfett verschlossenen Glaskapillaren befanden, verwendet.

Röntgenstrukturanalyse

Zur Strukturanalyse wurden geeignete Kristalle aus dem Schlenkkolben im Stickstoffstrom entnommen und sofort mit Silikonöl bedeckt. Zur Vermessung kam ein Diffraktometer vom Typ Bruker Kappa Apex II 4K CCD, unter Verwendung von Molybdän K_{α}-Strahlung bei 100 K (über Graphit-Monochromator, 0,71073 Å), zum Einsatz. Mit Hilfe von SADABS¹⁰² wurden empirische Absorptionskorrekturen vorgenommen und die Struktur mit der Patterson Option im SHELXS gelöst. Mit Hilfe der full-matrix least-squares Anwendung im SHELXS¹⁰³ erfolgte die Verfeinerung. Strukturparameter und Raumgruppen wurden mit PLATON¹⁰⁴ gelöst. Sämtliche Nichtwasserstoffatome wurden anisotrop verfeinert. Die Lage

¹⁰² R. H. Blessing, Acta Crystallogr., Sect. A: Found. Crystallogr. 1995, 51, 33

¹⁰³ G. M. Sheldrick; Version 6.1, Bruker AXS, Inc., Madison, WI 2002

¹⁰⁴ A. L. Spek; J. Appl. Crystallogr. 2003, 36, 7

der an Silizium bzw. Germanium gebundenen Wasserstoffe wurde anhand der Fourier-Differenz-Analyse bestimmt.

Infrarotspektroskopie

Die Aufnahme der IR-Spektren erfolgte mit einem Perkin-Elmer 883 Gitterspektrometer. Dazu wurden feste Proben mit Nujol verrieben, bzw. flüssige Proben entweder in Substanz oder bei besonders empfindlichen Proben in einem Nujolring eingebettet und als dünner Film zwischen zwei Cäsiumbromidscheiben vermessen.

NMR-Spektroskopie

Kernresonanzspektren (¹H: 300,15 MHz, ²⁹Si: 59,627 MHz) wurden mit einem 300 MHz Gerät (Bruker MSL 300) bei 20 °C gegen Tetramethylsilan als externer Standard aufgenommen. Die Proben wurden dafür entweder in C_6D_6 gelöst oder in nicht deuteriertem Lösungsmittel unter Verwendung einer Kapillare mit D₂O als externer Lock vermessen.

5.2. Synthesen

Die Ausgangsverbindung Neopentasilan¹⁰⁵ wurde freundlicherweise von Evonik Industries AG zur Verfügung gestellt und kam bei den Synthesen ohne weitere Aufreinigung zum Einsatz. Ebenso wurden folgende Reagenzien in handelsüblicher Qualität eingesetzt: Ph₃SiCl, LDA, KO^tBu und MeLi.

5.2.1. Triphenylgermaniumchlorid

2,5 g	Tetraphenylgerman	381,03 g/mol	6,561 mmol	1 Äq.
0,58 ml	Trifluormethansulfonsäure	150,08 g/mol	6,561 mmol	1 Äq.
1,4 g	Lithiumchlorid	42,394 g/mol	32,81 mmol	5 Äq.

Zu einer Lösung von 2,5 g (6,561 mmol) Ph_4Ge in 50 ml Toluol werden bei -30°C 0,58 ml (6,561 mmol) CF_3SO_3H zugetropft und über Nacht bei Raumtemperatur gerührt. Nach Zugabe von 20 ml Diethylether und 1,4 g (32,81 mmol) LiCl wird das Reaktionsgemisch über Nacht gerührt. Nach Abtrennung des Lösungsmittels im Vakuum wird der weiße Rückstand mit 40 mL Toluol versetzt und etwa zehn Minuten gerührt. Das in Toluol gelöste Produkt wird inert mittels eines auf eine Stahl- oder Teflonkanüle befestigten Faltenfilters vom Salzrückstand getrennt und der Rückstand zweimal mit 40 ml Toluol

 ¹⁰⁵ J.P. Cannady, X. Zhou (Dow Corning Corp.), *WO2008/051328*, **2008**; b) S. Wieber, M.Trocha, H. Rauleder,
 E. Müh, H. Stüger, C. Walkner (Evonik Degussa GmbH), *DE102009053804*, **2011**

nachgewaschen und über die Kanüle zur Produktlösung kanüliert. Nach Abtrennung von ca. 80 % des Lösungsmittels im Vakuum fällt das Produkt bei -30 °C in farblosen Kristallen aus.

Ausbeute: 2,1 g (94 %)

5.2.2. Triphenylneopentasilan

5.2.2.1. Mit LDA und Triphenylchlorsilan

1,9 g	Triphenylchlorsilan	294,06 g/mol	6,635 mmol	1 Äq.
1,0 g	Neopentasilan (NPS)	152,52 g/mol	6,635 mmol	1 Äq.
0,68 g	Lithiumdiisopropylamid (LDA)	107,12 g/mol	6,303 mmol	0,95 Äq

Eine Lösung von 1,0 g (6,635 mmol) NPS in 20 mL Diethylether wird bei -30 °C mit einer Lösung von 0,68 g (6,303 mmol) LDA in 20 mL Diethylether versetzt und das Gemisch 1 Stunde bei Raumtemperatur gerührt. Zur erhaltenen gelborangen Lösung werden anschließend 1,9 g (6,635 mmol) Ph₃SiCl in 30 mL Diethylether bei -30 °C langsam zugetropft. Nach einer Reaktionszeit von 24 Stunden bei Raumtemperatur wird das Lösungsmittel im Vakuum entfernt und durch 30 ml Toluol ersetzt. Nach Abtrennung des gebildeten LiCl durch Filtration und Kühlen der erhaltenen farblosen Lösung auf -30 °C konnten 1,8 g (71 %) des Zielproduktes in Form farbloser Kristalle erhalten werden.

Die beschriebene Synthese ist allerdings nur eingeschränkt reproduzierbar. Häufig beobachtet man die Bildung beträchtlicher Mengen an Ph₃SiSiH(SiH₃)₂, das durch Kristallisation nur schwer abtrennbar ist.

5.2.2.2. Mit Methyllithium und Triphenylchlorsilan

2,1 g	Triphenylchlorsilan	294,06 g/mol	7,226 mmol	1 Äq.
1,1 g	Neopentasilan (NPS)	152,52 g/mol	7,226 mmol	1 Äq.
4,3 ml	Methyllithium (MeLi)	1,6 mol/l	6,865 mmol	0,95 Äq

Die Synthese erfolgte analog zu Abschnitt 5.2.2.1. GC/MS-Analyse und NMR-Spektroskopie zeigten keinerlei Nebenprodukte. Die analytischen Daten stimmen mit Literaturwerten überein.⁹⁸

Ausbeute: 2,4 g (87 %)

²⁹Si-NMR: $\delta = -90.3 \text{ ppm} (q, {}^{1}J_{\text{Si-H}} = 199.2 \text{ Hz}, \text{SiH}_{3})$

 $(q, {}^{3}J_{Si-Si-H} = 3,64 \text{ Hz}, SiH_3)$

-156,9 ppm (m, ${}^{2}J_{Si-Si-H} = 5,53$ Hz SiSi₄)

-11,47 ppm (m, Ph₃Si)

¹**H-NMR:** $\delta = 3,50 \text{ ppm} (s, 9 \text{ H}, \text{SiH}_3)$

7,1-7,6 ppm (m, 15 H, (C₆**H**₅)₃Si)

5.3. Synthese neuer Verbindungen

5.3.1. Triphenylgermylisotetrasilan

5.3.1.1. mit Kaliumtertbutanolat und Triphenylgermyltrifluormethansulfonat

2,5 g	Tetraphenylgerman	381,03 g/mol	6,561 mmol	1 Äq.
0,8 ml	Trifluormethansulfonsäure	150,08 g/mol	6,561 mmol	1 Äq.
1,0 g	Neopentasilan (NPS)	152,52 g/mol	6,561 mmol	1 Äq.
0,71 g	Kaliumtertbutanolat	112,21 g/mol	6,233 mmol	0,95 Äq

2,5 g (6,561 mmol) Ph₄Ge werden in 50 ml Toluol gelöst, bei -30 °C mit 0,576 ml (6,561 mmol) CF₃SO₃H versetzt und anschließend über Nacht bei Raumtemperatur gerührt. Nun wird die erhaltene Ph₃GeOTf tropfenweise bei -30 °C mit einer leuchtend orangegelben Lösung von Kaliumisotetrasilanid (frisch hergestellt durch langsame Zugabe von 0,71 g (6,233 mmol) KO^tBu in 30 ml THF zu einer Lösung von 1 g (6,561 mmol) NPS in 30 ml THF bei -30 °C und Rühren des Gemisches bei -30 °C) versetzt und anschließend bei Raumtemperatur über Nacht gerührt.

Die Aufarbeitung erfolgt wässrig mit 10% iger entgaster H₂SO₄. Dazu werden 60 ml der Säure mit 40 ml Toluol und 20 ml Diethylether vorgelegt und auf 0 °C gekühlt. Danach wird das

Reaktionsgemisch unter Rühren zugetropft. Nach Phasentrennung wird die organische Phase über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum abgetrennt. Eine GC/MS-Analyse zeigte die Bildung eines Gemisches aus Ph₃GeSi(SiH₃)₃ (57 %), Ph₃GeH (35 %) und Ph₃GeSi₃H₇ (8 %). Das erhaltene Produktgemisch konnte nicht durch Umkristallisation aus verschiedenen Lösungsmitteln wie zum Beispiel Heptan, Diethylether und Toluol aufgetrennt werden. Versuche, die erhaltenen Produkte durch Säulenchromatographie (basisches Al₂O₃; Toluol/Heptan 1 : 5) zu trennen, führten zur Zersetzung.

5.3.1.2. mit Kaliumtertbutanolat und Triphenylgermaniumchlorid

1,7 g	Triphenylgermaniumchlorid	338,01 g/mol	5,100 mmol	1 Äq.
0,78 g	Neopentasilan (NPS)	152,52 g/mol	5,100 mmol	1 Äq.
0,54 g	Kaliumtertbutanolat	112,21 g/mol	4,845 mmol	0,95 Äq

Durch langsame Zugabe von 0,71 g (6,233 mmol) KO'Bu in 30 ml THF zu einer Lösung von 1 g (6,561 mmol) NPS in 30 ml THF bei -30 °C und Rühren des Gemisches bei -30 °C wird eine Lösung von Kaliumisotetrasilanid hergestellt und tropfenweise bei -30 °C zu einer Lösung von 1,7 g (5,100 mmol) Ph₃GeCl in 60 ml THF zugegeben, wobei sich in der Lösung ein weißer Niederschlag von KCl bildet. Schließlich wird das Reaktionsgemisch bei Raumtemperatur über Nacht gerührt. Die wässrige Aufarbeitung erfolgt in gleicher Weise wie unter Abschnitt 5.3.1.1. beschrieben. Eine GC/MS-Analyse des erhaltenen Rückstandes zeigte zu 90% die Produktion von Ph₃GeSi₃H₇ und zu 10% das Edukt Ph₃GeCl. Das Produkt konnte nicht isoliert werden und wurde nicht reproduzierbar in verschiedensten Anteilen bei einigen nachfolgenden Synthesen synthetisiert.

Auch die Variation der Reaktionsbedingungen bei der Herstellung von Kaliumisotetrasilanid (Reaktionszeit 30 min bei -30°C und 30 min bei RT; Reaktionszeit 30 min bei -30 °C) führten nicht zur selektiven Bildung von $Ph_3GeSi(SiH_3)_3$.

5.3.1.3. mit Lithiumdiisopropylamid und Triphenylgermaniumchlorid

3,4 g	Triphenylgermaniumchlorid	338,01 g/mol	10,17 mmol	1 Äq.
1,6 g	Neopentasilan (NPS)	152,52 g/mol	10,17 mmol	1 Äq.
1,0 g	Lithiumdiisopropylamid (LDA)	107,12 g/mol	9,66 mmol	0,95 Äq

Die Durchführung der Synthese erfolgt analog zu Abschnitt 5.3.1.2. Die Aufarbeitung des Reaktionsgemisches erfolgt wie in Abschnitt 5.2.2.1. beschrieben durch Abkondensieren des Lösungsmittels im Vakuum, Zugabe von Toluol und Filtration der gebildeten Salze. Laut GC/MS-Analyse werden 36 % Ph₃GeSi(SiH₃)₃ neben 14 % an Ph₃GeSi₃H₇ und siliziumhaltige Produkte erhalten. Auch die Ph₃GeH (43 %) als Variation der Reaktionsbedingungen führt wiederum nicht zur selektiven Bildung von Ph₃GeSi(SiH₃)₃.

5.3.1.4. mit Methyllithium und Triphenylgermaniumchlorid

1,7 g	Triphenylgermaniumchlorid	338,01 g/mol	5,131 mmol	1 Äq.
0,78 g	Neopentasilan (NPS)	152,52 g/mol	5,131 mmol	1 Äq.
3,1 ml	Methyllithium (MeLi)	1,6 mol/l	4,875 mmol	0,95 Äq

Durch langsame Zugabe von 4,875 mmol MeLi gelöst in 20 ml Diethylether zu einer Lösung von 0,78 g (5,131 mmol) NPS in 20 ml Diethylether bei 30 °C und Rühren des Gemisches bei -30 °C für 1 Stunde wird eine Lösung von Lithiumisotetrasilanid hergestellt und tropfenweise bei 0 °C zu einer Lösung von 1,7 g (5,131 mmol) Ph₃GeCl in 40 ml Diethylether zugegeben, wobei sich in der Lösung ein weißer Niederschlag von LiCl bildet. Schließlich wird das Reaktionsgemisch bei Raumtemperatur über Nacht gerührt. Die Aufarbeitung des Reaktionsgemisches erfolgt wie in Abschnitt 5.2.2.1. beschrieben durch Abkondensieren des Lösungsmittels im Vakuum, Zugabe von Toluol und Filtration der gebildeten Salze.

Nach Kristallisation des Rohproduktes aus Toluol werden 1,8 g (82 %) reines $Ph_3GeSi(SiH_3)_3$ in Form farbloser mäßig luftempfindlicher Kristalle erhalten.

²⁹Si-NMR: $\delta = -90,55 \text{ ppm } (q, {}^{1}J_{Si-H} = 200,1 \text{ Hz}, SiH_3)$ $(q, {}^{3}J_{Si-Si-H} = 3,7 \text{ Hz}, SiH_3)$ $-151,3 \text{ ppm } (m, {}^{2}J_{Si-Si-Si-H} = 5,53\text{Hz} SiSi_4)$

¹**H-NMR:** $\delta = 3,51 \text{ ppm} (s, 9 \text{ H}, \text{SiH}_3)$

7,1-7,5 ppm (m, 15 H, (C₆H₅)₃Si)

IR (Nujol): 2144 cm⁻¹ (v_{Si-H})

Analyse: $C_{18}H_{24}GeSi_4(425,37)$	Ber.: C: 50,83 %	H: 5,69 %
	Gef.: C: 55,43 %	H: 5,51 %

5.3.2. 2-Triphenylgermyl-2-triphenylsilyltrisilan

5.3.2.1. mit Lithiumdiisopropylamid bei -30 ℃

2,9 g	Triphenylneopentasilan	380,07 g/mol	7,606 mmol	1 Äq.
2,6 g	Triphenylgermaniumchlorid	338,01 g/mol	7,606 mmol	1 Äq.
0,77 g	Lithiumdiisopropylamid (LDA)	107,12 g/mol	7,226 mmol	0,95 Äq

Zu 2,9 g (7,606 mmol) Ph₃Si(SiH₃)₃ in 30 ml Diethylether werden bei -30 °C 0,77 g in 20 ml Diethylether gelöstes LDA zugetropft. Nach beendeter Zugabe der LDA-Lösung wird eine Stunde bei Raumtemperatur gerührt, wobei sich die klare Lösung immer stärker in ein leuchtendes Orange verfärbt. Anschließend wird die erhaltene Silanidlösung bei -30 °C langsam zu einer Lösung von 2,6 g (7,606 mmol) Ph₃GeCl in 30 ml Diethylether zugetropft und das Reaktionsgemisch über Nacht bei Raumtemperatur gerührt. Die Aufarbeitung des Reaktionsgemisches erfolgt wie in Abschnitt 5.2.2.1. beschrieben durch Abkondensieren des Lösungsmittels im Vakuum, Zugabe von Pentan und Filtration der gebildeten Salze. Nach Aufkonzentrieren der Lösung konnten durch Kristallisation bei -30 °C 3,2 g eines kristallinen Produktes erhalten werden. Eine ²⁹Si-NMR spektroskopische Analyse zeigte die Bildung von Ph₃GeSi(SiH₃)₂SiPh₃ (50 %), Ph₃GeSi(SiH₃)₂GePh₃ (30 %) und Ph₃SiSi(SiH₃)₂SiPh₃ (20 %). Versuche zur Trennung dieses Produktgemisches durch Kristallisation waren nicht erfolgreich.

	δ ²⁹ Si [ppm]		δ ¹ H [ppm]		
Verbindung	SiH ₃	SiPh ₃	quarternäres Si	SiH ₃	$(C_6H_5)_3$
Ph ₃ GeSi(SiH ₃) ₂ SiPh ₃	-89.474	-11,376	-141,491	3,4	7,0-7,8
Ph ₃ GeSi(SiH ₃) ₂ GePh ₃	-89,045	-	-135,02	3,4	7,0-7,8
$Ph_{3}SiSi(SiH_{3})_{2}SiPh_{3}$	-89,795	-11,448	-148,415	3,4	7,0-7,8

5.3.2.2. mit Methyllithium bei 0 ℃

1,8 g	Triphenylneopentasilan	380,07 g/mol	4,762 mmol	1 Äq.
1,6 g	Triphenylgermaniumchlorid	338,01 g/mol	4,762 mmol	1 Äq.
2,8 ml	Methyllithium	1,6 mol/l	4,524 mmol	0,95 Äq

Die Synthese erfolgt analog zu Abschnitt 5.3.2.1. Zur Herstellung der Silanidlösung wird LDA jedoch durch MeLi ersetzt. Des Weiteren erfolgt die Zugabe der Silanidlösung zum Ph₃GeCl bei 0 °C, um überschüssiges Silanid im Reaktionsgemisch möglichst zu vermeiden. Nach Aufkonzentrieren der Lösung konnten durch Kristallisation bei -30 °C 2,9 g (93 %) reines Ph₃GeSi(SiH₃)₂SiPh₃ in Form farbloser mäßig luftempfindlicher Kristalle erhalten werden.

²⁹Si-NMR: $\delta = -89,5 \text{ ppm } (q, {}^{1}J_{Si-H} = 197,8 \text{ Hz}, SiH_3)$ -141,5 ppm $(q, {}^{2}J_{Si-Si-H} = 5,6 \text{ Hz}, SiSi_4)$ $(m, {}^{3}J_{Si-Si-Si-H} = 5,1 \text{ Hz} SiH_3)$

-11,4 ppm (m, **Si**Ph)

¹**H-NMR:** $\delta = 3,62 \text{ ppm}(s, 3 \text{ H}, \text{SiH}_3)$

 $\delta = 7,3-7,6 \text{ ppm} (m, 15 \text{ H}, \text{C}_6 \text{H}_5)$

MS: $(C_{36}H_{36}GeSi_4, M^+)$: 654,8 (ber.)

654,0 (gef.)

IR (in Substanz): $2129 \text{ cm}^{-1} (v_{\text{Si-H}})$

Analyse: $C_{36}H_{36}GeSi_4$ (654,11)	Ber.: C: 66,15 %	H: 5,55 %
	Gef.: C: 65,05 %	H: 5,26 %

Schmelzpunkt: 135 °C

Kristallstruktur: siehe Abschnitt 4.2.

5.3.3. 2,2-Bistriphenylsilyltrisilan

1,9 g	Triphenylneopentasilan	380,07 g/mol	5,031 mmol	1 Äq.
1,5 g	Triphenylchlorsilan	294,06 g/mol	5,031 mmol	1 Äq.
0,51 g	Lithiumdiisopropylamid (LDA)	107,12 g/mol	4,779 mmol	0,95 Äq

Die Synthese dieser Verbindung erfolgt analog zu Abschnitt 5.3.1.2. Nach Aufkonzentrieren der Lösung konnten durch Kristallisation bei -30 °C 2,9 g (94 %) reines Ph₃SiSi(SiH₃)₂SiPh₃ in Form farbloser Kristalle erhalten werden.

²⁹Si-NMR: $\delta = -89,8 \text{ ppm}$ (q, ¹J_{Si-H} = 197,8 Hz, SiH₃) (q, ²J_{Si-Si-H} = 5,6 Hz, SiSi₄)

-148,4 ppm (m,
$${}^{3}J_{Si-Si-Si-H} = 5,1 \text{ Hz } SiH_{3}$$
)

-11,5 ppm (m, **Si**Ph)

¹**H-NMR:** $\delta = 3,52 \text{ ppm} (s, 6 \text{ H}, \text{Si}\mathbf{H}_3)$ 7,1-7,6 ppm (m, 10 H, (C₆**H**₅)₃Si)

IR (in Substanz): $2120 \text{ cm}^{-1} (v_{\text{Si-H}})$

Analyse: C ₃₆ H ₃₆ Si ₅ (608,17)	Ber.: C: 70,99 %	H: 5,95 %
	Gef.: C: 69,25 %	H: 5,71 %

Schmelzpunkt: 114 °C

Kristallstruktur: siehe Abschnitt 4.3.

5.3.4. 2,2-Bistriphenylgermyltrisilan

1,1 g	Triphenylgermylisotetrasilan	424,02 g/mol	2,610 mmol	1 Äq.
0,88 g	Triphenylgermaniumchlorid	338,01 g/mol	2,610 mmol	1 Äq.
1,5 ml	Methyllithium	1,6 mol/l	2,479 mmol	0,95 Äq

Die Synthese erfolgt analog zu Abschnitt 5.3.2.2. Nach Aufkonzentrieren der Lösung können durch Kristallisation bei -30 °C 1,7 g (92 %) reines $Ph_3GeSi(SiH_3)_2GePh_3$ in Form farbloser mäßig luftempfindlicher Kristalle erhalten werden.

²⁹Si-NMR:
$$\delta = -89,0 \text{ ppm } (q, {}^{1}J_{\text{Si-H}} = 199,2 \text{ Hz}, \text{SiH}_{3})$$

(q, ${}^{2}J_{\text{Si-Si-H}} = 6,0 \text{ Hz}, \text{GeSiSi}_{2}\text{Ge})$
-135,0 ppm (m, ${}^{3}J_{\text{Si-Si-Si-H}} = 4,3\text{Hz} \text{SiH}_{3})$

¹**H-NMR:** $\delta = 3,64 \text{ ppm}(s, 9 \text{ H}, \text{SiH}_3)$

7,1-7,6 ppm (m, 15 H, (C₆H₅)₃Si)

 $\textbf{MS:} (C_{36}H_{36}Ge_2Si_3, M^{+}) \text{:} \qquad \qquad 698,0 \ (\text{ber.})$

IR (in Substanz): $2131 \text{ cm}^{-1} (v_{\text{Si-H}})$

 Analyse: $C_{36}H_{36}Si_5(608,17)$ Ber.: C: 61,93 %
 H: 5,20 %

 Gef.: C: 61,13 %
 H: 4,81 %

Schmelzpunkt: 120 °C

5.3.5. Derivatisierung von 1,1,1-Triphenylneopentasilan

0,76 g	1,1,1-Triphenylneopentasilan	380,07 g/mol	1,989 mmol	1 Äq.
0,17 ml	Trifluormethansulfonsäure	150,08 g/mol	1,989 mmol	1 Äq.
0,36 ml	Diisobutylaluminiumhydrid	142,22 g/mol	1,989 mmol	1 Äq

Zu einer Lösung von 0,76 g (1,989 mmol) Ph₃Si(SiH₃)₃ in 15 ml Toluol werden bei -30 °C 0,17 ml (1,989 mmol) CF₃SO₃H zugetropft. Danach wird das Kühlbad entfernt und über Nacht bei Raumtemperatur gerührt. Nach Kühlung auf 0 °C und Zugabe von 0,36 ml (1,989 mmol) DIBALH wird das Reaktionsgemisch wiederum bei Raumtemperatur über Nacht gerührt und anschließend wie in Abschnitt 5.3.1.1. beschrieben wässrig aufgearbeitet. Nach dem Abkondensieren des Lösungsmittels unter Vakuum verbleibt eine klare ölige Flüssigkeit, die laut GC/MS-Analyse aus 95% HPh₂Si(SiH₃)₃ (M⁺ = 304) und 5% Ph₃Si(SiH₃)₃ (M⁺ = 380) besteht. Kristallisationsversuche aus Toluol, Pentan und Heptan waren nicht erfolgreich.

		δ ²⁹ Si [ppn	1]		δ ¹ H [ppm]
Verbindung	SiH ₃	PhSi	SiSi4	SiH ₃	C_6H_5	Ph ₂ HSi
Ph ₂ HSiSi(SiH ₃) ₃	-91,964	-25,439	-159,327	3,34	6,8 - 7,1	5,0

 Tabelle 9: ²⁹Si - (¹H entkoppelt) und ¹H-NMR-Daten von 1,1-Diphenyl-2,2-disilyltrisilan

5.3.6. Derivatisierung von Triphenylgermylisotetrasilan

0,76 g	Triphenylgermylisotetrasilan	424,02 g/mol	1,792 mmol	1 Äq.
0,16 ml	Trifluormethansulfonsäure	150,08 g/mol	1,792 mmol	1 Äq.
0,32 ml	Diisobutylaluminiumhydrid	142,22 g/mol	1,792 mmol	1 Äq

Synthese und Aufarbeitung erfolgten analog zu Abschnitt 5.3.5. Nach dem Abkondensieren des Lösungsmittels verbleibt eine klare ölige Flüssigkeit, die laut GC/MS-Analyse

41% HPh₂GeSi(SiH₃)₃ (m/z (M⁺) = 425), 38% Ph₃GeH (m/z (M⁺) = 305), 19% Ph₃GeCl (m/z (M⁺) = 340) enthält. Ein weiterer unter analogen Bedingungen durchgeführter Versuch ergibt 67% HPh₂GeSi(SiH₃)₃, 19% Ph₃GeH, 3% Ph₃GeCl und 10% Ph₃GeSi₃H₇ (m/z (M⁺) = 395). Kristallisationsversuche waren in beiden Fällen nicht erfolgreich. Im ¹H-NMR - Spektrum konnte durch Vergleich mit Literaturdaten Ph₂GeH₂⁹⁹ und das Produkt identifiziert werden (Tabelle 11). Im ²⁹Si-NMR-Spektrum befinden sich die Signale des Produktes und ein Oligo-H-Silan, das nicht identifiziert werden konnte (Tabelle 10).

	δ ²⁹ Si []	ppm]
Verbindung	SiH ₃	GeSiSi ₃
Ph ₂ HGeSi(SiH ₃) ₃	-91,502	-152,03

 Tabelle 10: ²⁹Si-(¹H entkoppelt) NMR-Daten des nach 5.3.6. gebildeten Reaktionsproduktes

		δ ¹ H [ppm]		
Verbindung	Ph_2GeH_2	(C_6H_5)	SiH ₃	Ph ₂ <i>H</i> Ge
Ph ₂ HGeSi(SiH ₃) ₃		7,0-7,5	3,4	5,72
Ph ₂ GeH ₂	5,18	6,9 – 7,4		

 Tabelle 11: ¹H-NMR-Daten des nach 5.3.6. gebildeten Reaktionsproduktes

5.3.7. Monofunktionalisierung von 2-Triphenylgermyl-2triphenylsilyltrisilan

0,81 g	2-Triphenylgermyl-2-	652,11 g/mol	1,242 mmol	1 Äq.
	triphenylsilyltrisilan			
0,11 ml	Trifluormethansulfonsäure	150,08 g/mol	1,989 mmol	1 Äq.
0,22 ml	Diisobutylaluminiumhydrid	142,22 g/mol	1,989 mmol	1 Äq

Synthese und Aufarbeitung erfolgten analog zu Abschnitt 5.3.5. Nach dem Abkondensieren des Lösungsmittels verblieben 1,0 g (87 %) einer klaren öligen Flüssigkeit, die laut

 29 Si-NMR-Analyse ausschließlich HPh₂GeSi(SiH₃)₂SiPh₃ enthielt. Kristallisationsversuche waren wiederum nicht erfolgreich.

²⁹Si-NMR: δ = -90,9 ppm (q, ¹J_{Si-H} = 199,2 Hz, SiH₃) (q, ²J_{Si-Si-H} = 6,6 Hz, SiSi₄) -141,8 ppm (m, ³J_{Si-Si-Si-H} = 4,1 Hz SiSi₃Ge) -11,7 ppm (m, SiPh₃)

¹**H-NMR:** $\delta = 3,6 \text{ ppm} (s, 1 \text{ H}, \text{Ph}_2\text{GeH})$

3,5 ppm (s, 6 H, Si**H**₃)

7,0-7,5 ppm (m, 10 H, C₆**H**₅)

MS: $(C_{30}H_{32}GeSi_4, M^+)$: 577,5 (ber.)

574,0 (gef.)

5.3.8. Difunktionalisierung von 2-Triphenylgermyl-2triphenylsilyltrisilan

5.3.8.1. aus 2-(Diphenylgermyl)-1,1,1-triphenyl-2-silyltrisilan

0,62 g	2-(Diphenylgermyl)-1,1,1-	577,56 g/mol	1,077 mmol	1 Äq.
	triphenyl-2-silyltrisilan			
0,09 ml	Trifluormethansulfonsäure	150,08 g/mol	1,077 mmol	1 Äq.
0,19 ml	Diisobutylaluminiumhydrid	142,22 g/mol	1,077 mmol	1 Äq

Synthese und Aufarbeitung erfolgen analog zu Abschnitt 5.3.5. Eine NMR-spektroskopische Analyse des Rohproduktes zeigte zahlreiche Linien im Bereich zwischen -80 und -100 ppm (SiH₃-Bereich) und zwischen -130 und -150 ppm im Bereich der quarternären Siliziumatome.

5.3.8.2. durch Zugabe von zwei Äquivalenten Trifluormethansulfonsäure

0,82 g	2-Triphenylgermyl-2-	652,11 g/mol	1,262 mmol	1 Äq.
	triphenylsilyltrisilan			
0,22 ml	Trifluormethansulfonsäure	150,08 g/mol	2,524 mmol	2 Äq.
0,45 ml	Diisobutylaluminiumhydrid	142,22 g/mol	2,524 mmol	2 Äq

Synthese und Aufarbeitung erfolgen analog zu Abschnitt 5.3.5. Eine NMR-spektroskopische Analyse zeigte zahlreiche Linien im Bereich zwischen -80 und -100 ppm (SiH₃-Bereich) und zwischen -130 und -150 ppm im Bereich der quarternären Siliziumatome.

5.3.8.3. durch zweimalige Zugabe von einem Äquivalent Trifluormethansulfonsäure

2,10 g	2-Triphenylgermyl-2-	652,11 g/mol	3,228 mmol	1 Äq.
	triphenylsilyltrisilan			
0,57 ml	Trifluormethansulfonsäure	150,08 g/mol	6,456 mmol	2 Äq.
1,2 ml	Diisobutylaluminiumhydrid	142,22 g/mol	6,456 mmol	2 Äq

2,1 g (3,228 mmol) $Ph_3GeSi(SiH_3)_2SiPh_3$ werden mit 40 ml Toluol versetzt und auf -30 °C gekühlt. Weiters werden 0,28 ml (3,228 mmol) CF_3SO_3H zugegeben und die Lösung über Nacht bei Raumtemperatur gerührt. Danach erfolgt die Zugabe eines weiteren Äquivalentes

Trifluormethansulfonsäure. Nach Rühren über Nacht erfolgt die Zugabe von zwei Äquivalenten Diisobutylaluminiumhydrid bei 0 °C. Das Reaktionsgemisch wird wiederum bei Raumtemperatur über Nacht gerührt. Auch bei dieser Synthese befanden sich zahlreiche Linien im ²⁹Si-Spektrum im Bereich der quarternären Siliziumatome und ein sehr breites Signal im Si-H-Bereich, was auf ein Polymer oder die Überlagerung einer Vielzahl an Linien hindeutet.

6. Zusammenfassung

In Abschnitt 1 wurden die kostenintensiven Methoden der Abscheidung von Siliziumschichten und die schlechten Wirkungsgrade von Solarzellen angesprochen, die es erfordern auf diesem Gebiet intensiv zu forschen. Besonders im Bereich der Si-Abscheidung aus flüssiger Phase befindet sich die Forschung im Bereich der Dotierung zur Bandlückenoptimierung mit verschiedenen Elementen jedoch noch im Anfangsstadium.

Die durchgeführte Versuchsreihe umfasste die Synthese verschiedener germaniumhaltiger Hydrosilane, deren Halbleitereigenschaften bei erfolgreicher Synthese untersucht werden sollten. Im Detail wurden ausgehend von Neopentasilan $Ph_3Ge(SiH_3)_3$, $Ph_3GeSi(SiH_3)_2SiPh_3$, und $Ph_3GeSi(SiH_3)_2GePh_3$ hergestellt. Da, wie unter Abschnitt 1 bereits erwähnt, Dotierstoffe einen möglichst geringen Kohlenstoffanteil aufweisen sollten, war es nötig die Phenylsubstituenten nach erfolgreicher Synthese zu entfernen. Um zu zeigen, ob das in Gegenwart der äußerst reaktiven Ge-Si-Bindung überhaupt möglich ist, wurden an den Phenylgermasilanen Derivatisierungsversuche mit Trifluormethansulfonsäure (CF₃SO₃H) mit anschließender Hydrierung mit Diisobutylaluminiumhydrid (DIBALH) durchgeführt.

Schließlich wurden als Referenzstoffe die entsprechenden Silylverbindungen Ph₃Si(SiH₃)₃ und Ph₃SiSi(SiH₃)₂SiPh₃ hergestellt und analog zu den Ge-Verbindungen derivatisiert, was wichtige Rückschlüsse auf die relativen Stabilitäten von Ge-Si- und Si-Si-Bindungen liefern sollte.

Unter Verwendung von MeLi ist es gelungen, die von Neopentasilan ausgehende Synthese von Ph₃GeSi(SiH₃)₃ zu optimieren und eine deutlich höhere Selektivität und Ausbeute zu erzielen. Auf analogem Weg konnten auch die bisher unbekannten Silagermane Ph₃GeSi(SiH₃)₂SiPh₃, und Ph₃GeSi(SiH₃)₂GePh₃ sowie die Referenzsubstanz Ph₃Si(SiH₃)₂SiPh₃ selektiv hergestellt und vollständig charakterisiert werden.

Die anschließenden Derivatisierungsversuche ergaben, dass sich Ph₃SiSi(SiH₃)₃ unter Erhaltung des Si-Si-Gerüstes zu HPh₂SiSi(SiH₃)₃ umsetzen lässt. Das analoge Germasilan konnte unter den gleichen Reaktionsbedingungen zu ungefähr 60 % synthetisiert werden. Es kam bei dieser Synthese jedoch auch zur Ge-Si-Bindungsspaltung, da im ²⁹Si-NMR-Spektrum im Si-H-Bereich ein Oligo-H-Silan, welches nicht identifiziert werden konnte zu sehen war. Ph₃GeSi(SiH₃)₂SiPh₃ hingegen ergibt auf analoge Weise glatt HPh₂GeSi(SiH₃)₂SiPh₃, wobei die Substitution ausschließlich am Ge-Zentrum stattfindet. Versucht man hingegen, eine weitere Phenylgruppe in HPh₂GeSi(SiH₃)₂SiPh₃ durch Wasserstoff zu ersetzen, erhält man eine Vielzahl an nicht näher identifizierbaren Spaltprodukten. Der gezeigte Weg ist also auf Grund der hohen Reaktivität der Ge-Si-Bindung nicht zur Herstellung kohlenstoffarmer Silagermane geeignet.

7. Abbildungsverzeichnis

Abbildung 1: ²⁹ Si-Spektrum (¹ H entkoppelt) des SiH ₃ -Bereiches des SiH ₃ -Bereiches der
Reaktionslösung nach Schema 4
Abbildung 2: ²⁹ Si-NMR-Spektrum von Ph ₃ GeSi(SiH ₃) ₂ SiPh ₃ in C ₆ D ₆
Abbildung 3: ²⁹ Si-NMR-Spektrum von Ph ₃ SiSi(SiH ₃) ₂ SiPh ₃ in C ₆ D ₆
Abbildung 4: ²⁹ Si-NMR-Spektrum von Ph ₃ GeSi(SiH ₃) ₂ GePh ₃ in C ₆ D ₆
Abbildung 5: ²⁹ Si-NMR-Spektrum (¹ H entkoppelt) von HPh ₂ SiSi(SiH ₃) ₃ (erhalten aus der
Reaktionslösung nach Gleichung 35 nach wässriger Aufarbeitung mit 10 % H ₂ SO ₄ 44
Abbildung 6: GC/MS der Reaktionslösung aus Gleichung 35 nach wässriger Aufarbeitung mit 10 $\%$
H ₂ SO ₄
Abbildung 7: ¹ H-Spektrum (Si-H-Bereich) der nach Gleichung 36 erhaltenen Reaktionslösung 46
Abbildung 8: ²⁹ Si-Spektrum (¹ H entkoppelt, SiH ₃ -Bereich) der nach Gleichung 36 erhaltenen
Reaktionslösung
Abbildung 9: ²⁹ Si-NMR-Spektrum (¹ H entkoppelt) der Reaktionslösung nach Monohydrierung von
Ph ₃ GeSi(SiH ₃) ₂ SiPh ₃ nach Schema 7
Abbildung 10: Gekoppeltes ²⁹ Si-NMR-Spektrum des Rohproduktes der Monohydrierung von
Ph ₃ GeSi(SiH ₃) ₂ SiPh ₃ nach Schema 7 (Lösung in C ₆ D ₆) 50
Abbildung 11: Kristallstruktur von Ph ₃ GeSi(SiH ₃) ₃
Abbildung 12: Kristallstruktur von 2-Triphenylgermyl-2-triphenylsilyltrisilan
Abbildung 13: Kristallstruktur von 2,2-Bistriphenylsilyltrisilan

8. Tabellenverzeichnis

Tabelle 1: Produktverteilung nach gaschromatographischer Auftrennung des Reaktionsgemisches nach
Gleichung 8 21
Tabelle 2: Auflistung aller synthetisierten Silagemane
Tabelle 3: Kristallographische Daten von Ph ₃ GeSi(SiH ₃) ₃
Tabelle 4: Bindungslängen und -winkel von 2-Triphenylgermyl-2-triphenylsilyltrisilan
Tabelle 5: Kristallographische Daten von 2-Triphenylgermyl-2-triphenylsilyltrisilan
Tabelle 6: Bindungslängen und -winkel von 2-Triphenylgermyl-2-triphenylsilyltrisilan
Tabelle 7: Kristallografische Daten von 2,2-Bistriphenylsilyltrisilan
Tabelle 8: Bindungslängen und -winkel von 2,2-Bistriphenylsilyltrisilan
Tabelle 9: ²⁹ Si - (¹ H entkoppelt) und ¹ H-NMR-Daten von 1,1-Diphenyl-2,2-disilyltrisilan
Tabelle 10: ²⁹ Si-(¹ H entkoppelt) NMR-Daten des nach 5.3.6. gebildeten Reaktionsproduktes
Tabelle 11: ¹ H-NMR-Daten des nach 5.3.6. gebildeten Reaktionsproduktes

9. Lebenslauf

Persönliche Daten

Name: Geboren am: Geburtsort: Staatsbürgerschaft:	Andrea Maria Temmel 08.12.1981 7423 Pinkafeld Österreich		
		Familienstand:	ledig
		Religion:	römisch / katholisch
		Schulbildung	
1988 – 1992	Volksschule Pinkafeld		
1992 – 1996	BRG Oberschützen		
1996 - 2001	HTBLA Pinkafeld - EDV und Organisation		
Juni 2001	Reifeprüfung mit gutem Erfolg		
Studium			
Okt. 2005 – Apr. 2010	Diplomstudium Technische Chemie (1. Abschnitt)		
Apr. 2010 – Feb. 2013	Masterstudium Technische Chemie		
Okt. 2011 – Feb. 2013	Diplomarbeit "Derivatisierung von		
	Neopentasilan" am Institut für Anorganische		
	Chemie		

22. 02. 2013

Diplomprüfung