
Christopher Maier, BSc

YAGI - An Easy and Light-Weighted
Action-Programming Language for Education

and Research in Artificial Intelligence and
Robotics

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Computer Science

submitted to

Graz University of Technology

Univ.-Prof. Dipl.-Ing. Dr. techn. Franz Wotawa

Institute for Software Technology

 Diplom-Ingenieur

Supervisor

Ass. Prof. Dipl.-Ing. Dr. techn. Gerald Steinbauer

Graz, Jan. 2015

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Abstract (English)

The action-based imperative programming language Golog and its descendants have proved to be powerful
and well-studied languages to model autonomous robots and agents. However, almost all Golog interpreters
are implemented as a set of Prolog clauses, which eliminatesGolog as a language of choice for any platform
that lacks an implementation of a Prolog interpreter. Furthermore, the fuzzy boundary between features
of Golog and side-effects of Prolog makes the process of implementing Golog programs cumbersome
and error-prone. Various extensions and modifications of Golog have been proposed to serve a variety
of different needs, yet previous work addressed the tight coupling of Golog to Prolog only to a certain
extent. In this thesis, we introduce YAGI (an acronym forYet AnotherGolog Intepreter), an action-based
imperative programming language based on the theoretical foundations of situation calculus and IndiGolog,
but with a clear separation of syntax and semantics that enables us to remove the tight binding to Prolog.
We sketch a 3-tier architecture for a YAGI-based software system, provide a specification of the syntax
and semantics of YAGI followed by a discussion of our proof-of-concept implementation and an analysis
of how our implementation follows the specified semantics. The output of this thesis is the specification
and implementation of a programming language that is specifically designed to avoid the pitfalls of Prolog-
based implementations of Golog, hopefully allowing peopleto write less error-prone and more portable
applications based on the semantics of situation calculus and IndiGolog.

i

ii

Abstract (German)

Die aktionsbasierte imperative Programmiersprache Gologund dessen Abwandlungen sind leistungsfähige
und gut erforschte Programmiersprachen zur Beschreibung von autonomen Systemen und Agenten. Aller-
dings sind fast alle Golog Interpreter als eine Menge von Prolog Klauseln implementiert, was Golog auf
Plattformen beschränkt welche über einen Prolog Interpreter verfügen. Ein weiteres Problem ist die unge-
naue Abgrenzung zwischen Eigenschaften von Golog zu Seiteneffekten von Prolog, was die Entwicklung
von Gologprogrammen umständlich und fehleranfällig macht. In bisherigen Arbeiten wurden zahlreiche
Erweiterungen und Abwandlungen von Golog präsentiert, welche die Sprache für unterschiedlichste An-
forderungen erweitern. Allerdings wurde dabei die strikteKopplung von Golog zu Prolog nur bis zu einem
bestimmten Detailgrad behandelt. In dieser Masterarbeit stellen wir YAGI (ein Akronym fürYet Another
Golog Intepreter) vor. YAGI ist eine aktionsbasierte imperative Programmiersprache aufbauend auf dem
Situationskalkül und IndiGolog, jedoch hebt sie mit einer strikten Trennung von Syntax und Semantik
die enge Kopplung zu Prolog auf. Wir skizzieren eine dreischichtige Architektur für ein YAGI-basiertes
Softwaresystem, spezifizieren die Syntax und Semantik von YAGI, beschreiben unsere Proof of Concept
Implementierung und diskutieren, warum diese Implementierung der Spezifikation entspricht. Das Ergeb-
nis dieser Masterarbeit ist die Spezifikation und Implementierung einer Programmiersprache die bewusst
entworfen wurde, um die Probleme von Prolog-basierten Implementierungen von Golog weitestgehend zu
vermeiden. Wir erhoffen uns das diese Arbeit es Personen ermöglicht weniger fehleranfällige und leichter
portierbare Programme basierend auf dem Situationskalkülund IndiGolog erstellen zu können.

iii

iv

Acknowledgements

I would like to thank a number of people for supporting me while working on this thesis.

First, I want to thank my adviser Prof. Gerald Steinbauer forhis guidance and constant support and my
supervisor Prof. Franz Wotawa for giving me the opportunityto work on this thesis.

Second, I want to thank Clemens Mühlbacher for his valuable comments and his constructive reviews of
draft versions of this document.

Third, I want to thank the people from the Department of Computer, Control, and Management Engineering
at the Sapienza University of Rome for their valuable input,in particular Stavros Vassos and Giuseppe De
Giacomo. Further, I want to thank Alexander Ferrein from FH Aachen University of Applied Sciences for
his insightful comments.

Finally, I want to thank my family and friends for their moralsupport.

Christopher Maier
Graz, 2015

v

vi

Contents

Listings xi

List of Figures xiii

List of Tables xv

1. Introduction 1
1.1. Motivation 1
1.2. Goal 2
1.3. Contributions of this Thesis 2
1.4. Running Example 2
1.5. Organization 3

2. Related Work 5
2.1. Situation Calculus 5
2.2. Golog 6
2.3. Extensions of Golog 6
2.4. Beyond Prolog-based Implementations of Golog 7
2.5. YAGI .. . 7
2.6. Basic Action Theories and Relational Databases 8
2.7. Sensing and Incomplete Information 8
2.8. Other Approaches for Reasoning About Actions 9

3. YAGI Software Architecture Specification 11
3.1. Architecture Overview 11
3.2. Front-End 12

3.2.1. YAGI User Interface 12
3.2.2. YAGI Parser .. . 12

3.3. Back-End 13
3.3.1. YAGI Basic Action Theory 13
3.3.2. Program .. . 13

3.4. System Interface 13
3.5. Inter-Layer Communication 13

3.5.1. Front-End→ Back-End Communication . 13
3.5.2. Back-End→ Front-End Communication . 14
3.5.3. Back-End→ System Interface Communication 14
3.5.4. System Interface→ Back-End Communication 14

4. YAGI By Example 15

vii

Contents

4.1. Running Example 15
4.2. Fluents 15
4.3. Facts 16
4.4. Actions 16
4.5. Exogenous Events 18
4.6. Procedures 18

5. YAGI Language Specification 21
5.1. Notation 21
5.2. Basic Language Elements 22

5.2.1. String .. . 22
5.2.2. List of Strings 22
5.2.3. Identifier 22
5.2.4. Variable 22
5.2.5. List of Variables 22
5.2.6. Value .. 22
5.2.7. Value-Expression 23
5.2.8. Tuple .. 23
5.2.9. Set .23
5.2.10. Set-Expression 23

5.3. YAGI and Situation Calculus 23
5.3.1. Fluent Declaration 23
5.3.2. Fact Declaration 24
5.3.3. Formulas .. . 25
5.3.4. Assignment 26
5.3.5. Pattern Matching 28

5.4. YAGI and IndiGolog 30
5.4.1. Test .. 30
5.4.2. Choose .. 31
5.4.3. Pick .. 31
5.4.4. Conditional 32
5.4.5. While Loop .. 32
5.4.6. For Loop .. 32
5.4.7. Procedure Declaration 34
5.4.8. YAGI Action Declaration 34
5.4.9. Procedure Call 37
5.4.10. Sequence 38

5.5. Incomplete Information 38
5.5.1. Implementation Remarks 38

5.6. Sensing 39
5.6.1. Syntax .. 39
5.6.2. Semantics 39
5.6.3. Setting- andSensing-Actions Revisited . 39

5.7. Exogenous Events 40
5.7.1. Syntax .. 40
5.7.2. Semantics 40
5.7.3. Implementation Remarks 41

5.8. Search 41
5.8.1. Syntax .. 41
5.8.2. Semantics 41
5.8.3. Implementation Remarks 42

5.9. Miscellaneous Language Elements 42
5.9.1. Fluent/Fact Query 42
5.9.2. Include .. . 42

viii

Contents

5.10. A YAGI Program 42
5.10.1. Syntax .. . 42
5.10.2. Semantics 43

6. Implementation 45
6.1. Fundamental Design Decisions 45
6.2. System Architecture 45

6.2.1. Front-End 45
6.2.2. Back-End .. . 47
6.2.3. System Interface 49
6.2.4. Inter-Layer Communication 49

6.3. YAGI Language Constructs 49
6.3.1. Fluent- and Fact-Declaration 49
6.3.2. Action Declaration 50
6.3.3. Formulas .. . 50
6.3.4. Assignments 50
6.3.5. Incomplete Information 51
6.3.6. Pattern Matching 52
6.3.7. Exogenous Events 52
6.3.8. Sensing .. . 52
6.3.9. TestStatement . 52
6.3.10. Non-deterministic Programming Constructs 52
6.3.11. Conditionals 52
6.3.12. Loops .. . 52
6.3.13. Search-Operator 53
6.3.14. Procedure Declaration 55

7. Specification Conformance 57
7.1. Definitions 58
7.2. Situation Calculus (BATs)↔ Databases, Ground Formula Evaluation 60

7.2.1. Progression in YAGI 60
7.2.2. Fluent Representation 60
7.2.3. Fluent- and Fact-Declaration 61
7.2.4. Successor State Axioms 61
7.2.5. Ground Formula Evaluation 63
7.2.6. Action Preconditions 64

7.3. IndiGolog↔ YAGI Program Execution . 64
7.3.1. YAGI Program Representation 65
7.3.2. YAGI Program Mapping 65
7.3.3. Empty Program 66
7.3.4. Primitive Actions 67
7.3.5. Test .. 67
7.3.6. Choose .. 68
7.3.7. Pick .. 68
7.3.8. Conditional 68
7.3.9. While .69
7.3.10. Sequence 69
7.3.11. Procedures 69

7.4. Consequence 70

8. Evaluation 71
8.1. Evaluation Setting 71
8.2. Measurement Techniques 72
8.3. Elevator Controller 72

ix

Contents

8.4. Blocks World 74
8.5. Discussion 76

8.5.1. Runtime .. . 76
8.5.2. Planning vs. No Planning 76
8.5.3. Conditionals and Non-Determinism 77
8.5.4. Golog Order of Statements 78

9. Conclusion 79
9.1. Summary 79
9.2. Future Work 80

Bibliography 83

Appendices 87

A. Object Delivery Robot YAGI Source Code 89

B. YAGI Grammar 93

C. Evaluation Programs 101
C.1. Elevator 101

C.1.1. YAGI (non-deterministic, no planning) 101
C.1.2. YAGI (conditional, no planning) 102
C.1.3. YAGI (non-deterministic, full planning) 103
C.1.4. YAGI (conditional, full planning) 105
C.1.5. Golog .. 106
C.1.6. Golog (conditional) 107

C.2. Blocks World 109
C.2.1. YAGI (non-deterministic, no planning) 109
C.2.2. YAGI (conditional, no planning) 110
C.2.3. YAGI (non-deterministic, full planning) 111
C.2.4. YAGI (conditional, full planning) 112
C.2.5. Golog .. 113
C.2.6. Golog (reordered) 114

x

Listings

4.1. Object Delivery Robot Fluents 15
4.2. Object Delivery Robot Facts 16
4.3. Object Delivery Robot Move Action 16
4.4. Object Delivery Robot Pickup Action 17
4.5. Object Delivery Robot Putdown Action 17
4.6. Object Delivery Robot Detect Person Action 17
4.7. Object Delivery Robot Receive Request Exogenous Event. 18
4.8. Object Delivery Robot Serve Request Procedure 18
4.9. Object Delivery Robot Main Procedure 19

5.1. First-Order Quantification Examples 26
5.2. Operator ’in’ Examples 26
5.3. Pick With Unbound Variable 31
5.4. Pick With Bound Variable 31
5.5. Pick With Bound and Unbound Variables 32
5.6. YAGI Action Declaration Schematic 35
5.7. Corresponding Golog Procedure Schematic 35
5.8. YAGI Setting Action Declaration Schematic 35
5.9. Corresponding Golog Procedure Schematic 35

6.1. YAGI Search Sample 54

7.1. SQL Schematic For ActionaddF(~x) . 61
7.2. SQL Schematic For ActionremoveF(~x) . 61

8.1. Golog Fluents for Blocks World Example 74

xi

xii

List of Figures

3.1. YAGI 3-tier architecture 12

5.1. Evolution ofS0 With Setting and Sensing Actions . 40

6.1. Schematic Class Diagram of the Front-End Implementation 47
6.2. Schematic Class Diagram of the Back-End Implementation 49
6.3. Schematic of Fluent Declaration Implementation 50
6.4. Schematic of Action Declaration Implementation 51
6.5. Schematic of a Fluent Assignment 51
6.6. Schematic Sequence Diagram of the Execution of a SearchBlock 54

7.1. AST Execution Schematic 65

8.1. Problem Instance of the Blocks World Domain 74
8.2. Comparison of Test Case Run-Times of the Elevator Example 77
8.3. Comparison of Valid Solution Percentages of the BlocksWorld Example 77

xiii

xiv

List of Tables

8.1. Evaluation Results for the Elevator Example Test CaseT1(7,2) 73
8.2. Evaluation Results for the Elevator Example Test CaseT2(20,10) 73
8.3. Evaluation Results for the Elevator Example Test CaseT3(50,25) 73
8.4. Evaluation Results for the Elevator Example Test CaseT4(70,60) 73
8.5. Evaluation Results for the Elevator Example Test CaseT5(100,100) 74
8.6. Evaluation Results for the Blocks World Example Test CaseT1(4,1) 75
8.7. Evaluation Results for the Blocks World Example Test CaseT2(5,1) 75
8.8. Evaluation Results for the Blocks World Example Test CaseT3(6,3) 75
8.9. Evaluation Results for the Blocks World Example Test CaseT4(10,1) 76
8.10. Evaluation Results for the Blocks World Example Test CaseT5(10,5) 76

xv

Chapter 1
Introduction

1.1. Motivation

The art of modeling autonomous robots and agents has been a highly compelling topic in the scientific
community for the past decades. Up to the present day, teaching robots tasks that are trivial for human
beings is a non-trivial undertaking. Consider the well-known example of an object delivery robot. The job
of the robot is solely to deliver packages between differentpeople in, say, an office building. To accomplish
this task, the robot must be able to deal with a number of different issues. First of all, the robot must be
able to perform all the actions that are needed to accomplishthe task, e.g. moving to offices and picking up
objects. Furthermore, the robot must be able to monitor its actions, e.g. track its position during movements
and verify if an object has been delivered successfully. Moreover, the robot must be able to react to changes
of its environment, e.g. it must be able to react to human requests to deliver some object. Note that even
though this enumeration is non-exhaustive, it is not trivial (even sometimes not feasible) to consider all
these issues when writing a robot program as a set of predefined rules.

To address these issues, several well-working approaches have been established over the years, one
of the most successful ones is Golog (Levesque et al., 1994),a programming language based on situa-
tion calculus. Situation calculus is a formalism based on second-order logic with equality, introduced by
(McCarthy, 1963) and (Reiter, 2001). Golog combines a formal domain specification with elements of im-
perative programming, hence the termaction-based imperative programminghas been chosen to describe
this paradigm. Over the years, various dialects of Golog have been introduced to cope with different issues
such as parallelism, sensing and exogenous events, making Golog a even more powerful programming lan-
guage. Additionally, Golog was used to implement various different types of real-world applications and
made its entrance into academic eduction as part of lecturesheld at technical universities around the world.

With the knowledge gathered from the intensified use of Gologresearches discovered certain drawbacks,
first and foremost the fact that almost all Golog interpreters have in common that their implementations are
Prolog-based. The decision to pick Prolog as the language ofchoice for implementing a Golog interpreter
is everything but surprising since the theoretical foundation of Golog is the situation calculus, a language
based on second-order logic, hence picking a logic programming language seems to be the most natural
decision. However, the decision to use Prolog also imposes some drawbacks, as lined out by (Ferrein et al.,
2012). First of all, it implies that any platform that lacks of an implementation of a Prolog interpreter
is not able to run a Golog program. Since one major domain of Golog-like languages is the field of
robotics, a Prolog interpreter might not always be feasibledue to resource constraints and/or performance
limitations. Moreover, even if a Prolog implementation exists, integrating a Golog interpreter into a rather
complex technical ecosystem might be a non-trivial task. Also, the distinction between what are features of
Golog and what are (sometimes subtle) idiosyncrasies of (a specific implementation of) Prolog is especially

1

Chapter 1. Introduction

challenging for novices and sometimes even for experts. Oneof the reasons for this is that the boundary
between Golog and Prolog tends to be fuzzy since Golog implicitly uses features of Prolog. To address
these issues, (Ferrein et al., 2012) proposed YAGI, which stands forYet Another Golog Interpreter. (Ferrein
et al., 2012) sketched the syntax and semantics of YAGI, a novel approach to realize an action-based
programming language inspired and based on Golog (and IndiGolog, respectively), but also specifically
designed to address the issues described above.

1.2. Goal

The goal is to define a programming language based on the ideasfrom (Ferrein et al., 2012) that allows
a programmer to build applications based on the semantics ofsituation calculus and IndiGolog. From a
syntactical perspective, the goal is that the language should be easy to use for people who are aware of
widely used programming concepts such as variables, loops and conditionals. Further, the syntax of the
language should be as intuitive as possible to enable novices to build applications based on the foundations
of situation calculus and IndiGolog without much burden. From a semantics perspective, the goal is to
provide a solid and theoretically sound definition of a language that is based on situation calculus and
IndiGolog. Furthermore, the language should lift the tightbinding of Golog to Prolog. To accomplish
such an abstraction it is necessary to specify a system architecture that is able to decouple the syntax and
semantics of the language as cleanly as possible. Moreover,such an architecture should provide easy
extensibility and a clear separation of concerns for easy maintainability.

1.3. Contributions of this Thesis

The contributions of this thesis are as follows:

• We present a 3-tier system architecture for YAGI-based applications that subdivides a YAGI appli-
cation into front-end, back-end and system interface.

• We provide a formal specification of the syntax and semantics of YAGI, based on the ideas and goals
outlined by (Ferrein et al., 2012). The focus is to provide a solid and theoretically sound definition of
a language that is based on situation calculus and IndiGologbut can be used on a variety of different
target systems independently of the existence of a Prolog interpreter.

• Based on the language specification and the system architecture we provide a proof-of-concept im-
plementation of a YAGI interpreter.

• Based on the specification of the language and the proof-of-concept implementation we discuss how
our implementation follows the specified semantics of the language.

• We provide an evaluation of our proof-of-concept implementation compared to a Prolog-based im-
plementation of Golog.

1.4. Running Example

To illustrate our intentions, we use an object delivery robot as running example. The task of the robot is
to pickup a certain object from a person, i.e. the sender and deliver it to another person, i.e. the receiver.
Every person can possibly reside in a number of different offices, hence it is necessary for the robot to
check whether or not the person is actually in the room beforepicking up/delivering an object.

2

1.5. Organization

1.5. Organization

This thesis is organized as follows. In the next chapter we present an overview of related work. Then,
we describe the YAGI system architecture we propose for implementing YAGI-based systems in Chapter
3 and continue with an implementation of our running examplein YAGI in Chapter 4. Next, we give
a definition of syntax and semantics of YAGI in Chapter 5 followed by the description of our proof-of-
concept implementation of a YAGI interpreter in Chapter 6. Further, we discuss why our implementation
follows the specification in Chapter 7 and provide an evaluation of our implementation in Chapter 8.
Finally, we finish with our conclusion and ideas about futurework in Chapter 9.

3

4

Chapter 2
Related Work

In this chapter we give an overview of theoretical prerequisites and topics related to our work. We discuss
the theoretical prerequisites of situation calculus and Golog in Section 2.1 and Section 2.2, respectively.
Then, we discuss various extensions of Golog in Section 2.3 and continue with a description of some
non-Prolog based implementations of Golog in Section 2.4. Next, we give a short summary of the initial
proposal of YAGI in Section 2.5 and proceed with a short discussion about relational databases and their
relation to basic action theories in Section 2.6. Subsequently, we give an overview of sensing and incom-
plete information in Section 2.7 and finish the chapter with adiscussion of some other approaches that
deal with the task of reasoning about actions and change in Section 2.8.

2.1. Situation Calculus

Situation calculus is a second-order language with equality which was designed to represent dynamic
systems and to reason about actions and their effects. It wasintroduced by (McCarthy, 1963) and (Reiter,
2001) as a set of variables, constants, functions and predicates. The basic idea is that the world evolves
from an initial situation (denoted by the special constantS0) due to the execution of so-calledactions.
Such a sequence of actions is interpreted as a world history and is called asituation. To evolve into a
new situation the special function symboldo(a,s) is used to denote that the new situation is the result of
executing the actiona in a situations. To state the fact that not every action might be able to be executed in
every situation, a special predicatePoss(the so-calledaction precondition) of the formPoss(a,s) is used to
denote whether or not an actiona can be executed in a situations. To capture the changing properties of the
world special relations calledfluentsof the formF(x1, . . . ,xn,s) are used, whereF is the name of the fluent,
x1, . . . ,xn are the parameters ands is asituation. Fluents can be further divided intorelational fluents, i.e.
F(x1, . . . ,xn,s) is a predicate symbol that represents a truth value depending on a specific situation and
functionalfluents, i.e. F(x1, . . . ,xn,s) is a function symbol that changes its result value dependingon a
specific situation.

To formalize this, (Reiter, 2001) defined a set of axioms thatform a so-calledbasic action theoryD as
follows:

D = Σ∪Dssa∪Dap∪Duna∪DS0

In a situation calculus basic action theoryΣ denotes the set of domain independent axioms that de-
fine properties of a legal situation,Dssa is the set ofsuccessor state axiomsof the formF(~x,do(a,s)) ≡
ΦF(~x,a,s) that specify for every fluentF under which conditions it holds in the situationdo(a,s). Dap

containsaction precondition axiomsof the formPoss(A(~y,s)) ≡ ΠA(~y,s) that specify for every actionA
under which condition it can be executed in a situations. Duna holds theunique name axiomsfor actions

5

Chapter 2. Related Work

of the formA(~x) = A(~y)⊃~x=~y1, i.e. two distinct actionsA andA′ are equal iff they have the same name
and the same parameter vectors. Finally,DS0 contains axioms that describe the initial situation.

2.2. Golog

Golog (an abbreviation for alGOL in lOGic) is a logic-based programming language that has been designed
by (Levesque et al., 1994) based on the definitions of situation calculus. In addition to the execution of
simple actions, Golog allows the definition of control structures (e.g. iteration and conditionals) as known
from most of the common programming languages. Moreover, Golog allows the definition of procedures
and introduces programming constructs to express non-determinism. A Golog program is expanded into
a situation calculus formula and Golog language constructslike while andif can be seen as abbreviations
for logical expressions of situation calculus. (Levesque et al., 1994) define a special abbreviationDo
suchDo(δ,s,s′) holds if s′ is a legal terminating situation of a given programδ in a starting situation
s. Consequently, running a Golog programδ becomes a theorem proving task, i.e. the entailmentD |=
Do(δ,S0,do(~a,S0)) needs to be established. A sequence of actions that establish this entailment can be
extracted from the proof as thebindingfor the situation terms′ given by a successful proof.

2.3. Extensions of Golog

Based on Golog, (De Giacomo et al., 2000) proposed an extension that adds concurrent programming
constructs to Golog. Consequently, this extension was named ConGolog, which stands forConcurrent
Golog. Moreover, (De Giacomo et al., 2000) switched from a so-calledevaluation semantics(i.e. evaluate
Do(δ,s,s′) for a complete programδ) to a so-calledtransition semantics, which is based on defining single
steps of program execution in contrast to directly defining complete computations. More precisely, (De Gi-
acomo et al., 2000) use two semantic predicatesTransandFinal to specify transition of program states (or
configurations) as well as legal termination states. We defer the exact definitions of the transition semantic
predicatesTransandFinal to Chapter 7 since any further details are of minor importance as of now.

Based onConGolog, (De Giacomo et al., 2009) proposed IndiGolog (incrementaldeterministic Golog),
which introducesonline executionto allow the programmer to control the amount of planning performed
andsensingto gain information about an agent’s environment. Introducing online execution semantics is
particularly interesting since it is a different mode of execution compared to the traditional offline exe-
cution semantics from Golog and ConGolog. Using offline execution semantics means that an executor
must search over the whole program to find a legal sequence of actions before executing anything. This
can be highly problematic when it comes to execution performance and reactivity of an agent. Therefore,
IndiGolog introduces anonline execution semanticsthat allows a program to execute actions without doing
reasoning beforehand. However, this online execution semantics also comes with drawbacks, most impor-
tantly that if an action has been executed in the real world there might be no possibility to backtrack if -
for example - a non-deterministic program construct has been resolved incorrectly. Consequently, online
execution may fail in cases where offline execution may succeed. To control the balance between online
and offline execution (De Giacomo et al., 2009) present thesearch operatorΣ. The search operator applied
to a programδ emulates offline execution for that given part of the program, i.e. it reasons offline to find a
valid execution trace for the programδ before executing it.

For the specification of IndiGolog (De Giacomo et al., 2009) use the same transition semantics machinery
that proved to be viable for the specification of ConGolog, which is particularly important for this thesis
since the semantics of YAGI program execution is built on language constructs from IndiGolog and similar
transition semantics predicates are used to show the relation between YAGI and IndiGolog.

1We use the superset operator⊃ to denote implications (if not explicitly stated otherwise)to stay consistent with the notation from
(Reiter, 2001).

6

2.4. Beyond Prolog-based Implementations of Golog

In addition to ConGolog and IndiGolog various other extensions of Golog such as DTGolog (Boutilier
et al., 2000), sGolog (Lakemeyer, 1999), Legolog (Levesqueand Pagnucco, 2000), ccGolog (Grosskreutz
and Lakemeyer, 2003) and Readylog (Ferrein, 2007) exist. DTGolog focuses on the integration of decision
theoretic planning (hence the nameDTGolog) using Markov decision processes (MDPs) whereas sGolog
incorporates sensing actions usingaction treesinstead of linear action histories. Legolog illustrates how
Golog can be used to control a LEGO® MINDSTORMS™ robot, including features like exogenous actions
and sensing. ccGolog introduces the notion of continuous change to be able to evaluate fluents using a
time scale, i.e. continuous fluents are fluents that are enhanced with a temporal component. The focus of
Readylog is to combine various features of different Golog-like languages under the constraint of being
viable for dynamic real-time domains such as robotic soccer.

2.4. Beyond Prolog-based Implementations of Golog

The idea to use a language other than Prolog to implement a Golog-like language was already discussed by
(Ferrein, 2010) and (Ferrein and Steinbauer, 2010). (Ferrein, 2010) sketchedgolog.lua, an implementation
of a Golog interpreter using the scripting language Lua. Thedecision to use Lua instead of Prolog was
driven by the fact that Prolog was not available on their target platform (the robot platform Nao) and Lua
offers several advantages like easy interfacing with C/C++code-bases. Driven by similar motivations like
lack of a Prolog interpreter for a specific platform and resource limitations (Ferrein and Steinbauer, 2010)
extended the vanilla Golog implementation ofgolog.luawith features of IndiGolog with the specific goal
to target the LEGO® MINDSTORM™ NXT platform. Besides those Lua-based implementations there also
exists an implementation of Golog in Python calledpygologcontributed by Ferri Federico from University
La Sapienza of Rome2.

The idea of implementing Golog as an answer set program (ASP)(Lifschitz, 2008) is discussed by
(Ryan, 2014). Especially, (Ryan, 2014) discusses different encodings of Golog for ASP and shows how
different encodings impact the run-time of the resulting ASP. Further, he shows how compilation of Golog
programs to finite state machines further increases run-time performance.

2.5. YAGI

This thesis is based on the initial proposal of the YAGI language from (Ferrein et al., 2012). In the initial
proposal (Ferrein et al., 2012) stated some functional and non-functional requirements that should be con-
sidered when designing a new action-based programming language and provided a first example of YAGI
source code to illustrate the intentions behind YAGI. Further, (Ferrein et al., 2012) provided a definition of
syntax and semantics of YAGI that we use as a foundation throughout this thesis. Moreover, (Ferrein et al.,
2012) presented a basic action theory for YAGI called YAGI-BAT as

D = Σ∪Dpres∪Dssa∪Dap∪Duna∪DS0 ∪Dunc.

Based on this YAGI-BAT we define a basic action theoryDYAGI as

DYAGI = Σ∪Dssa∪Dap∪Duna∪DS0 ∪Dunc,

whereΣ,Dssa,Dap,Duna andDS0 contain the same axioms as defined by (Reiter, 2001) andDunc contains
the unique-name axioms used to represent YAGI string tokens. DYAGI is a reduced version of YAGI-BAT
in a sense that (Ferrein et al., 2012) also added the set of Presburger arithmetic axioms (Enderton, 2001)
Dpres to represent basic arithmetic operations, which we omit forthe sake of simplicity.

2Source can be found athttps://github.com/fferri/pygolog . Last visited on January 15th, 2015.

7

Chapter 2. Related Work

2.6. Basic Action Theories and Relational Databases

Basic action theories relate closely to the concept of relational databases. More precisely, the idea to
use relational databases to represent the initial situation and to use operations that change the database to
represent precondition and successor state axioms have been discussed by (Reiter, 2001). Based on the
observation that basic action theories are closely relatedto relational databases, (De Giacomo and Palatta,
2000) illustrated how one can build a system for reasoning about actions exploiting relational database
semantics. They illustrated how system states can be represented using database tables, how formulas can
be translated to SQL queries and how actions that change the database can be encoded as SQL statements.
(De Giacomo and Mancini, 2004) further distinguishsafeandunsafesituation calculus basic action theories
and show how efficient reasoning for both cases is possible using relational databases.

2.7. Sensing and Incomplete Information

One can imagine that there exist various cases where one wants to express information that is not yet
known, but may (or may not) besensedto its actual value during the lifetime of the agent. Due to the
fact that sensing and incomplete information in YAGI are subject to future work we just briefly want
to mention some related work regarding these topics. Various approaches of how to deal with incomplete
information in different contexts have been discussed by (Etzioni et al., 1992), (Petrick and Bacchus, 2002),
(Petrick and Bacchus, 2004), (Vassos and Levesque, 2007) and others. (Etzioni et al., 1992) proposed
UWL, an extension of STRIPS (Fikes and Nilsson, 1972) and illustrated how UWL can be used to deal
with incomplete information in a UNIX operating system domain. (Petrick and Bacchus, 2002) discuss a
"knowledge level" approach for planning with incomplete knowledge and sensing, that is they represent
incomplete knowledge as formulas of first-order modal logicand represent actions as updates of these
formulas. Further, they present the PKS (Planning with Knowledge and Sensing) system that illustrates
their approach of planning in the presence of incomplete knowledge and sensing. (Petrick and Bacchus,
2004) present further extensions like numerical evaluation of the PKS system. (Vassos and Levesque,
2007) discuss progression of situation calculus basic action theories with a restricted form of incomplete
information. Therefore, they introduce the notion ofpossible values, that is they assume that for every
functional fluent they may not now which value it has, but theydoknow the set of possible values for each
functional fluent. Based on this assumption, they show that progression of restricted basic action theories
with incomplete information is possible.

The problem of integrating sensing information into an action-based system was discussed by (De Gi-
acomo and Levesque, 1999b), (De Giacomo and Levesque, 1999a) and (De Giacomo et al., 2009). In the
context of planning and sensing (Levesque, 1996) introduced sensed fluent axiomsof the formSF(a,s)≡
φa(s), whereSFis a distinguished predicate likePoss, relating an action to a fluent. For example, (Levesque,
1996) uses an airport scenario that shows how the action of checking a departure screen is connected to
knowing where a certain plane is parked asSF(check_departures,s) ≡ Parked(Flight123,gateA,s). In
other words,φa(s) gets asserted to a truth value by its corresponding sensing action. The basic action theory
is therefore extended with the set of sensed fluent axiomsDSF and the task is to show thatD ∪DSF |= φ[s′]
for a goal formulaφ in a situations′.

Further, (Scherl and Levesque, 2003) specifiedsensing result axiomsof the form SR(α(~x),s) = r ≡
φα(~x, r,s), with α being the name of the action,~x being the parameter vector,r being the result ands
being the situation term. For example, (Scherl and Levesque, 2003) show a sensing result axiom to obtain
information about the weather asSR(sense_weather,s) = r ≡ (r = ”sunny” ∨ r = ” rainy” ∨ r = ”snow”)∧
weather(s) = r. Note that the distinction betweenSF andSRis similar to the distinction between relational
and functional fluents.

8

2.8. Other Approaches for Reasoning About Actions

2.8. Other Approaches for Reasoning About Actions

Besides Golog and its dialects there exist other well-working approaches that deal with the task of rea-
soning about actions and change, among them are languages like fluent calculus (Thielscher, 1998), 3APL
(Hindriks et al., 1999),A (Gelfond and Lifschitz, 1993) and its successorsB andC (Gelfond and Lifschitz,
1998) as well as PREGO (Belle and Levesque, 2014).

The purpose of fluent calculus is to not only solve therepresentationalframe problem (i.e. the problem
of specifying all non-effects of actions) but also theinferentialframe problem, i.e. the problem of inferring
all these non-effects. Therefore, fluent calculus introduces the concept of so-calledstate update axiomsto
specify how an action modifies a state. Astaterelates a situation to the state of the world in that situation,
that is, astateis the union of all relevant fluents that hold in a situation. This relation is reflected by a
functionState(s) that relates a situationswith a corresponding state. Based on fluent calculus, (Thielscher,
2002) provides a programming method called FLUX, which stands forFLUent eXecutor.

3APL (pronounced "triple a-p-l") is an agent programming language that combines elements from im-
perative and logic programming. 3APL is based on the metaphor of intelligent agents, where (Hindriks
et al., 1999) state three main properties that define an intelligent agent, namelya) having a complex inter-
nal mental stateb) having the ability to act pro-actively and reactively andc) having the capability to reason
reflectively. They show how 3APL supports those three properties and specify the semantics of 3APL us-
ing a transition-style semantics. The main difference between 3APL and ConGolog is that (Hindriks et al.,
1999) argue that the execution model of 3APL is more dynamic compared to ConGolog’s approach to
extract a sequence of primitive actions from a given high-level program.

Finally, PREGO is a language based on situation calculus that focuses on dealing with uncertainty and
noise (e.g., noisy sensors), which are constant companionsin real-world robotics applications. Therefore,
(Belle and Levesque, 2014) study formal and computational properties of projection when adegree of belief
is incorporated.

9

10

Chapter 3
YAGI Software Architecture Specification

In this chapter we will define the software architecture of a YAGI-based software system. The goals of
the architecture are to decouple the syntax and semantics ofthe language as cleanly as possible, provide
easy extensibility and a clear separation of concerns for easy maintainability. Again, we want to emphasize
that Golog is typically implemented as a set of Prolog clauses and Golog programs run inside a Prolog
environment. As a consequence, the distinction between what are features of Golog and what are side-
effects of Prolog is challenging for novices and sometimes even for experts. Due to this fuzzy separation of
semantics writing correct Golog programs can be challenging and error-prone. Moreover, the tight coupling
of Golog to Prolog is also problematic from a purely technical point of view since a Prolog interpreter might
not always be feasible due to resource constraints and/or performance limitations of a target system and
- even if a Prolog implementation exists - integrating a Golog interpreter into a rather complex technical
ecosystem might be a non-trivial task.

To overcome these issues, we propose a 3-tier layered architecture for YAGI applications that allows a
clear separation of syntax and semantics and that can be adopted for a variety of different target systems
depending on the practical needs of a certain problem domain. We start with an overview of our architecture
in Section 3.1 and proceed with the description of the purpose of each of the three layers, i.e. front-end
(Section 3.2), back-end (Section 3.3) and system interface(Section 3.4). We finish this chapter with a
description of the inter-layer communication between the formerly specified layers in Section 3.5.

3.1. Architecture Overview

In this section, we give an overview of the 3-tier architecture for YAGI applications, which consists of the
following three layers:

1. Front-End : The front-end provides the YAGI user interface (UI) as wellas the parser for YAGI
source code. The front-end handles YAGI source code on a purely syntactical level, i.e. it is respon-
sible for checking syntactical correctness of YAGI code entered by a user. Further, the front-end
transforms YAGI code into a suitable intermediate representation that allows the back-end to pro-
cess the YAGI program efficiently. The user interface can vary depending on the specific needs of
a specific implementation, one can imagine a wide range of different user interfaces, from simple
console-based interfaces to graphical user interfaces formobile devices such as mobile phones or
tablets.

2. Back-End: The back-end consumes data from the front-end, i.e. the front-end passes an abstract
representation of a YAGI program (the so-calledabstract syntax tree, or AST) to the back-end. The
back-end stores the current state of the world (i.e. the YAGIbasic action theoryDYAGI) as well

11

Chapter 3. YAGI Software Architecture Specification

as executable program elements (e.g. procedures, YAGI actions). The back-end handles the YAGI
program on a semantics level, i.e. it modifies the YAGI basic action theory and/or the YAGI program
elements according to the semantics of the given YAGI program. Further, the back-end responds to
the front-end depending on the type of YAGI statement, whichwe will discuss in detail in Section
3.5.

3. System Interface: The system interface provides external data (e.g. data generated due to exogenous
events) for the back-end and is responsible for executing actions, i.e. responding to YAGIsignal-
commands.

This 3-tier architecture is illustrated in Figure 3.1.

Parser YAGI UI
YAGI Line L

YAGI-BAT Program

Navigation Localization ...

- AST (L)

- Signal (Action Exec.)
- Signal (Setting Action)

- Signal (Setting
Action Response)

- Signal (Exogenous
Event Data)

Front-End

Back-End

System Interface

- Query Results
- Status Information
- Diagnostics

Sensors

Figure 3.1.: YAGI 3-tier architecture

3.2. Front-End

In this section, the elements of the first layer (front-end) will be discussed.

3.2.1. YAGI User Interface

The YAGI user interface (UI) allows the user to specify a certain YAGI-domain as well as to interact with
this domain, e.g. change the YAGI world of fluents or query world information. Depending on the scenario
the user interface may vary, one can imagine console-based interfaces similar to console-based editors like
vi or emacs, graphical user interfaces similar to popular integrated development environments (IDEs) like
Eclipseor Net Beansor applications for mobile devices like mobile phones or tablets.

3.2.2. YAGI Parser

The YAGI parser transforms YAGI input source code into an abstract model of the input, i.e. into an
abstract syntax tree (AST). This abstract representation ensures syntactical correctness of the input and can
be used for further processing.

12

3.3. Back-End

3.3. Back-End

In this section, the elements of the second layer (back-end)will be discussed.

3.3.1. YAGI Basic Action Theory

The back-end stores the state of the YAGI world, i.e. the YAGIbasic action theoryDYAGI. The back-
end is also responsible for transforming the data provided by the front-end into a reasonable format that
allows efficient storing and updating, hence the exact format depends on the specific implementation of the
back-end.

3.3.2. Program

The back-end stores executable structures that can modify the state of the world. Executable structures
can be rather complex and their execution happens solely in the back-end, hence there need to be a proper
representation for these executable structures. Examplesfor complex structures are procedures, loops
and non-deterministic choice of actions, among others defined in Chapter 5. Moreover, the back-end is
responsible for properly executing YAGI statements provided by the front-end.Properly in this context
means that the back-end shall implement the YAGI semantics as specified in Chapter 5.

3.4. System Interface

The system interface serves as the lowest level in the YAGI 3-tier architecture. The system interface varies
depending on the area of application, one can think of a rangeof system interfaces from autonomous robots
to video game bots. The purpose of the system interface is to serve as low-level communication layer that
executes actions triggered by YAGIsignal-commands and provides data acquired from external sourcesfor
the back-end.

3.5. Inter-Layer Communication

In this section, the communication mechanisms between eachof the layers will be discussed.

3.5.1. Front-End → Back-End Communication

The front-end passes YAGI lines of code in the form of an abstract syntax tree (AST) to the back-end,
i.e. for a YAGI line of codeα the parser returns its abstract representation as a function AST(α), which is
passed to the back-end for further processing. The types of messages are as follows:

1. Fluent Query: The front-end can query information about the current state of the world, i.e. states
of fluents.

2. Program Specification: The front-end can pass YAGI programs to the back-end. Such programs
have no initial effect until they get executed.

3. Program Execution: The front-end can pass statements that initiate program execution to the back-
end. There are various consequences depending on the program structure that gets executed, e.g.
modifications of the state of the world or testing certain conditions. These various effects are de-
scribed in detail in Chapter 5.

13

Chapter 3. YAGI Software Architecture Specification

The exact format of the output ofAST(α) as well as the communication mechanism between front-end
and back-end depends on the particular implementation of the system, i.e. may vary depending on the
requirements of a specific implementation. We describe our proof-of-concept implementation in Chapter
6.

3.5.2. Back-End → Front-End Communication

The back-end responds to the front-end depending on the typeof message as follows:

1. Fluent Query: If the front-end queries the state of a fluent, the reply is a set of tuples representing
the state of the fluent orfalseif the fluent is not defined.

2. Program Specification: The back-end returnstrue iff the program could be stored properly and
falsein any other case.

3. Program Execution: The back-end returns information about the program that isbeing executed.
Such information can be status information, data produced by signal-blocks of YAGI actions or
diagnostics in case any run-time errors occur.

The data exchange format for this part of the communication may also vary between specific implementa-
tions.

3.5.3. Back-End → System Interface Communication

The back-end communicates with the system interface via a string signaling mechanism. The content of
the string can either be plain text in a natural language or executable code in an arbitrary programming
language. This decision depends on how a specific system interface processes the contents of the string
signal. Signals can for example trigger an action that executes a real-world action (e.g. motion of an
autonomous robot) or query some information about the world(e.g. a synchronous/blocking request to a
specific sensor).

The data exchange format as well as how to distinguish between action- and sensing-signals may vary
between different implementations of the system.

3.5.4. System Interface → Back-End Communication

The system interface responds to a signal from the back-end accordingly, i.e. providing some status in-
formation about an executed action or returning an activelytriggered status query result. Moreover, the
system-interface asynchronously provides data from exogenous events via call-backs for the back-end.
The back-end buffers exogenous event data in a queue if an action is being executed. These buffered values
are then consumed by the back-end and the next action is executed.

The data exchange format may vary between different implementations of the system.

14

Chapter 4
YAGI By Example

In this chapter, we provide an implementation of our object delivery robot running example to illustrate one
specific scenario we plan to use YAGI for, including a non-formal description of the intended semantics.
We explain our running example in Section 4.1 and proceed with the definition of the fluents and facts in
Section 4.2 and Section 4.3, respectively. Then, we describe the YAGI actions in Section 4.4, show the
definition of an exogenous event in Section 4.5 and finish our example with the procedure definitions in
Section 4.6.

4.1. Running Example

To illustrate our intentions, we use an object delivery robot as running example. The task of the robot is
to pickup a certain object from a person, i.e. the sender and deliver it to another person, i.e. the receiver.
Every person can possibly reside in a number of different offices, hence it is necessary for the robot to
check whether or not the person is actually in the room beforepicking up/delivering an object.

In the following sections we provide an implementation of our running example written in YAGI. For
the sake of simplicity, we define that every variable and every element in a fluent starting with lowercaser
corresponds to a room, lowercaseo corresponds to an object and lowercasep corresponds to a person.

We proceed with the definition of fluents, facts, actions and procedures including a non-formal descrip-
tion of the intended semantics. A detailed specification of the syntax and semantics of YAGI follows in
Chapter 5. The complete listing can be found in Appendix A.

4.2. Fluents

The following listing specifies the fluents for the object delivery robot:

//location of the robot (room1, ..., room3)
fluent at [{ " r1 " , " r2 " , " r3 " }];
at = {< " r1" >};

//location of objects (object1 in room1 etc)
fluent is_at [{ "o1" , "o2" , "o3" }][{ " r1 " , " r2 " , " r3 " }];
is_at = {< "o1" , " r1 " >, < "o2" , " r2 " >, < "o3" , " r3 " >};

//object carried by robot

15

Chapter 4. YAGI By Example

fluent carry [{ "o1" , "o2" , "o3" }];

//requests moving an object (param 1) from a sender (param 2)
//to a receiver (param 3)
fluent request [{ "o1" , "o2" , "o3" }][{ "p1" , "p2" , "p3" }][{ "p1" , "p2" , "p3" }];

//states what person has been detected in what room
fluent detectedPerson [{ "p1" , "p2" , "p3" }][{ " r1 " , " r2 " , " r3 " }];

Listing 4.1: Object Delivery Robot Fluents

After the name of every fluent, one or more pairs of brackets follow. The number of pairs define the arity
of the fluent. Inside every pair of brackets there need to be the specification of the domain inside a pair of
braces, e.g. the fluentat has arity one and the domain is the set of available rooms, i.e. {"r1", "r2", "r3"}.
Fluents can subsequently be assigned to their initial values. The fundamental type of a fluent assignment
is a set of tuples, e.g. the fluentis_at is assigned with a set of object-room tuples. A tuple is denoted by
enclosing angle brackets, whereas a set is denoted by enclosing braces. We decided to use tuples and sets
as our basic concept because we believe that their semanticsare widely familiar and easy to understand.
Further, the concepts of sets and tuples closely relate to the semantics of relational databases, which is
rather convenient as we will describe in detail in Section 6.2.2.

4.3. Facts

The following listing specifies the facts for the object delivery robot:

//one or more rooms are assigned to one person,
//i.e. the person’s offices
fact off ice [{ "p1" , "p2" , "p3" }][{ " r1 " , " r2 " , " r3 " }];
off ice = {< "p1" , " r1 " >, < "p1" , " r2 " >, < "p2" , " r2 " >, < "p3" , " r3 " >};

Listing 4.2: Object Delivery Robot Facts

Facts are similar to fluents, the only difference is that facts can only be assigned once and remain constant
after the first assignment. Semantically, their is no difference between a fact and a fluent, its intended
purpose is solely to enable a programmer to express constness of certain properties of the world.

4.4. Actions

The following listing specifies the action for moving the object delivery robot to a specific room:

//move robot to room $r
action move($r)
precondition:

//robot is not in room $r
not (< $r > in at) ;

effect:
//now he is in room $r
at = {< $r >};

signal:
"Move to room " + $r ;

end action

Listing 4.3: Object Delivery Robot Move Action

16

4.4. Actions

The action uses set-operators to describe the effects of moving a robot to a specific room. Furthermore,
the precondition is defined using the binary operatorin, which evaluates whether or not a concrete object
(more specifically, a concrete tuple) is part of a set of tuples. The actions for picking up and putting down
an object look similar:

//pickup object $o
action pickup ($o)
precondition:

//robot doesn’t carry anything and is in the room where the ob ject is
(not(exists <$x > in carry) and exists <$y > in at such <$o , $y > in is_at) ;

effect:
//now he carries $o
carry += {< $o >};

signal:
" Pickup object " + $o ;

end action

Listing 4.4: Object Delivery Robot Pickup Action

//putdown object
action putdown ($o)
precondition:

//he carries the object stored in $o
<$o > in carry ;

effect:
//now he’s not
carry -= {< $o >};

//where ever it was, its now somewhere else...
is_at -= {< $o , _ >};

//...namely: here!
foreach <$r > in at do

is_at += {< $o , $r >};
end for

signal:
"Put down object " + $o ;

end action

Listing 4.5: Object Delivery Robot Putdown Action

The following listing specifies the action for detecting a person:

//"setting" action to detect a person, i.e.
//$p gets its value from an external src
action detectPerson () external ($p)
effect:

//remove person
detectedPerson -= {< $p , _ >};

//add the detected person + room tuple to the fluent
foreach <$r > in at do

detectedPerson += {< $p , $r >};
end for

signal:
" detect person " ;

end action

Listing 4.6: Object Delivery Robot Detect Person Action

17

Chapter 4. YAGI By Example

The listing above illustrates an action that uses external information toset the value of a fluent. Conse-
quently, we call these types of actionssetting actions, denoted by theexternal-modifier in the first line
of the action declaration. Note that every variable stated after theexternalkeyword gets its value from
an external source and can subsequently be used just like anyother local variable. In contrast, an action
without anexternal-modifier specifies projection effects without using any external data. Moreover, note
the usage of the underscore character in the line that removes the detected person from the fluent. The
underscore character serves as wild-card, i.e. can be replaced by any possible value of the domain. This
feature resembles the pattern matching functionality fromfunctional programming languages like Scala.

4.5. Exogenous Events

Exogenous events differ fromsetting actionsin that they can’t be actively triggered by a YAGI statement.
Exogenous events are triggered by an external event, hence they modify the internal representation of the
world based on some external input. The following listing specifies the exogenous event for receiving a
request to transport an object from a sender to a receiver:

//exogenous event to initiate transportation
//of object $o from $sender to $receiver
exogenous- event receiveRequest ($o , $sender , $receiver)

//add request
request += {< $o , $sender , $receiver >};

end exogenous- event

Listing 4.7: Object Delivery Robot Receive Request Exogenous Event

4.6. Procedures

The following listing specifies the procedure for serving a request:

//serves a request
proc serve ($object , $sender , $receiver)

pick <$sender , $roomSender > from off ice such
move($roomSender) ;

//search for person in the room
detectPerson () ;

//sender is actually in the room
if (< $sender , $roomSender > in detectedPerson) then

pickup ($object) ;

//deliver object to receiver
pick <$receiver , $roomReceiver > from off ice such

move($roomReceiver) ;

//search for person in the room
detectPerson () ;

//receiver is actually in the room
if (< $receiver , $roomReceiver > in detectedPerson) then

putdown ($object) ;
end if

end pick
end if

end pick

18

4.6. Procedures

end proc

Listing 4.8: Object Delivery Robot Serve Request Procedure

Finally, the following listing specifies the main controller of the object delivery robot, which simply serves
a randomly picked request:

proc main ()
//serve a random request
pick <$object , $sender , $receiver > from request such

serve ($object , $sender , $receiver) ;
end pick

end proc

Listing 4.9: Object Delivery Robot Main Procedure

19

20

Chapter 5
YAGI Language Specification

In this chapter, we specify the syntax and semantics of the YAGI language. Therefore, we describe the
notation we use throughout this chapter in Section 5.1 and continue with the definition of some basic
elements of the language in Section 5.2. Then, we define the semantics of YAGI for modeling the state
of the world in the context of situation calculus in Section 5.3 and continue with the definition of YAGI
program execution in the context of the semantics of IndiGolog in Section 5.4. Furthermore, we line out
ideas about incomplete information and sensing in YAGI in Section 5.5 and Section 5.6, respectively.
Subsequently, we specify exogenous events in YAGI in Section 5.7 and proceed with the description of
some YAGI language elements that are neither related to situation calculus nor IndiGolog in Section 5.9.
Finally, we finish this chapter with the definition of a YAGI program in Section 5.10.

5.1. Notation

To specify the syntax we use statements written in Backus-Naur Form (BNF) of the form〈a〉 ::= B, where
non-terminal symbols are denoted by enclosing〈angle brackets〉 and syntactical elements (i.e., terminals)
of the language arebold. Moreover, we use regular expressions to quantify occurrences of elements in
BNF-formulas, applying default semantics of regular expression elements, i.e. one-or-more (+), zero-or-
more (*), zero-or-one (?), negation (∼). To specify semantics, we use logical connectives of propositional
logic and first-order logic with their conventional meanings. Furthermore, we use the notation and se-
mantics of situation calculus as defined by (McCarthy, 1963)and (Reiter, 2001) to model the state of the
world and IndiGolog’s programming constructs and their semantics defined by (De Giacomo et al., 2009)
to specify program flow.

To specify the semantics of the situation calculus languageLYAGI over the basic action theoryDYAGI we
defineLYAGI initially to be empty, i.e. no fluents, actions or constant symbols (exceptS0) are defined and
DYAGI to only contain domain-independent information, i.e. everything exceptΣ andDunc is empty. We
consider this initial state as the interpretation of an empty YAGI programnull1. For arbitrary sequences
of YAGI lines of code〈l1, . . . , ln〉 the the languageLYAGI

′ over the resulting theoryDYAGI
′ is obtained by

modifying their respective predecessorsLYAGI overDYAGI obtained by the YAGI lines of code〈l1, . . . , ln−1〉,
depending on the type of YAGI language construct of lineln as specified in the following sections.

1We definenull to be the empty YAGI program to avoid confusion with the empty Golog program, which is often denoted asnil.

21

Chapter 5. YAGI Language Specification

5.2. Basic Language Elements

To be able to specify the semantics of the YAGI language (i.e.the mapping to situation calculus sentences
and IndiGolog programming constructs) we need to briefly define a set of basic language elements that will
be used throughout this chapter.

5.2.1. String

〈string〉 ::= " (∼ (" | //))∗"

Defines a valid sequence of characters, i.e. every concatenation of characters (except double quote and
double slash) surrounded by a leading and trailing double quote character.

5.2.2. List of Strings

〈string_list〉 ::= 〈string〉(,〈string〉)∗

A sequence of strings.

5.2.3. Identifier

〈id〉 ::= (a. . .z|A. . .Z)(a. . .z|A. . .Z|0. . .9|_)∗

An identifier has no standalone semantics, it solely specifies the structure that a valid name of an entity in
the YAGI language must fulfill. Under certain conditions, identifiers must be unique, e.g. the names of
two different actions must not be equal. The exact conditions of name uniqueness will be discussed in later
sections.

5.2.4. Variable

〈var〉 ::= $ 〈id〉

Defines an identifier to which a value can be assigned to.

5.2.5. List of Variables

〈var_list〉 ::= 〈var〉 (, 〈var〉)∗

A sequence of variables.

5.2.6. Value

〈value〉 ::= 〈string〉|〈var〉

A value is a shortcut for something that is either a string or avariable.

22

5.3. YAGI and Situation Calculus

5.2.7. Value-Expression

〈valexpr〉 ::= 〈value〉 ((+) 〈value〉)∗

Addition of two values. Due to the fact that variables can only hold string values (as specified in Section
5.3.4) each such expression ultimately boils down to an operator+ being applied to string elements. Hence,
we can define the semantics of a value expression as the concatenation of character sequences.

5.2.8. Tuple

〈tuple〉 ::= < (〈tuple_val〉 (, 〈tuple_val〉)∗) | ε >

〈tuple_val〉 ::= 〈var〉 | 〈string〉 | * | _

Defines a (possibly empty) mathematical tuple〈x1, . . . ,xn〉. Possible elements in such a tuple can be vari-
ables, strings, the star character (*), which denotesincomplete information(as discussed in Section 5.5)
and the underline character (_), which denotes pattern matching (as discussed in Section 5.3.5).

5.2.9. Set

〈set〉 ::= { (〈tuple〉 (,〈tuple〉)∗) | ε }

Defines a finite (possibly empty) mathematical set {〈x1
1,x

2
1, . . . ,x

j
1〉, . . . ,〈x1

n,x
2
n, . . . ,x

k
n〉} of tuples.

5.2.10. Set-Expression

〈setexpr〉 ::= 〈set〉 ((+ | -) 〈set〉)∗

Defines the set-based union and complement, i.e. letA andB be sets, then the YAGI expressionA + B

denotes the unionA∪B and A - B denotes the complementA\B. For the sake of conformance to the
majority of well-known general purpose programming languages we define that both operators+ and−
have the same precedence and are both left-to-right associative.

5.3. YAGI and Situation Calculus

In this section, we describe how YAGI is mapped to elements ofthe situation calculus to model the state of
the world.

5.3.1. Fluent Declaration

Syntax

〈fluent_decl〉 ::= fluent 〈id〉 ([(String | { 〈string_list〉})])∗ ;

23

Chapter 5. YAGI Language Specification

Semantics

Let ln be a YAGI fluent declaration of a fluentF with arity m, wheremdenotes the number of square bracket
pairs following the name of the fluent. Each pair of square brackets define the domain of its corresponding
dimension, i.e. we say that the n-th dimension of fluentF with arity m and 0≤ n ≤ m has domainSn

F .
Furthermore, we say that a fluentF has domain~SF , i.e. the fluent has domainS1

F in dimension one,S2
F in

dimension two and so on, and~SF = 〈S1
F ,S

2
F , . . . ,S

m
F 〉. The sort of the n-th dimension of a fluent is defined as

follows, where the termsort is used as in many-sorted first order languages and will from now on be used
equivalently to the termdomain. The sort string represents the countably infinite set of possible character
sequences, i.e. the Kleene closureV∗ over the alphabetV = {A . . .Za. . .z1. . .9_}. The axiomatization is
achieved by mapping every string value to a constant with thesame name as the value of the string and
providing corresponding unique-name axioms for these constants. We call this set of axiomsDunc. Note
that the domain can either be the full range ofV∗ (denoted by[String]) or any finite subset{s1, . . . ,sn}⊂V∗

denoted by the enumeration of all the valid elements, i.e.[{ "s_1" ,..., "s_n" }] .

The declaration of a fluentF with arity m extendsLYAGI by adding the corresponding(m+1)-ary pred-
icateF(~x,s) and twom-ary action symbolsaddF(~x) andremoveF(~x), leading toLYAGI

′, where~x denotes
the vector of fluent arguments(x1, . . . ,xm) ands denotes the situation term.DYAGI

′ is the same asDYAGI

except that all sentences that mentionF, addFor removeFin DS0, DssaandDap are removed and the axiom
∀~x.F(~x,S0) ≡ f alse is added toDS0. This can be considered as some form of initialization of thetheory
for the fluentF. Moreover, the axiomF(~x,do(a,s))≡ a= addF(~x)∨F(~x,s)∧a 6= removeF(~x) is added to
Dssa. The purpose of the situation calculus simple actionsaddFandremoveFare to make the fluentF true
(or false, respectively) for a given parameter vector~x. Note that each element in~x is an instantiation of an
element of the sort of the corresponding dimension in the fluent declaration, i.e.x1 ∈~x has domainS1

F (the
sort of the first dimension of the fluent declaration for the fluentF), xn ∈~x,n≤ mhas domainSn

F and so on.
To enforce this correspondence, we add the necessary preconditionsPoss(addF(~x),s)≡∧m

i=1 τ(S i
F ,xi) and

Poss(removeF(~x),s)≡∧m
i=1 τ(S i

F ,xi) to Dap
2, with τ(S i

F ,xi) being a binary predicate that holds iffxi is an
element of its corresponding sortS i

F . Also note that the initial databaseDS0 is in closed form, according to
the definition from (Reiter, 2001).

5.3.2. Fact Declaration

Syntax

〈fact_decl〉 ::= fact 〈id〉 ([(String | { 〈string_list〉})])∗ ;

Semantics

The semantics of〈fact_decl〉 is identical to the semantics of〈fluent_decl〉, the only difference is that a fact
can only be assigned once and becomes immutable after it has been assigned for the first time. According
to this definition, we can simplify the underlying theory forfacts by omitting the definitions of the situation
calculus actionsaddandremovefor each declared fact. This leads to a theory that makes the constness of
facts more explicit since there exists no mechanism in the theory that is able to modify a fact. Initialization
of facts is implemented by directly updatingDS0, i.e. addingF(~x,S0) ≡ ~x = ~x1 ∨~x = ~x2 ∨ . . .∨~x = ~xn

for the factF and then parameter vectors which are used to initialize the fact. Further, we define that
F(~x1,S0)≡ trueand∀~x.F(~x,S0)≡ f alsefor the special cases forn= 1 andn= 0, respectively.

Implementation Remarks

Any implementation shall check that there is no assignment to a fact after its initialization. Any further
left-hand side appearance of afact in an assignment shall lead to an error. Moreover, any implementation

2In the special case of a fluentF having arity 0, the action preconditions are defined asPoss(addF,s)≡ trueandPoss(removeF,s)≡
true.

24

5.3. YAGI and Situation Calculus

shall ensure that a fact is subsequently assigned after its declaration, i.e. letln be a YAGI line of code that
declares a fact, then the subsequent lineln+1 must be the initialization of the formerly declared fact. Any
other type of statement shall lead to an error.

5.3.3. Formulas

Syntax

〈formula〉 ::= 〈atom〉
| not (〈formula〉)
| (〈atom〉 〈connective〉 〈formula〉)
| exists〈tuple〉 in 〈setexpr〉 (such〈formula〉)?
| all 〈tuple〉 in 〈setexpr〉 (such〈formula〉)?
| 〈tuple〉 in 〈setexpr〉

〈atom〉 ::= 〈value〉 〈comp_op〉 〈value〉
| 〈setexpr〉 〈comp_op〉 〈setexpr〉
| (true | false)

〈comp_op〉 ::= == | != | <= | >= | < | >

〈connective〉 ::= and | or | implies

Semantics

Instances of〈formula〉 evaluate to a logical truth value. The elements allowed in such a first-order formula
have the following semantics:

• Truth Values: true is true, false is false.

• Comparisons: On string values, two elementss1 ands2 are considered equal iff they have the same
length and each character at the same position in boths1 ands2 are equal. If this equality relation
holds the operator== returnstrue, otherwise it returnsfalse. Consequently, the operator!= is the
negation of==. The ordering comparisons<=, >=, < and> are performed lexicographically. On sets,
comparisons are element-based, i.e. two setsA andB are equal iff every element ofA is in B and
vice versa. Order comparisons are mapped to (proper) subset/superset relations, i.e. letX andY be
sets, thenX < Y is true iff X is a proper subset of Y, i.e.X (Y. Consequently, the operator> denotes
the proper superset). The operators<= and>= follow intuitively as subset and superset without the
strictness property, i.e.⊆ and⊇.

• Logical Connectives: The logical connectivesand (∧), or (∨) and implies (→) have their usual
meanings.

• Negation: The operatornot (¬) negates the truth value.

• First-Order Quantifiers : The operatorsall (∀) andexists(∃) have their usual meanings. Note that
they operate on the sorts of the respective〈setexpr〉, i.e. letF be a fluent of sort~SF , thenexists <

$xj_1 , $xj_2 ,..., $xj_n > in F translates to∃SF
1
x j1∃SF

2
x j2, . . . ,∃SF

n
x jn.F(x j1, . . . ,x jn,s), where∃SF

n
is the

existential quantifier over the sort of then-th dimension of fluentF. Theall-quantifier follows simi-
larly, with ∀SF

n
being the universal quantifier over the sort of then-th dimension of fluentF. Note that

the YAGI variables<$xj_1 , $xj_2 ,..., $xj_n > must befreshin a sense that they must not be bound to a
value before they are used in anall or existsstatement. The optionalsuch〈formula〉 is connected to
the quantified formula either via a logical conjunction (in case of an existential quantifier, i.e.exists

<$x > in F such <formula > translates to∃SF
1
x.F(x,s)∧ϕ) or a logical implication (in case of an all

25

Chapter 5. YAGI Language Specification

quantifier, i.e.all <$x > in F such <formula > translates to∀SF
1
x.F(x,s) → ϕ), whereϕ corresponds

to a YAGI 〈formula〉 instance. Note that in case nosuch-block is present the semantics ofall and
existsare identical, i.e.exists <$x > in F andall <$x > in F hold iff there is at least one element for
which the fluentF holds.

• Operator in : The keywordin is used to specify the domain of discourse when used with a first-order
quantifier as defined above. Moreover,in can also be used without a quantifier, which changes its
semantics as follows.<$x1 , $x2 ,..., $xn > in F translates toF(x1,x2, . . . ,xn,s), i.e. the truth value of
the FluentF in situations is evaluated for concrete elements〈x1, . . . ,xn〉. Note that - contrary to
YAGI variables used with first-order quantifiers as discussed above - the variables<$x1 , $x2 ,..., $xn >

must be bound to a value before being used on the left-hand side of the standalone operatorin.

Implementation Remarks

Any implementation shall report different errors based on the following scenarios:

• First-Order Quantification With Bound Variables : Anything but unbound variables used in a
first-order quantified formula shall result in an error, e.g.

fact f loors [{ "0" , "1" , "2" , "3" , "4" , "5" , "6" }];
f loors = {< "0" >, < "1" >, < "2" >, < "3" >, < "4" >, < "5" >, < "6" >};

exists <$x > in f loors such $x < "1" ; //valid, evaluates to ’true’

$y = "4" ;
exists <$y > in f loors such $x < "1" ; //invalid, $y is already bound

exists <"0" > in f loors such "2" < "1" ; //invalid, "0" is a constant

Listing 5.1: First-Order Quantification Examples

• Unbound Variables on the Left-Hand Side of the Standalone Operator in: Any use of an un-
bound variable on the left-hand side of the operatorin shall result in an error, e.g.

fact f loors [{ "0" , "1" , "2" , "3" , "4" , "5" , "6" }];
f loors = {< "0" >, < "1" >, < "2" >, < "3" >, < "4" >, < "5" >};

$y = "6" ;
<$y > in f loors ; //valid, $y is already bound; evaluates to ’false’

<"0" > in f loors ; //valid, evaluates to ’true’

<$x > in f loors ; //invalid, $x is unbound

Listing 5.2: Operator ’in’ Examples

5.3.4. Assignment

Syntax

〈assignment〉 ::= 〈assign〉 ;
| 〈for_loop_assign〉
| 〈conditional_assign〉

〈assign〉 ::= 〈var〉 = 〈value〉

26

5.3. YAGI and Situation Calculus

| 〈id〉 (= | += | -=) (〈id〉 | 〈setexpr〉)

〈for_loop_assign〉 ::= foreach 〈tuple〉 in (〈id〉 | 〈setexpr〉) do 〈assignment〉+ end for

〈conditional_assign〉 ::= if 〈formula〉 then 〈assignment〉+ (else〈assignment〉+)? end if

Semantics

The simplest case of〈assign〉 is an assignment of a value to variable, which simply binds a single value
to the name of the variable. Note that variables can only holdsimple values, i.e. instances of sort string.
Assigning more complex structures (i.e. tuples and sets) tovariables is not permitted. Since this type of
assignment solely maps a value to a name it has no influence onDYAGI or LYAGI.

The second base case of〈assign〉 is the assignment to an〈id〉, i.e. the assignment to a fluentF ′. Due
to the fact that either another fluentFσ or set of constantsσF = { 〈x1

1,x
2
1, . . . ,x

k
1〉, . . . ,〈x1

n,x
2
n, . . . ,x

k
n〉} can

be assigned to a fluentF ′ we need to look at both of these cases separately. In the first case, we already
have a situation calculus representation we can use to formalize the assignment since the fluentFσ must
have been declared first. In the second case we need to construct a situation calculus representation from
the set of constantsσF , as follows. We transformσF to what we call ashadow fluent. A shadow fluentis
the situation calculus representation ofσF , i.e. a fluentFσ(~x,s) is created with~x according to the elements
in σF ands as situation term, the axiomFσ(~x,S0) ≡~x= ~x1∨~x= ~x2∨ . . .∨~x= ~xn is added toDS0 and the
successor state axiom∀~x.Fσ(~x,do(a,s))≡ Fσ(~x,s) is added toDssa. Note that each~x in ∀~x corresponds to
one tuple inσF and the assignment is only valid iff the arity of the fluents are equal and each element of
the assignment belongs to the same domain.

Now, having a situation calculus representation for both ofthe valid assignment cases, we can proceed
with the specification of the assignment semantics. Assignments to fluents expand to YAGI programs as
follows. LetF be the fluent at the left-hand side of an assignment and letFσ be the fluent at the right-hand
side of the assignment, then we need to distinguish between the following types of assignment:

• Add-Assignment: An add-assignment (assignment operator+=) adds all the tuples fromFσ to F,
leaving all other elements inF unchanged. That is, ifDYAGI |= F(~x) andDYAGI |= Fσ(~x) then it
holds after the assignmentF += F_sigma ; thatDYAGI |= Fσ(~x)→ F(~x). Consequently, given the YAGI
assignmentF += F_sigma ; we can construct a YAGI program as follows:

foreach <$x1 ,... , $xn > in F_sigma do
addF ($x1 ,... , $xn) ;

end for

This YAGI-loop essentially adds all the elements fromFσ to the fluentF using the situation calculus
simple actionaddF. Recall that the situation calculus simple actionsaddFandremoveFare created
for every YAGI fluentF at its declaration, see Section 5.3.1. The exact semantics of foreach(i.e.
mapping of a YAGI-foreachto IndiGolog) are discussed in Section 5.4.6.

• Remove-Assignment: A remove-assignment (assignment operator-=) removes all tuples inFσ from
F, leaving all other elements inF unchanged. That is, ifDYAGI |= F(~x) andDYAGI |= Fσ(~x) then
the assignmentF -= F_sigma ; leads toDYAGI 6|= F(~x) if Fσ(~x) holds. Similar to the add-assignment,
given the YAGI assignmentF -= F_sigma ; we can construct a YAGI program as follows:

foreach <$x1 ,... , $xn > in F_sigma do
removeF ($x1 ,... , $xn) ;

end for

Note that the only difference to the YAGI program for the add-assignment is the different situation
calculus actionremoveF.

• Override Assignment: An override assignment (assignment operator=) makes the fluentF true for
all and only all tuples inFσ. In other words, an override assignment removes all elements fromF and

27

Chapter 5. YAGI Language Specification

adds all the tuples fromFσ to it. Consequently, we can express an override assignment as a remove-
assignmentF -= F followed by an add-assignmentF += Fσ. Hence, we can specify the override
assignment by applying the construction rules for add- and remove-assignment specified above.

Based on the specification of assignments to fluents we can proceed with complex assignment statements.
〈for_loop_assign〉 defines an iteration over all tuples in one〈setexpr〉 with multiple assignments in the
loop body. The intention is to provide a convenient way to assign (potentially multiple) fluents to some
value that is determined by iterating over a set of tuples. Note that the semantics of the different types
of assignments specified above still apply since〈for_loop_assign〉 is basically just a less verbose way to
formulate a list of consecutive assignments. The mapping ofa 〈for_loop_assign〉 to an IndiGolog program
works in the same way as the mapping of a〈for_loop〉 discussed in Section 5.4.6, the only difference is that
in a 〈for_loop_assign〉 only multiple instances of〈assignment〉 can be executed in the loop body whereas
the loop body in a〈for_loop〉 consists of an arbitrary〈block〉. Due to the fact that we specify that it is
not permitted to modify the set the loop iterates over insidethe loop body we are not be able to perform
rewriting for override assignments since the expressionF -= F would violate this specification. To avoid
this specification violation we remove the modification restriction for loop assignments and specify the
execution semantics of assignment for-loops as follows. The 〈setexpr〉 the assignment loop iterates over is
evaluated once (and only once) before the loop gets executed. Using this semantics we can make sure that
assignment rewritings for assignments likeF -= F work correctly.

〈conditional_assign〉 is driven by a similar motivation as〈for_loop_assign〉, i.e. to provide a conve-
nient way to formulate (potentially multiple) assignmentsbased on the evaluation of some〈formula〉. One
can think of it as conditional branching likeif-then-elseconstructs known from most of the common pro-
gramming languages, with the restriction that in each of thebranches the only type of statement allowed
is 〈assignment〉. The mapping to an IndiGolog program works in the same way as the mapping of a
〈conditional〉 discussed in Section 5.4.4

Having defined the semantics and rewriting rules of YAGI assignment statements we want to emphasize
that the most complex construct we get from rewriting is a loop that iterates over a finite set of tuples and
performs adding and removing elements to/from fluents. We can guarantee that even at worst we always
deal with finite sets of tuples since we specified a set to always contain finitely many elements and any
operation that adds elements to a set (i.e.add-assignmentand operatorplus) can only occur finitely many
times in a program. Hence, any set produced by these operations can only contain a finite number of tuples.
Note that the pattern matching extension discussed in Section 5.3.5 does not contradict that observation in
any way. This conclusion becomes immensely important for work we plan to do in the near future, which
is to prove that one can compile arbitrary YAGI action effects to situation calculus successor state axioms.

Implementation Remarks

Any implementation shall check that assignments of a〈setexpr〉 are semantically valid, i.e. that every
element in every tuple of the〈setexpr〉 is an element of the sort of the corresponding dimension of the
fluent at the left-hand side of the assignment. If an〈id〉 (i.e., another fluent) is assigned to the fluent at
the left-hand side the assignment is only valid if both fluents (left-hand side and right-hand side of the
assignment) have the same arity and the same domains in each dimension. Any other case shall lead to an
error.

5.3.5. Pattern Matching

For YAGI assignments that contain interactions with sets ofany kind we introduce a pattern matching
functionality inspired by functional programming languages like Scala. Syntactically, we useunderscore
"_" as wildcard character. The set-theoretic semantics of pattern matching is defined as follows. Let
F be a fluent of sort~SF and σ = {〈x1, . . . ,xn〉} the set that is assigned toF using a YAGI assignment
operator as specified in Section 5.3.4. Then, it must hold that each elementxi ,1 ≤ i ≤ n of σ is an ele-
ment of the sort of thei-th dimension ofF, i.e. xi ∈ S i

F and the number of elements in then-tuple of σ

28

5.3. YAGI and Situation Calculus

must be equal to the number of dimensions of the fluentF. Then, assignment works as specified in the
section above. Now letσ′ be the same asσ except that thei-th element in then-tuple of σ is the wild-
card character, i.e.σ′ = {〈x1, . . . ,xi−1,_,xi+1, . . . ,xn〉}. Now pattern matching applied toσ′ leads toσ′′ =
{〈x1, . . . ,xi−1,χ1,xi+1, . . . ,xn〉,〈x1, . . . ,xi−1,χ2,xi+1, . . . ,xn〉, . . . ,〈x1, . . . ,xi−1,χm,xi+1, . . . ,xn〉}, i.e. for each
of themelements in thei-th domain of the fluentF a newn-tuple is added toσ′′, with the wildcard charac-
ter replaced with a concrete elementχ j ∈ S i

F ,1≤ j ≤ m. In some sense, such a replacement of a wildcard
symbol with a set of concrete elements resemblesgrounding(i.e., replacing a program with variables with
an equivalent program without variables) for finite domainsin answer set programming (ASP), as discussed
by (Gelfond and Lifschitz, 1988) and (Lifschitz, 2008).

The general case with an arbitrary number of wildcards in a single assignment statement follows the same
principle, the difference being that the expansions are equal to the Cartesian product of their corresponding
domains, e.g. let the wildcard character be present at two arbitrary positionsi and j in a tuple that is
assigned to a fluentF. Then, pattern matching generates tuples with all elementsof S i

F ×S
j

F and all the non-
wildcarded elements of the original tuple. Having defined the set-theoretic semantics of pattern matching
we want to construct YAGI code that implements the expansionas specified above. To be able to express
this in YAGI, we need to introduce a new construct calledshadow fact.

Shadow Facts

Essentially,shadow factsare ordinary YAGI facts as specified in Section 5.3.2, with the additional property
that they’re internally created and hence not accessible for the developer of a YAGI program. Note that
they’re conceptually similar toshadow fluentsas specified in Section 5.3.4. Ashadow factis internally
created if a fluent is involved in a pattern matching assignment, as follows. LetF be a fluent of sort~SF and
σ = {〈x1, . . . ,xi−1,_,xi+1, . . . ,xn〉} a set that should be assigned toF, with the wildcard character at thei-th
position. Then, a YAGI factF ∗

i is created according to the semantics of fluent/fact declaration discussed in
Section 5.3.1 (and 5.3.2, respectively) and is subsequently assigned toF ∗

i = {〈x1〉,〈x2〉, . . . ,〈xn〉}, ∀x∈ S i
F .

That is, the shadow factF ∗
i holds for all values of the sort of thei-th dimension of the fluentF . Note that

this assignment can be expressed in YAGI using the rules specified in Section 5.3.4. Having a definition
for ashadow fact, we can continue with the specification of the YAGI pattern matching expansion.

YAGI Pattern Matching Expansion

Let there be a YAGI assignment of the form

fluent F[{ "a" , "b" }];
F += {< _ >}; //equal to F = {<"a">, <"b">};

Then, we can rewrite the pattern matching expansion as YAGI code of the form

foreach <$chi1 > in F* _1 do //F * _1 is the ’shadow fact’ of dimension 1 of the fluent F.
F += < $chi1 >;

end for

The expanded YAGI code essentially iterates over theshadow factof the domain of the fluent mentioned
at the left-hand side of the assignment and executes the assignment with each value from the domain. Due
to the fact that everyshadow factgets assigned with all the values of its corresponding domain and becomes
immutable afterwards (according to the definition of a YAGIfact) we can argue that the YAGIforeachloop
from above iterates over the complete domain at any given point in time during program execution. The
rewriting for the assignment operators-= and= follow similarly. The general case follows the same prin-
ciple, adding one nested loop for every wildcard character in the assignment. Consider an assignment with
two wildcard characters at arbitrary positionsi and j of the form

29

Chapter 5. YAGI Language Specification

F += {< $x1 ,... , _ ,... , _ ,... , $xn >};

Then, the expansion leads to two nested loops of the form

foreach <$chi_i > in F* _i do
foreach <$chi_j > in F* _j do

F += {< $x1 ,... , $chi_i ,... , $chi_j ,... , $xn >};
end for

end for

Note that these nested loops express exactly the Cartesian product, which we used to specify the set-
theoretic semantics of pattern matching. In the general case (i.e. an arbitrary number of wildcards in a
single assignment) for each of the wildcards an additional loop that iterates over the correspondingshadow
fact is added to the nesting as outlined above. Moreover, note that any variables from the original assign-
ment ($x1 and$xn in the example above) remain untouched by the pattern matching rewriting.

For the time being, we restrict pattern matching assignments to fluents that have a user-defined set of
strings as domain. This restriction is driven by the fact that in the case that the domain of a fluent is the
full (countably infinite) set of strings (as defined in Section 5.3.1) we would induce a loop iterating over
countably infinitely many elements, which we are not able to express in YAGI. For the time being, pattern
matching over finite domains suffices our needs, even though we plan to loosen that restriction in future
work.

Implementation Remarks

The same remarks as for assignments (see Section 5.3.4) apply, i.e. any implementation shall check that
assignments of a〈setexpr〉 are semantically valid, i.e. that every element in every tuple of the〈setexpr〉 is an
element of the sort of the corresponding dimension of the fluent at the left-hand side of the assignment. Any
mismatch shall lead to an error. Furthermore, any use of the wildcard character outside of an assignment
statement shall result in an error. Lastly, any attempt to use pattern matching on a dimension of a fluent
that has the countably infinite set of strings as domain shallresult in an error.

5.4. YAGI and IndiGolog

In this section, we specify the syntax and semantics of YAGI language constructs that are responsible
for program execution. Recall that in the earlier section ofthis chapter we exclusively specified YAGI
constructs responsible for modeling the state of the YAGI world. In the following sections, we specify pro-
gram execution semantics using programming constructs from IndiGolog. The semantics of IndiGolog’s
programming constructs has been defined by (De Giacomo et al., 2009), using transition semantic predi-
catesTransandFinal. Hence, we can map YAGI statements to IndiGolog language constructs to specify
their intended semantics. We discuss the relation between IndiGolog transition predicates and YAGI pro-
gram execution semantics in more detail in Chapter 7 as this relation becomes particularly important when
we argue about specification conformance of our implementation.

5.4.1. Test

Syntax

〈test〉 ::= test 〈formula〉 ;

30

5.4. YAGI and IndiGolog

Semantics

Tests whether or not a corresponding formula holds. Semantically, it’s the counterpart of IndiGolog’stest
actionφ?.

5.4.2. Choose

Syntax

〈choose〉 ::= choose〈block〉 (or 〈block〉)+

Semantics

Non-deterministically chooses one of the given blocks for execution. Semantically, it’s the counterpart of
IndiGolog’snondeterministic branchδ1 | δ2.

5.4.3. Pick

Syntax

〈pick〉 ::= pick 〈tuple〉 from 〈setexpr〉 such〈block〉 end pick

Semantics

Non-deterministically picks a〈tuple〉 from a given〈setexpr〉 and executes the subsequent block using the
picked tuple as parameter, i.e. non-deterministically take a tuple from〈setexpr〉, bind its values to fresh
variables in the tuple provided by the〈tuple〉-expression and execute the〈block〉 with this variable assign-
ment. Any attempt to state something different than a variable in the〈tuple〉 of thepick-statement is not
permitted3. Semantically, it’s the counterpart of IndiGolog’snon-deterministic choice of argumentπv.δ.

Note that besides fresh variables that will be bound to a value by thepickstatement as described above a
〈tuple〉 may also contain variables that are already bound to a value.In this case we simply use the already
available value instead of binding the variable via thepick-statement. To clarify the semantics, we provide
examples for the different cases using the domain of our running example, as follows.

at = {< " r1" >,< " r2 " >,< " r3" >};

//$x is unbound...
pick <$x > from at such move($x) ; end pick;
//...hence its value after the pick is either "r1", "r2", or " r3"

Listing 5.3: Pick With Unbound Variable

//Bind $x to a constant
$x = " r1" ;

//$x is already bound...
pick <$x > from at such move($x) ; end pick;
//...hence its value stays exactly the same after the pick

Listing 5.4: Pick With Bound Variable

3One might argue that it could make sense to allow constants and/or pattern matching in the〈tuple〉 of pick. Due to the fact that the
exact semantics are not yet clear we delay this idea to future work.

31

Chapter 5. YAGI Language Specification

is_at = {< "o1" , " r1 " >, < "o2" , " r2 " >, < "o1" , " r3 " >};

//Bind $x to a constant
$x = "o1" ;

//$x bound, $y unbound
pick <$x , $y > from is_at such pickup ($x) ; end pick;
//tuple can be <"o1","r1"> or <"o1","r3">

Listing 5.5: Pick With Bound and Unbound Variables

Implementation Remarks

Any implementation shall check that only variables are stated in the〈tuple〉-expression. Any attempt of
stating a constant shall result in an error.

5.4.4. Conditional

Syntax

〈conditional〉 ::= if (〈formula〉) then 〈block〉 (else〈block〉)?end if

Semantics

Executes one of two given blocks based on the evaluation of〈formula〉. Semantically, it’s the counterpart
of IndiGolog’ssynchronized conditionalif φ then δ1 elseδ2 endIf.

5.4.5. While Loop

Syntax

〈while_loop〉 ::= while 〈formula〉 do 〈block〉 end while

Semantics

Executes a block as often as〈formula〉 holds. Semantically, it’s the counterpart of IndiGolog’ssynchronized
loopwhile φ do δ endWhile.

5.4.6. For Loop

Syntax

〈for_loop〉 ::= foreach 〈tuple〉 in 〈setexpr〉 do 〈block〉 end for

32

5.4. YAGI and IndiGolog

Semantics

Executes a〈block〉 for every tuple in a given〈setexpr〉. Due to the fact that IndiGolog has no specification
for this kind of program flow construct, we rewrite〈for_loop〉 into 〈while_loop〉 as follows. LetF be an
n-ary fluent and consider

foreach <$x1 , $x2 ,... , $xn > in F do
<block >

end for

to be a YAGI for loop overF. We transform this loop into the following YAGI code:

F* = F;
while (exists <$x1 , $x2 ,... , $xn > in F*) do

pick <$x1 , $x2 ,... , $xn > from F* such
<block >
F* -= {< $x1 , $x2 ,... , $xn >};

end pick
end while

with F* being a copy of the fluentF. Note that all the identifiers ending with a star (*) are no valid names
according to the specification of〈id〉. These names were purposely chosen to contradict the syntactical
specification to illustrate that these names are chosen internally by the interpreter, i.e. it’s syntactically
impossible for a programmer to access these elements. The transformation checks if a tuple exists inF*
via thewhile-condition and subsequently binds a tuple fromF* to the variables$x1 , $x2 ,..., $xn via the
pick -statement, making it semantically equivalent to an execution of the statementforeach <$x1 , $x2 ,...,

$xn > in F do. Then, the same〈block〉 as in the for-loop gets executed. Finally, the chosen tuple is removed
from the fluentF* . Note that this transformation works correctly if and only if the value of the fluent the
foreach-loop iterates over is not modified in its loop body, hence we don’t permit any modifications of the
fluent theforeach-loop iterates over in the loop body.

To justify the claim that the rewritten loop above satisfies the specified semantics we argue inductively,
as follows:

• For the base case, letF be a fluent that doesn’t hold for any parameter vector, i.e.∀~x.F(~x,s)≡ False.
SinceF* is specified to be a copy of the fluentF it also holds that∀~x.F∗(~x,s) ≡ False. Conse-
quently, the YAGI formulaexists <$x1 , $x2 ,..., $xn > in F* evaluates toFalsebecause it translates
to∃~x.F∗(~x,s) according to the specification of YAGI formulas in Section 5.3.3. Thus, the while loop
becomeswhile (False) do and the code in the while-block doesn’t get executed.

• For the inductive step we assume that for every fluent withk tuples the transformation is correct. For
any arbitrary FluentF that holds for a set of parameter vectorsS= {~x1, . . . , ~xk+1} the YAGI formula
exists <$x1 , $x2 ,..., $xn > in F* evaluates toTruebecause it holds that∃~x.F∗(~x,s) and<$x1 , $x2 ,...,

$xn > corresponds to one parameter vector~xi ∈ S. Consequently, the〈pick〉 statement in the loop body
gets executed, i.e. a tuple is non-deterministically picked from F* . Due to the fact that∃~x.F∗(~x,s)
holds〈pick〉 is guaranteed to succeed. Subsequently, an arbitrary〈block〉 gets executed for the picked
tuple and the very same tuple is removed fromF* in the last statement of the〈pick〉-block. Due to
the fact that we don’t permit any modifications of the fluent the foreach-loop iterates over in the
loop body the lineF* -= {< $x1 , $x2 ,..., $xn >}; is guaranteed to be the only line that modifiesF∗.
Hence, after one iteration of the while-loop it is guaranteed that the number of tuples for whichF∗

holds is decreased by one, thus the claim holds by induction.If no elements remain it holds that
∀~x.F∗(~x,s)≡ False, which is exactly the base case described in the section above.

Finally, we want to emphasize an important consequence of our specified semantics of a YAGI for-loop.
Due to the fact that a YAGI for-loop iterates over asetof tuples there can be no statement made about any
kind of order of the iteration. For clarification, consider the following YAGI code:

at = {< " r1" >,< " r2 " >,< " r3" >};

//No guarantee that the order of execution is r1-r2-r3!

33

Chapter 5. YAGI Language Specification

foreach <$x > in at do
move($x) ;

end for

Here,move($x); gets executed for every tuple in the set{< "r1" >,< "r2" >,< "r3" >} , whereas theorder of execu-
tion is non-deterministic. Note that this is the only consistent semantics because a mathematical set has -
by definition - no notion of order of elements.

Implementation Remarks

Any implementation shall check that the fluent theforeach-loop iterates over is not modified inside the loop
body. Any modification attempt shall result in an error.

5.4.7. Procedure Declaration

Syntax

〈proc_decl〉 ::= proc 〈id〉 (〈var_list〉?) 〈block〉 end proc

Semantics

Declares a procedure with a name and a (possibly empty) list of parameters, leavingDYAGI and LYAGI

unchanged. Semantically,procedure declarationis the counterpart of IndiGolog’sprocedure definition
proc P(x) δ endProc, i.e. the same semantics and restrictions as defined by (Levesque et al., 1994) apply.

Implementation Remarks

Any implementation shall ensure that procedures are unique. We define uniqueness for procedures as
follows. Given a procedureP with arity m we say that the name-arity tuple〈P,m〉 must be unique, i.e.
two procedures are equal iff they have the same name and the same arity. Any redeclaration of an already
declared procedure overrides the former with the latter andshall result in a warning.

5.4.8. YAGI Action Declaration

Syntax

〈action_decl〉 ::= action 〈id〉 (〈varlist〉?) (external (〈varlist〉))?
(precondition: 〈formula〉)?
(effect: 〈assignment〉+)?
(signal: 〈valexpr〉 ;)?
end action

Semantics

Let α be a YAGI action declaration for an actionA with arity m, wherem denotes the number of param-
eters for that respective action, i.e. the number of elements in 〈varlist〉. ThenLYAGI andDYAGI remain
unchanged and a Golog procedure of the formproc A(~x) δ endProc is added to the set of Golog proce-
dures. We choose the name of the Golog procedure to be the sameas the name of the action and~x as the
vector of themparameters passed to the YAGI action. The Golog programδ consists of atest-action as first

34

5.4. YAGI and IndiGolog

statement that evaluates the formula constructed from the YAGI preconditionas specified in Section 5.3.3.
If no precondition-block is present, thetest-action in the corresponding Golog procedure can be omitted.
The YAGI effect-block is mapped to a (possibly empty) sequence of Golog statements constructed from
the sequence of〈assignment〉-statements as discussed in Section 5.3.4. The optionalsignal-block is solely
responsible for communication with the system interface asdescribed in Section 3.5.3, i.e. it has no influ-
ence onLYAGI andDYAGI and can therefore be omitted in the Golog procedure. A schematic representation
of the correspondence between a YAGI action and an IndiGologprocedure is sketched in the listing below.

action A($x1 ,... , $xm)
precondition:

φ;
effect:

assignment_1 ;
assignment_2 ;
...
assignment_n ;

signal:
" some data " ;

end action

Listing 5.6: YAGI Action Declaration
Schematic

proc A(x1 ,... , xm)
%precondition:

φ?;
%effect:

δ1;
δ2;
...
δn;

%signal:
% "some data";

endProc

Listing 5.7: Corresponding Golog Procedure
Schematic

Additionally, a YAGI action declaration can be augmented with an optionalexternalmodifier, followed by
a non-empty list of variables. The semantics of this extension is that the variables listed after theexternal
modifier aresetto a value based on some data from external sources. Consequently, we call actions with an
externalmodifier presentsetting actions. The activity of setting values from external sources (e.g.cameras,
motion sensors, distance sensors) to variables is activelytriggered by calling a YAGIsetting action. We
claim that the semantics (i.e. the mapping to situation calculus and IndiGolog) of ordinary YAGI action
declarations and setting action declarations are equivalent. This claim can be justified by the observation
thatsetting actionssolely assign values to variables, i.e. bind a value to an identifier. Due to the fact that
assignments to variables have no influence on the underlyingdomain theory (see Section 5.3.4) variable
assignments can be considered transparent from a theoretical point of view. Furthermore, note that the
activity of setting values to variables is triggered via thesignal-expression of the action declaration. A
schematic representation of the correspondence between a YAGI setting action and an IndiGolog procedure
is sketched in the listing below.

action B($x1 ,... , $xm) external ($y1 ,... , $yk)
precondition:

φ;
effect:

assignment_1 ;
assignment_2 ;
...
assignment_n ;

signal:
" tr igger sett ing action " ;

end action

Listing 5.8: YAGI Setting Action Declaration
Schematic

proc B(x1 ,... , xm, y1 ,... , yk)
%precondition:

φ?;
%effect:

δ1;
δ2;
...
δn;

%signal:
% "trigger setting action";

endProc

Listing 5.9: Corresponding Golog Procedure
Schematic

Relating YAGI Actions, Situation Calculus Actions and Golog Procedur es

Considering the fact that one of the basic elements of situation calculus areactionsthe question might
arise why we decided to map YAGI actions to Golog procedures and not directly to situation calculus
actions. To answer that question consider how a mapping froma YAGI action to a situation calculus action

35

Chapter 5. YAGI Language Specification

might look like. For each YAGI actionAYAGI we would create a situation calculus actionAsitcalc with the
same name and the same parameters as the YAGI action. Furthermore, we would construct theaction
preconditionof the formPoss(Asitcalc(~y,s)) ≡ ΠAsitcalc(~y,s) from the YAGI actionprecondition〈formula〉
andsuccessor state axiomsof the formF(~x,do(Asitcalc,s)) ≡ ΦF(~x,Asitcalc,s) for each fluent involved in
an assignment in the YAGI actioneffectblock. Constructing the action precondition formulaΠAsitcalc from
the YAGI 〈formula〉 is straight-forward according to the definition of〈formula〉 in Section 5.3.3 whereas
the construction of successor state axiom formulas from a sequence of YAGI assignments requires deeper
analysis. First of all, YAGI supportsfor-loop assignmentsof the form

foreach <$x1 , $x2 ,... , $xn > in <setexpr > do
<assignment >

end for

which, loosely speaking, means that the loop iterates over each tuple in a set and uses those tuples for
arbitrary assignments inside the loop body. Note that<$x1 , $x2 ,..., $xn > in the example above is not a syn-
tactically valid YAGI tuple. When we use this notation in YAGIcode in this chapter we actually mean that
instead of ". . ." all the concrete elements in the tuple are explicitly stated. Furthermore, the exact semantics
of such a loop is discussed in Section 5.3.4 and are of minor importance for the further discussion in this
section. Note that the syntax of theforeach-loop above closely resembles iteration constructs from general
purpose languages like Java, C++ and C#, hence people familiar with such languages might assume similar
(i.e. iterational) semantics just based on the syntax. When compiling such a loop directly into a successor
state axiom (i.e. a formula) we would lose any sequential/iterational semantics since the evaluation of a
formula is inherently "parallel".

We strongly believe that removing iterational semantics from such a loop would lead to a huge level of
confusion among people who are not aware of the exact semantics of situation calculus. Moreover, we
claim that rewriting arbitrary sequences of YAGI assignments to a single successor state axiom formula is
a non-trivial task, even though we want to emphasize that we’re positive that it is possible to prove that
one could rewrite YAGIeffectblocks to successor state axioms, which is something we planto show in the
near future.

Additionally, we want to mention that the YAGI basic action theory is alwaysprogressablewhen we map
YAGI actions to Golog procedures since the only situation calculus actions involved areadd- andremove-
actions for each fluent (as defined in Section 5.3.1), which makes the YAGI basic action theorystrong
local-effectand for strong local-effect basic action theories afirst-order strong progressionalways exists
according to the work done by (Vassos et al., 2008). We will explain local-effect basic theories and their
impact on progression in more detail in Chapter 7, for now we only want to mention that being first-order
progressable is an important property of our basic action theory.

Lastly, we want to mention that the decision to map YAGI actions to IndiGolog procedures instead of
situation calculus actions may also have an impact from a purely practical point of view. Here, bypractical
we mean a concrete implementation of a YAGI software system.More precisely, one could argue that the
rewriting to IndiGolog procedures induces a performance (i.e. run-time) overhead compared to a direct
mapping to situation calculus simple actions since IndiGolog procedures are more complex constructs. For
the sake of completeness we want to mention that we also thinkthat this is a valid argument and needs
proper discussion, even though we consider it to be of minor importance at this point in time and - hence -
delay it to future work.

Implementation Remarks

Any implementation shall ensure that the process of settingvalues to the variables listed after theexternal-
keyword happens synchronously, i.e. the execution of the YAGI program shall block until the sensing
process has finished. Furthermore, any implementation shall provide a timeout mechanism to prevent the
application from waiting indefinitely. Moreover, any attempt to put a variable that is passed as parameter
to the action after theexternal-keyword shall result in an error.

36

5.4. YAGI and IndiGolog

5.4.9. Procedure Call

Syntax

〈proc_call〉 ::= 〈id〉 (〈arglist〉?);

〈arglist〉 ::= 〈value〉 (, 〈value〉)∗

Semantics

The execution of a YAGI procedure is the counterpart of IndiGolog’s procedure call P(θ). Since we
map both YAGI actions and YAGI procedures to IndiGolog procedures the concept of aYAGI action call
vanishes, hence we need no additional specification for calling YAGI actions. Arguments (i.e. elements in
〈arglist〉) are passed in a call-by-value manner. Note that IndiGolog also specifies the semantics of calling
a primitive action, i.e. a situation calculus action. Due to the fact that the only primitive actions in YAGI
are the actionsadd andremove(which are automatically generated for each declared fluent, see Section
5.3.1) and neither of these types of actions should be invoked explicitly by a YAGI programmer we don’t
need a syntactic construct that maps to IndiGolog’sprimitive actioncall.

Atomicity of YAGI Action Execution

We specify the execution of a YAGI action (or more precisely,a procedure that has been generated from
a YAGI action) to beatomic. The atomicity of the execution of a YAGI action is particularly important in
the context ofsearchsince our implemented search strategy considers the execution of a YAGI action as
fundamental step that shall not be interrupted. Moreover, data generated byexogenous eventsis assimilated
after a YAGI action has been executed (as specified in Section5.7.2), which guarantees that one single
YAGI action always gets executed with respect to one specificmodel of the world. Lifting the restriction
of atomicity of YAGI action executions might lead to inconsistent and/or undefined behavior. Finally, we
want to note that we consider this level of atomicity as the most natural from a user’s perspective, which
influenced that decision as well. Still, there might be arguments for making the atomicity level more fine-
grained than the execution of a single YAGI action, but due tothe fact that we are not able to foresee the
theoretical and practical implications of such a decision we defer this discussion to future work.

Recursion

Even though ConGolog (De Giacomo et al., 2000) as well as IndiGolog (De Giacomo et al., 2009) have
definitions for unbounded recursive calls we decided to forbid recursive procedure calls in YAGI for the
time being. Unbound recursive calls require second-order logic extensions forTransandFinal as discussed
by (De Giacomo et al., 2000), which we want to avoid for the sake of simplicity of our specification.

Implementation Remarks

To avoid any ambiguities about whether to call a procedure that has been automatically created from a
YAGI action or a procedure that has been explicitly declaredby the programmer any implementation shall
check that names of YAGI actions and YAGI procedures are distinctly and mutually unique, i.e. any two
YAGI actions must not be equal, any two YAGI procedures must not be equal and any YAGI procedure
and any YAGI action must not be equal. For equality comparison we use name-arity tuples as defined for
procedure uniqueness in Section 5.4.7. Any violation of this uniqueness property shall result in an error.

37

Chapter 5. YAGI Language Specification

5.4.10. Sequence

Syntax

〈block〉 ::= 〈statement〉+

〈statement〉 ::= 〈test〉
| 〈proc_call〉
| 〈choose〉
| 〈pick〉
| 〈conditional〉
| 〈while_loop〉
| 〈for_loop〉
| 〈search〉
| 〈fluent_query〉

Semantics

A sequence of YAGI statements. Semantically, it’s the counterpart of IndiGolog’ssequenceδ1;δ2. Note
that the only valid statements in a YAGI〈block〉 are exactly the control flow statements (with their defined
IndiGolog counterparts) as specified in the sections above,hence we can establish this correspondence
between a YAGI〈block〉 and an IndiGologsequence.

5.5. Incomplete Information

The assignments discussed in Section 5.3.4 exclusively deal with information that isknown. One can
imagine that there exist various practical cases where one wants to express information that is not yet
known, but may (or may not) besensedto its actual value during the lifetime of the agent. Consider for
example a fluent that stores the location (e.g. the room) a robot resides in. Initially, (i.e. on start-up)
the robot might not know in what room he is currently residing, but he might be able do narrow down the
possibilities during his lifetime. Various approaches of how to deal with incomplete information in different
contexts have been discussed by (Etzioni et al., 1992), (Petrick and Bacchus, 2004), (Vassos and Levesque,
2007) and others. For the time being, we’re not able to express something like incomplete knowledge in
YAGI. The ingredients we need are on the one hand a syntactical element to denote incomplete information
and on the other hand a mechanism to eliminate possible values due to some (external) information. We
discuss the latter issue in Section 5.6 and continue with ourproposed solution to the former.

To syntactically express incomplete information we use thecharacterstar (*) at the right-hand side of
an assignment to a fluent. Loosely speaking, an assignment ofthe formF = {<*>}; expresses that the value
of the fluentF is not yet known. Using our running example, the assignmentat = {<*>}; expresses the
fact that we don’t know where the robot is, but wedo know all the valid assignments, i.e. the powerset of
all tuples that can be generated from the finite domainS1

at = {r1, r2, r3}. Due to the fact that the precise
semantics of incomplete information in YAGI is not yet clear, we stick with the syntactical specification
for the time being and defer the specification of the semantics to future work.

5.5.1. Implementation Remarks

Any attempt to assign incomplete information to a fluent shall be ignored and shall result in a warning.

38

5.6. Sensing

5.6. Sensing

5.6.1. Syntax

〈sensing_decl〉 ::= sense〈id〉 (〈varlist〉?) (external (〈varlist〉))? 〈formula〉 end sense

5.6.2. Semantics

Sensing actions are specified by (Scherl and Levesque, 1993), (Levesque, 1996), (De Giacomo and Levesque,
1999a) and others as actions that can be taken by the agent or robot to obtain information about the state of
certain fluents, rather than to change them. Sensing actionsare particularly relevant when the initial state of
the world is incompletely specified, which is something YAGIallows us to do, as discussed in Section 5.5.
Similar to the distinction between YAGIactions(without anexternalmodifier) and YAGIsetting actions
(with anexternalmodifier, see Section 5.4.8) we distinguish betweenbinary sensing actions(without an
externalmodifier) andn-ary sensing actions(with anexternalmodifier). Loosely speaking, the difference
is that binary sensing only provides information about whether or not a certain condition holds, i.e. returns
a truth value (hence the termbinary) and n-ary sensing returns a list of entities rather than a truth value.
The idea is similar to the distinction between relational and functional fluents. This distinction is necessary
because we plan to use different formalizations for binary and n-ary sensing actions, namelysensed flu-
ent axiomsfor binary sensing actions as defined by (Levesque, 1996) andsensing result axiomsfor n-ary
sensing actions as defined by (Scherl and Levesque, 2003).

First, we consider the case of binary sensing. (Levesque, 1996) introducedsensed fluent axiomsof
the formSF(a,s) ≡ φa(s), whereSF is a distinguished predicate likePoss, relating the action to the flu-
ent. For example, (Levesque, 1996) use an airport scenario that shows how the action of checking a
departure screen is connected to knowing where a certain plane is parked asSF(check_departures,s) ≡
Parked(Flight123,gateA,s). In other words,φa(s) gets asserted to a truth value by its corresponding sens-
ing action. The basic action theory is therefore extended with the set of sensed fluent axiomsDSF and the
task is to show thatD ∪DSF |= φ[s′] for a goal formulaφ in a situations′. We can map YAGI sensing
actions to sensed fluent axioms as follows. Letay be the name of a YAGI sensing action (i.e. the value of
〈id〉) with arity m, wherem denotes the number of parameters for that respective sensing action, i.e. the
number of elements in〈varlist〉. Then we construct the sensed fluent axiom asSF(ay,s) ≡ φay(s), with
φay(s) being the formula constructed from〈formula〉 as discussed in Section 5.3.3.

Having defined the binary case, we continue with the n-ary case. (Scherl and Levesque, 2003) specified
sensing result axiomsof the formSR(α(~x),s) = r ≡ φα(~x, r,s), with α being the name of the action,~x being
the parameter vector,r being the result andsbeing the situation term. For example, (Scherl and Levesque,
2003) show a sensing result axiom to obtain information about the weather asSR(sense_weather,s) = r ≡
(r = ”sunny” ∨ r = ” rainy” ∨ r = ”snow”)∧weather(s) = r. As of yet, there exists no mapping from a
YAGI sensing action with anexternalmodifier to asensing result axiomdue to the fact that - as of today
- there exists no precise and theoretically sound description of the intended semantics. Moreover,SRis
strongly coupled to functional fluents and there is no syntactical construct to express a functional fluent
in YAGI until today. Based on these issues, we decided to stick with the syntactical specification of n-ary
sensing for the time being and defer the specification of the exact semantics to future work.

5.6.3. Setting- and Sensing-Actions Revisited

After having defined bothsetting-actions (setting values of fluents based on externally generated data)
andsensing-actions (obtaining information about the state of a fluent)we explicitly want to outline their
difference regarding their semantics. Recall thatsetting-actions (and also exogenous events, for that matter)
change the state of the world, i.e. modify the underlying theory, whereas sensing can be considered as a
form of cutting down on possible models generated by incomplete information. To clarify this difference
in semantics we provide a simple example illustrated in Figure 5.1, as follows.

39

Chapter 5. YAGI Language Specification

Consider two fluentsf andg both declared over the same domain{a,b}. Initially, we assignf to be
unknownandg to a concrete value of the domain. Subsequently, we execute the assignmentg= f , leading
to the successor stateS′0. Note that inS′0 we end up with four modelsM1, . . . ,M4 due to the fact that we
assign incomplete information to the fluentg, hence we need to generate models for all the possible sets of
tuples of the domain of fluentf . Now we can analyze two different successor states, namelyS′′0 generated
by sensingthe concrete valuea of fluentg andS′′′0 generated bysettingthe fluentg to the same concrete
valuea. In the first case we obtained information about the fluentg, namely wesensedthat its value isa,
hence we eliminate all models that don’t match the sensed information. Consequently, we end up with the
single modelM2 remaining. In the second case we explicitlyset the fluentg to a new value, resulting in
a state where still four different models exist and each of which gets updated with the new value from the
setting action.

S0’

f = { };

g = { };

M1

f = {<"a">};

g = {<"a">};

M2

f = {<"b">};

g = {<"b">};

M3

f = {<"a">, <"b">};

g = {<"a">, <"b">};

M4

S0’’

f = {<"a">};

g = {<"a">};

M2

S0’’’

f = { };

g = {<"a">};

M1

f = {<"a">};

g = {<"a">};

M2

f = {<"b">};

g = {<"a">};

M3

f = {<"a">, <"b">};

g = {<"a">};

M4

f = {<*>};

g = {<"a">};

S0

fluent f [{"a","b"}];

fluent g [{"a","b"}];

YAGI Fluent Declarations

g = f;

sense
g to {<"a">}

set
g = {<"a">};

Figure 5.1.: Evolution ofS0 With Setting and Sensing Actions

This simple example illustrates thatsettingandsensingare fundamentally different things even though
they might look similar at first sight. Moreover, we hope thatthis motivational example emphasizes the
importance of having both mechanisms in YAGI.

5.7. Exogenous Events

5.7.1. Syntax

〈exogenous_event_decl〉 ::= exogenous-event〈id〉 (〈var_list〉) 〈assignment〉+ end exogenous-event

5.7.2. Semantics

Semantically, exogenous events are equivalent to YAGI actions with anexternal-modifier, the only dif-
ference of exogenous events is the fact that the point in timewhere an exogenous event gets executed

40

5.8. Search

is non-deterministic, i.e. depends on arbitrary external (real-world) events. To cope with this issue, we
define the following mode of execution, similar to IndiGolog’s sense-think-actmain cycle described by
(De Giacomo et al., 2009):

1. Assimilate all pending data generated by exogenous events.

2. Update the underlying domain theory using the data from exogenous events according to the seman-
tics of 〈assign〉 discussed in Section 5.3.4.

3. ProgressDS0 by executing the next YAGI action in the program.

4. Go back to 1.

5.7.3. Implementation Remarks

Any attempt to actively call an exogenous event via a YAGI statement shall result in an error. Furthermore,
any implementation shall guarantee that exogenous events are processed as specified above. Moreover, any
implementation shall prevent the loss of data provided by exogenous events, i.e. some kind of buffering
mechanism as mentioned in Section 3.5.4 shall be implemented.

5.8. Search

5.8.1. Syntax

〈search〉 ::= search〈block〉 end search

5.8.2. Semantics

Like IndiGolog, YAGI uses an online execution semantics as defined by (De Giacomo and Levesque,
1999a) and (De Giacomo et al., 2009). To be able to introduce offline execution semantics for certain parts
of a YAGI program, we specify the operatorsearch. The operatorsearchapplies offline execution semantics
to a YAGI 〈block〉 it is applied to. In offline execution mode, YAGI searches foran appropriate sequence of
actionsbeforeactually executing any of it. Note thatsearchcan - syntactically - be applied to an arbitrary
〈block〉, which imposes several issues. For example, recall that YAGI supportssensing actionsthat can
potentially be called in such a〈block〉. In the context of offline execution this implies that the system must
be able to take potential sensing results into account during offline deliberation. Due to the fact that dealing
with incomplete knowledge during offline execution is a non-trivial task (potential approaches have already
been discussed by (Levesque, 2005), (Vassos and Levesque, 2007) and others) we’re not able to provide
a sound solution on how to approach this issue in YAGI for the time being. Other constructs that would
further increase the complexity ofsearcharesetting actionsandexogenous eventssince they both deal with
data from external sources. This implies that there need to be a strategy of how to model these external
influences when doing offline deliberation. For the time being, we decided to excludesetting actions,
sensingandexogenous eventsfrom search and defer the specification of their exact offlinedeliberation
semantics to future work. Moreover, note that with these restrictions we stay consistent with IndiGolog’s
search operatorΣ, which we consider to be the semantic counterpart ofsearchin YAGI. More formally,
(De Giacomo et al., 2009) define the semantics of offline execution asDo(δ,s,s′) = ∃δ′.Trans∗(δ,s,δ′,s′)∧
Final(δ′,s′), whereTrans∗ is the reflexive transitive closure of Trans4. We discuss the semantics ofTrans
andFinal in more detail in Chapter 7.

4Trans∗ can be defined as a situation calculus second-order formula. For the sake of simplicity we omit the details here and refer to
(De Giacomo et al., 2009) for more details.

41

Chapter 5. YAGI Language Specification

5.8.3. Implementation Remarks

Any implementation shall check that no sensing-/setting-action or exogenous event is part of a search-
〈block〉. Any appearance of any of these constructs in a search-〈block〉 shall result in an error.

5.9. Miscellaneous Language Elements

5.9.1. Fluent/Fact Query

Syntax

〈fluent_query〉 ::= 〈id〉 ;

Semantics

The fluent query command has no influence on the underlying domain theory or program execution what-
soever, its purpose is solely to echo the state (i.e. the assignment) of the fluent that is being queried. Note
that due to the fact that〈fluent_query〉 is a 〈statement〉 it could be part of any program〈block〉. For the
time being, we only define that if the whole program consists of just a〈fluent_query〉 its semantics is that it
returns the state of the queried fluent to the caller (i.e. thefront-end) orfalseif the fluent (or fact) doesn’t
exist. Any use of a fluent query inside a more complex YAGI program should be ignored gracefully.

5.9.2. Include

Syntax

〈include〉 ::= @include〈string〉 ;

Semantics

The include command has no direct influence on the underlyingdomain theory or program execution
whatsoever, its purpose is solely to import YAGI code from different files into a single file. More precisely,
the semantics of〈include〉 is that the whole include command gets replaced by the YAGI code from the
file which name is provided via the〈string〉 value. This semantics is identical to the semantics of macro
replacement performed by the preprocessor in the C programming language. Note that even though a
purely textual replacement semantics is sufficient for the time being we aim for more sophisticated include
mechanism similar to theimport command in Java in the future.

5.10. A YAGI Program

5.10.1. Syntax

〈program〉 ::= (〈declaration〉 | 〈block〉 | 〈include〉)+

〈declaration〉 ::= 〈fluent_decl〉
| 〈fact_decl〉
| 〈action_decl〉

42

5.10. A YAGI Program

| 〈proc_decl〉
| 〈exogenous_event_decl〉
| 〈sensing_decl〉
| 〈assignment〉

5.10.2. Semantics

Finally, we call arbitrary sequences of YAGI lines of code〈l1, . . . , ln〉 a YAGI program. A line in a YAGI
program can either be adeclarationmodifying the state of the YAGI world (except〈proc_decl〉), i.e. the
underlying theory (as specified in the first part of this chapter) or any sequence of program flow statements
(as specified in the second part of this chapter) that specifythe program, i.e. a〈block〉 or a 〈proc_decl〉.
The semantics of a YAGI program is then given by the consecutive execution of its lines of code in their
given order according to the transition semantics of IndiGolog defined by (De Giacomo et al., 2009). We
restate the exact definitions of the IndiGolog transition semantics and show their correspondence to YAGI
in Chapter 7.

43

44

Chapter 6
Implementation

In this chapter, we describe our implementation of the YAGI software stack and the YAGI language speci-
fied in the previous chapters. We discuss our fundamental design decisions in Section 6.1 and describe our
system architecture in Section 6.2. Finally, we briefly explain how the specified YAGI language elements
have been implemented in Section 6.3.

6.1. Fundamental Design Decisions

Due to the fact that our application is the first implementation of a YAGI software system as specified in this
thesis the main focus was to deliver a viable proof-of-concept implementation that can be easily extended
later on. Since the YAGI software stack already strongly favors a loosely coupled software system due
to its layered architecture we also tried to decouple the components in our implementation as cleanly
as possible without inducing too much overhead. Furthermore, we tried to exclusively use programming
languages, components and libraries that are considered well-known among people in the computer science
community to encourage people to extend and enhance our implementation.

We decided to use C++ as our implementation language of choice because we envision YAGI also
to be used in real-world robotics applications, which are often subject to computation- and/or memory-
restrictions. Hence, using a language that induces as little overhead as possible was a major requirement.
Moreover, easy interfacing with robot operating systems like ROS (Quigley et al., 2009) is important when
it comes to the implementation of the system interface of theYAGI software stack. By its nature, C++ is the
most suitable language of choice for such a task because it provides the low-level capabilities of a language
like C enriched with modern concepts that make the codebase more maintainable and less error-prone.

6.2. System Architecture

In this section, we explain the system architecture of our implementation and describe the ideas and goals
and how they influenced the various design decisions.

6.2.1. Front-End

The front-end is implemented as a console application that allows the user to interactively enter and run
YAGI code.

45

Chapter 6. Implementation

Parser Implementation

The parser for the YAGI language is generated using Terence Parr’s popular parser generatorANTLR
(ANotherTool for LanguageRecognition). We briefly describe ANTLR and the compiler construction
theory behind ANTLR in this section based on information from the ANTLR reference manual from (Parr,
2007).

ANTLR uses an extended version of the Backus-Naur Form (BNF)as a notation for writing the grammar
rules for the desired target language, similar to the notation used in this thesis to describe the syntax of
YAGI. ANTLR is a parser generator for so-calledLL(*) languages, i.e. it is able to create parsers for
languages that are in the set of LL(*) parsable languages. A language is said to be LL(*) parsable iff it
can be parsed with a top-down LL parser (parses inputLeft to right and performsLeftmost derivations)
that is not restricted to a finitek tokens look-ahead. In the case of YAGI, we restrict the ANTLRparsing
algorithm to use LL(1) parsing, a more restricted version ofLL(*) parsing that decides which production
rule to apply by looking only at the next input symbol (Aho et al., 2007). The complete ANTLR grammar
for YAGI can be found in Appendix B.

ANTLR is able to create the parser and lexer code for a given grammar file in different target languages,
e.g. Java, Python and C#. The fundamental design decision for implementing YAGI was to use C/C++ as
language of choice, hence the automatically generated output from ANTLR needs to be either in C or C++
to allow easy integration into the YAGI codebase. Due to the fact that the newest version ANTLR 4.x. does
not have support for C or C++ code generation yet1 we needed to fall back to ANTLR v3 to get support for
C code generation2. The output of the generated ANTLR parser is theabstract syntax tree(AST) of the
YAGI input program. The AST is an abstract hierarchical structure that represents the source program and
is often used as an intermediate representation for furtherprocessing (Aho et al., 2007). In YAGI, we use
the AST for steps like type checking, code rewriting and interpretation.

Architecture Overview

An overview of the software-design of the front-end is presented in the class diagram in Figure 6.1. The
purpose of the presented classes is as follows.

• YAGIMain : The YAGIMain class provides the console front-end of the YAGI shell. It reads YAGI
programs from either a file or the console and passes the code for further processing to the ANTLR-
Lexer class.

• ANTLRLexer : The classANTLRLexeris responsible for lexing the YAGI source code and passing
the resulting stream of tokens to the classYAGIParser. Note that the ANTLRLexer class contains no
handcrafted code, it is purely auto-generated from the YAGIgrammar file.

• ANTLRParser : The classANTLRParsertakes a stream of tokens as input and outputs the resulting
AST structure. Due to the fact thatYAGILexerandYAGIParserare written in the C language and
further processing steps based on this C data structures tend to be cumbersome an additional class
YAGITreeWalkeris introduced. Note that the ANTLRParser class contains no handcrafted code, it is
purely auto-generated from the YAGI grammar file.

• YAGITreeWalker : The classYAGITreeWalkeris the auto-generated output of a separate grammar
file, a so-calledtree grammar. A tree grammaroperates on a stream of tree nodes (i.e., the AST)
rather than on tokens (Parr, 2007). The purpose of the YAGITreeWalker is to traverse the C rep-
resentation of the AST and to send signals with information about the visited AST nodes to some
external receiver. Note that the main advantage of this approach is that no handcrafted C code for
tree traversal is necessary because the code is automatically generated based on the ANTLR tree
grammar.

1Seehttp://www.antlr.org/download.html for further information. Last visited on December 3rd, 2014.
2Seehttp://www.antlr3.org/download.html for further information. Last visited on December 3rd, 2014.

46

6.2. System Architecture

• CToCppBridge: The classCToCppBridgeis responsible for providing callbacks (i.e. function point-
ers) as hooks that the YAGITreeWalker can use to signal information about visited AST nodes to
some external receiver.

• YAGICallbackConnector : The classYAGICallbackConnectoris the concrete bridge between the C
part of the implementation and the C++ codebase responsiblefor building an object-oriented repre-
sentation of the AST and any further processing (e.g. type checking, rewriting, execution) performed
on the AST.

• ASTBuilder : The purpose of the factory-like classASTBuilderis to build an object-oriented rep-
resentation of the AST based on the information provided from the traversal of the C AST. To ac-
complish this task, the ASTBuilder reacts to the signals from the YAGITreeWalker and builds a tree
structure based on this data. The resulting C++ representation of the AST is then passed back to the
caller (i.e. the instance of YAGIMain) for further processing.

Front-End

ASTBuilder

+addFluent(): void

+addVarAssignment(): void

+...()

CToCppBridge

+void (*addFluentDeclCallback)()

+void (*addVarAssignCallback)()

+...()

Auto-Generated [C Code]

YAGILexer

YAGIParser

YAGITreeWalker

YAGICallbackConnector

+callCppImpl1()

+callCppImpl2()

+callCppImpl_n()

 Concrete C-To-C++ Connector

YAGIMain

+execute(yagiCode:String)

ANTLRParser

+parse(yagiSrc:String)

 uses

1

 Calls ANTLR C Impl.

 C++ ASTBuilder Impl

C++ AST Data Structure

YAGI User

Uses YAGI Shell

Signal ’Node Visited’

Figure 6.1.: Schematic Class Diagram of the Front-End Implementation

6.2.2. Back-End

Due to the fact that the basic concepts for describing the state of the world in YAGI are sets and tuples
we decided to use a relational database management system torepresent the YAGI state of the world, i.e.
fluents and facts. The concepts from relational databases naturally resemble fluents and sets of tuples as
we can interpret a database table as a fluent, a tuple as a row ina table and a set of tuples as the set of all
rows in a table. Moreover, databases and their relations to action theories have been discussed by (Lin and
Reiter, 1997), (De Giacomo and Palatta, 2000), (De Giacomo and Mancini, 2004), (Vassos and Sardina,
2011) and others, which even more encouraged us to use relational database technology for our back-end
implementation. We decided to useSQLiteas our relational database management system (RDMS) of

47

Chapter 6. Implementation

choice. The decision to prefer SQLite over other database systems was driven by a number of reasons, a
non-exhaustive list of reasons3 is presented as follows, in no particular order:

• SQLite is self-contained: SQLite requires minimal support from external libraries and the operat-
ing system and is written in ANSI-C. Therefore, it is highly portable to a huge variety of different
platforms without much effort.

• SQLite is server-less and zero-configuration: A lot of database engines are implemented as separate
server processes, whereas SQLite is not. In our case, the advantage of being serverless is that we can
easily enable people who want to use YAGI (e.g. students attending a lecture at university) to do so
without needing to install, setup and configure a RDMS.

• SQLite is the most widely deployed SQL database: SQLite is used by a vast number of well-known
and widely used software products such as Mozilla Firefox, Skype and McAfee anti-virus software.
The SQLite developers estimate that there are are at least 500 million SQLite deployments in use.

The second major task of the back-end is to store and execute YAGI programs. To accomplish this task
we decided to simply store the program (or, to be more precise, its abstract representation in form of an
abstract syntax tree (AST)) in appropriate data structuresand execute (i.e. interpret) these structures on
demand. An overview of the software-design of the back-end is presented in the class diagram in Figure
6.2. The purpose of the presented classes is as follows.

• ASTNodeVisitorBase: The base class implementation of the visitor design pattern (Gamma et al.,
1994). The visitor implementations are used to visit nodes of the AST and perform certain operations
based on the data from the AST nodes. The operations depend onthe concrete implementations of the
ASTNodeVisitorBase base class. The implementation is based on theacyclic visitorimplementation
from (Alexandrescu, 2001).

• TypeCheckVisitor: The first visitor that is applied to the AST provided by the front-end. Its purpose
is to check the AST for type errors. The YAGI program executions continues iff no type errors
occurred. The current implementation of type checking is very rudimentary and only checks some
very simple cases, e.g. referring to an undefined fluent or re-assigning a fact.

• RewritingVisitor : After type-checking, the rewriting visitor performs syntactical rewriting accord-
ing to the specification of the YAGI language, e.g. pattern matching is rewritten as specified in
Section 5.3.5.

• ExecutionVisitor: The ExecutionVisitor class is responsible for the execution of the YAGI program,
i.e. the interpretation of the AST. It holds various membersof polymorphic types (e.g. for database
access, formula evaluation and signal handling) that are parametrized with concrete implementations
by the caller.

• IExogenousEventConsumer: The interface for consuming data provided by exogenous events.

• ExogenousEventConsumer: A concrete consumer of exogenous event data. In the proof-of-concept
implementation exogenous event data is directly consumed by the interpretation visitor.

• DatabaseConnectorBase: The base class responsible for connecting to a database andexecuting
SQL queries.

• SQLiteConnector: A concrete implementation of theDatabaseConnectorBaseclass for the SQLite
database back-end.

• IFormulaEvaluator : An interface responsible for the evaluation of a YAGI〈formula〉.
• FormulaEvaluator : A concrete implementation of theIFormulaEvaluatorinterface that evaluates

YAGI formulas as discussed in Section 7.2.5.

• IYAGISignalHandler : An interface responsible for handling signals triggered by YAGI actions.

• CoutCinSignalHandler: A concrete implementation of theIYAGISignalHandlerinterface that sim-
ply displays YAGI signals textually on the YAGI shell.

3Summary of a list of advantages presented athttp://www.sqlite.org/ . Last visited on December 3rd, 2014.

48

6.3. YAGI Language Constructs

Back-End

ASTNodeVisitorBase

+visit(...)

RewritingVisitor

+visit(...)
ExecutionVisitor

-db_: DatabaseConnectorBase

-exoEventCon_: IExogenousEventConsumer

-formulaEval_: IFormulaEvaluator

-sigHandler_: IYAGISignalHandler

+visit(...)

TypeCheckVisitor

+visit(...)

is a is a

IExogenousEventConsumer

+consumeExoEventData(...)

ExogenousEventConsumer

+consumeExoEventData(...)

implements

DatabaseConnectorBase

+connect(...)

SQLiteConnector

+connect(...)

is a

IFormulaEvaluator

+evaluate(...)

FormulaEvaluator

+evaluate(...)

implements

IYAGISignalHandler

+signal(...)

CoutCinSignalHandler

+signal(...)

implements is a

 uses

Figure 6.2.: Schematic Class Diagram of the Back-End Implementation

6.2.3. System Interface

In our first implementation, the system interface is solely designed for testing and simulation. When a
YAGI actions sends a signal to the system interface our implementation simply echoes the signal data
back and its content is displayed in the YAGI interpreter command shell window. When a setting action
is triggered the system interface prompts the user to enter the data that should be passed to the respective
setting action. Lastly, exogenous events are implemented file-based, i.e. data for exogenous events can be
written into a specific plain-text file. When the file is saved the currently running YAGI program consumes
this data and processes it as specified in Section 5.7.2.

6.2.4. Inter-Layer Communication

Due to the fact that front-end, back-end and system interface are compiled into one single binary the
communication between the layers is implemented via simplemethod calls.

6.3. YAGI Language Constructs

Having described the implementation of the three layers of the YAGI software stack we proceed with a
brief description of how the different YAGI language constructs are implemented. Note that we only give
a description of the software-engineering aspects of the implemented YAGI language constructs in the
following sections and defer any discussion about how the implementation relates to the specification to
Chapter 7.

6.3.1. Fluent- and Fact-Declaration

Each fluent and each fact corresponds to one distinctive SQLite database table. The number of columns in
such a table is determined by the arity of the fluent. Additionally, each domain of each dimension of each
fluent is stored in a separate, distinct table. A simple example of a fluent declaration and its effects on the
database is illustrated in the figure below. Fact declarations follow analogously.

49

Chapter 6. Implementation

fluent at[{"r1","r2","r3"}];

YAGI Fluent Declaration (Arity = 1)

YAGI Database

Table ’at’

ID Integer

Dim1Value String

Table ’at_domain_dim1’

ID Integer

DomainValue String

Values of ’at_domain_dim1’

ID

1

2

3

DomainValue

r1

r2

r3

Figure 6.3.: Schematic of Fluent Declaration Implementation

6.3.2. Action Declaration

The AST of each declared action is stored in an associative container that has the name and arity of the
action as key and the AST of the action as value. On execution,the AST of the action to be executed is
interpreted using an instance of theExecutionVisitor. By specification, YAGI actions are rewritten into
procedures to accomplish sequential behavior as specified in Section 5.4.8. We omit this step in our imple-
mentation and simply interpret both actions and proceduresin a sequential manner. Omitting the rewriting
of YAGI actions is no violation of the specification since ourimplementation treats the evaluation of the
action precondition (semantically) like ateststatement (to which the precondition gets rewritten according
to the specification), i.e. the remaining part of the action is executed if and only if the precondition holds.
This semantics is exactly the same as the semantics oftest, i.e. it guardsthe execution of some part of a
YAGI program depending on the evaluation of a truth value. Weillustrate the declaration of two actions in
Figure 6.4. Note that we purposely omitted the bodies of the actions because they are of no importance
during this discussion.

6.3.3. Formulas

Formulas are evaluated using the semantics of tuples and sets on appropriate C++ data structures and the
built-in C++ operators for value comparisons4. In any case a fluent is involved in a formula all the necessary
values are fetched from the database and stored in C++ data structures on which the evaluation of the
formula is performed. We discuss the evaluation of formulasin more detail in Section 7.2.5. A possible
optimization could be to evaluate formulas directly using SQL queries as described by (De Giacomo and
Palatta, 2000).

6.3.4. Assignments

As specified in Section 5.3.1, fluents (i.e. the model) can only be modified using the situation calculus
actionsaddandremovethat are created for each declared fluent. These actions are implemented via SQL
statementsinsert (in case ofadd) anddelete(in case ofremove). The inserted (or deleted) values for these
statements are inferred from the parameters of the corresponding situation calculus action and the affected
table name corresponds to the name of the fluent to which the situation calculus action belongs to. All
types of fluent assignment statements ultimately expand to aset ofaddandremovestatements (see Section
5.3.4), i.e. a sequence of SQLinsertanddeletestatements. Assignments to variables are implemented via a
variable table that holds an associative container with thename of the variable as key and a stack of values

4Recall that we specified ordering comparisons for strings to be performed lexicographically. Due to the fact that we currently don’t
support numbers in YAGI we compare strings that represent valid integral numbers using integer comparison semantics to avoid
counter-intuitive behavior, e.g. "10" < "2" returnstruewhen compared lexicographically but one might expectfalseas result.

50

6.3. YAGI Language Constructs

action first($x)

end action

action second($x,$y)

end action

YAGI Action Declarations

Key

<first,1>

<second,2>

Value

AST* impl1

AST* impl2

Associative Container

Name: ’second’

ActionDecl

ArgList

$x $y

Precond. Effect Signal

AST of action ’second’

Formula Block Expression

Figure 6.4.: Schematic of Action Declaration Implementation

that represents the values of the variable in possibly different scopes. We illustrate a simple assignment to
a fluent and its effect in Figure 6.5.

fluent at[{"r1","r2","r3"}];

at = {<"r1">};

YAGI Assignment

YAGI Database

Table ’at’

ID Integer

Dim1Value String

Table ’at_domain_dim1’

ID Integer

DomainValue String

INSERT INTO ’at’ VALUES(’r1’);

ID

1

Dim1Value

r1

Figure 6.5.: Schematic of a Fluent Assignment

6.3.5. Incomplete Information

Incomplete information is only implemented on a syntactical level, i.e. parsing of YAGI statements that
use incomplete information. Any attempt to use incomplete information beyond parsing results in an error.
Again, we want to emphasize that there exists no specification of the intended semantics of incomplete
information in YAGI for the time being. Since we base YAGI on IndiGolog we also want to mention
that IndiGolog uses a so-calledpossible valuesemantics to handle some limited version of incomplete
information via the predicatessettlesandrejects, as discussed by (De Giacomo et al., 2009).

51

Chapter 6. Implementation

6.3.6. Pattern Matching

Pattern matching constructs are rewritten by theRewritingVisitorclass according to the specification in
Section 5.3.5, i.e. the rewriting visitor returns a modifiedAST that represents the specified rewriting.
Consequently, the concept of pattern matching is transparent for any further processing steps.

6.3.7. Exogenous Events

Analog to action declarations, the AST of each declared exogenous event is stored in an associative con-
tainer that has the name and arity of the exogenous event as key. When an exogenous event gets triggered
the AST of the event to be executed is interpreted using an instance of theExecutionVisitorclass.

6.3.8. Sensing

Sensing is only implemented on a syntactical level, i.e. parsing of declarations of sensing actions. Any
attempt to use sensing beyond parsing results in an error.

6.3.9. Test Statement

TheTeststatement is implemented using a C++ conditional ("if-statement") that tests the truth value of the
evaluated YAGI〈formula〉 and either continues with the execution of the remaining YAGI program (in case
〈formula〉 holds) or aborts execution (in case〈formula〉 does not hold).

6.3.10. Non-deterministic Programming Constructs

The non-deterministic YAGI statementspick andchooseare implemented in a hit-or-miss like manner,
i.e. an argument (in case ofpick) or a block (in case ofchoose) is chosen pseudo-randomly5 and the
program execution continues. Since YAGI is specified to use an online execution semanticsby default, an
unfortunately chosen pseudo-random number can lead to a state where the program is unable to continue. In
case ofoffline execution semantics(i.e. using asearch-block) pick andchooseare resolved usingplanning
semantics, as described in Section 6.3.13.

6.3.11. Conditionals

YAGI conditionals are implemented via conditional constructs ("if-statements") from the C++ program-
ming language. The truth value of the condition (i.e. the YAGI 〈formula〉) is evaluated and either the
if-block or the else-block (if present) gets executed depending on the evaluation result of〈formula〉.

6.3.12. Loops

YAGI while loops correspond to C++while loops. As for conditionals, the truth value of the condition
of the loop is evaluated and the loop body gets executed as long as the condition holds. YAGIfor loops
essentially iterate over a finite set of values, which makes them similar to C++range-based for loops(since
C++11), which were consequently used for the implementation of YAGI for loops.

5The pseudo-random values are generated uniformly distributed (via std::uniform_int_distribution) using a Mersenne
Twister pseudo-random number generator (viastd::mt19937) (Overland, 2013).

52

6.3. YAGI Language Constructs

6.3.13. Search-Operator

As described in Section 5.8.2, the purpose ofsearchis to find a valid execution trace of a YAGI program
beforeactually executing it. Our implementation ofsearchworks as follows. If asearchstatements gets
executed it creates ashadow world. A shadow worldis a copy (or a snapshot) of the current state of the
world at one specific point during the execution of a YAGI program. Ashadow worldconsists of a copy of
all the fluents and facts (i.e. the database) and a copy of all the variables and their values. Consecutively, the
YAGI program thesearchoperator is applied to getsmentally executedon the previously createdshadow
world. By mentally executedwe mean that it is not a real-world execution but the attempt to find an
execution trace that is guaranteed to succeed if executed inthe real world. Consequently, if the execution
of the program on theshadow worldwas successful the resulting execution trace gets executedin the "real
world", otherwise an appropriate error message gets displayed and the program does not get executed.

The execution ofsearchbecomes particularly interesting if non-deterministic choices are part of the
YAGI program thesearchoperator is applied to. If - during the mental execution of a YAGI program on a
shadow world- a pick or choosestatement gets executed a different execution branch (i.e.a newshadow
world) for each possible value inpick (or for each possible block inchoose, respectively) gets created.
Each of these branches is responsible for searching over theprogram for one possible value ofpick or for
searching over one possible block in case ofchoose. The search over these branches happens as follows.
Each branch executes exactly one YAGI action and waits untilall other branches finished their execution6.
After all branches performed their executions we check whether or not the execution was successful. If a
YAGI action could not be successfully executed due to a violation of the action precondition we remove the
branch from the set of possible result branches. For all other branches (i.e. branches where the execution
was successful) we continue with the execution of the next action. All branches that lead to a valid result
after all actions have been executed are possible result states and need to be taken into consideration for
further program execution.

The idea behind this approach is to mimic the behavior of breadth first search (BFS). In our context, the
equivalent of visiting a node using BFS on a finite graph is theexecution of a single YAGI action. We start
at the root node (i.e. the point where apick or choosegets executed) and visit all its direct neighbors, i.e.
execute the first YAGI action. If all direct neighbors have been visited (i.e. every execution branch finished
its execution of one YAGI action) we progress to the next level, i.e. execute the next YAGI action in each
execution branch. The choice to implement thesearchoperator in this manner was driven by two major
aspects:

• Completeness of BFS: Building a BFS-like strategy as described above enables usto argue that our
implementation ofsearchhas the same properties as BFS regardingcompletenessandoptimality7.
The decision to focus on the completeness property and to ignore the disadvantages of BFS for now
was directly driven by the second major aspect.

• The Curse of Prolog DFS: Due to the fact that the majority of Prolog systems use a depth-first strat-
egy (Nilsson and Małuszýnski, 1990) also most of the Prolog-based implementations of Golog are
bound to DFS. Experience showed that this fact plays a huge role in why using a Prolog-based Golog
interpreter is challenging for novices and sometimes even for experts. Since one of the design goals
of YAGI was to remove the tight coupling to Prolog it was also an important aspect to implement a
different search strategy.

Finally, we want to mention that we are convinced that search- as it is implemented now - is sufficient for
a first proof-of-concept implementation but is still far from being ideal. One possible optimization (among
possibly many) could be the implementation of iterative deepening depth-first search (IDDFS) instead of
BFS, but we decided to stick to BFS for the time being and deferthe analysis of possible optimizations of
the search strategy to future work.

6Due to the fact that we specified the execution of a YAGI actionto be guaranteed to terminate this mode of operation does not
impose any problems regarding termination.

7This is only true under the assumption that the execution of one YAGI action is guaranteed to terminate. Due to the fact that only
iteration over finite domains can appear in a YAGI action effect and YAGI actions are - by specification - unable to call other
YAGI actions (i.e. recursion is impossible) it is guaranteedthat the execution of a YAGI action always terminates.

53

Chapter 6. Implementation

Search - Program Flow Example

To illustrate the program flow between the multiple units of execution involved when a search-operator is
present in a YAGI program consider the following example:

//Fluents ’carry’, ’office’ and ’at’ from our running examp le
carry = {< "o1" >};
off ice = {< "p1" , " r1 " >, < "p2" , " r2 " >};
at = {< " r1" >};

proc searchSample ()
search
pick <$p , $r > from off ice such //either <"p1","r1"> or <"p2","r2">

move($r) ; //<"p1","r1"> violates precondition of ’move’
choose

pickup ("o1") ; //violates precondition of ’pickup’
or

putdown ("o1") ; //execution possible
end choose

end pick
end search

end proc

Listing 6.1: YAGI Search Sample

Without a search-block the program above may or may not get executed successfully, depending on the
pseudo-randomly chosen element frompick and the pseudo-randomly chosen block fromchoose. Using a
search-block we are able toplan the execution ahead, i.e. find a valid execution trace - if oneexists. The
program flow of the YAGI code snippet illustrated above is visualized in Figure 6.6.

Run searchSample

ExMain: ExecVisitor

search

ExSearchMain: ExecVisitor ExP1: ExecVisitor ExP2: ExecVisitor

pick <"p1","r1">

pick <"p2","r2">

ExC1: ExecVisitor ExC2: ExecVisitor

choose ’pickup("o1");’

choose ’putdown("o1");’

False

False

True [putdown("o1");]True [pick <"p2", "r2">; putdown("o1");]
True [/*Trace*/]

Execute Trace

Violates A.P.
of action ’move’

Violates A.P.
of action ’pickup’

Figure 6.6.: Schematic Sequence Diagram of the Execution ofa Search Block

When the YAGI code illustrated above gets executed an instance of the execution visitor (ExMain)
traverses the AST and executes the assignments tocarry, officeandat. As soon as the node in the AST
that represents the search-block gets executed a second instance of the execution visitor (ExSearchMain) is
instantiated thatmentallyexecutes the code inside the search-block, blocking the execution of ExMain. For
each possible tuple of thepick-statement a separate execution instance (ExP1 and ExP2) gets instantiated,
each of them searching for a possible execution trace. If execution is possible for a tuple frompick the
corresponding execution instance continues (ExP2), otherwise the execution instance returnsFalse to its
caller (ExP1). The execution forchoosefollows similarly (ExC1 and ExC2). If a valid trace of the program

54

6.3. YAGI Language Constructs

inside the search-block could be found the trace is returnedto the main execution unit, which subsequently
executes the trace in the "real world".

6.3.14. Procedure Declaration

Analog to action declarations, the AST of each declared procedure is stored in an associative container that
has the name and arity of the procedure as key. When a procedureis executed the AST of the procedure to
be executed is interpreted using an instance of theExecutionVisitorclass.

55

56

Chapter 7
Specification Conformance

In this chapter we discuss why our implementation conforms the specification of the YAGI language de-
scribed in Chapter 5. Recall that one important observationin the introduction of this thesis was that
most of the Golog implementations are Prolog-based. Even though Prolog-based implementations have a
number of drawbacks (as outlined in the introduction of thisthesis) using Prolog as language of choice
for implementing basic action theories and Golog programs comes with a notable advantage regarding
the discussion of specification conformance: One can prove properties like termination and correctness
of Golog programs directly within the situation calculus1 (Reiter, 2001). Due to the fact that we decided
not to use a Prolog back-end in this implementation and correctness proofs of programs written in general
purpose programming languages are only feasible under certain conditions2 we base our discussion on
showing semantic equivalence between the specification of YAGI and our proof-of-concept implementa-
tion. Specifically, we have to show a correspondence betweenthe following elements:

1. Situation Calculus (BATs) ↔ Databases, Ground Formula Evaluation: Our specification of
YAGI uses elements of situation calculus to specify the state of the world, reflect how the world
evolves and answer questions about the state the world. Our implementation makes use of database
semantics to implement parts of situation calculus. Consequently, we have to show how and why
database semantics reflect the semantics of situation calculus basic action theories and how formulas
(more precisely, formulaswithout free variables) can be evaluated based on this semantics.

2. IndiGolog ↔ YAGI Program Execution : The second aspect of our discussion is program flow.
Recall that we used the semantics of IndiGolog to specify theexecution of YAGI programs and
that our implementation interprets an abstract representation of YAGI source code (i.e. an abstract
syntax tree) to implement program flow. Hence, we have to showhow the program flow semantics
of IndiGolog relates to the program flow semantics of YAGI.

We start with providing a set of definitions we need throughout this chapter in Section 7.1 and continue with
showing the connection between situation calculus and database semantics in Section 7.2. Subsequently,
we discuss the program flow semantics of IndiGolog and how this semantics relates to YAGI program
execution in Section 7.3 and finish this chapter by summarizing our results in Section 7.4.

1This proof is based on the idea that one can prove that a Prologimplementation of a basic action theory is correct under certain
assumptions (properties of the basic action theory (most notably closed initial database and no functional fluents) andproperness
of the Prolog interpreter) and Golog programs aremacro expandedinto situation calculus sentences.

2Possible approaches are to restrict the language to a certain subset that allows formal verification and/or to use aDesign by Contract
model to provide formal semantics of the program (Meyer, 1992).

57

Chapter 7. Specification Conformance

7.1. Definitions

To discuss about specification conformance we need to establish a connection between situation calculus
(especially fluents and situations) and our database semantics and a connection between the execution of
an IndiGolog program (i.e. the evaluation of the transitionsemantic predicatesTransandFinal) and the
execution of a YAGI program, i.e. the interpretation of the AST. To be able to establish such a connection
we need to define a set of predicates and functions, as follows.

Definition 7.1 (Relational Database). We define a relational databasedbas a set of database tables

db= T1∪T2∪ . . .∪Tn,

where a database table in a relational database can be interpreted as set-theoreticrelation, a row in a
table can be interpreted as a mathematicaltupleand a column can be interpreted as anattribute (Gossett,
2009). For the sake of clarity we omit the detailed definitions of relational databases, relational models and
relational algebra and refer to the work of (Codd, 1970). Throughout this chapter we use the termdatabase
synonymously torelational database.

Definition 7.2 (Function Symbolexec). The binary function symbolexecis defined as

exec: action×db→ db,

whereaction is a situation calculus action (i.e. an element of the sortactions, where anaction is the only
entity of situation calculus that can change situations andfluents) anddb is a database according to the def-
inition above. We provide a detailed description of theexecfunction when we discuss the correspondence
between successor state axioms and the database semantics of our implementation in Section 7.2.4.

Definition 7.3 (Transition Semantics PredicateTrans). The transition semantics predicateTrans is the
4-ary predicate

Trans(δ,s,δ′,s′)

with δ being an executable program in a starting situations leading to situations′ by executing one el-
ementary step ofδ, resulting in the remaining programδ′. Transholds iff there exists a transition from
(δ,s) to (δ′,s′). This form of transition semantics has been used by (De Giacomo et al., 2000) to specify
the transition semantics ofConGologand later on by (De Giacomo et al., 2009) to describe the transition
semantics ofIndiGolog.

Definition 7.4 (Transition Semantics PredicateFinal). The transition semantics predicateFinal is the bi-
nary predicate

Final(δ,s)

with δ being a program that is allowed to successfully terminate insituations. Together withTrans, Final
was also used by (De Giacomo et al., 2000) and (De Giacomo et al., 2009) to define the transition semantics
of ConGologandIndiGolog, respectively.

Definition 7.5 (YAGI Transition Semantics PredicateYagiTrans). The transition semantics predicateYagi-
Transis the 4-ary predicate

YagiTrans(α,b,α′,b′)

with α being a YAGI program andb being a database. The execution ofα w.r.t. the databaseb leads to a
new databaseb′ and results in the remaining programα′. YagiTransholds iff there exists a transition from
(α,b) to (α′,b′).

Definition 7.6 (YAGI Transition Semantics PredicateYagiFinal). The transition semantics predicateYagi-
Final is the binary predicate

YagiFinal(α,b)

with α being a program that is allowed to successfully terminate w.r.t the databaseb.

58

7.1. Definitions

Definition 7.7 (Program Translation FunctionyagiToGolog). The unary function symbolyagiToGologis
defined as

yagiToGolog: α → δ

whereα is a valid YAGI program andδ is a valid situation calculus / IndiGolog program. The interpretation
is that the function translates YAGI programs to situation calculus / IndiGolog programs.

Definition 7.8 (Uniform Formulas). According to (Reiter, 2001) a formula is said to beuniform inσ if σ
is a situation term and it holds for the formula that

• it doesn’t mention the predicatesPossor ⊏, where⊏ denotes the concept of aproper subsequence
of situations.

• it doesn’t quantify over situations.

• it doesn’t mention equality on situations.

• it doesn’t mention any other term of sortsituationthanσ as situation argument for a fluent.

Definition 7.9 (Function Symboldo). The binary function symboldo is defined as

do : action×situation→ situation

The interpretation is thatdo(a,s) denotes the successor situation resulting from the execution of actiona
in situations (Reiter, 2001).

Definition 7.10 (Projection Problem). According to (Reiter, 2001) the projection problem in the situation
calculus is defined as follows: Given a basic action theoryD, a sequence of ground action terms[a1, . . . ,an]
and a goal formulaG(s) that is uniform ins, determine whether or not

D |= G(do([a1, . . . ,an],S0)).

That is, find out whether or not a goalG holds in world resulting from performing a certain sequenceof
actions.

Definition 7.11(Regression). (Reiter, 2001) has shown that regression is a mechanism to solve the projec-
tion problem. Therefore, he formulated theregression theorem, as follows. Given a regressable sentence
W of the languageLsitcalc that mentions no functional fluents and a basic action theoryD then it holds that

D |=W iff DS0 ∪Duna |= R [W],

with R being the regression operator that returns a sentence logically equivalent toW, but uniform in
S0. That is, a sentenceW is transformed into a logical equivalent sentence that mentions only the initial
situationS0, which is a much simpler entailment because it reduces the evaluation of a regressable sentence
to a theorem proving task in the initial theoryDS0.

Definition 7.12 (Progression). Progression is the alternative to regression to solve the projection problem.
(De Giacomo et al., 2009) provided a definition as follows. Given a basic action theoryD and any goal
formulaφ, find aD ′

0 such that

D |= φ[do([a1, . . . ,an],S0)] iff Duna∪D ′
0 |= φ[S0],

whereD ′
0 is a database transformed by the progression operatorP such thatD ′

0 = P (DS0, [a1, . . . ,an]).
Further, note that (Lin and Reiter, 1997) showed that progression is not always feasible. However, (Vassos,
2009) discusses various action theories that are restricted in some form and shows how such action theories
can be progressed.

59

Chapter 7. Specification Conformance

7.2. Situation Calculus (BATs) ↔ Databases, Ground Formula
Evaluation

To establish a connection between the semantics of relational databases and situation calculus, we rely on
the work done by (De Giacomo and Palatta, 2000). Our basic action theoryDYAGI underlies the following
constraints:

• The sortString is countably infinite at worst and each element of the sortString is represented as a
constant for which the unique name assumption holds. Since we restricted〈assignment〉 to finite sets
any fluent can hold only for a finite number of different parameter vectors at any given point in time.

• The initial databaseDS0 is specified to be in closed form, i.e. the theory either logically implies
F(~x,S0) or¬F(~x,S0) for each fluentF and each parameter vector~x.

Under similar constraints, (De Giacomo and Palatta, 2000) showed how fluents can be represented, for-
mulas can be evaluated and the state of the system can be changed using database semantics. We will
introduce a similar model for YAGI in the next sections.

7.2.1. Progression in YAGI

To solve the projection task in YAGI we use progression according to Definition 7.12. Even though
regression has proved to be a powerful mechanism to reason about actions, it imposes the serious drawback
that it always has to regress back to the initial situation. If some agent performed lots of actions during
its lifetime the history of actions that must be taken into account can be considerably huge, which implies
lots of computational work (De Giacomo and Palatta, 2000). Since progression changes its database of the
initial situation it doesn’t suffer from this drawback. However, one major problem with progression is that
it is not always feasible. (Lin and Reiter, 1997) demonstrated relatively simple basic action theories where
no progression operator exists.

However, we rely on the work done by (Vassos et al., 2008) who defined the following terminology:

A successor state axiom is said to belocal effectif for an actionA(~x) that changes the truth value of
a fluentF(~y,s) it holds that and~y is contained in~x. If all successor state axioms inDssa are local effect,
then the basic action theory islocal effect. Further, a successor state axiom is said to bestrictly local effect
if it is local effectand if the change of the fluentF(~y,s) also depends on a fluentG(~z,s) then~z is also
contained in~x. Consequently, a basic action theory isstrictly local effectif all successor state axioms in
Dssa arestrictly local effectand the basic action theory includes a set with uniqueness ofnames axioms
for constants. Ultimately, (Vassos et al., 2008) showed that for a strictly local effectbasic action theory a
first-order strong progression always exists and it can alsobe computed, i.e. it is guaranteed to be finite.

What remains for discussion is whether or not the YAGI basic action theoryDYAGI is strictly local
effect. Recall that the successor state axiom for each fluentF in YAGI is of the formF(~x,do(a,s))≡ a=
addF(~x)∨F(~x,s)∧a 6= removeF(~x) and all successor state axioms inDssaare of this form. Since the only
parameter vector involved is~x, the only fluent involved isF and the YAGI basic action theory enforces
uniqueness of names for constants via the set of axioms inDunc thestrictly local effectcondition holds and
we conclude thatDYAGI is always finitely first-order progressable.

7.2.2. Fluent Representation

A fluent (or fact)F with arity m is represented as a database tableTF composed bymcolumns(f1, . . . , fm).
Further, we defineRF [x1, . . . ,xm] to be a row in the database table for the fluentF that represents a parameter
vector~x= 〈x1, . . . ,xm〉. Then, we define that for all fluentsF and all parameter vectors~x it holds that

D |= F(~x,s)⇔ RF [x1, . . . ,xm] ∈ TF

60

7.2. Situation Calculus (BATs)↔ Databases, Ground Formula Evaluation

D 6|= F(~x,s)⇔ RF [x1, . . . ,xm] /∈ TF

That is, if the theoryD entails that the fluentF(~x,s) holds then the row that corresponds to~x is stored in
the database table (and vice versa), otherwise the fluent does not hold for that given parameter vector.

7.2.3. Fluent- and Fact-Declaration

Initially, we start with an empty database, i.e. a database without any tables. This corresponds to an
initial situationS0 where no fluent holds, i.e.∀~x.F(~x,S0)≡ Falseholds for all fluentsF. The execution of
〈fluent_decl〉 or 〈fact_decl〉 for a fluent (or fact)F results in a new database table representing the fluentF
as discussed in the section above. Note that the sole existence of a new database table forF doesn’t make
the fluent hold for any given parameter vector~x, i.e. it still holds that∀~x.F(~x,S0)≡ False.

7.2.4. Successor State Axioms

For each declared fluentF we specified that a successor state axiom of the formF(~x,do(a,s)) ≡ a =
addF(~x)∨F(~x,s)∧a 6= removeF(~x) is added toDssa. We have to show that the semantics of this type of
successor state axiom is reflected in our database implementations. Therefore, we use the functionexec
specified in Definition 7.2. The interpretation is thatexec(a,b) denotes thesuccessor databaseresulting
from the execution of an situation calculus actiona w.r.t. the databaseb. Due to the fact that YAGI is
specified to only use two types of situation calculus actions(namelyaddF and removeFas used in the
successor state axiom above) we specifyexecas

exec(a,b) =

{
b′ = T b

F ∪RF [~x], if a= addF(~x).

b′ = T b
F \RF [~x], if a= removeF(~x),

where byT b
F we mean the table that corresponds to the fluentF in the databaseb andRF [~x] is the row that

corresponds to the parameter vector~x = 〈x1, . . . ,xm〉 in the database table representing the fluentF. The
interpretation is that depending on the actiona either a row is added or removed from the database table of
the corresponding fluent, leading to the new databaseb′. Now, recall that we specified that a fluentF(~x,s)
holds if D |= F(~x,s) ⇔ RF [x1, . . . ,xm] ∈ TF holds andRF [x1, . . . ,xm] is exactly the row that is added or
removed depending on the action (addF or removeF) from the successor state axiom. Hence, our database
semantics reflects exactly the successor state axiom described above. Since (De Giacomo and Palatta,
2000) showed correspondence between successor state axioms and SQL commands in general we consider
our definition to be a more restricted version of that since itdeals only with specific types of successor state
axioms.

Furthermore, we want to mention that adding and removing rows is implemented in a straight-forward
manner using the corresponding SQLinsert- anddelete-statements, as follows:

INSERT INTO TF

VALUES (’x1 ’ ,... , ’xm ’)

Listing 7.1: SQL Schematic For ActionaddF(~x)

DELETE FROM TF

WHERE (f1 = ’x1 ’ AND f2 = ’x2 ’ AND ... AND fm = ’xm ’) ;

Listing 7.2: SQL Schematic For ActionremoveF(~x)

Based on this definition of how successor state axioms relateto our database semantics we analyze the
different types of YAGI assignments.

61

Chapter 7. Specification Conformance

Add-Assignment

Let there be an add-assignment of the formF += F_sigma ; , with F and Fσ being fluents. Then such an
assignment gets - by specification - transformed into a YAGI loop of the form

foreach <$x1 ,... , $xn > in F_sigma do
addF ($x1 ,... , $xn) ;

end for

Given this YAGI loop, we have to show that the fluentF holds for all parameter vectors~x of Fσ after the
loop body has been executed. Formally, we have to show that∀~x.Fσ(~x,d) → F(~x,d′), with d being the
databasebeforethat loop gets executed andd′ being the databaseafter the loop got executed. Depending
on the number of parameter vectors for whichFσ holds (denoted as|Fσ|) we argue inductively, as follows:

• |Fσ| = 0: Based on the specification of YAGIFor-Loopsin Section 5.4.6 the loop doesn’t get exe-
cuted. Hence,addFdoesn’t get executed and the fluentF stays unaffected. Thus, the argument holds
trivially.

• |Fσ| = 1: The loop gets executed exactly once, i.e. one singleadd action gets executed. This is the
exact semantics of the successor state axiom as described above. Thus, the argument holds according
to the specification of the successor state axiom.

• |Fσ| > 1: Every time the loop gets executed one singleadd action gets executed for a parameter
vector~x. Due to the specification of the successor state axioms it holds thatF(~x,d′) ≡ True for the
chosen parameter vector~x. That exact vector gets removed fromFσ according to the specification
of the semantics of YAGIFor-Loops, hence it holds that|Fσ| gets decreased by one every loop
iteration. Consequently, the base case of|Fσ| = 1 is guaranteed to be reached after a finite number
of iterations. Thus, the argument holds due to the specification of the successor state axioms and the
induction hypothesis.

Note that the assignment expansion into a loop as described above ultimately expands to a sequence of
executions of situation calculus simple actionsaddF, so the effect of the YAGI assignment is equivalent
to D |= φ[do([addF(~x1),addF(~x2), . . . ,addF(~xk)],S0)], for each of thek parameter vectors the fluentFσ
holds for.

Remove-Assignment

Let there be a remove-assignment of the formF -= F_sigma ; , with F andFσ being fluents. Then such an
assignment gets - by specification - transformed into a YAGI loop of the form

foreach <$x1 ,... , $xn > in F_sigma do
removeF ($x1 ,... , $xn) ;

end for

The only difference to the add-assignment discussed above is that a different situation calculus action
(removeinstead ofadd) gets executed, other than that the transformation is exactly the same. Consequently,
the inductive argument can be build exactly the same way as for the add-assignment.

Override Assignment

By specification, an override assignment is a remove-assignment followed by an add-assignment. That
is, we specified that an override assignment of the formF = Fσ makes the fluentF true for all and only
all tuples inFσ. In other words, an override assignment removes all elements from F and adds all the
tuples fromFσ to it. Consequently, we can express an override assignment as a remove-assignmentF -= F
followed by an add-assignmentF += Fσ. Since we already discussed both of these types of assignments
above we don’t need to build a special case for override assignments.

62

7.2. Situation Calculus (BATs)↔ Databases, Ground Formula Evaluation

Loop Assignment

Loop assignments ultimately collapse to sequences of add- and remove-assignments. That is, a YAGI loop
assignment of the form

foreach <$x1 , $x2 ,... , $xn > in F do
F’ += {< $x1 , $x2 ,... , $xn >};

end for

can be interpreted as a sequence of assignments of the form

//foreach <$x1,$x2,...,$xn> in F do
F’ += {< $x11 , $x21 ,... , $xn1 >};
F ’ += {< $x12 , $x22 ,... , $xn2 >};
F ’ += {< $x1m , $x2m ,... , $xnm >};
//end for

for each of them tuples the fluentF holds for. Hence, the same inductive argument used foradd-assignment
above applies.

Conditional Assignment

Conditional assignments are simply two possible sequencesof assignments that get executed depending on
the evaluation of a formula, i.e. the conditional. Consequently, the same reasoning as above applies.

7.2.5. Ground Formula Evaluation

Having defined how fluents are represented and how the truth value of fluents can be changed we proceed
with the evaluation of YAGI formulas. More precisely, we deal with first-order formulas that are in closed
form (orground), i.e. first-order formulas without free variables. Whereas(De Giacomo and Palatta, 2000)
showed how every situation calculus formula of arbitrary complexity can be directly translated to SQL we
decided to evaluate formulas using C++ machinery rather than to translate formulas directly to SQL. If a
fluent is involved in a formula we fetch its data from the database using a SQLselectstatement and store
its result in appropriate C++ data structures. We interpretthe data from a row in a database table as a tuple
of strings, hence we build an instance ofstd::vector<std::string> for each row in a table. The set of
all such tuples (i.e. an instance ofstd::vector< std::vector<std::string> >) represents the state
of the fluent, which we subsequently use for formula evaluation3.

For the discussion of formula evaluation semantics we argueinductively on the structure of the formula.
Since an empty formula is forbidden according to the syntactical specification of〈formula〉 we use the
evaluation of a fluent according to the definition of fluent representation in Section 7.2.2 for the base case,
i.e. let ϕ be a formula of the formϕ = F(~t) for a fluentF and a vector of terms~t = 〈t1, . . . , tm〉, then we
can decide whether or notϕ holds according to the semantics in Section 7.2.2. Note thatwe can omit
the situation term since we only deal with a single situation, i.e. the database as a snapshot of the world
generated via progression. For the inductive step we treat each case separately, as follows:

• Truth Values: trueandfalseare constants, hence their truth value is independent of a specific model.
Truth values are implemented using the C++ datatypebool, hence its evaluation is trivial.

• Comparisons: String values are constants, hence comparisons of string values work independently
of a specific model, according to the specification in Section5.3.3. For comparisons of sets of tuples
we need to consider two separate cases. In the first case, the compared sets solely consist of tuples
with constant string values. In this case comparison works independent of a specific model. In the

3We want to mention that using a vector of strings as intermediate representation to evaluate formulas implies an overhead in
execution time compared to the idea lined out by (De Giacomo and Palatta, 2000) to evaluate formulas directly using SQL. We
plan to pursue the formula evaluation ideas discussed by (De Giacomo and Palatta, 2000) in a future implementation.

63

Chapter 7. Specification Conformance

second case, a fluent is involved in a comparison. In this case, the set is deduced from the database
table as described above. On this deduced set, comparison works exactly like it does for a set of
tuples with constants.

• Logical Connectives: The logical connectivesand (∧) andor (∨) are implemented using their C++
equivalents && and||. The implies (→) connective is rewritten into a logically equivalent term of
the formϕ1 → ϕ2 ≡ ¬ϕ1∨ϕ2.

• Negation: The operator¬ is implemented using the equivalent C++ negation operator !.

• First-Order Quantifiers : All-quantified formulas are evaluated for all tuples in a certain set, i.e.
for each tuple in a set its values are bound to variables and the formula gets evaluated. The formula
holds iff it holds for all bindings, i.e. for all tuples in theset. Exists-quantified formulas follow
similarly, with the difference that the formula holds if onebinding that fulfills the formula is found.
Note that quantifiers operate on the domain of the involved fluent and we currently deal with finite
domains only. Furthermore, we handle the special case with no such-block present separately, i.e.
exists <$x > in F andall <$x > in F hold iff there is at least one element for that the fluentF holds.

• Operator in: The evaluation ofin is implemented as a simple search of a tuple in a set, i.e.<"

a" > in {< "a" >,< "b" >,< "c" >} is true iff the left-hand side tuple is an element of the right-hand side
set.

7.2.6. Action Preconditions

Since YAGI actions get rewritten into IndiGolog proceduresa YAGI action declaration has no effect on
Dap. More precisely, the precondition of a YAGI action gets rewritten into an IndiGologtest-statement of
the form testφ;, wherephi is the formula that corresponds to the YAGI action precondition. Hence, the
YAGI action precondition becomes a program execution statement rather than a situation calculus action
precondition. Note that the formulaφ from the test-statement gets evaluated according to the semantics
discussed in Section 7.2.5 above. Hence, the formulaφ holds if and only if the YAGI action precondition
formula holds. Consequently, we want to emphasize that according to this specification a YAGI action
declarationneveraffectsDap.

What remains for discussion regarding situation calculus action preconditions are the action precondi-
tions ofaddandremovefor each declared fluent. Note thataddandremoveare the only situation calculus
actions that can occur, consequently we only need to discusstheir preconditions and how they are imple-
mented. Essentially, the preconditions ofadd and removeare specified to ensure that only elements of
the correct sort can be added and removed. Due to the fact thatwe store the sort of each domain of each
declared fluent in separate database tables we enforce the preconditions by checking if each element of the
parameter vector~x that is passed toadd or removeexists in the corresponding database table. The corre-
sponding action is executed if and only if all elements of~x belong to the respective sort of the declared
fluent.

7.3. IndiGolog ↔ YAGI Program Execution

Having defined how our database semantics relates to situation calculus in the previous section, we proceed
with the execution of YAGI programs and how such an executionsemantics relates to IndiGolog transition
semantics. To accomplish this task we restate the transition semantics specified by (De Giacomo et al.,
2009), state our YAGI transition semantics (i.e.YagiTransandYagiFinal) and show the relation between
these transition semantics predicates for each YAGI program element.

64

7.3. IndiGolog↔ YAGI Program Execution

7.3.1. YAGI Program Representation

When giving definitions forYagiTransandYagiFinalwe used terms such asα being aprogramandα′ being
a remaining program. Here, we give a definition of what these terms mean in contextof our implemen-
tation. A YAGI program is internally represented by its AST,i.e. a tree with a root node «program» and
children «stmt1», . . . ,«stmtn» that represent the statements and declarations4 in a YAGI program as speci-
fied by the syntax of〈program〉 in Section 5.10.1. This is what will refer to asprogramα in this context.
YagiTransthen describes the execution of one elementary step in the AST according to its specification,
leading to theremaining program, i.e. the remaining AST that represents the programα′ that remains to
be executed5. If all AST nodes have been visited the empty YAGI program (denoted asnull) remains. The
execution of a simple YAGI program is illustrated in Figure 7.1 below. The subtree of the AST colored
in blue denotes the current statement that is being executed. After the execution of the first statement the
subtree that represents the first statement vanishes, denoted via dotted lines. Theremaining programis
the conditional statement, which is also the last statementin the YAGI program. Consequently, the empty
programnull remains and the program is allowed to terminate. Note that inthe figure below we assume that
both transition predicates (i.e. YagiTrans for the test-statement and YagiTrans for the conditional) hold, i.e.
both transitions can be executed successfully.

test not(<"4"> in currFloor);

if (exists <$x> in currFloor such $x<"5") then

 up("5");

else

 down("5");

end if

YAGI Program

test

program

conditional

formula block (if)

AST of the YAGI program

formula block (else)

execute ’up’ execute ’down’

test

program

conditional

formula block (if)formula block (else)

execute ’up’ execute ’down’

YagiTrans(’test’ phi;...)

stmt1 stmt2 stmt1 stmt2

YagiTrans(’if’ phi ’then’...)

Empty program ’null’

Figure 7.1.: AST Execution Schematic

Having defined our structure of a program we proceed with the mapping of YAGI programs to situation
calculus and IndiGolog programs.

7.3.2. YAGI Program Mapping

To accomplish a mapping from an arbitrary YAGI program to situation calculus and IndiGolog we provide
a mapping function for each of the YAGI language constructs (except procedures, which are discussed
separately in Section 7.3.11) to IndiGolog and situation calculus, as follows:

1. Empty program

yagiToGolog(null) = nil

4Note that declarations of YAGI actions, procedures etc. arealso part of the AST. Due to the fact that those statements don’t have
any transitional semantics they are not discussed in the context of transition semantics in the following sections.

5We don’t actually remove already executed statements from theAST because it has no effect but to give a slight hit in execution
performance. We simply traverse the AST and execute the statements in their given order.

65

Chapter 7. Specification Conformance

2. Primitive Action

yagiToGolog(a) = a

3. Test

yagiToGolog(testφ ;) = φ?

4. Choose

yagiToGolog(chooseα1 or α2)
6 = yagiToGolog(α1) | yagiToGolog(α2)

5. Pick

yagiToGolog(pick 〈v1, . . . ,vn〉 from F suchα) = πv.yagiToGolog(α)

6. Conditional

yagiToGolog(if φ then α1 elseα2 end if) = if φ then yagiToGolog(α1) elseyagiToGolog(α2) endIf

7. While

yagiToGolog(while φ do α end while) = while φ do yagiToGolog(α) endWhile

8. Sequence

yagiToGolog(α1;α2) = yagiToGolog(α1) ; yagiToGolog(α2)

Note that we didn’t provide a program mapping for a YAGI for-loop to IndiGolog. The reason for this is
that IndiGolog has no language construct that has the intended semantics of a YAGI for-loop. Therefore,
we specified the semantics of a YAGI for-loop in terms of a rewriting into whileandpick in Section 5.4.6.
Because for-loops are rewritten intowhile andpick we need no separate program mapping for a YAGI
for-loop since we can express its mapping usingwhileandpick.

Based on the mappings from above we provide YAGI transition semantics for each of these language
constructs and show their relation to the IndiGolog transition semantics. In the following sections free
variables are assumed to be universally quantified.

7.3.3. Empty Program

Let nil be the empty IndiGolog program. ThenTransandFinal for this empty program are specified as

Trans(nil,s,δ′,s′)≡ False

Final(nil,s)≡ True

Essentially, this means that an empty program is always allowed to legally terminate and that an empty
program is under no circumstance able to evolve into anything. Then, we defineYagiTransandYagiFinal
as

YagiTrans(null,b,α′,b′)≡ False

YagiFinal(null,b)≡ True,

which are exactly the same transitions as for an empty IndiGolog program.

6Note that we syntactically allow an arbitrary number of blocks to choose from, i.e.chooseα1 or α2 or . . . or αn. The transformation
works identically for all of these blocks, so we can - withoutloss of generality - reduce our analysis to the case with two blocks.

66

7.3. IndiGolog↔ YAGI Program Execution

7.3.4. Primitive Actions

For situation calculus primitive actionsTransandFinal are specified as

Trans(a,s,δ′,s′)≡ Poss(a[s],s)∧δ′ = nil ∧s′ = do(a[s],s)

Final(a,s)≡ False

Essentially, this means that(a,s) evolves to(nil ,do(a[s],s)) iff the execution of the actiona is possible
in the situations and after the execution ofa nothing remains to be executed. Moreover, the execution
of a primitive action can never be final, i.e. the action must be executed before the program can legally
terminate. For YAGI, we specifyYagiTransandYagiFinalas

YagiTrans(a,b,α′,b′)≡ ϕAP(a)∧α′ = null∧b′ = exec(a,b)

YagiFinal(a,b)≡ False

ϕAP(a) is the action precondition formula for the primitive actiona (which can only be eitheraddF or
removeFfor a fluentF), so ϕAP(a) is guaranteed to hold according to the discussion in Section7.2.6.
Again, note that we don’t have a situation term inϕAP(a) since we always progress our database, hence
always deal just with the current situation. Further, the progression tos′ is reflected by the execution of
the functionexec(a,b) because it implements exactly the successor state axioms specified foraddF and
removeFaccording to Definition 7.2.

7.3.5. Test

For IndiGolog’sTestactionsTransandFinal are specified as

Trans(φ?,s,δ′,s′)≡ φ[s]∧δ′ = nil ∧s′ = s

Final(φ?,s)≡ False,

which essentially means thatTransholds iff the formula under test holds in the current situation and after
executing the test nothing remains to be executed. Furthermore,φ? can never be final, i.e. its execution is
mandatory. For YAGI, we define

YagiTrans(testφ ;,b,α′,b′)≡ φ[b]∧α′ = null∧b′ = b

YagiFinal(testφ ;,b)≡ False,

whereφ[b] is the evaluation of the YAGI formula w.r.t. the databaseb andφ[s] is the mapping of the In-
diGolog representation of the conditionφ to the corresponding situation calculus formula, see (De Giacomo
et al., 2009) for details. Recall that we already showed how the evaluation of YAGI formulas follows the
specification in Section 7.2.5. Consequently, test also behaves according to the specification. Further, note
thatφ? does not change the successor situation astestφ ; doesn’t change the database.

67

Chapter 7. Specification Conformance

7.3.6. Choose

For a non-deterministic branchTransandFinal are specified as

Trans(δ1 | δ2,s,δ′,s′)≡ Trans(δ1,s,δ′,s′)∨Trans(δ2,s,δ′,s′)

Final(δ1 | δ2,s)≡ Final(δ1,s)∨Final(δ2,s),

meaning that(δ1 | δ2,s) can evolve to(δ′,s′) iff either of the two branches can do so. Consequently, we
defineYagiTransandYagiFinalas

YagiTrans(chooseα1 or α2 end choose,b,α′,b′)≡YagiTrans(α1,b,α′,b′)∨YagiTrans(α2,b,α′,b′)

YagiFinal(chooseα1 or α2 end choose,b)≡YagiFinal(α1,b)∨YagiFinal(α2,b),

which expresses the same semantics in terms of YAGI.

7.3.7. Pick

For a non-deterministic choice of argumentTransandFinal are specified as

Trans(πv.δ,s,δ′,s′)≡ ∃x.Trans(δv
x,s,δ

′,s′)

Final(πv.δ,s)≡ ∃x.Final(δv
x,s),

meaning that there exists anx such that(δv
x,s) can evolve to(δ′,s′) andδv

x is a program wherev is substituted
with the variablex. Analogously, we specify that

YagiTrans(pick~ν from F suchα end pick,b,α′,b′)≡ ∃~SF
~x.YagiTrans(δ~ν~x,b,α

′,b′)

YagiFinal(pick~ν from F suchα end pick,b)≡ ∃~SF
~x.YagiFinal(δ~ν~x,b)

where∃~SF
is the existential quantifier over the sort of the fluentF (which is a more restricted quantification

than∃x in TransandFinal) andδ~ν~x is a YAGI program where~ν is substituted with the variable vector~x.

7.3.8. Conditional

For synchronized conditionalsTransandFinal are specified as

Trans(if φ then δ1 elseδ2 endIf,s,δ′,s′)≡ φ[s]∧Trans(δ1,s,δ′,s′)∨¬φ[s]∧Trans(δ2,s,δ′,s′)

Final(if φ then δ1 elseδ2 endIf,s)≡ φ[s]∧Final(δ1,s)∨¬φ[s]∧Final(δ2,s),

saying that the conditional can evolve to(δ′,s′) if φ[s] holds and(δ1,s) can do so (if-clause) orφ[s] does
not hold and(δ2,s) can do so (else-clause).YagiTransandYagiFinalare defined equivalently as

YagiTrans(if φ thenα1 elseα2 end if,b,α′,b′)≡ φ[b]∧YagiTrans(α1,b,α′,b′)∨¬φ[b]∧YagiTrans(α2,b,α′,b′)

YagiFinal(if φ then α1 elseα2 end if,b)≡ φ[b]∧YagiFinal(α1,b)∨¬φ[b]∧YagiFinal(α2,b),

whereφ[b] is the evaluation of a YAGI formula w.r.t. the databaseb.

68

7.3. IndiGolog↔ YAGI Program Execution

7.3.9. While

For a synchronized loopTransandFinal are specified as

Trans(while φ do δ endWhile,s,δ′,s′)≡ ∃γ.(δ′ = γ;while φ do δ)∧φ[s]∧Trans(δ,s,γ,s′)

Final(while φ do δ endWhile,s)≡ ¬φ[s]∨Final(δ,s)

Analogously, we specifyYagiTransandYagiFinalas

YagiTrans(while φ doα end while,b,α′,b′)≡∃γ.(α′= γ;while φ doα end while)∧φ[b]∧YagiTrans(α,b,γ,b′)

YagiFinal(while φ do α end while,b)≡ ¬φ[b]∨YagiFinal(α,b)

Note that the AST remains unchanged in case of a transition, i.e. the execution ofYagiTransfor a while-
statement leaves the remaining AST equal to the AST before its execution.

7.3.10. Sequence

For a sequence of IndiGolog statementsTransandFinal are specified as

Trans(δ1;δ2,s,δ′,s′)≡ ∃γ.δ′ = (γ;δ2)∧Trans(δ1,s,γ,s′)∨Final(δ1,s)∧Trans(δ2,s,δ′,s′)

Final(δ1;δ2,s)≡ Final(δ1,s)∧Final(δ2,s),

stating that(δ1;δ2,s) can either evolve to(δ′1;δ′2,s
′) given that(δ1,s) can evolve to(δ′1,s

′) or to (δ′2,s
′)

given that(δ1,s) is a final configuration and(δ2,s) can evolve to(δ′2,s
′) (De Giacomo et al., 2009). In

YAGI, we reflect this semantics as

YagiTrans(α1;α2,b,α′,b′)≡∃γ.α′=(γ;α2)∧YagiTrans(α1,b,γ,b′)∨YagiFinal(α1,b)∧YagiTrans(α2,b,α′,b′)

YagiFinal(α1;α2,b)≡YagiFinal(α1,b)∧YagiFinal(α2,b).

7.3.11. Procedures

Traditional Golog and ConGolog/IndiGolog use different approaches when it comes to the formalization
of procedures. In traditional Golog, procedures aremacro expandedto situation calculus formulas, i.e. a
procedure call is replaced by its definition and parameters of the procedure call are evaluated w.r.t. the
current situation and then passed in acall-by-valuemanner. However, there is no straight-forward way
to macro expand recursive procedure calls and macro expansion leads to a less expressive formalism, as
discussed by (Levesque et al., 1994).

ConGolog and IndiGolog use a different formalization technique that is able to deal with unbound re-
cursive procedure calls. In ConGolog, procedure calls are handled in a standard way with call-by-value
semantics and lexical scoping, which is a fundamentally different approach compared to macro expansion.
The price to pay is that this approach requiresTransandFinal to be defined as a second-order formula. A
detailed description of those second-order predicates canbe found in (De Giacomo et al., 2000).

In YAGI, we treat procedures similar to ConGolog. That is, procedures don’t get macro expanded, they
are treated like procedures in a traditional manner, i.e. parameters are passed via call-by-value and the
procedure gets subsequently executed in its own environment. This modus operandi resembles a typical
way to deal with parameter passing and procedure execution from a compiler construction point of view
(Aho et al., 2007).

69

Chapter 7. Specification Conformance

7.4. Consequence

Based on the specification of how the YAGI database semanticsrelates to situation calculus and how YAGI
transition semantics relates to IndiGolog transition semantics we conclude that the implementation follows
the specified semantics. This follows directly from the definition of the base cases (i.e. YAGI program
mappings forempty program, primitive actionand test) and the inductive definition for all other cases.
Further, recall that we use thevisitor design pattern in our implementation to execute YAGI programs, as
mentioned in Section 6.2.2. The AST traversal via the visitor implementation reflects exactly the semantics
of YagiTransandYagiFinalas specified in this chapter.

70

Chapter 8
Evaluation

In this chapter, we provide an evaluation of our YAGI implementation. We start with a description of our
evaluation setting in Section 8.1 and continue with a description of the mechanisms we use for measuring
program execution time in Section 8.2. Then, we present the evaluation results for the elevator domain
and the blocks world in Section 8.3 and Section 8.4, respectively. Finally, we finish with a discussion of
our evaluation results in Section 8.5.

8.1. Evaluation Setting

Due to the fact that the interpreter implementation of IndiGolog is considered to be in "alpha" stage1 we use
the classical SWI-Prolog-based Golog interpreter providedby the University of Toronto2 for comparison.
We compare the performance of YAGI and Golog using two different domains, namelyElevator Controller
andBlocks World. For each of these domains we randomly generate ten initial situations for each test case,
i.e. we run each program with ten random initial situations to increase the precision of the measured
run-time information for each test case. For each test case and each program the result is the 4-tuple
〈µ[s],σ[s], to[%],succ[%]〉, whereµ[s] and σ[s] are the mean and standard deviation over the run-times3

of the program given ten random initial situations in seconds, to[%] is the percentage of timeouts (i.e.
the program was not able to find a solution for a given initial situation consuming a certain amount of
resources4) andsucc[%] is the percentage of initial situations where the given program was able to find
a valid solution. For each of the domains we use different implementations (i.e. different YAGI- and
Golog-programs) for comparison, which are as follows:

I YAGI (non-deterministic, no planning): The YAGI program makes use of non-deterministic con-
structspick andchooseand executes the program online, i.e.without searching for a valid trace be-
forehand. As a consequence, this implementation may or may not find a solution based on the output
of the random number generator, i.e. depending on the outputof the random number generator there
might arise a situation where YAGI program execution can’t continue, leading to the termination of the
program. The listings for elevator and blocks world can be found in Appendix C.1.1 and Appendix
C.2.1, respectively.

II YAGI (conditional, no planning) : The YAGI program makes use of non-deterministic constructspick
andchooseand executes the program online, i.e.withoutsearching for a valid trace beforehand. The

1According tohttp://www.cs.toronto.edu/cogrobo/main/systems/ . Last visited on November 12th, 2014.
2http://www.cs.toronto.edu/cogrobo/Systems/golog_swi .pl . Last visited on November 12th, 2014.
3Only programs that didnot time out contribute to the mean and standard deviation calculations.
4We define that no solution can be found if a program takes more than 10 minutes to execute or runs out of resources (e.g. memory,

threads) before that time.

71

Chapter 8. Evaluation

difference to the program described above is that the program uses conditional constructs to prevent
violations ofYagiTransandYagiFinal. As a consequence, the program should always terminate suc-
cessfully. The listings for elevator and blocks world can befound in Appendix C.1.2 and Appendix
C.2.2, respectively.

III YAGI (non-deterministic, full planning) : The YAGI program makes use of non-deterministic con-
structspick andchooseand executes the program offline, i.e. it searches for a validtrace beforehand.
As a consequence, the program executed online should alwaysterminate - if the search procedure is
able to find a valid trace. The listings for elevator and blocks world can be found in Appendix C.1.3
and Appendix C.2.3, respectively.

IV YAGI (conditional, full planning) : The mode of execution is identical to the program described
above, the difference is that the program uses conditionalsto prevent execution traces from failing.
The listings for elevator and blocks world can be found in Appendix C.1.4 and Appendix C.2.4,
respectively.

V Golog: The ’classic’ Golog implementation of the respective problem domain. It can be considered
as the Golog counterpart ofYAGI (non-deterministic, full planning)since Golog always performs full
planning and the input program is non-deterministic. The listings for elevator and blocks world can be
found in Appendix C.1.5 and Appendix C.2.5, respectively.

VI Golog (conditional): A modified version of the ’classic’ Golog implementation that uses conditionals
to preemptively eliminate execution paths that are guaranteed to fail. Therefore, it can be considered as
Golog counterpart ofYAGI (conditional, full planning). The listing can be found in Appendix C.1.6.

VII Golog (reordered): A Golog program with the order of the statements of the non-deterministic branch
operator switched. The intention behind such a modificationis that we want to investigate if the order
of statements influences the result of the program in any way.The listing can be found in Appendix
C.2.6.

8.2. Measurement Techniques

For timing the run-time of the Golog program we use the built-in predicatestatistics(cputime, T)from SWI
Prolog (Wielemaker et al., 2014). More precisely, we capture the CPU timebeforeexecuting the Golog
program (statistics(cputime, T1), run the Golog program, capture the CPU time again (statistics(cputime,
T2) and take the differenceT2−T1 as execution time. Similarly, we use the high-resolution timing func-
tions from thechrono namespace of C++ (Gregoire et al., 2011) to measure the run-time of the YAGI
program, i.e. we capture the current time point via chrono’shigh_resolution_clock, execute the YAGI
program, capture the time point again and take the difference of time points as execution time.

8.3. Elevator Controller

We use a slightly modified version5 of the well-known elevator example from (Reiter, 2001). Forthe
different test cases we use a different number of total and active floors, i.e. there existn floors and for a
randomm< n floors the fluenton initially holds. We state the concrete numbers of total and active floors
for each test caseTn in parentheses, i.e. for a test caseTi the interpretation ofTi(n,m) is that for thei-th test
case the total number of floors isn andm floors are active. Further, we randomize which floors are active
and on which floor the elevator initially resides for each of the ten iterations per test case. We present the
measurement results for each test case in the tables below.

5Taken from http://www.eecs.yorku.ca/course_archive/2006-07/W/3 402/asg3/simple_elevator.swipl . Slightly
adapted version for SWI Prolog. Last visited on November 12th,2014.

72

8.3. Elevator Controller

Test CaseT1(7,2)
Meanµ Std. Dev.σ Timeout Success

YAGI (non-deterministic, no planning) 0.08s 0.03s 0% 10%
YAGI (conditional, no planning) 0.11s 0.01s 0% 100%
YAGI (non-deterministic, full planning) 1.10s 0.07s 0% 100%
YAGI (conditional, full planning) 0.69s 0.06s 0% 100%
Golog 3.10−4s 4.10−5s 0% 100%
Golog (conditional) 3.10−4s 4.10−5s 0% 100%

Table 8.1.: Evaluation Results for the Elevator Example Test CaseT1(7,2)

Test CaseT2(20,10)
Meanµ Std. Dev.σ Timeout Success

YAGI (non-deterministic, no planning) 0.12s 0.08s 0% 0%
YAGI (conditional, no planning) 0.98s 0.35s 0% 100%
YAGI (non-deterministic, full planning) ∞a 0s 100% 0%
YAGI (conditional, full planning) 32s 24.4s 0% 100%
Golog 3.10−3s 2.10−3s 0% 100%
Golog (conditional) 3.10−3s 10−3s 0% 100%

Table 8.2.: Evaluation Results for the Elevator Example Test CaseT2(20,10)

aProgram could not find a solution for any of the ten initial situations.

Test CaseT3(50,25)
Meanµ Std. Dev.σ Timeout Success

YAGI (non-deterministic, no planning) 0.29s 0.20s 0% 0%
YAGI (conditional, no planning) 3.90s 1.40s 0% 100%
YAGI (non-deterministic, full planning) ∞a 0s 100% 0%
YAGI (conditional, full planning) ∞a 0s 100% 0%
Golog 0.03s 0.01s 0% 100%
Golog (conditional) 0.03s 0.01s 0% 100%

Table 8.3.: Evaluation Results for the Elevator Example Test CaseT3(50,25)

aProgram could not find a solution for any of the ten initial situations.

Test CaseT4(70,60)
Meanµ Std. Dev.σ Timeout Success

YAGI (non-deterministic, no planning) 0.32s 0.23s 0% 0%
YAGI (conditional, no planning) 8.80s 0.72s 0% 100%
YAGI (non-deterministic, full planning) ∞a 0s 100% 0%
YAGI (conditional, full planning) ∞a 0s 100% 0%
Golog 0.35s 0.09s 0% 100%
Golog (conditional) 0.28s 0.06s 0% 100%

Table 8.4.: Evaluation Results for the Elevator Example Test CaseT4(70,60)

aProgram could not find a solution for any of the ten initial situations.

73

Chapter 8. Evaluation

Test CaseT5(100,100)
Meanµ Std. Dev.σ Timeout Success

YAGI (non-deterministic, no planning) 0.66s 0.31s 0% 0%
YAGI (conditional, no planning) 23.6s 6.72s 0% 100%
YAGI (non-deterministic, full planning) ∞a 0s 100% 0%
YAGI (conditional, full planning) ∞a 0s 100% 0%
Golog 1.72s 0.42s 0% 100%
Golog (conditional) 1.63s 0.46s 0% 100%

Table 8.5.: Evaluation Results for the Elevator Example Test CaseT5(100,100)

aProgram could not find a solution for any of the ten initial situations.

8.4. Blocks World

The second example we use is an implementation of blocks world, a famous planning problem in the area
of artificial intelligence (Nilsson, 1982) (Nilsson, 1998)(Russell and Norvig, 2014). The blocks world
domain is described by (Russell and Norvig, 2014), as follows:

“This domain consists of a set of cubic blocks sitting on a table. The blocks can be stacked,
but only one block can fit directly on top of another. A robot arm can pick up a block and
move it to another position, either on the table or on top of another block. The arm can only
pick up one block at a time, so it cannot pick up a block that hasanother one on it. The goal
will always be to build one or more stacks of blocks, specifiedin terms of what blocks are on
top of what other blocks.“

An example of a problem instance of the blocks world domain isillustrated in Figure 8.1.

Start State Goal State

2

4

1

3 1

4

2 3

Figure 8.1.: Problem Instance of the Blocks World Domain

The corresponding Golog code that describes the start statefrom the example above is illustrated in the
listing below. The YAGI corresponding code follows similarly.

%Fluent 'ontable' describes blocks that sit directly on the table
ontable (4 , s0). ontable (3, s0).

%Fluent 'on' describes what block is on top of another
on (2,4, s0). on (1,3, s0).

%Fluent 'clear' describes blocks that are moveable
clear (2, s0). clear (1, s0).

Listing 8.1: Golog Fluents for Blocks World Example

74

8.4. Blocks World

Our Golog implementation is based on a version from University of Mainz6, extended with a set of
Golog procedures. For the different test cases we use a different number of blocks and stacks, i.e. there
existn blocks formingm≤ n stacks randomly. We state the concrete numbers of blocks andstacks for each
test caseTn in parentheses, i.e. for a test caseTi the interpretation ofTi(n,m) is that for thei-th test case the
total number of blocks isn, formingmdifferent stacks.

Further, we randomize the goal state for every iteration. More precisely, we randomly pick one of the
predicateson/2 , onTable/1 or clear/1 and randomly pick one or two blocks, depending on the arity of
the predicate. The predicate that holds for the picked block(s) is our goal state7. We present the measure-
ment results for each test case in the tables below.

Test CaseT1(4,1)
Meanµ Std. Dev.σ Timeout Success

YAGI (non-deterministic, no planning) 0.08s 0.03s 0% 40%
YAGI (conditional, no planning) 0.74s 0.92s 0% 100%
YAGI (non-deterministic, full planning) 19s 25.8s 0% 100%
YAGI (conditional, full planning) 49s 69s 0% 100%
Golog 10−4s 6.10−5s 40% 60%
Golog (reordered) 10−4s 5.10−5s 40% 60%

Table 8.6.: Evaluation Results for the Blocks World ExampleTest CaseT1(4,1)

Test CaseT2(5,1)
Meanµ Std. Dev.σ Timeout Success

YAGI (non-deterministic, no planning) 0.12s 0.07s 0% 20%
YAGI (conditional, no planning) 1.07s 1.39s 0% 100%
YAGI (non-deterministic, full planning) 26.7s 37.4s 10% 90%
YAGI (conditional, full planning) 45.4s 62.8s 10% 90%
Golog 2.10−4s 7.10−5s 30% 70%
Golog (reordered) 2.10−4s 8.10−5s 30% 70%

Table 8.7.: Evaluation Results for the Blocks World ExampleTest CaseT2(5,1)

Test CaseT3(6,3)
Meanµ Std. Dev.σ Timeout Success

YAGI (non-deterministic, no planning) 0.22s 0.14s 0% 0%
YAGI (conditional, no planning) 3s 3.33s 0% 100%
YAGI (non-deterministic, full planning) 47.7s 68.5s 40% 60%
YAGI (conditional, full planning) 29.9s 40.0s 40% 60%
Golog 10−4s 4.10−5s 50% 50%
Golog (reordered) 5.10−4s 6.10−4s 70% 30%

Table 8.8.: Evaluation Results for the Blocks World ExampleTest CaseT3(6,3)

6Taken from http://www.informatik.uni-mainz.de/arbeitsgruppen/i nformationssysteme/studium/
wintersemester-2012/einfuerung-in-die-kuenstliche-i ntelligenz/uebungszettel/blocksworld-in-prolog/
at_download/file . Last visited on December 1st, 2014.

7Additionally, we check that the randomly generated goal doesnot hold initially because that would imply that the initial situation
is already a valid solution and nothing needs to be executed.

75

Chapter 8. Evaluation

Test CaseT4(10,1)
Meanµ Std. Dev.σ Timeout Success

YAGI (non-deterministic, no planning) 0.12s 0.11s 0% 0%
YAGI (conditional, no planning) 2.4s 2.9s 0% 100%
YAGI (non-deterministic, full planning) 6.5s 6.7s 60% 40%
YAGI (conditional, full planning) 13.5s 13.8s 60% 40%
Golog 3.10−4s 2.10−4s 30% 70%
Golog (reordered) 3.10−4s 2.10−4s 70% 30%

Table 8.9.: Evaluation Results for the Blocks World ExampleTest CaseT4(10,1)

Test CaseT5(10,5)
Meanµ Std. Dev.σ Timeout Success

YAGI (non-deterministic, no planning) 0.27s 0.27s 0% 10%
YAGI (conditional, no planning) 6.4s 6.8s 0% 100%
YAGI (non-deterministic, full planning) 67.00s 78.10s 60% 40%
YAGI (conditional, full planning) 36.30s 25.00s 60% 40%
Golog 2.10−4s 7.10−5s 50% 50%
Golog (reordered) 7.10−4s undef.a 90% 10%

Table 8.10.: Evaluation Results for the Blocks World Example Test CaseT5(10,5)

aStandard deviation is undefined if there is just one sample.

8.5. Discussion

8.5.1. Runtime

Both scenarios show similar tendencies that Golog outperforms YAGI regarding the measured execution
times. The reason for this is that the current implementation of YAGI is considered to beproof-of-concept,
hence no optimizations regarding run-time and memory consumption have been applied yet. Further, the
specification of YAGI inherently includes certain definitions that imply performance overhead compared
to Golog, e.g. features like pattern matching and assignment rewriting to for-loops impose a performance
overhead by nature. We illustrate the run-times of a Golog and a YAGI implementation of the elevator
example in Figure8.2.

Further, most of the YAGI programs of blocks world show a muchhigher run-time standard deviation
than the Golog programs and the elevator examples for Golog and YAGI. In fact, in many cases the standard
deviation is higher than the mean value, sometimes even by a factor of 1.25 - 1.35. The reason for these
high standard deviation values is that - depending on the randomly generated initial situation and goal state
- a different number of actions must be executed to reach the goal state. In case of planning the number of
actions necessary to reach the goal state makes the most difference since one more action to be executed
means that BFS will find the goal one level deeper in the BFS tree. Since BFS traverses the tree level-wise
a shift in one layer increases the run-time drastically. Thehigh standard deviation values (especially in
the YAGI planning programs) illustrate exactly this connection between number of actions to execute and
run-time of the program.

8.5.2. Planning vs. No Planning

The run-time differences betweenno planningandfull planningare quite severe. The reason for this is that
the implemented search algorithm is an unoptimized textbook version of a BFS-like strategy. Breadth-first
search strategies have the inherent disadvantage of being very memory consuming (Russell and Norvig,
2014), hence using an unoptimized textbook version in YAGI even amplifies this drawback. Further, BFS

76

8.5. Discussion

1 2 3 4 5

0

5

10

15

20

25

Test CaseTi

T
im

e
(s

)
YAGI (conditional, no planning)

Golog

Figure 8.2.: Comparison of Test Case Run-Times of the Elevator Example

1 2 3 4 5

20

40

60

80

100

Test CaseTi

C
or

re
ct

S
ol

ut
io

ns
(%

)

YAGI (n. det., f. p.)
YAGI (cond., n. p.)

Golog
Golog (reordered)

Figure 8.3.: Comparison of Valid Solution Percentages of the Blocks World Example

can be very time-consuming if the solution is far away from the initial state (Russell and Norvig, 2014).
The elevator example exploits exactly this weakness of BFS since the solution is guaranteed to be always
in the last level of the BFS tree because the goal of the elevator example holds iff all active floors have been
served. This implies that any search attempts in a higher level (i.e. a level closer to the initial state) than
the last level of the BFS tree are guaranteed to deliver no successful result. This also explains why Golog
outperforms YAGI heavily in the elevator domain since Prolog’s underlying DFS-like approach finds a
solution for the elevator example immediately.

8.5.3. Conditionals and Non-Determinism

In both scenarios the programYAGI (non-deterministic, no planning) illustrates that non-determinism in
case of online execution is highly unreliable and in most cases unable to find a correct solution. Due to
the fact that it is purely random whether or not the YAGI program can finish successfully these results are
not surprising. When guarded via conditionals (programYAGI (conditional, no planning)) YagiTransor
YagiFinal are forced to hold, meaning that the program is able to successfully terminate. The evaluation
results show exactly this circumstance as 100% of theYAGI (conditional, no planning)programs delivered
correct results.

77

Chapter 8. Evaluation

8.5.4. Golog Order of Statements

Blocks world results clearly show that changing the order ofstatements in the Prolog-based implementation
of Golog influences whether or not a result can be found. Such an order-sensitive behavior can be very
counter-intuitive for people who are not aware of the precise semantics of Prolog. Further, our experiments
show that the YAGI counterpart of the ’classic’ Golog implementation of blocks world (i.e.YAGI (non-
deterministic, full planning)) outperforms Golog in many cases in a sense that it is able to deliver correct
results more often. Note that reordering statements in a YAGI program for the sake of comparison makes
no sense since in the case of online execution the statementsare picked pseudo-randomly (i.e. the order
of statements doesn’t matter) and in offline execution planning is executed in a BFS-like manner which is
guaranteed to find a solution - if one exists. Note that even though BFS is guaranteed to find a solution
(if one exists) the programYAGI (non-deterministic, full planning)didn’t find a solution in 100% of the
cases. This is due to the fact that YAGI ran out of resources during the search process, hence the reason
that a solution could not be found lies in the implementationrather then the search strategy. We illustrate
the percentages of valid solutions found for the blocks world example in Figure8.3.

78

Chapter 9
Conclusion

9.1. Summary

The goal of this thesis was to define the syntax and semantics of an action-based programming language
based on the theoretical foundations of situation calculusand IndiGolog, but especially designed for easy
usability and strict separation of syntax and semantics to enable an implementation to be completely de-
coupled from any specific programming environment like Prolog.

Therefore, we defined a 3-tier system architecture for a YAGI-based software system that clearly sep-
arates syntax and semantics of the language with the primarygoal to avoid immanent pitfalls that result
from the tight coupling of the vast majority of Prolog-basedGolog interpreter implementations.

Further, we presented a motivating YAGI example of an objectdelivery robot to illustrate the syntax of
YAGI and to introduce a specific scenario we plan to use YAGI for.

Subsequently, we provided a formal specification of the syntax and semantics of YAGI. We specified
the mapping of YAGI fluents and facts to situation calculus basic action theories and presented how as-
signments to fluents and facts can be mapped to situation calculus simple actions. Moreover, we discussed
more sophisticated language features of YAGI like pattern matching andsetting actionsand illustrated their
relation to situation calculus. Additionally, we outlinedideas of how to further extend YAGI with features
like sensing and incomplete information.

Having defined the mapping of YAGI to situation calculus to represent the world of a specific problem
domain we proceeded with the specification of the semantics of YAGI program execution. We used the
execution semantics of IndiGolog as a theoretical foundation to build the YAGI execution semantics on
and explained how YAGI program constructs relate to IndiGolog.

Having a formal specification of the syntax and semantics of YAGI we continued with the description of
our proof-of-concept implementation of a YAGI software system. We explained our fundamental design
decisions and discussed the software architecture of our implementation of each of the layers in the YAGI
software systems. We explained that our back-end uses a relational database to represent the state of the
world (i.e., fluents and facts), a decision that was motivated by the fact that the semantics of situation calcu-
lus relates closely to the semantics of relational databases. Subsequently, we discussed how the individual
elements of the YAGI language had been implemented and illustrated how our BFS-like planning approach
is integrated in the implementation.

With a language specification and a description of our proof-of-concept implementation we continued
with the discussion how our implementation follows the specification. To be able to discuss the connection
of specification and implementation we provided a formal description of our database semantics and how

79

Chapter 9. Conclusion

this semantics relate to the specified situation calculus mappings of YAGI. We further discussed how logi-
cal sentences in YAGI are evaluated w.r.t the specified database semantics. To round out the discussion of
specification conformance we argued inductively on the structure of YAGI programs to demonstrate how
the execution semantics of YAGI relate to the execution semantics of IndiGolog. Specifically, we intro-
duced a function that maps YAGI code to IndiGolog code and provided transition semantics predicates
YagiTransandYagiFinalas counterparts of IndiGolog’s transition semantics predicatesTransandFinal to
discuss their relation.

Finally, we provided an evaluation of our implementation, comparing YAGI programs to Golog programs
regarding their execution times and whether or not a solution could be found. The results showed that Golog
outperforms our current YAGI implementation in many cases due to the fact that our implementation is an
unoptimized proof-of-concept implementation and needs further performance tuning to be able to compete,
especially whensearchis applied to a YAGI program. This rather huge performance hit is a result of our
textbook implementation of a BFS-like search strategy. Still, the BFS-like approach showed its strength
in a sense that it was able to find solutions for blocks world problem instances where the Prolog-based
implementation of Golog failed to deliver a correct solution.

We conclude that we achieved our goal to design an easy to use action-based programming language to
be used for education and research in the fields of artificial intelligence and robotics.

9.2. Future Work

The definition of syntax and semantics of YAGI in this thesis lays the groundwork for various possible
future extensions of the language regarding its syntax and semantics as well as its formal background.
Furthermore, our presented proof-of-concept implementation of YAGI can be improved and extended in
various ways. We present a non-exhaustive list of reasonable extensions as follows, in no particular order:

• Relating YAGI Action Effect Blocks to Situation Calculus Successor State Axioms: As discussed
in Section5.4.8, we are positive that it is possible to prove that one can rewrite arbitrary YAGIeffect
blocks directly to situation calculus successor state axioms. Proving this claim will be necessary to
be able to discuss theoretical properties of YAGI that are based on this observation.

• Incomplete Information and Sensing Actions: To this day, YAGI only has syntactical constructs
for incomplete information and sensing actions, but lacks of a precise semantic definition of these
features. We believe that incomplete information and sensing actions are of great importance when
it comes to modeling real-world application domains, hencea precise specification of the intended
semantics would be highly valuable.

• Extension ofSearch: Setting actions, sensing and exogenous events have been deliberately excluded
from occurring inside asearchblock. Besides the fact that there exists no semantics for sensing
actions (as discussed above) the reason for these restrictions is that we’re not able to bring up a
viable way to model sensing actions, setting actions and exogenous events in an offline execution
mode.

• Search Strategy Optimization: Our current implementation ofsearchis a textbook BFS-like al-
gorithm and the evaluation in Chapter8 clearly shows the weaknesses of this approach. Different
search strategies might make sense in different scenarios,so a possible optimization (among many)
could be to implement different search strategies and let the developer of a YAGI program control
which of the implemented strategies should be used for eachsearch-block separately. We believe
that being able to use multiple different search strategiesin a single YAGI program would be highly
valuable since having the flexibility of choosing an appropriate search strategy based on some a priori
knowledge about the nature of the problem domain can be used to pick the best fitting strategy.

• Implementations for Various Platforms: Our proof-of-concept implementation has currently been
tested only on Linux-based operating systems. We think thatbringing YAGI to other operating
systems like Microsoft Windows or Apple Mac OS would be a valuable goal. Also, we hope that

80

9.2. Future Work

YAGI will be used for educational purposes. Hence, having YAGI implementations for platforms
used in theeducational roboticsenvironment like the LEGO® MINDSTORM™ is an important
aspect.

• ROS Binding: In our proof-of-concept implementation the system interface simply returns the data
it gets passed by the back-end to its caller. In real-world robotics, one would need an implementation
of the system interface that interacts with the software framework the concrete real-world robot uses.
On popular example is the robot operating system ROS (Quigley et al., 2009). Therefore, it would
be highly valuable to have an implementation that allows YAGI to communicate with ROS-based
real-world robotics applications.

• Break in Loops: Until today there exists no concept of breaking a loop depending on a certain
condition. The concept of breaking loops is a widely spread feature that can be found in many well-
known general purpose programming languages, hence it might also be a valuable feature in YAGI.
How such a concept would impact our program execution semantics is a question that requires deeper
analysis.

• Return-Statement in Actions and Procedures: Actions and procedures are currently unable to re-
turn any information to the caller. Still it might make senseto provide the ability to return information
from the caller to the callee via return statements.

• Macros: A macro-system like in the C programming language (i.e. textual substitution) could be
useful in certain scenarios, e.g. defining reoccurring domains for fluents and facts as a macro to avoid
code duplication.

• Inclusion of External Resources: It might be pleasant to load external libraries (possibly written in
languages other than YAGI) into a YAGI environment to extendthe set of features a YAGI program
can use without modifying the core language.

• Error Detection and Error Recovery : In certain situations, the program may end up in a situation
where execution may not be able to continue, e.g. thepick-operator is not able to find a variable bind-
ing that leads to a solution. Currently, the application displays an error message and terminates. This
could be refined using some form of exception handling and/orrecovery mechanisms. Possible ap-
proaches to actively diagnose and repair inconsistencies between the knowledge of an agent and the
real world have already been discussed by (Mühlbacher and Steinbauer, 2014). We strongly believe
that similar approaches could also be applied to YAGI and would be a highly valuable extension.

• Action Inheritance: Practical tasks showed that their exists actions that share some form of common
behavior and/or state. To avoid code duplication some form of action inheritance could be defined.

• Syntactic Sugar: For the time being, YAGI lines of code require a vast amount of different types
of braces to precisely specify sets, tuples and formulas. Tosimplify the syntax, braces should be
omissible as often as possible without introducing any ambiguities.

81

82

Bibliography

Aho, A., Lam, M., Sethi, R., and Ullman, J. (2007).Compilers: Principles, Techniques and Tools, 2nd
Edition. Pearson Education.

Alexandrescu, A. (2001). Modern C++ design: generic programming and design patternsapplied.
Addison-Wesley.

Belle, V. and Levesque, H. (2014). Prego: An action languagefor belief-based cognitive robotics in
continuous domains. InTwenty-Eighth AAAI Conference on Artificial Intelligence.

Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S., et al. (2000). Decision-theoretic, high-level agent
programming in the situation calculus. InAAAI/IAAI, pages 355–362.

Codd, E. F. (1970). A relational model of data for large shared data banks.Communications of the ACM,
13(6):377–387.

De Giacomo, G., Lespérance, Y., and Levesque, H. J. (2000). Congolog, a concurrent programming lan-
guage based on the situation calculus.Artificial Intelligence, 121(1):109–169.

De Giacomo, G., Lespérance, Y., Levesque, H. J., and Sardina, S. (2009). Indigolog: A high-level program-
ming language for embedded reasoning agents. InMulti-Agent Programming:, pages 31–72. Springer.

De Giacomo, G. and Levesque, H. J. (1999a). An incremental interpreter for high-level progra with sensing.
In Logical Foundations for Cognitive Agents, pages 86–102. Springer.

De Giacomo, G. and Levesque, H. J. (1999b). Progression and regression using sensors. InProc. of IJCAI,
volume 99, pages 160–165. Citeseer.

De Giacomo, G. and Mancini, T. (2004). Scaling up reasoning about actions using relational database tech-
nology. InPROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE,
pages 245–250. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.

De Giacomo, G. and Palatta, F. (2000). Exploiting a relational db for reasoning about actions.Proc. of
CogRob 2000.

Enderton, H. B. (2001).A mathematical introduction to logic. Academic press.

Etzioni, O., Hanks, S., Weld, D. S., Draper, D., Lesh, N., andWilliaon, M. (1992). An approach to planning
with incomplete information.KR, 92:115–125.

Ferrein, A. (2010). Golog. lua: Towards a non-prolog implementation of golog for embedded systems. In
AAAI Spring Symposium: Embedded Reasoning.

Ferrein, A. and Steinbauer, G. (2010). On the way to high-level programming for resource-limited em-
bedded syste with golog. InSimulation, Modeling, and Programming for Autonomous Robots, pages
229–240. Springer.

83

Bibliography

Ferrein, A., Steinbauer, G., and Vassos, S. (2012). Action-based imperative programming with yagi. In
Proceedings of the 8th International Cognitive Robotics Workshop at AAAI-12.

Ferrein, A. A. (2007).Robot Controllers for Highly Dynamic Environments With Real-time Constraints.
PhD thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen.

Fikes, R. E. and Nilsson, N. J. (1972). Strips: A new approachto the application of theorem proving to
problem solving.Artificial intelligence, 2(3):189–208.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994).Design patterns: elements of reusable object-
oriented software. Pearson Education.

Gelfond, M. and Lifschitz, V. (1988). The stable model semantics for logic programming. InICLP/SLP,
volume 88, pages 1070–1080.

Gelfond, M. and Lifschitz, V. (1993). Representing action and change by logic progra.The Journal of
Logic Programming, 17(2):301–321.

Gelfond, M. and Lifschitz, V. (1998). Action languages.Electronic Transactions on AI, 3(16).

Gossett, E. (2009).Discrete mathematics with proof. John Wiley & Sons.

Gregoire, M., Solter, N. A., and Kleper, S. J. (2011).Professional C++. John Wiley & Sons.

Grosskreutz, H. and Lakemeyer, G. (2003). cc-golog–an action language with continuous change.Logic
Journal of IGPL, 11(2):179–221.

Hindriks, K. V., De Boer, F. S., Van der Hoek, W., and Meyer, J.-J. C. (1999). Agent programming in 3apl.
Autonomous Agents and Multi-Agent Syste, 2(4):357–401.

Lakemeyer, G. (1999). On sensing and off-line interpretingin golog. InLogical Foundations for Cognitive
Agents, pages 173–189. Springer.

Levesque, H. J. (1996). What is planning in the presence of sensing? InProceedings of the Thirteenth
National Conference on Artificial Intelligence - Volume 2, AAAI’96, pages 1139–1146. AAAI Press.

Levesque, H. J. (2005). Planning with loops. InIJCAI, pages 509–515.

Levesque, H. J. and Pagnucco, M. (2000). Legolog: Inexpensive experiments in cognitive robotics. In
Cognitive Robotics Workshop at ECAI, pages 104–109.

Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F., and Scherl, R. B. (1994). Golog: A logic programming
language for dynamic domains.J. LOGIC PROGRAMMING, 19(20):1–679.

Lifschitz, V. (2008). What is answer set programming?. InAAAI, volume 8, pages 1594–1597.

Lin, F. and Reiter, R. (1997). How to progress a database.Artificial Intelligence, 92(1):131–167.

McCarthy, J. (1963). Situations, actions, and causal laws.Technical report, DTIC Document.

Meyer, B. (1992). Applying’design by contract’.Computer, 25(10):40–51.

Mühlbacher, C. and Steinbauer, G. (2014). Knowledge-awareexecution of programs in indigolog.Proc.
of CogRob 2014.

Nilsson, N. J. (1982).Principles of artificial intelligence. Springer.

Nilsson, N. J. (1998).Artificial Intelligence: A New Synthesis. Elsevier.

Nilsson, U. and Małuszýnski, J. (1990).Logic, programming and Prolog. Wiley Chichester.

Overland, B. (2013).C++ for the Impatient. Addison-Wesley.

Parr, T. (2007).The definitive ANTLR reference: building domain-specific languages. Pragmatic Bookshelf.

Petrick, R. P. and Bacchus, F. (2002). A knowledge-based approach to planning with incomplete informa-
tion and sensing. InAIPS, pages 212–222.

84

Bibliography

Petrick, R. P. and Bacchus, F. (2004). Extending the knowledge-based approach to planning with incom-
plete information and sensing. InKR, pages 613–622.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng, A. Y. (2009). Ros:
an open-source robot operating system. InICRA workshop on open source software, volume 3, page 5.

Reiter, R. (2001).Knowledge in action: logical foundations for specifying and implementing dynamical
syste. MIT press.

Russell, S. and Norvig, P. (2014).Artificial Intelligence: A Modern Approach. Always learning. Pearson.

Ryan, M. (2014). Efficiently implementing golog with answerset programming. InTwenty-Eighth AAAI
Conference on Artificial Intelligence.

Scherl, R. and Levesque, H. (1993). The frame problem and knowledge-producing actions. InProceedings
of AAAI-93, pages 689–695, Washington, DC. AAAI Press/The MIT Press.

Scherl, R. B. and Levesque, H. J. (2003). Knowledge, action,and the frame problem.Artificial Intelligence,
144(1):1–39.

Thielscher, M. (1998). Introduction to the fluent calculus.Electronic Transactions on Artificial Intelligence
(http://www. etaij. org), 3.

Thielscher, M. (2002). Programming of reasoning and planning agents with flux. InPRINCIPLES
OF KNOWLEDGE REPRESENTATION AND REASONING-INTERNATIONALCONFERENCE-, pages
435–448. Morgan Kaufmann Publishers; 1998.

Vassos, S. (2009).A reasoning module for long-lived cognitive agents. PhD thesis, University of Toronto.

Vassos, S., Lakemeyer, G., and Levesque, H. J. (2008). First-order strong progression for local-effect basic
action theories. InKR, pages 662–672.

Vassos, S. and Levesque, H. J. (2007). Progression of situation calculus action theories with incomplete
information. InIJCAI, volume 7, pages 2024–2029.

Vassos, S. and Sardina, S. (2011). A database-type approachfor progressing action theories with bounded
effects.Knowing, Reasoning, and Acting: Essays in Honour of Hector J. Levesque. College Publications.

Wielemaker, J., De Koninck, L., Fruehwirth, T., Triska, M.,and Uneson, M. (2014).SWI Prolog Reference
Manual 7.1. BoD–Books on Demand.

85

86

Appendices

87

Appendix A
Object Delivery Robot YAGI Source Code

//location of the robot (room1, ..., room3)
fluent at [{ " r1 " , " r2 " , " r3 " }];
at = {< " r1" >};

//location of objects (object1 in room1 etc)
fluent is_at [{ "o1" , "o2" , "o3" }][{ " r1 " , " r2 " , " r3 " }];
is_at = {< "o1" , " r1 " >, < "o2" , " r2 " >, < "o3" , " r3 " >};

//object carried by robot
fluent carry [{ "o1" , "o2" , "o3" }];

//requests moving an object (param 1) from a sender (param 2)
//to a receiver (param 3)
fluent request [{ "o1" , "o2" , "o3" }][{ "p1" , "p2" , "p3" }][{ "p1" , "p2" , "p3" }];

//states what person has been detected in what room
fluent detectedPerson [{ "p1" , "p2" , "p3" }][{ " r1 " , " r2 " , " r3 " }];

//one or more rooms are assigned to one person,
//i.e. the person’s offices
fact off ice [{ "p1" , "p2" , "p3" }][{ " r1 " , " r2 " , " r3 " }];
off ice = {< "p1" , " r1 " >, < "p1" , " r2 " >, < "p2" , " r2 " >, < "p3" , " r3 " >};

//move robot to room $r
action move($r)
precondition:

//robot is not in room $r
not (< $r > in at) ;

effect:
//now he is in room $r
at = {< $r >};

signal:
"Move to room " + $r ;

end action

//pickup object $o
action pickup ($o)
precondition:

//robot doesn’t carry anything and is in the room where the ob ject is
(not(exists <$x > in carry) and exists <$y > in at such <$o , $y > in is_at) ;

effect:
//now he carries $o
carry += {< $o >};

signal:
" Pickup object " + $o ;

end action

89

Appendix A. Object Delivery Robot YAGI Source Code

//putdown object
action putdown ($o)
precondition:

//he carries the object stored in $o
<$o > in carry ;

effect:
//now he’s not
carry -= {< $o >};

//where ever it was, its now somewhere else...
is_at -= {< $o , _ >};

//...namely: here!
foreach <$r > in at do

is_at += {< $o , $r >};
end for

signal:
"Put down object " + $o ;

end action

//"setting" action to detect a person, i.e.
//$p gets its value from an external src
action detectPerson () external ($p)
effect:

//remove person
detectedPerson -= {< $p , _ >};

//add the detected person + room tuple to the fluent
foreach <$r > in at do

detectedPerson += {< $p , $r >};
end for

signal:
" detect person " ;

end action

//exogenous event to initiate transportation
//of object $o from $sender to $receiver
exogenous- event receiveRequest ($o , $sender , $receiver)

//add request
request += {< $o , $sender , $receiver >};

end exogenous- event

//serves a request
proc serve ($object , $sender , $receiver)

pick <$sender , $roomSender > from off ice such
move($roomSender) ;

//search for person in the room
detectPerson () ;

//sender is actually in the room
if (< $sender , $roomSender > in detectedPerson) then

pickup ($object) ;

//deliver object to receiver
pick <$receiver , $roomReceiver > from off ice such

move($roomReceiver) ;

//search for person in the room
detectPerson () ;

//receiver is actually in the room
if (< $receiver , $roomReceiver > in detectedPerson) then

90

putdown ($object) ;
end if

end pick
end if

end pick
end proc

proc main ()
//serve a random request
pick <$object , $sender , $receiver > from request such

serve ($object , $sender , $receiver) ;
end pick

end proc

91

92

Appendix B
YAGI Grammar

// *** *************************
//Grammar for the YAGI programming language
//Author: Christopher Maier
//Date: 2014-07-01
// *** *************************
grammar YAGI;

opt ions
{

language = C;
output = AST;
ASTLabelType= pANTLR3_BASE_TREE;
k = 1;

}

// *** *************************
//Imaginary tokens
// *** *************************
tokens
{
TOKEN_EOL = ’; ’ ;

TOKEN_COLON =’: ’ ;

TOKEN_PICK = ’pick ’ ;
TOKEN_END_PICK

= ’end pick ’
;

TOKEN_FROM =’ from ’ ;
TOKEN_SUCH =’such ’ ;

TOKEN_TEST = ’ test ’ ;
TOKEN_IN = ’ in ’ ;
TOKEN_DO = ’do ’ ;

TOKEN_IF = ’ if ’ ;
TOKEN_END_IF

= ’end if ’
;

TOKEN_THEN =’ then ’ ;
TOKEN_ELSE = ’else ’ ;

TOKEN_CHOOSE =’choose ’ ;
TOKEN_END_CHOOSE

93

Appendix B. YAGI Grammar

= ’end choose ’
;

TOKEN_WHILE
= ’while ’
;

TOKEN_END_WHILE
= ’end while ’
;

TOKEN_END_FOR
= ’end for ’
;

TOKEN_DOMAIN_STR
= ’Str ing ’
;

TOKEN_ACTION = ’action ’ ;
TOKEN_END_ACTION

= ’end action ’
;

TOKEN_PRECOND =’precondit ion: ’ ;
TOKEN_EFFECT = ’effect: ’ ;
TOKEN_SIGNAL = ’signal: ’ ;
TOKEN_SENSING = ’sense ’ ;
TOKEN_END_SENSING =’end sense ’ ;
TOKEN_EXTERNAL =’external ’ ;

TOKEN_EXO_EVENT =’exogenous - event ’ ;
TOKEN_END_EXO_EVENT

= ’end exogenous - event ’
;

TOKEN_NOT = ’not ’ ;
TOKEN_EXISTS= ’exists ’ ;
TOKEN_ALL = ’all ’ ;
TOKEN_IMPLIES = ’ impl ies ’ ;

TOKEN_ASSIGN = ’= ’ ;
TOKEN_ADD_ASSIGN =’+= ’ ;
TOKEN_REMOVE_ASSIGN=’ -= ’ ;

TOKEN_EQUALS=’== ’ ;
TOKEN_NEQUALS =’ != ’ ;
TOKEN_LE = ’ <= ’ ;
TOKEN_GE = ’ >= ’ ;
TOKEN_LT = ’<’ ;
TOKEN_GT = ’>’ ;
TOKEN_PLUS = ’+ ’ ;
TOKEN_MINUS = ’- ’ ;

TOKEN_AND = ’and ’ ;
TOKEN_OR = ’or ’ ;
TOKEN_TRUE =’ true ’ ;
TOKEN_FALSE = ’ false ’ ;

TOKEN_PATTERN_MATCHING
= ’_ ’ ;

TOKEN_INCOMPLETE_KNOWLEDGE
= ’* ’ ;

TOKEN_SET_START =’{ ’ ;
TOKEN_SET_END =’} ’ ;

94

TOKEN_DOMAIN_START=’[’ ;
TOKEN_DOMAIN_END =’] ’ ;

TOKEN_VAR_DECL_START =’$ ’ ;
TOKEN_FLUENT = ’ f luent ’ ;

TOKEN_END_SEARCH
= ’end search ’ ;

TOKEN_SEARCH
= ’search ’
;

TOKEN_OPEN_PAREN
= ’(’
;

TOKEN_CLOSE_PAREN
= ’) ’ ;

TOKEN_COMMA
= ’, ’
;

TOKEN_END_PROC
= ’end proc ’ ;

TOKEN_PROC = ’proc ’
;

TOKEN_FACT
= ’ fact ’
;

TOKEN_FOR_EACH
= ’ foreach ’
;

TOKEN_INCLUDE = ’@include ’ ;

IT_FLUENT_DECL;
IT_STRING_SET;
IT_TUPLE_SET;
IT_FACT_DECL;
IT_PROGRAM;
IT_ASSIGN;
IT_ADD_ASSIGN;
IT_REMOVE_ASSIGN;
IT_PLUS;
IT_MINUS;
IT_TUPLE;
IT_VAR;
IT_EXO_EVENT;
IT_VAR_LIST;
IT_BLOCK;
IT_ACTION_DECL;
IT_SIGNAL;
IT_SENSING;
IT_EXTERNAL_VARS;
IT_NOT;
IT_AND;
IT_OR;
IT_IMPLIES;
IT_ALL;
IT_EXISTS;

95

Appendix B. YAGI Grammar

IT_IN;
IT_EFFECT;
IT_FORMULA;
IT_PROC_DECL;
IT_SEARCH;
IT_PICK;
IT_PROC_EXEC;
IT_FLUENT_QUERY;
IT_VALUE_LIST;
IT_CONDITIONAL;
IT_FORALL;
IT_WHILE;
IT_CHOOSE;
IT_TEST;
IT_EQ;
IT_NEQ;
IT_GT;
IT_LT;
IT_GE;
IT_LE;
IT_ATOM_SETEXPR;
IT_ATOM_VALEXPR;
IT_INCLUDE;

}

// *** *************************
//Basic program structure
// *** *************************
program

: (declarat ion | statement | include)+
;

block
: statement +

-> ^(IT_BLOCK statement +)
;

include : TOKEN_INCLUDE STRING TOKEN_EOL

-> ^(IT_INCLUDE STRING)
;

// *** *************************
//Declarations
// *** *************************
declarat ion

: f luent_decl
| fact_decl
| act ion_decl
| proc_decl
| exo_event_decl
| sensing_decl
;

f luent_decl
: TOKEN_FLUENT ID (TOKEN_DOMAIN_START domain TOKEN_DOMAIN_END)* TOKEN_EOL

-> ^(IT_FLUENT_DECL ID domain *)
;

fact_decl
: TOKEN_FACT ID (TOKEN_DOMAIN_START domain TOKEN_DOMAIN_END)* TOKEN_EOL

-> ^(IT_FACT_DECL ID domain *)
;

96

domain
: TOKEN_DOMAIN_STR -> TOKEN_DOMAIN_STR
| TOKEN_SET_START STRING (TOKEN_COMMA STRING)* TOKEN_SET_END -> ^(

IT_STRING_SET STRING +)
;

act ion_decl
: TOKEN_ACTION ID TOKEN_OPEN_PAREN v1= var_l ist ? TOKEN_CLOSE_PAREN (

TOKEN_EXTERNAL TOKEN_OPEN_PAREN v2= var_l ist TOKEN_CLOSE_PAREN)?
(TOKEN_PRECOND formula_outerMost)?
effect ?
(TOKEN_SIGNAL valexpr TOKEN_EOL)?
TOKEN_END_ACTION

-> ^(IT_ACTION_DECL ID ^(IT_VAR_LIST $v1 ?) (^(IT_EXTERNA L_VARS $v2))?
formula_outerMost ? effect ? (^(IT_SIGNAL valexpr))?)

;

effect
: TOKEN_EFFECT block

-> ^(IT_EFFECT block)
;

var_l ist
: var (TOKEN_COMMA var)*

-> var+
;

proc_decl
: TOKEN_PROC ID TOKEN_OPEN_PAREN var_l ist ? TOKEN_CLOSE_PAREN block

TOKEN_END_PROC

-> ^(IT_PROC_DECL ID (^(IT_VAR_LIST var_l ist))? block)
;

exo_event_decl
: TOKEN_EXO_EVENT ID TOKEN_OPEN_PAREN var_l ist TOKEN_CLOSE_PAREN block

TOKEN_END_EXO_EVENT

-> ^(IT_EXO_EVENT ID ^(IT_VAR_LIST var_l ist) block)

;

sensing_decl
: TOKEN_SENSING ID TOKEN_OPEN_PAREN v1= var_l ist ? TOKEN_CLOSE_PAREN (

TOKEN_EXTERNAL TOKEN_OPEN_PAREN v2= var_l ist TOKEN_CLOSE_PAREN)? formula
TOKEN_END_SENSING

-> ^(IT_SENSING ID ^(IT_VAR_LIST $v1 ?) (^(IT_EXTERNAL_VA RS $v2))?
formula)

;

// *** *************************
//Statements
// *** *************************
statement

: id_term
| var_assign
| test
| choose
| pick
| for_loop
| condit ional
| whi le_loop
| search

97

Appendix B. YAGI Grammar

;

id_term
: ID (

TOKEN_OPEN_PAREN value_l ist ? TOKEN_CLOSE_PAREN TOKEN_EOL -> ^(
IT_PROC_EXEC ID (^(IT_VALUE_LIST value_l ist))?)

| TOKEN_EOL -> ^(
IT_FLUENT_QUERY ID)

| ass_op setexpr TOKEN_EOL -> ^(
ass_op ID setexpr)

)
;

value_l ist
: value (TOKEN_COMMA value)*

-> value +
;

test
: TOKEN_TEST formula TOKEN_EOL

-> ^(IT_TEST formula)
;

choose
: TOKEN_CHOOSE block (TOKEN_OR block)+ TOKEN_END_CHOOSE

-> ^(IT_CHOOSE block +)
;

pick
: TOKEN_PICK tuple TOKEN_FROM setexpr TOKEN_SUCH block TOKEN_END_PICK

-> ^(IT_PICK tuple setexpr block)
;

for_loop
: TOKEN_FOR_EACH tuple TOKEN_IN setexpr TOKEN_DO block TOKE N_END_FOR

-> ^(IT_FORALL tuple setexpr block)
;

condit ional
: TOKEN_IF TOKEN_OPEN_PAREN formula TOKEN_CLOSE_PAREN TOKEN_THEN b1= block

(TOKEN_ELSE b2= block)? TOKEN_END_IF

-> ^(IT_CONDITIONAL formula $b1 $b2 ?)
;

whi le_loop
: TOKEN_WHILE formula TOKEN_DO block TOKEN_END_WHILE

-> ^(IT_WHILE formula block)
;

search
: TOKEN_SEARCH block TOKEN_END_SEARCH

-> ^(IT_SEARCH block)
;

// *** *************************
//Assignments
// *** *************************

98

var_assign
: var TOKEN_ASSIGN value TOKEN_EOL -> ^(IT_ASSIGN var value)
;

ass_op
: (TOKEN_ASSIGN -> IT_ASSIGN

| TOKEN_ADD_ASSIGN -> IT_ADD_ASSIGN
| TOKEN_REMOVE_ASSIGN -> IT_REMOVE_ASSIGN

)
;

// *** *************************
//Formulas
// *** *************************
formula_outerMost

: formula TOKEN_EOL

-> ^(IT_FORMULA formula)
;

formula
: atom
| TOKEN_NOT TOKEN_OPEN_PAREN formula TOKEN_CLOSE_PAREN ->^(IT_NOT formula

)
| TOKEN_OPEN_PAREN f1= formula formula_connect ive f2= form ula

TOKEN_CLOSE_PAREN -> ^(formula_connect ive $f1 $f2)
| TOKEN_EXISTS tuple TOKEN_IN setexpr (TOKEN_SUCH formula) ? -> ^(IT_EXISTS

tuple setexpr formula ?)
| TOKEN_ALL tuple TOKEN_IN setexpr (TOKEN_SUCH formula)? -> ^(IT_ALL tuple

setexpr formula ?)
| tuple TOKEN_IN setexpr -> ^(IT_IN tuple setexpr)
;

formula_connect ive
: TOKEN_AND -> IT_AND
| TOKEN_OR -> IT_OR
| TOKEN_IMPLIES -> IT_IMPLIES
;

atom
: v1= value atom_connector v2= value -> ^(IT_ATOM_VALEXPR ^(atom_connector

$v1 $v2))
| s1= setexpr atom_connector s2= setexpr -> ^(IT_ATOM_SETEX PR ^(

atom_connector $s1 $s2))
| (TOKEN_TRUE | TOKEN_FALSE)
;

atom_connector
: TOKEN_EQUALS -> IT_EQ
| TOKEN_NEQUALS -> IT_NEQ
| TOKEN_LE -> IT_LE
| TOKEN_GE -> IT_GE
| TOKEN_LT -> IT_LT
| TOKEN_GT -> IT_GT
;

// *** *************************
//Sets
// *** *************************
set : TOKEN_SET_START

(
tuple (TOKEN_COMMA tuple)* -> ^(IT_TUPLE_SET tuple +)

| /* eps */ -> ^(IT_TUPLE_SET)
) TOKEN_SET_END

| ID
;

99

Appendix B. YAGI Grammar

setexpr : set (expr_op ^ set)*
;

// *** *************************
//Tuples
// *** *************************
tuple

: TOKEN_LT (
tuple_val (TOKEN_COMMA tuple_val)* -> ^(IT_TUPLE tuple_v al +)

| /* eps */ -> ^(IT_TUPLE)
) TOKEN_GT

;

tuple_val
: STRING
| TOKEN_PATTERN_MATCHING
| TOKEN_INCOMPLETE_KNOWLEDGE
| var
;

// *** *************************
//Variables
// *** *************************
var

: TOKEN_VAR_DECL_START ID -> ^(IT_VAR ID)
;

value
: STRING
| var
;

valexpr
: value (expr_op ^ value)*
;

expr_op
: TOKEN_PLUS -> IT_PLUS

| TOKEN_MINUS -> IT_MINUS
;

// *** *************************
//Lexer Rules
// *** *************************
WS : (’ ’ | ’ \ t ’ | ’ \ f ’ | ’ \n ’ | ’ \ r ’)+ { $channel = HIDDEN; } ;

ID : (’a ’ .. ’z ’ | ’A ’ .. ’Z ’) (’a ’ .. ’z ’ | ’A ’ .. ’Z ’ | ’0 ’ .. ’9 ’ | ’_ ’)*
;

STRING
: ’" ’ (~(’ // ’ | ’" ’))* ’" ’
;

COMMENT
: ’ // ’ ~(’ \n ’ | ’ \ r ’) * (EOF| ’\ r ’ ? ’ \n ’) { $channel = HIDDEN; }
;

ML_COMMENT
: ’ /* ’ (opt ions { greedy = false; } : .) * ’ */ ’ { $channel = HIDDEN; }
;

100

Appendix C
Evaluation Programs

C.1. Elevator

C.1.1. YAGI (non-deterministic, no planning)

@include " f luents .y" ;

action turnoff ($n)
precondition:

<$n > in fon ;
effect:

fon -= {< $n >};
signal:

"Turn -off button at f loor " + $n ;
end action

action open ()
signal:

"Open door " ;
end action

action close ()
signal:

" Close door " ;
end action

action up ($n)
precondition:

exists <$x > in f loors
such (currFloor == {< $x >} and $x < $n);

effect:
currFloor = {< $n >};

signal:
"Move up to floor " + $n ;

end action

action down ($n)
precondition:

exists <$x > in f loors
such (currFloor == {< $x >} and $x > $n);

effect:
currFloor = {< $n >};

signal:
"Move down to floor " + $n ;

101

Appendix C. Evaluation Programs

end action

proc park ()
if (currFloor == {< "0" >}) then

open () ;
else

down ("0") ;
open () ;

end if
end proc

proc goto ($n)
choose

test currFloor == {< $n >};
or

up ($n);
or

down ($n);
end choose

end proc

proc serve ($n)
goto ($n);
turnoff ($n) ;
open () ;
close () ;

end proc

proc serveaf loor ()
pick <$n > from fon such

serve ($n);
end pick

end proc

proc control ()
while exists <$n > in fon do

serveaf loor () ;
end while

park () ;
end proc

control () ;

C.1.2. YAGI (conditional, no planning)

@include " f luents .y" ;

action turnoff ($n)
precondition:

<$n > in fon ;
effect:

fon -= {< $n >};
signal:

"Turn -off button at f loor " + $n ;
end action

action open ()
signal:

"Open door " ;
end action

action close ()
signal:

" Close door " ;
end action

102

C.1. Elevator

action up ($n)
precondition:

exists <$x > in f loors
such (currFloor == {< $x >} and $x < $n);

effect:
currFloor = {< $n >};

signal:
"Move up to floor " + $n ;

end action

action down ($n)
precondition:

exists <$x > in f loors
such (currFloor == {< $x >} and $x > $n);

effect:
currFloor = {< $n >};

signal:
"Move down to floor " + $n ;

end action

proc park ()
if (currFloor == {< "0" >}) then

open () ;
else

down ("0") ;
open () ;

end if
end proc

proc goto ($n)
if (exists <$x > in currFloor such $x < $n) then

up ($n);
else

down ($n);
end if

end proc

proc serve ($n)
if (exists <$x > in currFloor such $x != $n) then

goto ($n);
end if

turnoff ($n) ;
open () ;
close () ;

end proc

proc serveaf loor ()
pick <$n > from fon such

serve ($n);
end pick

end proc

proc control ()
while exists <$n > in fon do

serveaf loor () ;
end while

park () ;
end proc

control () ;

C.1.3. YAGI (non-deterministic, full planning)

@include " f luents .y" ;

103

Appendix C. Evaluation Programs

action turnoff ($n)
precondition:

<$n > in fon ;
effect:

fon -= {< $n >};
signal:

"Turn -off button at f loor " + $n ;
end action

action open ()
signal:

"Open door " ;
end action

action close ()
signal:

" Close door " ;
end action

action up ($n)
precondition:

exists <$x > in f loors
such (currFloor == {< $x >} and $x < $n);

effect:
currFloor = {< $n >};

signal:
"Move up to floor " + $n ;

end action

action down ($n)
precondition:

exists <$x > in f loors
such (currFloor == {< $x >} and $x > $n);

effect:
currFloor = {< $n >};

signal:
"Move down to floor " + $n ;

end action

proc park ()
if (currFloor == {< "0" >}) then

open () ;
else

down ("0") ;
open () ;

end if
end proc

proc goto ($n)
choose

test currFloor == {< $n >};
or

up ($n);
or

down ($n);
end choose

end proc

proc serve ($n)
goto ($n);
turnoff ($n) ;
open () ;
close () ;

end proc

104

C.1. Elevator

proc serveaf loor ()
pick <$n > from fon such

serve ($n);
end pick

end proc

proc control ()
search
while exists <$n > in fon do

serveaf loor () ;
end while

park () ;
end search

end proc

control () ;

C.1.4. YAGI (conditional, full planning)

@include " f luents .y" ;

action turnoff ($n)
precondition:

<$n > in fon ;
effect:

fon -= {< $n >};
signal:

"Turn -off button at f loor " + $n ;
end action

action open ()
signal:

"Open door " ;
end action

action close ()
signal:

" Close door " ;
end action

action up ($n)
precondition:

exists <$x > in f loors
such (currFloor == {< $x >} and $x < $n);

effect:
currFloor = {< $n >};

signal:
"Move up to floor " + $n ;

end action

action down ($n)
precondition:

exists <$x > in f loors
such (currFloor == {< $x >} and $x > $n);

effect:
currFloor = {< $n >};

signal:
"Move down to floor " + $n ;

end action

proc park ()
if (currFloor == {< "0" >}) then

open () ;
else

down ("0") ;
open () ;

105

Appendix C. Evaluation Programs

end if
end proc

proc goto ($n)
if (exists <$x > in currFloor such $x < $n) then

up ($n);
else

down ($n);
end if

end proc

proc serve ($n)
goto ($n);
turnoff ($n) ;
open () ;
close () ;

end proc

proc serveaf loor ()
pick <$n > from fon such

serve ($n);
end pick

end proc

proc control ()
search
while exists <$n > in fon do

serveaf loor () ;
end while

park () ;
end search

end proc

control () ;

C.1.5. Golog

% A SIMPLE ELEVATOR CONTROLLER IN GOLOG (for SWI Prolog)

% written by Ray Reiter

% To run:
% 1) start SWI prolog , i . e. run "pl"
% 2) load the Golog interpreter , i . e. ?- [golog_swi] .
% 3) load this file , i . e. ?- [simple_elevator] .
% 4) run the main procedure , i . e. ?- do(control , s0 , S) .
%
% To see the whole sequence of actions in the situation S , use
% ?- do(control , s0 , S) , show_act_seq(S) .

% Primitive control actions

:- [golog_swi] .

pr imit ive_act ion (turnoff (N)). % Turn off call button N .
pr imit ive_act ion (open). % Open elevator door .
pr imit ive_act ion (close). % Close elevator door .
pr imit ive_act ion (up (N)). % Move elevator up to floor N .
pr imit ive_act ion (down(N)). % Move elevator down to floor N .

% Definitions of Complex Control Actions

proc (goFloor (N), ?(currentFloor (N)) # up (N) # down(N)).
proc (serve (N), goFloor (N) : turnoff (N) : open : close).

106

C.1. Elevator

proc (serveAfloor , pi (n , ?(nextFloor (n)) : serve (n))).
proc (park , if (currentFloor (0), open , down(0) : open)).

/ * control is the main loop . So long as there is an active call
button , it serves one floor . When all buttons are off , it
parks the elevator . * /

proc (control , while (some(n , on (n)), serveAfloor) : park).

% Preconditions for Primitive Actions .

poss (up (N), S) :- currentFloor (M, S), M < N.
poss (down(N), S) :- currentFloor (M, S), M > N.
poss (open , S).
poss (close , S).
poss (turnoff (N), S) :- on (N, S).

% Successor State Axioms for Primitive Fluents .

currentFloor (M, do (A, S)) :- A = up (M) ; A = down(M) ;
not (A = up (N)), not (A = down(N)), currentFloor (M, S).

on (M, do (A, S)) :- on (M, S), not (A = turnoff (M)).

% Initial Situation . Call buttons: 3 and 5 . The elevator is at floor 4 .

/ * nextFloor(N , S) is an abbreviation that determines which of the
active call buttons should be served next . Here , we simply
choose an arbitrary active call button . * /

nextFloor (N, S) :- on (N, S).

% Restore suppressed situation arguments .

restoreSitArg (on (N), S, on (N, S)).
restoreSitArg (nextFloor (N), S, nextFloor (N, S)).
restoreSitArg (currentFloor (M), S, currentFloor (M, S)).

%%
% added by Yves Lesperance

show_act_seq (s0).
show_act_seq (do (A, S)) :- show_act_seq (S), write (A), nl .

run :- do (control , s0 , S), show_act_seq (S).

% definition of executable (legal) situation

executable (s0).
executable (do (A, S)) :- poss (A, S), executable (S).

%%
:- use_module (l ibrary (stat ist ics)).
:- include (' f luents . pl ').
:- current_prolog_f lag (argv , Argv), concat_atom (Argv , ' ' , SingleArg),
open (SingleArg , append , OS),
write (OS, ' Running testcase . . . '),
nl (OS),
stat ist ics (cputime , T0),
run ,
stat ist ics (cputime , T1),
T is T1 - T0 ,
write (OS, T), nl (OS), close (OS).
:- halt .

C.1.6. Golog (conditional)

107

Appendix C. Evaluation Programs

% A SIMPLE ELEVATOR CONTROLLER IN GOLOG (for SWI Prolog)

% written by Ray Reiter

% To run:
% 1) start SWI prolog , i . e. run "pl"
% 2) load the Golog interpreter , i . e. ?- [golog_swi] .
% 3) load this file , i . e. ?- [simple_elevator] .
% 4) run the main procedure , i . e. ?- do(control , s0 , S) .
%
% To see the whole sequence of actions in the situation S , use
% ?- do(control , s0 , S) , show_act_seq(S) .

% Primitive control actions

:- [golog_swi] .

pr imit ive_act ion (turnoff (N)). % Turn off call button N .
pr imit ive_act ion (open). % Open elevator door .
pr imit ive_act ion (close). % Close elevator door .
pr imit ive_act ion (up (N)). % Move elevator up to floor N .
pr imit ive_act ion (down(N)). % Move elevator down to floor N .

% Definitions of Complex Control Actions

proc (goFloor (N), if (some(x , currentFloor (x) & x <N), up (N), down(N))).
proc (serve (N), goFloor (N) : turnoff (N) : open : close).
proc (serveAfloor , pi (n , ?(nextFloor (n)) : serve (n))).
proc (park , if (currentFloor (0), open , down(0) : open)).

/ * control is the main loop . So long as there is an active call
button , it serves one floor . When all buttons are off , it
parks the elevator . * /

proc (control , while (some(n , on (n)), serveAfloor) : park).

% Preconditions for Primitive Actions .

poss (up (N), S) :- currentFloor (M, S), M < N.
poss (down(N), S) :- currentFloor (M, S), M > N.
poss (open , S).
poss (close , S).
poss (turnoff (N), S) :- on (N, S).

% Successor State Axioms for Primitive Fluents .

currentFloor (M, do (A, S)) :- A = up (M) ; A = down(M) ;
not (A = up (N)), not (A = down(N)), currentFloor (M, S).

on (M, do (A, S)) :- on (M, S), not (A = turnoff (M)).

% Initial Situation . Call buttons: 3 and 5 . The elevator is at floor 4 .

/ * nextFloor(N , S) is an abbreviation that determines which of the
active call buttons should be served next . Here , we simply
choose an arbitrary active call button . * /

nextFloor (N, S) :- on (N, S).

% Restore suppressed situation arguments .
restoreSitArg (on (N), S, on (N, S)).
restoreSitArg (nextFloor (N), S, nextFloor (N, S)).
restoreSitArg (currentFloor (M), S, currentFloor (M, S)).

%%
% added by Yves Lesperance

108

C.2. Blocks World

show_act_seq (s0).
show_act_seq (do (A, S)) :- show_act_seq (S), write (A), nl .

run :- do (control , s0 , S), show_act_seq (S).

% definition of executable (legal) situation

executable (s0).
executable (do (A, S)) :- poss (A, S), executable (S).

%%
:- use_module (l ibrary (stat ist ics)).
:- include (' f luents . pl ').
:- current_prolog_f lag (argv , Argv), concat_atom (Argv , ' ' , SingleArg),
open (SingleArg , append , OS),
write (OS, ' Running testcase . . . '),
nl (OS),
stat ist ics (cputime , T0),
run ,
stat ist ics (cputime , T1),
T is T1 - T0 ,
write (OS, T), nl (OS), close (OS).
:- halt .

C.2. Blocks World

C.2.1. YAGI (non-deterministic, no planning)

@include " f luents .y" ;
@include " f luentsNoSearch .y" ;

action move($b1 , $b2)
precondition:

(< $b1 > in fclear and
(< $b2 > in fclear and
$b1 != $b2)) ;

effect:
onTable -= {< $b1 >};
fclear -= {< $b2 >};

foreach <$x1 , $y1 > in bon do
if ($x1 == $b1) then

fclear += {< $y1 >};
end if

end for

bon -= {< $b1 , _ >};
bon += {< $b1 , $b2 >};

signal:
"Move " + $b1 + " on top of " + $b2 ;

end action

action moveToTable ($b)
precondition:

(< $b > in fclear and not(< $b > in onTable)) ;
effect:

onTable += {< $b >};

foreach <$xx , $yy > in bon do
if ($xx == $b) then

fclear += {< $yy >};
end if

end for

109

Appendix C. Evaluation Programs

bon -= {< $b , _ >};

signal:
"Move " + $b + " to table " ;

end action

proc doMove ()
pick <$x > from fclear such
pick <$y > from fclear such

doExec ($x , $y) ;
end pick

end pick
end proc

proc doExec ($first , $second)
choose

moveToTable ($f irst) ;
or

move($first , $second);
end choose

end proc

control () ;

C.2.2. YAGI (conditional, no planning)

@include " f luents .y" ;
@include " f luentsNoSearch .y" ;

action move($b1 , $b2)
precondition:

(< $b1 > in fclear and
(< $b2 > in fclear and
$b1 != $b2)) ;

effect:
onTable -= {< $b1 >};
fclear -= {< $b2 >};

foreach <$x1 , $y1 > in bon do
if ($x1 == $b1) then

fclear += {< $y1 >};
end if

end for

bon -= {< $b1 , _ >};
bon += {< $b1 , $b2 >};

signal:
"Move " + $b1 + " on top of " + $b2 ;

end action

action moveToTable ($b)
precondition:

(< $b > in fclear and not(< $b > in onTable)) ;
effect:

onTable += {< $b >};

foreach <$xx , $yy > in bon do
if ($xx == $b) then

fclear += {< $yy >};
end if

end for

bon -= {< $b , _ >};

signal:

110

C.2. Blocks World

"Move " + $b + " to table " ;
end action

proc doMove ()
pick <$x > from fclear such
choose

if (not(< $x > in onTable)) then
moveToTable ($x) ;

end if
or

pick <$y > from fclear such
if ($x != $y) then

move($x , $y) ;
end if

end pick
end choose

end pick
end proc

control () ;

C.2.3. YAGI (non-deterministic, full planning)

@include " f luents .y" ;
@include " f luentsSearch .y" ;

action move($b1 , $b2)
precondition:

(< $b1 > in fclear and
(< $b2 > in fclear and
$b1 != $b2)) ;

effect:
onTable -= {< $b1 >};
fclear -= {< $b2 >};

foreach <$x1 , $y1 > in bon do
if ($x1 == $b1) then

fclear += {< $y1 >};
end if

end for

bon -= {< $b1 , _ >};
bon += {< $b1 , $b2 >};

signal:
"Move " + $b1 + " on top of " + $b2 ;

end action

action moveToTable ($b)
precondition:

(< $b > in fclear and not(< $b > in onTable)) ;
effect:

onTable += {< $b >};

foreach <$xx , $yy > in bon do
if ($xx == $b) then

fclear += {< $yy >};
end if

end for

bon -= {< $b , _ >};

signal:
"Move " + $b + " to table " ;

end action

proc doMove ()

111

Appendix C. Evaluation Programs

pick <$x > from fclear such
pick <$y > from fclear such

doExec ($x , $y) ;
end pick

end pick
end proc

proc doExec ($first , $second)
choose

moveToTable ($f irst) ;
or

move($first , $second);
end choose

end proc

control () ;

C.2.4. YAGI (conditional, full planning)

@include " f luents .y" ;
@include " f luentsSearch .y" ;

action move($b1 , $b2)
precondition:

(< $b1 > in fclear and
(< $b2 > in fclear and
$b1 != $b2)) ;

effect:
onTable -= {< $b1 >};
fclear -= {< $b2 >};

foreach <$x1 , $y1 > in bon do
if ($x1 == $b1) then

fclear += {< $y1 >};
end if

end for

bon -= {< $b1 , _ >};
bon += {< $b1 , $b2 >};

signal:
"Move " + $b1 + " on top of " + $b2 ;

end action

action moveToTable ($b)
precondition:

(< $b > in fclear and not(< $b > in onTable)) ;
effect:

onTable += {< $b >};

foreach <$xx , $yy > in bon do
if ($xx == $b) then

fclear += {< $yy >};
end if

end for

bon -= {< $b , _ >};

signal:
"Move " + $b + " to table " ;

end action

proc doMove ()
pick <$x > from fclear such
choose

if (not(< $x > in onTable)) then
moveToTable ($x) ;

112

C.2. Blocks World

end if
or

pick <$y > from fclear such
if ($x != $y) then

move($x , $y) ;
end if

end pick
end choose

end pick
end proc

control () ;

C.2.5. Golog

:- [golog_swi] .

/ * Action Precondition Axioms * /
poss (move(X, Y), S) :- clear (X, S), clear (Y, S), not (X = Y).
poss (moveToTable (X), S) :- clear (X, S), not (ontable (X, S)).

/ * Successor State Axioms * /
clear (X, do (A, S)) :- (A = move(Y, Z) ; A = moveToTable (Y)), on (Y, X, S)
; clear (X, S), not (A = move(Y, X)).

on (X, Y, do (A, S)) :- A = move(X, Y) ;
on (X, Y, S), not (A = moveToTable (X)), not (A = move(X, Z)).

ontable (X, do (A, S)) :- A = moveToTable (X) ;
ontable (X, S), not (A = move(X, Y)) .

% Primitive control actions
pr imit ive_act ion (move(N, M)).
pr imit ive_act ion (moveToTable (B)).

proc (doMove , pi (n , pi (y , moveToTable (n) # move(n , y)))).

% Restore suppressed situation arguments .
restoreSitArg (clear (N), S, clear (N, S)).
restoreSitArg (on (N, M), S, on (N, M, S)).
restoreSitArg (ontable (M), S, ontable (M, S)).

%%
% added by Yves Lesperance

show_act_seq (s0).
show_act_seq (do (A, S)) :- show_act_seq (S), write (A), nl .

run :- do (control , s0 , S), show_act_seq (S).

% definition of executable (legal) situation

executable (s0).
executable (do (A, S)) :- poss (A, S), executable (S).

%%
:- use_module (l ibrary (stat ist ics)).
:- include (' f luents . pl ').
:- current_prolog_f lag (argv , Argv), concat_atom (Argv , ' ' , SingleArg), open (SingleArg , append , OS),
write (OS, ' Running testcase . . . '),
nl (OS),
stat ist ics (cputime , T0),
run ,
stat ist ics (cputime , T1),
T is T1 - T0 ,
write (OS, T), nl (OS), close (OS).
:- halt .

113

Appendix C. Evaluation Programs

C.2.6. Golog (reordered)

:- [golog_swi] .

/ * Action Precondition Axioms * /
poss (move(X, Y), S) :- clear (X, S), clear (Y, S), not (X = Y).
poss (moveToTable (X), S) :- clear (X, S), not (ontable (X, S)).

/ * Successor State Axioms * /
clear (X, do (A, S)) :- (A = move(Y, Z) ; A = moveToTable (Y)), on (Y, X, S)
; clear (X, S), not (A = move(Y, X)).

on (X, Y, do (A, S)) :- A = move(X, Y) ;
on (X, Y, S), not (A = moveToTable (X)), not (A = move(X, Z)).

ontable (X, do (A, S)) :- A = moveToTable (X) ;
ontable (X, S), not (A = move(X, Y)) .

% Primitive control actions
pr imit ive_act ion (move(N, M)).
pr imit ive_act ion (moveToTable (B)).

proc (doMove , pi (n , pi (y , move(n , y) # moveToTable (n)))).

% Restore suppressed situation arguments .
restoreSitArg (clear (N), S, clear (N, S)).
restoreSitArg (on (N, M), S, on (N, M, S)).
restoreSitArg (ontable (M), S, ontable (M, S)).

%%
% added by Yves Lesperance

show_act_seq (s0).
show_act_seq (do (A, S)) :- show_act_seq (S), write (A), nl .

run :- do (control , s0 , S), show_act_seq (S).

% definition of executable (legal) situation

executable (s0).
executable (do (A, S)) :- poss (A, S), executable (S).

%%
:- use_module (l ibrary (stat ist ics)).
:- include (' f luents . pl ').
:- current_prolog_f lag (argv , Argv), concat_atom (Argv , ' ' , SingleArg), open (SingleArg , append , OS),
write (OS, ' Running testcase . . . '),
nl (OS),
stat ist ics (cputime , T0),
run ,
stat ist ics (cputime , T1),
T is T1 - T0 ,
write (OS, T), nl (OS), close (OS).
:- halt .

114

