TU

Grazm

Christopher Maier, BSc

YAGI - An Easy and Light-Weighted
Action-Programming Language for Education
and Research in Artificial Intelligence and
Robotics

MASTER'S THESIS

to achieve the university degree of
Diplom-Ingenieur

Master's degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr. techn. Franz Wotawa
Institute for Software Technology

Ass. Prof. Dipl.-Ing. Dr. techn. Gerald Steinbauer

Graz, Jan. 2015






AFFIDAVIT

| declare that | have authored this thesis independently, that | have not used other
than the declared sources/resources, and that | have explicitly indicated all ma-
terial which has been quoted either literally or by content from the sources used.
The text document uploaded to TUGRAZonline is identical to the present master's

thesis dissertation.

Date Signature






Abstract (English)

The action-based imperative programming language Goldgtaescendants have proved to be powerful
and well-studied languages to model autonomous robotsgertsa However, almost all Golog interpreters
are implemented as a set of Prolog clauses, which elimitésy as a language of choice for any platform
that lacks an implementation of a Prolog interpreter. Famtiore, the fuzzy boundary between features
of Golog and side-effects of Prolog makes the process ofamphting Golog programs cumbersome
and error-prone. Various extensions and modifications db@gbave been proposed to serve a variety
of different needs, yet previous work addressed the tighpliog of Golog to Prolog only to a certain
extent. In this thesis, we introduce YAGI (an acronym Yat AnotherGolog | ntepreter), an action-based
imperative programming language based on the theoretiosabfations of situation calculus and IndiGolog,
but with a clear separation of syntax and semantics thatlesails to remove the tight binding to Prolog.
We sketch a 3-tier architecture for a YAGI-based softwaistesy, provide a specification of the syntax
and semantics of YAGI followed by a discussion of our probtoncept implementation and an analysis
of how our implementation follows the specified semanticke Butput of this thesis is the specification
and implementation of a programming language that is spatiifidesigned to avoid the pitfalls of Prolog-
based implementations of Golog, hopefully allowing pedplevrite less error-prone and more portable
applications based on the semantics of situation calcuidsradiGolog.







Abstract (German)

Die aktionsbasierte imperative Programmiersprache Gatogdessen Abwandlungen sind leistungsfahige
und gut erforschte Programmiersprachen zur Beschreibomgutonomen Systemen und Agenten. Aller-
dings sind fast alle Golog Interpreter als eine Menge vorogr&lauseln implementiert, was Golog auf
Plattformen beschrénkt welche tber einen Prolog Intespredrfliigen. Ein weiteres Problem ist die unge-
naue Abgrenzung zwischen Eigenschaften von Golog zu ®ffiédten von Prolog, was die Entwicklung
von Gologprogrammen umstéandlich und fehleranfallig madhtoisherigen Arbeiten wurden zahlreiche
Erweiterungen und Abwandlungen von Golog prasentiertcinetie Sprache fir unterschiedlichste An-
forderungen erweitern. Allerdings wurde dabei die striktg@plung von Golog zu Prolog nur bis zu einem
bestimmten Detailgrad behandelt. In dieser Masterarbalea wir YAGI (ein Akronym furY et Another
Golog Intepreter) vor. YAGI ist eine aktionsbasierte imperativegPammiersprache aufbauend auf dem
Situationskalkil und IndiGolog, jedoch hebt sie mit eingikteen Trennung von Syntax und Semantik
die enge Kopplung zu Prolog auf. Wir skizzieren eine dreddtige Architektur fur ein YAGI-basiertes
Softwaresystem, spezifizieren die Syntax und Semantik Vi@l Ybeschreiben unsere Proof of Concept
Implementierung und diskutieren, warum diese Implemeumtig der Spezifikation entspricht. Das Ergeb-
nis dieser Masterarbeit ist die Spezifikation und Impleneeahg einer Programmiersprache die bewusst
entworfen wurde, um die Probleme von Prolog-basiertenémphtierungen von Golog weitestgehend zu
vermeiden. Wir erhoffen uns das diese Arbeit es Personeagiicht weniger fehleranfallige und leichter
portierbare Programme basierend auf dem SituationskahdilndiGolog erstellen zu kénnen.
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Chapter

Introduction

1.1. Motivation

The art of modeling autonomous robots and agents has beaghly kompelling topic in the scientific
community for the past decades. Up to the present day, w@achbots tasks that are trivial for human
beings is a non-trivial undertaking. Consider the wellxknexample of an object delivery robot. The job
of the robot is solely to deliver packages between diffepemiple in, say, an office building. To accomplish
this task, the robot must be able to deal with a number of @iffeissues. First of all, the robot must be
able to perform all the actions that are needed to accomghiestask, e.g. moving to offices and picking up
objects. Furthermore, the robot must be able to monitoriisis, e.g. track its position during movements
and verify if an object has been delivered successfully.@dwger, the robot must be able to react to changes
of its environment, e.g. it must be able to react to humanestguo deliver some object. Note that even
though this enumeration is non-exhaustive, it is not triygaen sometimes not feasible) to consider all
these issues when writing a robot program as a set of predefihes.

To address these issues, several well-working approaches lieen established over the years, one
of the most successful ones is Golog (Levesque et al., 129gjpgramming language based on situa-
tion calculus. Situation calculus is a formalism based awosd-order logic with equality, introduced by
(McCarthy, 1963) and (Reiter, 2001). Golog combines a féidoenain specification with elements of im-
perative programming, hence the teaction-based imperative programmih@s been chosen to describe
this paradigm. Over the years, various dialects of Golog leen introduced to cope with different issues
such as parallelism, sensing and exogenous events, making & even more powerful programming lan-
guage. Additionally, Golog was used to implement variodfedint types of real-world applications and
made its entrance into academic eduction as part of lechaddsat technical universities around the world.

With the knowledge gathered from the intensified use of Godsgarches discovered certain drawbacks,
first and foremost the fact that almost all Golog interpieterve in common that their implementations are
Prolog-based. The decision to pick Prolog as the languagkaife for implementing a Golog interpreter
is everything but surprising since the theoretical fouimfaof Golog is the situation calculus, a language
based on second-order logic, hence picking a logic progiaganguage seems to be the most natural
decision. However, the decision to use Prolog also impasee slrawbacks, as lined out by (Ferrein et al.,
2012). First of all, it implies that any platform that lacksan implementation of a Prolog interpreter
is not able to run a Golog program. Since one major domain db@slike languages is the field of
robotics, a Prolog interpreter might not always be feadilie to resource constraints and/or performance
limitations. Moreover, even if a Prolog implementationstsj integrating a Golog interpreter into a rather
complex technical ecosystem might be a non-trivial taskoAthe distinction between what are features of
Golog and what are (sometimes subtle) idiosyncrasies q@igeific implementation of) Prolog is especially




Chapter 1. Introduction

challenging for novices and sometimes even for experts. dtiee reasons for this is that the boundary
between Golog and Prolog tends to be fuzzy since Golog iitigligses features of Prolog. To address
these issues, (Ferrein et al., 2012) proposed YAGI, whihdst forYet Another Golog Interprete(Ferrein

et al., 2012) sketched the syntax and semantics of YAGI, @&lnapproach to realize an action-based
programming language inspired and based on Golog (and dhakiGsrespectively), but also specifically

designed to address the issues described above.

1.2. Goal

The goal is to define a programming language based on the fideagFerrein et al., 2012) that allows
a programmer to build applications based on the semantisguftion calculus and IndiGolog. From a
syntactical perspective, the goal is that the languageldhmieasy to use for people who are aware of
widely used programming concepts such as variables, loogpsanditionals. Further, the syntax of the
language should be as intuitive as possible to enable retadauild applications based on the foundations
of situation calculus and IndiGolog without much burdenorira semantics perspective, the goal is to
provide a solid and theoretically sound definition of a laaggl that is based on situation calculus and
IndiGolog. Furthermore, the language should lift the tightding of Golog to Prolog. To accomplish
such an abstraction it is necessary to specify a systemtactinie that is able to decouple the syntax and
semantics of the language as cleanly as possible. Moresweh, an architecture should provide easy
extensibility and a clear separation of concerns for eadptaiaability.

1.3. Contributions of this Thesis

The contributions of this thesis are as follows:

» We present a 3-tier system architecture for YAGI-basediegipns that subdivides a YAGI appli-
cation into front-end, back-end and system interface.

» We provide a formal specification of the syntax and semamticrAGI, based on the ideas and goals
outlined by (Ferrein et al., 2012). The focus is to providelasand theoretically sound definition of
a language that is based on situation calculus and IndiGmlbgan be used on a variety of different
target systems independently of the existence of a Protegareter.

» Based on the language specification and the system artthi#ege provide a proof-of-concept im-
plementation of a YAGI interpreter.

» Based on the specification of the language and the proobntept implementation we discuss how
our implementation follows the specified semantics of tingleage.

» We provide an evaluation of our proof-of-concept impletaéibn compared to a Prolog-based im-
plementation of Golog.

1.4. Running Example

To illustrate our intentions, we use an object delivery tadrunning example. The task of the robot is
to pickup a certain object from a person, i.e. the sender afided it to another person, i.e. the receiver.
Every person can possibly reside in a number of differentedfi hence it is necessary for the robot to
check whether or not the person is actually in the room befmiéng up/delivering an object.




1.5. Organization

1.5. Organization

This thesis is organized as follows. In the next chapter vesgmt an overview of related work. Then,
we describe the YAGI system architecture we propose forempinting YAGI-based systems in Chapter
3 and continue with an implementation of our running exanpl&¥AGI in Chapter 4. Next, we give
a definition of syntax and semantics of YAGI in Chapter 5 fokal by the description of our proof-of-
concept implementation of a YAGI interpreter in Chapter 6rtRer, we discuss why our implementation
follows the specification in Chapter 7 and provide an evanabf our implementation in Chapter 8.
Finally, we finish with our conclusion and ideas about futwrek in Chapter 9.







Chapter

Related Work

In this chapter we give an overview of theoretical prereitggsand topics related to our work. We discuss
the theoretical prerequisites of situation calculus antb@m Section 2.1 and Section 2.2, respectively.
Then, we discuss various extensions of Golog in Section 2d3cantinue with a description of some
non-Prolog based implementations of Golog in Section 2&xtNwve give a short summary of the initial
proposal of YAGI in Section 2.5 and proceed with a short disaan about relational databases and their
relation to basic action theories in Section 2.6. Subsdtyeve give an overview of sensing and incom-
plete information in Section 2.7 and finish the chapter witistussion of some other approaches that
deal with the task of reasoning about actions and changeciio8e2.8.

2.1. Situation Calculus

Situation calculus is a second-order language with equalitich was designed to represent dynamic
systems and to reason about actions and their effects. lintvasluced by (McCarthy, 1963) and (Reiter,
2001) as a set of variables, constants, functions and @tedic The basic idea is that the world evolves
from an initial situation (denoted by the special const&)tdue to the execution of so-callesttions
Such a sequence of actions is interpreted as a world histatyisacalled asituation To evolve into a
new situation the special function symhbd(a, s) is used to denote that the new situation is the result of
executing the actioa in a situatiors. To state the fact that not every action might be able to bewdzd in
every situation, a special predicdess(the so-callediction preconditiohof the formPosga, s) is used to
denote whether or not an actiartan be executed in a situatisnTo capture the changing properties of the
world special relations calldtlentsof the formF (x1, . .., X,,s) are used, wherE is the name of the fluent,
X1,...,Xn are the parameters asds asituation Fluents can be further divided intelational fluents, i.e.
F(x1,...,%n,9S) is a predicate symbol that represents a truth value depgruira specific situation and
functionalfluents, i.e. F(xq,...,Xn,S) is a function symbol that changes its result value depending
specific situation.

To formalize this, (Reiter, 2001) defined a set of axioms thah a so-calledasic action theoryD as
follows:
Q) == ZU @ssau @apu @unau @S)

In a situation calculus basic action thedrydenotes the set of domain independent axioms that de-
fine properties of a legal situatiofi)ss, is the set ofsuccessor state axioned the formF (X, do(a,s)) =
®r (X, a,s) that specify for every fluer under which conditions it holds in the situatioio(a,s). Dap
containsaction precondition axiomsf the formPosgA(Y,s)) = Ma(Y,s) that specify for every actioA
under which condition it can be executed in a situagofDyn; holds theuniqgue name axiomf®r actions
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of the formA(X) = A(Y) D X =¥, i.e. two distinct action& andA’ are equal iff they have the same name
and the same parameter vectors. Finally contains axioms that describe the initial situation.

2.2. Golog

Golog (an abbreviation for &@OLin I0Gic) is a logic-based programming language that has beegrusi
by (Levesque et al., 1994) based on the definitions of s@natalculus. In addition to the execution of
simple actions, Golog allows the definition of control stures (e.g. iteration and conditionals) as known
from most of the common programming languages. Moreovelpgallows the definition of procedures
and introduces programming constructs to express nomrdigiism. A Golog program is expanded into
a situation calculus formula and Golog language constiiketisvhile andif can be seen as abbreviations
for logical expressions of situation calculus. (Levesqtuele 1994) define a special abbreviatibo
suchDo(3,s,s) holds if S is a legal terminating situation of a given progranin a starting situation
s. Consequently, running a Golog progr@nbecomes a theorem proving task, i.e. the entailnfemt
Do(8,S,d0o(d,S)) needs to be established. A sequence of actions that ehtéfitsentailment can be
extracted from the proof as théndingfor the situation terns’ given by a successful proof.

2.3. Extensions of Golog

Based on Golog, (De Giacomo et al., 2000) proposed an ertetisat adds concurrent programming
constructs to Golog. Consequently, this extension was da@omGolog which stands foilConcurrent
Golog. Moreover, (De Giacomo et al., 2000) switched from-gatedevaluation semanticg.e. evaluate
Do(8,s,s) for a complete program) to a so-calledransition semantigsvhich is based on defining single
steps of program execution in contrast to directly definiognplete computations. More precisely, (De Gi-
acomo et al., 2000) use two semantic predicatassandFinal to specify transition of program states (or
configuration} as well as legal termination states. We defer the exactitiefin of the transition semantic
predicatedransandFinal to Chapter 7 since any further details are of minor importeaas of now.

Based orConGolog (De Giacomo et al., 2009) proposed IndiGolog (incremehéatrministic Golog),
which introducesnline executiorio allow the programmer to control the amount of planningqrened
andsensingo gain information about an agent’s environment. Intradgonline execution semantics is
particularly interesting since it is a different mode of extton compared to the traditional offline exe-
cution semantics from Golog and ConGolog. Using offline etiea semantics means that an executor
must search over the whole program to find a legal sequencetioha before executing anything. This
can be highly problematic when it comes to execution peréorce and reactivity of an agent. Therefore,
IndiGolog introduces annline execution semantitisat allows a program to execute actions without doing
reasoning beforehand. However, this online execution s&osaalso comes with drawbacks, most impor-
tantly that if an action has been executed in the real wordettmight be no possibility to backtrack if -
for example - a non-deterministic program construct has lbesolved incorrectly. Consequently, online
execution may fail in cases where offline execution may seatcdo control the balance between online
and offline execution (De Giacomo et al., 2009) presensé&aech operatok. The search operator applied
to a programd emulates offline execution for that given part of the prograen it reasons offline to find a
valid execution trace for the progradrbefore executing it.

For the specification of IndiGolog (De Giacomo et al., 20083 the same transition semantics machinery
that proved to be viable for the specification of ConGologiclwhis particularly important for this thesis
since the semantics of YAGI program execution is built orglaage constructs from IndiGolog and similar
transition semantics predicates are used to show thearelagitween YAGI and IndiGolog.

1We use the superset operatoto denote implications (if not explicitly stated otherwise)stay consistent with the notation from
(Reiter, 2001).




2.4. Beyond Prolog-based Implementations of Golog

In addition to ConGolog and IndiGolog various other extensiof Golog such as DTGolog (Boutilier
et al., 2000), sGolog (Lakemeyer, 1999), Legolog (LevesqePagnucco, 2000), ccGolog (Grosskreutz
and Lakemeyer, 2003) and Readylog (Ferrein, 2007) exisG&@dg focuses on the integration of decision
theoretic planning (hence the nam& Golog) using Markov decision processes (MDPs) whereasag5ol
incorporates sensing actions usiaction treesinstead of linear action histories. Legolog illustratesvho
Golog can be used to control a LEGMINDSTORMS™ robot, including features like exogenous actions
and sensing. ccGolog introduces the notion of continuoasgh to be able to evaluate fluents using a
time scale, i.e. continuous fluents are fluents that are eeldarith a temporal component. The focus of
Readylog is to combine various features of different GdikgJanguages under the constraint of being
viable for dynamic real-time domains such as robotic soccer

2.4. Beyond Prolog-based Implementations of Golog

The idea to use a language other than Prolog to implementaggike language was already discussed by
(Ferrein, 2010) and (Ferrein and Steinbauer, 2010). (Fe2610) sketchedolog.lug an implementation

of a Golog interpreter using the scripting language Lua. déesion to use Lua instead of Prolog was
driven by the fact that Prolog was not available on theireamatform (the robot platform Nao) and Lua
offers several advantages like easy interfacing with C/€ade-bases. Driven by similar motivations like
lack of a Prolog interpreter for a specific platform and resedimitations (Ferrein and Steinbauer, 2010)
extended the vanilla Golog implementationgufiog.luawith features of IndiGolog with the specific goal
to target the LEG® MINDSTORM™ NXT platform. Besides those Lua-based implementationstakso
exists an implementation of Golog in Python calfajologcontributed by Ferri Federico from University
La Sapienza of Ronfe

The idea of implementing Golog as an answer set program (ASfchitz, 2008) is discussed by
(Ryan, 2014). Especially, (Ryan, 2014) discusses diftee@codings of Golog for ASP and shows how
different encodings impact the run-time of the resulting?ABurther, he shows how compilation of Golog
programs to finite state machines further increases rue-pienformance.

2.5. YAGI

This thesis is based on the initial proposal of the YAGI laaggi from (Ferrein et al., 2012). In the initial
proposal (Ferrein et al., 2012) stated some functional andfanctional requirements that should be con-
sidered when designing a new action-based programmingideegand provided a first example of YAGI
source code to illustrate the intentions behind YAGI. FertiiFerrein et al., 2012) provided a definition of
syntax and semantics of YAGI that we use as a foundation ¢fimout this thesis. Moreover, (Ferrein et al.,
2012) presented a basic action theory for YAGI called YAG{TRas

D = 3 U DpresU Dssall DapU Dynal D, U Dync.
Based on this YAGI-BAT we define a basic action the@kyag| as
Dy act = ZU Dssad DapU DynaU Dy U Dynes
whereZ, Dssa Dap, Duna @and Dg, contain the same axioms as defined by (Reiter, 2001)/pdcontains
the unique-name axioms used to represent YAGI string tok&kgg is a reduced version of YAGI-BAT

in a sense that (Ferrein et al., 2012) also added the set sibltger arithmetic axioms (Enderton, 2001)
Dpres t0 represent basic arithmetic operations, which we omittfersake of simplicity.

2Source can be found hitps://github.com/fferriipygolog . Last visited on January 15th, 2015.
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2.6. Basic Action Theories and Relational Databases

Basic action theories relate closely to the concept of icrlat databases. More precisely, the idea to
use relational databases to represent the initial situ@ia to use operations that change the database to
represent precondition and successor state axioms hawedizrissed by (Reiter, 2001). Based on the
observation that basic action theories are closely rekateelational databases, (De Giacomo and Palatta,
2000) illustrated how one can build a system for reasonirguibctions exploiting relational database
semantics. They illustrated how system states can be mpeEbusing database tables, how formulas can
be translated to SQL queries and how actions that changeathbake can be encoded as SQL statements.
(De Giacomo and Mancini, 2004) further distingugstfeandunsafesituation calculus basic action theories
and show how efficient reasoning for both cases is possilig uslational databases.

2.7. Sensing and Incomplete Information

One can imagine that there exist various cases where one wamxpress information that is not yet
known, but may (or may not) bgensedo its actual value during the lifetime of the agent. Due te th
fact that sensing and incomplete information in YAGI arejeabto future work we just briefly want
to mention some related work regarding these topics. Varagpproaches of how to deal with incomplete
information in different contexts have been discussed IidEi et al., 1992), (Petrick and Bacchus, 2002),
(Petrick and Bacchus, 2004), (Vassos and Levesque, 20@7pthers. (Etzioni et al., 1992) proposed
UWL, an extension of STRIPS (Fikes and Nilsson, 1972) and rlitestt how UWL can be used to deal
with incomplete information in a UNIX operating system domgPetrick and Bacchus, 2002) discuss a
"knowledge level" approach for planning with incompleteokitedge and sensing, that is they represent
incomplete knowledge as formulas of first-order modal lagic represent actions as updates of these
formulas. Further, they present the PKS (Planning with Kiedge and Sensing) system that illustrates
their approach of planning in the presence of incompleteM@age and sensing. (Petrick and Bacchus,
2004) present further extensions like numerical evalmatibthe PKS system. (Vassos and Levesque,
2007) discuss progression of situation calculus basiomdtieories with a restricted form of incomplete
information. Therefore, they introduce the notionpafssible valuesthat is they assume that for every
functional fluent they may not now which value it has, but tdeknow the set of possible values for each
functional fluent. Based on this assumption, they show tragnession of restricted basic action theories
with incomplete information is possible.

The problem of integrating sensing information into an@tibased system was discussed by (De Gi-
acomo and Levesque, 1999b), (De Giacomo and Levesque, )183@#De Giacomo et al., 2009). In the
context of planning and sensing (Levesque, 1996) introdiseased fluent axionts the formSF(a,s) =
@a(s), whereSFis a distinguished predicate liloss relating an action to a fluent. For example, (Levesque,
1996) uses an airport scenario that shows how the actioneakkahg a departure screen is connected to
knowing where a certain plane is parkedSig check de parturess) = Parked Flight123 gateAs). In
other words,(s) gets asserted to a truth value by its corresponding sensiitmaThe basic action theory
is therefore extended with the set of sensed fluent axibgpsand the task is to show thd@dU Dsg = @[S]
for a goal formulapin a situations'.

Further, (Scherl and Levesque, 2003) speciiedsing result axiomsf the form SRa(X),s) =r =
@ (X,r,9), with a being the name of the actioi,being the parameter vectar,being the result and
being the situation term. For example, (Scherl and Leves2)@3) show a sensing result axiom to obtain
information about the weather &R senseweathers) =r = (r ="sunny Vr = "rainy” Vr = "snow ) A
weathers) =r. Note that the distinction betwe&¥F andSRis similar to the distinction between relational
and functional fluents.
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2.8. Other Approaches for Reasoning About Actions

Besides Golog and its dialects there exist other well-waglapproaches that deal with the task of rea-
soning about actions and change, among them are langukgdsiént calculus (Thielscher, 1998), 3APL
(Hindriks et al., 1999)4 (Gelfond and Lifschitz, 1993) and its successBrandC (Gelfond and Lifschitz,
1998) as well as PREGO (Belle and Levesque, 2014).

The purpose of fluent calculus is to not only solve tiygresentationaframe problem (i.e. the problem
of specifying all non-effects of actions) but also théerentialframe problem, i.e. the problem of inferring
all these non-effects. Therefore, fluent calculus intredube concept of so-calletiate update axions
specify how an action modifies a state staterelates a situation to the state of the world in that situmtio
that is, astateis the union of all relevant fluents that hold in a situatiorhislrelation is reflected by a
functionStatés) that relates a situaticswith a corresponding state. Based on fluent calculus, (3ttelr,
2002) provides a programming method called FLUX, which dssfior FLUent eXecutor.

3APL (pronounced "triple a-p-I") is an agent programminggaage that combines elements from im-
perative and logic programming. 3APL is based on the metaphmtelligent agentswhere (Hindriks
et al., 1999) state three main properties that define arigeet agent, namelya) having a complex inter-
nal mental statb) having the ability to act pro-actively and reactively andhaving the capability to reason
reflectively. They show how 3APL supports those three pitiggeand specify the semantics of 3APL us-
ing a transition-style semantics. The main difference betwSAPL and ConGolog is that (Hindriks et al.,
1999) argue that the execution model of 3APL is more dynamiopgared to ConGolog’s approach to
extract a sequence of primitive actions from a given higlellerogram.

Finally, PREGO is a language based on situation calculusdlases on dealing with uncertainty and
noise (e.g., noisy sensors), which are constant compaiiaesl-world robotics applications. Therefore,
(Belle and Levesque, 2014) study formal and computatiorgigrties of projection whendegree of belief
is incorporated.
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Chapter

YAGI Software Architecture Specification

In this chapter we will define the software architecture ofAGY-based software system. The goals of
the architecture are to decouple the syntax and semantite dinguage as cleanly as possible, provide
easy extensibility and a clear separation of concerns &y gmintainability. Again, we want to emphasize
that Golog is typically implemented as a set of Prolog claussd Golog programs run inside a Prolog
environment. As a consequence, the distinction between areafeatures of Golog and what are side-
effects of Prolog is challenging for novices and sometinveséor experts. Due to this fuzzy separation of
semantics writing correct Golog programs can be challengimd error-prone. Moreover, the tight coupling
of Golog to Prolog is also problematic from a purely techhyjzant of view since a Prolog interpreter might
not always be feasible due to resource constraints andftorpence limitations of a target system and
- even if a Prolog implementation exists - integrating a @dlaerpreter into a rather complex technical
ecosystem might be a non-trivial task.

To overcome these issues, we propose a 3-tier layeredectirié for YAGI applications that allows a
clear separation of syntax and semantics and that can beeaidigp a variety of different target systems
depending on the practical needs of a certain problem dorérstart with an overview of our architecture
in Section 3.1 and proceed with the description of the pwepmieach of the three layers, i.e. front-end
(Section 3.2), back-end (Section 3.3) and system inteif@eetion 3.4). We finish this chapter with a
description of the inter-layer communication between tirenerly specified layers in Section 3.5.

3.1. Architecture Overview

In this section, we give an overview of the 3-tier architeetfor YAGI applications, which consists of the
following three layers:

1. Front-End: The front-end provides the YAGI user interface (Ul) as wadithe parser for YAGI
source code. The front-end handles YAGI source code on dymymetactical level, i.e. it is respon-
sible for checking syntactical correctness of YAGI codecezd by a user. Further, the front-end
transforms YAGI code into a suitable intermediate reprizdémn that allows the back-end to pro-
cess the YAGI program efficiently. The user interface caly dmpending on the specific needs of
a specific implementation, one can imagine a wide range &drdifit user interfaces, from simple
console-based interfaces to graphical user interfacemédnile devices such as mobile phones or
tablets.

2. Back-End: The back-end consumes data from the front-end, i.e. the-&nd passes an abstract
representation of a YAGI program (the so-caldubtract syntax treeor AST) to the back-end. The
back-end stores the current state of the world (i.e. the YB&Hic action theoryDyag)) as well

11
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as executable program elements (e.g. procedures, YAGInsjti The back-end handles the YAGI
program on a semantics level, i.e. it modifies the YAGI bastma theory and/or the YAGI program
elements according to the semantics of the given YAGI prograurther, the back-end responds to
the front-end depending on the type of YAGI statement, wiiehwill discuss in detail in Section
3.5.

3. System Interface The system interface provides external data (e.g. datergtd due to exogenous
events) for the back-end and is responsible for executitigres; i.e. responding to YAGdignat
commands.

This 3-tier architecture is illustrated in Figure 3.1.

YAGI Line L
Parser YAGI Ul Front-End
N
- Query Results
- AST (L) - Status Information
- Diagnostics
YAGI-BAT Back-End
N
- Signal (Action Exec.) - Signal (Setting - Signal (Exogenous
- Signal (Setting Action) Action Response) Event Data)

\4
T

Figure 3.1.: YAGI 3-tier architecture

3.2. Front-End

In this section, the elements of the first layer (front-end)) lve discussed.

3.2.1. YAGI User Interface

The YAGI user interface (Ul) allows the user to specify a @ertYAGI-domain as well as to interact with
this domain, e.g. change the YAGI world of fluents or queryldiorformation. Depending on the scenario
the user interface may vary, one can imagine console-bagerdbices similar to console-based editors like
vi or emacs graphical user interfaces similar to popular integratedetbpment environments (IDEs) like
Eclipseor Net Bean®r applications for mobile devices like mobile phones otdtth

3.2.2. YAGI Parser

The YAGI parser transforms YAGI input source code into antralos model of the input, i.e. into an
abstract syntax tree (AST). This abstract representatiesares syntactical correctness of the input and can
be used for further processing.

12
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3.3. Back-End

In this section, the elements of the second layer (back-eil)e discussed.

3.3.1. YAGI Basic Action Theory

The back-end stores the state of the YAGI world, i.e. the YAGs$ic action theoryDyag. The back-
end is also responsible for transforming the data providethb front-end into a reasonable format that
allows efficient storing and updating, hence the exact fodepends on the specific implementation of the
back-end.

3.3.2. Program

The back-end stores executable structures that can mdudifgtate of the world. Executable structures
can be rather complex and their execution happens soleheibdck-end, hence there need to be a proper
representation for these executable structures. Exanfipiesomplex structures are procedures, loops
and non-deterministic choice of actions, among others eefin Chapter 5. Moreover, the back-end is
responsible for properly executing YAGI statements predidy the front-endProperly in this context
means that the back-end shall implement the YAGI semargispecified in Chapter 5.

3.4. System Interface

The system interface serves as the lowest level in the YA r3architecture. The system interface varies
depending on the area of application, one can think of a rahggstem interfaces from autonomous robots
to video game bots. The purpose of the system interface esrt@ ss low-level communication layer that
executes actions triggered by YAGbnalcommands and provides data acquired from external sofoces
the back-end.

3.5. Inter-Layer Communication

In this section, the communication mechanisms between @fatle layers will be discussed.

3.5.1. Front-End — Back-End Communication

The front-end passes YAGI lines of code in the form of an aostsyntax tree (AST) to the back-end,
i.e. for a YAGI line of coden the parser returns its abstract representation as a fun&8ad (1), which is
passed to the back-end for further processing. The typees$ages are as follows:

1. Fluent Query: The front-end can query information about the currenestdithe world, i.e. states
of fluents.

2. Program Specification The front-end can pass YAGI programs to the back-end. Sungrams
have no initial effect until they get executed.

3. Program Execution: The front-end can pass statements that initiate progratution to the back-
end. There are various consequences depending on the ipregmacture that gets executed, e.g.
modifications of the state of the world or testing certainditbons. These various effects are de-
scribed in detail in Chapter 5.
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The exact format of the output &ST€) as well as the communication mechanism between front-end
and back-end depends on the particular implementationeobyistem, i.e. may vary depending on the
requirements of a specific implementation. We describe cawfpof-concept implementation in Chapter
6.

3.5.2. Back-End — Front-End Communication

The back-end responds to the front-end depending on theofypessage as follows:

1. Fluent Query: If the front-end queries the state of a fluent, the reply isteo$ tuples representing
the state of the fluent dalseif the fluent is not defined.

2. Program Specification The back-end returnsue iff the program could be stored properly and
falsein any other case.

3. Program Execution: The back-end returns information about the program thheisg executed.
Such information can be status information, data produgedignalblocks of YAGI actions or
diagnostics in case any run-time errors occur.

The data exchange format for this part of the communicatiag aiso vary between specific implementa-
tions.

3.5.3. Back-End — System Interface Communication

The back-end communicates with the system interface viarastignaling mechanism. The content of

the string can either be plain text in a natural language ecatable code in an arbitrary programming
language. This decision depends on how a specific systemfiaicgeprocesses the contents of the string
signal. Signals can for example trigger an action that ebesca real-world action (e.g. motion of an

autonomous robot) or query some information about the w@rlg. a synchronous/blocking request to a
specific sensor).

The data exchange format as well as how to distinguish betaeton- and sensing-signals may vary
between different implementations of the system.

3.5.4. System Interface — Back-End Communication

The system interface responds to a signal from the back-ecmrdingly, i.e. providing some status in-
formation about an executed action or returning an actitridgered status query result. Moreover, the
system-interface asynchronously provides data from exmge events via call-backs for the back-end.
The back-end buffers exogenous event data in a queue if mmécbeing executed. These buffered values
are then consumed by the back-end and the next action istexecu

The data exchange format may vary between different impheatiens of the system.
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Chapter

YAGI By Example

In this chapter, we provide an implementation of our objetivéry robot running example to illustrate one
specific scenario we plan to use YAGI for, including a nomal description of the intended semantics.
We explain our running example in Section 4.1 and proceel thi definition of the fluents and facts in
Section 4.2 and Section 4.3, respectively. Then, we desthid YAGI actions in Section 4.4, show the
definition of an exogenous event in Section 4.5 and finish gample with the procedure definitions in
Section 4.6.

4.1. Running Example

To illustrate our intentions, we use an object delivery ta@mrunning example. The task of the robot is
to pickup a certain object from a person, i.e. the sender afided it to another person, i.e. the receiver.
Every person can possibly reside in a number of differentedfi hence it is necessary for the robot to
check whether or not the person is actually in the room befnkdng up/delivering an object.

In the following sections we provide an implementation of aunning example written in YAGI. For
the sake of simplicity, we define that every variable andyetgment in a fluent starting with lowercase
corresponds to a room, lowercaseorresponds to an object and lowercpsmrresponds to a person.

We proceed with the definition of fluents, facts, actions amd@dures including a non-formal descrip-
tion of the intended semantics. A detailed specificatiorhefgyntax and semantics of YAGI follows in
Chapter 5. The complete listing can be found in Appendix A.

4.2. Fluents

The following listing specifies the fluents for the objectidety robot:

/Nlocation of the robot (room1l, ..., room3)
fluent at [{ . : 1
at = {< >}

/Nlocation of objects (objectl in rooml etc)
fluent is_at [{ , : Hi{ , : 1

is_at = {_ > < , > < , >}

/lobject carried by robot
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fluent carry [{ , , 1

/lIrequests moving an object (param 1) from a sender (param 2)
/lto a receiver (param 3)
fluent request [{ : : Hi{ : : K : : 1

/Istates what person has been detected in what room
fluent detectedPerson [{ , , HK , , H;

Listing 4.1: Object Delivery Robot Fluents

After the name of every fluent, one or more pairs of brackdtsvfo The number of pairs define the arity
of the fluent. Inside every pair of brackets there need to bepecification of the domain inside a pair of
braces, e.g. the flueat has arity one and the domain is the set of available rooms{"r®", "r2", "r3"}.
Fluents can subsequently be assigned to their initial galibe fundamental type of a fluent assignment
is a set of tuples, e.g. the flueist atis assigned with a set of object-room tuples. A tuple is deshdly
enclosing angle brackets, whereas a set is denoted by enclosices. We decided to use tuples and sets
as our basic concept because we believe that their semangicgidely familiar and easy to understand.
Further, the concepts of sets and tuples closely relateetadimantics of relational databases, which is
rather convenient as we will describe in detail in Sectio®.&.

4.3. Facts
The following listing specifies the facts for the object dely robot:

/lone or more rooms are assigned to one person,

/li.e. the person’s offices

fact office [{ , , HI , , H;

office = {< . > < . > < , > < >}

Listing 4.2: Object Delivery Robot Facts

Facts are similar to fluents, the only difference is thatfaetn only be assigned once and remain constant
after the first assignment. Semantically, their is no differe between a fact and a fluent, its intended
purpose is solely to enable a programmer to express cosstfiesrtain properties of the world.

4.4. Actions
The following listing specifies the action for moving the etj delivery robot to a specific room:

/Imove robot to room $r
action move($r)
precondi tion:
/lrobot is not in room $r
not (<$r>in at);
ef fect:
/Inow he is in room $r
at = {<$r>};
signal :
+ $r;
end action

Listing 4.3: Object Delivery Robot Move Action
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The action uses set-operators to describe the effects ofhgavrobot to a specific room. Furthermore,
the precondition is defined using the binary operatorvhich evaluates whether or not a concrete object
(more specifically, a concrete tuple) is part of a set of tsiplehe actions for picking up and putting down
an object look similar:

/Ipickup object $o
action pickup ($o)
precondi tion:
/lrobot doesn’t carry anything and is in the room where the ob ject is
(not (exists <$x> in carry ) and exists <$y> in at such <$o,$y> in is_at );
effect:
/Inow he carries $o
carry += {< $0>};
signal :
+ $o0;

end action

Listing 4.4: Object Delivery Robot Pickup Action

/lputdown object
action putdown ( $0)
precondi tion:
/Ihe carries the object stored in $o
<$0> in carry ;
ef fect:
/Inow he’s not
carry -= {< $0>};

/lwhere ever it was, its now somewhere else...
is_at -= {< $o0,_>}

/l...namely: here!
foreach <$r> in at do

is_at += {< %o, $r >};
end for

signal :
+ $o;
end action

Listing 4.5: Object Delivery Robot Putdown Action

The following listing specifies the action for detecting aquan:

/["setting" action to detect a person, i.e.
/I$p gets its value from an external src
action detectPerson () external ($p)
effect:

/[remove person
detectedPerson  -= {< $p, _>};

/ladd the detected person + room tuple to the fluent
foreach <$r> in at do

detectedPerson += {<$p, $r>}
end for

signal :

end action

Listing 4.6: Object Delivery Robot Detect Person Action
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The listing above illustrates an action that uses extenfatination tosetthe value of a fluent. Conse-
quently, we call these types of actiosstting actionsdenoted by thexternatmodifier in the first line

of the action declaration. Note that every variable stafest ¢he externalkeyword gets its value from
an external source and can subsequently be used just likethaeylocal variable. In contrast, an action
without anexternatmodifier specifies projection effects without using anyeexal data. Moreover, note
the usage of the underscore character in the line that resribieedetected person from the fluent. The
underscore character serves as wild-card, i.e. can becegplay any possible value of the domain. This
feature resembles the pattern matching functionality flonctional programming languages like Scala.

4.5. Exogenous Events

Exogenous events differ frosetting actionsn that they can't be actively triggered by a YAGI statement.
Exogenous events are triggered by an external event, hkagertodify the internal representation of the
world based on some external input. The following listingafies the exogenous event for receiving a
request to transport an object from a sender to a receiver:

/lexogenous event to initiate transportation

/lof object $o from $sender to $receiver

exogenous-event receiveRequest ($o, $sender , S$receiver )
/ladd request
request += {< $o0, $sender , $receiver >};

end exogenous-event

Listing 4.7: Object Delivery Robot Receive Request Exogesrnievent

4.6. Procedures
The following listing specifies the procedure for servingguest:

/lserves a request
proc serve ($object , $sender , S$receiver )

pi ck <$sender , $roomSender > from office  such
move( $roomSender );

/lsearch for person in the room
detectPerson ();

/Isender is actually in the room
if (<$sender , $roomSender > in detectedPerson ) then
pickup ( $object );

/ldeliver object to receiver
pi ck <$receiver , $roomReceiver > from office  such
move( $roomReceiver );

/lsearch for person in the room
detectPerson ();

/Ireceiver is actually in the room

if (<$receiver , $roomReceiver > in detectedPerson ) then
putdown ( $object );
end if
end pi ck
end if
end pi ck
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|| end proc

Listing 4.8: Object Delivery Robot Serve Request Procedure

Finally, the following listing specifies the main controlief the object delivery robot, which simply serves
a randomly picked request:

proc main ()
/lserve a random request
pi ck <$object , $sender , $receiver > from request such
serve ($object , $sender , Sreceiver );
end pi ck
end proc

Listing 4.9: Object Delivery Robot Main Procedure
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Chapter

YAGI Language Specification

In this chapter, we specify the syntax and semantics of th&MAnguage. Therefore, we describe the
notation we use throughout this chapter in Section 5.1 amdirace with the definition of some basic
elements of the language in Section 5.2. Then, we define tharges of YAGI for modeling the state
of the world in the context of situation calculus in SectiorB &nd continue with the definition of YAGI
program execution in the context of the semantics of IndiGah Section 5.4. Furthermore, we line out
ideas about incomplete information and sensing in YAGI ict®a 5.5 and Section 5.6, respectively.
Subsequently, we specify exogenous events in YAGI in Secbo/ and proceed with the description of
some YAGI language elements that are neither related tatstucalculus nor IndiGolog in Section 5.9.
Finally, we finish this chapter with the definition of a YAGIqgram in Section 5.10.

5.1. Notation

To specify the syntax we use statements written in Backus-Rarm (BNF) of the form/a) ::= B, where
non-terminal symbols are denoted by enclosjaggle bracketsand syntactical elements (i.e., terminals)
of the language arbold. Moreover, we use regular expressions to quantify occuggmf elements in
BNF-formulas, applying default semantics of regular egpien elements, i.e. one-or-more (+), zero-or-
more (*), zero-or-one (?), negation). To specify semantics, we use logical connectives of psitiomal
logic and first-order logic with their conventional mearsngrurthermore, we use the notation and se-
mantics of situation calculus as defined by (McCarthy, 1368) (Reiter, 2001) to model the state of the
world and IndiGolog’s programming constructs and their aetics defined by (De Giacomo et al., 2009)
to specify program flow.

To specify the semantics of the situation calculus languagg, over the basic action theoy ac) we
define Ly ag) initially to be empty, i.e. no fluents, actions or constanhbgls (excep&) are defined and
Dy aci to only contain domain-independent information, i.e. gtling excep and Dy is empty. We
consider this initial state as the interpretation of an gn¥®GI| programnull®. For arbitrary sequences
of YAGI lines of code(ls,...,In) the the languagéyac/’ over the resulting theorfy ac/ is obtained by
modifying their respective predecessaxsg over Dy aci obtained by the YAGI lines of cod@y, ..., In-1),
depending on the type of YAGI language construct of linas specified in the following sections.

1We definenull to be the empty YAGI program to avoid confusion with the emptya@grogram, which is often denoted .
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5.2. Basic Language Elements

To be able to specify the semantics of the YAGI language tfie mapping to situation calculus sentences
and IndiGolog programming constructs) we need to brieflyngedi set of basic language elements that will
be used throughout this chapter.

5.2.1. String
(string) ::="(~ (" | 1))*"

Defines a valid sequence of characters, i.e. every condatera characters (except double quote and
double slash) surrounded by a leading and trailing doubdgeqgcharacter.

5.2.2. List of Strings
(string_list ::= (string) (,(string))*

A sequence of strings.

5.2.3. ldentifier

(id) == (a...z]A...Z)(a...Z|A...Z]0...9])*

An identifier has no standalone semantics, it solely spadifie structure that a valid name of an entity in
the YAGI language must fulfill. Under certain conditionserndifiers must be unique, e.g. the names of
two different actions must not be equal. The exact conditmimame uniqueness will be discussed in later
sections.

5.2.4. Variable
(var) :=$ (id)

Defines an identifier to which a value can be assigned to.

5.2.5. List of Variables
(var_list) ::= (var) (, (var))*

A sequence of variables.

5.2.6. Value
(value ::= (string)|{var)

A value is a shortcut for something that is either a string varéable.
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5.2.7. Value-Expression
(valexph) ::= (value ((+) (value)*

Addition of two values. Due to the fact that variables carydmld string values (as specified in Section
5.3.4) each such expression ultimately boils down to anaipef being applied to string elements. Hence,
we can define the semantics of a value expression as the eoatiah of character sequences.

5.2.8. Tuple
(tuple) ::= < ((tuple_va} (, (tuple_va})*) | € >

(tuple_va)} ::= (var) | (string) | * | _

Defines a (possibly empty) mathematical tuptg, .. .,x,). Possible elements in such a tuple can be vari-
ables, strings, the star charactt), which denotesncomplete informatiorfas discussed in Section 5.5)
and the underline character)(which denotes pattern matching (as discussed in Secti®’)5

5.2.9. Set

(sep :={ ((tuple) (,(tuple))”) [ €}

Defines a finite (possibly empty) mathematical Sed{x2,...,xJ), ..., (6& x2,...,xK)} of tuples.

5.2.10. Set-Expression
(setexpy ::= (seb ((+]-) (seb)”

Defines the set-based union and complement, i.eA lehd B be sets, then the YAGI expressian B
denotes the unioAUB anda - B denotes the complemeft\ B. For the sake of conformance to the
majority of well-known general purpose programming largesawe define that both operatersand —
have the same precedence and are both left-to-right aigsecia

5.3. YAGI and Situation Calculus

In this section, we describe how YAGI is mapped to elementh@situation calculus to model the state of
the world.

5.3.1. Fluent Declaration
Syntax

(fluent_ded! ::=fluent (id) ( [ (String | { (string_list} )] )*;
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Semantics

Letl, be a YAGI fluent declaration of a flueRtwith arity m, wheremdenotes the number of square bracket
pairs following the name of the fluent. Each pair of squarekets define the domain of its corresponding
dimension, i.e. we say that the n-th dimension of fluénwith arity m and 0< n < m has domainst.
Furthermore, we say that a fluefthas domainse, i.e. the fluent has domaist in dimension onesg in
dimension two and so on, agd = (S, 5%,...,ST). The sort of the n-th dimension of a fluent is defined as
follows, where the ternsortis used as in many-sorted first order languages and will fromon be used
equivalently to the terndomain The sort string represents the countably infinite set o$ides character
sequences, i.e. the Kleene closWreover the alphabet = {A...Za..z1...9_}. The axiomatization is
achieved by mapping every string value to a constant withsttmee name as the value of the string and
providing corresponding unique-name axioms for theseteots We call this set of axiomByn.. Note
that the domain can either be the full rang&éf(denoted by sting ) or any finite subsefs;, ..., s} CV*
denoted by the enumeration of all the valid elementsfi.e.1" ..., q.

The declaration of a fluerfit with arity m extendsly ac) by adding the correspondifign+ 1)-ary pred-
icate F(X,s) and twomrary action symboladdF(X) andremoveRX), leading toLyac/, wherexX denotes
the vector of fluent argumentg;, ..., xn) ands denotes the situation ternyag/ is the same adyag)
except that all sentences that mentigddF or removeRn Dg,, Dssaand Dy, are removed and the axiom
VX.F(X,S) = falseis added toDs,. This can be considered as some form of initialization ofttieory
for the fluentF. Moreover, the axionf (X,do(a,s)) = a=addF(X) vV F (X, s) A a # removeRX) is added to
Dssa The purpose of the situation calculus simple actaddF andremoveFare to make the fluer true
(or falsg respectively) for a given parameter veckoiNote that each element kis an instantiation of an
element of the sort of the corresponding dimension in thefldeclaration, i.ex; € X has domains? (the
sort of the first dimension of the fluent declaration for theffitF), x, € X,n < mhas domairsg and so on.
To enforce this correspondence, we add the necessary gitonsPosgaddF(X),s) = AT, T(St, %) and
PosgremoveRx),s) = AL T(SE, %) to Dap?, with T(SE,X;) being a binary predicate that holds xffis an
element of its corresponding sgit. Also note that the initial databagey, is in closed form, according to
the definition from (Reiter, 2001).

5.3.2. Fact Declaration
Syntax

(fact_dec] ::=fact (id) ( [ (String | { (string_list} )1 )*;

Semantics

The semantics offact_dec] is identical to the semantics ¢fluent_dedl, the only difference is that a fact
can only be assigned once and becomes immutable after igleamsdssigned for the first time. According
to this definition, we can simplify the underlying theory facts by omitting the definitions of the situation
calculus actiongadd andremovefor each declared fact. This leads to a theory that makesathgtioess of
facts more explicit since there exists no mechanism in teergnthat is able to modify a fact. Initialization
of facts is implemented by directly updatirs,, i.e. addingF(X,S) =X=XVX=%V...VX=X,
for the factF and then parameter vectors which are used to initialize the fact.tifeuy we define that
F(x1,S) =trueandvx.F (X, S) = falsefor the special cases for= 1 andn = 0, respectively.

Implementation Remarks

Any implementation shall check that there is no assignmemtfact after its initialization. Any further
left-hand side appearance ofattin an assignment shall lead to an error. Moreover, any imetgation

2In the special case of a fluefthaving arity 0, the action preconditions are defineBesgaddF, s) = true andPosgremoveFs) =
true.
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shall ensure that a fact is subsequently assigned aftegdtamtion, i.e. let, be a YAGI line of code that

declares a fact, then the subsequent line must be the initialization of the formerly declared fact.yAn

other type of statement shall lead to an error.

5.3.3. Formulas

Syntax

(formula) ::= (atom)
| not ( (formula) )
| ((atom) (connectivé (formula) )
| exists(tuple) in (setexpf (such (formula))?
| all (tuplée) in (setexpf (such (formula))?
| (tuple) in (setexpf

alue (comp_op (value

(atom) ::= (v
| (setexpf (comp_op (setexpy
| (true | false)

(comp_op:===[1=|<=[>=[<]|>

(connectivg::=and | or | implies

Semantics

Instances offormula) evaluate to a logical truth value. The elements allowed @hsufirst-order formula
have the following semantics:

» Truth Values: true is true, falseis false

» Comparisons On string values, two elemerdgs ands; are considered equal iff they have the same
length and each character at the same position in go#imds, are equal. If this equality relation
holds the operator= returnstrue, otherwise it returngalse Consequently, the operatbr is the
negation of==. The ordering comparisors=, >=, < and> are performed lexicographically. On sets,
comparisons are element-based, i.e. two 8easdB are equal iff every element & is in B and
vice versa. Order comparisons are mapped to (proper) ssbygetset relations, i.e. 1&tandyY be
sets, therx < yistrueiff X is a proper subset of Y, i.eX C Y. Consequently, the operaterdenotes
the proper supersét. The operators= and>= follow intuitively as subset and superset without the
strictness property, i.e- andD.

Logical Connectives The logical connectiveand (A), or (V) andimplies (—) have their usual
meanings.

Negation The operatonot (—) negates the truth value.

First-Order Quantifiers : The operatorsll (V) andexists(3) have their usual meanings. Note that
they operate on the sorts of the respectsetexpy, i.e. letF be a fluent of SOrfe, thenexi st s <
$X_1,%%.2 ..., $x_n > i n Ftranslates t&qujlﬂngz,...,Hﬁxjn.F(le,...,xjn,s), whereﬂi is the
existential quantifier over the sort of theth dimension of fluenE. Theall-quantifier follows simi-
larly, with Ve being the universal quantifier over the sort of thh dimension of fluenE. Note that
the YAGI variables$xj 1 ,$xj. 2 ..., $xj_n > must befreshin a sense that they must not be bound to a
value before they are used in alh or existsstatement. The optionalich (formulg) is connected to
the quantified formula either via a logical conjunction (&se of an existential quantifier, i€«i st s

<$x> in F such <formula > translates tcﬂqx.F(x, s) A ) or a logical implication (in case of an all
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quantifier, i.e.al | <$x> in F such <formula > translates t0/§x.F(x, s) — ¢), where¢ corresponds
to a YAGI (formula) instance. Note that in case sachblock is present the semantics af and

existsare identical, i.eexi sts <$x> i n Fandal | <$x> i n Fhold iff there is at least one element for
which the fluenf holds.

» Operator in: The keywordn is used to specify the domain of discourse when used withtediicer
quantifier as defined above. Moreovir,can also be used without a quantifier, which changes its
semantics as follows$x1, $x2,..., $xn> i n Ftranslates td= (X1, Xz, ...,Xn,S), i.e. the truth value of
the FluentF in situations is evaluated for concrete elemens, ..., x,). Note that - contrary to
YAGI variables used with first-order quantifiers as discdssgove - the variablesxi, $x2...., $xn>
must be bound to a value before being used on the left-hards$ithe standalone operator.

Implementation Remarks

Any implementation shall report different errors basedranfollowing scenarios:

* First-Order Quantification With Bound Variables : Anything but unbound variables used in a
first-order quantified formula shall result in an error, e.g.

fact floors [{ , , , . , , i

floors = {< > < > < > < > < > < > < >k
exists <$x> in floors such $x < ; /Ivalid, evaluates to 'true’

$y = ;

exi sts <$y> in floors such $x < ; /linvalid, $y is already bound
exists < > in floors such < . Ilinvalid, "0" is a constant

Listing 5.1: First-Order Quantification Examples

» Unbound Variables on the Left-Hand Side of the Standalone Oerator in: Any use of an un-
bound variable on the left-hand side of the operatahall result in an error, e.g.

fact floors [{ , , , , , , ik
floors = {< > < > < > < > < > < >}
$y = ;

<$y> in floors ; /ivalid, $y is already bound; evaluates to 'false’

< > in floors ; //valid, evaluates to 'true’

<$x> in floors ; /linvalid, $x is unbound

Listing 5.2: Operator 'in’ Examples
5.3.4. Assignment
Syntax

(for_loop_assigh

(assignment::= (assign ;
|
| (conditional_assigh

(assign ::= (var) = (value
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| (id) (=] +=-=) ((id) | (setexpy)
(for_loop_assigh::= foreach (tuple) in ((id) | (setexpf) do (assignment" end for

(conditional_assigh::= if (formula) then (assignment" (else(assignment)? end if

Semantics

The simplest case dhassign is an assignment of a value to variable, which simply bindmgle value

to the name of the variable. Note that variables can only kioigple values, i.e. instances of sort string.
Assigning more complex structures (i.e. tuples and setsatiables is not permitted. Since this type of
assignment solely maps a value to a name it has no influen@® g& or Ly ag.

The second base case (@fssign is the assignment to afid), i.e. the assignment to a flueRt. Due
to the fact that either another flueg or set of constanter = { (x1,X2,..., X, ..., (xt,%2,...,x)} can
be assigned to a flueR we need to look at both of these cases separately. In the disst eve already
have a situation calculus representation we can use to fiaerthe assignment since the fludft must
have been declared first. In the second case we need to adresBituation calculus representation from
the set of constantsg, as follows. We transformog to what we call ashadow fluentA shadow fluenis
the situation calculus representationogf, i.e. a fluent;(X, s) is created withX according to the elements
in oF ands as situation term, the axioffs(X,S) = X=X VX=X V... VX=X, is added taDg, and the
successor state axioX.F;(X,do(a,s)) = Fs(X,s) is added taDssa Note that eacl in VX corresponds to
one tuple inog and the assignment is only valid iff the arity of the fluents aqual and each element of
the assignment belongs to the same domain.

Now, having a situation calculus representation for botthefvalid assignment cases, we can proceed
with the specification of the assignment semantics. Assamsto fluents expand to YAGI programs as
follows. LetF be the fluent at the left-hand side of an assignment arfg;Ibe the fluent at the right-hand
side of the assignment, then we need to distinguish betwesefoliowing types of assignment:

» Add-Assignment An add-assignment (assignment operatey adds all the tuples frorf, to F,
leaving all other elements iR unchanged. That is, By aci = F(X) and Dyaci = Fs(X) then it
holds after the assignment:= F_sigma ; thatDyac| = Fo(X) — F(X). Consequently, given the YAGI
assignment += F_sigma; we can construct a YAGI program as follows:

foreach <$x1,..., $xn> in F_sigma do
addF ($x1,..., $xn);
end for

This YAGI-loop essentially adds all the elements fregtto the fluent= using the situation calculus
simple actioraddF. Recall that the situation calculus simple actiadsliF andremoveFare created
for every YAGI fluentF at its declaration, see Section 5.3.1. The exact semariticseach(i.e.
mapping of a YAGIforeachto IndiGolog) are discussed in Section 5.4.6.

* Remove-AssignmentA remove-assignment (assignment operatdremoves all tuples if; from
F, leaving all other elements iR unchanged. That is, By aci = F(X) and Dyaci = F(X) then
the assignmertt = F_sigma; leads toDyaci = F(X) if Fs(X) holds. Similar to the add-assignment,
given the YAGI assignmemt -= F_sigma; we can construct a YAGI program as follows:

foreach <$x1,..., $xn> in F_sigma do
removeF ( $x1 ,..., $xn);
end for

Note that the only difference to the YAGI program for the addignment is the different situation
calculus actiomemovek

» Override Assignment An override assignment (assignment operajamakes the fluerf true for
all and only all tuples if;. In other words, an override assignment removes all elesrisoh F and
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adds all the tuples frorRy to it. Consequently, we can express an override assignrsente@move-
assignmenf -= F followed by an add-assignmehkt+= F5. Hence, we can specify the override
assignment by applying the construction rules for add- antbve-assignment specified above.

Based on the specification of assignments to fluents we car@davith complex assignment statements.
(for_loop_assigh defines an iteration over all tuples in ofetexpf with multiple assignments in the
loop body. The intention is to provide a convenient way tagasgpotentially multiple) fluents to some
value that is determined by iterating over a set of tuplesteMioat the semantics of the different types
of assignments specified above still apply siffze_loop_assighis basically just a less verbose way to
formulate a list of consecutive assignments. The mappirey(fufr_loop_assighto an IndiGolog program
works in the same way as the mapping dfa_loop) discussed in Section 5.4.6, the only difference is that
in a (for_loop_assighonly multiple instances ofassignmentcan be executed in the loop body whereas
the loop body in &for_loop) consists of an arbitraryblock. Due to the fact that we specify that it is
not permitted to modify the set the loop iterates over insigeloop body we are not be able to perform
rewriting for override assignments since the expresfiea F would violate this specification. To avoid
this specification violation we remove the modification miesibn for loop assignments and specify the
execution semantics of assignment for-loops as follows (Ehtexpy the assignment loop iterates over is
evaluated once (and only once) before the loop gets exedutdg this semantics we can make sure that
assignment rewritings for assignments Ilike= F work correctly.

(conditional_assighis driven by a similar motivation aor_loop_assigh i.e. to provide a conve-
nient way to formulate (potentially multiple) assignmebésed on the evaluation of sorffermula). One
can think of it as conditional branching likethen-elseconstructs known from most of the common pro-
gramming languages, with the restriction that in each ofbttamches the only type of statement allowed
is (assignment The mapping to an IndiGolog program works in the same wayhasntapping of a
(conditiona) discussed in Section 5.4.4

Having defined the semantics and rewriting rules of YAGIgssient statements we want to emphasize
that the most complex construct we get from rewriting is gltwat iterates over a finite set of tuples and
performs adding and removing elements to/from fluents. Wegtearantee that even at worst we always
deal with finite sets of tuples since we specified a set to aveaytain finitely many elements and any
operation that adds elements to a set @ed-assignmerand operatoplus) can only occur finitely many
times in a program. Hence, any set produced by these opesatém only contain a finite number of tuples.
Note that the pattern matching extension discussed in@eé&i3.5 does not contradict that observation in
any way. This conclusion becomes immensely important fakwee plan to do in the near future, which
is to prove that one can compile arbitrary YAGI action eféett situation calculus successor state axioms.

Implementation Remarks

Any implementation shall check that assignments dbetexpf are semantically valid, i.e. that every

element in every tuple of thésetexpy is an element of the sort of the corresponding dimension ®f th
fluent at the left-hand side of the assignment. If(&) (i.e., another fluent) is assigned to the fluent at
the left-hand side the assignment is only valid if both flgefieft-hand side and right-hand side of the
assignment) have the same arity and the same domains in iaehsibn. Any other case shall lead to an
error.

5.3.5. Pattern Matching

For YAGI assignments that contain interactions with setamf kind we introduce a pattern matching
functionality inspired by functional programming langeadike Scala. Syntactically, we usaderscore

" " as wildcard character. The set-theoretic semanticsatepn matching is defined as follows. Let
F be a fluent of sortSe ando = {(xq,...,%,)} the set that is assigned B using a YAGI assignment
operator as specified in Section 5.3.4. Then, it must holtddheh element;,1 <i < n of ¢ is an ele-

ment of the sort of thé-th dimension ofF, i.e. X € 5;‘: and the number of elements in theuple of o
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must be equal to the number of dimensions of the flkenthen, assignment works as specified in the
section above. Now let’ be the same as except that the-th element in then-tuple of o is the wild-
card character, i.e0’ = {{X1,...,%i-1,_,%+1,---,%X) }. Now pattern matching applied t5 leads too” =
{0y e s X1, XLy Xt Ly - e o5 X))y Xy e e s Xim T, X2, Xk Ly e e w5 X0 (XLy e« o5 Xi—1, Xy Xit 1, - - -, Xn) } 1.€. fOr each

of themelements in thé-th domain of the fluenfE a newn-tuple is added ta@”, with the wildcard charac-
ter replaced with a concrete elemeqte S,i:, 1< j <m. In some sense, such a replacement of a wildcard
symbol with a set of concrete elements resembtesnding(i.e., replacing a program with variables with
an equivalent program without variables) for finite domamasnswer set programming (ASP), as discussed
by (Gelfond and Lifschitz, 1988) and (Lifschitz, 2008).

The general case with an arbitrary number of wildcards inglsiassignment statement follows the same
principle, the difference being that the expansions araktquhe Cartesian product of their corresponding
domains, e.g. let the wildcard character be present at thibrany positionsi and j in a tuple that is
assigned to a fluemit. Then, pattern matching generates tuples with all elerT[Efr:ﬂ,S X .Sé and all the non-
wildcarded elements of the original tuple. Having defineglght-theoretic semantics of pattern matching
we want to construct YAGI code that implements the expana®apecified above. To be able to express
this in YAGI, we need to introduce a new construct calbddow fact

Shadow Facts

Essentiallyshadow factsire ordinary YAGI facts as specified in Section 5.3.2, withddditional property
that they're internally created and hence not accessibléhtodeveloper of a YAGI program. Note that
they’re conceptually similar tehadow fluentas specified in Section 5.3.4. ghadow facis internally
created if a fluent is involved in a pattern matching assigrties follows. LeF be a fluent of sorsg and
o={(xq,...,%-1,_,%+1,---, %) } & setthat should be assigned®awith the wildcard character at theh
position. Then, a YAGI facf;* is created according to the semantics of fluent/fact deitardiscussed in
Section 5.3.1 (and 5.3.2, respectively) and is subsequassigned tF;* = {(x1), (X2),. .., (Xn) }, VX € SL.
That is, the shadow fack* holds for all values of the sort of thieth dimension of the fluerfe. Note that
this assignment can be expressed in YAGI using the rulesfigzbin Section 5.3.4. Having a definition
for ashadow factwe can continue with the specification of the YAGI patterrtechiang expansion.

YAGI Pattern Matching Expansion

Let there be a YAGI assignment of the form

fluent F[{ ) ;
F += {<_>}; /lequal to F = {<"a">, <"b">};

Then, we can rewrite the pattern matching expansion as YAG¢ of the form

foreach <$chil > in F*_1 do //[F *_1 is the 'shadow fact' of dimension 1 of the fluent F.
F += <$chil >;
end for

The expanded YAGI code essentially iterates ovestiaow facof the domain of the fluent mentioned
at the left-hand side of the assignment and executes thgnassint with each value from the domain. Due
to the fact that everghadow factets assigned with all the values of its corresponding dolsadl becomes
immutable afterwards (according to the definition of a YA&dt) we can argue that the YAGbreachloop
from above iterates over the complete domain at any givent ioitime during program execution. The
rewriting for the assignment operatersand= follow similarly. The general case follows the same prin-
ciple, adding one nested loop for every wildcard characténé assignment. Consider an assignment with
two wildcard characters at arbitrary positidrend j of the form
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[|[F += {<$x1,., e s $xn >}

Then, the expansion leads to two nested loops of the form

foreach <$chi_i > in F*_i do
foreach <$chi_j > in F*_j do
Fo+= {<$x1,.., $chi_i ..., $chi_j ..., $xn >};
end for
end for

Note that these nested loops express exactly the Cartesidngd, which we used to specify the set-
theoretic semantics of pattern matching. In the genera (as. an arbitrary number of wildcards in a
single assignment) for each of the wildcards an additicva that iterates over the correspondégdow
factis added to the nesting as outlined above. Moreover, notathyavariables from the original assign-
ment §x1 andsxn in the example above) remain untouched by the pattern nmegehivriting.

For the time being, we restrict pattern matching assignsienfluents that have a user-defined set of
strings as domain. This restriction is driven by the fact thahe case that the domain of a fluent is the
full (countably infinite) set of strings (as defined in Sent®3.1) we would induce a loop iterating over
countably infinitely many elements, which we are not abledqaress in YAGI. For the time being, pattern
matching over finite domains suffices our needs, even thoughlan to loosen that restriction in future
work.

Implementation Remarks

The same remarks as for assignments (see Section 5.3.4) epphny implementation shall check that
assignments of éetexpf are semantically valid, i.e. that every element in everjetopthe(setexpy is an
element of the sort of the corresponding dimension of thaflatthe left-hand side of the assignment. Any
mismatch shall lead to an error. Furthermore, any use of tlizard character outside of an assignment
statement shall result in an error. Lastly, any attempt topattern matching on a dimension of a fluent
that has the countably infinite set of strings as domain saalllt in an error.

5.4. YAGI and IndiGolog

In this section, we specify the syntax and semantics of YAgBlglage constructs that are responsible
for program execution. Recall that in the earlier sectiorihis chapter we exclusively specified YAGI
constructs responsible for modeling the state of the YAGiavdn the following sections, we specify pro-
gram execution semantics using programming constructs fraiGolog. The semantics of IndiGolog’s
programming constructs has been defined by (De Giacomo, &08l9), using transition semantic predi-
catesTransandFinal. Hence, we can map YAGI statements to IndiGolog languagsetaoacts to specify
their intended semantics. We discuss the relation betwediGblog transition predicates and YAGI pro-
gram execution semantics in more detail in Chapter 7 asdlation becomes particularly important when
we argue about specification conformance of our implemiemtat

5.4.1. Test
Syntax

(tesh ::=test (formula) ;
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Semantics

Tests whether or not a corresponding formula holds. Sewgalytiit's the counterpart of IndiGolog®st
action@?.

5.4.2. Choose
Syntax

(choosé ::= choose(block) (or (block)*

Semantics

Non-deterministically chooses one of the given blocks f@ocaition. Semantically, it's the counterpart of
IndiGolog’s nondeterministic branch; | 6.

5.4.3. Pick
Syntax

(pick) ::= pick (tuple) from (setexpf such (block) end pick

Semantics

Non-deterministically picks &uple) from a given(setexpf and executes the subsequent block using the
picked tuple as parameter, i.e. non-deterministicallye takuple from(setexpy, bind its values to fresh
variables in the tuple provided by thuple)-expression and execute tffdock) with this variable assign-
ment. Any attempt to state something different than a végiabthe (tuple) of the pick-statement is not
permitted. Semantically, it's the counterpart of IndiGologisn-deterministic choice of argument.d.

Note that besides fresh variables that will be bound to aevajuthepick statement as described above a
(tuple) may also contain variables that are already bound to a vhiubis case we simply use the already
available value instead of binding the variable via piek-statement. To clarify the semantics, we provide
examples for the different cases using the domain of ouringnexample, as follows.

at = {< > < > < >}
/I$x is unbound...

pick <$x> from at such move($x); end pick;
/l..hence its value after the pick is either "r1", "r2", or " r3"

Listing 5.3: Pick With Unbound Variable

//IBind $x to a constant
$x = ;

/I$x is already bound...
pick <$x> from at such move($x); end pick;
/l..hence its value stays exactly the same after the pick

Listing 5.4: Pick With Bound Variable

30ne might argue that it could make sense to allow constantsmpaitern matching in théuple) of pick. Due to the fact that the
exact semantics are not yet clear we delay this idea to futark.w
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is_at = {< , > < , > < , >}

//IBind $x to a constant
$x = ;

/I$x bound, $y unbound
pick <$x,$y> fromis_at such pickup ($x); end pick;
/ltuple can be <"o01""r1"> or <"01","r3">

Listing 5.5: Pick With Bound and Unbound Variables

Implementation Remarks

Any implementation shall check that only variables areestan the(tuple)-expression. Any attempt of
stating a constant shall result in an error.

5.4.4. Conditional
Syntax

(conditiona) ::=if ((formula)) then (block (else(block))? end if

Semantics

Executes one of two given blocks based on the evaluatigfoafula). Semantically, it's the counterpart
of IndiGolog’'ssynchronized conditionall @then o, elsed, endif.

5.4.5. While Loop
Syntax

(while_loop ::=while (formula) do (block) end while

Semantics

Executes a block as often &srmula) holds. Semantically, it's the counterpart of IndiGologysichronized
loop while @do & endWhile.

5.4.6. For Loop
Syntax

(for_loop) ::=foreach (tuple) in (setexpy do (block end for
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Semantics

Executes gblock) for every tuple in a giverisetexpf. Due to the fact that IndiGolog has no specification
for this kind of program flow construct, we rewritéor_loop) into (while_loop as follows. LetF be an
n-ary fluent and consider

foreach <$x1, $x2,..., $xn> in F do

<block >
end for

to be a YAGI for loop oveF. We transform this loop into the following YAGI code:

F* = F
while (exists <$x1, $x2,..., $xn> in F*) do
pi ck <$x1, $x2,..., $xn> from F* such
<block >
Fr -= {< $x1,%x2,..., $xn >};
end pi ck
end while

with F* being a copy of the fluerft. Note that all the identifiers ending with a star (*) are nadialames
according to the specification ¢fd). These names were purposely chosen to contradict the sgatac
specification to illustrate that these names are chosemallg by the interpreter, i.e. it's syntactically
impossible for a programmer to access these elements. dihgfdrmation checks if a tuple existsh
via thewhile-condition and subsequently binds a tuple fréthto the variablesxt, $x2...., $xn via the
pick -statement, making it semantically equivalent to an exenudf the statemeritor each <$x1, $x2....,

$n> in F do. Then, the saméblock as in the for-loop gets executed. Finally, the chosen tigalernoved
from the fluent=*. Note that this transformation works correctly if and orflyhie value of the fluent the
foreachloop iterates over is not modified in its loop body, hence we'dpermit any modifications of the
fluent theforeachloop iterates over in the loop body.

To justify the claim that the rewritten loop above satisfigs $pecified semantics we argue inductively,
as follows:

* For the base case, [Etbe a fluent that doesn’t hold for any parameter vectory®e: (X, s) = False
SinceF* is specified to be a copy of the fluetit also holds that'X.F*(X,s) = False Conse-
quently, the YAGI formulaexi sts <$x1,$x2,..., $xn> i n F* evaluates td-alsebecause it translates
to IX.F*(X, s) according to the specification of YAGI formulas in Sectior3.8. Thus, the while loop
becomeswi | e (False )do and the code in the while-block doesn’t get executed.

« For the inductive step we assume that for every fluent itiples the transformation is correct. For
any arbitrary FluenFE that holds for a set of parameter vect8rs {Xi,..., X1} the YAGI formula
exists <$xi,$x2,.., $xn> in F* evaluates tdruebecause it holds thaX.F*(X, s) and<$xt, $x2,...,
$xn> corresponds to one parameter vedtar S. Consequently, thépick) statement in the loop body
gets executed, i.e. a tuple is non-deterministically pickem F*. Due to the fact thaliX. F*(X,s)
holds(pick) is guaranteed to succeed. Subsequently, an arbitioéogk) gets executed for the picked
tuple and the very same tuple is removed frBiin the last statement of thipick)-block. Due to
the fact that we don't permit any modifications of the fluerd threachloop iterates over in the
loop body the liner* -= {< $x1,$x2,..., $xn>}, is guaranteed to be the only line that modifies
Hence, after one iteration of the while-loop it is guaradtdeat the number of tuples for whidh*
holds is decreased by one, thus the claim holds by inductibno elements remain it holds that
YX.F*(X,s) = False which is exactly the base case described in the sectioreabov

Finally, we want to emphasize an important consequencerdafprcified semantics of a YAGI for-loop.
Due to the fact that a YAGI for-loop iterates ovesetof tuples there can be no statement made about any
kind of order of the iteration. For clarification, consideetfollowing YAGI code:

at = {< > < > < >}

/INo guarantee that the order of execution is rl-r2-r3!
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foreach <$x> in at do
move( $x);
end for

Here,move($x); gets executed for every tuple in the geti” >< >< >}, whereas therder of execu-
tion is non-deterministic. Note that this is the only cotesi$ semantics because a mathematical set has -
by definition - no notion of order of elements.

Implementation Remarks

Any implementation shall check that the fluent tbeeachloop iterates over is not modified inside the loop
body. Any modification attempt shall result in an error.

5.4.7. Procedure Declaration
Syntax

(proc_dec] ::= proc (id) ( (var_list?) (block end proc

Semantics

Declares a procedure with a name and a (possibly empty)flipammeters, leaving@yaci and Lyaci
unchanged. Semanticallprocedure declaratioris the counterpart of IndiGolog’procedure definition
proc P(x) d endProg i.e. the same semantics and restrictions as defined bygteeeet al., 1994) apply.

Implementation Remarks

Any implementation shall ensure that procedures are unigiMe define uniqueness for procedures as
follows. Given a procedur® with arity m we say that the name-arity tup{® m) must be unique, i.e.
two procedures are equal iff they have the same name andriteady. Any redeclaration of an already
declared procedure overrides the former with the lattersdnad result in a warning.

5.4.8. YAGI Action Declaration
Syntax

(action_dec] ::= action (id) ( (varlist)?) (external ((varlist)))?
(precondition: (formula))?
(effect: (assignment™)?
(signal: (valexpp ;)?
end action

Semantics

Let a be a YAGI action declaration for an actigawith arity m, wherem denotes the number of param-
eters for that respective action, i.e. the number of elesngntvarlist). Then Lyag and Dyac| remain
unchanged and a Golog procedure of the famoc A(X) & endProcis added to the set of Golog proce-
dures. We choose the name of the Golog procedure to be theasathe name of the action aRds the
vector of them parameters passed to the YAGI action. The Golog prodraonsists of destaction as first
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statement that evaluates the formula constructed from A@& Yreconditionas specified in Section 5.3.3.

If no preconditionblock is present, theestaction in the corresponding Golog procedure can be omitted
The YAGI effectblock is mapped to a (possibly empty) sequence of Gologmstamts constructed from
the sequence gassignmentstatements as discussed in Section 5.3.4. The optagratblock is solely
responsible for communication with the system interfacdessribed in Section 3.5.3, i.e. it has no influ-
ence onLy agi andDy ag) and can therefore be omitted in the Golog procedure. A sctienepresentation

of the correspondence between a YAGI action and an IndiGmogedure is sketched in the listing below.

action A(S$x1,...,
precondition:
@,
effect:
assignment_1
assignment_2

assignment_n
signal :
end action

Listing 5.6: YAGI
Schematic

Action

Declaration

proc A(xl,..,
%precondition:
7,
%effect:
&1,
&,

xm)

n;
%signal:
% “"some data“;
endProc

Listing 5.7: Corresponding Golog Procedure
Schematic

Additionally, a YAGI action declaration can be augmentethwin optionakxternalmodifier, followed by

a non-empty list of variables. The semantics of this extans that the variables listed after theternal
modifier aresetto a value based on some data from external sources. Comlygue call actions with an
externalmodifier presensetting actionsThe activity of setting values from external sources (eagneras,
motion sensors, distance sensors) to variables is actisiglyered by calling a YAGketting action We
claim that the semantics (i.e. the mapping to situationutatcand IndiGolog) of ordinary YAGI action
declarations and setting action declarations are equitzaléhis claim can be justified by the observation
thatsetting actionsolely assign values to variables, i.e. bind a value to antifier. Due to the fact that
assignments to variables have no influence on the undertiontain theory (see Section 5.3.4) variable
assignments can be considered transparent from a thednetimt of view. Furthermore, note that the
activity of setting values to variables is triggered via Hignalexpression of the action declaration. A
schematic representation of the correspondence betwe&@ bsétting action and an IndiGolog procedure

is sketched in the listing below.

action B($x1,...,
precondition:

$xm) external ($yl

effect:
assignment_1
assignment_2

assignment_n
si gnal :
end action

Listing 5.8: YAGI  Setting Action
Schematic

Relating YAGI Actions, Situation Calculus Actions and Golog Procedur

Declaration

proc B(x1,..,
%precondition:

%effect:
&1,
&,
n;

%signal:

% “trigger setting action";
endPr oc

Listing 5.9: Corresponding Golog Procedure
Schematic

es

Considering the fact that one of the basic elements of #itnatalculus areactionsthe question might
arise why we decided to map YAGI actions to Golog procedures reot directly to situation calculus
actions. To answer that question consider how a mapping & &Gl action to a situation calculus action
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might look like. For each YAGI actiodyag) we would create a situation calculus actiéagycaic with the
same name and the same parameters as the YAGI action. Footieerwe would construct thaction
preconditionof the formPosgAsitcaic(V, S)) = Mageac(¥,S) from the YAGI actionprecondition(formula)
andsuccessor state axionas$ the formF (X, do(Asitcaic, S)) = Pr (X, Asitcalc, S) for each fluent involved in
an assignment in the YAGI actiaffectblock. Constructing the action precondition form@la,, .. from

the YAGI (formula) is straight-forward according to the definition @drmula) in Section 5.3.3 whereas
the construction of successor state axiom formulas frongaesece of YAGI assignments requires deeper
analysis. First of all, YAGI support®r-loop assignmentsf the form

foreach <$x1, $x2,..., $xn> in <setexpr > do
<assignment >
end for

which, loosely speaking, means that the loop iterates oaeh éuple in a set and uses those tuples for
arbitrary assignments inside the loop body. Note #ipat $x2...., $xn> in the example above is not a syn-
tactically valid YAGI tuple. When we use this notation in YAGdde in this chapter we actually mean that
instead of ".." all the concrete elements in the tuple are explicitly stateurthermore, the exact semantics
of such a loop is discussed in Section 5.3.4 and are of minpoitance for the further discussion in this
section. Note that the syntax of tfereachloop above closely resembles iteration constructs fronegs
purpose languages like Java, C++ and C#, hence peopledamith such languages might assume similar
(i.e. iterational) semantics just based on the syntax. Wbempding such a loop directly into a successor
state axiom (i.e. a formula) we would lose any sequenga#ittonal semantics since the evaluation of a
formula is inherently "parallel”.

We strongly believe that removing iterational semantiosrfisuch a loop would lead to a huge level of
confusion among people who are not aware of the exact sersanftisituation calculus. Moreover, we
claim that rewriting arbitrary sequences of YAGI assigntaeda a single successor state axiom formula is
a non-trivial task, even though we want to emphasize thatengositive that it is possible to prove that
one could rewrite YAGEffectblocks to successor state axioms, which is something wetplsinow in the
near future.

Additionally, we want to mention that the YAGI basic actidreory is alwayprogressablevhen we map
YAGI actions to Golog procedures since the only situatidowlas actions involved aradd- andremove
actions for each fluent (as defined in Section 5.3.1), whichemnighe YAGI basic action theoistrong
local-effectand for strong local-effect basic action theoriefirst-order strong progressionlways exists
according to the work done by (Vassos et al., 2008). We wibl@r local-effect basic theories and their
impact on progression in more detail in Chapter 7, for now wlg want to mention that being first-order
progressable is an important property of our basic actieorh

Lastly, we want to mention that the decision to map YAGI asido IndiGolog procedures instead of
situation calculus actions may also have an impact from elppractical point of view. Here, byractical
we mean a concrete implementation of a YAGI software systdore precisely, one could argue that the
rewriting to IndiGolog procedures induces a performana (fun-time) overhead compared to a direct
mapping to situation calculus simple actions since Indé@grocedures are more complex constructs. For
the sake of completeness we want to mention that we also thatkthis is a valid argument and needs
proper discussion, even though we consider it to be of mimportance at this point in time and - hence -
delay it to future work.

Implementation Remarks

Any implementation shall ensure that the process of settiges to the variables listed after teternal
keyword happens synchronously, i.e. the execution of th&NMgrogram shall block until the sensing
process has finished. Furthermore, any implementatioh gtwadide a timeout mechanism to prevent the
application from waiting indefinitely. Moreover, any attetto put a variable that is passed as parameter
to the action after thexternatkeyword shall result in an error.
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5.4.9. Procedure Call
Syntax
(proc_call ::= (id) ((arglist)?);

(arglist) ::= (valué (, (value)*

Semantics

The execution of a YAGI procedure is the counterpart of Ira@@’'s procedure call F8). Since we
map both YAGI actions and YAGI procedures to IndiGolog prhaes the concept of AGI action call
vanishes, hence we need no additional specification fangafAGI actions. Arguments (i.e. elements in
(arglist)) are passed in a call-by-value manner. Note that IndiGoleg specifies the semantics of calling
aprimitive action i.e. a situation calculus action. Due to the fact that thig primitive actions in YAGI
are the actionadd andremove(which are automatically generated for each declared fliss® Section
5.3.1) and neither of these types of actions should be invekelicitly by a YAGI programmer we don’t
need a syntactic construct that maps to IndiGolpgimitive actioncall.

Atomicity of YAGI Action Execution

We specify the execution of a YAGI action (or more precisalyprocedure that has been generated from
a YAGI action) to beatomic The atomicity of the execution of a YAGI action is partialyamportant in
the context ofsearchsince our implemented search strategy considers the éxeafta YAGI action as
fundamental step that shall not be interrupted. Moreowag generated bgxogenous evenisassimilated
after a YAGI action has been executed (as specified in Sedigi2), which guarantees that one single
YAGI action always gets executed with respect to one spetifidel of the world. Lifting the restriction
of atomicity of YAGI action executions might lead to incaostgint and/or undefined behavior. Finally, we
want to note that we consider this level of atomicity as thestnmatural from a user’s perspective, which
influenced that decision as well. Still, there might be argota for making the atomicity level more fine-
grained than the execution of a single YAGI action, but duth&ofact that we are not able to foresee the
theoretical and practical implications of such a decisi@d&fer this discussion to future work.

Recursion

Even though ConGolog (De Giacomo et al., 2000) as well asGaltig (De Giacomo et al., 2009) have
definitions for unbounded recursive calls we decided toifbrbcursive procedure calls in YAGI for the
time being. Unbound recursive calls require second-omigc lextensions fofransandFinal as discussed
by (De Giacomo et al., 2000), which we want to avoid for theesalksimplicity of our specification.

Implementation Remarks

To avoid any ambiguities about whether to call a procedua¢ hlas been automatically created from a
YAGI action or a procedure that has been explicitly decldngthe programmer any implementation shall
check that names of YAGI actions and YAGI procedures aréndidy and mutually unique, i.e. any two
YAGI actions must not be equal, any two YAGI procedures musthe equal and any YAGI procedure
and any YAGI action must not be equal. For equality comparise use name-arity tuples as defined for
procedure uniqueness in Section 5.4.7. Any violation of timiqueness property shall result in an error.
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5.4.10. Sequence
Syntax
(block) ::= (statement"

(statement::= (tes}
(proc_call
(choosé
(pick)
(conditiona)
(while_loop
(for_loop)
(search

(

fluent_query

=(
I
|
|
|
|
|
|

Semantics

A sequence of YAGI statements. Semantically, it's the cerpdrt of IndiGolog'ssequencé;;d,. Note
that the only valid statements in a YA@lock) are exactly the control flow statements (with their defined
IndiGolog counterparts) as specified in the sections ablosrce we can establish this correspondence
between a YAGKblock and an IndiGologequence

5.5. Incomplete Information

The assignments discussed in Section 5.3.4 exclusivelyvd#ainformation that isknown One can
imagine that there exist various practical cases where argswo express information that is not yet
known, but may (or may not) beensedo its actual value during the lifetime of the agent. Conside
example a fluent that stores the location (e.g. the room) atn@sides in. Initially, (i.e. on start-up)
the robot might not know in what room he is currently residibgt he might be able do narrow down the
possibilities during his lifetime. Various approaches @fitto deal with incomplete information in different
contexts have been discussed by (Etzioni et al., 1992)i¢Reind Bacchus, 2004), (Vassos and Levesque,
2007) and others. For the time being, we're not able to espsemething like incomplete knowledge in
YAGI. The ingredients we need are on the one hand a synthetaaent to denote incomplete information
and on the other hand a mechanism to eliminate possibles/diue to some (external) information. We
discuss the latter issue in Section 5.6 and continue witlpoposed solution to the former.

To syntactically express incomplete information we usecth&racteistar (*) at the right-hand side of
an assignment to a fluent. Loosely speaking, an assignméme éérmr = {<*>}, expresses that the value
of the fluentF is not yet known. Using our running example, the assignment {<*>}, expresses the
fact that we don’t know where the robot is, but @eknow all the valid assignments, i.e. the powerset of
all tuples that can be generated from the finite dorggin= {r1,r2,r3}. Due to the fact that the precise
semantics of incomplete information in YAGI is not yet cleae stick with the syntactical specification
for the time being and defer the specification of the semadiduture work.

5.5.1. Implementation Remarks

Any attempt to assign incomplete information to a fluentldbalignored and shall result in a warning.
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5.6. Sensing

5.6.1. Syntax

(sensing_de¢l::= sense(id) ( (varlist)?) (external ((varlist)))? (formula) end sense

5.6.2. Semantics

Sensing actions are specified by (Scherl and Levesque, 1(@@8¢sque, 1996), (De Giacomo and Levesque,
1999a) and others as actions that can be taken by the ag@ftodito obtain information about the state of
certain fluents, rather than to change them. Sensing acienzsarticularly relevant when the initial state of
the world is incompletely specified, which is something YAgbws us to do, as discussed in Section 5.5.
Similar to the distinction between YAGIctions(without anexternalmodifier) and YAGIsetting actions
(with anexternalmodifier, see Section 5.4.8) we distinguish betwbirary sensing action@vithout an
externalmodifier) andn-ary sensing actiongvith anexternalmodifier). Loosely speaking, the difference
is that binary sensing only provides information about Wkebr not a certain condition holds, i.e. returns
a truth value (hence the terhinary) and n-ary sensing returns a list of entities rather thamth tvalue.
The idea is similar to the distinction between relational Amctional fluents. This distinction is necessary
because we plan to use different formalizations for binany a-ary sensing actions, namedgnsed flu-
ent axiomdor binary sensing actions as defined by (Levesque, 1996%ansing result axiom®r n-ary
sensing actions as defined by (Scherl and Levesque, 2003).

First, we consider the case of binary sensing. (Levesqu&g)lidtroducedsensed fluent axionc
the formSF(a, s) = @.(s), whereSFis a distinguished predicate likeoss relating the action to the flu-
ent. For example, (Levesque, 1996) use an airport scertaaioshows how the action of checking a
departure screen is connected to knowing where a certaie pdaparked aSF(check departuress) =
Parked Flight123 gateAs). In other wordsg,(S) gets asserted to a truth value by its corresponding sens-
ing action. The basic action theory is therefore extenddl thie set of sensed fluent axiomsF and the
task is to show thatD U Dsr = @S] for a goal formulag in a situations. We can map YAGI sensing
actions to sensed fluent axioms as follows. &gbe the name of a YAGI sensing action (i.e. the value of
(id)) with arity m, wherem denotes the number of parameters for that respective ggastion, i.e. the
number of elements ivarlist). Then we construct the sensed fluent axionB&&ay, s) = @, (S), With
@a, (S) being the formula constructed frofformula) as discussed in Section 5.3.3.

Having defined the binary case, we continue with the n-arg.cg&cherl and Levesque, 2003) specified
sensing result axionsf the formSRa(X),s) =r = @y (X;1, s), with a being the name of the actioxpeing
the parameter vectar,being the result angbeing the situation term. For example, (Scherl and Levesque
2003) show a sensing result axiom to obtain information abfmiweather aSR senseweathers) =r =
(r ="sunny Vr ="rainy” Vr = "snow ) A weathe(s) = r. As of yet, there exists no mapping from a
YAGI sensing action with aexternalmodifier to asensing result axiordue to the fact that - as of today
- there exists no precise and theoretically sound desonipif the intended semantics. MoreovBRis
strongly coupled to functional fluents and there is no sytitakcconstruct to express a functional fluent
in YAGI until today. Based on these issues, we decided td stith the syntactical specification of n-ary
sensing for the time being and defer the specification of tlaetesemantics to future work.

5.6.3. Setting- and Sensing-Actions Revisited

After having defined botlsettingactions (setting values of fluents based on externally igéee data)
andsensingactions (obtaining information about the state of a flueve)explicitly want to outline their
difference regarding their semantics. Recall 8&ttingactions (and also exogenous events, for that matter)
change the state of the world, i.e. modify the underlyingtliewhereas sensing can be considered as a
form of cutting down on possible models generated by inceteghformation. To clarify this difference

in semantics we provide a simple example illustrated in FEgh.1, as follows.
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Consider two fluent§ andg both declared over the same dom&mb}. Initially, we assignf to be
unknownandg to a concrete value of the domain. Subsequently, we exdoatassignmerg = f, leading
to the successor stag. Note that inS, we end up with four model84, ..., Ms due to the fact that we
assign incomplete information to the flugnthence we need to generate models for all the possible sets of
tuples of the domain of fluerft. Now we can analyze two different successor states, nagjejgnerated
by sensingthe concrete value of fluentg andS}’ generated bgettingthe fluentg to the same concrete
valuea. In the first case we obtained information about the flggmamely wesensedhat its value is,
hence we eliminate all models that don't match the sensednretion. Consequently, we end up with the
single model, remaining. In the second case we explicibtthe fluentg to a new value, resulting in
a state where still four different models exist and each dtiwlets updated with the new value from the
setting action

YAGI Fluent Declarations S{o}
fluent f [{"a","b"}]; M1 M2
fluent g [{"a","b"}];
f={}k f={<"a">}
S0 g={k g ={<"a">};
f={<=>k g=f
g={<"a">} d M3 M4
f={<"b">); f={<"a">, <'b">};
g={<"b">}; g ={<"a">, <"b">};
sense set
g to {<"a">} g={<"a">};
S0” S0
M2 M1 M2
f={<"a">}; f={} f={<"a">}
g={<"a">}; g={<"a">} g={<"a">};
M3 M4
f={<"b">); f={<"a">, <"b">};
g={<"a">} g={<"a">}

Figure 5.1.: Evolution o& With Setting and Sensing Actions
This simple example illustrates thegttingandsensingare fundamentally different things even though

they might look similar at first sight. Moreover, we hope ttid@s motivational example emphasizes the
importance of having both mechanisms in YAGI.

5.7. Exogenous Events

5.7.1. Syntax

(exogenous_event_decl= exogenous-eventid) ((var_list)) (assignment” end exogenous-event

5.7.2. Semantics

Semantically, exogenous events are equivalent to YAGbastivith anexternalmodifier, the only dif-
ference of exogenous events is the fact that the point in tifnere an exogenous event gets executed
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is non-deterministic, i.e. depends on arbitrary exterredl{world) events. To cope with this issue, we
define the following mode of execution, similar to IndiGakbgense-think-aciain cycle described by
(De Giacomo et al., 2009):

1. Assimilate all pending data generated by exogenous vent

2. Update the underlying domain theory using the data froogerous events according to the seman-
tics of (assign discussed in Section 5.3.4.

3. Progres®sg, by executing the next YAGI action in the program.
4. Go backto 1.

5.7.3. Implementation Remarks

Any attempt to actively call an exogenous event via a YAGlesteent shall result in an error. Furthermore,
any implementation shall guarantee that exogenous evengs@cessed as specified above. Moreover, any
implementation shall prevent the loss of data provided lygerous events, i.e. some kind of buffering
mechanism as mentioned in Section 3.5.4 shall be implemente

5.8. Search

5.8.1. Syntax

(search ::= search(block) end search

5.8.2. Semantics

Like IndiGolog, YAGI uses an online execution semantics eBneéd by (De Giacomo and Levesque,
1999a) and (De Giacomo et al., 2009). To be able to introdtfiieepexecution semantics for certain parts
of a YAGI program, we specify the operatearch The operatosearchapplies offline execution semantics
to a YAGI (block) it is applied to. In offline execution mode, YAGI searchesdnrappropriate sequence of
actionsbeforeactually executing any of it. Note thaearchcan - syntactically - be applied to an arbitrary
(blocky, which imposes several issues. For example, recall thatl YAA@portssensing actionshat can
potentially be called in such @lock. In the context of offline execution this implies that theteys must
be able to take potential sensing results into account gwfftine deliberation. Due to the fact that dealing
with incomplete knowledge during offline execution is a nowial task (potential approaches have already
been discussed by (Levesque, 2005), (Vassos and Leve<ifii®, @d others) we're not able to provide
a sound solution on how to approach this issue in YAGI for theetbeing. Other constructs that would
further increase the complexity séarcharesetting actionandexogenous everngince they both deal with
data from external sources. This implies that there neec ta &trategy of how to model these external
influences when doing offline deliberation. For the time gewe decided to excludsetting actions
sensingand exogenous evenfsom search and defer the specification of their exact offtiaberation
semantics to future work. Moreover, note that with thes&i®ns we stay consistent with IndiGolog’s
search operatoiz, which we consider to be the semantic counterpagearchin YAGI. More formally,
(De Giacomo et al., 2009) define the semantics of offline ed@tasDo(d,s,s) = 3&.Trans(3,s,d,5) A
Final(&',5), whereTrans' is the reflexive transitive closure of TrandVe discuss the semantics ins
andFinal in more detail in Chapter 7.

4Trans' can be defined as a situation calculus second-order formatah€ sake of simplicity we omit the details here and refer to
(De Giacomo et al., 2009) for more details.
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5.8.3. Implementation Remarks

Any implementation shall check that no sensing-/setticiipa or exogenous event is part of a search-
(block. Any appearance of any of these constructs in a sedidek) shall result in an error.

5.9. Miscellaneous Language Elements

5.9.1. Fluent/Fact Query

Syntax

(fluent_query ::= (id) ;

Semantics

The fluent query command has no influence on the underlyingadotheory or program execution what-
soever, its purpose is solely to echo the state (i.e. thgrasgint) of the fluent that is being queried. Note
that due to the fact thgfluent_query is a (statemertit could be part of any progrartblock). For the
time being, we only define that if the whole program consi§fas a(fluent_queryits semantics is that it
returns the state of the queried fluent to the caller (i.e frihv@-end) orfalseif the fluent (or fact) doesn'’t
exist. Any use of a fluent query inside a more complex YAGI pang should be ignored gracefully.

5.9.2. Include
Syntax

(include ::= @include (string) ;

Semantics

The include command has no direct influence on the underlgiomain theory or program execution
whatsoever, its purpose is solely to import YAGI code frofifedéent files into a single file. More precisely,
the semantics ofinclude is that the whole include command gets replaced by the YA@edoom the

file which name is provided via théstring) value. This semantics is identical to the semantics of macro
replacement performed by the preprocessor in the C progmagnlanguage. Note that even though a
purely textual replacement semantics is sufficient for itthe theing we aim for more sophisticated include
mechanism similar to thienport command in Java in the future.

5.10. A YAGI Program
5.10.1. Syntax
(program) ::= ((declaratior} | (block | (include )™

(fact_dec]

(declaration ::= (fluent_dedl
|
| (action_dec]

42



5.10. A YAGI Program

| (proc_dec]

| (exogenous_event_dgcl
| (sensing_degl!

| (assignment

5.10.2. Semantics

Finally, we call arbitrary sequences of YAGI lines of codg ...,ln) @ YAGI program A line in a YAGI
program can either bedeclarationmodifying the state of the YAGI world (excepproc_dec)), i.e. the
underlying theory (as specified in the first part of this ckgpbdr any sequence of program flow statements
(as specified in the second part of this chapter) that spéuefyprogram, i.e. @block) or a (proc_dec).
The semantics of a YAGI program is then given by the conseew@txecution of its lines of code in their
given order according to the transition semantics of Indti@alefined by (De Giacomo et al., 2009). We
restate the exact definitions of the IndiGolog transitiomamtics and show their correspondence to YAGI
in Chapter 7.

43



44



Chapter

Implementation

In this chapter, we describe our implementation of the YAGtwsare stack and the YAGI language speci-
fied in the previous chapters. We discuss our fundamentardscisions in Section 6.1 and describe our
system architecture in Section 6.2. Finally, we briefly akphow the specified YAGI language elements
have been implemented in Section 6.3.

6.1. Fundamental Design Decisions

Due to the fact that our application is the first implemeotatif a YAGI software system as specified in this
thesis the main focus was to deliver a viable proof-of-cph@@plementation that can be easily extended
later on. Since the YAGI software stack already stronglyfava loosely coupled software system due
to its layered architecture we also tried to decouple thepmomants in our implementation as cleanly

as possible without inducing too much overhead. Furthegmnwe tried to exclusively use programming

languages, components and libraries that are considelledegvn among people in the computer science
community to encourage people to extend and enhance oueinepitation.

We decided to use C++ as our implementation language of eHmcause we envision YAGI also
to be used in real-world robotics applications, which aterfubject to computation- and/or memory-
restrictions. Hence, using a language that induces as ditttrhead as possible was a major requirement.
Moreover, easy interfacing with robot operating systekes ROS (Quigley et al., 2009) is important when
it comes to the implementation of the system interface o¥#@I software stack. By its nature, C++ is the
most suitable language of choice for such a task becausavities the low-level capabilities of a language
like C enriched with modern concepts that make the codebase maintainable and less error-prone.

6.2. System Architecture

In this section, we explain the system architecture of oyglémentation and describe the ideas and goals
and how they influenced the various design decisions.

6.2.1. Front-End

The front-end is implemented as a console application thaws the user to interactively enter and run
YAGI code.

45



Chapter 6. Implementation

Parser Implementation

The parser for the YAGI language is generated using TereacesPopular parser generatdNTLR
(ANother Tool for LanguageRecognition). We briefly describe ANTLR and the compiler doungtion
theory behind ANTLR in this section based on informatiomirthe ANTLR reference manual from (Parr,
2007).

ANTLR uses an extended version of the Backus-Naur Form (BsF) notation for writing the grammar
rules for the desired target language, similar to the nmtatised in this thesis to describe the syntax of
YAGI. ANTLR is a parser generator for so-calléd (*) languages, i.e. it is able to create parsers for
languages that are in the set of LL(*) parsable languagesanguage is said to be LL(*) parsable iff it
can be parsed with a top-down LL parser (parses itygit to right and perform& eftmost derivations)
that is not restricted to a finite tokens look-ahead. In the case of YAGI, we restrict the ANTaRsing
algorithm to use LL(1) parsing, a more restricted versiohldf*) parsing that decides which production
rule to apply by looking only at the next input symbol (Aho &t 2007). The complete ANTLR grammar
for YAGI can be found in Appendix B.

ANTLR is able to create the parser and lexer code for a givamgrar file in different target languages,
e.g. Java, Python and C#. The fundamental design decisiomfdementing YAGI was to use C/C++ as
language of choice, hence the automatically generatedibintpn ANTLR needs to be either in C or C++
to allow easy integration into the YAGI codebase. Due to #wt that the newest version ANTLR 4.x. does
not have support for C or C++ code generatiort ye¢ needed to fall back to ANTLR v3 to get support for
C code generatidn The output of the generated ANTLR parser is #iistract syntax tre¢AST) of the
YAGI input program. The AST is an abstract hierarchical ciinge that represents the source program and
is often used as an intermediate representation for fupgireressing (Aho et al., 2007). In YAGI, we use
the AST for steps like type checking, code rewriting andriotetation.

Architecture Overview

An overview of the software-design of the front-end is presd in the class diagram in Figure 6.1. The
purpose of the presented classes is as follows.

* YAGIMain : The YAGIMain class provides the console front-end of theGYAhell. It reads YAGI
programs from either a file or the console and passes the ooflerther processing to the ANTLR-
Lexer class.

e ANTLRLexer : The classANTLRLexelis responsible for lexing the YAGI source code and passing
the resulting stream of tokens to the cla#sGIParser Note that the ANTLRLexer class contains no
handcrafted code, it is purely auto-generated from the Yg\@mmar file.

» ANTLRParser: The classANTLRParsetakes a stream of tokens as input and outputs the resulting
AST structure. Due to the fact th¥AGILexerand YAGIParserare written in the C language and
further processing steps based on this C data structurddddre cumbersome an additional class
YAGITreeWalkeis introduced. Note that the ANTLRParser class containsamalbrafted code, it is
purely auto-generated from the YAGI grammar file.

* YAGITreeWalker : The classYAGITreeWalkeis the auto-generated output of a separate grammar
file, a so-calledree grammar A tree grammaroperates on a stream of tree nodes (i.e., the AST)
rather than on tokens (Parr, 2007). The purpose of the YA&&Walker is to traverse the C rep-
resentation of the AST and to send signals with informatioout the visited AST nodes to some
external receiver. Note that the main advantage of thisagmbr is that no handcrafted C code for
tree traversal is necessary because the code is autoryatjeakrated based on the ANTLR tree

grammar.
1Seenttp://www.antlr.org/download.html for further information. Last visited on December 3rd, 2014.
2Seehttp:/iwww.antlr3.org/download.html for further information. Last visited on December 3rd, 2014.
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» CToCppBridge: The classCToCppBridges responsible for providing callbacks (i.e. function gein
ers) as hooks that the YAGITreeWalker can use to signal imédion about visited AST nodes to
some external receiver.

» YAGICallbackConnector: The classrAGICallbackConnectds the concrete bridge between the C
part of the implementation and the C++ codebase resporfsiblgiilding an object-oriented repre-
sentation of the AST and any further processing (e.g. typekihg, rewriting, execution) performed
on the AST.

» ASTBuilder: The purpose of the factory-like clageSTBuilderis to build an object-oriented rep-
resentation of the AST based on the information providethftbe traversal of the C AST. To ac-
complish this task, the ASTBuilder reacts to the signalmftbe YAGITreeWalker and builds a tree
structure based on this data. The resulting C++ represemiaitthe AST is then passed back to the
caller (i.e. the instance of YAGIMain) for further processi

Front-End I

Auto-Generated [C Code] I

CToCppBridge _| YAGITreeWalker
Signal 'Node Visited’ |_ |

+void (*addFluentDeclCallback)()
YAGIParser

+void (*addVarAssignCallback)()
YAGILexer

+..0

Concrete C-To-C++ Connector

YAGICallbackConnector

+callCppImpl1() Calls ANTLR C Impl.

+callCpplmpl2()
+callCppimpl_n() ANTLRParser

+parse(yagiSrc:String)

C++ ASTBuilder Impl

ASTBuilder 1“595
+addFluent(): void C++ AST Data Structure YAGIMain
+addVarAssignment(): void
+..0) +execute(yagiCode:String)

f f Uses YAGI Shell

YAGI User

Figure 6.1.: Schematic Class Diagram of the Front-End Implgtation

6.2.2. Back-End

Due to the fact that the basic concepts for describing the stiathe world in YAGI are sets and tuples
we decided to use a relational database management systeprésent the YAGI state of the world, i.e.
fluents and facts. The concepts from relational databadesatig resemble fluents and sets of tuples as
we can interpret a database table as a fluent, a tuple as a wtalte and a set of tuples as the set of all
rows in a table. Moreover, databases and their relationstioretheories have been discussed by (Lin and
Reiter, 1997), (De Giacomo and Palatta, 2000), (De GiacaomdoMancini, 2004), (Vassos and Sardina,
2011) and others, which even more encouraged us to userahtatabase technology for our back-end
implementation. We decided to u§®)Liteas our relational database management system (RDMS) of
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choice. The decision to prefer SQLite over other databas&s)s was driven by a number of reasons, a
non-exhaustive list of reasohis presented as follows, in no particular order:

SQLite is self-contained: SQLite requires minimal supgorm external libraries and the operat-
ing system and is written in ANSI-C. Therefore, it is highlgrfable to a huge variety of different
platforms without much effort.

SQLite is server-less and zero-configuration: A lot of dat®e engines are implemented as separate
server processes, whereas SQLite is not. In our case, thetade of being serverless is that we can
easily enable people who want to use YAGI (e.g. studentaditig a lecture at university) to do so
without needing to install, setup and configure a RDMS.

SQLite is the most widely deployed SQL database: SQLitesélby a vast number of well-known
and widely used software products such as Mozilla Fireféyp® and McAfee anti-virus software.
The SQLite developers estimate that there are are at le@shBllon SQLite deployments in use.

The second major task of the back-end is to store and exeéudé pfograms. To accomplish this task
we decided to simply store the program (or, to be more preitsabstract representation in form of an
abstract syntax tree (AST)) in appropriate data structaresexecute (i.e. interpret) these structures on
demand. An overview of the software-design of the back-emutésented in the class diagram in Figure
6.2. The purpose of the presented classes is as follows.

ASTNodeVisitorBase The base class implementation of the visitor design paf@amma et al.,
1994). The visitor implementations are used to visit nodés@AST and perform certain operations
based on the data from the AST nodes. The operations depéhd concrete implementations of the
ASTNodeVisitorBase base class. The implementation isthaseheacyclic visitorimplementation
from (Alexandrescu, 2001).

TypeCheckVisitor: The first visitor that is applied to the AST provided by therfi-end. Its purpose

is to check the AST for type errors. The YAGI program exeauti@ontinues iff no type errors

occurred. The current implementation of type checking iy vadimentary and only checks some
very simple cases, e.g. referring to an undefined fluent assigning a fact.

RewritingVisitor : After type-checking, the rewriting visitor performs sgotical rewriting accord-
ing to the specification of the YAGI language, e.g. patterrichmag is rewritten as specified in
Section 5.3.5.

ExecutionVisitor: The ExecutionVisitor class is responsible for the exexutif the YAGI program,
i.e. the interpretation of the AST. It holds various memhrgolymorphic types (e.g. for database
access, formula evaluation and signal handling) that ananpetrized with concrete implementations
by the caller.

IExogenousEventConsumer The interface for consuming data provided by exogenoustsve

ExogenousEventConsumerA concrete consumer of exogenous event data. In the pifecdtcept
implementation exogenous event data is directly consumelebinterpretation visitor.

DatabaseConnectorBaseThe base class responsible for connecting to a databasexandting
SQL queries.

SQLiteConnector. A concrete implementation of tHeatabaseConnectorBastass for the SQLite
database back-end.

IFormulaEvaluator : An interface responsible for the evaluation of a YA@rmula).

FormulaEvaluator: A concrete implementation of tH&€ormulaEvaluatorinterface that evaluates
YAGI formulas as discussed in Section 7.2.5.

IYAGISignalHandler : An interface responsible for handling signals triggergd/BGI actions.

CoutCinSignalHandler: A concrete implementation of tH¥ AGISignalHandleinterface that sim-
ply displays YAGI signals textually on the YAGI shell.

3Summary of a list of advantages presentelttat/www.sqlite.org/ . Last visited on December 3rd, 2014.
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Back-End
IExogenousEventConsumer — - _ _ mplements | ExogenousEventConsumer <
T consumeExoEventDatal) " ConsumeExoEventData() ASTNodeVisitorBase
- VST
DatabaseConnectorBase sa SQLiteConnector ) A
+connect(...) +connect(...)
IFormulaEvaluator |} - = = = = — - implements ___ FormulaEvaluator
isa isa
+evaluate(...) +evaluate(...)
IYAGISignalHandler |} - = = - - - Jmplements ___ I™" CoutCinSignalHandler isa
+signal(...) +signal(...) RewritingVisitor
uses
VIS

ExecutionVisitor

-db_: DatabaseConnectorBase
-exoEventCon_: IExogenousEventConsumer
-formulaEval_: IFormulaEvaluator
-sigHandler_: IYAGISignalHandler

FVis(..) FVis(..)

TypeCheckVisitor

Figure 6.2.: Schematic Class Diagram of the Back-End Impleation

6.2.3. System Interface

In our first implementation, the system interface is soledgigned for testing and simulation. When a
YAGI actions sends a signal to the system interface our implgation simply echoes the signal data
back and its content is displayed in the YAGI interpreter otand shell window. When a setting action
is triggered the system interface prompts the user to eméedata that should be passed to the respective
setting action. Lastly, exogenous events are implemenetdised, i.e. data for exogenous events can be
written into a specific plain-text file. When the file is saved tirrently running YAGI program consumes
this data and processes it as specified in Section 5.7.2.

6.2.4. Inter-Layer Communication

Due to the fact that front-end, back-end and system interfae compiled into one single binary the
communication between the layers is implemented via simm@thod calls.

6.3. YAGI Language Constructs

Having described the implementation of the three layerhefYAGI software stack we proceed with a
brief description of how the different YAGI language consts are implemented. Note that we only give
a description of the software-engineering aspects of th@emented YAGI language constructs in the
following sections and defer any discussion about how th@lémentation relates to the specification to
Chapter 7.

6.3.1. Fluent- and Fact-Declaration

Each fluent and each fact corresponds to one distinctive t8@atabase table. The number of columns in
such a table is determined by the arity of the fluent. Addélyneach domain of each dimension of each
fluent is stored in a separate, distinct table. A simple exampa fluent declaration and its effects on the
database is illustrated in the figure below. Fact declamatiollow analogously.
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/\ - e
v - e
2 or2

Table at' 3 or3

YAGI Fluent Declaration (Arity = 1)

+ID Integer /I\
fluent atf{'rL", 12" "r3"Y; B'—_) «Dimlvalue  String X
}
1
-l

Table 'at_domain_dim1’

Values of 'at_domain_dim1’
+ID Integer L= = = = - e e e - - - -

e DomainValue String

YA! atabase

Figure 6.3.: Schematic of Fluent Declaration Implemeaotati

6.3.2. Action Declaration

The AST of each declared action is stored in an associatimtaow®r that has the name and arity of the
action as key and the AST of the action as value. On executi@nAST of the action to be executed is
interpreted using an instance of tBgecutionVisitor By specification, YAGI actions are rewritten into
procedures to accomplish sequential behavior as spedaifigddtion 5.4.8. We omit this step in our imple-
mentation and simply interpret both actions and procedarasequential manner. Omitting the rewriting
of YAGI actions is no violation of the specification since dmnplementation treats the evaluation of the
action precondition (semantically) liket@ststatement (to which the precondition gets rewritten adogrd
to the specification), i.e. the remaining part of the actoexecuted if and only if the precondition holds.
This semantics is exactly the same as the semantitsspi.e. it guardsthe execution of some part of a
YAGI program depending on the evaluation of a truth value.iMistrate the declaration of two actions in
Figure 6.4. Note that we purposely omitted the bodies of tlimas because they are of no importance
during this discussion.

6.3.3. Formulas

Formulas are evaluated using the semantics of tuples as@setppropriate C++ data structures and the
built-in C++ operators for value comparisdn#n any case a fluent is involved in a formula all the necessary
values are fetched from the database and stored in C++ datduses on which the evaluation of the
formula is performed. We discuss the evaluation of formidamore detail in Section 7.2.5. A possible
optimization could be to evaluate formulas directly usirf@LSjueries as described by (De Giacomo and
Palatta, 2000).

6.3.4. Assignments

As specified in Section 5.3.1, fluents (i.e. the model) cay bel modified using the situation calculus
actionsadd andremovethat are created for each declared fluent. These actionmaterented via SQL
statementsert(in case ofadd) anddelete(in case ofemove. The inserted (or deleted) values for these
statements are inferred from the parameters of the comegampsituation calculus action and the affected
table name corresponds to the name of the fluent to which thatisin calculus action belongs to. All
types of fluent assignment statements ultimately expandéb efadd andremovestatements (see Section
5.3.4), i.e. asequence of S@isertanddeletestatements. Assignments to variables are implemented via a
variable table that holds an associative container witmtmae of the variable as key and a stack of values

“Recall that we specified ordering comparisons for string®tpdyformed lexicographically. Due to the fact that we cutyedon't
support numbers in YAGI we compare strings that represend watiegral numbers using integer comparison semantics to avoid
counter-intuitive behavior, e.g. "10" < "2" returtrsie when compared lexicographically but one might exgalsteas result.
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YAGI Action Declarations

L AN Associative Container
action first($x)
end action Key Value
P |+ <first, 1> o AST* impl1
action second($x,$y) e <second,2> *AST*impl2 .
end action ','
’
k4

ActionDecl €----- e AST of action 'second
Name: 'second’ ArgList Precond. Effect Signal
$x Sy Formula Block Expression

Figure 6.4.: Schematic of Action Declaration Implemeimatati

that represents the values of the variable in possiblyrdiffescopes. We illustrate a simple assignment to
a fluent and its effect in Figure 6.5.

Y
S

YAGI Assignment Table "at'
INSERT INTO "at’ VALUES('r1’);
F— AN +ID nteger | = == = = == = e = - - -
uent at[{"r1","r2","r3"}]; STy — 1
eDimlValue  String
et ——> !
Table 'at_domain_dim1’ V

ID Dim1Value

+ID Integer

eDomainValue  String ol Jerl

YA atabase

Figure 6.5.: Schematic of a Fluent Assignment

6.3.5. Incomplete Information

Incomplete information is only implemented on a syntattieeel, i.e. parsing of YAGI statements that
use incomplete information. Any attempt to use incompleterimation beyond parsing results in an error.
Again, we want to emphasize that there exists no specificatidhe intended semantics of incomplete
information in YAGI for the time being. Since we base YAGI amdiGolog we also want to mention
that IndiGolog uses a so-callgmbssible valuesemantics to handle some limited version of incomplete
information via the predicatesettlesandrejects as discussed by (De Giacomo et al., 2009).

51



Chapter 6. Implementation

6.3.6. Pattern Matching

Pattern matching constructs are rewritten by BewvritingVisitorclass according to the specification in
Section 5.3.5, i.e. the rewriting visitor returns a modifi®8T that represents the specified rewriting.
Consequently, the concept of pattern matching is transp&reany further processing steps.

6.3.7. Exogenous Events

Analog to action declarations, the AST of each declared emogs event is stored in an associative con-
tainer that has the name and arity of the exogenous evenya¥\esn an exogenous event gets triggered
the AST of the event to be executed is interpreted using darine of theExecutionVisitorclass.

6.3.8. Sensing

Sensing is only implemented on a syntactical level, i.e sipgrof declarations of sensing actions. Any
attempt to use sensing beyond parsing results in an error.

6.3.9. Test Statement

TheTeststatement is implemented using a C++ conditional ("ifestagnt") that tests the truth value of the
evaluated YAGKformula) and either continues with the execution of the remaining ¥p®gram (in case
(formula) holds) or aborts execution (in ca§ermula) does not hold).

6.3.10. Non-deterministic Programming Constructs

The non-deterministic YAGI statemenpéck and chooseare implemented in a hit-or-miss like manner,
i.e. an argument (in case pick) or a block (in case othoosg is chosen pseudo-randorland the
program execution continues. Since YAGI is specified to usendine execution semantity default, an
unfortunately chosen pseudo-random number can lead tteargtare the program is unable to continue. In
case obffline execution semanti€se. using asearchblock) pick andchooseare resolved usinglanning
semantics, as described in Section 6.3.13.

6.3.11. Conditionals

YAGI conditionals are implemented via conditional constsu("if-statements") from the C++ program-
ming language. The truth value of the condition (i.e. the YA@®rmula) is evaluated and either the
if-block or the else-block (if present) gets executed depgnon the evaluation result ¢gformula).

6.3.12. Loops

YAGI while loops correspond to C+while loops. As for conditionals, the truth value of the condition
of the loop is evaluated and the loop body gets executed gsdsrthe condition holds. YAGDr loops
essentially iterate over a finite set of values, which makemtsimilar to C++#ange-based for loop&ince
C++11), which were consequently used for the implememaiforAGI for loops.

5The pseudo-random values are generated uniformly disedbgtia std::uniform_int_distribution ) using a Mersenne
Twister pseudo-random number generator tdamt19937 ) (Overland, 2013).
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6.3.13. Search-Operator

As described in Section 5.8.2, the purposeedrchis to find a valid execution trace of a YAGI program
beforeactually executing it. Our implementation séarchworks as follows. If asearchstatements gets
executed it createsshadow world A shadow worldis a copy (or a snapshot) of the current state of the
world at one specific point during the execution of a YAGI parg. Ashadow worldconsists of a copy of
all the fluents and facts (i.e. the database) and a copy dfealldriables and their values. Consecutively, the
YAGI program thesearchoperator is applied to getaentally executedn the previously createshadow
world. By mentally executedve mean that it is not a real-world execution but the atterafirtd an
execution trace that is guaranteed to succeed if executi ireal world. Consequently, if the execution
of the program on thehadow worldvas successful the resulting execution trace gets exeguthd "real
world", otherwise an appropriate error message gets gisgland the program does not get executed.

The execution ofearchbecomes particularly interesting if non-deterministioicles are part of the
YAGI program thesearchoperator is applied to. If - during the mental execution ofAGY program on a
shadow world- a pick or choosestatement gets executed a different execution branchainlewshadow
world) for each possible value ipick (or for each possible block inhoose respectively) gets created.
Each of these branches is responsible for searching overdigeam for one possible value pick or for
searching over one possible block in caselwdose The search over these branches happens as follows.
Each branch executes exactly one YAGI action and waits alhtither branches finished their execufion
After all branches performed their executions we check tdredr not the execution was successful. If a
YAGI action could not be successfully executed due to a timheof the action precondition we remove the
branch from the set of possible result branches. For allrdifeches (i.e. branches where the execution
was successful) we continue with the execution of the netimcAll branches that lead to a valid result
after all actions have been executed are possible restdsstad need to be taken into consideration for
further program execution.

The idea behind this approach is to mimic the behavior ofditefirst search (BFS). In our context, the
equivalent of visiting a node using BFS on a finite graph isstkexcution of a single YAGI action. We start
at the root node (i.e. the point wherg@ik or choosegets executed) and visit all its direct neighbors, i.e.
execute the first YAGI action. If all direct neighbors havebeisited (i.e. every execution branch finished
its execution of one YAGI action) we progress to the nextlleve. execute the next YAGI action in each
execution branch. The choice to implement searchoperator in this manner was driven by two major
aspects:

» Completeness of BFSBuilding a BFS-like strategy as described above enablés agyue that our
implementation oearchhas the same properties as BFS regardimgpletenesand optimality’.
The decision to focus on the completeness property and twéghe disadvantages of BFS for now
was directly driven by the second major aspect.

» The Curse of Prolog DFS Due to the fact that the majority of Prolog systems use aldést strat-
egy (Nilsson and Matuszski, 1990) also most of the Prolog-based implementatiéizofog are
bound to DFS. Experience showed that this fact plays a hugé@rwhy using a Prolog-based Golog
interpreter is challenging for novices and sometimes eweexperts. Since one of the design goals
of YAGI was to remove the tight coupling to Prolog it was alsoimportant aspect to implement a
different search strategy.

Finally, we want to mention that we are convinced that seaastit is implemented now - is sufficient for
a first proof-of-concept implementation but is still farfndeing ideal. One possible optimization (among
possibly many) could be the implementation of iterativepdgeng depth-first search (IDDFS) instead of
BFS, but we decided to stick to BFS for the time being and dékeanalysis of possible optimizations of
the search strategy to future work.

5Due to the fact that we specified the execution of a YAGI actiobe guaranteed to terminate this mode of operation does not
impose any problems regarding termination.

"This is only true under the assumption that the execution ef\ékGl action is guaranteed to terminate. Due to the fact thit o
iteration over finite domains can appear in a YAGI action éftawd YAGI actions are - by specification - unable to call other
YAGI actions (i.e. recursion is impossible) it is guarantéfeat the execution of a YAGI action always terminates.
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Search - Program Flow Example

To illustrate the program flow between the multiple units x#a@ution involved when a search-operator is
present in a YAGI program consider the following example:

/IFluents 'carry’, 'office’ and 'at’ from our running examp le
carry = {< >}
office = {< , >, < , >}
at = {< >}
proc searchSample ()
search
pick <$p, $r> from office such /leither <"p1","r1"> or <"p2","r2">
move( $r); /I<"p1","r1"> violates precondition of 'move’
choose
pickup ( ) IIviolates precondition of ’pickup’
or
putdown ( ); /lexecution possible
end choose
end pick
end search
end proc

Listing 6.1: YAGI Search Sample

Without a search-block the program above may or may not getuggd successfully, depending on the
pseudo-randomly chosen element frpiok and the pseudo-randomly chosen block framoose Using a
search-block we are able ptanthe execution ahead, i.e. find a valid execution trace - if@sts. The
program flow of the YAGI code snippet illustrated above isialized in Figure 6.6.

ExMain: ExecVisitor | | ExSearchMain: ExecVisitor | | ExP1: ExecVisitor | | ExP2: ExecVisitor | | ExC1: ExecVisitor | | ExC2: ExecVisitor

Run searchSample

search . H
pick <'pL","r1"> :
Violates AP H H H
of action ‘move’ H H H
H H H
- - - = — - — - - _ ® H H H
False ' choose ‘pickup(*ol");’ '
> » H
IS > '
Violates AP H
of action "pickup’ H
& -t T ® :
»
Choose putdown("'ol"); 'I
e [ B ==l e
Execute Trace Nl <@ = = = = = = — — — _| -+ "Trae [pick <'p2", "12">; putdown("o1)] — True [putdown('o1')]

True [FTrace*/]

Figure 6.6.: Schematic Sequence Diagram of the ExecutiarSafarch Block

When the YAGI code illustrated above gets executed an instafiche execution visitor (ExMain)
traverses the AST and executes the assignmentarty, officeandat. As soon as the node in the AST
that represents the search-block gets executed a sectadde®f the execution visitor (ExSearchMain) is
instantiated thanentallyexecutes the code inside the search-block, blocking theuére of ExMain. For
each possible tuple of thck-statement a separate execution instance (ExP1 and ExR2hgentiated,
each of them searching for a possible execution trace. Kwian is possible for a tuple fromick the
corresponding execution instance continues (ExP2), wikerthe execution instance returifslseto its
caller (ExP1). The execution fehoosdollows similarly (ExC1 and ExC?2). If a valid trace of the giram
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inside the search-block could be found the trace is retutméite main execution unit, which subsequently
executes the trace in the "real world".

6.3.14. Procedure Declaration

Analog to action declarations, the AST of each declaredqrfore is stored in an associative container that
has the name and arity of the procedure as key. When a prodsdxecuted the AST of the procedure to
be executed is interpreted using an instance ofttecutionVisitorclass.
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Chapter

Specification Conformance

In this chapter we discuss why our implementation conformesspecification of the YAGI language de-
scribed in Chapter 5. Recall that one important observatiaie introduction of this thesis was that
most of the Golog implementations are Prolog-based. Eveugtn Prolog-based implementations have a
number of drawbacks (as outlined in the introduction of thissis) using Prolog as language of choice
for implementing basic action theories and Golog progranmes with a notable advantage regarding
the discussion of specification conformance: One can provpepties like termination and correctness
of Golog programs directly within the situation calcul&eiter, 2001). Due to the fact that we decided
not to use a Prolog back-end in this implementation and ctoress proofs of programs written in general
purpose programming languages are only feasible undeaicerdnditiond we base our discussion on
showing semantic equivalence between the specificatiorAGfI¥and our proof-of-concept implementa-
tion. Specifically, we have to show a correspondence betiveefollowing elements:

1. Situation Calculus (BATS) «» Databases, Ground Formula Evaluation Our specification of
YAGI uses elements of situation calculus to specify theestdtthe world, reflect how the world
evolves and answer questions about the state the world.n@plementation makes use of database
semantics to implement parts of situation calculus. Comsetly, we have to show how and why
database semantics reflect the semantics of situationlealsasic action theories and how formulas
(more precisely, formulawithoutfree variables) can be evaluated based on this semantics.

2. IndiGolog <+ YAGI Program Execution: The second aspect of our discussion is program flow.
Recall that we used the semantics of IndiGolog to specifyetkecution of YAGI programs and
that our implementation interprets an abstract repreentaf YAGI source code (i.e. an abstract
syntax tree) to implement program flow. Hence, we have to dinmwthe program flow semantics
of IndiGolog relates to the program flow semantics of YAGI.

We start with providing a set of definitions we need throudltlois chapter in Section 7.1 and continue with
showing the connection between situation calculus ancddatasemantics in Section 7.2. Subsequently,
we discuss the program flow semantics of IndiGolog and how sbimantics relates to YAGI program
execution in Section 7.3 and finish this chapter by summagiaur results in Section 7.4.

1This proof is based on the idea that one can prove that a Pimipigmentation of a basic action theory is correct under erta
assumptions (properties of the basic action theory (mosbhotéosed initial database and no functional fluents) progherness
of the Prolog interpreter) and Golog programs raig&cro expandedhto situation calculus sentences.

2possible approaches are to restrict the language to arceutaset that allows formal verification and/or to ugkesign by Contract
model to provide formal semantics of the program (Meyer, 1992).
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7.1. Definitions

To discuss about specification conformance we need to estabtonnection between situation calculus
(especially fluents and situations) and our database samamid a connection between the execution of
an IndiGolog program (i.e. the evaluation of the transiti@mantic predicatéBransandFinal) and the
execution of a YAGI program, i.e. the interpretation of th8TA To be able to establish such a connection
we need to define a set of predicates and functions, as follows

Definition 7.1 (Relational Database)e define a relational databadleas a set of database tables
db=71UBU...UT,,

where a database table in a relational database can bereteetpas set-theoretielation, a row in a
table can be interpreted as a mathematigple and a column can be interpreted asadinibute (Gossett,
2009). For the sake of clarity we omit the detailed defingiofrelational databases, relational models and
relational algebra and refer to the work of (Codd, 1970).olighout this chapter we use the tedatabase
synonymously toelational database

Definition 7.2 (Function Symbokxeg. The binary function symbaxecis defined as
exec. actionx db— db,

whereactionis a situation calculus action (i.e. an element of the aotibns where aractionis the only
entity of situation calculus that can change situationsfaughts) andlbis a database according to the def-
inition above. We provide a detailed description of &xecfunction when we discuss the correspondence
between successor state axioms and the database semaaticsnoplementation in Section 7.2.4.

Definition 7.3 (Transition Semantics Predicaleang. The transition semantics predicaleansis the
4-ary predicate
Trangd,s,d,9)

with & being an executable program in a starting situatid@ading to situatiors' by executing one el-
ementary step 0d, resulting in the remaining progra®. Transholds iff there exists a transition from
(9,s) to (&,). This form of transition semantics has been used by (De Giacet al., 2000) to specify
the transition semantics @onGologand later on by (De Giacomo et al., 2009) to describe theitians

semantics ofndiGolog

Definition 7.4 (Transition Semantics Predicdtal). The transition semantics predicdtmal is the bi-
nary predicate
Final(d,s)

with & being a program that is allowed to successfully terminatgtirations. Together withTrans Final
was also used by (De Giacomo et al., 2000) and (De Giacomq 2080) to define the transition semantics
of ConGologandIndiGolog, respectively.

Definition 7.5 (YAGI Transition Semantics Predica¥agiTran3. The transition semantics predicafagi-
Transis the 4-ary predicate
YagiTranga,b,a’,b’)

with a being a YAGI program ant being a database. The executioroofv.r.t. the databask leads to a
new databask’ and results in the remaining prograrh YagiTransholds iff there exists a transition from
(a,b) to (o', b').

Definition 7.6 (YAGI Transition Semantics Predica¥@agiFinal). The transition semantics predicatagi-
Final is the binary predicate
YagiFinal(a,b)

with a being a program that is allowed to successfully terminatg the databask.

58



7.1. Definitions

Definition 7.7 (Program Translation FunctioragiToGolog. The unary function symbagftagiToGologis
defined as

yagiToGolog a — &

whered is a valid YAGI program and is a valid situation calculus / IndiGolog program. The iptetation
is that the function translates YAGI programs to situatialtalus / IndiGolog programs.

Definition 7.8 (Uniform Formulas) According to (Reiter, 2001) a formula is said to tn@iform inc if o
is a situation term and it holds for the formula that

* it doesn’t mention the predicat®»ssor , where_ denotes the concept offgoper subsequence
of situations.

* it doesn’t quantify over situations.
* it doesn’t mention equality on situations.

« it doesn’t mention any other term of s@ituationthano as situation argument for a fluent.

Definition 7.9 (Function Symbotlo). The binary function symbalois defined as
do: actionx situation— situation

The interpretation is thato(a,s) denotes the successor situation resulting from the exwetofiactiona
in situations (Reiter, 2001).

Definition 7.10 (Projection Problem)According to (Reiter, 2001) the projection problem in th@aiion
calculus is defined as follows: Given a basic action the@ra sequence of ground action terfas . .., an)
and a goal formul&(s) that is uniform ins, determine whether or not

D - G(dol[ay, .., 2], D).

That is, find out whether or not a go@l holds in world resulting from performing a certain sequeate
actions.

Definition 7.11 (Regression) (Reiter, 2001) has shown that regression is a mechanisnviethe projec-
tion problem. Therefore, he formulated tfegression theoremas follows. Given a regressable sentence
W of the languag&.sitcalc that mentions no functional fluents and a basic action thébtlyen it holds that

with R being the regression operator that returns a sentencealygequivalent toW, but uniform in
S. That is, a sentend® is transformed into a logical equivalent sentence that iesbnly the initial
situationSy, which is a much simpler entailment because it reduces thleation of a regressable sentence
to a theorem proving task in the initial theoB,.

Definition 7.12 (Progression) Progression is the alternative to regression to solve thiegtion problem.
(De Giacomo et al., 2009) provided a definition as followsveaia basic action theor$ and any goal
formulag, find a2y such that

D = ¢ldo([ay, ..., an], S)] iff Dunal Do = @S],

where 7 is a database transformed by the progression opefasich thatDy = P(Dg), (a1, ..., an)).
Further, note that (Lin and Reiter, 1997) showed that pisxjom is not always feasible. However, (Vassos,
2009) discusses various action theories that are restiiicme form and shows how such action theories
can be progressed.
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7.2. Situation Calculus (BATs) <+ Databases, Ground Formula
Evaluation

To establish a connection between the semantics of reldtitaiabases and situation calculus, we rely on
the work done by (De Giacomo and Palatta, 2000). Our basigrattteoryDy ag) underlies the following
constraints:

» The sortStringis countably infinite at worst and each element of the Strihgis represented as a
constant for which the unigue name assumption holds. Sieaestrictedassignmentto finite sets
any fluent can hold only for a finite number of different paréengectors at any given point in time.

 The initial databas@s, is specified to be in closed form, i.e. the theory either laljycimplies
F(X,S) or -F (X,S) for each fluenE and each parameter vector

Under similar constraints, (De Giacomo and Palatta, 2086yved how fluents can be represented, for-
mulas can be evaluated and the state of the system can beechasigg database semantics. We will
introduce a similar model for YAGI in the next sections.

7.2.1. Progression in YAGI

To solve the projection task in YAGI we use progression agiogr to Definition 7.12. Even though
regression has proved to be a powerful mechanism to reasom attions, it imposes the serious drawback
that it always has to regress back to the initial situatidrsome agent performed lots of actions during
its lifetime the history of actions that must be taken intoamt can be considerably huge, which implies
lots of computational work (De Giacomo and Palatta, 200B)cé&progression changes its database of the
initial situation it doesn’t suffer from this drawback. Hewer, one major problem with progression is that
it is not always feasible. (Lin and Reiter, 1997) demonsttatlatively simple basic action theories where
no progression operator exists.

However, we rely on the work done by (Vassos et al., 2008) wafmedd the following terminology:

A successor state axiom is said toIbeal effectif for an actionA(X) that changes the truth value of
a fluentF (y,s) it holds that and/ is contained irk. If all successor state axioms s, arelocal effect
then the basic action theorylscal effect Further, a successor state axiom is said tethetly local effect
if it is local effectand if the change of the flueft(y,s) also depends on a flue@(Z s) thenZ is also
contained inX. Consequently, a basic action theorstsictly local effectif all successor state axioms in
Dssa arestrictly local effectand the basic action theory includes a set with uniquenesarmgs axioms
for constants. Ultimately, (Vassos et al., 2008) showetlftiraa strictly local effectbasic action theory a
first-order strong progression always exists and it canladsoomputed, i.e. it is guaranteed to be finite.

What remains for discussion is whether or not the YAGI bastioacheory Dy ag) is strictly local
effect Recall that the successor state axiom for each fliéntYAGI is of the formF (X,do(a,s)) = a=
addF(X) V F(X,s) Aa# removeRX) and all successor state axiomligsaare of this form. Since the only
parameter vector involved i§ the only fluent involved i$= and the YAGI basic action theory enforces
uniqueness of names for constants via the set of axiorfigjathestrictly local effecicondition holds and
we conclude thafy ag is always finitely first-order progressable.

7.2.2. Fluent Representation
A fluent (or fact)F with arity mis represented as a database tdpleomposed byncolumns(fy,..., fm).

Further, we defin®g[x1, ..., Xm] to be arow in the database table for the flUethat represents a parameter
vectorX = (xa,...,Xm). Then, we define that for all fluenEsand all parameter vectorst holds that

D= F(%,9) & Relx, ... %] € Tr
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DEF(XS) < Re[x1,. .., Xm] € Tk

That is, if the theoryD entails that the fluerf (X, s) holds then the row that correspondsktis stored in
the database table (and vice versa), otherwise the fluestrdudold for that given parameter vector.

7.2.3. Fluent- and Fact-Declaration

Initially, we start with an empty database, i.e. a databaglkeowt any tables. This corresponds to an
initial situationS where no fluent holds, i.e/X.F (X,S) = Falseholds for all fluentd=. The execution of
(fluent_dedl or (fact_dec] for a fluent (or factf results in a new database table representing the fluent
as discussed in the section above. Note that the sole exéstéra new database table fordoesn’t make
the fluent hold for any given parameter vecXor.e. it still holds thatvX.F (X, S) = False

7.2.4. Successor State Axioms

For each declared fluefit we specified that a successor state axiom of the fB(Xdo(a,s)) =a=
addF(X) v F(X,s) A a# removeRX) is added toDssa We have to show that the semantics of this type of
successor state axiom is reflected in our database implatimrd. Therefore, we use the functierec
specified in Definition 7.2. The interpretation is tleaied¢a, b) denotes thesuccessor databagesulting
from the execution of an situation calculus actmmv.r.t. the databask. Due to the fact that YAGI is
specified to only use two types of situation calculus actigrasmelyaddF andremoveFas used in the
successor state axiom above) we speelgcas

/ __ b i _

exeda,b) — {E/ = ;FbuRFm, if a=addF(¥).
=T2\Re[X], if a=removeRX),

where byZ;® we mean the table that corresponds to the flieint the databask andRr [¥] is the row that
corresponds to the parameter vectet (x1,...,Xm) in the database table representing the fldenthe
interpretation is that depending on the actéogither a row is added or removed from the database table of
the corresponding fluent, leading to the new databasdow, recall that we specified that a fluéhx, s)
holds if D = F(X,s) & Re[x1,...,Xn] € Tr holds andRg [x1,...,Xm] is exactly the row that is added or
removed depending on the acti@d@F or removeH from the successor state axiom. Hence, our database
semantics reflects exactly the successor state axiom bedcabove. Since (De Giacomo and Palatta,
2000) showed correspondence between successor statesaad3QL commands in general we consider
our definition to be a more restricted version of that sincedls only with specific types of successor state
axioms.

Furthermore, we want to mention that adding and removingsrigvimplemented in a straight-forward
manner using the corresponding S@kert anddeletestatements, as follows:

I NSERT | NTO T¢
VALUES ('x1' ., )

Listing 7.1: SQL Schematic For ActiceddF(X)

VHERE (f1 = AND f2 = AND ... AND fm = )i
Listing 7.2: SQL Schematic For ActiarmoveRX)

‘ DELETE FROM Tg

Based on this definition of how successor state axioms redater database semantics we analyze the
different types of YAGI assignments.
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Add-Assignment

Let there be an add-assignment of the farm= F_sigma ;, with F and F; being fluents. Then such an
assignment gets - by specification - transformed into a YA@plof the form

foreach <$x1,..., $xn> in F_sigma do
addF ($x1,..., $xn);
end for

Given this YAGI loop, we have to show that the fluénholds for all parameter vectorsof F, after the
loop body has been executed. Formally, we have to showvthBg(X,d) — F(X,d’), with d being the
databasdeforethat loop gets executed anélbeing the databasater the loop got executed. Depending
on the number of parameter vectors for whighholds (denoted a$|) we argue inductively, as follows:

* |Fs| = 0: Based on the specification of YAGbr-Loopsin Section 5.4.6 the loop doesn’t get exe-
cuted. HenceaddFdoesn't get executed and the fluénstays unaffected. Thus, the argument holds
trivially.

» |Fs| = 1: The loop gets executed exactly once, i.e. one siadtbaction gets executed. This is the
exact semantics of the successor state axiom as describeel dthus, the argument holds according
to the specification of the successor state axiom.

* |Fs| > 1: Every time the loop gets executed one sinayiel action gets executed for a parameter
vectorX. Due to the specification of the successor state axiomsdishbhatF (X,d") = Truefor the
chosen parameter vectgr That exact vector gets removed frdfa according to the specification
of the semantics of YAGFor-Loops hence it holds thalF;| gets decreased by one every loop
iteration. Consequently, the base casé¢Fgf = 1 is guaranteed to be reached after a finite number
of iterations. Thus, the argument holds due to the spediitatf the successor state axioms and the
induction hypothesis.

Note that the assignment expansion into a loop as descrhima alltimately expands to a sequence of
executions of situation calculus simple acti@dF, so the effect of the YAGI assignment is equivalent
to D = gldo([addF(x1),addF(%5), . ..,addF(X)], S)], for each of thek parameter vectors the flueR§
holds for.

Remove-Assignment

Let there be a remove-assignment of the farm F_sigma ; , with F andF,; being fluents. Then such an
assignment gets - by specification - transformed into a YAGplof the form

foreach <$x1,..., $xn> in F_sigma do
removeF ( $x1,..., $xn);
end for

The only difference to the add-assignment discussed also&i a different situation calculus action
(removenstead ofdd) gets executed, other than that the transformation is lgxhet same. Consequently,
the inductive argument can be build exactly the same wayrakdéoadd-assignment.

Override Assignment

By specification, an override assignment is a remove-assgh followed by an add-assignment. That
is, we specified that an override assignment of the fBrm F; makes the fluenfe true for all and only

all tuples inFs. In other words, an override assignment removes all elesnfeon F and adds all the
tuples fromF; to it. Consequently, we can express an override assignrsentemove-assignmeht-= F
followed by an add-assignmehRt+= F;. Since we already discussed both of these types of assigamen
above we don’t need to build a special case for override assgts.
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Loop Assignment

Loop assignments ultimately collapse to sequences of adbreanove-assignments. That is, a YAGI loop
assignment of the form

foreach <$x1, $x2,..., $xn>in F do
Fro+= {< $x1,8$x2,..., $xn >};
end for

can be interpreted as a sequence of assignments of the form
/[foreach <$x1,$x2,...,$xn> in F do

F' += {< $x11, $x21,..., $xnl >};
F'o+= {< $x12, $x22 ,..., $xn2 >};
F' += {< $xlm, $x2m,..., $xnm>};
/lend for

for each of thentuples the fluenE holds for. Hence, the same inductive argument usedddrassignment
above applies.

Conditional Assignment

Conditional assignments are simply two possible sequesf@ssignments that get executed depending on
the evaluation of a formula, i.e. the conditional. Consedjyethe same reasoning as above applies.

7.2.5. Ground Formula Evaluation

Having defined how fluents are represented and how the trlik @ fluents can be changed we proceed
with the evaluation of YAGI formulas. More precisely, we teéh first-order formulas that are in closed
form (orground), i.e. first-order formulas without free variables. Wher@s Giacomo and Palatta, 2000)
showed how every situation calculus formula of arbitrargnptexity can be directly translated to SQL we
decided to evaluate formulas using C++ machinery rather tharanslate formulas directly to SQL. If a
fluent is involved in a formula we fetch its data from the dasbusing a SQkelectstatement and store
its result in appropriate C++ data structures. We interjpretlata from a row in a database table as a tuple
of strings, hence we build an instancestf::vector<std::string> for each row in a table. The set of
all such tuples (i.e. an instance gifl::vector< std::vector<std::string> > ) represents the state
of the fluent, which we subsequently use for formula evatumti

For the discussion of formula evaluation semantics we airgaliectively on the structure of the formula.
Since an empty formula is forbidden according to the syittakspecification of(formula) we use the
evaluation of a fluent according to the definition of fluentresgntation in Section 7.2.2 for the base case,
i.e. let¢ be a formula of the fornd = F () for a fluentF and a vector of termB= (t,...,ty), then we
can decide whether or ngt holds according to the semantics in Section 7.2.2. Notewileatan omit
the situation term since we only deal with a single situation the database as a snapshot of the world
generated via progression. For the inductive step we tedt ease separately, as follows:

 Truth Values: trueandfalseare constants, hence their truth value is independent @cafgpmodel.
Truth values are implemented using the C++ datatypal, hence its evaluation is trivial.

» Comparisons String values are constants, hence comparisons of stalugs work independently
of a specific model, according to the specification in Secbah 3. For comparisons of sets of tuples
we need to consider two separate cases. In the first caseprtiaced sets solely consist of tuples
with constant string values. In this case comparison warllgpendent of a specific model. In the

3We want to mention that using a vector of strings as intermedigpresentation to evaluate formulas implies an overhead in
execution time compared to the idea lined out by (De Giacomo afait®, 2000) to evaluate formulas directly using SQL. We
plan to pursue the formula evaluation ideas discussed by {Beo@o0 and Palatta, 2000) in a future implementation.
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second case, a fluent is involved in a comparison. In this, ¢heeset is deduced from the database
table as described above. On this deduced set, comparisdes exactly like it does for a set of
tuples with constants.

« Logical Connectives The logical connectiveand (A) andor (V) are implemented using their C++
equivalents && and|. Theimplies (—) connective is rewritten into a logically equivalent terin o
the form¢1 — ¢2 = -1V d2.

» Negation The operator- is implemented using the equivalent C++ negation operator !

* First-Order Quantifiers : All-quantified formulas are evaluated for all tuples in atam set, i.e.
for each tuple in a set its values are bound to variables antbtmula gets evaluated. The formula
holds iff it holds for all bindings, i.e. for all tuples in theet. Exists-quantified formulas follow
similarly, with the difference that the formula holds if obhimding that fulfills the formula is found.
Note that quantifiers operate on the domain of the involveehtiand we currently deal with finite
domains only. Furthermore, we handle the special case wittunh-block present separately, i.e.
exists <¢x> in Fandal | <$x> in Fhold iff there is at least one element for that the fluértolds.

» Operator in: The evaluation ofn is implemented as a simple search of a tuple in a set,<i.e.
>in {<'a" ><'h >< e 5} is true iff the left-hand side tuple is an element of the righhd side
set.

7.2.6. Action Preconditions

Since YAGI actions get rewritten into IndiGolog proceduee¥AGI action declaration has no effect on
Dap. More precisely, the precondition of a YAGI action gets rigten into an IndiGologeststatement of

the formtest;, wherephiis the formula that corresponds to the YAGI action precaadit Hence, the
YAGI action precondition becomes a program execution state rather than a situation calculus action
precondition. Note that the formutafrom theteststatement gets evaluated according to the semantics
discussed in Section 7.2.5 above. Hence, the formptialds if and only if the YAGI action precondition
formula holds. Consequently, we want to emphasize thatrdoapto this specification a YAGI action
declaratiomeveraffectsDyp,.

What remains for discussion regarding situation calculti®agreconditions are the action precondi-
tions ofadd andremovefor each declared fluent. Note tredd andremoveare the only situation calculus
actions that can occur, consequently we only need to digbhegspreconditions and how they are imple-
mented. Essentially, the preconditionsaafd and removeare specified to ensure that only elements of
the correct sort can be added and removed. Due to the facthatore the sort of each domain of each
declared fluent in separate database tables we enforcegt@npiitions by checking if each element of the
parameter vectdX that is passed tadd or removeexists in the corresponding database table. The corre-
sponding action is executed if and only if all elementXdfelong to the respective sort of the declared
fluent.

7.3. IndiGolog < YAGI Program Execution

Having defined how our database semantics relates to situzdiculus in the previous section, we proceed
with the execution of YAGI programs and how such an execwtemantics relates to IndiGolog transition
semantics. To accomplish this task we restate the transigonantics specified by (De Giacomo et al.,
2009), state our YAGI transition semantics (i¥agiTransand YagiFinal) and show the relation between
these transition semantics predicates for each YAGI progriement.
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7.3.1. YAGI Program Representation

When giving definitions folvagiTransandYagiFinalwe used terms such asbeing aprogramanda’ being
aremaining program Here, we give a definition of what these terms mean in cortegur implemen-
tation. A YAGI program is internally represented by its A$E, a tree with a root node «program» and
children «tmi», ... «stmk» that represent the statements and declardtions YAGI program as speci-
fied by the syntax ofprogran) in Section 5.10.1. This is what will refer to @sograma in this context.
YagiTransthen describes the execution of one elementary step in tHeak8ording to its specification,
leading to theemaining programi.e. the remaining AST that represents the progeerthat remains to
be executet! If all AST nodes have been visited the empty YAGI programmited asull) remains. The
execution of a simple YAGI program is illustrated in Figurel Below. The subtree of the AST colored
in blue denotes the current statement that is being execiditer the execution of the first statement the
subtree that represents the first statement vanishes,edeviat dotted lines. Theemaining programis
the conditional statement, which is also the last stateinethie YAGI program. Consequently, the empty
programnull remains and the program is allowed to terminate. Note thhEfigure below we assume that
both transition predicates (i.e. YagiTrans for the teateshent and YagiTrans for the conditional) hold, i.e.
both transitions can be executed successfully.

YAGI Program

test not(<"4"> in currFloor);

if (exists <$x> in currFloor such $x<"5") then
up("5");

else
down("5");

end if

T
1 AST of the YAGI program

D
program YagiTrans('test' phi;...)
0
stmtl yth /\ stmtl ‘,,
K
.
camelo,
' '

conditional

YagiTrans(if' phi 'then'...)

stmt2

Empty program 'null

test conditional

v
formula formula block (if) block (else) ' formula H formula block (if) block (else)
'

| 1 e 1 |

execute 'down’ |

execute 'up’ execute 'up’

execute ‘down’ |

Figure 7.1.: AST Execution Schematic

Having defined our structure of a program we proceed with thppimg of YAGI programs to situation
calculus and IndiGolog programs.

7.3.2. YAGI Program Mapping

To accomplish a mapping from an arbitrary YAGI program taaiton calculus and IndiGolog we provide
a mapping function for each of the YAGI language construeisépt procedures, which are discussed
separately in Section 7.3.11) to IndiGolog and situatidoudas, as follows:

1. Empty program
yagiToGolognull) = nil

“Note that declarations of YAGI actions, procedures etc.aise part of the AST. Due to the fact that those statements Hane
any transitional semantics they are not discussed in thexbot transition semantics in the following sections.

SWe don't actually remove already executed statements fromA8because it has no effect but to give a slight hit in exeruti
performance. We simply traverse the AST and execute the statetineheir given order.
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2. Primitive Action

yagiToGologa) = a

3. Test
yagiToGolodtest@;) = @?
4. Choose
yagiToGologchoosen; or a,)® = yagiToGologa;) | yagiToGologa,)
5. Pick
yagiToGolodpick (vi,...,vq) from F sucha) = niv.yagiToGoloda)
6. Conditional

yagiToGolodif @thena; elsea, end if) = if @thenyagiToGoloda) elseyagiToGoloda>) endIf
7. While
yagiToGologwhile @do a end while) = while @ do yagiToGoloda) endWhile
8. Sequence
yagiToGolodaj;az) = yagiToGoloda;) ; yagiToGologay)

Note that we didn’t provide a program mapping for a YAGI fopp to IndiGolog. The reason for this is
that IndiGolog has no language construct that has the irtksdmantics of a YAGI for-loop. Therefore,
we specified the semantics of a YAGI for-loop in terms of a g into while andpickin Section 5.4.6.
Because for-loops are rewritten imi¢hile and pick we need no separate program mapping for a YAGI
for-loop since we can express its mapping usirdle andpick.

Based on the mappings from above we provide YAGI transitemantics for each of these language
constructs and show their relation to the IndiGolog tramsisemantics. In the following sections free
variables are assumed to be universally quantified.

7.3.3. Empty Program

Let nil be the empty IndiGolog program. Th&ransandFinal for this empty program are specified as
Trangnil,s,&,5) = False
Final(nil,s) = True
Essentially, this means that an empty program is alwaysvatlato legally terminate and that an empty

program is under no circumstance able to evolve into angthithen, we defin&agiTransandYagiFinal
as

YagiTrangnull,b,a’,b") = False

YagiFinalnull,b) = True,

which are exactly the same transitions as for an empty Indigsprogram.

SNote that we syntactically allow an arbitrary number of blptdkchoose from, i.echoosen; or a or ... or ap. The transformation
works identically for all of these blocks, so we can - withtags of generality - reduce our analysis to the case with twoks.
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7.3.4. Primitive Actions

For situation calculus primitive actioff$ansandFinal are specified as

Tranga,s,d,s) = Posgals],s) A = nil AS = do(a[s],s)

Final(a,s) = False

Essentially, this means théa, s) evolves to(nil,do(a[g],s)) iff the execution of the actioa is possible

in the situations and after the execution @ nothing remains to be executed. Moreover, the execution
of a primitive action can never be final, i.e. the action mweseRecuted before the program can legally
terminate. For YAGI, we specifyagiTransandYagiFinalas

YagiTranga,b,a’.b') = dap(a) Ad’ = null AL = exega, b)

YagiFinala, b) = False

dap(a) is the action precondition formula for the primitive actiar{which can only be eitheaddF or
removeFfor a fluentF), so ¢ap(a) is guaranteed to hold according to the discussion in Sec@idh6.
Again, note that we don't have a situation termdige(a) since we always progress our database, hence
always deal just with the current situation. Further, thegpession ta' is reflected by the execution of
the functionexeda, b) because it implements exactly the successor state axioeetfisd foraddF and
removeFaccording to Definition 7.2.

7.3.5. Test

For IndiGolog'sTestactionsTransandFinal are specified as

Trang@?,s,8,5) =g Ad =nilAS =s

Final(¢?,s) = False

which essentially means thatansholds iff the formula under test holds in the current sitoiatand after
executing the test nothing remains to be executed. Furthrerg? can never be final, i.e. its execution is
mandatory. For YAGI, we define

YagiTranstest@;,b,a’,b') = glb] Aa’ =null A =b

YagiFinaltest;,b) = False

where@[b] is the evaluation of the YAGI formula w.r.t. the datab&sendq[s] is the mapping of the In-
diGolog representation of the conditigrio the corresponding situation calculus formula, see (e@no

et al., 2009) for details. Recall that we already showed Henevaluation of YAGI formulas follows the
specification in Section 7.2.5. Consequently, test alsavehaccording to the specification. Further, note
that@? does not change the successor situatidesi®; doesn’t change the database.
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7.3.6. Choose
For a non-deterministic brandransandFinal are specified as

Trangd | 82,5,8,8) = Trangd,s,8,5) VTrangd,,s,9, )
Final(d1 | 62,5) = Final(81,s) V Final(dz,s),

meaning tha{d; | 82,s) can evolve t &', s) iff either of the two branches can do so. Consequently, we
defineYagiTransandYagiFinalas
YagiTrangchoosen; or a, end chooseb,a’,b’) = YagiTranga1,b,a’,b') vYagiTranga,, b,a’,b’)

YagiFinalchoosen; or a, end chooseb) = YagiFinal(a1,b) v YagiFinal(az, b),

which expresses the same semantics in terms of YAGI.

7.3.7. Pick
For a non-deterministic choice of argumdm&nsandFinal are specified as
Trangmv.d,s,8,5) = Ix.Trangdy,s,d,s)
Final(nv.d,s) = 3x.Final (3}, s),

meaning that there exists asuch tha{dy, s) can evolve td®',s') anddy, is a program whereis substituted
with the variablex. Analogously, we specify that

YagiTrangpick V from F sucha end pick,b,a’,b") = e %.YagiTrangsy,b,a’,b')
YagiFinalpick V from F sucha end pick,b) = 35 X YagiFinal( ‘:-é,b)

WhereEI§F is the existential quantifier over the sort of the fluEr(which is a more restricted quantification
than3xin TransandFinal) andég is a YAGI program wherd is substituted with the variable vectgr

7.3.8. Conditional

For synchronized conditionalBansandFinal are specified as
Trangif then &; elsed; endlf,s,&,s) = ¢[s| A Trangd1,s,8,5) vV —@[s A Trangd,,s,8', )
Final(if @then &; elsed; endlf,s) = ¢[s| AFinal(d1,s) V —@[s| AFinal(dz,s),
saying that the conditional can evolve (@, ) if @[s] holds and(d1,s) can do so (if-clause) ap[s|] does
not hold and 3, s) can do so (else-clauseyagiTransandYagiFinalare defined equivalently as
YagiTransgif @thena; elsea, end if,b,a’,b') = gb] AYagiTrangay,b,a’,b') v—-@[b] AYagiTrangay, b,a’,b’)

YagiFinal(if @then a1 elsea; end if,b) = @[b] A YagiFinal(ay, b) vV —@[b] A YagiFinal(az, b),

whereq[b] is the evaluation of a YAGI formula w.r.t. the datab&se
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7.3.9. While

For a synchronized loopransandFinal are specified as
Trangwhile @do & endWhile,s, &, s') = Jy.(& = y;while @do d) A @[s] A Trang3,s,y,s)

Final(while @do 6 endWhile, s) = —@[s] v Final (3, s)

Analogously, we specifiyagiTransandYagiFinalas
YagiTrangwhile edoa end while,b,a’,b') = Jy.(a’ = y;while pdoa end while) A@[b] AYagiTranga, b,y, b')

YagiFinalwhile @do a end while,b) = —q[b] v YagiFinal(a,b)

Note that the AST remains unchanged in case of a transitienthie execution oYagiTransfor a while-
statement leaves the remaining AST equal to the AST befeex#cution.

7.3.10. Sequence

For a sequence of IndiGolog statemehtansandFinal are specified as
Trangd1;82,5,8,8) = 3.8 = (y; &) ATrangdy,s,y,s) vV Final(81,5) A Trang8,,s,8,S)

Final(81;&2,s) = Final(81, ) A Final(&y,s),

stating that(d1;62,s) can either evolve t¢d;;5,,s) given that(d1,s) can evolve ta(d;,s) or to (8,5
given that(5;,s) is a final configuration an¢®;,s) can evolve ta(d,,s) (De Giacomo et al., 2009). In
YAGI, we reflect this semantics as

YagiTrangay;dz,b,a’,b) =3Jy.a’ = (y;02) AYagiTrangay, b, y,b') vVYagiFinal(ay, b) AYagiTranga,, b,a’,b")

YagiFinala1;az,b) = YagiFinal(a1,b) AYagiFinal(a, b).

7.3.11. Procedures

Traditional Golog and ConGolog/IndiGolog use differenpagaches when it comes to the formalization
of procedures. In traditional Golog, procedures migcro expandetb situation calculus formulas, i.e. a
procedure call is replaced by its definition and parametétheoprocedure call are evaluated w.r.t. the
current situation and then passed icall-by-valuemanner. However, there is no straight-forward way
to macro expand recursive procedure calls and macro expateads to a less expressive formalism, as
discussed by (Levesque et al., 1994).

ConGolog and IndiGolog use a different formalization teghe that is able to deal with unbound re-
cursive procedure calls. In ConGolog, procedure calls arelled in a standard way with call-by-value
semantics and lexical scoping, which is a fundamentalfght approach compared to macro expansion.
The price to pay is that this approach requifesnsandFinal to be defined as a second-order formula. A
detailed description of those second-order predicatebedound in (De Giacomo et al., 2000).

In YAGI, we treat procedures similar to ConGolog. That imgadures don’t get macro expanded, they
are treated like procedures in a traditional manner, i.eamaters are passed via call-by-value and the
procedure gets subsequently executed in its own environnTdris modus operandi resembles a typical
way to deal with parameter passing and procedure executom & compiler construction point of view
(Aho et al., 2007).
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7.4. Consequence

Based on the specification of how the YAGI database semawfates to situation calculus and how YAGI
transition semantics relates to IndiGolog transition setma we conclude that the implementation follows
the specified semantics. This follows directly from the daéin of the base cases (i.e. YAGI program
mappings forempty programprimitive actionandtes) and the inductive definition for all other cases.
Further, recall that we use tivisitor design pattern in our implementation to execute YAGI pratgaas
mentioned in Section 6.2.2. The AST traversal via the visitgplementation reflects exactly the semantics
of YagiTransandYagiFinalas specified in this chapter.
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Chapter

Evaluation

In this chapter, we provide an evaluation of our YAGI implenation. We start with a description of our
evaluation setting in Section 8.1 and continue with a dption of the mechanisms we use for measuring
program execution time in Section 8.2. Then, we present\hkiation results for the elevator domain
and the blocks world in Section 8.3 and Section 8.4, resgagtiFinally, we finish with a discussion of
our evaluation results in Section 8.5.

8.1. Evaluation Setting

Due to the fact that the interpreter implementation of Iralifg is considered to be in "alpha" stagee use
the classical SWI-Prolog-based Golog interpreter proviskethe University of Torontdfor comparison.
We compare the performance of YAGI and Golog using two diffitdomains, namelglevator Controller
andBlocks World For each of these domains we randomly generate ten inttiat®ns for each test case,
i.e. we run each program with ten random initial situatiomsnicrease the precision of the measured
run-time information for each test case. For each test cadesach program the result is the 4-tuple
(U[s], o[g], to[%], sucd%l]), wherep[s| and o[g] are the mean and standard deviation over the run-fimes
of the program given ten random initial situations in sesynd[%] is the percentage of timeouts (i.e.
the program was not able to find a solution for a given initinlagion consuming a certain amount of
resourced andsucd%) is the percentage of initial situations where the given mogwas able to find

a valid solution. For each of the domains we use differentlémentations (i.e. different YAGI- and
Golog-programs) for comparison, which are as follows:

I YAGI (non-deterministic, no planning): The YAGI program makes use of non-deterministic con-
structspick andchooseand executes the program online, iveithout searching for a valid trace be-
forehand. As a consequence, this implementation may or m&fjnd a solution based on the output
of the random number generator, i.e. depending on the oafgbe random number generator there
might arise a situation where YAGI program execution caortttue, leading to the termination of the
program. The listings for elevator and blocks world can hentbin Appendix C.1.1 and Appendix
C.2.1, respectively.

II' YAGI (conditional, no planning) : The YAGI program makes use of non-deterministic consspick
andchooseand executes the program online, wgthout searching for a valid trace beforehand. The

1According tohttp:/www.cs.toronto.edu/cogrobo/main/systems/ . Last visited on November 12th, 2014.

2http:/iwww.cs.toronto.edu/cogrobo/Systems/golog_swi .pl . Last visited on November 12th, 2014.

30nly programs that didot time out contribute to the mean and standard deviation caionk

“We define that no solution can be found if a program takes mare 1B minutes to execute or runs out of resources (e.g. memory,
threads) before that time.
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difference to the program described above is that the progiges conditional constructs to prevent
violations of YagiTransand YagiFinal As a consequence, the program should always terminate suc-
cessfully. The listings for elevator and blocks world carfdiend in Appendix C.1.2 and Appendix
C.2.2, respectively.

Il YAGI (non-deterministic, full planning) : The YAGI program makes use of non-deterministic con-
structspick andchooseand executes the program offline, i.e. it searches for a w@ak beforehand.
As a consequence, the program executed online should ateagmate - if the search procedure is
able to find a valid trace. The listings for elevator and btoalorld can be found in Appendix C.1.3
and Appendix C.2.3, respectively.

IV YAGI (conditional, full planning) : The mode of execution is identical to the program described
above, the difference is that the program uses conditidogisevent execution traces from failing.
The listings for elevator and blocks world can be found in &pgix C.1.4 and Appendix C.2.4,
respectively.

V Golog: The ’'classic’ Golog implementation of the respective peol domain. It can be considered
as the Golog counterpart §AGI (non-deterministic, full planningjince Golog always performs full
planning and the input program is non-deterministic. Thtngs for elevator and blocks world can be
found in Appendix C.1.5 and Appendix C.2.5, respectively.

VI Golog (conditional). A modified version of the 'classic’ Golog implementatiomtluses conditionals
to preemptively eliminate execution paths that are guasahto fail. Therefore, it can be considered as
Golog counterpart oYAGI (conditional, full planning)The listing can be found in Appendix C.1.6.

VIl Golog (reordered) A Golog program with the order of the statements of the neteswinistic branch
operator switched. The intention behind such a modificaidhat we want to investigate if the order
of statements influences the result of the program in any Whs. listing can be found in Appendix
C.2.6.

8.2. Measurement Techniques

For timing the run-time of the Golog program we use the huijredicatestatistics(cputime, Tiyom SWI
Prolog (Wielemaker et al., 2014). More precisely, we capthe CPU timeébeforeexecuting the Golog
program §tatistics(cputime, T1yun the Golog program, capture the CPU time agatatistics(cputime,
T2) and take the differencE2 — T1 as execution time. Similarly, we use the high-resolutiomrtg func-
tions from thechrono namespace of C++ (Gregoire et al., 2011) to measure themanef the YAGI
program, i.e. we capture the current time point via chromigh_resolution_clockexecute the YAGI
program, capture the time point again and take the differ@fitime points as execution time.

8.3. Elevator Controller

We use a slightly modified versiérof the well-known elevator example from (Reiter, 2001). Fue
different test cases we use a different number of total atideaftoors, i.e. there exist floors and for a
randomm < n floors the fluenoninitially holds. We state the concrete numbers of total astiva floors

for each test cask, in parentheses, i.e. for a test cdsthe interpretation of; (n,m) is that for the-th test
case the total number of floorsnsandm floors are active. Further, we randomize which floors arevacti
and on which floor the elevator initially resides for eachha ten iterations per test case. We present the
measurement results for each test case in the tables below.

5Taken from http://www.eecs.yorku.ca/course_archive/2006-07/W/3 402/asg3/simple_elevator.swipl . Slightly
adapted version for SWI Prolog. Last visited on November 12084.
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Test Casé1(7,2)

Meanp | Std. Dev.o | Timeout | Success
YAGI (non-deterministic, no planning)|| 0.08s 0.03s 0% 10%
YAGI (conditional, no planning) 0.11s 0.01s 0% 100%
YAGI (non-deterministic, full planning)| 1.10s 0.07s 0% 100%
YAGI (conditional, full planning) 0.69s 0.06s 0% 100%
Golog 310 % | 410 °s 0% 100%
Golog (conditional) 310 % | 4.10°s 0% 100%

Table 8.1.: Evaluation Results for the Elevator Example TeseT(7,2)

Test Casd>»(20,10)

Meanp | Std. Dev.o | Timeout | Success
YAGI (non-deterministic, no planning)|| 0.12s 0.08s 0% 0%
YAGI (conditional, no planning) 0.98s 0.35s 0% 100%
YAGI (non-deterministic, full planning)| c? Os 100% 0%
YAGI (conditional, full planning) 32s 24.4s 0% 100%
Golog 3103 | 21055 0% 100%
Golog (conditional) 3103 | 103s 0% 100%

Table 8.2.: Evaluation Results for the Elevator Example TaseT,(20,10)

aProgram could not find a solution for any of the ten initialiations.

Test Casd3(50,25)

Meanu | Std. Dev.o | Timeout| Success
YAGI (non-deterministic, no planning)|| 0.29s | 0.20s 0% 0%
YAGI (conditional, no planning) 3.90s 1.40s 0% 100%
YAGI (non-deterministic, full planning)| o? 0Os 100% 0%
YAGI (conditional, full planning) 00 Os 100% 0%
Golog 0.03s | 0.01s 0% 100%
Golog (conditional) 0.03s | 0.01s 0% 100%

Table 8.3.: Evaluation Results for the Elevator Example TaeseTs(50,25)

aProgram could not find a solution for any of the ten initialiaiions.

Test Casél4(70,60)

Meanp | Std. Dev.o | Timeout | Success
YAGI (non-deterministic, no planning)|| 0.32s | 0.23s 0% 0%
YAGI (conditional, no planning) 8.80s | 0.72s 0% 100%
YAGI (non-deterministic, full planning)| @ Os 100% 0%
YAGI (conditional, full planning) 00? 0Os 100% 0%
Golog 0.35s | 0.09s 0% 100%
Golog (conditional) 0.28s | 0.06s 0% 100%

Table 8.4.: Evaluation Results for the Elevator Example TeseT,(70,60)

aProgram could not find a solution for any of the ten initialiations.
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Test Casés(100 100)
Meanp | Std. Dev.o | Timeout | Success
YAGI (non-deterministic, no planning)|| 0.66s | 0.31s 0% 0%
YAGI (conditional, no planning) 23.6s | 6.72s 0% 100%
YAGI (non-deterministic, full planning)| c? Os 100% 0%
YAGI (conditional, full planning) 00? Os 100% 0%
Golog 1.72s | 0.42s 0% 100%
Golog (conditional) 1.63s | 0.46s 0% 100%

Table 8.5.: Evaluation Results for the Elevator Example Tasels(100, 100)

aProgram could not find a solution for any of the ten initialiations.

8.4. Blocks World

The second example we use is an implementation of blocksiwafiamous planning problem in the area
of artificial intelligence (Nilsson, 1982) (Nilsson, 199@ussell and Norvig, 2014). The blocks world
domain is described by (Russell and Norvig, 2014), as fatow

“This domain consists of a set of cubic blocks sitting on dealihe blocks can be stacked,
but only one block can fit directly on top of another. A robataran pick up a block and

move it to another position, either on the table or on top afther block. The arm can only
pick up one block at a time, so it cannot pick up a block thatdrasther one on it. The goal
will always be to build one or more stacks of blocks, specifiettrms of what blocks are on

top of what other blocks."

An example of a problem instance of the blocks world domailiustrated in Figure 8.1.

Start State Goal State

Figure 8.1.: Problem Instance of the Blocks World Domain

The corresponding Golog code that describes the startfstatethe example above is illustrated in the
listing below. The YAGI corresponding code follows similar

%Fluent 'ontable' describes blocks that sit directly on the table
ontable (4, s0). ontable (3, s0).

%Fluent 'on' describes what block is on top of another
on(2,4, s0). on(1,3, s0).

%Fluent 'clear' describes blocks that are moveable
clear (2, s0). clear (1, s0).

Listing 8.1: Golog Fluents for Blocks World Example
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Our Golog implementation is based on a version from Unitersi MainZ®, extended with a set of
Golog procedures. For the different test cases we use adaiffaumber of blocks and stacks, i.e. there
existn blocks formingm < n stacks randomly. We state the concrete numbers of blockstanks for each
test casdy in parentheses, i.e. for a test cdséhe interpretation of;(n, m) is that for the-th test case the
total number of blocks ig, forming m different stacks.

Further, we randomize the goal state for every iterationrévfrecisely, we randomly pick one of the
predicate®n/2 , onTable/l orclear/L and randomly pick one or two blocks, depending on the arity of
the predicate. The predicate that holds for the picked lg&)dk our goal state We present the measure-
ment results for each test case in the tables below.

Test Casd(4,1)
Meanp | Std. Dev.o | Timeout | Success
YAGI (non-deterministic, no planning)|| 0.08s 0.03s 0% 40%
YAGI (conditional, no planning) 0.74s | 0.92s 0% 100%
YAGI (non-deterministic, full planning)| 19s 25.8s 0% 100%
YAGI (conditional, full planning) 49s 69s 0% 100%
Golog 10 % | 6.10°s 40% 60%
Golog (reordered) 10 % | 5.10°s 40% 60%

Table 8.6.: Evaluation Results for the Blocks World Exanifgst Casd(4,1)

Test Casé»(5,1)
Meanp | Std. Dev.o | Timeout| Success
YAGI (non-deterministic, no planning)|| 0.12s 0.07s 0% 20%
YAGI (conditional, no planning) 1.07s 1.39s 0% 100%
YAGI (non-deterministic, full planning)| 26.7s 37.4s 10% 90%
YAGI (conditional, full planning) 45.4s 62.8s 10% 90%
Golog 210 % | 7.10 °s 30% 70%
Golog (reordered) 210 % | 810 °s 30% 70%

Table 8.7.: Evaluation Results for the Blocks World Exanifést Casd»(5,1)

Test Casé3(6,3)
Meanp | Std. Dev.o | Timeout| Success

YAGI (non-deterministic, no planning)|| 0.22s 0.14s 0% 0%
YAGI (conditional, no planning) 3s 3.33s 0% 100%
YAGI (non-deterministic, full planning)| 47.7s 68.5s 40% 60%
YAGI (conditional, full planning) 29.9s 40.0s 40% 60%
Golog 10 % | 410°s 50% 50%
Golog (reordered) 510 % | 6.10 %s 70% 30%

Table 8.8.: Evaluation Results for the Blocks World Exanifget Casé3(6,3)

6Taken from http://www.informatik.uni-mainz.de/arbeitsgruppen/i nformationssysteme/studium/
wintersemester-2012/einfuerung-in-die-kuenstliche-i ntelligenz/uebungszettel/blocksworld-in-prolog/
at_download/file . Last visited on December 1st, 2014.

7Additionally, we check that the randomly generated goal dmeold initially because that would imply that the initial sition
is already a valid solution and nothing needs to be executed.
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Test Casdy(10,1)
Meanp | Std. Dev.o | Timeout | Success

YAGI (non-deterministic, no planning)|| 0.12s 0.11s 0% 0%
YAGI (conditional, no planning) 2.4s 2.9s 0% 100%
YAGI (non-deterministic, full planning)| 6.5s 6.7s 60% 40%
YAGI (conditional, full planning) 13.5s 13.8s 60% 40%
Golog 310 % | 2107% 30% 70%
Golog (reordered) 310 % | 210%s 70% 30%

Table 8.9.: Evaluation Results for the Blocks World Exanfdet Cas@,(10,1)
Test Casds(10,5)

Meanp | Std. Dev.o | Timeout | Success
YAGI (non-deterministic, no planning)|| 0.27s 0.27s 0% 10%
YAGI (conditional, no planning) 6.4s 6.8s 0% 100%
YAGI (non-deterministic, full planning)| 67.00s | 78.10s 60% 40%
YAGI (conditional, full planning) 36.30s | 25.00s 60% 40%
Golog 210 % | 7.10 °s 50% 50%
Golog (reordered) 7.10%s | undef? 90% 10%

Table 8.10.: Evaluation Results for the Blocks World Exaerifgst Casd@s(10,5)

aStandard deviation is undefined if there is just one sample.

8.5. Discussion

8.5.1. Runtime

Both scenarios show similar tendencies that Golog outpeorAGI regarding the measured execution
times. The reason for this is that the current implememaiforAGl is considered to bproof-of-concept
hence no optimizations regarding run-time and memory aopsion have been applied yet. Further, the
specification of YAGI inherently includes certain definit®that imply performance overhead compared
to Golog, e.g. features like pattern matching and assighnegniting to for-loops impose a performance
overhead by nature. We illustrate the run-times of a Golad) arYAGI implementation of the elevator
example in Figure8.2

Further, most of the YAGI programs of blocks world show a maafher run-time standard deviation
than the Golog programs and the elevator examples for GoldyAGI. In fact, in many cases the standard
deviation is higher than the mean value, sometimes even hgtarfof 125 - 135. The reason for these
high standard deviation values is that - depending on thaoraty generated initial situation and goal state
- a different number of actions must be executed to reachdhkggate. In case of planning the number of
actions necessary to reach the goal state makes the mesedidE since one more action to be executed
means that BFS will find the goal one level deeper in the BRS tBénce BFS traverses the tree level-wise
a shift in one layer increases the run-time drastically. figh standard deviation values (especially in
the YAGI planning programs) illustrate exactly this conti@t between number of actions to execute and
run-time of the program.

8.5.2. Planning vs. No Planning

The run-time differences betwean planningandfull planningare quite severe. The reason for this is that
the implemented search algorithm is an unoptimized textiveosion of a BFS-like strategy. Breadth-first
search strategies have the inherent disadvantage of beiggnemory consumingRussell and Norvig
2014, hence using an unoptimized textbook version in YAGI evaplifies this drawback. Further, BFS
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Figure 8.3.: Comparison of Valid Solution Percentages eBlocks World Example

can be very time-consuming if the solution is far away from ithitial state Russell and Norvig2014).
The elevator example exploits exactly this weakness of BR@&ghe solution is guaranteed to be always
in the last level of the BFS tree because the goal of the eleeaample holds iff all active floors have been
served. This implies that any search attempts in a highet ([@e. a level closer to the initial state) than
the last level of the BFS tree are guaranteed to deliver noesiséul result. This also explains why Golog
outperforms YAGI heavily in the elevator domain since Pgdounderlying DFS-like approach finds a
solution for the elevator example immediately.

8.5.3. Conditionals and Non-Determinism

In both scenarios the prograAGI (non-deterministic, no plannihglustrates that non-determinism in
case of online execution is highly unreliable and in mosesamable to find a correct solution. Due to
the fact that it is purely random whether or not the YAGI paogrcan finish successfully these results are
not surprising. When guarded via conditionals (proghéfGI (conditional, no planning)YagiTransor
YagiFinal are forced to hold, meaning that the program is able to ssfidbsterminate. The evaluation
results show exactly this circumstance as 100% oi#&l (conditional, no planninghrograms delivered
correct results.
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8.5.4. Golog Order of Statements

Blocks world results clearly show that changing the ordestatements in the Prolog-based implementation
of Golog influences whether or not a result can be found. Sucbrder-sensitive behavior can be very
counter-intuitive for people who are not aware of the presismantics of Prolog. Further, our experiments
show that the YAGI counterpart of the 'classic’ Golog impkmation of blocks world (i.eYAGI (non-
deterministic, full planning)outperforms Golog in many cases in a sense that it is ablelteed correct
results more often. Note that reordering statements in al#@&gram for the sake of comparison makes
no sense since in the case of online execution the statermenticked pseudo-randomly (i.e. the order
of statements doesn’t matter) and in offline execution gfemis executed in a BFS-like manner which is
guaranteed to find a solution - if one exists. Note that evendgh BFS is guaranteed to find a solution
(if one exists) the progratfAGI (non-deterministic, full planningidn’t find a solution in 100% of the
cases. This is due to the fact that YAGI ran out of resourcemguhe search process, hence the reason
that a solution could not be found lies in the implementatather then the search strategy. We illustrate
the percentages of valid solutions found for the blocks dvedample in Figure8.3.
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Chapter

Conclusion

9.1. Summary

The goal of this thesis was to define the syntax and semaritans action-based programming language
based on the theoretical foundations of situation calcahgsindiGolog, but especially designed for easy
usability and strict separation of syntax and semanticsédbke an implementation to be completely de-
coupled from any specific programming environment like &gol

Therefore, we defined a 3-tier system architecture for a YB&led software system that clearly sep-
arates syntax and semantics of the language with the prigwalyto avoid immanent pitfalls that result
from the tight coupling of the vast majority of Prolog-bagedlog interpreter implementations.

Further, we presented a motivating YAGI example of an olgjeditzery robot to illustrate the syntax of
YAGI and to introduce a specific scenario we plan to use YAGI fo

Subsequently, we provided a formal specification of theaymaind semantics of YAGI. We specified
the mapping of YAGI fluents and facts to situation calculusibaction theories and presented how as-
signments to fluents and facts can be mapped to situationlgalsimple actions. Moreover, we discussed
more sophisticated language features of YAGI like patteatcinng andetting actiongnd illustrated their
relation to situation calculus. Additionally, we outlinetkas of how to further extend YAGI with features
like sensing and incomplete information.

Having defined the mapping of YAGI to situation calculus tpresent the world of a specific problem
domain we proceeded with the specification of the semanfidA@I| program execution. We used the
execution semantics of IndiGolog as a theoretical foundatd build the YAGI execution semantics on
and explained how YAGI program constructs relate to Indggol

Having a formal specification of the syntax and semanticsAsE Mve continued with the description of
our proof-of-concept implementation of a YAGI software teys. We explained our fundamental design
decisions and discussed the software architecture of quementation of each of the layers in the YAGI
software systems. We explained that our back-end usestaonglbdatabase to represent the state of the
world (i.e., fluents and facts), a decision that was motivatethe fact that the semantics of situation calcu-
lus relates closely to the semantics of relational databe&ebsequently, we discussed how the individual
elements of the YAGI language had been implemented andrahiesl how our BFS-like planning approach
is integrated in the implementation.

With a language specification and a description of our pafefencept implementation we continued
with the discussion how our implementation follows the s$jpeation. To be able to discuss the connection
of specification and implementation we provided a formakdpsion of our database semantics and how
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this semantics relate to the specified situation calculyspings of YAGI. We further discussed how logi-
cal sentences in YAGI are evaluated w.r.t the specified daabemantics. To round out the discussion of
specification conformance we argued inductively on thectiine of YAGI programs to demonstrate how
the execution semantics of YAGI relate to the execution seitsof IndiGolog. Specifically, we intro-
duced a function that maps YAGI code to IndiGolog code andigeal transition semantics predicates
YagiTransandYagiFinalas counterparts of IndiGolog’s transition semantics magisTransandFinal to
discuss their relation.

Finally, we provided an evaluation of our implementaticmmparing YAGI programs to Golog programs
regarding their execution times and whether or not a solwtiuld be found. The results showed that Golog
outperforms our current YAGI implementation in many cases t the fact that our implementation is an
unoptimized proof-of-concept implementation and needs&r performance tuning to be able to compete,
especially whersearchis applied to a YAGI program. This rather huge performant¢ésha result of our
textbook implementation of a BFS-like search strategyll, $ttie BFS-like approach showed its strength
in a sense that it was able to find solutions for blocks worlgbfgm instances where the Prolog-based
implementation of Golog failed to deliver a correct solatio

We conclude that we achieved our goal to design an easy toctise-dased programming language to
be used for education and research in the fields of artificialligence and robotics.

9.2. Future Work

The definition of syntax and semantics of YAGI in this thesigsl the groundwork for various possible
future extensions of the language regarding its syntax enthstics as well as its formal background.
Furthermore, our presented proof-of-concept implemantaif YAGI can be improved and extended in
various ways. We present a non-exhaustive list of reasereténsions as follows, in no particular order:

» Relating YAGI Action Effect Blocks to Situation Calculus Successor State Axiom#\s discussed
in Section5.4.8 we are positive that it is possible to prove that one canitewrbitrary YAGIeffect
blocks directly to situation calculus successor stateragioProving this claim will be necessary to
be able to discuss theoretical properties of YAGI that asedan this observation.

» Incomplete Information and Sensing Actions To this day, YAGI only has syntactical constructs
for incomplete information and sensing actions, but ladka precise semantic definition of these
features. We believe that incomplete information and sgnactions are of great importance when
it comes to modeling real-world application domains, heageecise specification of the intended
semantics would be highly valuable.

» Extension ofSearch: Setting actions, sensing and exogenous events have bdmeralely excluded
from occurring inside aearchblock. Besides the fact that there exists no semantics fusisg
actions (as discussed above) the reason for these restsds that we're not able to bring up a
viable way to model sensing actions, setting actions angexxaus events in an offline execution
mode.

» Search Strategy Optimization: Our current implementation afearchis a textbook BFS-like al-
gorithm and the evaluation in Chapt& clearly shows the weaknesses of this approach. Different
search strategies might make sense in different scenaaaspossible optimization (among many)
could be to implement different search strategies and &t#veloper of a YAGI program control
which of the implemented strategies should be used for saalthblock separately. We believe
that being able to use multiple different search strategiessingle YAGI program would be highly
valuable since having the flexibility of choosing an appiaijgrsearch strategy based on some a priori
knowledge about the nature of the problem domain can be ogeidk the best fitting strategy.

» Implementations for Various Platforms: Our proof-of-concept implementation has currently been
tested only on Linux-based operating systems. We think bhiagging YAGI to other operating
systems like Microsoft Windows or Apple Mac OS would be a aale goal. Also, we hope that
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YAGI will be used for educational purposes. Hence, havingsYAmplementations for platforms
used in theeducational roboticsenvironment like the LEG® MINDSTORM™ is an important
aspect.

ROS Binding: In our proof-of-concept implementation the system irdeef simply returns the data
it gets passed by the back-end to its caller. In real-wottetics, one would need an implementation
of the system interface that interacts with the softwarméaork the concrete real-world robot uses.
On popular example is the robot operating system RQ@dley et al, 2009. Therefore, it would
be highly valuable to have an implementation that allows YA&communicate with ROS-based
real-world robotics applications.

Break in Loops: Until today there exists no concept of breaking a loop ddpenon a certain
condition. The concept of breaking loops is a widely spresdufre that can be found in many well-
known general purpose programming languages, hence it mligth be a valuable feature in YAGI.
How such a concept would impact our program execution séosdata question that requires deeper
analysis.

Return-Statement in Actions and ProceduresActions and procedures are currently unable to re-
turn any information to the caller. Still it might make sets@rovide the ability to return information
from the caller to the callee via return statements.

Macros: A macro-system like in the C programming language (i.etu@xsubstitution) could be
useful in certain scenarios, e.g. defining reoccurring dosfar fluents and facts as a macro to avoid
code duplication.

Inclusion of External Resources It might be pleasant to load external libraries (possibiitten in
languages other than YAGI) into a YAGI environment to extémelset of features a YAGI program
can use without modifying the core language.

Error Detection and Error Recovery: In certain situations, the program may end up in a situation
where execution may not be able to continue, e.gptbleoperator is not able to find a variable bind-
ing that leads to a solution. Currently, the applicatiompléigs an error message and terminates. This
could be refined using some form of exception handling an@éfoovery mechanisms. Possible ap-
proaches to actively diagnose and repair inconsisteneiveden the knowledge of an agent and the
real world have already been discussedMyjililbacher and Steinbay&014). We strongly believe
that similar approaches could also be applied to YAGI andlevba a highly valuable extension.

Action Inheritance: Practical tasks showed that their exists actions thaest@me form of common
behavior and/or state. To avoid code duplication some fdrattion inheritance could be defined.

Syntactic Sugar For the time being, YAGI lines of code require a vast amodrdifferent types
of braces to precisely specify sets, tuples and formulassimplify the syntax, braces should be
omissible as often as possible without introducing any gunbies.
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Appendix

Object Delivery Robot YAGI Source Code

/Nocation of the robot (rooml, ..., room3)
fluent at [{ , , 1
at = {< >}

/Nlocation of objects (objectl in rooml etc)
fluent is_at [{ , , H ,

ik

is_at = { : >, < , >, < , >},

/lobject carried by robot
fluent carry [{ , , i

/lrequests moving an object (param 1) from a sender (param 2)
/lto a receiver (param 3)

fluent request [{ , , NI , , HI , , 1

/Istates what person has been detected in what room
fluent detectedPerson [{ , , HK , , s

/lone or more rooms are assigned to one person,

/li.e. the person’s offices

fact office [{ , , HI , ) B

office = {< , > < , > < , > < >}

//move robot to room $r
action move($r)
precondi tion:
/Irobot is not in room $r
not (<$r>in at);
ef fect:
IInow he is in room $r
at = {<$r>};
signal :
+ $r;
end action

/Ipickup object $o
action pickup ($o)
precondi tion:
/lrobot doesn’t carry anything and is in the room where the ob ject is
(not (exists <$x> in carry ) and exists <$y> in at such <$o,$y> in is_at );
effect:
/lnow he carries $o
carry += {<$o0>}
signal :
+ $0,;

end action
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/lputdown object

action putdown ($0)

precondi tion:
/Ihe carries the object stored in $o
<$0> in carry ;

effect:
/Inow he’s not
carry -= {< $0>};

/lwhere ever it was, its now somewhere else...
is_at  -= {< $0, _>};

/l...namely: here!
foreach <$r> in at do

is_at += {< %0, $r >}
end for

signal :
"Put down object " + $0;
end action

/["setting" action to detect a person, i.e.
/I$p gets its value from an external src
action detectPerson () external ($p)
effect:

/lIremove person
detectedPerson == {< $p, _>}

/ladd the detected person + room tuple to the fluent
foreach <$r> in at do

detectedPerson  += {<$p, $r >}
end for

signal :
"detect person" ;
end action

/lexogenous event to initiate transportation

/lof object $o from $sender to $receiver

exogenous-event receiveRequest (%0, $sender , $receiver )
/ladd request
request += {< $o0, $sender , $receiver >};

end exogenous-event

/lserves a request
proc serve ($object , $sender , $receiver )

pi ck <$sender , $roomSender > from office  such
move( $roomSender );

/lsearch for person in the room
detectPerson ();

/Isender is actually in the room
if (<$sender , $roomSender > in detectedPerson ) then
pickup ( $object );

/ldeliver object to receiver
pi ck <$receiver , $roomReceiver > from office  such
move( $roomReceiver );

/lsearch for person in the room
detectPerson ();

/Ireceiver is actually in the room
i f (< $receiver , $roomReceiver > in detectedPerson ) then
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putdown ( $object );

end if
end pi ck
end if
end pick
end proc

proc main ()
/lserve a random request
pi ck <$object , $sender , $receiver > from request
serve ($object , $sender , S$receiver );
end pick
end proc

such

91



92



e B

Appendix

YAGI Grammar

1
/IGrammar for the YAGI programming language
/[Author: Christopher Maier

/IDate: 2014-07-01

1
grammar YAGI,

options

{
language = C;
output = AST,;
ASTLabelType=pANTLR3_BASE_TREE;
k = 1;

}

I
/llmaginary tokens
1
tokens

TOKEN_EOL =";" ;
TOKEN_COLON =" ;

TOKEN_PICK = "pick’ ;
TOKEN_END_PICK
= ‘end pick’

TOKEN_FROM =Zfrom’ ;
TOKEN_SUCH ='such’ ;

TOKEN_TEST ='test’ ;
TOKEN_IN ="in" ;
TOKEN_DO ='do’ ;

TOKEN_IF = if"
TOKEN_END_IF
= ‘end if’

TOKEN_THEN ='then’ ;
TOKEN_ELSE ='else’ ;

TOKEN_CHOOSE =choose’ ;
TOKEN_END_CHOOSE
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= ‘end choose’
TOKEN_WHILE

= 'while’
TOKEN_END_WHILE

= ‘end while’
TOKEN_END_FOR

= ‘end for’

TOKEN_DOMAIN_STR
= 'String’

TOKEN_ACTION =’action’ ;
TOKEN_END_ACTION
= ‘end action’

TOKEN_PRECOND zprecondition:’ ;
TOKEN_EFFECT =’effect:’ ;
TOKEN_SIGNAL ="'signal:’ ;
TOKEN_SENSING =’sense’ ;
TOKEN_END_SENSING =end sense’ ;
TOKEN_EXTERNAL =external’ ;

TOKEN_EXO_EVENT =exogenous-event’
TOKEN_END_EXO_EVENT
= ‘end exogenous-event’

TOKEN_NOT="not" ;
TOKEN_EXISTS= "exists’
TOKEN_ALL="all" ;
TOKEN_IMPLIES= "implies” ;

TOKEN_ASSIGN ='=' ;
TOKEN_ADD_ASSIGN='+=" ;
TOKEN_REMOVE_ASSIGN==" :

TOKEN_EQUALS===" ;
TOKEN_NEQUALS=!=’
TOKEN_LE='<=' :
TOKEN GE='>=' :
TOKEN LT='< :
TOKEN_GT='>" :
TOKEN_PLUS ='+ ;
TOKEN_MINUS ='-' :

TOKEN_AND="and" ;
TOKEN_OR="or" ;
TOKEN_TRUE="true’ ;
TOKEN_FALSE="false’ ;

TOKEN_PATTERN_MATCHING

TOKEN_INCOMPLETE_KNOWLEDGE

1%

TOKEN_SET_START=Y{ ;
TOKEN_SET_END=}' ;
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TOKEN_DOMAIN_STARTZ[' ;
TOKEN_DOMAIN_ENDZ]' ;

TOKEN_VAR_DECL_START=$" ;
TOKEN_FLUENT ='fluent’

TOKEN_END_SEARCH
= ‘'end search’

TOKEN_SEARCH
= 'search’

TOKEN_OPEN_PAREN
= '(’

TOKEN_CLOSE_PAREN
= )

TOKEN_COMMA

TOKEN_END_PROC

= ‘end proc’
TOKEN_PROC =  'proc’
TOKEN_FACT

= "fact’
TOKEN_FOR_EACH

= 'foreach’

TOKEN_INCLUDE ='@include’

IT_FLUENT_DECL;
IT_STRING_SET
IT_TUPLE_SET
IT_FACT_DECL;
IT_PROGRAM;
IT_ASSIGN;
IT_ADD_ASSIGN;
IT_REMOVE_ASSIGN;
IT_PLUS;

IT_MINUS

IT_TUPLE

IT_VAR;
IT_EXO_EVENT
IT_VAR_LIST;
IT_BLOCK;
IT_ACTION_DECL;
IT_SIGNAL;
IT_SENSING;
IT_EXTERNAL_VARS
IT_NOT;

IT_AND;

IT_OR;

IT_IMPLIES

IT_ALL;

IT_EXISTS
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IT_IN;
IT_EFFECT;
IT_FORMULA;
IT_PROC_DECL;
IT_SEARCH;
IT_PICK;
IT_PROC_EXEC;
IT_FLUENT_QUERY;
IT_VALUE_LIST;
IT_CONDITIONAL;
IT_FORALL;
IT_WHILE;
IT_CHOOSE;
IT_TEST;

IT_EQ;

IT_NEQ;

IT_GT;

IT_LT;

IT_GE;

IT_LE;
IT_ATOM_SETEXPR;
IT_ATOM_VALEXPR;
IT_INCLUDE;

}

1
/[Basic program structure
I

program
: (declaration | statement | include)+
block
statement+
-> MIT_BLOCK statement+)
include : TOKEN_INCLUDE STRING TOKEN_EOL

-> AIT_INCLUDE STRING)

1
/IDeclarations
1
declaration

: fluent_decl
| fact_decl

| action_decl

| proc_decl

| exo_event_decl
| sensing_decl

fluent_decl
: TOKEN_FLUENT ID (TOKEN_DOMAIN_START domain TOKEN_DOMABND)* TOKEN_EOL
-> MIT_FLUENT_DECL ID domain*)
fact_decl
: TOKEN_FACT ID (TOKEN_DOMAIN_START domain TOKEN_DOMAINNE)* TOKEN_EOL

-> MIT_FACT_DECL ID domain*)
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domain
: TOKEN_DOMAIN_STR -> TOKEN_DOMAIN_STR
| TOKEN_SET_START STRING (TOKEN_COMMA STRING)* TOKEN_SEWD -> A(
IT_STRING_SET STRING+)

action_decl
TOKEN_ACTION ID TOKEN_OPEN_PAREN vl=var_list? TOKEN_CLGE_PAREN (
TOKEN_EXTERNAL TOKEN_OPEN_PAREN v2=var_list TOKEN_CLOS PAREN)?
(TOKEN_PRECOND formula_outerMost)?
effect?
(TOKEN_SIGNAL valexpr TOKEN_EOL)?
TOKEN_END_ACTION
-> MIT_ACTION_DECL ID ~(IT_VAR_LIST $v1?) (“(IT_EXTERNA L_VARS $v2))?
formula_outerMost? effect? (“(IT_SIGNAL valexpr))? )
effect
TOKEN_EFFECT block
-> MIT_EFFECT block)
var_list
var (TOKEN_COMMA var)*
-> var+
proc_decl

TOKEN_PROC ID TOKEN_OPEN_PAREN var_list? TOKEN_CLOSE_FREN block
TOKEN_END_PROC

-> A(IT_PROC_DECL ID (*(IT_VAR_LIST var_list))? block)

exo_event_decl
TOKEN_EXO_EVENT ID TOKEN_OPEN_PAREN var_list TOKEN_CLCS PAREN block
TOKEN_END_EXO_EVENT

-> MIT_EXO_EVENT ID A(IT_VAR_LIST var_list) block)
sensing_decl
: TOKEN_SENSING ID TOKEN_OPEN_PAREN vil=var_list? TOKEN_CIOSE_PAREN (

TOKEN_EXTERNAL TOKEN_OPEN_PAREN v2=var_list TOKEN_CLOBS PAREN)? formula
TOKEN_END_SENSING

-> MIT_SENSING ID A(IT_VAR_LIST $v1?) (MIT_EXTERNAL_VA RS $v2))?
formula)

1l
/[Statements
1
statement

id_term
| var_assign
| test

| choose

| pick

| for_loop

| conditional
| while_loop
| search
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id_term
ID (
TOKEN_OPEN_PAREN value_list? TOKEN_CLOSE_PAREN TOKEN_@L -> *(
IT_PROC_EXEC ID (MIT_VALUE_LIST value_list))?)
| TOKEN_EOL > N
IT_FLUENT_QUERY 1ID)
| ass_op setexpr TOKEN_EOL -> N
ass_op ID setexpr)
)
value_list
: value (TOKEN_COMMA value)*
-> value+
test
TOKEN_TEST formula TOKEN_EOL
-> MIT_TEST formula)
choose
TOKEN_CHOOSE block ( TOKEN_OR block )+ TOKEN_END_CHOOSE
-> NIT_CHOOSE block+)
pick
TOKEN_PICK tuple TOKEN_FROM setexpr TOKEN_SUCH block TOKEN_END_PICK
-> MIT_PICK tuple setexpr block)
for_loop
TOKEN_FOR_EACH tuple TOKEN_IN setexpr TOKEN_DO block TOKEN_END_FOR
-> MIT_FORALL tuple setexpr block)
conditional
: TOKEN_IF TOKEN_OPEN_PAREN formula TOKEN_CLOSE_PAREN TEN THEN bl=block
(TOKEN_ELSE b2=block)? TOKEN_END_IF
-> MIT_CONDITIONAL formula $bhl $b27?)
while_loop
: TOKEN_WHILE formula TOKEN_DO block TOKEN_END_WHILE
-> MIT_WHILE formula block)
search

TOKEN_SEARCH block TOKEN_END_SEARCH

-> A(IT_SEARCH block)

1
/IAssignments
I
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var_assign

ass_op

I

var TOKEN_ASSIGN value TOKEN_EOL -> ~(IT_ASSIGN var value)

(TOKEN_ASSIGN -> IT_ASSIGN
| TOKEN_ADD_ASSIGN -> IT_ADD_ASSIGN
| TOKEN_REMOVE_ASSIGN -> IT_REMOVE_ASSIGN

)

/[Formulas

1

formula_outerMost

formula

formula_connective

atom

atom_connector

1

formula TOKEN_EOL

-> MIT_FORMULA formula)

atom
TOKEN_NOT TOKEN_OPEN_PAREN formula TOKEN_CLOSE_PAREN AHT_NOT formula

TOKEN_OPEN_PAREN fl=formula formula_connective f2=form ula
TOKEN_CLOSE_PAREN -> A(formula_connective $fl $f2)

TOKEN_EXISTS tuple TOKEN_IN setexpr (TOKEN_SUCH formula) ? -> A(IT_EXISTS

tuple setexpr formula?)

TOKEN_ALL tuple TOKEN_IN setexpr (TOKEN_SUCH formula)? -> AIT_ALL tuple
setexpr formula?)

tuple TOKEN_IN setexpr -> ~(IT_IN tuple setexpr)

TOKEN_AND -> IT_AND
TOKEN_OR -> IT_OR
TOKEN_IMPLIES -> IT_IMPLIES

vl=value atom_connector v2=value -> "(IT_ATOM_VALEXPR *( atom_connector
$vl $v2))
sl=setexpr atom_connector s2=setexpr -> ~(IT_ATOM_SETEX PR ~(

atom_connector $s1 $s2))
(TOKEN_TRUE| TOKEN_FALSE)

TOKEN_EQUALS -> IT_EQ
TOKEN_NEQUALS -> IT_NEQ
TOKEN_LE -> IT_LE
TOKEN_GE -> IT_GE
TOKEN_LT -> IT LT
TOKEN_GT -> IT_GT

/[Sets

set

TOKEN_SET_START

tuple (TOKEN_COMMA tuple)* -> A(IT_TUPLE_SET tuple+)
| I*eps* > AIT_TUPLE_SET)
) TOKEN_SET_END
ID
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setexpr set (expr_op” set)*
I
/[Tuples
1
tuple
TOKEN_LT (
tuple_val (TOKEN_COMMA tuple_val)* -> A(IT_TUPLE tuple_v al+)
[*eps*/ -> A(IT_TUPLE)
) TOKEN_GT
tuple_val
: STRING

| TOKEN_PATTERN_MATCHING
| TOKEN_INCOMPLETE_KNOWLEDGE
| var

1

/IVariables
I
var
: TOKEN_VAR_DECL_START ID -> A(IT_VAR ID)
value
: STRING
| var
valexpr
: value (expr_op” value)*
expr_op

TOKEN_PLUS -> IT_PLUS
| TOKEN_MINUS -> IT_MINUS

1
/lLexer Rules
1

WS (") v\t |\t )+ { $channel=HIDDEN; }
D (‘a’ Lz AT L) (At Lz A L2 0 L9 )
STRING

N G (LN T W VY

COMMENT
: I ~("\n" |"\r" )* (EOF] "\r' ? "\n" ) {$channel=HIDDEN;}

ML_COMMENT

'I*' (options {greedy=false;} : )% *" {$channel=HIDDEN;}
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Evaluation Programs

C.1. Elevator

C.1.1. YAGI (non-deterministic, no planning)

@include ;
action turnoff ($n)
precondi tion:

<$n> in fon;
effect:

fon -= {< $n>};
si gnal :

+ $n;

end action
action open()
si gnal :
end action
action close ()
signal :
end action
action up($n)
precondi tion:

exi sts <$x> in floors

such (currFloor == {<$x>} and $x < $n);
ef fect:

currFloor = {<$n>};
signal :

+ 8n;

end action
action down($n)
precondi tion:

exi sts <$x> in floors

such (currFloor == {<$x>} and $x > $n);
effect:

currFloor = {<$n>};
si gnal :

+ $n;
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end action

proc park ()
if (currFloor == {<"0" >}) then
open ();
else
down("0")
open ();
end if
end proc

proc goto ($n)
choose
test currFloor == {< $n>};
or
up($n);
or
down( $n);
end choose
end proc

proc serve ($n)
goto ($n);
turnoff  ($n);
open ();
close ();

end proc

proc serveafloor ()
pi ck <$n> from fon such

serve ($n);
end pick
end proc

proc control ()
whil e exists <$n> in fon do
serveafloor  ();
end while

park ();
end proc

control  ();

C.1.2. YAGI (conditional, no planning)

@include “fluents.y" :

action turnoff ($n)
precondi tion:
<$n> in fon;

effect:
fon -= {< $n>};
signal :
"Turn-off button at floor " + $n;

end action

action open()
signal :

"Open door" ;
end action

action close ()
signal :

"Close door" ;
end action
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action up($n)
precondi tion:
exists <$x> in floors

such (currFloor == {<$x>} and $x < $n);
effect:

currFloor = {<$n>};
signal :

"Move up to floor " + $n;

end action

action down($n)
precondi tion:
exi sts <$x> in floors

such (currFloor == {<$x>} and $x > $n);
effect:

currFloor = {<$n>};
signal :

"Move down to floor " + $n;

end action

proc park ()
if (currFloor == {<"0" >}) then
open ();
else
down( 0" );
open ();
end if
end proc

proc goto ($n)
if (exists <$x> in currFloor such $x < $n) then
up($n);
else
down( $n);
end if
end proc

proc serve ($n)
if (exists <$x> in currFloor such $x != $n) then
goto ($n);
end if

turnoff  ($n);
open ();
close ();

end proc

proc serveafloor ()
pi ck <$n> from fon such

serve ($n);
end pi ck
end proc

proc control ()
while exists <$n> in fon do
serveafloor ();
end while

park ();
end proc

control  ();

C.1.3. YAGI (non-deterministic, full planning)

|| @include “fluents.y” :
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action turnoff ($n)
precondi tion:
<$n> in fon;

effect:
fon -= {< $n>};
si gnal :
"Turn-off button at floor " + $n;

end action

action open()
signal :

"Open door" ;
end action

action close ()
signal :

"Close door"
end action

action up($n)
precondi tion:
exists <$x> in floors

such (currFloor == {<$x>} and $x < $n);
effect:

currFloor = {<$n>};
signal :

"Move up to floor " + $n;

end action

action down($n)
precondi tion:
exi sts <$x> in floors

such (currFloor == {<$x>} and $x > $n);
effect:

currFloor = {<$n>};
si gnal :

"Move down to floor " + $n;

end action

proc park ()
if (currFloor == {<"0" >}) then
open ();
else
down("0" );
open ();
end if
end proc

proc goto ($n)
choose
test currFloor == {<$n>};
or
up($n);
or
down( $n);
end choose
end proc

proc serve ($n)
goto ($n);
turnoff  ($n);
open ();
close ();

end proc
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proc serveafloor ()

pi ck <$n> from fon such

serve ($n);
end pi ck
end proc

proc control ()
search

while exists <$n> in fon

serveafloor  ();
end while

park ();
end search
end proc

control  ();

C.1.4. YAGI (conditional, full planning)

@include “fluents.y” ;

action turnoff ($n)
precondi tion:

<$n> in fon;
effect:

fon -= {< $n>};
signal :

"Turn-off button at floor "

end action

action open()
signal :

"Open door" ;
end action

action close ()
signal :

"Close door" ;
end action

action up($n)
precondi tion:
exi sts <$x> in floors

such (currFloor == {<$x>} and $x < $n);

effect:

currFloor = {<$n>};
signal :

"Move up to floor "
end action

action down($n)
precondi tion:
exi sts <$x> in floors

such (currFloor == {<$x>} and $x > $n);

effect:

currFloor = {<$n>};
signal :

"Move down to floor "
end action

proc park ()

if (currFloor == {<"0" >})

open ();
else

down( 0" );

open ();

do

+ 8n;

t hen
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end if
end proc

proc goto ($n)
if (exists <$x> in currFloor such $x < $n) then
up($n);
else
down( $n);
end if
end proc

proc serve ($n)
goto ($n);
turnoff  ($n);
open ();
close ();

end proc

proc serveafloor ()
pi ck <$n> from fon such

serve ($n);
end pi ck
end proc

proc control ()
search
while exists <$n> in fon do
serveafloor  ();
end while

park ();
end search
end proc

control  ();

C.1.5. Golog

% A SIMPLE ELEVATOR CONTROLLER IN GOLOG (for SWI Prolog)

% written by Ray Reiter

% To run:

% 1) start SWI prolog , 1.e. run "pl"

% 2) load the Golog interpreter , 1.e. ?- [golog_swi]

% 3) load this file , i.e. ?- [simple_elevator]

% 4) run the main procedure , 1.e. ?- do(control ,s0,9).
%

% To see the whole sequence of actions in the situation S , use
%  ?- do(control ,s0,S), show_act_seq(S)

% Primitive control actions

- [ golog_swi ].

primitive_action (turnoff  (N)). % Turn off call button N
primitive_action (open). % Open elevator door
primitive_action (close ). % Close elevator door
primitive_action (up(N)). % Move elevator up to floor N
primitive_action (down( N)). % Move elevator down to floor N

% Definitions of Complex Control Actions

proc (goFloor (N), ?( currentFloor (N)) # up(N) # down(N)).
proc (serve (N), goFloor (N) : turnoff (N) : open : close ).
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proc ( serveAfloor , pi(n, ?( nextFloor (n)) : serve (n)).
proc (park , if (currentFloor (0), open, down(0) : open)).

[+ control is the main loop . So long as there is an active call
button , it serves one floor . When all buttons are off , it
parks the elevator . */

proc (control , while (some(n, on(n)), serveAfloor ) : park).

% Preconditions for Primitive Actions

poss (up(N), S) :- currentFloor (M S), M < N.
poss (down(N), S) - currentFloor (MS), M > N.
poss (open, S).
poss (close , S).
poss (turnoff (N), S) :- on(N,S).
% Successor State Axioms for Primitive Fluents
currentFloor (M do(A,S) - A = up(M ; A = down(M ;
not (A = up(N)), not (A = down(N)), currentFloor (M, S).
on(M do(A,S) - on(MS), not(A = turnoff (M).
% |Initial Situation . Call buttons: 3 and 5 . The elevator is at floor 4

/= nextFloor(N , S) is an abbreviation that determines which of the
active call buttons should be served next . Here, we simply
choose an arbitrary active call button . */

nextFloor (N,S) :- on(N,S).
% Restore suppressed situation arguments
restoreSitArg  (on(N), S, on(N, S)).

restoreSitArg  (nextFloor (N), S, nextFloor (N, S)).
restoreSitArg  (currentFloor (M, S, currentFloor (M, S)).

9%6%%%6%% %% % %% % %% % %% %% % %% %% %% %% % %% %% %Y
% added by Yves Lesperance

show_act_seq (s0).
show_act_seq (do(A, S)):- show_act_seq (S), write (A), nl.

run :- do(control ,s0,S), show_act_seq (S).
% definition of executable (legal) situation

executable (s0).
executable (do(A,S)) :- poss(A,S), executable (S).

%%%%

%%%%%% %% % %% %% %% % %% %% %% % %% %% %% %% %% %
- use_module (library ( statistics ).
- include (' fluents . pl").

- current_prolog_flag (argv, Argv), concat_atom (Argv,' "' , SingleArg ),
open( SingleArg , append, 09,

write (OS,' Running testcase ... '),

nl (09,

statistics (cputime , TO0),

run ,

statistics (cputime , T1),

T is T1-T0,

write (OS, T), nl (09, close (0S9.

- halt .

C.1.6. Golog (conditional)
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% A SIMPLE ELEVATOR CONTROLLER IN GOLOG (for SWI Prolog)

% written by Ray Reiter

% To run:

% 1) start SWI prolog , i.e. run "pl"

% 2) load the Golog interpreter , 1.e. ?- [golog_swi]

% 3) load this file , i.e. ?- [simple_elevator]

% 4) run the main procedure , 1.e. ?- do(control ,s0,9).
%

% To see the whole sequence of actions in the situation S , use
%  ?- do(control ,s0,S), show_act_seq(S)

% Primitive control actions

- [ golog_swi ].

primitive_action (turnoff  (N)). % Turn off call button N
primitive_action (open). % Open elevator door
primitive_action (close ). % Close elevator door
primitive_action (up(N). % Move elevator up to floor N
primitive_action (down( N)). % Move elevator down to floor N

% Definitions of Complex Control Actions

proc (goFloor (N), if (some(x, currentFloor (x) & x<N), up(N), down(N))).
proc (serve (N), goFloor (N) : turnoff (N) : open : close ).
proc ( serveAfloor , pi(n, ?( nextFloor (n)) : serve (n))).
proc (park , if (currentFloor (0), open, down(0) : open)).
[+ control is the main loop . So long as there is an active call
button , it serves one floor . When all buttons are off , it
parks the elevator . */
proc (control , while (some(n, on(n)), serveAfloor ) : park).

% Preconditions for Primitive Actions

poss (up(N), S) :- currentFloor (M S), M < N.
poss (down(N), S) - currentFloor (M S), M > N.
poss (open, S).

poss ( close |, S).

poss (turnoff (N), S) :- on(N,S).

% Successor State Axioms for Primitive Fluents

currentFloor (M do(A,S) - A = up(M ; A = down(M ;
not (A = up(N), not (A = down(N)), currentFloor (M, S).

on(M do(A,S) - on(MS), not(A = turnoff (M).

% Initial Situation . Call buttons: 3 and 5 . The elevator is at floor 4

/ * nextFloor(N , S) is an abbreviation that determines which of the
active call buttons should be served next . Here, we simply
choose an arbitrary active call button . * [

nextFloor (N,S) :- on(N,S).

% Restore suppressed situation arguments

restoreSitArg  (on(N), S, on(N, S)).

restoreSitArg  (nextFloor (N), S, nextFloor (N, S)).

restoreSitArg (currentFloor (M, S, currentFloor (M, S)).

%%%%% %% % %% %% %% % %% %% %% % %% %% % %% %% %% %0 %
% added by Yves Lesperance

%%%%

108



C.2. Blocks World

show_act_seq (s0).
show_act_seq (do(A, S)):- show_act_seq (S), write (A), nl.

run ;- do(control ,s0,S), show_act_seq (S).
% definition of executable (legal) situation

executable (s0).
executable (do(A,S)) :- poss(A,S), executable (S).

%%%%%% %% % %% % %% % %% % % %% %% % % %% % %% % %% %Y B8%0%% %%
use_module (library ( statistics )-

- include (' fluents .pl").

current_prolog_flag (argv, Argv), concat_atom (Argv,' "' , SingleArg ),
open( SingleArg , append, O9),
write (OS,' Running testcase ... '),
nl (09,
statistics (cputime , TO0),
run,
statistics (cputime , T1),
T is T1-TO,
write (OS, T), nl (09, close (09.
halt .

C.2. Blocks World

C.2.1. YAGI (non-deterministic, no planning)

@include “fluents.y" :
@include “fluentsNoSearch.y" ;

action move($hl, $b2)
precondi tion:
(<$bl> in fclear and
(<$b2> in fclear and

$bl 1= $b2));
effect:

onTable -= {< $bl>};

fclear  -= {< $b2>};

foreach <$x1, $yl> in bon do
if ($x1 == $bl) then
fclear  += {< $yl >}
end if
end for

bon -= {< $h1, _>}
bon += {<$bl, $b2>};

signal :
"Move " + $bl + " on top of " + $b2;
end action

action moveToTable ( $b)
precondi tion:

(<$b> in fclear and not(<$h> in onTable ));
effect:

onTable += {<$bh>};

foreach <$xx, $yy> in bon do
if ($xx == $b) then
fclear  += {< $yy >}
end if
end for
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bon -= {< $b, _>}

si gnal
"Move " + $b + " to table" ;
end action

proc doMove()
pi ck <$x> from fclear such
pi ck <$y> from fclear such
doExec ( $x, $y);
end pick
end pi ck
end proc

proc doExec ( $first , $second )
choose
moveToTable ( $first );
or
move( $first , $second );
end choose
end proc

control  ();

C.2.2. YAGI (conditional, no planning)

@include “fluents.y” :
@include “"fluentsNoSearch.y" ;

action move($hl, $b2)
precondition
(<$bl> in fclear and
(<$b2> in fclear and

$bl 1= $b2));
effect:

onTable -= {< $bl>};

fclear  -= {< $b2>};

foreach <$x1, $yl> in bon do
if ($x1 == $bl) then
fclear  += {< $yl >},
end if
end for

bon -= {< $b1, _>}
bon += {<$hl, $b2>};

si gnal
"Move " + $bl + " on top of " + $h2;
end action

action moveToTable ($b)
precondition

(<$b> in fclear and not(<$b> in onTable ))
effect:

onTable += {<$h>};

foreach <$xx, $yy> in bon do
if ($xx == $b) then
fclear  += {< $yy >};
end if
end for

bon -= {< $b, _>}

si gnal
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end action
proc doMove()

choose

“Move "+ $b + "

to table" ;

pi ck <$x> from fclear such

if (not(<$x> in onTable )) then
moveToTable ( $x);

end if
or
pi ck <$y> from fclear such
if ($x != $y) then
move( $x, $y)
end if
end pi ck
end choose
end pick
end proc
control  ();

C.2.3. YAGI (non-deterministic, full planning)

@include “fluents.y

action move($hl,
precondition

$bl 1= $b2));
effect:

foreach <$x1,

end if
end for

bon += {<$bl,

si gnal
"Move " + $bl
end action

precondition
(<$b> in fclear
effect:

foreach <$xx,

end if
end for
bon -= {< $b,
si gnal

end action

proc doMove()

@include “fluentsSearch.y" :

$b2)

(<$bl> in fclear
(<$b2> in fclear

and
and

onTable -= {< $bl>};
fclear  -= {< $b2>};

$y1> in bon do

bon -= {< $b1, _>

if ($x1 == $bl) then
fclear  += {< $yl >},

k

$b2 >},

+

" on top of " + $b2;

action moveToTable ($b)

and not (<$b> in onTable ));

onTable += {<$b>};

$yy > in bon do

_>k

“Move "+ $b + "

if ($xx == $b) then
fclear  += {< $yy >};

to table" ;
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pi ck <$x> from fclear such
pi ck <$y> from fclear such
doExec ( $x, $y)
end pi ck
end pick
end proc

proc doExec ( $first , $second )
choose
moveToTable ( $first );
or
move( $first , $second );
end choose
end proc

control  ();

C.2.4. YAGI (conditional, full planning)

@include “fluents.y" :
@include “fluentsSearch.y" ;

action move($hl, $b2)
precondition
(<$b1> in fclear and
(<$b2> in fclear and

$bl = $b2));

ef fect:
onTable -= {< $bhl>};
fclear  -= {< $b2>};

foreach <$x1, $yl> in bon do
if ($x1 == $bl) then
fclear  += {< $yl1>};
end if
end for

bon -= {< $bl, _>}
bon += {<$bl, $b2>};

si gnal
"Move " + $bl + " on top of " + $b2;
end action

action moveToTable ($b)
precondi tion

(<$b> in fclear and not(<$h> in onTable ))
effect:

onTable += {<$b>};

foreach <$xx, $yy> in bon do
if ($xx == $b) then
fclear  += {< $yy >};
end if
end for

bon -= {< $b, _>}

si gnal
"Move " + $b + " to table" ;
end action

proc doMove()
pi ck <$x> from fclear such
choose
if (not(<$x> in onTable )) then
moveToTable ( $x);
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end if
or
pick <$y> from fclear such
if ($x != $y) then
move( $x, $y)
end if
end pick
end choose
end pi ck
end proc

control  ();

C.2.5. Golog

- [ golog_swi 1].

/+ Action Precondition Axioms */
poss (move(X,Y), S) :- clear (X,S), clear (Y,S), not(X =Y).
poss (moveToTable (X), S) - clear (X, S), not (ontable (X, S)).

/*  Successor State Axioms */
clear (X, do(A,S) -( A = move(Y,Z) ; A = moveToTable (Y)), on(Y, X,S)
; clear (X,S), not (A = move(Y, X)).

on(X,Y,do(A,S) - A = move(X,Y) ;
on(X,Y,S), not(A = moveToTable (X)), not(A = move(X, 2)).
ontable (X, do(A,S)) :- A = moveToTable (X) ;

ontable (X,S), not (A = move(X,Y))

% Primitive control actions
primitive_action (move(N, M).
primitive_action (moveToTable (B)).

proc (doMove, pi(n, pi(y, moveToTable (n) # move(n,y))).
% Restore suppressed situation arguments

restoreSitArg  (clear (N), S, clear (N, S)).

restoreSitArg  (on(N, M, S, on(N, M, S)).

restoreSitArg  (ontable (M), S, ontable (M, S)).

%%%%

96%%%0%% %% % %% % %% % %% %% % %% %% %% %% %% % %% %09
% added by Yves Lesperance

show_act_seq (s0).
show_act_seq (do(A, S)):- show_act_seq (S), write (A), nl.

run :- do(control ,s0,S), show_act_seq (S).
% definition of executable (legal) situation

executable (s0).
executable (do(A,S)) :- poss(A,S), executable (S).

%%%%% % %% % %% % %% % %% % % %% %% % % %% % %% % %% %0 % 8%0%0%%%
- use_module (library (statistics ).
- include (' fluents . pl").

- current_prolog_flag (argv, Argv), concat_atom (Argv,' "' , SingleArg ), open(SingleArg , append, 09,
write (OS,' Running testcase ... "),

nl (09,

statistics (cputime , TO0),

run ,

statistics (cputime , T1),

T is T1-T0,

write (OS, T), nl (09, close (09.

- halt .
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C.2.6. Golog (reordered)

- [ golog_swi ].

[+ Action Precondition Axioms */
poss (move(X,Y), S) - clear (X,S), clear (Y,S), not(X =Y).
poss ( moveToTable (X), S) :- clear (X, S), not(ontable (X, S)).

[ Successor State Axioms */
clear (X, do(A,S) =-( A = move(Y,Z); A = moveToTable (Y)), on(Y, X,S)
; clear (X, S), not (A = move(Y, X)).

on(X,Y,do(A,S) - A = move(X,YVY) ;
on(X,Y,S), not(A = moveToTable (X)), not(A = move(X, Z)).
ontable (X, do(A,S) :- A = moveToTable (X) ;

ontable (X,S), not (A = move(X,Y))

% Primitive control actions
primitive_action (move(N, M).
primitive_action (moveToTable (B)).

proc (doMove, pi(n, pi(y, move(n,y) # moveToTable (n))).

% Restore suppressed situation arguments
restoreSitArg  (clear (N), S, clear (N, S)).
restoreSitArg  (on(N, M, S, on(N, M, S)).
restoreSitArg  (ontable (M, S, ontable (M, S)).

%%% %% %% % %% %% %% % %% %% %% % %% %% % %% %% %% %Y 8%0%%%%
% added by Yves Lesperance

show_act_seq (s0).
show_act_seq (do(A, S)):- show_act_seq (S), write (A), nl.

run :- do(control ,s0,S), show_act_seq (S).
% definition of executable (legal) situation

executable (s0).
executable (do(A,S)) :- poss(A,S), executable (S).

%%%%

%%%%% % %% % %% % %% %% %% % %% %% % % %% % %% % %% %0 %
- use_module (library (statistics ).
- include (' fluents . pl").

- current_prolog_flag (argv, Argv), concat_atom (Argv,'"' , SingleArg ), open(SingleArg
write (OS,' Running testcase ... "),

nl (09,

statistics (cputime , TO0),

run ,

statistics (cputime , T1),

T is T1-TO,

write (OS, T), nl (09, close (09.

- halt .

» append, 09,
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