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Abstract

Using wireless sensor networks for medical application requires a high user ac-
ceptance, which necessitates small device form factors. Batteries required for
power supply contribute significantly to the size of on-body wireless sensor
nodes. Therefore reducing the power consumption of those on-body nodes is
the uttermost crucial issue to address. Processing units are major contributors
to a sensor node’s power consumption. An essential challenge in processing
unit design for sensor platforms is an implementation allowing low-power con-
sumption, while providing the potential for executing the computation-extensive
algorithms. This thesis presents an exploration of a dataflow-oriented commu-
nication concept for a hardware-accelerated processing architecture. Deploying
multiple accelerators to support a general purpose processor (GPP) allows for
combining high performance, low power consumption and flexibility. A recon-
figurable unidirectional data stream enables power-efficient and flexible com-
munication between the deployed processing engines. Furthermore, it provides
control signals for efficient power management. The system concept derived
in this thesis is applied to a low-power processing system for Electrocardiogra-
phy monitoring applications. The resulting architecture is synthesized as well
as placed and routed for a 180 nm process in order to derive accurate power
consumption estimations. Power consumption estimates and area results are
presented and compared to the baseline implementation.

Keywords: Hardware-accelerated Processing Architecture, Low-Power, Dataflow-
oriented Processing, Streaming-based Communication, Electrocardiography, R-
peak detection
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Kurzfassung

Damit sich drahtlose Sensornetzwerke in medizinischen Bereichen etablieren
können, ist es notwendig die Geräte so klein wie möglich zu gestalten um Ak-
zeptanz bei den Patienten zu erreichen. Die Batterie trägt maßgeblich zu der
Größe von den am Körper angebrachten Sensoren bei, darum ist die Reduzie-
rung des Leistungsverbrauchs dieser Systeme ein Problem, das einer Lösung
bedarf. Die Verarbeitungseinheiten tragen einen Großteil zum Leistungsbedarf
der Sensoren bei. Eine essentielle Herausforderung während dem Design der
Verarbeitungseinheit ist es, eine Implementierung zu schaffen, die einerseits ein
Minimum an Leistung benötigt und andererseits das Potential besitzt, rechenin-
tensive Algorithmen zu berechnen. In dieser Arbeit wird ein datenflussorientier-
tes Kommunikationskonzept für hardwarebeschleunigte Verarbeitungsarchitek-
turen implementiert. Die Verwendung von verschiedenen Beschleunigern, welche
eine zentrale Recheneinheit unterstützen, kombiniert niedrigen Leistungsbedarf
und Flexibilität mit hohen Performanceansprüchen. Ein rekonfigurierbarer, un-
idirektionaler Datenstrom erlaubt eine leistungseffiziente und flexible Kommu-
nikation zwischen den verschiedenen Rechnereinheiten. Des Weiteren stellt sie
Informationen für ein effizientes Leistungsmanagement bereit. Das erstellte Kon-
zept wird an einem Verarbeitungssystem für Elektrokardiogramm-Überwachung
erprobt. Die resultierende Architektur wird für einen 180 nm Prozess synthe-
tisiert, um genaue Abschätzungen der Leistungsaufnahme ableiten zu können.
Leinsungsabschätzungen sowie physikalischen Charakteristika werden präsen-
tiert.

Stichwörter: Hardwarebeschleunigte Verarbeitungsarchitekturen, Low-Power,
datenflussorientierte Verarbeitung, Streaming-basierende Kommunikation, Elek-
trokardiogramm, R-peak dedektierung
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Chapter 1

Introduction

1.1 Motivation

As a result of the advances in medicine, many diseases which were formerly
lethal are nowadays chronic diseases. Furthermore, our populations are aging
and living an increasingly unhealthy and stressful lifestyle. An outcome of
this trend are the dramatically increasing healthcare costs within first-world
countries. The costs of healthcare are highest when patients are hospitalized,
although the person’s quality of life in that scenario is at the lowest point. In
contrast to that, treating patients in their own environment lowers the costs of
healthcare and maximizes their quality of life [17].

The rapid advances in semiconductor integration and manufacturing provide
the foundation for realizing the vision of ubiquitous healthcare. Small-scale
wirelessly connected computing platforms forming body area networks, allowing
long-term biomedical signal monitoring, are becoming reality [3]. Compared to
the traditional hopital-centric healthcare system, remote healthcare monitoring
enabling direct access to the patient’s data by hospitals and medical doctors
offers an attractive alternative [17].

Alongside the social and legal challenges, which have to be faced in order to
take healthcare to the next level, various issues on the technology side have to
be addressed. Issues such as low energy consumption, security reliability, as well
as the system’s form factor have to be solved [29]. The form factor especially
has a direct impact on user acceptance. A high quality of life also presumes that
the patient is not bothered by the on-body sensors. Battery size is significantly
involved in or in some cases even defines the device’s form factor. Therefore,
the reduction of the sensor node’s energy consumption is often declared as the
highest-priority issue to address, since it directly influences battery lifetime as
well as the device’s form factor [29].

To reduce energy consumption or even reach energy autonomy, each system
component of a sensor node has to be able to work within very tight consumption
limitations in order to allow the overall system to perform within the available
energy budget.

1



2 CHAPTER 1. INTRODUCTION

1.2 Wireless Sensor Networks for Biomedical Signal
Monitoring

Wireless Sensor Networks (WSN) have been the focus of research over the past
few decades, they have been marked as one of the most significant technologies
in the 21st century [10]. It is, therefore, not surprising that these sensor networks
have also found their way into the area of healthcare research.

Autonomous sensors remotely monitoring patients are a promising alterna-
tive to the traditional in-hospital monitoring, not only from an economic view-
point but also from the patients perspective [3]. Various studies have shown,
that patients would rather be treated in their own homes than frequently visit
the hospital or stay in a health care facility [29]. Furthermore promoting the
home-centric healthcare can help to reduce the drastically increasing costs of
the healthcare system in the first world, and improve the life quality of our
aging society [17].

Figure 1.1: The IMEC Human++ vision [18].

Figure 1.1 depicts the IMEC Human++ Vision, where a set of small sen-
sor/actuator nodes comprise a personal body area network (BAN), enabling
medical supervision. These nodes are able of autonomously fulfilling their task,
communicating with each other via the wireless channel and submitting their
results to a base station. Furthermore, the network can transfer the gathered
information to a medical database or the general practitioner using the tradi-
tional telecommunication infrastructure [18]. In a case of need the system could
even place an emergency call, to notify the rescue services.

In the area of biomedical applications WSNs can provide improvements to
the elderly care, help managing chronic diseases and enhance rehabilitation,
wellness and lifestyle monitoring [3]. To enable the use of WSNs for health-
care monitoring, various technological, legal and social challenges have to be
faced [29].



1.3. THESIS GOALS 3

1.3 Thesis Goals

The following main goals are targeted by this master thesis in order to develop
a dataflow-oriented processing system which is suitable for the requirements of
a wireless sensor node applied in biomedical applications.

• Evaluation of the baseline system:

– Identification of whether the if algorithms are suitable for an
accelerator-based implementation.

– Analysis of communication architecture in order to identify optimiza-
tion potential.

• Dataflow-oriented architecture design:

– Design of a suitable communication architecture for dataflow-oriented
hardware-accelerated architecture.

– Definition of a generalized module structure in order to allow a re-
configurable communication structure.

– Support of various low-power techniques.

• Implementation of the optimizations:

– Enabling of operating frequency-independent communication.
– Support of low-power states of various components.
– Increase the designs power efficiency.

• Synthesis and place and route of the architecture design:

– HDL implementation of the design.
– Synthesis and place & route to achieve a physical layout.
– Estimation of the placed and routed system’s power consumption.

• Verification and evaluation:

– Verification of the simulation results based on a reference model.
– Impact evaluation of the applied optimizations.

1.4 Thesis Organization

In Chapter 2 an overview of Wireless Sensor Nodes, their general architecture,
usage in society and biomedical applications is given. Furthermore, the fun-
damentals of power consumption in CMOS circuits are provided. Chapter 3
discusses the various processor architectures as well as on-chip communication
architectures applied in sensor nodes. Moreover, the baseline system and previ-
ous work on ECG monitoring systems is presented. Chapter 4 gives insight on
the design process of the hardware and software. The concept of the architecture
as well as the generic module design are described. The actual implementation
including the applied optimizations is outlined in Chapter 5, as well as, the used
tool flow. Chapter 6 discusses the system verification and the obtained physical
layout and power results for the implemented architecture. Finally, Chapter 7
concludes the thesis and provides ideas and suggestions for future work.
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Chapter 2

Fundamentals of Sensor Nodes
and Medical Applications

2.1 Introduction

The origin of WSNs can be traced back to a research program named Distributed
Sensor Networks [10], a time when researches started facing the challenge of
performing necessary computation, limited by the provided possibilities of a
given sensor platform [22].

The idea of a sensor network has not changed since then, the basic building
blocks of every WSN are the individual nodes. Each sensor node is capable of
sensing, computing and communicating wirelessly as an independent system.
Combined in a network, these embedded systems are useful in a wide range of
applications.

2.2 Wireless Sensor Networks in Our Society

Our society already uses sensor networks for various tasks. Due to the fact
that these arrays of sensor nodes allow data gathering and analysis in a way
traditional instrumentation can not carry out these tasks [81], sensor networks
are applied in various areas of our daily lives.

Use cases like infrastructure security or environment monitoring are safe-
guarding our society unknowingly, as in volcano monitoring [81] or an early-
warning-system for mass-movement [75]. Sensing networks are able to improve
the quality of various industrial applications, because sensing is one of the cor-
nerstones in many ares of industrial automation [45]. Furthermore, they can
increase our personal comfort-level when they are applied in medical health-
care [3].

Table 2.1 shows various physical phenomena categorized by the necessary
monitoring sample frequency. These physical events are the basis for various
possible applications. The sample rate required to acquire the needed informa-
tion has an important influence on the computational capabilities of the node
itself.

5
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Table 2.1: Sensor sampling rates of different phenomena (based on [22]).

Phenomena Sample Rate (in Hz)
Very Low Frequency
Atmospheric temperature 0.017 - 1
Barometric pressure 0.017 - 1
Low Frequency
Heart rate 0.8 - 3.2
Volcanic infrasound 20 - 80
Natural seismic vibration 0.2 - 100
Mid Frequency (100Hz - 1000 Hz)
Earthquake vibrations 100 - 160 Hz
ECG (heart electrical activity) 100 - 250
High Frequency ( > 1kHz)
EEG (brain electrical activity) 200 - 2k
EMG (muscle electrical activity) 1k - 2k
Breathing sounds 100 - 5k
Industrial vibrations 40k
Audio (human hearing range) 15 - 44k
Audio (muzzle shock-wave) 1M
Video (digital television) 10M

Classical tasks executed on a sensor node frequently behave repetitively,
with the aim to respond to external or internal events. In general sensor node
applications are inherently event-driven [24]. The computation workloads occur-
ring in a WSN are typically more varied and application-dependent compared
to classical workload measures like a CPU benchmark. Most use cases require a
combination of idle and active computation [22]. The sample frequency is highly
correlated to the system idle and active times. Furthermore, the active com-
putation time effects the power budget of the system, so the phenomena has a
large influence on the systems requirements.

2.3 Medical Applications for Wireless Sensor Nodes

Section 1.2 indicated that WSN can be used for various medical monitoring or
therapeutic purposes. Sensor networks enable long-term continuous monitoring
in a way, today’s devices are not capable of carrying out. Having more com-
plex systems will allow detection or even prediction of emergency situations.
Furthermore, long-term recording can be helpful in rehabilitation or physical
training progress [3].

An enabling prerequisite for the improvement of biomedical monitoring for
WSNs is the ability of a sensor node to capture physical signals related to the
health status of an individual. Examples of biomedical signals a node could



2.4. ELECTROCARDIOGRAPHY 7

capture would be Electro-Encephalogram (EEG), which enables diagnosis of
sleeping disorders or epilepsy, or Electrocardiogram (ECG) to diagnose heart
arrhythmia [17]. Moreover, Electromyography (EMG) enables detection of neu-
romuscular diseases [3], and even advanced concepts like stress monitoring are
imaginable [17].

Physiological signals like EEG and ECG are basic parts of many biomedical
applications and diagnoses. Especially ECG is a non-invasive method represent-
ing an individual’s medical condition [3].

2.4 Electrocardiography

The heart itself fulfills the life-sustaining task as an actuator for our blood
circulation. The timing and coordination of the myocardial muscle is the re-
sponsibility of the heart’s electrical conduction system. Due to the fact that the
ECG is a non-invasive method, it is an important technique for diagnostic inves-
tigation [30]. Figure 2.1 depicts an ECG corresponding to a single heart beat.

Figure 2.1: ECG structure of a single heart beat, descriptive parameters ([82]
with modifications).

Furthermore it shows the important parameters necessary for a quantitative
representation of the signal. For example, the QRS-complex characterizes the
electrical excitation of the working musculature in both ventricles. The distance
between two R-peaks is the foundation for calculating the heart rate, commonly
known as pulse. Based on all these parameters, a medical professional is able
to recognize various diseases [30].

Breathing, movement and muscle activity are the common interferences in
ECG [30]. This noise is caused by the movement of the ECG electrode, and
commonly identified as motion artifact (MA). These artifacts can affect the
interpretation of an ECG, in case of large interference the unwanted signal can
be very similar to P and T waves as well as the QRS-complex. This can lead
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to misinterpretation of the signal and therefore, can result in inappropriate
treatment and misdiagnosis [77].

There are two bu challenges concerning ECG monitoring performed by a
sensor node. First, minimizing the influence of motion artifacts, which are
expected to be higher due to more body movement in ambulatory supervision
as compared to a clinical monitoring environment. Second, automatic analysis
of ECG signal with limited computational performance [65].

2.4.1 Motion Artifact Removal

Several techniques were proposed to address the challenge of motion artifact
removal in ECG. Methods using wavelet transform [44] or adaptive filters [41],
as well as blind source separation [66] were introduced. The following section is
going to introduce adaptive filtering and principal component analysis (PCA),
which are the applied motion artifact removal techniques in this thesis.

2.4.1.1 Principal Component Analysis

PCA is a blind source separation technique, which can be applied to reduce
motion artifacts, due to the fact that the ECG signal and the interfering artifacts
are uncorrelated [64].

The general idea behind PCA is reducing the dimension count of a data set,
while retaining as much information as possible. To achieve this, the interrelated
data is transformed into a new set of linearly uncorrelated variables called the
principal components. The first few of these components represent the most
common information presented in the original data set [38].

Y = ΨX (2.1)

Equation 2.1 represents the central concept of PCA, whereX is the original data
set. The dimensionality of X is defined be the number of experiments and the
corresponding sample count. Y represents the resulting principal components,
which can be computed with the help of an orthogonal linear transformation ma-
trix Ψ [9]. For further details and different methods for deriving transformation
matrices for PCA the interested reader is referred to [38].

To use PCA for motion artifact removal, it is necessary to collect the data
of n statistical independent ECG leads. Applying the PCA onto the data will
result in n principal components, where the first component represents the high-
est variance, and the n-th the lowest [64]. Assuming small motion artifacts, the
high variance component represents mainly ECG information, while the n-th
component corresponds to the interference [9]. In ambulatory monitoring condi-
tions, the allocating principal component can be more complex, due to stronger
influence of motion artifacts [64].

Figure 2.2 depicts a PCA applied to a 3-lead ECG signal. Three channels
were used to collect the statistically independent ECG signals, all these channels
contain motion artifacts in various orders of magnitude. The waveform on the
bottom shows the cleaned ECG signal after applying the PCA algorithm. The
gray highlighted sections depict the influences of motion artifacts, a comparison
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Figure 2.2: PCA used for motion artifact removal [41].

between the different channels shows that the interferences can have different
magnitudes and polarities.

2.4.1.2 Adaptive Filter

The general concept of an adaptive filter is depicted in Figure 2.3. For each
sample of the input signal, the adaptive filter calculates the corresponding out-
put (y[k]). The difference between the desired signal (d[k]) and the result of
the filter produces the error signal (e[k]). Based on the error, the adaption
algorithm corrects the fault by modifying the filter coefficients. Adopting the
filter coefficients enables the system to learn the linear correlation between the
input and the desired signal. An adaption algorithm is generally designed to
minimize the mean square error [55].

Figure 2.3: General concept of an adaptive filter [55].

The most commonly used adaption algorithm for finite impulse response
(FIR) adaptive filters is the least-mean-square algorithm (LMS). The algorithm
is often preferred for its simplicity. Equation 2.2 shows the necessary compu-
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tation for updateing the filter coefficients. The vector ~w represents the filter
coefficients and the scalar factor µ controls the step size of the adoption [55].

~w[k + 1] = ~w[k] + µe[k]~x[k] (2.2)

To assure convergence of the LMS algorithm the step size has to be in a defined
range. This range given in Equation 2.3 shows that the theoretical maximum is
defined by the highest Eigenvalue of the input signal.

0 < µ <
2

λmax
= µmax (2.3)

Equation 2.4 presents a more conservative and practical approach for finding
the step size’s upper bound. The expectation of |x[k]|2 represents the input
signals average power.

0 < µ < µmax2 =
2

N · E {|x[k]|2}
(2.4)

For further background on adaptive filters, the interested reader is referred
to [55].

As Section 2.4 indicated that the electrode movement is the main source of
motion artifacts, more precisely the changing electrode-tissue impedance causes
the interferences. To reduce the effect of motion artifacts, therefore, the mea-
sured impedance can be fed to an adaptive filter as a reference signal [66].

Figure 2.4: LMS used for motion artifact removal [66].

Figure 2.4 depicts an adaptive LMS filter used for motion artifact removal.
It shows the high correlation between the noisy artifacts and the measured
electrode-tissue impedance. The input signal of the system is the noisy ECG
signal, using the impedance of the electrode as the desired signal, the adaption
algorithm is able to remove the motion artifacts from the gathered ECG.
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2.4.2 Automatic ECG Analysis

Various algorithms have been proposed to target one of the important challenges
in automatic ECG analysis, the beat detection. The methods ranged from
simple deviation based algorithms to Neural Networks [65]. The next section
introduces the Continuous Wavelet Transform (CWT), which is used within
this thesis.

2.4.2.1 Continuous Wavelet Transform

The CWT is able to localize high frequency signal features in time, by using
a flexible Heisenberg box. This allows associating the window size to the ob-
servation. This, and the fact that CWT also allows usage of non-sinusoidal
analysing functions, are the main differences between the CWT and the Short
Time Fourier Transform [51].

T (a, b) =
1√
a

+∞∫
−∞

x(t)ψ∗
(
t− b
a

)
dt (2.5)

Equation 2.5 defines the wavelet transform for a continuous time signal x(t).
The complex conjugated wavelet function is ψ∗(t), and a and b are parameters
to describe the dilation and location of the wavelet function. A wavelet has to
satisfy certain mathematical criteria, therefore, a large selection of waveforms
can be employed with CWT [51]. For further details, the interested reader is
referred to [51].

Figure 2.5: CWT applied on a measured ECG after motion artifact removal [41].

Methods based on the modulus maxima wavelet are increasingly used to
analyse signals in medical and engineering applications [51]. Usage of the “Mex-
ican Hat” wavelet allows very robust beat detection of ECG signal [65]. Fig-
ure 2.5 depicts the result of an CWT, using the “Mexican Hat” wavelet, applied
to a ECG signal where the motion artifacts are already removed. It shows that
the highest peaks in the resulting waveforms correspond to the beats in the
ECG signal.
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2.5 Typical Wireless Sensor Node Architecture

A sensor node is comprised of multiple components, which are able to handle
digital, analog and mixed signals. Figure 2.6 depicts the main building blocks
of a generalized node architecture. Sensors are capable of converting physical
or chemical quantities, into processable electrical signals. The analog front-end
(AFE) amplifies and conditions the signals from the sensor to reduce the noise
and improve the signal-to-noise ratio. In case the node can control external
components, or is even able to influence the monitored phenomena, actuators
are used to influence the node’s environment. To allow further processing of the
gathered signals, they have to be converted into the digital domain, this signal
conversion is performed with the help of analog-to-digital converters (ADC). De-
pending on the node’s use case, the system comprises a microcontroller and/or a
digital signal processor (DSP). A microcontroller is included to perform control-

Figure 2.6: Typical sensor node architecture ([3] with modifications).

related tasks and, in case of small captured data amounts, it is also capable of
processing the sensor signals. On the other hand, the DSP is able of process-
ing larger amounts of data and performing high-speed calculations. The sensor
node transmits either extracted features or the complete reconstructed signal
using the radio module to a base station. To enable the embedded system to stay
within its limited energy budget and avoiding instantaneous power consumption
peaks, the node is equipped with a power management (PM) unit. Existing en-
ergy storage and/or energy harvesting devices are limiting the long-term energy
budget for a sensor node, therefore the PM considers all other components of
the system and supervises their active and idle states.

The main power consumers on a classical node architecture are the process-
ing unit as well as the radio module used for data transmission. Especially
in terms of power consumption, a trade-off between these two components ex-
ists [3], i.e. the more data has to be transferred via the wireless channel, the
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more power is necessary to supply the radio unit. In contrast, the energy, used
to reduce the amount of data by extracting features and compressing informa-
tion, increases due to the increasing amount of computation performed by the
processing unit.

In a typical WSN application up to 50% of the total power consumption
can be spent supplying the processing unit and providing the necessary com-
putational performance [23]. Furthermore, in case of a continuous data stream,
i.e. where marginal computation is necessary, the radio power consumption can
even exceed the processing power consumption by a factor of 10x [3].

As indicated in Section 2.2 it can be seen, that the amount of data gath-
ered by the system has a high influence on the resulting power consumption of
the sensor node. The application, more precisely, the required sample rate to
monitor the physical quantities represents an important factor for designing the
node architecture. This implies that according to the application, the emphasis
of the consumed power will vary between the components of the architecture.

2.6 Sources of Power Consumption and Optimization
Techniques

In CMOS circuits the power consumption is subdivided into two main contribu-
tors: static power Pstatic and dynamic power Pdynamic [39]. Equation 2.6 shows
that the sum of these two components expresses the total power dissipation.

Ptotal = Pdynamic + Pstatic (2.6)

When a device is active, more precisely a value is changing, dynamic power is
consumed. On the other hand, static power is consumed while a powered-up
device is in idle state, without changing values. Leakage is the main source of
static power dissipation in CMOS devices [40].

2.7 (a): Dynamic power consumption. 2.7 (b): Leakage power consumption.

Figure 2.7: Power consumption in CMOS circuits.
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2.6.1 Dynamic Power Consumption

Dynamic power consumption has been the primary source of power consumption
for many years. The dominant source is the power required to charge/discharge
the capacitance connected to the gate’s output [39].

Pdynamic ∝ CL · V 2
dd ·A · fClk (2.7)

Equation 2.7 expresses the dynamic power caused by switching, where Vdd is
the supply voltage, fClk the clock frequency and CL the load capacitance. The
activity factor A describes the probability of an output transition. It can be
seen, that the switching power is a function of load capacitance and the device
activity and therefore data-dependent [40]. Figure 2.7 (a) depicts the charging
current causing the switching power.

The internal switching current, required to charge the cell’s internal capaci-
tance, as well as the short circuit current, occurring while both transistors are
transitioning, also contribute to the dynamic power consumption. Assuming
short input signal ramps, the dynamic power is dominated by the power used
to charge/discharge the load capacitance. As Equation 2.7 shows, the most ef-
fective way is to reduce the supply voltage. Due to the quadratic contribution
to the switching power scaling Vdd was used over the last decades to control
dynamic power dissipation [40].

2.6.2 Static Power Consumption

While the dynamic power consumption was the limiting factor for many years,
the leakage current is getting increasingly dominant in recent technologies [39].

In contrast to our idealized view of a MOS transistor, which acts like a
switch, the transistor is an analog device and is affected by sub-threshold and
leakage currents.

Pstatic = Vdd · (ISUB + IGATE + IGIDL + IREV ) (2.8)

Figure 2.7 (b) depicts the main contributors to the leakage currents. The Sub-
threshold leakage ISUB occurs when the transistor is in weak inversion between
drain and source. Gate Leakage IGATE is caused by hot carrier injection and
gate oxide tunneling. The high field effect-induced current Gate Induced Drain
Leakage IGIDL and the Reverse Bias Junction Leakage IREV . The total leakage
current is the sum of all mentioned components, as expressed in Equation 2.8.

ISUB = µCoxV
2
th

W

L
· exp

(
VGS − VT
n · Vth

)
(2.9)

Equation 2.9 shows a good approximation for the sub-threshold leakage current,
whereW and L are the according transistor dimensions, Vth the thermal voltage
and the fabrication process parameter n. It expresses an exponential dependency
between the leakage power and the difference between gate-source and threshold
voltage.

This leads to a conflict when the Vdd is scaled, i.e. lowering the supply and
threshold voltage to reduce dynamic power consumption results in a increasing
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leakage power dissipation. In technologies above 90nm the leakage is much
smaller than dynamic power, but beneath static power consumption it can be
in the same order of magnitude as the dynamic power dissipation [40]. The
seriousness of increasing leakage current in younger process technologies, where
the off-current is raised by a factor of 10 for each generation, as described in
the ITRS 2011, where reducing the leakage in CMOS is defined as a long-term
goal [35].

2.6.3 Low Power Techniques

Over the last decades various low power optimization techniques were developed
to reduce dynamic and static power. Designers are forced to use other techniques
than technology scaling, because the energy savings provided by scaling are
decreasing [19].

Considering the main influences on dynamic power consumption as expressed
in Equation 2.7 the following four variables should be minimized:

• Supply Voltage (Vdd): The most effective method to reduce the dynamic
power consumption is to lower the supply voltage. But on the other hand
it necessities to lower the threshold in order to maintain performance,
which increases the leakage current.

• Clock Frequency (fClk): Due to the far-reaching and fundamental im-
pact on a system’s power consumption, minimizing the clock frequency is
a traditional low-power method.

• Load Capacitance (CL): Reducing the output load of a gate can be
achieved by minimizing the wire length and the number of driven gates.

• Activity Factor (A): Minimizing the transition probability also has a
high impact on the power dissipation. E.g. using encoding techniques or
reducing the cycle count of an instruction can reduce the system’s power
consumption.

The following paragraphs describe state-of-the-art low-power-optimization
techniques which can be applied to reduce a systems power dissipation.

Clock Gating is the most common way to reduce the power dissipation,
as it reduces the activity factor by turning off the clock signal, if it is not
required. The so-called clock tree, the distribution network for the clock signal,
can consume up to 50% of a system’s dynamic power [40]. Without clock gating
all cells would be constantly clocked and therefore consume power, so gating
the clock signal is a logical step to reduce the system’s toggle rate.

Figure 2.8 (a) depicts a classical non-gated register, where the high activity
clock signal toggles each flip-flop every clock cycle. After clock gating, the
registers are only supplied with a clock signal in case of an activated enable
signal, as shown in Figure 2.8 (b). More precisely the high activity clock signal
is gated by the clock gating cell. This method is only successful when the number
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2.8 (a): Before clock gating. 2.8 (b): After clock gating.

Figure 2.8: Clock gating methology [40].

of gated cells is higher than the necessary gate cells, otherwise no power would be
saved. Current design tools are able to automatically insert clock gates without
influencing the logic functionality of the design.

Power savings of up to 40% can be acquired for a processor in idle mode
using clock gating [40].

Power Gating is a technique which allows to reduce the overall leakage con-
sumption of a system. Especially in newer CMOS technologies this method is
highly desirable due to the exponentially increasing sub-threshold leakage cur-
rent mentioned in Section 2.6.2.

The method is as simple as it is effective: by turning off the supply voltage for
blocks which are not used, while active blocks are staying supplied, it reduces
the system’s leakage consumption. This, of course, has its drawbacks, power
gating is highly invasive, effects on-chip communication and can lead to timing
delays [40].

Figure 2.9: Realistic power gating profile [40].

Figure 2.9 depicts a typical application where power gating can be applied.
Dynamic power reduction methods like clock gating and gating the supply volt-
age between activities allows to reduce the systems leakage consumption in the
SLEEP state. The delay added due to power gating is shown by the difference
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in time between the WAKE signal and the activity start time.
While power gating whole blocks is a very attractive solution, the impact on

general-purpose processors is limited [22]. Furthermore, the fine-grained power
gating of a VLIW processors datapath can produce more overhead than it re-
duces consumption [58].

Operand Isolation is used to prevent the combinatorial logic from unnec-
essary operations, when the block is not active. Therefore a so-called guard
logic is added between the data input and the combinatorial logic. In the liter-
ature this method is known as value gating or guarded evaluation and reduces
dynamic power by avoiding switching in blocks which do not carry significant
information [39].

The Multi-Threshold Logic approach is able to optimize timing and re-
duce leakage, by choosing the optimal combination of transistors with differing
threshold voltage (VT ). Nowadays vendors of standard cell libraries offer a selec-
tion of the cells with different thresholds. The threshold has a high influence on
the gate delay, and so the synthesis tool is able to optimize the system to meet
the timing and power constrains [40]. In addition, this method can also be used
to reduce the leakage current in the power switches used for power gating [67].

Multi-Voltage design is based on the idea of using different supply voltages
for various partitions of a chip, called power domains or voltage islands. This
allows supplying each system component in regard to its own performance re-
quirements and, therefore, can provide relevant power reduction. Due to the
influence on the gate delay, when the supply voltage is lowered, the supply of
components impacts system performance [40].

Dynamic Voltage Scaling (DVS) is basically an extension of the multi-
voltage approach, which allows to adjust the voltage levels dynamically. DVS
enables a system to adopt a component’s supply voltage and adjust the maxi-
mum clock frequency accordingly to the application’s specific needs. This tech-
nique is already state-of-the art in various commercial vendors processors [28].
Furthermore Ultra-Dynamic Voltage Scaling (UDVS) allows voltage scaling in
a range from sub-threshold to above-threshold [79].

Sub-Threshold Design is an approach where transistors are supplied with
a voltage beneath the component’s threshold voltage, more precisely, the tran-
sistors operate in weak inversion. Operating in this mode, the device consumes
less power when active and less leakage power when not. On the other hand,
transistors in weak inversion operate much slower compared to devices with
higher supply voltage [79].

In an application where computation speed is less of a goal than energy
efficiency, like some WSN applications, different processors operating beneath
the transistor threshold voltage were proposed [86, 56, 21].
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Asynchronous Systems are circuits which are able to fulfill their task with-
out a presence of a clock signal. Therefore a major source of power consumption,
the clock tree, is eliminated. Furthermore, asynchronous systems cannot oper-
ate without any input data, so a system in idle state will not consume dynamic
power [69].

A subcategory of asynchronous systems are globally asynchronous/locally
synchronous (GALS) devices. Such designs are able to solve global timing issues
on large dies, where the signal propagation delay can be a problem. The idea
behind GALS is to use classical clocked systems in local regions of the chip and
use an asynchronous design on system-level [14].



Chapter 3

Processing Systems in Wireless
Sensor Nodes

3.1 Introduction

As mentioned in Section 2.5, the processing unit is a main contributor to the
system’s power consumption. Over the last few years various processors were
applied in sensor nodes, from off-the-shelf components to highly specialized
ultra-low-power (ULP) systems consuming less than one picojoule per instruc-
tion [22].

To enable computation at such low power consumption, the system has to be
specialized for the specific sensor node workload. A holistic approach is neces-
sary to allow such low power performance and to meet the lifetime requirements
of a WSN application [23]. Furthermore, the International Technology Roadmap
for Semiconductors (ITRS) predicts that the behavioral and architectural power
minimization techniques will be more important than traditional physical and
register-transfer-level methods within the next few years [35]. Therefore this
thesis focuses on two main categories of actual SoC design, namely:

• Processor Architectures and

• On-Chip Communication Architectures

Furthermore, it discusses a possible way to combine these two design challenges
and solve the issues from an architectural point of view.

This chapter covers various aspects of processing unit design for low power
applications. First, an overview of processor architectures and design trends of
the last decade is presented. Second, on-chip communication architectures and
interconnect systems are described. Finally, a low-power sensor node processing
system, namely the ECGSoC is shown, the system which is the foundation of
this thesis.

3.2 Processor Architectures in Wireless Sensor Nodes

Various different architectures for processing units exist, every implementation
type has its advantages and drawbacks. A way to compare these different sys-

19
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tems is shown in Figure 3.1; it depicts the trade-off between the energy efficiency
and the functional flexibility of state-of-the-art architectures. While dedicated
hardware needs a minimum of energy to fulfill the task, it is not able to perform
computations other than the ones it was designed for. On the other hand, a

Figure 3.1: Trade-off between energy efficiency and functional flexibility of dif-
ferent processing architectures (based on [88]).

general purpose processor is completely adoptable via software, but less power-
efficient. The energy efficiency is up to a factor 500x worse compared to a
Application Specific Integrated Circuit (ASIC) [19].

In the last decade, reconfigurable processors [8, 88] tended to fill the energy-
flexibility gap between dedicated hardware and a class of Application Specific
Instruction-Set Processors (ASIP). Nowadays, a newer form called Accelerator-
Rich Architectures [36] also has the potential to close this gap.

The following sections will give a short overview about the existing architec-
ture types, while focusing on the applicability as a processing unit for a sensor
node.

3.2.1 Processor Architectures

General Purpose Architectures also known as Central Processing Unit
(CPU) represent the most common processor architecture. The architecture is
designed to execute computation tasks for a large range of different applications,
as the name indicates. As depicted in Figure 3.2 (a) a general purpose processor
(GPP) uses a datapath, with access to the data memory, which is actuated by
the control logic. More precisely the controller executes the fetched instructions
from the program memory in the datapath, accordingly to the current program
counter (PC) [78].
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3.2 (a): Basic general-purpose ar-
chitecture.

3.2 (b): Basic ASIP architecture.

Figure 3.2: GP and ASIP architecture [78].

Application Specific Instruction-Set Processors are processors designed
for a particular application or a set of applications with common characteristics.
To meet the desired power requirements and performance an ASIP is specialized
to fit the computational nature of an application [12]. Therefore, a specialized
instruction-set is implemented, i.e. various custom instructions are supported
by the Arithmetic-Logic-Unit (ALU). Figure 3.2 (b) illustrates that the custom
ALU is the fact that distinguishes an ASIP from an GPP. The customization of
the datapath also allows elimination of infrequently used units, which helps to
reduce the platform’s power consumption and size [78].

Digital Signal Processors are highly demanded these days and used in vari-
ous applications where digital-signal processing is necessary. DSPs are basically
a commonly accepted class of ASIPs, designed to meet the needs of various
math-intensive computations. They often include hardware components like
a multiply-accumulate unit, which is a very common operation for filter imple-
mentations. A separate memory interface, which allows sequential data fetching
in parallel with other instructions to improve performance on large data arrays,
is often implemented in a DSP [78] as well.

Asynchronous Processors are whole processing systems implemented in an
asynchronous fashion, i.e. no clock signal is present in the whole processor. The
advantages of asynchronous systems were already discussed in Section 2.6.3. At
this point is has to be mentioned, that in asynchronous processors the circuit
style, more precisely the protocol and data encoding, has a high influence on
the system’s power consumption [69].
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Multi-Core Architectures have already become commonly used, and are
present in most current personal computers. The architecture combines multi-
ple complete processing units including caches on a single chip [5]. Depending
on the purpose of the multi-core processor, the shared memory might be directly
placed on the chip or accessible through an external interface. Such systems are
called shared memory multiprocessors (SMP) and offer a physical address space
for all cores [61]. Figure 3.3 depicts the concept of a typical dual-core proces-
sor. Multiprocessor architectures where each core has its own unique address

Figure 3.3: Block diagram of a multi-core architecture [5].

space and is connected to the other processing units via an interconnection net-
work, are named message-passing multiprocessors or clusters. These systems are
only able to communicate by sending and receiving messages, so-called message
passing [61].

Nowadays multi-core processors can already be found in various embedded
systems and also have found their way into commercial digital signal process-
ing [34].

Single Instruction Multiple Data and Vector Architectures are designs
which are able to execute instructions on data vectors. A typical Single Instruc-
tion Multiple Data (SIMD) supporting architecture is shown in Figure 3.4. As
depicted, a SIMD instruction can be executed within one cycle, by sending
multiple data to the according number of processing elements (PE) [61]. To
support SIMD features, a common design is to add a separate vector datapath
including registers and a separate vector ALU, besides the existing scalar datap-
ath. Especially in digital signal processing, where the algorithms are commonly
processing large amount of data, SIMD is able to increase the computation
performance [63].

ASIC or Single-Purpose Processors are highly specialized designs devel-
oped to compute a specific task, therefore these devices offer limited flexibility.
Such a processor is a custom digital circuit implemented as dedicated hard-
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Figure 3.4: Block diagram of a SIMD Processor [63].

ware, more properly known as an ASIC [78]. In terms of power consumption,
these devices have an outstanding efficiency, compared to GPPs they consume
100-1000x less energy[19]. Such ideal consumption values can be achieved by re-

Figure 3.5: Block diagram of a simple ASIC concept [78].

ducing flexibility and unused units. Figure 3.5 depicts a simple ASIC concept,
where the control logic is reduced to a fixed state machine, and the data path
only contains the required functional units for the computation.

3.2.1.1 Accelerator-Rich Architectures

Using accelerators to increase a system’s performance is not a new idea. Due to
the last decade’s trend of more and more power-constrained and battery oper-
ated devices, the exploration of using accelerators to increase a systems trade-off
between performance and power has begun [36]. Accelerators in general are de-
veloped to offer high performance while using a defined budget of energy. These
components are dedicated hardware designed to accelerate a specific task, and,
therefore, an ASIC. So, compared to a GPP, accelerators are able to increase
the efficiency up to 500x as well as the computational performance [19]. Fig-
ure 3.6 (a) depicts the concept of an ARA, which shares the same fundamental
idea of a multi-core processor system, described in Section 3.2.1. Only instead
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3.6 (a): Accelerator-rich architecture con-
cept.

3.6 (b): Trade-off between energy and flexi-
bility for accelerators.

Figure 3.6: Accelerators in SoC design [36].

of using multiple GPP, the system is equipped with various specific accelera-
tors, which are supporting a lightweight small programmable processing unit.
Therefore, such an architecture combines the flexibility of a GPP with the per-
formance and power efficiency of an ASIC for the specific tasks for which the
accelerators were designed.

Accelerators can be designed for various application domains. Different ba-
sic categories of accelerators can be chosen for a specific design. Fixed-function,
programmable as well as configurable accelerators are possible subdivisions. Fig-
ure 3.6 (b) shows that there exists a trade-off between energy efficiency and
flexibility for accelerators, in the same fashion as discussed in Section 3.2 for
processor architectures in general [36].

Compared to a processor, an accelerator traditionally tends to behave more
like a producer consumer model [36], which is a big architectural implication and
is important to keep in mind when ARA designs are discussed. Furthermore,
it influences the communication behavior on such an architecture, as allowing a
seamless integration of accelerators into the system is a challenge for hardware
and software architects.

3.2.2 Overview of Recent WSN Processors

Figure 3.7 gives an overview of low-power processors developed in past decade.
At this point it has to be mentioned that this plot is not a comparison. As it
can be seen in the legend, the results were published using different power units,
and, therefore, are not comparable.

Especially in the last two years, an increase of low power systems using
accelerators, to achieve the required low power consumption, could be observed.
Systems using single accelerators for improveing the algorithm performance [59,
70], or various units to compute the whole application hardware-accelerated [47,
27] were proposed. Furthermore, no-battery systems [87] as well as accelerator-
based systems [22], were developed and have shown that the usage of accelerators
is currently a trend in low-power processor applications.
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Figure 3.7: Ultra low-power processors for sensor networks in the last decade.

The corresponding data and a short design overview for each system plotted in
Figure 3.7 can be found in the Appendix B.

3.2.3 Power Management in Ultra-Low-Power Processors

The power management unit is a very important component of a low-power
device, in order to meet the power consumption requirements. To keep the
system’s consumption beneath the limited energy budget, it manages the idle
and active states of all units. A fine-grained PM allows a minimization of
dynamic, as well as, static power consumption [23].

Basically, the unit controls the low-power features of each component in
the system. Therefore, knowledge of each component’s execution state must
be gathered. This information enables the PM to manage the clock and power
gating or more specific features like DVS according to the systems required
computational performance.

From an architectural perspective, a subdivision in centralized and decen-
tralized power management can be made. A centralized system is a separate
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component, which collects the necessary information, and decides which com-
ponents have to be supplied. On the other hand, a decentralized system allows
a component to dynamically decide on its own, which power state is necessary
to compute the current task.

Various different approaches have been published over last years, from data-
driven [73], and adaptive [1] approaches to learning-based [85] algorithms. Sys-
tem level communication plays an important role when managing a SoC, because
be PM has to make sure that all communicating components are active before
data is sent. Therefore Lahiri et al. [50] proposed a communication-based power
management architecture, due to following reasons:

• Power management functionality implemented in the communication ar-
chitecture would eliminate the need of a seperate PM unit, and minimize
the hardware overhead.

• The communication architecture can gather the necessary information to
make decisions and is able to deliver it to the related components.

• The communication infrastructure schedules communication between the
units and, therefore, influences timing and execution states of system com-
ponents.



3.3. ON-CHIP COMMUNICATION ARCHITECTURES 27

3.3 On-Chip Communication Architectures in Wire-
less Sensor Nodes

The power consumed by on-chip interconnects is generally not the main focus
of a system architect, nevertheless, interconnects are responsible for a signifi-
cant fraction of the system’s overall power consumption [62]. Researchers are
concerned, that the structure of interconnects will be a major bottleneck in
SoC architectures, due to timing delays and energy consumption [25, 62, 71].
While interconnects are required in order to allow communication in general,

Figure 3.8: Evolution of on-chip communication architectures [60].

this section will focus on architectures, used for on-chip communication. This
section will discuss state-of-the-art communication architectures, and the nec-
essary energy for communication, as well as the suitability for low-power sensor
nodes.

3.3.1 Communication Architectures

Figure 3.8 depicts the evolution of communication architectures, various archi-
tectures will be discussed in the following sections.

3.3.1.1 Custom Communication Architectures

These architectures include customized communication topologies and protocols
needed in order to meet the desired performance and power goals. Such cus-
tomized approaches are typically adapted to the application-specific needs of a
system and, therefore, only suitable for a specific design [60].

3.3.1.2 Bus-Based Communication Architectures

Buses are a commonly-used for communication in digital designs, due to their
simplicity and efficiency. The bus itself provides a shared communication chan-
nel between the components [60]. These systems can be subdivided into various
categories besides their architecture, either by their physical implementation
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(serial and parallel) or the presence of the clock signal within control signals
(synchronous and asynchronous). The signals transferred on a bus are typically
classified into the following three categories:

• Address Signals
• Data Signals
• Control Signals

The part of the bus which transfers the address signals is commonly named the
address bus, the naming scheme is the same for the other two signal categories.
While communication in a synchronous bus system is synchronized via the clock
signal, an asynchronous bus generally implements a handshake protocol using
request (REQ) and acknowledgment (ACK) to coordinate data transfer.

Bus-based communication architectures have to be able to decode the ad-
dresses in order to select the correct destination component. Also in case of a
multi-master bus system an arbitration mechanism is necessary to handle con-
current write requests.

Monolithic Buses are the simplest implementation scheme, a single shared
channel is used to connect all components within a system, as depicted in Fig-
ure 3.9 (a). Such a communication architecture is suitable for small SoCs, con-
taining a few units. A single bus system is not appropriate to handle communi-
cation in large systems [60]. From a power consumption viewpoint, a monolithic

3.9 (a): Simple Bus. 3.9 (b): Hierachical Bus.

Figure 3.9: Basic bus topologies [60].

bus is often inefficient for two main reasons [62]:
• For each transfer on a single shared bus the whole load capacitance has

to be driven.
• The single communication channel allows only one pair to communicate,

while all other units are stalled. High operating frequencies are, therefore,
necessary to achieve the required data rates.

To address these problems, various extensions to the monolithic bus have been
developed.

Bus Splitting or bus isolation is a commonly used technique to reduce the
consumed power of a bus-based communication architecture. Compared to a
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classic monolithic bus, energy savings in the range of 16%-50%, depending on
the bus traffic, can be achieved [26]. The idea behind bus splitting is to section
the single bus into multiple bus segments. Dual port drivers are used to connect
the buses, retaining the functionality single shared bus [62].

Hierarchical Buses , as depicted in Figure 3.9 (b), are a further extension to
the split bus scheme. A bridge component is used to enable the communication
between the different bus segments. This unit can be quite complex and han-
dle several tasks like frequency conversion and data buffering [60]. Therefore,
the architecture allows simultaneous communication within each bus segment.
Furthermore, a hierarchical bus can handle different bus frequencies, enabling a
separation of high-traffic components, like a processor, from low-traffic periph-
eral components.

Bus Matrix or bus crossbar is an architecture designed for extensive data
transfer parallelism in high performance systems. The scheme is based on point-
to-point connections between the components, more precisely, in a full crossbar
bus each master has direct connections to each slave in the system. Figure 3.10
shows such a communication architecture. A partial crossbar bus is a reduced

Figure 3.10: Full crossbar [60].

implementation of this topology. It uses less point-to-point connections to re-
duce the necessary area as well as the power consumption. So, components
which do not communicate in the system and cause redundant connections are
not connected. Furthermore, partial crossbars might include hybrid solutions of
shared buses and point-to-point connections [60].

3.3.1.3 Direct Memory Access-Based Communication

Direct memory access (DMA) is a very common and important communication
technique. It can increase the transfer rate and improves the processing unit
efficiency in embedded systems [54]. The DMA approach enables communication
via shared memory, where each component can read and write and therefore
gather data from other units.
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Figure 3.11 depicts a DMA-based communication architecture. In this con-
figuration, a separate component, called a DMA controller (DMAC), handles
the address and access management of the data memory. Such a component
relieves a processing component from the burden of memory management. Fur-
thermore, it allows other components, e.g. peripherals, access to the memory.

Figure 3.11: Typical DMA configuration.

A DMA can also be implemented in a distributed fashion, i.e. in a multi-master
system without a controller. Each component has its own address generation
and memory interface. With an increasing number of components, this can lead
to very complex memory arbitration schemes.

3.3.1.4 Router-Based Communication

Using a router-based approach, instead of a classical shared communication
channel, could deliver similar energy-related advantages as known from a seg-
mented bus. Isolating all components from each other can lead to reduced load
capacitance during data transfers. Furthermore, a router-based approach allows
increasing data parallelism, which results in an increasing throughput [62].

Figure 3.12: Router-based communication architecture [52].

Figure 3.12 depicts a router-based communication architecture, implemented
on board-level in a sensor node platform. The energy benefits of a router-based
approach increase with the number of components in the system [52].
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3.3.1.5 Network-on-Chip

A Network-on-Chip (NoC) is the approach of scaling down a classic network
concept to embed it on a SoC. Network components like routers and network
interfaces are, therefore, necessary. These architectures were designed to han-
dle communication of hundreds of processing engines. An implementation of a
whole network protocol stack similar to the ISO/OSI model suits the architec-
ture for such large numbers of components. While a NoC is a very promising
architecture for large SoCs, it is less attractive for systems with less aggressive
requirements [60].

Especially in WSN the systems used in the sensor nodes tend be small and
efficient, even ARA employed in the processing units will not lead to such high
numbers of components. Therefore such an architecture would cause too much
overhead in such small-scale systems.

3.3.2 State-of-the-Art Communication Systems

In the following section various off-the-shelf communication architectures are
discussed.

The Advanced Microcontroller Bus Architecture (AMBA) is nowadays
one of the leading communications standards. While the three main bus archi-
tectures were already defined in AMBA 2.0, the newer version AMBA 3 added
additional interface protocols. Furthermore, the current AMBA 4 extended the
specification and added the Advanced eXtensible Interface (AXI) [2].
AMBA uses three different bus standards [60]:

• Advanced High Performance Bus (AHB), suited for high performance
communication, necessary for on-chip memories and processors.

• Advanced System Bus (ASB), an AHB alternative with a reduced pro-
tocol feature set.

• Advanced Peripheral Bus (APB), a low-power optimized bus suitable
for low bandwidth components.

The newest interface protocol AXI4 includes a streaming interface optimized
for point-to-point connection, specialized for data-intensive multimedia applica-
tions [2]. AMBA supports hierarchical bus architectures as well as bus splitting
and bus matrices for high bandwidth applications [60].

IBM CoreConnect is a synchronous bus standard, very similar to AMBA,
which is also commonly used in SoC design [60]. The CoreConnects architecture
also includes three busses:

• Processor Local Bus (PLB), a high performace bus, very similar to the
AHB.

• On-Chip Peripheral Bus (OPB), which includes a more advanced fea-
ture set then the AMBA APB.
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• Device Control register (DCR) bus, which is designed to reduce the
memory mapped configuration registers and replace it with a separate
light-weight control bus.

CoreConnect also supports hierarchical architectures and bus splitting.

Sonics SMART Interconnect & STMicroelectronics STBus are two
additional commercial bus-based systems including different types of bus stan-
dards suitable for applications similar to the systems mentioned above. For
futher details on these bus implementations, the interested reader is referred to
the literature [2, 60].

OpenCores Wishbone is an open-source bus-based communication architec-
ture, which defines interconnection schemes to allow quick and easy intellectual
property (IP) integration [2]. Wishbone is highly configurable and, therefore,
allows application-specific customization. It supports all common architecture
types like shared bus, point-to-point, crossbars as well as a data-flow topology
for sequential processing of a data stream [60].

3.3.2.1 Socket-Based Interface Standards

Such standards describe the interface connecting a component with a communi-
cation architecture. As Figure 3.13 depicts, a socket-based interface standard al-
lows implementation of units without specifying the particular architecture used
to communicate. For this reason using these standards improves the reusability
of designed IPs [60].

Figure 3.13: A system using socket-based interfaces [60].

Three interface standards exist, which can enable a “plug-and-play” SoC design:

• Open Core Protocol (OCP)

• VISA Virtual Component Interface (VCI)

• Philips Device Transaction Level Protocol (DTL)
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The OCP is strongly supported by the industry and is seen as the universal com-
plete socket standard [2]. AMBA, CoreConnect, STBus are perfectly suitable
using the open core protocol. Furthermore, the Sonics SMART interconnect has
native support of the OCP 2.0 standard [60].

3.3.3 Power Consumption Through Communication

In low-power systems it is necessary to minimize all available sources of con-
sumption, therefore this section will take a close look at the required power
for communication. Figure 3.14 depicts the power consumed in a hierarchical
AMBA implementation. In this application the total consumed power used for
communication was 12 mW [60]. Furthermore, it shows that the bus wires con-

Figure 3.14: Power consumption breakdown of a simple bus-based communica-
tion architecture [49].

sumed 14% of the whole budget, which is quite a small fraction compared to the
power consumed by all other necessary units. Bus segmentation applied in this
system was able to save 70% of the power consumed by the bus lines [49]. In
such classical bus-based architectures the main part of the power is used for the
communication overhead, more precisely, interfaces, arbiters and bridges, which
are necessary to ensure functionality in a shared bus system.

For other communication architectures which use even more resources, like a
DMA-based communication architecture, a higher total power consumption can
be expected. Especially due to the fact that memories are main contributors to
a processing unit’s consumption.

3.3.4 Communication Architecture Requirements for ARAs

Connecting various components in an effective fashion while staying within a
limited energy budget is a hard challenge for a communication system applied
in an ARA. Furthermore, the accelerators used are typically not implemented
in way to allow light-weight and efficient communication. More precisely, accel-
erators tend to use large memories and communicate via complex DMA sched-
ules [53].

• Support for Differing Voltages and Frequencies: On architectures
containing various different processing units, it is worthwhile that these
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components might implement specific low-power features. Therefore, the
communication architecture should be suited for handling data transfers
between differing voltage islands and clock frequencies.

• Close Connection to PM Unit: the communication system should
be tightly connected to the PM unit, to prevent transfers to deactivated
components as well as to allow efficient power management as discussed
in Section 3.2.3

• Small Communication Overhead: Minimizing the communication
overhead is important to allow a power-efficient implementation.

3.4 A Low-Power WSN Processing System: ECGSoC

This section will present the low-power sensor node processing system, which is
the foundation of this master thesis. Information of the chip is mainly derived
from [41], the system’s technical documentation [43] and the work with the
system itself.

Figure 3.15: Mixed-signal ECGSoC and typical applications [41].

Figure 3.15 depicts a feature and application overview of the mixed-signal
SoC designed for portable ECG monitoring applications. The design enables
configurable functionality as well as a low power consumption.

The analog front end allows high quality extraction of 3-channel ECG signals
as well as single channel impedance measurement. The digital back-end provides
the system’s configurability and ECG processing functionality using a custom
DSP-like ASIP implementation.

The focus of this thesis is the optimization of the system’s digital back-end
and, therefore, the AFE will not be discussed in further detail.

3.4.1 Implemented Algorithms

Three different real-time ECG monitoring applications are implemented on the
ECGSoC:

• Data Collection: This application uses the AFE to simultaneously
record the signal provided by the selected channels.
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• Beat Detection: This mode allows QRS-complex detection executed
with the help of a derivative-based algorithm [42] or a band-power-based
low-power beat detection algorithm [84].

• Accurate R-peak Search: This operation mode allows a highly accurate
R-peak detection, including a motion artifact removal stage to increase the
signal reliability as well as the automatic analysis performance.

Figure 3.16 depicts the various algorithms including their execution stage, within
the digital back-end. The data received from the AFE, is separated by a data de-
mux unit in hardware. In case of the high accurate extraction mode, either PCA
or an adaptive LMS is used to remove the motion artifacts. The ECG channel
used for the adaptive filter can be configured. For robust feature extraction a
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Figure 3.16: Algorithm overview.

CWT-based algorithm [65] processes the filtered signals.
For low-power beat detection based on the signal’s band power, the AFE

provides the necessary signal. Furthermore, the automatic analysis is directly
performed without any pre-processing.

The derivative-based algorithm can be executed either on a pre-filtered signal
or the captured original ECG.

In the thesis, the focus of attention is the highly-accurate R-peak detection
algorithms. Due to the necessary filtering and computation-extensive feature
extraction this operation mode requires more energy.

3.4.2 Architecture Overview

The ECGSoC is implemented in a 0.18 µm process and operates at a clock
frequency of 1 MHz. Either the integrated ring oscillator of an external clock
source can be used to provide the system’s clock signal. The nominal supply
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voltage of the process is 1.8V, but the system is fully functional using a down-
scaled voltage of 1.2 V. Three memories are used within the digital back-end,
the data memory (32 kbyte), the program memory (5 kbyte) and the coefficient
memory (4 kbyte). The whole digital part of the mixed-signal SoC accounts for
6.3 mm2 chip area.

Clock gating is used to reduce the dynamic power consumption of the system,
therefore five different clock domains are implemented. As Figure 3.17 shows,
the system also includes various interfaces, a host SPI interface, allowing access
to the system memories, a JTAG debugging interface as well as an SPI interface
to the AFE. A pre-processing unit is implemented to allow pre-processing of the
captured signals, before storing the data in the memory. A DMA controller is

Figure 3.17: Blockdiagram of the digital back-end [41].

responsible for controlling the data memory accesses by the preprocessing unit
and the processor core.

3.4.3 Application-Specific Instruction-Set Processor

The customized DSP-like ASIP includes a 4x32-bit SIMD vector data-path as
well as a 32-bit scalar data-path. The data memory is, therefore, split into four
equal-sized memory banks, allowing simultaneous access to enable one-cycle
data vector fetching. Furthermore, the program memory is extended with a 128-
word loop instruction cache to reduce the number of memory accesses within
a loop execution. Various other features of the processor are implemented to
allow effective ECG processing:
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• A custom 20-bit instruction set
• A parallel single cycle execution of memory loads, ALU execution
• A 32-bit multiplier
• Two address generation units
• Unaligned vector memory access
• A register-mapped DMA-controller configuration
• A 9-bit interrupt vector

3.4.4 Application-Specific Accelerators

Dedicated hardware is used to accelerate pre-processing and the encryption
of the ECG signals. For each ECG channel, the system implements a dedi-
cated FIR and a IIR filter to enable accelerated low-pass and high-pass filtering
within the pre-precessing unit. Additionally to the filters, a squaring unit is
implemented for pre-processing.

To allow secure wireless transfer of the monitored signal, an AES-128 en-
cryption unit is attached to the ASIP. Configuration, as well as, communication
to the accelerators is register-mapped.

3.4.5 Communication Architecture

On the ECGSoC the communication between the pre-processing unit and the
processor is implemented in a DMA-based fashion. This allows the AFE inter-
face to continuously write the captured data into the memory without the need
to interrupt or even enable the processor. When the address range of the data

Figure 3.18: Block diagram of the ECGSoCs DMA-based communication [43].

memory, used to buffer the input signals, is full, the AFE interface wakes the
processor with the help of an interrupt.

The size of each input buffer range can be defined per input channel via
the DMA controllers configuration registers. The DMA controller handles the
arbitration between the available bus masters: the AFE interface, the processor
and the host SPI interface. Using multiple masters on the shared memory
necessitates the implementation of an address generation unit for each master.
Furthermore, the controller has to avoid simultaneous access, by a prioritizing
scheme. On the ECGSoC, the avoidance of collisions is solved by halting the
clock signal of the unit with the lower priority, which can cause delays.
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3.5 Previous Work on ECG-Monitoring Systems

Besides the ECGSoC, numerous solutions were published addressing the chal-
lenge of portable low-power ECG monitoring.

3.5.1 ASIC Implementations

• [84] presents an analog signal processor specialized for ECG monitor-
ing. The system uses and adaptive analog-to-digital conversion scheme to
sample and process the signal according to its frequency content.

3.5.2 Configurable Implementations

• In [27], a hybrid biomedical signal processor is introduced. Using multi-
ple functional units, specialized for biomedical algorithms, encryption or
general-purpose use, optimizes the system in terms of flexibility and power
dissipation.

• A mixed-signal SoC deploying a sub-threshold microcontroller is described
in [37]. Using various analog and digital sub-threshold circuits minimizes
the systems power consumption.

• [47] presents an energy-efficient signal processing platform specialized
for biomedical applications like EEG and ECG. The system uses a light-
weight microcontroller equipped with multiple accelerators to allow effec-
tive signal processing. To ensure flexibility, the platform uses DMA-based
communication.

• In [42] a custom ECG signal processor is introduced, specialized for am-
bulatory arrhythmia monitoring. The processor uses three heterogeneous
processing elements for efficient filtering, classification, compression and
encryption. To achieve a low-power consumption clock gating as well as
voltage scaling is applied.

With regards to communication architectures it has to noticed, that all sys-
tems for ECG monitoring which use accelerators to reduce their power con-
sumption are using either full custom communication architectures or custom
DMA-based systems.



Chapter 4

Design of the Dataflow-Oriented
ECGSoC

4.1 Introduction

This chapter presents the fundamental components of the design process for
the dataflow-oriented ECGSoC. A redesign of the ECGSoC described in Sec-
tion 3.4, focusing on minimization of the system’s energy consumption using
conceptional modifications of the processing unit’s architecture as well as the
used communication infrastructure.

First, the environment of the ECGSoC processing unit is discussed in more
detail than in Section 3.4, which served as an overview. Second, the general
idea of the streaming-based architecture is presented. Furthermore, the changes
required bu applying the new ECGSoC architecture are outlined. Requirements
and a concept for a generalized component architecture are examined.

4.2 Digital Back-End Environment

The mixed-signal ECGSoC is separated into two parts, similarly to the typical
sensor node structure discussed in Section 2.5. The AFE handles signal readout
and the analog-to-digital conversion separately from the digital back-end.

Therefore the analog part includes low-noise and a low-power instrumen-
tation amplifier as well as several analog filters for each channel. A 12-bit
successive approximation ADC, supporting an adaptive sampling scheme allows
ECG data compression, prepares the data for the digital processing.

The digital back-end receives the data from the AFE via a separate SPI
interconnect. The data is transferred using 16-bit packages, consisting of 12-
bits data and 4-bits storing the channel identification.

After the post-processing stage, the data which should be transferred is
stored in the data memory. A host processor can read out the resulting infor-
mation via the SPI interface. The processed data is collected by a MSP430 on
the ECGSoC evaluation board [43].

39
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4.3 Streaming-Based Architecture Concept

Various processing systems applying the ARA have shown an impressive im-
provement of the energy flexibility trade-off when deployed for a defined set of
applications [22, 47]. The idea of a streaming-based system-level architecture is
depicted in Figure 4.1, including various accelerators supporting a light-weight
GPP. The fundamental concept separates the system’s communication architec-
ture into two communication channels.

The control channel provides an infrastructure to handle irregular events
such as configuration during the boot phase and furthermore enables application-
specific reconfiguration of the used accelerators at the execution stage.

Figure 4.1: Basic concept of a dataflow-oriented hardware-accelerated process-
ing architecture.

The separated data channel allows efficient sequential processing of the cap-
tured data. The reconfigurable data path provides a flexible communication
structure enabling an application-specific algorithm mapping. More precisely,
the various computation steps of an application can be mapped to the ap-
propriate processing element, allowing effective and power-efficient processing.
Furthermore, the reconfigurable data path makes the usage of an additional ad-
dress bus within the data channel redundant, which can improve the efficiency
in terms of power consumption and performance.

For algorithms which allow completely sequential processing it enables on-
the-fly computation using various processing elements in the corresponding or-
der. Therefore the architecture reduces the necessary data caching between the
various execution steps.

As described in Section 3.3.4 using various IPs within a system might ne-
cessitate the need for communication between different voltage islands and/or
clock regions. Due to the possible delays between components with different
operating frequencies using asynchronous communication within the data chan-
nel represents a valid option. Furthermore, a suitable foundation to efficiently
manage used low power techniques of an accelerator is provide by using request
and acknowledge based protocols. Therefore, a suitable power management unit
can control the accelerators based on the REQ/ACK signals provided by the
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communication infrastructure.
Reconfigurable interconnects are also used in systems for reconfigurable com-

puting [88]. This approach shares the same basic idea with the proposed sys-
tem. Heterogeneous reconfigurable architectures have been developed to map
algorithms directly to dedicated hardware. In contrast to the proposed archi-
tecture, the reconfigurable computing approach uses processing elements on a
much smaller scale. The proposed system uses large-scale accelerators able to
execute specific algorithms, while reconfigurable processors use dedicated hard-
ware implementing mathematical operations.

4.3.1 Streaming-Based Connection

To allow a reconfigurable connection between various different components, a
common denominator has to be found, which defines the necessary communi-
cation between two units. Furthermore enabling power management based on
the information provided by the communication channel necessitates a com-
mon standard of control signals to ensure clearness about the current execution
state. Figure 4.2 depicts the minimum of information required to enable direct

Figure 4.2: Information transferred within a streaming channel.

streaming between two components and ensure the control possibility of low
power techniques. The request and acknowledge pair controls the transferred
data, an available flag provides clearness about the resources of the component
and an awake and wake-up pair allows control of low-power features like power
or clock gating.

4.3.2 Reconfigurable Datapath

The reconfigurable datapath is basically a switchable connection matrix, offer-
ing point-to-point connections for each component. This system is very similar
to a bus matrix applied in bus-based communication architectures, described
in Section 3.3.1.2. This datapath can be configured to connect the systems
components in a variable order. Therefore, the system allows changing the exe-
cution order of accelerated algorithms, which enables flexibility in the executed
application. Furthermore, the application can be adapted via software.
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4.4 Architectural Changes Applied to the ECGSoC

Using a dataflow-oriented architecture to enhance the ECGSoC in terms of
power consumption leads to various changes within the digital back-end. This
section will discuss the impact on the design, caused by the architectural change.
As already mentioned in Section 3.4.1, this thesis focuses on the highly-accurate
R-peak search operation mode and, therefore, will only take the influence of the
architectural redesign according to that application into account.

4.4.1 Dataflow Within the ECGSoC

Before discussing the application of the datafow-oriented architecture, it is nec-
essary to take a close look at the existing dataflow within the ECGSoC.

Figure 4.3 visualizes the information flow of the accurate R-peak detection
application. This application is subdivided into two use cases, depending on the
algorithm used for motion artifact removal. The data received from the AFE
is redirected into the data memory. This task is executed by the AFE inter-
face, which decodes the channel identification and stores it into the appropriate
address range.

When the input buffer is filled, the ASIP starts to process the data. First,
dependent on the use case scenario, a motion artifact removal algorithm, either
an adaptive LMS or a PCA, processes the input signals stored in the memory
and writes the resulting cleaned ECG signal back into the storage.

16b Data
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12b Data

Figure 4.3: Visualization of the dataflow within the ECGSoC.

The CWT used for feature extraction is executed and uses the clean ECG signal
as an input. After processing, the algorithm stores its results in the memory. In
the final processing step the ASIP executes the beat detection (BD) algorithm,
manipulating the information stored in the data memory again.

Afterwards, the post-processing steps are executed. The ASIP transfers
the information to the encryption accelerator and again stores the result into
the data memory, where a host processor can read out the processed ECG
information via the SPI interface.
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4.4.2 Applying the Dataflow-Oriented Concept

Figure 4.4 depicts the concept applied to the ECGSoCs architecture. The AFE
interface is used to decode the channel identification to allow correct allocation
within the datapath. Furthermore, the implemented pre-processing unit within
the interface will still enable channel-specific filtering.

Figure 4.4: Basic Concept of a dataflow-oriented approch applied to the ECG-
SoC.

To accelerate the feature extraction, a reconfigurable FIR filter is attached to
the system. The CWT algorithm has a FIR structure itself and is, therefore,
perfectly suited for the dedicated hardware unit. Furthermore, a FIR accelerator
fits into the data-streaming concept per definition.

The adaptive LMS algorithm is also per definition applicable within a
streaming processing system. Therefore, the architecture is extended with a
4th order LMS accelerator.

Due to the block-based nature of the PCA algorithm an accelerator would
necessitate large implemented memories for efficient performance. Therefore,
this motion artifact removal algorithm will be executed by the ASIP.

The evaluation of the ECGSoC has shown that the data memory is the
main power consumer within the digital back-end, this will be discussed further
in Section 6.2. To unburden the data memory from continuous write accesses
during data collection, the system is equipped with a separate input buffer.
These buffers enable storing the gathered ECG signal and will wake up the ASIP
to process the information when they are filled. To apply these buffers within a
streaming based computation flow, a First-In, First-Out (FIFO) structure offers
a valid option. Furthermore, a separate input buffer can reduce the system’s
power consumption, due to the fact that a smaller memory will consume less
internal and leakage power.

An additional advantage of a FIFO within the reconfigurable data-path is
that the system architect can decide at which execution stage of the application
the data will be stored.
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The system is, therefore, able to use the accelerators and execute various parts
of the application without the presence of a processor or data memory.

4.4.3 Proposed Dataflow Within the Dataflow-Oriented ECG-
SoC Architecture

Using the dataflow-oriented architecture has a strong impact on the processing
flow within the system. Figure 4.5 depicts the proposed dataflow within the
new architecture for the two different use cases of the high accurate R-peak
detection application.

16b Data
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Figure 4.5: Proposed dataflow within the new architecture.

The details for both use cases will be discussed in the following sections.

4.4.3.1 Adaptive LMS for Motion Artifact Removal

The red arrows and numbers in Figure 4.5 indicate the adaptive LMS use case.
The AFE interface separates the ECG signal and the data from the impedance
measurement and sends the data directly to the adaptive LMS accelerator. The
motion artifact removal algorithm processes the data sample per sample and
transfers the resulting cleaned signal to the feature extraction stage. The im-
plemented reconfigurable FIR filter executes the CWT algorithm and sends the
data to the input buffer. Allowing the accelerators to process the captured sig-
nals reduces the data amount by 50% before it reaches the FIFO. When the
buffer is filled, the ASIP wakes up and executes the beat detection algorithm.
After the automatic ECG analysis, the data is sent to the encryption accelerator
and stored in the data memory so a host processor can gather the results. In
the ideal case the system will only store the resulting encrypted information
into the data memory, and during all other execution stages, the data memory
is not required.

4.4.3.2 Principal Component Analysis for Motion Artifact Removal

The dataflow within this use case in Figure 4.5 is indicated by the green ar-
rows and numbers. Due to the block-based nature of the PCA algorithm, the
gathered ECG signals are sent directly to the input buffer. After collecting
enough data the ASIP awakes and executes the motion artifact removal algo-
rithm. Therefore the whole input data has to be copied into the data memory,
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after which the resulting clean ECG signal is read from the memory and sent
sample by sample to the FIR accelerator. The feature extraction stage executes
the CWT algorithm again and transfers the data back to the ASIP. The proces-
sor uses the beat detection algorithm to compute the results and transfers the
data to the AES accelerator. Concluding the ECG processing, the encrypted
results are stored into the data memory.

4.5 Algorithmic Changes

This section discusses the influence of the architecture on the executed algo-
rithms in the high accuracy R-peak detection application.

4.5.1 Motion Artifact Removal

The PCA algorithm itself is not going to change due to the new architecture, it
still is executed by the ASIP. But it is necessary to modify the duty cycle as well
as the block length of the processed signal to adopt the algorithm according to
the input buffer length. In the original system this length was limited by the
size of the data memory.
The adaptive LMS used for motion artifact removal will be implemented on
dedicated hardware. Therefore, the same algorithm of the original system will
be used: a 4th order normalized LMS (NLMS).

4.5.2 Feature Extraction

The CWT maximizing the R-Peaks will be executed by the FIR accelerator.
This configurable accelerator enables flexibility in its coefficients and, therefore,
allows algorithm updating via software. The same algorithm as in the original
system will be used, although the number of coefficients and the coefficients
will be updated to the current best performing configuration. These values are
provided by the IMEC-NL algorithm department and represent the state-of-the-
art R-peak highlighting.

4.5.3 Beat Detection

The beat detection algorithm in the original system was a part of the CWT
algorithm, more precisely, within the feature extraction stage intervals were
marked which contain the R-peak. The beat detection itself used these marked
boundaries to execute a maximum search on the cleaned ECG signal within the
intervals.

Based on the on-the-fly computation executed by the new dataflow-oriented
architecture, the cleaned ECG signal in not present after the feature extraction
stage. This necessitates usage of another beat detection algorithm based on the
resulting data of the CWT algorithm.

In order to allow streaming-based beat detection the new architecture will
use the algorithm depicted in Figure 4.6. The algorithm uses an adaptive thresh-
old to detect an occurring peak within the signal. If the signal exceeds the actual
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threshold a counter starts. This counter is used to define the interval in which no
higher peak is allowed to occur, otherwise the interval starts again. Because, es-
pecially within the QRS-complex of an ECG signal, the CWT algorithm causes
multiple peaks next to each other. The algorithm detects the maximum value
within the interval. Based on the index value, the time-stamp of the R-peak
can be reconstructed.

Figure 4.6: R-peak detection algorithm.

The threshold can be configured using a gain and an offset parameter. A quasi-
peak-detection (QPD) is used to adapt the threshold during execution. Fig-
ure 4.7 shows the block diagram of the adaptive threshold calculation. Depend-
ing on the difference between the last threshold and the actual sample the QPD
either uses the attack coefficient (α) or the decay coefficient (β) to adopt the
threshold. These two coefficients allow a configuration of the rise and fall times

Figure 4.7: Adaptive threshold calculation.

of the threshold. Furthermore due to the influence of the difference between the
signal and the threshold, this algorithm suits the beat detection in ECG signals
more precisely to detect single high peaks within a signal.

One of the big advantages of this algorithm is the minimal necessary space
in the data memory. Only the last threshold value has to be stored during the
processor’s sleep phases. Furthermore, the algorithm combined with the CWT
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reached excellent performance when it was verified based on the MIT ECG
database at IMEC-NL.

4.6 Accelerator Design

This section discusses the design of the various modules within the proposed
system. To prevent unnecessary I/O complexity as well as sources for bottle-
necks the modules should be small, with good performance and enable efficient
communication [53].

4.6.1 Abstract Module Design

In order to allow a module to work within a reconfigurable data-path it is nec-
essary to define a common denominator within the design. More precisely, func-
tionality of a module should not influence the general communication behavior
of the system. Therefore, the proposed architecture uses a common universal
module architecture as depicted in Figure 4.8. Furthermore, this architecture
offers a unified interface to the systems power management unit, to support
various low-power techniques, like clock and power gating.

Figure 4.8: Streaming-based model design.

A module is separated into two parts: a core part, which includes the algorithm
implementation and the according control logic, and a part containing the re-
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quired logic necessary to store information like execution state, coefficients or
previous processed data. This separation allows applying power gating to the
core without losing required information to restart computation after waking the
module. So all parts inside the power-gated wrapper cannot retain information
during sleep phases.

The interface wrapper has the important role to ensure communication be-
tween modules. This wrapper prepares streamed data so it can be processed by
the computation core. Furthermore, the wrapper is also responsible for super-
vising the execution states of the computational core. To prepare the interface
for communication between modules using different clock frequencies, an asyn-
chronous FIFO can be deployed.

To allow configuration, the module is equipped with an input/output inter-
face. This interface can either be a custom implementation or a standard bus
interface. Furthermore, this interface as well as the communication between
the computation core and the always-on logic can vary between the modules to
ensure flexibility and allow an efficient implementation.

Each module contains its own power and clock control logic. This allows a
unit to optimize the usage of the built-in low-power features. Based on the wake-
up information transferred via the streaming datapath, a module can request
the power management unit to supply it according to the actual execution state.

An additional effect of a standardized module structure is that a big part
of it can be automatically generated based on the information of the core mod-
ules. The blue-colored parts in Figure 4.8 indicate that these can be created
automatically.

4.6.2 Adaptive LMS Accelerator

The adaptive NLMS algorithm used for motion artifact removal is an extension
to the adaptive LMS described in Section 2.4.1.2. The extension is confined
to the step size parameter µ, to ensure convergence for highly varying input
signals the parameter is adjusted to the actual input signals. Therefore the µ0
is divided by the norm of the actual input signals, as presented in Equation 4.1.
This necessitates an additional division, but offers better performance for ECG
signal processing.

µ =
µ0

||~x[n]||2
(4.1)

Figure 4.9 depicts the structure of the 4th order adaptive NLMS algorithm.
In order to apply the module architecture standard, as discussed in Section
4.6.1, the delay tap lines storing the coefficients and the past input samples
have to be implemented within the always-on logic. All multipliers, adders and
division blocks can be part of the computation core, since they do not contain
information necessary for the following computation.

4.6.3 Dedicated FIR Filter

Due to the fact that the CWT per definition has symmetric coefficients, using a
folded delay line for the FIR filter implementation is a valid option. Therefore,
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Figure 4.9: Structure of a 4th order adaptive NLMS algorithm.

only 50 % of the multipliers, compared to a traditional implementation are
necessary. Furthermore, to the reduced number of multipliers in the design
is smaller and more power-efficient. To implement the filter according to the

Figure 4.10: FIR structure with a folded delay line.

module standard defined in Section 4.6.1, the folded delay line, as well as the
coefficients, have to be part of the always-on logic to ensure functionality. The
multipliers and adders together are the power-gateable computational core of
the accelerator.
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Chapter 5

Implementation of the dataflow-
oriented ECGSoC

5.1 Introduction

This chapter presents the implementation of the dataflow-oriented ECGSoC
from an algorithmic as well as an architectural perspective. Furthermore, ap-
plied optimizations regarding power and performance are outlined as well as the
used design tool flow is presented.

First, the design tool flow employed within this thesis is introduced. Second,
the implementation of the accurate R-peak detection application ranging from
the reference model to the specific algorithms executed at the various process-
ing engines is discussed. Furthermore, a detailed description of various added
components is provided. Concluding the chapter, an overview of the implemen-
tation procedure is given, from the high-level description down to the physical
layout.

5.2 Tool Flow

Various tools are involved in the design and implementation process of the new
ECGSoC architectures. From a high-level architectural description of the SoC’s
top-level, the processor description of the implemented ASIP, various HDL mod-
els of the attached accelerators, the application executed at the ASIP, the fol-
lowing architecture characteristics can be derived:

• Execution Performance: expresses the application execution time as
well as the cycle count.

• Physical Characteristics: shows the required silicon area and the num-
ber of gates.

• Consumed Power: represents the dissipated power and energy of the
system.

51
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Figure 5.1 gives an overview of the used design tool flow. The tool flow
used to implement the new ECGSoC architecture can be subdivided into three
sub-flows:

• The Synthesis flow synthesizes the architecture using a 180nm TSMC
standard cell library. After placing and routing the system, the physical
characteristics can be obtained.

• The Application performance flow is necessary to compile, assemble
and link the application to the used GPP. Simulating the architecture ex-
ecuting the application with the netlist simulator produces cycle-accurate
performance figures.

• The Power estimation flow estimates the architecture’s power numbers
by combining the information from the synthesis and application flow.

Figure 5.1: Design tool flow overview.

5.2.1 Synthesis Flow

The synthesis sub-flow is used to obtain the physical characteristics of the given
architecture. The dataflow-oriented ECGSoC is separated into three parts.
First, the processor model of the deployed ASIP is described using the nML
language. The custom instruction as well as the user-defined primitives for the
processor implementation are included in this model. Using the Target Go HDL
generator [74], a Verilog processor model is derived. The top-level description of
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the SoC, including the memories, interfaces and the black boxes of the proces-
sor and accelerators, is implemented using Verilog and VHDL. The accelerator
cores and interface wrappers are implemented and fed to the wrapper generator.
This generator is able to produce the various wrappers described in Section 4.6.1
based on the VHDL model of the accelerators.

Figure 5.2: Synthesis tool flow.

The complete HDL model is then synthesized using the Cadence RTL Compiler
11.10 [7] using the TSMC 180 nm standard cell library. The synthesis result
can be influenced using various user-defined constraints, like clock frequency,
and rise and fall times. Furthermore, the RTL compiler is able to insert extra
circuitry in order to enable clock gating, this option can be set for each module
separately if necessary.

The gate-level netlist is used by the Cadence First Encounter 10.11 [7], which
executes the place and route stage in various iterations. First, the floorplanning
stage defines the physical dimensions of the chip as well as the placement for
big blocks like memories and power supply lines. Second, the tool performs
the placing of standard cells and inserts the clock tree. Therefore, several opti-
mization iterations are necessary to meet the defined timing constrains. In the
last stage, the tool connects the placed standard cells to the appropriate lines.
Again, several iterations are executed in order to meet the timing requirements.
Finally, a netlist of the placed and routed SoC including the extracted parasitics
is saved. Figure 5.2 depicts the used synthesis flow.
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5.2.2 Application Performance Flow

The application performance flow, as depicted in Figure 5.3, is used to obtain
the performance of the application as well as to verify the functionality of the
SoC.

Figure 5.3: Application simulation tool flow.

The processor modeling language nML is used to describe the GPP model
and provides the basis for the Target tool [74] to derive the retarget compiler,
assembler and the linker. Furthermore, it would be possible to generate a cycle-
accurate instruction-set simulator (ISS) based on this description. Due to the
fact that the ASIP is equipped with external accelerators, however, the ISS is
not able to simulate the whole application. Therefore, to simulate the system
the netlist simulator Cadence NCSim [7] is used.

The compiled application is loaded into program memory before the sim-
ulation is executed. Input data from the AFE is sent to the digital back-end
sample per sample within the testbench. NCSim uses the placed and routed
netlist generated with the help of the synthesis flow described in the previous
section.

To verify the simulation results, a reference model was implemented in Mat-
LAB. A MatLAB simulation based on the same input data provides reference
results so the functionality of the application executed on the ECGSoC can be
confirmed.

NCSim is generally not designed for extracting the application performance
parameters, and capturing cycle counts of single algorithms, especially, is much
trickier than with an ISS. The only possibilities are to supervise the program
counter or by adding a debugging variable into the data memory.



5.2. TOOL FLOW 55

5.2.3 Power Estimation Flow

To determine the power consumption of the system, the power estimation flow is
used. It combines the results of the synthesis flow and the application simulation
flow.

A netlist simulation based on the placed and routed SoC is performed by ex-
ecuting the whole accurate R-peak search application. Therefore, the generated
machine code as well as the input ECG signals are loaded into the testbench
and processed by the ECGSoC.

Cadence NCSim is used to capture value change data (VCD), which contains
the switching activity of all included cells. This information is used by the

Figure 5.4: Power estimation tool flow.

power simulator which determines the consumed power. Synopsys PrimeTime
2011.12 [72] gathers the power values of the used standard cell from the TSMC
180 nm cells as well as the parasitics information from the placed and routed
netlist.

To receive the most accurate power estimation it is necessary to use the
placed and routed netlist for the simulation, otherwise the parasitics of the
clock tree and the interconnect wires are estimated based on a general wire load
model defined in Synopsys PrimeTime.
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5.3 Accurate R-peak Detection Application

This section describes the R-peak detection application implemented at the
dataflow-oriented ECGSoC in more detail. Furthermore, it provides insight at
the algorithm-specific optimizations due to the proposed architecture.

5.3.1 MatLAB Reference Model

To simulate the functionality of the R-peak detection, a MatLAB system was
created. This simulation model features all algorithms used within the applica-
tion:

• Both Motion Artifact Removal algorithms, the PCA as well as the
adaptive NLMS.

• The Feature Highlighting algorithm CWT, already implemented in a
FIR-filter form.

• The Beat Detection algorithm using the variable threshold based on the
QPD.

The model is used to produce reference results for the verification process. Fur-
thermore, it allows a fast evaluation of the algorithm functionality. Therefore,
the MatLAB model was used to explore the right set of coefficients for the adap-
tive NLMS algorithm as well as the attack and decay coefficients for the beat
detection algorithm.

5.3.2 Architecture-Specific C

In order to execute the application on the ASIP efficiently, the algorithms were
ported to the architecture-specific C dialect defined during processor modeling.
The R-peak detection application developed for the original ECGSoC provided
the basis of the actual application. The original application already used the
processor in an efficient way.

The application was ported to the new processor applied in the proposed
architecture. On the new system the application executes an increased amount
of control instructions, due to the usage of external processing engines.

5.3.2.1 Compiler-Specific Optimizations

During application development it has been determined that the compiler pro-
duces a high amount of overhead when function calls are executed. Although
the separation of algorithms into various sub-functions increases readability as
well as reusability of the code, in order to reach maximum performance this has
to be avoided using the given tool chain. Therefore, all computation-intense
code snippets where implemented without using unnecessary function calls.

Furthermore, the compiler allows to specify a defined storage for variables, ei-
ther a memory or a register. This allows to minimize load and store instructions
by mapping frequently used variables to registers within computation-intense
code snippets.
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5.3.3 Motion Artifact Removal

5.3.3.1 Principal Component Analysis

As already mentioned in Section 4.5.1, the PCA is performed with the help of
the ASIP. To allow effective execution of this algorithm, the original application
provides an optimized implementation. Functions for matrix multiplication,
eigenvector and eigenvalue computations sue the application-specific SIMD path
of the processor to allow high performance and power efficiency.

5.3.3.2 Adaptive NLMS

Due to the applied adaptive NLMS accelerator, the application executed on the
processor is just used for configuration purposes. The configuration, in the case
of the new ECGSoC architecture, is to set the step size parameter. Further-
more, as introduced in Section 4.4.3, in the adaptive LMS use case scenario,
the dedicated hardware performs the computation without the presence of the
ASIP sample per sample.

5.3.4 Feature Extraction

The FIR accelerator provides an effective platform for executing the CWT algo-
rithm. The application is responsible for the accelerator configuration, which,
in the case of the proposed architecture, is the transfer of the filter coefficients
to the dedicated hardware. Furthermore, in the PCA use case the application
streams the motion artifact removal algorithms result to the dedicated hardware
and receives the processed data.

One drawback of the CWT algorithm execution of the original system is
that various coefficients and data samples are loaded multiple times. Therefore,
the feature extraction stage produced a high amount of memory accesses, which
lead to extensive power consumption. The proposed architecture, on the other
hand, optimizes this behavior by using dedicated hardware, so each sample only
has to be accessed once.

5.3.5 Beat Detection

The beat detection algorithm using an adaptive threshold, as described in Sec-
tion 4.5.3, is executed by the ASIP. To allow effective computation, shift opera-
tions were used instead of multiplications when possible. Furthermore, threshold
checking is optimized to use the least possible amount of cycles.

The reduce the number of memory accesses, the storage specify feature of
the Target compiler is used. The number of function calls is also minimized to
avoid unnecessary overhead produced during compilation.
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5.4 Dataflow-Oriented ECGSoC Processing Architec-
ture

The proposed architecture operates within the same conditions as the original
system:

• Operating Frequency: 1 MHz

• Supply Voltage: 1.8 V

• Process Technology: TSMC 180 nm

In order to reach the lowest power solution it is not necessary to use the most
advanced process technology [23]. Furthermore, a larger process technology is
a valid choice for applications with such low performance requirements like the
ECGSoC’s, due to the increasing leakage power consumption in smaller pro-
cesses.

5.4.1 SoC Top-Level Design

Applying the architectural modifications changes the system’s top-level design
significantly. All units which were implemented in the original system, described
in Section 3.4, are still available and functional, with one exception. The direct
memory access of the preprocessing unit is replaced with the proposed streaming
based communication infrastructure. Figure 5.5 depicts the added units of the
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Figure 5.5: Top-level design of the proposed ECGSoC architecture.

proposed system, furthermore, it shows the communication paths necessary to
execute the accurate R-peak detection application on the system. The datapath
can be reconfigured for both application use cases. First, the adaptive LMS use
case is depicted with red arrows, where the input data is processed by the
LMS and the CWT accelerator and stored within the input buffer for further
computation. Second, the PCA use case where all the ECG signals are stored
in the FIFOs and after being processed by the ASIP are streamed to the CWT
accelerator to execute the feature extraction algorithm. The configuration of
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the communication channel can be influenced either by the deployed ASIP or
the AFE-interface.

Additionally to the accelerators, it is necessary to implement three separate
input buffers to store the gathered data of all ECG channels required by the
PCA algorithm.

In addition to the mentioned changes, the applied clock gating concept is
refined by adding suitable gates to the implemented memories.

5.4.2 Streaming-Based Communication

In Section 4.3.1 the necessary common denominator to allow reconfigurable
streaming between two units within the proposed system is defined. The imple-
mented connection uses 7 wires for the control signals and a parallel data bus.
To allow a seamless integration to the ECGSoC’s ASIP implementation, the
data bus width is selected to be 128-bit. Therefore, the processor can process
the data directly by using the SIMD datapath without overhead. Furthermore,
collecting multiple samples and processing them at the same time reduces the
necessary communication within the SoC.

Figure 5.6: Signals necessary to implement streaming-based communication.

Figure 5.6 depicts the used data and controls signals subdivided by their pur-
pose.

5.4.2.1 Data Transmission Signals

To transfer data between two components, a simple asynchronous data trans-
mission scheme is used. Figure 5.7 shows such a request and acknowledge-based
communication as implemented. The information is valid on the data bus from
the moment the request is sent until the receiver acknowledges the reception.
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Request

Acknowledge

Data Valid

Figure 5.7: A single data transmission.

Such a communication requires that both communication components are awake
and that the receiver is available for new data.

5.4.2.2 Power Management Signals

In order to ensure that all components are active, the wake-up and awake signals
where implemented. This pair allows activation of the receiving component
before a transmission is initiated. Therefore, the receiver’s power management
logic supervises the wake-up signal and reacts according to its state.

5.4.2.3 Asynchronous Buffer Signals

To prevent data loss and unnecessary delays, three control signals are used to
control the small asynchronous buffers implemented within the communication
interfaces. The functionality and usage of these signals will be explained in the
following section.

5.4.3 Streaming Interface

The streaming interface is part of every implemented interface wrapper. This
wrapper ensures the adoption of each module to the unified communication
standard, as discussed in Section 4.6.1. The interface is deployed at the output

Figure 5.8: Implemented functionality within the streaming interface.
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stream of each unit and handles the wake-up signal generation as well as the
buffering of data in case of unavailable components or for modules using different
operating frequencies.

To provide the necessary functionality the interface includes two data paths,
as depicted in Figure 5.8. First, there is a direct connection between the com-
municating components which is used under normal operating conditions, more
precisely, when both modules are awake and available for communication. Sec-
ond, a data-path deploying an asynchronous FIFO to buffer the data if the
receiving module is not awake or available is present. Furthermore, if the re-
ceiver operates at a lower frequency and is not able to handle all the sent data,
this data path is able to buffer the information to prevent data loss.

Figure 5.9 depicts the case when data should be sent, but the receiver is not
available. In a first step, the data is received by the interface, and due to the un-
available component the information is stored in the buffer and an acknowledge
signal is sent back to source component. Therefore, the data source is available
for further processing if necessary. The signal indicating the FIFO state falls,
which indicates to the other component that data is present. Furthermore, after
the FIFO is used, all communication will be handled by the data path deploying
the buffer until the buffer is empty. Second, when the receiver becomes avail-

transfer to async. FIFO

transfer from async. FIFO

Receiver Available

Request by Sender

Acknowledge by Interface

Request by Interface

Acknowledge by Receiver

Data Valid Valid

FIFO empty

Readout Clk

Figure 5.9: Data transfer across the asynchronous buffer.

able it reacts due to the low FIFO state signal and activates the readout clock
signal. This clock signal initiates the interface to empty the buffer. Using the
mentioned clock signal, the interface is able to send the data to the receiver
even without the sender component. More precisely, the data source can even
be inactive, as long it is awake. After emptying the buffer, the interface changes
back to the directly connected data path.

In case of communication between components using different operating fre-
quencies, it is required to adopt the pulse length from the acknowledge signals.
More precisely, the pulse has to be long enough so that the counterpart will
recognize the pulse. Therefore, the interface is equipped with some generic
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parameters which allow adopting the pulse length.

5.4.3.1 ASIP Streaming Interface

In order to allow the ASIP to communicate via the implemented reconfigurable
streaming-based communication architecture, it is necessary to equip the pro-
cessor with additional interfaces to allow effective data transfers. Therefore two
different interfaces are implemented:

The ASIP Stream Input Interface is based on 128-bit wide memory in-
terface. This memory interface only allows read instructions. It is implemented
with a 4-bit address vector, which is used to control a part of the reconfigurable
datapath. Furthermore, the interface is able to rise an interrupt, so the proces-
sor is able to react to incoming data in every execution state. Unfortunately
,such interrupt routines require various additional instructions to save the actual
processor state. Therefore, due to the predictability of the executed application,
the interrupt is used to indicate the first transmission and afterwards the soft-
ware itself checks if new data is available until the necessary amount of data is
transferred. The necessary acknowledge information is gathered based on the
read enable information of the ASIP.

The ASIP Stream Output Interface is also based on the generic memory
interface provided by the Target [74] ASIP design suite. In contrast to the input
interface, the output interface necessitates the ability to handle the acknowledge
information. Therefore, the Target HDL generator has to be configured to
generate the required functionality. This leads to additional wait states while
the processor stands by until the acknowledge signal is received. The generated
address vector is again used to reconfigure parts of the datapath.

5.4.4 Input Data buffer

A separate input buffer is deployed to store the gathered information for each
necessary channel. The input buffer consists of an asynchronous FIFO and an
interface wrapper. The wrapper adopts the buffer core to the generalized signals
transferred within the streaming-based communication system. Figure 5.10 de-
picts the main building blocks as well as the implemented control signals of the
FIFO. The buffer deploys a 128x128-bit Standard Cell Memory (SC-Memory).
Two ports are used to provide information about the actual memory usage and
two separate clock signals are used for read and write accesses. The FIFO uses
internal registers to store actual read and write addresses to ensure prevention
of data loss.

The used SC-Memory is a standard cell-based memory developed especially
for low-voltage operations at IMEC-NL. This technology-independent memory
offers competitive power numbers as well as high design flexibility. But in con-
trast to commercial memories the SC-Memory will use up to 10x more area.
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Figure 5.10: Input buffer overview.

5.4.5 Wrapper Generation

As mentioned in Section 4.6.1, parts of module architecture can be generated
based on the core modules. More precisely, the power-gated wrapper and the
always-on wrapper can be automatically generated. Therefore, a byproduct of
this thesis is a small code generator used to generate the wrappers necessary for
each module. Figure 5.11 gives an overview of the implemented code generation

Figure 5.11: Code generator overview.

flow. The code generator is subdivided into tree parts, a parser to gather the
information from the describing files, a data structure to store the information
and a back-end, which generates the output based on template files. IP-XACT
is used as input for the code generator, which is a vendor-neutral XML format
created by the SPIRIT consortium [11] especially for describing and defining
electronic components. Fortunately, this XML description includes a schema
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description of the XML files, which builds the foundation of the parser and the
data structure. Furthermore, using generateDS [46] allows automatically gener-
ating the necessary data structure including the parser for the code generator.
To gather information from VHDL files and store it in the selected format a
free VHDL to IPXACT converter [16] is used. As the basis for code generation,
the back-end is provided by a template library called Mako [4]. The flexibility
of the code generator is provided by the template files, within the templates, it
is possible to define the required output which, therefore, offers a huge variety
of possibilities.

In order to seamlessly integrate the wrapper generation within the used
design-flow, various templates were required. Template files producing the re-
quired VHDL description as well as various configuration files to control the
tool-flow have to be generated.

Using the wrapper generator offers the possibility to generate the required
wrappers based on the HDL description of the modules.

5.4.6 Adaptive-LMS Accelerator

The accelerator designed to execute the adaptive NLMS algorithm is imple-
mented as described in Section 4.6.2. To ensure correct functionality as well
as the ability to power-gate the accelerator, the coefficient, error value and the
input value tap delay line are implemented outside of the computational core.

In order to allow effective computation, the implemented accelerator is able
to process one sample per clock cycle. Therefore, to resolve the data dependence
within the algorithm, the coefficient update is executed on the falling edge of
the clock cycle, while the output value is computed on the rising edge.

Due to the fact that the step size parameter (µ0) is defined to be in a range
between zero and two, it is necessary to convert the floating-point arithmetic
used in the algorithm to an integer arithmetic which is compatible with the
remaining hardware. Therefore, in order to achieve a high resolution, the step
size parameter is shifted by 32-bits. This influences the required register size
within the accelerator. Fortunately, the used synthesis tool removes unnecessary
registers automatically and, therefore, ensures that the implemented accelerator
uses the least area possible.

5.4.7 FIR Accelerator

Section 4.6.3 describes the design of a dedicated FIR accelerator implemented
within the proposed ECGSoC architecture. This unit is used during the feature
extraction stage of the R-peak application and executes the CWT algorithm.

The basis of the accelerator was provided by the DSP team of IMEC-NL.
The generic FIR filter has been extended to fit into the module architecture
defined for the proposed architecture. Therefore, the coefficients as well as the
delay line are separated from the computational core to meet the defined module
standard, as introduced in Section 4.6.1.

The implemented accelerator processes one sample per second and, there-
fore, allows effective CWT computation. The current CWT algorithm uses 63
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coefficients and defines the size of the implemented FIR filter. Based on the
defined input range of 16-bits, the resulting output size is 32-bits.

To furthermore reduce the power consumption, the provided FIR structure
uses the canonical signed digit (CSD) number representation. Therefore, the
coefficients have to be converted into the system by the application developer
to suite the accelerator’s implementation.

5.4.8 Implementation Procedure

5.4.8.1 HDL Model

The synthesizeable HDL model of the proposed architecture consist of various
parts. The processor model is generated using the Target GO HDL generator as
described in Section 5.2.1. This generator produces a Verilog model including
all the user-defined instructions and the various specified memory interfaces.
The original HDL model of the ECGSoC was also implemented using Verilog,
the implemented changes were discussed in Section 5.4.1.

The additional added communication architecture and the accelerators are
described using VHDL. All memories of the original system, as discussed in
Section 3.4.2 are still used within the proposed architecture. Furthermore, a 2
kB SC-Memory is deployed in each of the three input buffers.

5.4.8.2 Synthesis and Place & Route

The gate level netlist is generated by using the Cadence RTL Compiler 11.10
and the TSMC 180 nm standard cell libraries. The user constrains applied
during the synthesis are a defined operating frequency of one MHz and various
SC-Memory-specific constrains.

To place and route the ECGSoCs architecture Cadence First Encounter 10.11
is used, this tool compromises floorplanning, placing of the cells and signal
routing.

Floorplanning is the first step in order to place and route the design. De-
termining the optimal floorplan for the proposed architecture is an iterative
process. Figure 5.12 depicts the final layout of the memories as well as the
power ring and the power lanes added to supply the included macro cells. The
four data memory cells are placed at the bottom of the floorplan, program and
coefficient memory at the left boundary near the other macro cells, directly con-
nected to the ASIP. The placement of the SC-Memory cells is more complicated
due to the alignment of the connecting ports. Therefore, the floorplan must be
chosen in such a way that enough area around the SC-Memories is standard cell
free, so the routing stage has room to connect all ports of the cell. In order
to avoid standard cell placement in the mentioned regions obstructs are placed
around the memory locations.

Placement stage is used in order to place the standard cells within the layout,
while avoiding the defined obstructs. After an initial placement run using the
Encounters’s default settings, various iterative optimization runs are executed
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Figure 5.12: The proposed ECGSoC floorplan including memories and power
lanes.

in order to minimize the setup- and hold time. After clock tree insertion, various
iterations are necessary again to avoid timing violations and ensure a minimum
of timing slacks.

Signal Routing stage is necessary in order to route all connections within the
architecture. Therefore, a global detail route run is used, enabling the timing
drive option of Cadence First Encounter. After routing, various incremental
optimizations runs are executed in order to minimize the setup- and hold target
slacks. Concluding the place and route stage, all empty space within the system
is filled using filler capacities. The final chip layout is shown in Section 6.4.2.



Chapter 6

Experimental Results

6.1 Introduction

This chapter presents experimental results obtained by simulating the proposed
ECGSoC architecture. Optimizations as well as implementation issues are eval-
uated and compared with the original system.

First, the evaluation of the baseline system, including the necessary method-
ology for extracting the energy used for communication, is presented. The
power consumption of the original system executing the accurate R-peak de-
tection application is presented in detail. Second, the simulation results of the
proposed architecture are shown to verify the functionality of the system. Fur-
thermore, synthesis and place and route results of the implemented architecture
are provided. Concluding the chapter, the power consumption of this system is
analyzed and discussed. Furthermore, the impact of the various applied opti-
mizations is presented in detail.

6.2 ECGSoC V1.1 Evaluation

In order to compare the original system with the proposed architecture it is
necessary to evaluate the baseline in detail. More precisely, the consumed power
for various different tasks has to be extracted from the given power results. This
thesis will focus on the required power for communication, as well as on the
consumed energy by specific execution stages of the accurate R-peak detection
application.

At this point it has to mentioned that the version 1.1 of the ECGSoC is
already an improved version of the original system. In more detail, in this
version, the clock gating concept of the SoC is already refined, i.e. clock gates
were added to the memory cells of the baseline. This is necessary in order
to allow a fair comparison between the different architectures. Otherwise, the
results would be highly biased due to the varying clock gating concept and lead
to wrong conclusions.

As mentioned in Section 3.3.3, within a DMA-based communication archi-
tecture, various different components contribute to the total consumed power
caused by communication. While the power reports generated by the power

67
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estimation tool flow (Section 5.2.3) easily allow to extract the consumed power
of interfaces and controllers, a new methodology is required to derive the energy
consumed by the bus itself as well as the memory consumed through communi-
cation. To capture this power consumption, a specialized set of tools is necessary
which is introduced in the following section.

6.2.1 DMA-Bus Power Evaluation Methodology

Deriving the necessary power numbers from the available power reports and,
therefore, allowing a detailed evaluation of the DMA-based communication sys-
tem of the original system requires a new methodology. As a byproduct of this
thesis, a new tool was implemented allowing further processing of the given
power numbers by Synopsys PrimeTime. The tool is called “Advanced Prime-
Time Power Report Processing Suite” (APPPS).

This tool enables one to derive the consumed power of the bus itself, further-
more, it allows a selective evaluation of the memory consumption to differentiate
between energy used for communication as well as other tasks. Figure 6.1 de-

Figure 6.1: DMA bus consumption extraction tool flow.

picts the tool flow required to derive the consumed power of the bus, more
precisely, the consumption of the wires and buffers. Based on the netlist the
Cadence RTL Compiler is able to extract all instances connected to the DMA
bus. Therefore, a tool-specific script was implemented executing an iterative
search to identify the connected cells.

Simultaneously, the power estimation tool Synopsys PrimeTime calculates
so-called leaf reports, which include a power waveform for each instance of the
given netlist.

Based on the information gathered by these two tools, APPPS is able to
compute a power wave form according to the consumed energy of the entire
bus. Furthermore, it enables extraction of parameters like the average power
or the total energy consumed by all instances required to allow communication
via the DMA bus. In addition to the mentioned features, the implemented tool
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is able to selectively extract consumed energy during specified intervals. These
time spans can be defined either via a VCD file or a memory log file generated by
the testbench. The log files furthermore contain information about the accessed
addresses and, therefore, allow to extract consumed power based on defined
address ranges, which is an important feature to subdivide the consumed power
of the data memory

6.2.2 DMA Bus Memory Evaluation

In order to evaluate the a DMA-based communication system, it is necessary
to take the power consumption caused by the shared memory into account.
Therefore, the consumed power is divided into two general categories: power
consumption is either caused by a read or write access to the memory cell or
by the memory when it is in standby mode. Figure 6.2 depicts the subdivisions

Figure 6.2: Subdivision of the memory power consumption.

of the memory power consumption. After dividing it into the two categories,
the consumed power can be further assigned to its task. This evaluation differs
between communication energy or energy used for program execution. To allow
differentiation between these two tasks it is necessary to log the address of each
memory access and further take the actual execution state of the application
into account to ensure correct classification.

Figure 6.3: A single memory access.

Figure 6.3 depicts a detailed separation between the two main access and
standby energy categories. The energy beneath the power peak caused by the
memory access is part of the first category. On the other hand, the standby
energy is divided according to the used memory size. So the fraction of the
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standby energy assigned to a specific variable depends on the allocated memory
size within the data memory.

6.2.3 Power Evaluation Results

6.2.3.1 Simulation Conditions

In order to allow a fair comparison between the different architectures, both
systems were evaluated using the same boundary conditions. The conditions
are subdivided into two categories.

Power Simulation Conditions: The used conditions for the power simula-
tions are presented in Table 6.1. To get comparable results, these conditions
apply for all results presented within this thesis. Although, as mentioned in
Section 3.4.2, the original system is fully functional using a downscaled supply
voltage of 1.2 V, it has been decided to use the nominal supply voltage of the
process.

Table 6.1: Simulation conditions used for power evaluation.

Simulation Parameter Value
Supply Voltage 1.8 V
Operating Frequency 1 MHz
Sampling Frequency 512 Hz
Simulation Parameter Typical Case

Furthermore, all presented results refer to the top-level of the design, i.e. isola-
tion cells as well as pads are neglected.

Application Conditions: In order to allow a fair comparison between the
available use cases of the accurate R-peak detection application, the duty cycle
of the PCA use case has been shortened. Table 6.2 gives an overview about the
simulated duty cycle times within the original system.

Table 6.2: Application duty-cycle for all use cases (ECGSoC V1.1).

Application Use Case Execution Time [ms] Percent of Duty Cyle
Adaptive LMS 1023.97 100 %
Data Collection 994.12 97.08 %
Application Execution 29.84 2.92 %
PCA 1023.81 100 %
Data Collection 966.24 94.38 %
Application Execution 57.57 5.62 %
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At this point has to mentioned, that a shorter duty cycle has no influence of
the functionality of the application. Although it changes the lowest detectable
heart rate, it does not influence the validity of the resulting power numbers.

All presented power results represent a full duty cycle of the already config-
ured and processing system. So the results incorporate the repetitive task the
system is executing.

6.2.3.2 Power Consumption Overview

The average power consumption of the ECGSoC with the refined clock gating
concept is shown for both use cases in Table 6.3. It can be seen, that, as
expected, the PCA application consumes more power compared to the other use
case. The required computational performance of the PCA algorithm is much
higher compared to the adaptive LMS, therefore, these results are according to
the expectations.

Table 6.3: Overall average power consumption.

Application Use Case Avg. Power Consumption
Adaptive LMS 105.32 µW

PCA 128.04 µW

Figure 6.4 (a) and 6.4 (b) depict the top six consumers within the original ECG-
SoC design for each use case. In both cases, these six units cause approximately
90% of the entire power consumption. The plot identifies the distribution be-

6.4 (a): Adaptive LMS use case. 6.4 (b): PCA use case.

Figure 6.4: Top six consumers of the ECGSoC V1.1.

tween internal, switching and leakage power of each unit. This highlights that
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an enormous amount of energy is consumed due to the leakage of the memory
cells. Furthermore, the number located at the top of each bar represents the
power fraction the unit consumes according to the total average power consump-
tion. It can be seen, that the data memory is the main consumer within the
architecture and, therefore, offers the biggest potential for improvements.

6.2.3.3 Power Consumption for Communication

The results in this section represent the energy consumed for communication,
using the adaptive LMS use case. Figure 6.5 depicts the energy distribution
within the original system. It can be seen, that the DMA bus, more precisely
the wires and the buffer cells, only contribute to a negligible fraction of the
total consumed energy within a duty-cycle. Furthermore, the plot shows that

Figure 6.5: Energy distribution of the ECGSoC, including the DMA bus (Adap-
tive LMS Use-case: Total Energy 107.8 µJ).

the memory cells consume nearly three quarters of the entire energy. In order
to evaluate the energy used for communication, Figure 6.6 depicts what causes
the consumption within the data memory. As discussed in Section 6.2.2, the
consumed energy within the data memory is subdivided into stand by and access
energy. After this subdivision, the energy is assigned to a specific task: either
program execution or communication. It can be seen, that 36.2 % of the energy
consumed by the data memory is caused by communication.

Table 6.4 displays all components contributing to the energy used for com-
munication within the ECGSoC. The sum of all components represent the energy
necessary for communication, which, surprisingly, is in the order of magnitude of
the ASIP energy consumption. The ASIP consumed 14.5% of the total energy,
in contrast, the energy used for communication is 17.26% of the total energy
consumption.
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Figure 6.6: Energy distribution of the data memory (Adaptive LMS use case:
total energy 49.11 µJ).

Table 6.4: Energy used for communication.

Components Energy per duty cycle
Bus (Wires, Buffers) 0.61 µJ

Arbiter 0.05 µJ
Interfaces 0.19 µJ

Memory Cells 17.77 µJ∑
18.62 µJ

6.3 ECGSoC Algorithmic Verification

To verify the functionality and correctness of the executed R-peak detection
application, the simulation results were verified by the means of the reference
model implemented in MatLAB (see Section 5.3.1). While the MatLAB model
is used to allow automatic verification, it is also possible to use it verify the
functionality based on a graphical representation of the simulation results.

6.3.1 Adaptive LMS Verification

The adaptive LMS use case executes an adaptive NLMS algorithm in order
to reduce the ECG motion artifacts. To highlight the occurring R-peaks the
CWT algorithm is executed. In order to identify the peaks, the beat detection
algorithm is used.

Figure 6.7 depicts the simulation results of the executed application. The
plot represents the processing of four seconds of ECG data. The two plots at
the top depict the input data, the ECG data including motion artifacts and the
according measured electrode impedance. The resulting output of the motion
artifact removal stage and the feature extraction stage are presented in the two
plots at the bottom.
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Figure 6.7: Simulation results executing the adaptive LMS use case.

These plots include the detected beat highlighted by a red x. The first peak
shown in the CWT result is ignored by the beat detection algorithm. At appli-
cation start, the adaptive motion artifact removal algorithm needs some time
in order to settle and reach a transient state. Therefore, the beat detection
algorithm ignores the first 100 samples.

Furthermore, a time offset can be observed between the detected beats in
the different stages. The offset is caused by the CWT algorithm, the FIR
structure adds a delay of half the filter length by definition. Fortunately, this
does not affect the derived medical parameters like heart rate or applications
like arrhythmia recognition.

6.3.2 PCA Verification

The PCA use case, in contrast to the adaptive LMS case executes the PCA
algorithm in order to remove the motion artifacts.

Figure 6.8 depicts the simulation of the executed R-peak detection appli-
cations use case. Again, the 2048 processed samples represent four seconds of
ECG data. The top three plots present the statistically independent ECG input
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signals including motion artifacts. The resulting output of the various applica-
tion execution stages is shown in the two bottom plots, including the detected
beats. Again, the time offset between the stages can be observed.

Figure 6.8: Simulation results executing the PCA use case.

The polarity of the motion artifact removal algorithms output depends on
the eigenvalues of the input signals and can, therefore, vary. This does not
influence the functionality of the feature extraction stage or the beat detection
algorithm.
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6.4 Physical Layout Results

6.4.1 Synthesis Results

The results in this section present the area required for the synthesized proposed
ECGSoC architecture as outlined in Section 5.2.1. The synthesis of the whole
architecture results in a required total cell area of 6745367 µm2, which is an
increase of 59.4 % compared to the original system. Table 6.5 gives an overview
of the area distribution within the architecture. Almost 72 % of the cell area
is required by the memories. The accelerators use approximately the same
amount of area as the ASIP. The small increase of the ASIP area is caused
by the additional memory interfaces. Due to the removal of the DMA path
between data memory and AFE, the area requirements of the DMEM is slightly
decreased.

Table 6.5: Area requirements of the proposed architecture as compared to the
original system.

Cell Area NAND2 % Original System Difference
[µm2] Eq. Cell Area [µm2] [%]

Total 6745367 768195 100.00 4232535 + 59.37
DMEM 1906025 217067 28.26 1907900 - 0.04
PMEM 652162 74271 9.67 652199 0.00
CMEM 276420 31480 4.10 276420 0.00
AISP 614658 70000 9.11 587363 + 0.64

LMS Acc. 285545 32519 4.23 - -
FIR Filter 302215 34418 4.48 - -

FIFO 610696 69549 9.05 - -
3x FIFOs 1832088 208647 27.16 - -

The large increase of required area is a result of the SC-Memory usage within
the input buffers. Although the FIFOs provide five times less storage space than
the data memory, they occupy nearly the same amount of area.

6.4.1.1 Clock-Gating

Additionally to the top-level clock gates implemented by the designer, the syn-
thesis tool was configured to add clock gates automatically as described in Sec-
tion 2.6.3. This resulted in a total number of 303 clock gates, which are gating
91% of the deployed flip-flops.

6.4.2 Place and Route Results

The placement and routing of the standard cells was carried out as described in
Section 5.4.8.2 and resulted in the layout presented in Figure 6.9. The utilization
of the core area for the proposed architecture reached 75.94% using the specified
floorplan and the place and route settings.
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Table 6.6: Area requirements of the proposed architecture after place and route.

Proposed Architecture Original Architecture Difference
[mm2] [mm2] [%]

Core Area 8.81 6.3 39.84
Chip Area 10.92 10 9.20

Table 6.6 gives a comparison between the area requirements of the original
system and the proposed architecture. Due to the fact that the chip size of the
original system was defined by the number of pins, the required chip area only
increased by roughly 10%.

Figure 6.9: The dataflow-oriented ECGSoC after the place and route stage.

6.5 Power and Energy Consumption Results

The power consumption of the proposed architecture was determined using the
power estimation tool flow described in Section 5.2.3. Furthermore, to ensure
comparability, the power simulation conditions are the same as discussed in
Section 6.2.3.1.

6.5.1 Power Consumption Overview

In order to provide an overview, Table 6.7 shows the energy consumed within
one duty-cycle for both application use cases. Furthermore, the average power
consumption is compared to the original system with the refined clock-gating
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concept. The energy saving provided by the new architecture are in the range
of 17-25%.

Table 6.7: Power consumption overview.

Use Case Energy Execution Avg. Power Original sys. Difference
[µJ ]

time
[µW ]

Avg.Power [%][s] [µW ]

Adapt. LMS 80.82 1.023 78.93 105.32 -25.06
PCA 107.85 1.023 105.37 128.04 -17.71

6.5.2 Detailed Power Consumption

Table 6.8 gives more details about power consumption within the proposed
architecture. The seven top consumers are presented, including a comparison

Table 6.8: Power consumption details.

Component Avg. Power Original sys. Difference
[µW ]

Avg.Power [%]
[µW ]

Adaptive LMS Use Case
Total 78.93 105.32 - 25.06
DMEM 33.04 47.96 - 14.17
PMEM 9.38 13.28 - 3.70
CMEM 7.18 7.43 - 0.24
ASIP 5.71 15.23 - 9.04
FIFOs 4.05 - + 3.85

FIR Filter 1.76 - + 1.67
NLMS acc. 1.29 - + 1.22

PCA Use Case
Total 105.37 128.04 - 17.71
DMEM 41.08 54.22 - 10.26
PMEM 16.41 18.53 - 1.66
CMEM 7.62 7.77 - 0.12
ASIP 14.07 20.18 - 4.77
FIFOs 4.05 - + 3.16

FIR Filter 1.72 - + 1.34
NLMS acc. 1.48 - + 1.16

to the original system with the refined clock-gating concept. Although the data
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memory is still the top consumer in the new architecture, the new design reduced
the average power consumption of the data memory cells in a range of 10-14%.

The decreasing power consumption of the ASIP is due to the program exe-
cution time reduction based on accelerator usage. Furthermore, the additional
power required by the accelerators to speed up the application is much less than
the saved power. The reduction of the execution time also decreases the required
power of the program and the coefficient memories.

6.5.3 Optimizations Overview

Within this thesis, various optimizations are applied and considered. This sec-
tion should give an overview of the impact of these. The following section will
explain the different optimizations in more detail.

Figure 6.10 depicts the results of various optimization stages for the ECG-
SoC executing the adaptive LMS use case of the accurate R-peak detection
application. Due to the fact that the memories applied in the system consume
the main part of the whole power, the same optimization stages are depicted for
low-power memory. The Synopsys Virage Memory [72] is a low-power memory

Figure 6.10: Average power consumption for the various optimization stages
(adaptive LMS use case).

for the 180 nm TSMC process. In contrast to the applied Artisan memory, the
Virage Memory cells have a lower maximal operating frequency. Therefore, the
plot is separated into two groups, each optimization stage is calculated for the
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different memories. At this point it has to be mentioned that the power con-
sumption of the Virage memories is calculated based on a measured comparison
between these two memories provided by IMEC-NL.

The first optimization step was the refined clock-gating concept of the orig-
inal design, which has a high impact on the whole power consumption. Adding
clock gates to the applied memories already saved 35% of the total power con-
sumption. Using the proposed architecture further reduced the power consump-
tion by another 25%. The concluding optimization step is to consider power
gating. Using the last optimization step, the total power consumption can be
reduced by a factor of three compared to the original design. Unfortunately, the
TMSC 180 nm standard library does not include header and footer switches to
implement power gating.

Using the Virage memories, the total power consumption could even be
reduced by a factor of four.

Figure 6.11 depicts the impact of the various optimization stages for the
ECGSoC executing the PCA use case of the accurate R-peak detection appli-
cation. The impact of the architectural changes, as well as the impact of the

Figure 6.11: Average power consumption for the various optimization stages
(PCA use case).

concluding power gating step is less compared to the use case discussed above.
Due to the high memory usage of the PCA algorithm the effect of this optimiza-
tion steps decreases. Although the impact is less, the total power consumption
of the system is still reduced by a factor of two. Using the Virage memories
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could even reduce the total power consumption by a factor of three.

6.5.4 Detailed Impact of Optimizations

The proposed architecture’s impact on power and energy consumption was in-
vestigated for the usage of accelerators and applied communication architecture.

6.5.4.1 Impact of Accelerators

In order to provide a fair comparison between the different architectures, it is
necessary to use another metric. Classical metrics like energy per instruction
are not feasible to allow a direct comparison of an algorithm executed on an
ASIP or an accelerator [22]. Therefore, the metric energy per task is used.

Adaptive NLMS accelerator The impact of the adaptive NLMS accelerator
is depicted in Figure 6.12. Using the accelerator to execute the adaptive NLMS
algorithm is 20 times more power-efficient than computing the algorithm with
the deployed ASIP. The energy reduction using this accelerator represents 3.2%

Figure 6.12: Impact of the adaptive NLMS accelerator.

of the system’s total power consumption when executing the adaptive LMS use
case.

Table 6.9 compares the algorithms executed on the accelerators between the
original system and the proposed architecture in terms of execution time and
energy consumption.

FIR accelerator The impact of the implemented FIR filter is depicted in
Figure 6.13. Both use cases require the execution of the feature extraction
algorithm. The accelerator decreases the energy consumption for the adaptive
LMS use case be a factor of 62.5 and, therefore, reduces the total consumption of
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Table 6.9: Accelerators impact on energy consumption.

Algorithm
Proposed System Original System Difference

Execution Energy Execution Energy Time Energy
Time [ms] [nJ ] Time [ms] [µJ ] [%] [%]

Adapt. LMS 2.56 186.95 7.75 3.69 -66.97 -94.93
CWT 2.56 198.98 16.95 12.66 -84.90 -98.43

6.13 (a): Adaptive LMS use case. 6.13 (b): PCA use-case.

Figure 6.13: Impact of the dedicated FIR filter.

the application by 11.8%. Such a high reduction is possible due to the fact that
the algorithm is executed without the presence of the ASIP. Within the PCA use
case the ASIP is required to send and receive data to the accelerator. Therefore
the, ASIP needs to be awake and execute the necessary instructions to fulfill
the task. Figure 6.13 (b) depicts the impact of the dedicated FIR filter in the
PCA use case. Under these circumstances, the accelerator reduces the energy
per task by a factor of 11.7 and, therefore, reduces the total power consumption
of the application by 8.8%.

6.5.4.2 Impact of the Communication Architecture

The impact of the dataflow-oriented ECGSoC on power and energy consumption
was evaluated by the means of the adaptive LMS use case. Figure 6.14 (a)
depicts the impact of the proposed communication architecture. The energy
required for communication was reduced by a factor of 9.5, which represents a
decrease of the total consumption of the application by 14.9%. Furthermore,
using the accelerators within a DMA-based communication architecture, like the
original system, would reduce the amount of necessary communication. Due to
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6.14 (a): Total energy required for commu-
nication.

6.14 (b): Energy consumption caused by
communicaiton overhead.

Figure 6.14: Impact of the proposed communication architecture.

the fact that the accelerators have built-in storage for the temporarily results,
the number of memory accesses can be reduced. It has been estimated, that
this would reduce the consumed energy roughly by a factor of three in contrast
to the original system.

Figure 6.14 (b) shows the energy consumption caused by the communication
overhead. Although the consumption through communication overhead is negli-
gible compared to the total required energy, it shows that the energy required in
the proposed architecture and the original system are approximately the same.
But in contrast to the original system, the number of communicating hardware
components has doubled in the proposed architecture. Furthermore, the inter-
face FIFOs, as discussed in Section 5.4.3, are necessary to allow communication
between components with different operating frequencies, which is not the case
in the proposed ECGSoC implementation. Therefore, if the energy consumed
by the FIFOs is neglected, the communication overhead’s consumption would
be reduced by a factor of 2.6.
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6.6 Experimental Results Summery

This section summarizes the experimental results described within this thesis.
The core area of the proposed architecture requires approximately 40% more

than the original system. Almost 72% of the used cell area is claimed by memory
cells. Roughly 10% more chip area is required for the dataflow-oriented ECGSoC
design, due to the fact that the original system’s chip size was defined by the
number of pins.

An extensive breakdown of the original system’s power consumption has
shown that the energy consumed for DMA-based communication was in the
order of magnitude of the ASIP’s energy consumption. The proposed architec-
ture, while providing the same functionality and flexibility, reduced the average
power consumption in a range of 17.7% to 25%, depending on the use case. The
accelerators deployed in the proposed architecture were able to decrease the en-
ergy consumption of the adaptive LMS algorithm by a factor of 20, and of the
CWT algorithm in a range of 12-62. The applied communication architecture
reduced the energy consumption by a factor of 9.5, which represents a decrease
of 14.9% of the total system’s power consumption. Furthermore, considering
power gating and low-power memories, the system’s power consumption could
be reduced up to a factor of 4, while executing the same application.
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Conclusions and Outlook

7.1 Conclusions

Within this thesis, a design concept exploration of a dataflow-oriented hardware-
accelerated processing architecture applied in ultra-low-power biomedical sen-
sor node applications was performed. The ambition of this exploration was to
find a communication architecture that allows power-efficient data transfer and,
furthermore, evaluate the impact of multiple accelerators deployed within a low-
power WSN processing system. The concept was evaluated based on a provided
ECG monitoring platform.

As the foundation of the design concept development, a detailed evalua-
tion of the original system-on-chip was performed. An extensive breakdown
of the system’s energy consumption for the accurate R-peak detection applica-
tion was carried out. The goal of this full-length consumption breakdown was
the determination of the amount of energy used for data transfers, within the
DMA-based communication architecture of the original system. Therefore, a
new methodology was necessary in order to allow a detailed identification of the
communication energy based on the available power estimation tools.

In order to allow a fair comparison between the original system and the
proposed architecture, the clock gating concept of the provided platform was
refined. Otherwise, the system comparison would have shown biased results,
and lead to wrong conclusions.

Based on the information gathered from the evaluation, algorithms which
where suitable for a power-efficient execution on hardware accelerators, were
identified. Furthermore, accelerators able of executing the motion artifact re-
moval as well as the feature extraction algorithms were designed. For high power
efficiencies, these processing engines were designed to process one sample per cy-
cle and, furthermore, allow application of state-of-the-art low-power techniques
like clock and power gating.

A streaming-based communication concept to enable a dataflow-oriented
architecture design was developed. Starting based on a reconfigurable unidirec-
tional data stream, the idea of the proposed communication architecture was
designed. A data path to stream the information and multiple control signals
were used to allow information transfers between the components. Furthermore,
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based on the control data of the communication channel, the execution states
of the used components could be derived and, therefore, was used by the dis-
tributed power management unit to control the component-specific low-power
features. In order to unify the communication architecture and include the
power management control logic, a generalized module standard was defined.
Using generatable, wrappers the various deployed modules connected via the
proposed communication system were used to replace the former communica-
tion system of the ECG monitoring platform.

The final dataflow-oriented architecture was implemented, synthesized, as
well as placed and routed, for a 180 nm process. Based on the physical lay-
out, the system’s power consumption was estimated. Using the resulting power
figures, the impact of the different optimizations was explored.

The deployed accelerators were able to reduce the energy consumption of
the adaptive LMS algorithm by a factor of 20, as well as the power consumption
of the CWT algorithm within a range of 12-62, depending on the application
use case. The proposed communication architecture has decreased the energy
consumption by a factor of 9.5 compared to the original architecture with the
refined clock gating concept. Although the same functionality and flexibility
was provided, the average power consumption of the total system was reduced
by 25% for the adaptive LMS use case and by 17.7% for the PCA use case.
Considering power gating, the system would be able to run the same application
while using a fourth of the energy as the provided ECG monitoring platform.

This thesis has shown that using hardware-accelerated processing architec-
tures within a low-power processing system provides a balanced energy and flex-
ibility trade-off. Computation extensive algorithms are executed on dedicated
hardware, the deployed ASIP still executes software and, therefore, offers the
necessary flexibility. Furthermore, it was shown that a reconfigurable streaming-
based communication architecture is a valid choice for ultra-low-power process-
ing systems.

7.2 Future Work

• ASIP Streaming Interface: An implementation of a specific streaming
interface, which is further integrated into the ASIP as the current adapted
memory interface, would lead to better source code readability. Further-
more the usage of custom instructions for interface handling can provide
an implementation, where the usage of the comparatively slow interrupts
is unnecessary.

• Memories: The evaluation has shown, that the data memory is the
biggest consumer within the ECGSoC. Using an appropriate memory
partition scheme can reduce the power dissipation of the system. Fur-
thermore, due to the fact that the proposed architecture necessitates less
memory space, the overall memory size can be reduced.

• Generation of the Communication Network: The reconfigurable
datapath could be generated based on an abstract configuration file. An
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extension of the implemented wrapper generator could allow an automatic
generation based on the information of the modules and the configuration
file. Furthermore, this could be integrated within the design tool-flow.

• Off-the-shelf Configuration Bus: To replace the custom configuration
bus of the proposed system, a small lightweight off-the-shelf peripheral
bus could be used. This would increase the reusability of the implemented
modules as well as the readability of the application source code executed
on the ASIP.

• Smaller Process Technology: Evaluating the proposed architecture
concept within a smaller process technology could give better insight over
the impact of the concept when the leakage consumption is dominating.
Furthermore, an implementation using a smaller technology would allow
a verification of the developed unified power-gateable module standard.
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Appendix A

Abbreviations & Symbols

A.1 List of Abbreviations

ACK . . . . . . . . . . . . Acknowledgment Signal
ADC . . . . . . . . . . . . Analog-to-Digital Converter
AFE . . . . . . . . . . . . . Analog Front-End
AHB . . . . . . . . . . . . . Advanced High performance Bus
ALU . . . . . . . . . . . . . Arithmetic-Logic-Unit
AMBA . . . . . . . . . . Advanced Microcontroller Bus Architecture
APB . . . . . . . . . . . . . Advanced Peripheral Bus
APPPS . . . . . . . . . . Advanced PrimeTime Power Report Processing Suite
ASB . . . . . . . . . . . . . Advanced System Bus
ASIC . . . . . . . . . . . . Application Specific Integrated Circuit
ASIP . . . . . . . . . . . . Application Specific Instruction-set Processors
AXI . . . . . . . . . . . . . Advanced eXtensible Interface
BAN . . . . . . . . . . . . . Body Area Network
BD . . . . . . . . . . . . . . Beat Detection
CPU . . . . . . . . . . . . . Central Processing Unit
CSD . . . . . . . . . . . . . Canonical Signed Digit
CWT . . . . . . . . . . . . Continuous Wavelet Transform
DCR . . . . . . . . . . . . Device Control Register
DMA . . . . . . . . . . . . Direct Memory Access
DMAC . . . . . . . . . . Direct Memory Access Controller
DSP . . . . . . . . . . . . . Digital Signal Processor
DTL . . . . . . . . . . . . . Device Transaction Level protocol
DVS . . . . . . . . . . . . . Dynamic Voltage Scaling
ECG . . . . . . . . . . . . . Electrocardiography
EEG . . . . . . . . . . . . . Electro-Encephalogram
EMG . . . . . . . . . . . . Electromyography
FIFO . . . . . . . . . . . . First-In, First-Out
FIR . . . . . . . . . . . . . . Finite Impulse Response
GPP . . . . . . . . . . . . . General Purpose Processor
IP . . . . . . . . . . . . . . . Intellectual Property
ISS . . . . . . . . . . . . . . Instruction-Set Simulator

89



90 APPENDIX A. ABBREVIATIONS & SYMBOLS

ITRS . . . . . . . . . . . . International Technology Roadmap for Semiconductors
LMS . . . . . . . . . . . . . Least Mean Square
MA . . . . . . . . . . . . . . Motion Artifact
NLMS . . . . . . . . . . . Normalized LMS
NoC . . . . . . . . . . . . . Network-On-Chip
OCP . . . . . . . . . . . . . Open Core Protocol
OPB . . . . . . . . . . . . . On-chip Peripheral Bus
PC . . . . . . . . . . . . . . Program Counter
PCA . . . . . . . . . . . . . Principal Component Analysis
PE . . . . . . . . . . . . . . Processing Elements
PLB . . . . . . . . . . . . . Processor Local Bus
PM . . . . . . . . . . . . . . Power Management
QPD . . . . . . . . . . . . Quasi-Peak-Detection
REQ . . . . . . . . . . . . . Request Signal
SC-Memory . . . . . . Standard Cell-Memory
SIMD . . . . . . . . . . . . Single Instruction Multiple Data
SMP . . . . . . . . . . . . . Shared Memory Multiprocessor
UDVS . . . . . . . . . . . Ultra-Dynamic Voltage Scaling
ULP . . . . . . . . . . . . . Ultra-Low-Power
VCD . . . . . . . . . . . . . Value Change Data
VCI . . . . . . . . . . . . . Virtual Component Interface
WSN . . . . . . . . . . . . Wireless Sensor Network

A.2 List of Symbols
X . . . . . . . . . . . . . . . .
Y . . . . . . . . . . . . . . . .
Ψ . . . . . . . . . . . . . . . . .

Original data set
Principal components
Orthogonal linear transformation matrix

x[k] . . . . . . . . . . . . . . .
y[k] . . . . . . . . . . . . . . .
d[k] . . . . . . . . . . . . . . .
e[k] . . . . . . . . . . . . . . .
~w[k] . . . . . . . . . . . . . .
µ . . . . . . . . . . . . . . . . .

Input signal
Output signal
Desired signal
Error signal
Coefficient vector
Step size

ψ∗(t) . . . . . . . . . . . . .
a, b . . . . . . . . . . . . . . .

Complex conjugated wavelet function
Dilation and location parameters

P . . . . . . . . . . . . . . . . .
C . . . . . . . . . . . . . . . . .
Vdd . . . . . . . . . . . . . . .

A . . . . . . . . . . . . . . . . .
fClk . . . . . . . . . . . . . .
I . . . . . . . . . . . . . . . . .

Dynamic (Pdynamic), static (Pstatic), total (Ptotal) power
Load (CL), oxide (Cox) capacitance
Supply (Vdd), threshold (VT ), Gate-Source (VGS), thermal
(Vth) voltage
Activity factor
Clock frequency
Subthreshold leakage (ISUB), gate leakage (IGATE), gate
induced drain leakage (IGIDL), reversed bias junction
leakage (IREV ) current
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Additional Information

Table B.1 shows a comparison of all system architectures which where deployed
in sensor nodes in the last decade. Table B.2 gives an overview of the perfor-
mance rations of these systems.

91



92
A

P
P

E
N

D
IX

B
.

A
D

D
IT

IO
N

A
L

IN
FO

R
M

A
T

IO
N

B.1 Comparison of Ultra Low-Power Processors for Sensor Networks

Table B.1: Architecture comparison of ultra low-power pro-
cessors for sensor networks.

System Year Architecture Low-Power Technology System Bus Power Management
H. Zhang [88] 2000 ARM8 + 21 Accelerators - two-level mash- -

2x MAC, 2x ALU ,8x Mem. structured
8x Addressgen & 1x FPGA reconfigurable

SmartDust [80] 2004 General Purpose Separated clock Multiple Busses -
(Custom)

E. Tell [76] 2005 DSP Optimised Ins. set - core-configured -
Accelerators Crossbar-switch

SNAP [15] 2005 Hardware Event Queue Asynchronous Custom Two Automatic
Two level bus

L. Nazhandali [57] 2005 General Purpose RISC Sub-threshold - -
B. Zhai [86] 2006 General Purpose Sub-threshold - -
Charm [68] 2006 General Purpose + DLL 1 Two Power - centralised

Protocol Accelerator Domains using PIF
S. Hanson [20] 2008 General Purpose Sub-threshold - -

Pipelined RISC
Phoenix [67] 2008 General Purpose Near-Threshold Asynchronous Separate

Protocol Unit
Sensium™ [83] 2008 8051 advanced architecture - DMA Based Bus -

MAC protocol block
J. Kwong [48] 2008 General Purpose Sub-threshold - -

Continued on next page
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System Year Architecture Low-Power Technology System Bus Power Management
N. Ickes [31] 2008 GP + Accelerators VDD-Gating DMA Based Bus By Hand 12

for FIR and FFT Sub-threshold Power Domains
S. C. Jocke [37] 2009 Custom PIC16C5X Sub-threshold - -
J. Kwong [47] 2010 General Purpose + DVS, VDD-Gating DMA Based Bus -

Accelerators for FIR Cock-Gating
CORDIC, FFT, MEDIAN

M. Hempstead [22] 2011 Accelerator / Event-Driven VDD-Gating Custom By Hand
S. Hsu [27] 2011 AndesCore N903 RISC Power-Gating AMBA AHB & -

WFE + MLU + Cryto 2 Dedicated Dutycycle Clock DMA Based Bus
Subthreshold

N. Ickes [32] 2011 ReISC 3 Clock-Gating Crossbar -
Sub-threshold

S. Sridhara [70] 2011 ARM Cortex M3 Sub-threshold DMA Based Bus 18 Power
FFT Accelerator Domains

A. Y. Dogan [13] 2012 8x TamaRISC Near-Threshold 2x Crossbars -
Clock-Gating Mesh-of-Trees
Mem. VDD-Gating

N. Ickes [33] 2012 TI C64x+ Core Standard Cell DMA Based Bus -
4-way VLIW Design, VDD-Gating

F. Zhang [87] 2012 DPM 4+ Accelerators Event-Based, DVS, Some parts are Custom
MCU, ECG, FIR Clock & VDD Gating DMA-Based

Sub-threshold
Accelerators

BioDSP [6] 2010 Custom ASIP with VDD-Gating FIFO Automatic
4 way SIMD Point to Point decentral

Continued on next page
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System Year Architecture Low-Power Technology System Bus Power Management
CoolBIO [29] 2011 NXP CoolFlux BSP Near-Threshold Custom By Hand

Fixed Point DSP with Voltage Domains DMA Based Bus 4 different
Complex/SIMD data-path VDD-Gating Power Modes

ECG SoC [41] 2011 DSP 4 way 32-bit SIMD + Separated Clocks DMA Based Bus -
Fir & AES-128 Accelerator Glock-gating

TI MSP 430 5 2010 General Purpose Two Clock sources Memory data 5 Low power
RISC Architecture Clock-Gating bus modes

NXP LPC 1110L 6 2011 Cortex M0 Core Clock-gating AMBA 3 Low Power
AHB-Lite modes

1DLL-Data Link Layer
2Wavelet-Extraction & Multi-Level-Compressor
3Reduced Energy Instruction Set Computer
4Digital Power Management Processor
5MSP430L092, MSP430C09x Mixed Signal Microcontroller 20 Sep 2010
632-bit ARM Cortex-M0 microcontroller with 4KB flash, 1KB SRAM 2 Nov 2011

http://www.ti.com/lit/gpn/msp430c092
http://ics.nxp.com/products/lpc1000/datasheet/lpc1110.lpc1111.lpc1112.lpc1113.lpc1114.pdf
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Table B.2: Performance ratio comparison of ultra low-power
processors for sensor networks.

System Year Process Datawidth Memory VDD [V] Clk. [Mhz] Average Energy
H. Zhang [88] 2000 250 nm 16-bit 24 kB 1 40 37.5-50 pJ/Cycle
SmartDust [80] 2004 250 nm 8-bit 3.125 kB 1 0.5 12 pJ/ins
E. Tell [76] 2005 180 nm 12-bit 17 kB - 160 275 pJ/Cycle

785.5 pJ/Cycle
SNAP [15] 2005 180 nm 16-bit 8 kB 0.6 23 24 pJ/ins
L. Nazhandali [57] 2005 130 nm - - 0.235 0.182 1.38 pJ/ins
B. Zhai [86] 2006 130 nm 8-bit 0.25 kB 0.36 0.833 2.6 pJ/ins
Charm [68] 2006 130 nm - 68 kB 1/0.3 8 96 pJ/ins

150 µW
S. Hanson [20] 2008 130 nm 8-bit 0.3125 kB 0.35 0.354 3.5 pJ/ins
Phoenix [67] 2008 180 nm 8-bit 0.41 kB 0.5 0.106 2.8 pJ/ins
Sensium™ [83] 2008 130 nm - 64.75 kB 1 1 5 pJ/Cycle

500 pJ/Cycle
J. Kwong [48] 2008 65 nm 8-bit 128 kB 0.5 0.434 27.3 pJ/ins
N. Ickes [31] 2008 90 nm 16-bit 60 kB 0.45 4 10 pJ/cycle
S. C. Jocke [37] 2009 130 nm 8-bit - 0.280 0.475 1.51 pJ/ins
J. Kwong [47] 2010 130 nm 16-bit 128 kB 0.5-1 0.1-10 25 pJ/Cycle
M. Hempstead [22] 2011 130 nm 8-bit 4 kB 0.55 12.5 0.44 pJ/ins
S. Hsu [27] 2011 90 nm 32-bit 8 kB 0.5 25 3.44 pJ/Cyc(RISC)

2.17 pJ/Cyc(Bio)
N. Ickes [32] 2011 65 nm 32-bit 16 kB 0.54 0.45 10.2 pJ/Cycle

1.2 82.5 41.7 pJ/Cycle 7

Continued on next page
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System Year Process Datawidth Memory VDD [V] Clk. [Mhz] Average Energy
S. Sridhara [70] 2011 130 nm 32-bit 32 kB 0.5 0.007 29 pJ/Cycle

1 5 114 pJ/Cycle
A. Y. Dogan [13] 2012 90 nm 16-bit 160 kB 1 - 15.6 pJ/Ops
N. Ickes [33] 2012 28 nm 32-bit 160 kB 1 587 192.5 pJ/Cycle

Cache 0.34 3.6 200 pJ/Cycle
F. Zhang [87] 2012 130 mn 8-bit 5.5 kB 0.3-1.2 - 1.5 pJ/Op @ 0.5V
BioDSP [6] 2010 90 nm 32-bit 832 Kbit 0.7 100 10 pJ/Cycle

1.2 177.2 pJ/Cycle
CoolBIO [29] 2011 90 nm 24-bit 2 Mbit 0.4 1 12.8 pJ/Cycle

1.2 100 145 pJ/Cycle
ECG SoC [41] 2011 180 nm 32-bit 41 kB 1.2 1 ≈ 15 pJ/Cycle 8

≈ 60 pJ/Cycle
TI MSP 430 9 2010 - 16-bit 4 kB 1.5/0.9 1 53 pJ/Cycle

2.8 µW
NXP LPC 1110L 10 2011 180 nm? 32-bit 5 kB 3.3 12 550 pJ/Cycle

726 nW

1Cache disabled
2Only the digital part of the total consumption
3MSP430L092, MSP430C09x Mixed Signal Microcontroller 20 Sep 2010
432-bit ARM Cortex-M0 microcontroller with 4KB flash, 1KB SRAM 2 Nov 2011

http://www.ti.com/lit/gpn/msp430c092
http://ics.nxp.com/products/lpc1000/datasheet/lpc1110.lpc1111.lpc1112.lpc1113.lpc1114.pdf
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