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Abstract

Zoologists are interested in the rapid movements of giant honeybees. Especially the movement

of all single bees during the defense behavior is of interest. Currently they are only able to

measure the movement of a single bee using a laser vibrometer. A single measurement dose

not provide any information on speed, intensity and the starting point of a wave. They are

interested in a sensor that enables a 3D reconstruction of the individuals while performing a

defense wave. In order to solve this problem, a vision based measurement system is proposed.

A portable stereo setup using two high resolution cameras with high frame rates is designed

in this thesis to acquire the image sequences of the defense wave in an outdoor environment.

The functionality of the acquisition setup has also been proven at an expedition to Nepal.

Additionally, a framework to segment and reconstruct the single bees is presented. For the

segmentation three different methods are proposed and evaluated. The correspondence prob-

lem is faced using reduced graph cuts to get accurate matches in the presence of repetitive

patterns. The evaluation has been done by comparison to manually labeled data.

Keywords: stereo reconstruction, NCC, reduced graph cuts, maximum flow, correspon-

dence problem, MSER, shape prior segmentation, rigid body, giant honeybees, apis dorsata,

shimering, defense waving
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Kurzfassung

Zoologen wollen das Abwehrverhalten der Riesenhonigbienen untersuchen. Dabei soll das

Bewegungsmuster der einzelnen Bienen während einer Verteidigungswelle analysiert werden.

Derzeit ist es nur möglich die Bewegung einer Biene mittels eines Laservibrometers zu messen.

Aus einer Einzelmessung ist jedoch keine Aussage über die Geschwindigkeit, die Intensität und

den Startpunkt möglich. Daher ist man an einem Aufnahmesystem interessiert, das eine 3D

Rekonstruktion der einzelnen Bienen während der Verteidigungswelle liefert. Um diese Auf-

gabe zu lösen, wird ein Vision basiertes Messsystem vorgestellt. Zur Aufnahme der Verteidi-

gungswellen im Freien wurde ein portables Stereo-System entwickelt, das zwei hochauflösende

Kameras mit hoher Bildwiederholrate besitzt. Die Funktionalität des Aufnahmesystems wur-

de bei einer Nepal Expedition gezeigt. Zusätzlich wird ein Softwarepaket zur Segmentation

und Rekonstruktion der Einzelbienen vorgestellt. Für die Segmentierung werden drei ver-

schiedene Methoden präsentiert und evaluiert. Zum Auffinden von Korrespondenzen wird ein

reduzierter Graph eingesetzt, dessen Verhalten mittels manuell annotierten Korrespondenzen

überprüft wird.

Stichwörter: Stereorekonstruktion, normalisierte Kreuzkorrelation, Graphentheorie, maxi-

maler Fluss, Korrespondenzen, MSER, Rigide Körper, Riesenhonigbienen, apis dorsata, Ver-

teidigungswellen
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Introduction
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1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

This thesis proposes a hardware setup for acquiring image sequences in outdoor environ-

ments and a framework to reconstruct the three-dimensional structure of the defense waving

of giant honeybees for motion analysis.

1.1 Motivation

Giant honeybees (lat. apis dorsata) belong to the species of honeybees and live in the mainly

forested areas of southern and southeastern Asia like Nepal. The subspecies apis dorsata

dorsata that was observed in this project has the second largest individuals among all hon-

eybees. The typical worker bees are about 17 to 20mm long. A colony of giant honeybees

consists of up to 100,000 individuals that live in an open-nest. This means that the nest is

made up of a single comb with a dimension of up to two meters in horizontal span and about

one meter in vertical span. The nests are usually built in exposed places far off the ground.

These places are for example overhanging cliffs, trees or buildings (see Figure 1.1). The adult

bees cover the comb in multiple layers. This covering is done loosely fixed to the comb and

in literature it is terminated as bee curtain. The bee curtain is parted in two regions. One

shows locomotion and the bees there are responsible for food, water and the larvae. The

other one shows almost no locomotion. There the bees are mostly uniformly oriented with

the heads up. They form the integument that is responsible for nest climate, humidity and for

protection against wind, rain and sun. Additionally to these functions they can be recruited

for defense purpose. Giant honeybees have several methods of defense including an organized

mass attack where hundreds of bees attack the intruder and the defense waving also called

shimmering behavior. It can be described as social waves that slide over the bee curtain at a

speed of about one meter per second. The waves are generated by coordinated rising of the

1
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(a) A colony at a so called bee-tree. (b) Colonies at a water tower.

(c) Colony at a building.

Figure 1.1: Places used by giant honeybees to build their nests.

abdomen of neighboring bees and can be observed as dark waves on a video (see Figure 1.2).

The reasons for defense waving are wasps, birds or honey buzzards that approach the nest.

[Kas], [Wik].

Figure 1.2: Bee cluster performing a wave by synchronized rising of their abdomen. The
frames were captured with a rate of 12fps.

From the viewpoint of zoologists research on the global structure of the nest are quite
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interesting. These are:

� measurements of the mesh width,

� the movement of the wave in space,

� the speed in the different directions and

� the participation of second layer bees that are bees under the surface of the curtain.

Additionally they are looking for the number of active and passive bees. Active bees are

those that rise their abdomen to generate the wave. Also the age of the participating bees

is of interest and can be obtained from the coloring of the abdomen. Technically to be able

to solve these requirements a segmentation of the single bees and a three-dimensional (3D)

reconstruction of the bee curtain structure is required. Having the segmentation of the bees

the age determination is possible by analyzing the coloring of the abdomen. Also the number

of single bees is solved by the number of segmented regions. Having a 3D reconstruction of

the bees over time the movement of the bees can be evaluated. This evaluation includes the

participation of second layer bees that can be observed by global movements of the curtain.

Further, the mesh width can be calculated having the 3D reconstruction.

The challenge to be able to generate the 3D reconstruction are the field of view defined by

the dimensions of the curtain, the speed the waves are sliding on the curtain and the fact that

the bees can only be observed in a passive way. An active observation would disturb the bees

and force a defense attack. So stereo reconstruction is a suitable method. Reasons are the

field of view that can be observed with stereo cameras, the one shot principle that enables the

treatment of the wave speed and the passiveness of the stereo setup. It only monitors the bees

without any extra illumination or pattern projections. The challenge for the construction of

such a stereo setup are the environmental conditions, the location of the nests, speed and the

occurrence of repetitive patterns. A stereo setup satisfying these requirements is constructed

and evaluated in this master’s thesis. Further, a method to reconstruct the bees has been

developed and evaluated.

1.2 Overview

The master’s thesis is structured as follows. In Chapter 2 an overview of the related work is

given containing methods used to track insects, followed by segmentation methods for rigid

objects and stereo reconstruction methods focused on finding correspondences. Chapter 3

describes the problem of data acquisition which contains the sensor design and calibration.

Possible methods to segment the bees are summarized in Chapter 4. There the focus is on

maximally stable extremal regions, shape prior segmentation and template matching. Chapter

5 deals with stereo reconstruction and can be parted in stereo matching using reduced graph

cuts and triangulation. The theoretical part is followed by experiments and evaluations of

the methods in Chapter 6 and discussion and outlook in Chapter 7.





Chapter 2

Related Work

Contents

2.1 Tracking of Insects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Segmentation of Rigid Objects . . . . . . . . . . . . . . . . . . . . 6

2.3 Stereo Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 8

The focus of this thesis lies on the 3D reconstruction of the defense waving of giant honeybees.

To perform the reconstruction the bees have to be segmented, matched and triangulated. First

methods dealing with tracking of insects are summarized in Section 2.1. Then a selection of

segmentation methods for rigid objects is provided in Section 2.2. Followed in Section 2.3

with a selection of stereo reconstruction methods.

2.1 Tracking of Insects

As this thesis leads to track the single bees performing defense waves previous papers dealing

with tracking of insects are of interest.

Veeraraghavan et al. [VCS08] presented a shape and behavior encoded tracking framework

to track and simultaneously analyze the movement of a bee. With this framework it is possible

to analyze complex behaviors that are modeled using a three-tier hierarchical motion model.

The first tier models the local motions and they act as a vocabulary for behavior modeling.

This behavior is modeled in the second tier by a Markov motion model. The third tier

models the switching between single behavior using a Markov model. Figure 2.1 shows a bee

performing a waggle dance and the according behavioral model.

Maitra et al. [MSS09] extended the framework of [VCS08] and created a robust bee

tracker with adaptive appearance template and geometry constrained resampling. They use

static and adaptive appearance templates. The static appearance template is responsible to

prevent from mis-tracking and the adaptive one handles appearance changes. Further, they

5
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3.3 Mixture Markov Models for Behavior

Mixture models have been proposed and used successfully
for tracking [25], [26]. Here, we advocate the use of Markovian
mixture models in order to enable persistent tracking and
behavior analysis. First, basic motions are modeled, creating a
vocabulary of local motions. These basic motions are then
regarded as states, and behaviors are modeled as being
Markovian on this motion state space. Once each specific
behavior has been modeled as a Markov process, our tracking
system can simultaneously track the position and the
behavior of insects in videos.

We model the pdf’s of location parameters X for certain
basic motions ðm1�m4Þ. We model four different motions:

1. moving straight ahead,
2. turning,
3. waggling, and
4. motionless.

The basic motions moving straight, waggling, and motionless
are modeled using Gaussian pdf’s ðpm1; pm3; pm4Þ whereas a
mixture of two Gaussians ðpm2Þ is used for modeling the
turning motion (to accommodate the two possible turning
directions):

pmiðXt=Xt�1Þ ¼ NðXt�1 þ ~�mi;�miÞ; for i ¼ 1; 3; 4; ð1Þ

pm2ðXt=Xt�1Þ ¼ 0:5NðXt�1 þ ~�m2;�m2Þ
þ 0:5NðXt�1 � ~�m2;�m2Þ:

ð2Þ

Each behavior Bi is now modeled as a Markov process of
order Ki on these motions, that is,

st ¼
XKi

k¼1

Ak
Bi

st�k; ð3Þ

where st is a vector whose jth element is P ðmotion state ¼
mjÞ, and Ki is the model order for the ith behavior Bi. The
parameters of each behavior model are made of autoregres-
sive parameters Ak

Bi
for k ¼ 1 . . .Ki. We discuss methods for

learning the parameters of the behavior model later.
We have modeled three different behaviors: the waggle

dance, the round dance, and a stationary bee using a first-
order Markov model. For illustration, we discuss the
manner in which the waggle dance is modeled. Fig. 3

shows the trajectory followed by a bee during a single run
of the waggle dance. It also shows some followers who
follow the dancer but do not waggle. A typical Markov
model for the waggle dance is also shown in Fig. 3.

The trajectory of the bee can now be viewed as a realization
from a random process following a mixture of behaviors. In
addition, we assume that the behavior exhibited by the bee
changes in a Markovian manner, that is,

Bt ¼ TBBt�1; ð4Þ

where TB is the transition probability matrix between
behaviors. Note that TB has a dominant diagonal. Estimating
the trajectory and the specific behavior exhibited by the bee at
any instant is then a state inference problem. This can be
solved using one of the several techniques for estimating the
state, given the observations.

Thus, the model consists of a three-tier hierarchy. At the
first level, the dynamics of local motions are characterized.
These act as a vocabulary enabling the behavior researcher to
easily interact with the system in order to add new behaviors
and analyze the output of the tracking algorithm without
being bogged down by the particulars of the data capture.
Behaviors that the bees exhibit are modeled as Markovian on
the space of local motions forming the second tier of the
hierarchy. Finally, switching between behaviors is modeled
as a diagonal dominant Markov model, completing the
model. The first two tiers of the hierarchy, dynamics and
behavior, may be collapsed into a single tier. However, this
would be disadvantageous, since it would 1) couple the
specifics of data capture with the behavior models and 2) also
make it significantly more difficult for the behavior research-
er (user) to efficiently interact with the system.

3.4 Limitations and Implications of the Choice of
Behavior Model

As described above, the choice of Markov model on a
vocabulary of a set of low-level motions was motivated
primarily from two design considerations: 1) ease of use for
the user and 2) generality of the model, allowing the tracking
algorithm to be robust to initialization parameters. However,
this choice also leads to certain limitations. For one, it might
indeed be possible to collapse the entire three-tier hierarchy
of motion modeling into one large set of motion models, all at
the dynamics stage. However, such a model would suffer
from significant disadvantages, since the number of required
parameters would significantly increase. Moreover, each new
behavior must be modeled from scratch, whereas if we
maintained the hierarchy, then the vocabulary of local
motions learned at the lower tiers of the hierarchy can be
used to simplify the learning problem for new behaviors. Fine
et al. [27] provide a detailed characterization of the limitations
and expressive power of such hierarchical Markov models,
whereas Koutsoukos and Antsaklis [28] describe a methodol-
ogy to analyze such linear hybrid dynamical systems. The
hierarchical model also assumes that the various tiers of the
hierarchy are semi-independent and that the particular
current motion state does not have a direct influence on the
behavior in subsequent frames. This would not necessarily be
true, since particular behaviors might have specific end
patterns of motion. In the future, we would like to study how
one might introduce such state-based transition character-
istics into the behavior model while retaining both the
hierarchical nature of the model itself and keeping complex-
ity of the model manageable.
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Fig. 3. A bee performing a waggle dance and the behavioral model for

the waggle dance.
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Figure 2.1: A bee performing a waggle dance and the behavioral model for the waggle dance
[VCS08].

added to the resampling step of the particle filter a constraint to the geometry to improve the

prediction of unreliable parameters of head and thorax orientations. Their benefit is a more

stable tracking as shown in Figure 2.2. There they compare the method of [VCS08] (top row)

with their own one (bottom row).

Figure 8. Comparison of the PF-Gaussian (top row) and our proposed method (bottom row). Note the improvement in tracking under
appearance change (3rd column) and the unreliable head feature (5th column). Then the error quickly accumulates.

position error (pixels) orientation error (degrees)
head (x) head (y) average head (θh) thorax (θt) abdomen (θa) average

PF-Gaussian 36.6 33.6 35.1 41.7 39.2 37.8 39.6
Proposed 6.1 11.3 8.7 20.2 15.7 13.4 16.5
improvement 83.3% 66.2% 75.1% 51.6% 59.9% 64.4% 58.4%

Table 2. Evaluation against the ground truth of 20 bees in 200 frames.

and static with dynamically adaptive appearance templates.
Addition of the dynamically adaptive template significantly
reduced the spatial error and adding the geometry-constraint
significantly reduced the orientation error. The overall per-
formace of our method is the best when both the position
and angle errors are evaluated.

7. Conclusions and Future Work

We have proposed a new method for tracking bees to
handle changing appearance and unreliable features by us-
ing both global and adaptive appearance templates and re-
sampling particles with geometry constraint. The results
show the improvement in tracking accuracy particularly as
the time progresses. Although the improvement is notice-
able (Figures 9 and 10), there still is a general trend in in-
crease of error over time; which would be the basis of our
future work.
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In general biologists use image processing and analysis software as Image Pro [Med],

Optimas [IG] or ImageJ [oH] to extract visual information of the acquired image.

2.2 Segmentation of Rigid Objects

In computer vision segmentation is a widely discussed topic and so there exist numerous

different methods. A summary of all segmentation methods would go beyond the scope of

this thesis. Here, methods suitable for the input data as shown in Figure 2.3 are discussed.
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Figure 2.3: Cutout of a giant honeybee nest.

These are maximally stable extremal regions (MSER), shape prior segmentation (SPSeg) and

normalized cross correlation (NCC). The motivation of taking MSERs is the dark regions

that represent the abdomen of the bees. The fact that the abdomen of the bees are almost

the same shape leads to the selection of shape priors to get an accurate segmentation of

the abdomen’s boundary. Finally taking the pattern of a bee into account the bees can be

segmented using an image patch and calculating the correlation. So NCC is selected because

of its invariance to illumination.

An introduction to image segmentation can be found in Gonzalez et al. [GW02]. There

the detection of discontinuities, thresholding, region-based segmentation, segmentation by

morphological watersheds and using motion in segmentation are described. Further, Sonka

et al. [SHB99a] gives an overview of segmentation methods.

Maximally Stable Extremal Regions (MSER) are introduced by Matas et al. [MCUP02].

They show that this regions are closed under continuous transformation of image coordinates

and that this regions are closed under monotonic transformation of image intensities. So

MSERs can be used for wide baseline stereo as demonstrated in their experimental section.

Donoser et al. [DB06] show that using a component tree it is possible to calculate MSERs

in quasi-linear time. Further, they show that using MSER tracking it is possible to improve

the detection of single MSERs by a factor of 4 to 10. The tracking stability is also improved by

weighted features and by using backward tracking that is possible under the use of component

trees. So a novel MSER tracking algorithm is formulated by them.

In [Ved07] by Vedaldi an implementation of multi-dimensional MSER is presented that

can be used for tracking in video sequences by directly extracting the 3D region from a stack

of frames.

Werlberger et al. [WPUB09] present a variational model for interactive shape prior seg-

mentation. Starting with a manually adjusted position of the object they perform a local

optimization routine by transforming the shape prior. Therefor the variational formulation of

the Geodesic Active Contour energy is used and minimization is done with a fast primal-dual
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approach. The framework they present performs a local optimization of the shape prior to get

a accurate segmentation of the object. This approach can also be used for tracking objects in

videos or segment multiple objects with a single shape prior as it can be seen in Figure 2.4.

Fig. 9. Segmentation of bottles with a single shape prior

approach we can handle very different images and gain robust segmentation
results. Especially the segmentation for difficult data like the low-contrast spline
image benefits from the additional shape information. A great advantage of
variational methods like this are the parallelization capability that especially
profits by the modern graphics hardware that are able to boost the performance
of such highly parallel algorithms.
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Figure 2.4: Segmentation of bottles with a single shape prior [WPUB09]

Matching is another method to segment a known object in an image. Using a criterion of

optimality the best match can be figured out. Matching is often based on directly comparing

gray-level properties as criterion. Further, correlations up to complex approaches of graph

matching can be used. [SHB99b] So normalized cross correlation can be used as optimality

criterion.

Lewis [Lew95] shows a method to efficiently calculate normalized cross correlation by

using precomputed integral image and image2 over the search window. The normalized cross

correlation is obtained from transform domain convolution and provides a speedup of an order

of magnitude compared to spatial domain computation.

2.3 Stereo Reconstruction

Before a reconstruction can be calculated using triangulation the problem of correspondences

has to be solved. This is a very extensively studied problem in computer vision and can be

solved in many different ways.

A detailed evaluation of dense two-frame stereo correspondence algorithms can be found

in Scharstein et al. [SS01].

To find corresponding bees in the stereo frames of the giant honeybee nest the algorithm

has to deal with repetitive patterns. Methods that deal with about the same problem are

mentioned.

Du et al. [DZC07] developed a method to reconstruct 3D scenes made up of large numbers

of dynamic particles that have to be track able. They call their approach Relative Epipolar
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Motion (REM) and solve the problem of correspondences in stereopsis by utilizing the motion

clue. They are matching feature trajectories instead of the features themselves and so they are

able to reconstruct dynamic 3D scenes of large number of indistinguishable drifting particles

and are able to establish correspondences for dynamic surfaces made up of repetitive textures.

They also offer a method to project structured light in active mode for deforming surface

reconstruction.

Zhang et al. [ZCS03] extends the binocular stereo problem into the space-time domain

using active illumination. They reduce the ambiguity and increase the accuracy by utilizing

both spatial and temporal appearance variation. This is done by simultaneously matching

intensities in multiple frames by minimizing a sum of SSD (SSSD). Their framework serves

as general structured light framework, can handle natural scenes with repetitive textures and

chaotic behaviors, such as waving trees and flowing water and it handles over time moving

and deforming objects too.

Kamiya and Kanazawa [KK08] created a method to match scenes with repetitive patterns

as buildings or walls. The matching is done in two phases. The first phase deals with the

repetitive patterns. There they detect the elements of repetitive patterns and divide them

into regions whose correspondences are coarsely estimated by RANSAC. Afterwards features

in the repetitive regions are matched using the obtained rough correspondences. The second

phase consists of the matching in the remained regions by feature matching using the epipolar

constraint calculated out of the point matches of the repetitive pattern regions. Results of

their method can be seen in Figure 2.5.

Figure 2.5: Real image example taken from [KK08]. (a) Original images. (b) Result. (c)
Region grouping results. (d) Obtained matches from repetitive pattern regions.

As described by Matas et al. [MCUP02] it is possible to use MSER as a feature for robust
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wide baseline stereo. To get an accurate estimation of the epipolar geometry of the scene, first

the detected MSERs are robustly matched by voting, followed by tentative correspondences

using correlation. First, a coarse approximation of the epipolar geometry is calculated by

the centers of gravity of distinctive regions. These regions have a higher correspondence at

their affine normalized image patch than a threshold. The final accurate estimation of the

epipolar geometry is robustly calculated with the centers of the convex hulls of the distinctive

regions that were inliers of the rough estimation. The resulting epipolar geometry is depicted

in Figure 2.6.

Figure 2: VALBONNE: Estimated epipolar geometry and points associated to the matched regions
are shown in the first row. Cutouts in the second row show matched bricks.

number of: MSER - MSER + TC
Bookshelf 511 × 908 349 × 488 85
Valbonne 906 × 1012 761 × 950 49

Wash 1026 × 714 542 × 448 171
Kampa 1015 × 914 659 × 652 303

Cyl. Box 1043 × 627 788 × 39 63
Shout 298 × 348 80 × 93 151

Table 2: Number of DRs detected in images. The number
of tentative correspondences is given in the TC column.

image since the rest of the scene
is not visible in the second view.
Different resolution of detected
features is evident in the close-up.
Valbonne, (Fig. 2). This outdoor
scene has been analysed in the lit-
erature [10, 9]. Repetitive patterns
such as bricks are present. The
part of the scene visible in both
views covers a small fraction of
the image.
Wash, (Fig. 3). Results on this image set have been presented in [16]. The camera un-
dergoes significant translation and rotation. The ordering constraint is notably violated,
objects appear on different backgrounds.
Kampa, (Fig. 4), is an example of an urban outdoor scene. A relatively large fraction of
the images is covered by changing sky. Repeating windows made matching difficult.
Cylindrical Box, (Fig. 5, top and bottom left), shows a metal box on a textured floor.
The regions matched on the box demonstrate performance on a non-planar surface. A
significant change of illumination and a strong specular reflection is present in the second
image that was taken with a flash (this strongly decreases the number of MSER +).
Shout, (Fig. 5, bottom right). This scene has been used in [16]. Since the spectral power
distribution of the illumination and the position of light sources is significantly different,
we included the test to demonstrate performance in variable illumination conditions.

Results are summarized in Tables 2 and 3. Table 2 shows the number of detected DRs
in the left × right images for both types of the DRs (MSER- and MSER+). The number
of tentative correspondences is given in the last column of Table 2. Table 3 shows the

390

Figure 2.6: VALBONNE: Estimated epipolar geometry and points associated to the matched
regions. The image is taken from [MCUP02].

The correspondance problem can also be solved using graph cuts. There, many different

versions of energy functions exist that are minimized to get a global minimum or at least an

approximation by a strong local one. Such energy functions and the algorithms to solve the

minimization are as follows.

Boykov et al. [BVZ99] formulated two algorithms based on graph cuts to efficiently

approximate the global minimization of energies which is NP-hard. They introduced two large

moves, namely expansion moves and swap moves to find a local minimum. The advantage of

these moves compared to many standard algorithms are the opportunity to change arbitrary

large sets of pixels simultaneously. They show that the expansion algorithm finds a labeling

within a known factor of the global minimum and the swap algorithm is capable to handle

more general energies.

In [KZ01a] and [KZ01b] Kolmogorov and Zabih present an algorithm that properly deals

with occlusion while computing visual correspondences. The algorithm is based on the ex-

pansion move algorithm of [BVZ99] and satisfies the uniqueness constraint. A pixel in one

image should correspond to at most one pixel in the other image and pixels corresponding to
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no other pixels should be labeled as occluded. The algorithm finds a strong local minimum

of an energy function and pixels that violate uniqueness are punished with an infinite energy.

They gained promising results as it can be seen in Figure 2.7.

(a) Left image (b) Right image

(c) Horizontal motion (method
[KZ01a])

(d) Horizontal motion (method
[BVZ99])

Figure 2.7: Stereo results on the SRI tree sequence [KZ01b]. Occluded pixels are shown in
red.

Kim et al. [KKZ03] extended the visual correspondence problem using graph cut by adding

mutual information to the energy function. Their method does not suffer from the problem

of fixed windows, namely poor performance in low textured areas and at discontinuities. It

combines the tolerance for intensity changes that comes from the mutual information with

the graph cut based energy minimization that preserves discontinuities and handle regions

with low texture. The results of their algorithm are comparable to other energy minimizing

approaches and outperforms standard correlation-based methods.
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Hong and Chen [HC04] formulate the stereo matching problem as an energy minimization

problem in the segment domain instead of the pixel domain. Using graph cuts the correspond-

ing disparity planes for the segments will be estimated. They segmented the input images

by color. Their method gains performance in textureless regions, disparity discontinuous

boundaries and occluded portions. Further, the disparity map is modeled as segmentations

and plain models and so it is much compact. But the algorithm can not handle disparity

boundaries appearing inside the initial color segments.

Zureiki et al. [ZDC07] present a graph cut based method of finding stereo correspondences

using only potential values in the disparity range. This leads to a reduced graph and gives

the ability to make the disparity range wider. The values for the graph can be found by local

analysis of stereo matching using local similarity measurements like SAD. So the algorithm

sensibly ameliorates the quality of the disparity image resulting from only local methods and

avoids the combinatorial explosion of graph cuts.
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The aim of the complete measurement process is to get the 3D reconstructions of the

movements of the single bees that are placed in the non locomotion area of the bee curtain.

Focus lies on the movements during defense waves and there especially on the z-movement

(towards the cameras). So the positions of all bees should be measured in 3D at the same

time. This measurement should be repeated at a frame rate of 40fps to be able to reconstruct

the defense wave over time.

Difficulties arise from the location the giant honeybees build their nests. These are at

exposed positions far off the ground as shown in Figure 1.1. Further, the size of an individual

compared to the nest is quite small. Next the rapid sliding of the waves over the nest and

the even faster flipping of the abdomen put high demands to the frame rate of the capturing

device.

Possible non contact optical shape measurement approaches are summarized in Figure

3.1.

A possible acquisition setup to deal with the difficulties just presented is a passive stereo

setup as presented in Section 3.1 and 3.2.

The selection of a stereo setup and not structured light or any laser scanning method is

motivated by the passive way of the image acquisition. Taking a structured light setup it is

required to project patterns onto the nest and a multi shot variant has to be considered for

accurate results. This variant requires a still observation object that is contradictory to the

13
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INTRODUCTION 3

Figure 1.1: An overview of non contact optical shape measurement approaches.
Indicated in yellow (central pane, bottom left) are the two main techniques used
by our structured light range scanner.

active system always is designed for a specific family of scales, as the intensity
of the illumination source should be matched. This is one of the big advantages
of passive techniques: they are completely scale independent as long as the
baseline between the cameras can be adapted.

“Other techniques” is used to refer to all remaining approaches. Especially
’shape from shading’ in which geometry is derived based on the radiomet-
ric reflectance model and a surface reflectance assumption is well studied (see
e.g. [SM97, ZTCS94]), and is sometimes used as a complementary technique
(see e.g. [CTS92]).

Why actually focus on optical techniques anyway? Intuitively it seems ac-
ceptable that the accuracy of a non contact measurement technique is inversely
related to the wavelengths which are used. This indeed is a fact, and can be
illustrated by comparing measurement accuracies of sonar, radar, optical sys-
tems and X-ray techniques. All of these techniques, with their very specific
characteristics, have proven to be useful within their own application domain.
However, for the accurate digitization of objects and environments of a size
encountered in our daily lives, the measurement range provided by optical
techniques is without doubt the most suited. Moreover, cameras sensitive for
UV and IR are more expensive, in case of UV this holds even more than IR.
IR camera’s also tend to yield rather noisy images.

Note that 3D acquisition in this work refers to techniques for ’surface dig-
itization’ and not to ’volumetric 3D acquisition’ as is the case in e.g. medical
CT-scans. Only the object’s outer surface is measured (surfels), and not its
internal structure (voxels).

Finally it can be useful to make a difference between 3D acquisition as a

Figure 3.1: Possible non contact optical shape measurement approaches [Kon05]

rapid moving waves that should be observed. Further, by projecting patterns onto the nest

the bees will be disturbed in their daily routine and the observation results will be useless.

Also a laser scanning method is not able to measure the distances to the single bees at a time

and so it is unusable for this acquisition scenario too. A time of flight camera does not have

the required resolution to measure each bee. Further, it does not have the required accuracy

and the active illumination would disturb the bees.

The sensor design, sensor geometry and the sensor calibration will be described in the

following sections of this chapter.

3.1 Sensor Design

The following restrictions govern the design of a suitable stereo setup:

� The bee cluster has a size of about 700×700×100mm3 (height × width × depth), that

should be in the measurement range.

� The cameras cannot be mounted arbitrarily close to the bee cluster because the bees

will be disturbed by the setup and will attack the intruder. A clearance distance of two

meters has to be maintained.

� The size of a single giant honeybee is about 20mm × 6mm (length × diameter). In a

single image the diameter of a bee should be at least 10px.

� The reconstruction error in z-direction should not exceed one millimeter.

� An abdomen flip of a bee lasts for about 0.2s and should be resolved with 10 frames.

� The recorded sequence should contain at least one wave that requires about one second

to slide over the nest, because it is not possible to predict the start of a wave a longer

recording time is required.
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� The cameras have to be triggered synchronously.

� The stereo setup has to be placed outdoors, so it has to be portable, flexible and stand

outside influences as dust.

� Further, because of the outdoor environment the setup has to be self powered and should

be able to operate for one working day.

For capturing the images 4Mpx cameras were selected. The cameras have a resolution of

2352×1728px. According to the constraints 700mm will fit to 1728px one pixel will represent

roughly 0.405mm in real world. Because of this a bee with a diameter of 6mm will be

represented by about 15px. To resolve an abdomen flip with 10 frames a frame rate of at

least 50fps has to be satisfied. The cameras used are able to capture 60fps and so resolve an

abdomen flip with 12 frames. Two cameras at a frame rate of 60fps result in a data stream of

480MB/s that has to be stored. So, because a usual hard disc can not cope with such a data

stream, the captured image sequence is buffered to RAM and is later written to disc. This

leads to RAM constraining the capture time. A total of 8GB of RAM results in an acquisition

time of 15s that is capable to capture several waves at a time. To achieve synchronization the

cameras are interconnected as a master-slave system. This means that the frame grabber card

of one camera acts as the master and generates a trigger signal that externally triggers the

second frame grabber. To have a flexible and portable setup the cameras have been mounted

on an aluminum rig. This rig enables a positioning of the cameras at different baselines b

with variable camera angles α. The calculation of the baseline and camera angle required for

the asked measurement accuracy in z-direction will be described in Section 3.2. Finally the

setup has to be self powered. This is solved by a 12V PC power supply and a car battery of

100Ah. So an operation time of seven hours can be reached. Figure 3.2 shows the resulting

stereo setup mounted at the place of action even to the second floor’s ceiling.

3.2 Sensor Geometry

Referring to the geometric constraints a baseline b can be calculated as follows:

b = 2 ∗ d ∗ tan
(α

2

)
(3.1)

where b is the baseline, d the distance of the setup to the bee cluster and α the angle enclosed

by the cameras. Figure 3.3 shows the geometric interrelationship of (3.1).

To be able to select the appropriate object lenses the focal length f can be calculated as:

f =
wd ∗ sizeimg

sizeobj + sizeimg
(3.2)

where wd denotes the working distance, sizeobj the dimension of the object and sizeimg the

size of the image, that is calculated as:

sizeimg = sizepx ∗ numPixels (3.3)
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Figure 3.2: The stereo setup placed in front of a bee colony even to the second floor ceiling.

Bee Cluster

b

Camera 2Camera 1

d

α

Figure 3.3: Geometric interrelationship for calculating the baseline b as formulated in (3.1).
d represents the working distance and α represents the stereo angle.
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where sizepx represents the dimension of a pixel on the camera chip and numPixels the

amount of pixels. Figure 3.4 illustrates the required distances.

wd f

s
iz

e
o

b
j

s
iz

e
im

g

Figure 3.4: Schematic of the required distances for the calculation of the back focal distance
f as formulated in (3.2). Where wd represents the working distance, sizeimg the size of the
image and sizeobj the size of the object to display.

The accuracy ez can be estimated under the assumption of affine cameras as:

ez = epx ∗m/sin(
α

2
)

where epx is the expected pixel error of segmentation α the stereo angle and m the relation

of field of view to the number of pixels. To satisfy the required accuracy α has to be at least

23.37◦. With the choice of α = 30◦ an accuracy of 0.78mm can be reached.

3.3 Sensor Calibration

To be able to get a proper reconstruction the sensor has to be calibrated. The parameters

that result from the calibration process are the intrinsic camera parameters for each camera,

the radial distortion parameters κ1 and κ2 of the optics and the extrinsic parameters. The

intrinsic camera matrix K is composed as:

K =

f s px
0 f py
0 0 1


where f denotes the focus, s the skew and (px py)T the principal point. The extrinsic param-

eters describe the transformation between the two camera centers as depicted in Figure 3.5
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using a rotation and an translation.

R t

Figure 3.5: Illustration of the pose description of the second camera relative to the first one
by a rotation and translation.

The resulting calibrated camera are composed of as:

P1 = K1[I|0]

P2 = K2[I|0][R|t]

where Ki denotes the calibration matrix for camera i and R and t are the rotation and

translation estimated by the stereo calibration.

The method used for calibration follows the flexible camera calibration by Zhang [Zha99].

There few images of a planar target under different orientations are captured. After the feature

point detection in the images the five intrinsic parameters and all the extrinsic parameters are

estimated by solving a nonlinear minimization problem. Further, with a linear least-squares

solution the coefficients of the radial distortion will be estimated and by minimization all

parameters are refined. A detailed description of the method can be found in [Zha99]. Further,

all parameters are refined by using a bundle adjust and optimizing the motion and structure.

The reason for using the method by Zhang [Zha99] and not a photogrammetric calibration

method is that the calibration is required on place. Using a photogrammetric calibration a

precise 3D calibration object is required and its operation in outdoor environments won’t be

easy compared to the simple and robust planar target used by Zhang.

3.4 Summary and Conclusion

In this chapter the design of the acquisition setup has been considered. It emerges that a

stereo setup is suitable to capture the defense waves of the giant honeybees. The reasons

are the passive way the images are captured and the field of view that is captured at a

high resolution. Further, the required frame rate of 50fps is achieved by the cameras. The

setup consists of two 4Mpx cameras that are mounted on a stand. Because the setup is used

outdoors it is self powered by a rechargeable battery. To be flexible to the environmental

constraints the cameras are adjustable in orientation and distance to each other.

The experiments of Section 6.1 show that a 100Ah battery powers the acquisition setup

for one working day. Further, the required synchronization of the cameras is solved by a
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master-slave triggering.

The geometry of the sensor is constrained by the clearance distance, the reconstruction

accuracy and the required field of view. To gain a reconstruction error less than one millimeter

a camera angle of 30◦ has to be chosen. The according baseline results in 1600mm under

satisfying the clearance distance.

To be able to perform reconstructions using the stereo images the setup has been calibrated

in-site. This was done by the calibration method introduced by Zhang [Zha99] followed by a

bundle adjust to refine structure and motion.

Concluding this acquisition setup satisfies the requirements listed in Section 3.1 and during

the experiments in Nepal the adjustments to the environment were possible. Just the stability

could be improved because slight deformations occurred while positioning the setup in front

of the bee curtain. But this results of the tradeoff of being light weighted. For the further

processing of the data these deformations were corrected by bundle adjust. The selection of

the bee colony has to be chosen with intent on the illumination. A bright nest was beneficial

to have short exposure times and so more sharp images. All together the acquisition setup

captured high quality image sequences and stood the influences of dust in Nepal.
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Figure 4.1: Giant honeybee nest as captured using the camera setup presented in Chapter 3.

This chapter deals with the segmentation of individual giant honeybees in rectified stereo

21
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images captured with the setup presented in Chapter 3. The aim is to segment the bees and

determine their positions, orientations and lengths. Problems arise in separating the bees

because they cover the comb in multiple layers and overlap each other. The heads and the

thoraxes only contrast weakly from the background and the semi-transparent wings cover

parts of neighboring bees. During a defense wave the wings blur the captured images by

rapid flaps. Further, the resolution of a bee is limited to 50 × 16 pixels.

A bee with its chitin carapace can be seen as a rigid body. The extent of a bee can be

approximated by an ellipsoid in 3D. The abdomen of a bee is bright compared to the head

and the wings. The older the bee the darker the end of the abdomen gets and the coloring is

used as an index for the age. The abdomen of the bees is textured by stripes.

Generally, segmentation can be done in different ways, categorized by the information

used:

� edge based,

� region based,

� shape based,

� template based or

� based on local features and voting maps.

With local features and voting maps it is possible to segment the bees from the back-

ground. A segmentation of the single bees is more difficult and may be solved by center

voting algorithms.

Having an image of a giant honeybee, it can be approximated by an ellipse. Figure 4.2

shows an image of a giant honeybee located at the bee curtain. It can be seen that the head

and the thorax have about the same intensity values as the background.

Figure 4.2: A inverted image of single giant honeybee (lat. apis dorsata) with its textured
abdomen.

Regarding the whole bee, they show a repetitive pattern. A template containing a repre-

sentative pattern can be used to segment the bees by template matching.

Having a look at a input image (Figure 4.1) it can be seen that the abdomen of the bees are

clearly visible against the background and the head and thorax show weak contrast. Therefore
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it is also possible to focus on the abdomen and handle the abdomen as stable regions. The

method used is based on maximally stable extremal regions (MSER). The ellipse fitted to

the boundary of an MSER results in a determination of the orientation and the length of

individuals.

Based on the observation that the abdomen all have the same shape and there exists

an edge between the abdomen and the background, a shape based segmentation method

like shape prior segmentation (SPSeg) is also promising. The segmentation should result in

measurements of the position, the length and the orientation of the bee. This enables to

compare the segmentation with a manually labeled ground truth.

In this section three segmentation methods are presented and evaluated in Section 6.2.

These are the maximally stable extremal regions (MSER), the shape prior segmentation

(SPSeg) and the normalized cross correlation (NCC).

4.1 Maximally Stable Extremal Regions (MSER)

Maximally Stable Extremal Regions (MSER) are elements of an image that show stable

boundaries under increasing intensity thresholds. Here the regions should represent the ab-

domen of the bees. Informally the concept of extracting MSERs can be described as follows.

For the range of the intensity values of an image I a sequence of binary images It is gener-

ated by thresholding I with all possible thresholds. The thresholds are all intensity values

contained in I. The result is a sequence of binary images It, which starts with a totally white

image and with increasing t, more and more black spots appear until the whole image is

black. An example is shown in Figure 4.3. All connected components of all frames build the

all maximal regions set. MSERs are those regions where the local binarization is stable over

a large range of thresholds. The properties of such regions are stability, multi-scale detection,

the invariance of affine transformation of image intensities and covariance to adjacency pre-

serving transformations on the image domain [MCUP02]. The result of the MSER are regions

that are made up of connected pixels. These regions can be approximated by an ellipse fitted

on the boundary of the region. For a formal definition of MSER see Matas et al. [MCUP02].

The abdomen of a single bee might represent a stable region because there are visible

edges between the abdomen and the background. The stripes of the abdomen will also result

in stable regions, but are filtered later. Using MSER on the input image returns maximal

regions of different sizes. To ease the selection of the stability threshold and enhance the

stability of the regions the image is histogram equalized. This will adjust the contrast of the

image according to its histogram. Now MSER returns ellipses of different aspect ratios that

approximate the stable regions as shown in Figure 4.5(a). These regions do not only segment

abdomens of bees. To get regions that describe abdomens the MSER result can be filtered

by constraining the major and minor axis as:
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(a) Input image I (b) t = 0 (c) t = 50 (d) t = 100

(e) t = 150 (f) t = 200 (g) t = 250 (h) t = 255

Figure 4.3: Illustration of the thresholding procedure executed while MSER calculation. Fig-
ure 4.3(a) shows the input image I, figure 4.3(b) to 4.3(h) show the binary images It at
different values of t. The region in the upper right corner is highly stable compared to the
one in the lower left corner that increases over t. As presented in the lower right corner it
is also possible for regions to appear at higher levels of t but a region never disappears or
shrinks.

lmin ≤ xmajor ≤ lmax (4.1)

xminor ≤ wmax (4.2)

where xmajor and xminor are the major and minor axis lengths respectively of the ellipse. lmin

and lmax denote the minimal and maximal length of a bee. wmax is the maximal width of a

bee.

This results in regions that are of the size of an abdomen as shown in Figure 4.5(b).

Filtering by size only will not result in one region for each bee. The reason is that MSER also

detects nested regions and some regions containing false matches may have the same aspect

ratio.

For further refinements the result regions with a distance smaller than wmax are detected

and paired. This means that neighboring regions whose distance of the centers go below wmax

are paired as illustrated in Figure 4.4 and can be formulated as:
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max

(a) Paired regions

max

(b) Unpaired regions

Figure 4.4: Illustration of the pairing of regions. (a) paired regions whose distance of the
centers is smaller than wmax and (b) unpaired regions.

paired(p, q) =

{
1 ifdist(p, q) ≤ wmax

0 else
(4.3)

where p and q represent two regions and dist(p, q) the euclidean distance of the centers of p

and q.

The mean length and width of all unpaired regions are calculated and serve as criteria for

the paired regions. The region of a pair whose length and width fits the mean length and

width best is selected to represent a bee. The final result of the MSER segmentation can be

seen in Figure 4.5(c). The pixels representing the regions are overlaid in red. The position of

a bee can be described by the center of the fitted ellipse. The orientation can be calculated

by the angle between ellipse major axis and the horizontal axis. The length is the major axis

length of the ellipse.

4.2 Shape Prior Segmentation (SPSeg)

According to Werlberger et al. [WPUB09] shape prior segmentation is a semi-automated

segmentation method that uses the variational formulation of the Geodesic Active Contour

(GAC) energy as minimization function and additionally considers a shape prior. The min-

imization is done with a fast primal-dual approach. Adding high level information in terms

of a shape prior enhances the robustness of the segmentation method. To reduce computa-

tion time the segmentation is done semi-automated. This means that the shape prior is set

by the user to an initial pose and a local optimization routine estimates the transformation

parameters φ = {t, R, S}, where t represents a translation, R a rotation and S a scale. The

segmentation energy can be formulated as:
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(a) All segmented areas of the MSER method illustrated as ellipses.

(b) Size filtered areas of the MSER method still containing nested areas.

(c) Result of the MSER segmentation method. Detected regions are plotted in red.

Figure 4.5: Intermediate results of the MSER segmentation method. Raw MSER results (a),
size filtered results (b) and final results (c).
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min
u,Φ

{∫
Ω
g |∇u| dx+ λ

∫
Ω

(φ (t, R, S) ◦ s (x))u dx

}
(4.4)

where
∫

Ω g |∇u| dx represents the GAC as weighted total variation (see [LO05], [BEV+05]

and [BEV+07]). In the shape force term, s (x) describes the shape as a binary function and

φ (t, R, S) the adaption of the shape prior. Weighting factor λ is required to balance between

the regularization and shape force [WPUB09].

The usage of shape prior segmentation is motivated by the fact that the abdomen of the

bees have almost the same shape. Using a prior should result in accurate segmentation of the

abdomen because the prior should jump on the contour. An over segmentation, for example

by additionally selecting the wings is not expected.

Taking the SPSeg framework as presented in [WPUB09] it solves the energy minimization

for a single prior located at one position. Constraining the search range for the local optimiza-

tion is required to reduce calculation time. Because of the limited search area initial poses of

each bee are required. These poses can for example be set up using MSER. Now the shape

prior segmentation is calculated and returns an optimized position and a mask describing the

shape for each initial pose. Wrong initial poses are not handled because the resulting energy

is not thresholded and can be arbitrary high. This means that each initial pose results in a

position and mask.

Here, SPSeg is applied to refine the segmentation of the abdomen and does not handle

wrong initializations. Figure 4.6 shows the result of SPSeg, initialized with MSER and in

Figure 4.7 the refinement is demonstrated by a comparison of the MSER segmentation with

the results of SPSeg. It can be seen that the masks snap to the boundaries of the abdomen.

Afterwards the features describing a region (position, length and orientation) are extracted

from the masks. The position is retrieved by the center of gravity. To determine orientation

and length an ellipse is fitted on the mask-boundary. The orientation is calculated by the

angle between the ellipse major axis and the horizontal axis. The length is twice the ellipse’s

major radius.

4.3 Template Matching

As presented in [RW00] cross correlation can be used for template matching. The result is a

position for a template in an image. The similarity is calculated as:

c(u, v) =
∑
x,y

f(x, y)t(x− u, y − v) (4.5)

where c represents the correlation, f is the image and the sum is over x, y under the window

containing the template t at the position u, v. Cross correlation has to deal with the problem of

illumination changes. To get rid of this fact an illumination invariant version, the normalized
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Figure 4.6: Results of a shape prior segmentation of bees initialized using MSER. In most
cases the shape prior snaps to the boundary of the abdomen.

(a) MSER (b) SPSeg

Figure 4.7: Demonstration of the refinements achieved by SPSeg. (a) shows the segmentation
results of MSER and (b) the results of SPSeg initialized by MSER.

cross correlation (NCC), can be formulated by normalizing the image and template vectors

to unit length (4.6).

γ (u, v) =

∑
x,y

[
f (x, y)− f̄u,v

]
[t (x− u, y − v)− t̄]√∑

x,y

[
f (x, y)− f̄u,v

]2 ∑
x,y [t (x− u, y − v)− t̄]2

(4.6)

where t̄ is the mean of the template and f̄u,v is the mean of the image under the template.

Here the template is made up of an image of a bee as shown in Figure 4.8(a). Compared to

the shape prior used for SPSeg as shown in Figure 4.8(b) the template also contains texture

information of the abdomen. A drawback of NCC is the fixed template size and orientation

while matching. Further, NCC only returns the position of the template. A more detailed

representation of the bee can be achieved by manual annotations in the template. So for each

template the length of the abdomen and the position of the center of the abdomen can be

defined.

As it can be seen in Figure 4.9 the bees are of different sizes and are not orientated in

exactly the same direction. To handle the drawbacks of NCC it has been extended to deal with

limited changes in orientation and size. The orientation changes are handled by taking one
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(a) (b)

Figure 4.8: Comparison of the template used for NCC (a) and the shape prior used for SPSeg
(b).

Figure 4.9: Part of an input image to illustrate the different lengths of the bees. The length
of two example bees are plotted.

Template orientation

start angle 

angle extent

template

Figure 4.10: Illustration of the angles used for varyation in orientation.
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template and generate multiple by rotating the template. The number of resulting templates

is constrained by:

numTemplatesorient = floor(
angleExtent

angleStep
) (4.7)

where angleExtent is the range of variation in orientation and angleStep is the amount the

angle is incremented from one orientation to the next. The incrementation of the angle is

started by an offset to the main orientation as shown in Figure 4.10. The single orientation

angles can be calculated as:

anglei = angleStart + i ∗ angleStep with i = 1..numTemplatesorient (4.8)

where angleStart denotes the start offset to the main orientation.

The variation in size is handled by manually selecting multiple templates of different size.

Further, these templates are made invariant to orientation as described. To eliminate multi

detections and overlaps a non maxima suppression is performed.

An example result of the NCC segmentation of the abdomen of the bees with multiple

templates is shown in Figure 4.11.

Figure 4.11: Results of a NCC segmentation of bees using five templates with a variation in
orientation of 23◦.

4.4 Summary and Conclusion

In this Chapter three different methods to segment giant honeybees are presented. These

methods are:

� maximally stable extremal regions (MSER),

� shape prior segmentation (SPSeg) and

� template matching using normalized cross correlation (NCC).
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The methods are evaluated in Section 6.2 and 6.3. Having a look at the recognition rate,

MSER segments most regions, but compared to a ground truth (GT) NCC results in more

true positives. The behavior of the segmentation methods concerning the reconstruction abil-

ity, SPSeg refines the results but requires a hundred times the computation time compared

to MSER. Further, SPSeg is dependent on the initialization and does not handle false initial-

izations. Therefore SPSeg is not suitable to handle the amount of test data in an accurate

time and will not be used further. MSER segments the abdomen quite well, but NCC outper-

forms it in accuracy and time. A segmentation of an image of the experimental sets is done

in about three seconds. This leads to template matching using NCC being the appropriate

segmentation method for getting the individual bees.

The comparison of the time for the single segmentation methods is quite difficult and has

to be considered with care. The methods are implemented at different levels of optimization.

NCC for example is a highly optimized library that utilizes multi core CPUs. In contrast

SPSeg was an experimental version calculated on the GPU that has further capabilities for

parallelization and optimizations in read and write access.

My expectations to the three methods were a dense segmentation of the single bees.

Having a look at the statistical evaluation of the recognition rate of the methods (Figure

6.10) it can be seen that all three methods segment the bees. In my opinion NCC is the

appropriate method to segment the bees because it results in less false positives and these

false positives are most bees that are not labeled in the GT. However MSER also contains

regions that do not represent a bee but are of the same size.

The presented MSER method can be improved by changing the pairing. Instead of taking

the distance of the centers an overlap of the region pixels should be detected. This would

result in accurate filter results. Further improvements in filtering would be received by also

constraining the minimal width of the ellipse. SPSeg can be improved by analyzing the

energy resulting from the shape optimization. Thresholding of this energy by a maximum

value would result in filtering bad initializations. Using this constraint of the resulting energy

may lead to use random seeds to initialize SPSeg. An improvement of template matching

would be achieved by learning the templates instead of manually selecting them. Template

matching using NCC might be improved by making the templates size invariant by using a

scale space. This would lead to improve the distribution of the lengths as shown in Figure

6.2.3.2 and approximate the distribution of the GT data more accurate. To get rid of the

manual selection of the templates these could be learned.
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Figure 5.1: Pair of stereo images as they result from the preprocessing step. The images are
rectified, histogram equalized and inverted.

This Chapter deals with the 3D reconstruction of the segmented bees using stereo vision. An

example stereo image is shown in Figure 5.1. It is assumed that individual bees are already

segmented, using methods proposed in Chapter 4. Stereo reconstruction is parted in two main

steps. These are the correspondence problem and the triangulation of the correspondences.

Problems arise by finding corresponding bees because of the presence of repetitive patterns,

as shown in Figure 5.2. Using only a maximum similarity search using a measure like NCC

will not solve the problem of repetitive patterns.

33
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Figure 5.2: Sequence of bees in a single image to show the occurrence of repetitive patterns.

To generate a 3D reconstruction form a pair of stereo images, first the correspondence

problem has to be solved. This means that for each bee in the left image its corresponding

bee in the right image has to be identified. This problem is equivalent to calculating the

disparity map. The map can be calculated using local methods, global methods or dynamic

programming. Local methods focus on the matching cost calculation and on the cost ag-

gregation. They use a local winner-take-all optimization at each pixel. Local method are

limited by enforcing uniqueness only for the reference image and are not suited to deal with

repetitive patterns. Dynamic programming can find the global minimum for independent

scan-lines in polynomial time but problems arise by dealing with occlusions and by enforcing

inter-scan-line consistency. Additionally dynamic programming enforces a monotonicity or

ordering constraint. Global methods are formulated by minimizing the energy of a disparity

function d:

E(d) = Edata(d) + λEsmooth(d) (5.1)

where the data term, Edata(d), measures the match between the disparity function and the

input image pair. Esmooth(d) represents the smoothness between neighbors for example by

measuring disparity differences [SS01].

Because of the possibility to define smoothness between neighbors and preserve neighbor-

hood, graphs have been chosen to solve the correspondence problem. The graph is constructed

based on the method of reduced graphs as presented by Gusfield and Irving in [GI89] and

minimized using the minimum-cut / maximum-flow algorithm as proposed by Goldberg and

Tarjan [GT88]. A minimum-cut results in a strong local minimum and so approximates the

global solution.

Having the correspondences, these can be triangulated.

In the following sections first the algorithm to solve the correspondence problem is de-

scribed followed by the triangulation routine.
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5.1 Stereo Matching Using Reduced Graph Cuts

Cam1

1

2

4

6

8

1112

14

15

19

23

25

26

27

29 30

3133

34

35

37

39

42

43

44

47

48

50

51

5354

57

62

66

68

69 72

76

77

78

81
83

85

87
88

89

90

91

92

96

97

101 102103

104

105

106

107

108

109

110

111

112

114

115

116

118
119

120

121

123

124

126

127128

129

131

138

139

140

141

142

143

144

148

151

154

155

157

159

162

163

164

165

166

167

168

169

171

173

174

176

177

178

179

183

184

185

186

187

189

190

191

192

193

196

197

198

200

201

202

203

204

205

207

210

211

212

216

217

218

219

220

221

222

223

225

226

228 230231

232

234

236

237

238

241

242

244

245

246

247

249

250

253

254

257

259

260

262

264

265

266

267

268

269

270

272

274

275

276

277

278

279280

282

283
284

287

288

290
291

292

293

294

295

296

298

300

301

302

303

304

305

306

307310

311

313

316

317

318

319

320

321

322

323

325

326

328

329
332

333

334

335

336
337

338

339

341344

345

346

347

349

350

352

354
355

356

358

360

361

362

363

365

366

367368

369

370
372

373

374

375

376

377

378

379

380

381

382

383

384

386

387

388
389

390

391

392

393

394

395

396

397

398

399

400

402

404

405

406 407

410

411

412

413
414

415

416

417

418

419

420

421

422

423

424

425

426
427

428

429

431

432

433

434

435

436

437

438

439

440

441 442

443

444

446

447

448 449
450

451

452
453

454

457

458

459

460

462

463

464

465

466

467

468

469

471

473

474

475

477

479

480

481

482

483

484485

486

488

489

490 491

492

493

494

495

496

498

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

517

518
520

521

524525

526

527

528

529
530

531

532 534

535

537

538

540

541

543

545

546547

549

550

551

552
553

554

556 557

559

561

562

563

565

566

567

569

570

571

572
573

574

575

576577

578

579

580

581

582

583

584

585

586

588

589

590

591

592

594

595

597

598

600

601

602
604

605

606

607

608

609

610

611

612

613

614

615

616

618

619

620

621

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638
639

640
641

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

665

666
667

668

669

670

671

672

Figure 5.3: Segmented bees resulting from the template matching method using NCC as
presented in Section 4.3.

To calculate the minimum-cut of a graph, the graph has to be constructed. Considering the

simplest version by associating each bee of the first image with all bees of the second image

would result in a computational too expensive problem. This can be solved by implying the

epipolar geometry. Only bees that are located in the same row are possible corresponding

candidates for rectified stereo images. The fact that bees are segmented with different tem-

plates results in loosing the constraint and allowing a vertical deviation dy. The pre-selection

constraint can be formulated as:

yl − dy ≤ yr,i ≤ yl + dy (5.2)

where yl represents the y-coordinate of the reference bee in the left image and yr,i the y-

coordinate of the ith right bee.

To be able to construct a reduced graph as presented in [ZDC07] a similarity measure for

the bees is required. This is done by calculating the normalized cross correlation of a patch

containing the reference bee at the position of a possible corresponding bee and will further

be called si,p, where p represents the index of the reference bee and i the index of the possible

candidate. Now, for each bee p a chain of N possible candidates is constructed by selecting

the N greatest similarities of si,p and sort them by their horizontal positions in the image.

The cost of matching D{p,si,p} will be defined as:

D{p,si,p} = 1− si,p (5.3)

These chains are connected with the source and the sink of the graph. An illustration of

the graph is presented in Figure 5.4. The capacity of the t-links are calculated as:

Ct(p, i) = D{p,si,p} +Kp (5.4)
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Ct(1,1)
Ct(2,1)

Ct(3,1)

Ct(p,1)

Ct(1,2)

Ct(1,3)

Ct(1,4)
Ct(p,4)

Source

Sink

t-link

Figure 5.4: Illustration of a reduced graph with only t-links.

where Kp is a constant satisfying:

Kp > N ∗ |max(di,p)−min(di,p)| with i = 1..N (5.5)

where di,p is the disparity of the bee p to its possible corresponding one i.

Calculating the minimum-cut of the up to now constructed graph would result the same as

performing a maximum search on the similarity si,p of the possible candidates. A neighboring

constraint has to be introduced for the k nearest neighbors. In the graph the neighboring

constraint is presented by n-links of a capacity Cn(p, q, i):

Cn(p, q, i) = (|di,p − di,q|+ 1) with i = 1..N − 1 (5.6)

where p and q denote two neighboring bees in the first image. The graph containing example

n-links can be seen in Figure 5.5.

Using this graph to get the correspondences by calculating the minimum cut will result

in loosing the neighborhood of the bees in the second image because for example s1,p does

not have to be close to s1,q. A reorganization of the graph solves this problem. Instead of

having a chain of N t-links the chain consists of M slots and the N possible candidates are

associated to the slots satisfying:

m ∗ 2 ∗ span
M

≤ di,p − dest(p) < (m+ 1) ∗ 2 ∗ span
M

with m = −M
2
..
M

2
(5.7)

where m represents the slot position, dest(p) the estimated disparity of bee p and span the

maximal distance of the possible corresponding bee to the estimated disparity in pixel.
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Figure 5.5: Structure of a reduced graph for (N − 1) = 3 levels where Ct and Cn represents
the weights the links have.

The number of slots M has to be chosen that only one bee will be associated to one slot.

This can be formulated as:

2 ∗ span
M

< min
p,q,i

(di,p − di,q) (5.8)

The estimated disparity dest(p) is needed to further constrain the dimension of the tree.

The estimation is done by manually selecting four correspondences located at the corner

regions of the overlapping part of the stereo image pair. Using the disparities of these four

points a surface is fit through the supporting points and so an approximate disparity can

be calculated for each pixel of the left image. To calculate the estimated disparities given

the four disparity offsets and the coordinates of the supporting points of the left image the

following steps have to be performed.

First four three dimensional points Xi have to be defined as:

Xi = (xi yi di)
T

where xi and yi represent the coordinates of the ith supporting point of the left image and

di the manually annotated disparity. Then two lines are set up by using X1 and X2 for the

first line and X3 and X4 for the second line as shown in Figure 5.6(a). These two lines are

intersected with the planes τ1 and τ2. The planes are defined by:

τ1 = nimg × vrow,first
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Figure 5.6: Illustration of the steps to estimate the disparity.

τ2 = nimg × vrow,last

where nimg represents the normal vector of the image plane, vrow,first the first row vector and

vrow,last the last row vector of the image. The cutting points at each plane set up two lines

(see Figure 5.6(b)). These lines are intersected with τ3 and τ4:

τ3 = nimg × vcol,first
τ4 = nimg × vcol,last

where vcol,first denotes the first column vector and vcol,last the last column vector of the

image. Connecting the points respective the plane they are member of results in two lines

as illustrated in Figure 5.6(c) by the blue lines. These two lines have to be parted in as

many equal distances as the number of image rows decremented by one. The points that

are a member of τ3 are called X(0, yl) where yl represents the row index. These points are

connected with the corresponding points located on the opposite line (see Figure 5.6(d)) and

a gradient kyl in y-direction can be calculated for each line. For each pixel the estimated

disparity dest(xl, yl) can be calculated as:

dest(xl, yl) = xl ∗ k(yl) + x3(0, yl)

where x3(0, yl) is the third coordinate of X(0, yl).
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An example of such an disparity estimation plane can be seen in Figure 5.7.

Figure 5.7: Disparity estimation plane with color coded disparities. The black points are the
points of support.

To get complete connections between the source and the sink for each bee the remaining

empty slots after the association of the N bees with their capacities as formulated in (5.5)

have to be assigned a capacity Ct0 as:

Ct0(p) = 2 ∗ (Kp + 1) (5.9)

Also the n-links have to be updated and added to the graph bidirectionally. The n-link

does not only aim from bee p to q but also from q to p. For two bees p and q the n-links are

calculated as:

Cn(p, q, i) =

Kp ∗ α ∗ (1 + 1
|di,p−di,q |+1) if slot i contains a bee for p and q.

Kp ∗ α if at least one slot i is empty.
with i = 1..M

(5.10)

where α is responsible for smoothing the cut. Figure 5.8 shows an example graph where the

slots containing a bee are marked in red and the weights are calculated using (5.5), (5.9) and

(5.10).

Finally a cut that separates the source from the sink has to be calculated. The summation

of the capacities that are cut should be minimal and can be solved by a minimum-cut /

maximum-flow algorithm as presented by Goldberg and Tarjan [GT88]. The result of the cut

are corresponding pairs of bees. Figure 5.9 shows an example cut by the dashed red line.

Analyzing the corresponding pairs inconsistencies in uniqueness can be figured out. These

conflicts arise if more than one bee of the first input image aim to the same bee of the second

image. The uniqueness violations result from the asymmetric treatment of the stereo images.

Up to now only a forward matching has bee performed. The uniqueness violations can be

solved by also applying a backward matching (repeating the whole for switched input images)

and merging the two sets of correspondences by creating the intersection.

The stereo matching algorithm using reduced graph cuts is summarized as:



40 Chapter 5. Stereo Reconstruction

Ct0(1) Ct0(2) Ct0(3) Ct0(p)

Ct(1,2) Ct0(2) Ct0(3)

Ct(3,3)Ct(2,3)Ct0(1)

Ct0(1) Ct(2,4) Ct0(3) Ct0(p)

Cn(1,2,1)

Cn(1,2,2)

Cn(1,2,3) Cn(2,3,3)

Cn(2,3,2)

Cn(2,3,1)

Source

Sink

t-link

n-link

Figure 5.8: Structure of a reduced graph for M = 3 levels where bees are located at the red
nodes.
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Figure 5.9: Cut through a reduced graph for M = 3 levels where bees are located at the red
nodes. The dashed red line represents the cut.
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1. Estimate the disparity by manually selecting four correspondences and fit a plane.

2. Preselect possible candidates by constraining according the epipolar geometry (5.2).

3. Generate an empty tree that contains a chain of M slots for each bee and connect
the top of the chain with the source and the end with the sink. The Capacities are
calculated by (5.9).

4. For each bee and its possible candidates locate the slot in the tree by (5.7) and
update the capacity of the t-link by (5.5).

5. Add bidirectional n-links with a capacity calculated by (5.10) for the k nearest
neighbors at each slot level.

6. Calculate the minimum-cut.

7. Repeat 2 to 6 for switched input images.

8. Merge the two sets of correspondences by intersecting them.

5.2 Triangulation

X

x x’

Figure 5.10: Interrelationship between the two 2D image points x and x′ and the 3D trian-
gulated point X

The goal of the triangulation is to get an approximation of the 3D point X that is calculated

using two corresponding points x and x′ in the image planes of the cameras as illustrated in

Figure 5.10. Having corresponding image points for each matched bee the 3D positions can

be calculated.

According to Hartley and Zisserman [HZ03] to triangulate two corresponding points, x

and x′, of the image planes their camera matrices P and P′ are required. A camera matrix

P is formulated as:

P = K[I|0]H (5.11)
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where K represents the calibration matrix, I a 3 × 3 identity matrix and H a projective

transformation in 3-space. K is made up of:

K =

f s px
0 f py
0 0 1

 (5.12)

where f is the focus, s the skew and p = (pxpy)T the principal point. A projective transfor-

mation in 3-space is composed as:

H =

(
R | t

0 | 1

)
(5.13)

where R is a 3× 3 rotation matrix and t a 3× 1 translation vector.

For a 3D point X there exists back projections in the image planes that satisfy:

x = PX (5.14)

x′ = P ′X (5.15)

Analogue to the DLT method these equations can be combined and form:

AX = 0 (5.16)

This is done by calculating the cross product to get three equations for each image point x

and x′. For the first image it results in:

x× (PX) = 0 (5.17)

This can be written out:

x(p3TX)− (p1TX) = 0 (5.18)

y(p3TX)− (p2TX) = 0 (5.19)

x(p2TX)− y(p1TX) = 0 (5.20)

(5.21)

where x = (x y)T , x′ = (x′ y′)T and piT are the rows of the projection matrix P .

Repeating it for the second image and taking the two independent equations of the cross

product of each image, results in four equations that are linear in the components of X and

form a equation system of AX = 0 with:
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A =


xp3T − p1T

yp3T − p2T

x′p′3T − p′1T

y′p′3T − p′2T

 (5.22)

A detailed description of solving the set of four equations with four homogeneous unknowns

by either a homogeneous method or an inhomogeneous method can be found in Hartley and

Zisserman [HZ03].

5.3 Summary and Conclusion

In this chapter a method to find corresponding bees is presented. It is done by a reduced

graph cut that takes the neighborhood in the left and right rectified stereo image into account.

The graph dimension can be reduced by constraining the possible bees to an interval around

the estimated disparity. By choosing different smoothing factors α the smoothness of the cut

and so the influence of the neighbors is controlled. In Section 6.4 the performance of the

stereo matching algorithm using reduced graph cuts is evaluated by experiments. The result-

ing correspondences are compared with ground truth data and result in 98% true matches.

By further visual inspection of the correspondences an accurate result has been gained by

the stereo matching using reduced graph cuts. Graph cut exceeded the expections by im-

proving the result of a maximum similarity search by 96.4%. The required matching time of

two minutes can be tolerated and is still a very high improvement to manually labeling the

correspondences. For an expert manually labeling of one image pair takes about four hours

and the presents of errors can not be excluded.

Exemplary other methods to solve the correspondence problem were considered and tested.

These were local methods as SIFT and growing correspondence seeds. An exact evaluation

was not performed, but a look at the results showed that they are not suitable for finding

corresponding bees.

The functionality of the matching algorithm has been tested at images of all three test sets

and the results have been evaluated by visual inspection because of the lack of ground truth

data. It results that the stereo matching works for the other experimental series and because

the images of one series are very similar the matching should work for all 521 sequences of

defense waves. Generally there are about 10 ambiguities at one epipolar line. By constraining

the horizontal search range to 300px around the estimated disparity the number of possible

candidates can be reduced to about 3.5.





Chapter 6

Experiments

Contents

6.1 Image Acquisition Setup . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Evaluation of Segmentation Methods . . . . . . . . . . . . . . . . 48

6.3 Detailed Evaluation of NCC Method . . . . . . . . . . . . . . . . . 57

6.4 Evaluation of Matching Performance . . . . . . . . . . . . . . . . . 63

6.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 66

This chapter deals with the experiments done to evaluate the properties of the acquisition

setup and the reconstruction framework. The experiments include an evaluation of the hard-

ware according the synchronization of the cameras, the required power consumption and the

acquisition buffer. Further, the reconstruction framework is evaluated. The first part to eval-

uate is the segmentation of the single bees using the three methods discussed in Chapter 4.

There the number of segmented bees and the reconstruction ability give hints of the usability

of the segmentation method. Focus lies on the template matching method using NCC because

it can be shown that it is the appropriate method to segment the bees. A detailed evaluation

of its parameters has been carried out. To achieve good triangulation results a proper solu-

tion of the correspondence problem is required. The stereo matching algorithm using reduced

graph cuts as described in Chapter 5 will be evaluated against a manually labeled ground

truth to quantize its results.

In the first part of this chapter the experimental setup will be described. Afterwards

the setup will be evaluated to ensure that it fulfills the environmental constraints. The next

experiments deal with the evaluation of the reconstruction framework and can be parted in

the evaluation of the segmentation methods and the stereo matching.

45
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Figure 6.1: The image acquisition setup consisting of two cameras mounted to the camera
stand, the industrial PC, the touch screen and an external power supply.

6.1 Image Acquisition Setup

The image acquisition setup (see Figure 6.1) consists of two CMOS cameras with a resolution

of 2352 × 1728px that are mounted to a camera stand. An industrial PC equipped with

two frame grabber cards manages the acquisition of the images via camera link. To achieve

synchronization the two frame grabber cards are connected as a master slave system. The

second card is externally triggered by the first one that generates a trigger by itself.

To meet the requirements of being mobile and flexible the PC is powered by a rechargeable

battery using a DC-DC power supply. To achieve the flexibility of mounting the cameras the

above mentioned camera stand has been designed of a total length of 1900mm. At this camera

stand the cameras can be mounted at an adjustable baseline between 800 and 1600mm and

with the opportunity to choose any enclosed angle α. Figure 6.2 shows the 3D CAD model

of the camera stand.

Using this setup it is possible to capture image sequences of 60fps of full resolution per

camera. The recording time is constrained by the amount of memory the PC is equipped

with. In this setup there are 8GB of RAM and so it can capture 900 frames per camera. This

results in a total capturing time of 15 seconds. The reason for capturing to RAM is the high

data rate of 487.7MB/s and the comparable low writing performance of a hard disk drive.

To evaluate the hardware to stand the requirements mentioned in Section 3.1 the synchro-

nization of the two cameras has been measured. Further, the power consumption has been

measured and leads to an operation time. Finally the acquisition buffer has been analyzed if
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Figure 6.2: CAD model of the camera stand with the cameras mounted at a baseline of
1600mm and an enclosed angle α of 30◦.

the usage of an other buffer management will improve the acquisition time. The next sections

contain the results of the evaluations that have been done.

6.1.1 Synchronization

The synchronization has been evaluated by capturing a flashing light with the two cameras at

a frame rate of 592fps. Then mean of a mask containing the light source will be calculated.

This results in an intensity value for each frame. To get rid of different shutter settings and

the slightly different gradation graphs the intensity values are normalized per camera to [0..1]

and compared in Figure 6.3. There it can be seen that the switching from dark to light and

vice versa are at the same time. So the cameras operate synchronously.
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Figure 6.3: Evaluation of the synchronization.

6.1.2 Power Consumption

To figure out the power usage of the total setup the power consumption has been measured

with a Wattmeter. At the maximal load a power consumption of 125W has been measured

for the PC. In addition two times 10W for the cameras and 10W for the touch screen is

required. The outcome of this is a total power consumption of 155W . Using a rechargeable

battery of 100Ah enables a runtime of more than seven hours which was calculated by:
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Q ∗ U
P

=
100Ah ∗ 12V

155W
= 7.74h (6.1)

where Q represents the electric charge of the battery, U the voltage of the battery and P the

total power consumption of the sensor.

6.1.3 Acquisition Buffer

The acquisition buffer has to deal with the data stream resulting from the two cameras. It has

to process 487.7MB/s if the image sequence is captured with 4Mpx and 60fps per camera.

Writing this stream directly to a hard disk drive is not possible for the industrial PC used.

This leads to use a preallocated buffer in the PC’s RAM. The current software solution stores

the data to a preallocated memory and after the capturing the data are written to the disk.

Using a ring buffer and writing to the disk in parallel would extent the recording time from

15 to 18 seconds which is a minor improvement in quality. Further, writing to the hard disc

drive requires CPU time that is used for grabbing the images. Because of this a static buffer is

used. The extent of the recording time has been calculated by measuring the writing time for

one second blocks. One block needs 5.18s to write. So having a ring buffer of 15 blocks three

blocks would be written in parallel to the hard disk before a buffer overrun would happen.

x ∗ timePerBlock < x+ numBlocks (6.2)

x ∗ 5.18 < x+ 15 (6.3)

x <
15

4.18
= 3.589 (6.4)

6.1.4 Application

The image acquisition of the defense waves of the giant honeybees took place in the south of

Nepal. There two bee colonies were selected to perform three experimental series. The facts

of the experimental series are summarized in Table 6.1. For the positioning of the cameras

a stand has to be constructed on-site. For the first experimental place it result in a 7 meter

high bamboo construction as illustrated in Figure 6.4. At the second place the cameras could

be mounted at the rear side of the roof as shown in Figure 6.5.

6.2 Evaluation of Segmentation Methods

The goal of the segmentation is to find as many bees as possible in the acquired image

sequences. This can be done with different segmentation methods. Suitable methods are

summarized in Chapter 4. The Evaluation of these methods is done by an evaluation of the

recognition rate, the evaluation of the reconstruction rate and the evaluation of the execution

time. The evaluation is done by three experiments that are calculated for each method.
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Figure 6.4: First experimental place with a bamboo construction of 7m to place the cameras.

Experimental Series
Fact

1 2 3

Location Rampur Sauraha Sauraha

Distance to bee curtain [m] 3 3 2

Number of Sequences 154 263 104

Number of frames per sequence 900 900 900

Frame rate [fps] 60 60 60

Required storage [TB] 1.06 1.8 0.7

Experimental duration [days] 8 6 3

Table 6.1: Facts of the experimental series done to capture defense waves.

The following section describes these three experiments to evaluate the segmentation

methods followed by a definition of the ground truth data set and the features of a single bee

in Section 6.2.1. Next in Section 6.2.2 the parameters used for the single methods are defined

and in Section 6.2.3 the results for the three segmentation methods described in Chapter 4

are presented. These methods are:

� Normalized Cross Correlation (NCC)

� Maximally Stable Extremal Regions (MSER)

� Shape Prior Segmentation (SPSeg)

The evaluation of the segmentation is concluded with a detailed evaluation of NCC because
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Figure 6.5: Second experimental place with the camera stand mounted at the rear side of the
roof.

it outperforms the other methods and so an analysis of its parameters is presented in Section

6.3.

The experiments used to evaluate the performance of the segmentation methods are parted

in three main experiments. These are the comparison of the recognition rate, the comparison

of the reconstruction rate and the measurement of the required time.

The amount of detected bees represents the recognition performance of the segmentation

method compared to a ground truth (GT). This recognition performance can be quantified

by the number of true positives, false positives and false negatives. Positives are all bees

that are segmented by the segmentation method. These positives can be parted in true and

false ones, so true positives are bees that are labeled in the ground truth and are additionally

segmented using the respective segmentation method. False positives represent the bees that

are segmented by the method but were not labeled in the GT. Bees that are labeled in the

ground truth data set but not segmented are called false negatives. True negatives are bees
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that are not segmented and not labeled in the GT. They can not be evaluated because the

GT does not contain negative labels. The more true positives and less false positives the

merrier the evaluated method represents the ground truth data.

Corresponding bees are bees whose distance of the center of gravity in the ground truth

and in the segmentation is minimal and does not extent a threshold.

To be able to reconstruct a bee as a rigid body some features to describe the bee are

required. These features are the position, length and the orientation of the bees and an

overlay of the features onto the ’test image large’ will be shown in the comparison of the

results section. To have a first feeling of the reconstruction performance of the method the

distribution of the length and the orientation of the single methods are compared. For a more

detailed conclusion for the geometric accuracy the features are compared with the respective

feature of the corresponding ground truth bee.

Geometric accuracy describes how well the single bees are segmented according to their

position, length and orientation. This can be measured by calculating for each bee the

differences of the features with the respective feature of the corresponding ground truth bee.

These differences set up a distribution for each feature and so the mean can be calculated. A

segmentation method with small mean values of these distributions result in a high geometric

accuracy. The features evaluating the geometric accuracy are:

� the difference of corresponding positions,

� the difference of corresponding lengths,

� and the difference of corresponding orientations.

Because of the numerous test data the execution time of the segmentation method has

to be considered too. It can be parted in three main steps the calculation time, the pre-

processing time and the post-processing time. For MSER there is no pre-processing and the

post-processing describes the filtering of overlapping regions. NCC also only requires a post-

processing that contains the merging process of multiple templates used for segmentation.

SPSeg is a method to refine the geometric accuracy and so it requires MSER for initialization.

6.2.1 The Ground Truth (GT)

To be able to compare the segmentation results of the single methods a ground truth data

set is required. Here the ground truth is represented by manually annotated bees. The

annotation is done by selecting three points of each bee, two points left and right of the torso

and the third one at the end of the abdomen. A schematic view of the significant points is

shown in Figure 6.6. Figure 6.7 shows a subset of the test image containing the annotation

of the bees as yellow lines. The ground truth data set consists of two images representing

the bees at different mean scales. The two sets are called ’small’ and ’big’, where the first
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one contains 454 and the second one 405 annotated bees. The sets are taken form a different

series. For set ’small’ the cameras had a distance of 3 meters to the bee curtain. Set ’big’

is taken from an experimental series where the acquisition setup had a distance of 2 meters

to the bee curtain. The set ’big’ got its name by the fact that the bees are represented in a

higher resolution in the image.

Orientation

Position

Length

Figure 6.6: Schematic illustration of the significant points (red) of a bee used to define the
ground truth data and the features describing a bee. These features are the position (center
of gravity), the length and the orientation.

To evaluate the segmentation results of the different methods a common description for a

bee has to be defined. The so called features for a bee consist of the following values:

� the position of the bee that represents the center of gravity,

� the length of the abdomen

� and the orientation according to the horizon

and are stored in a data structure. These features are illustrated in Figure 6.6 and in Figure

6.8 for test set ’big’.

6.2.2 Parameterization

As described in Section 6.1.4 the image sequences were captured at two different distances

to the bee curtain. This leads the bees to be depicted at two different resolutions. For each

resolution a parameter set is required to segment the bees. These two sets of parameters can

be used for all captured sequences.

As described in Section 4.1 the MSER method is suitable to detect stable regions and can

be parameterized by a stability threshold and three parameters to constrain the size of the

stable region. For the two test sets the parameters are summarized in Table 6.2.

To initialize the shape prior segmentation the centers and orientations from the MSER

experiment are used. SPSeg is parameterized by a search region in x- and y-axis that is
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Figure 6.7: Subset of the manually annotated bees that are used as ground truth for the
evaluation of the segmentation methods

Ilustration of Ground Truth features - num = 405; 

Figure 6.8: The features describing the 405 bees of the ground truth of set ’big’. The positions
are marked with green ’x’, the lengths of the abdomen are illustrated as yellow lines and the
orientation are represented as blue arcs.

Test set
Parameter

’small’ ’big’

Stability Threshold 20 20

Maximum Length [px] 80 100

Minimum Length [px] 30 40

Maximum Width [px] 30 40

Table 6.2: Parameters used for MSER segmentation of the two test sets.
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scanned in x- and y-steps. Further, maximal allowed rotation and scale are set that are

scanned in steps. For SPSeg a prior of a single bee has to be generated. The two priors use

for the test sets are illustrated with the parameters in Table 6.3.

Test set
Parameter

’small’ ’big’

Region X [px] 3 3

Region Y [px] 3 3

Region Rotation [◦] 17.19 17.19

Region Scale 0.1 0.1

Step X [px] 1 1

Step Y [px] 1 1

Step Rotation [◦] 2.86 2.86

Step Scale 0.05 0.05

Shape prior

Table 6.3: Parameters used for SPSeg of the two test sets.

The NCC segmentation method can be parameterized by the maxDist that is responsible

to find double segmented bees and filter them, startAngle and angleExtent that define the

orientation variation range of one template, minScore that represents the threshold of the

correlation score and maxOverlay that defines the maximal overlay of the regions using one

template. The used parameters for the segmentation of the two test images are summarized

in Table 6.4.

Test set
Parameter

’small’ ’big’

Maximal Distance [px] 15 20

Start Angle [◦] -17.19 -17.19

Angle Extent [◦] 34.38 34.38

Minimum Score 0.75 0.75

Maximum Overlay 0.3 0.3

Table 6.4: NCC parameters used for segmentation of the two test sets.

6.2.3 Segmentation Results

This section summarizes the results for the three experiments defined in 6.2 using the ground

truth. The outputs of the experiments for the separate test sets do not vary that much

and lead to combining of the absolute results to one. The illustrations of the results are

demonstrated on test set ’big’ for the rest of this section.
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Method ∆ Position [px] ∆ Orientation [◦] ∆ Length [px]

NCC 2.757 2.120 3.330

MSER 3.303 2.750 8.504

SPSeg 3.791 2.464 6.347

Table 6.5: Geometric accuracy of the mean differences of the features. ∆ Position describes
the mean distance to the GT position in pixel. ∆ Orientation describes the mean deviation
in orientation in degree and ∆ Length the mean length difference in pixel.

6.2.3.1 Recognition Results

Figure 6.9 shows the results of the segmentation. On the one hand the regions are overlaid

to the input images and on the other hand the boundary of the resulting area is plotted as

an rectangle for NCC. The segmentation leads to each 895 regions for MSER and SPSeg and

897 for NCC.

The results for the recognition rate as described in Section 6.2 are summarized in Figure

6.10. There it can be seen that MSER and SPSeg perform nearly the same because SPSeg uses

the centers extracted with MSER as initialization and does not add or remove any regions.

The small differences relies on the calculation of the number of true positives as described

in Section 6.2 and the movement of the centers caused by SPSeg. The just mentioned two

methods are outperformed by NCC with 794 true positives.

6.2.3.2 Reconstruction Capability

To be able to compare the geometric accuracy the features for the segmented regions have to

be calculated and are shown in Figure 6.11. The first results that give an indication of the

capability of reconstruction are the comparison of the length and the orientation distributions

of the bees with the GT as described in Section 6.2. Figure 6.2.3.2 shows that the distribution

of lengths of NCC fit the GT distribution best. Although the fact that the length distribution

of NCC has only few peaks is based on the templates exhibit distinct lengths and NCC does

not scale the templates. Figure 6.2.3.2 shows the distribution of the angles where MSER

seems to outperform the others.

A more detailed evaluation is done by calculating distributions for the feature differences

as described in Section 6.2. Figure 6.14, 6.15 and 6.16 show the difference histograms for

the evaluation of the geometric accuracy features. There having a distribution close to zero

means that the method is suitable to represent the geometric feature. The mean for the single

geometric features for the different segmentation methods are summarized in Table 6.5. It

shows that NCC has the smallest mean for all three features. It can also be seen that using

SPSeg results in a better representation than MSER although the mean position offset is

smaller for MSER. The experiment shows that the NCC dominates the other two methods

by having smaller mean values for each geometric feature.
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(a)

(b)

(c)

Figure 6.9: Resulting segmentations for test set ’big’. In (a) the 439 segmented regions of
MSER are overlaid to the original image in red. (b) shows the 439 regions resulting from
SPSeg and (c) the 403 regions segmented using NCC that are drawn in the original image as
rectangles.
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Figure 6.10: Statistical evaluation of the recognition performance of the three segmentation
methods.

NCC [s] MSER [s] SPSeg [s]

Algorithm 2.75 3.41 1650.00

Pre-processing 0.00 0.00 13.90

Post-processing 0.21 10.50 0.00

Total 2.96 13.91 1663.90

Table 6.6: Execution times. NCC does not need any pre-processing and the post-processing
represents the merging of multiple templates. MSER also only requires a post-processing step
to filter overlays. The pre-processing of the SPSeg denotes the initialization using MSER.
For SPSeg no post-processing is required.

6.2.3.3 Execution Time

The evaluation of the runtime of the segmentation methods results NCC being the fastest

with 2.96s. Next is the MSER with an execution time of about 4.7 times the time required

for NCC and although the SPSeg is calculated on a GPU the execution time is bad compared

to NCC. A detailed evaluation of the times can be found in Table 6.6 that shows the mean

times for the different segmentation methods. The evaluation of the time has to be considered

tentatively because the segmentation methods differ in implementation. For NCC a highly

optimized library that utilizes multi core CPUs has been taken. MSER was implemented in

C++ and SPSeg was a experimental version calculated on the GPU.

6.3 Detailed Evaluation of NCC Method

As described in Section 6.2.3 NCC is the appropriate method to segment bees so it is useful to

make a detailed evaluation of this method to be able to get the best results using this method.

In the following subsections the determination of the threshold, the influence of the template

length, the amount of useful patches and the rotational constraint have been evaluated for

test set ’small’.
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Ilustration of MSER features - num = 439; 

(a)

Ilustration of SPSegHistEQ features - num = 439; 

(b)

Ilustration of NCC features - num = 403; 

(c)

Figure 6.11: Resulting features for test set ’big’. (a) shows the features of MSER, (b) of
SPSeg and (c) of NCC. The positions are marked with green ’x’, the lengths of the abdomen
are illustrated as yellow lines and the orientation are represented as blue arcs.
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Figure 6.12: Distribution of the occurring angles in degree of the bees. The dark gray line
denotes the distribution of the GT.
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Figure 6.13: Distribution for the occurring lengths in pixel of the bees. The dark gray line
denotes the distribution of the GT.
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Figure 6.14: Distribution of position differences of corresponding bees

6.3.1 Determination of the Similarity Threshold

The similarity threshold of the NCC describes the minimum value of correlation. This means

that the part of the image I and the template t must have a correlation greater than the

similarity threshold. A good threshold is characterized by a high rate of true positives and a

low rate of false positives.
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Figure 6.15: Distribution of length differences of corresponding bees
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Figure 6.16: Distribution of orientation differences of corresponding bees

The similarity threshold for the NCC has been evaluated by calculating the true and false

positives of thresholds ranging from zero to one in steps of 0.01. Similarity values below zero

represent inverted bees that are not possible for the input images and are not considered in

the evaluation. For the calculation of NCC seven different templates of different lengths have

been used. These results are illustrated in Figure 6.17. By examining the diagram it can be

seen that a similarity threshold of 0.75 is a good choice to find about 95% of true positives.

The choise has been validated by visual inspection for images of the same experimental series.

The false positives are tolerated because the segmentation method segments more bees than

are labeled in the GT and false matches are filtered by the preselection constraint using

epipolar geometry later.

6.3.2 Influence of the Template Size

In this experiment different templates of a bee has been taken to calculate the NCC. The

difference was characterized by the size of the abdomen. For the evaluation of the influence

of the size a small, a medium and a large bee were taken as template.

In Figure 6.18 the evaluation of the segmentation results are plotted for a similarity

threshold variation from zero to one. Taking a similarity threshold of 0.75 it can be seen
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Figure 6.17: Evaluation of the NCC threshold normalized to the ground truth. The ground
truth is represented in red, the true positives in green, the false positives in magenta and the
sum of segmented bees in blue.

Template size
Small Medium Large

True Positives 0.300 0.656 0.524

Table 6.7: Summary of the true positives for single templates with different sizes at a similarity
threshold of 0.75.

that the medium sized bee template has the best true positives and an acceptable amount of

false positives and represents the ground truth data best. The true positives at a similarity

threshold of 0.75 are summarized in Table 6.7.

(a) Small (b) Medium (c) Large

Figure 6.18: Evaluation of the NCC threshold normalized to the ground truth for three
different length of templates. The ground truth is represented in red, the true positives in
green, the false positives in magenta and the sum of segmented bees in blue.
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6.3.3 Number of Templates

To evaluate the relevance of the number of different sized templates the true and false positives

have been calculated for one to eight templates. This has been done by consecutive adding a

new template to the previous ones. The other parameters were fixed at a similarity threshold

of 0.75, an angle step of 5.02◦ and an angle extent of 34.378◦ symmetrically around the

template orientation. The single parameters are described in Section 4.3.

As the results in Figure 6.19 show for increasing number of templates the true positives

and false positives increase but at different rates. So it can be seen that taking four templates

leads to a good true positive value and a not that high false positive value so that the ground

truth data is represented by a set of about four templates best.
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Figure 6.19: Evaluation of the true and false positives for increasing number of templates.
The used parameters are a similarity threshold of 0.75 and an angle extent of 34.378◦

6.3.4 Rotational Constraint

The last parameter used for the calculation of the NCC to evaluate is the angle extent as

defined in Section 4.3. It describes how much the template is rotated symmetrically around

the original pose. In this experiment the same set of four templates at a similarity threshold

of 0.75 and an angle step of 2.8648◦ have been compared to each other according to the angle

extent from 0 to 68.7◦ in seven steps.

The results illustrated in Figure 6.20 show that the higher the extent of the angle the

more true and false positives are segmented. The choice of the angle extent is a trade of a

high detection rate of true positives and a low detection rate of false positives. So an angle

extent of 34.4◦ fulfills these requirements and the number of false positives are tolerated for

the same reasons as in Section 6.3.1.
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Figure 6.20: Evaluation of the true and false positives for increasing angle extents from 0 to
68.7◦.

6.4 Evaluation of Matching Performance

This section deals with the evaluation of the stereo matching algorithm using reduced graph

cuts as described in Chapter 5. First the functionality of the graph is demonstrated by

varying the smoothness factor. Then the appropriate smoothness factor for stereo matching

is evaluated. Followed by the evaluation of the horizontal search range and its effects on

execution time.

6.4.1 Functionality of Graph Cut

This experiment aims to show the functionality of the graph cut used for finding correspon-

dences. To be more precise the influence of the smoothing term should be demonstrated.

Given are two rectified stereo images, the segmentation of the bees by the centers of gravity

and descriptions of the single bees by image patches. The tree is generated as described in

Section 5.1.

Evaluating the positions of the minimum-cut in the tree for three different weights of the

smoothing term should lead to:

� a horizontal cut through the graph for a high smoothing weight,

� a strong varying of the cut positions for no smoothing and

� a moderate varying of the cut positions for a value in between.

For the comparison the smoothing factor α was set to 0, 0.1 and 10. The resulting cuts through

the tree are represented in Figure 6.21. A smoothing of 0 represents a graph that does not

contain any neighborhood constraints and so the similarity maxima are selected for the cut

as shown in Figure 6.21(a). It leads to a strong variation in positions. A smoothing factor of

10 forces the graph cut not to cut any neighboring links and so cuts the tree horizontally as
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illustrated in Figure 6.21(c). Using a factor in between results in a moderate variation of the

positions of the tree as shown in Figure 6.21(b). This shows that the variation of α influences

the smoothness of the cut as expected and controls the influence of the neighborhood.

(a) α = 0 (b) α = 0.1 (c) α = 10

Figure 6.21: Illustration of the cut through the graph by different smoothing factors α.

6.4.2 Evaluation of Smoothness Factor (α)

Having α to control the smoothness of the cut, it has to be evaluated which smoothness factor

is suitable to get good correspondences. Therefore a test set has been established. It consists

of segmented bees in a stereo image pair. Further, to evaluate the correctness of the matches,

matches were manually labeled and provide the ground truth (GT) as shown in Figure 6.22.

The GT consists of 237 pairs. For the evaluation of true and false matches only bees of the

first image that were labeled in the GT are matched with all the segmented bees in the second

image.
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Figure 6.22: Ground truth set to evaluate the matching results.
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α Ground Truth True Matches False Matches

0 237 209 28

0.01 237 235 2

0.05 237 236 1

0.1 237 235 2

0.2 237 228 9

1 237 211 26

10 237 78 159

Table 6.8: Summary of the true and false matches in absolute values for varying smoothness
factors α.

For the evaluation the stereo matching as described in Section 5.1 was calculated for

smoothness factor α varying from 0 to 10. All other parameters were set constant (precision =

100; span = 300; knn = 5). The resulting values for true and false positives can be seen in

Table 6.8 and shows that a smoothness factor of 0.05 leads to the best solution for the

correspondence problem. Additionally it can be seen that associating bees with maximal

similarity as corresponding ones (equals α = 0) leads to worse results and so verifies the need

of graph cuts.

6.4.3 Evaluation of Search-Region

3 4 51 2 6p

Estimated disparity

spanspan

Right imageLeft image

Figure 6.23: Schematic illustration of the horizontal search range parameterized by span.
The bees 3 to 6 are possible candidates.

This experiment should evaluate the horizontal search range, span. For varying span the

required computing time will be measured and the matching results will be compared to the

same ground truth (GT) as in the previous experiment (Section 6.4.2) to evaluate the true

and false matches. span constraints the number of possible correspondences by limiting the

horizontal pixel range around the estimated disparity as illustrated in Figure 6.23. All other

parameters were set constant (precision = 100; α = 0.1; knn = 5). So choosing span too

small leads to having no possible candidates if the estimated disparity is not that exact. The

search region also influences the graph dimension and so the computation time. By increasing

span the number of false matches should decreases and the computation time should increase.

Having a look at the results summarized in Table 6.9 it can be seen that the expected

properties are satisfied. The number of false matches decreases and at a span of 300 only
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Span Ground Truth True Matches False Matches Time [s]

20 237 107 130 27.7

30 237 152 85 29.9

40 237 199 38 35.0

50 237 216 21 37.7

100 237 221 16 51.1

200 237 233 4 90.2

300 237 235 2 127.3

400 237 235 2 179.2

500 237 236 1 256.2

600 237 236 1 372.5

Table 6.9: Summary of the true and false matches in absolute values for varying span and
the required computing time @Intel Core2 Duo 2.54GHz.
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Figure 6.24: The calculation time at a Intel Core2 Duo 2,54GHz plotted over the span.

2 false matches of 237 is a good result. The computation time at the test computer (Intel

Core2 Duo 2,54GHz) also shows the increasing time. Plotting the time over the span shows

a growing of the computing time as depicted in Figure 6.24.

6.5 Summary and Conclusion

This chapter dealt of the evaluation of the image acquisition setup, the segmentation methods

and the stereo matching algorithm. The image acquisition setup as described in Chapter 3



6.5. Summary and Conclusion 67

has been analyzed according the synchronization of the two cameras to have proper corre-

spondences in time of the acquired image sequences. The synchronization was inspected by

capturing a flashing light and leads to synchronous ramps for the illumination changes. To

figure out if the setup can operate in nature for a working day with a rechargeable battery

the total power consumption at maximum load was measured and resulted in an operation

time of more than seven hours using a 100Ah battery. This has been proved when the acqui-

sition setup has been in use in Nepal. A possible improvement of the recording time may be

achieved by a accurate acquisition buffer method. The possible improvements of 3 seconds

were not worth a redesign and with a recording time of 15 seconds the required capturing of

one wave, which lasts about one second, is satisfied easily.

The segmentation methods that were evaluated are template matching using NCC, max-

imally stable extremal regions and shape prior segmentation as described in Chapter 4. The

evaluation was parted in three experiments. First the recognition accuracy was evaluated

and led template matching using NCC being the appropriate method to segment the bees

because 92, 4% of the ground truth bees were segmented. Also for the reconstruction ability

NCC outperformed the other methods and gained a mean deviation in position of 2.757px, a

mean deviation in orientation of 2.120◦ and a mean deviation in size of 3.330px. Finally the

execution time required by NCC is also shorter than the other methods. This has to do with

the highly optimized implementation used for NCC calculation.

Because template matching using NCC outperformed the other methods a detailed eval-

uation was done for its parameters. This led to an appropriate set by selecting a similarity

threshold of 0.75, an angle extent of 34.4◦ and choosing four templates of medium bee size.

Having a look at the length distribution of NCC (Figure 6.2.3.2) it does not approximate

the GT data well. This results form NCC being calculated only for a fix template size. Ex-

tending the template by using a pyramid of scales the length distribution should approximate

the GT better. The fact that the bees are represented in 3D only by one point permits to

forgo without a scale space to save computation time.

The evaluation of the stereo matching algorithm using graph cuts as presented in Chapter

5 results in an optimization of the correspondences. It has been shown that the smoothing

factor α controls the smoothness of the cut and so the influence of the neighborhood. A

detailed evaluation of the smoothness factor led α to be selected between 0.1 and 0.01 to

get qualitative stereo matches for the test image set. The selection of the horizontal search

range results in a trade-off according the execution time and the accuracy. A very small

search range will lead to a very fast computation, but it is likely that the corresponding bee

is not contained in the set of possible candidates because of the rough disparity estimation.

Selecting a high value for the search range the computation time will increase as shown in

Figure 6.24. A horizontal search range of 300px makes a compromise between the accuracy

and the required time, although focus lies on accurate correspondences.

Compared to a maximum similarity search the stereo matching algorithm using graph
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cuts fixes 96.4% of the false matches using optimized parameters. Using the parameter set

(precision = 100, α = 0.05, span = 300 and knn = 5) the best results were achieved and

only 1 of 237 matches were false. However the maximum similarity search results in 28 false

matches.

By performing the experiments parameter settings for the experimental series have been

figured out. These parameters have not been validated. The usability of the parameters has

only been tested exemplary using visual inspection for some images of the experimental series.

So the validation of the parameter sets has to be done in future.



Chapter 7

Discussion and Outlook

A hardware setup to acquire image sequences in outdoor environments and a framework to

reconstruct the bee curtain in 3D was presented. The hardware setup was designed to satisfy

the requirements of capturing the defense wave of giant honeybees. These requirements are

a field of view of about 700× 700× 100mm3 (height × width × depth), a resolution of 15px

in width for a single bee, a frame rate of 60fps and the ability to operate outdoor.

During the expedition to Nepal the acquisition setup has been tested in the field. It

emerged that the setup captured high quality images. The stereo images are suitable to

reconstruct the single bees presented by a single point. To be able to reconstruct the abdomen

flip of the bees a higher resolution in space and time would be required. The reason is the fast

abdomen flips during a defense wave. These flips are only blurred represented in the images at

a frame rate of 60fps and an exposure time of 5ms. Also the angle the bees flip their abdomen

was underestimated. By analyzing the images it can be seen that the undersides of the bees

are visible to the cameras that are mounted at the same level as the top of the nest. Because

of this the cameras should be mounted higher and this would lead to constrain the field of

view because of the limited depth of focus. To represent the same field of view multiple stereo

setups would be required. But the positioning of such a setup would be difficult because the

bee colonies are located at exposed places and largely under a jut. Selecting the two test

colonies caused difficulties because of the lack of an ability to mount the acquisition setup

with the constrained resources. In most cases a lifting platform that reaches 10 or more

meters would be required.

In Chapter 4 three methods to segment the bees were proposed: Maximally stable extremal

regions (MSER), shape prior segmentation (SPSeg) and template matching using NCC. The

evaluation of the methods was presented in Section 6.2. By comparing the recognition rate

and the reconstruction capability of the methods template matching performed best, although

the length distribution of the segmented bees vary a lot (see Figure 6.13(a)). The few different

lengths result from one fixed length for each selected template. Only by selecting multiple

templates of different size the method was made slightly invariant to scale.

69
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Inspired by the result of the compared segmentation methods a detailed evaluation of the

parameters used for template matching was performed in Section 6.3. A set of parameters

(similarity threshold = 0.75, angle extent = 34.37◦, angle step = 2.86◦ and number of selected

templates = 4) has been extracted to be suitable. Using this values a quite high rate of

false positives compared to ground truth data are present (see Figure 6.17). The reason for

tolerating the false positives are the fact that the false positives contain bees that were not

labeled in the ground truth and by filtering according to the epipolar constraint false matches

are eliminated.

The correspondence problem is solved by calculating the minimum cut of a reduced graph

as described in Chapter 5. The graph is made up of chains for each bee. These chains represent

possible position slots around an estimated disparity that are filled with possible matching

candidates if present. Further, the chains are interconnected at each level by neighboring

links that enable to control the smoothness of the cut. In Section 6.4 the functionality of

the graph cut had been shown. Finally, the resulting correspondences were compared with

manually labeled ground truth data. For an optimized parameter set that is suitable for

one experimental series a performance of one false match of 237 matches has been gained.

Compared to a simple maximum similarity search, 96.4% of the false matches were fixed. In

absolute numbers a correction from 28 to 1 false matche was gained. The parameter sets do

not have to be adjusted for each experiment. By visual inspection it has been shown that one

set of parameters can be used for one experimental series. So three sets of parameters are

required for all present data. A detailed validation of the parameter sets remains for future

work.

Having a look at the tracking methods of insects presented by Veeraraghavan et al.

[VCS08] and Maitra et al. [MSS09] they are tracking single individuals in 2D. Using the

presented framework the bees can be reconstructed in 3D and gives the ability to track the

reconstructed individuals in 3D. Having the 3D position of the single bees over the time the

defense waves can be analyzed by the z-movement of the individuals, the speed, the spreading

direction and the participation of second layer bees. A prototype stereo tracker has already

been designed and the results satisfy the requirements of the zoologists to analyze the move-

ment of the single bees during the shimmering behavior. An example of the movement towards

the cameras of some bees can be seen in Figure 7.1. Further, the presented framework enables

a semi-automatic segmentation of the individuals. Only by selecting some example bees the

bee curtain can be segmented into individuals.

The reconstructed data has already been used by the zoologist for a publication at the

Meeting of the Austrian Neuroscience Association (ANA) in Salzburg [WHM+09]. There

the z-movement of the bees has been overlaid color coded to the frames to illustrate the

movements while shimmering behavior.

There are further expeditions planed to study the defense waves of the giant honeybees,

but up to now it is not sure if the experiment with the stereo acquisition setup will be
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Figure 7.1: Z-movement of three example bees while performing defense waves from right to
left.

repeated. Primarily the acquired data has to be processed using the presented framework

and an adequate tracking method. With the prototype stereo tracker the reconstruction of a

image sequence of 900 frames would last about 3 hours. So an improvement of the tracking

is required.

If the experiments are repeated the stereo setup should be improved. The rig has to be

made more stiff by using four instead of two main bars where the cameras are mounted on.

Further, the location to mount the acquisition setup should be prepared more carefully and

so prevent a deformation of the setup.

Future work considering the segmentation methods would be to improve the template

based matching method by either using an universal template that has been learned and

made scale and orientation invariant by resizing and rotating or to use a database of standard

bees. This database should contain single bees of different sizes that were made orientation

invariant.

An extension to the 3D reconstruction would be to represent the bees by a rigid model

that is fitted to some supporting points in 3D. The rigid model could be an ellipsoid for the

whole bee or to have a more detailed approximation, to use an ellipsoid for the head and

the abdomen and a sphere for the thorax. The positions of the three elements should be

constrained to represent only possible deformations of a bee.

The tracking of the bees could be realized by template matching in the stereo image

sequences. There the variation of the representation has to be considered. By analyzing the

image sequence it can be seen that the thorax changes its representation caused by the flipping
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wings. Further, the abdomen is visible from the underside and so undergoes a variation in

representation. To combine the tracking results of corresponding image points the constraint

of the epipolar geometry has to be verified and corrected for each frame. The verification of

the tracking result in single points may be gained by comparing to measurements using a laser

vibrometer. There the z-movements of the tracked point should be the same as the results

of the laser vibrometer aimed at the same position. The direct comparison of the results is

only possible if the orientation of the laser vibrometer is known in the coordinate system of

the 3D reconstruction.



Appendix A

Abbreviations and Acronyms

A.1 Abbreviations

1D one dimension(al)

2D two dimension(al)

3D three dimension(al)

s second

ms millisecond

µs microsecond

ns nanoseconds

m meter

mm millimeter

kg kilogram

px pixel

Mpx mega pixel

fps frame per second

V volt

A ampere

W watt

MB megabyte

GB gigabyte

TB terabyte

Mbit/s megabits per second (1.000.000 bits per second)

Gbit/s gigabits per second (1.000.000.000 bits per second)

A.2 Acronyms

ATA advanced technology attachment

CAD computer-aided design
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CCD charge coupled device

CMOS complementary metal oxide semiconductor

DOF degree of freedom

GCS growing correspondence seeds

GT ground truth

HDD hard disk drive

ISA industry standard architecture

MSER maximally stable extremal regions

NCC normalized cross correlation

PnP plug & play

RAM random access memory

RMS root mean square

ROI region of interest

SAD sum of absolute differences

SPSeg shape prior segmentation

SSD sum of squared differences

SSSD sum of SSD

UPS uninterrupted power supply unit

USB universal serial bus
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