
Coding of Laser Pulse Transmission Time
for SLR-Stations

Master Thesis

Wilhelm Alexander Steinegger

————————————–

Institute for Broadband Communication
Graz University of Technology

Graz University of Technology

in cooperation
with Observatory Lustbühel (Austrian Academy of Sciences)

Supervisor/Reviewer: Ao. Univ.-Prof. Dr. Erich Leitgeb
Co-Supervisor: Dr. Georg Kirchner (Observatory Lustbühel)

Graz, March 2011

Abstract

Satellite Laser Ranging (SLR) Stations determine distances to satellites by measuring the
time-of-flight of short (10 ps to 100 ps) laser pulses, reflected from corner cube reflectors
(CCR) on satellites. The laser repetition rates vary from 10 Hz to 2 kHz. This present Master
Thesis describes and designs a system to detect coded laser pulses.
The main component of this system is the 2 kHz laser of the SLR Station Graz / Austria.
This laser normally has a constant firing time of 500 µs. To construct a system based on the
pulse position modulation, it is necessary to variate or to delay the firing times of the 2 kHz
laser. The laser firing times are controlled within a FPGA circuit. This FPGA is on an ISA
PC Card, and allows to program these additional delays.
The inaccuracy or jitter of Laser Time Firing is in the range of ±7 ns and has to be considered
in programming the final detector software. One more important part of this present work is
the selection of a suitable detector, based on multiple SPADs.
This project can be divided into three main parts. First of all the ISA PC Card with the
FPGA circuit, which is responsible for the firing commands of the laser. The second part of
this Master Thesis is the detector software, which is programmed in Microsoft Visual Basic
6.0. The third part is the optical receiver with an Altera-Apex CPLD, a FT245RL interface
and an optical detector called Multi-Pixel-Photon Counting module (MPPC). This MPPC
module is manufactured by Hamamatsu and consists of 400 avalanche photodiodes (APDs)
operating in Geiger mode.
With such a setup at any SLR station and a suitable detector plus simple time tagging
electronics at Low Earth Orbiting (LEO; < 1000 km) satellites, it is possible for any kHz
SLR station to transmit data to satellites with a rate of up to 2 kB/s - even during standard
SLR tracking.

Kurzfassung

Satellite Laser Ranging (SLR) ist eine hochpräzise Methode der Satellitengeodäsie zur Bestim-
mung der Distanz zwischen einer Bodenstation und Satelliten mittels Laufzeitmessung kurzer
Laserimpulse (10 ps bis 100 ps). Diese Satelliten sind mit Corner Cube Reflektoren ausgerüstet
und reflektieren die von der SLR-Station ausgesendeten Laserimpulse. Die Laserpuls-Intervalle
variieren hierbei von 10 Hz bis 2 kHz. In dieser Masterarbeit wird ein System entworfen, das
es ermöglicht, codierte Laserimpulse zu übertragen und zu empfangen. Die Arbeit wurde
dabei auf der 2 kHz Laserstation des Observatoriums Graz / Lustbühel durchgeführt.
Dieser Laser arbeitet mit einem konstanten Zeitintervall (firing interval) von 500 µs. Um nun
ein System zu entwerfen, das auf der Puls-Positions Modulation basiert, ist es notwendig, das
konstante Zeitintervall dieses 2 kHz Lasers zu variieren. Diese Zeitintervalle werden mittels
eines FPGA gesteuert, das sich auf einer ISA PC-Steckkarte befindet. Diese ISA-Karte erlaubt
es, diese Verzögerungszeiten zu programmieren.
Die zeitliche Abweichung oder auch Jitter der Laserimpulse bewegt sich im Bereich von ±7 ns.
Diese Ungenauigkeit muss bei der Programmierung der Detektorsoftware berücksichtigt wer-
den.
Die vorliegende Masterarbeit kann in drei Hauptteile gegliedert werden. Der erste Teil ist die
ISA-Steckkarte, die zur Steuerung der Laser-Feuerungszeiten dient. Der zweite Teil dieser
Arbeit ist die Detektorsoftware, die in Microsoft Visual Basic 6.0 programmiert wurde. Der
dritte Teil ist der optische Empfänger, der aus einem Altera-Apex FPGA, einer Schnittstelle
und einem optischen Detektor besteht. Beim optischen Detektor handelt es sich um ein Multi-
Pixel-Photon-Counting Modul kurz MPPC. Dieses Modul wird von der Firma Hamamatsu
hergestellt und besteht aus 400 Lawinenphotodioden, die im Geiger-Modus betrieben werden.
Alle diese Komponenten und die damit verbundenen Probleme bei der Realisierung werden
in dieser vorliegenden Masterarbeit diskutiert, analysiert und realisiert. Diese Technik kann
bei jeder kHz-SLR-Station eingesetzt werden und erlaubt, Daten mit einer Rate von bis zu
2 kB / s auf Satelliten zu übertragen.

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Acknowledgements

This Master Thesis was realized at the Institute for Broadband Communication at the
Technical University Graz in cooperation with Observatory Lustbühel. I especially want to
thank my advisor Erich Leitgeb, who encouraged me to write this present Master Thesis at
the Observatorium Lustbühel. I mainly thank Georg Kirchner for his correspondance and for
answering many questions. Without his help and without his technical and vocational skills I
would not have been able to complete this project. Also special thanks to Franz Koidl for
programming the hardware and for giving me tips for implementing the detection software.
Last but not least I want to mention my parents, my friends and all people who supported
and believed in me and in my studies. This was very crucial for this work and for the final
degree.

Graz, Austria, March 2011 Wilhelm Alexander Steinegger

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 SLR-Technology . 2

2 Modulation Schemes 4
2.1 Analogue Modulation Schemes . 4

2.1.1 Amplitude Modulation . 4
2.1.2 Angle Modulation . 5
2.1.3 Pulse Modulation Schemes . 5

2.2 Digital Modulation Schemes . 5
2.2.1 Pulse Code Modulation . 6
2.2.2 Amplitude Shift Keying . 6
2.2.3 Frequency Shift Keying . 6
2.2.4 Phase Shift Keying . 6

2.3 Selected Modulation Scheme . 6
2.3.1 Pulse Position Modulation . 7
2.3.2 Examples for coded Laser Pulses . 8

3 Software 9
3.1 First Steps . 10

3.1.1 Epoch Time Generation . 10
3.1.2 Implementation of the Algorithm . 12
3.1.3 Discussion of the Result . 15
3.1.4 General Considerations . 17
3.1.5 Determination of the Reference Value 18
3.1.6 Important Remarks . 23

3.2 Implemention of the Epoch Time Generator 24
3.2.1 Simulation of Jitter . 24
3.2.2 Determination of Epoch Times . 25
3.2.3 Coding of ASCII Characters . 27

i

3.2.4 Decoding of ASCII Characters . 30
3.2.5 Execution of the Program . 30
3.2.6 Graphical User Interface . 31

3.3 Final Remarks to chapter 3 . 32

4 Hardware 34
4.1 ISA Card . 34
4.2 USB-Programmed Input / Output . 35

Digital I/0 . 36
Programming the USB-PIO . 36
OCX Functions . 37
Handshake Model . 39

4.3 UM245R Interface . 43
Driver Support . 44

4.4 FT245R Block Diagram . 45
Functional Block Descriptions . 45
Inputs and Outputs . 47
General Remarks . 49
First Preparations . 49

4.5 Programming the FT245RL . 50
Provided Functions . 51
Read / Write Process . 52

4.6 Computing the Epoch Times . 54
Determining the Zero Value . 56

4.7 Graphical User Interface of the final Detection Software 57
4.8 Final Discussions of chapter 4 . 59

5 Detection Hardware 60
5.1 Single Photon Avalanche Diodes . 60

5.1.1 Dark Count . 63
5.1.2 Afterpulse and Crosstalk . 64

5.2 Multi-Pixel Photon Counting Module . 64
5.2.1 Setting the Photon Detection Threshold 67
5.2.2 Epoch Timing of Returns . 67

5.3 Test Setup and Results . 68
5.3.1 Test Results . 68
5.3.2 Offset from the Basic Grid . 70

5.4 The final Test Transmission . 72

ii

6 Conclusions 74
6.1 Main Challenges . 75
6.2 Future Work . 76

Bibliography 77

A Abbreviations and Glossary 79

B Source Codes 81
B.1 Source Code for decoding ASCII Characters from Epoch Times 81
B.2 Generating artificial Epoch Times and decoding ASCII Characters 85
B.3 Source Code for reading out Epoch Time Values from the Detection Hardware 90

iii

List of Figures

1.1 SLR [9] . 2
1.2 Satellite Camera Zeiss BMK75 used in Graz / Lustbühel [20] 3

2.1 Pulse Position Modulation [5] . 7
2.2 Pulse Position Modulation applied on constant laser pulses [11] 8

3.1 Program window after execution . 15
3.2 Final output . 22
3.3 ASCII editor . 31
3.4 Graphical User Interface (GUI) . 32

4.1 ISA Card for controlling the laser firing times 35
4.2 Functional diagram of the USB-PIO [3] . 36
4.3 Block diagram of FT245R [1] . 45
4.4 GUI of the final software . 57

5.1 SPAD in Geiger mode [22] . 61
5.2 Basic Operation of a Geiger mode APD [22] 62
5.3 20 x 20 array of single SPADs . 65
5.4 Equivalent circuit diagram of a MPPC . 65
5.5 Output current of triggered SPADs . 66
5.6 Accumulated output of Hamamatsu MPPC 66
5.7 The final circuit configuration . 68
5.8 Deviation from nominal 500 µs grid . 71

iv

List of Tables

3.1 First generated epoch times . 11
3.2 Second generated epoch times . 19

4.1 Description of the Single Pins . 38
4.2 FIFO Interface Group [1] . 47
4.3 USB Interface Group [1] . 48
4.4 Power and Ground Group [1] . 48
4.5 Miscellaneous Signal Group [1] . 48

v

1 Introduction
The SLR Station Graz / Austria uses a 2 kHz Laser for measuring distances to satellites -
equipped with corner cube reflectors (CCR) - very accurately (±2 to 3 mm). The reflected
photons are detected and time tagged at the SLR station.
Normally, the laser pulses are fired in 500 µs intervals, but using pulse position modulation
(PPM) scheme, the firing time varies from the nominal firing time. The PPM offers a efficient
possibility to transmit data information with an adequate offset. The maximum possible data
transmission rate is 1 byte / shot - for a 2 kHz SLR station like Graz, this allows 2 kbytes / s.
Realizing a system, which consists of hard- and software needs a lot of technical considerations
and improvements during the development phase e.g. the transfer speed between the hard-
and software is always critical and has to be adapted. This Master Thesis demonstrates
a system, which is able to transmit data based on the 2 kHz laser. The first part in this
work explains the pulse position modulation applied on the constant laser firing times and
extracting information from artificial epochs to demonstrate that it is possible to code and
decode messages with the pulse position modulation.
The second part explains how it is possible to send and receive data by different interfaces.
Two interfaces are demonstrated and compared, if they are suitable for this project or not.
The third part describes the development of the final detector software. This software has
first been tested with pseudo epochs generated by the 2 kHz and with no Multi-Pixel-Photon-
Counter.
The fourth part discusses the used MPPC, the results of the final tests and measurements.
At the end of this Master Thesis, some possible improvements e.g. to avoid transmissions
errors are discussed.

1.1 Motivation

The main goal of this Master Thesis is to create a laser system, based on the 2 kHz laser used
on the SLR station in Graz / Austria, which is able to transmit data information. Normally,
the laser pulses are fired in 500 µs intervals. For this project, these laser pulses have to be
varied with an adequate offset.
The pulse position modulation is a simple modulation technique to provide delays in constant
laser firing times. Each delay describes a single ASCII character. The maximum possible
data upload rate is 1 byte / shot; for a 2 kHz station like Graz, this allows 2 kbytes / s, which
is already one order more than the microwave upload channel of satellites like CHAMP (119
bytes / s) [11]. At the SLR station in Graz, software and hardware were implemented to
demonstrate such data transmissions via a fixed retro-reflector target at a distance of 4288 m;

1

1.2. SLR-Technology 2

using a separate detection unit at the station and suitable attenuation of the laser energy,
the data uploading procedure was successfully simulated.

1.2 SLR-Technology

Satellite Laser Ranging (SLR) is a method to measure the distances between satellites with
very short laser pulses. This short laser pulse is generated by a SLR Station, shot to the
satellite and finally it is refected back to the station, where it is registered. A high-precision
Event-Timer, which uses the time and the standard frequency, measures the flight time of
the laser pulse with an accuracy of about 3 ps. The standard frequency is acquired with a
dedicated GPS receiver. After measuring the flight time of the laser pulse and taking the
known speed of light it is possible to determine the distance to the satellite with an accuracy
of a few millimeters. These distance measurements are done by about 40 SLR Stations around
the world. Precise orbits are the result of these measurements. The analysis of these orbits
are crucial for determining the complex rotation parameters, the gravitation field and the
continental drift of earth [9]. The computer generated image 1.1 shows the basic principle of
SLR. On the top left corner of the image, a satellite, equipped with retro-reflectors can be
seen.

Figure 1.1: SLR [9]

The Institute for Satellite Geodesy practises Satellite Laser Ranging (SLR) at the station
Graz / Lustbühel since 1982. The distances between ground station and satellites equipped
with Corner-Cube reflectors can be measured with an accuracy of ± 2 - 3 mm. These
measurements can be done day and night at seven days a week.
Since 2003 the station uses a Nd:Vanadate kHz laser system “Made in Austria”, which
produces very short pulses (10 ps) - this equals to a lengh of just 3 mm, with a wavelength
of 532 nm and a relatively low energy of 400 µJ / shot. On the way to the satellite and
back, almost all transmitted photons get lost and just a few photons - in most cases just
a single photon is catched by a Single-Photon Avalanche Detector (SPAD). The modular

1.2. SLR-Technology 3

realtime-observation-software enables a high automation for measurements. One advantage of
a high automation is that untrained observers get a very high efficiency, high return quotas and
highest data density during a short period of time [9]. The SLR Station on Graz / Lustbühel
uses a Satellite Camera of type Zeiss BMK75, which was rebuilt to CCD-technology in
cooperation with the Technical University Vienna. Since then, the Satellite Camera is also
used for observations of asteroids and tested for space scrap detection. In the following,
the equipment of the Satellite Camera is listed. Figure 1.2 is an original photo of the Zeiss
BMK75 used on the Observatorium Graz / Lustbühel.

Figure 1.2: Satellite Camera Zeiss BMK75 used in Graz / Lustbühel [20]

The measurement unit for SLR, which is used is the third one, developed in Graz since
the 1970s and it was the first measurement unit worldwide, which reached an accuracy of
less than 1 cm. There is also a series of GPS- and GLONASS receivers for precise distance
measurements (pseudo rangingand dGPS). Both measurement methods (LASER and GPS)
are essential for the worldwide monitoring of the earth’s rotation and pole movements. Further
receivers and antennas for special cases e.g. micro-waves, doppler etc.
This Master Thesis enhances the SLR equipment of the Observatory Lustbühel to send and
receive coded laser pulses. This procedure does not affect the normal SLR process. The first
step is to modulate the epoch times of the laser pulses. This can be done by reprogramming
the ISA Card, which controls the firing intervals. To generate time values from the received
modulated laser pulses, a CPLD with an internal counter has to be programmed and a suitable
photon detector has to be chosen. After some testing phases, some possible improvements
and future work are discussed at the end of this work.

2 Modulation Schemes
In optical telecommunication systems several modulation schemes are used. Modulation
means to mix the signal with the carrier frequency in relation to the modulating signal [12].
Demodulation is the physical reversal of modulation and extracts the original signal [12].
The transmission of a communication signal can either be done by electrical lines or by wave
propagation [12].
In the following, some different modulation schemes are discussed. In telecommunications,
analog and digital modulation schemes are used. In analog modulation, the modulation is
applied continuously in response to the analog information signal. Digital modulation is the
mapping of data bits to signal waveforms that can be transmitted over an (analog) channel.
In this Master Thesis the pulse position modulation is used to transmit ASCII characters.
The pulse position modulation can either be an analog or digital modulation scheme. It
depends on the signal and / or the modulator used to obtain the modulation. In this Master
Thesis, the digital pulse position modulation is used, because for demodulation a CPLD
counter with a resolution of 5 ns is used. As a result, the output has a discrete timing interval.
With the help of this discrete timing interval, the correct ASCII character can be assigned.
In the following sections, different modulation schemes will be discussed shortly.

2.1 Analogue Modulation Schemes

In analog modulation schemes, the information travels in a signal that is permitted to take
any value. Here, the information in the signal is used to continuously change some property of
the carrier without the use of processes such as quantisation or digitization at any stage [16].
The following subsections will give a short overview of the most important analog modulation
schemes.

2.1.1 Amplitude Modulation

In this form of modulation, the signal is used to modulate the amplitude of the carrier. The
ampitude of the carrier becomes a function of the ampitude of the signal [16]. The process
of generating an AM signal is simole. If a constant-amplitude carrier is multiplied by the
signal, the amplitude of the carrier will have the shape of the signal. Allmost all modulators
use variations of this principle. In frequency domain, this process affects a shift in the signal
spectrum by frequency equal to that of the carrier [16].
AM is one of the oldest off all modulation schemes. It is popular in radio transmissions. The
demodulator is very simple to design and makes AM receivers very cheap. But it has many

4

2.2. Digital Modulation Schemes 5

disadvantages, e.g. it is power-inefficient and it has a poor signal-to-noise ratio (SNR), which
is a measure of the quality of the signal [16].

2.1.2 Angle Modulation

In this modulation scheme the angle of the carrier varies in a certain manner with the
modulating signal. There are two modulation schemes, which are called angle modulation.
These schemes will be discussed shortly.

Frequency Modulation: In FM, the instantaneous frequency of the carrier is varied in
proportion to the modulating signal. In contrast to the AM , the carrier signal’s amplitude is
not changed. This improves the overall signal-to-noise ratio of the communications systems [16].
To transmit an FM signal, more analog bandwidth is necessary than for transmitting an AM
modulated signal.

Phase Modulation: Phase modulation is similar to frequency modulation. Instead of the
frequency of the carrier wave, the phase of the carrier changes [16].

2.1.3 Pulse Modulation Schemes

In pulse amplitude modulation, a pulse is generated with amplitude corresponding to that
of the modulating waveform [16]. Similar to AM, it is very senitive to noise. PAM is an
important first step in a modulation scheme known as pulse code modulation. The pulse
amplitude may take any value - PAM is really an analog modulation scheme.

Pulse Position Modulation: PPM is used in this project and will be discussed in the next
section. It is a scheme where pulses of equal amplitude are generated at a rate controlled by
the modulating signal’s amplitude.

Pulse Width Modulation: In PWM, pulses are generated at a regular rate. The duration
of the pulse is controlled by the modulating signal’s amplitude.

2.2 Digital Modulation Schemes

Nowadays, communication in digital form is even more common than the old analog form.
This is the fact why digital modulation schemes became very important over the last years.
The most important ones are explained shortly in the next few subsections.

2.3. Selected Modulation Scheme 6

2.2.1 Pulse Code Modulation

PCM is a digital scheme for transmitting analog data. The signals in PCM are binary - there
are only two possible states, represented by logic 1 (high) and logic 0 (low). Using PCM, it is
possible to digitize all forms of analog data.
Pulse code modulation is the most fundamental of all digital modulation schemes. It is not
only digital but also discrete time. There is a certain restriction on the minimum rate at
which samples have to be taken from the signal for this form of modulation. To prevent a
condition known as “aliasing”, the sample rate must be at least twice that of the highest
supported frequency [16].

2.2.2 Amplitude Shift Keying

ASK is one of the most simple digital modulation scheme. The two possible binary values, 1
and 0, are represented by two different amplitudes. This scheme only requires low bandwidth,
but it is very susceptible to interference. Effects like multi-path propagation, noise or path
loss heavily influence the amplitude. In a wireless environment, a constant amplitude cannot
be guaranteed, so ASK is typically not used for wireless radio transmission [17].

2.2.3 Frequency Shift Keying

This modulation scheme is often used for wireless transmissions. The simplest form of FSK,
also called binary FSK (BFSK), assigns one frequency f1 to the binary 1 and another frequency
f2 to the binary 0 [17].

2.2.4 Phase Shift Keying

Phase shift keying (PSK) uses shifts in the phase of a signal to represent data. It involves
representation of binary data states, 0 and 1, by the phase of a fixed frequency sinusoidal
carrier wave, a difference of 180◦ being used to represent the respective values [16].

2.3 Selected Modulation Scheme

In this Master Thesis, the Pulse Position Modulation is used to generate coded laser firing
pulses. In 2.1.3 the Pulse Position Modulation is already mentioned.

2.3. Selected Modulation Scheme 7

2.3.1 Pulse Position Modulation

Normally the laser shots are fired in constant 500 µs time intervals. The PPM varies this
constant delay according to the transmitted ASCII character. The difference between the
constant time interval of 500 µs and the alternative delay is called offset. The offset for
every single ASCII character is unique and has to be determined after detecting a delayed
respectively a coded laser pulse. The uncertainty of delayed firing times is about ±7 ns. This
means that the defined offset can vary, although the same character is transmitted.
The basic offset of the coded laser pulses is 40 ns. In the final version, the offset was chosen
with 80 ns. This allows jitter or an uncertainty in the range of 75 ns.
Using the standard ASCII table, it is possible to code all ASCII characters - excluding the
zero value. The decimal value of the desired ASCII value gets multiplied with the basic offset
(40 ns) and the final result is the offset from the basic grid of 500 µs pulse intervals. The
following diagram represents the pulse position modulation in its easiest way.

Figure 2.1: Pulse Position Modulation [5]

The sine curve UImp is an analogue function and describes one period t. UT is an unmodulated
rectangular signal with a fixed pulse width. The time between last and next pulse is always
the same. That is why it is called an unmodulated rectangular signal. It is comparable with
the reference signal in this project, which will be discussed in 2.3.2.
The most interesting rectangular pulse in this diagram is UP P M , which is a modulated signal.
This signal also has a constant pulse width, but the time period between last and next pulse
in comparison to the unmodulated signal UT is not equal. The time difference or the delay
between the next pulse of the unmodulated signal UT and the modulated signal UP P M is the
information. The diagram below is very general, because UP P M is also leaded in phase to
UT . This does not happen, if ASCII characters are coded, because of the offset, the coded
laser pulses are always delayed in relation to the unmodulated reference signal. Section 2.3.2
gives a short overview about the principle how ASCII characters can be coded by using this
modulation scheme.

2.3. Selected Modulation Scheme 8

2.3.2 Examples for coded Laser Pulses

As above mentioned the transmitted laser pulses with about 500 µs intervals define a basic
grid. Any ASCII character, which is transmitted is now coded as a variable offset from this
grid. The offset is selected in steps of 40 ns, to avoid any troubles with the uncertainty in the
range of ±7 ns.
Every character with an ASCII decimal value of 1 to 255 can be transmitted. The offset from
the basic grid of 500 µs pulse intervals is N∗40 ns. The “N” stands for the decimal value of
the ASCII character defined in the ASCII table. For example, if the ASCII character “A”
is transmitted, the offset in relation to the basic grid amounts 2.6 µs, because the decimal
ASCII value of “A” is 65 and “N” gets substituted for 65. Figure 2.2 shows that zero value
laser pulses with the basic distance of 500 µs have to be transmitted before the coded laser
pulses are send.

Figure 2.2: Pulse Position Modulation applied on constant laser pulses [11]

Furthermore figure 2.2 illustrates the coding of the word “SLR”. The laser detection system
needs to receive at least 100 equal values with a distance of 500 µs to determine a reference
value. As already mentioned at the beginning, the epoch time values have an uncertainty in
the range of ±7 ns. In the final version of this project, the jitter is defined in the range of
±75 ns, because problems occurred during the ASCII character recognition.
To determine an accurate reference value, the mean value of 100 equal values has to be
calculated. Finally this mean value is the new reference value and important for the recognition
of the ASCII symbols. In chapter 3.2 this method is explained in detail.

3 Software
To realize the detection software, a special software was programmed in Microsoft Visual
Basic 6.0. This easy to learn programming language was chosen, because of the following
reasons:

• Visual Basic 6.0 is an uncomplicated programming language for people, who have
already made experiences in other programming languages e.g. Java, C++, Fortran etc.

• Visual Basic 6.0 can deal with the used interfaces like USB-PIO or UM245R . To be
able to deal with the programming language, a special driver had to be installed and
the provided functions of the DLL made it very easy to send and to receive data.

• In Visual Basic 6.0 it is possible to develop a Graphical User Interface in a very short
periode of time. In Microsoft Visual C++ it would be also possible to realize a GUI, but
it is more difficult to handle this programming language. There are a lot more instruction
sets, which a programmer has to consider. Even though an extended instruction set
opens more possibilities to solve problems, however it costs lots of precious time to
get experiences in using these instructions e.g. pointers in C++ may be very powerful
instruments and offer much more opportunities, if a programmer can deal with them
correctly. Pointers allow to access to storage positions directly and make it possible to
allocate storage space during runtime.
The main disadvantage of pointers is that an incorrect usage of them could end in a
disaster. The correct usage of pointers is not very easy and a programmer with rare
skills is often overextended.

• Object oriented concepts are helpful for large software projects. They are not necessary
in this case. This is yet another reason why a procedural programming language like
Microsoft Visual Basic 6.0 was chosen.

Visual Basic 6.0 has also some disadvantages over C++ e.g. platform dependency. The
programmer must use a Microsoft operating system, which is not for free like an Unix
operating system. Programs written in Microsoft Visual Basic 6.0 are also not compatible
with alternative operating systems. Another disadvantage to mention is that the installation
of Microsoft Visual Basic 6.0 needs a lot more hard disk space compared to a simple GNU C
compiler installation, because the programming environment in Visual Basic contains a lot
more tools e.g. editor, different graphical interfaces etc.

9

3.1. First Steps 10

3.1 First Steps

At first an ASCII file with generated artificial epoch times is generated. These epoch times
can stand for different ASCII characters. The difference of two neighbored epoch times is
always greater or equal to 500 µs - according to the fixed firing time.

3.1.1 Epoch Time Generation

In this section, the first generated ASCII file with epoch times will be introduced. Table
3.1 on next page contents the first generated epoch time values. The table has to be read
from left to right. This means that the first 33 values are in the first column on the left. The
second 33 values are in the center column and the last 14 values are in the right column of
the table.
The units of these epoch time values are in seconds. To convert these seconds in microseconds,
it is necessary to multiply these values with 10−6. If comparing one epoch time with the
following epoch time, we notice that the main difference between these two times is 500 µs.
As already mentioned in 3.1, the distance can be a little bit larger or smaller because of jitter
in the range of ±5 ns. To extract the information from the epoch times, it is essential to
check up the distances between them.
The first step is to find a reference value in this example. In this present case it is easy to find
this value, because it is known that the first value in this table cannot hold any information.
In other words, this value can become a reference value for determining the information.
A simple and successful method to find the right zero value on receiver side is to send ten
epoch time values with a distance of 500 µs in series. After receiving these values, the
deviation of the epoch times from the 500 µs grid is determined. This simple method will be
discussed in the next section.

3.1. First Steps 11

0.123456788 0.139956784 0.156456788 0.172956783
0.123956788 0.140456789 0.156956780 0.173460380
0.124456797 0.140956783 0.157456799 0.173961637
0.124956789 0.141456785 0.157956796 0.174462191
0.125456793 0.141956780 0.158456783 0.174962186
0.125956794 0.142456784 0.158956782 0.175462328
0.126456797 0.142956782 0.159456798 0.175958373
0.126956788 0.143456793 0.159956783 0.176461130
0.127456781 0.143956793 0.160456788 0.176962027
0.127956786 0.144456780 0.160956790 0.177462186
0.128456793 0.144956794 0.161456787 0.177962177
0.128956784 0.145456798 0.161956790 0.178462042
0.129456791 0.145956788 0.162456789 0.178958377
0.129956781 0.146456787 0.162956789 0.179458431
0.130456792 0.146956793 0.163456795
0.130956784 0.147456798 0.163956781
0.131456794 0.147956790 0.164456784
0.131956794 0.148456785 0.164956791
0.132456798 0.148956796 0.165456792
0.132956794 0.149456795 0.165956795
0.133456786 0.149956789 0.166456790
0.133956788 0.150456781 0.166956785
0.134456781 0.150956782 0.167456789
0.134956786 0.151456785 0.167956797
0.135456790 0.151956791 0.168456792
0.135956791 0.152456789 0.168956783
0.136456796 0.152956792 0.169456798
0.136956779 0.153456780 0.169956794
0.137456797 0.153956791 0.170456781
0.137956781 0.154456789 0.170956794
0.138456788 0.154956784 0.171456784
0.138956797 0.155456785 0.171956792
0.139456791 0.155956796 0.172456794

Table 3.1: First generated epoch times

3.1. First Steps 12

The following steps describe the procedure to decode the contained message from the given
epoch time values in table 3.1.

1. An appropriate reference value has to be found. In this case it is the first value in
table 3.1

2. After determining and storing the reference epoch time the next typical epoch time
value has to be calculated. As aforementioned, the distance between the next neighbored
value is at least 500 µs. If it is 500 µs + N∗50 ns, the epoch time value represents an
ASCII character. Later, an ASCII character is represented with an offset of N∗40 ns
and finally with N∗80 ns to minimize negative effects of jitter.

3. The next step is to compare the determined next epoch time value and the real epoch
time value. This is just a simple subtraction of these two values. If the difference of the
two value is less or equal than 5 ns, the present value holds no information and has to
be ignored. After this step, the next but one theoretical value has to be determined
and compared with the real next one. These operations have to be repeated until the
last value of the table is reached.

3.1.2 Implementation of the Algorithm

In above subsection it is already mentioned that the easiest way to decode the message of the
epoch time values is to develop an easy algorithm in Visual Basic. It is not necessary to type
in every single value of the table. In Visual Basic 6.0 it is possible to get access to an ASCII
file, if the path of that file is known by the programmer. There are lots of provided functions
in Visual Basic, which allow to read every single value from the list automatically. Another
function knows, when the last value of the list is reached and interrupts the reading process.
On the next page, the most essential parts of the algorithm written in Visual Basic 6.0 will
be discussed in detail. The declarations of the used variables will be ignored.

3.1. First Steps 13

1 Pr ivate Sub Start_Cl ick ()
2
3 sF i l e = "D:\DA\WILLI . txt "
4 FNr = FreeF i l e
5
6 ’ open f i l e
7 Open sF i l e For Input As #FNr
8
9 ’ read un t i l the end
10 Counter = 0
11
12 Do While (Not (EOF(FNr)))
13
14 Line Input #FNr , sRow
15 Counter = Counter + 1
16 CurrentVar iable = Val (sRow)
17 sArray (Counter) = CurrentVar iable
18
19 Loop
20
21 Close #FNr
22 ’−−−
23 Counter = 0
24 Fi r s tVa lue = sArray (1)
25
26 For Counter = 2 To 113 Step 1
27 CalculatedValue = Fir s tVa lue + (500 ∗ 10 ^ −6) ∗ (Counter − 1)
28 D i f f e r e n c e = Abs(CalculatedValue − sArray (Counter))
29
30 I f D i f f e r e n c e = 0 Or D i f f e r e n c e <= 10 ∗ 10 ^ −9 Then
31 ’ do nothing
32
33 Else
34 Asci iN = Round(D i f f e r e n c e / (50 ∗ 10 ^ −9))
35 Message . Text = Message . Text & Chr (Asci iN)
36
37 End I f
38 Next
39
40 End Sub

3.1. First Steps 14

This source can be divided into two main parts. The first part is to get access to the ASCII
file, which includes the list of the epoch time values of table 3.1. The second part decodes
the message of the epoch time values. On line 1 a simple start button on the GUI starts the
program. Line 7 opens the ASCII file with the Visual Basic function Open. This function
needs for parameter the path of the file. This mentioned path is stored in a string variable
called sFile. The while loop on line 12 is responsible for running through the list until the last
value is reached. The actual value is always stored in the variable CurrentVariable. Before
this procedure, the internal function Line Input has to read out the present value from the
list. After that, this value has to be transformed in a “real value” by function Val. This
means that after this transformation the value can be treated as a value of type double.
Every single epoch time is finally stored in an array of type double called sArray on line 17.
The integer variable Counter is responsible for counting the positions of this array. The valid
positions are from 1 to 113, because there are 113 values in table 3.1.
The main algorithm for extracting the message begins on line 23 and finally ends on line
38. As already discussed in subsection 3.1.1, the first value on the list is the reference value.
With the help of this reference value, it is possible to calculate the theoretical next value.
This value is needed for comparing it with the effective next value on the list.
On line 24 this first value of the list is stored into variable FirstValue. It is typical that this
value can be found on the first position of the array sArray. After this storing, a simple
for-loop is used on line 26 to go throw the sArray which holds the artificial epoch time values
of the list. The integer variable Counter is used as counting variable and has to be initialized
to zero on line 23.
The for-loop runs from position 2 until position 113, because on position 1 is the reference
value and the total sum of values is 113. Inside this for-loop, the theoretical next value is
determined and stored into the variable CalculatedValue. This value is 500 µs larger than the
previous value. In this source code, the calculation always uses the reference value i.e. the
first value of the list to determine the theoretical next value. That is the reason why these
500 µs are multiplied by Counter-1.
After this calculation, both values (the calculated next value and the real value) have to be
compared. That’s just a simple subtraction of these two values. This subtraction is executed
on line 28. The possible difference is stored into the variable Difference. To be absolutely
sure that the determined difference of the values is not negative, the internal function Abs is
used and transforms a negative number in its positive number.
After this explained procedure, the program compares two cases with an if-condition to check
if the distance of two neighbored times is greater or less than the usual jitter. The jitter is
defined in the range of 10 ns. If the difference is inside this range, the relevant epoch time
does not hold any information and will be ignored, but if it is outside this range, the program

3.1. First Steps 15

calculates the hidden ASCII value on line 34 with the formula mentioned on the next page.
Because of jitter, the result of equation in 3.1 could be a floating point number but ASCII
characters are represented by integers. The ASCII value can be determined with following
equation:

A= D

50∗10−9 (3.1)

D = distance value

A= ASCII value

In the present case these are integer values from 0 to 127. To be sure that the result is in
a correct integer representation, it is finally important to round the result to the nearest
integer value. On line 34 of the source code the function Round is used. After this function
operation, it is guaranteed that the final result is an integer value. This final integer can
be transfered to the function Chr, which substitutes the integer for the equivalent ASCII
character. This can be seen on line 35. After this procedure, the message is displayed in a
message box of the GUI. The final result of this program can be seen in the following.

Figure 3.1: Program window after execution

The epoch time values represent the information “Hallo Willi !”. Next, this result of the
Visual Basic program has to be analyzed in the following subsection.

3.1.3 Discussion of the Result

First of all, the algorithm needs a reference value for determining the theoretical next value.
In this case, it is easy to find a reference value because it is the first value in table 3.1. After
selecting this value, the theoretical next value is calculated.

ReferenceV alue= 0.123456788 (3.2)

3.1. First Steps 16

The theoretical next value is determined by adding 500 µs to the reference value:

TheoreticalNextV alue=ReferenceV alue+ 500 µs (3.3)

⇒ TheoreticalNextV alue= 0.123456788 + 500∗10−6 (3.4)

⇒ TheoreticalNextV alue= 0.123956788 (3.5)

This result is equivalent with the second value of table 3.1. Finally the difference between
the theoretical next value and the real next value is computed:

Difference= |TheoreticalNextV alue−RealNextV alue| (3.6)

⇒Difference= |0.123956788−0.123956788| (3.7)

⇒Difference= 0 (3.8)

This means that this second value holds no information and has to be ignored. To be sure
that the difference is always positive, the absolute value of the difference is used. If the
difference was less or equal than 10 ns, the epoch time would not hold any information too.
10 ns is the maximum value of possible jitter. For a better understanding, the third value in
table 3.1 is also determined in the following lines. The variable counter has to be increased,
because the third value is normally 500∗10−6 ∗2 greater than the reference value, which is
also the first value.

ReferenceV alue= 0.123456788 (3.9)

TheoreticalNextV alue=ReferenceV alue+ 500 µs∗Counter (3.10)

⇒ TheoreticalNextV alue= 0.123456788 + 500∗10−6 ∗2 (3.11)

⇒ TheoreticalNextV alue= 0.124456788 (3.12)

After this calculations, the theoretical next value and the real next value are compared by
computing the difference between them.

Difference= |TheoreticalNextV alue−RealNextV alue| (3.13)

⇒Difference= |0.124456788−0.124456797| (3.14)

⇒Difference= |−0.000000009| (3.15)

⇒Difference= 0.000000009−→ 9ns (3.16)

This computed difference between these two values is in the range of the possible jitter.
Therefore the third epoch time on table 3.1 is also useless and does not describe any ASCII
character.The verification of the one hundredth and first value is a surprise. This epoch time

3.1. First Steps 17

interprets an ASCII character and it is possible to extract it with the implemented functions
of the source code on 3.1.2. The one hundredth and first value in the table is 0.173460380. To
demonstrate, how the Visual Basic program works in this case, it is necessary to determine
this ASCII character by hand.

TheoreticalNextV alue=ReferenceV alue+ 500 µs∗Counter (3.17)

⇒ TheoreticalNextV alue= 0.123456788 + 500∗10−6 ∗100 (3.18)

⇒ TheoreticalNextV alue= 0.173456788 (3.19)

As usual, the next step is to compare the computed theoretical next value with the real next
value of the table 3.1

Difference= |TheoreticalNextV alue−RealNextV alue| (3.20)

⇒Difference= |0.173456788−0.173460380| (3.21)

⇒Difference= |−0.000000009| ⇒Difference= 0.000003592−→ 9 ns (3.22)

Equation 3.1 shows that this difference has to be divided by 50 ns.

ASCIIV alue= Difference

50∗10−9 (3.23)

⇒ASCIIV alue= 0.000003592
50∗10−9 −→ASCIIV alue= 71.84 (3.24)

Unfortunately the result of the ASCII value is a floating point values and ASCII characters
are just coded by integer numbers. It would not be possible to select the right ASCII character
with a floating point value. The provided function Chr of Visual Basic, which transforms an
ASCII value in its ASCII character would display an error on the screen, if this floating point
value is used. Therefore the above result has to be rounded to the next nearest integer. This
rounding is achieved by the function Round in the source code. After this rounding operation,
the ASCII value is 72. That is the next nearest integer of 71.84. After that, this value can be
looked up on an ASCII table e.g. in [6] and finally be substituted by the associated ASCII
character. In the present case it is the ASCII character “H”. The next twelve values in table
3.1 do also stand for ASCII characters. The introduced method for extracting them would of
course also work but will not be demonstrated in this Master Thesis.

3.1.4 General Considerations

Above example is simple to analyse, because the reference value is very easy to select. It is
just the first element in the list 3.1. The main goal of this example is to show and understand,
how coding of ASCII characters works in this project and how these ASCII characters can be

3.1. First Steps 18

decoded from the artificial epoch times.
Generally, it is not so easy to select a right reference value, because the SLR system and the
CPLD can be switched on at anytime. In other words, the SLR system can send modulated
laser signals before the CPLD can process them. This case appears e.g. if SLR system still
sends laser signals before the CPLD is switched on. To select the first received epoch time
value for reference value might become a big problem, because it is not known, what this value
really means. It might be a redundant value, which does not present any ASCII character.
In this case it would be correct to select it for the reference value, but in some circumstances
the value stands for an ASCII character. To select such a value as reference value produces
lots of problems and the correct decoding of a received information cannot be guaranteed.
To avoid these mentioned problems, it is necessary to choose an adequate agreement between
sender and receiver. One possible agreement could be that the sender (SLR system) does
not send the same character for more than nine times. If the receiver (CPLD and MPPC)
detects the same character for ten times or more, the software determines the deviation of
the epoch times from the 500 µs grid. Afterwards this deviation becomes the new reference
value for extracting information. It is very important that the sender transmits the same
values in a periodic interval for more then ten times to guarantee a correct interpretation of
the transmitted information. In the final version of this project, a character cannot be send
for more than 99 times, because to determine a reference value, the algorithm needs to find
100 equal values in the FIFO of the interface.
In the following example, it is agreed, that an ASCII character cannot be transmitted for
more than nine times. If an ASCII character is transmitted for more than 99 times e.g. 100
times, the epoch time value, which represents this character would become the new reference
value. Finally all transmitted characters are extracted with the help of this new reference
value. This schema will be explained in the next section.

3.1.5 Determination of the Reference Value

As already mentioned in section 3.1.4, the turn-on instant of the CPLD and the Multi Pixel
Photon Counting module could become a problem.
One solution of this problem might be that an equal epoch time value is send for at least
ten times or more. The only difference between them is 500 µs (basic grid) plus the possible
uncertainty of about ±7 ns. The detailed explanation of this method is the main part of this
section.
First of all, a new list of artificial epoch time values has to be generated. Some of these
values hold again different ASCII characters, which have to be extracted by an algorithm
programmed in Visual Basic. The old algorithm at 3.1.2 is not suitable for decoding the
contained information, because it selects the first value as reference value. This procedure

3.1. First Steps 19

would be totally wrong and a new algorithm has to be implemented, which counts equal
epoch times. If the counter reaches the value 10, the present epoch time will become the new
reference value. This process will be demonstrated in the next example. But before, some
new epoch time values have to be generated.

0.123456788 0.139956784 0.156456788 0.172956783
0.123956788 0.140458539 0.156956780 0.173460380
0.124456797 0.140956783 0.157456799 0.173962037
0.124956789 0.141456785 0.157960296 0.174458391
0.125457043 0.141956780 0.158456783 0.174961136
0.125956794 0.142456784 0.158956782 0.175462028
0.126456797 0.142958782 0.159456798 0.175962173
0.126956788 0.143456793 0.159956783 0.176461980
0.127456781 0.143956793 0.160460538 0.176961827
0.127957286 0.144456780 0.160956790 0.177462186
0.128456793 0.144956794 0.161456787 0.177962227
0.128956784 0.145459048 0.161956790 0.178458392
0.129456791 0.145956788 0.162456789 0.178958427
0.129956781 0.146456787 0.162960789 0.179458431
0.130457542 0.146956793 0.163456795
0.130956784 0.147456798 0.163956781
0.131456794 0.147959290 0.164456784
0.131956794 0.148456785 0.164956791
0.132456798 0.148956796 0.165456792
0.132957794 0.149456795 0.165956795
0.133456786 0.149956789 0.166456790
0.133956788 0.150459531 0.166956785
0.134456781 0.150956782 0.167456789
0.134956786 0.151456785 0.167956797
0.135458040 0.151956791 0.168456792
0.135956791 0.152456789 0.168956783
0.136456796 0.152959792 0.169456798
0.136956779 0.153456780 0.169956794
0.137456797 0.153956791 0.170456781
0.137958281 0.154456789 0.170956794
0.138456788 0.154956784 0.171456784
0.138956797 0.155460035 0.171956792
0.139456791 0.155956796 0.172456794

Table 3.2: Second generated epoch times

3.1. First Steps 20

Table 3.2 has to be read in the same way like table 3.1. To extract the contained information
of these published epoch times it is essential to count the epoch times, which do not describe
any ASCII characters. These are epoch time values, with a distance of 500 µs plus an
uncertainty of ±7 ns to their neighbored values. In this example it is adequate to find ten
such values. In practical realization, it is necessary to find 100 equal values.
This procedure will be explained in the next section of this thesis. There are again 113
artificial epoch time values (unit = 1 second) in table 3.2. As already mentioned, ten equal
epoch times have to be detected. This is the main difference between the old and the new
algorithm. The whole programmed algorithm, which was programmed in Microsoft Visual
Basic 6.0 is shown and explained in detail. Non relevant statements for explanations e.g.
declarations of variables are ignored.
1 Do While Counter < 9
2 ArrayIndex = ArrayIndex + 1
3 D i f f e r e n c e = Abs(sArray (ArrayIndex + 1) − sArray (ArrayIndex))
4
5 I f D i f f e r e n c e = Distance Or D i f f e r e n c e <= Distance + NFactor Then
6 Counter = Counter + 1
7 Else
8 Counter = 0
9 End I f
10
11 Loop
12
13 I f Counter >= 9 Then
14 ReferenceValue = sArray (ArrayIndex)
15 NValues = 113
16
17 For ArrayIndex = ArrayIndex + 1 To NValues Step 1
18 Factor = Factor + 1
19 CalculatedValue = ReferenceValue + (Distance) ∗ Factor
20 D i f f e r e n c e = Abs(CalculatedValue − sArray (ArrayIndex))
21 Asci iN = Round(D i f f e r e n c e / (NFactor))
22 MessageArray (Factor) = Chr (Asci iN)
23 Next
24
25 End I f
26
27 ArrayIndex = 0
28 Message . Text = " "
29
30 For ArrayIndex = 1 To 113 Step 1

3.1. First Steps 21

31 Message . Text = Message . Text & MessageArray (ArrayIndex)
32 Next

This short algorithm is able to extract the contained information from the values in table 3.2.
As already mentioned, the main difference of this algorithm is that equal epoch time values
with 500 µs time intervals are counted and afterwards the counter is checked. On line 1, a
simple while-loop checks if variable Counter has already reached value 9. If the value is less
than 9, the integer variable ArrayIndex will be incremented. ArrayIndex is a control variable
for array sArray, in which the 113 epoch time values are stored. In other words, sArray has
113 available valid storage locations. On line 3, the difference of two neighbored values is
calculated and stored in variable Difference. To be absolutely sure that the difference is
positive, the internal function Abs is used. On line 5, the calculated difference between these
two value is checked. If the difference is equal to 500 µs or equal to 500 µs plus the NFactor,
the variable Counter is incremented. NFactor is a constant and holds a value of 50 ns. This
value describes the offset, when a single character is transmitted. If the difference between
two neighbored epoch time values just amounts 500 µs, no ASCII character is transmitted.
Otherwise if the difference amounts 500 µs plus 50 ns, the two relevant values describe the
same character. Equation 3.1 defines this case.
If two neighbored values do not fulfill this condition, variable Counter is reseted, no matter
how often this variable was incremented in the past. All other values, which were received
before, are ignored. One of the most important facts is, that variable Counter has to be 10.
In other respects, no reference value was found and the algorithm is not able to extract the
transmitted information and the program would never leave the first nine lines and would
terminate when sArray is fully processed. If Counter becomes 10, the present epoch time
value is accepted as reference value.
NValues is initialized to 113, that is the number of the existing values in sArray. The for-loop
on line 17 is responsible for the ASCII character calculation. This is similar to the computation
in source 3.1.2 and need not to be explained furthermore. Finally the determined characters
are stored in an character array called MessageArray. This array can store maximum 113
characters, but it will not become full in this present case, because most values of sArray are
useless as it is discussed above.
The last six lines are responsible for displaying the extracted message on the computer screen.
The simple for-loop runs through the MessageArray and prints out character for character.
After this procedure, the algorithm terminates. In the following the final output of the
introduced algorithm is shown.

3.1. First Steps 22

Figure 3.2: Final output

Figure 3.2 shows the final result of the calculation. The resultant message of the epoch times
of table 3.2 is “Hi Wilhelm !!”. The used reference value is the 89th epoch time in the list.
That is the tenth equal value. In other words, the previous nine values describe the same
character or they are just empty epoch times, which do not mean anything. A closer look
to these values makes it clear that they have a distance of 500 µs plus an uncertainty of
maximum 5 ns. This is typical for epoch times, which do not stand for any ASCII characters.
The next table contains these values for a better overview.

0.162456789
0.162960789
0.163456795
0.163956781
0.164456784
0.164956791
0.165456792
0.165956795
0.166456790
0.166956785



ten equal epoch times

The last value in this table is the reference value. That is the tenth equal value of the epoch
times. The algorithm compares each value with its neighbored value.

0.162456789
0.162960789

}
Counter = 1

0.162960789
0.163456795

}
Counter = 2

0.163456795
0.163956781

}
Counter = 3

0.163956781
0.164456784

}
Counter = 4

3.1. First Steps 23

0.164456784
0.164956791

}
Counter = 5

0.164956791
0.165456792

}
Counter = 6

0.165456792
0.165956795

}
Counter = 7

0.165956795
0.166456790

}
Counter = 8

0.166456790
0.166956785

}
Counter = 9

The tables above show, how the algorithm selects the right reference value for extracting the
ASCII characters. Now it should be absolutely clear, that variable Counter has to be 9, when
a matching reference value is found. This value is printed in bold. Afterwards the message is
extracted with the same procedure like in the previous example.

3.1.6 Important Remarks

The main goal of these two very simple examples is to get a feeling for epoch time values and
extracting messages, which they could transmit and to get experiences in developing small
programs in Microsoft Visual Basic 6.0 without using any hardware. In a later section, it will
become clear that also some hardware is needed. There are quite a few problems in using
hardware and software together. One big problem is the connection or the communication
to the software. Therefor a special driver is needed. Very often the manufacturers of the
hardware offer drivers for several programming languages. These hardware drivers or DLLs
provide lots of functions, which allow access to the hardware with the help of a programming
language. To use these special provided functions is not always easy, because the programmer
has to know quite a few technical facts e.g. data types of the parameter values or the structure
of the hardware. In other words, the programmer has to study the hardware manual very
strictly. But before discussing the hardware, it is important to think about developing a
software, which is also able to generate epoch times and finally decode them in just one step.
This software project will be introduced in the following section 3.2

3.2. Implemention of the Epoch Time Generator 24

3.2 Implemention of the Epoch Time Generator

In the last section, the epoch times were generated by an extern source and stored in an
ordinary ASCII file. Afterwards this file was ported to a PC, on which algorithm 3.1.2 or
algorithm 3.1.5 was executed. After these steps the ASCII characters were determined.
These procedures cost a lot of time to get a result. A good idea would be to think about
generating and decoding epoch time values on the same system. For this challenge, it is
needful to study some possibilities to read in a text file and to convert it in time values.
Next, the program should read in the time values and extract the contained message. After
decoding the message, the program should display the result on the screen. Extracting the
message is not a real problem, because it is already done by the previous two algorithms.
One of these two algorithms can be adopted without changing anything.
The main challenge is to read in any text from an ASCII file and to generate epoch times in
Visual Basic 6. For the generation, an internal function called timeGetTime is needed. This
function is able to access to the system time of the PC system and is included in “winmm.dll”.
The timeGetTime function retrieves the system time in milliseconds. The system time is the
time elapsed since Microsoft Windows was started. On the next line the declaration of this
function is shown.

Pr ivate Dec lare Function timeGetTime Lib "winmm. d l l " () As Long

The return value of this function is from data type long. In other words, the system time is a
32-bit number which can range from -2.147.483.648 to 2.147.483.647. The return value or
rather the system time of the PC system is used as starting point for the generated epoch time
values. This means that the first epoch time is the return value of the function timeGetTime.
After this procedure, 500 µs must be added for the second epoch time value, 500 µs ∗ 2 for
the third epoch time value and 500 µs ∗ (n-1) for the n-th epoch time value.

3.2.1 Simulation of Jitter

To provide a veridical simulation, a special function, which includes a random generator was
programmed. This function is responsible for simulating the uncertainty or rather the jitter.
In this example, the jitter is defined in the range of ±5 ns. In the following, this mentioned
function is shown.
1 Publ ic Function RandomValue () As Double ’ f o r j i t t e r
2
3 Dim RandomVariable As Double
4 RandomVariable = 0
5
6 RandomVariable = Rnd ’ va lue between 0 and 1

3.2. Implemention of the Epoch Time Generator 25

7 RandomVariable = RandomVariable − 0 .5
8 RandomVariable = RandomVariable ∗ 10 ^ (−8) ’ nanoseconds are needed
9 RandomValue = RandomVariable ’ r e turn value
10
11 End Function

As above seen, the return value is from data type double. The double data type is a 64-bit
signed floating point number. On line 6, the internal random generator function Rnd is called.
This function generates random numbers between 0 and 1. The random numbers are stored
in the variable RandomVariable, a variable of data type double. The largest number, which
can be provided by this function is 1 the smallest one is 0. To get numbers in the range of
±5 ns, some operations are needed. In the next line, the value 0.5 is subtracted from the
random value. After that, it is obvious that the random value is in the range of ±0.5. To
provide values in nanoseconds, it is necessary to multiply the final value with 10−8. Finally,
the function returns this value and added to the present epoch time value.
These are the main procedures to simulate the jitter of this software example. In the next
subsection the main determination of epoch times will be discussed.

3.2.2 Determination of Epoch Times

The determination of the artificial epoch times is done in the self programmed function
GetEpochTime. This function does not need any function parameters. The return value
of this function is of data type double. That is the epoch time which describes an ASCII
character. Before the coding starts, the function generates 100 zero epoch time values. These
are values, which do not describe an ASCII character. They are necessary for finding the
reference value, but this fact was already mentioned a few subsections before.
First of all, it is important to explain the function GetCurrentTime. This is a very short and
simple function, which includes the timeGettime function. GetCurrentTime offers the current
system time of the PC system, but it is not identical to timeGettime, because it transforms
the system time in milliseconds to a system time in microseconds. That is just a simple
multiplication with 10−9.

3.2. Implemention of the Epoch Time Generator 26

1 Publ ic Function GetCurrentTime () As Double
2
3 GetCurrentTime = timeGetTime ∗ 10 ^ −9
4
5 End Function

As shown below, the function GetCurrentTime does not take any parameters. After calling,
the function provides the current system time in microseconds. It is used by the function
GetEpochTime, which will be introduced next.
GetEpochTime uses the mentioned functionsGetCurrentTime and RandomValue for generating
zero epoch time values.
1 Publ ic Function GetEpochTime () As Double
2
3 Dim EpochTime As Double
4 Dim Counter As In t eg e r
5 Dim J i t t e r As Double
6 Dim CurrentTime As Double
7 Const Distance = 500 ∗ 10 ^ −6
8
9 L i s t 1 . Clear
10 CurrentTime = GetCurrentTime
11 Counter = 0
12 J i t t e r = 0
13 EpochTime = CurrentTime
14
15 For Counter = 1 To 100 Step 1
16 J i t t e r = RandomValue
17 EpochTime = EpochTime + (Distance) + J i t t e r
18 L i s t 1 . AddItem (EpochTime)
19 Next Counter
20
21 I f Counter >= 100 Then
22 GetEpochTime = EpochTime ’ re turn value
23 End I f
24
25 End Function

The return value is from data type double. It does not need any functional parameters. After
calling this function, some variables are defined on line 3 to line 7. These are explained on
the next page

3.2. Implemention of the Epoch Time Generator 27

• EpochTime: Stores the final result and passes this value to the function. This is finally
the return value of this function.

• Counter: Control variable of the for-loop on line 15.

• Jitter: Stores the return value of RandomVariable, which is added to the epoch time
value.

• CurrentTime: Holds the system time in microseconds. This times is generated by the
function GetCurrentTime.

• Distance: Is a constant and defines the distance between the epoch time values. The
main distance between an epoch time value to its neighbored value is always 500 µs.

The next lines initialize these discussed variables with function calls or zero values. Line 13
provides the first epoch time. That is the system time in microseconds. The for-loop on
line 15 generates 100 other epoch time values with an artificial jitter, provided by function
RandomValue. Line 17 generates a zero epoch time value. The result is stored in variable
EpochTime. After the first cycle, the next epoch time is determined with the help of the last
epoch time. Only an addition of 500 µs and random jitter is needed to get the next time
value. Unfortunately, this line contains an error propagation, because the jitter values of all
epoch times are summed up.
The next step on line 18 is that the present zero epoch time is written into a list. Later, the
program reads this list line by line to determine the ASCII characters. This will be discussed
later.
After 100 cycles, the last generated epoch time value is the return value of this function. Line
22 shows this procedure. The goal of this function is to produce empty epoch time values.
It does not code any information. The meaning of zero epoch times is to find an adequate
reference value for decoding the contained information.

3.2.3 Coding of ASCII Characters

One of the main parts of this algorithm is to code the ASCII characters of the ASCII file.
This is done in function ReadLetter. The ASCII file on the hard disk is read character by
character. After reading a letter, the letter is coded into an ASCII value. This job is done
by the already discussed internal function Chr. After a line break, the function reacts with
“carriage return” and “line feed” values. In other words, after a line break, the function
generates two additional epoch time values, which describe the carriage return and the line
feed. The coding of these two instructions is equal to the coding of usual ASCII characters.
The ASCII code for the carriage return is 13 and for the line feed 10.
On the next page, some details of this function are shown. Important to mention is that

3.2. Implemention of the Epoch Time Generator 28

the declarations of the used variables are not contained in the following source in order to
provide a better overview.
1 Publ ic Function ReadLetter (ByVal sFilename As St r ing) _
2 As St r ing
3
4 Text1 . Text = " " ’ textbox must be empty f o r r e s t a r t
5 Counter = 0
6 LastEpochTime = GetEpochTime
7 FNr = FreeF i l e
8 Open sFilename For Input As #FNr
9 Text1 . Text = " "
10
11 Do While (Not (EOF(FNr)))
12 Line Input #FNr , s t r Input
13
14 For Counter = 1 To Len (s t r Input) Step 1
15 J i t t e r = RandomValue ’ random genera tor
16 Let t e r = Mid(str Input , Counter , 1)
17 Asc i iVa lue = Asc (Let t e r)
18 Text1 . Text = Text1 . Text & Chr$ (13) & Chr$ (10)
19 Text1 . Text = Text1 . Text & " Let t e r : " & Let t e r
20 Text1 . Text = Text1 . Text & " Asc i iVa lue : " & Asc i iVa lue
21 EpochTime = LastEpochTime + (Distance) ∗ Counter
22 CodedValue = EpochTime + J i t t e r + (N ∗ Asc i iVa lue)
23 L i s t 1 . AddItem (CodedValue)
24 Next Counter
25
26 I f Counter = Len (s t r Input) + 1 Then
27 ’we know that the re i s a new l i n e in the ASCII f i l e
28 ’ i f t h i s cond i t i on i s f u l f i l l e d
29 EpochTime = LastEpochTime + (Distance) ∗ (Counter)
30 CodedValue = EpochTime + J i t t e r + (N ∗ 13)
31 L i s t 1 . AddItem (CodedValue)
32 EpochTime = LastEpochTime + (Distance) ∗ (Counter + 1)
33 CodedValue = EpochTime + J i t t e r + (N ∗ 10)
34 L i s t 1 . AddItem (CodedValue)
35 LastEpochTime = EpochTime
36 End I f
37 Loop
38 ReadLetter = s t r Input
39 Close #FNr
40 End Function

3.2. Implemention of the Epoch Time Generator 29

This function needs a function parameter. This parameter is the filename respectively the
path of the information file. Line 6 retrieves the last empty epoch time, generated by the last
discussed function GetEpochTime. This epoch time value is the return value of GetEpochTime.
Line 7 and line 8 is responsible for access to the ASCII file. This file contains the information,
which the function has to code in epoch time values. The while loop on line 11 reads line by
line from the file and stops after the end of the file is reached.
The for-loop on line 14 reads a line and stops after the end of the line is reached. Len(strInput)
stores the length of the present line. The variable strInput is from data type string and stores
the whole present line of the ASCII file. Len is also an internal function and provides the
length of any string.
The internal function Mid analyzes the present string, respectively the present line character
by character. After that, the present character is transformed into its ASCII value on line 17.
Line 18 to line 20 are just debug statements and not important to mention. They are just
for displaying the results in a text box. The program would also compile correctly and work
without these few lines.
Line 21 determines the present epoch time. This time consists of the last empty epoch
time, generated by the discussed function GetEpochTime and the distance. The distance is
calculated by the help of the control variable Counter. For example, if the Counter is 3, the
distance between the last epoch time and the present epoch time is 1500 µs (500 µs ∗ 3).
Line 23 codes the ASCII character with the result of line 21. N is the offset and has to
be added to all epoch times, which hold any characters. In this program, the variable N
is defined as a constant. This constant holds a value of 50 ns. This is the offset between
the coded values. On the next line, the ASCII character is coded and stored in variable
CodedValue. As it is below mentioned, the variable AsciiValue stores the value of the present
character. This value is determined on line 17.
On line 23, the final value, respectively the epoch time value is added into a list.
Line 26 manages the end of a line. When the end of a line is reached, the program runs to
this if-condition and adds two coded epoch time values. In the ASCII world, a line break is
defined by two special values, a carriage return and a line feet. These are the values 13 and
10. After coding a line break, the two epoch time values, are also added in the list of the
coded values.
This is the main procedure, how a line of any ASCII file is coded into its epoch time values.
This sequence is repeated until the end of the file is reached. Responsible for reaching the
end of the file is the discussed while-loop on line 11.
After reaching the end of the file, the program retrieves and reads in the epoch time values
and decodes them into its original ASCII characters. In the next subsection, this procedure
will be explained.

3.2. Implemention of the Epoch Time Generator 30

3.2.4 Decoding of ASCII Characters

In principle, the decoding of the generated epoch time is still the same as already explained in
subsection 3.1.5. It is not necessary to publish the decoding algorithm in this thesis, because
the difference between the implemented algorithm in this explained program and the decoding
algorithm in 3.1.5 is quite smallish. The only difference is, that the algorithm needs to find
100 empty epoch time values to determine a reference value. These 100 epoch times are
generated by the discussed function GetEpochTime and finally added to the list. This is the
only difference.

3.2.5 Execution of the Program

Before the program can be executed, a simple ASCII file has to be written. Next, the main
program is explained.
1 Pr ivate Sub Start_Cl ick ()
2
3 Const Path = "C:\Dokumente und E in s t e l l ungen \Wilhelm Ste inegge r \

Desktop\ s t r ing_read in \ read3 . txt "
4 Ca l l ReadLetter (Path)
5 Cal l Decode
6
7 End Sub

When the Command1 button is clicked, the algorithm gets executed. Important is, that the
program has to know, where the ASCII file is stored on the hard disk.
On line 3, the path of the file is stored in a constant. This path has to be adapted, if the
program has to run on an other PC system. Of course, it would be reasonable, if the path
could be changed on the Graphical User Interface, but it is not the goal of the program
to develop a user friendly interface. It is much more important to show, how coding and
decoding of epoch times can happen.
Line 4 calls the function ReadLetter. As already discussed, this function reads letter by letter
and codes them to their epoch time values. The function gets as parameter the defined path,
which is a constant.
After this event, the function Decode is called. This function gets access to the list of all epoch
time values and determines the ASCII characters. Finally it writes character by character to
a text box, which can be seen on the GUI. On the next page, the Graphical User Interface
will be discussed.

3.2. Implemention of the Epoch Time Generator 31

3.2.6 Graphical User Interface

The GUI is very simple and without any extensive functions, as already mentioned in 3.2.5.
It only has one window to interact with the user. A start button executes the program and
the algorithm begins to translate the stored ASCII file. After the execution, the original
information is printed in a textbox.

Figure 3.3: ASCII editor

The figure 3.3 shows the ASCII editor with the contained information. Above mentioned, the
information is the LATEXsource in subsection 3.2.5. The file is called “simple_test”. This is
important for the constant path in the main program.

Const Path = "C:\Dokumente und E in s t e l l ungen \Wilhelm Ste inegge r \
Desktop\ s t r ing_read in \ s imple_test . txt "

After adapting the path, the user can start the program by clicking the start button. Next,
the GUI is shown after executing the program.

3.3. Final Remarks to chapter 3 32

Figure 3.4: Graphical User Interface (GUI)

The list box with the scrollbar on the left contents the ASCII characters, which were coded
and finally decoded in its original form. The list box in the middle of the GUI shows the
epoch time values, which are generated by the two discussed functions. The algorithm reads
in these values and transforms them into their original characters. The message box on the
right side finally contains the decoded message. This message has to be equivalent to the
message shown on figure 3.3. After taking a deep look to the GUI respectively to the message
box, the original message can be recognized. Important is, that the line breaks are handled
in a correct way.

3.3 Final Remarks to chapter 3

This chapter explained some basic steps to develop an adapted software for coding and
decoding information with the help of artificial epoch time values.
These discussed programs are not suitable for the final project, because they do not interact
with any hardware.
Coding information as it is shown in the last example is not necessary, because that is done
by an ISA PC card. This PC card controls the laser firing times and delays them to generate
coded ASCII characters.

3.3. Final Remarks to chapter 3 33

The laser signals are detected by a MPPC (Multi-Pixel-Photon-Counter) module. This
module is connected to a CPLD, which determines the delay times of the laser pulses. This is
managed by a counter in the CPLD. Finally the values of this counter are stored in a register,
which may hold a specific number of values. The values are four bytes long. The next part
of this project is to get these mentioned values into the PC. This is done with a fast USB
interface. The last part of this project is to analyze the counter values with a programmed
software.
One of the main challenges in this project was to find a suitable interface for reading in the
epoch time values. As mentioned previously, the laser of Graz / Lustbühel has a frequency of
2 kHz. From this it follows that a used interface has to be able to read in at least 2000 epoch
time values per second. One epoch time consists of four bytes. Therefore the interface has to
read 8000 bytes per second.
Unfortunately, the first selected interface had a too slow throughput and had to be replaced.
Another requirement is an easy connection to the PC or rather to a programming language
like Visual Basic. In the next chapter, two different interfaces will be introduced.

4 Hardware
This chapter discusses the used hardware of this laser project. As already mentioned in
section 3.3, this work needs to deal with four hardware parts.
The first hardware part is the ISA card, which is responsible for controlling the laser firing
intervals.
The second part is the USB interface. Many of them have too slow transfer rates and the
FIFO (First-In-First-Out) of the CPLD, which stores the four bytes epoch time values, gets
a memory overflow, because the software would not be able to fetch the values from the
FIFO in a suitable period of time. The effect of a too slow interface is data loss. Most of
the values are corrupted, because they cannot get any storage positions in the FIFO of the
CPLD. The software would read in the values in a wrong sequence and the effect would be
wrong interpreted informations with no meaning.
The MPPC is manufactured by Hamamatsu. It is a new type of photon counting device made
up of multiple APD (avalanche photodiode) pixels operated in Geiger mode. The MPPC
is essentially an opto-semiconductor device with excellent photon-counting capability and
which also possesses great advantages such as low voltage and insensitivity to magnetic fields.
The MPPC is available with 25 µm pitch (1600 pixels), 50 µm pitch (400 pixels) and 100 µm
pitch (100 pixels). For this project, a MPPC with 50 µm pitch (400 pixels) was chosen.

4.1 ISA Card

The above mentioned ISA card is responsible for controlling the laser firing times. On the
ISA card there is a programmable FPGA from Altera. Originally, the laser firing times were
in constant 500 µs time intervals. To code information with the pulse position modulation, as
explained in 2, the laser firing times have to vary depending on the present ASCII character.
To provide this, the FPGA chip on the ISA card has to be reprogrammed. This reprogram-
ming of the ISA card was not part of this Master Thesis and will not be explained.

34

4.2. USB-Programmed Input / Output 35

Figure 4.1: ISA Card for controlling the laser firing times

As mentioned in the introduction, the transfer rate of the interface is one of the most important
factors in developing software, which has to deal with hardware. In this Master Thesis, two
different USB interfaces are introduced. The USB-Programmed Input / Output is an USB
interface. The biggest drawback of it is the transfer rate. It is much too slow for this laser
communication system. At the beginning of this project, the decision came to the USB-PIO,
because it is one of the easiest to program interfaces. After some experiments with empty
epoch times in the CPLD respectively in the FIFO, the very slow transfer rate were revealed.
Next, an USB interface, USBMOD245R was installed to read out the data from the CPLD.
This interface has a very high throughput respectively a very fast transfer rate up to 1
MByte/s Before this interface is introduced, it is important to illustrate some facts about the
USB-PIO.

4.2 USB-Programmed Input / Output

The following facts about the digital I/O interface are cited from the data sheet [3]. The
USB-PIO has three 8 bit ports. The direction of these ports can be switched. The connection
of the USB-PIO can be managed via USB. The device is included in a Sub-D case. The
current supply is also arranged via USB. No extern power supply is needed. Figure 4.2 shows
the functional principle of the interface. The 24 Pins are divided into three 8 bit ports (0-7).
Pin 25 is the ground and has no function and it is not possible to switch this pin. The device
is offered with Next View 4 Live, a software, which can test the whole functionality of this
product. Unfortunately, the provided version on the CD-Rom is just a demo version. So it is
not possible to store any data or graphs. The full version, which offers a lot more functions,

4.2. USB-Programmed Input / Output 36

has to be bought. By the way, that is just an additional information. Next View 4 is not be
used in this project. Before this device can be used, the driver package supported by the
manufacturer has to be installed.

Figure 4.2: Functional diagram of the USB-PIO [3]

Digital I/0

The USB-PIO contains a µ-Controller, which offers three 8-Bit digital ports. The lines are
bidirectional i.e. the input and output directions can be programmed via software. Important
is, that a single line cannot be switched to another direction, because all lines are related to
one of the three ports. It is just possible to switch the whole port with 8 lines. On port C,
the direction can be switched in two groups of four lines. This is useful for implementing an
easy handshake method.

Programming the USB-PIO

To program the USB-PIO, the manufacturer provides a special library for common program-
ming languages (C++, Microsoft Visual C++, Microsoft Visual Basic (Version 4 to Version 6),
Delphi and LabView). LibadX is implemented as ActiveX Control (OCX) that is registered
by the installation program on the PC. After installing the OCX, the programmer can access
to the USB-PIO very easy. Many digital functions are provided. The most important ones
will be explained in the following.

4.2. USB-Programmed Input / Output 37

OCX Functions

The OCX functions can be used for programming the interface, e.g.: for opening the device
or for setting the line directions. All these functions are introduced in the programmers guide.
Every USB-PIO has an unique serial number - this number must be used for opening the
connection. The following source code is just a short sets the direction of the existing ports.
1 Pr ivate Sub SetPor tDi r ec t i on ()
2 ’ This func t i on s e t s the d i r e c t i o n o f the USB−PIO at the
3 ’ beg inning o f the program .
4 ’ I t has no return value , because i t j u s t s e t s the d i r e c t i o n
5 ’ o f the port . I f a port i s de f i ned as " DirOut " , i t i s s e t as an
6 ’ output port . I f a port i s de f i ned as " DirIn " , i t i s s e t as
7 ’ an input port . The func t i on uses the DLL "meMPIO1"
8
9 With meMPIO1
10 . DirPort1 = DirOut ’ Port1 1 . . . 8
11 . DirPort2 = DirIn ’ Port2 1 . . . 8
12 . DirPort3L = DirOut ’ Port3L 1 . . . 4
13 . DirPort3H = DirIn ’ Port3H 4 . . . 8
14 End With
15
16 End Sub

This example shows how the directions of the existing ports may be switched. The first port
is set for output like the port 3L. The rest of the ports are set for input. The output ports
can manage the communication with the CPLD, for example to check if the CPLD is ready
for data transmission or if there are any data in the FIFO of the CPLD. The CPLD can
communicate with the interface respectively with the software by the help of the lines of port
3H. The data transmission can be done by port 2. It is remarkable, that one port can receive
1 byte, because a port contains of 8 lines. 1 Line can describe 1 bit (voltage = 1, no voltage
= 0). In this case, the port needs to be set as input respectively as DirIn. Also transmitting
one byte is possible. Before that is possible, the port has to be set as output DirOut. For
setting one line to high, the function SetLine(Port, Line) is used. To set a line to status low,
the function ResetLine(Port, Line) is used. Normally, if one line is not set to high, the line
is low. But to be sure that it is really low, it is recommendable to reset the line with the
below mentioned function ResetLine(Port, Line). For this project, a program for reading out
epoch time values was designed and programmed with the help of these functions and this
interface, but finally it was too slow for transferring data to the PC and has not been used in
the final version. In the following, the main concept of this software is explained, but before,
it is necessary to discuss the functions of the single pins.

4.2. USB-Programmed Input / Output 38

Port Line Direction Function
1 1 OUT Binary Position: 20 or 28

1 2 OUT Binary Position: 21 or 29

1 3 OUT Binary Position: 22 or 210

1 4 OUT Binary Position: 23 or 211

1 5 OUT Binary Position: 24 or 212

1 6 OUT Binary Position: 25 or 213

1 7 OUT Binary Position: 26 or 214

1 8 OUT Binary Position: 27 or 215

2 1 IN Binary Position: 20 or 28

2 2 IN Binary Position: 21 or 29

2 3 IN Binary Position: 22 or 210

2 4 IN Binary Position: 23 or 211

2 5 IN Binary Position: 24 or 212

2 6 IN Binary Position: 25 or 213

2 7 IN Binary Position: 26 or 214

2 8 IN Binary Position: 27 or 215

3L 1 OUT STOP
3L 2 OUT RESET
3L 3 OUT READ
3L 4 OUT SIMULATE
3H 5 IN NOT USED
3H 6 IN NOT USED
3H 7 IN NOT USED
3H 8 IN DATA AVAILABLE

Table 4.1: Description of the Single Pins

Table 4.1 gives a detailed overview about the different functions of the available pins. Port
1 and port 2 are for representing epoch time values. One single pin represents one single
bit. It is necessary to get a 16-bit epoch time value, which is almost impossible, because the
port only have 8 lines respectively pins. So in the normal case, the port can hold an 8 bit
value. To provide more than 8 bits, the epoch time can be factorized into two 8 bit values.
In other words, the FIFO of the CPLD holds 8 bit values and these 8 bit values can be read
out by the port 2 which contains of 8 lines. The first 8 bits are the least significant ones, the
second 8 bits are the ”most-significant“ ones. This is the most important fact, which the
programmer has to know.
Port 1 is similar. It is also for representing an 8 bit. The only difference is that the software
can set these lines and write it to the FIFO of the CPLD. That is possible, because port 1 is
set as output. The main idea was to upgrade the software, presented in section 3.2, with this
option. The program in section 3.2 reads letter by letter from the provided ASCII-File and

4.2. USB-Programmed Input / Output 39

codes letter by letter in an epoch time. After that procedure, the epoch time value has to be
transformed into a binary representation and transmitted to the CPLD by the lines of the
port 1.
Unfortunately, this option could not be realized, because while programming and simulating
the read out process, an interesting fact occurred. The USB-PIO is much too slow for
transferring data to the PC and to the CPLD. The effect of this fact is that the FIFO of the
CPLD becomes full and can not store any more values. The new values get lost respectively
cannot be stored in the FIFO anymore. This is, because the read out process has to be faster
than the read in process to provide free storage positions in the FIFO.
With a very simple handshake procedure it is possible to control the access to the CPLD
respectively to the data of the FIFO. Therefor port 3L and port 3H can be helpful to realize
this access control. In this project, this simple handshake protocol was implemented on the
Altera CPLD, but as already mentioned below, it was too slow for the data communication.
For measuring the time for reading out values, a simple stop watch function GetTickCount
Lib "kernel32" () As Long was used in Visual Basic. This function returns values in the
microsecond range. In the worst case, it delivers a value of about 25 ms for reading out one
epoch time value from the CPLD. After realizing this fact, it is absolutely clear that this
interface is useless for this job, because epoch time values arrive in 500 µs intervals to the
CPLD and it becomes conceivable that the FIFO produces a data overflow in a short period
of time. The exact time was not measured, because the main concern was to find an optimal
interface for this project. Next, the mentioned handshake process will be explained.

Handshake Model

Normally all lines, which are not set to high are in status low, but to be absolutely sure, these
lines are reseted with the provided function ResetLine(Port,Line) before the USB-PIO begins
to operate with the CPLD. Most important to know is, that just lines with output direction
can be reseted. All lines, which are set as input, can just be sampled. For reseting all lines,
special functions were programmed to provide a better overview. In the following, a simple
function is shown, which resets the simulation line.
1 Pr ivate Sub ResetS imulat ion ()
2 ’ r e s e t s the Simulat ion Pin on the CPLD. This Subrout ine uses the
3 ’ d l l meMPIO1 the Simulat ion Pin i s on Port 3 , Pin 4
4
5 meMPIO1. ResetLine 3 , 4
6
7 End Sub

4.2. USB-Programmed Input / Output 40

The other reset functions are quite similar. To begin a simulation with empty epoch time
values, the simulation pin has to be set to status high. This can be done with the function
SetLine(Port,Line). After that procedure, the CPLD starts simulating and providing epoch
time values for the USB interface.
1 Pr ivate Sub SetS imulat ion ()
2 ’ s e t s the Simulat ion Pin on the CPLD. This Subrout ine
3 ’ uses the d l l meMPIO1
4 ’ the Simulat ion Pin i s on Port 3 , Pin 4
5 ’ at the beginning , the Simulat ion Pin i s r e s e t , to make sure that i t
6 ’ i s low . After that i t i s s e t to high with SetLine .
7
8 With meMPIO1
9
10 . ResetLine 3 , 4
11 . SetLine 3 , 4
12
13 End With
14
15 End Sub

After turning the simulation line to high, the program has to check, if the data available line
is high. With this signal, the CPLD shows if there is data in the CPLD respectively in the
FIFO available or not available.
The next step is to scan the data available pin periodically, if it is high or low. This must
be done in an endless loop, because this cycle must not be interrupted. In Microsoft Visual
Basic 6.0 an endless loop is not very easy to realize, because it is a very intensive process and
other processes on the PC get blocked. After a short period of time, the PC crashes down.
To avoid this effect, Microsoft Visual Basic 6.0 provides a function called DoEvents. This
function allows other processes running on the PC too. In other words, the other processes,
which run on the system also get the CPU of the PC for a short time. This sounds quite
reasonable, but after testing it, it becomes clear that the read out process becomes much
too slow. For about 1 ms, the read out process stands still. The next idea was to call up
DoEvents just every 1000-th loop cycle. With this interface, this procedure was not successful,
because as already mentioned, the USB-PIO had a slow transfer rate. The self programmed
function isDataAvailable checks the data available pin after the program was started. If the
data available pin is high, the program realizes that the CPLD has any data in the FIFO and
that they can be read out. After checking the status of the data available pin, two functions
write on the GUI, if data is available or not available. When data is available, the function
GetDelayTime returns the present delay time respectively the epoch time value.

4.2. USB-Programmed Input / Output 41

1 Pr ivate Function GetDelayTime () As Double
2 ’ This func t i on reads out data from the CPLD from Port 2 .
3 ’ I t r e tu rn s the value as a double−value be f o r e the func t i on
4 ’ i s ab l e to read out the data , the read pin (port 3 , pin 3)
5 ’ i s s e t to s t a tu s high and then i t i s r e s e t to low .
6 ’ to get the c o r r e c t data , i t i s nece s sa ry to read
7 ’ out the l e a s t s i g n i f i c a n t value and the most s i g n i f i c a n t va lue
8 ’ f i r s t o f a l l , the func t i on reads out the l e a s t s i g n i f i c a n t value
9 ’ (LSV) on Port 2 . To get the most s i g n i f i c a n t value ,
10 ’ i t i s nece s sa ry to s e t the read−pin high . The func t i on uses
11 ’ the d l l meMPIO1 and the func t i on GetPort (Port) . This func t i on r e tu rn s
12 ’ a decimal va lue o f the Port . The port i s 8 b i t s l a r g e .
13 ’ F i r s t o f a l l , we get the l e a s t s i g n i f i c a n t va lue o f port 2 ,
14 ’ which i s 8 Bi t s long . After that , the func t i on has to s e t
15 ’ the read pin to s t a tu s high and reads out the most s i g n i f i c a n t va lue .
16 ’At l e a s t , the LSV and the MSV must be in the c o r r e c t order .
17 ’ After that the func t i on has to compute the Delay time .
18 ’The Delay Time i s the Epoch Time − mul t i p l i e d with the f a c t o r
19 ’ 5 ∗10^−9 , because the CPLD counts with 5 nanosecond s t ep s .
20 ’That ’ s the r e s o l u t i o n o f the counter . The Return−Value (DelayTime) i s

a
21 ’ Double Value !
22
23 Dim EpochTime_LSV_5ns As In t eg e r ’ v a r i ab l e that ho lds the l e a s t

s i g n i f i c a n t value o f the Epoch Time
24 Dim EpochTime_MSV_5ns As In t eg e r ’ v a r i a b l e that ho lds the most

s i g n i f i c a n t value o f the Epoch Time
25 Dim EpochTime As In t eg e r ’ v a r i ab l e that s t o r e s the c a l c u l a t ed epoch

time value c o n s i s t i n g o f the LSV and the MSV
26 Dim DelayTime As Double ’ v a r i ab l e o f the
27
28 GetStatusRead ’ be f o r e i t i s p o s s i b l e to read the c o r r e c t data o f the

port , the read pin (Port 3 , Line 3) must be s e t
29 ’ high f o r a shor t pe r i ode o f time
30
31 EpochTime_LSV_5ns = meMPIO1. Port (2) ’ get the LSV of the ac tua l Epoch

Time and s t o r e i t in the c o r r e c t v a r i a b l e
32
33 GetStatusRead
34
35 EpochTime_MSV_5ns = meMPIO1. Port (2) ’ get the MSV of the ac tua l Epoch

Time and s t o r e i t in the c o r r e c t v a r i a b l e

4.2. USB-Programmed Input / Output 42

36
37 EpochTime = (EpochTime_LSV_5ns + EpochTime_MSV_5ns ∗ 2 ^ 8)
38 DelayTime = EpochTime ∗ (5 ∗ 10 ^ −9)
39
40 GetDelayTime = DelayTime ’ func t i on r e tu rn s the Delay Time
41
42 End Function

The previous page shows the source code of the main function, which is responsible for reading
out the values from the CPLD. The only thing which is quite necessary to mention is that
the function Port(Port) reads out the whole eight bit port and transforms the eight bit value
into an eight bit decimal value.

The introduced USB-PIO is a simple interface, which can be programmed easily. The included
functions in the meMPIO1 dll provide easy handling. The programmer just needs to know
how to deal with these functions and how to connect the USB-PIO to the CPLD and the
PC. The main task is to study the programmers guide and to include the dll to the Microsoft
Visual Basic 6.0 software. The provided digital functions are easy to handle and allow easy
access for transferring and receiving data. The biggest drawback is the slow transfer rate. As
already mentioned, the interface is useless for critical time operations. After programming the
interface, the averaged transfer time for reading out an epoch time - consisting of four bytes,
was about 25 ms. That is much too slow in relation of the time intervals of the epoch times.
These values are stored in microsecond intervals in the FIFO. After a very short period of
time, the FIFO gets overflowed and new epoch time values cannot be stored anymore. In
other words, in most instances the time values get lost and decoding them into a correct
and meaningful ASCII message is impossible. After discussing these facts respectively these
drawbacks it becomes clear that the USB-PIO is not the right interface for this project and
that it has to be replaced by another much faster interface. This primitive example presents
one of the most important procedures before realizing any kind of hardware and software. A
wrong decision can effect complications, which are not easy to handle without redesigning the
project. Very often, the hardware components have to be changed and the software has to be
reprogrammed. The wrong selection of the interface, cost a lot of time, but it was a very
good practice for the future work. Also experimenting with more than one interface brings a
not underestimated gain in experience. On the following page, a new interface with a very
high transfer rate will be introduced. It is able to deal with the existing hardware and with
the used programming language.

4.3. UM245R Interface 43

4.3 UM245R Interface

To avoid transfer speed problems, the UM245R module is used for this project. It is parallel
FIFO interface (TTL) development module. The following characteristics and informations
about this interface are retrieved from the datasheet [1].

• Single chip USB to parallel FIFO bidi-
rectional data transfer interface.

• Entire USB protocol handled on the
chip. No USB specific firmware pro-
gramming required.

• Fully integrated 1024 bit EEPROM stor-
ing device descriptors and FIFO I/O
configuration.

• Fully integrated USB termination resis-
tors.

• Fully integrated clock generation with
no external crystal required.

• Data transfer rates up to 1 Mbyte / sec-
ond.

• 128 byte receive buffer and 256 byte
transmit buffer utilizing buffer smooth-
ing technology to allow for high data
throughput.

• FTDI’s royalty-free Virtual Com Port
(VCP) and Direct (D2XX) drivers elim-
inate the requirement for USB driver
development in most cases.

• Unique USB FTDIChip-ID feature.

• Configuable FIFO interface I/O pins.

• Synchronous and asynchronous bit bang
interface options with RD# and WR#
strobes.

• Device supplied pre-programmed with
unique USB serial number.

• Supports bus powered, self powered and
high-power bus powered USB configura-
tions.

• Integrated +3.3 V level converter for
USB I/O.

• Integrated level converter on FIFO in-
terface for interfacing to external logic
running at between +1.8 V and +5 V.

• True 5 V / 3.3 V / 2.8 V / 1.8 V CMOS
drive output and TTL input.

• Configurable I/O pin output drive
strength.

• Integrated power-on-reset circuit.

• Fully integrated AVCC supply filtering
- no external filtering required.

• +3.3 V (using external oscillator) to
+5.25 V (using internal oscillator) Single
Supply Operation.

• Low operating and USB suspend cur-
rent.

• Low USB bandwidth consumption.

• UHCI/OHCI/EHCI host controller com-
patible.

• USB 2.0 Full Speed compatible.

4.3. UM245R Interface 44

• -40◦ C to 85◦ C extended operating tem-
perature range.

• Available in compact Pb-free 28 Pin
SSOP and QFN-32 packages (both
RoHS compliant).

The range of applications of this interface is miscellaneous. One basic reason for that is the
high transfer rate. As already above mentioned, the transfer rate is specified with up to
1 MByte / second. Some typical applications of the UM245R, which contains the FT245RL
chip. The list is not completed. For further possible applications, the data sheet has to be
read.

• PDA to USB interface

• USB Smart Card Readers

• USB MP3 Player Interface

• USB Digital Camera Interface

• USB Wireless Modems

• USB Hardware Modems

• Interfacing MCU / PLD / CPLD based designs to USB

Driver Support

To use the UM245RL interface, several drivers for all major operating systems are available.
These drivers are contained on the provided CD-ROM.

Virtual Com Port (VCP) Drivers for. . .

• Windows 7 32, 64-bit

• Windows XP and XP 64-bit

• Windows XP Embedded

• Windows 98, 98SE, ME, 2000, Server
2003, XP and Server 2008

• Windows CE 4.2, 5.0 and 6.0

• Mac OS 8/9, OS-X, Linux 2.4 and
greater

Royalty free D2XX Direct Drivers (USB
Drivers + DLL S/W Interface)

• Windows 7 32 and 64-bit

• Windows XP and XP 64-bit

• Windows Vista and Vista 64-bit

• Windows XP Embedded

• Windows 98, 98SE, ME, 2000, Server
2003, XP and Server 2008

• Windows CE 4.2, 5.0 and 6.0, Linux
2.4 and greater

4.4. FT245R Block Diagram 45

For programming this interface, a driver is needed. First of all, there are two possibilities to
get access to this interface with a programming language like Visual Basic. These drivers can
be downloaded for free from the FTDI website. The FT245R is fully compliant with the USB
2.0 specification. In this project, a D2XX Direct Driver is used, because it is much easier to
handle than the VCP Driver and the transfer rate becomes much higher. This fact will be
discussed a little bit later in this Master Thesis.

4.4 FT245R Block Diagram

Figure 4.3 shows the internal hardware architecture of the FT245R chip, which is implemented
on the used UM245RL interface.

Figure 4.3: Block diagram of FT245R [1]

Functional Block Descriptions

The following itemization explains every single block of figure 4.3 [1].

• Internal EEPROM: The internal EEPROM in the FT245R is responsible for storing
the USB Vendor ID (VID), the Product ID (PID), the device serial number, the product
description string and various other USB configuration descriptors. In this internal

4.4. FT245R Block Diagram 46

EEPROM, a special user area is defined for system designers to allow storing additional
data. This can be done over USB and without any additional voltage requirement.

• +3.3 V LDO Regulator: The +3.3 V LDO regulator generates the 3.3 V reference
voltage for driving the USB transceiver cell output buffers. The main function of the
LDO is to power the USB Transceiver and the Reset Generator Cells rather than to
power external logic.

• USB Transceiver: The USB Transceiver provides the USB 1.1 / USB 2.0 full-speed
physical interface to the USB cable. The output drivers provide +3.3 V level slew
rate control signaling, whilst a differential input receiver and two single ended input
receiver provide USB data in, Single-Ended-0 (SE0) and USB reset detection conditions
respectfully.

• USB DPLL: The USB DPLL cell locks on to the incoming NRZI USB data and
generates recovered clock and data signals for the Serial Interface Engine (SIE) block.

• Internal 12 MHz Oscillator: The internal 12 MHz Oscillator generates a 12 MHz
reference clock. This provides an input to the x4 Clock Multiplier function. It is also
used as the reference clock for the Serial Interface Engine, USB Protocol Engine and
FIFO controller blocks.

• Clock Multiplier / Divider: The Clock Multiplier / Divider takes the 12 MHz input
from the Internal Oscillator function and generates the 48 MHz. The 48 MHz clock
reference is used by the USB DPLL and the Baud Rate Generator blocks.

• Serial Interface Engine (SIE): The Serial Interface (SIE) block performs the parallel
to serial and serial to parallel conversion of the USB data. It also checks the CRC on
the USB data stream.

• USB Protocol Engine: The USB Protocol Engine manages the data stream from the
device USB control endpoint. It handles the low level USB protocol requests generated
by the USB host controller and the commands for controlling the functional parameters
of the FIFO.

• FIFO RX Buffer (128 bytes): Data sent from the USB host controller to the FIFO
via the USB data OUT endpoint is stored in the FIFO RX (receive) buffer and is
removed from the buffer by reading the contents of the FIFO using the RD# pin. (Rx
relative to the USB interface).

• FIFO TX Buffer (256 bytes): Data written into the FIFO using the WR pin is
stored in the FIFO TX (transmit) Buffer.

4.4. FT245R Block Diagram 47

• FIFO Controller with Programmable High Drive: The FIFO Controller handles
the transfer of data between the FIFO RX, the FIFO TX buffers and the external FIFO
interface pins (DO - D7).

• RESET Generator: The integrated Reset Generator Cell provides a reliable power-on
reset to the device internal circuity at power up. The RESET# input pin allows an
external device to reset the FT245R.

Inputs and Outputs

In the following tables, the input and output pins are explained. The pins can be separated
into five main groups.

Pin Number Name Type Description
1 D0 I/0 FIFO Data Bus Bit 0
2 D4 I/O FIFO Data Bus Bit 4
3 D2 I/0 FIFO Data Bus Bit 2
5 D1 I/0 FIFO Data Bus Bit 1
6 D7 I/0 FIFO Data Bus Bit 7
9 D5 I/0 FIFO Data Bus Bit 5
10 D6 I/0 FIFO Data Bus Bit 6
11 D3 I/0 FIFO Data Bus Bit 3
12 PWREN# Output Goes low after the device is configured by USB, then

high during USB suspend. It can be used to control
power to external logic P-Channel logic level MOSFET
switch. Enable the interface pull-down option when
using the PWREN# pin in this way. Should be pulled
to VCCIO with 10 kΩ resistor.

13 RD# Input Enables the current FIFO data byte on D0. . .D7 when
low. Fetched the next FIFO data byte (if available)
from the receive FIFO buffer when RD# goes from high
to low.

14 WR Input Writes the data byte on the D0. . .D7 pins into the trans-
mit FIFO buffer when WR goes from high to low.

22 TXE# Output When it is in status high, it is not possible to write any
data into the FIFO. When it is low, data can be written
into the FIFO by strobing WR high, then low. During
reset this signal pin is tri-state.

23 RXF Output When it is high, it is not possible to read data from the
FIFO.

Table 4.2: FIFO Interface Group [1]

4.4. FT245R Block Diagram 48

Pin Number Name Type Description
15 USBDF I/0 USB Data Signal Plus, incorporating internal series

resistor and 1.5 kΩ pull up resistor to 3.3 V.
16 USBBDM I/O USB Data Signal Minus, incorporating internal series

resistor.

Table 4.3: USB Interface Group [1]

Pin Number Name Type Description
4 VCCIO PWR +1.8 V to +5.25 V supply to the FIFO Interface group

pins (1. . .3, 5, 6, 9. . .14, 22, 23). This pin can be supplied
with an external +1.8 V to +2.8 V supply in order to
drive outputs at lower levels.

7, 18, 21 GND PWR Device ground supply pins
17 3 V 3 OUT Output +3.3 V output from integrated LDO regulator. The

main use of this pin is to provide the internal +3.3 V
supply to the USB transeiver cell and the internal 1.5 kΩ
pull up resistor on USBDP. This pin can also be used
to supply the VCCIO pin.

20 VCC PWR +3.3 V to +5.25 V supply to the device core.
25 AGND PWR Device analogue ground supply for internal clock multi-

plier

Table 4.4: Power and Ground Group [1]

Pin Number Name Type Description
8, 24 NC NC No internal connection
19 RESET# Input Active low reset pin. This can be used by an external de-

vice to reset the FT245R. It can be also left unconnected,
or pulled up to VCC.

26 TEST Input Puts the device into IC test mode. For normal operation,
it has to be tied to GND. Otherwise the device will
appear to fail.

27 OSCI Input Input 12 MHz Oscillator Cell. It can be left unconnected
for normal operation.

28 OSCO Output Output from 12 MHz Oscillator Cell. It can be left
unconnected for normal operation, if internal Oscillator
is used.

Table 4.5: Miscellaneous Signal Group [1]

4.4. FT245R Block Diagram 49

General Remarks

In this project the FT245RL is used. That is the newer version of the FT245BL, which was
also used for some experiments e.g. for a simple loopback test. Incidentally, a loopback test
could be useful to test the read and write process. For this purpose, two interfaces were used.
One for the write process and the other one for read process, although it would also possible
to use just one interface. A loopback test writes a simple string into the FIFO of the used
CPLD by using the first interface and the second interface finally reads out the transmitted
string from the FIFO of the CPLD. These two strings have to be equal. Otherwise the read
or write process was not successful. The FT245BL was used for sending the string and the
FT245RL for reading it. According to the fact that the final version has just to read data
and the transfer rate is up to 1 Mbyte per second, only one interface is probably used.
The main difference between these two devices is that the FT245BL needs an external
EEPROM and quartz. As already said, the FT245RL is the newer version and has an internal
EEPROM and an internal quartz.

First Preparations

To program an UM245R interface for the read out process, one of the two introduced drivers
in 4.3 is necessary to use. The VCP (Virtual Com Port) is much easier to handle but provides
a lower transfer rate than the D2XX driver [1]. According to the programming guide, the
FT245RL can be programmed like a RS232 interface. Microsoft Visual Basic 6.0 provides
a possibility to interact with this type of interface, but it has not been used in this present
Master Thesis.
In consideration of the fact that the transfer rate can be much higher, the D2XX driver were
downloaded from the manufacturer website and afterwards installed on the PC. The driver
can be integrated into many programming languages like C++. A very important fact is that
this driver can also communicate with Microsoft Visual Basic 6.0.
After installing the D2XX driver (a short manual can be found on the manufacturer website),
Visual Basic 6.0 can interact with it and with the FT245RL interface - assuming that the
FT245RL is already connected with the USB interface from the PC. The access to the
FT245RL is provided by a DLL, which can be used, after installing the D2XX Direct Driver.
First of all, the functions of the DLL have to be declared at the beginning of the program.
The use of this functions was not very easy, because the programmers guide just explains the
use of these functions in C++.
In Visual Basic 6.0, the declaration of the provided functions is quite similar but not equal.
The biggest difference is the read out process and the use of the read-out function, because
the 4 Bytes are not stored into a character array like in C++, but they are stored into a string

4.5. Programming the FT245RL 50

and have to be extracted afterwards. This will be discussed a little bit later. The declarations
and the use of the D2XX Direct Driver in Microsoft Visual Basic 6.0 were looked up in sample
codes. Important to mention is that in the final Visual Basic program all possible functions
of the D2XX dll are declared. Also functions, which are not used from the program. This
method avoids any later problems.

4.5 Programming the FT245RL

After finishing the preparations in 4.4, the interface is ready to get programmed with Visual
Basic 6.0. Before the beginning of the implementation, it is important to think about the
functions, which the software has to perform. The following points describe the functionality
in detail:

1. Declaration of the functions, which the dll provides for programming the interface. As
already discussed, all known functions are declared to avoid any possible problems after
using them.

2. Defining the constants for the return codes. Almost every single function returns an
integer after the execution. A return code can be understood as “status answer” and
shows if the operation of the respective function was successful.

3. Before any data can be read out, the interface has to be opened. The D2XX Direct
Driver offers a special function for that. This principle is similar to the opening process
of the USB-PIO, which was explained in section 4.2.

4. When the start button on the GUI is clicked, the program checks, how many devices
are connected on the USB bus of the PC. After checking the number of connected
interfaces, the program opens all connected interfaces. In this present case, only one
interface can be found by the responsible function.

5. After opening the interface, the program is able to read / write from / to the interface.
To avoid any possible inconsistency, all connected interfaces are described by an unique
id, which is stored into a special variable after executing the responsible function. Next
the program writes two characters respectively two bytes into the FIFO of the interface
(in this case “HA”) and waits 30 ms. After this time period, the interface gets reseted
by the provided reset function.

6. When the program reaches this unit, the interface is still open and the algorithm can
deal with it. An endless loop checks if the queue status is higher than zero. The function,
which checks this status, stores the numbers of bytes of the FIFO into a parameter
value. It is important to mention that the return value of the function only describes

4.5. Programming the FT245RL 51

the status of the execution of the function and has nothing to do with the number of
bytes in the FIFO. If the number of bytes is higher or equal to 1024, the read-function
reads out the whole bytes and stores it into a string, which has to be separated into its
single bytes. If the program is closed, the algorithm jumps to the label CloseHandle.

This is just a very simplified description of the implemented algorithm, but it can be helpful to
get a better overview for the main components of the source. These components respectively
the main parts of the source code need to have a more detailed view in the next section.

Provided Functions

Before the different parts of the source code will be discussed in detail, it is necessary to
explain the main characteristics of the used functions. As already announced, the functions of
the D2XX dll are not similar to any other “normal” functions in Visual Basic 6.0. The main
difference can be found on the parameters of the functions and on the return values. The
return value of a D2XX function is a kind of status message and describes, if the function
was successful with its operation or not. There are quiet a few different status messages,
which can be seen in B.3. If the return value of a function is equal to zero (FT_OK), the
function did not have any problems and can express its results by its parameter values. How
this works will be explained in the following example.
1 ’Open dev i ce FT245RL with Open_By_Description
2 I f FT_OpenEx(s t rDe s c r i p t i on , FT_OPEN_BY_DESCRIPTION, LngHandle) <>

FT_OK Then
3 ErrorCode = FT_OpenEx(0 , FT_OPEN_BY_DESCRIPTION, LngHandle)
4 LoggerL i s t . AddItem ("Open_EX f a i l e d ")
5 LoggerL i s t . AddItem (" ErrorCode : " & ErrorCode)
6 Exit Sub
7 Else
8 LoggerL i s t . AddItem ("FT_OpenEx Succe s s fu l , FT245RL i s open now :−)

")
9 End I f

This section of the source code written in Visual Basic 6.0 opens a FT245RL interface with
the “Open By Description” method.The function on line 2 has the following structure:

Pr ivate Dec lare Function FT_OpenEx Lib "FTD2XX.DLL" (ByVal arg1 As
Str ing , ByVal arg2 As Long , ByRef LngHandle As Long) As Long

In the following, the most important function parameters are explained in detail.

• arg1: Stands for the description of the FT245RL. Every single FT245RL has its own
unique description string, which is created by the function FT_ListDevices. Without

4.5. Programming the FT245RL 52

executing FT_ListDevices it is not possible to open a FT245RL with a description.
However it would also be possible to open the FT245RL by serial number. In this case,
the serial number has to be entered, which would be also a string and not a long integer.

• arg2: Is a flag and describes how the interface has to be opened. There are two different
opening modes. The first one is FT_OPEN_BY_SERIAL_NUMBER and the second
one is FT_OPEN_BY_DESCRIPTION. These constant are defined at the beginning
of the source code.

• LngHandle: Is also a unique number and describes one single FT245RL. The function
stores this number into this parameter. Before the function is executed, this parameter
value is still empty respectively equal to zero. After a successful execution (return value
is equal to zero), the parameter value LngHandle can be read out. This unique number
is very important for writing and reading data from the FT245RL and has to be passed
as function parameter to every function. Without this number, the function would not
know, which FT245RL the programmer means. In other words, LngHandle is like a
serial identification number.

Back to the source in 4.5. The most essential details can be seen on line 2 and line 3. In
these lines, the error code respectively the return value is sampled by the if-condition. As
already mentioned, the operation of a function was successful, if the return value is equal to
FT_OK respectively equal to zero. All other possible return values describe an error e.g. if
the FT245RL is still not connected with the USB bus of the PC. Finally the error code is
displayed on the loggerlist (see line 4 and 5).
If everything was okay, the program jumps to line 8 and displays an acknowledgment that
the opening operation was successful.

Read / Write Process

This simple source code in 4.5 shows the main structure of all contained functions in the
D2XX dll. After the opening process, the interface can be used for receiving / writing data
from / to the CPLD. As already explained at the beginning, the received data is packed into
a string and can be extracted after the reading process was successful. The string, which
includes the received data has a length of 63488 bytes. That is the maximum number of
bytes, which the FT245RL is able to store in its integrated FIFO. Normally, the string is
smaller than the maximum number of bytes after the read out process, because most of the
time the FIFO is not full before it is read out by the readout function.
Reading out one byte from the FIFO with the integrated function of the D2XX Direct Driver
is fast enough for this task. It can be done in the microseconds range. The programming

4.5. Programming the FT245RL 53

style is crucial for the transfer speed e.g. unnecessary loops or arrays waste lots of computing
time. A previous version of the program contained lots of of these time consuming constructs
and the effect was a very slow execution of the source code. After a very short period of
time the queue status of the FIFO was 63488 bytes - that is the maximum number of storage
positions of the FIFO. Further bytes got lost and could not get processed by the software.
Received epoch time value consists of four bytes. Therefore 63488 bytes describe 15872 values
and that is also the maximum number of epoch time values, which the internal FIFO of the
interface can store. The software only reads in a number of bytes, which can be divided
by four without any division remainder to ensure that only integral epoch time values are
computed. The following source code statement is responsible for determining the actual
number of bytes, which can be read out from the FIFO.

BytesReadable = lngRxBytes − lngRxBytes Mod 4

lngRxBytes describes the number of all available bytes in the FIFO. As it is explained, one
epoch time value contains of four bytes. Therefore there must not arise any division remainder
after dividing the number of bytes by four. This source code below accomplishes this operation
by calculating the remainder of the division with four. The next step is subtracting the
division remainder from the total number of bytes and the final result is stored into the
variable BytesReadable.
In most cases, the variable BytesReadable contains the same number of bytes than lngRxBytes,
but to be absolutely sure that everything gets all right, this part of the source code is
indispensable. The next part of the algorithm is to read in this number of bytes from the
FIFO. As it is explained in the previous section, the D2XX Direct Driver provides a function
to read in a defined number of bytes.

FT_Read(LngHandle , strReadBuffer , BytesReadable , lngBytesRead)

The return value of this function is an error code. If it is zero, the execution of the function was
successful. All other integer values describe an error during execution. Next, the parameter
values of the readin function are explained.

• LngHandle: Unique number for triggering the requested FT245RL.

• strReadBuffer: Is a string with a length of 63488 and contains the read bytes.
The bytes are stored in ASCII characters and they have to be converted into their
ASCII values. This procedure will be explained later. Before the function is executed,
strReadBuffer is empty.

• BytesReadable: Presents the number of the requested bytes, which have to be read
by the function.

4.6. Computing the Epoch Times 54

• lngBytesRead: Describes the number of bytes, which were definitely read by the
function. In the normal case, this number is equivalent with the number of LngHandle.
If the value of lngBytesRead is lower than the value of BytesReadable, the function did
not read all requested bytes.

4.6 Computing the Epoch Times

The next step of this algorithm is to extract the received bytes out of the strReadBuffer
string. First of all, it is important to know that one epoch time consists of four bytes. In
the string variable, the maximum number of characters is 63488. This is also the maximum
number of values in the FIFO as already mentioned before.
The for-loop is needed to analyze every single character of the string. Four characters in the
string stand for one epoch time value. The highest value, which one byte is able to describe
is 255.
The for-loop is not like a common for-loop with step 1, but a for-loop with step 4. This
means that only the first byte of an epoch time is reached by the for-loop. The counter of
the for-loop finally gets increased for three times after a loop cycle, to get the remaining
three bytes of a single epoch time value. After that procedure, the epoch times are computed
with their four bytes. Important is that the first, the fifth, the ninth, the thirteenth and all
the rest of it describe the first byte of an epoch time in each case. The byte string can hold
maximum 63488 bytes. But most of the time there are less bytes stored in the string. In
other words, the program has to realize, that it reached the end of the string. Normally, the
end of the string is reached, when the software reads zero on a string-position. That would be
possible to check at each step. But there is a better way to find out the “real” end of a string.
The source code fragment in 4.5 computes the number of bytes, which the read-function has
to read out of the FIFO. The length of the string is described by the value of BytesReadable.
The maximum value of BytesReadable is again 63488. Due to this conclusion, the program
does not need to check every single byte, if it is a value of an epoch time or if it describes the
end of the string. In other words, the for-loop runs until the first byte of the last epoch time
value is reached.

1 For Counter = 1 To BytesReadable − 3 Step 4
2 Byte_0 = Asc (Mid$ (strReadBuffer , Counter , 1))
3 Byte_1 = Asc (Mid$ (strReadBuffer , Counter + 1 , 1))
4 Byte_2 = Asc (Mid$ (strReadBuffer , Counter + 2 , 1))
5 Byte_3 = Asc (Mid$ (strReadBuffer , Counter + 3 , 1))
6

4.6. Computing the Epoch Times 55

7 EpochTime = CDec(Byte_0) + CDec(Byte_1 ∗ 2 ^ 8) + CDec(Byte_2 ∗ 2 ^
16) + CDec(Byte_3 ∗ 2 ^ 24)

8 Nanoseconds = CDec(EpochTime) ∗ 5
9
10 ’ RelevantValue = RelevantValue Mod 100000
11 RelevantValue = Nanoseconds − Int (Nanoseconds / 100000) ∗ 100000
12
13 L i s t 5 . AddItem Nanoseconds ’ Display the NanoSeconds on L i s t 5
14 L i s t 5 . L i s t Index = Li s t5 . ListCount − 1
15 L i s t 5 . S e l e c t ed (L i s t 5 . L i s t Index) = False
16
17 Index = Index + 1 ’ In c r ea s e the Index Value
18 InformationArray (Index) = RelevantValue
19 Next Counter

The for-loop can be seen on line 1. It analyses the string with step 4. The second line until the
fifth line separates the sting in its bytes. Important is that at first the least significant byte of
the present epoch time value is reached. This mentioned least significant byte is computed in
the second row. The internal function Mid$ is able to separate this character respectively the
byte from the string. If the counter variable of the for-loop is next increased, the function
Mid$ is able to analyze the second significant byte of the present epoch time. This can be
seen in the third line of the code fragment. The most significant byte is finally determined
in the fifth line. As it is known, a string in Visual Basic always consists of characters. One
character presents a byte and a byte can describe at maximum a value of 255. To get a
integer value from a character, the character has to be transformed in its equivalent number.
This manages the internal function Asc. On line 7, the epoch time value is calculated with
the four bytes of the string. The used function CDec converts every single byte in its decimal
value - a base 10 floating point number.
To get the correct result, the epoch time is multiplied by five because the resolution of counter
is 5 ns. This means, that the counter counts in 5 ns steps. The basic grid of the epoch
time values is 500 µs. To simplify the next operations e.g. determining the zero value, the
epoch time values are truncated after the 500 µs position on line 11. For example, if there
is an epoch time value of 156456788 ns, the value is converted into 56788. The advantage
of this method is that the basic grid does not have to be considered anymore. This “cut-off
method” is just a simple modulo operation as it is explained by the comment on line 10. For
determining the ASCII values only the last fourth positions of the epoch time values are
essential. These important positions represent the offset, the ASCII value and at least the
jitter. In other words, the value RelevantValue does not represent the 500 µs any more. That
is a very big advantage for calculating the final character, because the counter of the CPLD

4.6. Computing the Epoch Times 56

gets overflowed at a defined value.
After this operation, this value is stored into a array called InformationArray. This array can
store at least 63488

4 ⇒ 15872 values. All other not explained lines in the source code fragment
are unimportant e.g. the lines 13 to 15, which write the calculated values into a list of the
GUI. After a loop cycle, the counter variable Counter gets increased. This is shown on line
17. This procedure is repeated until the end of the string is reached.

Determining the Zero Value

In section 3.1 it is mentioned, that for determining the characters a reference value or a zero
value is needed. This determination is not new, because it was already used in the source
code 3.1.5. It is important to remember that the reference value has to be subtracted from
the coded epoch time value. The determination of this important value is not easy to find,
because there must be 100 equal values for defining the zero value. After 100 values with an
interval of 500 µs (in due consideration of possible jitter) were detected, the algorithm starts
with determining the deviation of the epoch times from the 500 µs grid. This is necessary to
provide tight tolerances. It is considered that this method does not allow sending 100 same
characters. That would cause some difficulties by determining of the reference value. As
it is already mentioned, the epoch time values are afflicted with jitter in a range of ±7 ns.
This also applies for the zero values of course and that is the reason why 100 zero values are
stored into an array and finally sum up to determine the deviation of the zero values from
the 500 µs grid. As previously mentioned only the last fourth positions of the epoch times
are important and after eliminating the irrelevant positions, the basic grid does not have to
be considered by determining the deviation. Another method for computing the reference
value would be to use regression lines. The advantage of this method is that uncertainties
like jitter could be nearly eliminated. For this project, the implementation of this regression
algorithm was not necessary, because the effects of uncertainties became insignificant low.
Assuming that e.g. only 30 equal values were found, all elements of this array would get
erased and the algorithm starts again searching for 100 equal values and storing them into
the zero value array. The determination of the reference value has to be done after every
reading process and the old reference value of the last reading cycle becomes invalid. In other
words, after storing the new epoch time values in the InformationArray, the determination
of the reference value begins afresh to provide a better accuracy. The laser system has to
provide zero values when no characters are transmitted. The worst case would be that there
are not 100 equal values stored in the array. In this case, the algorithm uses the old reference
value of the previous cycle. The old reference value of the previous cycle is always stored in a
variable. After a new reference value is found, the algorithm overwrites this value with the
new reference value at the end of the present program cycle. If the algorithm does not find

4.7. Graphical User Interface of the final Detection Software 57

any equal values, the reference value remains zero and extracting messages are not possible.
After the reference value is found, the algorithm starts to determine the ASCII characters by
retrieving the epoch times, which are stored in the InformationArray. This determination
happens in the same way like in the previous source code e.g. in 3.1.5. The zero values in the
InformationArray are also considered on the determination of the ASCII characters, although
they do not represent any characters. They are not erased from the array. This method does
not critically increase the computation time and does not effect the final results, because the
difference between the reference value and a zero value is accordingly low. The complete
source code of this project can be read in the appendix.

4.7 Graphical User Interface of the final Detection Software

The GUI is very simple and offers just the most important options. As already mentioned, it
contains four text fields. The information field, the readed bytes field, the determined null
value (zero value) field and the main field, which contains the received message after the
execution. A detailed description will follow after figure 4.4.

Figure 4.4: GUI of the final software

There are just two buttons. The button “Start” opens the connection for the UM245R
interface and requests if the FIFO contains any data respectively bytes. If there is no data
available - e.g. if the CPLD is not switched on, the program stays in this state as long as the

4.7. Graphical User Interface of the final Detection Software 58

number of bytes in the FIFO is zero.
The number of bytes in the internal FIFO of the interface has to be greater or equal to 4096.
Only then, the algorith begins to read out bytes from the USB interface. This minimum
number of bytes can be changed very easily with no time exposure. This is important, if files
with less than 1024 chars are sent.
One other possibility could be that shorter files with less than 1024 chars are sent for more
than one time. In this case, the limit of 4096 bytes would exceed and the algorithm would
start determining the correct ASCII values. Here, no changing of the minimum number of
bytes would be necessary. One other special case would be if a file with a length of 5000 bytes
respectively 1250 chars is transmitted. In due consideration that a 2 kHz laser (2 bytes / s)
is used, the total number of transmitted bytes is always more than 5000 bytes. The owerflow
of bytes are zero values, which are used for determining the reference value.
Important to mention is, that the minimum number of bytes cannot be arbitrary low e.g. 4
bytes, because the algorithm determines the reference value after every readout cycle. For
determining this reference value, there must be at least 100 epoch time values stored in the
array - the algorithm has to find at least 100 zero values.
Selecting 400 bytes as lowest limit might cause problems, because there would be just 100
epoch time values in the array and it is not guaranteed that these time values are zero values.
Assuming that these values describe no ASCII characters, but zero values, the algorithm
could determine the correct reference value. Important is that the algorithm finds a reference
value after the first reading cycle. If not, data loss would prevent a correct interpretation of
the transmitted file. If no reference value is found in the next cycles, the algorithm takes the
old reference value from the previous reading cycles. So it does not cause any problems if
there do not exist 100 zero values in the next cycles.
The conclusion of this fact is, that using a limit of 2048 bytes would be a good choice.
Remembering that 2048 bytes can describe 512 characters - the probability that the array
contains 100 zero values would be high.
After retrieving the bytes from the FIFO of the interface, the algorithm continues by calculating
the epoch time values based on four bytes for each epoch time. As already explained, on line
7 of source 4.6, the epoch time gets calculated and stored in a variable called EpochTime.
After reading out all values, the algorithm continues with determining the zero value. These
steps have already been explained in section 4.6.
The button “Close” just closes the present connection between the interface and the USB bus
of the PC.
The text field on the left side is a information field, which can contain some important
informations about the connection e.g. how many bytes are ready for reading out from the
FIFO of the interface or how many interfaces are connected on the USB bus. These status

4.8. Final Discussions of chapter 4 59

values are updated from different functions provided from the D2XX dll. As it is seen, figure
4.4 was currently created, when there was no interface connected to the USB bus of the PC.
Otherwise the text box would show the explained informations. This text box is just for
fixing bugs in the program source.
On the right side there is a textbox Determined NullValue. This field displays the present
zero value, which is used for determining the ASCII characters. This text field has been most
important for debugging, because determining the zero value is the most critical part of this
software.
The message field is for displaying messages, determined from the epoch time values. This is
almost the same text field as it can be seen on figure 3.4 on the right side.

4.8 Final Discussions of chapter 4

This detection software was successfully tested at the 2 kHz Satellite Laser Ranging station
in Graz / Austria. Important to mention is, that the offset of 40 ns, discussed in 2 has to be
changed up to 80 ns. On the hardware side, changing the offset was more difficult to realize
e.g. reprogramming the FPGA on the ISA card, shown in 4.1. By using an offset of 40 ns the
transmission tests were not successful. Most of the ASCII characters were not recognized
correctly. One basic cause for this problem is the uncertainty respectively the jitter, caused
by hardware delays.
The maximum tolerable value when using 40 ns offset is in the range of 35 ns. If the jitter is
outside this range, a correct interpretation of transmitted messages cannot be guaranteed.
The most common errors of not using a suitable offset are rounding failures. As already
mentioned, the program uses a rounding procedure, because for an assignment to an ASCII
character, the determined ASCII value has to be a positive integer.
If the offset is increased up to 80 ns, the highest tolerable offset is in the range of 75 ns. With
this modification, the transmitted messages were extracted without any failures. In the next
chapter, some results of these measurements will be shown.

5 Detection Hardware
In this chapter, the most important component of this project will be introduced. It is about
a Multi-Pixel Photon Counter, which is manufactured by Hamamatsu. The standard detector
for SLR is a SPAD - a Single-Photon-Avalanche-Diode. This is an excellent device for SLR,
but it is not suitable as a PPM detector. It is single-photon sensitive, thus reacting on any
arriving background photon. At 2 kHz it produces a dark noise of about 400 kHz - all that
ends up in a lot of noise points, prohibiting its use as a PPM detector.
Instead, a Hamamatsu Multi-Pixel Photon Counter Module (MPPC; C10507-11-050U) is
used. The MPPC is essentially an opto-semiconductor device with photon-counting capability
and which also possesses great advantages such as low voltage operation and insensitivity
to magnetic fields [2]. Each APD pixel of the MPPC outputs a pulse signal when it detects
one photon. Finally the signal output from the MPPC is the total sum of the outputs from
all APD pixels operating in Geiger mode. The MPPC offers the high performance needed
in photon counting and is used in diverse applications for detecting extremely weak light
at the photon counting level [2]. It has many features like high gain (105 to 106), low dark
count rate (< 1 MHz with 0.5 p.e. threshold level), low bias voltage operation (< 100 V),
insensitive to magnetic fields, room temperature operation, high Photon Detection Efficiency
(PDE), high time resolution, low power consumption and mechanical robustness [21].

5.1 Single Photon Avalanche Diodes

Single photon avalanche diodes (SPADs) are p-n junctions reverse-biased above breakdown
voltage (Vbd) for single photon detection. When a diode is based above Vbd, it reamins in a
zero current state for a certain period of time - in this present case in the microseconds range.
During this time, a very high electric field exists within the p-n junction generating the mul-
tiplication region [14]. Under these conditions, if a primary carrier enters the multiplication
region and triggers an avalanche, several hundreds of thousands of secondary electron-hole
pairs are generated by impact ionization, thus causing the diode’s depletion capacitance to be
rapidly discharged [14]. Thus, a sharp current pulse is generated and can be easily measured
[14]. This mode is commonly known as Geiger mode.
In cases where the area of the APD or the generation volume of the depleted space charge
region of the p-n junction is large, the thermal (dark) generation current results in individual
breakdown events and creates dark counts [19].

60

5.1. Single Photon Avalanche Diodes 61

Figure 5.1: SPAD in Geiger mode
[22]

Figure 5.1 on the left shows a sin-
gle photon avalanche potodiode in
Geiger mode. This mode can be
achieved by biasing the reverse volt-
age larger to an APD than the break-
down voltage (Vbr). The operation
voltage Vop can either be called bias
voltage. The gain becomes extremely
high in Geiger mode in comparison
to linear mode. This high gain is
responsible for a large measurable
output pulse. On the other hand,
the thermal excitation noise grows
as a result of high gain to 1 photon
equivalent (p.e.) pulse size [22]. The
output pulse charge can be deter-
mined by equation 5.1.

Q= C(Vop−Vbr) (5.1)

Q= output pulse charge

C = capacitance of APD pixel

Vop = operation voltage

Vbr = breakdown voltage

The three modes of the basic operation of a SPAD are charge, discharge and quenching [22].
The Geiger mode APD can be assumed as capacitance for an easier explanation of figure 5.2.

5.1. Single Photon Avalanche Diodes 62

Figure 5.2: Basic Operation of a
Geiger mode APD [22]

The APD respectively the capaci-
tance is charged by the operation
voltage Vop and stays in this state
until an incidence of photon occurs.
This photon incidence generates
the avalanche process in the Geiger
mode APD and the current will be-
gin to flow or to discharge [22]. The
recharge of an APD can be limited
by a quenching resistor. In other
words, decreasing Q also decreases
Vop−Vbr and the avalanche process
will stop, but recharge through the
quenching resistor will continue
after the quenching process [22].

The second possible mode for SPADs is the linear mode. In this mode, the reverse bias
applied to the APD is held constant, and the primary photocurrent generated in the APD’s
absorber is amplified by a proportional multiplication factor that is independent of signal
strength (below saturation) [8]. The output of a linear APD is proportional to the level of
illumination it receives. The typical field of application for linear APDs is in optical receiver
to boost weak signals above the noise floor of the receiver’s amplifier [8]. The linear mode is
insignificant for this project.
Also the precise arrival time of individual photons can be detected. These devices are used
in diverse applications e.g. for pulse position modulation or time correlated single photon
counting [7]. This feature is used in this present project. The main problem in this case is the
uncertainty or rather the low time resolution known as jitter. This applications require high
timing resolutions. The lowest reported SPAD jitter at room temperature is 28-ps full-width
at half-maximum (FWHM) using a custom double-epitaxial-layer structure [4].
Jitter optimized SPADs are a field of research in many research papers. Many substantial
progresses have been reached during the studies. Using an area-efficient SiO2 shallow-trench-
isolation (STI) guard ring can improve the timing resolution [7].
In a well designed system, the electronic jitter can be reduced below 10 ps FWHM, therefore,
the ultimate timing performance is limited by the detector itself [18]. Time resolution
problems were eliminated by programming roundings and ranges in this project. Above
mentioned research results should show that time resolution problems by using SPADs for
using the pulse position modulation are familiar. After connecting a quenching resistor to a

5.1. Single Photon Avalanche Diodes 63

Geiger mode APD, the circuit outputs a pulse at a constant level when a photon is detected.
When a diode is biased above breakdown voltage, it remains in a zero current state for a
relatively long period of time, usually in the microsecond range. During this time, a high
electric field exists within the p-n junction generating the avalanche multiplication region [14].
The SPAD can remain in Geiger mode until a free carrier is generated in or enters into the
depletion region, is accelerated by the electric field and acquires sufficient energy and enough
subsequent impact ionizations to result in a self-sustaining breakdown of the diode [10].
A single photon is able trigger an easy measurable avalanche charge. The electronic of the
detector is responsible for avoiding damages on the diode and to reset the current after
triggering. Thermal effects can also cause an avalanche charge. That is one of the main
problems by using SPADs. To be used as SPAD, a diode needs to have a structure that fulfills
some basic requirements, see below [15]:

1. The breakdown must be uniform over the whole active area to produce a standard
macroscopic pulse.

2. The dark counting rate must be sufficiently low.

3. The probability to generate afterpulses should be low.

To characterize a SPAD device, it is essential to estimate some basic facts e.g. dark counting
rate (thermal and afterpulsing components), photon detection efficiency, time resolution,
maximum excess bias voltage, optimal working temperature, etc.
Modern technology allows the production of SPAD detectors with an integrate quenching
mechanism based on a Metal-Resistor-Semiconductor structure [15].
In the next section, some unwanted effects by using SPADs for photon detection will be
presented.

5.1.1 Dark Count

Carriers generated by detected photons produce an output pulse. So called dark current
carriers, generated by high temperature or emitted by trapping levels in the semiconductor,
can also trigger output pulses [18].If the detector is held in the dark, there is an avalanche
triggering rate that is called the dark-counting rate [18]. This rate reduces the sensitivity
of the detector, because dark counts compete with photons in triggering the detector.Dark
Count is usually expressed in electrons per unit of time at a given temperature.
The used MPPC, which is explained in 5.2 is a solid-state device and generates noise due
to termal exitation. The noise component is amplified in Geiger mode operation and the
original photon detection signal cannot be discriminated from the noise. This noise occures
randomly and due this fact its frequency (dark count) is a crucial parameter in determining

5.2. Multi-Pixel Photon Counting Module 64

MPPC device characteristics.
A selected threshold level of 0.5 p.e. is defined as the dark count (number of times that one
or more photons are detected). The dark count in the MPPC is output as a pulse of the 1
p.e. level. It is difficult to discern a dark count from the output obtained when one photon is
detected. According to the datasheet it is unlikely that dark counts at 2 p.e., 3 p.e. or 4 p.e.
level are detected. To reduce dark counts, different technological recipes have been developed
to lower defect densities, and available silicon devices have dark count rates from 2 x 10−3 to
103 s−1 per µm3 of active volume at room temperature [18].

5.1.2 Afterpulse and Crosstalk

Afterpulses are spurious pulses, which follow the true signal - caused by cystal defects, which
trap the generated carriers and then release them at a certain time delay. Afterpulses cause
detection errors. The lower the temperature, the higher the probability that carriers may be
trapped by crystral defects and afterpulses will increase [2].
In an avalanche multiplication process, photons might be generated which are different from
photons initially incident on an APD pixel. In case that these generated photons are detected
by other APD pixels, the MPPC output shows a value higher than the number of photons
that were actually input and detected by the MPPC. This phenomenon is thought to be one
of the causes of crosstalk in the MPPC [2].

5.2 Multi-Pixel Photon Counting Module

For normal Satellite Laser Ranging (SLR), the Graz 2 kHz SLR system uses a Single-Photon-
Avalanche-Diode (SPAD) to detect single and multiple photons, as they are returning from
the satellite. For the pulse position modulation, a SPAD is not suitable for detecting the
modulated laser pulses, because the main drawback of its high sensitivity is the inherent
noise of the detector. It produces more than 400 kHz of dark noise, when it is gated with 2
kHz [11].
For routine SLR, this mentioned noise is not a major problem. It handles several MHz of
daylight background noise anyway, but for proposed data transmission scheme it is more or
less prohibitive, because there is no simple way to discriminate arbitrary noise points from
pulse position modulated data [11].
A single APD, which is operating in Geiger mode cannot distinguish between a single photon
and multiple photons that arrive simultaneously. To avoid the problem with noise, a different
detector is used for this pulse position modulation project. It is a so called Multi-Pixel-
Photon-Counting Module (MPPC: Hamamatsu C10507-11-050U). This MPPC consists of a 20
x 20 array of single SPAD units on the chip. It is a so called Si-PM (Silicon Photomultiplier)

5.2. Multi-Pixel Photon Counting Module 65

device. Althouh it produces even more dark noise (up to 800 kHz) than our SLR SPAD, the
resulting dark noise pulse amplitudes are according to single photons only; however, if a 10
ps laser pulse from the SLR laser arrives, it triggers many or all of the 400 SPAD elements
simultaneously; the combined outputs are superimposed in a much higher analogue output
pulse. Thus, although such a MPPC remains basically single-photon sensitive, it can easily
discriminate laser pulses against very high dark noise and against significant background
noise.
The leading edge of the MPPC analogue output is discriminated by a fast comparator with
adjustable trigger level; the TTL output of this comparator is connected to the CPLD. A
simple 5 ns counter in this CPLD time tags the events. The 5 ns resolution of this counter
is sufficient to resolve the number of 80 ns multiples. The PC reads these event times, and
decodes the corresponding ASCII values.

Figure 5.3: 20 x 20 array of
single SPADs

Figure 5.4: Equivalent circuit
diagram of a
MPPC

Each SPAD in figure 5.3 measures 50 x 50 µm. All of them deliver their current into a
common output line, where the total current of all contributing SPADs is summarized -
assumed that they are triggered by photons. The total current of all contributing SPADs is
summarized in figure 5.6. While the dark noise or the daylight background noise of each single
SPAD on the MPPC chip mainly appears as uncorrelated 1 p.e. (photon electron) pulses,
the relatively strong laser pulses produce much higher signals, which are easily detected and
discriminated with a simple analogue comparator, giving a TTL compatible pulse for any
detected laser pulse, but suppressing all noise pulses [11].

5.2. Multi-Pixel Photon Counting Module 66

Figure 5.5: Output current of triggered
SPADs

Figure 5.6: Accumulated output of Hama-
matsu MPPC

Each pixel, which detects a photon provides an output current. The total sum of all outputs
forms the MPPC output (see figure 5.5). The marked pixels represent the discharge of the
pixel when an incident photon is detected. In the top array, only one photon is detected
and the result is one photoelectron output on the left. In the lower array, three incident
photons are simultaneously detected and the resulting output pulse has a three times higher
amplitude. This technique allows the counting of single photons or the detection of pulses
of multiple photons. When photon flux is low and photons arrive at a time interval that is
longer than the recovery time of a pixel, the MPPC will output pulses that equate to a single
photoelectron. These pulses can be converted to digital pulses and counted [13].
When the photon flux is high or the photons arrive in short pulses (pulse width less than the
recovery time), the pixel outputs will add up as it is shown in figure 5.5. To determine the
incident number of photons per pulse is not possible with SPADs, described in section 5.1.
One more advantage of using a MPPC is the high gain and a low noise, caused by the
multiplication process. The high gain produces a measurable output signal. Unfortunately
the gain is temperature dependent. If the temperature rises, the lattice vibrations in the
crystal become stronger [2]. This increases the probability that carriers may strike the crystal
before the accelerated carrier energy has become large enough, and make it difficult for
ionization to occur. If the temperature becomes higher, the gain becomes lower at a fixed
reverse voltage. To avoid any troubles, it is essential to vary the reverse voltage according
to the temperature or to keep the temperature of the device constant. For this project, the
temperature of the device is not considered.

5.2. Multi-Pixel Photon Counting Module 67

5.2.1 Setting the Photon Detection Threshold

The phenomenon of dark count, described in 5.1.1 is also a problem of using a MPPC for
photon detection. The generation of noise is supported by thermal excitations. The noise
component is amplified in Geiger mode operation and the original photon detection signal
cannot be discriminated from the noise. To eliminate the dark count problem it is necessary
to set a suitable threshold level. According to the datasheet, it is very unlikely that dark
counts at 2 p.e., 3 p.e. or 4 p.e level are detected. In other words, if a large number of
photons is detected, the effects of dark counts can be virtually eliminated by setting a proper
threshold level. The SLR station Graz delivers 400 µJ / shot at 532 nm, which corresponds
to about 1014 photons, with a divergence of the laser beam of 10 arc seconds. If the MPPC is
mounted on a LEO satellite in about 1000 km distance, every SPAD would receive about 100
photons. For the satellite CHAMP, in a distance of about 500 km, each diode would receive
about 400 photons, which is more than enough to trigger a break of each SPAD [11].
For this project, a threshold level of 2.5 p.e. (highest possible threshold level) would be
inappropriate, because of a too low trigger level. Instead of, the analogue out is used. The
quantum efficiency of each SPAD is about 27% at 532 nm. That means that the break of
a SPAD is basically of statistical nature. There is a small percentage of SPADs which will
not trigger due to the arriving photons. Important is that also the trigger threshold of the
analogue comparator can be set accordingly, so that a defined number of SPADs (e.g. 50 or
100 out of the 400 SPADs on the chip) will always result in a TTL pulse output.

5.2.2 Epoch Timing of Returns

The TTL compatible output of the analogue comparator output is connected to a so called
event timer. This event timer is implemented as a 200 MHz counter on the CPLD. The CPLD
itself is connected to the 1 pps and the 10 MHz reference frequency of the GPS Time and
Frequency Receiver of the Graz SLR station. This reference frequency is very accurate and
makes it possible to determine the epoch times of detected laser pulses with 5 ns resolution.
The following figure 5.7 in section 5.3 on the next page shows the final circuit configuration.
The second interface on the circuit board does not have any function or importance. Only
one interface (with the FT245RL chip) is important for reading out the epoch times from
the 200 MHz counter of the CPLD. The other interface (with the FT245BL chip) was used
for realizing the so called loopback test, which just tested the correct operating principle of
the CPLD and the interfaces. For this test two interfaces were used. One for reading in any
string and the other one was for retrieving or receiving this string. These two strings were
equal and the test was therefore successful.

5.3. Test Setup and Results 68

5.3 Test Setup and Results

The Laser Control PC reads one of several ASCII text files. The telescope is pointed to a
retroreflector in a distance of 4288 m. The attenuated laser is fired to this target and on
request of the observer it applies PPM to the laser firing epochs to encode the characters of
the selected ASCII text file. The photons reflected from the retro-reflector are detected by
the MPPC, which is mounted in the main SLR receiving telescope. The incoming photon
stream has a proper attenuation - the MPPC produces the required output pulses and their
epoch times are decoded and the complete ASCII text file is recovered and compared with
the original file. This is explained in 5.3.1. For the main project, only one interface is used.
Only receiving data from the CPLD is necessary.

Figure 5.7: The final circuit configuration

Image 5.7 above shows that the CPLD is connected via USB to the laptop and delivers the
epoch times of all detected laser pulses. On the laptop, the discussed detection software is
executed and determines the ASCII values. How this happens can be read in the last sections
of this Master Thesis.

5.3.1 Test Results

For test transmissions, different texts were used. The first one was the description of the
diploma work of this project with a length of 1510 characters.
At the beginning this file was read by the routine calibration program, when pointing to
the remote target in 4288 m. The calibration program added the offsets for each character
to the basic firing commands. The epoch times of the MPPC-received returns were finally

5.3. Test Setup and Results 69

decoded by the laptop. At a laser firing rate of 2 kHz, the transmission took about 0.76 s.
The transmitted laser energy was attenuated as well as the received energy, to get photon
numbers per SPAD similar to those calculated for LEO satellites. To make it possible to
transmit the coded laser pulses during full daylight conditions, a standard wavelength filter
with a band width of 0.3 nm was placed in front of the detector. To use this system on a
LEO satellite, a similar filter with a larger band width - concerning to large incident angle
variations - has to be used. To check for transmission errors, the laptop program stored the
decoded messages into an ASCII file on hard disk. This ASCII file with the received messages
was finally opened by an ASCII editor with a spell checker. In case of too low received energy
(e.g. due to intentional offset pointing), transmission errors occurred. After checking the
errors, the basic offset of 40 ns was changed to 80 ns. The following text contains the original
text, which was first transmitted.

Coding of Laser Pulse Transmission Time

Basic Task: Laser Firing Times are shifted by N*50 ns,
encoding thus information

Position Coding of Laser Pulses

- Laser Pulses of the SLR Station Graz-Lustbühel are fired at 500 as Time
intervals (2 kHz)

- Laser Firing Times are controlled within an FPGA circuit;

- The FPGA is on an ISA PC Card, and allows easy programming of such
additional delays;

- The Accuracy of Laser Time Firing is +- 7 ns

- Apply additional Delays for each firing time: N*50 ns

- This allows Coding of Information:

N can be substituted with e.g. ASCII character set definition;
e.g. N= 65 means "A" (i.e. 65*50 ns = 3250 ns additional delay)
up to 255x50 ns = 12750 ns (512.75/500 = 1997 Hz instead of 2000 Hz)
Consequence: Coding does NOT reduce significantly the Ranging Frequency

Purpose / Advantage:
Allows transmission of information (e.g. to a satellite)
Data Rate: ? 2000 Characters / second
Detection of this is limited to vicinity around laser beam
Difficult for "unauthorized listening";

Tasks to do:

- Design / program the additional circuitry in the FPGA to allow for these
additional delays;

- Design a simple optical receiver, to detect these laser pulses;

- The detected pulses should be re-translated into the original code,
using a simple program in a Laptop, or PDA, and display / store it

Graz, 14.02.2008 Georg Kirchner

5.3. Test Setup and Results 70

As already mentioned, the first test run was not successful because the decoded text contained
a lot of errors. Most errors were rounding errors e.g. “c” instead of “b” or “a”. In some cases
the letters were skipped and it was just possible to read half words. The following sentence is
a short excerpt from the received text, which was stored in ASCII format on hard disk after
decoding.
− Eeign a uimle opt i camsece iver− to de t e c t these l a s e r pu s e ;

The original sentence, which was transmitted would be:
− Design a s imple o p t i c a l r e c e i v e r , to de t e c t these l a s e r pu l s e s ;

As we can see the received sentence has some typical errors, which were already explained.
Some characters were ignored, because the laser pulses did not reach the MPPC and in the
following the CPLD could not generate any epoch time for the relevant character. The next
strategy was to increase the offset of the coded laser pulses up to 80 ns and to vary the
operating voltage of the MPPC. In case of an offset of 80 ns, the maximal acceptable jitter or
uncertainty can be 75 ns. Until this jitter value a correct decoding of ASCII values is possible
but if the uncertainty becomes higher than the offset of 80 ns, the determination of ASCII
characters will not work any more - a wrong interpretation of characters like it is shown
above would happen. The offset of the coded laser pulses cannot be arbitrary increased. The
distance between two basic epoch time values amounts 500 µs plus some jitter. This distance
must not become higher than these 500 µs. A closer look to the ASCII table in [6] gives
information about the highest possible ASCII value. If the standard character set is used,
the maximum offset can be 10160 ns (80 ns ∗ 127) - alternatively 10.160 µs. In case of using
the country-specific character set, the maximum possible offset can be 20400 ns (80 ns ∗ 255)
- alternatively 20.400 µs. After looking at the transmission text, “ü” can be seen.
From this it follows that also the country specific character set can be recognized from the
hard- and software without any interpretation problems. After these mentioned modifications,
the transmitted text was interpreted correctly by the detection hard- and software.

5.3.2 Offset from the Basic Grid

The transmitted text has a length of 1510 characters. In times of transmitting an ASCII
character by using a 2 kHz laser firing rate, the epoch time deviates from a basic grid of
500 µs. In all other times, the epoch time values have a constant distance of 500 µs plus a
possible uncertainty. The following diagram shows the deviation from the basic grid in a
diagram.

5.3. Test Setup and Results 71

Figure 5.8 shows the deviations from the nominal 500 µs grid on the left Y-axis of the diagram.
The corresponding ASCII value is illustrated on the right Y-axis.

Figure 5.8: Deviation from nominal 500 µs grid

As mentioned in 5.3.1 the transmitted text has a total length of 1510 characters. This can be
seen on the shot numbers on the X-axis of the diagram.
After taking a closer look to the plotted laser shots, it can be recognized that blanks
alternatively spaces (ASCII 32) are the most frequent ASCII values in this text, followed by
carriage returns (ASCII 13) and line feeds (ASCII 10). On the left, epoch time values without
any offset or without any deviation from the basic grid can be seen. These values do not
describe any ASCII characters and can be used for determining the zero value or reference
value. These values touch the X-axis of the diagram.
ASCII values between 65 and 90 are upper case characters. These are in the normal case
initial letters of a sentence. The values between ASCII 97 and ASCII 122 are lower case
characters, which are of course in superior numbers. The rest of the data points are special
characters like “!”, “?” etc.
Unfortunately the diagram only shows characters from ASCII range 1 to ASCII range 125.
If the diagram describes all possible values from ASCII range 1 to ASCII range 255, it can
be seen that the text also contains an ASCII character with ASCII value 252. That would
be the “ü” in the word “Lustbühel”, which was also detected and decoded correctly by the
detection hardware and software.

5.4. The final Test Transmission 72

5.4 The final Test Transmission

This section just introduces the second text, which was used for testing the detection equipment
- especially the detection software for the last time. The main goal of this was to finish this
project.

A man walks into a bar and orders a drink.

The bar has a robot bartender.

The robot serves him a perfectly prepared cocktail,

and then asks him, "What’s your IQ?"

The man replies "150" and the robot proceeds

to make conversation about global warming factors,

quantum physics and spirituality, biomimicry,

environmental interconnectedness, string theory,

and nano-technology.

The customer is very impressed and thinks:

"This is really cool." He decides to test the robot.

He walks out of the bar, turns around,

and comes back in for another drink.

Again, the robot serves him the perfectly prepared

drink and asks him, "What’s your IQ?"

The man responds, "About a 100."

Immediately the robot starts talking, but this time

about football, baseball, supermodels,

favorite fast foods, guns, and women’s breasts.

Really impressed, the man leaves the bar and decides

to give the robot one more test. He heads out and

returns, the robot serves him and asks, "What’s your IQ?"

The man replies, "Er, 50, I think."

And the robot says... real slowly...

"So............... ya gonna vote for Bush again?"

5.4. The final Test Transmission 73

Important to mention is that this text was copied to hard disk in ASCII format by the
detection software. This happened after decoding the ASCII characters - described by epoch
times. The text above was checked by a spell checker provided by Microsoft Word. The result
was that this text does not contain any misspellings or interpretation errors. From this it
follows that the detection software and hardware had worked correctly.

6 Conclusions
In this work detection hardware and software were analyzed to transmit and to receive coded
laser pulses. The main task in this Master Thesis was to design and to program a detection
software to extract ASCII characters described by coded laser pulses. The coded laser pulses
were transmitted by the 2 kHz SLR station Graz / Lustbühel to a fixed retro-reflector target
at a distance of 4288 m.
The first task of this thesis was to study the principle of decoding or extracting ASCII
characters from varied epoch time values. These studies did not use any hardware but rather
software - programmed in Visual Basic 6.0. The next task in this thesis was to select a
suitable hardware, which included the MPPC from Hamamatsu. To get correct results an
optimal threshold value was chosen - to reduce effects of dark count. Hardware programming
e.g. the programming of the Altera CPLD and the ISA card, which controlled the laser firing
commands were not part of this work. Therefore just a few important facts were discussed.
During the preparations of selecting the hardware parts the idea came up to use a Jupiter GPS
board to generate the 10 MHz reference frequency. This hardware part was not mentioned in
this work because it did not came in general use. For the final tests, the 10 MHz reference
frequency of the GPS Time and Frequency Receiver of the Graz SLR station were used.
The next part was to find an optimal interface to get the generated time values from the
CPLD into the PC and detection software. Very important was the transfer rate, which
varied from interface to interface - a RS 232 interface would be easy to program but the
transfer rate would be much too slow. This problem was also discussed in the hardware
chapter of this present thesis.
After selecting the interface, the detection software was programmed. This contained the
sequential control of receiving time values from the selected interface. This was described
in detail in the same chapter. The decoding of the coded laser pulses to get the ASCII
characters was discussed in the first chapters with the help of a few examples. Basically these
perceptions for decoding the contained ASCII characters were assumed for implementing the
final detection software.
In the theoretical part the functionality of a SPAD was explained and in addition to it the
MPPC, which consists of a fixed number of SPADs (SPAD array). In the last chapter the
test results were presented and adequate methods for avoiding the upcoming detection errors
(e.g. raising the offset up to 80 ns) were introduced.
Applying the Pulse Position Modulation to the firing times of laser pulses at the existing
and operational kHz SLR stations, offers an opportunity for a new data upload channel to
satellites in orbits up to about 1000 km. The only requirement at the satellite side is a photon

74

6.1. Main Challenges 75

detector, without the need of optics, a 5 ns resolution time tagging unit and possibly a CCR.
On the kHz SLR station side, the upgrade depends on the specific hardware, but in many
cases that would be simply a few more lines of software to control the laser firing times of the
SLR station with an accuracy of some nanoseconds.

6.1 Main Challenges

During this project some problems occurred, which were already mentioned in the last
chapters. One of the main problems was to chose a convenient interface. At first, an interface
called USB-PIO was chosen. This was very easy to program in Visual Basic 6.0 but it provided
a too slow transfer rate (ca. 30 measured points per second).
After some researches and studying some data sheets of different interfaces, the UM245R was
chosen for the final version of the detection system. The biggest benefit of using this interface
was the high transfer rate. The data sheet of it indicates a transfer rate of 1 megabyte per
second. But this were not reached in this project, although the functions of the D2XX Direct
Driver were used and not the Virtual Com Port driver. The provided transfer rate of the
interface was high enough to provide enough free FIFO storage positions in the CPLD for
new data.
Not only problems concerning the interface occurred but also problems with regard to the
selected programming language. A detection software is not allowed to terminate and has to
check if data is available or not. This is an uninterruptible process. To guarantee that all
available data is read, an endless loop had to be implemented. Such an “endless program”
highly stresses the processor of the PC and in this case the program often hanged up. One
possibility to solve this problem was to use the “DoEvents” instruction of Visual Basic. This
instruction allows multitasking and the PC is able execute other programs too. In other
words, the detection software loses the processor for 1 ms after a “DoEvents” instruction.
Within 1 ms the processor can be used by other open programs or the PC can react on user
instructions. One problem of using the DoEvents statement was that the program stopped
reading in time values for 1 ms. The effect was that the FIFO of the CPLD and the interface
became full and no more new time values could be stored (data loss). Unfortunately therefore
it was not possible to decode ASCII characters in a technically correct manner.
The solution was to allow a DoEvents instruction just every 10000 loop cycles. To put it
another way the detection software was interrupted after 10000 cycles for 1 ms. This worked
well enough and the mentioned FIFOs were read out in an acceptable period of time. Data
loss was from now on non-issue.
After programming the detection software, some errors occurred relating on the final tests.
Coded laser pulses were not decoded in a correct way or were missed. Afterwards the operating

6.2. Future Work 76

voltage of the MPPC were varied and the offset of the coded pulses were doubled up to 80
ns. This aim was reached by reprogramming the ISA card, which was responsible for the
laser commands. Due to optical wavelengths (532 nm in almost all SLR stations), optical
visibility in the line of sight to the satellite is required. Any cloud, fog etc. will prohibit SLR
as well as successful data transmission. In section 6.2 some conventional techniques for error
detection and / or correction are mentioned and should be applied.

6.2 Future Work

The main goal of this project was to show that the 2 kHz SLR station Graz / Lustbühel
is able to transmit coded laser pulses after varying the fixed laser pulses. This challenge
was successful but in some cases it would not be possible to avoid transmission errors e.g.
inaccurate pointing, due to clouds - blocking the laser path. To avoid these problems in
future, any simple check method can be implemented e.g. checksums, even- or odd parity
checks, error-correcting codes like Verhoeff algorithm, cyclic redundancy checks etc. The use
of linear regressions could be useful to determine zero values more exactly, especially if the
influence of jitter is much higher.
Another simple check, shortly discussed in [11] is to monitor the SLR return amplitude at
the station. If the station received a valid return with some minimum energy level, the
transmission should have been successful.
Before the MPPC can be used as detector for the PPM SLR uplink channel, its space
qualification has to be proven. This has not been done yet. In case of no space qualification,
any other linear detection device based on a photon detector in linear gain mode, which is
space qualified may be used. The first test could be with ACES; flying on the ISS in 2013. For
time transfers, there will be already a CCR on board; adding the MPPC and the electronics
would complete the test setup there.

Bibliography
[1] Future Technology Devices International Ltd. FT245R USB FIFO IC.

[2] MPPC Multi-Pixel Photon Counter, Technical Information - Hamamatsu.

[3] USB-PIO Digitale I/0 Schnittstelle (USB), BMC Messsysteme Gmbh.

[4] S. Cova, A. Lacaita, M. Ghioni, and G. Ripamonti, 20-ps Timing Resolution with
Single-Photon Avalanche Diodes, Rev. Sci. Instrum. no.6 60 (1989), 1104–1110.

[5] Elektronik-Kompendium, Pulse Position Modulation (PPM)., http://www.

elektronik-kompendium.de/sites/kom/0401121.htm, May 2010.

[6] T. Horn, ASCII-Tabelle, http://www.torsten-horn.de/techdocs/ascii.htm, June
2010.

[7] M. J. Hsu, H. Finkelstein, and S. C. Esener, A CMOS STI-Bound Single-Photon
Avalanche Diode With 27-ps Timing Resolution and a Reduced Diffusion Tail, IEEE
electron device letters 30 (2009), 641–643.

[8] A. S. Huntington, M. A. Compton, and G. M. Williams, Improved Breakdown Model
for estimating Dark Count Rate in Avalanche Photodiodes with InP and InAlAs Mul-
tiplication Layers, SPIE Defense and Security Symposium - Pre-release Manuscript
6214-29.

[9] IWF, SLR-Station Graz - Lustbühel, http://www.iwf.oeaw.ac.at/de/forschung/erdkoerper/slr-
technologie/slr-station-graz-lustbuehel.html, December 2007.

[10] J. C. Jacksona, D. Phelanb, A. P. Morrisonc, R. M, Redfern, and A. Mathewson, Charac-
terization of Geiger Mode Avalanche Photodiodes for Fluorescence Decay Measurements,
4650-07 (2002), 1–5.

[11] G. Kirchner, F. Koidl, W. Steinegger, F. Iqbal, and E. Leitgeb, Data Transmission to
Satellites using SLR Systems, not published 1 (2010), 1:6.

[12] O. Koudelka, Nachrichtentechnik 441.103, Skriptum zur Vorlesung, (2003), 23.

[13] E. Leitgeb and P. Fasser, Optische Nachrichtentechnik 441.023, Skriptum zur Vorlesung,
(2005).

[14] C. Niclass, M. Sergio, and E. Charbon, A Single Photon Avalanche Diode Array Fabri-
cated in Deep-Submicron CMOS Technology, 1 (2006), 2.

77

http://www.elektronik-kompendium.de/sites/kom/0401121.htm
http://www.elektronik-kompendium.de/sites/kom/0401121.htm
http://www.torsten-horn.de/techdocs/ascii.htm

Bibliography 78

[15] S. Privitera, S. Tudisco, L. Lanzanò, F. Musumeci, A. Pluchino, A. Scordino, A. Campisi,
L. Cosentino, P. Finocchiaro, G. Condorelli, M. Mazzillo, S. Lombardo, and E. Sciacca,
Single Photon Avalanche Diodes: Towards the large Bidimensional Arrays, (2008).

[16] A. K. Ray and T. Acharya, Information Technology: Principles and Applications,
Prentice-Hall of India, 2004.

[17] J. Schiller, Mobile Communications, Pearson Education Limited, 2003.

[18] A. Spinelli and A. L., Physics and Numerical Simulation of Single Photon Avalanche
Diodes, IEEE TRANSACTIONS oN ELECTRON DEVICES, NO. 1 44 (1997), 1931–
1935.

[19] S. Vasile, P. Gothoskar1, R. Farrell, and D. Sdrulla, Photon Detection with High Gain
Avalanche Photodiode Arrays, 45 (1998), 1,2.

[20] J. Weingrill, Zeiss Ballistische Messkammer mit 75 cm Brennweite, 18x18cm Bildfeld
und Blende 1:2,5, http://www.flickr.com/photos/joerg73/3040699984/, May 2005.

[21] K. Yamamoto, Newly developed Semiconductor Detectors by Hamamatsu, International
workshop on new photon-detectors PD07 1 (2007), 1–12.

[22] K. Yamamoto, K. Yamamura, K. Sato, T. Ota, H. Suzuki, and S. Ohsuka, Development
of Multi-Pixel Photon Counter (MPPC), IEEE Nuclear Science Symposium Conference
Record (2007), 1094–1097.

A Abbreviations and Glossary
AM Amplitude Modulation

ASCII American Standard Code for Information Interchange

ASK Amplitude Shift Keying

CCR Corner Cube Reflector

CPLD Complex Programmable Logic Device

FM Frequency Modulation

FPGA Field Programmable Gate Array

FSK Frequency Shift Keying

GNU GNU’s Not Unix

GUI Graphical User Interface

ISA Industry Standard Architecture

LASER Light Amplification by Stimulated Emission of Radiation

MByte Megabyte

MPPC Multi Pixel Photon Counter

PAM Pulse Amplitude Modulation

PC Personal Computer

PCM Pulse Code Modulation

P.E. Photon Equivalent

PIO Programmed Input/Output

PM Phase Modulation

PSK Phase Shift Keying

PWM Pulse Width Modulation

SLR Satellite Laser Ranging

SPAD Single Photon Avalanche Diode

79

80

TTL Transistor Transistor Logic

USB Universal Serial Bus

VB Visual Basic

B Source Codes

B.1 Source Code for decoding ASCII Characters from Epoch
Times

This source code is explained in 3.1.2 and 3.1.5. The “old algorithm”, which is commented out
takes the first epoch time value as reference value. The newer algorithm searches ten equal
epoch time values (with 500 µs distance to the neighbored value) to determine a suitable
reference value for decoding the contained message.
1 ’ Vers ion 22 .01 .2009
2 ’Wilhelm Ste inegge r
3
4 Option Exp l i c i t
5 Pr ivate Ending As Long
6 Pr ivate Dec lare Function GetTickCount Lib " ke rne l32 " () As Long
7
8 Pr ivate Sub Command1_Click ()
9 End
10 End Sub
11
12 Pr ivate Sub End_Click ()
13 Beep
14 End
15
16 End Sub
17
18 Pr ivate Sub Form_Load ()
19 ’ to read in the l i n e s o f the t e s t f i l e
20
21 Star t = GetTickCount
22
23 Dim sF i l e As St r ing
24 Dim sRow As St r ing
25 Dim FNr As Double
26 Dim Factor As In t eg e r
27 Dim CurrentVar iable
28 Dim Dest inat ionVar iab le_1
29 Dim Dest inat ionVar iab le_2
30 Dim sArray (1 To 113) As Double
31 Dim Counter As In t eg e r

81

B.1. Source Code for decoding ASCII Characters from Epoch Times 82

32 Dim ReferenceValue As Double
33 Dim CurrentValue As Double
34 Dim Di f f e r e n c e As Double
35 Dim CalculatedValue As Double
36 Dim Asci iN As Double
37 Dim ValueCounter As In t eg e r
38 Dim ArrayIndex As In t eg e r
39 Dim BasicValue As In t eg e r
40 Dim NextValue As Double
41 Dim NextElementIndex As In t eg e r
42 Dim Di f f e rence_2 As Double
43 Dim NValues As In t eg e r
44 Const Distance = 500 ∗ 10 ^ −6
45 Const NFactor = 50 ∗ 10 ^ −9
46 Dim MessageSymbol As St r ing
47 Dim MessageArray (1 To 113) As Variant
48
49 ’Dim t e s t As In t eg e r
50 ’ F i r s t we read in the txt−F i l e and save the va lue s in an array c a l l e d

sArray
51 ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−read in−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 sF i l e = "D:\DA\ w i l l i 2 . txt "
53 ’ s F i l e = "D:\DA\WILLI . txt "
54 FNr = FreeF i l e
55 ’ open F i l e
56 Open sF i l e For Input As #FNr
57 ’ read un t i l the End
58
59 Counter = 0
60
61 Do While (Not (EOF(FNr)))
62 ’ read l i n e
63 Line Input #FNr , sRow
64 ’ Text1 . Text = " "
65 Counter = Counter + 1
66 CurrentVar iable = Val (sRow)
67 ’MsgBox " CurrentVar iable " & CurrentVar iable
68 sArray (Counter) = CurrentVar iable
69
70 Loop
71 Close #FNr
72 ’−−−

B.1. Source Code for decoding ASCII Characters from Epoch Times 83

73 ’ the o ld a lgor i thm
74
75 ’ Counter = 0
76 ’ F i r s tVa lue = sArray (1)
77
78 ’ For Counter = 2 To 113 Step 1
79 ’ CalculatedValue = Fir s tVa lue + (500 ∗ 10 ^ −6) ∗ (Counter − 1)
80 ’ D i f f e r e n c e = Abs(CalculatedValue − sArray (Counter))
81
82 ’ I f D i f f e r e n c e = 0 Or D i f f e r e n c e <= 10 ∗ 10 ^ −9 Then
83 ’MsgBox "No Asc i i "
84
85 ’ El se
86 ’ Asci iN = Round(D i f f e r e n c e / (50 ∗ 10 ^ −9))
87 ’MsgBox Chr (Asci iN)
88
89 ’End I f
90 ’Next
91 ’−−−
92 Counter = 0
93 ArrayIndex = 0
94
95 Do While Counter < 9
96 ArrayIndex = ArrayIndex + 1
97 D i f f e r e n c e = Abs(sArray (ArrayIndex + 1) − sArray (ArrayIndex))
98
99 I f D i f f e r e n c e = Distance Or D i f f e r e n c e <= Distance + NFactor Then
100 Counter = Counter + 1
101 Else
102 Counter = 0
103 End I f
104
105 Loop
106
107 I f Counter >= 9 Then
108 ReferenceValue = sArray (ArrayIndex)
109 NValues = 113
110 MsgBox " ArrayIndex " & ArrayIndex
111 MsgBox " ReferenceValue " & ReferenceValue
112
113 For ArrayIndex = ArrayIndex + 1 To NValues Step 1
114 Factor = Factor + 1

B.1. Source Code for decoding ASCII Characters from Epoch Times 84

115 CalculatedValue = ReferenceValue + (Distance) ∗ Factor
116 D i f f e r e n c e = Abs(CalculatedValue − sArray (ArrayIndex))
117 Asci iN = Round(D i f f e r e n c e / (NFactor))
118 MessageArray (Factor) = Chr (Asci iN)
119 Next
120 End I f
121
122 ArrayIndex = 0
123 Message . Text = " "
124
125 For ArrayIndex = 1 To 113 Step 1
126 Message . Text = Message . Text & MessageArray (ArrayIndex)
127 Next
128
129 End Sub

B.2. Generating artificial Epoch Times and decoding ASCII Characters 85

B.2 Generating artificial Epoch Times and decoding ASCII
Characters

This algorithm is explained in 3.2. This source code is able to generate artificial epoch times
from an ASCII file. After the values are generated, the algorithm starts with determining
the ASCII characters. Finally the ASCII file and the determined text are equal. The ASCII
character determination works in the same way like in B.1.
1 ’ Last Update 29 .04 . 2009
2 Pr ivate Dec lare Function timeGetTime Lib "winmm. d l l " () As Long
3 Publ ic LastEpochTime As Double ’ g l oba l v a r i ab l e witch s t o r e s the l a s t

EpochTime o f the func t i on
4 Option Exp l i c i t
5 Publ ic Function RandomValue () As Double ’ f o r j i t t e r
6
7 Dim RandomVariable As Double
8 RandomVariable = 0
9
10 RandomVariable = Rnd ’ Value between 0 and 1
11 RandomVariable = RandomVariable − 0 .5
12 RandomVariable = RandomVariable ∗ 10 ^ (−8) ’We need nanoseconds
13 RandomValue = RandomVariable ’ Return Value
14
15 End Function
16 ’ Just an experiment
17 Publ ic Function txt_ReadAll (ByVal sFilename As St r ing) _
18 As St r ing
19
20 Dim F As In t eg e r
21 Dim sContent As St r ing
22
23 I f Dir$ (sFilename , vbNormal) <> " " Then
24 F = FreeF i l e
25 Open sFilename For Binary As #F
26 sContent = Space$ (LOF(F))
27 Get #F, , sContent
28 Close #F
29 Else
30 MsgBox " F i l e not a v a i l a b l e "
31 End I f
32
33 txt_ReadAll = sContent

B.2. Generating artificial Epoch Times and decoding ASCII Characters 86

34
35 End Function
36 Pr ivate Sub Start_Cl ick ()
37
38 Const Path = "C:\Dokumente und E in s t e l l ungen \Wilhelm Ste inegge r \

Desktop\ s t r ing_read in \ s imple_test . txt "
39 Cal l ReadLetter (Path)
40 Cal l Decode
41
42 End Sub
43 Publ ic Function ReadLetter (ByVal sFilename As St r ing) _
44 As St r ing
45
46 Dim Length As In t eg e r
47 Dim Counter As In t eg e r
48 Dim Asc i iVa lue As In t eg e r
49 Dim FNr As St r ing
50 Dim st r Input As St r ing
51 Dim Let t e r As St r ing
52 Dim LastEpochTime As Double
53 Dim CodedValue As Double
54 Dim J i t t e r As Double
55 Dim CurrentTime As Double
56 Dim EpochTime As Double
57 Dim CarriageReturn As Double
58
59 Const N = 50 ∗ 10 ^ −9
60 Const Distance = 500 ∗ 10 ^ −6
61
62 Text1 . Text = " " ’ Textbox should be empty f o r r e s t a r t
63 Counter = 0
64 LastEpochTime = GetEpochTime
65 FNr = FreeF i l e
66 Open sFilename For Input As #FNr
67 Text1 . Text = " "
68
69 Do While (Not (EOF(FNr)))
70 Line Input #FNr , s t r Input
71
72 For Counter = 1 To Len (s t r Input) Step 1
73 J i t t e r = RandomValue ’Random generato r
74 Let t e r = Mid$(st r Input , Counter , 1)

B.2. Generating artificial Epoch Times and decoding ASCII Characters 87

75 Asc i iVa lue = Asc (Let t e r)
76 Text1 . Text = Text1 . Text & Chr$ (13) & Chr$ (10)
77 Text1 . Text = Text1 . Text & " Let t e r : " & Let t e r
78 Text1 . Text = Text1 . Text & " Asc i iVa lue : " & Asc i iVa lue
79 EpochTime = LastEpochTime + (Distance) ∗ Counter
80 CodedValue = EpochTime + J i t t e r + (N ∗ Asc i iVa lue)
81 L i s t 1 . AddItem (CodedValue)
82 Next Counter
83
84 I f Counter = Len (s t r Input) + 1 Then
85 ’we know that the re i s a new l i n e in the Asc i i−F i l e i f t h i s

cond i t i on f u l f i l l s
86 EpochTime = LastEpochTime + (Distance) ∗ (Counter)
87 CodedValue = EpochTime + J i t t e r + (N ∗ 13)
88 L i s t 1 . AddItem (CodedValue)
89 EpochTime = LastEpochTime + (Distance) ∗ (Counter + 1)
90 CodedValue = EpochTime + J i t t e r + (N ∗ 10)
91 L i s t 1 . AddItem (CodedValue)
92 LastEpochTime = EpochTime
93 End I f
94 Loop
95
96 ReadLetter = s t r Input
97 Close #FNr
98
99 End Function
100 Publ ic Function GetEpochTime () As Double
101
102 Dim EpochTime As Double
103 Dim Counter As In t eg e r
104 Dim J i t t e r As Double
105 Dim CurrentTime As Double
106 Const Distance = 500 ∗ 10 ^ −6
107
108 L i s t 1 . Clear
109 CurrentTime = GetCurrentTime
110 Counter = 0
111 J i t t e r = 0
112 EpochTime = CurrentTime
113
114 For Counter = 1 To 100 Step 1
115 J i t t e r = RandomValue

B.2. Generating artificial Epoch Times and decoding ASCII Characters 88

116 EpochTime = EpochTime + (Distance) + J i t t e r
117 L i s t 1 . AddItem (EpochTime)
118 Next Counter
119
120 I f Counter >= 100 Then
121 GetEpochTime = EpochTime ’ Return Value
122 End I f
123
124 End Function
125 Publ ic Function GetCurrentTime () As Double
126
127 GetCurrentTime = timeGetTime ∗ 10 ^ −9
128
129 End Function
130
131 Publ ic Function Decode ()
132
133 Dim Counter As In t eg e r
134 Dim CurrentValue As Double
135 Dim ReferenceValue As Double
136 Dim NextValue As Double
137 Dim D i f f e r e n c e As Double
138 Dim ValueCounter As In t eg e r
139 Dim ValueCounterIncr As In t eg e r
140 Dim CalculatedValue As Double
141 Dim Asci iN As Double
142 Dim ListCounter As In t eg e r
143 Dim Factor As In t eg e r
144 Dim Values InL i s t As In t eg e r
145 Dim Let t e r As Variant
146 Dim ArrayCounter As In t eg e r
147 Dim MeanValue As Double
148 Const Distance = 500 ∗ 10 ^ −6
149 Const NFactor = 50 ∗ 10 ^ −9
150 Const J i t t e r = 5 ∗ 10 ^ −9
151 Text2 . Text = " "
152 ’ L i s t 2 . Clear
153
154 Va lues InL i s t = L i s t1 . ListCount
155
156 MsgBox " Va lue s InL i s t " & Values InL i s t
157 ArrayCounter = 0

B.2. Generating artificial Epoch Times and decoding ASCII Characters 89

158
159 Do While Counter < 100
160 I f CurrentValue = 0 Or NextValue = 0 Then
161 ListCounter = 0
162 CurrentValue = L i s t1 . L i s t (ListCounter)
163 NextValue = L i s t1 . L i s t (ListCounter + 1)
164 ListCounter = ListCounter + 1
165 Else
166 CurrentValue = NextValue
167 NextValue = L i s t1 . L i s t (ListCounter + 1)
168 D i f f e r e n c e = Abs(CurrentValue − NextValue)
169 ListCounter = ListCounter + 1
170 End I f
171
172 I f D i f f e r e n c e = Distance Or D i f f e r e n c e >= Distance − J i t t e r Or

Distance <= Distance + J i t t e r Then
173 Counter = Counter + 1
174 Else
175 Counter = 0
176 End I f
177 Loop
178
179 I f Counter >= 100 Then
180 ReferenceValue = Li s t1 . L i s t (ListCounter − 1)
181 MsgBox " Reference Value : " & ReferenceValue
182
183 Do While ListCounter < L i s t 1 . ListCount − 1
184 Let t e r = 0
185 Factor = Factor + 1
186 CalculatedValue = ReferenceValue + (Distance) ∗ Factor
187 CurrentValue = L i s t1 . L i s t (ListCounter)
188 D i f f e r e n c e = Abs(CurrentValue − CalculatedValue)
189 Asci iN = Round(D i f f e r e n c e / (NFactor))
190 Let t e r = Chr (Asci iN)
191 ’ Text2 . Text = Text2 . Text & Let t e r
192 Text2 . SelText = Let t e r
193 ’ L i s t 2 . AddItem (Asci iN)
194 ’ L i s t 3 . AddItem (Let t e r)
195 ListCounter = ListCounter + 1
196 Loop
197 End I f
198 End Function

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 90

B.3 Source Code for reading out Epoch Time Values from the
Detection Hardware

The main part of this Master Thesis was to develop an algorithm, which is able to communicate
with the detection hardware. The documentation of this algorithm starts at 4.4.
The following source code contains this algorithm in Visual Basic 6.0.
1 ’ Last Update 1 . 06 . 2010
2 ’ This program has been s u c c e s s f u l l y t e s t ed on 09 .06 .2010
3 ’Wilhelm Ste inegge r
4 ’ Dec l a ra t i on s o f FTD2XX.DLL Functions
5 Pr ivate Dec lare Function FT_Open Lib "FTD2XX.DLL" (ByVal

intDeviceNumber As Integer , ByRef LngHandle As Long) As Long
6 Pr ivate Dec lare Function FT_OpenEx Lib "FTD2XX.DLL" (ByVal arg1 As

Str ing , ByVal arg2 As Long , ByRef LngHandle As Long) As Long
7 Pr ivate Dec lare Function FT_Close Lib "FTD2XX.DLL" (ByVal LngHandle As

Long) As Long
8 Pr ivate Dec lare Function FT_Read Lib "FTD2XX.DLL" (ByVal LngHandle As

Long , ByVal l p s zBu f f e r As Str ing , ByVal l n gBu f f e r S i z e As Long ,
ByRef lngBytesReturned As Long) As Long

9 Pr ivate Dec lare Function FT_Write Lib "FTD2XX.DLL" (ByVal LngHandle As
Long , ByVal l p s zBu f f e r As Str ing , ByVal l n gBu f f e r S i z e As Long ,

ByRef lngBytesWritten As Long) As Long
10 Pr ivate Dec lare Function FT_SetBaudRate Lib "FTD2XX.DLL" (ByVal

LngHandle As Long , ByVal lngBaudRate As Long) As Long
11 Pr ivate Dec lare Function FT_SetDataCharacter ist ics Lib "FTD2XX.DLL" (

ByVal LngHandle As Long , ByVal byWordLength As Byte , ByVal
byStopBits As Byte , ByVal byParity As Byte) As Long

12 Pr ivate Dec lare Function FT_SetFlowControl Lib "FTD2XX.DLL" (ByVal
LngHandle As Long , ByVal intFlowContro l As Integer , ByVal
byXonChar As Byte , ByVal byXoffChar As Byte) As Long

13 Pr ivate Dec lare Function FT_ResetDevice Lib "FTD2XX.DLL" (ByVal
LngHandle As Long) As Long

14 Pr ivate Dec lare Function FT_SetDtr Lib "FTD2XX.DLL" (ByVal LngHandle
As Long) As Long

15 Pr ivate Dec lare Function FT_ClrDtr Lib "FTD2XX.DLL" (ByVal LngHandle
As Long) As Long

16 Pr ivate Dec lare Function FT_SetRts Lib "FTD2XX.DLL" (ByVal LngHandle
As Long) As Long

17 Pr ivate Dec lare Function FT_ClrRts Lib "FTD2XX.DLL" (ByVal LngHandle
As Long) As Long

18 Pr ivate Dec lare Function FT_GetModemStatus Lib "FTD2XX.DLL" (ByVal
LngHandle As Long , ByRef lngModemStatus As Long) As Long

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 91

19 Pr ivate Dec lare Function FT_Purge Lib "FTD2XX.DLL" (ByVal LngHandle As
Long , ByVal lngMask As Long) As Long

20 Pr ivate Dec lare Function FT_GetStatus Lib "FTD2XX.DLL" (ByVal
LngHandle As Long , ByRef lngRxBytes As Long , ByRef lngTxBytes As
Long , ByRef lngEventsDWord As Long) As Long

21 Pr ivate Dec lare Function FT_GetQueueStatus Lib "FTD2XX.DLL" (ByVal
LngHandle As Long , ByRef lngRxBytes As Long) As Long

22 Pr ivate Dec lare Function FT_GetEventStatus Lib "FTD2XX.DLL" (ByVal
LngHandle As Long , ByRef lngEventsDWord As Long) As Long

23 Pr ivate Dec lare Function FT_SetChars Lib "FTD2XX.DLL" (ByVal LngHandle
As Long , ByVal byEventChar As Byte , ByVal byEventCharEnabled As

Byte , ByVal byErrorChar As Byte , ByVal byErrorCharEnabled As Byte)
As Long

24 Pr ivate Dec lare Function FT_SetTimeouts Lib "FTD2XX.DLL" (ByVal
LngHandle As Long , ByVal lngReadTimeout As Long , ByVal
lngWriteTimeout As Long) As Long

25 Pr ivate Dec lare Function FT_SetBreakOn Lib "FTD2XX.DLL" (ByVal
LngHandle As Long) As Long

26 Pr ivate Dec lare Function FT_SetBreakOff Lib "FTD2XX.DLL" (ByVal
LngHandle As Long) As Long

27 Pr ivate Dec lare Function FT_ListDevices Lib "FTD2XX.DLL" (ByVal arg1
As Long , ByVal arg2 As Str ing , ByVal dwFlags As Long) As Long

28 Pr ivate Dec lare Function FT_GetNumDevices Lib "FTD2XX.DLL" Al i a s "
FT_ListDevices " (ByRef arg1 As Long , ByVal arg2 As Str ing , ByVal
dwFlags As Long) As Long

29 Pr ivate Dec lare Function FT_SetBitMode Lib "FTD2XX.DLL" (ByVal
LngHandle As Long , ByVal ucmask As Byte , ByVal ucenable As Byte)
As Long

30 Pr ivate Dec lare Function FT_GetBitMode Lib "FTD2XX.DLL" (ByVal
LngHandle As Long , ByRef mode As Byte) As Long

31 Pr ivate Dec lare Function FT_ResetPort Lib "FTD2XX.DLL" (ByVal
LngHandle As Long) As Long

32 Pr ivate Dec lare Function FT_EE_UASize Lib "FTD2XX.DLL" (ByVal
LngHandle As Long , ByRef lpdwSize As Long) As Long

33 Pr ivate Dec lare Function FT_SetEventNoti f icat ion Lib "FTD2XX.DLL" (
ByVal LngHandle As Long , ByVal dwEventMask As Long , ByVal Arg As
Long) As Long

34
35 ’ System Windows Functions
36 Pr ivate Dec lare Function GetTime Lib "winmm. d l l " A l i a s " timeGetTime "

() As Long ’ timegetTime f o r stopping the time

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 92

37 Pr ivate Dec lare Sub Sleep Lib " ke rne l32 " (ByVal dwMi l l i s econds As Long
) ’ S leep func t i on to h ibe rnate the program

38 ’ Dec lare Function GetInputState Lib " user32 " () As Long
39 Pr ivate Dec lare Function GetInputState Lib " user32 " () As Long
40
41 ’ Return codes
42 Const FT_OK = 0
43 Const FT_INVALID_HANDLE = 1
44 Const FT_DEVICE_NOT_FOUND = 2
45 Const FT_DEVICE_NOT_OPENED = 3
46 Const FT_IO_ERROR = 4
47 Const FT_INSUFFICIENT_RESOURCES = 5
48 Const FT_INVALID_PARAMETER = 6
49 Const FT_INVALID_BAUD_RATE = 7
50 Const FT_DEVICE_NOT_OPENED_FOR_ERASE = 8
51 Const FT_DEVICE_NOT_OPENED_FOR_WRITE = 9
52 Const FT_FAILED_TO_WRITE_DEVICE = 10
53 Const FT_EEPROM_READ_FAILED = 11
54 Const FT_EEPROM_WRITE_FAILED = 12
55 Const FT_EEPROM_ERASE_FAILED = 13
56 Const FT_EEPROM_NOT_PRESENT = 14
57 Const FT_EEPROM_NOT_PROGRAMMED = 15
58 Const FT_INVALID_ARGS = 16
59 Const FT_NOT_SUPPORTED = 17
60 Const FT_OTHER_ERROR = 18
61
62 ’Word Lengths
63 Const FT_BITS_8 = 8
64 Const FT_BITS_7 = 7
65 Const FT_BITS_9 = 9
66
67 ’ Stop Bi t s
68 Const FT_STOP_BITS_1 = 0
69 Const FT_STOP_BITS_1_5 = 1
70 Const FT_STOP_BITS_2 = 2
71
72 ’ Par i ty
73 Const FT_PARITY_NONE = 0
74 Const FT_PARITY_ODD = 1
75 Const FT_PARITY_EVEN = 2
76 Const FT_PARITY_MARK = 3
77 Const FT_PARITY_SPACE = 4

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 93

78
79 ’ Flow Control
80 Const FT_FLOW_NONE = &H0
81 Const FT_FLOW_RTS_CTS = &H100
82 Const FT_FLOW_DTR_DSR = &H200
83 Const FT_FLOW_XON_XOFF = &H400
84
85 ’ Purge rx and tx bu f f e r s
86 Const FT_PURGE_RX = 1
87 Const FT_PURGE_TX = 2
88
89 ’ Flags f o r FT_OpenEx
90 Const FT_OPEN_BY_SERIAL_NUMBER = 1
91 Const FT_OPEN_BY_DESCRIPTION = 2
92
93 ’ Flags f o r FT_ListDevices
94 Const FT_LIST_BY_NUMBER_ONLY = &H80000000
95 Const FT_LIST_BY_INDEX = &H40000000
96 Const FT_LIST_ALL = &H20000000
97
98 ’Modem Status
99 Const CTS = &H10
100 Const DSR = &H20
101 Const RI = &H40
102 Const DCD = &H80
103
104 ’Modem Status , Line Status
105 Const OE = &H2
106 Const PE = &H4
107 Const FE = &H8
108 Const BI = &H10
109
110 ’ Bit Modes Set_Bit_Bang
111 Const RESET = &H0
112 Const ASYNCHRONOUS_BIT_BANG = &H1
113 Const MPSSE = &H2
114 Const SYNCHRONOUS_BIT_BANG = &H4
115 Const MCU_HOST_BUS_EMULATION = &H8
116 Const FAST_OPTO_ISOLATED_SERIAL_MODE = &H10
117 Const CBUS_BIT_BANG = &H20
118 Const SINGLE_CHANNEL_SYNCHRONOUS_245_FIFO_MODE = &H40
119

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 94

120 ’Baud Rates
121 Const BAUD_300 = 300
122 Const BAUD_600 = 600
123 Const BAUD_1200 = 1200
124 Const BAUD_2400 = 2400
125 Const BAUD_4800 = 4800
126 Const BAUD_9600 = 9600
127 Const BAUD_14400 = 14400
128 Const BAUD_19200 = 19200
129 Const BAUD_38400 = 38400
130 Const BAUD_57600 = 57600
131 Const BAUD_115200 = 115200
132 Const BAUD_230400 = 230400
133 Const BAUD_460800 = 460800
134 Const BAUD_921600 = 921600
135
136 ’ Type d e c l a r a t i on f o r EEPROM programming
137 Pr ivate Type PROGRAM_DATA
138
139 VendorId As In t eg e r ’ 0x0403
140 ProductId As In t eg e r ’ 0x6001
141 Manufacturer As Long ’ 32 "FTDI"
142 ManufacturerId As Long ’ 16 "FT"
143 Desc r ip t i on As Long ’ 64 "USB HS S e r i a l Converter "
144 SerialNumber As Long ’ 16 "FT000001 " i f f i xed , or NULL
145 MaxPower As In t eg e r ’ // 0 < MaxPower <= 500
146 PNP As In t eg e r ’ // 0 = disab led , 1 = enabled
147 Sel fPowered As In t eg e r ’ // 0 = bus powered , 1 = s e l f

powered
148 RemoteWakeup As In t eg e r ’ // 0 = not capable , 1 = capable
149
150 ’ Rev4 ex t en s i on s :
151 Rev4 As Byte ’ // t rue i f Rev4 chip , f a l s e

o therwi se
152 I s o In As Byte ’ // t rue i f in endpoint i s

i sochronous
153 IsoOut As Byte ’ // t rue i f out endpoint i s

i sochronous
154 PullDownEnable As Byte ’ // t rue i f pu l l down enabled
155 SerNumEnable As Byte ’ // t rue i f s e r i a l number to be

used
156 USBVersionEnable As Byte ’ // t rue i f ch ip uses USBVersion

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 95

157 USBVersion As In t eg e r ’ // BCD (0 x0200 => USB2)
158
159 End Type
160
161 ’ Handler o f the i n t e r f a c e s
162 Publ ic LngHandle As Long
163 Publ ic LngHandle2 As Long
164 Publ ic Function OpenUSBRead () As Long
165
166 Dim vbNul lStr ing As St r ing
167 Dim strSer ia lNumber As St r ing ∗ 256
168 Dim s t rDe s c r i p t i o n As St r ing ∗ 256
169 Dim strSer ia lNumber2 As St r ing ∗ 256
170 Dim s t rDe s c r i p t i on2 As St r ing ∗ 256
171 Dim LngHandle2 As Long
172
173 ’Open the I n t e r f a c e s
174 I f FT_GetNumDevices (lngNumDevices , vbNul lStr ing ,

FT_LIST_BY_NUMBER_ONLY) <> FT_OK Then
175 MsgBox FT_GetNumDevices (lngNumDevices , vbNul lStr ing ,

FT_LIST_BY_NUMBER_ONLY)
176 LoggerL i s t . AddItem ("FT_GetNumDevices f a i l e d ")
177 GoTo CloseHandle
178 Exit Function
179 Else
180 LoggerL i s t . AddItem ("NumDevices : " & lngNumDevices)
181 End I f
182
183 I f FT_ListDevices (0 , s t rDe s c r i p t i on , FT_LIST_BY_INDEX Or

FT_OPEN_BY_DESCRIPTION) <> FT_OK Then
184 LoggerL i s t . AddItem (" L i s tDev i c e s f a i l e d ")
185 Exit Function
186 Else
187 LoggerL i s t . AddItem (" Device Desc r ip t i on " & s t rDe s c r i p t i o n)
188 End I f
189
190 I f FT_ListDevices (0 , strSer ia lNumber , FT_LIST_BY_INDEX Or

FT_OPEN_BY_SERIAL_NUMBER) <> FT_OK Then
191 LoggerL i s t . AddItem (" L i s tDev i c e s f a i l e d ")
192 Exit Function
193 Else
194 LoggerL i s t . AddItem (" S e r i a l Number : " & strSer ia lNumber)

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 96

195 End I f
196
197 ’Get some in fo rmat ion o f Device 2 (when av a i l a b l e)
198 I f FT_ListDevices (1 , s t rDe s c r i p t i on2 , FT_LIST_BY_INDEX Or

FT_OPEN_BY_DESCRIPTION) <> FT_OK Then
199 LoggerL i s t . AddItem (" L i s tDev i c e s f a i l e d ")
200 ’ Exit Sub
201 Else
202 LoggerL i s t . AddItem (" Device Desc r ip t i on2 " & s t rDe s c r i p t i on2)
203 End I f
204
205 I f FT_ListDevices (1 , strSer ia lNumber2 , FT_LIST_BY_INDEX Or

FT_OPEN_BY_SERIAL_NUMBER) <> FT_OK Then
206 LoggerL i s t . AddItem (" L i s tDev i c e s f a i l e d ")
207 ’ Exit Sub
208 Else
209 LoggerL i s t . AddItem (" S e r i a l Number2 : " & strSer ia lNumber2)
210 End I f
211
212 I f FT_OpenEx(s t rDe s c r i p t i on2 , FT_OPEN_BY_DESCRIPTION, LngHandle2) <>

FT_OK Then
213 ErrorCode = FT_OpenEx(s t rDe s c r i p t i on2 , FT_OPEN_BY_DESCRIPTION,

LngHandle2)
214 LoggerL i s t . AddItem " ErrorCode " & ErrorCode
215 LoggerL i s t . AddItem "Open Device by Desc r ip t i on 2 Fa i l ed "
216 GoTo CloseHandle
217 Exit Function
218 Else
219 LoggerL i s t . AddItem " Device 2 opened "
220 LoggerL i s t . AddItem " LngHandle2 o f Device 2 : " & LngHandle2
221 End I f
222
223 OpenUSBRead = LngHandle2
224
225 CloseHandle : ’ l a b e l
226
227 ’ c l o s e the dev i c e s
228 I f FT_Close (LngHandle) <> FT_OK Then
229 LoggerL i s t . AddItem " Clos ing the Device 1 f a i l e d "
230 End I f
231
232 I f FT_Close (LngHandle2) <> FT_OK Then

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 97

233 LoggerL i s t . AddItem " Clos ing o f Device 2 f a i l e d "
234 End I f
235
236 I f f l F a i l e d = True Then
237 LoggerL i s t . AddItem " Test Fa i l ed "
238 End I f
239
240 End Function
241 Publ ic Function OpenUSBWrite () As Long
242
243 Dim vbNul lStr ing As St r ing
244 Dim strSer ia lNumber As St r ing ∗ 256
245 Dim s t rDe s c r i p t i o n As St r ing ∗ 256
246 Dim strSer ia lNumber2 As St r ing ∗ 256
247 Dim s t rDe s c r i p t i on2 As St r ing ∗ 256
248 Dim LngHandle2 As Long
249 Dim LngHandle As Long
250
251 ’Open the I n t e r f a c e s
252 I f FT_GetNumDevices (lngNumDevices , vbNul lStr ing ,

FT_LIST_BY_NUMBER_ONLY) <> FT_OK Then
253 MsgBox FT_GetNumDevices (lngNumDevices , vbNul lStr ing ,

FT_LIST_BY_NUMBER_ONLY)
254 LoggerL i s t . AddItem ("FT_GetNumDevices f a i l e d ")
255 GoTo CloseHandle
256 Exit Function
257 Else
258 LoggerL i s t . AddItem ("NumDevices : " & lngNumDevices)
259 End I f
260
261 I f FT_ListDevices (0 , s t rDe s c r i p t i on , FT_LIST_BY_INDEX Or

FT_OPEN_BY_DESCRIPTION) <> FT_OK Then
262 LoggerL i s t . AddItem (" L i s tDev i c e s f a i l e d ")
263 Exit Function
264 Else
265 LoggerL i s t . AddItem (" Device Desc r ip t i on " & s t rDe s c r i p t i o n)
266 End I f
267
268 I f FT_ListDevices (0 , strSer ia lNumber , FT_LIST_BY_INDEX Or

FT_OPEN_BY_SERIAL_NUMBER) <> FT_OK Then
269 LoggerL i s t . AddItem (" L i s tDev i c e s f a i l e d ")
270 Exit Function

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 98

271 Else
272 LoggerL i s t . AddItem (" S e r i a l Number : " & strSer ia lNumber)
273 End I f
274
275 ’ open dev i c e 1 FT245BM by Desc r ip t i on
276
277 I f FT_OpenEx(s t rDe s c r i p t i on , FT_OPEN_BY_DESCRIPTION, LngHandle) <>

FT_OK Then
278 LoggerL i s t . AddItem "Open Device by Desc r ip t i on 1 Fa i l ed "
279 GoTo CloseHandle
280 ’ Exit Sub
281 Else
282 LoggerL i s t . AddItem " Device 1 opened "
283 LoggerL i s t . AddItem " LngHandle o f Device 1 : " & LngHandle
284 End I f
285
286 OpenUSBWrite = LngHandle
287
288 ’###
289 ’ CLOSE HANDLE
290 ’###
291
292 CloseHandle : ’ l a b e l
293
294 ’ c l o s e the dev i c e s
295
296 I f FT_Close (LngHandle) <> FT_OK Then
297 LoggerL i s t . AddItem " Clos ing the Device 1 f a i l e d "
298 ’Write #1, " Clos ing the Device 1 f a i l e d "
299 End I f
300
301 I f FT_Close (LngHandle2) <> FT_OK Then
302 LoggerL i s t . AddItem " Clos ing o f Device 2 f a i l e d "
303 End I f
304
305 I f f l F a i l e d = True Then
306 LoggerL i s t . AddItem " Test Fa i l ed "
307 End I f
308
309 End Function
310
311 Pr ivate Sub Close_Click ()

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 99

312
313 I f FT_Close (LngHandle) <> FT_OK Then
314 LoggerL i s t . AddItem " Clos ing the Device 1 f a i l e d "
315 ’Write #1, " Close D1 not OK! "
316 Else
317 LoggerL i s t . AddItem " Close Device1 OK"
318 ’Write #1, " Close D1 OK! "
319 End I f
320
321 I f FT_Close (LngHandle2) <> FT_OK Then
322 LoggerL i s t . AddItem " Clos ing o f Device 2 f a i l e d "
323 ’Write #1, " Close D2 not OK! "
324 Else
325 LoggerL i s t . AddItem " Close Device2 OK! "
326 ’Write #1, " Close D2 OK! "
327 End I f
328
329 I f f l F a i l e d = True Then
330 LoggerL i s t . AddItem " Test Fa i l ed "
331 End I f
332
333 End
334
335 Close #1
336 Beep
337
338 End Sub
339
340 Pr ivate Sub Command1_Click ()
341
342 Text2 . Text = " "
343
344 End Sub
345
346 ’ Pr ivate Function GetEpochTimeFromString (ByVal Bu f f e rS t r i ng As St r ing)

As Long
347 Publ ic Sub Open_Click ()
348
349 Dim vbNul lStr ing As St r ing
350 Dim strSer ia lNumber As St r ing ∗ 256
351 Dim s t rDe s c r i p t i o n As St r ing ∗ 256
352 Dim strSer ia lNumber2 As St r ing ∗ 256

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 100

353 Dim s t rDe s c r i p t i on2 As St r ing ∗ 256
354
355 ’Open the I n t e r f a c e s
356 I f FT_GetNumDevices (lngNumDevices , vbNul lStr ing ,

FT_LIST_BY_NUMBER_ONLY) <> FT_OK Then
357 MsgBox FT_GetNumDevices (lngNumDevices , vbNul lStr ing ,

FT_LIST_BY_NUMBER_ONLY)
358 LoggerL i s t . AddItem ("FT_GetNumDevices f a i l e d ")
359 GoTo CloseHandle
360 Exit Sub
361 Else
362 LoggerL i s t . AddItem ("NumDevices : " & lngNumDevices)
363 End I f
364
365 ’ FT_ListDevices with Desc r ip t i on
366 I f FT_ListDevices (0 , s t rDe s c r i p t i on , FT_LIST_BY_INDEX Or

FT_OPEN_BY_DESCRIPTION) <> FT_OK Then
367 LoggerL i s t . AddItem (" L i s tDev i c e s f a i l e d ")
368 Exit Sub
369 Else
370 LoggerL i s t . AddItem (" Device Desc r ip t i on " & s t rDe s c r i p t i o n)
371 End I f
372
373 ’ FT_ListDevices with unique S e r i a l Number
374 I f FT_ListDevices (0 , strSer ia lNumber , FT_LIST_BY_INDEX Or

FT_OPEN_BY_SERIAL_NUMBER) <> FT_OK Then
375 LoggerL i s t . AddItem (" L i s tDev i c e s f a i l e d ")
376 Exit Sub
377 Else
378 LoggerL i s t . AddItem (" S e r i a l Number : " & strSer ia lNumber)
379 End I f
380
381 ’Get some in fo rmat ion o f Device 2 (when av a i l a b l e)
382
383 ’ I f FT_ListDevices (1 , s t rDe s c r i p t i on2 , FT_LIST_BY_INDEX Or

FT_OPEN_BY_DESCRIPTION) <> FT_OK Then
384 ’ LoggerL i s t . AddItem (" L i s tDev i c e s f a i l e d ")
385 ’ Exit Sub
386 ’ El se
387 ’ LoggerL i s t . AddItem (" Device Desc r ip t i on2 " & s t rDe s c r i p t i on2)
388 ’End I f
389

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 101

390 ’ I f FT_ListDevices (1 , strSer ia lNumber2 , FT_LIST_BY_INDEX Or
FT_OPEN_BY_SERIAL_NUMBER) <> FT_OK Then

391 ’ LoggerL i s t . AddItem (" L i s tDev i c e s f a i l e d ")
392 ’ Exit Sub
393 ’ El se
394 ’ LoggerL i s t . AddItem (" S e r i a l Number2 : " & strSer ia lNumber2)
395 ’End I f
396
397 ’ open dev i c e 1 FT245BM by Desc r ip t i on
398
399 ’ I f FT_OpenEx(s t rDe s c r i p t i on , FT_OPEN_BY_DESCRIPTION, LngHandle) <>

FT_OK Then
400 ’ LoggerL i s t . AddItem "Open Device by Desc r ip t i on 1 Fa i l ed "
401 ’ GoTo CloseHandle
402 ’ Exit Sub
403 ’ El se
404 ’ LoggerL i s t . AddItem " Device 1 opened "
405 ’ LoggerL i s t . AddItem " LngHandle o f Device 1 : " & LngHandle
406
407 ’End I f
408
409 ’ open dev i c e 2 FT245RL by Desc r ip t i on
410 I f FT_OpenEx(s t rDe s c r i p t i on2 , FT_OPEN_BY_DESCRIPTION, LngHandle2) <>

FT_OK Then
411 ErrorCode = FT_OpenEx(s t rDe s c r i p t i on2 , FT_OPEN_BY_DESCRIPTION,

LngHandle2)
412 LoggerL i s t . AddItem " ErrorCode " & ErrorCode
413 LoggerL i s t . AddItem "Open Device by Desc r ip t i on 2 Fa i l ed "
414 GoTo CloseHandle
415 Exit Sub
416 Else
417 LoggerL i s t . AddItem " Device 2 opened "
418 LoggerL i s t . AddItem " LngHandle2 o f Device 2 : " & LngHandle2
419 End I f
420
421 CloseHandle : ’ l a b e l
422
423 ’ c l o s e the dev i c e s
424 I f FT_Close (LngHandle) <> FT_OK Then
425 LoggerL i s t . AddItem " Clos ing the Device 1 f a i l e d "
426 End I f
427

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 102

428 I f FT_Close (LngHandle2) <> FT_OK Then
429 LoggerL i s t . AddItem " Clos ing o f Device 2 f a i l e d "
430 End I f
431
432 I f f l F a i l e d = True Then
433 LoggerL i s t . AddItem " Test Fa i l ed "
434 End I f
435
436 End Sub
437 Publ ic Sub Start_Cl ick ()
438
439 Open "D:\ vb−versuch \Werte . txt " For Output As #1
440 ’When the Star t Button i s c l i c k ed , the I n t e r f a c e i s opened by the

f unc t i on s o f the D2xxx . d l l .
441 ’ After that , the program beg ins to read out the FIFO of the i n t e r f a c e ,

i f i t ho lds any bytes .
442 ’When read ing i s done , the program c a l c u l a t e s the Epoch Times from the

bytes and dec ide s i f the epoch time holds any
443 ’ in fo rmat ion or not . I f the epoch time r ep r e s en t s in format ion , the

in fo rmat ion i s d i sp layed in a t e x t f i e l d . I f the epoch
444 ’ time holds no informat ion , no in fo rmat ion (e . g . l e t t e r or number)

w i l l be d i sp layed ;−)
445 ’To open the FT245RL co r r e c t l y , the program wr i t e s two bytes in to the

FIFO (F i r s t In F i r s t Out) o f the FT245RL and a f t e r
446 ’ that i t r e s e t s the I n t e r f a c e to c l e a r the two transmit ted bytes . That

’ s nece s sa ry to be sure that no problems occure with the
447 ’Combined Driver Model
448
449 Dim lngBytesWritten As Long
450 Dim strReadBuf fer As St r ing ∗ 63488 ’ bu f f e r which ho lds the

in fo rmat ion o f the FIFO
451 Dim EpochTime As Variant
452 Dim LenghOfString As Long
453 Dim lngBytesRead As Long
454 Dim lngTotalBytesRead As Long
455 Dim st rLogge rBu f f e r As St r ing
456 Dim f l F a i l e d As Boolean
457 Dim flTimedout As Boolean
458 Dim f lFa t a lE r r o r As Boolean
459 Dim f tS t a tu s As Long
460 Dim lngNumDevices As Long
461 Dim strSer ia lNumber As St r ing ∗ 256

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 103

462 Dim s t rDe s c r i p t i o n As St r ing ∗ 256
463 Dim Counter As Long
464 Dim lngRxBytes As Long
465 Dim ErrorCode As Long
466 Dim mStartTime As Long
467 Dim ByteArray (1 To 63488) As Variant
468 Dim ArrayZero (1 To 100) As Long
469
470 Dim InformationArray (1 To 15872) As Long ’ Array that ho lds the Epoch

Times
471 Dim BytesToRead As Long
472 Dim Byte_0 As Byte
473 Dim Byte_1 As Byte
474 Dim Byte_2 As Byte
475 Dim Byte_3 As Byte
476 Dim Index As Long ’ Index o f InformationArray
477 Dim Nanoseconds As Variant
478 Dim StartTime As Variant
479 Dim EpochCounter As Long
480 Dim ReferenceSeconds As Variant
481 Dim D i f f e r e n c e As Variant
482 Dim Asci iN As Double
483 Dim RelevantValue As Variant
484 Dim NullValue As Long
485 Dim ReferenceValue As Variant
486 Dim Let t e r As Variant
487 Dim Asc i iVa lue As Variant
488 Dim StringToSend As St r ing
489 Dim BytesReadable As Long
490 Dim TestStr ing As Variant
491 Dim NullCounter As In t eg e r
492 Dim EpochTimesIndexCounter As Long
493 Dim EqualCounter As In t eg e r
494 Dim SumOfMeanValue As Long
495 Dim DoEventsCounter As Long
496 Dim OldNullValue As Long
497 Dim TxT As Variant
498 Dim Test i As Variant
499
500 Const JITTER = 75 ’The J i t t e r o f the Laser i s +−15ns
501 Const NFACTOR = 80 ’The N−Factor o f the coded in fo rmat ion i s 40ns .
502 ’ Const START_TEXT = 2

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 104

503 ’ Const END_OF_TEXT = 4
504
505 LenghOfString = 2
506 StringToSend = "HA"
507
508 Text1 . Text = vbNul lStr ing ’ Erase the message t e x t f i e l d
509
510 Const BYTES_TO_READ = 4096 ’we have to read in 64 Byte Blocks
511 ’Open "C: \ Test . txt " For Output As #1 ’ c r e a t e a t e s t f i l e c a l l e d Test .

txt f o r
512 ’ wr i t i ng the epoch t imes
513 EpochCounter = 0
514
515 ’−−−
516 ’Open the I n t e r f a c e s ’ dev i c e 1 and dev i ce 2 with func t i on s o f d2xxx .

d l l
517 ’−−−
518 ’FT_STATUS FT_Read (FT_HANDLE ftHandle , LPVOID lpBuf f e r , DWORD

dwBytesToRead ,
519 ’LPDWORD lpdwBytesReturned)
520 ’ I f FT_GetNumDevices i s not equal to FT_OK then program w i l l terminate
521 ’ Otherwise the parameter lngNumDevices ho lds the number o f d ev i c e s
522
523 I f FT_GetNumDevices (lngNumDevices , vbNul lStr ing ,

FT_LIST_BY_NUMBER_ONLY) <> FT_OK Then
524 MsgBox FT_GetNumDevices (lngNumDevices , vbNul lStr ing ,

FT_LIST_BY_NUMBER_ONLY)
525 LoggerL i s t . AddItem ("FT_GetNumDevices f a i l e d ")
526 ’Write #1, "FT_GetNumDevices f a i l e d "
527 GoTo CloseHandle
528 Exit Sub
529 Else
530 LoggerL i s t . AddItem ("NumDevices : " & lngNumDevices)
531 ’Write #1, lngNumDevices
532 End I f
533
534 ’###
535 ’FT_STATUS FT_ListDevices (PVOID pvArg1 , PVOID pvArg2 , DWORD dwFlags)
536 ’ Returnes a l i s t o f connected dev i c e s . I f FT_ListDevices i s not equal

to FT_OK,
537 ’ the program w i l l terminate . Otherwise the parameter s t rDe s c r i p t i o n

ho lds the d i s c r i p t i o n o f

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 105

538 ’ the dev i ce
539
540 I f FT_ListDevices (0 , s t rDe s c r i p t i on , FT_LIST_BY_INDEX Or

FT_OPEN_BY_DESCRIPTION) <> FT_OK Then
541 LoggerL i s t . AddItem (" L i s tDev i c e s f a i l e d ")
542 ’Write #1, " L i s tDev i c e s f a i l e d "
543 Exit Sub
544 Else
545 LoggerL i s t . AddItem (" Device Desc r ip t i on " & s t rDe s c r i p t i o n)
546 ’Write #1, s t rDe s c r i p t i o n
547 End I f
548
549 ’###
550 ’The same , but the parameter strSer ia lNumber ho lds the s e r i a l number

o f the dev i ce
551 I f FT_ListDevices (0 , strSer ia lNumber2 , FT_LIST_BY_INDEX Or

FT_OPEN_BY_SERIAL_NUMBER) <> FT_OK Then
552 LoggerL i s t . AddItem (" L i s tDev i c e s f a i l e d ")
553 ’Write #1, " L i s tDev i c e s f a i l e d "
554 Exit Sub
555 Else
556 LoggerL i s t . AddItem (" S e r i a l Number : " & strSer ia lNumber2)
557 ’Write #1, strSer ia lNumber
558 End I f
559
560 ’###
561 ’Open dev i c e FT245RL with Open_By_Description
562 I f FT_OpenEx(s t rDe s c r i p t i on , FT_OPEN_BY_DESCRIPTION, LngHandle) <>

FT_OK Then
563 ErrorCode = FT_OpenEx(0 , FT_OPEN_BY_DESCRIPTION, LngHandle)
564 LoggerL i s t . AddItem ("Open_EX f a i l e d ")
565 LoggerL i s t . AddItem (" ErrorCode : " & ErrorCode)
566 Exit Sub
567 Else
568 LoggerL i s t . AddItem ("FT_OpenEx Succe s s fu l , FT245RL i s open now :−)

")
569 ’ Write #1, "FT_OpenEx Succe s s fu l , FT245RL i s open now :−) "
570 End I f
571
572 S leep 30 ’Wait 30ms
573
574 ’###

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 106

575 ’Write 2 Bytes on the FT245RL
576 I f FT_Write(LngHandle , StringToSend , LenghOfString , lngBytesWritten)

<> FT_OK Then
577 LoggerL i s t . AddItem ("FT_Write not OK")
578 LoggerL i s t . AddItem (" Bytes Written " & lngBytesWritten)
579 GoTo CloseHandle
580 Exit Sub
581 Else
582 LoggerL i s t . AddItem ("FT_Write OK")
583 LoggerL i s t . AddItem (" Bytes Written " & lngBytesWritten)
584
585 End I f
586
587 S leep 30 ’Wait 30ms
588
589 ’###
590 ’ Reset FT245RL
591 I f FT_ResetDevice (LngHandle) <> FT_OK Then
592 LoggerL i s t . AddItem (" Reset not OK")
593 GoTo CloseHandle
594 Exit Sub
595 Else
596 LoggerL i s t . AddItem (" Reset Ok, Device r e s e t t e d ")
597
598 End I f
599
600 ’###
601 ’−−−−−−−−−−−−−−−−−−−−−−−−ENDLESS LOOP−−−−−−−−−−−−−−−−−−−−−−−−−
602 ’###
603 ’ Please do not change ;−) − here beg ins the main a lgor i thm
604 Do
605 I f (DoEventsCounter Mod 10000) = 0 Then
606 DoEvents
607 End I f
608
609 I f DoEventsCounter = 65500 Then
610 DoEventsCounter = 0
611 End I f
612 ’−−−
613 DoEventsCounter = DoEventsCounter + 1 ’ i n c r e a s e s the

DoEventscounter
614 Index = 0

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 107

615
616 I f FT_GetQueueStatus (LngHandle , lngRxBytes) <> FT_OK Then
617 LoggerL i s t . AddItem " GetQueueStatus f a i l e d ! "
618 LoggerL i s t . L i s t Index = LoggerL i s t . ListCount − 1
619 LoggerL i s t . S e l e c t ed (LoggerL i s t . L i s t Index) = False
620 GoTo CloseHandle
621 Exit Sub
622 Else
623 On Error Resume Next
624 End I f
625
626 I f lngRxBytes >= BYTES_TO_READ Then
627 BytesReadable = lngRxBytes − lngRxBytes Mod 4 ’To be sure that

we only read f u l l epoch va lue s
628
629 I f FT_Read(LngHandle , strReadBuffer , BytesReadable ,

lngBytesRead) <> FT_OK Then ’ an e r r o r was detec ted
630 ErrorCode = FT_Read(LngHandle , MyBytes , BYTES_TO_READ,

lngBytesRead)
631 GoTo CloseHandle
632 Else
633 LoggerL i s t . AddItem " Reading Ok :−) " ’ d i sp l ay " Reading Ok"

i f r ead ing s u c c e s s f u l
634 LoggerL i s t . AddItem " Bytes read : " & lngBytesRead ’how many

bytes were read
635 L i s t 9 . AddItem lngBytesRead
636
637 For Counter = 1 To BytesReadable − 3 Step 4
638 Byte_0 = Asc (Mid$ (strReadBuffer , Counter , 1)) ’

f unc t i on "MID" which ana lyze s st rReadBuf fer
element by element

639 Byte_1 = Asc (Mid$ (strReadBuffer , Counter + 1 , 1))
640 Byte_2 = Asc (Mid$ (strReadBuffer , Counter + 2 , 1))
641 Byte_3 = Asc (Mid$ (strReadBuffer , Counter + 3 , 1))
642 EpochTime = CDec(Byte_0) + CDec(Byte_1 ∗ 2 ^ 8) + CDec

(Byte_2 ∗ 2 ^ 16) + CDec(Byte_3 ∗ 2 ^ 24) ’
Computes the Epoch Times . CDec i s f o r datatype
DECIMAL

643 Nanoseconds = CDec(EpochTime) ∗ 5
644 RelevantValue = Nanoseconds − Int (Nanoseconds /

100000) ∗ 100000 ’ RelevantValue = RelevantValue
Mod 100000

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 108

645 Write #1, RelevantValue
646 Write #1, "−−−−−−−−−−"
647 Index = Index + 1 ’ In c r ea s e the Index Value
648 InformationArray (Index) = RelevantValue
649 Next Counter
650
651 ’ Ca l cu l a t i on o f the NullValue
652 EpochTimesIndexCounter = 0
653 ArrayZeroIndex = 0
654 EqualCounter = 0
655 MeanValue = 0
656 SumOfMeanValue = 0
657 OldNullValue = NullValue
658
659 Do While EqualCounter < 100 ’Do as long as EqualCounter i s

l e s s than 100 , because in t h i s case , there ’ s no
NullValue

660 I f EpochTimesIndexCounter = BytesReadable / 4 − 1 And
EqualCounter = 99 Then ’ i f program reaches the
second l a s t p o s i t i o n o f the array

661 For Counter = 1 To 99 Step 1 ’ c a l c u l a t i o n o f the
mean value o f the array

662 SumOfMeanValue = SumOfMeanValue + ArrayZero (
Counter) ’ sum up the numeric e lements o f
the array .

663 Next Counter
664
665 NullValue = SumOfMeanValue / 99
666 I f NullValue = InformationArray (1) Or Abs(

NullValue − InformationArray (1)) <= JITTER
Then

667 EqualCounter = EqualCounter + 1
668 ArrayZero (100) = InformationArray (1)
669 ’ Exit Do
670 Else
671 NullValue = OldNullValue ’ i f the re aren ’ t 100

equal va lue s in the array , program should
use the o ld NullValue

672 L i s t10 . AddItem NullValue
673 GoTo NULLVALUEFOUND ’ Nul lva lue found . In t h i s

case the program cont inues on next l a b e l
674 End I f

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 109

675 End I f
676
677 I f EpochTimesIndexCounter = BytesReadable / 4 − 1 And

EqualCounter <> 99 Then
678 ’ in t h i s case , the InformationArray has been analyzed

un t i l the f i r s t po s i t i on , but
679 ’ the re aren ’ t 99 equal va lue s u n t i l yet . The program

takes in t h i s case the o ld
680 ’ NullValue (OldNullValue)
681 NullValue = OldNullValue
682 L i s t10 . AddItem NullValue
683 GoTo NULLVALUEFOUND ’ jump to l a b e l NULLVALUEFOUND,

i f NullValue = OldNullValue
684 End I f
685
686 D i f f e r e n c e = Abs(InformationArray (BytesReadable / 4 −

EpochTimesIndexCounter) − Abs(InformationArray (
BytesReadable / 4 − EpochTimesIndexCounter − 1)))

687 ’Write #1, D i f f e r e n c e
688 EpochTimesIndexCounter = EpochTimesIndexCounter + 1
689
690 I f D i f f e r e n c e = 0 Or D i f f e r e n c e <= JITTER Then ’ J i t t e r
691 ArrayZeroIndex = ArrayZeroIndex + 1
692 ArrayZero (ArrayZeroIndex) = InformationArray (

BytesReadable / 4 − EpochTimesIndexCounter)
693 EqualCounter = EqualCounter + 1
694 Write #1, EqualCounter
695 ’Write #1, "−−−−−−−−−−"
696 Else
697 EqualCounter = 0
698 ArrayZeroIndex = 0
699 ’Write #1, EqualCounter
700 End I f
701 Loop
702
703 SumOfMeanValue = 0
704
705 I f EqualCounter >= 100 Then
706 ’ There are 100 equal EpochValues toge the r and now we
707 ’ can compute the NullValue
708 For Counter = 1 To 100 Step 1
709 SumOfMeanValue = SumOfMeanValue + ArrayZero (Counter)

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 110

710 Next Counter
711
712 NullValue = SumOfMeanValue / 100
713 L i s t10 . AddItem NullValue
714 End I f
715
716 NULLVALUEFOUND:
717
718 For Counter = 1 To (BytesReadable / 4) Step 1
719 D i f f e r e n c e = (InformationArray (Counter) − NullValue)
720 ’−−
721 I f D i f f e r e n c e < 0 Then ’ i f the d i f f e r e n c e i s negat ive ,

tbe car ry has to be added ! ! !
722 D i f f e r e n c e = ((InformationArray (Counter) + 100000)

− NullValue)
723 End I f
724 ’−−
725 I f D i f f e r e n c e <> 0 And D i f f e r e n c e > JITTER Then
726 Asc i iVa lue = Round(D i f f e r e n c e / NFACTOR) ’We have

to round the value
727 Text1 . SelText = Chr$ (Asc i iVa lue)
728 On Error Resume Next
729 End I f
730 Next Counter
731 End I f
732 End I f
733 Loop ’End Do
734
735 ’ CloseHandle Label
736 ’ I f an e r r o r occure s (e . g . by opening the i n t e r f a c e) , the program w i l l

jump to l a b e l " CloseHandle "
737 ’Here , the i n t e r f a c e w i l l be c l o s ed by s p e c i a l func t i ons , which

depends to the d2xxx . d l l
738
739 CloseHandle :
740
741 I f FT_Close (LngHandle) <> FT_OK Then
742 LoggerL i s t . AddItem " Clos ing the Device 1 f a i l e d "
743 End I f
744
745 I f f l F a i l e d = True Then
746 LoggerL i s t . AddItem " Test Fa i l ed "

B.3. Source Code for reading out Epoch Time Values from the Detection Hardware 111

747 End I f
748
749 End Sub
750 Pr ivate Sub Write_Click ()
751
752 ’ Sends messages to the i n t e r f a c e (FT245BL) . The messages are wr i t t en

in to a textbox c a l l e d "Message " .
753 ’The content o f "Message " i s s to r ed in to the va r i ab l e " StringToSend " .

The lengh o f the St r ing i s s to r ed
754 ’ i n to the va r i ab l e " LenghOfString " .
755 ’FT_Write i s a func t i on o f the FTD2xxx . d l l , which a l l ows to send

s t r i n g s to FT245RL .
756 ’ Syntax o f FT_Write :
757 ’FT_Write(ftHandle , TxBuffer , s i z e o f (TxBuffer) , &BytesWritten)
758 ’FT_Write r e tu rn s an Error Code a f t e r c a l l i n g the func t i on . I f the

returned Error−Code i s not equal to FT_OK (FT_OK =1)
759 ’ an e r r o r occured . I f no e r r o r occured , the re turn value i s FT_OK. The

va r i ab l e " lngBytesWritten " ho lds the number
760 ’ o f the wr i t t en bytes . I f lngBytesWritten i s equal to StringToSend −

everyth ing i s OK!
761
762 Dim StringToSend As St r ing
763 Dim LenghOfString As Long
764 Dim lngBytesWritten As Long
765
766 StringToSend = Message . Text ’ s t o r e s the text o f the message f i e l d in to

" StringToSend "
767 LenghOfString = Len (StringToSend)
768
769 I f FT_Write(LngHandle , StringToSend , LenghOfString , lngBytesWritten)

<> FT_OK Then
770 LoggerL i s t . AddItem "Writing Not OK! "
771
772 Else
773 LoggerL i s t . AddItem " Bytes Written " & lngBytesWritten
774 End I f
775
776 End Sub

	Contents
	Introduction
	Motivation
	SLR-Technology

	Modulation Schemes
	Analogue Modulation Schemes
	Amplitude Modulation
	Angle Modulation
	Pulse Modulation Schemes

	Digital Modulation Schemes
	Pulse Code Modulation
	Amplitude Shift Keying
	Frequency Shift Keying
	Phase Shift Keying

	Selected Modulation Scheme
	Pulse Position Modulation
	Examples for coded Laser Pulses

	Software
	First Steps
	Epoch Time Generation
	Implementation of the Algorithm
	Discussion of the Result
	General Considerations
	Determination of the Reference Value
	Important Remarks

	Implemention of the Epoch Time Generator
	Simulation of Jitter
	Determination of Epoch Times
	Coding of ASCII Characters
	Decoding of ASCII Characters
	Execution of the Program
	Graphical User Interface

	Final Remarks to chapter 3

	Hardware
	ISA Card
	USB-Programmed Input / Output
	Digital I/0
	Programming the USB-PIO
	OCX Functions
	Handshake Model

	UM245R Interface
	Driver Support

	FT245R Block Diagram
	Functional Block Descriptions
	Inputs and Outputs
	General Remarks
	First Preparations

	Programming the FT245RL
	Provided Functions
	Read / Write Process

	Computing the Epoch Times
	Determining the Zero Value

	Graphical User Interface of the final Detection Software
	Final Discussions of chapter 4

	Detection Hardware
	Single Photon Avalanche Diodes
	Dark Count
	Afterpulse and Crosstalk

	Multi-Pixel Photon Counting Module
	Setting the Photon Detection Threshold
	Epoch Timing of Returns

	Test Setup and Results
	Test Results
	Offset from the Basic Grid

	The final Test Transmission

	Conclusions
	Main Challenges
	Future Work

	Bibliography
	Abbreviations and Glossary
	Source Codes
	Source Code for decoding ASCII Characters from Epoch Times
	Generating artificial Epoch Times and decoding ASCII Characters
	Source Code for reading out Epoch Time Values from the Detection Hardware

