
Michael Spitzer

Teamsketch

Fo(u)r drawers - fo(u)r iPad(s) - one collaborative sketch

Master’s Thesis

Graz University of Technology

Institute of Information Systems and Computer Media (IICM)
Head: Prof. Dipl.-Ing. Dr.techn. Frank Kappe

Supervisor: Assoc. Prof. Dipl.-Ing. Dr.techn. Martin Ebner

Graz, December 2014

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be found online:
https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly marked all material which
has been quoted either literally or by content from the used sources.

Graz,

Date Signature

iii

Abstract

English

Teamwork and collaboration skills are very important to improve the learning effi-
ciency and experience. Teamsketch was developed to provide a collaborative sketch
environment for iPads where pupils can draw one sketch together simultaneously. Up
to four pupils take part in one session and train collaboration just by drawing a sketch.
Features and issues of state-of-the-art applications were evaluated and solved by im-
plementing a prototype from scratch in Apple’s new programming language Swift.
Additionally, a web service as well as a web interface was implemented to provide
an evaluation tool for teachers. Furthermore, pupils can upload and download their
drawn sketches and profile pictures.
A first field test was carried out at the primary school Graz-Hirten which showed the
potential of this app.

German

Kollaboratives Arbeiten und Teamfähigkeit sind wichtige Faktoren, um die Lerner-
fahrung und die Lerneffizienz zu verbessern. Teamsketch wurde als kollaborative
Zeichen App für das iPad entwickelt, die das gleichzeitige Zeichnen von bis zu vier
Personen an einer Zeichnung ermöglicht. Zuerst wurden die Funktionen und die Ein-
schränkungen von aktuellen, kollaborativen Zeichen Apps analysiert. Anhand dieser
Erkenntnisse wurde der Prototyp von Teamsketch entwickelt.
Zusätzlich zur App wurde ein Web-Service zur Verwaltung von Zeichnungen imple-
mentiert. Weiters ermöglicht eine Homepage für Lehrer/innen und Schüler/innen das
Betrachten und Evaluieren von gemalten Bildern.
Abschließend wurde ein erster Feldversuch in einer Klasse der Volksschule Graz-Hirten
durchgeführt, welcher das Potenzial der App zeigt.

iv

Acknowledgements

I would like to extend my gratitude to my advisor Assoc. Prof. Martin Ebner who
helped me whenever I had questions or needed support.

Furthermore, I would like to thank Silvana Aureli, who is the teacher of the iPad class
Graz-Hirten, for allowing me to test the app with her pupils and gave me important
feedback.

Additionally, I would like to thank Wolfgang Mesič and Hans-Peter Schlegl for provid-
ing their iPads more than once to test Teamsketch. Without them, fundamental testing
would not have been possible.

Last but not least, I would like to thank my girlfriend Romana Marchel, who is in her
last year of primary teacher’s education, for supporting me during the whole design
process as well as being there for me in the last few work-intensive months.

v

Contents

Statutory Declaration iii

Abstract iv

Acknowledgements v

List of acronyms ix

List of figures x

List of listings xii

List of tables xiii

1 Introduction 1
1.1 Research Goal . 1

1.2 Overview . 1

2 Theoretical Background 3
2.1 Collaborative Learning . 3

2.2 Collaborative Learning with Mobile Devices 4

3 State-of-the-art Collaborative Sketch Applications 6
3.1 Baiboard . 6

3.1.1 Conclusion . 7

3.2 Whiteboard Lite . 8

3.2.1 Conclusion . 9

3.3 Flockdraw . 11

3.3.1 Conclusion . 11

3.4 Feature comparison . 13

3.5 Conclusion . 14

4 Teamsketch App 15
4.1 Idea . 15

4.2 Development Environment . 15

4.3 Features . 15

4.4 System Architecture . 16

4.4.1 Frameworks . 17

vi

Contents

4.4.2 Basic Concepts . 18

4.5 Swift . 20

4.6 Design Patterns . 21

4.6.1 Model/View/Controller . 21

4.6.2 Singleton . 21

4.6.3 Delegate . 22

4.6.4 Observer . 22

4.6.5 Facade . 22

4.7 User Interface . 24

4.7.1 Main Screen View Controller Scene 26

4.7.2 User Management View Controller Scene 27

4.7.3 Start New Sketch View Controller Scene 28

4.7.4 Looking For Players View Controller Scene 29

4.7.5 Service Advertiser View Controller Scene 31

4.7.6 Sketch View Controller Scene . 32

4.8 Implementation details . 35

4.8.1 Overview . 35

4.8.2 Delegates . 35

4.8.3 Model . 39

4.8.4 View Controller . 44

4.8.5 Views . 51

4.8.6 Web service access . 57

4.9 Unit Testing . 57

4.9.1 Mocks . 58

4.9.2 Asynchronous Tests . 60

5 Web Service 61
5.1 Features . 61

5.2 System Architecture . 62

5.2.1 SOAP . 62

5.2.2 WSDL . 64

5.2.3 Communication . 65

5.2.4 Image Data Transmission . 66

5.3 Design Patterns . 67

5.4 User Interface . 67

5.5 Implementation Details . 67

5.5.1 Overview . 67

5.5.2 SOAP server initialization . 69

5.5.3 Login . 69

5.5.4 getImage . 69

5.5.5 setImage . 70

5.6 Unit Testing . 71

5.6.1 Functional Testing . 71

vii

Contents

6 Web Interface 73
6.1 Features . 73

6.2 Design patterns . 74

6.3 System Architecture . 74

6.3.1 Smarty . 75

6.3.2 Web Service Communication . 75

6.4 User Interface . 75

6.4.1 Welcome page . 76

6.4.2 Student Interface . 77

6.4.3 Teacher Interface . 77

6.5 Implementation Details . 80

6.5.1 Session management . 80

6.5.2 Template engine . 81

6.5.3 Multi Language Support . 82

6.5.4 SOAP Service access . 82

6.6 Unit Testing . 82

7 Prototype Test in a Primary School 83
7.1 Test parameters . 83

7.2 Results . 84

7.3 Questionnaire . 85

7.3.1 Impressions of the pupils given during the questionnaire 86

7.4 Teacher’s feedback . 86

8 Conclusion 88
8.1 Project Summary . 88

8.2 Technical Aspects . 89

8.3 Lessons Learned . 89

8.4 Further Studies . 90

Bibliography 92

viii

List of acronyms

API Application Programming Interface

CSS Cascading Style Sheets

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

ID Identifier

IDE Integrated Development Environment

IICM Institute of Information Systems and Computer Media

MTOM Message Transmission Optimization Mechanism

MVC Model View Controller

PC Personal Computer

PDF Portable Document Format

PHP PHP: Hypertext Preprocessor

SDK Software Development Kit

SOAP Simple Object Access Protocol

SOC Service Oriented Computing

SSH Secure SHell

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

UTF Unicode Transformation Format

WSDL Web Services Description Language

WWDC Apple Worldwide Developers Conference

XML Extensible Markup Language

ix

List of Figures

3.1 Baiboard draw screen - iPad . 8

3.2 Whiteboard Lite synchronization errors 10

3.3 Whiteboard Lite line shape . 10

3.4 Flockdraw screen session - first user . 12

3.5 Flockdraw screen session - second user 12

4.1 iOS drawing stack . 18

4.2 Facade pattern in Teamsketch . 23

4.3 Teamsketch UI screen transitions . 24

4.4 Teamsketch UI flowchart . 25

4.5 Main View Controller Scene . 26

4.6 User Management View Controller - login sub view 27

4.7 User Management View Controller . 28

4.8 Start New Sketch View Controller Scene 29

4.9 Looking For Players View Controller flow 30

4.10 Service Advertiser View Controller flow 31

4.11 Sketch View Controller Scene . 32

4.12 Felt Pen Switching Process . 33

4.13 Abort Sketch View Pop-up Controller . 34

4.14 Store Sketch View Pop-up Controller . 34

4.15 Overview of involved components . 36

4.16 Abort Sketch View Controller Delegate 37

4.17 Bezier Segment Delegate . 37

4.18 Session Container Delegate . 38

4.19 Store Sketch View Controller Delegate . 38

4.20 Teamsketch SOAP Delegate . 39

4.21 One Touch Circle . 40

4.22 Bezier segment . 41

4.23 Session Container . 42

4.24 Multipeer message strings - examples . 43

4.25 User related components . 43

4.26 Teamsketch enumerations . 44

4.27 Main View Controller . 45

4.28 User Management View Controller . 46

4.29 Start New Sketch View Controller . 47

4.30 Looking For Players View Controller . 48

x

List of Figures

4.31 Service Advertiser View Controller . 49

4.32 Sketch View Controller . 50

4.33 Abort Sketch- and Store Sketch View Controller 51

4.34 Sketch Views . 52

4.35 Basic drawing approach . 53

4.36 Cubic bezier curve computed with four sampled touch points 54

4.37 Cubic bezier curve segments with a point of discontinuity 54

4.38 Cubic bezier curve segments with linear interpolation 55

4.39 Optimized drawing path . 55

4.40 Drawing thread overview . 56

4.41 TeamsketchSOAP overview . 57

4.42 Class changes to test message construction 59

5.1 Web service communication . 63

5.2 getImage HTTP response . 66

5.3 Web service overview . 68

5.4 getImage information processing . 70

5.5 Web service login test suite . 72

5.6 Web service login test suite - test example 72

6.1 Web interface API call overview . 75

6.2 User interface overview . 76

6.3 Welcome page . 77

6.4 Web interface pupil image page . 78

6.5 Web interface teacher’s class list pages . 79

6.6 Students in class page . 79

6.7 Session details for teachers . 80

7.1 Test setting in school class . 83

7.2 Questionnaire and rating equipment . 86

xi

Listings

4.1 Optionals as condition in loops . 20

4.2 Image sort in array . 21

4.3 Bezier segment message construction test with Mock 58

4.4 Asynchronous test implementation example 60

5.1 setImage request SOAP envelope . 63

5.2 setImage WSDL information . 64

5.3 getImage HTTP POST body . 65

5.4 PHP SOAP server initialization . 69

6.1 Sketch image code generation . 81

6.2 Sketch image template code . 81

6.3 PHP SOAP client access . 82

xii

List of Tables

3.1 Feature comparison - app features . 13

3.2 Feature comparison - drawing features 13

3.3 Feature comparison - import / export / save 13

3.4 Feature comparison - additional features 14

5.1 Web service requests and descriptions . 62

5.2 getImage HTTP POST header . 65

6.1 Web interface frameworks . 74

7.1 Test questionnaire - ranking questions . 85

xiii

1 Introduction

Nowadays our children grow up with mobile devices. Some are able to use a cell-
phone/tablet even before they are able to write or read. In the United States 52% of
children from 0-8 years have already used a mobile media platform such as smart
phones and tablets [Rideout, 2013, p. 21] but only 28% of them have ever used educa-
tional game apps [Rideout, 2013, p. 23].
Even at older age (pupils at lower secondary school in Austria, age: 10-14) only 6% of
the pupils use their device frequently for learning [Grimus and Ebner, 2014, p. 1603].
As mobile media plays a significant role in our lives, it is in our responsibility to teach
children how to use modern media and technology wisely. They should learn to use
their devices to improve their skills.
To be successful in life and business, team work and the ability to learn from each
other (collaborative learning) are important skills. Teamsketch not only tries to fulfill
these requirements but also tries to motivate.

1.1 Research Goal

The goal of this project is to build a prototype drawing app. Pupils should be able
to work on a sketch simultaneously and all participants should get display updates
immediately. Furthermore, the collaborative learning capabilities of drawing together
simultaneously should be observed in a first field study.

1.2 Overview

This master’s thesis covers development of an iPad sketch app to enable students to
draw simultaneously on one sketch. Additionally, a web service and a web interface
were implemented to provide a sketch review platform. Pupils can upload their
sketches and teachers can access them to give an adequate feedback. The thesis consists
of the following chapters:

• Chapter two analyses the theoretical background. Collaborative learning will be
introduced and explained in mobile device context.

1

1 Introduction

• Chapter three summarizes feature and issue analysis of already implemented
collaborative sketch apps on different platforms. Based on this feature evaluation
and testing conclusions were made which were considered during the project
planning phase.

• Chapter four describes app features and details as well as implementation and
testing.

• Chapter five covers the web service features, environment, implementation and
testing.

• Chapter six describes the web interface for students and teachers in detail.

• Chapter seven explains and analyses the field study at a primary school.

• Chapter eight gives a short project summary followed by technical aspects and
issues. Furthermore, the project outcome is elaborated as well as further study
opportunities.

2

2 Theoretical Background

This chapter elaborates on the theoretical aspects of this project. At first the term
”collaborative learning” is introduced, then several parameters are defined to use
mobile devices for collaborative drawing.

2.1 Collaborative Learning

Collaborative learning in simple terms describes situations where a group of people
tries to learn something together [Dillenbourg, 1999, p. 1].

Cooperative learning consists of five main elements:

• positive dependency

• individual responsibility

• mutual support

• application of social competences

• reflection of group processes

Positive dependency means that people in a group try to achieve a collective goal.
When they are aware of this element, the development of individual responsibility will
be benefited as well as the mutual support. Cooperative learning requires multiple
social skills such as leadership, communication, discretionary and conflict resolution.
Cooperative learning is more complex than other learning interactions because par-
ticipants are simultaneously busy with the given task and the interaction between
group members. After the cooperative learning task is finished, the group work should
be reflected. Participants should discuss which actions were helpful while learning
together as well as which actions obstructed the learning process. During the reflection,
the individual contributions should be discussed as well as how they provide contri-
bution to the group target. Reflections have many positive effects such as increased
self confidence, higher social skills and a positive attitude to the processed group task
[[D. W. Johnson and R. T. Johnson, 1989][D. W. Johnson, R. T. Johnson, and Holubec,

3

2 Theoretical Background

2002][D. W. Johnson, 2003][D. W. Johnson and R. T. Johnson, 2005] quoted from [D. W.
Johnson and R. T. Johnson, 2008, p. 18-20]].

There are three different types of collaboration groups according to time of collabora-
tion [D. W. Johnson, R. T. Johnson, and Holubec, 2002].:

• pupils work together for a short period of time (a few minutes to one hour)

• pupils work together in one group for a medium period of time (one hour to
several weeks) to reach common learning objectives

• pupils work together in heterogeneous groups for a long period of time (half a
year to several years)

Teamsketch targets groups which work together for a medium period of time and try
to reach a collaborative goal: a finished sketch.
Teachers have to manage several aspects of this form of collaborative work [D. W.
Johnson and R. T. Johnson, 2008, p. 18-20]:

• group role and group size
According to previously defined learning objectives, group roles and group size
are selected. In Teamsketch, one pupil acts as a leader and starts the sketch. The
leader could have more responsibilities such as dividing the sketch space and
assign it to the other pupils who joined the sketch.

• task and positive dependency
The teacher should explain to Teamsketch users that they all have to draw one
sketch. Since everybody can delete and overwrite the work of others, the pupils
have to draw well-considered.

• observation and intervention
When pupils have problems and need assistance, the teacher should give them
support.

• assessment and evaluation
Teachers should evaluate the team performance as well as manage the reflection
of the group performance.

2.2 Collaborative Learning with Mobile Devices

Several studies attested that the usage of mobile devices improved the computer based
collaborative learning significantly [Zurita and Nussbaum, 2004, p. 300-301][Danesh

4

2 Theoretical Background

et al., 2001, p. 394].
The small size of the devices enables pupils to sit very close to each other and they can
communicate easily with each other. Many pupils are already experienced in using
mobile devices with touch screens [Rideout, 2013]. Therefor it is easier for children to
use a small device with touch screen than sitting in front of a computer.
The smaller screen on mobile devices could also be a drawback, because of the lack of
space. This issue should be targeted with a very well-considered user interface. Only
most import features and icons should be displayed [Danesh et al., 2001, p. 392].
A significant advantage of using tablets to perform collaborative drawing is that pupils
have their own space (device) to draw. There is no physical restriction as there is when
they draw a real sketch on a paper in a group. While drawing a real sketch together,
only one pupil can draw at a certain place. They have to divide space if they want to
draw simultaneously. Additionally it is very difficult to get an overview of the sketch
when four pupils are working with their pens on one big sheet. These restrictions do
not occur if pupils use their own tablets to draw. Everyone has their own device and
draws without bothering other pupils physically.
Another significant advantage of using a tablet rather than using a PC1 is that pupils
could use a stylus for drawing on the touch screen.

1Personal Computer

5

3 State-of-the-art Collaborative Sketch
Applications

Before development of a new collaborative sketch app could be started, an investigation
of currently available applications must be performed. The following list contains all
investigated applications. All apps were tested on two devices (iPad2 and iPad4) to
verify their features. Each test app represents a certain group of applications. The first
app is a web based collaborative sketch app (path based drawing) which needs an
internet connection even for Wi-Fi collaboration. The second drawing app (pixel based
drawing) can be used without an internet connection. The last app represents browser
based collaborative sketch apps.

• Baiboard

• Whiteboard Lite

• Flockdraw

3.1 Baiboard

Baiboard1 is a sketch app which provides a collaborative white board. The main
features are:

• web collaboration (up to 40 collaborators)

• Wi-Fi collaboration (internet access required)

• sketch zoom

• undo function

• squared line guides

• shape drawing (lines, circles, predefined symbols)

1http://www.baiboard.com, last accessed: 15. Aug. 2014

6

http://www.baiboard.com

3 State-of-the-art Collaborative Sketch Applications

• custom shape import from Dropbox2, photo album and iTunes3 Sharing

• text insertion

• eight pen colors (black, dark blue, blue, light blue, green, purple, red and yellow)

• four pen stroke widths (fat plus, fat, medium and thin)

• whiteboard export as PDF4 and image with transparent or white background

• whiteboard sharing on Internet (URL5), Dropbox, Evernote6, Facebook7, Twitter8

and Tumblr9

• image import

• print support

• live voice conferencing (beta) and text chat

Figure 3.1 shows a screen shot of the drawing view.

3.1.1 Conclusion

The drawing responsiveness is fast, drawing is very comfortable with this app. All
lines and shapes are accessible as paths. The rubber acts as a path removal tool, only
whole paths can be deleted. A significant drawback of this app is that users have to be
connected to the internet in order to use real time collaboration.

2https://www.dropbox.com, last accessed: 30. Nov. 2014

3https://www.apple.com/itunes, last accessed: 30. Nov. 2014

4Portable Document Format
5Uniform Resource Locator
6https://evernote.com, last accessed: 30. Nov. 2014

7https://www.facebook.com, last accessed: 30. Nov. 2014

8https://twitter.com, last accessed: 30. Nov. 2014

9https://www.tumblr.com, last accessed: 30. Nov. 2014

7

https://www.dropbox.com
https://www.apple.com/itunes
https://evernote.com
https://www.facebook.com
https://twitter.com
https://www.tumblr.com

3 State-of-the-art Collaborative Sketch Applications

Figure 3.1: Baiboard draw screen - iPad

3.2 Whiteboard Lite

Whiteboard Lite10 is available for iPad and supports collaborative drawing over web
and Wi-Fi. The following list elaborates on the main features of this app.

• web collaboration

• collaboration over Wi-Fi

• auto save

• import images from camera roll

• import text

• imported items are movable

• ten predefined colors

• custom colors available by selecting color in color palette.

• color alpha channel (opacity)

10http://www.greengar.com, last accessed: 19. Nov. 2014

8

http://www.greengar.com

3 State-of-the-art Collaborative Sketch Applications

• variable stroke width (width slider)

• video out

• sketch sharing on Facebook, Twitter, iCloud11, E-mail, Google Drive12, Evernote
and Whiteboard gallery

• sketch zoom

• undo function

• API13 available

• full screen mode

3.2.1 Conclusion

This app uses pixel based drawing. Real-time drawing over Wi-Fi works without
requiring an internet connection but sketch synchronization is sometimes delayed and
sketches contains wrong transmitted strokes, Figure 3.2 shows drawing screen details
and synchronizing differences after drawing a circle. The strokes look very cornered
when the user often changes the drawing direction (Figure 3.3). This may be caused by
the lack of a curve-fitting and line smoothing algorithm.

11https://www.icloud.com, last accessed: 30. Nov. 2014

12https://www.google.com/drive, last accessed: 30. Nov. 2014

13Application Programming Interface

9

https://www.icloud.com
https://www.google.com/drive

3 State-of-the-art Collaborative Sketch Applications

(a) 1
st user (b) 2

nd user - transmitted shape

Figure 3.2: Whiteboard Lite synchronization errors

Figure 3.3: Whiteboard Lite line shape

10

3 State-of-the-art Collaborative Sketch Applications

3.3 Flockdraw

The Flockdraw14 app for iPad is only available in the Apple Store of the United States
therefor the iPad app could not be tested. Only the web based version was tested.
Flockdraw provides the following main features:

• text input

• area color fill

• line drawing

• storing sketches online

• sharing sketches on Facebook and Twitter

• six stroke widths

• full color palette

• text chat

3.3.1 Conclusion

Flockdraw web application needs the Flash player15 therefor the application cannot
be used on the iPad as there is no native Flash support available [Jobs, 2010]. When
using Flockdraw within a browser on a PC, real-time collaborative drawing works by
joining an active session with a session ID16. Drawing long and curved strokes lead
to cornered shapes. Stroke synchronizing performance highly depends on internet
speed and latency. Synchronization errors occurred from time to time. Figure 3.4 and
3.5 show draw screen shots with two involved users in one active drawing session.

14http://flockdraw.com, last accessed: 17. Aug. 2014

15http://get.adobe.com/de/flashplayer, last accessed: 17. Aug. 2014

16Identifier

11

http://flockdraw.com
http://get.adobe.com/de/flashplayer

3 State-of-the-art Collaborative Sketch Applications

Figure 3.4: Flockdraw screen session - first user

Figure 3.5: Flockdraw screen session - second user

12

3 State-of-the-art Collaborative Sketch Applications

Table 3.1: Feature comparison - app features

Application Web collabo-
ration

Wi-Fi collabo-
ration printing available on

iPad

Baiboard •
• (internet
connection
required)

• •

Whiteboard
Lite • • •

Flockdraw • •
iPad App in
US App store
(not tested)

Table 3.2: Feature comparison - drawing features

Application colors stroke
widths zoom line

drawing text undo func-
tion flood fill predefined

shapes

user
defined
shapes

shapes
movable

Baiboard 8 4 • • • • • • •

Whiteboard
Lite

full
palette slider • • • • • • •

Flockdraw full
palette 6 • • •

3.4 Feature comparison

Table 3.1 shows general feature comparison of all tested applications. Table 3.2 elabo-
rates on drawing related features, table 3.3 focus on data operations such as import,
export and saving. Table 3.4 lists additional features.

Table 3.3: Feature comparison - import / export / save

Application import sketches export sketches import predefined
shapes

import user defined
shapes save sketches

Baiboard pictures, pdf and
maps

web (URL), pdf,
photo album,
iMessage, Email,
Dropbox, Evernote,
Facebook, Twitter
and Tumblr

rectangle, circle,
speech balloon, bub-
bles, dancing men,
farsi chehre, gesture,
misc., mockups,
network topology

user defined library
with import from
photo album, iTunes
sharing and Dropbox

offline board, snap-
shots in Baiboard
cloud and as image
to camera roll

Whiteboard Lite

Facebook, Twitter,
iCloud, White-
board Gallery Email,
Google Drive, Ever-
note

stickers camera and photos auto save as image to
camera roll

Flockdraw
Flockdraw web page,
Facebook and Twit-
ter

13

3 State-of-the-art Collaborative Sketch Applications

Table 3.4: Feature comparison - additional features

Application chat API full screen

Baiboard voice chat (beta) and text chat

Whiteboard Lite • •

Flockdraw text chat •

3.5 Conclusion

After investigation of these three collaborative drawing applications, the following
conclusions could be made:

• Real-time sketch collaboration is already implemented in some applications but
suffers from draw update latency and/or synchronization errors. Fixing this
issue is declared as one of the main targets in this research project as well as
implementing the application without requiring an internet connection. Since the
main area of application of Teamsketch are school classes, requiring an internet
connection would lead to high latency because all pupils would use the same
internet connection at once. To address this issue Bluetooth should be available
in case of Wi-Fi is not working or the performance is not satisfying.

• In Teamsketch only basic drawing tools will be provided, no layers, text or
customized shapes. Instead of drawing, the main focus should be on collaboration
and not on multiple app features.

• The undo function will not be implemented because the app should encourage
efficient and well-considered drawing. This assumption will be investigated
during the prototype test in a primary school class.

• No chat function will be added because pupils will sit on one desk together while
they are drawing and should communicate in person.

• No predefined shapes (circles, polygons and letters) will be implemented because
students should practice free hand drawing to improve their creativity and fine
motor skills.

• Drawn strokes should be optimized to look more realistic (less cornered) when
user often change the draw direction (no sharp directional changes) therefor a
line smoothing and curve fitting algorithm should be used.

14

4 Teamsketch App

Teamsketch is an app for iPad which supports collaborative drawing of a single sketch
with up to four devices.

4.1 Idea

There are already apps available with collaborative drawing support but many of
them have issues with responsiveness and accuracy. Furthermore, they often require
an internet connection. This project addresses these issues because pupils should not
be constrained by technical limitations as drawing lags and synchronizing problems
or a mandatory internet connection. The aim of this app is to increase team skills by
drawing a picture. Up to four pupils take part in one session and draw together. They
should be encouraged to discuss their drawing and who is responsible for which part
of the sketch.

4.2 Development Environment

Teamsketch is an iOS app written in Swift. Apple’s new programming language
replaces Objective-C as main development language. Swift was introduced at the
WWDC1 in June 2014 [Isted and Addey, 2014]. Apple provides an IDE2 named xCode
with all necessary features to develop and test iOS apps written in Swift. Teamsketch
app development started shortly after the WWDC with xCode 6 Beta 3.

4.3 Features

Teamsketch should help children to improve their team skills and should support
collaborative learning. Therefore various requirements were defined:

• 2-4 pupils should have the possibility to draw a sketch simultaneously

1Apple Worldwide Developers Conference
2Integrated Development Environment

15

4 Teamsketch App

• real-time drawing and screen updating

• stroke smoothing and curve fitting algorithm to prevent cornered, unnatural
stroke shape

• sketch zoom and scrolling

• sketch position overview while zooming and scrolling

• twelve available colors for drawing (white, yellow, orange, red, pink, purple, light
green, dark green, light blue, dark blue, brown and black)

• optional line guides

• two different felt pen stroke widths

• user management

• no internet connection required for drawing

• Wi-Fi and Bluetooth support for peer connections

• pupils should be able to invite and decline others to their sketch

• custom profile picture creation

• upload/download sketches to a web service

• sketch storing on device

4.4 System Architecture

Teamsketch is built with xCode 6.1 (6A1052d) using iOS SDK3
8.1. Supported iPad

devices are iPad 2, iPad 3, iPad 4, iPad Air and iPad Air 2 as well as iPad Mini, iPad
Mini 2 and iPad Mini 3. The reason why iOS SDK 8.1 was chosen is that tests showed
that multi-peer drawing performance was highly dependent on the used iOS version.
Only supporting the newest iOS version is not a big issue because Apple users usually
update their devices shortly after release. Apple states the iOS 8 adoption rate as 56%
on November 10, 2014

4, release of iOS 8.1 was October 20, 2014
5.

3Software Development Kit
4https://developer.apple.com/support/appstore/, last accessed: 19. Nov. 2014

5https://developer.apple.com/devcenter/ios/index.action, last accessed: 19. Nov. 2014

16

https://developer.apple.com/support/appstore/
https://developer.apple.com/devcenter/ios/index.action

4 Teamsketch App

Teamsketch was implemented for iPads because of two main reasons:

• there is an iPad school class available in primary school Graz-Hirten which allows
fundamental testing of the app in real world environment.

• the University of Technology Graz, especially the group Social Learning of the
institute IICM6, has several years of experience in implementing iOS learning
applications for iPads and testing them in school classes. This project is a con-
tinuation research based on the experience from previous projects. It benefited
much from already existent infrastructure and knowledge. Several projects such
as Buchstabenpost7 already encountered collaborative learning in multi-peer
environment.

4.4.1 Frameworks

Teamsketch uses Apple’s Foundation, UIKit, CoreGraphics and the MultipeerConnec-
tivity framework.

Foundation framework

Foundation framework8 provides classes for data storage, timing, URL session man-
agement and other essential basic functionality.

UIKit framework

UIKit framework9 is a high level framework for managing views, view controllers,
motion events, drawing as well as other important app features. UIKit implicitly uses
Core Animation framework to provide view animation. Basic drawing functionality is
provided by the lower Core Graphics framework.

6Institute of Information Systems and Computer Media
7https://itunes.apple.com/at/app/buchstaben-post/id736836885?mt=8, last accessed: 08. Nov.

2014

8https://developer.apple.com/library/ios/documentation/cocoa/reference/foundation/

objc_classic/index.html, last accessed: 06. Nov. 2014

9https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIKit_

Framework/, last accessed: 06. Nov. 2014

17

https://itunes.apple.com/at/app/buchstaben-post/id736836885?mt=8
https://developer.apple.com/library/ios/documentation/cocoa/reference/foundation/objc_classic/index.html
https://developer.apple.com/library/ios/documentation/cocoa/reference/foundation/objc_classic/index.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIKit_Framework/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIKit_Framework/

4 Teamsketch App

Core Graphics framework

Core Graphics framework is an API implemented in C. Path-drawing, transformations,
color management, off-screen rendering and other basic image tasks can be realized
with Core Graphics. Many tasks can also be implemented with UIKit in a higher level
programming context.

Multipeer Connectivity framework

The Multipeer Connectivity framework implements services for nearby devices, it
supports Wi-Fi infrastructure and ad hoc networks as well as Bluetooth connections.
The framework manages low level networking and communication. Data can be
exchanged by messages, streams and resource data.

4.4.2 Basic Concepts

This chapter elaborates on basic concepts which were used within the Teamsketch
app.

Drawing in iOS

The iOS drawing stack10 as shown in figure 4.1 provides drawing functionality in
different abstraction levels.

Figure 4.1: iOS drawing stack

10https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/

CoreAnimation_guide/Introduction/Introduction.html, last accessed: 06. Nov. 2014

18

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CoreAnimation_guide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CoreAnimation_guide/Introduction/Introduction.html

4 Teamsketch App

Teamsketch app uses a customized view (UIView) for drawing. A UIView is redrawn
under the following circumstances11

• a part of a view or the view itself became visible

• the ”hidden” property was set to ”false”

• scrolling a view out off the screen and then back

• redrawing can be triggered programmatically by calling ”setNeedsDisplay”
method of the view

iOS supports on screen drawing as well as off-screen rendering. To perform a drawing
operation a graphics context is needed. After drawing this context has to be closed.

Multipeer Connections

The Multipeer Connectivity framework12 was introduced in iOS 7.0. A multi-peer con-
nection is managed by several components. Teamsketch uses the following components
to establish a multi-peer connection:

• Session Objects (MCSession) hold the connected peers and manage connection
and disconnection of peers. New peers can create a session or join an active
session.

• Advertiser (MCAdvertiserAssistant) notifies other reachable peers that the app
wants to join an active session and provides a basic user interface to accept
invitations.

• Browser (MCNearbyServiceBrowser) searches for advertising peers nearby.

• Peer IDs (MCPeerID) are unique identifiers assigned to each peer.

Web service communication

Teamsketch uses HTTP13 POST requests within a NSURLSession to communicate with
the web service. The app uses a data task to send and receive data (NSData) objects.

11https://developer.apple.com/library/ios/documentation/2DDrawing/Conceptual/

DrawingPrintingiOS/GraphicsDrawingOverview/GraphicsDrawingOverview.html, last accessed:
06. Nov. 2014

12https://developer.apple.com/library/IOs/documentation/MultipeerConnectivity/

Reference/MultipeerConnectivityFramework/index.html, last accessed: 06. Nov. 2014

13HyperText Transfer Protocol

19

https://developer.apple.com/library/ios/documentation/2DDrawing/Conceptual/DrawingPrintingiOS/GraphicsDrawingOverview/GraphicsDrawingOverview.html
https://developer.apple.com/library/ios/documentation/2DDrawing/Conceptual/DrawingPrintingiOS/GraphicsDrawingOverview/GraphicsDrawingOverview.html
https://developer.apple.com/library/IOs/documentation/MultipeerConnectivity/Reference/MultipeerConnectivityFramework/index.html
https://developer.apple.com/library/IOs/documentation/MultipeerConnectivity/Reference/MultipeerConnectivityFramework/index.html

4 Teamsketch App

4.5 Swift

Teamsketch is implemented in Swift. Apple’s new programming language introduces
new programming techniques which simplifies iOS app development significantly. The
following swift features and program techniques14 were used (some examples):

• optionals
In Swift optionals are used for variables which can be absent. This concept is
similar to returning nil in Objective-C. This worked only for objects but not
for structures, enumerations as well as basic C types. In swift optionals can be
used for any type at all. Listing 4.2 shows usage of optionals as condition for a
while loop. This code fragment is used to count the number of elements in an
enumeration with following constrains:

– enumeration is an integer type

– raw value of elements start at zero and increases

The ”rawValue” constructor returns an optional. If there is no element with the
specified rawValue, the optional holds ”empty value”. A constant, assigned with
an optional, can be coerced to ”true” if optional holds a value and to ”false” if
optional holds ”empty-value” therefore this assignation can be used as a loop
condition. These features decrease the needed lines of code significantly.

var numberOfElements = 0

while l e t currentGameMode = GameMode(rawValue : numberOfElements){
numberOfElements++
}

Listing 4.1: Optionals as condition in loops

• type safety
Swift is type safe. Therefore only variables and values of the same type can be
assigned.

• extensions
Extensions can be used to add functionality to already implemented classes.
Teamsketch uses extensions to implement protocols. Using extensions tidies up
class methods because functions, which belongs to a protocol, can be grouped
easily.

• closures
Closures are code blocks which can define input and output parameters. These
code blocks can be used in various locations within program code. Listing 4.2

14https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_

Programming_Language/TheBasics.html, last accessed: 06. Nov. 2014

20

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html

4 Teamsketch App

shows closure usage to custom sort an image object array (smallSketches) accord-
ing to the image property: number.

smal lSketches . s o r t ({ $0 . number < $1 . number})

Listing 4.2: Image sort in array

4.6 Design Patterns

A design pattern, not necessarily in programming context, describes a problem and
one approach to solve it and consequences which are the side effects of solving the
particular problem. In many cases there is more than one solution of the same problem
but with different trade-offs, complexity or usability [Gamma et al., 1995, p. 3].

4.6.1 Model/View/Controller

MVC15 unions many design patterns into one architecture. It separates a program into
three different parts [Gamma et al., 1995, p. 5]:

• Model - the application object which holds the data.

• View - screen representation of program data

• Controller - manages user input and other control logic

In iOS development context the model is implemented in separated model classes. A
view controller (UIViewController) implements the connection between views and
the model. Views can be implemented in two different ways: They can be added in
storyboard to the view controller’s parent view, or they can be added programmatically
in the view controller class.

4.6.2 Singleton

A singleton is a class which has only one instance. This instance can be accessed from
every location in program code and acts as a global [Gamma et al., 1995, p. 127]. In
Teamsketch only one user is logged in at a time. The UserInformation singleton holds
user name, id, profile pictures and user sketch thumbnails. This singleton combines all
user related data into one global object.

15Model View Controller

21

4 Teamsketch App

4.6.3 Delegate

The delegate pattern describes forwarding of operations to other components [Gamma
et al., 1995, p. 20]. Delegation is very important in iOS development. One object
can move operations/methods to another object. In Teamsketch the session object
retrieves the data from network and delegates the received data to other classes to
perform adequate operations. The session delegates the messages according to its
purpose. Sketch related messages are delegated to the sketch view, other game related
information are delegated to the responsible view controller.

4.6.4 Observer

This pattern describes the forwarding of object updates to its dependencies [Gamma
et al., 1995, p. 293]. In Swift the observer pattern can be easily implemented for class
properties. Each property has ”willSet” and ”didSet” methods which notify other
program parts that their value has changed or will change. Other supported ways to
implement the Observer pattern are using notifications or Key-Value-Observing16.

4.6.5 Facade

The goal of the facade pattern is to hide lower level functions and combine them to
one simple high level API [Gamma et al., 1995, p. 185]. In Teamsketch the web API is
hidden in TeamsketchSOAP class. This class manages all HTTP URL connections as
well as the XML17 parsing and request construction. Figure 4.2 shows the details of
the facade pattern used within Teamsketch. Other classes just call high level functions
to set or get data from the web service.

16https://developer.apple.com/library/ios/documentation/swift/conceptual/Swift_

Programming_Language/Properties.html, last accessed: 20. Nov. 2014

17Extensible Markup Language

22

https://developer.apple.com/library/ios/documentation/swift/conceptual/Swift_Programming_Language/Properties.html
https://developer.apple.com/library/ios/documentation/swift/conceptual/Swift_Programming_Language/Properties.html

4 Teamsketch App

Figure 4.2: Facade pattern in Teamsketch

23

4 Teamsketch App

4.7 User Interface

This section gives an overview of the UI18, its transitions and view details. Figure 4.3
shows all involved view controller segues.

Figure 4.3: Teamsketch UI screen transitions

The app starts with the MainViewController. Players can start a new sketch, join an
active sketch or log into the web service. When players decide to start a new sketch,
the StartNewSketchViewController will be shown. In this controller custom game
parameters can be set. After confirming the game parameters the LookingForPlay-
ersViewController appears where other reachable peers are listed. These peers can be
invited to the sketch and already invited peers can be declined. When at least two
players joined the session (one sketch creator plus at least one client), the game host can
start the sketch and the SketchViewController will be shown. When players select ”join
sketch” on the main screen, the ServiceAdvertiserViewController will appear. In this
screen, players advertise themselves over Wi-Fi or Bluetooth and game hosts can invite
them to join a session. After joining the app waits until the game hosts starts the sketch.
After receiving the start command the SketchViewController will be shown. This screen
is the main game screen where all joined peers can draw one sketch simultaneously.
Within this screen, two pop-up controllers are available: StoreSketchViewController
supports storing the sketch online or on the device, AbortSketchViewController aborts

18User Interface

24

4 Teamsketch App

the sketch or restarts the game with an empty sheet. All user interactions, including
transitions caused by other peers, are described in Figure 4.4.

Figure 4.4: Teamsketch UI flowchart

25

4 Teamsketch App

4.7.1 Main Screen View Controller Scene

After starting the app, the splash screen is shown followed by the main screen view
controller scene. Figure 4.5 shows the screen details. Three buttons can be touched:

• new sketch button (top, left)

• join sketch (center, right)

• user management (bottom, left)

Figure 4.5: Main View Controller Scene

26

4 Teamsketch App

4.7.2 User Management View Controller Scene

After touching the profile picture frame in Main Screen View Controller, the User
Management View Controller scene appears. There are two different states:

• user is logged out

• user is logged in

If the user is not logged in, the following views (Figure 4.6) are visible:

• user name text field

• password text field

• login button

Figure 4.6: User Management View Controller - login sub view

If the user is logged in, an additional sub view is shown with profile details such as
user’s first and last name as well as the profile pic thumbnail and a sketch area where
users can edit their profile picture. Sketch related functionality such as felt pens in
color bar are elaborated later in the Sketch View Controller Scene (section: 4.7.6).
Users can perform the following actions while they are logged in:

• logout

• revert profile picture to version stored online

• clear profile picture

• store profile picture online

Figure 4.7 shows the screen details of both states.

27

4 Teamsketch App

Figure 4.7: User Management View Controller

4.7.3 Start New Sketch View Controller Scene

Users, who start a new sketch, can set various game parameters such as:

• player name (optional, only visible, if the user is not logged in)

• sketch name

• time limit. This disables drawing functionality after a defined time interval (slider)
between zero and 120 minutes. Users can store their sketches even after time has
run out.

• line guides. Selectable guides:

– no guides

– squared

– lined

If the user is logged in, the player name view group will be hidden. Figure 4.8 shows
the scene details.

28

4 Teamsketch App

Figure 4.8: Start New Sketch View Controller Scene

4.7.4 Looking For Players View Controller Scene

After setting sketch related parameters, the LookingForPlayersViewController scene
is shown. The upper table view lists all available devices (devices which are running
Teamsketch in ”join sketch” mode) nearby. When the user touches a peer in the list, an
invitation is sent to the peer. If the peer accepts the invitation, the peer’s name appears
in the table view above. The host can decline an already accepted invitation by sliding
left the corresponding peer name in the lower table view. When at least 2 players are
in a session (one host and 1-3 peers), the ”start sketch” button becomes enabled and
the host can start the sketch. Figure 4.9 shows a usual scene flow.

29

4 Teamsketch App

Figure 4.9: Looking For Players View Controller flow

30

4 Teamsketch App

4.7.5 Service Advertiser View Controller Scene

If the user has selected ”join sketch” on the main screen, the Service Advertiser View
Controller appears. If user is logged in, the advertising process starts immediately. Not
authenticated users have to enter a player name and start the advertising process by
touching the ”looking for sketches” button. When the device is in advertising mode,
other players who already started the ”new sketch” process (game host) can see the
device in the nearby peers list. After the host sent an invitation, a confirmation alert is
shown on the advertising device. After the invitation is confirmed, game details will
be shown in the bottom of the screen. The advertising peer stays in this state until the
host declines the invitation or starts the sketch. Figure 4.10 shows a usual flow for not
authenticated users.

Figure 4.10: Service Advertiser View Controller flow

31

4 Teamsketch App

4.7.6 Sketch View Controller Scene

In this view all drawing actions take place. Users can select the desired color and
stroke width in the color bar at the bottom of the screen. The red ”X” on the left opens
the Abort Sketch View Pop-up Controller and the green tick on the right opens the
Store Sketch View Pop-up Controller. Figure 4.11 shows the details of the Sketch View
Controller Scene.

Figure 4.11: Sketch View Controller Scene

32

4 Teamsketch App

Felt Pen Color Bar

The drawing toolbox consists of twelve felt pens. With a single tap the desired color
becomes active. When the user double taps on a felt pen, the felt pen becomes active
and toggles its stroke width. To make it obvious which pen is active, the felt pen will
grow. Figure 4.12 shows details of the felt pen switching process.

Figure 4.12: Felt Pen Switching Process

Abort Sketch View Pop-up Controller

This controller is included into the Sketch View Controller as a UIPopUpController.
Users can abort drawing or restart the sketch with all drawing cleared (Figure 4.13).

33

4 Teamsketch App

Figure 4.13: Abort Sketch View Pop-up Controller

(a) user is logged in

(b) user is logged out

Figure 4.14: Store Sketch View Pop-up Controller

Store Sketch View Pop-up Controller

The Store Sketch View Controller supports saving the sketch. If the user is logged in,
sketches can be stored online, otherwise only the ”store on device” option is visible
(Figure 4.14).

34

4 Teamsketch App

4.8 Implementation details

This chapter elaborates on the implementation details. Components with gray back-
ground color are standard components already included in the iOS SDK hence no
explanation or detailed description is provided.
Attributes and methods in class diagrams without access modifier are ”internal”
meaning that they are accessible in any source file within a module19.

4.8.1 Overview

All involved components are shown in figure 4.15.

4.8.2 Delegates

The delegation pattern in Swift is implemented within protocols. These components
only include function descriptions which have to be implemented by the class which
uses this delegate. No stored properties are allowed. Some of the functions can be
declared ”optional” therefore no implementation is necessary20.

AbortSketchViewControllerDelegate

The AbortSketchViewControllerDelegate defines functions which are called when the
user selects one option in the AbortSketchViewController. Figure 4.16 shows the details
of this delegate.

AppDelegate

This delegate is included in the iOS SDK and provides access to app specific informa-
tion such as a notification when app changes state from background to foreground21.

19https://developer.apple.com/library/ios/documentation/swift/conceptual/Swift_

Programming_Language/AccessControl.html, last accessed: 20. Nov. 2014

20https://developer.apple.com/library/ios/documentation/swift/conceptual/Swift_

Programming_Language/Protocols.html, last accessed: 20. Nov. 2014

21https://developer.apple.com/library/ios/documentation/uikit/reference/

uiapplicationdelegate_protocol/index.html, last accessed: 09. Nov. 2014

35

https://developer.apple.com/library/ios/documentation/swift/conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/swift/conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/ios/documentation/swift/conceptual/Swift_Programming_Language/Protocols.html
https://developer.apple.com/library/ios/documentation/swift/conceptual/Swift_Programming_Language/Protocols.html
https://developer.apple.com/library/ios/documentation/uikit/reference/uiapplicationdelegate_protocol/index.html
https://developer.apple.com/library/ios/documentation/uikit/reference/uiapplicationdelegate_protocol/index.html

4 Teamsketch App

Figure 4.15: Overview of involved components

36

4 Teamsketch App

Figure 4.16: Abort Sketch View Controller Delegate

BezierSegmentDelegate

This delegate forwards already drawn bezier segments and points. Figure 4.17 shows
the details of this delegate.

Figure 4.17: Bezier Segment Delegate

SessionContainerDelegate

This delegate forwards session related events. The corresponding delegate function
will be called, when the app receives a recognized multi-peer distributed message
within a session. Figure 4.18 shows the details of this delegate.

37

4 Teamsketch App

Figure 4.18: Session Container Delegate

StoreSketchViewControllerDelegate

The StoreSketchViewControllerDelegate defines functions which will be called when
user selects one option in the StoreSketchViewController. Figure 4.19 shows the details
of this delegate.

Figure 4.19: Store Sketch View Controller Delegate

38

4 Teamsketch App

TeamsketchSOAPDelegate

This delegate forwards the web service response. Figure 4.20 shows the details of
this delegate. Every function forwards the returned SOAP22 data of the related SOAP
request.

Figure 4.20: Teamsketch SOAP Delegate

4.8.3 Model

All model components handle data related low level tasks.

Drawing Components

Two different shapes can be drawn in Teamsketch:

• stroke segments

• points

When the user draws a freehand stroke, the stroke starts where the user touches down
the finger on the display. The stroke will be extended while the user moves the finger
on the display without lifting. When the user lifts his finger, the stroke is finalized.
The whole stroke is separated into stroke segments to simplify broadcasting over the
multi-peer network. These segments will be used to construct cubic Bezier curves.
Bezier curves are used to emulate drawn curves by adapting the location of the control
polygon vertices [Farin, 2002, p. 49]. Many drawing tools, for example Gimp23 uses
this technique to create user defined paths. Bezier curves are used to optimize the
stroke appearance.

22Simple Object Access Protocol
23http://www.gimp.org, last accessed: 20. Nov. 2014

39

http://www.gimp.org

4 Teamsketch App

Each cubic bezier curve segment has four parameters [Farin, 2002, p. 49]:

• start point

• control point 1

• control point 2

• end point

Such Bezier curves are already implemented in iOS SDK in UIBezierPath class24. The
detailed curve fitting and smoothing algorithm will be explained in the SketchView
chapter (4.8.5). Bezier segments solve the task of drawing and broadcasting strokes.
When a user just taps on the sketch area, no line can be constructed. In this case the
touch point will be stored as circle origin. The felt pen color as well as the felt pen width,
which reflects the circle radius, is stored. The class OneTouchCircle implements this
functionality. Figure 4.21 elaborates on the details of this class. The class BezierSegment
holds stroke information such as stroke width, color and location to transfer the stroke
information over the multi-peer network. Figure 4.22 shows the details of this class.
Both classes implement a string constructor as well as an object to string converter
used for transmitting the shapes over the multi-peer network.

Figure 4.21: One Touch Circle

Session Management

The session container holds the own peer ID as well as the session object and its
delegate. The delegate forwards notifications when peers connect or disconnect and
messages are received or sent. Teamsketch uses a session in message mode ”reliable”.
The Multipeer framework takes care that all messages are transmitted to connected

24https://developer.apple.com/LIBRARY/ios/documentation/UIKit/Reference/

UIBezierPath_class/index.html, last accessed: 20. Nov 2014

40

https://developer.apple.com/LIBRARY/ios/documentation/UIKit/Reference/UIBezierPath_class/index.html
https://developer.apple.com/LIBRARY/ios/documentation/UIKit/Reference/UIBezierPath_class/index.html

4 Teamsketch App

Figure 4.22: Bezier segment

peers and all peers will receive the messages in correct order25. Figure 4.23 shows the
SessionContainer details. Each message consists of a message type as Integer and a
message string separated by a subscript (” ”). The following messages can be sent:

• sendBezierSegment
This method sends a line segment (Bezier segment).

• sendOneTouchCircle
Circles are sent if user only taps on sketch screen once (no swipe).

• sendStartCommand
The host app sends this command after the start button was touched.

• sendSketchInfo
This information is broadcasted to all connected peers to display game informa-
tion on screen and sets the optional timer.

• sendSketchInfoToPeer
Sketch information can also be sent to certain peers without broadcasting.

• sendDisableUserInputToSync
This method was implemented to handle performance issues if users draw too
fast and/or the network is overloaded. This disables the user input (drawing)
until the drawing queue will be empty and all the necessary data was transmitted
over the network.

• sendEnableUserInput
After processing all the items in the drawing queue and the network is not
overloaded any more, all users can continue their drawings. Therefore this

25https://developer.apple.com/library/IOs/documentation/MultipeerConnectivity/

Reference/MCSessionClassRef/index.html#//apple_ref/c/tdef/MCSessionSendDataMode, last
accessed: 10. Nov. 2014

41

https://developer.apple.com/library/IOs/documentation/MultipeerConnectivity/Reference/MCSessionClassRef/index.html#//apple_ref/c/tdef/MCSessionSendDataMode
https://developer.apple.com/library/IOs/documentation/MultipeerConnectivity/Reference/MCSessionClassRef/index.html#//apple_ref/c/tdef/MCSessionSendDataMode

4 Teamsketch App

command is broadcasted to all connected peers.

• sendDisconnectCommandToPeer
If host decides to decline a peer before starting the sketch, this command is sent
to the peer.

• sendClearSketchCommand
This command is used if users decide to restart a sketch. It clears the sketch but
game parameters will not be changed.

Figure 4.24 shows message examples of all types.

Figure 4.23: Session Container

User Related Data

When the user is logged in, all user related information is stored in a UserInformation
singleton. Due to security reasons the password is not stored within the singleton.
Figure 4.25 shows user related component data. The user class is used to handle user
information between several methods and classes.

42

4 Teamsketch App

Figure 4.24: Multipeer message strings - examples

Figure 4.25: User related components

43

4 Teamsketch App

Enumerations

To simplify parameters and ensure type safety, several enumerations have been defined.
Figure 4.26 shows all enumerations used in Teamsketch app. Enumeration elements
are stored as integers starting with zero.

Figure 4.26: Teamsketch enumerations

4.8.4 View Controller

View Controllers implement the controller part of the MVC pattern as well as other
important functionality. There are different types of view controllers. View controllers
used in Teamsketch are UIViewControllers and UITableViewController which are
connected with segues. These segues define transitions between different view con-
trollers26.

Main View Controller

This is the first view controller which is shown after the start (splash) screen. Figure
4.27 shows the details of this component.

This controller updates the user button information (user name and profile picture) if
the user has already logged in and it manages segues to other view controllers.

26https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/

AboutViewControllers/AboutViewControllers.html, last accessed: 10. Nov. 2014

44

https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/AboutViewControllers/AboutViewControllers.html
https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/AboutViewControllers/AboutViewControllers.html

4 Teamsketch App

Figure 4.27: Main View Controller

User Management View Controller

This controller manages user related actions such as login and logout as well as
profile picture editing and storing. A TeamsketchSOAP object is used to connect the
app with the web service. Figure 4.28 elaborates on the details of this component.
Some properties concerning drawing (felt pens and layout constraints) have been
hidden to simplify the class overview. These components will be explained in the
SketchViewController chapter (4.8.4).

Start New Sketch View Controller

Various game parameters can be set within this view controller. Figure 4.29 shows
the details of this view controller. After the user confirms the parameters the sketch
information will be forwarded to the LookingForPlayersViewController.

45

4 Teamsketch App

Figure 4.28: User Management View Controller

46

4 Teamsketch App

Figure 4.29: Start New Sketch View Controller

Looking For Players View Controller

This view controller creates the multi-peer session and manages the peers. Information
about connected and disconnected peers are forwarded by the session container
delegate. The controller manages two tables. The first table lists the peers in range. This
list is filled by the MCNearbyServiceBrowserDelegate which forwards found peers
and lost peers to keep the peer list up to date. The SessionContainerDelegate is used
to keep the second list (already connected peers) up to date. This update process is
done as follows:

• peer connected:

– send sketch info to new connected peer
– update number of connected peers
– update table views

• peer disconnected

– update number of connected peers
– update table views

Figure 4.30 elaborates on the details of this controller.

47

4 Teamsketch App

Figure 4.30: Looking For Players View Controller

48

4 Teamsketch App

Service Advertiser View Controller

This view controller manages multi-peer advertising. The SessionContainerDelegate
forwards broadcasted host commands. Figure 4.31 elaborates on the details of this
controller.

Figure 4.31: Service Advertiser View Controller

Sketch View Controller

This view controller manages all sketch related tasks. When the view appears and
the user is logged in, user management tries to fetch stored sketch thumbnails from
the web service. These thumbnails are used in the StoreSketchViewController Pop-up.
If user selects an option in one of the Pop-up Controller (StoreSketchViewController
or AbortSketchViewController), the corresponding delegate forwards the selected
option to the SketchViewController. The SessionContainerDelegate forwards received
sketch data and commands to the Sketch View. The sketch view is embedded in a
UIScrollView to enable scrolling and zooming. When the sketch view drew a Bezier
segment or a one touch circle, the shapes are forwarded to the Session Container send
queue by the Bezier Segment Delegate.
The SketchViewController implements logic for changing felt pens in the felt pen
color bar. Select felt pen animations are implemented as height constraint changes.

49

4 Teamsketch App

Information about active felt pen width and color as well as line guide information
is forwarded to the Sketch View. Figure 4.32 shows the details of this view controller.
The felt pen buttons and height constraints are removed to simplify the figure.

Figure 4.32: Sketch View Controller

50

4 Teamsketch App

Pop-up Controller

AbortSketchViewController and StoreSketchViewController are implemented as UITable-
ViewController which delegates user selections to the Sketch View Controller. Figure
4.33 elaborates on the details of these two controllers.

Figure 4.33: Abort Sketch- and Store Sketch View Controller

4.8.5 Views

Two customized UIViews were implemented to provide sketch functionality. SketchView
implements basic drawing functionality. MultiPeerSketchView adds multi-peer func-
tionality. Figure 4.34 shows details of these two views.

51

4 Teamsketch App

Figure 4.34: Sketch Views

52

4 Teamsketch App

SketchView

The SketchView holds a UImage as storage. The drawRect method was overridden
to perform drawing updates when setNeedsDisplay is called. Four UIView touch
methods were overridden to provide touch functionality.

• touchesBegan(...)
This method is called when user touches a location in sketch view.

• touchesMoved(...)
This method is continually called while user swipes on the sketch view.

• touchesEnded(...)
When user lifts his finger, this method is called.

• touchesCancelled(...)
This method is forwarded to touchesEnded(...).

A user swipe (touchesBegan - touchesMoved - touchesEnded) is considered as one
stroke. This stroke is separated into stroke segments. The basic approach is to just store
the swiped coordinates. Figure 4.35 shows a drawing example with a broad felt pen
without optimization.

Figure 4.35: Basic drawing approach

The resulting stroke can be very angular shaped, depending on the user’s swipe. A
drawn stroke should not be cornered therefore the basic approach is not suitable for a
drawing application. The next approach was to convert a user swipe to a Bezier curve.
Figure 4.36 shows the sampled user touch points (big black dots) and the computed
cubic bezier curve.

These curves had been used for the improved version. Every four points, a bezier curve
was constructed and drawn. The stroke appearance improved significantly but one
issue remained: when the next sampled point after the endpoint of a bezier segment is

53

4 Teamsketch App

Figure 4.36: Cubic bezier curve computed with four sampled touch points

not collinear to the last two points, the stroke gets a point of discontinuity. Figure 4.37

elaborates on the details of this issue.

Figure 4.37: Cubic bezier curve segments with a point of discontinuity

The last point of a Bezier segment which is the first point of the next Bezier segment at
once, is critical. One approach to address this issue is to insert two additional points
and avoid points of discontinuity by applying de Casteljau algorithm to the critical
point and its new inserted neighbors [Hongping and Zhaoyu, 2012, p. 283]. The touch
sampling rate in UIViews is very high therefore the sampled points are very close to
each other. In this case linear interpolation is enough to get a good stroke appearance
(tested with iPad2 and iPad3 (high resolution)). To prevent a point of discontinuity,
the critical point has to be collinear to its direct neighbors. This could be reached by
mapping the point on the direct line between the neighbors (linear interpolation) [Farin,
2002, p. 26]. In Bezier context it is sufficient that the observed points are collinear
therefore computation could be simplified to equation 4.1. Visual observations of the
stroke shape showed that this simplification does not harm the stroke appearance.

54

4 Teamsketch App

pcollinear =
ppredecessor + psuccessor

2
(4.1)

Figure 4.38 shows the result of the linear interpolation (green dot) and the drawn
path.

�

Figure 4.38: Cubic bezier curve segments with linear interpolation

Figure 4.39 shows a drawing example after the stroke curve smoothing algorithm was
implemented. The stroke’s appearance improved significantly compared to the basic
draw approach.

Figure 4.39: Optimized drawing path

After line (Bezier curve) optimization, the curve segment is stored in a BezierSegment
for distributing over the multi-peer network. These computations are very challenging

55

4 Teamsketch App

for the iPad. Therefore they can not be done on the main thread which fills the point
queue as well. When 5 points are sampled, the fourth point is shifted with linear
interpolation. Then the first four points are stored into a Bezier segment and sent to
the Bezier segment buffer. The fourth and fifth sampled points are used as first and
second point of the next Bezier segment. Immediately after a new Bezier segment has
been added to the segment drawing buffer, a drawing block is added to the second
thread, which does the off screen drawing. After all drawing is performed, the drawing
block switches to the main thread to update the view with the modified sketch image
(UIImage). Figure 4.40 shows the computation details in pseudo code.

Figure 4.40: Drawing thread overview

MultipeerSketchView

This view inherits functionality from SketchView. When a Bezier segment was created,
it will be forwarded to the BezierSegmentDelegate, which forwards the segment to the
multi-peer session send queue.

56

4 Teamsketch App

4.8.6 Web service access

Teamsketch uses a SOAP web service to retrieve and store sketches online. This service
will be explained in detail in chapter 5. The TeamsketchSOAP class implements all nec-
essary functionality to communicate with the web service. XML requests and responses
are used as data transmission format. XML is a worldwide established standard which
used as standard transmission file format for SOAP web services [MacIntyre, Danchilla,
and Gogala, 2011, p. 323]. All requests are preformed asynchronous. The response
is forwarded to the TeamsketchSOAPDelegate. Sketches are transmitted as Base64

encoded String. Image encoding and decoding will be explained in the web service
chapter 5 in detail. Figure 4.41 elaborates on the details of this class.

Figure 4.41: TeamsketchSOAP overview

4.9 Unit Testing

The used IDE xCode 6 supports unit testing by subclassing XCTest. Apple’s test
automation framework supports defining expected results with assertion API and
separating tests into several test methods. These methods can be grouped into test
suites which can be started as one single operation. With these features the test suite
belongs to the xUnit family [Meszaros, 2007, p. 76].
When creating a new App a test target will be added automatically. XCTest supports
asynchronous testing which can be used for delegate callbacks or network requests.
This functionality is implemented by expectation objects, which describe defined
events. XCTestCase waits for this expectation to become true or for receiving a time
out [Callahan and Turner, 2014]. The next section explains the used test patterns.

57

4 Teamsketch App

4.9.1 Mocks

In some cases a real code fragment (object) is substituted by a mock to observe and
test indirect outputs [Meszaros, 2007, p. 137]. This principle is elaborated in detail in
the following test case example. Testing the message construction can not be realized
straight forward, because the session object creates the message and sends it immedi-
ately. This work flow should be tested accurately. For this reason the ”sendData(...)”
method in MCSession class was overridden to not send the constructed message but
stores the last message data as a property. Figure 4.42 shows the details of the original
classes compared to the mock classes. Only changed properties and methods are listed
in the mock classes. The session object is a member of the SessionContainer class
therefore the SessionContainer had to be changed to a mock as well. Listing 4.3 shows
a SessionContainer Mock test example.

func testSendBezierSegment (){
var t e s t S e s s i o n C o n t a i n e r = SessionContainerMock (displayName: ” t e s t P l a y e r ”)
var t e s t B e z i e r = BezierSegment (s t a r t P o i n t : CGPoint (x : 0 . 0 , y : 0 . 0) ,

c o n t r o l P o i n t 1 : CGPoint (x : 0 . 0 , y : 0 . 0) , c o n t r o l P o i n t 2 : CGPoint (x : 0 . 0 , y : 0 . 0) ,
endPoint : CGPoint (x : 0 . 0 , y : 0 . 0) , f e l tPenType : FeltPenType . f ine ,
f e l t P e n C o l o r : Fel tPenColor . red)

t e s t S e s s i o n C o n t a i n e r . sendBezierSegment (t e s t B e z i e r)
var testBezierReturnData:NSData = t e s t S e s s i o n C o n t a i n e r . getLastSentData ()
var t e s t B e z i e r S t r i n g = t e s t S e s s i o n C o n t a i n e r . prepareMessageWithType (

MessageType . BezierSegment , message: t e s t B e z i e r . g e t B e z i e r S t r i n g ())
var messageData = t e s t B e z i e r S t r i n g . dataUsingEncoding (NSUTF8StringEncoding , al lowLossyConversion: f a l s e)
XCTAssertTrue (messageData == tes tBezierReturnData , ” BezierSegment message”)
}

Listing 4.3: Bezier segment message construction test with Mock

After sending the message with the session mock, the injected method ”getLastSent-
Data()” returns the message data. This message data can be compared with referential
data to test message integrity. This behavior could also be implemented by delegate
callbacks. To handle delegate callbacks in xCode tests, asynchronous test methods had
to be implemented.

58

4 Teamsketch App

Figure 4.42: Class changes to test message construction

59

4 Teamsketch App

4.9.2 Asynchronous Tests

This test group is used for URLSession tests as well as delegate callback tests. The
xCode test automation framework uses the Expectation class (XCTestExpectation) to
provide asynchronous test functionality. The TeamsketchSOAP class was tested by
implementing its delegate within the test class. Code listing 4.4 shows an asynchronous
test example.

func t e s t L o g i n () {
// . . .
var teamsketchSOAP = TeamsketchSOAP ()
teamsketchSOAP . de legate = s e l f
teamsketchSOAP . log in (userName , password: testPassword)
waitForExpectationsWithTimeout (2 0 , handler : { e r r o r in
})

}
// . . .
func didUserLogin (u s e r : User , password : S t r i n g){

XCTAssertNotNil (user , ” user should not be n i l ”)
XCTAssertNotNil (password , ”password should not be n i l ”)
// . . .
XCTAssertTrue ((user . userName == userName) &&

(password == testPassword) , ” loginData ”)
e x p ec t a t i on . f u l f i l l ()
}

Listing 4.4: Asynchronous test implementation example

60

5 Web Service

Teamsketch should be used in classrooms to train collaborative and teamwork of
primary school students. An online image store and receive service was implemented
to access the images on other devices. Data should be available on iPads and PCs as
well as other capable devices. The SOC1 paradigm provides these desired requirements
[Papazoglou et al., 2007, p. 38]. Teamsketch web service offers a device independent
API via self-describing XML requests and responses. Web services offer a well tested
environment to support distributed information processing. However, one drawback
of this solution is the decreased system performance [Chiu, Govindaraju, and Bramley,
2002, p. 2]. This drawback is not a significant issue as image upload and download
speed is not critical for the Teamsketch functionality.

5.1 Features

The following requirements were defined:

• students can authenticate against University Usermanagement SOAP2

• students can upload their sketches to the web service

• images should be stored in two different sizes (original size and thumbnail)

• four images for each user are stored (one profile picture and three sketches).
Adapting the web service to other values should be easy to implement.

• web service should provide an API for web applications.

1Service Oriented Computing
2http://mathe.tugraz.at/~georg/Usermanager/public/soap?wsdl, last accessed: 12. Nov. 2014

61

http://mathe.tugraz.at/~georg/Usermanager/public/soap?wsdl

5 Web Service

Table 5.1: Web service requests and descriptions

request description

login authentication with user name and password.

getImage returns a specific image

getImageSizes returns the supported number of image sizes

getNumberOfUserImages returns the number of images which can be
stored by a user

setImage uploads an image to the web service

5.2 System Architecture

The web service is implemented in PHP3 as a SOAP service defined in WSDL4. These
technologies were not only chosen because of the already existing infrastructure
but also because of the possibility to use well known message transmission with
HTTP requests and responses. The already existing UserManager, which handles
authentication, uses the same infrastructure. Table 5.1 gives an overview about the
used requests.

The Teamsketch web service interacts with the UserManagement SOAP. Figure 5.1
elaborates on the communication details.

5.2.1 SOAP

SOAP describes an XML based message format used to communicate with web services
embedded in arbitrary transport protocols. To access data from the web service a
request must be defined and translated into a SOAP message. The server extract the
SOAP message and processes the information. A SOAP message is an XML document
which consists of the following parts.

• SOAP envelope

• SOAP header

• SOAP body

3PHP: Hypertext Preprocessor
4Web Services Description Language

62

5 Web Service

Figure 5.1: Web service communication

The SOAP envelope is the root of the XML document which defines the SOAP type
and other service related parameters. The SOAP header is optional, it is often used
to transmit security related information. The SOAP body contains the actual request
information [Melzer, 2010, p. 87-91]. Listing 5.1 shows the SOAP envelope of the
setImage request. The question marks represents the request parameters set by the
user.

<soapenv:Envelope
xmlns :xs i=” h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ”
xmlns:xsd=” h t t p : //www. w3 . org /2001/XMLSchema”
xmlns:soapenv=” h t t p : //schemas . xmlsoap . org/soap/envelope/”
xmlns:soap=” h t t p : //schule . l e a r n i n g l a b . tugraz . a t/teamsketch/soap”>

<soapenv:Header/>
<soapenv:Body>

<soap:setImage
soapenv:encodingStyle=” h t t p : //schemas . xmlsoap . org/soap/encoding/”>
<userID x s i : t y p e =” x s d : i n t ”>?</userID>
<token x s i : t y p e =” x s d : s t r i n g ”>?</token>
<imageBase64 x s i : t y p e =” x s d : s t r i n g ”>?</imageBase64>
<imageTi t le x s i : t y p e =” x s d : s t r i n g ”>?</imageTi t le>
<number x s i : t y p e =” x s d : i n t ”>?</number>
<s i z e x s i : t y p e =” x s d : i n t ”>?</ s i z e>

</soap:setImage>
</soapenv:Body>

</soapenv:Envelope>

Listing 5.1: setImage request SOAP envelope

63

5 Web Service

5.2.2 WSDL

WSDL is used to describe the SOAP message format and the SOAP interface in detail.
The WSDL information is specified in XML and is separated in various sections
[Christensen et al., 2001]:

• definition - defines several environment parameters

• documentation - adds human readable documentation

• types - defines message response objects and their properties (names and types)

• message - defines SOAP message information such as message parameter names
and types as well as message response information

• portType - describes the request name connected with the corresponding message
(request and response)

• binding - defines how to access the service

• service - describes where the service is located (URI5)

Listing 5.2 describes the WSDL code used to define the setImage request.

<?xml version=” 1 . 0 ” encoding=”UTF−8” ?>
<d e f i n i t i o n s xmlns=” h t t p : //schemas . xmlsoap . org/wsdl/”

xmlns:wsdl=” h t t p : //schemas . xmlsoap . org/wsdl/”
xmlns : tns=” h t t p : //schule . l e a r n i n g l a b . tugraz . a t/teamsketch/soap”
xmlns:soap=” h t t p : //schemas . xmlsoap . org/wsdl/soap/”
xmlns:xsd=” h t t p : //www. w3 . org /2001/XMLSchema”
xmlns:soap−enc=” h t t p : //schemas . xmlsoap . org/soap/encoding/”
xmlns:soap12=” h t t p : //schemas . xmlsoap . org/wsdl/soap12/”
name=”Teamsketch”
targetNamespace=” h t t p : //schule . l e a r n i n g l a b . tugraz . a t/teamsketch/soap”>

<!−− . . . −−>
<message name=” setImageIn ”>

<part name=” userID ” type=” x s d : i n t ”/>
<part name=” token ” type=” x s d : s t r i n g ”/>
<part name=”imageBase64” type=” x s d : s t r i n g ”/>
<part name=” imageTi t le ” type=” x s d : s t r i n g ”/>
<part name=”number” type=” x s d : i n t ”/>
<part name=” s i z e ” type=” x s d : i n t ”/>

</message>
<message name=”setImageOut”>

<part name=” return ” type=” xsd:boolean ”/>
</message>
<!−− . . . −−>
<portType name=” TeamsketchPort ”>

<!−− . . . −−>
<operat ion name=” setImage ”>

<documentation>This Method s e t s an image from base64 encoded s t r i n g</documentation>
<input message=” t n s : s e t I m a g e I n ”/>
<output message=” tns :set ImageOut ”/>

</operat ion>
<!−− . . . −−>

</portType>
<!−− . . . −−>
<binding name=” TeamsketchBinding ” type=” tns :TeamsketchPort ”>

<soap:binding s t y l e =” rpc ” t r a n s p o r t =” h t t p : //schemas . xmlsoap . org/soap/http ”/>
<!−− . . . −−>
<operat ion name=” setImage ”>

<soap :opera t ion soapAction=” h t t p : //schule . l e a r n i n g l a b . tugraz . a t/teamsketch/soap/#setImage ”/>
<input>

5Uniform Resource Identifier

64

5 Web Service

<soap:body use=”encoded”
encodingStyle=” h t t p : //schemas . xmlsoap . org/soap/encoding/”
namespace=” h t t p : //schule . l e a r n i n g l a b . tugraz . a t/teamsketch/soap”/>

</input>
<output>

<soap:body use=”encoded”
encodingStyle=” h t t p : //schemas . xmlsoap . org/soap/encoding/”
namespace=” h t t p : //schule . l e a r n i n g l a b . tugraz . a t/teamsketch/soap”/>

</output>
</operat ion>
<!−− . . . −−>

</binding>
<s e r v i c e name=” TeamsketchService ”>

<port name=” TeamsketchPort ” binding=” tns:TeamsketchBinding ”>
<soap:address l o c a t i o n =” h t t p : //schule . l e a r n i n g l a b . tugraz . a t/teamsketch/soap/”/>

</port>
</ s e r v i c e>
</ d e f i n i t i o n s>

Listing 5.2: setImage WSDL information

5.2.3 Communication

The web service communicates with requests and responses built in XML. The func-
tionality of Teamsketch requests and response will be demonstrated by the ”getImage”
procedure. The next section describes the HTTP information transmission based on
the ”getImage” request. User relevant data is substituted with ”...”.

Request

All requests use a HTTP POST request. Table 5.2 describes the POST parameters and
listing 5.3 shows the ”getImage” POST body details.

Table 5.2: getImage HTTP POST header

Name Value

Accept-Encoding gzip,deflate

Content-Type text/xml;charset=UTF-8

SOAPAction http://schule.learninglab.tugraz.at/teamsketch/soap/#getImage

Connection Keep-Alive

<soapenv:Header/>
<soapenv:Body>

<soap:getImage soapenv:encodingStyle=” h t t p : //schemas . xmlsoap . org/soap/encoding/”>
<userID x s i : t y p e =” x s d : i n t ”> . . .</userID>
<token x s i : t y p e =” x s d : s t r i n g ”> . . .</token>
<ta rge t ID x s i : t y p e =” x s d : i n t ”> . . .</targe t ID>
<number x s i : t y p e =” x s d : i n t ”>0</number>
<s i z e x s i : t y p e =” x s d : i n t ”>0</ s i z e>

</soap:getImage>
</soapenv:Body>

</soapenv:Envelope>

Listing 5.3: getImage HTTP POST body

65

5 Web Service

Response

The result of the request will be sent as HTTP response. Figure 5.2 shows getImage
response details.

Figure 5.2: getImage HTTP response

5.2.4 Image Data Transmission

Two different techniques were considered during the implementation of the image
data transfer. One method uses base64 encoded strings to transport image information
which is embedded in the XML POST body. This technique is easy to implement but
has some drawbacks such as bloating the SOAP message. Furthermore, the receiver
must know the file type of the transmitted data to decode the transmitted information.
Another approach is to sent binary data with MTOM6. One significant advantage

6Message Transmission Optimization Mechanism

66

5 Web Service

of MTOM is that files can be set without further encoding. This optimizes the data
transfer due to less size of the XML file [Mhatre, Mehta, and Jaiswal, 2013, p. 1].
The images transferred within Teamsketch are not big in size therefore the image is
embedded as base64 encoded string in the response XML file. The other main reason
why base64 encoding was used is that the consuming web interface needs base64

encoded data to embed images in HTML7. Additionally, the iPad app uses base64

encoded data to send images.

5.3 Design Patterns

The web service uses the MVC architecture as well as other previously described
patterns such as Facade pattern.

5.4 User Interface

The web service user interface is only accessible by SOAP requests. No GUI8 or other
user interfaces are provided. The user interface for pupils and teachers is implemented
by a web interface which will be explained in chapter 6.

5.5 Implementation Details

Teamsketch was implemented with Netbeans 8.0.1. The service is running on a Linux
server with PHP version 5.4.34-0deb7u1.

5.5.1 Overview

The following components are involved:

• Teamsketch - implements all public SOAP service methods as well as some
private helper messages

• User - holds user information from login response

• Image - holds image information from getImage response

Figure 5.3 elaborates on the details of Teamsketch web service.

7HyperText Markup Language
8Graphical User Interface

67

5 Web Service

Figure 5.3: Web service overview

68

5 Web Service

5.5.2 SOAP server initialization

All SOAP requests are implemented within the Teamsketch class. Listing 5.4 shows
the code which was used to activate the SOAP server. The SOAP server is initialized
with the corresponding Teamsketch WSDL file. Then the Teamsketch web service class
is assigned. The service starts with the ”handle()” command.

$server = new SOAPServer (TEAMSKETCH WSDL) ;
$server−>s e t C l a s s (”Teamsketch”) ;
$server−>handle () ;

Listing 5.4: PHP SOAP server initialization

5.5.3 Login

The login request is forwarded to the already existing UserManagement SOAP service.
If the user authentication fails, an empty User object will be returned which holds
the login error message. When access is granted, a user object with all available user
information such as user name and ID will be generated. The Teamsketch web service
calculates a token which will be returned as well. With this token Teamsketch image
upload and download is possible without further authentication against UserManage-
ment. The reason why tokens are used is that UserManagement service requests are
slow due to the service chain (login request - Teamsketch SOAP - User Management
SOAP).

5.5.4 getImage

The public function getImage needs five parameters:

• userID

• token

• targetID
This is the ID of the image owner. Some users (teachers) can access images of
other users (pupils).

• number - image number (0: profile image, 1-3: sketches)

• size - 0: thumbnail, 1: original size

69

5 Web Service

Before further processing, the access token has to be checked. If the token is valid and
number as well as size is within an appropriate range, the user role will be investigated.
If the user is a pupil, only own sketches can be accessed (userID == targetID). If the
user is a teacher the system checks if the targetID belongs to a pupil of the teacher’s
classes. If this is the case, the teacher is allowed to access the sketches. Figure 5.4
elaborates on the processing details of this function.

Figure 5.4: getImage information processing

5.5.5 setImage

The public function setImage needs six parameters:

• userID

• token

• imageBase64 - image as base64 encoded string

70

5 Web Service

• imageTitle - user defined image title

• number - image number

• size - image size

If the token is valid and size as well as number are appropriate , the image will be
stored.

5.6 Unit Testing

SoapUI9 was used to test the SOAP service. It supports importing WSDL files and au-
tomatically creates example requests. The suite supports functional testing as well10.

5.6.1 Functional Testing

To test web service functionality, many functional test have been added. The following
figure 5.5 shows details of the login function tests. Figure 5.6 shows one test case of
the login test suite.

Every test step verifies three assertions:

• SOAP response valid - the web service must return a valid SOAP response

• not SOAP fault - no SOAP fault response happened

• XPath Match - the response is compared to a previously defined XML response

9http://www.soapui.org/, last accessed: 15. Nov. 2014

10http://www.soapui.org/Functional-Testing/functional-testing.html, last accessed: 15. Nov.
2014

71

http://www.soapui.org/
http://www.soapui.org/Functional-Testing/functional-testing.html

5 Web Service

Figure 5.5: Web service login test suite

Figure 5.6: Web service login test suite - test example

72

6 Web Interface

Teamsketch not only provides a web service to store and retrieve image data but also
offers a web interface for accessing images implemented for teachers and pupils.

6.1 Features

The following requirements were defined:

• Only authorized users (teacher and students) should be allowed to access image
data.

• separate interfaces for students and teachers

• pupils should be allowed to see only their own images

• teachers should be allowed to see only images of their own students

• teachers can browse their classes for students and images

• images should be displayed on screen as thumbnails

• download option for images in full resolution

• multi language support (English and German)

Additionally, some technical requirements had to be fulfilled:

• web interface can only access user and image data through public UserManage-
ment API and Teamsketch API

• host independent implementation

• no absolute paths allowed
If absolute paths are not avoidable they have to be declared in an easy locatable
configuration file.

73

6 Web Interface

• no JavaScript
In schools the computer systems as well as browsers are usually not up to date.
For maximum compatibility newer technologies should be avoided.

6.2 Design patterns

The web interface follows the MVC pattern. The data model is provided by UserMan-
agement API and Teamsketch API. The controllers implement session management
and web service work flow. The framework Smarty1 was used to implement the view
part.

6.3 System Architecture

The web interface is implemented in PHP. The visualization is done with HTML and
CSS2. Table 6.1 shows used frameworks.

Table 6.1: Web interface frameworks

Framework Version

PHP 5.4.34-0deb7u1

Smarty 3.1-2.19

The web interface is separated into different parts:

• index.php
Displays the welcome page.

• login.php
Manages the user login and forwards the user to ”teacher.php” or ”student.php”
depending on the user role.

• student.php
Displays student images (profile picture as well as sketches).

• teacher.php
Displays the teacher interface and provide access to the teacher’s classes.

1http://www.smarty.net/, last accessed: 15. Nov. 2014

2Cascading Style Sheets

74

http://www.smarty.net/

6 Web Interface

• class.php
Provides access to student of a certain class.

6.3.1 Smarty

The Teamsketch web interface uses Smarty to generate HTML responses. Smarty
provides a template engine for PHP. With this framework, content and program logic
can be separated easily to follow the MVC pattern. Each HTML visualization is stored
in a template file. Within these files static HTML commands are used as well as variable
content which can be changed by PHP. Smarty was used because of the following
features3:

• fast

• cache handling

• will recompile only if template files are changed

6.3.2 Web Service Communication

The web interface uses public API functions to access image and user information.
Figure 6.1 shows involved API calls.

Figure 6.1: Web interface API call overview

6.4 User Interface

The user interface depends on the user role. The web service starts by displaying a
welcome page where users are asked to input their user credentials. After access is

3http://www.smarty.net/docsv2/en/what.is.smarty.tpl, last accessed: 15. Nov. 2014

75

http://www.smarty.net/docsv2/en/what.is.smarty.tpl

6 Web Interface

granted the user role will be investigated. If the user is a pupil, the next view will
be the student view. In this view, users can see the thumbnails of their user image
and their user sketches. If teachers use the web service, a list of their classes will
be displayed. When a class is selected, all students of this class will be listed. After
clicking on a pupil’s name, the pupil’s images can be accessed. Figure 6.2 elaborates
on the details of the view work flow.

Figure 6.2: User interface overview

6.4.1 Welcome page

This page is the start page of the web interface. User can enter their login credentials
or create a new account. Figure 6.3 shows the welcome page.

76

6 Web Interface

Figure 6.3: Welcome page

6.4.2 Student Interface

After the user logged in successfully, the user is a pupil and user images are available,
the student image view will be shown. Figure 6.4 shows the student image page. The
first image contains a thumbnail of the user profile picture. The section ”Sketches”
shows thumbnails of all user sketches grouped to three in a row. User sketches can
be downloaded in full resolution. Teamsketch offers three sketch slots in the moment
but this could be changed easily by adapting the image count constant within the
Teamsketch web service.

6.4.3 Teacher Interface

When a user was identified as a teacher, a class list will be shown (Figure 6.5). Teacher
can click on the class names to open the ”students in class” view.

Students in Class

When the teacher clicks on a class, the result page lists all students of the selected class
(Figure 6.6).

77

6 Web Interface

Figure 6.4: Web interface pupil image page

78

6 Web Interface

Figure 6.5: Web interface teacher’s class list page

Figure 6.6: Students in class page

79

6 Web Interface

6.5 Implementation Details

The web interface was implemented in a Vagrant4 development environment. Vagrant
uses a Virtualbox5 image with SSH6 access to test web services and applications in a
virtual environment. The image was an exact copy of the Teamsketch production server
(Linux version, installed libraries and active extensions). Therefore the web interface
could be tested in production server environment without putting the real server at
risk while testing.

6.5.1 Session management

After the user logged in successfully, a session is created. Figure 6.7 shows the stored
session variables and details as well as the transmitted GET parameters for teachers.
If German is selected, every link uses the language GET parameter. Therefore the
language GET parameter is not mentioned in the figure. Session management for
pupils is trivial because there is only one single page available for them.

Figure 6.7: Session details for teachers

4https://www.vagrantup.com, last accessed: 15. Nov. 2014

5https://www.virtualbox.org, last accessed: 15. Nov. 2014

6Secure SHell

80

https://www.vagrantup.com
https://www.virtualbox.org

6 Web Interface

6.5.2 Template engine

The template engine simplifies managing dynamic web content. The web service
(current implementation) returns three user sketches for each user. What if the web
service will be improved that it can handle more than three user images? In this case
the template engine provides features to simplify this issue. Listing 6.1 shows the PHP
part of the code generation for the sketch images. Listing 6.2 elaborates on Smarty
template details.
At first the web service is queried to get the number of sketch images stored for each
user. The second step is to retrieve all sketch image thumbnails as base64 encoded string
as well as the image title. Smarty supports array parameters, therefore this information
is forwarded with arrays (sketches and sketchTitles). The template code consists of
HTML tags (static code) and Smarty commands (in curly brackets). Images are nested
in sections. These sections support looping through an array and create code blocks
for each element of the array. The images are grouped in three images in each line.
Smarty also supports if-then-else commands to implement conditioned HTML code
insertion. This is needed to stop image insertion if image array reaches the last element.

$numberOfSketches = TeamsketchSOAPClient : : getSOAPClient()−>getNumberOfUserImages () − 1 ; / / w i t h o u t p r o f i l e p i c ;
for ($ i = 0 ; $ i<$numberOfSketches ; $ i ++){

$currentSketch = TeamsketchSOAPClient : : getSOAPClient()−>getImage ($userID , $token , $studentID , $ i + 1 , 0) ;
$sketches [$ i] = $currentSketch−>imageData ;
$ s k e t c h T i t l e s [$ i] = $currentSketch−>imageTi t le ;

}
$smarty−>ass ign (’ sketchArray ’ , $sketches) ;
$smarty−>ass ign (’ s k e t c h T i t l e A r r a y ’ , $ s k e t c h T i t l e s) ;

Listing 6.1: Sketch image code generation

{s e c t i o n name=sketchNumber loop=$sketchArray}
{ i f $smarty . s e c t i o n . sketchNumber . index%3 === 0}
<div c l a s s =” sketches ”>
{ i f $smarty . s e c t i o n . sketchNumber . index l t $sketchArray |@count}
{ass ign var=” currentSketchNumber ” value=$smarty . s e c t i o n . sketchNumber . index}
<div id=” s k e t c h l e f t ”>
{html image f i l e =” data : image/png ; base64 ,{ $sketchArray [{ $currentSketchNumber}]}” height=” 222” width=” 192”}
<div c l a s s =” s k e t c h c a p t i o n ”><p>{$ s ke t c h T i t l e A r r ay [{ $currentSketchNumber}]}</p>
<a c l a s s =” l i n k ” href=” io/imageDownload . php? id={$currentSketchNumber+1}”>download

</div>
</div>
{/ i f}
{ i f $smarty . s e c t i o n . sketchNumber . index+1 l t $sketchArray |@count}
{ass ign var=” currentSketchNumber ” value=$smarty . s e c t i o n . sketchNumber . index+1}
<div id=” sketch middle ”>
{html image f i l e =” data : image/png ; base64 ,{ $sketchArray [{ $currentSketchNumber}]}” height=”222 ” width=”192 ”}
<div c l a s s =” s k e t c h c a p t i o n ”><p>{$ s k e t c h T i t l e A r r ay [{ $currentSketchNumber}]}</p>
<a c l a s s =” l i n k ” href=” io/imageDownload . php? id={$currentSketchNumber+1}”>download

</div>
</div>
{/ i f}
{ i f $smarty . s e c t i o n . sketchNumber . index+2 l t $sketchArray |@count}
{ass ign var=” currentSketchNumber ” value=$smarty . s e c t i o n . sketchNumber . index+2}
<div id=” s k e t c h r i g h t ”>
{html image f i l e =” data : image/png ; base64 ,{ $sketchArray [{ $currentSketchNumber}]}” height=” 222” width=” 192”}
<div c l a s s =” s k e t c h c a p t i o n ”><p>{$ s ke t c h T i t l e A r r ay [{ $currentSketchNumber}]}</p>
<a c l a s s =” l i n k ” href=” io/imageDownload . php? id={$currentSketchNumber+1}”>download

</div>
</div>
{/ i f}
</div>
{/ i f}
{/s e c t i o n}

Listing 6.2: Sketch image template code

81

6 Web Interface

6.5.3 Multi Language Support

When the pages get changed the language is set as a GET parameter. Page templates
were implemented in German and English and will be selected on demand.

6.5.4 SOAP Service access

At first the PHP soap client has to be initialized. Then the soap client object can be
used to send queries to the web service. Listing 6.3 shows the usage of the PHP SOAP
client7

$soapClient = new SoapClient (TEAMSKETCH WSDL) ;
$sketch1 = $soapClient−>getImage ($userID , $token , $studentID , 1 , 0) ;

Listing 6.3: PHP SOAP client access

6.6 Unit Testing

PHPUnit8 was used to test the web interface. PHPUnit is an xUnit test suite which
supports automatic software testing [Meszaros, 2007, p. 745]. It is based on the same
concepts as it has already been elaborated in iOS unit testing.

7http://php.net/manual/de/class.soapclient.php, last accessed: 15. Nov. 2014

8https://phpunit.de, last accessed: 15. Nov. 2014

82

http://php.net/manual/de/class.soapclient.php
https://phpunit.de

7 Prototype Test in a Primary School

Teamsketch was tested in a primary school (third grade). The selected school (VS
Hirten-Graz) has a so called ”iPad class”. The pupils are familiar and experienced with
iPads because iPads are integrated in the regular lessons since first grade.

7.1 Test parameters

The school class consisted of 16 pupils. The app test was part of the art lesson. Pupils
tested the app in groups of four, sitting on one table.

Figure 7.1: Test setting in school class

The first task was to connect the iPads over Wi-Fi. The pupils were already familiar
with pairing the devices since they have already used other TU-Graz apps such as

83

7 Prototype Test in a Primary School

Buchstabenpost1, which use similar pairing techniques.
The next step was to form a group of two. Each team had to decide a leader on their
own. After testing the app in pairs, all four pupils drew one sketch together. The last
step was to discuss the app by answering predefined questions. This test procedure is
based on previous tests [Kienleitner, 2013, p. 79] as the pupils are used to App testing
that way. The main goal was to draw a picture with a given topic such as ”farm”,
”city”, ”flower” and ”meadow”.

When groups of two pupils drew together, a Mac Book was added to the sketch session
to record a video of the sketch creation process.

7.2 Results

The following observations were made during the app test:

• During pairing process one child usually understood the concept first and imme-
diately told the others how to connect.

• Pupils usually started with drawing simultaneously. After a few seconds they
recognized that this approach is not target-aimed. Then they began to discuss
their drawing approach. Most of the groups divided the drawing work. One
pupil drew the sky, sun and clouds, others drew flowers and animals. A group
of two girls divided their drawing work strikingly: one girl drew the shape of
the houses, the other girl colored the houses, they seemed to be very harmonic
performing their work.

• Some pupils got very angry because of others who drew in their area or delete
their shapes and some of them even refused to continue drawing.

• Others followed some pupils’ commands blindly. They even asked others how to
colorize their own shapes.

• The first two groups were told that they could start over again if they have
troubles. Teamsketch has a button to clear the screen.
This led to fast restarts whenever they encountered a discussion what and where
to draw. All other groups did not get the information how to clear the sketch
therefore they had to solve their issues to continue.

• All pupils were introduced to the zoom function but no one used this function
although they frequently got the hint. They preferred to see the sketch as a whole.

1https://itunes.apple.com/at/app/buchstaben-post/id736836885?mt=8, last accessed: 17. Nov.
2014

84

https://itunes.apple.com/at/app/buchstaben-post/id736836885?mt=8

7 Prototype Test in a Primary School

Table 7.1: Test questionnaire - ranking questions

Question Rating (average of all groups)

Did you like drawing together 2

Was the app easy to use 1

Would you like to play again 1

• Pupils did not understand how to switch the felt pens from broad to fine (double
tap).

• Some pupils looked for a rubber. Others realized that the white color felt pen
takes over this functionality.

• Pupils accidentally changed felt pen colors by touching the pens unintentionally.

• One child preferred to draw alone, he did not like drawing simultaneously.

7.3 Questionnaire

After the app test the pupils were asked three rating questions and two open questions.
The questions could be rated by selecting an appropriate smiley. Each group had
to discuss the questions and rate the question as the whole group. There was no
individual rating. Five smileys were used for rating. The happiest smiley corresponds
to school mark ”1”, the saddest smiley corresponds to school mark ”5”. The main
purpose of this questionnaire was not to get a rating, the idea was to get information
about their impressions. While they were discussing the rating, they revealed their real
opinion about the app. Table 7.1 elaborates on the question details.

Additionally two open questions were asked:

• Did you miss anything in this app?
Answer: Some pupils would have liked to have importable shapes or images as
well as sound effects. Others would have liked more different colors especially
shiny colors such as gold.

• Would you have liked something to be different in this app?
No answer was given to this question.

Figure 7.2 shows the questionnaire and rating equipment.
Most of the pupils liked drawing together. Many pupils wanted more shiny and glossy
colors as well as importable custom shapes such as cliparts and photos. Some pupils
missed sound effects.

85

7 Prototype Test in a Primary School

Figure 7.2: Questionnaire and rating equipment

7.3.1 Impressions of the pupils given during the questionnaire

The following information was given by the pupils while they discussed the rating.

• sound effects
Some pupils mentioned that they missed sound effects while drawing.

• drawing together
While they discuss if they liked drawing together, some pupils and groups
complained about other members who disturbed their painting process. These
groups rated the first question significantly lower than other groups.

• additional features
Some pupils mentioned that they would like to have more shapes and colors.

Usually individual pupils just decided the group’s mark. The pupils had to be moti-
vated to discuss the questions.

7.4 Teacher’s feedback

The class teacher has four years experience in using iPads in class. Therefore, her
feedback should be considered as well. She was very pleased that the app does not

86

7 Prototype Test in a Primary School

have any sound effects, the class atmosphere was more silent and comfortable without
any additional noise. She also mentioned that the felt pen switching with double tap
was not intuitive. The class teacher rated the collaborative learning effect as very high.
She also mentioned that she will continue using the app in class to improve the team
skills of their pupils.

87

8 Conclusion

The technical progress of tablet devices enables more and more use cases in educational
environment. The device responsiveness in multi-peer networks increased a lot due to
more computational power of the devices. With these new technologies time-critical
applications could be implemented very efficiently which opens new possibilities for
educational games. By joining additional observing devices, more information about
the pupil’s personal learning progress could be received.

8.1 Project Summary

The project consists of three main parts:

• web service
The web service provides the API to upload and download images as well as
user authentication.

• web interface
A platform for teachers as well as pupils was implemented to access stored
images. Teachers could use this web service to evaluate the pupils progress.

• app
The iOS app Teamsketch was implemented as collaborative drawing applica-
tion for two to four players. User draw simultaneously on one sketch to train
collaborative learning and other team skills.

The implementation of the Teamsketch app addressed several issues of other already
available apps. A curve fitting and line smoothing algorithm improve the line, therefore
shapes and strokes look more realistic. The app uses peer-to-peer connections, therefore
an internet connection is not necessary. Bluetooth connections can be used as well.
The various connection capabilities are a big advantage while using the app in school
environment. The app does not depend on a fast network infrastructure. The sketch
synchronization between all devices is very responsive, no stroke synchronization
errors happened during tests as well as the field study.
The web service and web interface provide a sketch store and retrieve platform which
enables teacher to review student sketches easily.
The field study showed the potential of the app to train team and collaboration skills.

88

8 Conclusion

8.2 Technical Aspects

The development was started with Swift in beta state this increased the difficulty level
significantly. Every time Apple updated the beta versions a lot of code parts stopped
working and had to be changed. The public release of iOS 8.0 and 8.1 was shortly before
Teamsketch development was finished. Therefore multiple issues with performance
on older devices had to be solved. Debugging and testing with iOS simulator was
misleading, because the host computer had much more computational power than the
real devices. Therefore the simulator was not able to detect computation limitations.
The app had big performance issues on the iPad 3 (first high resolution iPad). On this
iPad the graphic performance is significantly lower than on the older iPad 2 model
caused by the four times higher number of pixels1. Algorithm changes had to be
implemented addressing this issue.

8.3 Lessons Learned

The following lessons had been learned while implementing and testing Teamsketch:

• tests with all devices
Performance critical apps must be tested with all available types of devices.
The issue with the iPad 3 came up in the last two weeks which aggravated the
punctual release significantly.

• pairing mechanism optimization
Most of the pupils were very impatient while pairing. In this situation other skills
such as patience and consideration could be trained. They learn that they have to
wait until all devices are listed and that it takes time to set up the environment.

• double tap to change felt pen width was not intuitive

• pen color changes happened accidentally
A better pen change procedure should be considered

• undo function
Pupils should not have the possibility to easily undo (such as the common undo
function) or reset their work because for some pupils this was the easiest solution
to escape discussions and issues.

• zoom function may not be necessary
Most pupils prefer to see the whole sketch.

1http://support.apple.com/kb/sp647, last accessed: 15. Nov. 2014

89

http://support.apple.com/kb/sp647

8 Conclusion

• collaboration and team skills
These skills should be trained as early as possible as many pupils had issues
with working in teams.

8.4 Further Studies

Teamsketch field test showed that drawing together simultaneously needs high devel-
oped collaboration skills. These skills could be trained while using the app. By only
observing the pupils for a short time, the social role of each pupil was revealed. Further
studies should be made with experienced observers from the field social learning,
psychology and education to evaluate collaborative learning with Teamsketch.

90

Appendix

91

Bibliography

Callahan, Brooke and Wil Turner (2014). “Testing in Xcode 6.” In: Apple Worldwide
Developers Conference 2014. 414. Apple Inc. 1 Infinite Loop Cupertino, CA 95014,
USA: Apple Inc., p. 180 (cit. on p. 57).

Chiu, K., M. Govindaraju, and R. Bramley (2002). “Investigating the limits of SOAP
performance for scientific computing.” In: High Performance Distributed Computing,
2002. HPDC-11 2002. Proceedings. 11th IEEE International Symposium on, pp. 246–254.
doi: 10.1109/HPDC.2002.1029924 (cit. on p. 61).

Christensen, Erik et al. (2001). Web Services Description Language (WSDL) 1.1. url:
http://www.w3.org/TR/wsdl (visited on 11/15/2014) (cit. on p. 64).

Danesh, Arman et al. (2001). “GeneyTM: Designing a Collaborative Activity for the
palmTM Handheld Computer.” In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’01. Seattle, Washington, USA: ACM, pp. 388–395.
isbn: 1-58113-327-8. doi: 10.1145/365024.365303. url: http://doi.acm.org/10.
1145/365024.365303 (cit. on pp. 4, 5).

Dillenbourg, Pierre (1999). Collaborative learning: cognitive and computational approaches.
2nd Revised Edition. Emerald Group Publishing Limited (cit. on p. 3).

Farin, Gerald (2002). Curves and Surfaces for CAGD: A Practical Guide. 5th. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc. isbn: 1-55860-737-4 (cit. on pp. 39, 40,
54).

Gamma, Erich et al. (1995). Design Patterns. Elements of Reusable Object-Oriented Software.
32nd Printing. Addison-Wesley (cit. on pp. 21, 22).

Grimus, Margarete and Martin Ebner (2014). “Learning with Mobile Devices Per-
ceptions of Students and Teachers at Lower Secondary Schools in Austria.” In:
Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommu-
nications 2014, pp. 1600–1609 (cit. on p. 1).

Hongping, Shu and Wei Zhaoyu (2012). “Contour Smoothing Algorithm Based on
Bezier Curves and Application.” In: Computational Intelligence and Communication
Networks (CICN), 2012 Fourth International Conference on, pp. 283–285. doi: 10.1109/
CICN.2012.73 (cit. on p. 54).

Isted, Tim and Dave Addey (2014). “Introduction to Swift.” In: Apple Worldwide Devel-
opers Conference 2014. 402. Apple Inc. 1 Infinite Loop Cupertino, CA 95014, USA:
Apple Inc., p. 343 (cit. on p. 15).

92

http://dx.doi.org/10.1109/HPDC.2002.1029924
http://www.w3.org/TR/wsdl
http://dx.doi.org/10.1145/365024.365303
http://doi.acm.org/10.1145/365024.365303
http://doi.acm.org/10.1145/365024.365303
http://dx.doi.org/10.1109/CICN.2012.73
http://dx.doi.org/10.1109/CICN.2012.73

Bibliography

Jobs, Steve (2010). Thoughts on Flash. Ed. by Apple Inc. url: https://www.apple.com/
hotnews/thoughts-on-flash/ (cit. on p. 11).

Johnson, David W. (2003). “Social Interdependence: Interrelationships Among Theory,
Research, and Practice.” In: American Psychologist 40.11, pp. 934–945. issn: 0003-066X
(cit. on p. 4).

Johnson, David W. and Roger T. Johnson (1989). Cooperation and Competition: Theory and
Research. Interaction Book Co (cit. on p. 3).

Johnson, David W. and Roger T. Johnson (2005). “New Developments in Social Interde-
pendence Theory.” In: Genetic, Social, and General Psychology Monographs, pp. 285–
358. issn: 8756-7547 (cit. on p. 4).

Johnson, David W. and Roger T. Johnson (2008). “Wie kooperatives Lernen funktion-
iert.” In: Friedrich Jahresheft 26, pp. 16–20. issn: 0176-2966 (cit. on p. 4).

Johnson, David W., Roger T. Johnson, and Edythe Johnson Holubec (2002). Circles
of Learning: Cooperation in the Classroom. 5th Printing. Interaction Book Company
(cit. on pp. 3, 4).

Kienleitner, Benedikt (2013). A Contribution to Collaborative Learning Using iPads for
School Children (cit. on p. 84).

MacIntyre, Peter, Brian Danchilla, and Mladen Gogala (2011). Pro PHP Programming.
Apress (cit. on p. 57).

Melzer, Ingo (2010). Service-orientierte Architekturen mit Web Services. 4th Printing. Spek-
trum Akademischer Verlag Heidelberg (cit. on p. 63).

Meszaros, Gerard (2007). XUnit test patterns : refactoring test code. 1st Printing. Pearson
Education, Inc. (cit. on pp. 57, 58, 82).

Mhatre, H.K., B.A. Mehta, and A.K. Jaiswal (2013). “Architecture for MTOM based file
transfer.” In: Circuits, Power and Computing Technologies (ICCPCT), 2013 International
Conference on, pp. 1250–1252. doi: 10.1109/ICCPCT.2013.6529002 (cit. on p. 67).

Papazoglou, M.P. et al. (2007). “Service-Oriented Computing: State of the Art and
Research Challenges.” In: Computer 40.11, pp. 38–45. issn: 0018-9162. doi: 10.1109/
MC.2007.400 (cit. on p. 61).

Rideout, Victoria (2013). Zero to Eight. Tech. rep. Common Sense Media Inc. (cit. on
pp. 1, 5).

Zurita, Gustavo and Miguel Nussbaum (2004). “Computer supported collaborative
learning using wirelessly interconnected handheld computers.” In: Computers and
Education 42.3, pp. 289–314. issn: 0360-1315. doi: http://dx.doi.org/10.1016/j.
compedu.2003.08.005. url: http://www.sciencedirect.com/science/article/
pii/S0360131503000927 (cit. on p. 4).

93

https://www.apple.com/hotnews/thoughts-on-flash/
https://www.apple.com/hotnews/thoughts-on-flash/
http://dx.doi.org/10.1109/ICCPCT.2013.6529002
http://dx.doi.org/10.1109/MC.2007.400
http://dx.doi.org/10.1109/MC.2007.400
http://dx.doi.org/http://dx.doi.org/10.1016/j.compedu.2003.08.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.compedu.2003.08.005
http://www.sciencedirect.com/science/article/pii/S0360131503000927
http://www.sciencedirect.com/science/article/pii/S0360131503000927

