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Abstract

Solar storms can have a major impact on the infrastructure on earth and near earth objects.

This includes satellites, astronauts, navigation systems, pipelines and power grids. Some

of the related events are observable from ground based observatories in the Hα spectral

line, namely solar flares and filament eruptions, which are correlated with coronal mass

ejections. In this thesis we propose a new method for the simultaneous detection and

segmentation of flares and filaments in Hα image sequences in near realtime. Therefore

our method consists of four building blocks. In a first preprocessing step the Hα images get

normalized in terms of intensity and spatial displacement. Further, a structural bandpass

filter is applied to remove disturbances on a larger scale, caused by clouds and limb

darkening and additive noise. In the next step we derive discriminative features per pixel

and learn a classification model. This model is then used in a variational multi-label

segmentation algorithm to assign each pixel to a class label. The final postprocessing

step includes the identification and tracking of the solar objects in the image sequence

and the computation of properties to categorize them. In an experimental evaluation

we demonstrate the efficiency of our method by comparing it to expert detected and

annotated events. The method will be used in the context of the space weather program

of the European space agency and can further be used for the statistical analysis of flares

and filaments by solar physicists.

Keywords. solar image, Hα image, filament, flare, total variation, variational methods,

convex optimization, structural bandpass filter, multi-label segmentation, gpu
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Contents
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1.1 Motivation

The sun, our host star, has beyond all doubt a huge influence on our planet, however,

the sun is a rather complex and active system. There exist the solar activity cycle of 11

years that can be measured by the number of sun spots that appear on the solar disk, and

the magnetic cycle of 22 years [5]. Other events occur on a shorter time scale of a few

seconds to several hours. These explosive events include solar flares, filament eruptions

and coronal mass ejections (CMEs).

Back in the early 19th century, the astronomer William Herschel believed to have found

a correlation between the number of sun spots and the grain prices [43]. Although these

findings were false, others have found a true connection between the number of sun spots

and things in nature such as tree rings and rocks [43].

Over the last decades, mankind has developed many technologically advanced space

systems, satellite-based services and also ground-based infrastructure that is influenced

by space weather. The space weather is defined by Bhatnager et al. [12] as the “changing

conditions in interplanetary space and Earth’s magnetosphere controlled by the variable

solar wind”.

1
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The work of Echer et al. [37] and the report by the Royal Academy of Engineering

[23] give an overview of the various impacts of the solar weather on Earth’s natural sys-

tems and technologies in space and on Earth. In space, this includes spacecraft charging,

single bit flips in digital microelectronic circuits, and increased space radiation for astro-

nauts. Ground-to-air and ship-to-shore communication and navigation systems can also

be disturbed due to the caused changes in the ionosphere. Furthermore, the electrical

power infrastructure and pipelines can be affected by the induced currents created by

geomagnetic storms.

Following the Ministerial council in 2008, ESA’s Space Situational Programme (SSA)

was set in place, starting with a preparatory phase in 2009, in order to address on a

European-wide level the mitigation of risks related to the conditions in space. In this

context, Space Situational Awareness (SSA) is “defined as a comprehensive knowledge,

understanding and maintained awareness of the (i) population of space objects, of the (ii)

space environment, and of the (iii) existing threats/risks” [14]. The risks addressed to

in the SSA program are basically divided into three categories: survey and tracking of

man-made objects in space, surveillance of near earth objects (NEOs), and surveillance

of the space weather. The main objective of the SSA system is “to support the European

independent utilization of and access to space for research or services through providing

timely and quality data, information, services and knowledge regarding the environment,

the threats, and the sustainable exploitation of the outer space surrounding our planet

Earth” [14].

1.2 Aims

This work is part of the SSA space weather segment in which the University of Graz is de-

veloping a service for providing near realtime Hα images and movies from the ground-based

facility Kanzelhöhe Observatory for Solar and Environmental Research (KSO). Figure 1.1

shows the observatory and the used telescope. Additionally, this master thesis deals with

the problem of a near realtime recognition of solar flares and erupting filaments in the

provided Hα images. This includes the automated segmentation of filaments and flares in

the image sequences and further to derive properties of flares, such as intensity maximum

and mean, size and time of occurrence, and filaments, like length and time of eruption.

One major problem in ground-based observations is the influence of clouds and the

generally varying sight due to the Earth’s atmosphere. The poor viewing conditions make

the detection more difficult, because the exposure time not only varies for the images,
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Figure 1.1: The left image depicts the Kanzelhöhe Observatory for Solar and Environ-
mental Research on the Gerlitzen. The right image shows the used telescopes for the solar
observation in the doom.

which results in a differing mean brightness of the pixels, but there may also occur gaps in

the image sequences. Another problem is the limb darkening meaning, that the intensity

decreases significantly from the center toward the limb. This is caused by viewing the

higher photospheric layers of decreasing temperature as we look closer the limb [5].

1.2.1 Hα Images

The sun consists of several layers, but only the photosphere, or solar surface, is observable

by integrating the white light [5]. The layer between the corona and the photosphere

is called the chromosphere, which can be seen for a few seconds during a solar eclipse

due to the strong photospheric background. To observe the chromospheric features like

filaments, flares, plagues and fibrils on the solar disk independently of a solar eclipse, one

must use narrow bandpass filters in spectral lines that suit the chromospheric emission

lines. Common filters are Hydrogen (Hα ) or ionized Calcium and Magnesium based [5].

In figure 1.2, a typical Hα image is shown and describes some of the visible features.

The brighter regions are called plages (French for beach) and are incandescent regions of

gas with higher density. Together with sun spots, the plages define the spatial extent of

active regions that have an enhanced emission over a broad spectral range compared with

the quiet sun [5]. Further, we see mottled structures, which mark the boundaries of the

chromospheric network [12].
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Figure 1.2: A typical Hα image of the sun from the KSO taken on 11.12.2012 at 10:42:01.
Filaments appear as elongated, darker structures and can have an arbitary shape. The
brighter regions are called plages and differ to flares, which appear drastically brighter
compared to the solar surface. Further, one can observe tiny cirle-shaped sun spots that
are even darker than filaments.



1.2. Aims 5

1.2.2 Filaments

Filaments appear as elongated regions of low intensity on the solar disk of Hα images.

They have typically about 10% of the disk intensity, but are still brighter than the sky

[91]. Filaments are among the longest-living solar features and can exist for several days.

However, a filament may erupt and therefore disappear from the Hα image within several

minutes. This is shown in figure 1.3. Some filament eruptions are accompanied by a flare

[91] and filament eruptions also occur in a close association with coronal mass ejections

(CME) that may again have the above mentioned impacts on Earth and earth near objects

[56]. The detected location of a filament eruption therefore provides information, if the

CME is heading towards Earth.

(a) 12:50:25 (b) 12:55:00 (c) 12:58:15

(d) 13:01:01 (e) 13:04:06 (f) 13:07:02

Figure 1.3: The image sequence shows an erupting filament on Hα image details. The
images were taken on 09.11.2011 by KSO.
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1.2.3 Flares

Solar flares are abrupt and enormous releases of energy in a very short time. In a relatively

small area of the sun, a single solar flare can create an explosion equivalent to several billion

hydrogen bombs [12]. The radiation is enhanced over the whole electromagnetic spectrum,

caused by accelerated particle beams and excessive heating of the different layers of the

solar atmosphere [5].

Flares are characterized in Hα images by strong brightness increases of localized solar

areas that reach the maximum extent and intensity within a few minutes up to an hour

[82], followed by a gradual decay of intensity. The evolution of a flare observed by KSO is

illustrated in figure 1.4.

The strength of solar flares is classified by two different systems. The first scheme is

based on the soft X-ray flux and the second is based on the area and brightness of the

solar flare observed in Hα [12]. In table 1.1, the classification based on increasing areas of

the flaring region can be found. In addition, a flare may be further classified according to

the peak intensity relative to the quiet sun.

(a) 08:15:16 (b) 08:17:36 (c) 08:20:09

(d) 08:23:18 (e) 08:29:26 (f) 08:33:00

Figure 1.4: The image sequence shows an occurring flare on Hα image details. The images
were taken on 27.04.2012 by KSO.
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Classification Flare area (10−6 of solar hemisphere)

S[ubflare] < 200

1 200− 500

2 500− 1200

3 1200− 2400

4 > 2400

Table 1.1: Classification of solar flares based on the area in solar hemispheres. Taken from
[12].

1.3 Related Work

Image processing in connection with Hα images is quite a new topic. Back in the 1960s,

where sun spots where still recorded by hand from a projection, the automated recognition

of solar features got more common with the increasing computation power and amount

of image data. Starting in 2000, publications were made available that dealt with solar

feature recognition in the context of solar imaging, especially Hα images.

Aschwanden [6] provides an overview of image processing techniques in the context

of solar physics. Independent of the type of solar image, there exist common processing

steps. Before any recognition is performed, the image undergoes some preprocessing steps.

Typically, this includes the removal of noise, the spatial registration and the enhancement

of the solar features of interest. Next, the actual recognition is performed, followed by

additional postprocessing steps. The latter involve the visualization and representation of

the recognition. The last step is the computation of the solar features dependent properties

from the results.

We will now focus on the research concerning flare and filament recognition in more

detail.

1.3.1 Flare Recognition

The first study related to the automatic flare recognition in Hα images was conducted by

Veronig et al. [84]. They first extracted the center and the radius of the solar disk by

filtering the image with a large median filter and fitted a circle to the gradient image in

a least squares manner. The limb darkening is removed by fitting polynomials to annuli

from center to limb. For the actual flare segmentation, they selected key pixels that had

twice the intensity of the solar mean intensity and from these key pixels a region growing

segmentation is performed (see section 2.5) that stops if the intensity of the segmentation

exceeds a certain level or reaches a Canny edge pixel [24].
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Borda et al. [38] utilized an artificial neural network for the classification of a flare

occurrence in Hα images. Rather than segmenting the flare in the image, they made a

binary decision, if an image contained a flare or not. This is based on seven extracted

features, namely:

1. Mean intensity of the image

2. Standard deviation of the intensity

3. Intensity difference of the key pixel, which is the pixel with the largest intensity

difference between two consecutive images

4. Absolute intensity of the key pixel

5. Radial position of the key pixel

6. Variation of mean intensity between two consecutive images

7. Contrast between the point with maximum intensity change and its first neighbor

Features 1-4 are devoted for to recognize images with a lot of activity. With feature

5, the limb darkening is taken into account, whereas features 6 and 7 distinguish between

flares and weather-related effects.

In [71], Qu et al. extend the ideas by Borda et al. and Veronig et al. by first extending

the set of features with two additional features:

9. Mean intensity of a 50× 50 window, where the key pixel is the center

10. Standard deviation of the pixels in the 50× 50 window

The key pixel beeing the one defined in feature 3. These two additional features provide

localized information about the flare. Qu et al. used a huge set of labeled training images

to train an artificial neural network with sigmoidal activation function, one with radial

basis activation functions (RBF) and one with a support vector machine (SVM, see section

2.6.2), whereas the SVM gained the best results on an independent test set. To segment

the flares, the algorithm proposed by Veronig et al. [84] is used.

In a subsequent paper, Qu et al. [70] improved their method by adding a pre- and

postprocessing step and extending the region growing algorithm. In the preprocessing

step they enhanced the image by applying a median filter as well as morphological filters

to reduce noise. As the region growing looses some details of the flare, especially on the
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boundaries, they added an adaptive boundary method. Therefore, they calculated the

first and second derivative to detect the edges of the flare, whereas the threshold for the

edge is obtained by the mean and standard deviation of the 8-neighboring windows. The

result is then smoothed by morphological closing, and holes in flares are filled to achieve

a smoother result.

1.3.2 Filament Recognition

The existing approaches for filament detection can roughly be divided into three categories.

The first approach is based on region growing from detected seed pixels [1, 44, 45, 47, 69],

whereas the second approach is categorized by a pixelwise binary classification; whether

a pixel of the solar image belongs to a filament or not is assigned by a previously learned

classifier [89, 90]. Thresholding based on the pixel intensities is the third common method

for filament detection [11, 72, 79, 87]. This approach can further be divided in global

thresholding and adaptive thresholding.

Before taking a more detailed look on the different methods, the existing preprocessing

strategies should be presented. All three methods rely only on the pixel intensities and the

knowledge that filaments in Hα images appear darker than other solar features. However,

as mentioned earlier, we observe the limb darkening, where the intensities from the center

towards the limb decrease. This obviously leads to many false positive detections near the

limb. Therefore, most preprocessing is dedicated to this problem.

Fuller et al. [44, 45] applied a large median filter to approximate the large-scale

fluctuations and subtract the result from the original image. Another common method

is fitting a polynomial g of degree ≥ 2 to the image f and subtract it [11, 79, 87]. The

polynomial g is given by the solution of the least-squares optimization problem

g = arg min
g

∑

x

∑

y

(f(x, y)− g(x, y))2 (1.1)

To further enhance the filaments and discriminate them from the background, the

application of a Laplacian filter is used in [1, 44, 45, 87].

The first and most simple approach to filament segmentation was done by Gao et al.

[47]. They used a global threshold that was set to the half of the image median. If a

pixel value is less than this threshold, it belongs to a filament and vice versa. After the

segmentation, small filament parts were removed. From this initial detection, they perform

region growing to merge filament parts belonging together.
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A similar approach was taken by Fuller et al. [44, 45]. Instead of a global threshold

to obtain initial filament pixels, they used a localized threshold. The local threshold in

their method was based on the mean and standard deviation of the intensities in the local

neighborhood.

Shih et al. presented in their work [79], a global thresholding method and an adaptive

one. In the adaptive approach, a center pixel (x, y) in a k × k window is segmented as

filament, if it is less than a threshold t, whereas the threshold in this window is defined as

a clamped median

t =



















cinf if mediank(x, y) ≤ cinf

mediank(x, y) if cinf < mediank(x, y) < csup

csup if mediank(x, y) ≥ csup

(1.2)

To further increase the quality of the segmentation, they applied morphological oper-

ations. Hence, they removed small segments and emphasized elongated structures.

Zharkova et al. [89, 90] used a learning approach for a pixelwise classification. There-

fore, they trained a small artificial neural network with 2 hidden neurons. As input for

the network, they used the 3 × 3 pixels around the central pixel. They concluded that

with their method they achieved the same accuracy as with the region growing method

by Fuller et al. [45], but in a much more efficient way.

1.4 Thesis Overview

This thesis is structured as follows: Chapter 1 provides an introduction to the related

solar events visible in Hα images and states related work. The basic principles for our

proposed method are presented in chapter 2. Chapter 3 describes our proposed method

for the flare and filament detection in Hα images, while chapter 4 is devoted to the actual

implementation of the method, where most parts are implemented on the GPU to achieve

near realtime results. We present an evaluation of our method in chapter 5 and finally

conclude our work in chapter 6.
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In this chapter, the basic principles for the developed method will be introduced. First,

we will present the used notation for digital images and the corresponding continuous

space as well as the discretization of continuous formulations. Then we will explain,

why image processing problems are inherently difficult and we will propose variational

methods to handle them. To efficiently solve these problems, we will give a short overview

of convex optimization and minimization algorithms. As our method relies heavily on

image segmentation, we will state the general segmentation problem and proper methods

to solve it. The end of this chapter is dedicated to the basic principles of machine learning

and suitable machine learning algorithms for our filament and flare detection method.

11
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2.1 Digital Image

In this section, we depict the basic model of an image. An intuitive way to define an image

is in terms of the function

f : Ω→ R
d (2.1)

where Ω is the image domain and has 2 dimensions for images and 3 dimensions for volumes

or a temporal sequence of images e.g. a video. This function maps a location to a real

valued vector, whereas d = 1, if the function maps only to intensity values, or d = 3, if we

handle color images. In the remaining part of this thesis we will just use intensity images,

which then reduces the mapping to a scalar.

If the domain is Ω = [a11, a12]× . . .× [ak1, ak2] ⊂ R
k, where [ai1, ai2] is a open interval

from ai1 to ai2, then f describes a continuous image. To process an image with a digital

device like a computer, the continuous image gets sampled and quantized to obtain a

digital image. This implies the function reduces to

f : Ω→ N
d (2.2)

and the domain is restricted to Ω = {0, . . . , N1} × . . . × {0, . . . , Nk} ⊂ N
k. More details

on image formatting can be found in the book of Szeliski [81], and more information on

the mathematical formulation of images can be found in [7, 18, 77].

2.1.1 Discretization

In the upcoming section we will discuss optimization schemes and minimization algorithms

in the general continuous domain. However, a digital computer can only deal with discrete

images. Therefore, we present in the following a discretization scheme, especially for the

gradient and divergence operator.

As already discussed, a digital image f is formed by sampling a continuous image g on

discrete locations. A two dimensional digital image is usually defined on a regular M ×N

Cartesian grid as follows

{(xi, yi) = (i ·∆x, j ·∆y)|1 ≤ i ≤M, 1 ≤ j ≤ N, i, j ∈ N} (2.3)

where ∆x and ∆y denote to the sample interval and define the pixel size of the image.

A critical operator for the minimization is the gradient operator and we define the
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discrete gradient operator at (i, j) as

(∇f)i,j = (δ+x fi,j , δ
+
y fi,j)

T (2.4)

The derivatives are approximated using finite forward differences with Neumann

boundary conditions:

δ+x fi,j =







fi+1,j−fi,j
∆x

if i < M

0 if i = M
(2.5)

δ+y fi,j =







fi,j+1−fi,j
∆y

if j < N

0 if j = N
(2.6)

We further need the divergence operator that is adjoint to the gradient operator, which

means in the continuous domain 〈−div p, f〉 = 〈p,∇f〉. To fulfill this property, we define

the discrete divergence operator of p = (p(1), p(2))T as

div pi,j = δ−x p
(1)
i,j + δ−y p

(2)
i,j (2.7)

whereas we use finite backward differences with Dirichlet boundary conditions

δ−x p
(1)
i,j =























p
(1)
i,j −p

(1)
i−1,j

∆x
if 1 < i < M

p
(1)
i,j if i = 1

−p(1)i−1,j if i = M

(2.8)

δ−y p
(2)
i,j =























p
(2)
i,j −p

(2)
i,j−1

∆y
if 1 < j < N

p
(2)
i,j if j = 1

−p(2)i,j−1 if j = N

(2.9)

Without loss of generality, we assume for the remainder of this thesis ∆x = ∆y = 1.

According to [26], the gradient operator can be bounded as follows

L2 = ||∇||2 = ||div ||2 ≤ 8

∆x2
(2.10)
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2.2 Ill-Posed Problems

In the field of image processing we have to deal with inverse problems. We have given a

measurement or observation, which is the image itself, and want to infer further higher

level information from it. For example, we have given a function g, which is obtained

by an affine transformation of u: g = Au + n. To obtain g from u given A and n is the

direct or forward problem and well-posed. Conversely, to deduce u only given g is typically

ill-posed.

The definition of a well-posed problem was first given by Jacques Hadamard [49].

According to his definition a well-posed problem has to fulfill three properties:

Existence A solution exists

Uniqueness The solution is unique

Continuity The solution continuously depends on the data

If one property is not fulfilled, the problem is said to be ill-posed.

2.2.1 Bayesian Approach

A tempting technique to solve such problems is to treat u as a random variable with some

underlying probability distribution and the goal is to find a hypothesis u∗ that maximizes

the probability based on the observation f [52–54]. We obtain the following optimization

problem, also known as maximum a posteriori (MAP) estimation

u∗ = arg max
u

p(u|f) (2.11)

= arg max
u

p(f |u)p(u) (2.12)

The second equation (2.12) arises from the well-known Bayes’ theorem that states

p(u|f) =
p(f |u)p(u)

p(f)
(2.13)

We get back to our example from above with the affine transformation, where A is

any linear operator of u and assuming that n is Gaussian additive noise with zero mean

and standard deviation σl. Then, the likelihood for g conditioned on u is the same as for
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n = g −Au

p(g|u) =
1

√

2πσ2
l

∏

x∈Ω

e
− (g(x)−Au(x))2

2σ2
l (2.14)

Next, we assume a Gaussian a priori probability distribution for an image u with

standard deviation σp.

p(u) =
1

√

2πσ2
p

∏

x∈Ω

e
−φ(u(x))2

2σ2
p (2.15)

where φ is a function of u like the gradient magnitude |∇u|. Using these both density

functions and plug them into equation (2.12) we deduce the following MAP estimator

u∗ = arg max
u

1

2πσpσl

∏

x∈Ω

e
− (g(x)−Au(x))2

2σ2
l

−φ(u(x))2

2σ2
p (2.16)

= arg max
u

e
−

∫
Ω

(g(x)−Au(x))2

2σ2
l

+
φ(u(x))2

2σ2
p

dx
(2.17)

= arg min
u

∫

Ω

(g(x)−Au(x))2

2σ2
l

+
φ(u(x))2

2σ2
p

dx (2.18)

However, the MAP may not always yield the desired result, because the solution with

the highest probability might be very unusual as it is shown for example in [27] and also

depicted in figure 2.1.

2.2.2 Variational Methods

Another approach to solve the example from above is to use the least squares approach,

invented independently by Gauß and Legendre [55]. The idea is to minimize the sum of

errors and can be written as follows

u∗ = arg min
u

1

2

∫

Ω
(f(x)−Au(x))2 dx (2.19)

However, this can be problematic due to the linear transformation that may be ill-

conditioned or singular in a discrete setting. We can overcome this problem, if we add a
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Figure 2.1: A mixture of two Gaussian distributions for p(u|f). This example distribution
illustrates that the MAP solution u = 1 may be very rare. The expectation value E(u|f) =
0.48 leads to a better solution.

regularization term

u∗ = arg min
u

1

2

∫

Ω
(f(x)−Au(x))2 dx +

λ

2

∫

Ω
φ(u(x))2 dx (2.20)

The general composite criterion was introduced by Tikhonov [83] and the basic idea

behind the regularization is to introduce some prior knowledge of u. We observe the direct

relationship between the MAP (2.12) and the variational solution (2.20). The quadratic

regularization proposed by Tikhonov is the result of a Gaussian prior distribution.

For a more generic range of ill-posed problems, we can write the following optimization

scheme

u∗ = arg min
u

Φ(f − u) + λΨ(u) (2.21)

The first term, Φ(f − u) is called the data fidelity term and it models the relationship

between the observation f and the solution u. The second term, Ψ(u), is the regularization

term and introduces prior knowledge of the solution u. With the parameter λ > 0 we can

tune the trade-off between data fit and regularization.
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The challenge is now, to find a good model for this optimization scheme, so that the

solution is near the desired solution. In addition, the computation of the solution should

be feasible. Therefore, we will discuss in the next section properties and algorithms for

objective functions that allow us a fast computation.

2.3 Convex Optimization

In the following section, we will first introduce the basic definitions and properties for

convex optimization. These are mainly based on the books written by Boyd and Van-

denberghe [16] and by Rockafellar [74]. Building up on these properties, we demonstrate

some minimization algorithms for our models used further.

Definition 1 (Convex Set). A set C is convex if and only if for ∀x1, x2 ∈ C and α ∈ [0, 1]

it holds

αx1 + (1− α)x2 ∈ C

This means, if we imagine a line between two points x1 and x2 from the set C any

point on this line has to be also in the set C.

Definition 2 (Convex Function). A function f : R
n → R is convex if and only if the

domain of f is a convex set, ∀x1,x2 ∈ dom f , α ∈ [0, 1] and we have

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

Further we say that f is a concave function if and only if −f is a convex function.

This definition implies, that the line from (x1, f(x1)) to (x2, f(x2)) lies above the

graph of f . We can further observe that for a convex function f all local minimums are

global minimums, but the minimum is not always unique.

Definition 3 (Strictly Convex Function). A function f : Rn → R is strictly convex if and

only if the domain of f is a convex set, ∀x1,x2 ∈ dom f , α ∈ [0, 1] and we have

∀x1 6= x2 : f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2)

The definition of strictly convex functions enforces in contrast to the convex function

that there exists an unique global minimum.

Another definition that will be used later is the following
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Definition 4 (Conjugate). Let f : Rn → R, then the function f∗ : Rn → R, defined as

f∗(x∗) = sup
x∈dom f

(〈x∗,x〉 − f(x))

= inf
x∈dom f

(f(x)− 〈x∗,x〉)

is called the conjugate, or Fenchel-Legendre transformation of the function f .

The conjugate f∗(x∗) of a function f(x) is always a convex function and applying the

conjugate twice, the function f∗∗(x) is the largest lower semi-continuous envelope of the

function f(x), independent of the shape of f .

2.3.1 Duality

An important concept in optimization in general and especially in convex optimization,

is the duality. It allows us to transform a primal problem to a so called dual problem.

The solution of the dual problem y∗ provides a lower bound to the solution of the primal

problem x∗, meaning f(y∗) ≤ f(x∗). If the primal problem satisfies some conditions,

namely that the objective function is convex and Slater’s condition is fulfilled, then the

optimal solution of the primal problem f(x∗) is equal the optimal solution of the dual

problem f∗(y∗). We call it strong duality, if f(x∗) = f∗(y∗). For a proof see [16]. The

difference f(x∗)− f∗(y∗) is named the primal-dual gap.

2.3.1.1 The Lagrange Dual Function

The Lagrange dual is very useful if we have a general optimization problem with constraints

as

min
x

f0(x)

s. t. fi(x) ≤ 0 i ∈ {1, . . . ,m}
ci(x) = 0 i ∈ {1, . . . , p}

(2.22)

where fi, ci : Rn → R. We define the Lagrangian Λ : Rn × R
m × R

p → R as the objective

function augmented with the constraints as follows

Λ(x,λ,µ) = f0(x) +
m
∑

i=1

λifi(x) +

p
∑

i=1

µici(x) (2.23)

The vectors λ and µ are the dual variables associated with the constraints. If we take
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the pointwise minimum over x of the Lagrangian, we derive the Lagrange dual function

g(λ,µ) = inf
x∈dom f

Λ(x,λ,µ) (2.24)

The Lagrange dual is concave, independent of the shape of the problem in (2.22).

2.3.1.2 The Fenchel Dual Function

Another important duality is the Fenchel dual that makes use of the conjugate as defined

in Definition 4. If f : Rn → R is a convex function and g : Rn → R is a concave function,

then it holds

inf
x

f(x)− g(x) = sup
y

g∗(y)− f∗(y) (2.25)

where g∗ is the concave conjugate of g and f∗ is the convex conjugates of the functions f .

For a proof of this equality we refer to [74].

2.3.2 Minimization Algorithms

This section gives a brief overview over some minimization algorithms for convex opti-

mization problems and further introduces the primal-dual algorithm by Chambolle and

Pock [29] that is used throughout this thesis.

If we consider a convex optimization problem like

min
u

E(u) (2.26)

We can utilize first order methods that only use the first order derivatives of E. The

most simple one is the gradient descent method. The first derivative points to the direction

that minimizes E and updates of u along this direction converges to the global optimal

solution, but the method is rather slow.

Another concept includes the forward-backward methods [10, 35, 62]. They can be

used, if the optimization problem can be written in the form

min
u

F (u) + G(u) (2.27)

where F has to be a smooth convex function and continuously differentiable with the
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Lipschitz constant L

||∇F (x)−∇F (y)|| ≤ L||x− y|| ∀x,y ∈ R
n (2.28)

and G has to be convex and has an easy to compute proximal operator. The proximal

operator of a function G(x) is defined as follows

proxG(y) = arg min
x

G(x) +
1

2τ
||x− y||2 (2.29)

An efficient proximal point method is the fast iterative shrinkage thresholding algo-

rithm (FISTA) [10] and is stated in algorithm 1. The algorithm is guaranteed to converge

at least as fast as 1
k2

.

Algorithm 1 Fast iterative shrinkage algorithm for the minimization problem minu F (u)+
G(u), with F convex and a L-Lipschitz continuous gradient and g convex and easy to
compute proximal operator proxG.

x0 ∈ X, y1 = x0, t1 = 1
h = 1

L

for all k ≥ 1 do

xk = proxG(yk − hF ′(yk))

tk+1 = 1
2 +

√
1+4(tk)2

2

yk+1 = xk + tk

tk+1 (xk − xk−1)
end for

The optimization algorithm that is used throughout this thesis is the primal-dual

algorithm by Chambolle and Pock [29] for non-smooth convex saddle point problems. The

generic saddle-point problem is given by

min
x∈X

max
y∈Y
〈Kx,y〉+ G(x)− F ∗(y) (2.30)

where X,Y are two finite dimensional real vector spaces and 〈·, ·〉 denotes the inner prod-

uct, K : X → Y is a linear operator and G and F ∗ are proper convex, lower-semicontinuous

functions, whereas F ∗ is the convex conjugate of the function F . The general algorithm

to solve this saddle-point problem is given in algorithm 2.
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Algorithm 2 Primal-dual algorithm to solve the generic saddle-point problem
minx∈X maxy∈Y 〈Kx, y〉+ G(x)− F ∗(y).

τ, σ > 0, θ ∈ [0, 1], x0 ∈ X, y0 ∈ Y, x̂0 = x0

τσL2 < 1, L = ||K||2
for all k ≥ 1 do

yk+1 = proxF ∗(yk + σKx̂n)
xk+1 = proxG(xk − τK∗yk+1)
x̂k+1 = xk+1 + θ(xk+1 − xk)

end for

2.4 Denoising

In this and the next section, we will present well-known models for low-level computer

vision applications. First, we will cover the image denoising problem. Assuming an image

u : Ω → R is distorted with additive noise n : Ω → R. The goal is to recover from the

observation f = u + n the original image u.

One possible solution to this problem has already been presented. We can use the

Tikhonov model with the image gradient in the regularization term. This introduces some

spatial prior knowledge.

u∗ = arg min
u

1

2

∫

Ω
(f − u)2dx +

λ

2

∫

Ω
|∇u|2dx (2.31)

We get an unique solution that satisfies the associated Euler-Lagrange equation and a

closed form solution

u− f − λ△u = 0 (2.32)

u = (I − λ△)−1f (2.33)

where △u =
∑

i
∂2u
∂x2

i

is the Laplacian operator of u.

2.4.1 The ROF Model

The problem with the Tikhonov model is that it does not model sharp edge discontinuities

due to the quadratic regularization term. In the work of Rudin, Osher and Fatemi [75]

the quadratic regularization is replaced by the total variation norm (TV ). In the original



22 Chapter 2. Basic Principles

paper the model is formulated as constrained optimization problem

min
u

∫

Ω
d|∇u| (2.34)

s. t.

∫

Ω
(u− f)2 dx = σ2 (2.35)

The main advantage of the TV is that it can preserve sharp edges. If the function u is

sufficiently smooth, then TV of u can be written as

TV(u) =

∫

Ω
|∇u| dx =

∫

Ω

√

(

∂u

∂x

)2

+

(

∂u

∂y

)2

dx (2.36)

In the work of Chambolle and Lions [28], the equality constraint is replaced by an

inequality constraint
∫

Ω(u− f)2dx ≤ σ2. As we have discussed previously, we can write a

convex formulation by using the Lagrangian as

min
u

∫

Ω
|∇u| dx +

λ

2

∫

Ω
(f − u)2 dx (2.37)

In the discrete setting, this can be expressed as

min
u
||∇u||2,1 +

λ

2
||f − u||22 (2.38)

The formulation can now be rewritten to match the saddle-point problem as equa-

tion (2.30) with F (∇u) = ||∇u||2,1 =
∑

i,j

√

(δ+x uij)2 + (δ+y uij)2 and G(u) = λ
2

∑

i,j(fij −
uij)

2. For the application of the primal-dual algorithm, we further need the convex con-

jugate F ∗(p) of the TV that is derived as

F ∗(p) = sup
∇u

〈p,∇u〉 − |∇u| (2.39)

= I{||p||∞≤1}(p) (2.40)

where IC denotes the indicator function on the set C = {||p||∞ ≤ 1} and is defined as

IC(x) =







0 if x ∈ C

∞ else
(2.41)

To apply the primal-dual algorithm, we further need the proximal operators of G and

F ∗. The proximal operator of the indicator function on a convex set is given by a pointwise
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projection onto the norm ball

p = proxF ∗(p̃)⇔ pi,j =
p̃i,j

max(1, |p̃i,j |)
(2.42)

The proximal operator of G is simply given by the solution to the pointwise quadratic

problem

u = proxG(ũ)⇔ ui,j =
ũi,j + τfi,j

1 + τλ
(2.43)

2.4.2 The TV-L1 Model

We can obtain another denoising model, if we replace the L2 norm in the data term of

(2.37) with the  L1 norm [3, 4, 8, 63, 64]. This yields the TV-L1 model and it can formally

be written as follows

min
u

∫

Ω
d|∇u|+ λ

∫

Ω
|f − u| dx (2.44)

While these changes may seem minor, they have an interesting impact on the denoising

result. In the work of Nikolova [63], it is shown that this model performs better on noise

with strong outliers, for example, if the image is disturbed by salt&pepper noise. Another

advantage of this model over the ROF model is that it is almost contrast invariant as

illustrated in figure 2.2. More properties of the TV-L1 model are studied in the work of

Chan and Esedoglu [30]. Especially the findings related to the scale space of an image

created by varying the parameter λ will be used in our method in chapter 3.

(a) Input image (b) Image with
additive Gaussian
noise (µ = 0, σ =
0.05)

(c) Denoising re-
sult with the ROF
model

(d) Denoising re-
sult with the TV-
L1 model

Figure 2.2: A synthetic example for the contrast invariant denoising power of the TV-L1

model compared to the ROF model.
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In the discrete setting, the TV-L1 model is written as

min
u
||∇u||2,1 + λ||f − u||1 (2.45)

It should be noted that the problem is still convex, but not strictly convex anymore.

Therefore, the solution of the optimization problem in (2.45) is not unique. However, we

again can utilize the primal-dual algorithm to compute a solution. The problem (2.45)

can be rewritten to match the saddle-point formulation in equation (2.30). The function

F (∇u) = ||∇u||1 remains the same and we can use the proximal operator previously

defined. For the data term, we now have G(u) = λ||f − u||1, where we need to compute

the proximal operator. The solution of the proximal operator for G(u) is given by the

pointwise shrinkage operation

u = proxG(ũ)⇔ ui,j =



















ũi,j − τλ if ũi,j − gi,j > τλ

ũi,j + τλ if ũi,j − gi,j < −τλ

gi,j if |ũi,j − gi,j | ≤ τλ

(2.46)

2.5 Segmentation

In this section we deal with the problem of image segmentation, which is one of the

most fundamental topics in image processing. In the segmentation process, pixels should

be grouped together to form coherent regions or objects. Formally, we can define the

segmentation of the image domain Ω into N non-overlapping regions as follows

Ω =

N
⋃

l=1

Ωl, Ωi ∪ Ωj = ∅ ∀i 6= j (2.47)

In the simplest case, we deal with N = 2 regions, which can be seen as the segmentation

into foreground and background, where the foreground, for example is an object and the

background anything else but the object. Even in the simplest case, the task is clearly

highly ambiguous and usually prior knowledge is incorporated. There exists a wide range

of possible approaches, which differ mainly by the image features that are used.

One straight forward technique is thresholding based on the image intensity values.

For the binary image segmentation task, we can segment an image f into background



2.5. Segmentation 25

(value 0) and foreground (value 1) as follows

s(x, y) =







0 if f(x, y) < t

1 if f(x, y) ≥ t
(2.48)

where s is the segmentation result and t the used threshold, which can be a fixed value, or

depend on the actual image. If the threshold is the same for all pixels in the image domain,

we call it global thresholding. In contrast, if the threshold depends on the pixel position

and is computed from a local neighborhood, we call it local or adaptive thresholding. The

extension for N > 2 segments is trivial by using N − 1 thresholds. These approaches can

be efficiently implemented and parallelized, but share the same problem with overlapping

intensity ranges of the objects that should be segmented.

Another segmentation technique we briefly introduce is a region-based one. In a

bottom-up approach - the region growing, we start from some initial pixels, and add

neighboring pixels, which fulfils a similarity criterion [2]. The criterion can be simply the

pixel intensity, but gradient information is often very useful, too. The top-down method

starts with the whole image as an initialization and recursively splits the regions until the

results are coherent.

A completely different approach to tackle the image segmentation problem is by stating

again a regularized optimization schemes. In the rest of this section we will concentrate

on solutions of the minimal partition problem that is given as

min
{Ω}Nl=1

1

2

N
∑

l=1

Per(Ωl) +
N
∑

l=1

∫

Ωl

ql(x) dx

s. t. Ω =

N
⋃

l=1

Ωl, Ωi ∩ Ωj = ∅ ∀i 6= j

(2.49)

In this formulation ql represents the unary potentials that indicate, how likely the pixel

x belongs to the segment l. In the regularization term, we penalize the perimeter of the

segment l.

This continuous formulation also has a discrete counterpart, namely the Pott’s

model [68]. However, the Pott’s model is known to be NP-hard [17] and therefore an

optimal solution is not tractable to compute.

The Pott’s model is further related to the piecewise constant Mumford-Shah problem.

The Mumford-Shah problem [60] is a well-known image segmentation tool and is given as
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follows

min
Γ,u

∫

Ω\Γ
|∇u|2 dx + λ

∫

Ω
(u− f)2 dx + µHn−1(Γ) (2.50)

where Γ denotes to the edge set, which defines the border between the segments {Ω}Nl=1,

Hn−1(Γ) is the n − 1 dimensional Hausdorff measure and counts the number of points

in Γ. This implies that the first term minimizes the length of the contours, the second

term controls the quality of the approximation of f by u, and the third term controls the

smoothness of u itself. The parameters λ and µ control the trade-off between the three

terms and create a scale space.

We can simplify the problem, if we assume that ul is locally constant with value cl.

This implies that the integral
∫

Ω\Γ |∇u|2 = 0 and the problem reduces to the piecewise

constant Mumford-Shah problem

min
Γ,{c}Nl=1

λ

N
∑

l=1

∫

Ω
(cl − f)2 dx + µHn−1(Γ) (2.51)

It is now trivial to observe that the problem in equation (2.49) is related to the problem

in equation (2.51) by setting ql(x) = (cl − f(x))2.

By now, we have presented the minimal partition problem and the relation to other

well-known optimization problems. In the following, we focus on a convex approximation

of the problem in equation (2.49) and the algorithmic realization.

For the convex relaxation, the approach by Zach et al. [88] is used, where the minimal

partition problem is rewritten as

min
{u}Nl=1

N
∑

l=1

∫

Ω
d|∇ul|+

N
∑

l=1

∫

Ω
ulql dx

s. t. ul(x) ≥ 0,
N
∑

l=1

ul(x) = 1

(2.52)

where ul : Ω→ [0, 1] is the labeling function and ql the weighting function for the segment l.

Further, the regularization term has been replaced by the TV, which is validated by the

coarea formula [39]

∫

Ω
d|∇u| =

∫ ∞

∞
Per({x : u(x) > γ} ,Ω) dγ (2.53)
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For a binary function u = IU , whereas IU is defined as follows

IU (x) =







1 if x ∈ U

0 else
(2.54)

the TV is equivalent to the perimeter of the set U ⊂ Ω.

The relaxed optimization scheme can again be solved by the primal-dual algorithm

[29] we have already presented. Therefore the problem in equation (2.52) is rewritten as

saddle-point problem as follows

min
u={ui}

N
l=1

max
p={pl}

N
l=1

N
∑

l=1

〈∇ul,pl〉+
N
∑

l=1

〈ul, ql〉+ IU (u)− IP (p) (2.55)

where we can identify G(u) = IU (u) and the convex set U is pointwise defined as

U =

{

{u}Nl=1



(ul)i,j ≥ 0,

N
∑

l=1

(ul)i,j = 1

}

(2.56)

and the proximal operator is an orthogonal projector onto the unit simplex defined by the

convex set U and can be computed by the method described in [59].

We can further identify the function F ∗(p) = IP (p) and the set P is defined as

P =

{

{pl}Nl=1



||pl||2,∞ ≤
1

2

}

(2.57)

and the proximal operator is again the pointwise projection onto the unit ball as in equation

(2.42)

2.6 Unary Potential Learning

In the previous section, we used weighting function qi for the segmentation, but left over

how to derive them. In this section, we describe some common methods to learn these

functions by inferring unknown information from known. This is covered by the well

established field of machine learning and pattern recognition. We will focus especially on

supervised learning and classification. In the field of supervised machine learning, we have

provided a set of N training examples D = {(xi, yi)}Ni=1 with xi ∈ X ⊆ R
n and in the

classification task yi ∈ Y = {1, . . . , C} ⊂ N, whereas in the regression task yi ∈ Y ⊆ R
m.

The goal of the supervised learning is to find a correct mapping f : X → Y for previously
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unseen elements x ∈ X .

Most algorithms adopt the ideas and tools from the probability theory. These methods

try to learn a probability distribution of the form p(y|x). If we assume an identical loss on

each wrong prediction, then the optimal mapping is given by arg maxy p(y|x) according to

the decision theory.

Using again the Bayes’ theorem p(y|x) = p(x|y)p(y) we can further distinguish between

two categories of methods. In the discriminative model, we learn the posterior probability

distribution p(y|x), whereas in the generative model, we learn the likelihood p(x|y) and

the prior probability distribution p(x).

In the following, we will cover three methods for supervised classification. For a more

detailed overview we refer to the machine learning books [9, 13, 50, 61].

2.6.1 Gaussian Mixture Models

If we consider the generative approach, we can try to model the likelihood p(x|y) with

well-known distributions. One common possibility is the normal or Gaussian distribution,

which is given by

N (x|µc,Σc) =
1

(2π)
k
2 |Σc|

1
2

e−
1
2
(x−µc)

TΣ−1
c (x−µc) (2.58)

For each class we can now fit a normal distribution by estimating the parameters µc

and Σc. The maximum likelihood estimator is simple given by

µc =
1

|Dc|
∑

x∈Dc

x (2.59)

Σc =
1

|Dc|
∑

x∈Dc

(x− µc)(x− µc)
T (2.60)

where Dc is the set of training vectors from class c. However, a normal distribution often

is not the most suitable choice. It is obvious, that any multimodal distribution is not well

covered by the normal distribution, but also if the real distribution is skew. Figure 2.3

illustrates the described problems.

A possible solution to these problems is to combine several weighted normal distribu-

tions in a Gaussian mixture model. This allows us to approximate almost any probability

density to arbitrary accuracy. A Gaussian mixture model with K components is defined
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as

p(x|Θ) =
K
∑

k=1

αkN (x|µk,Σk)

s. t.

K
∑

k=1

αk = 1 αk ≥ 0 ∀k
(2.61)

where the parameter vector Θ consists of the mixing components αk and the parameters

of the normal distributions, µk and Σk.

To estimate the parameters Θ we can again use a maximum likelihood approach. This

leads to the expectation-maximization (EM) algorithm by Dempster et al. [34]. The algo-

rithm that uses the log-likelihood as convergence criterion is summarized in algorithm 3,

whereas the term γ(znk) represents the posteriori probability of xn belonging to the com-

ponent k.

The illustrated algorithm has some weaknesses, namely the covariance matrices Σi can

get ill-conditioned or singular and it is not guaranteed that the algorithm converges in a

global optimal solution. The reasons for the first problem may be that the dimension of

the feature vectors is high, but we have only a few training samples, the variables of the

feature space are correlated, or we tried to fit too many components. To overcome this
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(a) A bimodal distribution
that should be fitted
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(b) The red line illustrates a
fitted normal distribution
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(c) A Gaussian mixture
model with three compo-
nents fits the data well

Figure 2.3: This example presents the usefulness of Gaussian mixture models to fit arbi-
trary probability distributions. The artificial bimodal distribution in figure a consists of a
Rayleigh distribution with σR = 1 and a normal distribution with µ = 4 and σN = 0.25.
In figure b we see that a normal distribution fits the real distribution badly, because it is
not able to cover the two modes and the skew of the first mode. In contrast, the Gaus-
sian mixture model with three components in figure c covers both properties of the real
distribution.
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Algorithm 3 EM-algorithm for Gaussian mixture models given N training samples

init Θ randomly
repeat

γ(znk)i+1 = αkN (xn|µk,Σk)∑K
j=1 αjN (x|µj ,Σj)

for k = 1 to K do

N i+1
k =

∑N
n=1 γ(znk)

µi+1
k = 1

Nk

∑N
n=1 γ(znk)xn

Σi+1
k = 1

Nk

∑N
n=1 γ(znk)(xn − µi+1

k )(xn − µi+1
k )T

αi+1
k = Nk

N

end for

until
∑N

n=1 ln
∑K

k=1 αkN (xn|µk,Σk) converges

problem, we can regularize matrices by adding a small positive number ǫ to the diagonal

of every covariance matrix.

2.6.2 Support Vector Machine

The support vector machine is a non-probabilistic binary classifier. The method was

invented by Cortes and Vapnik [31] as a linear classifier that maximizes the margin between

two classes in the n dimensional space. A good tutorial is the one by Fletcher [40] that

states also more details and derivations.

For the binary classification we define yi ∈ {−1, 1}. The goal now is to find a hy-

perplane that separates these two classes. A hyperplane is defined over a set of points x

satisfying wTx + b = 0. However, there are infinite possible hyperplanes and not all are

equally good as illustrated in figure 2.4.

An intuitive idea is to maximize the region between the two classes, called the margin.

We formulate this by two supporting hyperplanes

wTx + b = 1 (2.62)

wTx + b = −1 (2.63)

where the distance between these two hyperplanes is simply given by 2
||w|| . Now we can

turn the maximization of the margin into the following optimization problem:

min
w,b
||w||

s. t. yi(w
Txi + b)− 1 ≥ 0 ∀i

(2.64)
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Figure 2.4: The example shows two classes depicted as circles and squares and three
different hyperplanes. The red hyperplane is not separating the two classes at all, whereas
the blue and the green do separate them. However, the green hyperplane may be a better
choice, because it is a better generalization and maximizes the margin between the two
classes.

By substituting ||w|| with 1
2 ||w||2 without changing the solution and incorporating the

constraints using Lagrangian multipliers, we derive the following primal problem that can

be solved with any quadratic programming solver

min
w,b

max
λ≥0

LP ≡
1

2
||w||2 −

N
∑

i=1

λi(yi(w
Txi − b)− 1) (2.65)

If we take the derivative of LP with respect to w and b and plug the results into the

primal formulation, we obtain the dual problem as follows

∂LP

w
= w −

N
∑

i=1

λiyixi
!

= 0⇔ w =

N
∑

i=1

λiyixi (2.66)

∂LP

b
= −

N
∑

i=1

λiyi
!

= 0 (2.67)

LD ≡
1

2

N
∑

i=1

N
∑

j=1

λiλjyiyjx
T
i xj −

N
∑

i=1

N
∑

j=1

λiλjyiyjx
T
i xj +

N
∑

i=1

λiyib +
N
∑

i=1

λi (2.68)

=

N
∑

i=1

λi −
1

2

N
∑

i=1

N
∑

j=1

λiλjyiyjx
T
i xj (2.69)
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We can again write this result as a quadratic program

max
λ

LD

s. t. λi ≥ 0 ∀i,
N
∑

i=1

λiyi = 0
(2.70)

So far this formulation just allows a linear separation of two non-overlapping classes.

We can simply turn this classifier to a non-linear one with the Kernel-trick. If we take a

look at the dual formulation in equation (2.69), we observe that the formulation requires

only the dot product of the input vectors xi. The dot product xT
i xj can be replaced

by K(xi, xj) ≡ φ(xi)
Tφ(xj), where φ denotes a non-linear mapping into a higher feature

dimension.

However even in the high dimensional feature space the two classes may not be com-

pletely linearly separable. Therefore, for every training vector we introduce a slack variable

ξi that incorporates missclassifications. The optimization problem now can be written as

min
w,b,ξ

||w||+ C

N
∑

i=1

ξi

s. t. yi(x
Tw + b)− 1 + ξi ≥ 0, ξi ≥ 0 ∀i

(2.71)

where the parameter C defines the trade-off of the slack variable penalty and the size of

the soft-margin. Using the same steps as in the linearly separable case, we can derive the

primal and dual formulation

min
w,b,ξ

max
λ≥0,µ≥0

LP ≡
1

2
||w||2 + C

N
∑

i=1

ξi −
N
∑

i=1

λi(yi(w
Txi − b)− 1)−

N
∑

i=1

µiξi

s. t. λi, µi ≥ 0

(2.72)

max
λ

LD ≡
N
∑

i=1

λi −
1

2

N
∑

i=1

N
∑

j=1

λiλjyiyjx
T
i xj

s. t. C ≥ λi ≥ 0 ∀i,
N
∑

i=1

λiyi = 0

(2.73)

Note that in the dual formulation LD only the constraint has changed.

The last remaining issue is the multi-class classification. Crammer and Singer [32]
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proposed a method that solves the multi-class problem as a single optimization problem,

but the common approach is to combine several binary SVMs. An overview of possible

combinations of binary SVMs is given in [51] and [36].

2.6.3 Random Forests

The last model we take a look at are random forests. Breiman introduced the random

forests classifier [21] as a successor of his bagging idea [20]. The model is very popular now

in various computer vision applications, for example in pose recognition [80] and object

detection [46]. Recently, Criminisi and Shotton [33] published an excellent book dedicated

to random forests in the field of computer vision. Further, they gain excellent results

in machine learning comparison studies [25] and are inherently multi-class classifiers, in

contrast to SVMs.

The main building block is the decision tree that is a special graph, where all nodes,

except the leaf nodes, represent split functions (or test functions). These split functions

are binary decision functions and determine, if the feature vector is passed to the left or

to the right subtree. A feature vector therefore traverses the tree until it reaches a leaf

node. In the leaf nodes the class probabilities p(c|x) are stored which are derived from

the number of training samples, belonging to this leaf node. One example of a decision

tree is shown in figure 2.5.

Figure 2.5: A sample decision tree for two dimensional feature vectors and linear, axis-
aligned decision functions. Each split partitions the feature space into two non-overlapping
subspaces. In the leaf nodes the sample distribution for three different classes is depicted.

There exist many different types of decision trees, varying by the type of split function

and also differing by how the algorithm learns these functions. The most simple split
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function is the axis-aligned hyperplane which is created by thresholding a single component

of the feature vector x, e.g. x(1) < ti. But the split functions can also be generic linear

functions, e.g. wT · [xT 1]T , where w defines the separating hyperplane, or also any non-

linear mapping, e.g. [xT 1] ·W · [xT 1]T , where W is a matrix defining the separating

conic.

The split functions are learned in a greedy manner. Therefore, for each node the split

function is optimized independently of the parent and child nodes. For the optimization,

an energy function is needed that usually is dependent on the purpose of the decision tree.

For the classification task, the Gini index, as it is used in the Classification and Regression

Tree (CART) [19], or the information gain I(S), as it is implemented in the C4.5 [73],

can be utilized. If S is the set of training samples at node i, and Sr are the samples that

belong to the right child node and Sl vice versa, then the information gain is defined as

follows

I(S) = H(S)− |S
r|
|S| H(Sr)− |S

l|
|S| H(Sl) (2.74)

where H(·) is the sample entropy and the term H(S) can be omitted for the optimization,

because it stays the same, independent of the split.

In classic decision tree algorithms, the best parameters for each split function are found

in an exhaustive search over all possible hypotheses per node. This has one major draw-

back: efficiency. In contrast, the random forest approach generates ρ different hypotheses

and takes the best, based on the energy function. Further, as the name random forest

suggests, it consists of many decorrelated decision trees, combined to form a strong clas-

sifier. The decorrelation is achieved by training each tree on a randomly chosen subset

of input variables as well as a randomly chosen subset of training samples. Each tree

is therefore independently and identically distributed. This fact is used by Breiman [21]

in combination with the strong law of large numbers to proof that with increasing the

number of trees the random forest do not overfit.

The probability for class c given the feature vector x can then be computed for T

decision trees in the forest by averaging the single probabilities as

p(c|x) =
1

T

T
∑

i=1

pt(c|x) (2.75)

The key parameters of the random forest can be summarized as follow [33]
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• The maximum depth of the trees

• The number of decision trees in the forest

• The number ρ of hypotheses per split function

• The type of split function

• The energy function for the split function optimization

For more details on random forests, especially on the efficient implementation on the

GPU, we refer to the book written by Criminisi and Shotton [33].
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In the previous two chapters we introduced the fundamentals of this master thesis.

First, we presented solar activity features visible in Hα images, namely filaments and

flares, and in the second chapter important concepts of mathematical image processing

and machine learning were stated. This chapter builds up on that knowledge to develop

our method for the detection of filaments and flares in Hα image sequences.

3.1 Problem Statement

The aim of the proposed method is to solve the near realtime detection of filament erup-

tions and flares in a sequence of Hα images. The KSO creates up to 10 images per minute

depending on the weather and viewing conditions. At least one image per minute should

be processed by our method. The images are provided in an uncompressed image format,

that allows a dynamical range of the intensity values. Further, the images are rather huge

in size with 2048× 2048 pixels and 12 bits per pixel.

For the detection of filament eruptions and flares we need a segmentation of every

image for the classes filament, flare and background. This allows us a tracking of the

37
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features in the image sequence and furthermore the detection of flare occurrences and

filament eruptions. The segmentation results are also used to derive important properties

of the objects. For the categorization of the events, the length, the area and the intensity

values of the objects are needed.

The ground based observation of the solar disk causes some possible disturbances in

the images. One obvious problem can be caused by clouds. The parts of the solar disk

covered by a cloud are seen as darker regions. An example is shown in figure 3.1. Another

problem is the so called limb darkening, which refers to the decreasing of the intensity

from the solar center towards the limb. The atmosphere of the earth has also an influence

on the images. The solar disk is not always in the center of the images and also the radius

can vary slightly.

Figure 3.1: The Hα images on the left and in the middle show the effect of clouds that
can be seen as darker regions over the solar disk. The limb darkening, which describes the
intensity decreasing from the center to the limb, can be observed in the right image.

The problems described clearly have an impact on the image processing pipeline, but

the solar events are still observable. However, if the viewing conditions are really bad, it

could happen that the sun is not observable at all and so no images can be recorded. This

may lead to gaps in the image sequence and should also be addressed to by our method.

3.2 Overview

In the following, we give a short overview of our method. It consists of four main building

blocks like illustrated in figure 3.2.

Preprocessing In the first step, the preprocessing, we address the problems such as

the different intensity distributions caused by varying viewing conditions. For further
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Pre-Processing
Feature 

Selection

Multi-Label

Segmentation
Post-Processing

(a) Image Processing Pipeline

(b) Input Image (c) Final Filament Recognition

Figure 3.2: Overview of our presented method. The method is sequentially provided
with Hα images as shown in (b). In the first preprocessing steps the images get nor-
malized in terms of intensity and spatial displacement and further disturbances caused
by additive noise, clouds and limb darkening are removed. On the preprocessed images
we extract features and learn a model to discriminate especially between filaments, flares
and background. This model is then applied in the third step and used for a regularized
segmentation approach. In the final postprocessing steps, the solar activity objects are
identified and tracked over the image sequence. Additionally, we derive properties like
the length, the area and the intensity of the flares and filaments to categorize them. An
example segmentation of filaments produced by our method for the input image in (b) is
presented in (c).

steps it is also essential to have the images in the sequence aligned, therefore we apply a

simple registration technique. As a last preprocessing step, we apply a structural bandpass

filter. This filter suppresses additive noise in the images on a small scale, but also filters

large-scale intensity variations caused by clouds.
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Feature selection In the feature selection step, two questions arise. First, what are the

attributes of filaments and of flares - what discriminates them from the solar background?

The second question is then, how can we model this efficiently? To cope with the first

question, we compute a discriminative feature vector for every pixel. These vectors further

will be used in a machine learning model to assign class probabilities to each pixel.

Multi-Label Segmentation After we have learned a model offline from annotated

training images, the next step is to apply it to new, unseen images in realtime. The most

simple case would be that each pixel gets assigned to the class with the highest probability.

However, this would lead to a non-smooth, noisy segmentation. Therefore, we regularize

our problem in terms of a variational optimization problem, where we take the contour

length of the segmented regions into account.

Postprocessing The last step is the postprocessing, where first of all, every object gets

identified with an ID. In the sequence of images the ID of the flares and filaments should

stay the same, even if the sequence has gaps. Therefore, we apply a simple tracking

approach by propagating the ID through the image sequence. A single filament may be

divided into several parts. To address this problem, we apply a reconnection algorithm

that incorporates the filament shape. Finally, we derive properties from the filaments and

flares to categorize them. What is important is the length of the filaments, and the area

in pixels and the intensity values for flares.

In the following, we discuss the single steps and their impacts in more detail. Each

section is dedicated to a block of the workflow.

3.3 Preprocessing

The preprocessing has two goals, namely the image normalization and feature enhancing.

Across the different image sequences, but also within a single image sequence, the intensity

distribution of the images is shifted and dilated. This effect should be compensated with

the intensity normalization. Furthermore, the solar disk is not always in the center of the

image. We use a simple, yet powerful technique for the registration of the solar disk across

an image sequence. The last preprocessing step is the structural bandpass filter. As the

name indicates, the filter removes large-scale structures, caused for example by clouds and

limb darkening, but also additive noise on a small scale.
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3.3.1 Intensity Normalization

The first step of our method is the intensity normalization. The exposure time of the Hα

camera is depending on the viewing conditions. But the exposure time and the state of the

atmosphere have an impact on the intensity distribution of the images. The distribution

can be shifted and dilated as one can see in figure 3.3.
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(a) Intensity distribution for a normal
input image
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(b) Normalized intensity distribution
for a normal image
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(c) Intensity distribution for an input
image with heavy clouds
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(d) Normalized intensity distribution
for the cloudy image

Figure 3.3: The intensity distributions for two different images are shown on the left. The
top left distribution belongs to an image with good viewing conditions without clouds,
whereas the second distribution, illustrated on the bottom left, belongs to an image dis-
turbed by large clouds. This causes that the distribution being dilated and the second
mode being shifted. The right images present the intensity distribution of the same im-
ages that where normalized to a zero mean and a unit standard deviation. The intensity
interval is now nearly the same, as well as the location of the maximum of the second
mode.
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As our feature selection heavily relies on the intensity, we try to minimize this problem.

Therefore we normalize the image intensity to a zero mean and a unit standard deviation

as follows

µ =
1

|Ω|
∑

x∈Ω

f(x) (3.1)

σ =

√

1

|Ω| − 1

∑

x∈Ω

(f(x)− µ)2 (3.2)

fn(x) =
f(x)− µ

σ
(3.3)

where Ω is the image domain, µ the sample mean and σ the sample standard deviation

of the input image f , respectively. The normalized image fn is given by subtracting the

sample mean from the input image and dividing it through the sample standard deviation.

3.3.2 Spatial Registration

Based on the intensity normalized images, the center of the solar disk should stay the

same over the whole Hα image sequence. For this registration task, we use the method

of Lucas and Kanade [58] to compute a single translation vector u = (u1, u2)
T that shifts

the center of the second image to the center of the first image. If gr = |∇f1| refers to the

gradient magnitude of the reference image and gi = |∇fi| to the second image that should

be registered, then we obtain the translation vector u by the solution of the following

minimization problem

E(u) =
∑

x=(x1,x2)

(gi(x1 + u1, x2 + u2)− gr(x1, x2))
2 (3.4)

u = arg min
u=(u1,u2)T

E(u) (3.5)

We can linearize the problem, if we approximate the term gi(x + u) with the linear

terms of the Taylor expansion as follows

gi(x + u) = gi(x) + u1
∂gi

∂x1
(x) + u2

∂gi

∂x2
(x) + higher order terms (3.6)

≈ gi(x) + uT∇gi(x) (3.7)

If we plug the linearizion (3.7) into the optimization problem of equation (3.5) we
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obtain a linear problem

u = arg min
u

∑

x

(gi(x)− gr(x) + uT∇gi(x))2 (3.8)

We can further obtain a closed form solution as follows

∂E(u)

∂u

!
= 0⇔ (3.9)

2
∑

x

(gi(x)− gr(x) + uT∇gi(x))∇gi(x)
!

= 0⇔ (3.10)

∑

x

(gr(x)− gi(x))∇gi(x) =
∑

x

∇gi(x)(∇gi(x))Tu⇔ (3.11)

(

∑

x

∇gi(x)(∇gi(x))T

)−1
∑

x

(gr(x)− gi(x))∇gi(x) = u (3.12)

This solution is just a local approximation, because we use only the linear terms of

the Taylor expansion. The resulting translation vector can be improved, if we repeat the

calculation several times. This is depicted in algorithm 4.

Algorithm 4 Iterative Lucas-Kanade algorithm for image registration. gr refers to the
reference image, gi to the image for which the translation vector utotal should be computed.

Set utotal = 0

for k ← 1 . . .K do

u←
(
∑

x∇gi(x)(∇gi(x))T
)−1∑

x(gr(x)− gi(x))∇gi(x)
gi(x) = gi(x + u)
utotal ← utotal + u

end for

Further, the used Taylor approximation is only valid for small translations. Therefore

we use a multi-scale approach to calculate the displacement vector at several scales similar

to [15]. For the multi-scale analysis we use a Gaussian image pyramid with L levels. The

image at level L is the input image and has the highest resolution. To compute the image

at a lower level l − 1, we convolute the image at level l with a Gaussian filter and then

subsample it with a scaling factor s ∈ (0, 1). This implies, if the image on level l has a

resolution of m× n, the image on level l − 1 has a resolution of tm× tn.

With this method we also can compute large translation. The final algorithm for the

image registration is listed in algorithm 5.
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Algorithm 5 Multi-scale Lucas-Kanade algorithm for image registration. L are the used
levels of the Gaussian image pyramids, gr refers to the reference image, gi to the image
that should be registered by shifting it with the translation vector utotal.

Set utotal = 0

Compute Gaussian image pyramid Gr(x, y, l) for gr(x, y), L levels and scale factor s

Compute Gaussian image pyramid Gi(x, y, l) for gi(x, y), L levels and scale factor s

for l← 1 . . . L do

glr(x, y)← Gr(x, y, l)

gli(x, y)← Gi(x + u
(1)
total, y + u

(2)
total, l)

Compute translation vector u at scale l with algorithm 4
sup ← sL−l

utotal ← utotal + 1
sup

u

end for

3.3.3 Structural Bandpass Filter

As a last step in the preprocessing chain, additive noise and large-scale intensity variations,

caused by limb darkening and clouds, are removed by applying a structural bandpass filter.

The core of this particular filter is the TV-L1 model as described in chapter 2 and

repeated in equation (3.13)

min
u
||∇u||2,1 + λ||f − u||1. (3.13)

where f is the noisy observation, u the solution that minimizes the optimization problem,

and λ a free parameter that controls the trade-off between the data fidelity (right term)

and the total variation regularization (left term).

The parameter λ has some nice properties that were studied by Chan and Esedoglu

[30] and exploited in our structural bandpass filter. One property is the relation between

the parameter λ and the size of objects that are removed by the model. To illustrate this

relation, we present an example by [30].

Assume an image f(x) is given by the indicator function IDr(0)(x), where Dr(0) is a

convex set of points on a disk with center 0 and radius r. In this special case Chan and

Esedoglu proof that for λ ≥ 0 the solution of the optimization problem in equation (3.13)

is equivalent to the solution of the following problem

min
c∈[0,1]

2πrc + λπr2|1− c| (3.14)
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We can minimize the problem and obtain the set of solutions as follows



















{0} if 0 ≤ λ < 2
r

{

cIDr(0)(x)|c ∈ [0, 1]
}

if λ = 2
r

{

IDr(0)(x)
}

if λ ≥ 2
r

(3.15)

which already reveals some interesting properties. First, the solution of the TV-L1 model

is, as already mentioned, not unique. In this example the solution is unique, except for

λ = 2
r
, where it can have any contrast between 0 and 1. The second property relates the

size of the object with the parameter λ. The disk does not change until λ is equal to 2
r
,

then it suddenly merges with the background. This effect is demonstrated in figure 3.4.

We utilize this fact in our structural bandpass filter. First, small scaled noise is removed

from the image by using a bigger λ1. After that, we capture the large-scaled intensity

variations caused by clouds and limb darkening and therefore use a smaller λ2 < λ1. The

result of the structural bandpass filter is then given by the subtraction of the second image

v2 from the first image v1. The algorithm is also listed in algorithm 6.

Algorithm 6 Structural Bandpass Filter for an input image f

Choose λ1 > λ2 > 0
v1 ← min

u
||∇u||2,1 + λ1||f − u||1

v2 ← min
u
||∇u||2,1 + λ2||v1 − u||1

u← v1 − v2

First, we demonstrate the results of the structural bandpass filter on the artificial circle

image. We select the parameters λ1 and λ2 in terms so that only circles of a specific radius

remain. This is illustrated in figure 3.5. We use the demonstrated fact for the given Hα

images to remove noise and large-scale intensity variations. Figure 3.6 depicts the effect

of applying the structural bandpass filter to a cloudy Hα image.

3.4 Feature Selection

This section deals with the problem to assign each pixel of the Hα image to a feature vector

φ ∈ Rk that is as discriminative as possible. We will utilize machine learning algorithms

on a set of annotated feature vectors to learn a model. In this context annotated means

that we have a class associated to each feature vector.

Therefore, we have a classic supervised machine learning problem with a training set



46 Chapter 3. Method

(a) λ = 5 (b) λ = 6 (c) λ = 7

(d) λ = 8 (e) λ = 9 (f) λ = 10

(g) λ = 11 (h) λ = 12 (i) λ = 13

(j) Input image

Figure 3.4: An example for the scale space generated by the TV-L1 model. The object
size is directly related to the parameter λ. If the equivalence relation λ = 2

r
is fulfilled, the

solution is not unique. We see this effect observing the most left circles for λ ∈ {6, 12}. If
λ is greater than 2

r
the object suddenly merges with the background.
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(a) v1 with λ1 = 7 (b) v2 with λ2 = 10 (c) u = v1 − v2

(d) v1 with λ1 = 8 (e) v2 with λ2 = 9 (f) u = v1 − v2

(g) Input image

Figure 3.5: This figures demonstrates two example results of the structural bandpass filter
for the input image (g). The two left images (a) and (d) show that smaller structures are
removed by a smaller λ1. If we increase the parameter λ only larger shapes remain, see
image (b) and (e). Finally, the result of the structural bandpass is given by subtracting
the second image from the first one and only the circles in the middle remain. See image
(c) and (f).
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(a) f (b) v1

(c) v2 (d) u

Figure 3.6: The depicted images show the result of the structural bandpass filter applied to
a cloudy Hα image. Image (b) illustrates the denoised version v1 of f . Note the influences
of clouds on the image appearing as darker areas on the left and right. These large-scale
intensity effects are captured in v2, but finer structures like filaments are not captured by
this filter. The result u of the structural bandpass filter is shown in figure (d).

D = {(φi, yi)}Ni=1 , yi ∈ [1, C] ⊂ N. For the classes we will use obviously flare and filament,

but also sun spot, because sun spots have a darker appearance in Hα images than filaments

and the detection results will come handy in further postprocessing steps. The rest of the

image is summarized in the class background.
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3.4.1 Features

3.4.1.1 Intensity

The most intuitive choice for the classification task is the intensity associated with each

pixel. In the first chapter we have already mentioned that filaments are darker than

the background. In Hα images Sun spots appear as even darker, but smaller and round

objects, whereas flares are defined as drastic brighter objects.

Figure 3.7 illustrates the class probabilities p(y|φ) in a histogram. The data we use

for the feature selection and the learning of the model in the next step are derived from

labeled Hα images, where an expert annotated various different images by assigning the

pixels to the differing classes.
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Figure 3.7: Intensity distribution of the classes sun spot (red), filament (green), flare (blue)
and background (black). The training examples are derived from preprocessed Hα images
that were annotated by an expert. Especially the overlap between the class filament and
background is problematic, because it causes many false classifications.

As one can observe, the probability distributions of the four classes cannot be sepa-

rated. The overlaps between the classes sun spot - filament and background - flare are

no real problem, because most of the probability mass is good separable. In contrast,

the probability distribution overlap between the class filament and background causes seg-

mentation problems in the application. Therefore, we try to find a feature that especially

emphasizes filaments and discriminates them from the background.
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λ1 λ2 Shape

≫ 0 ≫ 0 a dark, blob-like structure

≪ 0 ≪ 0 a bright, blob-like structure

≫ 0 ≈ 0 a dark, elongated structure

≪ 0 ≈ 0 a bright, elongated structure

≈ 0 ≈ 0 noisy

Table 3.1: Shapes described by the eigenvalues of the Hessian matrix. The eigenvalues are
sorted as |λ1| ≥ |λ2|.

3.4.1.2 Filament Filter

How is a filament characterized despite by its intensity in an Hα image? In the introduc-

tion, we already presented that filaments are elongated structures. This implies that a

filter, which enhances elongated structures should provide additional discriminative infor-

mation. Frangi et al. [42] presented a vessel enhancement filter by exploiting the curvature

information of the Hessian matrix. We use the same ideas as Frangi et al. for our filament

filter.

To describe the local behavior of a function f(x), it is common to analyze the Taylor

expansion in the neighborhood of a point x0

f(x0 + dx) ≈ f(x0) + dxT∇f(x0) + dxT∇2f(x0) dx (3.16)

∇f(x) =

(

∂f
∂x1
∂f
∂x2

)

(3.17)

∇2f = ∇T∇f =





∂2f

∂x21

∂2f
∂x1∂x2

∂2f
∂x1∂x2

∂2f

∂x22



 (3.18)

where∇f(x) denotes to the gradient vector and∇2f(x) to the Hessian matrix of the image

f , respectively. As Frangi et al. [42] describe in their paper, the eigenvalues |λ1| ≥ |λ2|
and eigenvectors v1,v2 of the Hessian matrix describe an ellipse in the two dimensional

case and can be understood as a dual to the actual shape. Depending on the eigenvalues

we can distinguish between different shapes, which are summarized in table 3.1.

The response function R(x) for elongated filament structures can now be designed as

follows

R(x) =







λ1 − λ2 if λ1 > 0

0 else
(3.19)
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This function ensures that we only gain response for dark structures and further em-

phasizes elongated shapes in a linear manner. The remaining problem with this response

function is the scale. Depending on the length, or size of the filaments the response

function reaches its maximum at different scales. Therefore, we define our final response

function over the maximum in the scale space

R = max
σmin≤σ≤σmax

σR(xσ) (3.20)

where xσ is the pixel x at scale σ and σmin, σmax define the scale interval. The multiplica-

tion of the response function R(xσ) with σ ensures the properties of the scale space theory

[57]. The scale space itself for the image f(x) with x = (x1, x2)
T is given as follows

f(xσ) = G(x, σ) ∗ f(x) (3.21)

G(x, σ) =
1

2πσ2
e
−

x21+x22
2σ2 (3.22)

An example result of this filter is illustrated in figure 3.8. The true positive results for

the filaments are pretty good, but the filter also yields a lot of false positive response in

the background, namely near plagues and around sun spots.

Figure 3.8: Multi-scale response of the filament filter (right) for the given input image
(left). The response for filaments is pretty good, but we get also a lot of response in and
near plagues and around sun spots.
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3.4.1.3 Distance From Disk Center

Although the structural bandpass filter captures the limb darkening, the contrast of the

solar features decreases towards the limb and the recognition, especially of filaments, gets

worse closer to the limb. Therefore, we propose an additional feature, the Euclidean

distance from the center of the sun to the pixel to compensate this effect. Figure 3.9

visualizes the effect by plotting a random subset of the training data in a scatter plot.
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Figure 3.9: Scatter plot of a random subset of the training samples with the features
intensity on the x- and distance on the y-axis. Red represents the class sun spot, blue
filament, black background and green flare, respectively. One can observe that the classes
filament and background discriminate better near the solar center and due to the contrast
loss worse closer to the limb.

3.4.2 Model Learning

If we use the intensity and the response of the filament filter to build our feature vectors,

we have φ ∈ R
2. We can further incorporate information about the local neighborhood by

using the m×m intensity and filament filter values of the neighboring pixels. This would

lead to a feature vector φ ∈ R
m2

, if we only use the intensity values, and φ ∈ R
2·m2

, if we

utilize both features. As one can observe for example in figure 3.6(d), the contrast of the

filaments decreases from the center towards the limb. To incorporate this fact, it turned
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out that the distance from the center of the solar disk to the pixel location is another

beneficial feature. So this would lead to a feature vector φ ∈ R
2·m2+1.

The next step is to learn a classifier model. In chapter 2 we have shown three different

machine learning techniques, namely Gaussian mixture models, support vector machines

and random forests. We trained all three models with different feature combinations. For

the training set, we randomly selected 3000 feature vectors for the class sunspot, 20000

for the class filament, 6000 for the class flare and 36000 for the class background from

the annotated image data. For the evaluation, we created an independent test set of 1800

feature vectors for the class sunspot, 8000 for the class filament, 3000 for the class flare

and 25200 for the class background. The feature vectors were build by using an m ×m

patch with m ∈ {1, 3, 5, 7} once for the intensity values and the center-pixel distance and

once with the additional filament filter response.

For the Gaussian mixture models we tried different numbers of components and per-

formed three runs from random initializations, because the expectation-maximization al-

gorithm is not guaranteed to converge in a global optimal solution. The support vector

machine was used with a linear kernel and we selected the parameter C with cross vali-

dation on the training set. For the last machine learning method, the random forest, we

tested different numbers of trees. The results of our evaluation are summarized in table

3.2.

From the comparison, it is evident that the random forest outperforms the other meth-

ods on all feature combinations and overall is by 1.4886% better than the GMM and by

7.6341% better than the SVM. Further, already a few trees are sufficient for very good

results and the accuracy only slightly increases, if we add further trees to the model. How-

ever, if we just consider the intensity of the actual pixel and the center-pixel distance, we

observe that the results of the RF and the GMM are marginal. Further, a smaller feature

vector allows a faster classification and therefore we decided to use the GMM with just

those two features for our method. Figure 3.10 shows an example of applying the learned

model to an Hα image.

3.5 Multi-Label Segmentation

So far we have assigned each pixel x to a feature vector φ, and based on the feature

vectors computed a pixelwise probability p(·|φ(x)). However, the result is not smooth as

it is evident in figure 3.10 for example. Therefore, we regularize the result and utilize the
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(a) p(sun spot|φ(x)) (b) p(filament|φ(x))

(c) p(flare|φ(x)) (d) p(background|φ(x))

Figure 3.10: The images demonstrate the result of applying the learned Gaussian mixture
model to a preprocessed Hα image. The color white indicates a high probability and the
black one vice versa. Although the result looks reasonable good, it is not really smooth,
and we regularize it with an variational method in the next step.
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1× 1 3× 3 5× 5 7× 7
I I + F I I + F I I + F I I + F

GMM (1) 0.9607 0.9609 0.9427 0.9326 0.9292 0.9159 0.9175 0.9019

GMM (2) 0.9666 0.9658 0.9624 0.9614 0.9534 0.9445 0.9447 0.9357

GMM (3) 0.9680 0.9674 0.9636 0.9642 0.9559 0.9486 0.9492 0.9419

GMM (4) 0.9688 0.9673 0.9635 0.9658 0.9580 0.9531 0.9515 0.9487

GMM (5) 0.9691 0.9680 0.9639 0.9654 0.9599 0.9556 0.9548 0.9509

SVM 79.4789 79.5105 85.8132 88.9605 89.9500 90.4605 90.7605 90.5553

RF (15) 0.9726 0.9727 0.9764 0.9758 0.9813 0.9806 0.9834 0.9833

RF (30) 0.9731 0.9731 0.9775 0.9759 0.9815 0.9809 0.9836 0.9838

RF (45) 0.9736 0.9734 0.9783 0.9763 0.9816 0.9813 0.9837 0.9838

RF (60) 0.9737 0.9735 0.9781 0.9763 0.9814 0.9815 0.9834 0.9839

Table 3.2: Evaluation results of the machine learning approaches. GMM stands for Gaus-
sian mixture model and the integer in the brackets indicates the number of components
per class. The support vector machine is abbreviated by SVM and the random forest by
RF. The integer in the bracket beside RF shows the number of forests used in the model.
For the comparison, we use the accuracy defined as #correct classified

#all featuer vectors on a separate test set
with 38000 feature vectors. The header indicates the size of the pixel neighborhood and
the set of features, I stands for intensity and F stands for filament filter, to form with the
center-pixel distance the feature vectors.

variational approach we have presented in chapter 2

min
{u}Nl=1

N
∑

l=1

∫

Ω
d|∇u|+

N
∑

l=1

∫

Ω
ulql dx

s. t. ul(x) ≥ 0,

N
∑

l=1

ul(x) = 1

(3.23)

Thus, we have to define the weighting functions ql to fit the above formulation and

obtain the segmentation results ul. One solution is taking the negative logarithm of the

probabilities by setting ql(x) = − log p(classl|φ(x)). While this is a valid solution, it does

not incorporate any information of the previous images in the sequence. To obtain a

temporal smoothness, we apply a moving average filter on the probabilities.

Assume pt(·|φ(x)) is the probability of the input image at time step t, then we define

the simple moving average as the mean over the n last probabilities as

pSMA,t(·|φ(x)) =

∑n
i=1 pt−i+1(·|φ(x))

n
(3.24)

It is possible to avoid the summation of all summands in each iteration and increase
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the performance by using the following formulation

pSMA,t(·|φ(x)) = pSMA,t−1(·|φ(x))− pt−n(·|φ(x))

n
+

pt(·|φ(x))

n
(3.25)

The above equation weights the current probabilities equal to the probability values

obtained from images in the far past, but this is actually not desirable. This could delay

the recognition of sudden events like flares. Therefore, we use an exponential weighted

moving average. The successive computation is given by

pEMA,t(·|φ(x)) = wpt(·|φ(x)) + (1− w)pEMA,t−1(·|φ(x)) (3.26)

where w ∈ [0, 1] is an adjustable weighting factor and influences how fast older probabilities

are discounted. This filter has the additional advantage that only the last moving average

result is needed to compute the new one and is therefore more efficient in terms of memory

and speed.

For our segmentation model, we use for the weighting function

qi(x) = − log pEMA,t(classi|φ(x)). The segmentation results for the probabili-

ties shown in figure 3.10 are illustrated in figure 3.11.

3.6 Postprocessing

The final step of the method is the postprocessing that contains three different goals. The

first one is the identification of filaments and flares. We have given four binary images

from the segmentation and want to assign a unique ID to the single filaments and flares.

In addition, the ID should stay the same over the image sequence for the very same object.

Therefore we apply a simple tracking scheme. The second goal is the refinement of the

results, especially for the filaments. This includes the connection of interrupted filament

components and flare ribbons, but also the removal of too small recognitions. The last

goal is the derivation of properties from the identified objects to categorize them.

3.6.1 General

The identification and tracking task can be solved equally for filaments and flares. The

first task is well-known as connected-component labeling problem and can be efficiently

solved. For the second task, the tracking of the objects in the Hα image sequence, we

present a simple propagation technique.
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(a) sun spot (b) filament

(c) flare (d) background

Figure 3.11: The segmentation result for the probabilities of figure 3.10 and λ = 1.
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1 1 1 0 0 1 0 1

1 1 1 0 0 1 0 1

0 1 0 0 0 1 0 1

1 1 1 0 0 0 0 1

1 1 1 0 1 0 0 1

0 0 0 0 1 1 0 1

0 0 0 1 1 1 0 1

(a) Binary image s

1 1 1 0 0 2 0 3

1 1 1 0 0 2 0 3

0 1 0 0 0 2 0 3

1 1 1 0 0 0 0 3

1 1 1 0 4 0 0 3

0 0 0 0 4 4 0 3

0 0 0 4 4 4 0 3

(b) Connected component label-
ing result

Table 3.3: The left table illustrates a sample binary image s with four blobs, whereas the
connected components are labeled in the right table.

3.6.1.1 Connected Component Labeling

From the segmentation we obtain four binary images si(x)→ {0, 1}. The next step is to

identify 8-connected pixels that form a group and are separated through zeros from other

groups and assign an ID to them. An example is illustrated in table 3.3. In the following,

we will use the terms group, part of a filament, blob and component interchangeable.

The problem can efficiently be solved with a two-pass algorithm as presented for ex-

ample in [78]. In a first pass, temporary labels get assigned and the label equivalences

get stored in a union-find data structure. We have a label equivalence, if two temporary

labels are neighbors. In the second pass, the temporary labels get replaced by the actual

labels that are given by the root of the equivalence class. The union-find data structure

is a collection of disjoint sets and has, as its name implies, two important functions. The

union function combines two sets, for instance, union({1, 3, 5} , {2}) = {1, 2, 3, 5}. The

find function returns the set that contains a given number. We can implement the data

structure efficiently with trees. The final algorithm is listed in algorithm 7

3.6.1.2 Tracking

The connected component labeling ensures that every filament and flare part has a unique

ID per image. Nevertheless, the ID is not guaranteed to stay the same through the image

sequence. For this tracking purpose we propagate the ID of previous images.

Assume that lt(x) is the current component labeled segmentation and {lt−k(x)}nk=1

the set of n previous component labeled segmentation results. Then we change the ID of

a current component it to the ID j, where j is given by the components of the previous
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Algorithm 7 Connected components labeling for a binary input image s ∈ N
m×n. The

result is stored in the image l ∈ N
m×n.

initialize union-find data structure e

temporaryLabel← 2
{First pass}
for x1 ← 1 . . . n do

for x2 ← 1 . . .m do

if s(x1, x2) 6= 0 then

neighbors ← set of 8-connected neighbors
if max(neighbors) = 0 then

l(x1, x2)← temporaryLabel

addSet(e, {temporaryLabel})
temporaryLabel← temporaryLabel + 1

else

label← min(neighbors)
l(x1, x2)← label

for n in neighbors do

union(e, find(n), find(label))
end for

end if

end if

end for

end for

{Second pass}
for x1 ← 1 . . . n do

for x2 ← 1 . . .m do

if s(x1, x2) 6= 0 then

l(x1, x2)← min(find(l(x1, x2)))
end if

end for

end for

images that have the most overlap with the component it.

This can be implemented in a pixelwise fashion and a simple map data structure. For

a given component of the current image and ID it, we iterate all overlapping pixels x of

the set {lt−k(x)}nk=1. If lt−k(x) 6= 0 we increment the counter for the ID lt−k(x) in the

map. Finally we assign the ID with the highest counter.

3.6.2 Filament

The detection of filaments is more difficult due to the variability of their appearances. The

elongated structure can have almost arbitrary shape and can be interrupted. In addition,
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the same pattern we have trained our model for the segmentation appear around sun

spots, near flares and in active regions. In this mentioned cases, the detection should be

suppressed, but also if the length of a filament does not reach a certain size of interest.

For the first problem, the false detections near flares and sun spots, we apply a simple

yet sufficient solution. We have the segmentation results of the class flare sflare and sun

spot ssunspot and set all pixels in the segmentation result of the filament sfilament to 0,

if they are near a certain distance td to the above mentioned objects. This successfully

suppresses the detection results in these regions.

3.6.2.1 Interrupted Filaments

The reconnection of an interrupted filament is more challenging. Before presenting our

approach for the filament reconnection, we introduce some definitions. Assume we have

given the component labeling result l(x) for the filaments. It is possible that this result

contains two parts with different IDs for a single filament. This happens, if the detection

was not successful due to the appearance in the Hα image. If we assign each part to the

same ID, we have reconnected them.

To reconnect two parts, we need a measure that defines when two parts belong together.

Our method relies on the distance of two parts. If we consider a part as a set of Cartesian

coordinates x, then the distance between two parts A,B is given by the set distance

dist(A,B) = inf
a∈A,b∈B

dist(a, b) (3.27)

where the distance between two points a, b is given by the Euclidean distance. We can

implement the set distance in a way that we can also derive the points a, b, which minimizes

the distance.

A first approach is to reconnect two parts if the distance between them is under a

certain fixed threshold. However, this approach does not incorporate any information of

the filament structure, see figure 3.12 for example. Therefore, we present a technique

based on the principal directions of the single filament parts.

As it is known from the principal component analysis (PCA) [66], the eigenvector v

associated with the largest eigenvalue λ of the covariance matrix Σ points in the direction

of the greatest variance and λ indicates the amount of variance. If a part consists of n

pixels at the locations {xi}ni=1, then the principal direction is computed as follows
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(a) Two parts of one filament (b) Three parts of three different filaments

Figure 3.12: The images show different labeled filament parts with their principal direc-
tions depicted as red line. The image on the right illustrates the segmentation result of
one interrupted filament, but the angle between the principal directions is nearly zero. In
contrast, the parts visualized in the right image belong to different filaments and also the
corresponding principal directions diverge.

Σ =
1

n

n
∑

i=1

(xi − µ)(xi − µ)T =

(

σ1 σ2

σ2 σ3

)

(3.28)

λ =
tr(Σ)

2
+

√

tr(Σ)2

4
− det(Σ); (3.29)

v =







(λ− σ3, σ2)
T if σ2 6= 0

(1, 0)T else
(3.30)

where µ is the sample mean. Using the geometric definition of the dot product vT
1 v2 =

‖v1‖ ‖v2‖ cosφ, we can define an adaptive distance that considers the angle between the

principal directions and makes the filament part reconnection adaptive to their structures.

The method connects two parts with principal directions v1 and v2, if the distance between
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the two parts is under a certain adaptive threshold tad. The threshold itself is given by

distadap = 7 · log(λ1) cosφ (3.31)

tad =



















distmin if distadap ≤ distmin

distadap if distmin < distadap < distmax

distmax if distmax ≤ distadap

(3.32)

So far we assign the same ID to two reconnected parts, but for the final step, the

computation of the filament length, it is beneficial, if the two parts are connected via a

line. Therefore, we utilize the Bresenham algorithm [22] for line drawing as depicted in

algorithm 8 to set all pixels on the shortest line between the two parts to the ID of the

filament.

Algorithm 8 Bresenham algorithm for rasterized line drawing from (x1, y1) to (x2, y2)
on the image l(x) [22].

diff x ← |x2 − x1|
diff y ← −|y2 − y1|

stepx ←
{

1 if x1 < x2

−1 else

stepy ←
{

1 if y1 < y2

−1 else
error ← diff x + diff y

l(x1, y1) = ID

while x1 6= x2 ∨ y1 6= y2 do

if 2 · error > diff y then

error ← error + diff y

x1 ← x1 + stepx
end if

if 2 · error < diff x then

error ← error + diff x

y1 ← y1 + stepy
end if

l(x1, y1) = ID

end while

3.6.2.2 Property Derivation

Finally we need to derive some properties from the filaments’ detections. The most inter-

esting characteristic of filaments for solar physicists is the length. From the segmentation
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result, as a set of pixels, the derivation of the length is not trivial. Therefore, we first

reduce this set to a tree structure by applying a thinning algorithm.

We utilize the pixelwise thinning algorithm by Guo and Hall [48], which is easy to

parallelize. The algorithm first divides the image into two distinct subfields in a chessboard

manner. On each subfield a pixel is deleted, if and only, if three conditions are fulfilled and

after each iteration the subfields alternate. The first condition g1 preserves the connectivity

of the skeleton. Condition g2 enforces that only boundary pixels are deleted and finally

condition g3 makes sure that no endpoints are deleted. The algorithm is summarized in

algorithm 9.

Algorithm 9 Thinning algorithm for a binary image l(p) ∈ Z
m×n by [48].

Define the neighborhood of a pixel p as
[

x4 x3 x2
x5 p x1
x6 x7 x8

]

state← 0
switch← 0
repeat

for p1 ← 1 . . .m do

for p2 ← 1 . . .m do

p = (p1, p2)
T

g1 ≡
∑4

i=1

{

1 if ¬l(x2i−1) ∧ (l(x2i) ∨ l(x2i+1))

0 else

g2 ≡ min
(

∑4
i=1 l(x2i−1) ∨ l(x2i),

∑4
i=1 l(x2i) ∨ l(x2i+1)

)

∈ {2, 3}
g3,1 ≡ (l(x2) ∨ l(x3) ∨ ¬l(x8)) ∧ l(x1) = 0
g3,2 ≡ (l(x6) ∨ l(x7) ∨ ¬l(x4)) ∧ l(x5) = 0
pixelstate← (p1%2 + p2 + state)%2
if pixelstate = state = switch ∧ g1 ∧ g2 ∧ g3,pixelstate+1 then

l(p)← 0
end if

end for

end for

state← (state + 1)%2
if state = 0 then

switch← (switch + 1)%2
end if

until no pixel was deleted from M

An example of the thinning result is illustrated in figure 3.13. The resulting skeleton

can be viewed as a graph, more specific as a tree. From this structure, we can derive the

length of the filament, but the problem of finding the longest path in a general graph is

known to be NP-complete. However, on a tree we can utilize a slightly modified Floyd-

Warshall algorithm [41], which was originally designed for shortest path computation,



64 Chapter 3. Method

to efficiently compute the longest path. To apply the algorithm, we build an adjacency

matrix A to represent the tree, where each edge gets assigned the weight −1 if two pixels

are 8-connected. On this matrix, we can apply the shortest path algorithm as listed in

algorithm 10. The negative result is a good approximation of the filament length.

(a) The colored filament segmentation are
the input for the thinning algorithm.

(b) The resulting tree structures.

Figure 3.13: On the left side, there is a trimmed Hα image with filament detections
highlighted as colored blobs. The image on the right side shows the thinning results. The
colored blobs are reduced to trees that can be used for length computation.

Algorithm 10 Floyd-Warshall [41] algorithm for shortest path. The input A ∈ Z
m×m is

the adjacency matrix of the tree.

for k ← 1 . . .m do

for i← 1 . . .m do

for j ← 1 . . .m do

if A(i, k) + A(k, j) < dist(i, j) then

A(i, j)← A(i, k) + A(k, j)
end if

end for

end for

end for

shortestPath← min(A)
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3.6.3 Flare

The postprocessing for the flare detections is less comprehensive. The only thing we

perform is the grouping of flare detections in terms of assigning the same ID. In contrast

to the filament detections, the grouping of single flare parts is not performed because

they are interrupted, but rather because a single flare can occur in two or more ribbons.

Therefore, we group flare detections that are within a certain distance td.

3.6.3.1 Property Derivation

The derivation of the flare properties also is simpler than for the filaments. The first

property is the flare area and simply is given by the number of segmented pixels with

the same ID. For the categorization, some intensity values relative to the background are

needed. Therefore, we compute the mean, standard deviation, maximum and minimum

of the pixel intensities within the segmented regions.
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In this chapter we present details on the concrete implementation of our method. The

first section is devoted to the FITS format as the provided images have this image format,

which is very common in the astronomic field. In section 4.2, we present the modified tool

we used to gather the annotated data for the feature selection and the model learning.

The last section is dedicated to the fast implementation of the algorithms on a graphic

processing unit.

4.1 FITS Format

The Flexible Image Transport System (FITS) is the quasi standard for image files in the

field of astronomy, and the input files to our method are of this format, too. It originally

was defined in 1981 [86] and it’s current version is 3.0 [67]. The file format allows the

simultaneous storage of image metadata in ASCII tables along with the raw image data

in 64 bit precision, whereas the image can be two, or three dimensional.

There also exists an official and high-level I/O library, called CFITSIO∗ that encap-

sulates the access to the image format. The library has the advantage that it is heavily

∗http://heasarc.gsfc.nasa.gov/fitsio/, last checked 2013-04-02
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tested and under continuous maintenance by William D. Pence.

We use the above mentioned library in our implementation to read the imaged data

from the input files. All functions and data types are defined in the fitsio.h header

file, which we have to include. The structure fitsfile stores all the relevant parameters

that defines the format of a particular FITS file. With the function fits open file, the

file can be opened and with fits get img param, the most important parameters, like

the image dimensions and bits per pixel, are retrieved. Finally, the function fits read pix

is used to read the image content row by row. A complete function written in C++ is

presented in listing 4.1.

4.2 Image Annotation

For feature selection and model learning as described in section 3.4, we need annotated

data. In this special case we need the pixelwise annotation of Hα images, therefore each

pixel of some training images should be associated with one of the four mentioned classes.

To create the annotated data, we modified the Image annotation tool † by Alexander

Kläser in several places. The tool itself allows the pixelwise annotation of images for an

arbitrary number of classes. For each class, it stores an associated image file containing

the annotation.

The first modification is related to the image I/O. The original program is only able to

read from JPEG and PNG files, but not from FITS files. Therefore, we included the FITS

input as described in the previous section. Another modification concerns the possible

classes, which we limited to the classes sun spot, filament, flare and filament.

To generate training data for especially difficult cases, we implemented the function-

ality to segment the image with our proposed method. This segmentation result can then

be used as an annotation input and therefore provides a fast way to generate new training

data.

A screenshot of the tool is depicted in figure 4.1.

4.3 GPU Implementation

Most of the iterative algorithms presented in chapter 3 are computationally expensive.

However, they can be parallelized easily and therefore are able to utilize the computational

power of modern graphic processing units (GPU).

†http://lear.inrialpes.fr/people/klaeser/software_image_annotation, last checked 2013-04-02

http://lear.inrialpes.fr/people/klaeser/software_image_annotation
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1 #include "fitsio.h"

2

3 double* readfits(std:: string& file) {

4 fitsfile* fptr;

5 int bitpix , naxis , status = 0;

6 long dimensions [2] = { 1, 1 };

7 long fpixel [2] = { 1, 1 };

8 double* imgData;

9

10 if (! fits_open_file (&fptr , file.c_str (), READONLY , &status)) {

11 if (! fits_get_img_param(fptr , 2, &bitpix , &dimensions , naxes , &

status)) {

12 imgData = new double[dimensions [0] * dimensions [1]];

13 double* pixels = new double[dimensions [0]];

14

15 for (fpixel [1] = dimensions [1]; fpixel [1] >= 1; fpixel [1]--) {

16 if (fits_read_pix(fptr , TDOUBLE , fpixel , dimensions [0],

NULL , pixels , NULL , &status))

17 break;

18

19 for (int ii = 0; ii < dimensions [0]; ii++)

20 imgData [( dimensions [1] - fpixel [1]) * fits ->width + ii]

= pixels[ii];

21 }

22

23 delete [] pixels;

24 fits_close_file(fptr , &status);

25 }

26 fits_close_file(fptr , &status);

27 }

28

29 if (status) {

30 fits_report_error(stderr , status);

31 delete [] imgData;

32 return NULL;

33 }

34

35 return imgData;

36 }

Listing 4.1: Function to read the image data from a FITS file

If we take a more detailed look on the primal-dual algorithm for the TV-L1 model for

example, we observe that in principal the algorithm only involves the pointwise proximal

operators (see algorithm 2), whereas the input to these operators are the image derivatives,

where we use finite differences, and the dual variable. We observe similar characteristics

for the image registration (see algorithm 5), the computation of the probabilities, the

segmentation, the ID propagation and the thinning of the filament blobs (see algorithm 9).

The GPUs are designed for realtime, high-definition 3D graphics. This involves the
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Figure 4.1: The modified image annotation tool showing an annotated filament.

highly-parallel computation of data, and therefore, more transistors on a GPU are devoted

to data processing rather than data caching and flow control in contrast to CPUs. GPUs

follow the principle of single instruction on multiple data (SIMD), whereas CPUs perform

single instructions on single data (SISD). Especially this makes the GPU so attractive to

algorithms as mentioned above, where we can apply the same set of instructions to every

pixel of an image in parallel.

4.4 Compute Unified Device Architecture

As the computational power of GPUs is not only useful for 3D rendering, NVIDIA in-

troduced the Compute Unified Device Architecture (CUDA)‡ in 2006, a general-purpose

parallel-computing platform and programming model. CUDA makes it possible to use a

high-level programming language, an extension to C, to develop scientific and industrial

application utilizing the advantages of modern GPUs.

It should be noted that there also exists an open standard for general purpose parallel

computing, namely OpenCL§. This standard uniforms the programming environment for

multi-core CPUs, GPUs and other parallel processors. However, all the parallelizable

algorithms were implemented using the CUDA framework and therefore we introduce to

‡http://www.nvidia.com/object/cuda_home_new.html, last checked 2013-04-04
§http://www.khronos.org/opencl/, last checked 2013-04-04

http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/
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the most important CUDA concepts needed for the implementation.

4.4.1 Programming with CUDA

The following is an introduction into the basic concepts of CUDA programming. As this

cannot be seen as a complete coverage of the topic, we refer the interested reader to

[65, 76].

The core of the language extension are the so called kernels. These are special functions,

indicated by the global keyword, that are executed N times in parallel by N different

threads. Each thread executing a kernel has a unique thread ID and this ID can be used

for addressing in arrays. For example, if you want to add two vectors with N elements,

you can simply use N threads and each thread is summing one component of the vector

identified by the thread ID.

Threads are further grouped into blocks. A block allows a limited number of threads

to run in parallel, whereas the actual number is limited by the hardware. Similar to the

thread ID, there also exists a block ID and the dimension of the block that defines the

number of threads running in a given block. Turning back to our addition example: If

the vectors are really large and more threads are needed than fit into one block, we have

to use more blocks. Additionally, the addressing of the component in the kernel function

changes to blockId · blockDim + threadId.

One performance-critical consideration is the used memory. CUDA threads have access

to multiple memory spaces that differ in access speed and scope.

Local Memory Each thread has its own private memory and this memory is accessible

with the lowest latency.

Shared Memory This type of memory is shared between the threads of a block and has

the same lifetime. The shared memory buffer physically resides on the GPU and

therefore is faster than the global memory.

Global Memory The global memory can be accessed from all threads, independent of

the block. However, the global memory typically is implemented in the DRAM and

therefore slower to access within a range of one or two magnitudes.

Constant Memory The constant memory is similar to the global one, but as the name

suggests, it is a read-only memory. It is cached on the chip and therefore faster to

access.



72 Chapter 4. Implementation

Texture Memory The texture memory is another read-only memory that has some

additional properties. It is especially faster, if there exists a spatial locality in

the memory access pattern. Further, it provides bilinear interpolation and border

handling.

The CPU can communicate with the GPU via constant, global and texture memory.

However, the memory transfer between the CPU and GPU is costly and should be avoided

to gain optimal performance.
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In this chapter we will present an evaluation of the proposed method for the detection

of flares and filaments in Hα image sequences. As there exist no public available datasets,

or benchmarks, we decided to compare the results of our method with official observations

from the KSO and the National Oceanic and Atmospheric Administration∗ (NOAA).

Additionally for the evaluation of the filament segmentation, we created a dataset of 29

images that were annotated pixelwise by an expert.

5.1 Setting

All the experiments were conducted on a single PC with an Intel Core i7 CPU with a

clock speed of 3.2 GHz and 11.7 GB RAM. The system was equipped with a modern

CUDA enabled GPU, namely the NVIDIA GeForce GTX 680 with 4069 MB memory. As

operating system a recent 64-bit Linux distribution was used and CUDA was installed in

version 4.2.

As already mentioned, all the pictures have a pixel resolution of 2048 × 2048 pixels

and a radiometric resolution of 12bit per pixel. It should be noted that a reduction of the

∗http://www.swpc.noaa.gov/ftpmenu/indices/events.html
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pixel resolution was not conducted, because it may deteriorate the recognition especially

of small flares and narrow filaments. However, it could lead to a significant speed up.

In the single steps of our proposed method we use several parameters. In the first

step, the preprocessing, the structural bandpass filter relies on two parameters, λ1 and λ2,

that are related to the structure size. To remove large-scale variations, we use λ1 = 0.9

and to suppress small scaled noise we set λ2 = 0.1. In the postprocessing, we have first

of all the number of images for the tracking as one parameter. Instead of using a fixed

number of images, we use all images from the last 20 minutes. This avoids wrong tracking

results caused by the rotation of the sun, if the image sequence has gaps. Especially for

the filament postprocessing, we remove responses near sun spots and flares. In both cases

we remove them within a 30 pixel radius of the sun spot and flare borders. The grouping

of the filament parts involves an adaptive threshold, where we use distmin = 5 pixel and

distmin = 60 pixel. The last parameter is the maximal distance for the flare grouping,

where we use td = 150 pixel.

All the stated parameters were determined through numerous experiments.

5.2 Measures

To evaluate the obtained results, we will utilize well-known measures from information

retrieval and classification tasks. Independent of the task, e.g. multi-label segmentation

and event recognition, a single binary result can be correct or false. Therefore, we introduce

the terms true positive (tp) and false positive (fp) that indicate that a positive result is

correct, or false, respectively. Similarly we have the term true negative (tn) and false

negative (fn).

The first accuracy-measurement is especially useful for segmentation tasks, as it mea-

sures the overlap between the ground truth segmentation and the resulting segmentation

by using the intersection over the union (IoU) ratio. This is equivalent to the following

definition of the accuracy

IoU =
tp

tp + fp + fn
(5.1)

where the IoU is at maximum 1, if there were no false negatives and false positives and

at minimum 0, if no true positives were classified.

To separately evaluate the number of events or pixels that were correctly classified

compared to the false positives and false negatives, we introduce the precision measure.
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Similarly we can gain information about the number of correctly classified samples in

contrast to the missed values with the recall measure. Both are defined as follows

precision =
tp

tp + fp
(5.2)

recall =
tp

tp + fn
(5.3)

where both measures can take values in the closed interval [0, 1].

Finally, there also exists a score that combines the measures described above. The

F -score is the harmonic mean of the precision and the recall and is computed as follows

F = 2 · precision · recall
precision + recall

(5.4)

where the F -score can also take values in the closed interval [0, 1] only.

5.3 Flares

For the evaluation of the flare detection, we tested our method on archive images of two

months. We then compared the obtained results to the official data of the NOAA and

the visual inspection results of the KSO. A flare is correctly detected, if the start and end

time matches up to twelve minutes and the position differs not more than ten degrees.

Further, it should have roughly the same size, and therefore we utilize the categorization

as listed in table 1.1.

As our method delivers the position in image coordinates and the area in number of

pixels, we have to convert it to sun coordinates and 10−6 of sun hemispheres, respectively.

For this purpose, we make use of an already existing script of the KSO.

As sample months, we took the data from July 2012 and August 2012. In these two

months, the sun was rather active in terms of flare occurrences. Further, we did no

selection of the images based on their quality as it will be done in the realtime application

on the observatory. Finally, we did not use every image per day, but only images within

a 30 second period.

First, we considered all flares that have a category of N , or higher. These are the flares

that are relevant for space weather and can have an impact on the Earth’s infrastructure

and near earth objects. Table 5.1 summarizes the results for the two selected months.

Of 25 occurred flares, we detected 22 correctly and had 1 false positive. This yields a

precision of 0.95652, a recall of 0.88000 and an F -score of 0.91667.
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date true positives false positives false negatives

2012-07-02 1 0 0

2012-07-03 3 0 0

2012-07-04 2 0 0

2012-07-05 2 0 0

2012-07-06 3 0 0

2012-07-08 0 0 2

2012-07-09 2 0 0

2012-07-10 2 0 0

2012-07-11 0 0 1

2012-07-14 1 0 0

2012-07-29 1 0 0

2012-07-30 1 0 0

2012-08-04 0 1 0

2012-08-09 1 0 0

2012-08-11 1 0 0

2012-08-13 1 0 0

2012-08-15 1 0 0

total 22 1 3

Table 5.1: Evaluation of the flare detection in Hα image sequences ig-

noring sub-flares. The table presents only days, where a flare with im-

portance class 1 or higher occurred.

The one false positive can be explained by the very bad viewing conditions. The flare

was correctly detected, but due to the clouds the flare appeared brighter and larger as it

really was. In contrast, the false negative shares a similar location close to the limb. The

flares were correctly detected, but the size was underestimated and therefore led to a false

categorization.

If we also consider flares in the sub-flare category, the results get worse. First, the

problems mentioned get even more difficult for smaller flares that additionally have only

a small life span. Further, most of the false positives can be explained by gaps of a few

minutes in the image data. The results are summarized in table 5.2. Using these results

in our previously stated measures, we obtain a precision of 0.82667, a recall of 0.83221

and an F -score of 0.82943.
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date true positives false positives false negatives

2012-07-01 8 1 6

2012-07-02 5 2 3

2012-07-03 7 0 3

2012-07-04 4 1 1

2012-07-05 2 0 3

2012-07-06 4 0 1

2012-07-07 5 0 0

2012-07-08 5 0 0

2012-07-09 6 0 1

2012-07-10 4 2 0

2012-07-11 2 0 0

2012-07-12 0 0 0

2012-07-13 no data

2012-07-14 7 0 0

2012-07-15 0 0 0

2012-07-16 1 0 0

2012-07-17 0 0 0

2012-07-18 0 0 0

2012-07-19 1 0 0

2012-07-20 0 0 0

2012-07-21 no data

2012-07-22 0 0 0

2012-07-23 0 0 0

2012-07-24 0 0 0

2012-07-25 0 0 0

2012-07-26 0 0 0

2012-07-27 5 0 0

2012-07-28 1 1 0

2012-07-29 3 0 1

2012-07-30 1 1 0

2012-07-31 8 0 1

2012-08-01 4 1 1

2012-08-02 1 0 0

2012-08-03 2 0 0

2012-08-04 0 2 0

2012-08-05 0 0 0

2012-08-06 0 0 1

2012-08-07 5 0 0

2012-08-08 2 2 1

2012-08-09 4 1 0
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date true positives false positives false negatives

2012-08-10 2 0 0

2012-08-11 1 0 0

2012-08-12 1 1 0

2012-08-13 1 1 0

2012-08-14 1 1 0

2012-08-15 3 0 0

2012-08-16 0 0 0

2012-08-17 0 0 0

2012-08-18 8 0 2

2012-08-19 4 0 0

2012-08-20 1 0 0

2012-08-21 0 1 0

2012-08-22 0 0 0

2012-08-23 0 0 0

2012-08-24 1 1 0

2012-08-25 0 0 0

2012-08-26 no data

2012-08-27 0 0 0

2012-08-28 0 0 0

2012-08-29 0 4 0

2012-08-30 4 3 0

total 124 26 25

Table 5.2: Evaluation of the flare detection in Hα image sequences. The

table summarizes the number of true positives, false positives and false

negatives per day, where we consider the size, time of occurrence and

position of the flares. For the days 2012-07-13, 2012-07-21 and 2012-08-

26 no data was available.

5.4 Filaments

5.4.1 Segmentation Accuracy

We detect a filament eruption, which means the disappearance of a filament structure

from the observable Hα image, by tracking all visible filaments. For this evaluation we say

that a filament is erupted, if it could not be tracked in the image sequence for 15 minutes.

This implies that a good segmentation of the filaments is crucial.

Therefore, we first evaluate the pixelwise segmentation results of our method. For this

purpose, an expert has annotated the filaments of 28 Hα images - one image per day of

the month July 2012 where the sun could be observed due to the weather conditions. An
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example annotation from the ground truth is illustrated in figure 5.1.

Figure 5.1: An example filament annotation from the ground truth data. The red color
indicates the annotated filament pixels

For the segmentation result we first compute the intersection-overlap ratio with equa-

tion (5.1). This yields an accuracy of 0.799825. For precision and recall we obtain the

values 0.92985 and 0.851186, respectively and the F -score is equal to 0.888781.

The higher precision indicates that we segment few pixels that do not belong to any

filament. By studying the results it is evident, that most of the false positives are yielded

near the limb, where the contrast between filaments and the solar background decreases.

The false negative results share the similar problem. As illustrated in figure 5.2(a),

filaments near the limb are difficult to segment completely. It also demonstrates the

requirement for a reconnection of the filament parts. Another problem are very narrow

filaments, especially in active regions, as shown in figure 5.2(b).

It should further be noted that the annotation of the filaments is not always clear, as a

single filament can appear as several parts due to the contrast in the Hα images. Further,

there exist no precise edges between the background and the filament.
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(a)

(b)

Figure 5.2: The left images show parts of different Hα images and on the right ones a
comparison between the ground truth and the result of our proposed method is depicted.
Green indicates true positives, red false negatives and blue false positives.

5.4.2 Filament Eruptions

For the evaluation of the flare eruptions, we tested our method on archive images of one

month. We compared the obtained results to the official data of the NOAA and to the

visual inspection results of the KSO, mainly because the NOAA data is not accurate to a

100%.

As a sample month, we took the archive data from July 2012. For the archive data, we

took images in a 30 seconds period without further selection in terms of cloudy images.

Table 5.3 summarizes the evaluation for the month July 2012. Overall, four filament

eruptions occurred in July 2012, whereas the method was able to detect all of them

correctly. Additionally, we detected one false positive on 2012-07-03. In this case the



5.5. Discussion 81

method failed, because the filament was not segmented in several images due to clouds.

This implies a precision of 0.80000, a recall of 1.00000 and an F -score of 0.88889.

date true positives false positives false negatives

2012-07-03 0 1 0

2012-07-08 1 0 0

2012-07-11 2 0 0

2012-07-26 1 0 0

total 4 1 0

Table 5.3: Evaluation of the filament eruptions in the Hα image se-

quences of July 2013. The table presents only days, where a filament

eruption occurred.

5.5 Discussion

The presented results underline the power of our proposed method for the detection of

flares and filaments in Hα image sequences. For the relevant flare categories the segmen-

tation works very good, as long as not most of the solar disk is covered by clouds. This

was one of the main reasons for the detection failure. The flares may appear bigger and

brighter, if they are observed through clouds. See figure 5.3 for example.

Another problem is the categorization closer to the limb. First, the conversion between

the area in the number of pixels to sun hemispheres gets less precise, independent of the

segmentation result. But also the mean and maximum intensity of the segmented areas

decreases, which leads to a more erroneous categorization.

These problems get even worse for sub-flares. However, if we consider that even the

data of KSO and NAOO differs many times, our results actually are reasonably well. The

results even may be improved, if the flare categorization is learned by an appropriate

algorithm based on the distance of the flare center to the solar center and the segmented

size and intensities.

In the evaluation of the filament segmentation and the detection of filament eruptions,

we basically have the same problems. As illustrated in figures 5.2 and 5.4, the accuracy

of the segmentation decreases towards the limb and is affected if the sun is covered by

clouds. The structural bandpass filter equalizes the intensities covered by clouds, but if a

filament is not visible due to clouds, the filter cannot make it visible.

The filament segmentation in combination with the postprocessing, including the

grouping of the filament parts, as well as the tracking, has proven to be successful in
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(a) input image (b) segmentation result

(c) input image (detailed) (d) segmentation result (detailed)

Figure 5.3: The image on the left illustrates an Hα image covered by clouds taken on 2012-
08-04, where a flare occurs on the bottom left. The right image shows the same image
including the flare segmentation result of our method. Due to clouds, the segmented flare
area is larger then it really is and therefore the categorization failed.
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(a) input image (b) solar disk 7 minutes later

(c) segmentation result

Figure 5.4: The image (a) illustrates an Hα image covered by clouds taken on 2012-08-04.
The image in (c) shows the same image including the filament segmentation result of our
method. The image (b) illustrates the solar disk of the same day seven minutes later. The
segmentation of the filaments close to the limb and covered by clouds clearly gets worse
(see left bottom of image (c)). Additionally, the small filaments on the right, which are
completely covered by clouds could not be detected.
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the evaluation. A recall of 100% compared to one false positive due to the viewing condi-

tions clearly demonstrates the advantages of our method.

As we have noted at the beginning of the evaluations, we performed no pre-selection

of the images from the archive data based on quality. This is in contrast to the actual

use case, where the live images automatically get selected based on viewing conditions.

Therefore, the overall performance of the live system should improve significantly for flare

recognition, but also for the detection of filament eruptions.
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6.1 Summary

As introduced in chapter 1, space related to the activity of the sun can disturb critical

infrastructure near and on Earth. Some of the events that are associated with solar

storms, namely flares and filament eruptions, are observable in Hα images from ground

based observatories.

In this master thesis, we presented a novel method for the simultaneous detection and

segmentation of flares and filaments in Hα image sequences. Furthermore, the method

allows the recognition of filament eruptions by tracking the single filaments in the image

sequence. The application combines state of the art algorithms from the areas of computer

vision and machine learning as presented in chapter 2.

The actual method consists of four major blocks. The first step, the preprocessing, is

presented in section 3.3. Feature selection and model learning is described in section 3.4,

where we illustrated features discriminating the filaments and flares from the background

and evaluating which model is the most efficient in terms of classification accuracy. Sec-

tion 3.5 is devoted to the multi-label segmentation of the Hα images to regularize the

classification result. The final postprocessing steps, which also include the derivation of

properties from the objects to categorize them, are described in detail in section 3.6.

Most of the building blocks utilize the enormous parallel computation capabilities of

85
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modern GPUs. Therefore, our method is able to process the Hα images in near realtime.

More details on the implementation are presented in chapter 4.

In chapter 5, we finally compared the detection results of our method with categoriza-

tion reports of experts visually inspecting the Hα images as well as with annotated Hα

images by comparing the segmentation results pixelwise.

6.2 Outlook

For future work, the method could be improved in several places. The detection and

segmentation of the filaments has some room for enhancements. The investigation of new

features emphasizing the appearance of filaments would be beneficial. The possibility of

incorporating information about the elongated structure of the filaments in the multi-label

segmentation might improve the results, too.

Another not completely solved issue are the interrupted filament parts. Not only

would it be interesting to evaluate the effects of coherence enhancing diffusion [85] for the

completion of the filaments, but also to utilize higher order information of the filament

shape for this purpose.

Although the application is intended to be completely autonomous, it could be ad-

vantageous to incorporate some user feedback. As filaments stay nearly unchanged over

several days, a user input once or twice a day may dramatically improve the overall results.

While writing this thesis, the developed method was implemented and tested at the

KSO in realtime. The obtained results will deliver new insights and additionally more

data for evaluation.
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