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Abstract

Connectionist Temporal Classification (CTC) is a supervised learning tech-

nique enabling to learn input 7→ target relations of sequences. The correct la-

beling of the target symbols does not have to be known explicitly, as the most

probable mapping is calculated by the output layer. This characteristic allows

to solve a wide spectrum of state-of-the-art industrial problems, which could

only be solved by Hidden Markov Models (HMM) so far. Possible examples

are handwriting- and speech-recognition problems, object recognition tasks or

any other kind of sequence labeling problem. Any learning model, trainable

with a gradient based learning rule, can be used to learn the predicted target

labels of a CTC output layer. This work puts its focus on this interesting

topic of machine learning. Firstly, learning effects of Recurrent Neural Net-

works (RNN) trained with a CTC objective are analyzed. Secondly, due to the

need of more abstract data representation Deep Architectures are discussed.

Thirdly, a general concept of learning Deep Recurrent Architectures based on

unsupervised greedy layer-wise pre-training, is developed. It is shown that

these Deep Recurrent Architectures show a superior recognition performance

on a sequential object recognition task and are able to outperform various

neural classifiers used for comparison.
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Kurzfassung

Connectionist Temporal Classification (CTC) ist eine supervised Lerntechnik,

welche im Stande ist, input 7→ target Relationen in Sequenzen zu lernen. Dabei

muss das exakte target labeling im Vorhinein nicht bekannt sein, da CTC das

wahrscheinlichste Mapping berechnet. Diese Charakteristik erlaubt eine große

Anzahl industrieller Probleme zu lösen, welche früher ausschließlich mit Hilfe

von Hidden Markov Modellen lösbar waren. Beispiele sind Sprach- und Hand-

schrifterkennung oder jegliche Formen von zeitlicher Objekterkennung. CTC

kann auf jedes Klassifkationsmodell, das auf Gradientenverfahren basiert, an-

gewandt werden. Diese Arbeit befasst sich mit rekurrenten neuronalen Netz-

werken (RNN), welche mit Hilfe einer CTC objective trainiert werden. Hierbei

wird ein Schwerpunkt auf die Analyse von Gradientenmethoden gesetzt. Es

wird angenommen, dass hierarchische RNNs in der Lage sind, Input-Daten bes-

ser zu abstrahieren. Da diese Modelle mit bekannten Optimierungsverfahren

nur schwer lernbar sind, wird eine neue Methode, welche auf unsupervised pre-

training basiert, entwickelt. Der neue hierarchische rekurrente Classifier wird

in einem Objekterkennungsproblem, dem Erkennen von Handschrift, getestet.

Hier kann das neu entwickelte Modell ein besseres Ergebnis als vergleichbare

neuronale Classifier erzielen.
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Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
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1. Introduction

1.1. Problem Definition

Recognizing speech, handwriting and movies are difficult problems for every
artificial system to solve. Several methods have been developed, using different
classification techniques. Despite the fact that recognition results have con-
stantly been improved, the problem is still not completely solved. Looking at
these sequence learning tasks in a more generalized way we can say that very
often a labeling problem has to be dealt with. The difficulty occurring in this
sort of problem set is the classification of unlabeled data, often referred to as
the chicken-egg problem. This means that on the one hand, it is very hard to
classify sequences, if there is no label information available and on the other
hand, it is hard to label a signal, if the sequence has not been classified yet.
However, if we are able to find a good way to classify and label signals, we will
be able to solve any open task in the described problem class.

Hidden Markov Models (HMM) [Rabiner, 1989] were one of the first approaches
to solve sequence labeling problems. These models are widely used for industry
purposes and generate good results on various data sets. One problem of HMM
systems is that they require a significant amount of task specific knowledge,
which is modeled in the structure of the HMM [Graves et al., 2006]. Other
technologies, such as neural network architectures, do not need this sort of
prior knowledge, since they simply depend on input-output signal relations us-
ing non-linear mappings. This leads to the assumption that neural nets could
be a more general, powerful mechanism to solve this problem [Martens, 2011a].

[Graves et al., 2006] showed that labeling unsegmented data with recurrent
neural networks is possible. In this approach a new technique called Con-
nectionist Temporal Classification (CTC) [Bridle, 1990] was used, which al-
lowed to train and test unlabeled sequences with neural net technology. Using
a bidirectional long-short-term-memory recurrent neural net (BLSTM) their
architecture outperformed HMMs on several handwriting datasets [ICDAR,
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1. Introduction

2012]. In a recent paper the algorithm was applied to a phoneme recognition
problem [Graves, 2011].

This work has its main focus on sequence learning with recurrent neural net-
works. The state-of-the-art technique CTC, used to learn and classify speech
and handwriting, is analyzed. It evolves around four main problems in machine
learning [Bengio, 2012], shown in figure 1.1.

Figure 1.1.: Machine learning problems

The labeling problem solved with Connectionist Temporal Classification, ad-
dresses the sequence and language modeling task. Gradient based algorithms
like steepest descent with momentum [Phansalkar and Sastry, 1994] or re-
silient backpropagation [Riedmiller and Braun, 1993] and the Hessian Free
Method [Martens, 2011b] solve the non convex of the learning task and are
used as learning algorithms for the underlying neural network. With the help
of hierarchical architectures a more generalized distribution of data should be
found.
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1.2. Contributions

Improving existing strategies to solve the tasks mentioned above, should help
to solve a great variety of sequence learning problems shown in figure 1.2
frequently occurring in industrial challenges and real world scenarios.

Figure 1.2.: Sequence learning tasks CTC networks can be applied to

1.2. Contributions

In [Graves et al., 2006] an output layer, known as Connectionist Temporal
Classification, is introduced that allows RNNs to be trained directly for se-
quence labeling tasks with unknown input-label alignments. The introduced
CTC-BLSTM architecture is able to solve the same learning tasks as a HMM,
and even outperforms this model on various data sets. Because of the good
results it is worth exploring Connectionist Temporal Classification in detail.

In this work various gradient based learning methods are evaluated on a
RNN network with a CTC output layer [Rumelhart et al., 1986], [Graves
et al., 2006]. Learning effects like the vanishing gradient problem are
analyzed and methods to overcome this problem are discussed.

Hierarchical architectures have superior learning capabilities when it comes
to object recognition tasks. A common way to train these models is greedy

3



1. Introduction

layer-wise pre-training [Hinton and Salakhutdinov, 2006b]. The use of this
generative pre-training of feed-forward architectures leads to significant per-
formance increases, and is extended in this work to recurrent models.

The performance of the underlying model and algorithms is evaluated on the
MNIST digit database [Lecun and Cortes, 2012]. The RNN model is also
compared to other network architectures like Multilayer Perceptrons (MLP)
[Rosenblatt, 1958], Convolutional Neural Networks [LeCun et al., 1999] and
Long Short Term Memory Networks (LSTM) [Gers et al., 2002] and Deep Be-
lief Networks (DBN) [Mohamed et al., 2009].

A GPU based framework based on python and Theano [Bergstra et al.,
2010] was built to test various network architectures with CTC. The mathe-
matical expression compiler Theano allows to define, optimize, and evaluate
mathematical expressions involving multi-dimensional arrays on the graphic
processor unit and speeds up the simulation time. By doing computations on
a GPU another big problem in machine learning, simulating big datasets in
adequate time can be solved.

1.3. Overview of Thesis

The chapters of this work are grouped into four parts: Mathematical back-
ground material is presented in chapter 2. Chapter 3 puts forward a hypoth-
esis for optimized learning of recurrent network models on sequence learning
tasks. Chapter 4 encompass toy experiments and experimental results which
verify the made assumption of the previous chapter. Chapter 5 summarizes
main achievements gained in this study and give a future outlook. Apart from
that a description of the software framework, used to test various models in
the toy experiments of section 4, can be found in Appendix A.

Although several neural network architectures are used to compare learning
capabilities on sequence labeling tasks, the main focus of this study lies on
supervised learning methods and learning effects of a standard recur-
rent architecture (RNN), which is described in detail in chapter 2.5.1. One
reason for this decision is the need of storage capabilities of temporal patterns
when learning sequential data dependencies.

4



1.3. Overview of Thesis

As far as optimization algorithms are concerned only gradient based train-
ing methods for training RNNs are examined. Non gradient methods like
particle swarm optimization [Kennedy and Eberhart, 1995] or genetic algo-
rithms [Goldberg, 1989] are not taken into account, in order to limit the scope
of this work.

Stacking multiple layers of RNNs leads to a hierarchical recurrent archi-
tecture. This architecture should be able to learn a better representation
of the underlying data due the ability of generating more abstract temporal
features. However, training of this more advanced model turned out to be
a very difficult task. Nevertheless, it is shown that a powerful second or-
der gradient method (HF) and generative pre-training with the help
of Deep Belief Networks (DBN), which was formerly only used for feed-
forward network architectures is able to solve the learning problem described
above leading to an improved recognition rate on the MNIST digit task.

5





2. Mathematical backgrounds

2.1. Supervised Learning

Machine learning problems where a set of input-target pairs is provided for
training are referred to as supervised learning tasks [Graves, 2012]. This dif-
fers from reinforcement learning, where only a specific reward is provided for
training, and unsupervised learning, where no training signal exists at all and
the learning method uncovers the structure of the data by inspection alone.

A supervised learning task consists of a training set S of input-target pairs
(x, z), where x is an element of the input space X and z is an element of the
target space Z, along with a disjoint test set S. Elements of S are the training
examples for a underlying classifier.

2.2. Pattern Classification

Pattern classification, also known as pattern recognition, is one of the most ex-
tensively studied areas of machine learning [Bishop, 1996], [Duda et al., 2001].
Pattern classification deals with non-sequential data, nevertheless, much of the
practical and theoretical framework underlying it, carries over to the sequen-
tial case. It is therefore instructive to briefly review this framework before the
term sequence labeling will be explained.

2.2.1. Probabilistic Classification

A pattern classifier is able to map input-features to target classes h : X 7→ Z.
The input space of X is a set of real-valued vectors and the target set of Z
consists of discrete classes K [Graves, 2012]. If the classifier is probabilistic,
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2. Mathematical backgrounds

the conditional probability p(Ck|x) of the K target classes of a input pattern
x is computed and the most probable target is chosen:

h(x) = argmax
k

p(Ck|x) (2.1)

2.2.2. Training Probabilistic Classifiers

If a probabilistic classifier yields a conditional distribution p(Ck|x, θ) over the
class labels Ck given input x and parameters θ, the product over the indepen-
dent and identically distributed (i.i.d.) input-target pairs in the training set S
can be written as:

p(S|θ) =
∏

(x,z)∈S

p(z|x, θ) (2.2)

Applying the Bayes rule leads to:

p(θ|S) =
p(S|θ)p(θ)
p(S)

(2.3)

The posterior distribution over classes for some new input x can then be found
by the integral:

p(Ck|x, S) =

∫
θ

p(Ck|x, θ)p(θ|S)dθ (2.4)

A common approximation to equation (2.1) is the maximum a priori approxi-
mation (MAP), which finds the single parameter vector θMAP that maximizes
p(θ|S) and uses this to make predictions:

p(Ck|x, S) ≈ p(Ck|x, θMAP ) (2.5)

θMAP = argmax
θ

p(S|θ)p(θ) (2.6)

8



2.2. Pattern Classification

The maximum likelihood (ML) parameter vector θML can be defined as:

θML = argmax
θ

p(S|θ) = argmax
θ

∏
(x,u)∈S

p(z|x, θ) (2.7)

The standard procedure to minimize equation is the computation of the max-
imum likelihood loss function L(S) which is defined as the negative logarithm
of the probability assigned to S:

L(S) = −ln
∏

(x,z)∈S

p(z|x) = −
∑

(x,z)∈S

ln p(z|x) (2.8)

The function is derived in respect to the model parameters

∂L(s)

∂θ
=

∑
(x,z)∈S

∂L(x, z)

∂θ
(2.9)

making the training of the probabilistic classifier possible.

9



2. Mathematical backgrounds

2.3. Sequence Labeling

In the previous chapter a probabilistic classifier was defined. This classifier
is able to learn input 7→ target relations of single patterns. This concept will
now be extended to the time domain. A training objective for probabilistic
classifier able to learn pattern relations of sequences is presented.

Before directly stepping into the mathematical details of this probabilistic
classifier, some basic definitions will be explained. Firstly the term sequence-
labeling, a problem occurring when learning sequence 7→ sequence mappings,
is defined. Secondly the term sequence-processing-queue is explained. This
should help to understand the basic principles of sequence classification widely
used in machine learning.

2.3.1. Sequence Labeling Problem

The term sequence labeling encompasses all tasks where sequences of data are
transcribed with a set of of labels [Graves et al., 2009]. These labels are part
of a transcription set of fixed size like the alphabet, words or even sentences.
If someone wants to assign a series of acoustic features to spoken words, wants
to map a sequence of hand gestures to a sentence (gesture recognition), or
predicts protein secondary structures, a sort of sequence labeling has to be
done.

Learning labeled sequences is a comparatively easy task to solve for an ar-
tificial system, as direct mappings from the input signal to the target signal
exist. In the last decade plenty of cleverly designed Deep Learning Models had
been able to generate impressive results on image recognition tasks [Le et al.,
2012], [Lee et al., 2009] using labeled data.

If the data is unlabeled, the exact location, in other words, the correct align-
ment between an input frame and the target is not known. Algorithms have
to find the most probable alignment. This is possible as time signals as speech
or handwriting contain contextual information constrained by the laws of syn-
tax and grammar. Input and target labels form strongly correlated sequences.
However, solving a learning problem with unlabeled data is a much harder
problem than learning labeled target alignments. In addition, it should be
pointed out that a remarkable characteristic of the human brain is, its ability
to solve both problems.

10



2.3. Sequence Labeling

Figure 2.1 visualizes this main difference between labeled and unlabeled learn-
ing problems. The colored squares on the left side indicate the known input
7→ target alignment for every time-step, whereas on the right side this infor-
mation is not given in the dataset.

Figure 2.1.: Labeling problem

Two probabilistic models solving the sequence-labeling problem from above
can be found in machine learning literature:

Hidden Markov Models: Hidden Markov Models (HMMs) [Rabiner,
1989] are a two stage stochastic process. The first process uses a Markov
Chain modeling transition probabilities of hidden states. This process
is not visible from outside. The second process emits observations at
every time-step t with respect to its emission probabilities. In the case
of labeling problems these observations correspond to the sequence of
output labels. HMMs are able to correctly label unsegmented data, if
equally aligned input sequences are used, or if the emission probabilities
are initialized with the mean- and covariance-vectors of the training set
[Pfister and Kaufmann, 2008]. This procedure is called flat start. Details
about this model and the underlying training algorithm (EM) can be
found in [Fink, 2008], and will not be presented in this work. The model
is able to fully solve the labeling problem mentioned above.

CTC networks: Connectionist Temporal Classification [Graves et al.,

11



2. Mathematical backgrounds

2006] solves the sequence labeling problem in a forward-backward algo-
rithm based approach using neural network architectures. A softmax
readout connected to a neural network layer selects the most probable
output activation at every time-step for classification. In the training
case the correct mapping from input- to the target-sequence is computed
by calculating the most probable target labeling over the time. The net-
work is trained in respect to this ’observation’ with a gradient based
optimization method. Chapter 2.4 provides a mathematical description
of this specially designed output layer and training method.

2.3.2. Sequence Processing Queues

When dealing with sequence learning problems very often the input data fol-
lows the flow-diagram shown in figure 2.2.

Figure 2.2.: Sequence processing queue

Pre-processing- and feature-extraction-methods extract important features of
the data and reassemble the latter to have the correct scale i.e. dimensions.
Post-processing methods improve the recognition rates with the help of addi-
tional task specific knowledge. In the case of language processing tasks very
often the use of dictionaries are a common method to improve recognition re-
sults.

In many machine learning applications these typical processing steps are ap-
plied. However, in this work neither pre-processing nor post-processing is
applied to the data. This guarantees that the result is not distorted by any
additional external knowledge. Apart from that the feature extraction is done
by the underlying classifier directly.

12



2.4. Connectionist Temporal Classification

2.4. Connectionist Temporal Classification

This section defines a probabilistic classifier, known as Connection Temporal
Classification [Bridle, 1990]. The classifier is able to extract input 7→ target
relations of unlabeled temporal data with the help of a specially designed out-
put layer connected to an underlying neural network topology. In the training
case a forward-backward algorithm computes the most probable path of labels
over the target sequence. The network tries to predict the correct labels (tar-
gets) at every training step and assigns specific output activations to the most
probable target label. Features which are not separable are assigned with a
’blank ’ label, and do not affect the prediction. Due to the fact that the tar-
get labeling is not known, the network will generate noisy (faulty) predictions
in an early stage of training. However it will improve, its predictions after a
couple of training steps.

2.4.1. Constructing the Classifier

CTC uses a specially designed output layer which converts the output acti-
vations of the underlying layers to a conditional probability distribution over
label sequences [Graves et al., 2009]. Selecting the most probable label at time
t0...T will result in a classifier for a given input sequence. The number of CTC
outputs L+1 corresponds to the number of possible labels of all sequences plus
one ’blank ’ unit, indicating ’no label ’. Output activations are normalized with
the help of a softmax function. [Graves et al., 2009]

ytk =
ea

t
k∑

k e
atk

(2.10)

ytk is the final output and atk is the activation of the output unit k at time
t. These normalized outputs are used to estimate the conditional probability
ytk = p(k, t|x) of observing a label (or ’blank ’) at time t [Graves et al., 2009].
The conditional probability p(π|x) of observing a particular path π through
all possible label activations is calculated by multiplying together the proba-
bility of a target label and blank labels for every time-step.

p(π|x) =
T∏
t=1

ytπt (2.11)

13



2. Mathematical backgrounds

This is possible as it is assumed that the output probabilities at each time-step
are independent of those at other time-steps [Graves, 2012]. The activation ytπt
can be interpreted as the probability that the network will output the label t
of path π at time t.

In order to correctly encode the output of a CTC network, repeated labels
as well as blank labels must be removed. This is done using an operator F.
The sum of all paths mapped with B is the conditional probability of some
labeling l1 [Graves, 2012].

p(l|x) =
∑

π∈F−1(l)

p(π|x) (2.12)

It is not known where the label of a particular transcription could occur, so
the overall sum of the places where an output label appears is calculated.
Collapsing together different paths onto the same labeling is what makes it
possible for CTC to use unsegmented data. It allows the network to predict the
labels without knowing in advance where they occur. A dynamic programming
can be used to calculate all possible paths for one input sequence. In case of
CTC a graph-based algorithm, which is similar to the HMM forward-backward
algorithm, solves this problem [Graves, 2012].

The application of the the operator F−1 maps output activations to the correct
output label sequence. When training the network the operator F must be ap-
plied to the target sequences as well. In this case blank labels must be inserted
between consecutive target labels. This is needed because F−1 would remove
repeated labels, otherwise, making it impossible to train repeated tokens. If
the network, however, is forced to output blank labels in between the repeated
tokens, F−1 does not remove the repeated label, making it possible to output
the label twice [Graves et al., 2009].

2.4.2. CTC Forward-Backward Algorithm

The CTC Forward-Backward Algorithm, a dynamic programming method, is
able to quickly calculate the conditional probability p(l|x) of possible label
sequences l given the input x [Graves, 2012].

1the paths are mutually exclusive
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2.4. Connectionist Temporal Classification

The forward variable α(t, u) is the summed probability of all paths of the length
t which are mapped by F and are able to produce the given labels. It is pos-
sible that a blank label is inserted between two target labels, so all transitions
between blank and non-blank labels are allowed. This also enlarges the label
length to U ′ = 2U + 1. U is the length of the original label sequence l. When
calculating the forward probability, these additional insertions must be taken
into account, so a new operator V (t, u) = {π ∈ A′t : F (π) = l1:u/2, πt = l′u} is
defined. All paths of length t that are mapped by F onto the length u/2 prefix
are taken into account. A = A ∪ {blank} is the extended alphabet A of the
target labels.

The forward probability α(t, u) can now be defined as:

α(t, u) =
∑

π∈V (t,u)

t∏
i=1

yiπi (2.13)

The equation above can be calculated recursively [Graves, 2012]:

α(1, 1) = y1b (2.14)

α(1, 2) = y1l1 (2.15)

α(1, u) = 0,∀u > 2 (2.16)

α(t, u) = ytl′u

u∑
i=f(u)

α(t− 1, i) (2.17)

where f(u) =

{
u− 1 if l′u = blank or l′u−2 = l′u
u− 2 otherwise

(2.18)

The term y1b (2.14) stands for the activation of the blank label on the output
at time-step t1. The term y1l1 (2.15) denotes the activation of the first target
label on the output at time-step t1. Equation (2.16) points out that there are
only two labels allowed at time-step t1; a blank label (2.15) and the first target
label (2.14). Note that a zero probability is assigned to those forward variables
that do not have enough time-steps left to complete the sequence.

α(t, u) = 0 ∀u < U ′ − 2(T − t)− 1 (2.19)
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Thinking of a computational implementation, the forward variables could be
interpreted as a matrix of the size (S, 2U+1), where S is the input sequence
length and U the target length, storing all possible label activations of blank
and target labels at each time-step. A graphical interpretation is shown in
figure 2.3. The black nodes indicate blank labels.

Figure 2.3.: CTC forward path calculation [Graves, 2012]

The backward path calculation is done in a similar way using a matrix of
the same size, but storing the summed probabilities of those paths needed to
complete a sequence l. The computation is done in reverse order. Again a
mapping operator W (t, u) = {π ∈ A′T−t : F (π̂+ π) = l ∀π̂ ∈ V (t, u)} must be
defined [Graves, 2012].

β(t, u) =
∑

π∈W (t,u)

T−1∏
i=1

yt+iπi
(2.20)

The backward path matrix can be initialized as follows:

β(T, U ′) = 1 (2.21)

β(T, U ′ − 1) = 1 (2.22)

β(T, u) = 0,∀u < T ′ − 1 (2.23)
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2.4. Connectionist Temporal Classification

β(t, u) =

g(u)∑
i=u

β(t+ 1, i)yt+1
l′i

(2.24)

where g(u) =

{
u+ 1 if l′u = blank or l′u+2 = l′u
u+ 2 otherwise

(2.25)

All backward variables which are not able to finish the labeling l are assigned
with a zero probability [Graves, 2012].

β(t, u) = 0 ∀u > 2t (2.26)

β(t, U ′ + 1) = 0 ∀t (2.27)

2.4.3. CTC Objective Function

In order to train a network with gradient descent, an objective function and its
derivatives with respect to the network outputs must exist [Bishop, 1996]. In
a CTC network the objective function is given as the negative log probability
of correctly labeling the entire training set S [Graves, 2012].

L(S) = −ln
∏

(x,z)∈S

p(z|x) = −
∑

(x,z)∈S

ln p(z|x) (2.28)

S is the training set, x the input, and z the target sequences. Setting l = z and
defining the set X(t, u) = π ∈ A′T : F(π) = z, πt = z’u the equations (2.11),
(2.13) and (2.21) lead to:

α(t, u)β(t, u) =
∑

π∈X(t,u)

T∏
t=1

yπtt =
∑

π∈X(t,u)

p(π|x) (2.29)

The equation (2.29) is the portion of the total probability p(z|x) due to those
paths going through z′u at time t. For any t, we can therefore sum over all u
to get the loss function [Graves, 2012]:

L(x, z) = −ln
|z′|∑
u=1

α(t, u)β(t, u) (2.30)
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2. Mathematical backgrounds

It can be interpreted as the negative log-likelihood of the most probable path
in respect to the target labeling.

2.4.4. CTC Decoding

In order to decode the most probable label, two methods are suggested [Graves
et al., 2009].

l∗ = argmax p(l|x) (2.31)

The term above is the most probable path in the set of possible label combi-
nations. Finding the argmax is known as best-path decoding (eq. 2.31). Here
the most probable path corresponds to the most probable labeling l∗ ≈ F(l∗).
This is easy to compute, as it is just the concatenation of the most active
network output at every time-step t. However, [Graves, 2012] points out that
this does not guarantee to find the most probable labeling.

Another possible decoding procedure is prefix-search decoding. Here the out-
put sequence is divided into parts with boundary points of blank labels with
high probabilities. The most probable labeling for each section is calculated
individually. The search is extended each time-step with those labels who have
the largest cumulative probability. The key idea of this method lies in the fact
that if the both sides of the boundary points are strongly predicted, it is easier
to predict the labels between this boundary. Further details about this search
method can be found in [Graves, 2012].

CTC decoding can also be extended to a grammar G, known as constrained
decoding (eq. 2.32) [Graves, 2012]. In this case the most probable labels of the
output path are calculated in respect to this a probabilistic grammar, leading
to the following encoding [Graves, 2012]:

l∗ = argmax p(l|x) ∗ p(l|G) (2.32)

Calculating the most probable output labeling in respect to the given gram-
mar can be solved with a token-passing algorithm iteratively. The method is
closely related to the use of language models in HMMs [Young et al., 1989],
which, in general, improves the performance of the classifier. Further details
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2.4. Connectionist Temporal Classification

about constrained decoding can be found in [Graves, 2012].

In this work an external language model will not be used, as it would bias the
result of the underlying classifier. The implemented models use best-path
decoding to generate the output sequences.
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2. Mathematical backgrounds

2.5. CTC Models

A CTC output layer as described in chapter 2.4 can be connected to any
underlying model, which is trainable via a gradient based learning procedure.
Although various types of possible universal approximators capable of learning
CTC predictions exist, this work has its focus on a specific recurrent architec-
ture defined in [Rumelhart et al., 1986]. Figure 2.4 gives an overview of various
network models, like Long Short Term Memory Networks (LSTM) [Gers et al.,
2002], Deep Belief Networks (DBN) [Mohamed et al., 2009], Multilayer Per-
ceptrons (MLP) [Rosenblatt, 1958], Convolutional Neural Networks [LeCun
et al., 1999] and [Gers et al., 2002], trainable with CTC.

Figure 2.4.: Neural classifiers

In the first part of this chapter the basic mathematical framework of a standard
RNN network is explained. In the second part the Deep Belief network, a pow-
erful probabilistic generative model consisting of stacked layers of stochastic,
latent variables is defined. Understanding the mathematical principles of both
models will help to get a better understanding of probabilistic classification of
sequential data and could be seen as a mathematical contribution to the toy
experiments in chapter 4
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2.5. CTC Models

2.5.1. Recurrent Neural Networks

RNNs are able to extract temporal dependencies with the help of its recurrent
connections. A standard recurrent architecture as defined in [Rumelhart et al.,
1986] has a self connected hidden layer and can be defined with the following
equations:

ti = Whxxi +Whhhi−1 + bh (2.33)

hi = e(ti) (2.34)

si = Wyhhi + by (2.35)

ŷi = g(si) (2.36)

Whx, Whh and Why are the weight matrices of the input-, hidden- and output-
layer. The term bh and by denotes the bias terms. g and e are the non-linear
activation functions of the network. The values t1, t2, ..., tT , s1, s2, ..., sT ∈ <k
are the inputs to the hidden- and output-units and hi is the hidden activation
of the recurrent connection.

A common method to train input 7→ target relations of these ’simple’ recurrent
networks, in addition to real time recurrent learning (RTRL) [Williams and
Zipser, 1989] and extended Kalman filters [Williams, 1992], is backpropagation
through time (BPTT ) [Werbos, 1990]. A forward pass, computing the output
activations of an RNN using the equations from above, is the same as a forward
pass in a feed-forward neural network with the exception of adding the hidden
state of the network to the current input. The output ŷ is calculated recursively
over the input sequence x of the length I.

The recurrent network is literally unfolded over the time, meaning that the
recurrent model is converted to a standard feed-forward network architecture
in respect to the sequence length. The number of unfolded hidden layers is
proportional to the length of the current input signal. Figure 2.5 provides a
graphical interpretation of this concept.
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Figure 2.5.: Backpropagation through time

All hidden layers share the same weights. All activations are calculated itera-
tively, using the current input signal and the activations of the layer below. If
the number of layers to store the activations back in time is fixed, the algorithm
is called truncated backpropagation through time [Zipser, 1989].

With the help of the BPTT algorithm RNNs can be trained successfully. How-
ever when backpropagating the error over the unfolded network, the gradient
can get very small or very high. This phenomena is called vanishing gradient
problem [Hochreiter, 1998], [Bengio et al., 1994] and is a serious problem when
learning long time dependencies. A pseudo code of the BBTT algorithm is
shown in figure 1.

If the gradient of the objective function vanishes over the time, the error signal
gets lost. The network is not able to learn the signal dependencies because of
insufficient weight change. Figure 2.6 illustrates the vanishing gradient prob-
lem. The diagram shows a recurrent network unrolled in time, where the units
are shaded according to how sensitive they are to the input at time 1 (black
is high and white is low). The influence of the first input decays exponentially
over time.

22



2.5. CTC Models

back propagation through time()
% a ... input
% y ... output
% x ... current context
% t ... time
% k ... unfolding depth (truncation)
% N ... sequence length
unfold the network to contain k instances of f
do until stopping criteria is met:

for t from 0 to N - 1
Set the network inputs to x, a[t], a[t+1], ..., a[t+k-1]
p = forward-propagate input over network
e = y[t+k] - p % compute the error
back-propagate error across the unfolded network
update all the weights in the network
average the weights
x = f(x)

Algorithm 1: Backpropagation through time algorithm

Figure 2.6.: Vanishing gradient problem
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2.5.2. Deep Belief Networks

A Deep Belief Network (DBN) is a probabilistic generative model that is com-
posed of multiple layers of stochastic, latent variables [Salakhutdinov and Mur-
ray, 2008]. It is a graphical model which learns to extract a deep hierarchical
representation of training data. A single layer of a Deep Belief network con-
sists of a Restrictive Boltzmann Machine (RBM) [Hinton and Salakhutdinov,
2006b], which is a sub-model of the class of Energy Based Models. If multiple
Restrictive Boltzmann Machines (RBM) are stacked and trained in a greedy
manner they form a Deep Belief Network (DBN) Figure 2.7 visualizes a Deep
Belief Network.

Figure 2.7.: Deep Belief Network

Energy Based Models

Energy based models associate a scalar energy to each configuration of their
internal variables. Learning corresponds to modifying that energy function
in a way that its shape has desirable properties. Energy-based probabilistic
models define a probability distribution through an energy function. It can be
defined as follows [Hinton, 2005], [Hinton, 2010]:

p(x) =
e−E(x)

Z
(2.37)

The term Z is normalization factor and is also called the partition function by
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analogy with physical systems.

Z =
∑
x

e−E(x) (2.38)

If an energy based model has some non observed variables h the energy based
function will change to the form [Hinton, 2005]:

P (x) =
∑
h

P (x, h) =
∑
h

e−E(x,h)

Z
(2.39)

The free energy is defined as follows

F(x) = − log
∑
h

e−E(x,h) (2.40)

The negative log-likelihood gradient of the data x (2.37) has the form [Bengio
et al., 2007]

∆θ = EM
∂F(x)

∂θ
− ED

∂F(x)

∂θ
(2.41)

The first term represents an expectation of the partial derivative over the model
distribution and the second an expectation over the data. The positive and the
negative phase of both terms do not refer to the sign of each term, but rather
reflect their effect on the probability density defined by the model. The positive
term increases the probability of training data (reducing the corresponding free
energy), while the negative term decreases the probability of samples generated
by the model.

While the second term is straightforward to compute, the first term is usually
difficult, since it is often intractable to integrate over the model distribution.
The expectation over all possible configurations of the input x (under the

distribution M formed by the model) EM [∂F(x)
∂θ

] has to be calculated. In order
to make the computation tractable, sampling can be used. The expectation
using a fixed number of model samples is calculated. The gradient is written
as:

−∂ log p(x)

∂θ
≈ ∂F(x)

∂θ
− 1

|N |
∑
x̃∈N

∂F(x̃)

∂θ
. (2.42)
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The elements x̃ of N are sampled according to M . With the help of sampling
the equation (2.42) can almost be solved. The missing ingredient, how to
extract the negative particles N , will be defined in the next sections.

Restricted Boltzmann Machines

A Restrictive Boltzmann Machine [Smolensky, 1986] is a particular form of
a log-linear Markov Random Field (MRF) for which the energy function is
linear in its free parameters. In order to represent complicated distributions
some variables of the model are never observed. These variables are called
hidden variables. A Restrictive Boltzmann Machine has no hidden 7→ hidden,
and no visible 7→ visible connections. This is the main difference between a
Restrictive Boltzmann Machine and the standard Boltzmann Machine model
(BM). A graphical interpretation of a RBM is shown in figure 2.5.2.

Figure 2.8.: Restricted Boltzmann Machine

The energy function of a Restricted Boltzmann Machine is defined as [Larochelle
and Bengio, 2008]:

E(v, h) = −b′v − c′h− h′Wv (2.43)

The parameter W represents the weight connections between the hidden and
visible units. The values b and c are the offsets of the visible and hidden units
respectively. The energy formula of a RBM can be written as:

F (v) = −b′v −
∑
i

log
∑
hi

ehi(ci+Wiv) (2.44)
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Due to the fact that the hidden and visible units of the RBM are conditionally
independent, the energy formula of equation (2.44) can be rewritten to the
form [Larochelle and Bengio, 2008]:

p(h|v) =
∏
i

p(hi|v) (2.45)

p(v|h) =
∏
j

p(vj|h) (2.46)

As stated before, a common form of a RBM is a binary Restricted Boltzmann
Machine. In this case all the visible and hidden units are of the form v, j ∈ 0, 1.
The neuron activation function can be defined as [Larochelle and Bengio, 2008]:

P (hj|v) = sigm(ci +Wiv) (2.47)

P (vj|h) = sigm(bi +W ′
jh) (2.48)

As a consequence the free energy function can be simplified to the following
equation:

F (v) = −b′v −
∑
i

log(1 + eci+Wiv) (2.49)

Combining eqs. (2.42) with (2.49), the following log-likelihood gradients for
an RBM with binary units can be obtained:

−∂log p(v)

∂Wij

= Ev[p(hi|v) · vj]− v(i)j · sigm(Wi · v(i) + ci) (2.50)

−∂log p(v)

∂ci
= Ev[p(hi|v)]− sigm(Wi · v(i)) (2.51)

−∂log p(v)

∂bj
= Ev[p(vj|h)]− v(i)j (2.52)
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Training Restricted Boltzmann Machines

In order to generate samples of p(x) Gibbs sampling can be used. In general a
Markov Chain with using Gibbs sampling as an operator is run to convergence.
When sampling the joint of N random variables S = (S1, ..., SN), N sampling
sub-steps of the form Si ∼ p(Si|S−i), where S−i contains the N − 1 other
random variables in S excluding Si, are needed [Hinton, 2005].

Regarding RBMs, S consists of the set of visible and hidden units. However,
since they are conditionally independent, block Gibbs sampling is performed.
In this case, the visible units are sampled simultaneously given fixed values of
the hidden units, and vice versa.

One step in the Markov chain is thus taken as follows:

h(n+1) ∼ sigm(W ′v(n) + c) (2.53)

v(n+1) ∼ sigm(Wh(n+1) + b) (2.54)

The parameter h(n) refers to the set of all hidden units at the nth step of the
Markov chain. Values of h

(n+1)
i are randomly chosen to be 1 (versus 0) with

probability sigm(W ′
iv

(n) + ci), and similarly, v
(n+1)
j is randomly chosen to be

1 (versus 0) with probability sigm(W.jh
(n+1) + bj).

The sampling procedure can be visualized graphically for better understanding
[Hinton, 2005]:

Figure 2.9.: Block Gibbs Sampling in a RBM

For the case t → ∞ the samples (v(t), h(t)) are guaranteed to be accurate
samples of p(v, h).

28



2.5. CTC Models

However in theory, each parameter update in the learning process would re-
quire running one such chain to convergence, leading to a prohibitively ex-
pensive learning mechanism. As a consequence, several algorithms have been
devised for RBMs, in order to efficiently sample from p(v, h) during the learn-
ing process.

One of the most popular algorithms is Contrastive Divergence (CD-k). Two
tricks are involved to speed up the sampling process in this case:

(i) The Markov chain is initialized with a training example in order to
get a close estimate of ptrain(v) for p(v)

(ii) CD stops the sampling process before the chain has converged. The
samples are obtained after only k-steps of Gibbs sampling, a trick
which works surprisingly well in practice.

Training Deep Belief Networks

Deep Belief Networks are trained in greedy layer-wise unsupervised procedure,
which is applied to DBNs with RBMs as the building blocks for each layer [Hin-
ton and Salakhutdinov, 2006b], [Hinton et al., 2006]. The process is defined as
follows:

(i) Train the first layer as an RBM modeling the raw input x = h(0) as
its visible layer.

(ii) Use the first layer to obtain, representing a model of the input as
data for the second layer. This representation can be either the
mean activations p(h(1) = 1|h(0)) or samples of p(h(1)|h(0)).

(iii) Train the second layer as an RBM, taking the new input data as
training examples.

(iv) Iterate (ii) and (iii) for the desired number of layers, each time
propagating upward either samples or mean values.

(v) Fine-tune all the parameters of this deep architecture with respect
to a supervised training criterion.

If a single Markov chain is not initialized again at the chain start and the
chain is not restarted for each observed example, the training procedure is
called persistent contrastive divergence [Tieleman, 2008]. The general intuition
behind this idea is that if parameter updates are small enough compared to
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the mixing rate of the chain, the Markov chain should be able to “catch up”
to changes in the model.
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2.6. Gradient Learning Methods for CTC Models

2.6. Gradient Learning Methods for CTC Models

In order to learn sequences with a CTC output layer, a learning method
with the capability of handling noisy target predictions is needed. [Graves
and Schmidhuber, 2005] and [Graves et al., 2009] showed that RNN- and
LSTM-CTC networks can be successfully trained with stochastic gradient de-
scent [Bishop, 1996] or resilient backpropagation [Riedmiller and Braun, 1993].
These algorithms overcome local minima and are able to handle faulty target
predictions generated by the CTC output layer at the beginning of the training
due to its adaptive step-size. However, various other gradient based learning
methods are able to solve the optimization problem of a CTC network. Figure
2.10 visualizes possible algorithms in respect to their computational complex-
ity.

Figure 2.10.: Optimization algorithms for neural classifiers

The next chapters provide the mathematical background of selected gradient
based training methods. Chapter 2.6.1 and 2.6.2 provide information about
stochastic gradient descent and the resilient backpropagation algorithm; two
first order gradient methods. In chapter 2.6.3 and 2.6.4 the Stochastic Diag-
onal Levenberg-Marquard Method [LeCun et al., 1998a] and the Hessian Free
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Method [Martens, 2011b], two powerful second order gradient methods are
analyzed. Positive and negative characteristics and their learning capabilities
when applied to CTC networks are discussed. Details about the performance
of these algorithms and the underlying network model can be found in chapter
4.1.

2.6.1. Stochastic Gradient Descent

Stochastic gradient descent is a common technique to optimize objective func-
tions in machine learning problems. For a specific parameter set θ of a model
the given loss function f(θ) is minimized. This is done with an iterative
stochastic way, where data-samples are picked randomly from a common train-
ing set. This stands in contrast to batch-learning where the gradient of the loss
function given the weights is calculated in minibatches. The general update
rule for the model parameters for stochastic gradient descent is:

θk+1 = θk − η∇f(θk) (2.55)

The algorithm makes small steps downward on an error surface defined by a
loss function of some parameters θ. The value η is the learning rate, controlling
the step-size along the current error direction. Although stochastic gradient
descent is a very simple approach solving the mostly non-convex optimization
problem of the underlying model the approach is highly efficient, when it comes
to convergence speed. Although the gradient estimates are very noisy the al-
gorithm usually converges much faster than batch gradient methods [LeCun
et al., 1998b]. Stochastic learning very often results in better solutions, a phe-
nomena which also occurs when testing CTC models in chapter 4.1. This has
to do with noisy gradient estimates which might result in a better parameter
update, as a better minimum than the current one will be discovered [LeCun
et al., 1998b]. Apart from that, stochastic learning methods are able to track
changes in the data. The downside of the on-line learning technique should
be pointed out as well. In very complex models and complex learning tasks
stochastic gradient descent might not be able to find a suitable solution of the
underlying problem in appropriate time. In this case the fluctuations of the
weight updates are so dramatic that the algorithm will converge very slowly
to a minimum, or not at all. This especially happens when descending long
narrow valleys on the error surface [Martens, 2011b].
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Figure 2.11.: Gradient descent with momentum

Stochastic gradient descent can be accelerated with the help of a momentum
term. The use of a momentum term should help to overcome local minima
[Bishop, 1996] and is an extension of the standard gradient descent learning
algorithm described above. The update equation to compute a parameter
change of θ with the help of an objective function f is defined as:

∆θk+1 = α∆θk + (1− α)∇f(θk) (2.56)

The idea of this version of gradient descent is to compute on-the-fly (on-line)
a moving average of the past gradients, and use this moving average instead
of the current example’s gradient, in the update equation. The momentum
tern α is a hyper-parameter that controls how much weight is given to older
parameter updates. The update equation of stochastic gradient descent with
momentum is the same as defined in equation (2.55).

2.6.2. Resilient Backpropagation

Resilient backpropagation [Riedmiller and Braun, 1993] evaluates the sign of
the last gradient and adapts its step-size according to this direction. It is a
batch update algorithm, meaning that good learning results will be achieved
with small minibatches. The parameter update is done according to the for-
mula:

γk+1 =


min(γk · η+, γmax) if ∇f(θk) · ∇f(θk−1) > 0

max(γk · η−, γmin) if ∇f(θk) · ∇f(θk−1) < 0

γk other

where 0 < η− < 1 < η+
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The parameters η+, η−, γmin, γmax define the positive and negative step values
and their maxima and minima. The change of parameters for the objective f
is calculated as:

∆ θk = −γksgn(∇f(θk)) (2.57)

[Igel et al., 2000] defines four versions of the resilient backpropagation algo-
rithm, namely rprop+, rprop-, irprop+, irprop-2. Rprop+ is very similar to
the original Reidmiller implementation, with the exception of reverting the
previous iteration’s parameter change if the sign of the gradient changes in the
current iteration. In the irprop- algorithm no parameter backtracking is used.
Furthermore, the last gradient is set to zero when the gradient changes its
sign. The parameter update of θ is done in the same way as standard gradient
descent θk+1 = θk + ∆θk.

2.6.3. Stochastic Diagonal Levenberg-Marquard Method

The Stochastic Diagonal Levenberg-Marquard Method is a second order gradi-
ent method which calculates the diagonal Hessian through a running estimate
of the second derivative (Hessian) with respect to each parameter θ. The es-
timates of the derivatives are used to calculate (scale) the learning rate of
each individual parameter. The equation defining the specific learning rates
is [LeCun et al., 1998b], [LeCun et al., 1999]:

ηki =
ε

∂2L
∂2θki

+ µ
(2.58)

The parameter ε is the global learning rate. The value ε is the current learning
rate for each individual parameter and µ is a regularization parameter pre-
venting ηki of becoming too high. The running estimate of the second order
derivative is calculated with the equation [LeCun et al., 1998b]:

〈∂
2L

∂2θ
〉s+1 = (1− γ)〈∂

2L

∂2θ
〉s−1 + γ〈∂

2L

∂2θ
〉s (2.59)

2rprop+, irprop- are implemented in the software framework found in appendix A
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The value γ is a small amount of “memory” storing the old values of the
Hessian. [LeCun et al., 1998b] notes that the Stochastic Diagonal Levenberg-
Marquard Method is about three times faster than standard stochastic gradient
descent, due to the clever on-line adaption of the individual learning rates.

The update rule of the parameter theta is the same as the update rule in
standard stochastic gradient descent, defined in equation (2.55).

2.6.4. Hessian Free Method

The Hessian Free Method is a second order gradient method developed by
[Martens, 2010]. The optimization algorithm combines the truncated Newton
Method [Nocedal and Wright, 2000] using the Gauss-Newton approximation
of the Hessian matrix, with a Levenberg Marquard damping heuristic [Mar-
quardt, 1963].

The Hessian Free Method was first applied to Deep Auto-Encoders [Martens,
2010] and outperforms pre-trained Auto-Encoders described in [Hinton and
Salakhutdinov, 2006a]. In another approach the Hessian Free technique was
successfully applied to recurrent neural networks. [Martens, 2011b] showed
that the combination of the Hessian Free Method and the use of a additional
regularization term, called structural damping, helps to solve long time depen-
dency problems and overcomes the vanishing gradient problem in RNNs.

Truncated Newton Method

The Truncated Newton Method [Nocedal and Wright, 2000] belongs to the
group of second order optimization methods. It is an inexact Newton approach
with the goal of keeping the computational cost as small as possible. The
central idea of this method is that the objective f can be locally approximated
around θ ∈ RN up to the second order with the Taylor expansion [Martens,
2010]:

f(θ + p) ≈ qθ(p) ≡ f(θ)T +∇f(θ)Tp+
1

2
pTBp (2.60)

B = H(θ) = ∇f(θ)2 is the Hessian of f given θ. The value p is the search
direction. Considering the right-hand side of the above equation as a quadratic
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2. Mathematical backgrounds

with constant coefficients, the equation defined above can be rewritten the
Newton criteria for optimization [Nocedal and Wright, 2000]:

∇2f(θ)p = −∇f(θ) (2.61)

Very often the Linear Conjugate Gradient Method (CG) is used to solve the
equation defined above. This method was proposed by Hestenes and Stiefel
in the 1950s as an iterative method for solving linear systems with positive
definite coefficient matrices. A pseudo code of a linear CG3 is shown be-
low [Nocedal and Wright, 2000]:

r0 := b−Ax0

p0 := r0
k := 0
repeat

αk :=
rTk rk

pT
kApk

xk+1 := xk + αkpk
rk+1 := rk − αkApk

βk :=
rTk+1rk+1

rTk rk

pk+1 := rk+1 + βkpk
k := k + 1
if rk+1 is sufficiently small then exit loop end if

end repeat
result is xk+1

Algorithm 2: Linear CG pseudo code

CG iteratively updates the parameter θ of an objective function f by com-
puting the search direction p and updating the parameter θ as θ + αp. The
exact solution of the Newton direction pNk might not be calculated, as the CG
iteration is stopped if a defined stopping criteria (cf. chapter 2.6.4) is met.
Global convergence will be guaranteed if search direction pk is a descent di-
rection, which will be true if the Hessian ∇2f(θ) of the objective f is positive
definite [Nocedal and Wright, 2000]. The convergence speed can be improved
with the help of preconditioning (cf. chapter 2.6.4).

3In the case of Truncated Newton the given system equation Ax = b must be replaced with
the defined Newton parameter of (2.61)
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A graphical interpretation of CG is shown in figure 2.12. The left side shows a
standard steepest descent optimization, the right side shows the CG-method.

Figure 2.12.: Conjugate gradient method

Gauss-Newton approximation

The truncated Newton method is able to optimize a objective function if the
Hessian of this function is positive semidefinite [Nocedal and Wright, 2000].
One way of overcoming the obstacle of indefinite Hessians is the use of the
Gauss Newton approximation of the Hessian matrix. In this case, the standard
Newton equation is replaced with the term:

JTk Jkp
GN
k = −JTk rk (2.62)

The Gauss-Newton matrix is positive definite if the loss function is convex
[Chapelle and Erhan, 2011]. J, the Jacobian, is the partial derivative of the
underlying objective function. Modifying the terms above also leads to a sur-
prising number of advantages over the plain Newton Method. Firstly, the
use of the approximation ∇2fk ' JTk Jk saves the trouble of computing the
individual Hessians, which might be computational expensive. Secondly, the
vector-matrix product of p and the Gauss-Newton Matrix can be calculated ef-
ficiently using the R operator [Pearlmutter, 1994], [Schraudolph, 2002]. The
Gauss-Newton approximation of the Hessian matrix is used in the HF algo-
rithm [Martens, 2010].

Tikhonov regularization

[Martens, 2010] applied the truncated Newton Method when defining the HF
algorithm. Apart from that an additional regularizer known as Tikonov
damping [Tikhonov and Arsenin, 1977] was used to damp the Hessian matrix.
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This is necessary, as in practice when using large values of p, the approximation
of f might not be very trustworthy. A Tikonov regularizer, a method to
recondition the Hessian matrix is defined as [Martens, 2010]:

Bn(d) = H(θn)d+ λd (2.63)

The parameter d is the descent direction. Figure 2.13 visualizes this descent
direction on a low curvature. The use of this additional curvature information
is controlled by the defined damping parameter λ of the Tikonov regular-
ization. The parameter regularizes the sensitivity of the new descent direc-
tion [Martens, 2010].

Figure 2.13.: Optimization in a long narrow valley

In the initial Hessian Free implementation a Levenberg-Marquardt damping
heuristic for adjusting λ is used [Martens, 2010]. It is defined as:

if ρ <
1

4
: λ← 3

2
λ elif ρ >

3

4
: λ← 2

3
λ (2.64)

The value ρ is the reduction ratio, a scalar quantity which attempts to measure
the accuracy of the locally approximated objective qθ (eq. 2.60) and the true
objective. It is defined as [Martens, 2010]:

ρ =
f(θ + ρ)− f(θ)

qθ(ρ)− qθ(0)
(2.65)

Finding the correct λ and ρ is very important for finding the correct solution
of the optimization problem. If λ has a value of zero, the optimum of the
quadratic function approximation is inside the trust region, in which case a
trust-region-scaled Newton step is performed. If λ is greater than zero when
the optimum is at the boundary of the trust region, in which case the scaled
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Newton step is too long to fit in the trust region a quadratically-constrained
optimization is done. Summarizing the things above large λ values indicate
optimization difficulties [Martens, 2011b]. Negative values indicate the special
case of an indefinite Hessian matrix [Gay, 1983].

Structural damping

When applying the original definition of the Hessian Free Method to recurrent
neural networks, the Tikhonov regularizer defined in chapter 2.6.4 did not seem
to achieve good results on certain long-term dependency problems. [Martens,
2011b] introduced a new additional regularizer which helped to reduce the
effect of vanishing gradients of RNNs. This regularizer is called structural
damping and adds a penalty to the recurrent neural network’s cost function if
there are high fluctuations in the hidden activation terms of the model.

The key idea of this method is that for certain small changes in the parameter
θ of the models there can be large and highly non-linear changes in the hidden
state sequence h. This leads to a bad local approximation of f(θ) (eq. 2.60).
The parameter λ of the Levenberg Marquard damping strategy will get very
high in order to compensate this behavior. This is an unwanted side effect,
as high λ reduce the optimization to a first order method, leading to a poor
performance of HF [Martens, 2011b].

Structural damping, when applied to recurrent neural network, improves the
learning of long term dependencies [Martens, 2011b]. The penalty term which
is added to the cost function of the model can be defined as the difference
between two state vectors, in this case, the hidden states of a recurrent neural
network. A common measure depending on the appropriate distributional
assumptions on the input given the code, e.g., is the traditional squared error
[Bishop, 1996]

L(x, z) = ||x− z||2, (2.66)

or, when dealing with vectors of bit probabilities, the cross entropy [Bishop,
1996]:

H(p, q) = −
∑
x

p(x) log q(x)+ (1− t) · log(1− x) (2.67)
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In this work the cross entropy was used as a reconstruction measure.

Preconditioning

Preconditioning is a method to accelerate CG [Nocedal and Wright, 2000].
The increased speedup is achieved by a linear change of variables x̂=Cx for
some matrix C. The transformed quadratic objective of q(θ) (eq. 2.60) is
defined as:

θ̂(x̂) =
1

2
x̂−TAC−1x̂− (C−1b)T (2.68)

leading to a system equation which should be easier to solve [Martens, 2010].

The term M = CTC is called preconditioner. There are various types of
different preconditioners. [Martens, 2010] used the diagonal Fisher informa-
tion matrix to substitute the diagonal elements of the Gauss-Newton matrix.
This preconditioner, denoted as martens preconditioner in future, is defined as:

M = [diag(
D∑
i=1

∇fi(θ)�∇fi(θ)) + λI]α (2.69)

� is element-wise product fi is the value of the objective function at training-
case i and the exponent α is a scalar value < 1, used to suppress extreme values.

Another preconditioner used in the experimental part in chapter 4.1 is the
’Jacobi ’ preconditioner. This preconditioner is defined as:

Cij =

{
Aii , if i = j

0 , otherwise
(2.70)

It uses the diagonal entries of a given matrix A. Details how to efficiently com-
pute the values of the diagonal elements of the Gauss-Newton matrix for the
jacobi preconditioner can be found in [Chapelle and Erhan, 2011].
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Figure 3 shows a pseudo code of the CG method, adapted for precondition-
ing [Nocedal and Wright, 2000]:

r0 := b−Ax0

z0 := M−1r0
p0 := z0

k := 0
repeat

αk :=
rTk zk

pT
kApk

xk+1 := xk + αkpk
rk+1 := rk − αkApk
if rk+1 is sufficiently small then exit loop end if
zk+1 := M−1rk+1

βk :=
zTk+1rk+1

zTk rk

pk+1 := zk+1 + βkpk
k := k + 1

end repeat
result is xk+1

Algorithm 3: Linear PCG pseudo code

Termination conditions for CG

Terminating a CG run after a couple of CG steps plays an important role
when it comes to finding the optimal CG solution. [Martens, 2010] defines the
following termination criteria for CG:

i > k and φ(xi) < 0 and
φ(xi)− φ(xi − k)

φ(xi)
< k ∗ ε (2.71)

The scalar k determines how many steps into the past we look in order to
compute the estimate of the current per-iteration reduction rate. The value i
is the index of the current iteration and φ is the quadratic φ(xi) = 1

2
xTAx−bTx

where A = B and b = −∇f(θ) [Martens, 2010]; in other words the current
solution of CG using minimizing the objective (2.60). Typical value for ε is
0.0005 and k=max(10, 0.1∗ i). This stopping criteria and the same parameters
were also used in the HF algorithm developed for CTC networks.
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CG iteration backtracking

The Hessian Free Method optimizes the value of p in respect to the 2nd order
model qθ(p). These improvements do not necessarily reflect the value of f(θ+p)
[Martens, 2010]. If the current solution of a CG step is worse then the previous
solution, the parameter values are backtracked until a lower value of f(θ + p)
than the current one has been found. A backtracking method, also known as
line-search, is implemented in the HF algorithm.

Algorithm definition

Summarizing the algorithmic and mathematical subtleties of the HF method,
figure 4 shows a pseudo code of the implemented HF algorithm adapted
for solving sequence labeling problems with CTC. The algorithm of [Martens,
2010] was slightly changed to fit into a CTC framework and follows the defi-
nition of [Chapelle and Erhan, 2011]. The method calculates the gradient and
the Gauss-Newton matrix over a single minibatch in one CG run. A CTC
prediction of the current minibatch is calculated before applying the HF al-
gorithm to the model. The starting vector in each new CG step is initialized
with the previous search direction. If the objective function value increases this
starting vector is reset to zero. A CG stopping criteria as defined in [Martens,
2010], also taking a CG iteration maximum into account, was implemented.
The structural damping regularizer, as defined in chapter 2.6.4 does not ap-
pear in the algorithm definition since it is added to the cost function of the
network directly. Details about the algorithm performance can be found in
the experimental part in chapter 4.1.
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% Parameters
g ... gradient
f ... objective
d ... search direction
p ... parameter update
t ... target
λ ... damping factor
µ ... structural damping factor
ρ ... Levenberg-Marquardt reduction ratio
θ ... parameters of the model
B ... damped Gauss-Newton matrix

% Initialization
λ← 1 (or some other initialization)
d← 0
µ← λ ∗ µ0 (updated with λ)

% Loop over mini-batches
for minibatch in train-batches

% CTC
t = calculate CTC target prediction

% Tikhonov damping
g = ∇f(θ)
B(d) = H(θ)d+ λd

% Truncated Newton
−p = solve(B,−g) using CG

% Backtracking
if f(θ + p) > f(θ) then

Go back to the previous step
end if

% Levenberg Marquardt heuristic

ρ← f(θ+p)−f(θ)
qθ(p)−qθ(0)

λ← 3
2
λ if ρ < 1

4

λ← 2
3
λ if ρ > 3

4

% Parameter update
θ ← θ + p

Algorithm 4: Hessian Free pseudo code 43





3. Optimized Learning of
Recurrent Models

3.1. Defining a Classifier Landscape

In the previous chapters an objective function, a model, and various training
algorithms have been defined. A classifier for solving the sequence labeling
problem can now be described with the following graphic of figure 3.1. In
case of this work, the objective function which is minimized is the negative
log-likelihood of the CTC output layer described in chapter 2.4.

Figure 3.1.: Definition of a classifier

The model which is used is a RNN (2.5.1). The optimization methods de-
scribed in chapter 3.1 can be used to learn input 7→ target mappings. Features
extracted from the input sequence will be generated by the model itself.
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3.2. Exploring Optimizations for a CTC Classifier

In the last decades very powerful mechanisms to classify patterns have been
developed. The two models which stand out the most are the Deep Convolu-
tional Network [LeCun et al., 1999] and the Deep Belief Network [Hinton and
Salakhutdinov, 2006b].

The first model is a variant of a Multilayer Perceptron and is inspired by the
visual cortex [Hubel and Wiesel, 1968]. It exploits spatial local correlation in
the data with the help of local convolutional filter operations. Another impor-
tant concept is non-linear down-sampling (max-pooling), an operation which
reduces the computational complexity for upper layers.

The second architecture, the Deep Belief Network (chapter 2.5.2), models the
input distribution P (x) in a pre-training phase. This is done with the help
of a layer-wise greedy training algorithm (chapter 2.5.2). The learned deep
representations allow a higher level of abstraction of the data, leading to a
good initialization of the network weights. Modeling P (x) seems to be helpful
when learning P (y|x) as a very powerful classifier is obtained after fine-tuning
the model.

Basically, it seems to be helpful to use a form of Deep Architecture for CTC
labeling problems as a very generalized representation of the data is learned,
leading to better recognition rates in the end. Nevertheless, a few tricky things
have to be considered: The training of (hierarchical) Recurrent Neural Net-
works is a very difficult problem due to the vanishing gradient problem (chapter
2.5.1). Learning P (y|x) directly might not be possible although various algo-
rithms to overcome this problem have been presented (chapter 3.1). Using
a non-recurrent model is not a solution either, as the memory mechanisms
of a RNN are needed to learn correlations of input frames over the time. If
the direct learning of P (y|x) is not possible, the use of Deep Belief Networks
might be the method of choice due to the good weight initialization obtained
by unsupervised pre-training. This might help to overcome local minima, even
if Recurrent Neural Networks are used instead of standard Feed-Forward Net-
works.

The next chapters analyze learning effects of RNNs with a CTC objective sys-
tematically. First gradient based algorithms (chapter 3.1) are compared in
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order to find a suitable training method for the underlying problem. Next
learning effects of hierarchical RNNs are analyzed. This section again com-
pares the presented gradient algorithms using a more complex model. The
next section covers generative pre-training of hierarchical RNNs, in order to
simplify the highly non-convex problem. The made assumption about Deep
Architectures is verified here. Chapter 4.1.5 compares the obtained results
with different state-of-the-art neural classifiers.

In order to use a DBN for stacked hierarchical RNNs, the following training
procedure was developed:

(i ) pre-train the stacked RBMs in a greedy manner (e.g. CD)
(ii) replace the input weights of each RNN with the weights of the RBM
(iii) initialize the recurrent weights of each RNN with small gaussians
(iv) fine-tune the model with stochastic gradient descent (or any

other suitable training algorithm)
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4.1. Classifying concatenated MNIST Digits

This chapter presents the results of various toy experiments with CTC net-
works carried out with the MNIST database [Lecun and Cortes, 2012].

Figure 4.1.: MNIST digits

In section 4.1.2 the optimization algorithms presented in chapter 3.1 are ana-
lyzed in detail using a RNN with a CTC output layer. This simple recurrent
model is extended to a hierarchical architecture and possible training meth-
ods based on the assumptions made in chapter 3.2 are evaluated. Section
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4.1.5 compares the performance of a hierarchical RNN optimized by genera-
tive pre-training (chapter 2.5.2) and fine-tuned with stochastic gradient descent
(chapter 2.6.1), with other classifiers on the MNIST database.

4.1.1. Data Preparation

The MNIST database of single handwritten digits is a subset of a larger set
available from NIST [Lecun and Cortes, 2012]. It consists of a training set of
60,000 digit samples, and a test set of 10,000 examples. The digits have been
size-normalized and centered in a fixed-size image of 28× 28 pixels.

In order to learn sequence dependencies from the MNIST data set with a CTC
network, sequences of concatenated digits are needed. For all experiments 10
concatenated MNIST digits were used as a single sequence. This leads to 6000
training sequences and 1000 test sequences. A single sequence is 280×28 pixels
long. Each target sequence consists of 10 digits.

Figure 4.2.: Concatenated MNIST digits

All images were normalized to lie in the range [0-1]. No further preprocessing
method, like elastic- or random-distortions [Ciresan et al., 2010], [Lauer et al.,
2007] or the addition of Gaussian noise [Graves et al., 2009] was applied to the
data.

The normalized Levenshtein distance [Damerau, 1964] was used to measure
the difference between the predicted CTC labels and the target labels:

error = 100 ∗

N∑
n=0

lev. distance

N∑
n=0

#characters

N ... number of sequences (4.1)
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4.1.2. Comparison of Gradient Based Optimization
Algorithms

This section presents recognition results of different gradient training algo-
rithms, which were also presented in chapter 3.1. All optimization methods
were tested on the adapted MNIST dataset on a RNN model with a CTC
output layer.

Figure 4.3.: RNN-CTC architecture with 40 frames MNIST training example

Sequences of 10 concatenated MNIST digits were used as a network input.
Each sequence was split to chunks of 28 × 28 pixels shifted by 7 pixels per
time-step. In this case a training sequence consists of 40 frames and has a cor-
responding target sequence of the length 10. The training was stopped after
the early-stopping criteria was met or the number of epochs exceeded the max-
imum. A batch size of 500 training examples were used for the batch learning
algorithms. This batch size achieved a very stable error curve when testing the
algorithms. Table 4.1 summarizes the parameter settings the model. Table 4.2
shows the individual learning parameters for each optimization algorithm.
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dataset parameters
train=5000 sequences 10 digits/sequence

MNIST valid=1000 sequences 10 digits/sequence
test=1000 sequences 10 digits/sequence

model parameters
input=784 28× 28 | 7 shift
hidden=100
output=11 10+1 labels

RNN output layer=CTC
weights=gaussian µ = 0, σ = 0.1
activation=logistic sigmoid
decoding=best-path

Table 4.1.: Model parameters of the RNN

training parameters
early-stopping=50,max-epochs=500,validation-frequency=5

algorithm batch size parameters

SGD 1 η=0.01

SLM 1 η=0.1

RPROP+ 500 α=0.1, η+=1.2, η-=0.5, etamax=0.2, etamin=1e-6

IRPROP- 500 α=0.1, η+=1.2, η-=0.5, etamax=0.2, etamin=1e-6

HF 500 cg-iter-max=5, preconditioner=None, µ = 0.123, λ = 1

Table 4.2.: Algorithm parameters of the RNN

Table 4.12 lists the average train-, validation- and test-errors of 3 test runs.
In every run the same weight initialization was used for every algorithm. This
step ensures that bad weight initializations would not bias the result. The
training sequences were permuted randomly in every epoch.

When comparing the results of different batch and on-line training methods
in table 4.12 it can be seen that the on-line optimization algorithms clearly
outperform the batch methods when it comes to convergence speed. The CTC
output layer is able to adapt its predictions more often due to the on-line
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adapted MNIST (28× 28 | 7)

algorithm
error

train [%] valid [%] test [%] epoch [1]

SGD 0.0±0 2.23±0.11 2.27±0.1 67±20
SLM 0.0±0 2.40±0.12 2.34±0.07 48±37
RPROP+ 1.61±1.37 3.89±0.47 3.82±0.4 252±163
IRPROP- 1.66±1.4 3.99±0.43 3.77±0.47 247±185
HF 0.23±0.15 2.52±0.69 2.16±0.09 203±77

Table 4.3.: Test error of different algorithms (RNN) (MNIST)

training and the stochastic methods ’follow’ these predictions much faster
by changing the weights of the underlying network. This makes stochastic
learning algorithms the method of choice for this sort of output layer. Very
good results of Stochastic Gradient Descent (SGD) also verify this assumption.
The algorithm achieves very good overall performance and is still the state-of-
the-art method to beat. The stochastic Levenberg Marquard Method, designed
to accelerate SGD, shows a slightly faster convergence rate, but achieves a
worse overall result. Nevertheless it might be a fruitful acceleration technique
for future learning tasks.

The Hessian Free Method scored the best overall result. This was possible as
this method was slightly adapted to a semi-stochastic version in this work and
it is worth to discuss these modifications in more detail.

Various HF parameter settings were tested with the goal of improving the algo-
rithm’s performance. Most of the findings correspond to the results presented
in [Montavon et al., 2012], an excellent summary of learning effects and pitfalls
when training neural networks with the Hessian Free Method.

In this experiment the HF algorithm was able to approximate the objective
locally with the second order approximation using a batch size of 500 training
examples. Increasing the batchsize to values bigger than 500 makes the opti-
mization of the network possible but leads to a worse recognition rates. This
has to with bad generalization properties of batch algorithms [LeCun et al.,
1998b], [Wilson and Martinez, 2003] and the fact that more CTC updates seem
to be preferable when solving sequence labeling problems due to the on-line
adaption of the target signals.

Using the original implementation of the HF Method [Martens, 2011b], [Martens,
2010] the use of smaller minibatches leads to a bad local approximation of the
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likelihood objective. The HF parameter λ increases, in order to compensate
this behavior. Due to the insufficient curvature information the algorithm suf-
fers from bad noisy fluctuations leading to non-convergence of the method in
the worst case. This in particular happens when batchsizes smaller than 10
are used. The use of higher µ values (0, ..., 1), affecting the penalty term of
the structural damping regularizer, did not help to solve this problem.

In order to handle this problem the hard limit of maximum allowed CG it-
erations was fixed to a small value. It was verified by experiment that many
CG iterations does not seem to to improve the result on the testset when us-
ing small minibatches. Restricting the maximum allowed CG iterations to a
small value however improves the recognition rate. The limit CGmax = 5 of
maximum allowed CG-iterations in this experiment achieved the best over-
all result in multiple test runs. Preferable values should be in the range of
CGmax = {2, 10}. From the CTC perspective this change of parameters might
also prevent the extraction of wrong features at the beginning of the training
as wrong predictions might be generated by the CTC output layer. These
wrong predictions might be learned too precisely, leading to a worse long term
learning effects.

In order to design a semi-stochastic Hessian Free Method, which might be
the method of choice in this learning task, two additional things are worth
to mention. In [Martens, 2011b] the current CG starting position of CG was
initialized with the previous solution. This information sharing contributes
to the success of the algorithm. In a semi-stochastic setup, which was also
used in this work, the sharing of information might not be preferable, as noisy
information might change things to the worse. It might be better to skip or
rescale the last solution. However this has to be tested more accurately. Apart
from that, the Levenberg Marquard Heuristic defined in [Martens, 2011b]
seems be too strict in a semi-stochastic setup. Softening this criteria to
{ if ρ < 1

4
: λ ← 100

99
λ elif ρ > 3

4
: λ ← 99

100
λ } reduces the influence of the

reduction ratio computed from curvature mini-batches, preventing the heavy
increase of the λ parameter.

As far as the use of a preconditioner (chapter 2.6.4) is concerned, it can be said
that preconditioning did not improve the recognition rate when using recur-
rent architectures. This was also reported by [Martens, 2011b] and [Montavon
et al., 2012]. The use of an additional structural damping regularizer did not
seem to influence all optimization methods as well. This might have to do with
the absence of long-term pattern dependencies in the data.
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Summarizing the things above, stochastic learning algorithms seem to be the
method of choice when using CTC models. This finding can be verified when
comparing the results gained in this experiment. On-line optimization meth-
ods seem to have better generalization properties and are able to adapt the
weight vectors much faster than its batch counterparts. In the case of CTC,
the noisy gradient estimates of stochastic methods might also help to uncover
hidden labels, as the algorithm will adapt the network weights to a single CTC
prediction. On the contrary noisy gradient estimates might also prevent the
network to learn the underlying training patterns in some cases. Algorithms
might get stuck in a local minima, making optimization of the network impos-
sible. Additional drawbacks like the loss of parallel computation on a GPU and
the loss of advanced acceleration techniques like conjugate gradient methods
must be taken into account as well. A semi-stochastic Hessian Free Method
seems to be a promising candidate for future research.

Figure 4.4 visualizes the best individual test run of the algorithms tested in
this toy experiment for completness.

Figure 4.4.: Test error curves of the algorithms (MNIST)
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4. Toy Experiments

4.1.3. Comparison of Gradient Based Optimization
Algorithms for Hierarchical Recurrent Architectures

In the last chapter it was demonstrated that the training of simple recurrent
architectures with a CTC objective is possible. The Hessian Free method
slightly outperformed other learning algorithms.

In this experiment the same problem is problem is tackled with the help of
stacked hierarchical architectures (cp. figure 4.5). It is hoped that, due to
the layered structure of the model, more abstract features would be learned,
leading to an improved recognition performance on the test set.

Figure 4.5.: HRNN-CTC architecture with 40 frames MNIST training example

The learning algorithms of chapter 3.1 were applied to a hierarchical RNN
with {100, 100, 100} layers. Table 4.4 lists the parameters of the used re-
current model. Table 4.5 shows the individual learning parameters for each
optimization algorithm. All experiments were carried out 3 times.
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4.1. Classifying concatenated MNIST Digits

dataset parameters
train=5000 sequences 10 digits/sequence

MNIST valid=1000 sequences 10 digits/sequence
test=1000 sequences 10 digits/sequence

model parameters
input=784 28× 28 | 7 shift
hidden={100, 100, 100}
output=11 10+1 labels

HRNN output layer=CTC
weights=gaussian µ = 0, σ = 0.1
activation=logistic sigmoid
decoding=best-path

Table 4.4.: Model parameters of the HRNN

training parameters
early-stopping=100
max-epochs=500
validation-frequency=5

algorithm batch size parameters

SGD 1 η=0.01

SLM 1 η=0.1

RPROP+ 100 α=0.1, η+=1.2, η-=0.5, etamax=0.2, etamin=1e-6

IRPROP- 100 α=0.1, η+=1.2, η-=0.5, etamax=0.2, etamin=1e-6

HF 100 cg-iter-max={5}, precond.=None, µ = 0.123, λ = 1

Table 4.5.: Algorithm parameters of the HRNN
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4. Toy Experiments

adapted MNIST (28× 28 | 7)

algorithm
error

train [%] valid [%] test [%] epoch [1]

SGD 100±0 100±0 100±0 100±0
SLM 100±0 100±0 100±0 100±0
RPROP+ 100±0 100±0 100±0 100±0
IRPROP- 100±0 100±0 100±0 100±0
HF 0.19±0.14 2.50±0.29 2.45±0.32 127±21

Table 4.6.: Test error of different algorithms (HRNN) (MNIST)

Table 4.6 lists the recognition rates of each optimization method. SGD, the
Stochastic Diagonal Levenberg Marquard Method and both RPROP variants
were not able to solve the optimization problem. Neither the change of the
weight initialization scheme to a sparse format allowing 15 random connections
per neuron nor the use of different learning rates η = {0.01, 0.1, 0.5, 1} helped
to improve the result. Also attempts to change the batchsize to values of
{1, 10, 100, 500} and the addition of a structural damping regularizer (chapter
2.6.4) to the cost function were unsuccessful. Nevertheless, the Hessian Free
Method was able to successfully solve the learning problem. It is a suitable
optimization algorithm for complex neural network models.

Having a closer look at the test error of the hierarchical RNN in this experi-
ment, it can be seen that the increase of layers does not help to improve the
recognition rate on the test set. Table 4.7 and figure 4.6 compare the best
test HF result of the previous chapter with the best individual result of this
experiment. The increase of the layer size to {1000, 1000, 1000} neurons does
not help to improve the model’s generalization capabilities as well. Table 4.8
verifies this assumption. It seems that additional model side aspects must be
taken into account in order to improve the model’s performance.
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4.1. Classifying concatenated MNIST Digits

adapted MNIST (28× 28 | 7)

model algorithm
error

train [%] valid [%] test [%] epoch [1]

RNN HF 0.154 2.11 2.07 119
HRNN HF 0.13 2.44 2.64 129

Table 4.7.: Comparison of a RNN and HRNN (MNIST)

adapted MNIST (28× 28 | 7)

model algorithm
error

train [%] valid [%] test [%] epoch [1]

HRNN HF 0.0 2.13 2.04 113

Table 4.8.: Test error of a HRNN with 1000x3 neurons (MNIST)

Figure 4.6.: Comparing the error curves of a RNN and a HRNN (MNIST)
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4. Toy Experiments

4.1.4. Generative pre-training for Hierarchical Recurrent
Architectures

In the last experiment it was shown that with the help of the Hessian Free
Method it was possible to optimize a Hierarchical Recurrent Network. How-
ever the test error did not improve with the help of the layered structure. It
seems that additional model side aspects like the use of additional regulariz-
ers or sparse connections must be taken into account to further improve the
classifier’s performance.

In this experiment the learning problem of the previous chapters is divided
into two parts. First the data distribution P (x) is learned. Then the learning
problem P (y|x) is solved. Learning P (x) can be achieved with the help of the
generative pre-training technique for Deep Belief Networks (DBN) (chapter
2.5.2). This technique was adapted for hierarchical RNNs (chapter 3.2).

The input weights of a single RNN layer were exchanged with those of the pre-
trained RBM layer of a DBN. The recurrent connections of each RNN were
initialized to small gaussians (µ = 0, σ = 0.1). Table 4.9 lists the configuration
parameters of this model.

dataset parameters
train=5000 sequences 10 digits/sequence

MNIST valid=1000 sequences 10 digits/sequence
test=1000 sequences 10 digits/sequence

model parameters

DBN-RNN

input neurons activation output layer
784 sigmoid CTC
hidden neurons algorithm batchsize
{1000,1000,1000} {cd-k, sgd} {10, 1}
output neurons parameters
10 ηpretrain = 0.01, ηfinetune = 0.1

training parameters
early-stopping=50
pretrain-epochs=100
max-epochs=500
validation-frequency=1

Table 4.9.: Model and training parameters of the DBN-RNN
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4.1. Classifying concatenated MNIST Digits

After 100 epochs of unsupervised pre-training and the model was fine-tuned
with stochastic gradient descent using a early-stopping rate of 50 epochs. Table
4.10 lists the errors on the training-, validation- and test-set respectively.

adapted MNIST (28× 28 | 7)

model
error

train [%] valid [%] test [%] epoch [1]

DBN-RNN 0.0 1.4 1.39 146

Table 4.10.: Errors of the DBN-RNN (MNIST)

Pre-training the RNNs with contrastive divergence leads to a preferable weight
initialization, which is needed to create a smoother error surface. As a conse-
quence the stochastic gradient descent algorithm used in the fine-tuning phase
was able to escape local minima and performed very well. The model outper-
forms the best RNN of the previous chapter, which was trained directly with
the HF method.

Figure 4.7.: Error curves of the DBN-RNN (MNIST)

Figure 4.7 shows the error curves of both models for comparison. The DBN-
RNN was able to solve the learning task fully and clearly outperforms the
HRNN.
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4.1.5. Comparison of Neural Network Architectures

In order to put this analysis in a bigger context, various neural networks ar-
chitectures were compared on the modified MNIST database. A Multilayer
Perceptron (MLP) [Rosenblatt, 1958], a Convolutional Neural Network [Le-
Cun et al., 1999], a Long Short Term Memory Network (LSTM) [Gers et al.,
2002] and a Deep Belief Network (DBN) [Mohamed et al., 2009] were chosen
as test candidates. All networks were connected to a CTC output layer.

Figure 4.8.: Network models

In this experiment the same input-window of 28 × 28 pixels was used again.
This input-window was shifted 7 pixels per time-step, leading to an overall
sequence length of 40 frames. It is assumed that all classifiers will be able
to recover the original digits from the sequence and learn to ignore the noise
between the consecutive digits with the help of the CTC layer.

Table 4.12 lists the specific parameters for each neural models which were used
in the experiments.
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4.1. Classifying concatenated MNIST Digits

RNN

input neurons activation output layer
784 sigmoid CTC
hidden neurons algorithm batchsize
100 hf 1
output neurons parameters
10 cg-iter-max=3, precond=None, µ = 0, λ = 1

LSTM

input neurons activation output layer
784 sigmoid CTC
hidden neurons algorithm batchsize
100 sgd 1
output neurons parameters
10 η = 0.01

MLP

input neurons activation output layer
784 sigmoid CTC
hidden neurons algorithm batchsize
{500,500} sgd 1
output neurons parameters
10 η = 0.01

ConvNet

input neurons activation output layer
784 sigmoid CTC
hidden neurons algorithm batchsize
{576,512} sgd 1
output neurons parameters
10 η = 0.01

DBN

input neurons activation output layer
784 sigmoid CTC
hidden neurons algorithm batchsize
{1000,1000,1000} {cd-k, sgd} {10, 1}
output neurons parameters
10 epochspretrain=100, k=1,

ηpretrain = 0.01, ηfinetune = 0.1

DBN-RNN

input neurons activation output layer
784 sigmoid CTC
hidden neurons algorithm batchsize
{1000,1000,1000} {cd-k, sgd} {10, 1}
output neurons parameters
10 epochspretrain=100, k=1,

ηpretrain = 0.01, ηfinetune = 0.1

Table 4.11.: Model parameters of different network architectures
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4. Toy Experiments

Table 4.12 shows the results of the models with a input-frame of 28×28 pixels
shifted 7 pixels per time-step. Due to the fact that a single input-frame repre-
sents a single MNIST digit, the hierarchical feed-forward classifiers were able
to learn the underlying patterns very well. All networks were able to ignore
the data between two concatenated digits, meaning that the CTC output layer
assigned a ’blank’ label to those noisy frames.

adapted MNIST (28× 28 | 7)

model
error

train [%] valid [%] test [%] epoch [1]

RNN 0.154 2.11 2.07 119
LSTM 0.02 2.95 2.94 143
MLP 0.0 1.92 1.75 112
ConvNet 0.65 5.46 6.27 122
DBN 0.01 1.47 1.41 108
DBN-RNN 0.0 1.4 1.39 146

Table 4.12.: Errors of different network architectures (MNIST)

When looking at table 4.12 it is interesting to see that the convolutional neu-
ral network, which outperforms other classifiers on the MNIST database in a
standard regression task, was not able to achieve very good results on the test
set. This might be due to the fact that the convolutional filters have problems
of ignoring the noisy patterns between each digit.

As far as the DBN and the developed RNN-DBN are concerned, it can be seen
that both models achieved nearly the same results, and outperformed all other
models in this experiment. Figure 4.9 shows the error curves of the models.
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4.1. Classifying concatenated MNIST Digits

Figure 4.9.: Error curves of different network architectures (MNIST)
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5. Conclusion and Future Work

In this work a Recurrent Neural Network with a CTC output layer on top
was presented. The specially designed output layer was able to successfully
solve the sequence labeling problem with the help of a maximum likelihood
objective. As a consequence, the direct training of input 7→ target relations
without knowing the explicit target labeling was possible.

First of all the effects of different gradient based optimization techniques, able
to handle noisy target predictions, were analyzed. Gradient descent with mo-
mentum, RPROP variants and the Hessian Free Method were used to train a
RNN on sequences of concatenated MNIST digits. Although nearly all algo-
rithms were able to learn the training data, the models did not generalize very
well, leading to moderate recognition results on the test set.

In a next step, a single recurrent architecture was extended to a hierarchical
RNN. It was hoped that due to the new structure of the model, more abstract
features would be generated helping to improve the recognition rate. Neither
RPROP variants, nor the Stochastic Diagonal Levenberg-Marquard Algorithm
were able to solve the learning problem optimally. Instead the Hessian Free
Method was able to solve the learning problem. However the recognition rate
on the test set did not improve. It seems that additional model side aspects
such as a more clever data representation or additional regularizers must be
taken into account to further improve the model.

The generative pre-training technique supported by Deep Belief Models could
handle this problem. Pre-training a hierarchical recurrent network with con-
trastive divergence leads to superior recognition results on the underlying test
set.

Different network architectures, all connected to a CTC output layer were
tested on the adapted MNIST dataset. In fact the developed DBN-RNN model
was able to outperform all other classifiers due to its ability to learn a more
abstract representation of the data, and its capability of extracting tempo-
ral relations with the help of recurrent connections. Both characteristics are
needed for challenging future learning tasks.
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5. Conclusion and Future Work

The main emphasis of this work was the analysis of gradient based optimiza-
tion techniques (figure 5.1) for RNN models with CTC output layers. Al-
though very powerful learning techniques for optimizing these models exist, it
was demonstrated that the presented algorithms still have problems optimiz-
ing complex layered network structures. Such ’structures’ are needed to model
levels of abstraction, allowing a system to learn complex functions mapping
from an input to a target directly from data, without depending completely
on human crafted features.

Figure 5.1.: Improving optimization methods

In this work a ’loophole’, generative pre-training to escape optimization prob-
lems was used. Splitting the learning problem into two parts, modeling P (x)
and solving P (y|x) afterwards, seems to be a good solution. Further research
should be invested and might be rewarding.

Although the presented architecture (DBN-RNN) outperformed all other mod-
els in the experimental part, the model still suffers from several drawbacks,
which are worth to discuss.

From a biological point of view studies on brain energy expense suggest
that neurons encode information in a sparse and distributed way [Attwell and
Laughlin, 2001]. The estimated percentage of neurons active at the same
time lies between 1 and 4%; a trade-off between richness of representation
and small action potential energy expenditure [Lennie, 2003]. In this work
a dense initialization scheme was used to initialize the weights of a recurrent
neural network, which might not be biological plausible. The use of more
a biological inspired neuron models, like the leaky integrate-and-fire (LIF)
[Dayan and Abbott, 2001] was not taken into account as well. As far as
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generative pre-training is concerned, it must be questioned if this learning
concept is biologically plausible at all.

From the machine learning perspective it might be possible to enhance
the CTC objective (figure 5.2). The maximum likelihood training criteria
only tries to optimize the likelihood of the training data, but does not take
the model side aspects such as efficient data compression into account. As a
consequence, at a certain point of training the model only learns the training
data, but does not improve on the test set.

This problem could be partly solved by adding additional regularization terms,
like L1- or the L2 norm added to the cost function, however, much more
interesting ideas to solve this problem exist. The use of stochastic weight
noise [Hinton et al., 2012] helps to improve the recognition rates on the test
set. This concept could be further extended. Thinking of a network as a
transmission channel, the transmission cost, measured as the Kullback-Leibler
divergence between a prior and posterior distribution of the weights, can be
minimized. This idea was first published by [Hinton and Van Camp, 1993]
and was used as a compression method. [Graves, 2011] extended the concept,
deriving a variational inference method for CTC networks.

Figure 5.2.: Improving objectives

Optimal compression of data stored in neural networks will not only improve
the overall learning performance on a dataset, removing the need of a valida-
tion set. It will also have an influence on the structure of the model, as far
pruning and weight growing methods are concerned. This principle follows
Occam’s razor [Ariew, 1976] and might be an interesting concept for future
research.
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A. Appendix

A.1. Software Framework

Figure A.1 gives an overview of the current software features of this framework
developed in this work. Simulations on various databases with a wide range
of network models with different algorithms are possible. All models are con-
nected by default with a CTC output layer.

Figure A.1.: Software features

Any experiment can be simulated on a 32/64bit Linux, Windows and Ma-
cOs workstation. In order to enable GPU support a NVIDIA graphics card is
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A. Appendix

needed. All experiments were run with Theano v0.6rc1 which can be down-
loaded from the corresponding website1.

In order to run an experiment on a Linux based target matching the following
.bash profile entry is needed to correctly initialize the Theano GPU support
on Linux based operating systems:

THEANO FLAGS=device=gpu,floatX=float32,nvcc.fastmath=True,mode=FAST RUN,
force device=True,cxxflags=/usr/local/cuda/include/

Information about the installation process and additional optimization param-
eters can found at the Theano website2.

1http://deeplearning.net/software/theano/index.html
2http://deeplearning.net/software/theano/index.html
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