
Master’s Thesis

Operating System-Level Power
Management Based on Power Estimation

Michael Düss

————————————–

Institute for Technical Informatics
Graz University of Technology

Head: O. Univ.-Prof. Dipl.-Ing. Dr. techn. Reinhold Weiß

Reviewer: Ass.-Prof. Dipl.-Ing. Dr. techn. Christian Steger

Advisor: Ass.-Prof. Dipl.-Ing. Dr. techn. Christian Steger
Dipl.-Ing. Andreas Genser

Graz, September 2010

Abstract

Today adequate power management is a focal point in the embedded systems domain.
The ever rising complexity of embedded systems causes an increase in power consump-
tion, which opens a gap between power supply technologies and the power consumption
demands for mobile systems. Hence, the evolution of battery technology does not keep up
with the power thirst of new microprocessor systems. Effective countermeasures to cir-
cumvent these trends are introduced by power management mechanisms. Dynamic power
management is a popular technique to deal with required power optimizations.

In this thesis power management strategies will be designed and implemented on the
operating system-level. Power information derived from an on-board power estimation
unit will be exploited. The goal is to develop power management strategies for systems
with limited power with the support of the acquired power information.

1

Kurzfassung

Heutzutage ist der Einsatz von Power Management Techniken eine Kernaufgabe im Be-
reich von Eingebetteten Systemen. Die Komplexität von Eingebetteten Systemen und so-
mit auch die benötigte Leistung steigen stetig. Für mobile Systeme bewirkt dies eine größer
werdende Lücke zwischen der notwendigen und der verfügbaren Leistung. Grund dafür ist
der Umstand, dass die Weitereinwicklung der Batterietechnologien nicht mit dem stark
steigenden Leistungsverbrauch von neuen Microprozessor Systemen mithält. Der Einsatz
von Power Management Strategien ist eine effektive Gegenmaßnahme um diesem Trend
entgegen zu wirken. Dynamisches Power Management ist dabei eine gängige Technik um
geforderte Leistungsoptimierungen zu realisieren.

Diese Masterarbeit befasst sich mit dem Entwurf und der Implementierung einer Power
Management Strategie auf Betriebssystem-Ebene. Ziel ist die Entwicklung eines Power
Managements für Systeme mit limitierter Versorgungsleistung. Die Realisierung erfolgt
mit der Unterstützung einer zusätzlichen Power Estimation Unit, welche Leistungsinfor-
mationen über das benutzte System zur Verfügung stellt.

2

STATUTORY DECLARATION

I declare that I have authored this thesis independently that I have not used other than
the declared sources/resources and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

Graz, 1st September 2010

Michael Düss

3

Contents

1 Introduction 12
1.1 Motivation . 12
1.2 Goals . 14
1.3 Structure . 14

2 Background 16
2.1 CMOS Power Consumption . 16

2.1.1 Static Power Consumption . 16
2.1.2 Dynamic Power Consumption . 17

2.2 Energy Harvesting . 18
2.2.1 Conditions for Energy Neutral Operation 19
2.2.2 Harvesting Sources . 20
2.2.3 Practical Observations . 22

2.3 Real-Time Operating Systems (RTOS) . 23
2.3.1 Operating Systems . 24
2.3.2 Multitasking Operating Systems . 24
2.3.3 What is a Real-Time Operating System? 28
2.3.4 Scheduling . 29
2.3.5 Comparison between Common OS and RTOS 31

3 Power Management 32
3.1 Reactive/Static Power Management . 32
3.2 Proactive/Dynamic Power Management . 33

3.2.1 Power Management on OS-Level for Minimizing the Power Con-
sumption . 35

3.2.2 Power Management on OS-Level for Systems with Limited Power . . 36
3.2.3 Summary of Proactive/Dynamic Power Management Techniques . . 36

4 Design of the OS-Level Power Management 37
4.1 Overview . 37
4.2 SoC Platform . 39

4.2.1 LEON3 . 40
4.2.2 Power Estimation Unit . 40

4.3 Operating System . 42
4.3.1 SnapGear Linux . 42
4.3.2 Linux 2.6 Scheduler . 43

4

4.4 Power Management . 46
4.4.1 Averaging Algorithms . 50

4.5 Power Budget . 53

5 Implementation of the OS-Level Power Management 54
5.1 Hardware Setup . 54

5.1.1 Configuration of the LEON3 SoC Platform 55
5.1.2 Synthesis, Netlist Generation . 55
5.1.3 Programming of the FPGA Board 56

5.2 Software Setup . 56
5.2.1 Configuration of the OS . 57
5.2.2 Compilation of the OS . 57
5.2.3 Connection to the LEON3 SoC Platform 57
5.2.4 Load, Run OS . 58

5.3 Linux Scheduler . 58
5.3.1 Acquisition the Present Power Information from the Power Estima-

tion Unit . 59
5.3.2 Storing of the Power Information . 61
5.3.3 Calculation of the Present Average Power Consumption 62
5.3.4 Selection of the Next Running Task 65
5.3.5 Power Budget . 66
5.3.6 Writing Power Information to the File System 67

6 Evaluation and Results 69
6.1 Evaluation . 69

6.1.1 Evaluation Measurement Setup . 69
6.1.2 Evaluation Task-Set . 70
6.1.3 Power Profiling of the Evaluation Task-Set 71
6.1.4 Variations of the Averaging Algorithms 72

6.2 Results . 73
6.2.1 Outcome of the OS-Level Power Management 73
6.2.2 Impact on the LEON3 SoC’s Performance 76

7 Conclusion and Future Work 79
7.1 Conclusion . 79
7.2 Future Work . 80

7.2.1 Exploration of the Implemented Power Management with a Real
Power Budget . 80

7.2.2 Hardware Power Management Mechanism 80
7.2.3 Introduction of Additional Metrics for the Scheduling Decision . . . 81

A Detailed Results 82
A.1 Simple Moving Average - Bufer=5 . 83
A.2 Simple Moving Average - Bufer=20 . 84
A.3 Simple Moving Average - Bufer=50 . 85
A.4 Weighted Moving Average - Bufer=5 . 86

5

A.5 Weighted Moving Average - Bufer=20 . 87
A.6 Weighted Moving Average - Bufer=50 . 88
A.7 Exponential Moving Average - Alpha=0.5 89
A.8 Exponential Moving Average - Alpha=0.1 90
A.9 Last Power Value . 91

List of Abbreviations 92

Bibliography 93

6

List of Figures

1.1 Performance/Stamina gap for mobile devices [She08] 13
1.2 Trend of energy costs in Austria between 1970 and 2008; Source: Statistik

Austria, calculated by Austrian Energy Agency 13

2.1 CMOS inverter modes for static power consumption [Tex97] 17
2.2 Solar activity graph [KHZS07] . 18
2.3 Power potential from the environment by the means of using several types

of energy harvesters [VvSGH09] . 23
2.4 Timeslice model [Hea03] . 25
2.5 Model of context switching [Hea03] . 25
2.6 State diagram for a typical (real-time) kernel [Hea03] 27
2.7 A typical operating system structure [Hea03] 27
2.8 Example of a real-time response [Hea03] . 28

3.1 State diagram for a reactive/static power management model [Ols08] 33

4.1 Concept overview . 38
4.2 Use-case diagram of the chosen power management 38
4.3 Schematic overview of the used hardware and software parts 39
4.4 Power emulation architecture . 41
4.5 Scheduler core . 44
4.6 Overview of the four steps of the power management 46
4.7 Power information generated from the power estimation unit 47
4.8 Overview of the communication between the OS and the power estimation

unit with the following registers: mod sel - register for the module selec-
tion, state sel - register for the state selection, powtbl in - register for
power table configuration, pow val - present power consumption, pe ctrl
- control register, pe avgstep - register to define the average step range . . 47

4.9 Extended task structure . 48
4.10 Update power information with further timeslices 48
4.11 Selection process of the next running task 49
4.12 Weights for the SMA filter . 51
4.13 Weights for a WMA filter with N=15 . 52
4.14 Weights for the first 20 values of the EMA filter with α = 1/8 53

5.1 Overview of the steps for the hardware setup 54
5.2 Snapshot of LEON3 configuration GUI . 55

7

5.3 Snapshot of LEON3 programming GUI . 56
5.4 Overview of the steps for the software setup 56
5.5 Snapshot of the OS configuration GUI . 57
5.6 Snapshot of the OS kernel configuration GUI 58

6.1 Evaluation setup . 70
6.2 Power profiles of the evaluation task-set . 71
6.3 Representative extract of the scheduling order and the computation time

fragmentation. Averaging algorithm: Without-PM 74
6.4 Number of timeslices, suspends and violations of the evaluation task-set.

Averaging algorithm: Without-PM . 74
6.5 Representative extract of the scheduling order and the computation time

fragmentation. Averaging algorithm: EMA-Alpha09 75
6.6 Number of timeslices, suspends and violations of the evaluation task-set.

Averaging algorithm: EMA-Alpha09 . 76
6.7 Number of task suspends of the evaluation task-set dependent on the dif-

ferent averaging algorithms . 77
6.8 Percentage of occurred violations of the of the evaluation task-set dependent

on the different averaging algorithms . 77
6.9 Performance loss - Idle time = 200ms . 78
6.10 Performance loss - Idle time = 100ms . 78

A.1 Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: SMA-B5 83

A.2 Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: SMA-B5 . 83

A.3 Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: SMA-B20 84

A.4 Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: SMA-B20 . 84

A.5 Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: SMA-B50 85

A.6 Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: SMA-B50 . 85

A.7 Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: WMA-B5 86

A.8 Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: WMA-B5 . 86

A.9 Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: WMA-B20 87

A.10 Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: WMA-B20 . 87

A.11 Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: WMA-B50 88

A.12 Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: WMA-B50 . 88

8

A.13 Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: EMA-Alpha05 89

A.14 Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: EMA-Alpha05 . 89

A.15 Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: EMA-Alpha01 90

A.16 Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: EMA-Alpha01 . 90

A.17 Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: LastPowerVal 91

A.18 Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: LastPowerVal . 91

9

List of Tables

2.1 Selected battery-operated systems and their average power consumption
[VvSGH09] . 22

2.2 Characteristics of various energy sources and amount of typical harvested
power [VvSGH09] . 23

2.3 Comparison between common OS and RTOS [Abb06] 31

3.1 Summary of the different proactive/dynamic power management techniques 36

4.1 Trend of used OS for embedded systems . 42

6.1 Variations of the evaluation algorithms . 72

10

Listings

4.1 Structure of a task . 45
5.1 Structure for the communication with the power estimation unit 59
5.2 Acquisition of the present power information from the power estimation unit 60
5.3 Call of the “power information reading” function 61
5.4 Extension of the task structure with power information structure 61
5.5 Initialization of the averaging parameters 62
5.6 Call of the “calculating moving average” function 63
5.7 Calculation of the moving average . 63
5.8 Changes in the main scheduling function . 65
5.9 Extract of the power budget array . 66
5.10 Writing power information to the file system 67
5.11 Call of the“write power” function . 68

11

Chapter 1

Introduction

Power consumption is an important task since the beginning of embedded systems, espe-
cially in the division of mobile and nomadic systems [Ols08], [She08]. The main issue is the
limited battery capacity. On the one hand, more and more computational power is needed
and on the other hand the power supply should be stable as long as possible. The trend
in the embedded world shows that the performance of new microprocessors is increasing
continuously, but the improvement in battery technology is much slower [She08]. Figure
1.1 illustrates the gap between performance and operating time of mobile devices. Hence,
the gap between power consumption and power supply is growing. There are two possibil-
ities to work against this issue. First, battery technology improvements are required and
second, measures to make systems more power-efficient are needed.
Another interesting section of embedded systems is energy harvesting. One goal of such
energy harvesting systems is to stay within power constraints and to ensure system sta-
bility during a changing power budget [KHZS07].
Power consumption is also an important factor for all electric systems. The reason is
simple and always the same, money. Energy costs have increased rapidly during the last
years (Figure 1.2) and therefore customers and consumers are interested in reducing power
consumption for a reduction of costs.
Furthermore the terms “Green Computing” and “Green IT” [Cam09], [Mur08], [Rut09]
become more and more popular. This means that people start thinking more about the
environment.

1.1 Motivation

A designer of a power management for mobile systems has to handle the following two
problems:

• Energy is limited

• Power is limited

The problem of limited energy addresses common mobile devices. The goal is to reduce
power and energy consumption with the aim to maximize the duration. Technologies for

12

CHAPTER 1. INTRODUCTION 13

Ov
era
ll s
ys
tem

 pe
rfo
rm
an
ce

Battery e
nergy den

sity

DVD

Video

MP3 Player

Still Camera

Games

PDA

Phone

Time

F
e
a
tu
re
s

Performance /

stamina gap

4G
HD Video

3D Graphics

3G
D1 Video

3D Graphics

2.5G
CIF Video

2D Graphics

2G
QCIF Video

2D Graphics

1G
Voice

System performance enables high data

rate applications

Battery energy density increasing only

2–3% per year

Figure 1.1: Performance/Stamina gap for mobile devices [She08]

����������	�
����������

��������������
����������

�������������������

����������������

����

����

����

����

��

����

����

���	��

�
�	��

��
	��

���� ���� ���� ���� ��� ���� ���� ���� ���� ���

���� ��� ���� ���� ���� ���� ��� ���� ���� ����

Figure 1.2: Trend of energy costs in Austria between 1970 and 2008; Source: Statistik
Austria, calculated by Austrian Energy Agency

reaching this goal are Dynamic Voltage Scaling (DVS) and Dynamic Voltage and Fre-
quency Scaling (DVFS), which have been introduced by Chandrakasa et al. [CSB92].
With DVS/DVFS it is possible to reduce the power consumption of a microprocessor by
modeling the clock frequency and the supply voltage. Initially, these techniques were used

CHAPTER 1. INTRODUCTION 14

to support systems without real-time requirements. Later, special algorithms were de-
veloped which are designed for real-time systems and static workload. Today, it is also
required to support real-time systems with a dynamic workload.
On the other hand, limited power is an issue [KHZS07]. To deal with that it is necessary
to ensure a stable operation of the system. The area of energy harvesting systems is a
common example. Given power constraints in form of power budgets require the system
to adopt frequency and supply voltage to stay within these constraints. Power budgets
are dependent on various power supply sources such as vibration energy, solar energy or
thermal energy.
For this class of systems, DVS/DVFS or task rescheduling are countermeasures to avoid
violations of a given power budget.
Power management is in general available on different abstraction levels: hardware-,
compiler-, operating system- and application-level. This thesis aims at power manage-
ment on operating system-level for systems with limited power.

1.2 Goals

The goal of this master thesis is a power estimation supported power management on
operating system-level1. This mainly includes the design, the implementation and the
evaluation of a chosen power management. To reach this main goal some subgoals are
defined:

• Studying of literature, which is relevant for writing the chosen master thesis. The
main topics are: Power management techniques, CMOS power consumption, oper-
ating systems (OS) for embedded systems and energy harvesting.

• Investigate a µcLinux OS and determine its potential for OS power management
adaptations.

• Implement and integrate the OS on a LEON3 system on chip (SoC) platform.

• Establish a communication between the OS and the available power estimation unit.

• Design and implement a concept that enables power estimation based power man-
agement on OS-level.

• Evaluate the implemented power management for a set of benchmarking applica-
tions.

1.3 Structure

A summary of the necessary background is given in Chapter 2. It includes the topics:
CMOS power consumption, energy harvesting and operating systems for embedded sys-
tems.

1This thesis is part of the POWERHOUSE project that is funded by the Austrian Federal Ministry for
Transport, Innovation, and Technology under the FIT-IT contract FFG 815193.

CHAPTER 1. INTRODUCTION 15

Chapter 3 shows an overview of the different power management variants. Reactive/static
power management and proactive/dynamic power management are introduced and the
relevant related work is given.
The concept of this master thesis is shown in Chapter 4. It includes an overview of the
target system and its main components. Also a detailed description of the implemented
power management is given.
Chapter 5 shows the implementation of the chosen power management. It includes the
hardware and software setup of the target system and shows code snippets of the imple-
mentation.
The evaluation and the results of the implemented power management are shown in Chap-
ter 6. It focuses on the evaluation setup, the outcome of the OS-level power management
its impact on the LEON3 SoC’s performance.
The conclusion is given in Chapter 7. It summarizes the results of the thesis and and
provides an overview of future improvements.

Chapter 2

Background

CMOS power consumption, energy harvesting and real-time operating systems are im-
portant in the context of this master thesis. Knowledge about the power consumption of
CMOS circuits is often used to realize power and energy reductions in embedded systems.
The relation between power consumption, clock frequency and supply voltage is exploited.
Energy harvesting is a technology which uses the energy of the environment to provide ad-
ditional power for battery-driven systems. The power management, which is implemented
in this thesis, is an alternative to support energy harvesting systems. Furthermore, the
topic of real-time operating systems is relevant for this thesis, because the chosen power
management is implemented on the operating system-level.

2.1 CMOS Power Consumption

It is important to understand the different factors of the CMOS power consumption to gain
power and energy reductions. The power consumption of a CMOS circuit is determined
by two components [Tex97]:

• Static power consumption

• Dynamic power consumption

2.1.1 Static Power Consumption

The basic element in the CMOS technology is an inverter [Tex97]. Figure 2.1 shows the
two operating modes of a CMOS inverter circuit:

• Case 1: If the input is logical 0, the n-MOS device is OFF and the p-MOS device
is ON. Then the output is logical 1 (Vcc).

• Case 2: If the input is logical 1, the n-MOS device is ON and the p-MOS device is
OFF. Then the output is logical 0 (GND).

One of the transistors is always OFF and hence, theoretically no power is consumed. Only
a small amount of power is consumed, because of the reverse-bias leakage between diffused
regions and the substrate. Equation (2.1) describes the static power consumption (PS) of

16

CHAPTER 2. BACKGROUND 17

a CMOS circuit. It depends on the sum of the leakage currents (ICC) and on the supply
voltage (VCC).

PS = ICC · VCC (2.1)

2

Logic Level = 0 Logic Level = 1

Case 1
VCC

P-Device

N-Device

GND

Logic Level = 1 Logic Level = 0

Case 2
VCC

P-Device

N-Device

GND

Figure 1. CMOS Inverter Mode for Static Power Consumption

As shown in Figure 1, if the input is at logic 0, the n-MOS device is OFF, and the p-MOS device is ON (Case 1). The output voltage
is VCC, or logic 1. Similarly, when the input is at logic 1, the associated n-MOS device is biased ON and the p-MOS device is
OFF. The output voltage is GND, or logic 0. Note that one of the transistors is always OFF when the gate is in either of these logic
states. Since no current flows into the gate terminal, and there is no dc current path from VCC to GND, the resultant quiescent
(steady-state) current is zero, hence, static power consumption (Pq) is zero.

However, there is a small amount of static power consumption due to reverse-bias leakage between diffused regions and the
substrate. This leakage inside a device can be explained with a simple model that describes the parasitic diodes of a CMOS
inverter, as shown in Figure 2.

P+ N+ P+ N+

N-Well

VO

VI

P+N+

ÉÉÉÉÉ

P-Substrate

GND

GND

VI

VO

(NMOS) (PMOS)

VCC

VCC

Figure 2. Model Describing Parasitic Diodes Present in CMOS Inverter

Figure 2.1: CMOS inverter modes for static power consumption [Tex97]

2.1.2 Dynamic Power Consumption

The dynamic power consumption of a CMOS circuit is the sum of transient power con-
sumption (PT) and the capacitive-load power consumption (PL) [Tex97].

Transient Power Consumption

The transient power consumption of a CMOS circuit is caused by the switching of the
transistors from on logical state to the other [Tex97]. The power is consumed through the
current (switching current) which is needed to charge the internal nodes (Cpd - dynamic
power-dissipation capacitance) and the current, which flows during the switching of the
p-channel transistor and the n-channel transistor. So the switching frequency, the rise and
fall times of the input signal and the internal nodes affect the dynamic power consumption.
Equation 2.2 shows the transient power consumption (PT).

PT = Cpd · VCC
2 · fI ·NSW (2.2)

Cpd : dynamic power − dissipation capacitance
VCC : supply voltage
fI : input signal frequency
NSW : number of bits switching

CHAPTER 2. BACKGROUND 18

Capacitive-Load Power Consumption

Additionally, power is consumed through the charging of external load capacities [Tex97].
The amount of consumed power of this charging process also depends on the switching
frequency. The capacitive-load power consumption (PL) is described with Equation 2.3.

PL = CL · VCC
2 · fO ·NSW (2.3)

CL : external (load) capacitance
VCC : supply voltage
fO : output signal frequency
NSW : number of outputs switching

2.2 Energy Harvesting

Usually, the power supply of wireless and embedded systems is employed by using batteries.
This can become a problem if these systems are expected to operate for long durations,
because battery energy is limited. An alternative to support battery-driven systems is the
technology of energy harvesting.
Basically, a harvesting node is a system which gains energy from its environment with
the goal to provide additional energy to batteries. The harvested energy can be only a
fraction of the required energy. A big advantage of energy harvesting in comparison to
battery stored energy is the fact that the potential of environment energy is infinite. A
disadvantage is that the maximum power which can be gained is limited. Therefore it
is useful to develop a power management which is able to stay within power constraints.
Figure 2.2 shows a typical graph of solar activity. It illustrates the harvestable power
dependent on the daytime.

2 · Aman Kansal et al.

case of harvesting nodes, another usage mode is possible - using the harvested energy at an
appropriate rate such that the system continues to operate perennially. We call this mode
energy neutral operation: a harvesting node is said to achieve energy neutral operation if a
desired performance level can be supported forever (subject to hardware failure).

In this mode, the power management design considerations are very different from those
of maximizing lifetime. Two design considerations are apparent:

(1) Energy Neutral Operation: How to operate such that the energy used is always less
than the energy harvested? The system may have multiple distributed components
each harvesting its own energy and the performance then not only depends on the
spatio-temporal profile of the available energy but also on how this energy is used to
deliver network-wide performance guarantees.

(2) Maximum Performance: While ensuring energy neutral operation, what is the max-
imum performance level that can be supported in a given harvesting environment?
Again, this depends on the harvested energy at multiple distributed components.

A näıve approach would be to develop a harvesting technology whose minimum energy
output at any instant is sufficient to supply the maximum power required by the load. This
however has several disadvantages, such as high costs and may not even be feasible in
many situations. For instance, when harvesting solar energy, the minimum energy output
for any solar cell would be zero at night. A more reasonable approach is to add a power
management system between the harvesting source and the load, which attempts to satisfy
the energy consumption profile from the available generation profile (Figure 1). We explore
this approach in greater detail. The three main blocks shownin the figure are:

HARVESTING SOURCE

2 4 6 8 10 12
5

10

15

Time (months)

W
in

ds
pe

ed

Wind Data

New York

Los Angeles

Chicago

San Francisco

0 1 2 3 4 5
0

50

100

150

Time (days)

P
ow

er
 (

m
W

)

Solar Data

HARVESTING

SYSTEM

0 5 10 15 20
0

20

40

60

80

100

Time

P
ow

er
 (

m
W

)

LOAD

Fig. 1. Harvesting Energy from the Environment

Harvesting Source.This refers to any available harvesting technology, such asa solar
cell, a wind turbine, piezo-electric harvester or other transducer which extracts energy
from the environment. The energy output varies with time depending on environmental
conditions which are typically outside the control of the designer. For instance, Figure 1
shows two possible power output variations with time – a solar cell output on a diurnal

ACM Journal Name, Vol. V, No. N, Month 20YY.

Figure 2.2: Solar activity graph [KHZS07]

A basic example for an energy harvesting device is a desk calculator with a solar cell. A
more complex example is a network of harvesting nodes, where each node gains energy by

CHAPTER 2. BACKGROUND 19

using the same or multiple technologies for harvesting, with the goal to harvest a maxi-
mum of energy.
The design of power management of energy harvesting systems is distinguished from bat-
tery supplied devices. The goal of power management at battery supplied devices is to
minimize power and energy consumption or to maximize lifetime, while required perfor-
mance constraints must be held. In the case of energy harvesting systems two different
modes are common. First, harvesting nodes are used to support a battery supplied system
aiming at the minimization of power consumption and the maximization of lifetime. Sec-
ond, harvesting nodes are the only energy source and therefore the device is independent
of battery energy. The life time of such a device is theoretically infinite. This mode is
often called “energy neutral”, because a requested performance level can be supported as
long as necessary. Unsurprisingly, the power management design goals of such an energy
neutral mode are quite different from the goals mentioned above. Designers have to deal
with two main considerations [KHZS07]:

• Energy neutral operation
The approach of energy neutral operation means that the required energy of a system
is always lower than the harvested energy. It is important to guarantee that the
system is able to operate stable. Often such a system consists of many nodes, and
every node harvests its own energy. In addition to a stable operation, also a constant
system performance over the whole network must be guaranteed.

• Maximum performance
In energy harvesting systems also the aspect of the maximum performance has to be
considered. If a system operates energy neutral it is also a question of which maxi-
mum performance can be reached in a given harvesting environment. As mentioned
above, this depends again on the different network components. A possibility to
solve the issue would be a harvesting system which is always able to support maxi-
mum required power. This means that the minimum power output of the harvesting
system is high enough to support maximum system performance. A disadvantage of
this approach are the excessively high costs to provide the necessary energy. Also
in some cases a harvesting system is not able to deliver any energy. An example
would be a system which harvests solar energy. If the sun does not shine, the power
output is zero. A promising approach is to establish a power management system
between the harvesting network and the consumer device. Then the task of the
power management system is to hold balance between available and required power.

2.2.1 Conditions for Energy Neutral Operation

The mode of energy neutral operation is influenced by the power consumption on the
one side and the power supply on the other side. The power output from the energy
source is defined as Ps(t), at time t, and the consumed power is defined as Pc(t). Three
different cases which show the possible operation modes for energy neutral operations can
be distinguished [KHZS07]:

• Harvesting system with no energy storage
Address energy harvesting systems which are able to use the harvested energy di-

CHAPTER 2. BACKGROUND 20

rectly and without a storage buffer.
This kind of energy harvesting devices are able to operate when

Ps(t) ≥ Pc(t) ∀ t (2.4)

is fulfilled.
These systems have some disadvantages. In the case Ps(t) < Pc(t) the provided
power is not sufficient and the system is not able to operate correctly. Also at times
when Ps(t) > Pc(t) the power Ps(t)− Pc(t) is lost.

• Harvesting system with ideal energy buffer
Such systems are used if the profile of energy generation is strongly different from
the profile of power consumption. It is suitable to use an energy buffer to store the
harvested energy. In the ideal case the energy storage is a buffer where the energy
can be stored without losses. The amount of energy inefficiency during charging
and leakage will be unattended. The following equation describes the case of ideal
energy buffering during operation:

∫ T

0
Pc(t)dt ≤

∫ T

0
Ps(t)dt+B0 ∀ T ∈ [0,∞) (2.5)

B0 it the initial energy of the buffer.

• Harvesting system with a non-ideal energy buffer
A system without an energy buffer is not practical and an ideal energy buffer does
not exist. Instead of these considerations a harvesting system with a non-ideal
energy buffer will be used. The buffer could be a battery or an ultra-capacitor. The
disadvantages of such energy buffers are: limited capacity, limited charging efficiency
and leakage.

2.2.2 Harvesting Sources

Our environment offers several different harvestable energy sources. For a designer it is
often difficult to decide which and how many energy sources should be used. The following
energy sources are available [MM05]:

• Kinetic energy
Two sources are used for harvesting kinetic energy: first, the motion of moveable
parts and second, mechanical deformation. Three technologies are known to trans-
form kinetic energy into electrical energy: piezoelectric effect, electrostatic genera-
tion and magnetic induction.
The piezoelectric effect describes the effect that certain materials possess electri-
cal polarizability, which is proportional to a subjected mechanical stress.
The basic components of an electrostatic generator are an electrical field and a

CHAPTER 2. BACKGROUND 21

moveable part. Energy will be generated if the moveable part moves against the
field.
If a conductor is moved within a magnetic field and the conductor crosses magnetic
field lines, magnetic induction happens and energy will be generated.

• Electromagnetic radiation
Electromagnetic radiation can be used for energy harvesting in form of solar energy
or radio frequency (RF) radiation.
Solar energy is used in form of solar-powered photovoltaic systems, which are able
to transform the electromagnetic radiation into electrical energy. For mobile devices
solar energy is one of the most suitable options.
RF radiation is a common source to power identification cards. The devices harvest
the needed energy from the electromagnetic energy of the environment. There is a
high potential of RF radiation in cities and areas with high population, because
of the large number of RF sources. The issue with RF radiation technology is to
convert the potential energy into useful energy.

• Thermal energy
Another form of energy in our environment is thermal energy. Persons, animals,
machines or other natural sources can be used to transform thermal energy into
electrical energy. The technology behind is called thermovoltaic, especially thermal
generators. A thermal generator consists of a couple of thermal conductors, which
are made of different material. The conductors are connected. Based on a given
temperature difference between the connected conductors electrical voltage will be
generated. The level of the generated voltage depends on the material of the con-
ductors.

Classification of Harvesting Sources

One way to classify harvesting sources is to divide them dependent on their characteristics
regarding controllability and predictability. The following types are possible [KHZS07]:

• Uncontrolled but predictable
These energy sources are not controllable, but it is possible to predict the behaviour
in certain time ranges. This means that a forecast model can be made. Wind
and solar energy for example cannot be controlled, but it is possible to predict the
weather for certain areas during a time period within a certain error margin.

• Uncontrollable and unpredictable
These energy sources are difficult to handle because they are not controllable and
forecast models are often too complex and impractical. A representative for this
kind of energy sources is vibration energy in an indoor environment. Harvesting this
energy is possible, but a prediction is nearly impossible.

• Fully Controllable
An example of these energy sources is a self-power flashlight. A user can shake the
device to generate energy and use it whenever it is required.

CHAPTER 2. BACKGROUND 22

• Partially Controllable:
RF energy is an example for a partially controllable energy source. Such an RF
source can be installed indoors and also a network of harvesting nodes. Then the
total amount of harvested energy depends on RF propagation characteristics within
the environment. This propagation cannot be controlled by a designer or a user. But
the designer or user is responsible for the exact location of the harvesting nodes.

2.2.3 Practical Observations

Design and development of an energy harvesting system is a difficult task. Therefore, an
accurate look at the target device is necessary. Table 2.1 gives an overview of common
wearable battery-supplied devices. Also the average power consumption and the usual
duration are mentioned.
It is also difficult to decide which energy source should be used for energy harvesting.
Table 2.2 gives a short summary of available energy sources. Furthermore, different ap-
plication possibilities and the potential power which can be gained are shown.
Finally a summary (Figure 2.3) of the research and development (R&D) results of the last
decade is shown. The figure gives an overview of the power ranges of different harvesting
technologies. Also the amount of the realized R&D projects is shown (red points).

Device Type

Power Consumption Energy Autonomy

Smartphone 1 W 5 hours

MP3 player 50 mW 15 hours

Hearing Aid 1 mW 5 days

Wearable Sensor Node 10 µW Lifetime

Cardiac Pacemaker 50 µW 7 years

Quartz watch 5 µW 5 years

Table 2.1: Selected battery-operated systems and their average power consumption
[VvSGH09]

CHAPTER 2. BACKGROUND 23

Source
Device Type

Characteristics Harvested Power

Photovoltaic
Indoor 0.1 mW/cm2 10 µW/cm2

Outdoor 100 mW/cm2 10 mW/cm2

Vibration / Human 0.5 m@1Hz, 1 m/s2@50Hz 4 µW/cm2

Motion Industrial 1 m@5Hz, 10 m/s2@1kHz 100 µW/cm2

Thermal Human 20 mW/cm2 30 µW/cm2

Energy Industrial 100 mW/cm2 1-10 mW/cm2

RF Cell phone 0.3 µW/cm2 0.1 µW/cm2

Table 2.2: Characteristics of various energy sources and amount of typical harvested power
[VvSGH09]

Figure 2.3: Power potential from the environment by the means of using several types of
energy harvesters [VvSGH09]

2.3 Real-Time Operating Systems (RTOS)

As mentioned, power management can be done on several abstraction levels. In these
thesis the focus is set on the OS-level, and therefore it is necessary to understand the
basics of operating systems, especially real-time operating systems.

CHAPTER 2. BACKGROUND 24

Real-time operating systems are a subsection of operating systems. To understand real-
time operating systems it is necessary to know the basics of usual operating systems.

2.3.1 Operating Systems

The basic purpose of an operating system is to provide a buffer between the user and the
hardware of a system [Hea03]. An operating system is a software environment that pro-
vides a constant interface and a set of utilities to enable users to utilize the system quickly
and efficiently. Therefore, it is possible for programmers to write application programs,
which can be moved to other systems, because of hardware independence. Normally, some
debug tools are available, which help to speed up the testing process.

2.3.2 Multitasking Operating Systems

A single tasking operating system is not suitable for most embedded systems [Hea03].
They do not fulfill the requirement that multiple applications can run simultaneously and
provide intertask control and communication. To handle this a suitable operating system
for embedded systems must be able to handle multiple tasks.
A multitasking operating system works by dividing the processor time into discrete time-
slices. For the completion of the execution, a task requires a certain amount of computation
time (timeslices). The kernel of the operating system is responsible for the task scheduling
and decides when and how long a task gets processor time. A task is not executing
continuously until completion, it is is interleaved during execution with other tasks. This
implies a sharing of processor time, because only one task can use the processor at the
same time.

Context Switching

As mentioned, multitasking operating systems are based on a multitasking kernel, which
controls the time slicing mechanisms [Hea03]. A timeslice of a task is a period of time
which determines how long a task is allowed to run before an interruption occurs. This
time period is triggered by the system timer. After an interruption happens, the task will
be put on the “ready” list and wait for further execution. Before another task is allowed
to run, the current processor registers must be saved in a special table of the current
task (task control block). This information is needed for next time when the task gets
execution time. Before a new task is allowed to run, its registers are loaded. This whole
process, when one task is replaced by another, is called context switch. Figure 2.4 shows
a time slicing pattern and Figure 2.5 summarizes a context switch.

CHAPTER 2. BACKGROUND 25

Context Switches

Time

Time

slice

Task A execution

Task B execution

Task C execution

Task D execution

Figure 2.4: Timeslice model [Hea03]

Context
switch

Task A table

Task B table

1. On context switch, store CPU
 registers in task A’s table.

2. Consult the ready list to find
 out which task is executed next.

3. Load new task’s registers
 from its table.

4. Start executing task B.

System
memory

System
memory

Processor registers

Figure 2.5: Model of context switching [Hea03]

CHAPTER 2. BACKGROUND 26

Kernel

The kernel controls the scheduling of tasks, memory usage and prevents tasks from cor-
rupting each other [Hea03], [Tan03]. If memory sharing is used, the kernel controls the
share of program modules, such as high-level language run-time libraries. In the case of
memory usage a set of memory tables is maintained. Access to memory is handled on
the basis of these tables. It allows to protect the resources, such as physical memory and
peripheral devices, from the user. This is very important to ensure the system’s integrity.
For communication between tasks, message passing can be implemented with the kernel
as message passer. If task A wants to stop task B, a call to the kernel will be executed
and task B will be stopped. Alternatively, task B can be delayed for a certain period of
time or forced to wait for a message. On a typical real-time operating system two different
types of messages exist:

• Messages (Flags) which can only control tasks, but cannot carry any implicit infor-
mation. They are often called semaphores or events.

• Messages which can control tasks and can also carry information. They are often
called messages or events.

Figure 2.6 shows a typical real-time kernel. There different lists can be seen, which display
the different states of a task. The most important states are:

• run - task is in processing

• ready - task is ready for processing

• blocked - task is dormant, suspended, waiting for an event or waiting for an com-
mand, etc.

Additionally, several more service tasks are needed if a real-time kernel should work inside
a full operating system. These are tasks to perform I/O services, file handling and file
management services, task loading, user interface and driver software. Typical kernel size
is less than 16 kbyte and will often grow with service tasks into a large 120 kbyte operating
system.
The service tasks surround the kernel in form of layers and the result is a typical onion
structure. User tasks build the outmost layer. Figure 2.7 shows such a structure.
In a typical system, all these service tasks and user tasks are controlled, scheduled and
executed by the kernel.

CHAPTER 2. BACKGROUND 27

Run

Server
request

pending

Suspend

Ready Dormant

Wait
Wait
for

event

Wait for
command

Delay
Wait on

semaphore

State diagram for a typical real-time kernel

To turn a real-time kernel into a full operating system with
file systems and so on, requires the addition of several such tasks
to perform I/O services, file handling and file management serv-
ices, task loading, user interface and driver software. What was
about a small <16 kbyte-sized kernel will often grow into a large
120 kbyte operating system. These extra facilities are built up as
layers surrounding the kernel. Application tasks then fit around
the outside. A typical onion structure is shown as an example. Due
to the modular construction, applications can generally access any
level directly if required. Therefore, application tasks that just

Figure 2.6: State diagram for a typical (real-time) kernel [Hea03]

HARD-

WARE

REAL TIME

KERNEL

PHYSICAL I/O

FILE MANAGEMENT

SESSION MANAGEMENT

USER

TASKS

LOGICAL I/O

Figure 2.7: A typical operating system structure [Hea03]

CHAPTER 2. BACKGROUND 28

2.3.3 What is a Real-Time Operating System?

Today many operating systems exists, which are also described as “real-time”. These
operating systems provide some additional features to usual operating systems.
A basic characteristic of a real-time operating system is its defined response time to ex-
ternal units [Hea03]. It is essential for a real-time operating system to react within a
maximum defined time after an interrupt occurs. The response time is dependent on
system performance and current workload. Still, it is essential for a real-time operating
system to not exceed a certain maximum time. Any operating system that is able to
handle this requirement can be described as real-time.
Another example for a real-time application: As mentioned for industrial control it would
have serious consequences if the system does not have real-time characteristic. It is easy
to imagine what would happen if an automatic assembly line controlled by an embedded
system does not respond in time. Figure 2.8 shows the case that the system has a certain
time to stop the conveyor belt after the limit switch generate an interrupt. The response
does not need to be instantaneous but in time.
As we can see in this example a real-time operating system’s internal mechanism must be
able to handle external interrupts in guaranteed times.
After an interrupt is generated, the current running task is halted and the interrupt han-
dling will start.

Maximum
response

time

Controller

 Belt drive

Limit
switch

Interrupt

Command

Figure 2.8: Example of a real-time response [Hea03]

CHAPTER 2. BACKGROUND 29

2.3.4 Scheduling

The scheduler is responsible for the distribution of the processor time to the single tasks. It
decides when and how long a process or task is allowed to use the processor for computing.
To fulfill the different requirements for a scheduler a lot of scheduling algorithms exist. In
case of simple flow control tasks, high throughput is necessary. To manage systems with
user interaction, fast response time would be expected.
A simple classification for scheduling algorithms can be done by separation in non-preemptive
and preemptive algorithms. Non-preemptive means that a running task cannot be inter-
rupted by a task with higher priority. In case of preemptive scheduling a task with higher
priority is allowed to halt the running task. The following scheduling algorithms are
common:

Shortest Job First (SJF)

If the current running task is finished, the task with the shortest remaining computation
time is allowed to run next [SGD09]. It is not possible to interrupt a running task and
therefore the procedure is a non-preemtive scheduling. The algorithm is unfair, because
for short tasks it is possible to overtake long tasks and thereby short tasks are privileged.
The SJF scheduling is unusable for real-time systems.

First Come First Served (FCFS)

FCFS scheduling is also very simple and non-preemtive. Tasks get computation time in
the order of arrival [SGD09]. Fairness is guaranteed, because every task gets computation
time and a starvation of a task is excluded. The procedure is also unusable for real-time
applications.

Round Robin

The computation time is separated in timeslices of equal length. Tasks will be put in a
waiting queue and will be chosen with the First-In-First-Out (FIFO) procedure to execute
[SGD09]. After the end of a timeslice the running task will be stopped and put back to
the waiting queue. The round robin scheduling algorithm is fair, because the computation
time is shared equally among all tasks. The algorithm can be used for applications with
lossy real-time requirements.

Round Robin with Priorities

With the adoption of priorities an upgrading of the round robin scheduling is done [SGD09].
In this procedure the tasks get priorities. Tasks with same priority are sorted in a group
and a separate waiting queue exists for each priority group. The algorithm always takes
tasks from the queue with the highest priority. If this queue is empty, the queue with the
next lower priority will be used. The problem of this scheduling is a possible starvation of
tasks with low priority, because they get less computation time. A solution is to increase
the priority of a task in relation to its waiting time. In this form the procedure is used in
modern operating systems (Windows XP, Linux).

CHAPTER 2. BACKGROUND 30

Rate Monotonic (RM)

RM scheduling is a static real-time scheduling algorithm which calculates the scheduling
at compile-time for all possible tasks. The following assumptions are made [LL73]:

• Time critical tasks occur periodically.

• Current period must be finished before execution of next period starts.

• Dependences between different tasks are impossible.

• Execution for each task is constant.

• Non-periodic tasks are not time critical.

• Each task gets a priority. Tasks with higher priority are allowed to interrupt tasks
with lower priority (preemtive system).

A RM scheduling exists if the following equation is fulfilled:

n∑

i=1

∆ti
Peri

≤ 1 (2.6)

n : number of tasks, ∆ti : computation time of ith task, Peri : period of ith task

The placing of priorities follows the rule that the task with the shortest period gets the
highest priority.
Liu also shows in [LL73] that if the load µ of a processor is ≤ 70%, then a successful
scheduling is guaranteed:

µ =
n∑

i=1

∆ti
Peri

≤ n(2n/1 − 1) (2.7)

The right side of the equation converges against 0.693 if n→∞. A successful scheduling is
also possible for higher workload, but not guaranteed. Under special requirements (all task
periods are a multiple of the shortest period), systems with 100% load can be scheduled.
The big advantage of the RM scheduling is the guaranteed schedule. Disadvantages of
this algorithm are that the schedule is planned static and if load is higher than 70% no
schedule commitment can be made.

Earliest Deadline First (EDF)

In comparison to RM scheduling EDF scheduling is a dynamic scheduling algorithm for
real-time systems [SGD09]. The scheduling is calculated again and again at run-time for
all executable tasks. Basis for the EDF scheduling is a preemtive system with dynamic
priority distribution. The other requirements are equal to RM scheduling. EDF scheduling

CHAPTER 2. BACKGROUND 31

follows the simple rule that the next task which is allowed to run is the task with the earliest
deadline.
Advantages of the EDF scheduling are the simple implementation and that the processor
can be used up to a load of 100%. A big disadvantage of the EDF algorithm is that a
successful scheduling cannot be guaranteed for all cases.

2.3.5 Comparison between Common OS and RTOS

The following table 2.3 summarizes the main differences between a common OS and an
RTOS.

Common OS RTOS

Calculation
Results

logically correct results
logically and temporally correct
results

Response time
no guarantee for a maximum re-
sponse time: violation of time
constraints are acceptable

response time is guaranteed;
failure could be disastrous

Scheduling

slow scheduler, poor temporal
resolution and accuracy; com-
mon Linux: 10ms

fast scheduler, high temporal
resolution and accuracy; typical
20-200 µs

common scheduling procedures:
time-sharing, first come first
served, round-robin, round-
robin with priorities

deterministic scheduling proce-
dures such as earliest deadline
first; short and deterministic
timing for task switching

scheduling is efficient, but not
predictable

scheduling is control- and pre-
dictable

Optimizations
optimization for maximum of
data throughput

optimization for a minimum re-
sponse time; typical 20 µs

optimized to an average work-
load

optimized to a maximum work-
load (worst case)

Kernel mode
only system processes are al-
lowed to run in kernel mode

system processes and time crit-
ical user processes are allowed
to run in kernel mode

Interrupts
periodic timer-interrupt

periodic timer-interrupt is not
imperatively, but has a high
resolution (One-Shot-Timer)

interrupts are partially locked
(masked)

fast interrupt handling

Table 2.3: Comparison between common OS and RTOS [Abb06]

Chapter 3

Power Management

Today device manufacturers must handle the challenge that consumers expect rich-featured
(mobile) devices. Full functionality is only one part of a successful device. It is also nec-
essary to provide long-lasting battery life to fulfill consumer demands. Furthermore, the
topics energy saving, green IT and carbon footprint have become popular in the last years.
These reasons initiate manufactures to deal with power management. Not only consumers’
reasons stimulate the development of sophisticated power management. In addition to the
positive effects for our environment, energy savings help to save money. The fact of money
savings is a strong motivation for manufactures to develop and establish power manage-
ment.
For appropriate power management a coordination and cooperation of all parts within a
whole system is necessary. To establish such a power management in an embedded system
it is important to indicate the parts with the most power saving potential. In case of
an embedded system often the CPU is a major source regarding power consumption. It
is also a fact that embedded systems often have peripheral devices, which are sometimes
inactive during the whole power-on time.
To consider a power management strategy it is necessary to categorize power management
in two parts:

• Reactive/static power management
Power consumption is influenced by switching of unused/inactive system compo-
nents.

• Proactive/dynamic power management
Power consumption is influenced continuously/dynamically during operation.

It is recommended to use both parts together to generate a maximum of power savings
[Kit09].

3.1 Reactive/Static Power Management

Reactive/static power management means the control of the power consumption of a
system by switching on/off power consuming system parts (Ethernet controller, USB port,
etc.) [ACP09], [Kit09], [LDM01], [LLTW06], [Ols08]. Great value is given to system parts

32

CHAPTER 3. POWER MANAGEMENT 33

with high power consumption, since they offer more power saving potential. To realize
reactive/static power management, different working states for the system parts of an
embedded system are defined. Some parts only have the states “On” and “Off”, where
“On” means 100% power consumption and “Off” means no consumption. A more complex
reactive/static power management with five different working states is shown in Figure
3.1.
The standards Advanced Power Management (APM) and Advanced Configuration and
Power Interface (ACPI) have been established for the area of personal computers. APM
was the pre-standard of ACPI. ACPI defines global power states (Working, Sleeping, Soft
Off, Mechanical Off) for the whole system. Also a set of sub-states for the “sleeping” state
is provided. The states will be managed by the operating system.

B/E/T

B/E/T

B
/E

B
/T

B/T

E

E
E

EE E

E

E

Battery

B=Battery
E=Event
T=Timer

Event Program/
Interrupt

Inactivity
Timer

ON
100%

STANDBY
25%

OFF
0%

SLEEP
50%

IDLE
75%

Figure 3.1: State diagram for a reactive/static power management model [Ols08]

3.2 Proactive/Dynamic Power Management

Proactive/dynamic power management is used to influence the power consumption of a
system continuously/dynamically [CSB92], [Kim06], [She08], [SRH05], [TTD03] . Different
techniques are used to enable Proactive/dynamic power management for the target sys-

CHAPTER 3. POWER MANAGEMENT 34

tems: Dynamic Voltage Scaling (DVS), Dynamic Voltage and Frequency Scaling (DVFS),
Dynamic Process and Temperature Compensation (DPTC) and task rescheduling.

• Dynamic Voltage Scaling (DVS) / Dynamic Voltage and Frequency Scal-
ing (DVFS)
Originally, DVS works only with voltage scaling and DVFS uses both voltage and
frequency scaling. Nowadays DVS/DVFS has become the standard technique for
proactive/dynamic power management.
DVS/DVFS uses the fact that the power consumption of a CMOS circuit depends
linearly on its clock frequency and quadratically on its supply voltage (Chapter 2.1):

P ∝ fV 2 (3.1)

P : power
f : clock frequency
V : supply voltage

Furthermore, the number of cycles for completion of a task-set is independent of the
clock frequency, and the total energy is quadratically dependent on the square of the
supply voltage (Eq. (3.2)).

E ∝ V 2 (3.2)

E : energy
V : supply voltage

• Dynamic Process and Temperature Compensation (DPTC)
DPTC is an improvement to DVS/DVFS. It is assigned that the maximum clock
frequency of an electronic circuit depends on the process speed and the operating
temperature [She08]. Normally, the supply voltage of a circuit is set to support the
required frequency, also in worst case. Worst case means that the circuit operates on
very high temperatures (maximum defined temperature) as well as special variations
in the manufacturing process. If a “better case” (moderate temperature) is present,
the supply voltage can be reduced and a stable operation is still guaranteed. When
DPTC is used, a reference circuit is implemented, and this circuit measures the cur-
rent frequency. Dependent on the process technology and the operating temperature
the circuit lowers the supply voltage to a minimum, which is even high enough to
support the required clock frequency. So the DPTC concept is used to adjust the
supply voltage to match the SoC temperature and the process corner.

CHAPTER 3. POWER MANAGEMENT 35

Proactive/dynamic power management is available on different levels of abstractions:

• Hardware-level
Bennini et al. [BCMS01] show a battery-driven dynamic power management on
hardware-level. Dependent on the battery charge, the discharging rate is adapted.
Several policies are introduced and also the battery characteristics are taken into
account. Lee et al. [LNS+07] introduce a hardware power management unit (PMU).
It uses Dynamic Voltage and Frequency Scaling (DVFS) for a reduction of the power
consumption. The PMU improves the load regulation of the supply voltage with co-
locking the clock frequency and the supply voltage.

• Compiler-level
Hsu and Kremer [HK03] design and implement a compiler algorithm for CPU power
reduction. The compiler identifies code regions with low CPU load through memory
access. Then DVFS is used to reduce the power consumption of the CPU while these
code regions are computed.

• OS-level
A division into two sections is helpful: (i) power management on OS-level for min-
imizing the power consumption (Section 3.2.1) and (ii) power management on OS-
level for systems with limited power (Section 3.2.2).

• Application-level
Gu et al. [GCO06] introduce DVFS for gaming applications. They show the power
saving potential of interactive computer games.

3.2.1 Power Management on OS-Level for Minimizing the Power Con-
sumption

Dynamic power management on OS-level is commonly done through special task schedul-
ing algorithms in combination with DVFS.
Many power management algorithms on OS-level focus on hard real-time systems with
multiple tasks. The main demand is to choose the optimal operating voltage for a task to
stay within its timing constraint. Each task is operating on one single voltage level and will
not change during execution. This technique is called “inter-task DVFS scheduling”.
Different implementations of inter-task DVFS scheduling are shown in Yao et al. [YDS95],
Schmitz et al. [SAHE02] ,Zhang et al. [ZHC02], Varatkar and Marculescu [VM03] and
Gorji-Ara et al. [GACB+04].
On the other hand a lot of power management algorithms on OS-level consider the power
saving potential within the task boundary. This technique is called “intra-task DVFS
scheduling”, and the operation voltage of a task is adjusted dynamically during its exe-
cution. Studies on intra-task DVFS scheduling are introduced by Shin et al. [SKL01], Seo
et al. [SKC04], Shin and Kim [SJK05], and Oh et al. [OKKK08].
All these related works on OS-level concentrate their efforts on minimizing the power
consumption of a system or to maximize the life time of mobile systems.

CHAPTER 3. POWER MANAGEMENT 36

3.2.2 Power Management on OS-Level for Systems with Limited Power

Power Management on OS-level for systems with limited power is another form of OS-
level power management. The challenge is to stay within a given power budget and ensure
system stability. To the best of my knowledge no related work exists on power management
on OS-level for systems with limited power.
Kansal et al. [KHZS07] show a power management for energy harvesting sensor networks.
They introduce a power management policy for systems with limited power on hardware-
level, which lowers the power consumption of the system according to the available power.

3.2.3 Summary of Proactive/Dynamic Power Management Techniques

Table 3.1 gives a summary to the discussed proactive/dynamic power management tech-
niques. Here the original function of DVS and DVFS are shown.

Technique Function, Features

Proactive/Dynamic Power
Management (DPM)

Control of hardware components during run-time to
minimize power consumption. DVS, DVFS, DPTC

Dynamic Voltage Scaling
(DVS)

Adaption/Adjustment of the clock frequency during
run-time.

Dynamic Voltage and Fre-
quency Scaling (DVFS)

Adaption/Adjustment of the supply voltage and the
clock frequency during run-time.

Dynamic Process and
Temperature Compensa-
tion (DPTC)

Adjustment of the supply voltage and the clock fre-
quency according to the temperature of a processor.

Task Rescheduling
Special scheduling algorithms to stay within a given
power budget.

Table 3.1: Summary of the different proactive/dynamic power management techniques

Chapter 4

Design of the OS-Level Power
Management

This chapter describes the concept of the chosen OS power management. The OS power
management will handle the problem of limited power within an embedded system. This
means that the OS power management will be responsible for staying within a given
power budget. First an overview of the main parts is given, which is followed by a detailed
description.

4.1 Overview

The concept is based on the general assumption that a given embedded system is supplied
with limited power. A stable operation of the embedded system is essential, and therefore
a given power budget must not be exceeded.
Figure 4.1 shows the main parts of the concept. The basic embedded system in this
thesis is a LEON3 SoC, which is realized on an FPGA board. A power estimation unit is
attached to the LEON3 SoC that estimates a real-time power profile. The required power
management will be enabled through changes of the OS kernel and is therefore also called
“OS-level” power management. Power information from the power estimation unit will
be used to provide an OS-level power management, which is able to stay within a given
power budget. The present power consumption as well as the given power budget are the
key parameters.
Figure 4.2 illustrates the use-case diagram of the chosen power management technique.
The operating system represents the system and the power management is the actor. The
use-case of staying within power constraints is supported by the power budget and the
power consumption of the SoC.

37

CHAPTER 4. DESIGN OF THE OS-LEVEL POWER MANAGEMENT 38

Power Management

Operating System

Scheduler

Power Budget

Hardware

FPGA Board

Power Estimation Unit

LEON3 SoC

f, Vdd P=f(t)
P=f(f,Vdd)

Figure 4.1: Concept overview

Hardware

Reactive/Static

Power Management

Minimize Power/

Energy Consumption

Hardware

Reactive/Static

Power Management

Minimize Power/

Energy Consumption

Application

Minimize Power/

Energy Consumption

Operating System

Minimize Power/

Energy Consumption

Compiler

Minimize Power/

Energy Consumption

Stay within Power

Constraints

Stay within Power

Constraints

Operating System

Power Management

Stay within Power

Constraints

Power Budget

Power Consumption

of SoC

«uses»

«uses»

Figure 4.2: Use-case diagram of the chosen power management

CHAPTER 4. DESIGN OF THE OS-LEVEL POWER MANAGEMENT 39

A schematic overview of the used hardware and software parts is shown in Figure 4.3. The
hardware part is based on a VHDL model, which contains the LEON3 SoC and the power
estimation unit. This VHDL model is given as a list of vhd files. Based on the vhd files
a net list is generated by the synthesis tool Xilinx ISE, which can be downloaded to the
FPGA.
The basis for the software part is C-source code of a µC Linux OS. An image of the source
code is generated by a µC Linux Cross-Compiler. After generation the tool GRMON is
used to load the image to the LEON3 SoC platform. GRMON is also used for starting
and for debugging the system.

VHDL Source Code
Configuration of the

LEON3 SoC platform
Synthesis,

Netlist generation

Programming of

FPGA board

Hardware setupBasis

VHDL Source Code

(LEON3 + Power Estimator)

Xilinx ISE

(Synthesis)

FPGA

OS Source Code

(Snapgear 2.6.x)

µC Linux Cross

Compiler

GRMON

(load, start OS,

Debug Output)

*.IMG

*.CList of VHD Files

Netlist

Hardware part Software part

Target Platform Host PC

µC Linux

GRMON

Leon3 SoC Platform

Host PC

Evalutation Tasks

BASIC MATH

FFTAES QSORT

DIJKSTRA

start OS

Evaluation Data

Figure 4.3: Schematic overview of the used hardware and software parts

4.2 SoC Platform

The basis of the used SoC platform is an FPGA board. The use of an FPGA develop-
ment kit is very suitable during an implementation and evaluation cycle. This brings the
following advantages:

• Development costs are decreased compared to an Application Specific Integrated
Circuit (ASIC). No masks with very high fix costs are required.

• The time of implementation is very short.

• Less effort to realize corrections and extensions.

CHAPTER 4. DESIGN OF THE OS-LEVEL POWER MANAGEMENT 40

Disadvantages:

• A higher piece price if the amount of pieces is high.

• Maximum clock frequency of FPGAs is lower (typical 20 - 250MHz) than available
clock frequency of ASICs (> 3GHz).

• The logical density is 10 times lower. This means that the required chip area is 10
times higher.

• A tendency to fewer functional tests in the forefield is typical, because of shorter
design cycles and the possibility to correct errors very late.

All these disadvantages are maybe strong reasons in industry, but for prototype imple-
mentations a solution with an FPGA board is the most suitable.

4.2.1 LEON3

The LEON3 SoC is a 32-bit SPARC V8 architecture and supports multiprocessing with
up to 16 CPU cores. The implementation of the cores can be done with the use of asym-
metric multiprocessing (AMP) or synchronous multiprocessing (SMP). A full synthesis
of the LEON3 SoC is also possible and the full source code is available under the GNU
GPL license. The GNU GPL license gives the permission for evaluation, research and
educational purposes. [AER05]
The features of the LEON3 SoC fulfill all requirements of this master thesis, and therefore
a LEON3 SoC will be chosen as the target system. The LEON3 SoC will be used with one
CPU core. It provides sufficient performance and is also adequate to determine the poten-
tial of the chosen power management. Furthermore, the complexity of the implementation
is reasonable.

4.2.2 Power Estimation Unit

The power estimation unit provides the required power information to perform the chosen
power management strategy. In our case this unit is a development of the Institute for
Technical Informatics, Graz University of Technology [GBH+09]. It provides power values
based on power profiling and allows real-time power analysis of the target system. The used
estimation-based power profiling method generates its information by exploiting a power
model of the target system. The complexity and the accuracy of the gained information
depends on the abstraction layer of the used models. Low-level models are based on
transistor- or gate-level. The used edition of the power estimation unit is situated on
a higher layer with the advantages of a more compact model, real-time profiling and
moderate area.

Power Model

Linear regression models are often used for power models on a high abstraction layer. The
following equation shows a linear regression model.

CHAPTER 4. DESIGN OF THE OS-LEVEL POWER MANAGEMENT 41

y =
n−1∑

i=0

ci xi + ε (4.1)

xi represent the system states (CPU - idle/run, memory access - read/write, etc.). The
model coefficients ci contain power information and a preliminary power characterization
process is used for the initialization [BGS+10]. y represents the power estimate and ε
shows the estimation error.

Power Emulation Architecture

Figure 4.4 shows the integration of the power model in hardware. The power emula-
tion architecture includes power sensors, which observes state information of the system
modules. Also the sta te information of a functional unit (CPU) can be considered for
more accuracy. The power estimation unit accumulates the values of the power sensors
and outputs a 32-bit power estimate y(t) of the overall system. An averaging module is
used for further post-processing and allows smoothing. The averaging is implemented as
a configurable moving average filter according to Equation (4.2). The filter parameter N
is used to configure the filter. The power information of the power estimation unit and
of the averaging module are captured by the debug-trace generator and can be used for
further processing.

System
Level

...

Architectural
LevelFU 1 FU n...

...

Power Estimation Unit

Po
w

er
Em

ul
at

io
n

CPU CoProc RAM

Component State
Power Model

Component State
Power Model

Component State
Power Model

Fu
nc

tio
na

l
Em

ul
at

io
n

Power Trace

AveragingDebug-Trace Generator

Power Sensor Power Sensor Power Sensor

Configuration

Fig. 3. Power emulation architecture

information are stored in a software-configurable table. These
state information is mapped towards power values using a
table-lookup approach. Fig. 4 depicts the principle structure
of a power sensor module.

Each of a number of k power sensors covers l system
states and contributes to the entire power model as expressed
in (7). The PE-architecture delivers power information each
cycle, hence time-dependency t is introduced in the following
equations to account for power values estimated at different
points in time.

yj,i(t) = ci xi(t) for 0 ≤ i ≤ l − 1 ∧ 0 ≤ j ≤ k − 1 (7)

16-bit registers are provided to configure the power sensors
with the power coefficients information obtained from c. It is
worth noting that this power table can also be reconfigured
during program run-time. This enables the masking of system
modules, allowing the tracking of the power consumption of
single sub-modules.

The power estimation unit accumulates 16-bit power sensor
outputs according to (8). This constitutes an instantaneous,
cycle-accurate up to 32-bit wide power estimate y(t) for the
overall system. The entirety of power sensors comprising the
power estimation unit represent the power model established
in hardware (see equality in (8)).

y(t) =
k−1∑

j=0

l−1∑

i=0

yj,i(t) =
n−1∑

i=0

ci xi(t) (8)

Further post-processing is applied by the averaging module,
which allows for smoothing and de-noising of a sequence
of power values. This is enabled by a configurable moving
average filter as shown in (9). Filtering properties can be
changed by adjusting N .

Power Model

Component State
0 1
3 1 9

Power Sensor
Power Value

Configuration

State Vector

n...
...

Fig. 4. Power sensor

Power Modelling

Switching Activity

RTL-Model of Target System

Power Profile

FPGA Target System
+ PE Architecture

Emulation-Based Real-
Time Power Profiling

Netlist CreationModel
Coefficients

Configuration

RTL-Model of
PE-Architecture

Unify Target System
and PE-Architecture

Characterization
Process

Power Emulation
Creation

Fig. 5. Design flow for emulation-based real-time power profiling

yavg =
1
N

N−1∑

j=0

y(t− j) (9)

The debug-trace generator unit captures power information
of the power estimation unit and the averaging module. A
debug-trace message is composed out of these data and is
delivered to the host computer for evaluation and further
processing.

D. Design Flow

Fig. 5 outlines the design flow of the emulation-based real-
time power profiling approach. A synthesizeable RTL-model
of the target system is provided to perform the characterization
process. After synthesis gate-level simulations based on bench-
marking applications are performed and activity information
as well as power profiles are acquired from value change dump
(VCD) files. These information is fed to a power modelling
process, deriving power model coefficients.

The target system RTL-models and the PE-architecture are
merged to allow the generation of a single netlist. After
downloading the netlist onto the FPGA-platform, power model
coefficients determined beforehand are used to configure the
power sensors for tailoring the PE-architecture to the given
target system. Now applications of interest can be executed
and real-time power profiles can be obtained.

E. System Set-Up

Power model coefficients obtained during the characteriza-
tion process deliver configuration data for the power sensors.
Listing 1 illustrates how to configure power sensors to tailor
them to the power consumption of system modules. 16-bit
registers are provided for this purpose.

/ / s t a r t o f program

/ / c o n f i g u r a t i o n o f power s e n s o r 1
PWRSEN0 STATE0 = 0x005A ; / / CPU run mode
PWRSEN0 STATE1 = 0 x0011 ; / / CPU h a l t mode
PWRSEN0 STATE2 = 0 x0013 ; / / CPU s l e e p mode

/ / c o n f i g u r a t i o n o f power s e n s o r 2
PWRSEN1 STATE0 = 0 x0013 ; / / memory r e a d

70
Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on March 02,2010 at 09:36:49 EST from IEEE Xplore. Restrictions apply.

Figure 4.4: Power emulation architecture

yavg =
1
N

N−1∑

j=0

y(t− j) (4.2)

CHAPTER 4. DESIGN OF THE OS-LEVEL POWER MANAGEMENT 42

4.3 Operating System

A big variety of OS for embedded systems exists due to many different application areas
[Tur06]. On the one side there are commercial operating systems, and on the other side
there are the open-source operating systems. Internally developed and commercial dis-
tributions of open-source operating systems offer an alternative. Commercial operating
systems are often used because of their advantages: performance, real-time capability,
compatibility with existing applications, support concerns, memory usage and legal ambi-
guity. The strengths of open-source operating systems are situated in the following areas:
low costs, adaptability and extensibility. Also the evolution of the interest in open-source
operating systems should be considered. The trend which OS are currently used for em-
bedded systems is shown in Table 4.1.
In this master thesis an open-source solution is used. The chosen OS is a SnapGear
µcLinux, which satisfies the low cost requirement, and compatibility to the chosen LEON3
SoC platform is also given.

Current project
Operating system currently use

2008 2007 2006 2005

Commercial OS 49% 47% 51% 55%

Open-source OS without commercial support 19% 22% 16% 25%

Internally developed or in-house OS 21% 21% 21% 20%

Commercial distribution of open-source OS 11% 10% 12% -

Next project
Operating system plan to use next

2008 2007 2006 2005

Commercial OS 37% 41% 47% 50%

Open-source OS without commercial support 26% 27% 19% 34%

Internally developed or in-house OS 23% 15% 17% 16%

Commercial distribution of open-source OS 15% 16% 17% -

N=764 N=676 N=727 N=1303

Table 4.1: Trend of used OS for embedded systems

4.3.1 SnapGear Linux

The SnapGear µcLinux is a Linux distribution for embedded systems which supports the
LEON3 SoC [AER05]. The purpose of the SneapGear µcLinux distribution is to provide
fast developing of embedded Linux systems. The SneapGear µcLinux is available as a full
source package. It contains kernel, libraries and application code.

CHAPTER 4. DESIGN OF THE OS-LEVEL POWER MANAGEMENT 43

Supported hardware:

• MMU

• LEON3 SMP

• GRETH 10/100/1000 Ethernet networking support

• SMC91x 10/100 Ethernet networking support

• OpenCores 10/100 Ethernet networking support

• PCI support

• GRETH over PCI

• ATA DMA and non-DMA

• Host USB 1.1 and/or 2.0

• I2C support

• SPI support

4.3.2 Linux 2.6 Scheduler

The scheduler is one of the most important parts within an OS. The goal of the scheduler
is to guarantee a smooth run of all existing tasks [Aas05], [QW04]. This also includes
a fair scheduling of the available computing time. The amount of the computation time
depends on the priorities of the tasks. The Linux 2.6 scheduler is an O(1) process. This
means that the run-time of the scheduler is constant and independent of the number of
tasks. The core of the Linux 2.6 scheduling structure is based on an active and an expired
run-queue per CPU (see Figure 4.5). Each run-queue contains 140 FIFO lists, which
are used to handle the priorities of the existing tasks. At the beginning, all tasks are in
the active run-queue and wait for their execution. If a task is scheduled next, it can be
executed for a certain time period (timeslice). The task will be re-queued to the expired
run-queue when its execution time is up. After some time all tasks in the active run-queue
are executed and re-queued to the expired run-queue. Then the empty active run-queue
will be swapped with the expired run-queue.

• Timeslices
The timeslice of a task is a value which determines how long a task is allowed to
run before interruption. After every interruption the timeslice of a task is calculated
dynamically as a function of the associated priority. The minimum timeslice is 5ms,
the default value is 100ms and the maximum value is 800ms.

• Priorities
All tasks have a static priority. The priorities 0-99 are reserved for RT-tasks and
100-139 for normal tasks. The priority of normal tasks is also called “nice” value with
the range -20 to 19. Each priority stands for an appropriate length of its timeslice.

CHAPTER 4. DESIGN OF THE OS-LEVEL POWER MANAGEMENT 44

Priority 1

Priority 2

...

Priority 100

Priority 101

...

Priority 140

T
a
s
k
 p
ri
o
ri
ty
 F
IF
O
 l
is
ts

CPU-X Expired

runqueue

Priority 1

Priority 2

...

Priority 100

Priority 101

...

Priority 140

T
a
s
k
 p
ri
o
ri
ty
 F
IF
O
 l
is
ts

CPU-X Active

runqueue

Real-time

task priorities

User task

priorities

Figure 4.5: Scheduler core

Additionally, dynamic priority changing is allowed. This means that the scheduler
is able to increase the priority of I/O-bound tasks and to decrease the priority of
CPU-bound tasks. The maximum value of a dynamic increase or decrease is 5.

• Scheduling policies
The Linux 2.6 scheduler provides four scheduling policies for a single task:

– SCHED FIFO: This scheduling policy is used for RT-tasks. Such a task is
allowed to run as long as necessary. The execution will be finished only if an
interrupt happens or the task is completed.

– SCHED RR : This scheduling policy is also used for RT-tasks. A task will
be interrupted after its timeslice is up. Then it will be re-queued in the active
run-queue (on tail of its priority list). The task will be executed next time after
all tasks with the same priority get some execution time.

– SCHED NORMAL: Normal Round-Robin scheduling. A task will be in-
terrupted after its timeslice is up. Then it will be re-queued in the expired
run-queue. The task will be executed next time after all other tasks get some
execution time.

– SCHED BATCH: Similar to the normal scheduling. It is used for CPU-
bound tasks. Scheduler awards bigger penalties to these tasks.

• Data structure of a task
All information for a task is defined in the structure “task struct”. Also the in-
formation for the scheduling process is defined in this structure. The following

CHAPTER 4. DESIGN OF THE OS-LEVEL POWER MANAGEMENT 45

information is important for the scheduling process:

Listing 4.1: Structure of a task
1 /∗
2 S t ruc tu re o f a t a s k
3 ∗/
4 struct t a s k s t r u c t {
5 . . .
6 volat i le long s t a t e ;
7 . . .
8 int prio , s t a t i c p r i o , normal pr io ;
9 struct l i s t h e a d r u n l i s t ;

10 struct p r i o a r r ay ∗ array ;
11

12 unsigned long s l e ep avg ;
13 unsigned long long timestamp , l a s t r a n ;
14 unsigned long long sched t ime ; /∗ s c h ed c l o c k time spent running ∗/
15 enum s l e ep t yp e s l e ep t yp e ;
16

17 unsigned long po l i c y ;
18 cpumask t cpus a l lowed ;
19 unsigned int t i m e s l i c e ;
20 . . .
21 p id t pid ;
22 . . .
23 } ;

Listing 4.1 shows the structure of a task:

– state shows the present state of the task ()

– prio represents the dynamic priority, static prio the static priority and
normal prio the priority after penalty calculation

– run list and array are necessary for the management of the task

– sleep avg shows the average duration of sleep time of a task

– policy gives information of the current scheduling policy of the task

– time slice represents the rest of execution time

– pid shows the process ID of the task

This scheduler will be adapted to implement the chosen power management. The schedul-
ing process is defined in the source files: /kernel/sched.c and /includes/linux/sched.h

CHAPTER 4. DESIGN OF THE OS-LEVEL POWER MANAGEMENT 46

4.4 Power Management

The practical work of this master thesis is to develop an OS-level power management,
which exploits supporting power information from a power estimation unit. The purpose
of the power management is to find a balance between an available power budget on
the one side and the required power of an embedded system on the other side. Two
countermeasures are available to ensure a reliable system operation.

• Task rescheduling
If the required power consumption of the next task is higher than the available
power, then the task will not run next. Instead, another task with a lower power
consumption comes next.

• DVFS
The clock frequency of the SoC will be decreased for a reduction of the overall power
consumption.

The following steps will be the realization of an appropriate OS-level power management
(Figure 4.6):

Hardware

Operating System

Kernel

Scheduler

Power Estimation Unit

Step 1

Get Power
Step 2

Storing

Step 3

Calculation

Step 4

Selection

Figure 4.6: Overview of the four steps of the power management

• Acquisition of the present power information from the power estimation
unit
Power information of the target system is generated by the power estimation unit
and will be provided to the OS. The power information contains the average power
consumption of timeslice (Tsji) of a task (Tj). This works as follows: the OS triggers

CHAPTER 4. DESIGN OF THE OS-LEVEL POWER MANAGEMENT 47

a control signal (pe ctrl) and the power estimation unit begins to calculate an average
of the present power consumption over the period of one timeslice. The result is the
average power consumption of the chosen time period (Figure 4.7). A schematic
overview of the communication between OS and the power estimation unit is shown
in Figure 4.8.

P

timeT1 T2 T3

P

Ts1i
Ts3i

Ts2i

timeT1 T2 T3

Ts1i

Ts2i
Ts3i

Cycle-acurate Power Consumption

of Tsji

Average Power Consumption

of Tsi

s
to
p

s
to
p

s
to
p

s
ta
rt

s
ta
rt

s
ta
rt

Figure 4.7: Power information generated from the power estimation unit

f(t)

Operating System

Kernel

pe_regs

Scheduler

state_sel

pow_val

powtbl_in

mod_sel

pe_avgstep

pe_ctrl

Hardware

Power Estimation

Unit

0x80000a04

0x80000a0c

0x80000a08

0x80000a00

0x80000a14

0x80000a10

f(t)f(t)

Figure 4.8: Overview of the communication between the OS and the power estimation
unit with the following registers: mod sel - register for the module selection, state sel -
register for the state selection, powtbl in - register for power table configuration, pow val
- present power consumption, pe ctrl - control register, pe avgstep - register to define
the average step range

• Storing of the power information
After the OS has applied the average power consumption of timeslice (Tsji) of a
task (Tj), it is necessary to store this information. Therefore, the structure of a task
will be extended with power information. Figure 4.9 shows the extension of the task
structure to include power information.

CHAPTER 4. DESIGN OF THE OS-LEVEL POWER MANAGEMENT 48

task_struct

process_id

priority

policy

power_info_struct

power_info_struct

present_pb

present_p

average_p

executed_ts

task_suspends

perf_loss

max_p

min_p

violations

Figure 4.9: Extended task structure

– Values for the present power state of a task

∗ Present power budget (present pb) → PB(Tsji)
∗ Present power consumption (present p) → P (Tsji)
∗ Average power consumption (average p) → PAV G(Tj)

– Values for the overall power state of a task

∗ Presently executed timeslices (executed ts)
∗ # of occurred power budget violations (violations)
∗ # of task suspends (task suspends)
∗ performance loss (perf loss)
∗ minimum/maximum power consumption (min p/max p)

• Calculation of the present average power consumption
After storing the average power consumption of timeslice (Tsji) of a task (Tj), the
overall average power consumption will be calculated and updated. For updating the
average power consumption, three different averaging algorithms are explored (see
4.4.1). This means that several timeslices are used to calculate the average power
consumption of the present task. Figure 4.10 gives an example.

Power Budget

P

Ts11

Ts22

Ts32Ts12
Ts31

Ts21

Ts13

Ts23

timeT1 T1 T1T2 T2 T2T3 T3 T1 T2 T3

P

Averaging

Average Power Consumption

of Task #
Power Profile of Task #

Figure 4.10: Update power information with further timeslices

CHAPTER 4. DESIGN OF THE OS-LEVEL POWER MANAGEMENT 49

• Selection of the next running task
The previously calculated average power consumption is the basis for the scheduling
decision. If a task is allowed to run next depends on its average power consumption
in the past and on the present power budget. If the next task in the run queue
exceeds the available power, it is not allowed to run next. Rescheduling will be done
as long as a suitable task is found in the run queues. If no task is able to fulfill the
present power constraints, the processor will be idle until the available power is high
enough again. Figure 4.11 shows an example of the selection process:

– t=1: Power consumption of Ts11 of T1 is lower than the present power budget
→ T1 will be scheduled

– t=2: Power consumption of Ts21 of T2 is lower than the present power budget
→ T2 will be scheduled

– t=3: Power consumption of Ts31 of T3 and Ts12 of T1 are higher than the
present power budget
→ T3 and T1 will be suspended; T2 will be scheduled

– t=4: Power consumption of Ts31 of T3 is higher than present power budget
→ T3 will be suspend; T1 will be scheduled

– t=5: Power consumption of Ts31 of T3 is lower than present power budget
→ T3 will be scheduled

– t=6: No task is able to fulfill the present power budget - IDLE timeslice

– t=7: Power consumption of Ts32 of T3 is lower than present power budget
→ T3 will be scheduled

ID
L
ET1

Ts1

T3

Ts1

T2

Ts1

Normal Scheduling Order

T1

Ts2

T3

Ts2

T2

Ts2

T1

Ts1 T2

Ts2

T3

Ts2
T1

Ts2

T3

Ts1T2

Ts1

Average Power Consumption

of Task #

0.8
0.85

0.7

0.8

0.85

0.7

Power Budget

0.85
0.8

0.6

t=1 t=2 t=3 t=4 t=5 t=6

0.9

t=7

0.7

0.95

T1

Ts1

T2

Ts1

Scheduling Order with Power Managent

T1

Ts2

T3

Ts1

T2

Ts2

0.85t=1 t=2 t=3 t=4 t=5 t=6 t=1 t=2 t=3 t=4 t=5 t=6 t=7

P

P

T3

Ts2

Figure 4.11: Selection process of the next running task

CHAPTER 4. DESIGN OF THE OS-LEVEL POWER MANAGEMENT 50

4.4.1 Averaging Algorithms

The used algorithms for the calculation of the average power consumption of a task are
variations of moving average filters. They are used because of their potential to give
information about the future power consumption of a task based on past power values.
Moving average filters are often used in the field of time series data analysis to smoothen
short-time variations or to emphasize long-time trends. Typical applications can be found
in signal processing (low-pass-filter), financial analysis (stock market price) or in the field
of statistics.[BV08]

Simple Moving Average (SMA)

A SMA filter calculates the mean value of a certain number of data points. The weight of
every single data point is equal and defined with the factor 1 (Figure 4.12). The number
of required data points is defined with N. For the calculation of the present average value
(PSMAn), the present power value (Pn) and the N-1 values (Pn−1, Pn−2, ...Pn−(N−1)) are
used. The following equation describes the SMA filter:

PSMAn =
1 · Pn + 1 · Pn−1 + 1 · Pn−2 + ...+ 1 · Pn−(N−1)

N
=

1
N

N−1∑

i=0

Pn−i (4.3)

• Pseudo code

SMA Algorithm (data po in t s [] , N)
begin

sum = 0
for i = 0 to N−1
begin

sum = sum + data po in t s [i]
end
average = sum / N
return average

end

• Optimization
A more efficient implementation is to drop out the oldest data point and to update
the average with the new data point:

PSMAn = PSMAn−1 −
Pn−N

N
+
Pn

N
(4.4)

CHAPTER 4. DESIGN OF THE OS-LEVEL POWER MANAGEMENT 51

Weights for the SMA filter

0

0.2

0.4

0.6

0.8

1

1.2

[n-14] [n-13] [n-12] [n-11] [n-10] [n-9] [n-8] [n-7] [n-6] [n-5] [n-4] [n-3] [n-2] [n-1]

Timeslice

W
e

ig
h

t

Figure 4.12: Weights for the SMA filter

Weighted Moving Average (WMA)

The WMA filter is a variation of the SMA filter. It uses different weights (Figure 4.13) for
every single data point. The following equation describes the function of a WMA filter:

PWMAn =
N · Pn + (N − 1)Pn−1 + (N − 2)Pn−2 + ...+ Pn−(N−1)

N + (N − 1) + (N − 2) + ...+ 2 + 1
= (4.5)

2
N(N + 1)

N−1∑

i=0

(N − i)Pn−i

with

N + (N − 1) + (N − 2) + ...+ 2 + 1 =
N(N + 1)

2
(4.6)

• Pseudo code

WMA Algorithm (data po in t s [] , N)
begin

numerator = 0
for i = 0 to N−1
begin

numerator = numerator + (N−i) ∗ data po in t s [i])
end
denominator = N ∗ (N−1)

average = numerator / denominator
return average

end

CHAPTER 4. DESIGN OF THE OS-LEVEL POWER MANAGEMENT 52

• Optimization
A more efficient implementation for the WMA filter exists. It works with a simple
update of the last average. The following equations describe the optimization:

TotalPn = Pn + Pn−1 + ...+ Pn−(N−1) (4.7)

TotalPn+1 = TotalPn − Pn−N + Pn+1 (4.8)

Numerator1 = P1 Noun =
N(N + 1)

2
(4.9)

Numeratorn+1 = Numeratorn +N · Pn+1 − TotalPn (4.10)

PWMAn =
Numeratorn

Noun
(4.11)

Weights for the WMA filter

0

2

4

6

8

10

12

14

16

[n-14] [n-13] [n-12] [n-11] [n-10] [n-9] [n-8] [n-7] [n-6] [n-5] [n-4] [n-3] [n-2] [n-1] [n]

Timeslice

W
e

ig
h

t

Figure 4.13: Weights for a WMA filter with N=15

CHAPTER 4. DESIGN OF THE OS-LEVEL POWER MANAGEMENT 53

Exponential Moving Average (EMA)

Similar to the WMA filter, the EMA filter also puts different weights on every single data
point. The difference to the WMA filter is the exponential weighting of data points (Figure
4.14). To parameterize an EMA filter the value α is used. This parameter can take a value
between 0 and 1. Typically, the EMA filter will be implemented in a recursive form. The
following equations define the EMA filter:

PEMA1 = P1 (4.12)

PEMAn+1 = α · Pn+1 + (1− α)PEMAn (4.13)

Weights for the EMA filter

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

[n-20] [n-19] [n-18] [n-17] [n-16] [n-15] [n-14] [n-13] [n-12] [n-11] [n-10] [n-9] [n-8] [n-7] [n-6] [n-5] [n-4] [n-3] [n-2] [n-1] [n]

Timeslice

W
e

ig
h

t

Figure 4.14: Weights for the first 20 values of the EMA filter with α = 1/8

4.5 Power Budget

The power budget is chosen arbitrarily and exists as an array of data values. It is a guide-
line so that the power level will not change during a timeslice. It will be assumed that a
minimum power level is guaranteed.
Normally, the value of the present available power would be provided by hardware sen-
sors, which detect the available power from kinetic, electromagnetic or thermal sources.
A mixture of these sources is possible. A practical application would also contain an en-
ergy buffer for energy storage. This could be realized in form of accumulators or super
capacitors.

Chapter 5

Implementation of the OS-Level
Power Management

This chapter shows the implementation of the concept. First the hardware and the software
setup of the LEON3 SoC platform will be explained. The sections of hardware setup and
software setup give an overview of the used tools and their configuration. For further
information the relevant manuals and quick guides are recommended [AER10], [XIL10].
Then the necessary modifications for the implementation of the chosen power management
will be shown. This addresses the OS, especially the scheduling mechanism.

5.1 Hardware Setup

The the LEON3 SoC is implemented on a FPGA board (Xilinx XC3S-2000) an its basis
is the VHDL code of a LEON3 SoC. The given VHDL code also includes the used power
estimation unit. The following tools are necessary for the hardware setup:

• Xilinx ISE (10.1) - FPGA-Synthesis Tool to yield a FPGA executable system from
VHDL code.

• Xilinx Impact - OS Netlist Programming GUI for the FPGA

After installation of these tools the following steps are taken for the hardware setup (Figure
5.1).

VHDL Source Code

(LEON3 + Power Estimator)

Xilinx ISE

(Synthesis)

FPGA

OS Source Code

(Snapgear 2.6.x)

µC Linux Cross

Compiler

GRMON

(load, start OS,

Debug Output)

*.IMG

*.C
CompilerList

Netlist

Hardware part Software setup

VHDL Source Code
Configuration of the

LEON3 SoC platform
Synthesis,

Netlist generation

Programming of

FPGA board

Hardware setupBasis

Figure 5.1: Overview of the steps for the hardware setup

54

CHAPTER 5. IMPLEMENTATION OF THE OS-LEVEL POWER MANAGEMENT 55

5.1.1 Configuration of the LEON3 SoC Platform

The configuration of the LEON3 SoC platform is done with the command “make xcon-
fig” in the appropriate “<grlib>/<design>” folder. This command starts a GUI for the
configuration (Figure 5.2). The following settings are important to enable:

• Synthesis → FPGA-type: adapt to used board (e.g. xc3s-2000)

• Processor → DebugSupportUnit: enable LEON3 debug support unit; instruction
trace buffer - Debug information is accessible on the host PC.

• Processor → Floating-point unit: disable - Floating point unit is licensed and not
necessarry.

• Debug link: enable serial debug link, JTAG debug link - Enables the communication
between the LEON3 SoC and the host PC.

After finishing the configuration, the command “make scripts” prepares the necessary
scripts for the subsequent synthesis.

Figure 5.2: Snapshot of LEON3 configuration GUI

The LEON3 SPARC V8 processor includes the following units:

• Integer unit

• Cache system

• Memory management unit

• Debug support unit

5.1.2 Synthesis, Netlist Generation

After a successful configuration the synthesis will be started with the command “make
ise”. The result of the synthesis is a corresponding netlist, which is used in the next step
for programming the FPGA board. See [AER10] and [XIL10] for further information to
the used commands.

CHAPTER 5. IMPLEMENTATION OF THE OS-LEVEL POWER MANAGEMENT 56

5.1.3 Programming of the FPGA Board

The last step of the hardware setup is the programming of the FPGA board. The command
“impact” starts a GUI, which is used for the programming process. After loading the
appropriate mcs/bit-files to the three units (mcs to xcf04s units, bit to xc3s2000 unit),
the programming can be started. If the LEON3 design is loaded from the host PC, xcf04s
units can be bypassed, only the FPGA (xc3s2000) bit-file is to be loaded. The xcf04s units
are flash memory, which are used to store configuration data for a stand-alone usage of
the system. Figure 5.3 gives a snapshot of the programming GUI.

Figure 5.3: Snapshot of LEON3 programming GUI

5.2 Software Setup

It is also necessary to install an OS on the LEON3 SoC platform. The basis is C source
code. The following tools are needed for a successful software setup:

• sparc-uclinux-gcc compiler - Tool for snap-gear OS compilation

• GRMON - Tool for the communication between the host PC and the LEON3 SoC
platform

The following steps show the process from C source code to a running operating system
(5.4):

VHDL Source Code

(LEON3 + Power Estimator)

Xilinx ISE

(Synthesis)

FPGA

OS Source Code

(Snapgear 2.6.x)

µC Linux Cross

Compiler

GRMON

(load, start OS,

Debug Output)

*.IMG

*.C
CompilerList

Netlist

Hardware part Software setup

VHDL Source Code
Configuration of the

LEON3 SoC platform
Synthesis,

Netlist generation

Programming of

FPGA board

Hardware setupBasis

OS Source Code
Configuration

of the OS

Compilation

of the OS

Connection to

FPGA board

Software setupBasis

Load, Run OS

Figure 5.4: Overview of the steps for the software setup

CHAPTER 5. IMPLEMENTATION OF THE OS-LEVEL POWER MANAGEMENT 57

5.2.1 Configuration of the OS

The configuration of the OS is done in two parts. First the general configuration GUI will
be started with the command “make xconfig” in the “<snapgear>” folder and the option
of “Customize Kernel Settings” will be enabled (Figure 5.5). After “Save and Exit” of the
current GUI, the kernel configuration GUI will be started automatically. A snapshot of
the kernel configuration GUI is shown in Figure 5.6.

Figure 5.5: Snapshot of the OS configuration GUI

5.2.2 Compilation of the OS

After successful configuration of the OS, the compilation will be started with the command
“make”. The result of the compilation is a runnable image of the OS.

5.2.3 Connection to the LEON3 SoC Platform

For the connection between the host PC and the LEON3 SoC platform a “XILINX Plat-
form Cable USB II” and the tool “GRMON” are used. The connection will be established
with the command “grmon-eval -xilusb -nb -u”.

CHAPTER 5. IMPLEMENTATION OF THE OS-LEVEL POWER MANAGEMENT 58

Figure 5.6: Snapshot of the OS kernel configuration GUI

5.2.4 Load, Run OS

After a connection between the LEON3 SoC platform and the host PC has been estab-
lished, the OS images will be loaded with the command “load images.dsu”. Then the
OS will be booted with the command “run”.

5.3 Linux Scheduler

All modifications for establishing of the power management are made in the files “/ker-
nel/sched.c” and “/includes/linux/sched.h”. The include file “sched.h” is extended with
the structure for the power information and also the parameters for the configuration of

CHAPTER 5. IMPLEMENTATION OF THE OS-LEVEL POWER MANAGEMENT 59

the power management are situated there. The “sched.c” file is normally responsible for
the scheduling procedure. Now this file is extended with the implementation of the power
management.
In the concept the power management was divided into four subtasks:

• Acquisition of the present power consumption from the power estimation unit

• Storing of the power information

• Calculation of the present average power consumption

• Selection of the next running task

Also functionalities for the simulation of the power budget and for writing the power
information to a file have been implemented.

5.3.1 Acquisition the Present Power Information from the Power Esti-
mation Unit

The basic information for the power management is the present power consumption of the
used LEON3 SoC platform. This information is provided by the power estimation unit,
which is also placed on the SoC platform. Before the first read of power consumption
can happen, an initialization of the power estimation unit is necessary. As mentioned in
the concept, the power estimation unit is able to provide power information, which is the
average power consumption of a given time range. The time range will be chosen to be as
long as one single timeslice of a task. The following code snippets describe the procedure
of initialization and reading.

Listing 5.1: Structure for the communication with the power estimation unit
1 /∗
2 ∗ S t ruc tu re f o r power e s t ima t ion un i t
3 ∗/
4 struct p e r e g s t {
5 volat i le int mod sel ;
6 volat i le int s t a t e s e l ;
7 volat i le int powtbl in ;
8 volat i le int pow val ;
9 volat i le int p e c t r l ;

10 volat i le int pe avgstep ;
11 } ;

Listing 5.1 shows the structure for the communication with the power estimation unit:

• mod sel: register (32-bit) for the module selection of the power estimation unit.

• state sel: register (32-bit) for the state selection of the power estimation unit.

• powtbl in: register (32-bit) for power table configuration of the power estimation
unit.

CHAPTER 5. IMPLEMENTATION OF THE OS-LEVEL POWER MANAGEMENT 60

• pow val is the value of the present power consumption.

• pe ctrl is the control register (32-bit) of the power estimation unit, Bit 0 → global
enable of power estimation unit, Bit 1→ enable/disable averaging, Bit 2→ standard
averaging/coarse-grained averaging.

• pe avgstep: register (32-bit) to define the average step range if coarse-grained
averaging is enabled. Then the power estimation unit provides the average power
of a timeslice. The duration of a timeslice is defined with 100ms. pe avgstep is
calculated as followed:

pe avgstep =
Timeslice

Tclk ∗Avg Array Size =
100 · 10−3s

25 · 10−6s ∗ 128
= 31250 (5.1)

Timeslice : 100ms, size of averaging array : 128
clock frequency = 40MHz → Tclk = 25 · 10−6s

Listing 5.2: Acquisition of the present power information from the power estimation unit
1 /∗
2 ∗ Acqu i s i t i on o f the pre sen t power in format ion from the power e s t ima t ion

un i t
3 ∗/
4 stat ic int r ead power in f o ()
5 {
6 stat ic struct p e r e g s t ∗ pe r eg s ;
7 stat ic int f i r s t =0;
8 i f (! f i r s t)
9 {

10 pe r eg s = ioremap (0 x80000a00 , 24) ;
11 pe regs−>pe avgstep =32150;
12 pe regs−>p e c t r l=0x00000007 ;
13 f i r s t =1;
14 }
15 return (pe regs−>pow val) ;
16 }

Listing 5.2 shows the acquisition of the present power information from the power esti-
mation unit. If the function “read power info” is called the first time, the initialization
of the power estimation unit takes place (line 8). Line 10 maps the data structure of
pe regs to the memory-mapped area of the LEON3 SoC where the power estimation unit
is located. Line 11 sets the average step (one timeslice of a task equals 200ms). Line 12
sets Bit 0,1,2 of pe ctrl, which globally enables power estimation, enables averaging and
enables coarse-grained averaging. Line 15 returns the average power consumption of the
chosen time range.

CHAPTER 5. IMPLEMENTATION OF THE OS-LEVEL POWER MANAGEMENT 61

Listing 5.3: Call of the “power information reading” function
1 /∗
2 ∗ This f unc t i on g e t s c a l l e d by the t imer code , wi th HZ frequency .
3 ∗ I n t e r r u p t s are d i s a b l e d .
4 ∗/
5 void s c h e du l e r t i c k (void)
6 {
7 . . .
8 p−>power in fo . power= read power in f o () ∗1000 ;
9 . . .

10 }

Listing 5.3 shows the call of the “power information reading” function. Line 8 reads the
present power information and stores it to the power variable of the power info structure of
a task. This reading of power information is done as early as possible, in order to influence
the power consumption of a task as little as possible with the scheduling procedure.

5.3.2 Storing of the Power Information

After reading the power information from the power estimation unit, the information is
stored in the “power info” structure. Each “task” is extended with such a “power info”
structure. This structure also includes variables for later evaluation and for the different
calculation possibilities of the average power consumption (Section 4.4).

Listing 5.4: Extension of the task structure with power information structure
1 /∗
2 S t ruc tu re o f a t a s k
3 ∗/
4 struct t a s k s t r u c t {
5 . . .
6 struct powe r i n f o s t r u c t power in fo ;
7 . . .
8 } ;
9

10 /∗
11 S t ruc tu re f o r s t o r i n g power in format ion o f a t a s k
12 ∗/
13 struct powe r i n f o s t r u c t {
14

15 //Values f o r the pre sen t power s t a t e
16 int current budget ;
17 int power ;
18 int moving average ;
19

20 //Values f o r c a l c u l a t i o n o f moving average
21 int r i n g bu f f e r [SIZE OF RB] ;
22 int t im e s l i c e c n t ;
23 int tota lP ;
24 int numerator ;
25 int noun ;

CHAPTER 5. IMPLEMENTATION OF THE OS-LEVEL POWER MANAGEMENT 62

26

27 //Values f o r the o v e r a l l power s t a t e o f a t a s k
28 int v i o l a t i o n s ;
29 int not schedu led ;
30 int min power ;
31 int max power ;
32 int performance ;
33

34 //Values f o r exac t e va l ua t i on
35 int butge t va lue s [MAX TIMESLICES] ;
36 int power va lues [MAX TIMESLICES] ;
37 int moving average va lues [MAX TIMESLICES] ;
38 int vdd [MAX TIMESLICES] ;
39 int f [MAX TIMESLICES] ;
40 int t imestamp start [MAX TIMESLICES] ;
41 int w r i t e o f f s e t ;
42 } ;

Listing 5.4 shows the extension of the task structure with the power information structure.
Lines 16-18 store the values for the present power state (power budget, power consump-
tion and average power consumption) of a task. The variables from line 21-25 are used
for the calculation of the next average power consumption of a task. Lines 28-32 repre-
sent the overall power state of a task. It shows how many power violations occurred, how
often the power management has intervened (not scheduled), the performance loss and
the minimum/maximum power consumption of a task. Lines 35-41 are responsible for
an exact evaluation of the task. The power information of each single timeslice is stored.

5.3.3 Calculation of the Present Average Power Consumption

The updating process of the average power consumption of a task is one of the main parts
of the power management. Three different moving average filters are implemented: SMA,
WMA, EMA. Each of these filter algorithms have some configuration parameters. Before
starting, one of the algorithms must be chosen and the according parameters must be set
up. The following code snippets describe the initialization parameters and the different
moving average filter algorithms.

Listing 5.5: Initialization of the averaging parameters
1 #define SIMPLE MA 0
2 #define WEIGHTEDMA 1
3 #define EXPONENTIAL MA 2
4 #define MOV AV FILTER EXPONENTIAL MA
5 #define SIZE OF RB 5
6 #define EMA ALPHA 100
7 #define MAX TIMESLICES 100
8 #define DEFAULT AVERAGE 150000

Listing 5.5 shows the initialization parameters of the averaging filters. MOV AV FILTER
represents the filter algorithm, which is used for the calculation of the moving average.
SIZE OF RB: the set-up parameter for the simple and the weighted moving average. It

CHAPTER 5. IMPLEMENTATION OF THE OS-LEVEL POWER MANAGEMENT 63

also defines how many past power values are used for the average calculation.
EMA ALPHA: the set-up parameter for the exponential moving average algorithm.
MAX TIMESLICES defines how many timeslices will be logged.
DEFAULT AVERAGE defines the default average power consumption of a task.

Listing 5.6: Call of the “calculating moving average” function
1 stat ic void t a s k runn i ng t i c k (struct rq ∗ rq , struct t a s k s t r u c t ∗p)
2 {
3 . . .
4 i f (!−−p−>t i m e s l i c e) {
5 p−>power in fo . moving average=ca l cu l a t e mov ing ave rage (p) ;
6 . . .
7 }
8 . . .
9 }

Listing 5.6 shows the call of the “calculating moving average” function. The condition of
line 4 is fulfilled if the timeslice of a task is consumed. Then the average power consump-
tion will be updated and stored to the power information structure of the task (line 5).

Listing 5.7: Calculation of the moving average
1 stat ic int ca l cu l a t e mov ing ave rage (struct t a s k s t r u c t ∗p)
2 {
3 int moving average=0;
4 int moving average o ld ;
5 int power=0;
6 int idx =0;
7 int t im e s l i c e =0;
8 int ∗ rb ;
9

10 i f (p−>power in fo . power>p−>power in fo . cur rent budget)
11 p−>power in fo . v i o l a t i o n s++; // Vio l a t i on occurs
12

13 power=p−>power in fo . power ;
14 i f (p−>power in fo . t im e s l i c e c n t==1)
15 p−>power in fo . min power=power ;
16 else i f (power<p−>power in fo . min power)
17 p−>power in fo . min power=power ;
18

19 i f (power>p−>power in fo . max power)
20 p−>power in fo . max power=power ;
21

22 p−>power in fo . t im e s l i c e c n t++;
23 t im e s l i c e=p−>power in fo . t im e s l i c e c n t ;
24 rb=&(p−>power in fo . r i n g bu f f e r) ;
25 idx= (t ime s l i c e −1)%SIZE OF RB ;
26

27 switch (MOV AV FILTER)
28 {
29 case SIMPLE MA: //Simple moving average
30 moving average o ld=p−>power in fo . moving average ;

CHAPTER 5. IMPLEMENTATION OF THE OS-LEVEL POWER MANAGEMENT 64

31 i f (t ime s l i c e <=SIZE OF RB)
32 {
33 moving average o ld=moving average o ld ∗(t ime s l i c e −1) ;
34 moving average=(moving average o ld+power) / t im e s l i c e ;
35 }
36 else
37 moving average=moving average o ld +((power−rb [idx]) /SIZE OF RB) ;
38

39 rb [idx]=power ;
40 break ;
41

42 case WEIGHTEDMA: //Weighted moving average
43 i f (t ime s l i c e <=SIZE OF RB)
44 {
45 p−>power in fo . noun=p−>power in fo . noun+t im e s l i c e ;
46 p−>power in fo . numerator=p−>power in fo . numerator+(t im e s l i c e ∗power) ;
47 p−>power in fo . tota lP=p−>power in fo . tota lP+power ;
48 moving average= (p−>power in fo . numerator) /(p−>power in fo . noun) ;
49 }
50 else
51 {
52 p−>power in fo . numerator=p−>power in fo . numerator+(SIZE OF RB∗power)−

p−>power in fo . tota lP ;
53 p−>power in fo . tota lP=p−>power in fo . tota lP+power−rb [idx] ;
54 moving average= (p−>power in fo . numerator) /(p−>power in fo . noun) ;
55 }
56 rb [idx]=power ;
57 break ;
58

59 case EXPONENTIAL MA: // Exponent ia l moving average
60 i f (t im e s l i c e==1)
61 moving average=power ;
62 else
63 moving average= (power∗EMA ALPHA) /1000+(((1000−EMA ALPHA) ∗p−>

power in fo . moving average) /1000) ;
64 break ;
65 }
66 i f (t ime s l i c e <MAX TIMESLICES)
67 {
68 p−>power in fo . bu tge t va lue s [t im e s l i c e]=p−>power in fo . cur rent budget ;
69 p−>power in fo . power va lues [t im e s l i c e]=power ;
70 p−>power in fo . moving average va lues [t im e s l i c e]=moving average ;
71 }
72 return moving average ;
73 }

Listing 5.7 shows the implementation of the different averaging algorithms. Lines 10,11
detect violations. Lines 13-20 are responsible for keeping the minimum and maximum
power consumption up to date. Line 25 calculates the storing index for the new power
value. Lines 29-40 represents the SMA algorithm. The WMA algorithm is shown from
line 42-57. Lines 59-64 give the implementation of the EMA algorithm. Lines 66-71
are used to store additional power information of the consumed timeslice.

CHAPTER 5. IMPLEMENTATION OF THE OS-LEVEL POWER MANAGEMENT 65

5.3.4 Selection of the Next Running Task

The last step of the implemented power management is the choice of the next running task.
The main scheduling function “schedule()” is responsible for this choice. The scheduler
works normally as long as the next chosen task does not exceed the given power budget.
If a violation of the present power budget occurs, the scheduler tries to find another task
which is able to fulfill the power constraints. If no task can be found, the scheduler waits
until a higher present power budget is available. The following code lines describe the
changes in the main scheduling function to achieve these goals.

Listing 5.8: Changes in the main scheduling function
1 /∗
2 ∗ s chedu l e () i s the main s chedu l e r f unc t i on .
3 ∗/
4 asmlinkage void s ched schedu le (void)
5 {
6 . . .
7 idx = s c h e d f i n d f i r s t b i t (array−>bitmap) ;
8 queue = array−>queue + idx ;
9 next = l i s t e n t r y (queue−>next , struct t a s k s t ru c t , r u n l i s t) ;

10

11 current budget=budget [budget cnt]∗1000 ;
12 budget cnt++;
13 i f (budget cnt==1000)
14 budget cnt =0;
15

16 i f (next−>power in fo . t im e s l i c e c n t==0)
17 {
18 next−>power in fo . moving average va lues [0]= DEFAULT AVERAGE;
19 next−>power in fo . moving average=DEFAULT AVERAGE;
20 }
21

22 while (next−>power in fo . moving average>current budget)
23 {
24 i f (sw i t ch cnt==2)
25 {
26 current budget=budget [budget cnt]∗1000 ;
27 budget cnt++;
28

29 performance++;
30 next−>power in fo . performance=performance ;
31

32 i f (budget cnt==1000)
33 budget cnt =0;
34 sw i t ch cnt =0;
35 }
36 next−>power in fo . not schedu led++;
37 dequeue task (next , rq−>a c t i v e) ;
38 enqueue task (next , rq−>exp i red) ;
39

40 i f (un l i k e l y (! array−>n r a c t i v e)) // change runqueues
41 {
42 rq−>a c t i v e = rq−>exp i red ;
43 rq−>exp i red = array ;

CHAPTER 5. IMPLEMENTATION OF THE OS-LEVEL POWER MANAGEMENT 66

44 array = rq−>a c t i v e ;
45 rq−>expired t imestamp = 0 ;
46 rq−>b e s t e xp i r e d p r i o = MAX PRIO;
47 sw i t ch cnt++;
48 }
49 idx = s c h e d f i n d f i r s t b i t (array−>bitmap) ;
50 queue = array−>queue + idx ;
51 next = l i s t e n t r y (queue−>next , struct t a s k s t ru c t , r u n l i s t) ;
52 }
53 t i m e s l i c e s t a r t++;
54 next−>power in fo . cur rent budget=current budget ;
55 i f (next−>power in fo . t ime s l i c e c n t <MAX TIMESLICES)
56 {
57 next−>power in fo . vdd [next−>power in fo . t im e s l i c e c n t]=VDD;
58 next−>power in fo . f [next−>power in fo . t im e s l i c e c n t]=F ;
59 next−>power in fo . t imestamp start [next−>power in fo . t im e s l i c e c n t]
60 = t i m e s l i c e s t a r t ;
61 }
62 . . .
63 }

Listing 5.8 shows the changes in the main scheduling function. Lines 7-9 show the
normal process to find the next running task. Then the present available power budget is
calculated (lines 11-14). Lines 16-20 set the default average value of the present power
consumption. Line 22 decides if the chosen task is allowed to run next. If the task is not
allowed, then it will be dequeued from the active run queue and will be put to the back
of the expired run queue (lines 37,38). Also the variable that shows power management
activity will be updated (line 36). If the active run queue is empty after dequeuing the
task, then the two run queues will be switched (lines 40-48). Lines 49-51 shows the
process to find the next suitable task. If no task in both run queues fulfills the power
budget, the scheduler must wait until a higher power budget is available (lines 24-35).
This case causes a performance loss (lines 29,30). If the next running task is found, the
variables for the present power state of task and also for later evaluation will be set (lines
53-61).

5.3.5 Power Budget

As mentioned in the concept, the power budget in this work is modeled by an array. It
includes 1000 entries, which have been chosen arbitrarily. The power budget array is situ-
ated in the “/includes/linux/budget.h” file. The following codes snippet is an extraction
of this file (Listing 5.9).

Listing 5.9: Extract of the power budget array
1 //Array f o r the Power Budget
2 int budget [1 0 0 0] = {
3 159 ,
4 125 ,
5 145 ,
6 169 ,
7 146 ,

CHAPTER 5. IMPLEMENTATION OF THE OS-LEVEL POWER MANAGEMENT 67

8 151 ,
9 132 ,

10 143 ,
11 144 ,
12 . . .
13 } ;

5.3.6 Writing Power Information to the File System

For later evaluation purposes, the power information of a task is collected. The power in-
formation is stored in the power information structure. After a task has finished, its power
information will be written to the file system of the OS with the “write power sum()” func-
tion.

Listing 5.10: Writing power information to the file system
1 stat ic int write power sum (struct t a s k s t r u c t ∗p)
2 {
3 int i , l enght , cnt , o f f s e t ;
4 char buf [2 0 0] ;
5 struct f i l e ∗ powe r f i l e ;
6

7 s p r i n t f (buf , ”/home/ n f s / power in fo/%d” ,p−>pid) ;
8 powe r f i l e=f i l e o p e n (buf , ORDWR | O CREAT , 0) ;
9

10 s p r i n t f (buf , ”ProcessID : %d\ nTimes l i c e s : %d\nNot Scheduled : %d\ nVio l a t i on s :
%d\nMin . Power : %d\nMax . Power : %d Performance : %d\n\n\0” ,p−>pid , p−>

power in fo . t ime s l i c e c n t , p−>power in fo . not scheduled , p−>power in fo .
v i o l a t i o n s , p−>power in fo . min power , p−>power in fo . max power , p−>
power in fo . performance) ;

11

12 for (i =0; i <200; i++)
13 {
14 i f (buf [i]== ’ \0 ’)
15 {
16 l enght=i ;
17 break ;
18 }
19 }
20 p−>power in fo . w r i t e o f f s e t=p−>power in fo . w r i t e o f f s e t+f i l e w r i t e (

powe r f i l e , p−>power in fo . w r i t e o f f s e t , buf , l enght) ;
21

22 p−>power in fo . w r i t e o f f s e t=p−>power in fo . w r i t e o f f s e t+f i l e w r i t e (
powe r f i l e , p−>power in fo . w r i t e o f f s e t , ”Budget − Power − Average− F −
VDD − Timestamp \n\n” ,52) ;

23 for (cnt=1; cnt<p−>power in fo . t im e s l i c e c n t ; cnt++)
24 {
25 i f (cnt==(MAX TIMESLICES−1))
26 break ;
27

28 s p r i n t f (buf , ”%d | %d | %d | %d | %d | %d \n\0” ,
29 p−>power in fo . bu tge t va lue s [cnt] , p−>power in fo . power va lues [cnt] ,
30 p−>power in fo . moving average va lues [cnt] , p−>power in fo . f [cnt] , p−>

power in fo . vdd [cnt] ,

CHAPTER 5. IMPLEMENTATION OF THE OS-LEVEL POWER MANAGEMENT 68

31 p−>power in fo . t imestamp start [cnt]) ;
32

33 for (i =0; i <200; i++)
34 {
35 i f (buf [i]== ’ \0 ’)
36 {
37 l enght=i ;
38 break ;
39 }
40 }
41 p−>power in fo . w r i t e o f f s e t=p−>power in fo . w r i t e o f f s e t+f i l e w r i t e (

powe r f i l e , p−>power in fo . w r i t e o f f s e t , buf , l enght) ;
42 }
43 f i l e c l o s e (p owe r f i l e) ;
44 return 0 ;
45 }

Listing 5.10 shows the writing of power information to the file system. Line 7,8 open a
file with the name of the process ID of the task. First the characteristic power informa-
tion (process ID, suspends, violations, minimum power, maximum power) is written to file
(lines 10-20). Lines 22-42 show the procedure of writing the exact power information
(power budget, power consumption, average power consumption, frequency, supply volt-
age, starting time stamp) of each timeslice of a task. Line 43 closes the file.

Listing 5.11: Call of the“write power” function
1 stat ic i n l i n e void f i n i s h t a s k sw i t c h (struct rq ∗ rq , struct t a s k s t r u c t ∗

prev)
2 {
3 . . .
4 i f (un l i k e l y (p r e v s t a t e == TASK DEAD)) {
5 . . .
6 write power sum (prev) ;
7 . . .
8 }
9 . . .

10 }

Listing 5.11 shows the call of the “write power” function. The power information will be
written to the file system after the last task switch of a task (line 6).

Chapter 6

Evaluation and Results

This chapter illustrates the evaluation and the results of the implemented power man-
agement. First, the evaluation conditions are introduced. They include the evaluation
measurement setup, a description of the evaluation task-set, the power profiling of the
evaluation task-set and the variations of the averaging algorithms. Second, the measure-
ment results are presented. The results are divided into: (i) the outcome of the OS-level
power management and (ii) its impact on the LEON3 SoC’s performance.

6.1 Evaluation

The evaluation of the implemented power management is important to gain results for the
adapted system. The following terms are important for the evaluation:

• Evaluation task-set
Is the set of the implemented tasks to test the target system.

• Timeslice
The timeslice Tsij of a task Tj is a value which determines how long a task is allowed
to run before interruption. A timeslice has been chosen to 200ms.

• Idle time
If no task is allowed to run, the system stays in idle state for a period of time (→
performance loss).

• Task suspend
A suspend occurs if the present power budget of the next running task is lower than
the average power consumption of the next running task (PB(Tsij) < PAV G(Tj)).

• Violation
A violation occurs if the present power budget is lower than the power consumption
of the present timeslice of a task (PB(Tsij) < P (Tsj)).

6.1.1 Evaluation Measurement Setup

Figure 6.1 shows the evaluation setup. The evaluation data will be generated locally on
the target system by the evaluation task-set. The GRMON tool is used to transfer the

69

CHAPTER 6. EVALUATION AND RESULTS 70

data from the target system to the host PC.

VHDL Source Code
Configuration of the

LEON3 SoC platform
Synthesis,

Netlist generation

Programming of

FPGA board

Hardware setupBasis

VHDL Source Code

(LEON3 + Power Estimator)

Xilinx ISE

(Synthesis)

FPGA

OS Source Code

(Snapgear 2.6.x)

µC Linux Cross

Compiler

GRMON

(load, start OS,

Debug Output)

*.IMG

*.CList of VHD Files

Netlist

Hardware part Software part

Target Platform Host PC

µC Linux

GRMON

LEON3 SoC Platform

Host PC

Evalutation Tasks

BASIC MATH

FFTAES QSORT

DIJKSTRA

start OS

Evaluation Data

HW

Power

Estimation

Unit

Figure 6.1: Evaluation setup

Evaluation Data
The following information is used for the evaluation:

• Number of timeslices consumed by the entire evaluation task-set

• Number of occurred power budget violations of the entire evaluation task-set

• Number of task suspends of the entire evaluation task-set

• Performance loss caused by the power budget violations of the entire evaluation
task-set

Configuration of the Power Estimation Unit
The power estimation unit is configured as follows:

• Global enable of power estimation unit → On

• Averaging → On;

• Coarse-grained averaging → On;

• Averaging step range= 31250 (Equation (5.1))

For further information see Section 5.3.1.

6.1.2 Evaluation Task-Set

Five different tasks are running on the target system to evaluate the power management.
These tasks will be started after the operating system is booted. The tasks represent
typical applications for embedded systems. The following tasks compose the evaluation
task-set:

• AES (Advanced Encryption Standard)
The AES is a standard for a symmetric encryption system. It provides a block
cypher with three key lengths: 128-bit, 192-bit, 256-bit. For the evaluation the AES
with a key length of 128-bit is used.

CHAPTER 6. EVALUATION AND RESULTS 71

• BASIC MATH
This task includes some basic mathematical functions: solving of cubic equations,
calculation of square roots, angle conversations.

• QSORT
This task is an implementation of the “Quick Sort” sorting algorithm. The basis is
the “Divide and Conquer” principle.

• FFT (Fast Fourier Transformation)
The FFT is a basic algorithm in the area of signal processing . It is used to transform
signals from the time domain to the frequency domain.

• DIJKSTRA
DIJKSTRA is a network algorithm which is used to compute the shortest path be-
tween a start node and a target node. The basic is a graph with non-negative edge
path costs.

6.1.3 Power Profiling of the Evaluation Task-Set

Figure 6.2 shows the power profiling of the implemented evaluation task-set. The power
profiling is acquired by the power estimation unit and the average power consumption
of the five evaluation tasks differ from 0.69 to 0.86. The BASIC MATH task and the
FFT task are the tasks with the highest average power consumption. They have an
average of approximately 0.85. The AES task has the lowest average power consumption of
approximately 0.7. The DIJKSTRA task has the third highest average power consumption
and the QSORT task the fourth highest. These two tasks show a significant increase in
their power consumption after a certain period of time. This step is the result of the initial
phase of these two tasks.

0 10 20 30 40 50 60 70 80 90
0.65

0.7

0.75

0.8

0.85

0.9

Timeslice

N
or

m
al

iz
ed

 P
ow

er

Power Profiles

AES
Basic Math
QSort
FFT
Dijkstra

Figure 6.2: Power profiles of the evaluation task-set

CHAPTER 6. EVALUATION AND RESULTS 72

6.1.4 Variations of the Averaging Algorithms

As mentioned in Chapter 4, three different moving average filter algorithms are imple-
mented to support the chosen power management. These averaging algorithms are used
to provide an adaptable power management. For the evaluation, the power management
is tested with different parameterization of the averaging algorithms. Additionally, two
further cases are tested. First, power management is disabled. This case is used as a
reference. Second, only the power consumption of the last consumed timeslice of a task is
used for the scheduling decision (LastPowerVal). Table 6.1 shows the used algorithms for
the evaluation of the power management.

Algorithm Variation Descriptions

Without
Power Management

-
Reference implementation - Power man-
agement is disabled

Simple
Moving Average

Buffer = 5
SMA Algorithm - The last 5 power val-
ues are used for the average calculation

Buffer = 20
SMA Algorithm - The last 20 power val-
ues are used for the average calculation

Buffer = 50
SMA Algorithm - The last 50 power val-
ues are used for the average calculation

Weighted
Moving Average

Buffer = 5
WMA Algorithm - The last 5 power val-
ues are used for the average calculation

Buffer = 20
WMA Algorithm - The last 20 power val-
ues are used for the average calculation

Buffer = 50
WMA Algorithm - The last 50 power val-
ues are used for the average calculation

Exponential
Moving Average

Alpha = 0.9
EMA Algorithm - Present power con-
sumption is weighted with 90%, last av-
erage power consumption with 10%

Alpha = 0.5
EMA Algorithm - Present power con-
sumption is weighted with 50%, last av-
erage power consumption with 50%

Alpha = 0.1
EMA Algorithm - Present power con-
sumption is weighted with 10%, last av-
erage power consumption with 90%

Last Power Val -
Only the power consumption of the last
consumed timeslice of task is used for the
scheduling decision

Table 6.1: Variations of the evaluation algorithms

CHAPTER 6. EVALUATION AND RESULTS 73

6.2 Results

The results can be divided in two sections:

• Outcome of the OS-level power management
Shows the changes in the scheduling order and the changed fragmentation of the
computation time. This outcome of the implemented OS-level power management
is mainly caused by the present power budget.

• Impact on the LEON3 SoC’s performance
Gives information of the performance changes of the LEON3 SoC, caused by the
implemented power management.

6.2.1 Outcome of the OS-Level Power Management

These results give information about the scheduling order and the fragmentation of the
computation time of the executed evaluation task-set. The timeslices, the task suspends
and the violations will be shown. To illustrate the results, the cases when power manage-
ment is disabled (Without-PM) and the best averaging algorithm (EMA-Alpha09) will be
compared. The results of the other averaging algorithms are shown in Appendix A.

Without Power Management

Figure 6.3 shows the scheduling order when power management is disabled. The evaluation
task-set will be scheduled in a normal round robin order. The snapshot of the scheduling
order also shows the occurred violations. The pie chart gives information about the com-
putation time. Because of the normal round robin scheduling order, every task gets the
same amount of computation time.

Figure 6.4 shows the detailed results of the evaluation task-set when power management
is disabled. The timeslices-subplot shows the consumed timeslices to finish to execution
of the evaluation task-set. The number of consumed timeslices differ from 53 to 88. The
suspends-subplot shows that no suspend occurs when power management is disabled.
This is clear because the power management is responsible for suspends. The violations-
subplot shows that the number of violations differ from 1 to 48. A task with a low power
consumption (AES) causes fewer violations than tasks with a high power consumption
(BASIC MATH, FFT).

CHAPTER 6. EVALUATION AND RESULTS 74

62 64 66 68 70 72 74 76 78 80
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Scheduling Order − Without PM

Timeslice

N
or

m
al

iz
ed

 P
ow

er

Budget
AES
Basic Math
QSort
FFT
Dijkstra

20%

20%

20%

20%

20%

Computation Time

V!

V!

V!

V!

V!

V!

V! Violation

Figure 6.3: Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: Without-PM

0

20

40

60

80

100

84 82

53

88 84

Timeslices

0

100

200

300

400

500

0 0 0 0 0

Suspends

0

10

20

30

40

50

1

48

13

47

31

Violations

0

50

100

150

112

140

119

138

116

Minimum

0

50

100

150
128

149
136

151
142

Maximum

AES

Basic Math

QSort

FFT

Dijkstra

Figure 6.4: Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: Without-PM

Exponential Moving Average - Alpha=0.9

Figure 6.5 illustrates the scheduling order when the EMA-Alpha09 algorithm is used to
support the power management. The snapshot of the scheduling order also shows the
power consumption of the consumed timeslices and the corresponding power budget. The
order differs strongly from a normal round robin scheduling, because the power manage-
ment suspends tasks, which would cause violations. The fragmentation of computation
time is shown in the pie chart. Tasks with low power consumption (AES) will be scheduled
more often than tasks with a high power consumption (BASIC MATH, FFT).

CHAPTER 6. EVALUATION AND RESULTS 75

62 64 66 68 70 72 74 76 78 80
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Scheduling Order − Exponential MA alpha=0.9

Timeslice

N
or

m
al

iz
ed

 P
ow

er

Budget
AES
Basic Math
QSort
FFT
Dijkstra

41%

18%

24%

6%

12%

Computation Time

Figure 6.5: Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: EMA-Alpha09

Figure 6.6 shows the detailed results when the EMA-Alpha09 algorithm is used to support
the power management. The number of timeslices are nearly similar to the consumed
timeslices in the case without power management. The number of suspends differ from
34 to 493. This number is highly dependent on the average power consumption of the
corresponding task. Suspends occur if the present power budget for the next running
task is lower than its average power consumption (PB(Tsij) < PAV G(Tj)). A task with
a low power consumption (AES) causes significant fewer suspends than a task with a
high power consumption (FFT). The suspends of tasks with a high power consumption
amounts to a multiple of their consumed timeslices because the execution of the tasks with
a low power consumption is finished first and only tasks with a high power consumption
are waiting for their execution. Then the present power budget is often to low and the
tasks will be suspended again and again. The violations-subplot shows the improvement
of the implemented power management in contrast to the case when power management
is disabled. Only 0 to 7 violations occur during the execution of the evaluation task-set.
Again tasks with a high power consumption perform worse.

CHAPTER 6. EVALUATION AND RESULTS 76

0

20

40

60

80

100

84 83

54

89 86

Timeslices

0

100

200

300

400

500

34

350

84

493

420

Suspends

0

10

20

30

40

50

0 1 1

7 7

Violations

0

50

100

150

111
127

119126
116

Minimum

0

50

100

150
127

149
137

152
144

Maximum

AES

Basic Math

QSort

FFT

Dijkstra

Figure 6.6: Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: EMA-Alpha09

6.2.2 Impact on the LEON3 SoC’s Performance

The performance of the LEON3 SoC is important for the evaluation of the power manage-
ment, because with these results it is possible to show the potential of the implemented
power management. Also the disadvantages of the implemented power management are
shown. The important key figures are the number of caused violations and the performance
loss.

Consumed Timeslices

The number of consumed timeslices does not depend on the different averaging algorithms.
To compute the evaluation task-set, a mean of 393 timeslices were consumed. Small
differences in the number of consumed timeslices are common and caused by the operating
system.

Number of Task Suspends

The number of task suspends gives information about the scheduler activity. A suspend
occurs if the present power budget for the next running task is lower than its average
power consumption (PB(Tsij) < PAV G(Tj)). Figure 6.7 shows the number of task sus-
pends which occur while the evaluation task-set is computed. The number of suspends
depends on the used averaging algorithm and has a variation of 8%. If power management
is disabled, no task suspend occurs. The number of occured suspends is a multiple of the
cosumed timeslices. This is caused by the tasks with a high power consumption. For more
details to task suspends see 6.2.1.

CHAPTER 6. EVALUATION AND RESULTS 77

0

100

200

300

400

Timeslices

391

W
ith

ou
t−

P
M

392

S
M

A
−

B
5

394

S
M

A
−

B
20

394

S
M

A
−

B
50

394

W
M

A
−

B
5

393

W
M

A
−

B
20

394

W
M

A
−

B
50

396

E
M

A
−

A
lp

ha
09

398

E
M

A
−

A
lp

ha
05

394

E
M

A
−

A
lp

ha
01

396

La
st

P
ow

er
V

al

0

500

1000

1500

Activity of Power Management

0

W
ith

ou
t−

P
M

1269

S
M

A
−

B
5

1396

S
M

A
−

B
20

1384

S
M

A
−

B
50

1328

W
M

A
−

B
5

1312

W
M

A
−

B
20

1360

W
M

A
−

B
50

1381

E
M

A
−

A
lp

ha
09

1327

E
M

A
−

A
lp

ha
05

1381

E
M

A
−

A
lp

ha
01

1261

La
st

P
ow

er
V

al

T
a
s

k
 S

u
s
p

e
n

d
s
 [

]

Figure 6.7: Number of task suspends of the evaluation task-set dependent on the different
averaging algorithms

Percentage of Violations

The percentage of violations is the most important key figure. It gives information about
the occurred violations of the given power budget. A violation occurs if the present power
budget is lower than the power consumption of the present timeslice of a task (PB(Tsij) <
P (Tsj)). Figure 6.8 shows the occurred violations of the evaluation task-set dependent on
the different averaging algorithms. When power management is disabled, approximately
35% of the scheduled timeslices cause a violation. The improvement with the use of the
power management is significant, the percantage of violations decreases to less than 10%.
The best averaging algorithm was the EMA with α=0.9. Power management which is
supported with this algorithm causes only 4% violations and reaches an improvement of
8x.

0

100

200

300

400

Timeslices

391

W
ith

ou
t−

P
M

392

S
M

A
−

B
5

394
S

M
A

−
B

20
394

S
M

A
−

B
50

394

W
M

A
−

B
5

393

W
M

A
−

B
20

394

W
M

A
−

B
50

396

E
M

A
−

A
lp

ha
09

398

E
M

A
−

A
lp

ha
05

394

E
M

A
−

A
lp

ha
01

396

La
st

P
ow

er
V

al

0

10

20

30

40

Violations [%]

35.81

W
ith

ou
t−

P
M

6.63

S
M

A
−

B
5

9.90

S
M

A
−

B
20

9.90

S
M

A
−

B
50

5.08

W
M

A
−

B
5

7.89

W
M

A
−

B
20

8.88

W
M

A
−

B
50

4.04

E
M

A
−

A
lp

ha
09

5.78

E
M

A
−

A
lp

ha
05

8.63

E
M

A
−

A
lp

ha
01

5.30

La
st

P
ow

er
V

al

V
io

la
ti

o
n

s
 [

%
]

Figure 6.8: Percentage of occurred violations of the of the evaluation task-set dependent
on the different averaging algorithms

CHAPTER 6. EVALUATION AND RESULTS 78

Performance Loss

Figures 6.9 and 6.10 show the performance loss of the implemented power management.
Performance loss must be accepted if no task in the run queues is below the present power
budget. Then the system stays in idle state until a higher power budget is available.
Figure 6.9 shows the performance loss with an idle time of 200ms. Figure 6.9 illustrates
a performance loss of approximately 30% when power management is used. If power
management is disabled, the performance is maximum (100%). An improvment of the
performance can be reached through a reduction of the idle time. If the duration of one
idle timeslice is reduced to 100ms, the performance loss is 15-20% (Figure 6.10). This
reduction is only possible if the given power budget also changes its value every 100ms.

0

20

40

60

80

100

Performance [%] − Idle Time 200 ms

100.00

W
ith

ou
t−

P
M

72.87

S
M

A
−

B
5

70.64

S
M

A
−

B
20

73.61

S
M

A
−

B
50

72.23

W
M

A
−

B
5

73.69

W
M

A
−

B
20

73.80

W
M

A
−

B
50

70.52

E
M

A
−

A
lp

ha
09

69.17

E
M

A
−

A
lp

ha
05

69.78

E
M

A
−

A
lp

ha
01

72.08

La
st

P
ow

er
V

al

0

20

40

60

80

100

Performance [%] − Idle Time 100ms
100.00

W
ith

ou
t−

P
M

84.31

S
M

A
−

B
5

82.79

S
M

A
−

B
20

84.80

S
M

A
−

B
50

83.88

W
M

A
−

B
5

84.85

W
M

A
−

B
20

84.93

W
M

A
−

B
50

82.71

E
M

A
−

A
lp

ha
09

81.77

E
M

A
−

A
lp

ha
05

82.20

E
M

A
−

A
lp

ha
01

83.77

La
st

P
ow

er
V

al

P
e
rf

o
rm

a
n

c
e
 L

o
s

s
 [

%
]

Figure 6.9: Performance loss - Idle time = 200ms

0

20

40

60

80

100

Performance [%] − Idle Time 200 ms

100.00

W
ith

ou
t−

P
M

72.87

S
M

A
−

B
5

70.64
S

M
A

−
B

20
73.61

S
M

A
−

B
50

72.23

W
M

A
−

B
5

73.69

W
M

A
−

B
20

73.80

W
M

A
−

B
50

70.52

E
M

A
−

A
lp

ha
09

69.17

E
M

A
−

A
lp

ha
05

69.78

E
M

A
−

A
lp

ha
01

72.08

La
st

P
ow

er
V

al

0

20

40

60

80

100

Performance [%] − Idle Time 100ms
100.00

W
ith

ou
t−

P
M

84.31

S
M

A
−

B
5

82.79

S
M

A
−

B
20

84.80

S
M

A
−

B
50

83.88

W
M

A
−

B
5

84.85

W
M

A
−

B
20

84.93

W
M

A
−

B
50

82.71

E
M

A
−

A
lp

ha
09

81.77

E
M

A
−

A
lp

ha
05

82.20

E
M

A
−

A
lp

ha
01

83.77

La
st

P
ow

er
V

al

P
e
rf

o
rm

a
n

c
e
 L

o
s
s
 [

%
]

Figure 6.10: Performance loss - Idle time = 100ms

The performance results show that the implemented power management is a promising
alternative for systems with limited power. With the use of the power management, a
reduction of the occurred violation by 8x is possible and the performance loss is only
approximately 30%.

Chapter 7

Conclusion and Future Work

To fulfill today’s power requirements for designing embedded systems, power management
is essential [She08]. Power management is used to deal with two existing issues: (i) limited
energy with the goal to minimize the energy/power consumption of the system and (ii)
limited power with the main goal to ensure a stable operation of the system.

7.1 Conclusion

This thesis focuses on the design and implementation of an OS-level power management
which is able to handle the problem of limited power. Basis for the implementation of
the power management is a Linux operating system. To realize the power management,
the present power consumption of a LEON3 SoC is used. This present power consump-
tion is provided by an additional power estimation unit. Task rescheduling as a power
management technique is used to minimize the violations of a given power budget. The
implemented power management is set up in four major steps: (i) acquisition of the present
power information for an executed task by the help of the power estimation unit, (ii) stor-
ing of the power information, (iii) calculation of the present average power consumption
of the executed tasks and (iv) selection of the next running task under consideration of
the given power budget. Adaptations of the scheduler function of the Linux operating
system are realized to implement the chosen power management. Different algorithms for
the calculation of the average power consumption of the tasks have been implemented to
provide variations of the power management. A set of tasks was used for the evaluation of
the power management. The tasks are typical applications (cryptography, mathematics,
network, signal processing) for embedded systems.

A significant improvement of the occurred violations of the given power budget could be
gained by the use of the implemented power management. Without power management
approximately 35% of the scheduled timeslices cause a violation for a predetermined power
budget. If the implemented power management is used, the number of occurred violations
can be minimized to only 4% and results in an improvement of approximately 8x. The
performance loss is kept within reasonable limits and amounts to approximately 30%.
To sum up it can be said that the designed and implemented power management is an
adequate approach for systems with limited power.

79

CHAPTER 7. CONCLUSION AND FUTURE WORK 80

7.2 Future Work

The implemented power management shows potential for systems with limited power.
Despite the shown potential, some open issues should be explored and solved. It has to be
kept in mind that the current edition of the implemented power management was tested
on a real hardware system, but the given power budget has been chosen arbitrarily. It
would be also possible to gain some improvements if the implemented power management
worked in combination with a hardware power management mechanism. Furthermore,
additional metrics for the scheduling decision could be explored.

7.2.1 Exploration of the Implemented Power Management with a Real
Power Budget

The implemented power management was tested with an arbitrarily chosen power budget.
For the operation in real systems it is necessary to test and evaluate the power manage-
ment with a real power budget. A solar panel would be a common choice for a power
supply source to test the power management under real conditions. The results should be
satisfactory, because the averaging algorithms of the power management match well with
the quadratic trend of the solar activity (Figure 2.2). Also other power supply sources
(kinetic energy, radio frequency radiation) should be tested.

7.2.2 Hardware Power Management Mechanism

An additional use of a hardware power management mechanism would be promising for the
implemented OS-level power management. The hardware power management mechanism
is able to reduce weaknesses of the implemented OS-level power management. Therefore,
the use of hardware based dynamic voltage and frequency scaling (DVFS) is recommended
to gain improvements.

Weaknesses of the Implemented OS-Level Power Management

• Granularity - The operating system is not able to handle power peaks, which occur
during a timeslice.

• Highest priority task - A task with a very high power consumption could starve.

• Power consumption of the LEON3 SoC - The minimum power consumption of the
LEON3 SoC is fixed and cannot be lowered.

DVFS for Dealing with Power Peaks During a Timeslice

It is necessary to deal with power peaks to guarantee a stable operation of the target
system. These power peaks can occur during a timeslice and the operating system is not
able to handle it. Hardware based DVFS can reduce the violations of the power budget,
because it is fast enough to avoid the power peaks.

CHAPTER 7. CONCLUSION AND FUTURE WORK 81

DVFS for Highest Priority Tasks

Hardware based DVFS can also be used to guarantee execution time for highest priority
tasks. DVFS can lower the power consumption of the whole system and highest priority
tasks with a high power consumption are able to run without violations of the given power
budget.

DVFS to Minimize Idle Time

If no task is able to fulfill the present power budget, the system runs in idle mode. Instead
of idle time, DVFS can lower the power consumption of the whole system and tasks are
able to run within the given power constraints.

7.2.3 Introduction of Additional Metrics for the Scheduling Decision

The scheduling decision is based on the average power consumption of a task and the
present algorithms for the calculation of the power consumption of a task rely on averaging
metrics. Dependent on the power consumption trend of a task, other metrics could achieve
better results. The existing averaging algorithms could be modified with a threshold or a
variance.

Appendix A

Detailed Results

The following sections show detailed results of the different averaging algorithms. Each
section consists of two figures. The first figure shows the scheduling order. When power
management is used, the scheduling order differs strongly from a normal round robin
scheduling. The changes are caused by the implemented power management, based on
task suspends.
The second figure shows the results of the evaluation task-set in terms of number of
consumed timeslices, number of task suspends and number of violations. Each evaluation
task is examined separately.

82

APPENDIX A. DETAILED RESULTS 83

A.1 Simple Moving Average - Bufer=5

62 64 66 68 70 72 74 76 78 80
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Scheduling Order − Simple MA RB=5

Timeslice

N
or

m
al

iz
ed

 P
ow

er

Budget
AES
Basic Math
QSort
FFT
Dijkstra

36%

18%

23%

12%

12%

Computation Time

Figure A.1: Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: SMA-B5

0

20

40

60

80

100

83 83

53

89
84

Timeslices

0

100

200

300

400

500

36

271

88

458
416

Suspends

0

10

20

30

40

50

2
7

4 6 7

Violations

0

50

100

150

112

132
124122116

Minimum

0

50

100

150
128

150
136

152
143

Maximum

AES

Basic Math

QSort

FFT

Dijkstra

Figure A.2: Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: SMA-B5

APPENDIX A. DETAILED RESULTS 84

A.2 Simple Moving Average - Bufer=20

62 64 66 68 70 72 74 76 78 80
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Scheduling Order − Simple MA RB=20

Timeslice

N
or

m
al

iz
ed

 P
ow

er

Budget
AES
Basic Math
QSort
FFT
Dijkstra

38%

15%

24%

11%

13%

Computation Time

Figure A.3: Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: SMA-B20

0

20

40

60

80

100

84 83

53

89 85

Timeslices

0

100

200

300

400

500

50

298

79

520

449

Suspends

0

10

20

30

40

50

3 5 6
9

16

Violations

0

50

100

150

113

137
122128

116

Minimum

0

50

100

150
126

150
138

154
144

Maximum

AES

Basic Math

QSort

FFT

Dijkstra

Figure A.4: Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: SMA-B20

APPENDIX A. DETAILED RESULTS 85

A.3 Simple Moving Average - Bufer=50

62 64 66 68 70 72 74 76 78 80
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Scheduling Order − Simple MA RB=50

Timeslice

N
or

m
al

iz
ed

 P
ow

er

Budget
AES
Basic Math
QSort
FFT
Dijkstra

33%

19%
22%

14%

14%

Computation Time

Figure A.5: Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: SMA-B50

0

20

40

60

80

100

84 83

53

89 85

Timeslices

0

100

200

300

400

500

82

331

113

435423

Suspends

0

10

20

30

40

50

2

8
5

8

16

Violations

0

50

100

150

111

135
125128

115

Minimum

0

50

100

150
125

150
137

151144

Maximum

AES

Basic Math

QSort

FFT

Dijkstra

Figure A.6: Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: SMA-B50

APPENDIX A. DETAILED RESULTS 86

A.4 Weighted Moving Average - Bufer=5

62 64 66 68 70 72 74 76 78 80
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Scheduling Order − Weighted MA RB=5

Timeslice

N
or

m
al

iz
ed

 P
ow

er

Budget
AES
Basic Math
QSort
FFT
Dijkstra

39%

16%

22%

12%

13%

Computation Time

Figure A.7: Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: WMA-B5

0

20

40

60

80

100

84 83

53

89 85

Timeslices

0

100

200

300

400

500

49

316

102

457
404

Suspends

0

10

20

30

40

50

2 4 3
8

3

Violations

0

50

100

150

111
123124123

115

Minimum

0

50

100

150
126

149
138

154
144

Maximum

AES

Basic Math

QSort

FFT

Dijkstra

Figure A.8: Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: WMA-B5

APPENDIX A. DETAILED RESULTS 87

A.5 Weighted Moving Average - Bufer=20

62 64 66 68 70 72 74 76 78 80
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Scheduling Order − Weighted MA RB=20

Timeslice

N
or

m
al

iz
ed

 P
ow

er

Budget
AES
Basic Math
QSort
FFT
Dijkstra

39%

18%

22%

10%

12%

Computation Time

Figure A.9: Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: WMA-B20

0

20

40

60

80

100

84 83

53

88 85

Timeslices

0

100

200

300

400

500

42

302

96

451
421

Suspends

0

10

20

30

40

50

2

8

2

11
8

Violations

0

50

100

150

111

140

121
134

118

Minimum

0

50

100

150
127

150
137

153
143

Maximum

AES

Basic Math

QSort

FFT

Dijkstra

Figure A.10: Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: WMA-B20

APPENDIX A. DETAILED RESULTS 88

A.6 Weighted Moving Average - Bufer=50

62 64 66 68 70 72 74 76 78 80
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Scheduling Order − Weighted MA RB=50

Timeslice

N
or

m
al

iz
ed

 P
ow

er

Budget
AES
Basic Math
QSort
FFT
Dijkstra

36%

17%

22%

11%

15%

Computation Time

Figure A.11: Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: WMA-B50

0

20

40

60

80

100

84 83

53

89 85

Timeslices

0

100

200

300

400

500

38

332

79

502

409

Suspends

0

10

20

30

40

50

1

7 9
5

13

Violations

0

50

100

150

112
123123119116

Minimum

0

50

100

150

123

148
138

150144

Maximum

AES

Basic Math

QSort

FFT

Dijkstra

Figure A.12: Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: WMA-B50

APPENDIX A. DETAILED RESULTS 89

A.7 Exponential Moving Average - Alpha=0.5

62 64 66 68 70 72 74 76 78 80
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Scheduling Order − Exponential MA alpha=0.5

Timeslice

N
or

m
al

iz
ed

 P
ow

er

Budget
AES
Basic Math
QSort
FFT
Dijkstra

37%

20%

24%

10%

10%

Computation Time

Figure A.13: Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: EMA-Alpha05

0

20

40

60

80

100

84 83

54

89 88

Timeslices

0

100

200

300

400

500

37

327

67

446450

Suspends

0

10

20

30

40

50

1

7
2

8
5

Violations

0

50

100

150

110

128
120123117

Minimum

0

50

100

150
135

152
138

150145

Maximum

AES

Basic Math

QSort

FFT

Dijkstra

Figure A.14: Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: EMA-Alpha05

APPENDIX A. DETAILED RESULTS 90

A.8 Exponential Moving Average - Alpha=0.1

62 64 66 68 70 72 74 76 78 80
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Scheduling Order − Exponential MA alpha=0.1

Timeslice

N
or

m
al

iz
ed

 P
ow

er

Budget
AES
Basic Math
QSort
FFT
Dijkstra

37%

15%

21%

14%

14%

Computation Time

Figure A.15: Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: EMA-Alpha01

0

20

40

60

80

100

84 83

53

89 85

Timeslices

0

100

200

300

400

500

58

347

111

455
410

Suspends

0

10

20

30

40

50

0

8 7
10 9

Violations

0

50

100

150

113

134
122123117

Minimum

0

50

100

150
126

150
137

152
143

Maximum

AES

Basic Math

QSort

FFT

Dijkstra

Figure A.16: Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: EMA-Alpha01

APPENDIX A. DETAILED RESULTS 91

A.9 Last Power Value

62 64 66 68 70 72 74 76 78 80
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Scheduling Order − Last Power Value

Timeslice

N
or

m
al

iz
ed

 P
ow

er

Budget
AES
Basic Math
QSort
FFT
Dijkstra

37%

18%

24%

10%

12%

Computation Time

Figure A.17: Representative extract of the scheduling order and the computation time
fragmentation. Averaging algorithm: LastPowerVal

0

20

40

60

80

100
85 83

53

90
85

Timeslices

0

100

200

300

400

500

58

262

88

477

376

Suspends

0

10

20

30

40

50

2
6

1
5 7

Violations

0

50

100

150

113

139
125130

116

Minimum

0

50

100

150
127

149
137

152
143

Maximum

AES

Basic Math

QSort

FFT

Dijkstra

Figure A.18: Number of timeslices, suspends and violations of the evaluation task-set.
Averaging algorithm: LastPowerVal

List of Abbreviations

A/D Analog to Digital
ACPI Advanced Configuration and Power Interface
APM Advanced Power Management
ASIC Application Specific Integrated Circuit
AMP Asymmetric Multiprocessing
CPU Central Processing Unit
D/A Digital to Analog
DPM Dynamic Power Management
DPTC Dynamic Process and Temperature Compensation
DVS Dynamic Voltage Scaling
DVFS Dynamic Voltage and Frequency Scaling
EDF Earliest Deadline First
EMA Exponential Moving Average
FCFS First Come First Served
FIFO First In First Out
FPGA Field Programmable Gate Array
I/O Input/Output
MIPS Million Instructions Per Second
OS Operating System
PC Personal Computer
PEU Power Estimation Unit
PMU Power Management Unit
RF Radio Frequency
RM Rate Monotonic
RTOS Real-Time Operating System
R&D Research and Development
SMA Simple Moving Average
SJF Shortest Job First
SMP Synchronous Multiprocessing
SoC System on Chip
VHDL Very High Speed Integrated Circuit Hardware Description

Language
WCET Worst Case Execution Time
WMA Weighted Moving Average

92

Bibliography

[Aas05] Josh Aas. Understanding the Linux 2.6.8.1 CPU Scheduler. Silicon Graphics,
Inc., 2005.

[Abb06] Doug Abbott. Linux for Embedded and Real-Time Applications. Elsevier
Inc., 2006.

[ACP09] Advanced Configuration and Power Interface Specification, June 2009.

[AER05] AEROFLEX Gaisler. LEON3 - Multiprocessing CPU Core, 2005.

[AER10] AEROFLEX Gaisler. http://www.gaisler.com, 2010.

[BCMS01] L. Benini, G. Castelli, A. Macii, and R. Scarsi. Battery-Driven Dynamic
Power Management. Design & Test of Computers, IEEE, 18 Issue: 2:53 –
60, 2001.

[BGS+10] C. Bachmann, A. Genser, C. Steger, R. Weiss, and J. Haid. Automated Power
Characterization for Run-Time Power Emulation of SoC Designs. 2010.

[BV08] Udo Bankhofer and Jürgen Vogel. Datenanalyse und Statistik. Gabler, 2008.

[Cam09] K.W. Cameron. The Road to Greener IT Pastures. Computer, 42:87–89,
2009.

[CSB92] A. Chandrakasan, S. Sheng, and R. W. Brodersen. Lowp-Power CMOS Dig-
ital Design. IEEE Journal of Solid-State Circuits, 27:473–484, 1992.

[GACB+04] Bita Gorji-Ara, Pai Chou, Nader Bagherzadeh, Mehrdad Reshadi, and David
Jensen. Fast and Efficient Voltage Scheduling by Evolutionary Slack Distri-
bution. Asia-South Pacific Design Automation Conference, 2004.

[GBH+09] Andreas Genser, Christian Bachmann, Josef Haid, Christian Steger, and
Reinhold Weiss. An Emulation-Based Real-Time Power Profiling Unit for
Embedded Software. Systems, Architecture, Modeling and Simulation, pages
67 – 73, 2009.

[GCO06] Yan Gu, Samarjit Chakraborty, and Wei Tsang Ooi. Games are up for DVFS.
ACM IEEE Design Automation Conference, Session 35:598–603, 2006.

[Hea03] Steve Heath. Embedded Systems Design. Newnes, 2003.

93

BIBLIOGRAPHY 94

[HK03] Chung-Hsing Hsu and Ulrich Kremer. The Design, Implementation, and
Evaluation of a Compiler Algorithm for CPU Energy Reduction. Conference
on Programming Language Design and Implementation, pages 38–48, 2003.

[KHZS07] Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B. Srivastava. Power
Management in Energy Harvesting Sensor Networks. ACM Transactions on
Embedded Computing Systems (TECS), 6, 2007.

[Kim06] Taewhan Kim. Application-Driven Low-Power Techniques Using Dynamic
Voltage Scaling. In Embedded and Real-Time Computing Systems and Ap-
plications, 12th, pages 199–206, 2006.

[Kit09] Troy Kitch. Green Up: Strategies for Dynamic Power Management using
embedded Linux. Embedded Computing Design, 2009.

[LDM01] Yung-Hsiang Lu and G. De Micheli. Comparing System-Level Power Man-
agement Policies. Design & Test of Computers, IEEE, 18 , Issue:2:10 – 19,
2001.

[LL73] C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment. ACM, 20:46 – 61, 1973.

[LLTW06] Huaxiang Lu, Yan Lu, Zhifang Tang, and Shoujue Wang;. Soc Dynamic
Power Management Using Artificial Neural Network. Intelligent Systems
Design and Applications, pages 133 – 137, 2006.

[LNS+07] Jeabin Lee, Byeong-Gyu Nam, Seong-Jun Song, Namjun Cho, and Hoi-Jun
Yoo. A Power Management Unit with Continuous Co-Locking of Clock Fre-
quency and Supply Voltage for Dynamic Voltage and Frequency Scaling. Cir-
cuits and Systems, pages 2112 – 2115, 2007.

[MM05] Loreto Mateu and Francesc Moll. Review of Energy Harvesting Techniques
and Applications for Microelectronics. The International Society for Optical
Engineering, 5837:359–373, 2005.

[Mur08] S. Murugesan. Harnessing Green IT: Principles and Practices. IT Profes-
sional, 10:24–33, 2008.

[OKKK08] Seungyong Oh, Jungsoo Kim, Seonpil Kim, and Chong-Min Kyung. Task
Partitioning Algorithm for Intra-Task Dynamic Voltage Scaling. Circuits
and Systems, pages 1228 – 1231, 2008.

[Ols08] Stephen Olsen. Power Management for Portable Consumer Electronic De-
vices. Mentor Graphics Corporation, 2008.

[QW04] Markus Quaritsch and Thomas Winkler. Linux - Ein Einblick in den Kernel.
2004.

[Rut09] S. Ruth. Green IT More Than a Three Percent Solution? Internet Comput-
ing, IEEE, 13:74–78, 2009.

BIBLIOGRAPHY 95

[SAHE02] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles. Energy-Efficient Mapping
and Scheduling for DVS Enabled Distributed Embedded Systems. Design
Automation and Test in Europe, 2002.

[SGD09] Joachim Schröder, Tilo Gockel, and Rüdiger Dillmann. Embedded Linux -
Das Praxisbuch. Springer, 2009.

[She08] Findlay Shearer. Power Management for Portable Devices. Newnes, 2008.

[SJK05] Dongkun Shin and Member Jihong Kim. Intra-Task Voltage Scheduling on
DVS-Enabled Hard Real-Time Systems. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions, 24:1530 – 1549, 2005.

[SKC04] J. Seo, T. Kim, and K. Chung. Profile-Based Optimal Intra-Task Voltage
Scheduling for Hard Real-Time Applications. Design Automation Conference,
2004.

[SKL01] D. Shin, J. Kim, and S. Lee. Intra-Task Voltage Scheduling for Low-Energy
Hard Real-Time Applications. IEEE Design and Test of Computers,, 18:20
– 30, 2001.

[SRH05] David Snowdon, Sergio Ruocco, and Gernot Heiser. Power Management and
Dynamic Voltage Scaling: Myths and Facts. 2005.

[Tan03] Andrew S. Tannenbaum. Moderne Betriebssysteme. Pearson Studium, 2003.

[Tex97] Texas Instruments. CMOS Power Consumption and Cpd Calculation, 1997.

[TTD03] David Tam, Winnie Tsang, and Catalin Drula. Dynamic Voltage Scaling in
Mobile Devices. 2003.

[Tur06] Jim Turley. Operating Systems on the Rise. Embedded Systems Design, 2006.

[VM03] G. Varatkar and R. Marculescu. Communicationaware Task Scheduling and
Voltage Selection for Total Systems Energy Minimization. International Con-
ference on Computer-Aided Design, 2003.

[VvSGH09] Ruud Vullers, Rob van Schaijk, Bert Gyselinckx, and Chris Van Hoof. Is
There a Sweet Spot for Energy Harvesting? Device Research Conference,
pages 7–8, 2009.

[XIL10] XILINX. http://www.xilinx.com/, 2010.

[YDS95] F. Yao, A. Demers, and S. Shenker. A Scheduling Model for Reduced CPU
Energy. IEEE Symposium on Foundations of Computer Science, 1995.

[ZHC02] Y. Zhang, X. Hu, and D. Z. Chen. Task Scheduling and Voltage Selection
for Energy Minimization. Design Automation Conference, 2002.

	Introduction
	Motivation
	Goals
	Structure

	Background
	CMOS Power Consumption
	Static Power Consumption
	Dynamic Power Consumption

	Energy Harvesting
	Conditions for Energy Neutral Operation
	Harvesting Sources
	Practical Observations

	Real-Time Operating Systems (RTOS)
	Operating Systems
	Multitasking Operating Systems
	What is a Real-Time Operating System?
	Scheduling
	Comparison between Common OS and RTOS

	Power Management
	Reactive/Static Power Management
	Proactive/Dynamic Power Management
	Power Management on OS-Level for Minimizing the Power Consumption
	Power Management on OS-Level for Systems with Limited Power
	Summary of Proactive/Dynamic Power Management Techniques

	Design of the OS-Level Power Management
	Overview
	SoC Platform
	LEON3
	Power Estimation Unit

	Operating System
	SnapGear Linux
	Linux 2.6 Scheduler

	Power Management
	Averaging Algorithms

	Power Budget

	Implementation of the OS-Level Power Management
	Hardware Setup
	Configuration of the LEON3 SoC Platform
	Synthesis, Netlist Generation
	Programming of the FPGA Board

	Software Setup
	Configuration of the OS
	Compilation of the OS
	Connection to the LEON3 SoC Platform
	Load, Run OS

	Linux Scheduler
	Acquisition the Present Power Information from the Power Estimation Unit
	Storing of the Power Information
	Calculation of the Present Average Power Consumption
	Selection of the Next Running Task
	Power Budget
	Writing Power Information to the File System

	Evaluation and Results
	Evaluation
	Evaluation Measurement Setup
	Evaluation Task-Set
	Power Profiling of the Evaluation Task-Set
	Variations of the Averaging Algorithms

	Results
	Outcome of the OS-Level Power Management
	Impact on the LEON3 SoC's Performance

	Conclusion and Future Work
	Conclusion
	Future Work
	Exploration of the Implemented Power Management with a Real Power Budget
	Hardware Power Management Mechanism
	Introduction of Additional Metrics for the Scheduling Decision

	Detailed Results
	Simple Moving Average - Bufer=5
	Simple Moving Average - Bufer=20
	Simple Moving Average - Bufer=50
	Weighted Moving Average - Bufer=5
	Weighted Moving Average - Bufer=20
	Weighted Moving Average - Bufer=50
	Exponential Moving Average - Alpha=0.5
	Exponential Moving Average - Alpha=0.1
	Last Power Value

	List of Abbreviations
	Bibliography

