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1 Introduction

In this thesis, we show that a Schrödinger operator Aδ,α with a δ-interaction of strength α
supported on a hypersurface Σ can be approximated by a family of Hamiltonians with local
scaled short-range potentials. Here, the differential operator Aδ,α is viewed as a self-adjoint
realization of the formal differential expression −∆− α〈δΣ, ·〉δΣ and Σ ⊂ Rd is a compact
and closed C2-hypersurface.

Schrödinger operators with singular δ-interactions provide an important concept in the
field of mathematical physics and have gained a lot of attention in the last decades. Such
operators are formally given as

Lα,Σ := −∆− α〈δΣ, ·〉δΣ,

where Σ is generally a subset of Rd of Lebesgue measure zero, δΣ is the δ-distribution sup-
ported on Σ and α : Σ→ R is called the strength of the interaction. Differential operators
associated to Lα,Σ are used as idealized models to solve approximately the spectral problem
for classical Hamiltonians H = −∆−V , where the potentials V are real-valued, supported
in a small neighborhood of Σ and have relatively large values. Such operators appear in
quantum mechanics in the description of many body systems or in models for so-called
leaky quantum graphs that describe the motion of a particle confined to a graph Σ in a
way such that quantum tunnelling effects between different parts of it are allowed. More-
over, such operators arise in the theory of sound and electromagnetic wave propagation,
where δ-potentials are used to model high contrast objects in dielectric media.

The first time, when a differential operator with δ-interactions was treated in the litera-
ture, was in 1931. In [40] de Kronig and Penney constructed a simple model for the motion
of a nonrelativistic electron in a one-dimensional crystal using the differential expression
Lα,Σ with Σ = Z and α = const. In the subsequent decades Hamiltonians with point
interactions (i.e. Σ is a set of points) were treated in various dimensions in a heuristic
way. Then in 1961, Berezin and Faddeev published the first rigorous mathematical work
on a differential operator associated to the formal differential expression Lα,Σ. In [13] these
authors considered the case d = 3 and Σ = {0} and they constructed a differential operator
in the Hilbert space L2(R3) associated to Lα,Σ, which will be denoted from now on by Aδ,α,
as a self-adjoint extension of −∆ restricted to C∞c (R3 \ {0}). In the following decades,
differential operators with δ-interactions supported on a finite or an infinite set of points in
space dimension d = 1, 2, 3 were investigated extensively in the literature, see for instance
the textbook [3] or [2, 4, 6, 19, 33, 36, 37, 39].

In numerous applications it is required to consider operators associated to Lα,Σ in the
case that Σ is a curve in R2 or R3, a surface in R3 or more generally a submanifold in Rd with
codimension 1, 2 or 3. The analysis of such operators is more complicated as for operators
with point interactions, as the spectral properties of these Hamiltonians are connected to
the geometrical properties of Σ. Hence, the available results are less complete as in the
point interaction case, see the review paper [20] and for instance [12, 15, 21, 24, 38].
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From the mathematical point of view, it requires a justification that the spectral prop-
erties of the Hamiltonian Aδ,α corresponding to the formal differential expression Lα,Σ are
close to those of a classical Schrödinger operator of the form H = −∆ − V , where V is
a real-valued potential supported in a neighborhood of Σ with relatively large values, and
thus that Aδ,α can be used as an idealized model for H. One way to justify this is to show
that Aδ,α can be approximated in the norm resolvent sense by a family of Hamiltonians of
the form

Hε,Σ := −∆− Vε (1.1)

for an appropriately constructed family of potentials Vε, as the spectral properties of Hε,Σ

are then close to those of Aδ,α.
The approximation of Hamiltonians with singular interactions supported on a set of

points was intensively studied in the past. Already in 1935 Thomas published an influential
paper [47] that contained an approximation procedure of a Schrödinger operator with a
δ-point interaction in R3. Starting in the 1970s, the approximation of differential operators
with δ-interactions supported on a finite or an infinite set of points in Rd, d ∈ {1, 2, 3}, was
treated systematically in the literature, see the textbook [3] or [2, 4, 5, 10, 16, 27, 34, 35];
the available results can be seen as quite complete. There are also several recent results
available for the approximation of models with more singular point interactions in R, for
instance of δ′-type, that yield more realistic models in some applications, cf. [7, 17, 23, 29,
30, 31, 32, 48].

Concerning Hamiltonians with δ-interactions supported on manifolds in Rd, d ≥ 2,
the literature on approximation results is not that complete. Whereas to the best of our
knowledge there are no results on the approximation of Schrödinger operators with δ-
potentials supported on manifolds with codimension larger than one available, there exist
a few results in the case that the interaction is supported on a hypersurface (i.e. a manifold
with codimension 1) in R2 and R3. The first work in this context was published in 1992 by
Shimada [46]. He proved the convergence of operators Hε,Σ of the form (1.1) to Aδ,α in the
norm resolvent sense, if Σ is a sphere in R3 and α is continuous. Popov extended this result
for hypersurfaces Σ ⊂ Rd, d ∈ {2, 3}, that can be parametrized by polar coordinates [44].
Figotin and Kuchment investigated the convergence of operators Hε,Σ in the case that Σ
is an unbounded and periodic hypersurface in Rd. Their motivation came from the theory
of electromagnetic waves and they used a different notion of convergence which employs
the periodicity of Σ, cf. [25, 26]. Finally, Exner, Ichinose and Kondej considered the
case of unbounded hypersurfaces in R2 and R3 with a global parametrization and constant
strength α ∈ R in [21, 22].

Nevertheless, the available literature on the approximation of Aδ,α is not complete,
since the known results were obtained under restrictions on the space dimension d, the
hypersurface Σ or the strength α. It is our main objective in this thesis to extend the
established results. More precisely, we prove that Aδ,α can be approximated by a family of
Hamiltonians with local scaled short-range potentials in the norm resolvent sense for any
space dimension d ≥ 2, for any compact and closed C2-smooth hypersurface Σ ⊂ Rd and
for any strength α ∈ L∞(Σ).
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In what follows, we give a short description of our approximation procedure and we
state our main result. Let d ≥ 2 and let Σ ⊂ Rd be a closed, connected, compact and
C2-smooth hypersurface that separates Rd into a bounded part Ωi and an unbounded part
Ωe (i.e. Σ is the boundary of the bounded C2-domain Ωi). It is known from [12] that for
a strength α ∈ L∞(Σ) the operator Aδ,α has the explicit form

Aδ,αf = −∆f,

dom Aδ,α =
{
f ∈ H3/2

∆ (Rd \ Σ) : fi|Σ = fe|Σ, αfi|Σ = ∂νefe|Σ + ∂νi
fi|Σ
}
,

(1.2)

where fi and fe stand for the restrictions of a function f on Rd onto Ωi and Ωe, respectively,
and ∂νi

fi|Σ and ∂νefe|Σ denote the derivatives in direction of the unit outward normal νi and
νe of Ωi and Ωe, respectively.1 Observe that self-adjoint Hamiltonians with δ-interactions
supported on non-closed surfaces are naturally contained in the above scheme as α may be
zero on subsets of Σ. This is one of the main reasons to allow general strength coefficients
α ∈ L∞(Σ). The following approximation procedure of Aδ,α is inspired by [3, 21, 22]. For
a small β > 0 we set

Ωβ := {xΣ + tνi(xΣ) : xΣ ∈ Σ, t ∈ (−β, β)} (1.3)

and we choose a fixed real-valued potential V ∈ L∞(Rd) supported in Ωβ. Moreover, we
define for ε ∈ (0, β] the scaled potential Vε ∈ L∞(Rd) as

Vε(x) =

{
1
ε
V
(
xΣ + β

ε
tνi(xΣ)

)
, if x = xΣ + tνi(xΣ) with xΣ ∈ Σ, t ∈ (−ε, ε),

0, else.
(1.4)

Note, that Vε is well-defined; this follows from a theorem in Section 3.3. Then our main
result, which is proved in Chapter 7, reads as follows:

Theorem I. Let d ≥ 2, let V ∈ L∞(Rd) be real-valued such that the support of V is
contained in Ωβ, let Vε be given as in (1.4), let Hε,Σ be given as in (1.1) and let λ ∈ C \R.
Moreover, define the coupling α ∈ L∞(Σ) as

α(xΣ) :=

∫ 1

−1

V (xΣ + βsνi(xΣ))ds

for almost all xΣ ∈ Σ and Aδ,α as in (1.2). Then there exists a constant c > 0 such that∥∥(Hε,Σ − λ)−1 − (Aδ,α − λ)−1
∥∥ ≤ cε

1
2d

holds for all sufficiently small ε > 0. In particular, Hε,Σ converges to Aδ,α in the norm
resolvent sense as ε→ 0+.

1The space H
3/2
∆ (Rd \ Σ) in (1.2) consists of functions f = (fi, fe)>, where the components fi and fe

belong to the fractional order Sobolev spaces H3/2(Ωi) and H3/2(Ωe), respectively, and satisfy ∆fi ∈ L2(Ωi)
and ∆fe ∈ L2(Ωe).
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Let us provide an overview of the content of this thesis. In Chapter 2, the basic notions
and notations of the spectral theory of linear operators are introduced. In particular, we
discuss convergence in the norm resolvent sense, a notion which is appropriate to investigate
the convergence of a sequence of unbounded self-adjoint operators.

In Chapter 3, we discuss closed connected hypersurfaces in a form that is convenient for
our purposes. In Section 3.1, we define hypersurfaces and various geometrical properties
of them. Then in Section 3.2, we introduce integration on hypersurfaces with respect to
the Hausdorff measure. Finally, in Section 3.3, we investigate tubes Ωβ of the form (1.3)
around closed compact C2-hypersurfaces.

Then, in Chapter 4, we discuss the function spaces which are required for the defini-
tion and the analysis of our differential operators. We consider classical function spaces
of continuously differentiable and Lebesgue measurable functions and introduce Sobolev
spaces of weakly differentiable functions defined in open domains and on hypersurfaces.
Furthermore, we introduce the Dirichlet and the Neumann trace of a weakly differentiable
function and we state a generalized version of Green’s identity.

In Chapter 5, we state several results about auxiliary operators which will play an im-
portant part in our considerations. In Section 5.1, we introduce multiplication operators in
L2(X,µ). Then, in Section 5.2, we discuss integral operators and we give upper bounds for
the operator norms of such operators assuming that the integral kernels of these operators
fulfill suitable conditions. In particular, we prove the Schur-Holmgren bound for the norm
of an integral operator - this is one of the main tools for our proof of the convergence of
Hε,Σ to Aδ,α in the norm resolvent sense. In Section 5.3, we state some well-known results
about the spectral properties of classical Schrödinger operators. Finally, in Section 5.4, we
introduce the single layer potential associated to the differential expression −∆ + 1 and
the hypersurface Σ.

In Chapter 6, we introduce Hamiltonians Aδ,α with a δ-interaction supported on a
hypersurface Σ of strength α ∈ L∞(Σ) in a mathematically rigorous way. Here, we follow
an extension theoretic approach from [12]. In particular, we derive a suitable resolvent
formula for Aδ,α.

Finally, in Chapter 7, we prove the main result of this thesis, namely Theorem I. For
this purpose, we derive a suitable resolvent formula for the Hamiltonians Hε,Σ given by
(1.1) and we show the convergence of this family of resolvents. Since the proof of the
convergence is very technical and long, we outsource some parts of it into Appendix A.
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2 Basic concepts of operator theory

The main aim in this thesis is to analyze the convergence of a certain family of self-adjoint
Hamiltonians to a Schrödinger operator with a δ-interaction supported on a hypersurface in
Rd. In this chapter, we introduce the basic concepts of the operator theory which are needed
for this purpose. In particular, we have to define an appropriate notion of convergence of a
sequence of (unbounded) self-adjoint operators. But initially, we constitute some notations,
introduce linear operators in Hilbert spaces and state some important basic results of the
spectral theory of linear operators in Hilbert spaces.

2.1 Linear operators in Hilbert spaces

Let H and K be separable Hilbert spaces over C. The inner product is denoted by (·, ·)H
and (·, ·)K. If it is clear, which Hilbert space is meant, we drop the subindex and write just
(·, ·). The Cartesian product of these Hilbert spaces is denoted by H ⊕ K and the inner
product in H⊕K is given by (·, ·)H + (·, ·)K.

A mapping S : dom S → K, which is defined on a linear subspace dom S of H and
which satisfies S(αx+βy) = αSx+βSy for all x, y ∈ dom S and α, β ∈ C, is called a linear
operator from H to K. If K = H, we will also say that S is a linear operator in H. We will
often omit the term linear, as we are only considering linear operators. An operator S from
H to K is said to be everywhere defined, if dom S = H, and it is called densely defined,
if dom S = H. The graph of a linear operator S is given by

{(
x
Sx

)
: x ∈ dom S

}
and is a

linear subset of H⊕K. In the following we will identify the graph of a linear operator with
the operator itself, so we will also write S for the graph. In this context, for two linear
operators S and T from H to K the notation S ⊂ T is understood as dom S ⊂ dom T and
Sx = Tx for all x ∈ dom S.

The range and the kernel of a linear operator S from H to K are defined as

ran S := {y ∈ K : ∃x ∈ dom S : Sx = y},
kerS := {x ∈ dom S : Sx = 0}.

A linear operator S is said to be closed, if the graph of S is a closed subspace of H⊕K.
Moreover, an operator S is called bounded, if

‖S‖ := sup
06=x∈dom S

‖Sx‖K
‖x‖H

<∞. (2.1)

Recall, that the space of all bounded and everywhere defined linear operators equipped
with the operator norm (2.1) is a Banach space [50, Satz 2.12] and that a linear operator
is continuous, if and only if it is bounded [50, Satz 2.1]. An important connection of closed
and bounded operators is stated in the following theorem, which is known as the closed
graph theorem [50, Satz 4.4]:

Theorem 2.1. Let H and K be Hilbert spaces and let S be a closed operator from H to K.
If dom S ⊂ H is closed, then S is bounded.
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Next we define, what is understood by the spectrum and the resolvent set of a linear
operator.

Definition 2.2. Let H be a Hilbert space and let S be a closed linear operator in H.

(i) λ ∈ C belongs to the resolvent set ρ(S) of S if and only if S − λ is injective and
(S − λ)−1 is bounded and everywhere defined. In this case, the operator (S − λ)−1 is
called ”resolvent”.

(ii) The spectrum of S is defined as σ(S) := C \ ρ(S).

(iii) A number λ ∈ σ(S) is called an eigenvalue of S, if S − λ is not injective, so if
there exists an eigenvector 0 6= x ∈ dom S such that Sx = λx holds. The set of all
eigenvalues of S will be denoted by σp(S).

In the following step we define the adjoint of a linear operator S.

Definition 2.3. Let H and K be Hilbert spaces and let S be a densely defined linear
operator from H to K. We define the adjoint operator S∗ of S, which is a linear operator
from K to H, via

dom S∗ := {y ∈ K : ∃y′ ∈ H : ∀x ∈ dom S : (Sx, y)K = (x, y′)H}

and S∗y := y′.

We remark that S∗ is a well-defined linear operator from K toH, as S is densely defined.
If S is a bounded and everywhere defined operator, one can show that also S∗ is bounded
and everywhere defined, see for example [50, Satz 2.36]. Some properties of the adjoint
operator are summarized in the next corollary.

Corollary 2.4. Let H and K be Hilbert spaces and let S and T be densely defined linear
operators from H to K. Then the following holds:

(i) S∗ is a closed linear operator;

(ii) S ⊂ T implies T ∗ ⊂ S∗;

(iii) if S + T is densely defined, then S∗ + T ∗ ⊂ (S + T )∗. Further, if T is bounded and
everywhere defined, then S∗ + T ∗ = (S + T )∗.

The proof of assertion (i) and (ii) can be found in [50, Satz 2.48] and item (iii) is shown
in [50, Satz 2.45]. Very important classes of operators are symmetric and self-adjoint
operators:

Definition 2.5. Let H be a Hilbert space and let S be a densely defined linear operator in
H. Then S is called

(i) symmetric, if S ⊂ S∗;
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(ii) self-adjoint, if S = S∗.

In what follows we state numerous properties of symmetric and self-adjoint operators.
The first proposition treats an equivalent condition to the symmetry of a linear operator.
The simple proof of this statement is left to the reader.

Proposition 2.6. Let H be a Hilbert space and let S be a densely defined linear operator
in H. Then the following are equivalent:

(i) S is symmetric;

(ii) (Sx, y) = (x, Sy) holds for all x, y ∈ dom S.

Next, we mention some equivalent conditions to the self-adjointness of a symmetric
operator. The proof of this statement can be found in [50, Satz 5.14 a)].

Theorem 2.7. Let H be a Hilbert space and let S be a symmetric operator in H. Then
the following are equivalent:

(i) S is self-adjoint;

(ii) ran(S − λ) = H = ran(S − λ) holds for one, and hence for all, λ ∈ C \ R;

(iii) C \ R ⊂ ρ(S).

Now, we want to investigate the spectrum of a self-adjoint operator in a more detailed
way:

Definition 2.8. Let A be a self-adjoint operator in a Hilbert space H.

(i) The essential spectrum σess(A) of A is defined as the set of all eigenvalues λ of A
with dim ker(A− λ) =∞ and all accumulation points of σ(A).

(ii) A number λ ∈ σ(A) is contained in the discrete spectrum σdisc(A) of A, if and only
if λ is an eigenvalue of A, which satisfies dim ker(A − λ) < ∞ and additionally is
isolated in σ(A).

Note, that it holds σ(A) = σess(A) ∪̇ σdisc(A) for any self-adjoint operator A. Next, we
introduce another important class of linear operators, the unitary operators:

Definition 2.9. Let H be a Hilbert space and let U be a linear operator in H. Then U is
called unitary, if dom U = ran U = H and ‖Ux‖ = ‖x‖ holds for all x ∈ H.

Observe that each unitary operator is bounded and bijective. One property of unitary
operators, which will result to be important for our considerations, is stated in the following
proposition. The simple proof of this statement is left to the reader.
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Proposition 2.10. Let H be a Hilbert space and let T be a closed operator in H. Further,
let U be a unitary operator in H. Then it holds

σ(T ) = σ(UTU−1).

Finally, the following proposition describes a way, in which the domain of definition of
an extension T of a linear operator A can be decomposed. Here, we use the notation +̇ for
the direct sum of two sets.

Proposition 2.11. Let H be a Hilbert space and let T be a linear operator in H. Moreover,
let A be a closed linear operator in H such that A ⊂ T and ρ(A) 6= ∅ are fulfilled. Then it
holds

dom T = ker(T − λ)+̇ dom A

for all λ ∈ ρ(A).

Proof. Let λ ∈ ρ(A) be fixed. The inclusion dom T ⊃ ker(T − λ) + dom A is trivial. In
order to show dom T ⊂ ker(T − λ) + dom A, let x ∈ dom T be arbitrary. Since λ ∈ ρ(A),
there exists y ∈ dom A such that (T − λ)x = (A− λ)y holds. If we define now z := x− y,
we see

(T − λ)z = (T − λ)(x− y) = (T − λ)x− (A− λ)y = 0,

where we used A ⊂ T and the definition of y. Hence, we find z ∈ ker(T − λ), which
shows that x = z + y ∈ ker(T − λ) + dom A is true. Thus, we also proved dom T ⊂
ker(T − λ) + dom A, which implies now

dom T = ker(T − λ) + dom A.

It remains to verify, that the sum is direct. For this purpose, let x ∈ ker(T − λ) ∩ dom A.
Then it holds

0 = (T − λ)x = (A− λ)x,

as A ⊂ T and x ∈ dom A. Since we have λ ∈ ρ(A) by assumption, the operator A − λ is
bijective and thus x = 0 must be true. Hence, we find ker(T − λ) ∩ dom A = {0}, which
finishes the proof of this proposition.

2.2 Compact operators

In this section, we discuss compact operators. The set of all compact operators is a subclass
of the set of the bounded operators. Compact operators are important, as they will help
us in the following chapters in the spectral analysis of Schrödinger operators.

In order to define compact operators, recall that a set M is said to be relatively compact,
if its closure M is compact.

Definition 2.12. Let H be a Hilbert space. A linear operator K : H → H is called
compact, if it maps bounded sets onto relatively compact sets.
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Note, that any compact operator is bounded, as it maps the unit ball B(0, 1) ⊂ H onto
a relatively compact set, which is also bounded. Moreover, we mention that the set of all
compact operators is obviously linear.

The next theorem is the famous Fredholm’s alternative - a result about (1−K)−1 for
a compact operator K. This result follows for instance from [51, Satz VI.2.4].

Theorem 2.13. Let H be a Hilbert space and let K be a compact operator in H. Then
either the operator (1−K)−1 exists and is bounded and everywhere defined or ker(1−K)
is a finite dimensional subspace of H.

In the next proposition, we collect some useful facts about compact operators. The
proofs of these statements can be found in [50, Satz 3.2 and Satz 3.3].

Proposition 2.14. Let H be a Hilbert space. Then the following assertions are true:

(i) Let K be compact and let T be a bounded and everywhere defined operator in H.
Then the operators KT and TK are compact.

(ii) Let (Kn) be a sequence of compact operators and let K be bounded and everywhere
defined in H. If ‖Kn−K‖ → 0 in the operator norm (2.1), then K is also compact.

Note, that Proposition 2.14 brings us to the following result: the set of all compact
operators is a closed ideal in the set of all bounded and everywhere defined operators.

The next result is an important tool in the perturbation theory of linear operators. It
allows us to compare the essential spectra of two self-adjoint operators, if they are close to
each other in a certain sense [50, Satz 9.15]:

Proposition 2.15. Let H be a Hilbert space and let A and B be self-adjoint operators in
H. If there exists λ ∈ ρ(A) ∩ ρ(B) such that (A − λ)−1 − (B − λ)−1 is compact, then it
holds σess(A) = σess(B).

2.3 Convergence of unbounded operators

In this section, we introduce a notion for the convergence of a sequence of unbounded
operators, which is needed to analyze the approximation of a differential operator with a
δ-interaction supported on a hypersurface by a family of self-adjoint Schrödinger operators
with regular potentials. Note, that for the set of all bounded and everywhere defined
operators we have a topology which is induced by the operator norm

‖T‖ := sup
0 6=x∈H

‖Tx‖H
‖x‖H

.

So, a sequence of bounded and everywhere defined operators (Tn) converges to T , if and
only if limn→∞ ‖Tn − T‖ = 0.

On the other hand, for a sequence of unbounded operators, as it is considered in this
thesis, a convergence as above does not make sense. An appropriate notion of convergence
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for a sequence of self-adjoint operators (Tn) is the convergence in the norm resolvent sense,
which will be discussed now in detail in this section following [50, Section 9.3].

Throughout this section, let H always be a Hilbert space and let (An) be a sequence of
self-adjoint, in general unbounded operators in H. Moreover, let A be another self-adjoint
operator in H. We define the set M⊂ C as

M :=

(⋂
n∈N

ρ(An)

)
∩ ρ(A) (2.2)

and observe C \ R ⊂M. Now, we define the notion of convergence in the norm resolvent
sense.

Definition 2.16. Let H be a Hilbert space and let A be a self-adjoint operator in H. Then
a sequence of self-adjoint operators (An) in H converges to A in the norm resolvent sense,
if there exists a complex number λ ∈M with M as above, such that∥∥(An − λ)−1 − (A− λ)−1

∥∥→ 0

as n→∞.

At first glance, Definition 2.16 seems to depend on a special choice of λ ∈M. In fact,
the following proposition shows that this is not true.

Proposition 2.17. Let H be a Hilbert space, let A be a self-adjoint operator in H, let (An)
be a sequence of self-adjoint operators in H and let M be given as in (2.2). If there exists
a complex number λ0 ∈M such that∥∥(An − λ0)−1 − (A− λ0)−1

∥∥→ 0,

then it holds for all λ ∈M ∥∥(An − λ)−1 − (A− λ)−1
∥∥→ 0

as n→∞.

The proof of this proposition is given in [50, Satz 9.20]. The following result indicates,
that a sequence (Tn) of bounded and everywhere defined, but not necessarily self-adjoint
operators, which converges in the operator norm, also converges in the norm resolvent sense.
Therefore, the concept of convergence in the norm resolvent sense is a generalization of the
usual convergence notion for bounded operators.

Proposition 2.18. Let H be a Hilbert space and let Tn and T be bounded and everywhere
defined operators in H such that ‖Tn − T‖ → 0. Then it holds for all sufficiently large n
and all λ ∈

(⋂
n∈N ρ(Tn)

)
∩ ρ(T )∥∥(Tn − λ)−1 − (T − λ)−1

∥∥ ≤ ‖(T − λ)−1‖2

1− ‖T − Tn‖ · ‖(T − λ)−1‖
‖T − Tn‖.

In particular,
∥∥(Tn − λ)−1 − (T − λ)−1

∥∥→ 0 as n→∞.
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Proof. Let λ ∈
(⋂

n∈N ρ(Tn)
)
∩ ρ(T ) and set R(λ) := (T − λ)−1 and Rn(λ) := (Tn − λ)−1.

Using the resolvent identity [50, Satz 5.4]

Rn(λ)−R(λ) = Rn(λ)(T − Tn)R(λ), (2.3)

we find

‖Rn(λ)−R(λ)‖ = ‖Rn(λ)(T − Tn)R(λ)‖ ≤ ‖Rn(λ)‖ · ‖T − Tn‖ · ‖R(λ)‖.

So it remains to show, that ‖Rn(λ)‖ is bounded. Using the resolvent identity (2.3) again,
we see

‖Rn(λ)‖ ≤ ‖R(λ)‖+ ‖Rn(λ)‖ · ‖T − Tn‖ · ‖R(λ)‖.

Choosing n sufficiently large, such that ‖T −Tn‖ · ‖R(λ)‖ < 1 is satisfied, we find 1−‖T −
Tn‖ · ‖R(λ)‖ > 0 and hence, we conclude from the above calculation

‖Rn(λ)‖ ≤ ‖R(λ)‖
1− ‖T − Tn‖ · ‖R(λ)‖

.

This yields finally

‖Rn(λ)−R(λ)‖ ≤ ‖Rn(λ)‖ · ‖T − Tn‖ · ‖R(λ)‖ ≤ ‖R(λ)‖2

1− ‖T − Tn‖ · ‖R(λ)‖
‖T − Tn‖,

which is the claimed result.

Finally, we state a result on the connection of the spectra of An and A, if An converges
to A in the norm resolvent sense [50, Satz 9.24].

Proposition 2.19. Let H be a Hilbert space and let A be a self-adjoint operator in H. If
(An) is a sequence of self-adjoint operators in H converging to A in the norm resolvent
sense, it follows that σ(An) converges to σ(A). This means that λ ∈ σ(A) if and only if
there exists a sequence (λn) with λn ∈ σ(An) such that λn converges to λ.
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3 Compact hypersurfaces and their basic properties

In this chapter, we introduce hypersurfaces Σ in a form which is suitable for our application,
namely as the support of a δ-interaction of a Schrödinger operator Aδ,α associated to the
formal differential expression −∆ − α〈δΣ, ·〉δΣ. Moreover, we introduce various notations
and discuss some properties of hypersurfaces, which are needed for our main purpose,
the approximation of Aδ,α by a family of Schrödinger operators −∆ − Vε with regular
potentials Vε that have support in a suitable neighborhood of Σ. In this chapter, we follow
the presentation of [41, Kapitel 3], but we generalize the notations and some proofs from
the three- to the d-dimensional case and adapt numerous notions to our needs.

3.1 Hypersurfaces and their basic properties

In the following section we investigate hypersurfaces in the Euclidean space Rd equipped
with the inner product 〈·, ·〉. First, we give a definition of a closed hypersurface, which is
suitable for our needs. For this purpose, we need the notion of a Ck-hypograph:

Definition 3.1. Let d ≥ 2 and let k ∈ N. A set Ω ⊂ Rd is called a Ck-hypograph, if there
exists U ⊂ Rd−1 and a Ck-smooth function ϕd : U → R such that

Ω =
{

(x1, . . . , xd) ∈ Rd : (x1, . . . , xd−1) ∈ U, xd < ϕd(x1, . . . , xd−1)
}
.

Now, we introduce hypersurfaces in the form that is suitable for our purposes.

Definition 3.2. Let d ≥ 2 and let k ∈ N. We call a set Σ ⊂ Rd a closed connected
Ck-hypersurface or a closed connected hypersurface of Ck-smoothness, if the following con-
ditions are satisfied:

(i) there exists a bounded, open and connected set Ω ⊂ Rd such that Σ is the boundary
of Ω, i.e. Σ = ∂Ω;

(ii) there exists a finite index set I and {ϕi, Ui, Vi}i∈I such that

(a) Ui ⊂ Rd−1 and Vi ⊂ Rd are open sets and ϕi : Ui → Vi is a Ck-smooth function
for any i ∈ I;

(b) rank Dϕi(u) = d− 1 holds for all u ∈ Ui;
(c) ϕi(Ui) = Vi ∩ Σ and ϕi : Ui → Vi ∩ Σ is a homeomorphism;

(d) Σ ⊂
⋃
i∈I Vi;

(e) For any i ∈ I there exists a set Ωi ⊂ Rd, which can be transformed to a Ck-
hypograph by a rotation and a translation, such that Ω ∩ Vi = Ωi ∩ Vi holds.

{ϕi, Ui, Vi}i∈I is called a parametrization of Σ.

Remark 3.3. Let Σ ⊂ Rd be a hypersurface in the sense of Definition 3.2 and let
{ϕi, Ui, Vi}i∈I be a parametrization of Σ.
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(i) Σ is compact, as Σ is obviously bounded and closed.

(ii) Condition (e) in Definition 3.2 requires that ϕi(Ui) has, up to a rotation and a
translation, the form{

(x1, . . . , xd) ∈ Rd : x̃ := (x1, . . . , xd−1) ∈ Ṽ , xd = ψ
(
x̃
)}

(3.1)

for a set Ṽ ⊂ Rd−1 and a Ck-smooth function ψ : Ṽ → R. We would like to point
out that this is no restriction on ϕi.

In fact, if an arbitrary parametrization {ϕi, Ui, Vi}i∈I of Σ is given, the graph of ϕi
has locally the form (3.1) up to a rotation and a translation. In order to see this,
let u ∈ Ui. Since rank Dϕi(u) = d − 1 by requirement, there exists a coordinate ju
such that the mapping ϕ̃i : Ui → Rd−1 consisting of all coordinates except coordinate
ju of ϕi is differentiable and has a full rank Jacobian in u and by continuity also in
a neighborhood Uu of u. We set Vu,1 := ϕ̃i

(
Uu
)
. Now, it follows from the inverse

function theorem, see for instance [49, Satz 4.6], that ϕ̃i has locally a k-times dif-
ferentiable inverse ϕ̃−1

i : Vu,2 → Ui defined in a neighborhood Vu,2 of ϕi(u). We set
Vu := Vu,1∩Vu,2 and note that ϕ̃−1

i is bijective on Vu. Setting Bu := ϕi
(
ϕ̃−1
i (Vu)

)
and

ψu := ϕi,ju ◦ ϕ̃−1
i |Vu , we find

graph ϕi ∩Bu =
{
x ∈ Rd : x̃ := (x1, . . . , xju−1, xju+1, . . . , xd) ∈ Vu, xju = ψu

(
x̃
)}

and thus, graph ϕi is locally the boundary of a Ck-hypograph up to a rotation and
a translation.

From the above considerations it follows that {ϕi, Ui, Vi}i∈I can be replaced by an-
other parametrization, where the graphs of the corresponding functions ϕi have the
form (3.1) up to a rotation and a translation. In fact, since Σ is compact, there exist
finitely many points ui,j ∈ Ui such that Σ ⊂

⋃
Bui,j , where Bui,j is given as above.

Replacing now the original parametrization {ϕi, Ui, Vi}i∈I by{
ϕi|ϕ−1

i (Bui,j ), ϕ
−1
i (Bui,j), Bui,j

}
,

we get a new parametrization where the graphs of ϕi|ϕ−1
i (Bui,j ) have the form (3.1)

up to a rotation and a translation.

(iii) In view of the previous considerations in this remark, condition (e) in Definition 3.2
means that Ω lies locally on one side of Σ.

Suppose that we have two parametrizations {ϕi, Ui, Vi}i∈I and {ϕ̃j, Ũj, Ṽj}j∈J of a closed
hypersurface Σ as in the definition above. An interesting relation between the mappings
ϕi and ϕ̃j is contained in the following proposition, which follows the ideas of a theorem
in [49, § 8.3].
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Proposition 3.4. Let k ∈ N, let U1, U2 ⊂ Rd−1 and let ϕ1 : U1 → Rd and ϕ2 : U2 → Rd be
Ck-smooth homeomorphisms satisfying ϕ1(U1) = ϕ2(U2) and rank Dϕ1 = rank Dϕ2 = d−1
everywhere in U1 and U2, respectively. Then there exists a diffeomorphism ψ : U1 → U2

(i.e. ψ is bijective and ψ and ψ−1 are continuously differentiable), such that ϕ1 = ϕ2 ◦ ψ
holds.

Proof. We define ψ := ϕ−1
2 ◦ ϕ1. Then ψ is by definition a homeomorphism, so it remains

to show that ψ and ψ−1 are differentiable. Here, it is sufficient to verify the statement for
ψ, the statement for ψ−1 follows then by symmetry.

Since differentiability is a local property, it is sufficient to show that ψ is differentiable
for any u. Let u ∈ U1, x = ϕ1(u) and v = ϕ−1

2 (x). Since rank Dϕ2(v) = d − 1, there
exists a coordinate, say w.l.o.g. coordinate d, such that the mapping ϕ̃2 : U2 → Rd−1

consisting of the first d− 1 coordinates of ϕ2 is differentiable and has a full rank Jacobian
in v. Hence, it follows from the inverse function theorem, see for instance [49, Satz 4.6],
that ϕ̃2 has locally a differentiable inverse. Defining ϕ̃1 also as the function consisting of
the first d− 1 coordinates of ϕ1, it follows ψ = ϕ̃−1

2 ◦ ϕ̃1 in a neighborhood of u, implying
that ψ is differentiable in u.

Remark 3.5. Let {ϕi, Ui, Vi}i∈I and {ϕ̃j, Ũj, Ṽj}j∈J be two parametrizations of a closed
hypersurface Σ in the sense of Definition 3.2. Then Proposition 3.4 has two important
consequences:

(i) If ϕi(Ui) ∩ ϕj(Uj) 6= ∅, then there exists a diffeomorphism ψij : ϕ−1
i (Vi ∩ Vj) →

ϕ−1
j (Vi ∩ Vj) such that ϕi|ϕ−1

i (Vi∩Vj) = ϕj|ϕ−1
j (Vi∩Vj) ◦ ψij holds.

(ii) For any i ∈ I and j ∈ J there exists a diffeomorphism ψij : ϕ−1
i (Vi∩Ṽj)→ ϕ̃−1

j (Vi∩Ṽj)
satisfying ϕi|ϕ−1

i (Vi∩Vj) = ϕ̃|ϕ̃−1
j (Vi∩Vj) ◦ ψij.

Next, we define the tangential space and the normal vector field associated to a hyper-
surface Σ. Here, we use the notation ∂jf := ∂f

∂uj
for j ∈ {1, . . . , d− 1}.

Definition 3.6. Let k ∈ N, let Σ ⊂ Rd be a closed connected Ck-hypersurface in the sense
of Definition 3.2 and let {ϕi, Ui, Vi}i∈I be a parametrization of Σ.

(i) For x ∈ Σ with x = ϕi(u), u ∈ Ui, the tangential space Tx of Σ in x is defined as

Tx = span {∂1ϕi(u), . . . , ∂d−1ϕi(u)} .

Note that Tx is a vector space of dimension d − 1, as the Jacobian Dϕi(u) has full
rank by definition.

(ii) For x ∈ Σ, the normal vector field of Σ at x is defined as the one-dimensional
orthogonal complement of Tx. Moreover, the unit normal vector of Σ at x, which
points outwards of the bounded part Ω ⊂ Rd with Σ = ∂Ω, will be denoted by ν(x).
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Note that Proposition 3.4 and the chain rule imply that the tangential space Tx at
x ∈ Σ is well-defined and independent from the parametrization of Σ. Next, we show that
the normal vector ν is differentiable, if the hypersurface Σ has at least C2-smoothness:

Proposition 3.7. Let Σ ⊂ Rd be a closed connected hypersurface that is at least C2-smooth
and let {ϕi, Ui, Vi}i∈I be a parametrization of Σ. Then the following assertions are true:

(i) The mapping Ui 3 u 7→ ν(ϕi(u)) is continuously differentiable for any i ∈ I.

(ii) It holds ∂jν(ϕi(u)) ∈ Tϕi(u) for any u ∈ Ui, j ∈ {1, . . . , d− 1} and i ∈ I.

Proof. (i) Let i ∈ I and u ∈ Ui be fixed. Note that there exists a canonical basis vector
ek ∈ Rd such that (ek, t) 6= 0 is true for any t ∈ Tϕi(u) and by continuity also for any
t ∈ Tϕi(v) for all v in a small neighborhood Uu of u. Then a normal vector at ϕi(v) with
v ∈ Uu is given by

ν̃(ϕi(v)) = ek −
d−1∑
j=1

〈ek, ∂jϕi(v)〉
〈∂jϕi(v), ∂jϕi(v)〉

∂jϕi(v)

and the normal unit vector ν(ϕi(v)) is then

ν(ϕi(v)) = ± ν̃(ϕi(v))

‖ν̃(ϕi(v))‖
,

where the sign has to be chosen in such a way that ν(ϕi(v)) points outwards of the bounded
domain Ω with Σ = ∂Ω and it is the same for all v ∈ Uu, as Ω is on one side of Σ by
definition. Hence, due to our assumptions on the smoothness of Σ and of ϕi the mapping
Ui 3 u 7→ ν(ϕi(u)) is evidently continuously differentiable.

(ii) Since
1 = ‖ν(ϕi(u))‖2 (3.2)

holds by the definition of ν(ϕi(u)) for any i ∈ I and u ∈ Ui, a differentiation of (3.2)
implies immediately 0 = 〈∂jν(ϕi(u)), ν(ϕi(u))〉 and hence ∂jν(ϕi(u)) ∈ Tϕi(u).

Next, we introduce the first fundamental form associated to a hypersurface Σ. This
mapping will be essential for the definition of an integral over Σ in Section 3.2.

Definition 3.8. Let Σ ⊂ Rd be a closed connected hypersurface. Then the first fundamental
form Ix associated to Σ is a mapping defined on Σ that acts for any x ∈ Σ as a bilinear
form operating on the tangential space Tx and it is pointwise defined as

Ix(a, b) = 〈a, b〉

for a, b ∈ Tx. If {ϕi, Ui, Vi}i∈I is a parametrization of Σ, x = ϕi(u) with u ∈ Ui and a, b
are represented via the basis {∂jϕi(u)} of Tx, then the representing matrix Gi(u) of Ix is
given by

Gi(u) =
(
〈∂kϕi(u), ∂lϕi(u)〉

)d−1

k,l=1
.
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The next proposition, together with Proposition 3.4, describes the connection of the
representing matrices of the first fundamental form associated to different parametrizations:

Proposition 3.9. Let U, V ⊂ Rd−1, let ϕ̃ : V → Rd be continuously differentiable and let
ψ : U → V be a diffeomorphism. Let ϕ := ϕ̃ ◦ ψ and set for u ∈ U and v ∈ V

G(u) :=
(
〈∂kϕ(u), ∂lϕ(u)〉

)d−1

k,l=1
and G̃(v) :=

(
〈∂kϕ̃(v), ∂lϕ̃(v)〉

)d−1

k,l=1
.

Then it holds G(u) = (Dψ(u))>G̃(ψ(u))Dψ(u) for all u ∈ U .

Proof. An easy calculation verifies G(u) = (Dϕ(u))>Dϕ(u) and G̃(v) = (Dϕ̃(v))>Dϕ̃(v)
for any u ∈ U and v ∈ V . Hence, according to the chain rule it follows

G(u) = (Dϕi(u))>Dϕ(u) = (D(ϕ̃ ◦ ψ)(u))>D(ϕ̃ ◦ ψ)(u)

= (Dϕ̃(ψ(u)) ·Dψ(u))>(Dϕ̃(ψ(u)) ·Dψ(u))

= (Dψ(u))>(Dϕ̃(ψ(u)))>Dϕ̃(ψ(u))Dψ(u) = (Dψ(u))>G̃(ψ(u))Dψ(u)

for any u ∈ U , which shows the claimed result.

Finally, we introduce the notion of the Weingarten map, which is also known as shape
operator. This map is essential to describe a suitable integral transform onto a neighbor-
hood of a hypersurface that is necessary later in our approximation procedure. In order
to analyze the properties of the Weingarten map, we also need the notion of the second
fundamental form associated to a hypersurface Σ.

Definition 3.10. Let Σ ⊂ Rd be a closed connected hypersurface that is at least C2-smooth
and let {ϕi, Ui, Vi}i∈I be a parametrization of Σ.

(i) The Weingarten map W defines for any x ∈ Σ a linear operator W (x) : Tx '
Rd−1 → Rd−1, which acts for ϕi(u) = x, u ∈ Ui, on basis vectors ∂jϕi(u) of Tx
as W (x)∂jϕi(u) = −∂jν(ϕi(u)). The matrix associated to the linear mapping W (x)
corresponding to the basis {∂jϕi(u)} of Tx will be denoted by Li(u).

(ii) The second fundamental form IIx associated to Σ is for any x ∈ Σ a bilinear form
acting on the tangential space Tx and it is defined as

IIx(a, b) = 〈W (x)a, b〉

for a, b ∈ Tx. If x = ϕi(u) with u ∈ Ui and a, b are represented via the basis {∂jϕi(u)}
of Tx, then the representing matrix Hi(u) of IIx is given by

Hi(u) = −
(
〈∂kν(ϕi(u)), ∂lϕi(u)〉

)d−1

k,l=1
.

From the definition it is not obvious that the Weingarten map W (x) is independent
from the parametrization and how the representing matrices Li and L̃j corresponding to
different parametrizations are connected. These points, and the fact that the eigenvalues of
the matrix of the Weingarten map are bounded, are discussed in the following proposition:
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Proposition 3.11. Let Σ ⊂ Rd be a closed connected hypersurface that is at least C2-
smooth. Then the following holds:

(i) The Weingarten map W is well-defined and independent from the parametrization.

(ii) Let U1, U2 ⊂ Rd−1 be such that there exists a diffeomorphism ψ : U2 → U1, let
ϕ1 : U1 → Σ and set ϕ2 = ϕ1 ◦ ψ. Further, let L1 and L2 be the matrices of the
Weingarten map associated to the two ”parametrizations” ϕ1 and ϕ2, respectively, of
a subset of Σ. Then it holds

L2 = (Dψ)−1L1Dψ.

(iii) Let µ1(x), . . . , µd−1(x) be the eigenvalues of Li, which are independent from the
parametrization of Σ by (ii). Then the mapping x 7→ µj(x) is continuous for any
j ∈ {1, . . . , d− 1}. In particular, µ1(x), . . . , µd−1(x) are uniformly bounded in x ∈ Σ.

Proof. (i) Let x ∈ Σ and let U1, U2 ⊂ Rd−1, ϕ1 : U1 → Σ, ϕ2 : U2 → Σ and u1 ∈ U1, u2 ∈ U2

be such that ϕ1(u1) = ϕ2(u2) = x. Then according to Proposition 3.4 there exist subsets
Ũ1 ⊂ U1 and Ũ2 ⊂ U2 with u1 ∈ Ũ1 and u2 ∈ Ũ2 and a diffeomorphism ψ : Ũ1 → Ũ2

such that ϕ1|Ũ1
= ϕ2|Ũ2

◦ ψ. W.l.o.g. we assume Ũ1 = U1 and Ũ2 = U2. Let W1 and
W2 be the Weingarten maps corresponding to ϕ1 and ϕ2, respectively, for the part of Σ
parametrized by ϕ1 and ϕ2. Because of the chain rule, any basis vector ∂jϕ1(u1) of Tx with
x = ϕ1(u1) = ϕ2(u2) can be represented as

∂jϕ1(u1) = Dϕ2(u2) · ∂jψ(u1).

Hence, we find

W2∂jϕ1(u1) = W2Dϕ2(u2) · ∂jψ(u1) = −D(ν ◦ ϕ2)(u2) · ∂jψ(u1)

= −∂j(ν ◦ ϕ1)(u1) = W1∂jϕ1(u1),

where we used again the chain rule. Thus, W1 = W2.
(ii) This result follows from basic linear algebra facts, because the matrices L1 and L2

represent the same linear mapping in the tangential space Tx corresponding to the basis
{∂jϕ1} and {∂jϕ2}, respectively, with the transformation matrix Dψ.

(iii) Let {ϕi, Ui, Vi}i∈I be a parametrization of Σ, let x ∈ Σ and let u ∈ Ui such that
ϕi(u) = x. We prove that the entries ljk(u) of the matrix Li(u) depend locally continuous on
x, which implies then the claimed result, as the eigenvalues of a matrix depend continuously
on its entries. For this purpose, it is sufficient to prove that ljk(u) is continuous in u, as
ϕi is a homeomorphism by definition.

In order to prove that the entries of Li(u) depend continuously on u, we write gjk =
〈∂jϕi(u), ∂kϕi(u)〉 for the entries of the matrix of the first fundamental form and hjk =
−〈∂jν(ϕi(u)), ∂kϕi(u)〉 for the entries of the matrix of the second fundamental form. Note
that Gi(u) is positive definite and hence invertible and that the entries of Gi(u)−1 depend
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continuously on gjk and hence on u. Now, by the definition of the second fundamental
form, it holds

hjk = −〈∂jν(ϕi(u)), ∂kϕi(u)〉 = 〈W (ϕi(u))∂jϕi(u), ∂kϕi(u)〉

=
d−1∑
m=1

lmj(u)〈∂mϕi(u), ∂kϕi(u)〉 =
d−1∑
m=1

lmj(u)gmk =
d−1∑
m=1

gkmlmj(u),

where we used the symmetry of Gi(u) in the last step, and hence Hi(u) = Gi(u)Li(u).
This implies Li(u) = Gi(u)−1Hi(u), which shows that the entries ljk are continuous in u,
because the entries of Gi(u)−1 and Hi(u) are continuous, as Σ is sufficiently smooth by
requirement.

Finally, we make a short remark about the geometrical interpretation of the Weingarten
map, cf. [41, Definition 3.12]:

Remark 3.12. Let a C2-smooth hypersurface Σ be given and let x ∈ Σ. Moreover, let c
be a curve that is contained in Σ such that x ∈ ran c and let t := c′(x) be the tangential
vector of c at x, where the derivative is taken with respect to the arc-length. Then the
curvature of c at x is given by κ = |c′′(x)|. Now, one can show that the orthogonal
projection 〈c′′(x), ν(x)〉ν(x) of c′′(x) onto the normal space is independent from the curve
c and it depends just on the tangential vector t. Moreover, it holds 〈c′′(x), ν(x)〉 = II(t, t)
and this value is called normal curvature.

Now, the d− 1 eigenvalues of the matrix of the Weingarten map, that are independent
from the parametrization of Σ by the last proposition, are the so-called principal curvatures
and describe the geometrical properties of Σ around x. In particular, the biggest and the
largest eigenvalue are the maximal and the minimal value of the normal curvature for
any possible curve c with x ∈ ran c and the corresponding tangential vectors are the
corresponding eigenvectors of W .

3.2 Integration on hypersurfaces

Our goal in this section is to discuss a suitable notion of an integral for functions defined
on a closed hypersurface Σ ⊂ Rd. The main idea behind this is as follows: given a
parametrization {ϕi, Ui, Vi}i∈I of Σ, one defines the integral locally in Σ∩Vi via a suitably
weighted (d− 1)-dimensional integral over Ui. In order to do this, we need an appropriate
decomposition of a function f defined on Σ into parts fi with support contained in Σ∩ Vi,
which is done via a so-called partition of unity. This concept is introduced in the following
lemma, which can be found in a more general form for instance in [8, Section 2.20]:

Lemma 3.13. Let k ∈ N, let Σ ⊂ Rd be a closed connected Ck-hypersurface in the sense
of Definition 3.2 and let {Vi}i∈I be a finite cover of open sets Vi ⊂ Rd of Σ. Then there
exists a neighborhood V of Σ and a family of functions {χi}i∈I ⊂ C∞(V ) with the following
properties:
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(i) χi ≥ 0 holds for any i ∈ I;

(ii) supp χi ∩ Σ ⊂ Vi ∩ Σ and supp χi ∩ Σ is compact in Σ;

(iii)
∑

i∈I χi(x) = 1 holds for any x ∈ Σ.

The family {χi}i∈I is called a partition of unity for {Vi}i∈I .

Proof. W.l.o.g. we assume that the index set I has the form I = {1, . . . , n} and that all
sets Vi are bounded (otherwise, choose R > 0 such that Σ ⊂ B(0, R) and replace Vi by
Vi ∩B(0, R)).

Step 1: First, we construct via induction a family of open sets {Wi}i∈I such that

Wi ⊂ Wi ⊂ Vi holds for any i ∈ I and Σ ⊂
⋃
i∈I

Wi.

For m ≥ 1, we assume that it holds

Σ ⊂
⋃
i<m

Wi ∪
⋃
i≥m

Vi,

which is true for m = 1, as {Vi} is an open cover of Σ by assumption. This implies

∂Vi ∩ Σ ⊂
⋃
i<m

Wi ∪
⋃
i>m

Vi

and hence, there exists δm > 0 sufficiently small such that

{x ∈ Rd : dist(x, ∂Vm) ≤ δm}︸ ︷︷ ︸
=:B(∂Vm,δm)

∩Σ ⊂
⋃
i<m

Wi ∪
⋃
i>m

Vi.

Defining then Wm := Vm \B(∂Vi, δm), we find Wm 6= ∅ for δm sufficiently small and

Σ ⊂
⋃
i<m

Wi ∪Wm ∪B(∂Vi, δm)︸ ︷︷ ︸
=Vm

∪
⋃
i>m

Vi =
⋃
i≤m

Wi ∪
⋃
i>m

Vi,

which finishes the induction.
Step 2: According to [8, Section 2.19] there exists for any i ∈ I a function ηi ∈ C∞c (Rd)

such that
0 ≤ ηi ≤ 1, supp ηi ⊂ Vi and ηi|Wi

≡ 1

hold. Since Σ ⊂
⋃
i∈IWi, it holds

∑
i∈I ηi > 0 on Σ and by continuity also on a neighbor-

hood V of Σ. Setting

χi :=
ηi∑
i∈I ηi

,

we have constructed the desired partition of unity.
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Now, we are prepared to define a suitable notion of integration on a hypersurface Σ:

Definition 3.14. Let k ∈ N, let Σ ⊂ Rd be a closed connected Ck-hypersurface with
parametrization {ϕi, Ui, Vi}i∈I and let {χi}i∈I be a partition of unity for {Vi}i∈I .

(i) A function f : Σ→ C is said to be measurable (or integrable), if

Ui 3 u 7→ χi(ϕi(u))f(ϕi(u))

is measurable (or integrable, respectively) for any i ∈ I.

(ii) If f : Σ→ C is integrable, we define the integral of f over Σ as∫
Σ

f(x)dσ(x) :=
∑
i∈I

∫
Ui

χi(ϕi(u))f(ϕi(u))
√

detGi(u)du,

where du := dΛd−1(u) denotes the (d − 1)-dimensional Lebesgue measure and Gi(u)
is the matrix of the first fundamental form associated to Σ and its parametrization
{ϕi, Ui, Vi}i∈I . The measure σ is called ”Hausdorff measure” on Σ.

It is not obvious that
∫

Σ
f(x)dσ(x) given as in Definition 3.14 is independent from the

parametrization. This will be shown in the following proposition:

Proposition 3.15. Let k ∈ N and let Σ ⊂ Rd be a closed connected Ck-hypersurface.
Then ∫

Σ

f(x)dσ(x)

is independent from the parametrization of Σ and the partition of unity.

Proof. Let {ϕi, Ui, Vi}i∈I and {ϕ̃j, Ũj, Ṽj}j∈J be two parametrizations of Σ with correspond-
ing matrices Gi(u) and G̃j(u), respectively, of the first fundamental form. Moreover,
let {χi}i∈I and {χ̃j}j∈J be two partitions of unity for {Vi}i∈I and {Ṽj}j∈J , respectively.
According to Proposition 3.4, there exists for any i ∈ I and j ∈ J a diffeomorphism
ψij : ϕ−1

i (Vi ∩ Ṽj) → ϕ̃−1
j (Vi ∩ Ṽj) such that ϕi|ϕ−1

i (Vi∩Ṽj) = ϕ̃j|ϕ̃−1
j (Vi∩Ṽj) ◦ ψij holds. Note

that the matrix of the first fundamental form transforms as

Gi(u) = (Dψij(u))>G̃j(ψij(u))Dψij(u)
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for any u ∈ ϕ−1
i (Vi ∩ Ṽj), cf. Proposition 3.9. Hence, we find∑

i∈I

∫
Ui

χi(ϕi(u))f(ϕi(u))
√

detGi(u)du

=
∑
i∈I

∫
Ui

∑
j∈J

χ̃j(ϕi(u))χi(ϕi(u))f(ϕi(u))
√

detGi(u)du

=
∑
i∈I

∑
j∈J

∫
ϕ−1
i (Vi∩Ṽj)

χ̃j(ϕ̃j(ψij(u)))χi(ϕ̃j(ψij(u)))f(ϕ̃j(ψij(u)))

·
√

det
(
(Dψij(u))>G̃j(ψij(u))Dψij(u)

)
du

=
∑
i∈I

∑
j∈J

∫
ϕ−1
i (Vi∩Ṽj)

χ̃j(ϕ̃j(ψij(u)))χi(ϕ̃j(ψij(u)))f(ϕ̃j(ψij(u)))

· | detDψij(u)|
√

det G̃j(ψij(u))du

=
∑
i∈I

∑
j∈J

∫
ϕ̃−1
j (Vi∩Ṽj)

χ̃j(ϕ̃j(v))χi(ϕ̃j(v))f(ϕ̃j(v))

√
det G̃j(v)dv

=
∑
j∈J

∫
Ũj

χ̃j(ϕ̃j(v))f(ϕ̃j(v))

√
det G̃j(v)dv,

which proves the statement of this proposition.

Remark 3.16. According to our assumptions on the hypersurface Σ, the Hausdorff mea-
sure σ, which is well-defined by the previous proposition, is obviously a finite measure.

3.3 Tubes around hypersurfaces

Let Σ be a closed connected hypersurface which is at least C2-smooth and let us write
throughout this section elements of Σ with a subscript Σ. Our goal in this section is to
discuss neighborhoods Ωβ of Σ of the form

Ωβ := {xΣ + tν(xΣ) : xΣ ∈ Σ, t ∈ (−β, β)} , (3.3)

where β > 0. In particular, we are going to prove that for β > 0 sufficiently small the
mapping

ιΣ,β : Σ× (−β, β)→ Ωβ, (xΣ, t) 7→ xΣ + tν(xΣ) (3.4)

is bijective. This will allow us to identify functions supported on Ωβ with functions defined
on Σ× (−β, β) via

f(x) = f(xΣ + tν(xΣ)) = f̃(xΣ, t)

for x = xΣ + tν(xΣ). Finally, we will derive a transformation formula for integrals of f
defined in Ωβ with respect to the d-dimensional Lebesgue measure Λd and of functions f̃
defined in Σ× (−β, β) with respect to the measure σ × Λ1 with f and f̃ as above. In the
following proposition, we collect the basic properties of ιΣ,β:
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Proposition 3.17. Let Σ ⊂ Rd, d ≥ 2, be a closed connected hypersurface in the sense of
Definition 3.2 with parametrization {ϕi, Ui, Vi}i∈I , which is at least C2-smooth. Further,
let β > 0 and define the mapping ιi,β as

ιi,β : Ui × (−β, β)→ Rd, (u, t) 7→ ϕi(u) + tν(ϕi(u)).

Then the following hold:

(i) For any i ∈ I the mapping ιi,β is differentiable and its Jacobian is given by

Dιi,β(u, t) =
(
Duϕi(u)(1− tLi(u)) ν(ϕi(u))

)
,

where Li denotes the matrix of the Weingarten map W .

(ii) It holds

|detDιi,β(u, t)| =
∣∣∣det(1− tLi(u))

√
detGi(u)

∣∣∣ ,
where Gi denotes the matrix of the first fundamental form associated to Σ and the
given parametrization.

Proof. (i) The fact that ιi,β is differentiable follows from the smoothness of Σ and from
Proposition 3.7. In order to compute the derivatives of ιi,β a simple calculation shows

∂ιi,β
∂t

= ν(ϕi(u))

and
∂ιi,β
∂uj

=
∂ϕi(u)

∂uj
+ t

∂ν(ϕi(u))

∂uj
= (1− tW )

∂ϕi(u)

∂uj

for j ∈ {1, . . . , d − 1}, where we used just the definition of the Weingarten map W , cf.
Definition 3.10. Denoting the entries of the matrix of the Weingarten map Li(u) by lkj(u)
and its j-th column by l·j(u), we find

W
∂ϕi(u)

∂uj
=

d−1∑
k=1

lkj(u)
∂ϕi(u)

∂uk
= Duϕi(u)l·j(u),

which implies finally
∂ιi,β
∂u

= Duϕi(u)(1− tLi(u)).
(ii) In order to compute the determinant of Dιi,β(u, t), we mention first

|detDιi,β(u, t)| =
(

det(Dιi,β(u, t))2
)1/2

=
(

det
(

(Dιi,β(u, t))>Dιi,β(u, t)︸ ︷︷ ︸
=:S

))1/2
.

To compute the entries skl of the symmetric matrix S, we find first

sdd =
〈
ν(ϕi(u)), ν(ϕi(u))

〉
= 1
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and, using the result from assertion (i),

skd = sdk =

〈
(1− tW (ϕi(u)))

∂ϕi(u)

∂uj
, ν(ϕi(u))

〉
= 0

for k ∈ {1, . . . , d− 1}, as the Weingarten map maps any vector from the tangential space
Tϕi(u) into Tϕi(u). Since it holds(

Duϕi(u)(1− tLi(u))
)>
Duϕi(u)(1− tLi(u))

=
(
1− tLi(u)>

)(
Duϕi(u)

)>
Duϕi(u)(1− tLi(u))

=
(
1− tLi(u)>

)
Gi(u)(1− tLi(u)),

we find

S =

((
1− tLi(u)>

)
Gi(u)(1− tLi(u)) 0

0 1

)
.

This implies finally

| detDιi,β(u, t)| =
√

detS =
√

det
((

1− tLi(u)>
)
Gi(u)(1− tLi(u))

)
=
∣∣∣det(1− tL(ϕi(u)))

√
detGi(u)

∣∣∣ .
Remark 3.18. According to Proposition 3.11, the mapping det(1− tLi(u)) is independent
from the parametrization of Σ, as the eigenvalues of Li(u) have this property. Hence, we
will denote for xΣ = ϕi(u) from now on det(1− tLi(u)) by det(1− tW (xΣ)) and we regard
it as a function in xΣ ∈ Σ.

Using the results from Proposition 3.17, we are now able to prove that ιΣ,β is bijective
for β > 0 sufficiently small:

Theorem 3.19. Let Σ ⊂ Rd, d ≥ 2, be a closed connected hypersurface in the sense of
Definition 3.2, which is at least C2-smooth. Further, let for β > 0 the set Ωβ be defined as
in (3.3) and let ιΣ,β be given by (3.4). Then there exists β0 > 0 such that ιΣ,β is injective
for all β ∈ (0, β0).

Proof. We prove the claimed result by a reduction to a contradiction. So we assume that
for any n ∈ N there exist xn, yn ∈ Σ and an, bn ∈

(
− 1

n
, 1
n

)
with (xn, an) 6= (yn, bn) such

that
xn + anν(xn) = ιΣ,β(xn, an) = ιΣ,β(yn, bn) = yn + bnν(yn) (3.5)

holds. Since Σ is compact, there exist convergent subsequences of (xn) and (yn). W.l.o.g.
we assume that these subsequences are (xn) and (yn) and we set x = limn→∞ xn and
y = limn→∞ yn. Note that (3.5) implies immediately x = y.
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Let {ϕi, Ui, Vi}i∈I be a parametrization of Σ and let the mapping ιi,β be defined as in
Proposition 3.17. Since xn → x and yn → y = x, it follows that there exists N ∈ N
and i ∈ I such that xn ∈ Vi and yn ∈ Vi hold for all n ≥ N . Therefore, the sequences
un := ϕ−1

i (xn) and ũn := ϕ−1
i (yn), n ≥ N , are well-defined and they fulfill

ιi,β(un, an) = ϕi(un) + anν(ϕi(un)) = xn + anν(xn) = yn + bnν(yn)

= ϕi(ũn) + bnν(ϕi(ũn)) = ιi,β(ũn, bn).

Hence, ιi,β is not injective for any β > 0. On the other hand, it holds by Proposition 3.17,
statement (ii), for a sufficiently small β0 > 0∣∣ detDιi,β(u, t)

∣∣ = det(1− tLi(u))
√

detGi(u) > 0

for all t ∈ (−β0, β0) and all β < β0, as the entries of Li(u) are bounded and thus det(1−
tLi(u)) ≈ 1 is true in this case. This is now a contradiction. Hence, ιΣ,β is injective for all
β < β0.

In the following proposition, we show that the inverse of ιi,β, which exists for sufficiently
small β by Theorem 3.19, is locally Lipschitz continuous.

Proposition 3.20. Let Σ ⊂ Rd, d ≥ 2, be a closed connected hypersurface in the sense of
Definition 3.2 with parametrization {ϕi, Ui, Vi}i∈I , which is at least C2-smooth. Further,
let ιi,β be given as in Proposition 3.17 and let β > 0 be sufficiently small, such that det(1−
tLi(u)) is uniformly positive for all t ∈ (−β, β). Finally, let K ⊂ Vi ∩ Σ be compact in Σ.
Then there exists a positive constant C depending on i and K, such that

|ιi,β(u, t)− ιi,β(v, s)| ≥ C
(
|u− v|2 + |t− s|2

)1/2

holds for all u, v ∈ ϕ−1
i (K) and all s, t ∈

(
− β

3
, β

3

)
.

Proof. Since K ⊂ Vi ∩ Σ is compact, there exists a constant c > 0 such that

{xΣ ∈ Σ : ∃yΣ ∈ K : |xΣ − yΣ| < 2c} ∩ {xΣ ∈ Σ : xΣ /∈ Vi} = ∅.

We set

Ω̃ :=

{
xΣ + rν(xΣ) : xΣ ∈ Σ, ∃yΣ ∈ K : |xΣ − yΣ| ≤ c and r ∈

[
−2β

3
,
2β

3

]}
⊂ Ωβ,

where Ωβ is defined as in (3.3), and we choose β1 > 0 such that Bx := B(x, β1) is contained
in Ω̃ for any x = xΣ + tν(xΣ) with xΣ ∈ K and t ∈

(
− β

3
, β

3

)
.

Let (u, t) ∈ ϕ−1
i (K) ×

(
− β

3
, β

3

)
be fixed, let (v, s) ∈ ϕ−1

i (K) ×
(
− β

3
, β

3

)
and set

x = ιi,β(u, t) and y = ιi,β(v, s). We distinguish two cases: |x− y| ≤ β1 and |x− y| > β1.
Note that in the first case y is contained in the convex set Bx. Since Ω̃ is a compact

subset of ran ιi,β, it follows from our assumptions that

| detDιi,β(u, t)| = det(1− tLi(u))
√

detGi(u)
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is uniformly bounded from below on ι−1
i,β(Ω̃) and hence, there exists a constant C1 > 0 such

that ∥∥Dι−1
i,β(z)

∥∥ =
∥∥∥((Dιi,β)ι−1

i,β(z)
)−1
∥∥∥ ≤ C1

is true for all z ∈ Ω̃. Since Bx is convex, it holds x + ξ(y − x) ∈ Bx for all ξ ∈ [0, 1] and
thus, we find

(u, t)− (v, s) = ι−1
i,β(x)− ι−1

i,β(y) =

∫ 1

0

d

dξ
ι−1
i,β(x+ ξ(y − x))dξ

=

∫ 1

0

Dι−1
i,β(x+ ξ(y − x)) · (y − x)dξ,

where we used the chain rule in the last step. This implies(
|u− v|2 + |t− s|2

)1/2
= |ι−1

i,β(x)− ι−1
i,β(y)| ≤

∫ 1

0

∣∣Dι−1
i,β(x+ ξ(y − x)) · (y − x)

∣∣dξ
≤ max

{∥∥Dι−1
i,β(z)

∥∥ : z ∈ Bx

}
· |x− y| ≤ C1|ιi,β(u, t)− ιi,β(v, s)|,

so the claimed assertion holds in this case.
In the second case, we use the fact that ι−1

i,β is continuously differentiable by the inverse

function theorem [49, Satz 4.6] and hence ι−1
i,β is uniformly bounded on the compact set K.

Setting C2 := max
{
|ι−1
i,β(z)| : z ∈ K

}
, we find(

|u− v|2 + |t− s|2
)1/2

= |ι−1
i,β(x)− ι−1

i,β(y)| ≤ 2C2

|x− y|
|x− y| ≤ 2C2

β1

|ιi,β(u, t)− ιi,β(v, s)|,

which is the claimed result in the second case.
Setting finally

C := min

{
1

C1

,
β1

2C2

}
,

the result of this proposition follows.

From Proposition 3.17, we conclude also the following corollary about integration in a
tube Ωβ:

Corollary 3.21. Let Σ ⊂ Rd, ιΣ,β and Ωβ be as in Theorem 3.19 and let β > 0 be suffi-
ciently small. Then a function f : Ωβ → C is integrable with respect to the d-dimensional
Lebesgue measure Λd if and only if f̃ : Σ× (−β, β)→ C defined as f̃(xΣ, t) = f(ιΣ,β(xΣ, t))
is integrable with respect to the measure σ × Λ1. In this case, it holds∫

Ωβ

f(x)dx =

∫
Σ

∫ β

−β
f̃(xΣ, t) det(1− tW (xΣ))dtdσ,

where W is the Weingarten map associated to Σ, and there exist positive constants c1 and
c2 such that

c1

∫
Ωβ

|f(x)|dx ≤
∫

Σ

∫ β

−β

∣∣f̃(xΣ, t)
∣∣dtdσ ≤ c2

∫
Ωβ

|f(x)|dx

is true.
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Proof. Let {ϕi, Ui, Vi}i∈I be a parametrization of Σ and let {χi}i∈I be a partition of unity
for {Vi}i∈I . Note that it is sufficient to consider functions f : Ωβ → [0,∞) to prove the
statement of this corollary, as an arbitrary complex-valued function g can be decomposed
as

g = (Reg)+ − (Reg)− + i(Img)+ − i(Img)−

with nonnegative functions (Reg)+, (Reg)−, (Img)+ and (Img)−. Using the transformation
ιi,β defined as in Proposition 3.17 and setting χ̃i(xΣ + tν(xΣ)) = χi(xΣ) for t ∈ (−β, β), we
find with x = xΣ + tν(xΣ) = ϕi(u) + tν(ϕi(u))∫

Ωβ

f(x)dx =

∫
Ωβ

∑
i∈I

χ̃i(ιΣ,β(xΣ, t))f(ιΣ,β(xΣ, t))dx

=

∫
Ωβ

∑
i∈I

χ̃i(ιi,β(u, t))f(ιi,β(u, t))dx

=
∑
i∈I

∫ β

−β

∫
Ui

χi(ϕi(u))f̃(ϕi(u), t) det(1− tLi(u))
√

detGi(u)dudt

=

∫ β

−β

∫
Σ

f̃(xΣ, t) det(1− tW (xΣ))dσdt

due to the definition of the Hausdorff measure σ, cf. Definition 3.14. Note that it holds
det(1 − tW (xΣ)) ≈ 1 for sufficiently small t, as the eigenvalues of Li(u) are bounded by
Proposition 3.11, in particular det(1− tW (xΣ)) is uniformly bounded from above and from
below. Hence, all claimed results from this corollary follow from the above calculation.
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4 Function spaces

In this chapter, we introduce some notations and the function spaces, in which our operators
act and which are essential for the definition of differential operators with δ-interactions
in a suitable Hilbert space setting. In particular, in Section 4.1 we provide our notations
for differentiable and Lebesgue measurable functions. Then in Section 4.2 we introduce
the concept of weak differentiability and Sobolev spaces defined on open subsets of Rd.
Finally, in Section 4.3 we define various function spaces on hypersurfaces and we state a
generalized version of Green’s first integral formula.

4.1 Classical function spaces

In the following section, we introduce classical function spaces of continuously differentiable
and Lebesgue measurable functions and we provide numerous notations connected to these
function spaces. Furthermore, we collect some well-known results which will be needed for
our further investigations.

4.1.1 Continuous and continuously differentiable functions

Let d ∈ N and let Ω be an open subset of Rd. The set of all continuous functions u : Ω→ C
is denoted by C(Ω), the set of all k times continuously differentiable functions is denoted by
Ck(Ω). For a continuous function u its support is defined by supp u := {x ∈ Ω | u(x) 6= 0}.
Furthermore, we set

Cc(Ω) := {u ∈ C(Ω) : supp u is compact}

and for k ∈ N we write Ck
c (Ω) := Cc(Ω) ∩ Ck(Ω). Finally, we define the space C∞c (Ω) of

test functions in Ω by

C∞c (Ω) :=
⋂
k∈N

Ck
c (Ω)

and we set
C∞c
(
Ω
)

:=
{
u|Ω : u ∈ C∞c (Rd)

}
.

4.1.2 The function spaces Lp(X,µ)

Let (X,µ) be a σ-finite measure space, i.e. there exists an at most countable family of sets
{Xn}n∈N such that

X =
⋃
n∈N

Xn and µ(Xn) <∞

hold. In what follows, we introduce the Banach spaces Lp(X,µ) for p ∈ [1,∞]. For this,
we set

N :=

{
f : X → C : f is measurable and

∫
X

|f |dµ = 0

}
.

Then the spaces Lp(X,µ) are defined as follows:
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Definition 4.1. Let (X,µ) be a σ-finite measure space and let N be given as above.

(i) For p ∈ [1,∞) the function space Lp(X,µ) is defined as

Lp(X,µ) :=

{
f : X → C : f is measurable,

∫
X

|f |pdµ <∞
}/
N .

(ii) The function space L∞(X,µ) is given by

L∞(X,µ) :=
{
f : X → C : f is measurable, ess sup f <∞

}/
N

with
ess sup f := inf

{
α ≥ 0 : µ ({x ∈ X : |f(x)| > α}) = 0

}
.

Let us mention that the elements of Lp(X,µ) are actually equivalence classes of func-
tions, but we will identify functions with their equivalence classes and vice versa and we
will calculate with the elements of Lp(X,µ) as with usual functions. Moreover, we will call
the elements of Lp(X,µ) functions. In this sense, we say that a function f ∈ Lp(X,µ) is
supported on a set Y ⊂ X, if f = 0 holds almost everywhere in X \ Y . In particular, we
say that f is compactly supported, if this is true for a compact set Y .

The next theorem contains the well-known facts that Lp(X,µ) is a Banach space and
that in particular L2(X,µ) is a Hilbert space [50, Satz 1.38 and Satz 1.41].

Theorem 4.2. Let (X,µ) be a σ-finite measure space. Moreover, define the norms

‖f‖Lp :=

(∫
X

|f |pdµ
)1/p

for p ∈ [1,∞) and ‖f‖L∞ := ess sup f . Then the following assertions are true:

(i)
(
Lp(X,µ), ‖ · ‖Lp

)
Lp

is a Banach space for any p ∈ [1,∞].

(ii) L2(X,µ), equipped with the inner product

(f, g)L2 :=

∫
X

fgdµ for f, g ∈ L2(X,µ),

is a Hilbert space.

Let us have a look on the special case that X = Ω is a subset of Rd and µ is the
d-dimensional Lebesgue measure, which will be denoted by Λd in this thesis. Since most of
the integrals appearing in this thesis are integrals with respect to the Lebesgue measure, we
simply write dx instead of dΛd(x). Furthermore, we just write Lp(Ω) instead of Lp(Ω,Λd).
The following theorem contains the important result that the set of test functions C∞c (Ω)
is dense in Lp(Ω) for p ∈ [1,∞), see for instance [43, Theorem 3.4].
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Theorem 4.3. Let d ∈ N, let Ω be an open subset of Rd and let p ∈ [1,∞). Then C∞c (Ω)
is dense in Lp(Ω).

Finally, we introduce the Fourier transform in L2(Rd). For this purpose, we define first
the Fourier transform for integrable functions and using the fact that L1(Rd) ∩ L2(Rd) is
dense in L2(Rd), we extend this definition to the whole space L2(Rd). For the definition of
the Fourier transform for integrable functions, recall that the Euclidean scalar product in
Rd is denoted by 〈·, ·〉.

Definition 4.4. For f ∈ L1(Rd) the Fourier transform F1f : Rd → C is defined as

(F1f)(x) =
1

(2π)d/2

∫
Rd
e−i〈x,y〉f(y)dy.

In the next theorem, which is known as the theorem of Plancherel, we extend the
definition of the Fourier F1 to the whole space L2(Rd), cf. [50, Satz 11.9].

Theorem 4.5. The Fourier transform F1 given as in Definition 4.4 can be extended
uniquely from L1(Rd) ∩ L2(Rd) to a unitary operator F : L2(Rd) → L2(Rd). Moreover, it
holds (F−1f)(x) = (Ff)(−x) for almost all x ∈ Rd and all f ∈ L2(Rd).

4.2 Sobolev spaces

In the following section, we introduce the Sobolev spaces Hs(Ω). This concept contains a
generalization of differentiation which will allow us to define differential operators in the
Hilbert space L2(Ω) for Ω ⊂ Rd. We introduce Sobolev spaces in two different ways: on the
one hand via weak derivatives, and on the other hand via the Fourier transform. Finally,
we provide the function spaces Hs

∆(Ω). For f ∈ Hs
∆(Ω) there exists ∆f ∈ L2(Ω) in a weak

sense, and for such functions we will generalize in Section 4.3 Green’s first identity in a
setting that is appropriate for our needs. In this section, we follow the presentation from
[43].

4.2.1 Sobolev spaces - definition via weak derivatives

Throughout this section, let Ω be a nonempty open subset of Rd. Let us arrange some
notations for multi-indices: for (α1, . . . , αd)

> = α ∈ Nd
0 and x ∈ Rd we write |α| :=∑d

k=1 αk, x
α :=

∏d
k=1 x

αk
k and Dαϕ := ∂|α|ϕ

∂x
α1
1 ...∂x

αd
d

for ϕ ∈ C∞c (Ω). In particular, we denote

D0ϕ := ϕ.

Definition 4.6. Let Ω ⊂ Rd be open, let α ∈ Nd
0 and let f ∈ L2(Ω). Assume that there

exists a function g ∈ L2(Ω) such that∫
Ω

f(x)Dαϕ(x)dx = (−1)|α|
∫

Ω

g(x)ϕ(x)dx

holds for all ϕ ∈ C∞c (Ω). Then f is said to be weakly differentiable of order α and Dαf := g
is called the weak α-th derivative of f .
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Let us give a few remarks on the definition of weak differentiation:

Remark 4.7.

(i) Let f be weakly differentiable with respect to the multi-index α ∈ Nd
0. Then it follows

from Theorem 4.3 that the weak derivative Dαf is unique as an element of L2(Ω).

(ii) If f is k times continuously differentiable and Dαf ∈ L2(Ω) holds for |α| ≤ k, then
Dαf also exists in the weak sense and the weak and the classical derivative coincide.
Hence, differentiation in the weak sense is a generalization of classical differentiation.

Now, we are already prepared to give a first definition of Sobolev spaces via weak
derivatives:

Definition 4.8. Let Ω ⊂ Rd be open and let k ∈ N. Then the Sobolev space W k(Ω) of
order k is defined as

W k(Ω) :=
{
f ∈ L2(Ω) : Dαf ∈ L2(Ω) ∀|α| ≤ k

}
.

Here it is contained that for f ∈ W k(Ω) the weak derivatives Dαf exist for |α| ≤ k.
Furthermore, we define for f, g ∈ W k(Ω)

(f, g)Wk :=
∑
|α|≤k

(Dαf,Dαg)L2

and
‖f‖Wk :=

√
(f, f)Wk .

Remark 4.9.

(i) By definition it holds L2(Ω) ⊃ W 1(Ω) ⊃ W 2(Ω) ⊃ . . . and for l ≤ k the embedding
from W k(Ω) to W l(Ω) is continuous.

(ii) Set W 0(Ω) = L2(Ω). Then the Sobolev spaces W k(Ω) can be introduced recursively
in the following way:

W k(Ω) =
{
f ∈ W 1(Ω) : Dejf ∈ W k−1(Ω) ∀j ∈ {1, . . . , d}

}
,

where ej is a canonical basis vector in Rd.

The next theorem contains the well-known result that W k(Ω) is a Hilbert space, see
[14, Theorem 2.15.1].

Theorem 4.10. Let Ω ⊂ Rd be open and let k ∈ N. Then W k(Ω), equipped with (·, ·)Wk ,
is a Hilbert space.

Finally, we state a result on the Fourier transform of the weak derivatives of a function
belonging to W k(Rd), cf. [9, Satz 6.45]:

Proposition 4.11. Let k ∈ N and let the Fourier transform F : L2(Rd) → L2(Rd) be
defined as in Theorem 4.5. Then it holds

(FDαf)(x) = (ix)α(Ff)(x)

for all f ∈ W k(Rd), all multi-indices |α| ≤ k and almost all x ∈ Rd.
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4.2.2 Sobolev spaces - definition via the Fourier transform

In this subsection, we give a second definition of Sobolev spaces Hs(Ω) via the Fourier
transform, which is motivated by Proposition 4.11 and which can be extended in a natural
way to any real s ≥ 0. Furthermore, we will show that under some weak assumptions on
Ω the spaces Hs(Ω) and W s(Ω) coincide for any s ∈ N. First, let us state the definition of
Hs(Rd):

Definition 4.12. Let d ∈ N, let s ∈ [0,∞) and let the Fourier transform F be defined as
in Theorem 4.5. Then the Sobolev space Hs(Rd) of order s is defined as

Hs(Rd) :=

{
f ∈ L2(Rd) :

∫
Rd

(1 + |x|2)s|Ff(x)|2dx <∞
}
.

Moreover, we define on Hs(Rd) the inner product (·, ·)Hs(Rd) via

(f, g)Hs(Rd) :=

∫
Rd

(1 + |x|2)sFf(x)Fg(x)dx, f, g ∈ Hs(Rd).

Note that it holds by definition Hs1(Rd) ⊂ Hs2(Rd), if 0 ≤ s2 ≤ s1, as it holds
in this case (1 + |x|2)s2 ≤ (1 + |x|2)s1 for any x ∈ Rd. Moreover, we see immediately
H0(Rd) = L2(Rd). It is not difficult to see that Hs(Rd) is a Hilbert space for any s ≥ 0,
cf. the discussion in [50, Section 11.4]:

Corollary 4.13. Let d ∈ N and let s ∈ [0,∞). Then
(
Hs(Rd), (·, ·)Hs(Rd)

)
is a Hilbert

space.

Next, we extend the definition of Hs(Ω) from Ω = Rd to any open set Ω ⊂ Rd.

Definition 4.14. Let d ∈ N, let s ∈ [0,∞), let Hs(Rd) be constituted as in Definition 4.12
and let Ω ⊂ Rd be open. Then Hs(Ω) is defined as

Hs(Ω) :=
{
f ∈ L2(Ω) : f = F |Ω for some F ∈ Hs(Rd)

}
.

In order to get a Hilbert space structure on Hs(Ω), we need numerous preparations.
Let Ω ⊂ Rd be open, set M := Rd \ Ω and let s ≥ 0. We set

Hs
M :=

{
f ∈ Hs(Rd) : supp f ⊂M

}
.

It is not difficult to see that Hs
M is a closed subspace of Hs(Rd). Hence, there exists an

orthogonal projection PΩ,s acting in Hs(Rd) onto Hs
M . Clearly, PΩ,s satisfies

PΩ,sf |Ω = 0 and (1− PΩ,s)f |Ω = f |Ω
for any f ∈ Hs(Rd). Now, we set for f, g ∈ Hs(Ω)

(f, g)Hs(Ω) :=
(
(1− PΩ,s)F, (1− PΩ,s)G

)
Hs(Rd)

, (4.1)

where F,G ∈ Hs(Rd) are given in such a way that f = F |Ω and g = G|Ω hold. One can
show that (·, ·)Hs(Ω) is a well-defined inner product on Hs(Ω), cf. [43, page 77]. If it is
clear, which set Ω is meant, we just write (·, ·)Hs instead of (·, ·)Hs(Ω). Now, the following
result holds [43]:
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Theorem 4.15. Let d ∈ N, let Ω ⊂ Rd be open and let s ≥ 0. Then
(
Hs(Ω), (·, ·)Hs(Ω)

)
is

a Hilbert space. Moreover, it holds

‖f‖Hs(Ω) :=
√

(f, f)Hs(Ω) = inf
{
‖F‖Hs(Rd) : F ∈ Hs(Rd), f = F |Ω

}
for any f ∈ Hs(Ω).

Let us continue with a density result that can be found in [43, page 77]:

Proposition 4.16. Let Ω ⊂ Rd be open. Then C∞c
(
Ω
)

is dense in Hs(Ω) for any s ≥ 0.

Finally, we give a condition on Ω, which will always be fulfilled in our applications,
under which Hk(Ω) and W k(Ω) given as in Section 4.2.1 coincide for any k ∈ N. This
result follows from [43, Theorem 3.18 and Theorem A.4].

Theorem 4.17. Let 2 ≤ d ∈ N, let k ∈ N and let Ω ⊂ Rd be open. Moreover, let W k(Ω)
be constituted as in Definition 4.8 and let Hk(Ω) be given as in Definition 4.12. If ∂Ω is
a C1-smooth hypersurface in the sense of Definition 3.2, then W k(Ω) = Hk(Ω) holds and
the norms ‖ · ‖Wk and ‖ · ‖Hk are equivalent.

4.2.3 The space Hs
∆(Ω)

In this section, we investigate specific subspaces of Hs(Ω). A functions f belonging to
Hs

∆(Ω) has the property that ∆f exists in a weak sense and belongs to L2(Ω). For such
functions we will state in Section 4.3 a version of Green’s integral identity - a generalization
of classical integration by parts. Let us start with the definition of Hs

∆(Ω):

Definition 4.18. Let Ω ⊂ Rd be open and let s ≥ 0. Then the function space Hs
∆(Ω) is

defined as

Hs
∆(Ω) :=

{
f ∈ Hs(Ω) : ∃∆f := g ∈ L2(Ω) :

∫
Ω

f∆ϕdx =

∫
Ω

gϕdx ∀ϕ ∈ C∞c (Ω)

}
.

Moreover, we equip Hs
∆(Ω) with the inner product

(f, g)Hs
∆(Ω) := (f, g)Hs(Ω) + (∆f,∆g)L2(Ω).

Note that for s ≥ 2 the spaces Hs
∆(Ω) and Hs(Ω) coincide. Next, we state the fact that

Hs
∆(Ω) is a Hilbert space. This can be shown in a similar way as Theorem 4.10, see also

[14, Theorem 2.15.1]. The details of this simple proof are left to the reader.

Proposition 4.19. Let Ω ⊂ Rd be open and let s ≥ 0. Then
(
Hs

∆(Ω), (·, ·)Hs
∆(Ω)

)
is a

Hilbert space.

Finally, we state that C∞c
(
Ω
)

is dense in Hs
∆(Ω). This fact will be needed later to prove

an appropriate version of Green’s formula.

35



Proposition 4.20. Let Ω ⊂ Rd be open such that ∂Ω is a C1-smooth hypersurface in the
sense of Definition 3.2, and let s ≥ 0. Then C∞c

(
Ω
)

is dense in
(
Hs

∆(Ω), (·, ·)Hs
∆(Ω)

)
.

Proof. For s ∈ [0, 2) the statement is mentioned in the proof of Lemma 2.4 in [28]; see
also [18], where the statement is shown for space dimension d = 2, 3, and [42, Section
6.4], where a proof is given for a C∞-smooth boundary ∂Ω and s = 0. For s ≥ 2 there
is nothing to show, as it holds Hs

∆(Ω) = Hs(Ω) in this case and the associated norms are
equivalent.

4.3 Sobolev spaces on hypersurfaces

In this section, we introduce Sobolev spaces Hs(Σ) consisting of functions defined on a
hypersurface Σ. Throughout this section, we assume that Ω is an open subset of Rd and
that its boundary Σ := ∂Ω is a hypersurface in the sense of Definition 3.2. The importance
of functions in Hs(Σ) is the fact that they are the boundary values of functions in H t(Ω).

4.3.1 The space Hs(Σ)

Let d ≥ 2 be a natural number and let Σ ⊂ Rd be a hypersurface as in Definition 3.2
with parametrization {Ui, Vi, ϕi}i∈I . Further, recall the idea of a partition of unity from
Lemma 3.13 and the definition of the Hausdorff measure σ and the induced integral notion
on Σ from Section 3.2. In what follows, we construct the Sobolev spaces Hs(Σ), s ≥ 0, as
subspaces of L2(Σ) := L2(Σ, σ):

Definition 4.21. Let k ∈ N and let Σ ⊂ Rd be a hypersurface that is Ck-smooth. Moreover,
let {Ui, Vi, ϕi}i∈I be a parametrization of Σ and let {χi}i∈I be a partition of unity for {Vi}i∈I .
For ξ ∈ L2(Σ) and i ∈ I we define the functions ξi ∈ L2(Ui) as

ξi : Ui → C, ξi(u) = χi(ϕi(u)) · ξ(ϕi(u)).

Then for 0 ≤ s ≤ k the Sobolev space Hs(Σ) is defined as

Hs(Σ) :=
{
ξ ∈ L2(Σ) : ξi ∈ Hs(Ui) ∀i ∈ I

}
.

Moreover, we define on Hs(Σ) the inner product

(ξ, ζ)Hs(Σ) :=
∑
i∈I

(ξi, ζi)Hs(Ui)

for ξ, ζ ∈ Hs(Σ).

We would like to point out, that Hs(Σ) can only be defined for s ≤ k, if Σ is Ck-smooth.
The definition of the inner product in Hs(Σ) depends on the choice of the parametrization
of Σ and on the choice of the partition of unity. Nevertheless, the definition of Hs(Σ) is
independent from these quantities and it is a Hilbert space [14, Remark 8.13.1 and Theorem
8.13.4]:
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Proposition 4.22. Let k ∈ N, let Σ ⊂ Rd be a Ck-smooth hypersurface, let s ∈ [0, k] and
let Hs(Σ) be given as in Definition 4.21. Then the following assertions are true:

(i) The definition of Hs(Σ) does not depend on the choice of the parametrization of Σ and
the partition of unity. Moreover, given two parametrizations of Σ with corresponding
partitions of unity, the induced inner products in Definition 4.21 yield equivalent
norms.

(ii)
(
Hs(Σ), (·, ·)Hs(Σ)

)
is a Hilbert space.

In the next proposition, we state that Hs(Σ) is compactly embedded in L2(Σ) for s > 0.
This statement can be found in [28, Appendix A].

Proposition 4.23. Let Σ ⊂ Rd be a hypersurface in the sense of Definition 3.2 which is
at least C1-smooth. Then the embedding Hs(Σ)→ L2(Σ) is compact for any s ∈ (0, 1].

4.3.2 Trace operators

In this subsection, we introduce the trace operators, that generalize the boundary values of
continuously differentiable functions to weakly differentiable functions. Further, we discuss
the connection of the Sobolev spaces Hs(Σ) and H t(Ω). Using these trace operators, we
state a generalized version of the classical integration by parts formula. Let us start with
the definition and the properties of the Dirichlet trace operator [43, Theorem 3.37]:

Theorem 4.24. Let k ∈ N, let Ω ⊂ Rd be an open set such that Σ := ∂Ω is a Ck-smooth
hypersurface and let s ∈

(
1
2
, k + 1

2

]
. Then there exists a unique bounded and surjective

linear operator γD,s : Hs(Ω)→ Hs−1/2(Σ) such that

γD,sϕ = ϕ|Σ

holds for all ϕ ∈ C∞c
(
Ω
)
.

We would like to point out that the statement of Theorem 4.24 is only true for s > 1
2
,

for s = 1
2

the result does not hold, i.e. there is no continuous trace operator

γD,1/2 : H1/2(Ω)→ L2(Σ).

Later, we will use the notation f |Σ for the trace of f ∈ Hs(Ω), so f |Σ = γD,sf .
Next, we are going to introduce a generalized Neumann trace, i.e. an operator γN that

satisfies

γNϕ =
d∑
j=1

νj
∂ϕ

∂xj

∣∣∣∣
Σ

(4.2)

for any ϕ ∈ C∞c
(
Ω
)
, where ν = (ν1, . . . , νd) denotes the unit normal vector pointing

outwards of Ω. We are going to do this in two different ways, namely once as an operator
γ̃N : H2(Ω) → L2(Σ), where we use the Dirichlet trace for the definition, and once as

γN : H
3/2
∆ (Ω) → L2(Σ), which is more important for our applications and which requires

some more involved ideas for the construction. Let us start with the definition of γ̃N :
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Proposition 4.25. Let Ω ⊂ Rd be an open set such that Σ := ∂Ω is a C2-smooth hyper-
surface, let ν = (ν1, . . . , νd) be the unit normal vector pointing outwards of Ω and let γD,1
be given as in Theorem 4.24. Moreover, define the linear operator γ̃N : H2(Ω)→ Σ as

γ̃Nf :=
d∑
j=1

νjγD,1Dejf, f ∈ H2(Ω),

where e1, . . . , ed denote the canonical basis vectors of Rd. Then γ̃N is bounded.

Proof. First, we mention that γ̃N is well-defined, as Dejf belongs to H1(Ω) for any f ∈
H2(Ω) because of our assumptions on Ω and Theorem 4.17.

In order to prove that γ̃N is bounded, we observe first that

Dej : H2(Ωj)→ H1(Ωj), f 7→ Dejf

is continuous for any canonical basis vector ej of Rd, which can be seen by the definition
of the norm ‖ · ‖Wk , that is equivalent to ‖ · ‖Hk by Theorem 4.17, in Definition 4.8.
Moreover, by Theorem 4.24 and Proposition 4.23 the mapping γD,1 is continuous from
H1(Ωj) to L2(Σ). Hence, we find

‖γ̃Nf‖L2(Σ) =

∥∥∥∥∥
d∑
j=1

νjγD,1Dejf

∥∥∥∥∥
L2(Σ)

≤
d∑
j=1

∥∥νjγD,1Dejf
∥∥
L2(Σ)

≤ ‖ν‖

(
d∑
j=1

∥∥γD,1Dejf
∥∥2

L2(Σ)

)1/2

≤ c1

(
d∑
j=1

∥∥Dejf
∥∥2

H1(Ω)

)1/2

≤ c2‖f‖H2(Ωj)

for any f ∈ H2(Ω), where we used the Cauchy-Schwarz inequality for sums and the fact
that ν is normed by definition. This shows that γ̃N is bounded.

In what follows, we introduce the Neumann trace operator γN : H
3/2
∆ (Ω) → L2(∂Ω).

This operator will allow us to derive a version of Green’s identity for functions belonging
to H

3/2
∆ (Ω) that is needed in our applications. This non-standard construction of γN can

be found for instance in [28, Lemma 2.4].

Theorem 4.26. Let Ω ⊂ Rd be a bounded open set such that Σ := ∂Ω is a C1-smooth hyper-
surface. Then there exists a unique bounded and surjective linear operator γN : H

3/2
∆ (Ω)→

L2(Σ) such that (4.2) holds for all ϕ ∈ C∞c
(
Ω
)
.

Theorem 4.26 gives only a definition of γN , when Ω is a bounded domain with a smooth
boundary Σ = ∂Ω. But in our applications, we also need the Neumann trace of functions
f ∈ H3/2

∆ (Ω) in the case that Rd \ Ω is bounded. We are going to extend the definition of
γN to this case:

Let Ω ⊂ Rd be open such that Rd \Ω fulfills the assumptions of Theorem 4.26. Hence,
Σ := ∂Ω is compact and there exists R > 0 such that Σ ⊂ B(0, R). If we define the
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set ΩR := Ω ∩ B(0, R), we see that ΩR satisfies the assumptions of Theorem 4.26 and

∂ΩR = Σ∪ ∂B(0, R) and thus, there exists a Neumann trace γN,R : H
3/2
∆ (ΩR)→ L2(∂ΩR).

In order to define the Neumann trace γN on H
3/2
∆ (Ω), we introduce the projections

PR : H
3/2
∆ (Ω)→ H

3/2
∆ (ΩR), PRf = f |ΩR

and
PΣ : L2(∂ΩR)→ L2(Σ), PΣξ = ξ|Σ.

Now, we define γN := PΣγN,RPR and see that γN : H
3/2
∆ (Ω)→ L2(Σ) is bounded and that

(4.2) is fulfilled for any ϕ ∈ C∞c
(
Ω
)
. Hence, γN is the desired Neumann trace-operator for

Ω. Later, we will use the notation ∂νf |Σ = γNf for the Neumann trace.
Using the operators γD,s from Theorem 4.24 and γN from Theorem 4.26, we are going

to state a generalized version of Green’s first integral formula:

Theorem 4.27. Let Ω ⊂ Rd be an open set such that Σ := ∂Ω is a C1-smooth hypersurface,
let γD := γD,1 be defined as in Theorem 4.24 and let γN be given as in Theorem 4.26.
Moreover, let ej be the canonical basis vectors of Rd. Then it holds∫

Ω

d∑
j=1

DejfDejgdx+

∫
Ω

(∆f)gdx =

∫
Σ

γNfγDgdσ

for all f ∈ H3/2
∆ (Ω) and g ∈ H1(Ω).

Proof. Let f ∈ H
3/2
∆ (Ω) and g ∈ H1(Ω) be fixed. According to Proposition 4.16, there

exists a sequence (gn) ⊂ C∞c
(
Ω
)

such that gn converges to g in H1(Ω). Hence, it holds
gn → g and Dejgn → Dejg in L2(Ω). Furthermore, by Proposition 4.20, there exists a

sequence (fn) ⊂ C∞c
(
Ω
)

such that fn → f in H
3/2
∆ (Ω). This implies ∆fn → ∆f and

Dejfn → Dejf in L2(Ω). Note furthermore that it holds γDgn → γDg and γNfn → γNf
in L2(Σ), as γD and γN are continuous by Theorem 4.24 and Theorem 4.26. Using the
classical integral formula of Green which is valid for C∞c

(
Ω
)
-functions, we find∫

Ω

d∑
j=1

DejfnDejgndx+

∫
Ω

(∆fn)gndx =

∫
Σ

γNfnγDgndσ.

Thus, we get finally∫
Σ

γNfγDgdσ = lim
n→∞

∫
Σ

γNfnγDgndσ = lim
n→∞

(∫
Ω

d∑
j=1

DejfnDejgndx+

∫
Ω

(∆fn)gndx

)

=

∫
Ω

d∑
j=1

DejfDejgdx+

∫
Ω

(∆f)gdx,

which is the claimed result.
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5 Some classes of auxiliary operators

In this chapter, we study several special types of operators that act between Hilbert spaces
of the form L2(X,µ) introduced in Section 4.1 and that will appear frequently in our
applications. First, we discuss multiplication operators which act as f 7→ uf for a fixed
function u, then we introduce integral operators of the form

f 7→
∫
X

k(·, y)f(y)dµ(y)

for a fixed integral kernel k and we consider classical Schrödinger operators −∆ + V for
a potential V ∈ L∞(Rd). Finally, we investigate the single layer potential associated to
the differential expression −∆ + 1, which is essential in the investigation of the δ-operator
Aδ,α.

5.1 Multiplication operators in L2(X,µ)

In the following section, we discuss operators that act formally as f 7→ uf , where u is a
fixed function. To be more precise, let (X,µ) be a σ-finite measure space and let u : X → C
be a measurable function. Then the associated, maximal multiplication operator Mu in
L2(X,µ) is defined as

Muf = uf, dom Mu :=
{
f ∈ L2(X,µ) : uf ∈ L2(X,µ)

}
. (5.1)

The main properties of this operator are summarized in the following theorem, cf. [50,
Satz 6.1 and Satz 6.2]:

Theorem 5.1. Let (X,µ) be a σ-finite measure space, let u : X → C be a measurable
function and let Mu be the associated multiplication operator given by (5.1). Then the
following assertions are true:

(i) Mu is a densely defined and closed operator and its adjoint is given by M∗
u = Mu.

(ii) Mu is bounded, if and only if u ∈ L∞(X,µ). In this case, it holds ‖Mu‖ = ‖u‖L∞.

(iii) λ ∈ C belongs to the spectrum of Mu, if and only if

µ
(
{x ∈ X : |u(x)− λ| < ε}

)
> 0

holds for all ε > 0. In particular, if u is continuous and µ is the Lebesgue measure,
it holds σ(Mu) = ran u.
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5.2 Integral operators

Let (X1, µ1) and (X2, µ2) be two σ-finite measure spaces. We want to study operators K
defined in L2(X1, µ1) and mapping into L2(X2, µ2), which act formally as

(Kf)(x2) =

∫
X1

k(x1, x2)f(x1)dµ1(x1)

for almost all x2 ∈ X2. Here, the function k : X1 × X2 → C, which is assumed to be
µ1 × µ2-measurable, is called the integral kernel of K. In particular, we are going to give
some criteria on k, such that the operator K is well-defined on the whole space L2(X1, µ1)
and bounded or even compact and we are going to give various upper bounds for the norm
of K.

A first result is stated in the following theorem, which will be the main tool to prove the
convergence of a family of Schrödinger operators with regular potentials to a Hamiltonian
with a δ-interaction supported on a hypersurface. Since this result is very important for
our purposes, we give a proof of it which follows [50, Satz 6.9].

Theorem 5.2. Let (X1, µ1) and (X2, µ2) be two σ-finite measure spaces and let k : X1 ×
X2 → C be µ1 × µ2 measurable. Assume that there exist constants C1, C2 > 0 such that∫

X1

|k(x1, x2)|dµ1(x1) ≤ C1

is true for µ2-almost all x2 ∈ X2 and∫
X2

|k(x1, x2)|dµ2(x2) ≤ C2

holds for µ1-almost all x1 ∈ X1. Then the operator K : L2(X1, µ1) → L2(X2, µ2), which
acts as

(Kf)(x2) =

∫
X1

k(x1, x2)f(x1)dµ1(x1)

for almost all x2 ∈ X2 and all f ∈ L2(X1, µ1), is well-defined and bounded. Moreover, it
holds ‖K‖2 ≤ C1C2.

Remark 5.3. Let K,C1 and C2 be as in Theorem 5.2. Then
√
C1C2 is called ”Schur-

Holmgren bound” for ‖K‖.

Proof of Theorem 5.2. Step 1: Let f ∈ L2(X1, µ1) be fixed. We prove that Kf(x2) is
finite for almost all x2 ∈ X2 and that Kf is a µ2-measurable function in X2. Since X2 is
σ-finite by assumption, there exist countably many sets X̃n, such that X2 =

⋃
n X̃n and

µ2

(
X̃n

)
< ∞ are satisfied. Hence, it is sufficient to prove for any n ∈ N that Kf(x2) is

finite for almost any x2 ∈ X̃n and that Kf |X̃n is measurable. According to the theorem of
Fubini-Tonelli [50, Satz A.21] this is true, if∫

X̃n×X1

|k(x1, x2)f(x1)|d(µ2 × µ1)(x2, x1) <∞.
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In order to prove this, we use that

a ≤ 2a ≤ 1 + a2

holds for any a ≥ 0, which yields∫
X̃n×X1

|k(x1, x2)f(x1)|d(µ2 × µ1)(x2, x1) =

∫
X̃n

∫
X1

|k(x1, x2)f(x1)|dµ1(x1)dµ2(x2)

≤
∫
X̃n

(
1 +

(∫
X1

|k(x1, x2)f(x1)|dµ1(x1)

)2
)

dµ2(x2)

= µ2

(
X̃n

)
+

∫
X̃n

(∫
X1

|k(x1, x2)f(x1)|dµ1(x1)

)2

dµ2(x2).

Now, we need to look for an estimate for the second integral. For this purpose, we use the
Cauchy-Schwarz inequality, our assumptions on k and the theorem of Fubini-Tonelli and
find ∫

X̃n

(∫
X1

|k(x1, x2)f(x1)|dµ1(x1)

)2

dµ2(x2)

≤
∫
X2

(∫
X1

|k(x1, x2)|1/2|k(x1, x2)|1/2|f(x1)|dµ1(x1)

)2

dµ2(x2)

≤
∫
X2

∫
X1

|k(x1, x2)|dµ1(x1)︸ ︷︷ ︸
≤C1

∫
X1

|k(x1, x2)||f(x1)|2dµ1(x1)dµ2(x2)

≤ C1

∫
X1

∫
X2

|k(x1, x2)|dµ2(x2)︸ ︷︷ ︸
≤C2

|f(x1)|2dµ1(x1) ≤ C1C2‖f‖2
L2 .

Hence, we find∫
X̃n×X1

|k(x1, x2)f(x1)|d(µ2 × µ1)(x2, x1)

≤ µ2

(
X̃n

)
+

∫
X̃n

(∫
X1

|k(x1, x2)f(x1)|dµ1(x1)

)2

dµ2(x2) ≤ µ2

(
X̃n

)
+ C1C2‖f‖2

L2 ,

which is finite, as µ2

(
X̃n

)
<∞.

Step 2: Let f ∈ L2(X1, µ1) be fixed. It remains to prove that Kf is an element
of L2(X2, µ2) and that K is bounded with ‖K‖ ≤

√
C1C2. Using the Cauchy-Schwarz
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inequality, our assumptions on k and the theorem of Fubini-Tonelli, we find∫
X2

|Kf(x2)|2 dµ2(x2) =

∫
X2

∣∣∣∣∫
X1

k(x1, x2)f(x1)dµ1(x1)

∣∣∣∣2 dµ2(x2)

≤
∫
X2

(∫
X1

|k(x1, x2)|1/2|k(x1, x2)|1/2|f(x1)|dµ1(x1)

)2

dµ2(x2)

≤
∫
X2

∫
X1

|k(x1, x2)|dµ1(x1)︸ ︷︷ ︸
≤C1

∫
X1

|k(x1, x2)||f(x1)|2dµ1(x1)dµ2(x2)

≤ C1

∫
X1

∫
X2

|k(x1, x2)|dµ2(x2)︸ ︷︷ ︸
≤C2

|f(x1)|2dµ1(x1) ≤ C1C2‖f‖2
L2 .

Hence, it follows Kf ∈ L2(X2, µ2), so K is well-defined, and ‖K‖ ≤
√
C1C2. Thus, all

claimed statements of this theorem are true.

Finally, we give a criterion on the integral kernel k under that the corresponding integral
operator K is compact [50, Satz 3.19]:

Proposition 5.4. Let (X1, µ1) and (X2, µ2) be two σ-finite measure spaces and let k ∈
L2(X1 ×X2, µ1 × µ2). Then the operator K : L2(X1, µ1)→ L2(X2, µ2), which acts as

(Kf)(x2) =

∫
X1

k(x1, x2)f(x1)dµ1(x1)

for almost all x2 ∈ X2 and all f ∈ L2(X1, µ1), is well-defined and compact. Moreover, it
holds ‖K‖ ≤ ‖k‖L2.

5.3 Schrödinger operators −∆ + V in Rd

In this section, we introduce Schrödinger operators of the form −∆ + V for a compactly
supported and real-valued potential V ∈ L∞(Rd) and discuss their basic properties. First,
we are going to investigate the free Laplace operator −∆ in Rd, which is defined on the
Sobolev space H2(Rd).

Remark 5.5. If the symbol −∆ is used for an operator in this thesis, then it is always
meant with the domain of definition H2(Rd).

In the following proposition we summarize various basic facts about modified Bessel
functions of the second kind Kν that are needed for the analysis of −∆ and that can
be found in [1, Chapter 9.6 and 9.7]. For the definition and a detailed discussion of the
properties of Kν we refer to [1].

Proposition 5.6. Let ν ≥ 0 and let Kν be a modified Bessel function of the second kind.
Then the following assertions are true:
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(i) The mapping C \ (−∞, 0] 3 z 7→ Kν(z) is holomorphic.

(ii) K ′ν(z) = Kν+1(z) + ν
z
Kν(z).

(iii) For z → 0 it holds

Kν(z) ∼

{
− ln z, ν = 0,
1
2
Γ(ν)

(
z
2

)−ν
, ν > 0.

(iv) For |z| → ∞ with | arg z| < 3
2
π it holds

Kν(z) ∼
√

π

2z
e−z
(

1 +O
(

1

z

))
.

For our considerations on −∆, we need the following notation for the square root of a
complex number:

Definition 5.7. Let λ ∈ C \ [0,∞). Then
√
λ is defined as the complex number satisfying(√

λ
)2

= λ and Im
√
λ > 0.

In the following lemma we introduce the function Gλ. It will turn out that this function
is the integral kernel of (−∆− λ)−1.

Lemma 5.8. Let d ≥ 2 and let λ ∈ C \ [0,∞). Moreover, define the function Gλ as

Gλ(x) :=
1

(2π)d/2

(
|x|
−i
√
λ

)1−d/2

Kd/2−1

(
−i
√
λ|x|

)
, x ∈ Rd \ {0}.

Then it holds Gλ ∈ L1(Rd).

Proof. In order to prove the statement of this lemma, we note first that∫
Rd
|Gλ(x)|dx =

∫
B(0,1/2)

|Gλ(x)|dx+

∫
Rd\B(0,1/2)

|Gλ(x)|dx

holds and we show that both integrals on the right hand side are bounded.
According to Proposition 5.6 (iv), there exists a constant c1 > 0 such that

|Gλ(x)| ≤ c1e
−Im
√
λ|x|

holds for any x /∈ B(0, 1/2) and hence we find
∫
Rd\B(0,1/2)

|Gλ(x)|dx <∞.

In order to prove
∫
B(0,1/2)

|Gλ(x)|dx < ∞, we consider first the case d = 2. Here, it

holds by Proposition 5.6, item (iii),

|Gλ(x)| ≤ c2| ln |x||
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for all x ∈ B(0, 1/2) with a constant c2 > 0. Hence, we find∫
B(0,1/2)

|Gλ(x)|dx ≤ c2

∫
B(0,1/2)

| ln |x||dx = −2πc2

∫ 1/2

0

ln r · rdr <∞,

where we used a substitution to polar coordinates.
In the case d ≥ 3 it holds

|Gλ(x)| ≤ c3|x|2−d

for all x ∈ B(0, 1/2) with a constant c3 > 0. Thus, we get∫
B(0,1/2)

|Gλ(x)|dx ≤ c3

∫
B(0,1/2)

|x|2−ddx = c4

∫ 1/2

0

r2−d · rd−1dr <∞,

where we used again a substitution to spherical coordinates. So, we get in all cases∫
Rd
|Gλ(x)|dx =

∫
B(0,1/2)

|Gλ(x)|dx+

∫
Rd\B(0,1/2)

|Gλ(x)|dx <∞

and thus, Gλ ∈ L1(Rd).

Basic properties of the free Laplacian are stated in the following theorem:

Theorem 5.9. Consider for d ≥ 2 the Laplacian −∆ with dom(−∆) = H2(Rd). Then
the following assertions are true:

(i) −∆ is an unbounded, self-adjoint linear operator in L2(Rd) and its spectrum is given
by

σ(−∆) = σess(−∆) = [0,∞).

(ii) Let λ ∈ ρ(−∆) = C \ [0,∞) and let Gλ be defined as in Lemma 5.8. Then it holds

(−∆− λ)−1f =

∫
Rd
Gλ(· − y)f(y)dy

for all f ∈ L2(Rd).

Proof. (i) Let q(x) = |x|2 and define in L2(Rd) the multiplication operator Mq as

Mqf = qf, dom Mq =
{
f ∈ L2(Rd) : qf ∈ L2(Rd)

}
.

Then by Theorem 5.1 the operator Mq is unbounded, self-adjoint and it holds σ(Mq) =
[0,∞).

Let F be the Fourier transform given as in Theorem 4.5. Then, using the definition
of H2(Rd) and Proposition 4.11 it is easy to see that −∆ = F−1MqF . Hence, −∆ is
self-adjoint and it follows immediately from Proposition 2.10 that σ(−∆) = [0,∞), as F
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is unitary in the space L2(Rd). Finally, recalling the definition of the essential spectrum
from Section 2.1 we find σ(−∆) = σess(−∆) = [0,∞).

(ii) Let λ ∈ ρ(−∆) = C \ [0,∞). In order to prove a resolvent formula for (−∆− λ)−1,
we use [45, Theorem IX.29]. This result says that

(−∆− λ)−1f =

∫
Rd
Kλ(· − y)f(y)dy

holds for any f ∈ L2(Rd), if the function Kλ satisfies Kλ ∈ L1(Rd) and F1Kλ =
(
(·)2−λ

)−1
,

where F1 is the Fourier transform constituted as in Definition 4.4, see also Example 2 in
[45, Section IX.7].

Let us consider the function Gλ defined as in Lemma 5.8. Then, it holds Gλ ∈ L1(Rd).
Moreover, using formula 9.6.4 from [1], we find

Gλ(x) =
i
√
λ
d−2

2(2π)(d−1)/2

√
π

2

1

|x|d/2−1
H

(1)
d/2−1

(√
λ|x|

)
,

where H
(1)
d/2−1 is a Hankel function of the first kind and order d

2
− 1. Using now the last

representation of Gλ and [43, Theorem 9.4 and (6.12)], we get

F1Gλ =
(
(·)2 − λ

)−1
.

Thus, we find Kλ = Gλ and hence, the claimed result is true.

In the rest of this section, we discuss the operator

HV f = −∆f + V f, dom HV = H2(Rd), (5.2)

where the potential V ∈ L∞(Rd) is compactly supported and real-valued. Note that it
follows immediately from Corollary 2.4 that HV is self-adjoint, as −∆ is self-adjoint by
Theorem 5.9 and the multiplication operator associated with V is bounded, everywhere
defined and self-adjoint, see Theorem 5.1. In order to find more properties of HV , we need
the following lemma:

Lemma 5.10. Let u ∈ L∞(Rd) be compactly supported, let Mu be the associated multipli-
cation operator and let λ ∈ C \ [0,∞). Then the operator Mu(−∆− λ)−1 is compact.

Proof. Let χε be the characteristic function for Rd \ B(0, ε), let Gλ be as in Lemma 5.8
and let Gε

λ := χεGλ. Due to the asymptotic properties of

Gλ =
1

(2π)d/2

(
| · |
−i
√
λ

)1−d/2

Kd/2−1

(
−i
√
λ| · |

)
,

cf. Proposition 5.6, items (iii) and (iv), it holds Gε
λ ∈ L∞(Rd) ∩ L2(Rd). Hence, the

operator Kε, which acts as

Kεf = u

∫
Rd
Gε
λ(· − y)f(y)dy,
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is compact in L2(Rd) for any ε > 0, see Proposition 5.4. Since∫
Rd

∣∣u(x) (Gε
λ(x− y)−Gλ(x− y))

∣∣dy ≤ ‖u‖L∞ ∫
B(0,ε)

|Gλ(y)|dy

holds for any x ∈ Rd due to the translation invariance of the Lebesgue measure,∫
Rd

∣∣u(x) (Gε
λ(x− y)−Gλ(x− y))

∣∣dx ≤ ‖u‖L∞ ∫
B(0,ε)

|Gλ(x)|dx

is fulfilled for any y ∈ Rd and∫
B(0,ε)

|Gλ(x)|dx→ 0, ε→ 0+,

is true by the dominated convergence theorem, as Gλ ∈ L1(Rd) by Lemma 5.8, we find,
using a Schur-Holmgren bound, see Theorem 5.2,∥∥Kε −Mu(−∆− λ)−1

∥∥2 ≤ sup
x∈Rd

∫
Rd
|u(x) (Gε

λ(x− y)−Gλ(x− y))| dy

· sup
y∈Rd

∫
Rd
|u(x) (Gε

λ(x− y)−Gλ(x− y))| dx

≤ ‖u‖2
L∞

(∫
B(0,ε)

|Gλ(z)|dz
)2

→ 0.

Therefore, Mu(−∆− λ)−1 is the limit of a sequence of compact operators and hence, it is
also compact by Proposition 2.14 (ii).

Using the result from Lemma 5.10, we can prove a detailed result about the spectrum
of HV .

Theorem 5.11. Let V ∈ L∞(Rd) be real-valued and compactly supported and let HV be
defined as in (5.2). Moreover, set

u := |V |1/2 and v := sign V · |V |1/2

and let Mu and Mv be the associated multiplication operators. Then the following assertions
hold:

(i) σess(HV ) = [0,∞).

(ii) λ ∈ (−∞, 0) is a discrete eigenvalue of HV , if and only if −1 is an eigenvalue of

Mu(−∆ − λ)−1Mv. Otherwise, the operator
(
1 + Mu(−∆ − λ)−1Mv

)−1
is bounded

and everywhere defined.
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Proof. (i) Let λ ∈ C \R and let MV be the multiplication operator associated to V . Using
a resolvent identity from [50, Satz 5.4], which can be shown by a simple calculation, we
find

(−∆− λ)−1 − (HV − λ)−1 = (HV − λ)−1(HV − (−∆))(−∆− λ)−1

= (HV − λ)−1MV (−∆− λ)−1.

Since MV (−∆−λ)−1 is compact by Lemma 5.10, it follows that (−∆−λ)−1− (HV −λ)−1

is compact, cf. Proposition 2.14. Using this and the results from Proposition 2.15 and
Theorem 5.9, we find σess(HV ) = σess(−∆) = [0,∞).

(ii) Let λ ∈ (−∞, 0) be an eigenvalue of HV , i.e. there exists 0 6= f ∈ dom HV such
that HV f = λf . Note that V f 6= 0, as otherwise λ would be an eigenvalue of −∆, which
is not possible. Hence, it follows from HV f = λf

(−∆− λ)f = −MvMuf ⇒ f = −(−∆− λ)−1MvMuf

⇒ −Muf = Mu(−∆− λ)−1MvMuf,

i.e. 0 6= Muf ∈ L2(Rd) is an eigenfunction of Mu(−∆ − λ)−1Mv corresponding to the
eigenvalue −1.

Conversely, if 0 6= f ∈ L2(Rd) is an eigenfunction corresponding to the eigenvalue −1
of Mu(−∆ − λ)−1Mv for λ ∈ (−∞, 0), then 0 6= (−∆ − λ)−1Mvf ∈ H2(Rd) = dom HV

satisfies

(HV − λ)(−∆− λ)−1Mvf = Mvf +MV (−∆− λ)−1Mvf︸ ︷︷ ︸
=−Mvf

= 0.

Hence, (−∆− λ)−1Mvf is an eigenfunction of HV corresponding to the eigenvalue λ.
Finally, if −1 is not an eigenvalue of Mu(−∆ − λ)−1Mv, it follows from Fredholm’s

alternative, cf. Theorem 2.13, that
(
1 +Mu(−∆− λ)−1Mv

)−1
is bounded and everywhere

defined, as Mu(−∆− λ)−1Mv is compact by Lemma 5.10.

5.4 The single layer potential associated to −∆ + 1

In this section, we introduce the single layer potential associated to the differential expres-
sion −∆ + 1 and a hypersurface Σ. This operator has some properties that are essential
in the investigation of the δ-operator Aδ,α. Here, we follow the presentation of [43].

Let us fix some general assumptions for the whole section. Let d ≥ 2 and let Σ ⊂ Rd

be a hypersurface in the sense of Definition 3.2 that is at least C2-smooth and that splits
Rd into a bounded interior part Ωi and an unbounded exterior part Ωe. Moreover, we fix a
cutoff function η ∈ C∞c (Rd) which satisfies η ≡ 1 in a neighborhood of Ωi; note that such
a function η exists, see for instance [8, Section 2.19].

In order to define the single layer potential, we recall the definition of the Dirichlet
trace γD,j := γD,2 : H2(Ωj) → H3/2(Σ) for j ∈ {i, e}. According to Theorem 4.24, γD,j
is bounded and everywhere defined and thus its adjoint γ∗D,j : H3/2(Σ) → H2(Ωj) is also
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bounded and everywhere defined. Furthermore, we set Hs(Rd \ Σ) := Hs(Ωi) ⊕ Hs(Ωe)
and Hs

∆(Rd \ Σ) := Hs
∆(Ωi)⊕Hs

∆(Ωe) for s ≥ 0 and we define

γ∗ : H3/2(Σ)→ H2(Rd \ Σ), γ∗ξ = γ∗D,iξ ⊕ γ∗D,eξ.

Finally, recall that −1 ∈ ρ(−∆) is true. Now, we are prepared to introduce the single layer
potential for sufficiently smooth functions:

Definition 5.12. Let the adjoint trace γ∗ be defined as above. Then the single layer
potential S̃L : H3/2(Σ) → H3/2(Rd) associated to the differential expression −∆ + 1 and
the hypersurface Σ is defined as

S̃Lξ := (−∆ + 1)−1γ∗ξ, ξ ∈ H3/2(Σ).

In the next step, we extend the definition of the single layer potential from H3/2(Σ) to
L2(Σ), cf. [43, Corollary 6.14]:

Theorem 5.13. Let S̃L be constituted as in Definition 5.12 and let χ ∈ C∞c (Rd). Then
the operator χS̃L can be extended to a bounded linear operator

χSL : L2(Σ)→ H3/2(Rd \ Σ).

In what follows, we investigate the jump relations of ηSLξ for ξ ∈ L2(Σ), i.e. we
consider

[ηSLξ]Σ := (ηSLξ|Ωi
) |Σ − (ηSLξ|Ωe) |Σ

and
[∂νηSLξ]Σ := ∂νi

(ηSLξ|Ωi
) |Σ + ∂νe (ηSLξ|Ωe) |Σ.

Here, νj denotes the unit normal vector of Σ pointing outwards of Ωj for j ∈ {i, e}. Note
that it holds νi = −νe. In order to apply the Neumann trace defined as in Theorem 4.26
to ηSLξ ∈ H3/2(Rd \Σ), we have to show ηSLξ ∈ H3/2

∆ (Rd \Σ), i.e. ∆(ηSLξ)|Ωj ∈ L2(Ωj).

Proposition 5.14. Let the single layer potential SL be defined as in Theorem 5.13. Then
it holds ηSLξ ∈ H3/2

∆ (Rd \ Σ) for any ξ ∈ L2(Σ).

Proof. Let ξ ∈ L2(Σ) be fixed. According to Theorem 5.13, it holds ηSLξ ∈ H3/2(Rd \Σ).
Hence, it remains to show that there exists for j ∈ {i, e} a function fj ∈ L2(Ωj) such that∫

Ωj

ηSLξ∆ϕdx =

∫
Ωj

fjϕdx

is true for any ϕ ∈ C∞c (Ωj). Let ϕ ∈ C∞c (Ωj) be fixed. We consider the term∫
Ωj

(ηSLξ)(−∆ + 1)ϕdx =

∫
Ωj

SLξ
(
η(−∆ + 1)ϕ

)
dx.
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Using the product rule, it is easy to verify that −η∆ϕ = −∆(ηϕ) + 2〈∇η,∇ϕ〉 + ϕ∆η is
true. Hence, we find∫

Ωj

(ηSLξ)(−∆ + 1)ϕdx =

∫
Ωj

SLξ
(
(−∆ + 1)(ηϕ) + 2〈∇η,∇ϕ〉+ ϕ∆η

)
dx.

First, we mention that it holds ∆ηSLξ ∈ H3/2(Ωj) ⊂ L2(Ωj) by Theorem 5.13, as ∆η ∈
C∞c (Rd). Next, we consider the term∫

Ωj

SLξ · 2〈∇η,∇ϕ〉dx.

Note that it holds ∂η
∂xk

SLξ ∈ H3/2(Ωj) by Theorem 5.13, in particular ∂η
∂xk

SLξ is weakly
differentiable and hence it holds∫

Ωj

SLξ · 2〈∇η,∇ϕ〉dx = −2

∫
Ωj

div (∇ηSLξ)ϕdx

with div (∇ηSLξ) ∈ L2(Ωj), where the divergence is understood in the weak sense. It
remains to analyze∫

Ωj

SLξ(−∆ + 1)(ηϕ)dx =

∫
Ωj

η̃SLξ(−∆ + 1)(ηϕ)dx,

where η̃ ∈ C∞c (Rd) is chosen in such a way that η̃|supp η ≡ 1 is satisfied. By Theorem 5.13
the operator η̃SL : L2(Σ)→ H3/2(Ωj) is bounded and everywhere defined. Therefore, also
η̃SL : L2(Σ) → L2(Ωj) is bounded and everywhere defined and hence, it has a bounded
and everywhere defined adjoint (η̃SL)∗ : L2(Ωj)→ L2(Σ) satisfying∫

Ωj

η̃SLξ(−∆ + 1)(ηϕ)dx =

∫
Σ

ξ(η̃SL)∗ (−∆ + 1)(ηϕ)dσ.

Recall that the single layer potential acts as SLζ = (−∆ + 1)−1γ∗ζ, if ζ is sufficiently
smooth. Thus, as (−∆ + 1)(ηϕ) ∈ C∞c (Rd), the adjoint acts as

(η̃SL)∗ (−∆ + 1)(ηϕ) = γD,j(−∆ + 1)−1η̃(−∆ + 1)(ηϕ).

Using η̃|supp η ≡ 1, we find

(η̃SL)∗ (−∆ + 1)(ηϕ) = γD,j(−∆ + 1)−1(−∆ + 1)(ηϕ) = γD,jηϕ = 0,

as ϕ ∈ C∞c (Ωj) is compactly supported. Therefore, we get∫
Ωj

SLξ(−∆ + 1)(ηϕ)dx = 0.
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Putting together these observations, we find∫
Ωj

(ηSLξ)(−∆ + 1)ϕdx =

∫
Ωj

SLξ
(
(−∆ + 1)(ηϕ) + 2〈∇η,∇ϕ〉+ ϕ∆η

)
dx

=

∫
Ωj

(∆ηSLξ − 2 div (∇ηSLξ))ϕdx.

Hence, ∆(ηSLξ) = (ηSLξ)−∆ηSLξ+ 2 div (∇ηSLξ) exists in a weak sense and belongs to

L2(Ωj), which implies ηSLξ ∈ H3/2
∆ (Ωj).

Since the Dirichlet and the Neumann trace of ηSLξ are well-defined for ξ ∈ L2(Σ) by
the previous proposition, we can investigate the jump properties of ηSLξ now. This result
is stated in [43, Theorem 6.11].

Theorem 5.15. Let the single layer potential SL be defined as in Theorem 5.13. Then it
holds for any ξ ∈ L2(Σ)

[ηSLξ]Σ = (ηSLξ|Ωi
) |Σ − (ηSLξ|Ωe) |Σ = 0

and
[∂νηSLξ]Σ = ∂νi

(ηSLξ|Ωi
) |Σ + ∂νe (ηSLξ|Ωe) |Σ = ξ.
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6 Differential operators Aδ,α with δ-interactions sup-

ported on compact hypersurfaces

In this chapter, we introduce Schrödinger operators Aδ,α in L2(Rd) with δ-interactions
supported on a closed compact hypersurface Σ that are formally given as

−∆− α〈δΣ, ·〉δΣ

with a real-valued function α ∈ L∞(Σ), which is often called the strength of the interaction,
in a mathematical rigorous way. Here, we follow an extension-theoretic approach from
[12], where the abstract tool of quasi boundary triples is used to construct Aδ,α. Since it is
sufficient for our purposes to prove the required results directly in a similar way as in [12],
we will not discuss the general theory of quasi boundary triples here. We mention that
Aδ,α can also be defined via quadratic forms [15].

Let d ≥ 2 and let Σ ⊂ Rd be a closed and compact hypersurface in the sense of
Definition 3.2, which is C2-smooth and which separates Rd into a bounded interior domain
Ωi and an unbounded exterior domain Ωe, implying Rd = Ωi∪̇Σ∪̇Ωe. Hence, it holds
L2(Rd) = L2(Ωi) ⊕ L2(Ωe) and according to this decomposition we write for f ∈ L2(Rd)
also f = fi ⊕ fe with fi := f |Ωi

∈ L2(Ωi) and fe := f |Ωe ∈ L2(Ωe). As in Section 4.3.2

we use for fj ∈ H3/2
∆ (Ωj), j ∈ {i, e}, the notation fj|Σ for the Dirichlet trace and ∂νjfj|Σ

for the Neumann trace with the unit normal vector νj pointing outwards of Ωj. Note that
νi = −νe. Finally, we define

H
3/2
∆ (Rd \ Σ) := H

3/2
∆ (Ωi)⊕H3/2

∆ (Ωe).

With these notations in hands, we introduce the operator T in L2(Rd) via

Tf := (−∆fi)⊕ (−∆fe), dom T :=
{
f = fi ⊕ fe ∈ H3/2

∆ (Rd \ Σ) : fi|Σ = fe|Σ
}
. (6.1)

This operator T is essential in the construction of Aδ,α. Moreover, we define the operators
Γ0,Γ1 : dom T → L2(Σ) as

Γ0f := ∂νi
fi|Σ + ∂νefe|Σ and Γ1f := f |Σ, f = fi ⊕ fe ∈ dom T. (6.2)

Some basic properties of T , Γ0 and Γ1 that are needed for the construction of Aδ,α are
stated in the following proposition:

Proposition 6.1. Let T , Γ0 and Γ1 be defined as above. Then the following assertions are
true:

(i) ran Γ0 = L2(Σ).

(ii) The identity

(Tf, g)L2(Rd) − (f, Tg)L2(Rd) = (Γ1f,Γ0g)L2(Σ) − (Γ0f,Γ1g)L2(Σ)

holds for all f, g ∈ dom T .
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Proof. (i) First, we mention that it holds ∂νjfj|Σ ∈ L2(Σ) for any fj ∈ H3/2
∆ (Ωj), j ∈ {i, e},

by Theorem 4.26 and thus ran Γ0 ⊂ L2(Σ). So, it remains to prove that Γ0 is surjective.
For this, we consider for an arbitrary, but fixed ξ ∈ L2(Σ) the function f := ηSLξ, where
η ∈ C∞c (Rd) is chosen such that η ≡ 1 holds in a neighborhood of Ωi and SL is the single
layer potential associated to −∆ + 1 constituted as in Theorem 5.13. Then, according to
Proposition 5.14 the function f belongs to H

3/2
∆ (Rd \ Σ) and by Theorem 5.15 it fulfills

fi|Σ = fe|Σ and hence, we have f ∈ dom T . Moreover, f satisfies

Γ0f = ∂νi
fi|Σ + ∂νefe|Σ = ξ

again by Theorem 5.15, which shows that Γ0 is surjective.
(ii) Let f, g ∈ dom T and let j ∈ {i, e}. We write fj := f |Ωj and gj := g|Ωj . Using

Theorem 4.27 and the facts that fj, gj ∈ H3/2
∆ (Ωj), (Tf)|Ωj = −∆fj and (Tg)|Ωj = −∆gj

hold, we find(
(Tf)|Ωj , gj

)
L2(Ωj)

= (−∆fj, gj)L2(Ωj) = (∇fj,∇gj)L2(Ωj) −
(
∂νjfj|Σ, gj|Σ

)
L2(Σ)

and (
fj, (Tg)|Ωj

)
L2(Ωj)

= (fj,−∆gj)L2(Ωj) = (∇fj,∇gj)L2(Ωj) −
(
fj|Σ, ∂νjgj|Σ

)
L2(Σ)

.

Putting together these results and using f, g ∈ dom T , which implies fi|Σ = fe|Σ =: f |Σ
and gi|Σ = ge|Σ =: g|Σ, we get

(Tf, g)L2(Rd) − (f, Tg)L2(Rd) = (f |Σ, ∂νi
fi|Σ + ∂νefe|Σ)L2(Σ) − (∂νi

fi|Σ + ∂νefe|Σ, g|Σ)L2(Σ)

= (Γ1f,Γ0g)L2(Σ) − (Γ0f,Γ1g)L2(Σ),

which is the desired result.

With the help of the boundary mappings Γ0 and Γ1 we are now able to introduce the
δ-operator Aδ,α:

Definition 6.2. Let α ∈ L∞(Σ) be real-valued, let Mα be the associated multiplication
operator in L2(Σ), let T be defined as in (6.1) and let Γ0 and Γ1 be given by (6.2). Then
the Schrödinger operator Aδ,α with a δ-interaction supported on Σ of strength α is defined
as

Aδ,α := T |ker(MαΓ1−Γ0).

This can be written in a more explicit way as

Aδ,αf = (−∆fi)⊕ (−∆fe),

dom Aδ,α =
{
f = fi ⊕ fe ∈ H3/2

∆ (Rd \ Σ) : fi|Σ = fe|Σ, ∂νi
fi|Σ + ∂νefe|Σ = αf |Σ

}
.

Proving self-adjointness of Aδ,α, which will be done in Theorem 6.7 at the end of this
chapter, is non-trivial and requires numerous preparations. One of these is showing sym-
metry of Aδ,α, which is done in the following lemma:
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Lemma 6.3. Let α ∈ L∞(Σ) be real-valued and let Aδ,α be constituted as in Definition 6.2.
Then Aδ,α is symmetric.

Proof. Let f, g ∈ dom Aδ.α. Using Proposition 6.1, assertion (ii), the definition of Aδ,α
and the fact that the multiplication operator Mα associated to α ∈ L∞(Σ) is bounded,
everywhere defined and self-adjoint in L2(Σ), cf. Theorem 5.1, we find

(Aδ,αf, g)L2(Rd) − (f, Aδ,αg)L2(Rd) = (Γ1f,Γ0g)L2(Σ) − (Γ0f,Γ1g)L2(Σ)

= (Γ1f,MαΓ1g)L2(Σ) − (MαΓ1f,Γ1g)L2(Σ) = 0.

Therefore, Aδ,α is symmetric by Proposition 2.6.

The operator Aδ,0 that is a δ-operator with strength ”0” will be of special importance for
our considerations. In the following corollary, we prove that Aδ,0 is just the free Laplacian
in Rd.

Corollary 6.4. Let Aδ,0 be given as in Definition 6.2. Then Aδ,0 = −∆, i.e.

Aδ,0f = −∆f, dom Aδ,0 = H2(Rd).

Proof. It is sufficient to verify −∆ ⊂ Aδ,0, as in this case the self-adjoint operator −∆ is
contained in the symmetric operator Aδ,0 and hence, they must coincide. Let T be defined
as in (6.1) and let Γ0 be defined as in (6.2). Note that it holds H2(Rd) ⊂ dom T . We claim
Γ0(H2(Rd)) = 0. For this purpose, we define for j ∈ {i, e} the mapping

Γ̃0,j : H2(Ωj)→ L2(Σ), Γ̃0,jf = ∂νjf |Σ =
d∑

k=1

νj,k(Dekf)|Σ,

where νj = (νj,1, . . . , νj,d) is the unit normal vector of Σ pointing outwards of Ωj and
e1, . . . , ed are the canonical basis vectors of Rd. We observe that Γ̃0,j is bounded, cf.
Proposition 4.25. Using this, we find

Γ0f = Γ̃0,ifi + Γ̃0,efe = ∂νi
fi|Σ + ∂νefe|Σ = 0

for any f ∈ C∞c (Rd). Since C∞c (Rd) is dense in H2(Rd) by Proposition 4.16, the last
equation is also true for all f ∈ H2(Rd), as Γ̃0,i and Γ̃0,e are continuous. Therefore, we find
dom(−∆) = H2(Rd) ⊂ ker Γ0 and hence −∆ ⊂ T |ker Γ0 = Aδ,0.

In order to prove self-adjointness of Aδ,α and to derive a suitable resolvent formula for
this operator, we need the following technical lemma:

Lemma 6.5. Let T be defined as in (6.1) and let Γ0 and Γ1 be defined as in (6.2). Moreover,
let λ ∈ C \ [0,∞), denote the integral kernel of (−∆ − λ)−1 by Gλ, cf. Theorem 5.9, and
write Nλ(T ) := ker(T − λ). Then the following assertions hold:
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(i) The operator

γ(λ) : L2(Σ)→ L2(Rd), γ(λ)ξ :=
(
Γ0|Nλ(T )

)−1
ξ =

∫
Σ

Gλ(· − y)ξ(y)dσ(y)

is well-defined and bounded.

(ii) The adjoint γ(λ)∗ : L2(Rd)→ L2(Σ) of γ(λ) is given by γ(λ)∗ = Γ1

(
−∆− λ

)−1
and

it has the explicit representation

γ(λ)∗f =

∫
Rd
Gλ(· − y)f(y)dy.

(iii) The operator

M(λ) : L2(Σ)→ L2(Σ), M(λ)ξ := Γ1

(
Γ0|Nλ(T )

)−1
ξ =

∫
Σ

Gλ(· − y)ξ(y)dσ(y)

is well-defined and compact.

(iv) For any f ∈ Nλ(T ) it holds M(λ)Γ0f = Γ1f .

(v) M∗(λ) = M
(
λ
)

is true for any λ ∈ C \ [0,∞).

Proof. Let λ ∈ C \ [0,∞) be fixed. First, we mention that the decomposition

dom T = ker(T − λ)+̇ dom(−∆)

holds for any λ ∈ ρ(−∆) = C \ [0,∞) by Proposition 2.11. Since ker Γ0 = dom(−∆),
cf. Corollary 6.4, it follows that the mapping Γ0|Nλ(T ) is bijective and that the operator

γ(λ) :=
(
Γ0|Nλ(T )

)−1
: L2(Σ)→ L2(Rd) is well defined.

Next, we prove γ(λ)∗ = Γ1

(
−∆− λ

)−1
. For this, let ξ ∈ L2(Σ) and f ∈ L2(Rd). Note

that a simple calculation shows

−∆
(
−∆− λ

)−1
f = f + λ

(
−∆− λ

)−1
f.

Using this, dom(−∆) = ker Γ0, −∆ ⊂ T , γ(λ)ξ ∈ Nλ(T ) and Proposition 6.1, assertion
(ii), we find

(γ(λ)ξ, f)L2(Rd) =
(
γ(λ)ξ,

(
1 + λ

(
−∆− λ

)−1)
f
)
L2(Rd)

−
(
λγ(λ)ξ,

(
−∆− λ

)−1
f
)
L2(Rd)

=
(
γ(λ)ξ, T

(
−∆− λ

)−1
f
)
L2(Rd)

−
(
Tγ(λ)ξ,

(
−∆− λ

)−1
f
)
L2(Rd)

=
(

Γ0γ(λ)ξ,Γ1

(
−∆− λ

)−1
f
)
L2(Σ)

−
(

Γ1γ(λ)ξ,Γ0

(
−∆− λ

)−1
f
)
L2(Σ)

=
(
ξ,Γ1

(
−∆− λ

)−1
f
)
L2(Σ)

.
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Since this is true for any ξ ∈ L2(Σ), it follows γ(λ)∗ = Γ1

(
− ∆ − λ

)−1
. Moreover, as f

was allowed to be any function in L2(Rd) in the above calculation, we find that γ(λ)∗ is
everywhere defined in L2(Rd), and since γ(λ)∗ is closed by Corollary 2.4, γ(λ)∗ is bounded
by the closed graph theorem, see Theorem 2.1. Thus, it follows that also γ(λ) = γ(λ)∗∗ is
bounded and everywhere defined and that the representations of γ(λ) and γ(λ)∗ in (i) and
(ii) hold.

It remains to verify the claimed assertions on M(λ). From our previous considerations
in this proof, it follows that M(λ) is well-defined and that the representation in (iii) is true.
Moreover, the formula M(λ)Γ0f = Γ1f for f ∈ Nλ(T ) follows directly from the definition
of M(λ).

In what follows, we prove that M∗(λ) = M
(
λ
)

is true for any λ ∈ C \ [0,∞). For this

purpose, let ξ, ζ ∈ L2(Σ) and define the functions f, g ∈ dom T ⊂ L2(Rd) as f := γ
(
λ
)
ξ

and g := γ(λ)ζ. We observe that f ∈ Nλ(T ) and g ∈ Nλ(T ) are satisfied. Based on this,
the definition of γ(·), the result from assertion (iv) and Proposition 6.1, assertion (ii), we
find(
M
(
λ
)
ξ, ζ
)
L2(Σ)

=
(
M
(
λ
)
Γ0f,Γ0g

)
L2(Σ)

=
(
M
(
λ
)
Γ0f,Γ0g

)
L2(Σ)

−
(
Γ0f,M(λ)Γ0g

)
L2(Σ)

+
(
Γ0f,M(λ)Γ0g

)
L2(Σ)

=
(
Γ1f,Γ0g

)
L2(Σ)

−
(
Γ0f,Γ1g

)
L2(Σ)

+
(
Γ0f,M(λ)Γ0g

)
L2(Σ)

=
(
Tf, g

)
L2(Rd)

−
(
f, Tg

)
L2(Rd)

+
(
Γ0f,M(λ)Γ0g

)
L2(Σ)

=
(
λf, g

)
L2(Rd)

−
(
f, λg

)
L2(Rd)

+
(
ξ,M(λ)ζ

)
L2(Σ)

=
(
ξ,M(λ)ζ

)
L2(Σ)

.

Since ζ ∈ L2(Σ) was arbitrary, it follows ξ ∈ dom M(λ)∗ and M(λ)∗ξ = M
(
λ
)
ξ. Hence,

M(λ)∗ = M
(
λ
)

is true and also statement (v) is shown.
It remains to prove that M(λ) is compact. For this, we note first that M(λ) is every-

where defined and because of M(λ) = M
(
λ
)∗

and Corollary 2.4, assertion (i), it follows
that M(λ) is closed. Therefore, Theorem 2.1 implies that M(λ) is a bounded operator in
L2(Σ).

Next, we note that by the definition of M(λ) and Theorem 4.24 it holds ran M(λ) ⊂
H1(Σ). We also claim that M(λ) : L2(Σ)→ H1(Σ) is bounded. Since M(λ) is everywhere
defined, the closed graph theorem implies that it is sufficient to show that M(λ) is closed
as a mapping from L2(Σ) to H1(Σ). In order to show this, we consider a sequence (ξn) ⊂
dom M(λ) = L2(Σ) such that ξn → ξ holds in L2(Σ) and M(λ)ξn → ζ in H1(Σ). Since
M(λ) is continuous as an operator in L2(Σ), we get M(λ)ξn → M(λ)ξ in L2(Σ) and as
convergence in H1(Σ) implies convergence in L2(Σ), we get M(λ)ξ = ζ. Hence, M(λ) is
a closed operator from L2(Σ) to H1(Σ) and thus, by the above considerations, it is also
bounded.

Now, as the embedding ι : H1(Σ) → L2(Σ) is compact by Proposition 4.23, we find
that M(λ) regarded as a linear operator in L2(Σ) is compact. This concludes the proof of
this proposition.

In the next theorem, which is inspired by [11, Theorem 2.8], we state an appropriate
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resolvent formula for Aδ,α:

Theorem 6.6. Let α ∈ L∞(Σ) be real-valued, let Mα be the associated multiplication
operator in L2(Σ), let Aδ,α be given as in Definition 6.2 and let λ ∈ C \ [0,∞). Moreover,
let γ(λ), γ

(
λ
)∗

and M(λ) be defined as in Lemma 6.5. Then the following assertions hold:

(i) λ ∈ σp(Aδ,α) \ [0,∞) if and only if ker(1−MαM(λ)) 6= {0}.

(ii) If λ /∈ (σp(Aδ,α) ∪ [0,∞)), then λ ∈ ρ(Aδ,α) and it holds

(Aδ,α − λ)−1 = (−∆− λ)−1 + γ(λ)(1−MαM(λ))−1Mαγ
(
λ
)∗
.

Proof. (i) Assume first that λ ∈ C \ [0,∞) is an eigenvalue of Aδ,α, i.e. there exists
0 6= f ∈ dom Aδ,α such that (Aδ,α − λ)f = 0. Note that Γ0f 6= 0, as otherwise it would
hold f ∈ dom Aδ,0 = dom(−∆), which implies f = 0, as λ ∈ C \ [0,∞) = ρ(−∆), cf.
Theorem 5.9. Using f ∈ Nλ(T ), Lemma 6.5, assertion (iv), and the fact f ∈ dom Aδ,α, we
find

(1−MαM(λ))Γ0f = Γ0f −MαM(λ)Γ0f = Γ0f −MαΓ1f = 0.

Thus, ker
(
1−MαM(λ)

)
6= {0}.

Conversely, if ker(1 − MαM(λ)) 6= {0}, there exists 0 6= ξ ∈ L2(Σ) such that (1 −
MαM(λ))ξ = 0. Defining 0 6= f := γ(λ)ξ, we find Γ0f = ξ and f ∈ Nλ(T ). Moreover, it
holds

Γ0f −MαΓ1f = ξ −MαM(λ)ξ = (1−MαM(λ))ξ = 0

and hence f ∈ dom Aδ,α. Therefore, f ∈ dom Aδ,α ∩Nλ(T ) implies that λ is an eigenvalue
of Aδ,α.

(ii) Let λ /∈ (σp(Aδ,α)∪ [0,∞)). From (i), we know that Aδ,α− λ is injective. We prove
that this operator is also surjective and then that the inverse (Aδ,α − λ)−1 is bounded.

Let g ∈ L2(Rd) be arbitrary. In order to prove that Aδ,α − λ is surjective, we mention
first that the operator MαM(λ) is compact in L2(Σ), as M(λ) is compact by Lemma 6.5
and Mα is bounded, see Theorem 5.1. Hence, the operator (1 −MαM(λ))−1 is bounded
and everywhere defined in L2(Σ) by Fredholm’s alternative (Theorem 2.13) and item (i)
of this theorem. Thus, the function

f := (−∆− λ)−1g + γ(λ)(1−MαM(λ))−1Mαγ
(
λ
)∗
g

is well-defined in L2(Rd). We show f ∈ dom Aδ,α. For this, we compute

Γ0f = Γ0(−∆− λ)−1g︸ ︷︷ ︸
=0

+Γ0γ(λ)(1−MαM(λ))−1Mαγ
(
λ
)∗
g = (1−MαM(λ))−1Mαγ

(
λ
)∗
g,

which is true by the definition of the γ-field, and

Γ1f = Γ1(−∆− λ)−1g + Γ1γ(λ)(1−MαM(λ))−1Mαγ
(
λ
)∗
g

= γ
(
λ
)∗
g +M(λ)(1−MαM(λ))−1Mαγ

(
λ
)∗
g,
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where we used Lemma 6.5 (ii). Hence, we find

MαΓ1f − Γ0f = Mαγ
(
λ
)∗
g +MαM(λ)(1−MαM(λ))−1Mαγ

(
λ
)∗
g

− (1−MαM(λ))−1Mαγ
(
λ
)∗
g

= Mαγ
(
λ
)∗
g − (1−MαM(λ))(1−MαM(λ))−1Mαγ

(
λ
)∗
g = 0

and thus f ∈ dom Aδ,α. Now, using the facts Aδ,α ⊂ T , −∆ ⊂ T and γ(λ)(1−MαM(λ))−1

Mαγ
(
λ
)∗
g ∈ Nλ(T ), we find

(Aδ,α − λ)f = (T − λ)f

= (T − λ)(−∆− λ)−1g + (T − λ)γ(λ)(1−MαM(λ))−1Mαγ
(
λ
)∗
g = g

and hence g ∈ ran Aδ,α. Therefore, Aδ,α is surjective and also the formula

(Aδ,α − λ)−1 = (−∆− λ)−1 + γ(λ)(1−MαM(λ))−1Mαγ
(
λ
)∗

for the inverse holds. Finally, since all operators on the right hand side of the above formula
are bounded and everywhere defined, we conclude that also (Aδ,α − λ)−1 is bounded and
everywhere defined, which shows λ ∈ ρ(Aδ,α).

Using the result from Theorem 6.6, we finally can prove self-adjointness of Aδ,α:

Theorem 6.7. Let α ∈ L∞(Σ) be real-valued and let Aδ,α be defined as in Definition 6.2.
Then Aδ,α is self-adjoint.

Proof. We mention first that Aδ,α is symmetric by Lemma 6.3. In order to prove that Aδ,α
is self-adjoint, we use Theorem 2.7 and verify that ran(Aδ,α − λ) = L2(Rd) holds for any
λ ∈ C\R. For this purpose, we note that λ is not an eigenvalue of Aδ,α, as Aδ,α is symmetric
and thus all of its eigenvalues are real-valued. Hence, we conclude from Theorem 6.6 (ii),
that λ ∈ ρ(Aδ,α) and thus ran(Aδ,α − λ) = L2(Rd).
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7 Approximation of Aδ,α by Hamiltonians with local

scaled short-range potentials

In this chapter, we prove the main result of this thesis, namely that the Schrödinger
operator Aδ,α with a δ-interaction supported on a hypersurface Σ of strength α, which was
introduced in Chapter 6, can be approximated in the norm resolvent sense by a family of
Hamiltonians Hε,Σ = −∆− Vε, ε > 0, where {Vε}ε>0 is a set of suitably scaled potentials.
Note that results of a similar type are known in the one-dimensional case, cf. [3] and the
references therein, and in the two- and three-dimensional case, when Σ can be parametrized
by polar coordinates [44, 46] and when Σ is unbounded and the strength α is constant
[21, 22]. In our considerations, we follow the approach of [21, 22].

Let d ≥ 2 and let Σ ⊂ Rd be a compact, closed and connected C2-smooth hypersurface
in the sense of Definition 3.2. Moreover, we denote by ν(xΣ) the unit normal vector of Σ
at xΣ ∈ Σ which points outwards of the bounded part of Rd with boundary Σ. Recall that
according to Theorem 3.19 there exists β > 0 such that the mapping

Σ× (−β, β) 3 (xΣ, t) 7→ xΣ + tν(xΣ)

is injective. For ε ∈ (0, β] we set

Ωε :=
{
xΣ + tν(xΣ) : xΣ ∈ Σ, t ∈ (−ε, ε)

}
. (7.1)

Let V ∈ L∞(Rd) be fixed such that V is real-valued and the support of V is contained in
Ωβ. Then we define the scaled potential Vε ∈ L∞(Rd) as

Vε(x) :=

{
1
ε
V
(
xΣ + β

ε
tν(xΣ)

)
, if x = xΣ + tν(xΣ) ∈ Ωε,

0, else,

and the associated Schrödinger operator Hε,Σ as

Hε,Σf = −∆f − Vεf, dom Hε,Σ = H2(Rd). (7.2)

Note that Hε,Σ is a self-adjoint operator in L2(Rd), as −∆ is self-adjoint by Theorem 5.9
and the multiplication operator corresponding to Vε is bounded, everywhere defined and
self-adjoint, cf. Theorem 5.1.

With these preparatory considerations we are already able to formulate the main result
of this thesis:

Theorem 7.1. Let d ≥ 2, let V ∈ L∞(Rd) be real-valued such that the support of V is
contained in Ωβ, let Hε,Σ be given as in (7.2) and let λ ∈ C \ R. Define the coupling
α ∈ L∞(Σ) as

α(xΣ) :=

∫ 1

−1

V (xΣ + βsν(xΣ))ds
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for almost all xΣ ∈ Σ and Aδ,α as in Definition 6.2. Then there exists a constant c > 0
depending on λ, the space dimension d, the potential V and Σ such that∥∥(Hε,Σ − λ)−1 − (Aδ,α − λ)−1

∥∥ ≤ cε
1
2d

holds for all sufficiently small ε > 0. In particular, Hε,Σ converges to Aδ,α in the norm
resolvent sense as ε→ 0+.

Remark 7.2. Let V ∈ L∞(Rd) be as in the above theorem. In the end of this chapter it
will turn out that

α :=

∫ 1

−1

V (·+ βsν(·))ds

is a well-defined element of L∞(Σ), i.e. for different representatives of V we get functions
that have the same values on Σ up to a set of Hausdorff measure 0. This follows from
Lemma 7.8 by considering V̂ w with w(xΣ, s) = |V (xΣ + βsν(xΣ))|1/2.

The aim of this chapter is to prove Theorem 7.1, for what we need some preparations.
First, we need to derive a suitable resolvent formula for Hε,Σ. For this purpose, we start
deriving an auxiliary resolvent formula and then we transform it to another one which is
convenient for the investigation of the convergence. To get the first resolvent formula, we
introduce the functions

uε := |Vε|1/2 and vε := sign Vε · |Vε|1/2 (7.3)

and we denote the associated multiplication operators in L2(Rd) by Muε and Mvε . Note
that Muε and Mvε are everywhere defined and bounded, as uε, vε ∈ L∞(Rd), see Theorem
5.1. Moreover, we define the projections

Pε : L2(Rd)→ L2(Ωε), Pεf = f |Ωε (7.4)

and

P ∗ε : L2(Ωε)→ L2(Rd), P ∗ε h =

{
h in Ωε

0 in Rd \ Ωε.
(7.5)

Note that it holdsMvε = MvεP
∗
ε Pε andMuε = P ∗ε PεMuε , as supp uε ⊂ Ωε and supp vε ⊂ Ωε.

Proposition 7.3. Let Hε,Σ be defined as in (7.2) and let uε, vε, Pε and P ∗ε be given as

above. Then it holds σ(Hε,Σ) = [0,∞) ∪ σdisc(Hε,Σ) and (1− PεMuε(−∆− λ)−1MvεP
∗
ε )
−1

is a bounded and everywhere defined operator in L2(Ωε) for all λ ∈ ρ(Hε,Σ). Moreover,

(Hε,Σ − λ)−1 = (−∆− λ)−1

+ (−∆− λ)−1MvεP
∗
ε

(
1− PεMuε(−∆− λ)−1MvεP

∗
ε

)−1
PεMvε(−∆− λ)−1

is true for all λ ∈ ρ(Hε,Σ).
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Proof. Let λ ∈ ρ(Hε,Σ). We note that it holds σess(Hε,Σ) = [0,∞) by Theorem 5.11 and
thus λ ∈ C \ [0,∞). We set R(λ) := (−∆− λ)−1.

Step 1: First, we prove the formula

(Hε,Σ − λ)−1 = R(λ) +R(λ)Mvε (1−MuεR(λ)Mvε)
−1MvεR(λ).

Note that according to Theorem 5.11 the operator (1 − MuεR(λ)Mvε)
−1 exists and is

bounded and everywhere defined in L2(Rd), as λ ∈ C \ [0,∞) is not an eigenvalue of Hε,Σ

by assumption. Moreover, it holds

(Hε,Σ − λ)
(
R(λ) +R(λ)Mvε (1−MuεR(λ)Mvε)

−1MvεR(λ)
)
f

= (−∆− λ−MvεMuε)
(
R(λ) +R(λ)Mvε (1−MuεR(λ)Mvε)

−1MvεR(λ)
)
f

= f +Mvε (1−MuεR(λ)Mvε)
−1MvεR(λ)f −MuεMvεR(λ)f

−Mvε(1− 1 +MuεR(λ)Mvε) (1−MuεR(λ)Mvε)
−1MvεR(λ)f

= f +Mvε (1−MuεR(λ)Mvε)
−1MvεR(λ)f −MuεMvεR(λ)f

−Mvε (1−MuεR(λ)Mvε)
−1MvεR(λ)f +MuεMvεR(λ)f = f

for any f ∈ L2(Rd), which implies the claimed result.
Step 2: It remains to transform the resolvent formula which was shown in Step 1 into

the formula stated in the proposition. For this purpose, recall that it holds Mvε = MvεP
∗
ε Pε

and Muε = P ∗ε PεMuε . Hence, considering the operator (1−MuεR(λ)Mvε)
−1 with respect

to the orthogonal decomposition L2(Rd) = L2(Ωε)⊕ L2(Rd \ Ωε), we find

(1−MuεR(λ)Mvε)
−1 =

(
(1− PεMuεR(λ)MvεP

∗
ε )−1 0

0 1

)
.

Therefore, it holds

Pε (1−MuεR(λ)Mvε)
−1 P ∗ε = (1− PεMuεR(λ)MvεP

∗
ε )−1

and we find that (1− PεMuεR(λ)MvεP
∗
ε )−1 is a bounded and everywhere defined operator

in L2(Ωε). Putting all these observations together, we finally get

(Hε,Σ − λ)−1 = R(λ) +R(λ)Mvε (1−MuεR(λ)Mvε)
−1MvεR(λ)

= R(λ) +R(λ)MvεP
∗
ε Pε (1−MuεR(λ)Mvε)

−1 P ∗ε PεMvεR(λ)

= R(λ) +R(λ)MvεP
∗
ε (1− PεMuεR(λ)MvεP

∗
ε )−1 PεMvεR(λ).

In order to transform the resolvent formula from Proposition 7.3 into another one,
which is more convenient to investigate the convergence of (Hε,Σ−λ)−1, we need numerous
preparations. First, we introduce for ε ∈ (0, β] the embedding operator

Iε,Σ : L2(Σ× (−ε, ε), σ × Λ1)→ L2(Ωε), (Iε,ΣΦ)(xΣ + tν(xΣ)) = Φ(xΣ, t), (7.6)
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where σ×Λ1 is the product measure of the Hausdorff measure σ and the one-dimensional
Lebesgue measure Λ1, and the scaling operator

Sε : L2(Σ× (−1, 1), σ × Λ1)→ L2(Σ× (−ε, ε), σ × Λ1), (SεΞ)(xΣ, t) =
1√
ε

Ξ

(
xΣ,

t

ε

)
.

(7.7)
The basic properties of Iε,Σ and Sε are stated in the following proposition:

Proposition 7.4. Let Iε,Σ and Sε be defined as above and let ε > 0 be sufficiently small.
Then the following assertions are true:

(i) Iε,Σ is bounded and bijective. Furthermore, its inverse is bounded and given by

I−1
ε,Σ : L2(Ωε)→ L2(Σ× (−ε, ε), σ × Λ1), (I−1

ε,Σh)(xΣ, t) = h(xΣ + tν(xΣ))

for almost all xΣ ∈ Σ and t ∈ (−ε, ε).

(ii) Sε is unitary and its inverse is given by

S−1
ε : L2(Σ× (−ε, ε), σ × Λ1)→ L2(Σ× (−1, 1), σ × Λ1),

(S−1
ε Φ)(xΣ, t) =

√
εΦ(xΣ, εt)

for almost all xΣ ∈ Σ and t ∈ (−1, 1).

Proof. (i) Since the embedding

Σ× (−ε, ε) 3 (xΣ, t) 7→ xΣ + tν(xΣ) ∈ Ωε

is invertible for all ε ≤ β by our general assumptions, the operator Iε,Σ is also invertible.
Moreover, as the norms in L2(Σ× (−ε, ε), σ ×Λ1) and L2(Ωε) are equivalent by Corollary
3.21 for sufficiently small ε > 0, it follows immediately that Iε,Σ and I−1

ε,Σ are bounded.
(ii) First, we show that Sε is isometric. For this, we compute for Ξ ∈ L2(Σ×(−1, 1), σ×

Λ1)

‖SεΞ‖2
L2(Σ×(−ε,ε)) =

∫
Σ

∫ ε

−ε
|SεΞ(xΣ, t)|2 dtdσ =

∫
Σ

∫ ε

−ε

∣∣∣∣ 1√
ε

Ξ

(
xΣ,

t

ε

)∣∣∣∣2 dtdσ

=

∫
Σ

∫ 1

−1

|Ξ (xΣ, s)|2 dsdσ = ‖Ξ‖2
L2(Σ×(−1,1)),

where we used the substitution s = t
ε
. This calculation also implies that Sε is everywhere

defined and bounded. A similar computation shows that for an arbitrary Φ ∈ L2(Σ ×
(−ε, ε), σ × Λ1) the function Θ, which is defined as

Θ(xΣ, t) :=
√
εΦ(xΣ, εt)

for almost all xΣ ∈ Σ and t ∈ (−1, 1), belongs to L2(Σ × (−1, 1), σ × Λ1). Moreover, it
holds

SεΘ(xΣ, t) = Sε
√
εΦ(xΣ, εt) = Φ(xΣ, t)

in the sense of L2(Σ × (−ε, ε), σ × Λ1), which proves that Sε is surjective and that the
claimed formula for S−1

ε holds. Hence, Sε is unitary.
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The next lemma contains the main factors for the transformation of the resolvent
formula for Hε,Σ from Proposition 7.3 into another one that is more convenient for the
investigation of its convergence. In order to define several needed operators, we introduce
the functions u, v ∈ L∞(Σ× (−1, 1), σ × Λ1) as

u(xΣ, t) := |V (xΣ+βtν(xΣ))|1/2 and v(xΣ, t) := sign
(
V (xΣ+βtν(xΣ))

)
·u(xΣ, t). (7.8)

Lemma 7.5. Let Pε be defined as in (7.4), P ∗ε as in (7.5), Iε,Σ as in (7.6), Sε as in (7.7),
I−1
ε,Σ and S∗ε as in Proposition 7.4 and u and v as in (7.8). Moreover, let λ ∈ C \ [0,∞)

and let

Gλ(x− y) =
1

(2π)d/2

(
|x− y|
−i
√
λ

)1−d/2

Kd/2−1

(
− i
√
λ|x− y|

)
be the integral kernel of (−∆ − λ)−1, cf. Theorem 5.9. Finally, let ε ≥ 0 be sufficiently
small, let W be the Weingarten map corresponding to Σ, cf. Definition 3.10, and regard
det(1− εsW (yΣ)) in the sense of Remark 3.18. Then the following assertions are true:

(i) Define the operator Aε(λ) as

Aε(λ) : L2(Σ× (−1, 1), σ × Λ1)→ L2(Rd),

(Aε(λ)Ξ)(x) =

∫
Σ

∫ 1

−1

Gλ(x− yΣ − εsν(yΣ))v(yΣ, s)

· det(1− εsW (yΣ))Ξ(yΣ, s)dsdσ(yΣ).

If ε > 0, then
Aε(λ) = (−∆− λ)−1MvεP

∗
ε Iε,ΣSε

is fulfilled and Aε(λ) is bounded and everywhere defined.

(ii) Define the operator Bε(λ) as

Bε(λ) : L2(Σ× (−1, 1), σ × Λ1)→ L2(Σ× (−1, 1), σ × Λ1),

(Bε(λ)Ξ)(xΣ, t) = u(xΣ, t)

∫
Σ

∫ 1

−1

Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))

· v(yΣ, s) det(1− εsW (yΣ))Ξ(yΣ, s)dsdσ(yΣ).

If ε > 0, then
Bε(λ) = S−1

ε I−1
ε,ΣPεMuε(−∆− λ)−1MvεP

∗
ε Iε,ΣSε

is fulfilled and Bε(λ) is bounded and everywhere defined. Moreover, if λ /∈ σp(Hε,Σ),
then the operator (1 − Bε(λ))−1 exists and is bounded and everywhere defined in
L2(Σ× (−1, 1), σ × Λ1).

(iii) Define the operator Cε(λ) as

Cε(λ) : L2(Rd)→ L2(Σ× (−1, 1), σ × Λ1),

(Cε(λ)f)(xΣ, t) = u(xΣ, t)

∫
Rd
Gλ(xΣ + εtν(xΣ)− y)f(y)dy.
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If ε > 0, then
Cε(λ) = S−1

ε I−1
ε,ΣPεMuε(−∆− λ)−1

is fulfilled and Cε(λ) is bounded and everywhere defined.

Proof. Let 0 < ε ≤ β be sufficiently small, such that Iε,Σ is boundedly invertible. Note
that such ε exist by Proposition 7.4. Moreover, let λ ∈ C \ [0,∞) be fixed.

(i) We prove the statement Aε(λ) = (−∆− λ)−1MvεP
∗
ε Iε,ΣSε, which implies then that

Aε(λ) is bounded and everywhere defined, as (−∆ − λ)−1,Mvε , P
∗
ε , Iε,Σ and Sε have this

property. Let Ξ ∈ L2(Σ× (−1, 1), σ × Λ1). By the definition of Iε,Σ, Sε, vε and v, it holds

(Iε,ΣSεΞ)(yΣ + sν(yΣ)) =
1√
ε

Ξ
(
yΣ,

s

ε

)
and

vε (yΣ + sν(yΣ)) =
1√
ε

sign V

(
yΣ +

β

ε
sν(yΣ)

) ∣∣∣∣Vε(yΣ +
β

ε
sν(yΣ)

)∣∣∣∣1/2 =
1√
ε
v
(
yΣ,

s

ε

)
for almost all yΣ ∈ Σ and s ∈ (−ε, ε). Using the transformation Ωε 3 y = yΣ + sν(yΣ) 7→
(yΣ, s) ∈ Σ × (−ε, ε), that is bijective, since ε ≤ β, and the transformation formula from
Corollary 3.21 we find(

(−∆− λ)−1MvεP
∗
ε Iε,ΣSεΞ

)
(x) =

∫
Rd
Gλ(x− y)vε(y)P ∗ε (Iε,ΣSεΞ)(y)dy

=

∫
Ωε

Gλ(x− y)vε(y)(Iε,ΣSεΞ)(y)dy

=

∫
Σ

∫ ε

−ε
Gλ(x− yΣ − sν(yΣ))

1√
ε
v
(
yΣ,

s

ε

) 1√
ε

Ξ
(
yΣ,

s

ε

)
det(1− sW (yΣ))dsdσ(yΣ)

=

∫
Σ

∫ 1

−1

Gλ(x− yΣ − εrν(yΣ))v (yΣ, r) det(1− εrW (yΣ))Ξ (yΣ, r) drdσ(yΣ)

= (Aε(λ)Ξ)(x),

where we used the substitution r = s
ε

in the last step. Since this is true for almost all
x ∈ Rd, the statement of assertion (i) is shown.

(ii) Let Ξ ∈ L2(Σ× (−1, 1), σ × Λ1). First, we mention that it holds analogously as in
(i) for almost all yΣ ∈ Σ and s ∈ (−ε, ε)

(Iε,ΣSεΞ)(yΣ + sν(yΣ)) =
1√
ε

Ξ
(
yΣ,

s

ε

)
and vε (yΣ + sν(yΣ)) =

1√
ε
v
(
yΣ,

s

ε

)
.

Moreover, it holds for any g ∈ L2(Rd) and almost all xΣ ∈ Σ and t ∈ (−1, 1)

(S−1
ε I−1

ε,ΣPεMuεg)(xΣ, t) =
√
ε(I−1

ε,ΣPεMuεg)(xΣ, εt)

=
√
εuε(xΣ + εtν(xΣ))g(xΣ + εtν(xΣ))

=
√
ε · 1√

ε

∣∣∣∣V (xΣ +
β

ε
εtν(yΣ)

)∣∣∣∣1/2 g(xΣ + εtν(xΣ))

= u(xΣ, t)g(xΣ + εtν(xΣ)).
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Using these facts, the transformation y = yΣ + sν(yΣ), Corollary 3.21 and the substitution
r = s

ε
, we get(
S−1
ε I−1

ε,ΣPεMuε(−∆− λ)−1MvεP
∗
ε Iε,ΣSεΞ

)
(xΣ, t)

= (S−1
ε I−1

ε,ΣPε)

[
uε(·)

∫
Rd
Gλ(· − y)vε(y)P ∗ε (Iε,ΣSεΞ)(y)dy

]
(xΣ, t)

= u(xΣ, t)

∫
Ωε

Gλ(xΣ + εtν(xΣ)− y)vε(y)(Iε,ΣSεΞ)(y)dy

= u(xΣ, t)

∫
Σ

∫ ε

−ε
Gλ(xΣ + εtν(xΣ)− yΣ − sν(yΣ))

1√
ε
v
(
yΣ,

s

ε

)
· 1√

ε
Ξ
(
yΣ,

s

ε

)
det(1− sW (yΣ))dsdσ(yΣ)

= u(xΣ, t)

∫
Σ

∫ 1

−1

Gλ(xΣ + εtν(xΣ)− yΣ − εrν(yΣ))v (yΣ, r)

· det(1− εrW (yΣ))Ξ (yΣ, r) drdσ(yΣ)

= (Bε(λ)Ξ)(xΣ, t).

Therefore, we obtain the desired formula

Bε(λ) = S−1
ε I−1

ε,ΣPεMuε(−∆− λ)−1MvεP
∗
ε Iε,ΣSε. (7.9)

This implies that Bε(λ) is bounded and everywhere defined. Assume now additionally
λ /∈ σp(Hε,Σ). Note that (7.9) is equivalent to

Iε,ΣSεBε(λ)S−1
ε I−1

ε,Σ = PεMuε(−∆− λ)−1MvεP
∗
ε .

This, together with Proposition 7.3, implies that the operator(
1− PεMuε(−∆− λ)−1MvεP

∗
ε

)−1
=
(
1− Iε,ΣSεBε(λ)S−1

ε I−1
ε,Σ

)−1

exists and is bounded and everywhere defined. Hence, also the operator

S−1
ε I−1

ε,Σ

(
1− Iε,ΣSεBε(λ)S−1

ε I−1
ε,Σ

)−1 Iε,ΣSε = (1−Bε(λ))−1

is bounded and everywhere defined, which finishes the proof of statement (ii).
(iii) In order to prove the last statement of this lemma, we mention first that it holds

(S−1
ε I−1

ε,ΣPεMuεg)(xΣ, t) =
√
ε · 1√

ε

∣∣∣∣V (xΣ +
β

ε
εtν(yΣ)

)∣∣∣∣1/2 g(xΣ + εtν(xΣ))

= u(xΣ, t)g(xΣ + εtν(xΣ))

for any g ∈ L2(Rd) and for almost all xΣ ∈ Σ and t ∈ (−1, 1). Therefore, we find

(S−1
ε I−1

ε,ΣPεMuε(−∆− λ)−1f)(xΣ, t) = u(xΣ, t)

∫
Rd
Gλ(xΣ + εtν(xΣ)− y)f(y)dy

for all f ∈ L2(Rd) and almost all xΣ ∈ Σ and t ∈ (−1, 1) which shows assertion (iii).
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After all these preparations, it is easy to transform the resolvent formula for Hε,Σ

from Proposition 7.3 into another one which is more convenient for an investigation of its
convergence:

Theorem 7.6. Let Hε,Σ be defined as in (7.2), let λ ∈ ρ(Hε,Σ) and let Aε(λ), Bε(λ) and
Cε(λ) be defined as in Lemma 7.5. Then it holds for ε sufficiently small

(Hε,Σ − λ)−1 = (−∆− λ)−1 + Aε(λ)(1−Bε(λ))−1Cε(λ).

Proof. Let λ ∈ ρ(Hε,Σ) ⊂ C \ [0,∞), set R(λ) := (−∆ − λ)−1 and recall the results and
the notations from Proposition 7.3 and Lemma 7.5. Thus, (1− PεMuεR(λ)MvεP

∗
ε )−1 and

(1−Bε(λ))−1 exist and are bounded and everywhere defined. Moreover, we find that

(Hε,Σ − λ)−1 = R(λ) +R(λ)MvεP
∗
ε (1− PεMuεR(λ)MvεP

∗
ε )−1 PεMvεR(λ)

= R(λ) + Aε(λ)S−1
ε I−1

ε,Σ

(
1− Iε,ΣSεBε(λ)S−1

ε I−1
ε,Σ

)−1 Iε,ΣSεCε(λ)

= R(λ) + Aε(λ) (1−Bε(λ))−1Cε(λ)

holds, which proves the statement of this theorem.

Since we have derived a suitable resolvent formula for Hε,Σ, we are prepared to inves-
tigate its convergence, which is done in the following proposition:

Proposition 7.7. Let λ ∈ C \ [0,∞), let ε ≥ 0 be sufficiently small and let Aε(λ), Bε(λ)
and Cε(λ) be defined as in Lemma 7.5. Then there exist constants cA, cB, cC > 0 depending
on λ, the dimension d, the potential V and the geometry of Σ such that

‖Aε(λ)− A0(λ)‖ ≤ cAε
d+1
2d , ‖Bε(λ)−B0(λ)‖ ≤ cBε

1
2d

and
‖Cε(λ)− C0(λ)‖ ≤ cCε

d+1
2d

hold as ε→ 0+.

Proof. Let λ ∈ C \ [0,∞) be fixed. In order to find an estimate for ‖Aε(λ) − A0(λ)‖, we
introduce for ε > 0 the auxiliary operator Âε(λ) via

Âε(λ) : L2(Σ× (−1, 1), σ × Λ1)→ L2(Rd),

Âε(λ)Ξ(x) =

∫
Σ

∫ 1

−1

Gλ(x− yΣ − εsν(yΣ))v(yΣ, s)Ξ(yΣ, s)dsdσ(yΣ).

We show that
∥∥Âε(λ) − Aε(λ)

∥∥ ≤ c̃Aε
(d+1)/(2d) and

∥∥Âε(λ) − A0(λ)
∥∥ ≤ ĉAε

(d+1)/(2d) hold,
which imply then the claimed result.
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Let us start with the estimate of
∥∥Âε(λ)−Aε(λ)

∥∥. According to Theorem 5.2, it holds∥∥Âε(λ)− Aε(λ)
∥∥2

≤ sup
x∈Rd

∫
Σ

∫ 1

−1

∣∣Gλ(x− yΣ − εsν(yΣ))v(yΣ, s) (1− det(1− εsW (yΣ)))
∣∣dsdσ(yΣ)

· sup
(yΣ,s)∈Σ×(−1,1)

∫
Rd

∣∣Gλ(x− yΣ − εsν(yΣ))v(yΣ, s) (1− det(1− εsW (yΣ)))
∣∣dx.

Let µ1(yΣ), . . . , µd−1(yΣ) be the eigenvalues of the matrix of the Weingarten map W (yΣ),
which are independent from the parametrization of Σ by Proposition 3.11. Then again
by Proposition 3.11 these eigenvalues are uniformly bounded in yΣ ∈ Σ which implies for
s ∈ (−1, 1) and ε ∈ (0, 1) the existence of a constant c1 > 0 such that

|1− det(1− εsW (yΣ))| =

∣∣∣∣∣1−
d−1∏
k=1

(1− εsµk(yΣ))

∣∣∣∣∣ ≤ c1ε (7.10)

holds for any yΣ ∈ Σ. Using this, Proposition A.2 and Proposition A.4, we find∥∥Âε(λ)− Aε(λ)
∥∥2

≤ sup
x∈Rd

∫
Σ

∫ 1

−1

∣∣Gλ(x− yΣ − εsν(yΣ))v(yΣ, s) (1− det(1− εsW (yΣ)))
∣∣dsdσ(yΣ)

· sup
(yΣ,s)∈Σ×(−1,1)

∫
Rd

∣∣Gλ(x− yΣ − εsν(yΣ))v(yΣ, s) (1− det(1− εsW (yΣ)))
∣∣dx

≤ (c1ε)
2 sup
x∈Rd

∫
Σ

∫ 1

−1

∣∣Gλ(x− yΣ − εsν(yΣ))v(yΣ, s)
∣∣dsdσ(yΣ)

· sup
(yΣ,s)∈Σ×(−1,1)

∫
Rd

∣∣Gλ(x− yΣ − εsν(yΣ))v(yΣ, s)
∣∣dx

≤ c̃2
Aε

2 · ε1/d−1 = c̃2
Aε

1/d+1

with a constant c̃A which depends on λ, v, d and Σ and thus, the claimed estimate holds.
In order to show Âε(λ) → A0(λ), we use again an estimate with the Schur-Holmgren-

bound, cf. Theorem 5.2, of the following form:∥∥Âε(λ)− A0(λ)
∥∥2 ≤ sup

x∈Rd

∫
Σ

∫ 1

−1

∣∣(Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)
)
v(yΣ, s)

∣∣ dsdσ(yΣ)

· sup
(yΣ,s)∈Σ×(−1,1)

∫
Rd

∣∣(Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)
)
v(yΣ, s)

∣∣ dx.
Using the result from Proposition A.7 we get

sup
x∈Rd

∫
Σ

∫ 1

−1

∣∣(Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)
)
v(yΣ, s)

∣∣ dsdσ(yΣ) ≤ cA,1ε
1/d
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with a constant cA,1 which depends on λ, d, Σ and v. Analogously, it follows from Propo-
sition A.5

sup
(yΣ,s)∈Σ×(−1,1)

∫
Rd

∣∣(Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)
)
v(yΣ, s)

∣∣ dx ≤ cA,2ε,

where cA,2 depends on d, λ and v. Thus, we find

∥∥Âε(λ)− A0(λ)
∥∥2 ≤ sup

x∈Rd

∫
Σ

∫ 1

−1

∣∣(Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)
)
v(yΣ, s)

∣∣ dsdσ(yΣ)

· sup
(yΣ,s)∈Σ×(−1,1)

∫
Rd

∣∣(Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)
)
v(yΣ, s)

∣∣ dx
≤ cA,1ε

1/dcA,2ε = cA,1cA,2︸ ︷︷ ︸
=:ĉ2A

ε(d+1)/d.

Thus, we have shown the estimates
∥∥Âε(λ)−Aε(λ)

∥∥ ≤ c̃Aε
(d+1)/(2d) and

∥∥Âε(λ)−A0(λ)
∥∥ ≤

ĉAε
(d+1)/(2d) and using the triangle inequality, we get∥∥Aε(λ)− A0(λ)

∥∥ ≤ ∥∥Âε(λ)− Aε(λ)
∥∥+

∥∥Âε(λ)− A0(λ)
∥∥ ≤ cAε

(d+1)/(2d).

Next, we show the statement on the convergence of Bε(λ). For this, we introduce for
ε ≥ 0 the linear operators B̂ε(λ) and B̃ε(λ) as

B̂ε(λ) : L2(Σ× (−1, 1), σ × Λ1)→ L2(Σ× (−1, 1), σ × Λ1),

B̂ε(λ)Ξ(xΣ, t) = u(xΣ, t)

∫
Σ

∫ 1

−1

Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))v(yΣ, s)Ξ(yΣ, s)dsdσ(yΣ)

and

B̃ε(λ) : L2(Σ× (−1, 1), σ × Λ1)→ L2(Σ× (−1, 1), σ × Λ1),

B̃ε(λ)Ξ(xΣ, t) = u(xΣ, t)

∫
Σ

∫ 1

−1

Gλ(xΣ − yΣ − εsν(yΣ))v(yΣ, s)Ξ(yΣ, s)dsdσ(yΣ).

We are going to prove the estimates
∥∥B̂ε(λ)−Bε(λ)

∥∥ = O
(
ε1/d
)
,
∥∥B̂ε(λ)−B̃ε(λ)

∥∥ = O
(
ε1/d
)

and
∥∥B̃ε(λ)−B0(λ)

∥∥ = O
(
ε1/(2d)

)
, which yield then the claimed convergence result.

First, we look for an estimate of
∥∥B̂ε(λ)−Bε(λ)

∥∥. Using a Schur-Holmgren bound and
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equation (7.10), we find∥∥B̂ε(λ)−Bε(λ)
∥∥2

≤ sup
(xΣ,t)∈Σ×(−1,1)

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))v(yΣ, s)

· (1− det(1− εsW (yΣ)))
∣∣dsdσ(yΣ)

· sup
(yΣ,s)∈Σ×(−1,1)

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))v(yΣ, s)

· (1− det(1− εsW (yΣ)))
∣∣dtdσ(xΣ)

≤ (c1ε)
2 sup

(xΣ,t)∈Σ×(−1,1)

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))v(yΣ, s)
∣∣dsdσ(yΣ)

· sup
(yΣ,s)∈Σ×(−1,1)

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))v(yΣ, s)
∣∣dtdσ(xΣ).

Applying now Proposition A.4, we find that∫
Σ

∫ 1

−1

∣∣u(xΣ, t)Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))v(yΣ, s)
∣∣dsdσ(yΣ) ≤ cB,1ε

1/d−1

holds independent from xΣ and t, where cB,1 depends on λ, d, u, v and Σ. By symmetry a
similar estimate is true for the second integral. Thus, we find∥∥B̂ε(λ)−Bε(λ)

∥∥2

≤ (c1ε)
2 sup

(xΣ,t)∈Σ×(−1,1)

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))v(yΣ, s)
∣∣dsdσ(yΣ)

· sup
(yΣ,s)∈Σ×(−1,1)

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))v(yΣ, s)
∣∣dtdσ(xΣ).

≤ c2
B,2ε

2/d.

Next, we look for an estimate for
∥∥B̂ε(λ)− B̃ε(λ)

∥∥. Applying Proposition A.7, we find

sup
(yΣ,s)∈Σ×(−1,1)

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)
(
Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))

−Gλ(xΣ − yΣ − εsν(yΣ))
)
v(yΣ, s)

∣∣dtdσ(xΣ) ≤ cB,3ε
1/d.

Moreover, Proposition A.8 gives us

sup
(xΣ,t)∈Σ×(−1,1)

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)
(
Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))

−Gλ(xΣ − yΣ − εsν(yΣ))
)
v(yΣ, s)

∣∣dsdσ(yΣ) ≤ cB,4ε
1/d
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for ε sufficiently small. Note that the constants cB,3 and cB,4 depend again on λ, d, u, v and
Σ. Hence, using an estimate with a Schur-Holmgren bound, we find

∥∥B̂ε(λ)− B̃ε(λ)
∥∥2 ≤ sup

(xΣ,t)∈Σ×(−1,1)

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)
(
Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))

−Gλ(xΣ − yΣ − εsν(yΣ))
)
v(yΣ, s)

∣∣dsdσ(yΣ)

· sup
(yΣ,s)∈Σ×(−1,1)

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)
(
Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))

−Gλ(xΣ − yΣ − εsν(yΣ))
)
v(yΣ, s)

∣∣dtdσ(xΣ)

≤ cB,3ε
1/dcB,4ε

1/d = cB,3cB,4︸ ︷︷ ︸
=:c2B,5

ε2/d.

Analogously, using Proposition A.7 and Proposition A.9, we find

∥∥B̃ε(λ)−B0(λ)
∥∥2 ≤ sup

(xΣ,t)∈Σ×(−1,1)

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)
(
Gλ(xΣ − yΣ − εsν(yΣ))

−Gλ(xΣ − yΣ)
)
v(yΣ, s)

∣∣dsdσ(yΣ)

· sup
(yΣ,s)∈Σ×(−1,1)

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)
(
Gλ(xΣ − yΣ − εsν(yΣ))

−Gλ(xΣ − yΣ)
)
v(yΣ, s)

∣∣dtdσ(xΣ)

≤ cB,6ε
1/dcB,7 = c2

B,8ε
1/d.

Here, the constants cB,6 and cB,7 depend on λ, d, u, v and Σ. Putting together all previous
estimates, we get eventually

‖Bε(λ)−B0(λ)‖ ≤
∥∥Bε(λ)− B̂ε(λ)

∥∥+
∥∥B̂ε(λ)− B̃ε(λ)

∥∥+
∥∥B̃ε(λ)−B0(λ)

∥∥
≤ cB,2ε

1/d + cB,5ε
1/d + cB,8ε

1/(2d) ≤ cBε
1/(2d).

Finally, we prove the statement on the convergence of Cε(λ). Using again an estimate
with a Schur-Holmgren bound and applying Proposition A.5 and Proposition A.7, we find

∥∥Cε(λ)− C0(λ)
∥∥2 ≤ sup

y∈Rd

∫
Σ

∫ 1

−1

∣∣u(xΣ, t)
(
Gλ(xΣ + εtν(xΣ)− y)−Gλ(xΣ − y)

)∣∣ dsdσ(yΣ)

· sup
(xΣ,t)∈Σ×(−1,1)

∫
Rd

∣∣u(xΣ, t)
(
Gλ(xΣ + εtν(xΣ)− y)−Gλ(xΣ − y)

)∣∣ dy
≤ cC,1ε

1/dcC,2ε = cC,1cC,2︸ ︷︷ ︸
=:c2C

ε(d+1)/d

with a constant cC that depends on λ, d, u and Σ. This is already the desired estimate.
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So far, we know from Theorem 7.6 and Proposition 7.7 that the sequence of resolvents(
(Hε,Σ−λ)−1

)
ε>0

converges for any λ ∈ C\R as ε→ 0+ and we have a first representation
of the limit operator. In order to show that this limit operator is equal to the resolvent of
Aδ,α, we need the following technical lemma:

Lemma 7.8. Let v be defined as in (7.8). Then the following assertions are true:

(i) The embedding operator J : L2(Σ)→ L2(Σ× (−1, 1), σ × Λ1), which acts as

(J ξ)(xΣ, t) := ξ(xΣ)

for almost all xΣ ∈ Σ and all t ∈ (−1, 1), is well-defined and bounded.

(ii) The operator V̂ : L2(Σ× (−1, 1), σ × Λ1)→ L2(Σ) that acts as

(
V̂ Ξ
)
(xΣ) :=

∫ 1

−1

v(xΣ, s)Ξ(xΣ, s)ds

for almost all xΣ ∈ Σ, is well-defined and continuous.

Proof. (i) First, we prove that J is well-defined. For this, let ξ1 and ξ2 be two representa-
tives of ξ ∈ L2(Σ). Then there exists a set N ⊂ Σ with Hausdorff measure zero such that
ξ1 and ξ2 coincide on Σ \ N . Hence, J ξ1 and J ξ2 coincide on Σ× (−1, 1) except the zero
set N × (−1, 1) and thus, J is well-defined.

In order to prove the boundedness of J , we compute for ξ ∈ L2(Σ)

‖J ξ‖2
L2(Σ×(−1,1)) =

∫
Σ

∫ 1

−1

|(J ξ)(xΣ, s)|2dsdσ =

∫
Σ

∫ 1

−1

|ξ(xΣ)|2dsdσ = 2‖ξ‖2
L2(Σ),

which shows that J is continuous.
(ii) In order to show that V̂ is well-defined, let v1 and v2 be two representatives of v and

let Ξ1 and Ξ2 be two representatives of Ξ ∈ L2(Σ× (−1, 1), σ×Λ1). Then the measurable
functions v1Ξ1 and v2Ξ2 coincide on Σ× (−1, 1) except a zero set. Defining for i ∈ {1, 2}
the function V̂i(xΣ) :=

∫ 1

−1
vi(xΣ, s)Ξi(xΣ, s)ds and using the Cauchy-Schwarz inequality,

we find∫
Σ

∣∣∣V̂1 − V̂2

∣∣∣2 dσ =

∫
Σ

∣∣∣∣∫ 1

−1

(
v1(xΣ, s)Ξ1(xΣ, s)− v2(xΣ, s)Ξ2(xΣ, s)

)
ds

∣∣∣∣2 dσ

≤ 2

∫
Σ

∫ 1

−1

|v1(xΣ, s)Ξ1(xΣ, s)− v2(xΣ, s)Ξ2(xΣ, s)|2dsdσ = 0.

Thus, it holds V̂1 = V̂2 almost everywhere in Σ, which implies that the operator V̂ is
well-defined.
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It remains to show the boundedness of V̂ . For this, we consider for Ξ ∈ L2(Σ ×
(−1, 1), σ × Λ1)

∥∥V̂ Ξ
∥∥2

L2(Σ)
=

∫
Σ

∣∣∣∣∫ 1

−1

v(xΣ, s)Ξ(xΣ, s)ds

∣∣∣∣2 dσ ≤ 2

∫
Σ

∫ 1

−1

|v(xΣ, s)Ξ(xΣ, s)|2dsdσ

≤ 2‖v‖2
L∞‖Ξ‖2

L2(Σ×(−1,1)),

where we used the Cauchy-Schwarz inequality. Thus, V̂ is bounded.

Finally, we are prepared to prove the main result of this thesis, namely Theorem 7.1:

Proof of Theorem 7.1. Let λ ∈ C \ R and let for ε ≥ 0 the operators Aε(λ), Bε(λ) and
Cε(λ) be defined as in Lemma 7.5. Then, according to Theorem 7.6, Proposition 7.7 and
Proposition 2.18, it holds∥∥(Hε,Σ − λ)−1 −

(
(−∆− λ)−1 + A0(λ)(1−B0(λ))−1C0(λ)

)∥∥
=
∥∥Aε(λ)(1−Bε(λ))−1Cε(λ)− A0(λ)(1−B0(λ))−1C0(λ)

∥∥ ≤ cε1/(2d)

with a constant c > 0 depending on λ, d, V and Σ. Hence, it remains to verify

(Aδ,α − λ)−1 = (−∆− λ)−1 + A0(λ)(1−B0(λ))−1C0(λ)

for a suitable strength α ∈ L∞(Σ). In order to prove this, recall the definition of the
bounded operators J and V̂ from Lemma 7.8 and define Û := MuJ , where Mu is the
multiplication operator associated to u ∈ L∞(Σ × (−1, 1), σ × Λ1) given by (7.8). Note
that Mu and hence also Û is bounded and everywhere defined. Furthermore, recall the
definition of the bounded operators γ(λ), γ

(
λ
)∗

and M(λ) from Lemma 6.5. Then we see
that

(A0(λ)Ξ)(x) =

∫
Σ

∫ 1

−1

Gλ(x− yΣ)v(yΣ, s)Ξ(yΣ, s)dsdσ(yΣ)

=

∫
Σ

Gλ(x− yΣ)

(∫ 1

−1

v(yΣ, s)Ξ(yΣ, s)ds

)
dσ(yΣ) =

(
γ(λ)V̂ Ξ

)
(x)

holds for any Ξ ∈ L2(Σ × (−1, 1), σ × Λ1) and almost all x ∈ Rd. Thus, we conclude
A0(λ) = γ(λ)V̂ . In a similar way, one finds

(B0(λ)Ξ)(xΣ, t) = u(xΣ, t)

∫
Σ

∫ 1

−1

Gλ(xΣ − yΣ)v(yΣ, s)Ξ(yΣ, s)dsdσ(yΣ)

= u(xΣ, t)

∫
Σ

Gλ(xΣ − yΣ)

(∫ 1

−1

v(yΣ, s)Ξ(yΣ, s)ds

)
dσ(yΣ)

=
(
ÛM(λ)V̂ Ξ

)
(xΣ, t)
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for all Ξ ∈ L2(Σ × (−1, 1), σ × Λ1) and almost all (xΣ, t) ∈ Σ × (−1, 1), which implies
B0(λ) = ÛM(λ)V̂ , and

(C0(λ)f)(x) = u(xΣ, t)

∫
Rd
Gλ(xΣ − y)f(y)dy =

(
Ûγ
(
λ
)∗)

(xΣ, t)

for all f ∈ L2(Rd) and almost all (xΣ, t) ∈ Σ × (−1, 1) implying C0(λ) = Ûγ
(
λ
)∗

. Thus,
we get

A0(λ)(1−B0(λ))−1C0(λ) = γ(λ)V̂
(

1− ÛM(λ)V̂
)−1

Ûγ(λ)∗.

Because of

V̂
(

1− ÛM(λ)V̂
)−1

−
(

1− V̂ ÛM(λ)
)−1

V̂

=
(

1− V̂ ÛM(λ)
)−1 ((

1− V̂ ÛM(λ)
)
V̂ − V̂

(
1− ÛM(λ)V̂

))(
1− ÛM(λ)V̂

)−1

= 0,

we find

A0(λ)(1−B0(λ))−1C0(λ) = γ(λ)
(

1− V̂ ÛM(λ)
)−1

V̂ Ûγ
(
λ
)∗
.

Setting α(xΣ) :=
∫ 1

−1
V (xΣ + βsν(xΣ))ds in the sense of L∞(Σ), we find V̂ ÛM(λ) =

MαM(λ) and V̂ Ûγ
(
λ
)∗

= Mαγ
(
λ
)∗

and hence, using Theorem 6.6,

lim
ε→0+

(Hε,Σ − λ)−1 = (−∆− λ)−1 + A0(λ)(1−B0(λ))−1C0(λ)

= (−∆− λ)−1 + γ(λ)(1−MαM(λ))−1Mαγ
(
λ
)∗

= (Aδ,α − λ)−1.
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A Estimates for integrals containing modified Bessel

functions

In this appendix, we prove some estimates for integrals, which are essential to show con-
vergence of a sequence of Schrödinger operators with local scaled short-range potentials to
a Hamiltonian with a δ-interaction supported on a hypersurface Σ ⊂ Rd.

Let d ≥ 2. Recall that for λ ∈ C \ [0,∞) the function Gλ, which is the integral kernel
of the resolvent of the free Laplacian in Rd, is given by

Gλ(x− y) =
1

(2π)d/2

(
|x− y|
−i
√
λ

)1−d/2

Kd/2−1

(
−i
√
λ|x− y|

)
,

where Kd/2−1 is a modified Bessel function of the second kind, cf. Section 5.3. It is our
goal in this appendix to prove some estimates for integrals that contain this function Gλ.

Let us formulate several general assumptions on the hypersurface Σ that should be
fulfilled for all results in this appendix:

Hypothesis A.1. Let d ≥ 2. We assume that Σ ⊂ Rd is a closed C2-smooth hypersurface
in the sense of Definition 3.2. Moreover, we denote by ν(xΣ) the unit normal vector of Σ
at xΣ ∈ Σ that points outwards of the bounded part of Rd with boundary Σ.

Let us start with a rather simple estimate:

Proposition A.2. Let d ≥ 2, assume that Σ ⊂ Rd fulfills Hypothesis A.1, let ψ ∈ L∞(Σ×
(−1, 1), σ × Λ1) and let λ ∈ C \ [0,∞). Then there exists a constant C > 0 depending on
d, λ and ψ such that

sup
(yΣ,s)∈Σ×(−1,1)

∫
Rd
|Gλ(x− yΣ − εsν(yΣ))ψ(yΣ, s)| dx ≤ C

is true.

Proof. Let yΣ ∈ Σ and s ∈ (−1, 1) be fixed. Using the translation invariance of the
Lebesgue measure, we find∫

Rd
|Gλ(x− yΣ − εsν(yΣ))ψ(yΣ, s)| dx ≤ ‖ψ‖L∞

∫
Rd
|Gλ(x)| dx = ‖ψ‖L∞‖Gλ‖L1 .

The last integral is finite, as Gλ ∈ L1(Rd) by Lemma 5.8. This is already the claimed
result.

The following estimate is needed for several results in this appendix:

Lemma A.3. Let d ≥ 2, let Σ be a closed hypersurface in the sense of Definition 3.2 and
let ν(xΣ) be the unit normal vector of Σ at xΣ ∈ Σ that points outwards of the bounded
part of Rd with boundary Σ. Moreover, let

Ωε :=
{
xΣ + tν(xΣ) : xΣ ∈ Σ, t ∈ (−ε, ε)

}
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and let σ(Σ) be the Hausdorff measure of Σ. Then there exists a constant C > 0 such that∫
Ωε

dx ≤ Cεσ(Σ)

holds for all sufficiently small ε > 0.

Proof. Let ε > 0 be sufficiently small. Then, according to Corollary 3.21, it holds∫
Ωε

dx =

∫
Σ

∫ ε

−ε
det(1− tW (xΣ))dtdσ,

where W is the Weingarten-map associated to Σ and det(1 − tW (xΣ)) is understood in
the sense of Remark 3.18. Since the eigenvalues of the matrix of the Weingarten-map are
bounded by Proposition 3.11, it follows that there exists a constant C > 0 such that

det(1− tW (xΣ)) ≤ C

2

holds for all xΣ ∈ Σ and all t ∈ (−ε, ε), if ε is small enough. Hence, we get∫
Ωε

dx =

∫
Σ

∫ ε

−ε
det(1− tW (xΣ))dtdσ ≤ C

2

∫
Σ

∫ ε

−ε
dtdσ = Cεσ(Σ)

and thus the claimed result.

Proposition A.4. Let d ≥ 2, assume that Σ ⊂ Rd fulfills Hypothesis A.1, let X ⊂ Rd and
let µ be a measure on X. Furthermore, let ψ ∈ L∞(Σ× (−1, 1), σ×Λ1), let ϕ ∈ L∞(X,µ)
and let λ ∈ C \ [0,∞). Then it holds for any sufficiently small ε > 0

sup
x∈X

∫
Σ

∫ 1

−1

|ϕ(x)Gλ(x− yΣ − εsν(yΣ))ψ(yΣ, s)| dsdσ(yΣ) ≤

{
−C1 ln ε, if d = 2,

C2ε
2/d−1, if d ≥ 3,

with constants C1, C2 > 0 that depend on d, λ, ψ and ϕ. In particular, the estimate

sup
x∈X

∫
Σ

∫ 1

−1

|ϕ(x)Gλ(x− yΣ − εsν(yΣ))ψ(yΣ, s)| dsdσ(yΣ) ≤ Cε1/d−1

is true for any space dimension d ≥ 2.

Proof. Let x ∈ X be fixed and assume that ε is sufficiently small. Since the eigenvalues of
the matrix of the Weingarten map W associated to Σ are bounded by Proposition 3.11, it
follows that there exists a constant c1 > 0 such that 1 ≤ c1 det(1− εsW (yΣ)) holds for all
s ∈ (−1, 1) and all yΣ ∈ Σ. Here, the term det(1 − εsW (yΣ)) is regarded in the sense of
Remark 3.18. Hence, we get∫

Σ

∫ 1

−1

|ϕ(x)Gλ(x− yΣ − εsν(yΣ))ψ(yΣ, s)| dsdσ(yΣ)

≤ c1

∫
Σ

∫ 1

−1

|ϕ(x)Gλ(x− yΣ − εsν(yΣ))ψ(yΣ, s)| det(1− εsW (yΣ))dsdσ(yΣ)

≤ c2

ε

∫
Σ

∫ ε

−ε
|Gλ(x− yΣ − rν(yΣ))| det(1− rW (yΣ))drdσ(yΣ),
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where we used the substitution r = εs. Thus, by applying the transformation formula from
Corollary 3.21, we get∫

Σ

∫ 1

−1

|ϕ(x)Gλ(x− yΣ − εsν(yΣ))ψ(yΣ, s)| dsdσ(yΣ) ≤ c2

ε

∫
Ωε

|Gλ(x− y)| dy

with the tube Ωε given as

Ωε =
{
yΣ + rν(yΣ) : yΣ ∈ Σ, r ∈ (−ε, ε)

}
.

In order to get an estimate for the last integral, we split the integration area into
Ω̃1 := B

(
x, ε1/d

)
∩ Ωε and Ω̃2 := Ωε \ B

(
x, ε1/d

)
, so Ωε = Ω̃1∪̇Ω̃2, and we distinguish the

cases d = 2 and d > 2. Recall that Gλ is defined as

Gλ(x− y) =
1

(2π)d/2

(
|x− y|
−i
√
λ

)1−d/2

Kd/2−1

(
−i
√
λ|x− y|

)
.

Let us start with the case d = 2. Due to the asymptotics of the modified Bessel function
K0, see Proposition 5.6, there exists a constants c > 0 such that∣∣∣K0

(
− i
√
λ|x− y|

)∣∣∣ ≤ −c ln |x− y|

holds for y → x. Hence, we find

|Gλ(x− y)| ≤ −c3 ln |x− y|

for all y ∈ B
(
x, ε1/2

)
and we conclude that the integral over Ω̃1 can be estimated as∫

Ω̃1

|Gλ(x− y)|dy ≤ −c3

∫
B(x,ε1/2)

ln |x− y|dy = −2πc3

∫ ε1/2

0

ln r · rdr

= −2πc3
ε

4
(2 ln ε− 1) ≤ −c4ε ln ε

independent from x, where we used a substitution to polar coordinates. Moreover, since
K0 is differentiable and bounded, if the argument is not in a neighborhood of zero, we find
for y ∈ Ωε \B

(
x, ε1/2

)
∣∣Gλ(x− y)

∣∣ ≤ max{ĉ,−c ln |x− y|} ≤ −c5 ln ε

because of the asymptotic behavior of K0 for small arguments. Hence, using Lemma A.3
we get ∫

Ω̃2

∣∣Gλ(x− y)
∣∣dy ≤ −c5

∫
Ωε\B(x,ε1/2)

ln εdy ≤ −c6ε ln εσ(Σ)
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with the Hausdorff-measure σ(Σ) of Σ, again independent from x. Therefore, we find∫
Ωε

|Gλ(x− y)| dy =

∫
Ω̃1

|Gλ(x− y)| dy +

∫
Ω̃2

|Gλ(x− y)| dy ≤ −c7ε ln ε.

This implies∫
Σ

∫ 1

−1

|ϕ(x)Gλ(x− yΣ − εsν(yΣ))ψ(yΣ, s)| dsdσ(yΣ) ≤ c2

ε

∫
Ωε

|Gλ(x− y)| dy

≤ − c2c7︸︷︷︸
=:C1

ln ε,

which is the claimed result in the case d = 2.
In the case d > 2, it holds by Proposition 5.6 (iii)∣∣∣Kd/2−1

(
− i
√
λ|x− y|

)∣∣∣ ≤ c|x− y|1−d/2

for y → x. Hence, we find

|Gλ(x− y)| =

∣∣∣∣∣ 1

(2π)d/2

(
|x− y|
−i
√
λ

)1−d/2

Kd/2−1

(
−i
√
λ|x− y|

)∣∣∣∣∣ ≤ c8|x− y|2−d

for all y ∈ Ω̃1 and we conclude that the integral over Ω̃1 can be estimated as∫
Ω̃1

|Gλ(x− y)|dy ≤ c8

∫
B(x,ε1/d)

|x− y|2−ddy = c9

∫ ε1/d

0

r2−drd−1dr = c10ε
2/d

independent from x, where we used a substitution to spherical coordinates. Moreover,
since Kd/2−1 is differentiable and bounded, if the argument is not in a neighborhood of
zero, we find for y /∈ B

(
x, ε1/d

)
∣∣Gλ(x− y)

∣∣ ≤ c11|x− y|2−d ≤ c11ε
(2−d)/d

because of the asymptotic behavior of Kd/2−1. Hence, using Lemma A.3 we conclude∫
Ω̃2

∣∣Gλ(x− y)
∣∣dy ≤ c11

∫
Ωε\B(x,ε1/d)

ε(2−d)/ddy ≤ c12ε
2/dσ(Σ)

with the Hausdorff-measure σ(Σ) of Σ, again independent from x. Thus, we find∫
Ωε

|Gλ(x− y)| dy =

∫
Ω̃1

|Gλ(x− y)| dy +

∫
Ω̃2

|Gλ(x− y)| dy ≤ c13ε
2/d.

Therefore, we proved∫
Σ

∫ 1

−1

|ϕ(x)Gλ(x− yΣ − εsν(yΣ))ψ(yΣ, s)| dsdσ(yΣ) ≤ c2

ε

∫
Ωε

|Gλ(x− y)| dy ≤ c2c13︸︷︷︸
=:C2

ε2/d−1

for d > 2 and thus, the claimed assertion is true.
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The following estimates are slightly more involved as the previous ones, as here also
the derivatives of Gλ have to be considered:

Proposition A.5. Let d ≥ 2, assume that Σ ⊂ Rd fulfills Hypothesis A.1, let ψ ∈ L∞(Σ×
(−1, 1), σ × Λ1) and let λ ∈ C \ [0,∞). Then there exists a constant C > 0 depending on
d, λ and ψ such that

sup
(yΣ,s)∈Σ×(−1,1)

∫
Rd

∣∣(Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)
)
ψ(yΣ, s)

∣∣ dx ≤ Cε

holds as ε→ 0+.

Proof. Let yΣ ∈ Σ and s ∈ (−1, 1) be fixed. Since the mapping C\(−∞, 0] 3 z 7→ Kd/2−1(z)
is analytic by Proposition 5.6, it follows that

[0, 1] 3 θ 7→ Gλ(x− yΣ − εsθν(yΣ))

=
1

(2π)d/2

(
|x− yΣ − εsθν(yΣ)|

−i
√
λ

)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

)
is differentiable for almost all x ∈ Rd. For these x it holds

Gλ(x−yΣ − εsν(yΣ))−Gλ(x− yΣ) =

∫ 1

0

d

dθ
Gλ(x− yΣ − εsθν(yΣ))dθ

=

∫ 1

0

1

(2π)d/2
d

dθ
|x− yΣ − εsθν(yΣ)|

·
((

1− d

2

)
|x− yΣ − εsθν(yΣ)|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

)
−
(
|x− yΣ − εsθν(yΣ)|

−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

))
dθ.

Note that a simple calculation yields

d

dθ
|x− yΣ − εsθν(yΣ)| = d

dθ

(
d∑

k=1

(xk − yΣ,k − εsθνk(yΣ))2

)1/2

= −|x− yΣ − εsθν(yΣ)|−1εs
(
ν(yΣ), x− yΣ − εsθν(yΣ))

)
and using the Cauchy-Schwarz inequality and s ∈ (−1, 1), it follows∣∣∣∣ d

dθ
|x− yΣ − εsθν(yΣ)|

∣∣∣∣ ≤ |εs| < ε.
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Hence, we find∫
Rd

∣∣(Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)
)
ψ(yΣ, s)

∣∣ dx
≤ ‖ψ‖L∞

∫
Rd

∫ 1

0

1

(2π)d/2

∣∣∣∣ d

dθ
|x− yΣ − εsθν(yΣ)|

·
((

1− d

2

)
|x− yΣ − εsθν(yΣ)|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

)
−
(
|x− yΣ − εsθν(yΣ)|

−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

))∣∣∣∣dθdx
≤ c1ε

∫
Rd

∫ 1

0

∣∣∣∣((1− d

2

)
|x− yΣ − εsθν(yΣ)|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

)
−
(
|x− yΣ − εsθν(yΣ)|

−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

))∣∣∣∣dθdx.
In order to become independent from yΣ and s, we consider the bijective transformation
T : Rd × (0, 1)→ Rd × (0, 1) which acts as(

ξ
φ

)
= T

(
x
θ

)
:=

(
x− yΣ − εsθν(yΣ)

θ

)
.

Note that T is differentiable and that its Jacobian is given by

DT =

(
I −εsν(yΣ)
0 1

)
,

where I is the identity matrix in Rd×d. Hence, it holds | detDT | = 1 and we conclude∫
Rd

∣∣(Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)
)
ψ(yΣ, s)

∣∣ dx
≤ c1ε

∫
Rd

∫ 1

0

∣∣∣∣((1− d

2

)
|x− yΣ − εsθν(yΣ)|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

)
−
(
|x− yΣ − εsθν(yΣ)|

−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

))∣∣∣∣dθdx
= c1ε

∫
Rd

∫ 1

0

∣∣∣∣ (1− d

2

)
|ξ|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|ξ|

)
−
(
|ξ|
−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|ξ|

) ∣∣∣∣dφdξ

= c1ε

∫
Rd

∣∣∣∣ (1− d

2

)
|ξ|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|ξ|

)
−
(
|ξ|
−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|ξ|

) ∣∣∣∣dξ,
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where we used in the last step that the integrand was independent from φ. It remains to
show that the last integral is finite. For this, we decompose the area of integration in the
following way: Rd = B(0, 1) ∪̇ (Rd \B(0, 1)). Since the mapping(

1− d

2

)
|ξ|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|ξ|

)
−
(
|ξ|
−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|ξ|

)
is differentiable and bounded, if ξ is not in a neighborhood of zero, and due to the asymp-
totic behavior∣∣∣Kd/2−1

(
− i
√
λ|ξ|

)∣∣∣ ≤ ce−Im
√
λ|ξ| and

∣∣∣K ′d/2−1

(
− i
√
λ|ξ|

)∣∣∣ ≤ ce−Im
√
λ|ξ|

for |ξ| → ∞, cf. Proposition 5.6 (iv), it follows∫
Rd\B(0,1)

∣∣∣∣ (1− d

2

)
|ξ|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|ξ|

)
−
(
|ξ|
−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|ξ|

) ∣∣∣∣dξ <∞.
In order to prove the boundedness of∫

B(0,1)

∣∣∣∣ (1− d

2

)
|ξ|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|ξ|

)
−
(
|ξ|
−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|ξ|

)∣∣∣∣dξ,
we mention ∣∣∣Kd/2−1

(
− i
√
λ|ξ|

)∣∣∣ ≤ c|ξ|1−d/2 for |ξ| → 0,

if d ≥ 3, and ∣∣∣K ′d/2−1

(
− i
√
λ|ξ|

)∣∣∣ ≤ c|ξ|−d/2 for |ξ| → 0,

see Proposition 5.6 (iii). Hence, we find∣∣∣∣ (1− d

2

)
|ξ|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|ξ|

)
−
(
|ξ|
−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|ξ|

)∣∣∣∣ ≤ c2|ξ|1−d.

Therefore, using a substitution to spherical coordinates, we get∫
B(0,1)

∣∣∣∣ (1− d

2

)
|ξ|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|ξ|

)
−
(
|ξ|
−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|ξ|

) ∣∣∣∣dξ
≤ c2

∫
B(0,1)

|ξ|1−ddξ = c3

∫ 1

0

r1−d · rd−1dr <∞.
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Thus, it follows finally∫
Rd

∣∣∣∣ (1− d

2

)
|ξ|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|ξ|

)
−
(
|ξ|
−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|ξ|

)∣∣∣∣dξ <∞,
which yields the claimed result due to our preliminary considerations.

The following lemma contains the main estimate for the next two results:

Lemma A.6. Let d ≥ 2, assume that Σ ⊂ Rd fulfills Hypothesis A.1 and let λ ∈ C\ [0,∞).
Then there exists a constant C > 0 depending on d, λ and Σ such that∫

Σ

∫ ε

−ε

∣∣∣∣ (1− d

2

)
|x− yΣ − sν(yΣ)|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − sν(yΣ)|

)
−
(
|x− yΣ − sν(yΣ)|

−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|x− yΣ − sν(yΣ)|

) ∣∣∣∣dsdσ(yΣ)

≤ Cε1/d

holds independent from x ∈ Rd for sufficiently small ε > 0.

Proof. Let x ∈ Rd be fixed. Since the eigenvalues of the matrix of the Weingarten map
W associated to the hypersurface Σ are bounded by Proposition 3.11, it follows that there
exists a constant c1 > 0 independent from ε such that 1 ≤ c1 det(1− sW (yΣ)) holds for all
s ∈ (−ε, ε) and all yΣ ∈ Σ, if ε is sufficiently small. Here, det(1− sW (yΣ)) is regarded in
the sense of Remark 3.18. Hence, we get∫

Σ

∫ ε

−ε

∣∣∣∣ (1− d

2

)
|x− yΣ − sν(yΣ)|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − sν(yΣ)|

)
−
(
|x− yΣ − sν(yΣ)|

−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|x− yΣ − sν(yΣ)|

) ∣∣∣∣dsdσ(yΣ)

≤ c1

∫
Σ

∫ ε

−ε

∣∣∣∣ (1− d

2

)
|x− yΣ − sν(yΣ)|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − sν(yΣ)|

)
−
(
|x− yΣ − sν(yΣ)|

−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|x− yΣ − sν(yΣ)|

) ∣∣∣∣
· det(1− sW (yΣ))dsdσ(yΣ)

≤ c2

∫
Ωε

(∣∣∣∣ (1− d

2

)
|x− y|−d/2Kd/2−1

(
−i
√
λ|x− y|

) ∣∣∣∣
+
∣∣∣|x− y|1−d/2K ′d/2−1

(
−i
√
λ|x− y|

) ∣∣∣)dy,
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where we used the transformation formula from Corollary 3.21 for integrals over the tube
Ωε that is given as

Ωε = {yΣ + sν(yΣ) : yΣ ∈ Σ, s ∈ (−ε, ε)}.
In order to get an estimate for the last integral, we split the integration area into Ω̃1 :=
B
(
x, ε1/d

)
∩ Ωε and Ω̃2 := Ωε \ B

(
x, ε1/d

)
, so Ωε = Ω̃1 ∪̇ Ω̃2. Due to the asymptotic

behavior of the modified Bessel function and its derivative, see Proposition 5.6, there
exists a constant c > 0 such that∣∣∣Kd/2−1

(
i
√
λ|x− y|

)∣∣∣ ≤ c|x− y|1−d/2 for d > 2 and y → x

and ∣∣∣K ′d/2−1

(
i
√
λ|x− y|

)∣∣∣ ≤ c|x− y|−d/2 for y → x

hold. Hence, there exists a constant c3 > 0 such that∣∣∣∣ (1− d

2

)
|x− y|−d/2Kd/2−1

(
−i
√
λ|x− y|

) ∣∣∣∣
+
∣∣∣|x− y|1−d/2K ′d/2−1

(
−i
√
λ|x− y|

) ∣∣∣ ≤ c3|x− y|1−d

holds for all y ∈ Ω̃1. Therefore, we conclude that the integral over Ω̃1 can be estimated as∫
Ω̃1

(∣∣∣∣ (1− d

2

)
|x− y|−d/2Kd/2−1

(
−i
√
λ|x− y|

) ∣∣∣∣
+
∣∣∣|x− y|1−d/2K ′d/2−1

(
−i
√
λ|x− y|

) ∣∣∣)dy

≤ c3

∫
B(0,ε1/d)

|y|1−ddy = c4

∫ ε1/d

0

dr = c4ε
1/d

independent from x, where we used a substitution to spherical coordinates. Moreover, since
Kd/2−1 and K ′d/2−1 are differentiable and bounded, if the argument is not in a neighborhood

of zero, we find for y /∈ B
(
x, ε1/d

)∣∣∣∣ (1− d

2

)
|x− y|−d/2Kd/2−1

(
−i
√
λ|x− y|

) ∣∣∣∣
+
∣∣∣|x− y|1−d/2K ′d/2−1

(
−i
√
λ|x− y|

) ∣∣∣ ≤ c5|x− y|1−d ≤ c5ε
(1−d)/d

because of the asymptotic behavior of Kd/2−1 and K ′d/2−1 for small arguments. Thus, using
Lemma A.3 we get∫

Ω̃2

(∣∣∣∣ (1− d

2

)
|x− y|−d/2Kd/2−1

(
−i
√
λ|x− y|

) ∣∣∣∣
+
∣∣∣|x− y|1−d/2K ′d/2−1

(
−i
√
λ|x− y|

) ∣∣∣)dy

≤ c5

∫
Ωε\B(x,ε1/d)

ε(1−d)/ddy ≤ c6ε
(1−d)/d · εσ(Σ) = c6σ(Σ)ε1/d
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with the Hausdorff-measure σ(Σ) of Σ, again independent from x. Hence, we find finally∫
Σ

∫ ε

−ε

∣∣∣∣ (1− d

2

)
|x− yΣ − sν(yΣ)|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − sν(yΣ)|

)
−
(
|x− yΣ − sν(yΣ)|

−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|x− yΣ − sν(yΣ)|

) ∣∣∣∣dsdσ(yΣ)

≤ c2

∫
Ωε

(∣∣∣∣ (1− d

2

)
|x− y|−d/2Kd/2−1

(
−i
√
λ|x− y|

) ∣∣∣∣
+
∣∣∣|x− y|1−d/2K ′d/2−1

(
−i
√
λ|x− y|

) ∣∣∣)dy

= c2

∫
Ω̃1

(∣∣∣∣ (1− d

2

)
|x− y|−d/2Kd/2−1

(
−i
√
λ|x− y|

) ∣∣∣∣
+
∣∣∣|x− y|1−d/2K ′d/2−1

(
−i
√
λ|x− y|

) ∣∣∣)dy

+ c2

∫
Ω̃2

(∣∣∣∣ (1− d

2

)
|x− y|−d/2Kd/2−1

(
−i
√
λ|x− y|

) ∣∣∣∣
+
∣∣∣|x− y|1−d/2K ′d/2−1

(
−i
√
λ|x− y|

) ∣∣∣)dy

≤ c7ε
1/d

and thus, the statement of this lemma.

Using Lemma A.6, we can prove the next two estimates that are needed in Chapter 7
to show the main results of this thesis:

Proposition A.7. Let d ≥ 2, let Σ ⊂ Rd be such that Hypothesis A.1 is fulfilled, let
X ⊂ Rd and let µ be a measure on X. Furthermore, let ψ ∈ L∞(Σ× (−1, 1), σ × Λ1), let
ϕ ∈ L∞(X,µ) and let λ ∈ C \ [0,∞). Then there exists a constant C > 0 depending on
d, λ, ϕ, ψ and Σ such that

sup
x∈X

∫
Σ

∫ 1

−1

∣∣ϕ(x)
(
Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)

)
ψ(yΣ, s)

∣∣ dsdσ ≤ Cε1/d

holds as ε→ 0+.

Proof. Let x ∈ X be fixed. Since the mapping C \ (−∞, 0] 3 z 7→ Kd/2−1(z) is analytic by
Proposition 5.6 (i), it follows that

[0, 1] 3 θ 7→ Gλ(x− yΣ − εsθν(yΣ))

=
1

(2π)d/2

(
|x− yΣ − εsθν(yΣ)|

−i
√
λ

)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

)
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is differentiable for almost all yΣ ∈ Σ. Hence, using the main theorem of calculus, we find

Gλ(x−yΣ − εsν(yΣ))−Gλ(x− yΣ) =

∫ 1

0

d

dθ
Gλ(x− yΣ − εsθν(yΣ))dθ

=

∫ 1

0

1

(2π)d/2
d

dθ
|x− yΣ − εsθν(yΣ)|

·
((

1− d

2

)
|x− yΣ − εsθν(yΣ)|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

)
−
(
|x− yΣ − εsθν(yΣ)|

−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

))
dθ.

Note that a simple calculation yields

d

dθ
|x− yΣ − εsθν(yΣ)| = d

dθ

(
d∑

k=1

(xk − yΣ,k − εsθνk(yΣ))2

)1/2

= −|x− yΣ − εsθν(yΣ)|−1εs
(
ν(yΣ), x− yΣ − εsθν(yΣ))

)
and using the Cauchy-Schwarz inequality, it follows∣∣∣∣ d

dθ
|x− yΣ − εsθν(yΣ)|

∣∣∣∣ ≤ ε|s|.

Hence, we find∫
Σ

∫ 1

−1

∣∣ϕ(x)
(
Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)

)
ψ(yΣ, s)

∣∣ dsdσ(yΣ)

≤ ‖ϕ‖L∞‖ψ‖L∞
∫

Σ

∫ 1

−1

∣∣∣∣ ∫ 1

0

1

(2π)d/2
d

dθ
|x− yΣ − εsθν(yΣ)|

·
((

1− d

2

)
|x− yΣ − εsθν(yΣ)|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

)
−
(
|x− yΣ − εsθν(yΣ)|

−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

))
dθ

∣∣∣∣dsdσ(yΣ)

≤ c1

∫
Σ

(∫ 1

−1

∫ 1

0

∣∣∣∣ (1− d

2

)
|x− yΣ − εsθν(yΣ)|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

)
−
(
|x− yΣ − εsθν(yΣ)|

−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

) ∣∣∣∣ε|s|dθds
)

dσ(yΣ).

In order to find a suitable estimate for the double integral in the large brackets in the last
line above, we introduce the transformation T : (−1, 1)× (0, 1)→M := {(r, φ) ∈ R2 : r ∈
(−1, 1), φ = εrθ for θ ∈ (0, 1)} via(

r
φ

)
= T

(
s
θ

)
:=

(
s
εsθ

)
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and we note that the Jacobian of T is given by

DT =

(
1 0
εθ εs

)
.

Thus, it holds | detDT | = ε|s| which implies∫
Σ

∫ 1

−1

∣∣ϕ(x)
(
Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)

)
ψ(yΣ, s)

∣∣ dsdσ(yΣ)

≤ c1

∫
Σ

(∫ 1

−1

∫ 1

0

∣∣∣∣ (1− d

2

)
|x− yΣ − εsθν(yΣ)|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

)
−
(
|x− yΣ − εsθν(yΣ)|

−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|x− yΣ − εsθν(yΣ)|

) ∣∣∣∣ε|s|dθds
)

dσ(yΣ)

= c1

∫
Σ

(∫
M

∣∣∣∣ (1− d

2

)
|x− yΣ − φν(yΣ)|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − φν(yΣ)|

)
−
(
|x− yΣ − φν(yΣ)|

−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|x− yΣ − φν(yΣ)|

) ∣∣∣∣dφdr

)
dσ(yΣ).

Note that it holds M ⊂ (−1, 1) × (−ε, ε). Hence, going on with the above computation,
we get∫

Σ

∫ 1

−1

∣∣ϕ(x)
(
Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)

)
ψ(yΣ, s)

∣∣ dsdσ(yΣ)

≤ c1

∫
Σ

∫ 1

−1

∫ ε

−ε

∣∣∣∣ (1− d

2

)
|x− yΣ − φν(yΣ)|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − φν(yΣ)|

)
−
(
|x− yΣ − φν(yΣ)|

−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|x− yΣ − φν(yΣ)|

) ∣∣∣∣dφdrdσ(yΣ)

= c2

∫
Σ

∫ ε

−ε

∣∣∣∣ (1− d

2

)
|x− yΣ − φν(yΣ)|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − φν(yΣ)|

)
−
(
|x− yΣ − φν(yΣ)|

−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|x− yΣ − φν(yΣ)|

) ∣∣∣∣dφdσ(yΣ),

where we used in the last step that the integrand was independent from r. Using now the
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statement of Lemma A.6, we find∫
Σ

∫ 1

−1

∣∣ϕ(x)
(
Gλ(x− yΣ − εsν(yΣ))−Gλ(x− yΣ)

)
ψ(yΣ, s)

∣∣ dsdσ(yΣ)

≤ c2

∫
Σ

∫ ε

−ε

∣∣∣∣ (1− d

2

)
|x− yΣ − φν(yΣ)|−d/2

(−i
√
λ)1−d/2

Kd/2−1

(
−i
√
λ|x− yΣ − φν(yΣ)|

)
−
(
|x− yΣ − φν(yΣ)|

−i
√
λ

)1−d/2

i
√
λK ′d/2−1

(
−i
√
λ|x− yΣ − φν(yΣ)|

) ∣∣∣∣dφdσ(yΣ)

≤ Cε1/d

with a constant C which depends on d, λ, ϕ, ψ and Σ. Thus, the assertion of this propo-
sition is true.

The next estimate is quite similar as the one of Proposition A.7:

Proposition A.8. Let d ≥ 2, assume that Σ ⊂ Rd fulfills Hypothesis A.1, let ψ, ϕ ∈
L∞(Σ × (−1, 1), σ × Λ1) and let λ ∈ C \ [0,∞). Then there exists a constant C > 0
depending on d, λ, ϕ, ψ and Σ such that

sup
(xΣ,t)∈Σ×(−1,1)

∫
Σ

∫ 1

−1

∣∣ϕ(xΣ, t)
(
Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))

−Gλ(xΣ − yΣ − εsν(yΣ))
)
ψ(yΣ, s)

∣∣dsdσ(yΣ) ≤ Cε1/d

holds as ε→ 0+.

Proof. Let xΣ ∈ Σ and t ∈ (−1, 1) be fixed. Since the mapping C\(−∞, 0] 3 z 7→ Kd/2−1(z)
is analytic, cf. Proposition 5.6, it follows that

[0, 1] 3 θ 7→ Gλ(xΣ + εtθν(xΣ)− yΣ − εsν(yΣ))

=
1

(2π)d/2

(
|xΣ + εtθν(xΣ)− yΣ − εsν(yΣ)|

−i
√
λ

)1−d/2

·Kd/2−1

(
−i
√
λ|xΣ + εtθν(xΣ)− yΣ − εsν(yΣ)|

)
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is differentiable for almost all yΣ ∈ Σ. Hence, using the main theorem of calculus, we get

Gλ(xΣ + εtν(xΣ)−yΣ − εsν(yΣ))−Gλ(xΣ − yΣ − εsν(yΣ))

=

∫ 1

0

d

dθ
Gλ(xΣ + εtθν(xΣ)− yΣ − εsν(yΣ))dθ

=

∫ 1

0

1

(2π)d/2
d

dθ
|xΣ + εtθν(xΣ)− yΣ − εsν(yΣ)|

·
((

1− d

2

)
|xΣ + εtθν(xΣ)− yΣ − εsν(yΣ)|−d/2

(−i
√
λ)1−d/2

·Kd/2−1

(
−i
√
λ|xΣ + εtθν(xΣ)− yΣ − εsν(yΣ)|

)
−
(
|xΣ + εtθν(xΣ)− yΣ − εsν(yΣ)|

−i
√
λ

)1−d/2

· i
√
λK ′d/2−1

(
−i
√
λ|xΣ + εtθν(xΣ)− yΣ − εsν(yΣ)|

))
dθ.

Now, a straightforward calculation shows

d

dθ
|xΣ + εtθν(xΣ)− yΣ − εsν(yΣ)| = d

dθ

(
d∑

k=1

(xk + εtθνk(xΣ)− yΣ,k − εsνk(yΣ))2

)1/2

= |xΣ + εtθν(xΣ)− yΣ − εsν(yΣ)|−1εt
(
ν(xΣ), xΣ + εtθν(xΣ)− yΣ − εsν(yΣ))

)
and using the Cauchy-Schwarz inequality and t ∈ (−1, 1) we find∣∣∣∣ d

dθ
|xΣ + εtθν(xΣ)− yΣ − εsν(yΣ)|

∣∣∣∣ ≤ ε|t| ≤ ε.
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Hence, it follows∫
Σ

∫ 1

−1

∣∣ϕ(xΣ, t)
(
Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))

−Gλ(xΣ − yΣ − εsν(yΣ))
)
ψ(yΣ, s)

∣∣dsdσ(yΣ)

≤ ‖ϕ‖L∞‖ψ‖L∞
∫

Σ

∫ 1

−1

∣∣∣∣ ∫ 1

0

1

(2π)d/2
d

dθ
|xΣ + εtθν(xΣ)− yΣ − εsν(yΣ)|

·
((

1− d

2

)
|xΣ + εtθν(xΣ)− yΣ − εsν(yΣ)|−d/2

(−i
√
λ)1−d/2

·Kd/2−1

(
−i
√
λ|xΣ + εtθν(xΣ)− yΣ − εsν(yΣ)|

)
−
(
|xΣ + εtθν(xΣ)− yΣ − εsν(yΣ)|

−i
√
λ

)1−d/2

· i
√
λK ′d/2−1

(
−i
√
λ|xΣ + εtθν(xΣ)− yΣ − εsν(yΣ)|

))
dθ

∣∣∣∣dsdσ(yΣ)

≤ c1

∫
Σ

∫ ε

−ε

∫ 1

0

∣∣∣∣εε
((

1− d

2

)
|xΣ + εtθν(xΣ)− yΣ − rν(yΣ)|−d/2

(−i
√
λ)1−d/2

·Kd/2−1

(
−i
√
λ|xΣ + εtθν(xΣ)− yΣ − rν(yΣ)|

)
−
(
|xΣ + εtθν(xΣ)− yΣ − rν(yΣ)|

−i
√
λ

)1−d/2

· i
√
λK ′d/2−1

(
−i
√
λ|xΣ + εtθν(xΣ)− yΣ − rν(yΣ)|

))∣∣∣∣dθdrdσ(yΣ),

where we used the substitution r = εs. Therefore, using Lemma A.6 we find∫
Σ

∫ 1

−1

∣∣ϕ(xΣ, t)
(
Gλ(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))

−Gλ(xΣ − yΣ − εsν(yΣ))
)
ψ(yΣ, s)

∣∣dsdσ(yΣ)

≤ c1

∫ 1

0

∫
Σ

∫ ε

−ε

∣∣∣∣εε
((

1− d

2

)
|xΣ + εtθν(xΣ)− yΣ − rν(yΣ)|−d/2

(−i
√
λ)1−d/2

·Kd/2−1

(
−i
√
λ|xΣ + εtθν(xΣ)− yΣ − rν(yΣ)|

)
−
(
|xΣ + εtθν(xΣ)− yΣ − rν(yΣ)|

−i
√
λ

)1−d/2

· i
√
λK ′d/2−1

(
−i
√
λ|xΣ + εtθν(xΣ)− yΣ − rν(yΣ)|

))∣∣∣∣drdσ(yΣ)dθ

≤ c2

∫ 1

0

ε1/ddθ = Cε1/d

88



with a constant C > 0 that depends on d, λ, Σ, ϕ and ψ. This is the claimed result of the
above proposition.

The following proposition contains the last estimate that is needed for our approxima-
tion procedure:

Proposition A.9. Let d ≥ 2, assume that Σ ⊂ Rd fulfills Hypothesis A.1, let ψ, ϕ ∈
L∞(Σ × (−1, 1), σ × Λ1) and let λ ∈ C \ [0,∞). Then there exists a constant C > 0
depending on d, λ, ϕ, ψ and Σ such that

sup
(yΣ,s)∈Σ×(−1,1)

∫
Σ

∫ 1

−1

∣∣ϕ(xΣ, t)
(
Gλ(xΣ − yΣ − εsν(yΣ))

−Gλ(xΣ − yΣ)
)
ψ(yΣ, s)

∣∣dtdσ(xΣ) ≤ C

holds for all sufficiently small ε > 0.

Proof. Let yΣ ∈ Σ and s ∈ (−1, 1) be fixed. First, it follows from∫
Σ

∫ 1

−1

∣∣ϕ(xΣ, t)
(
Gλ(xΣ − yΣ − εsν(yΣ))−Gλ(xΣ − yΣ)

)
ψ(yΣ, s)

∣∣dtdσ(xΣ)

≤ ‖ϕ‖L∞‖ψ‖L∞
∫

Σ

∫ 1

−1

(∣∣Gλ(xΣ − yΣ − εsν(yΣ))
∣∣+
∣∣Gλ(xΣ − yΣ)

∣∣)dtdσ(xΣ)

= 2‖ϕ‖L∞‖ψ‖L∞
∫

Σ

(∣∣Gλ(xΣ − yΣ − εsν(yΣ))
∣∣+
∣∣Gλ(xΣ − yΣ)

∣∣d)σ(xΣ),

that it is sufficient to prove that there exists a constant C̃ > 0 such that∫
Σ

∣∣Gλ(xΣ − yΣ − rεν(yΣ))
∣∣dσ(xΣ) ≤ C̃

holds for r ∈ {0, s} independent from yΣ and s. In order to show this estimate, let
{ϕi, Ui, Vi}i∈I be a parametrization of Σ in the sense of Definition 3.2 and let {χi}i∈I be a
partition of unity for {Vi}i∈I as in Lemma 3.13. Then by Definition 3.14 the above integral
is given by ∫

Σ

∣∣Gλ(xΣ − yΣ − rεν(yΣ))
∣∣dσ(xΣ)

=
∑
i∈I

∫
Ui

χi(ϕi(u))
∣∣Gλ(ϕi(u)− yΣ − rεν(yΣ))

∣∣√detGi(u)du,

where Gi(u) is the matrix of the first fundamental form associated to Σ. Thus, it is
sufficient to prove that for any i ∈ I there exists a constant Ci > 0 such that∫

Ui

χi(ϕi(u))
∣∣Gλ(ϕi(u)− yΣ − rεν(yΣ))

∣∣√detGi(u)du ≤ Ci
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holds. Let i ∈ I be fixed. Note that detGi is bounded on the compact set ϕ−1
i (supp χi), as

the mapping u 7→ Gi(u) is continuous due to our assumptions in Σ. Moreover, as supp χi
is compact in Vi ∩Σ, there exists a constant ci > 0 such that dist(supp χi, ∂Vi ∩Σ) ≥ 2ci.
We define

Ki := {xΣ ∈ Σ : dist(xΣ, supp χi) ≤ ci}

and note that Ki is compact in Σ ∩ Vi. We distinguish two cases, namely yΣ ∈ Ki and
yΣ /∈ Ki.

If yΣ /∈ Ki, it holds for all xΣ ∈ supp χi

|xΣ − yΣ − rεν(yΣ)| ≥ |xΣ − yΣ| − ε|r| ≥
ci
2
,

if ε is chosen sufficiently small. Therefore, since Gλ has only a singularity at zero, cf.
Theorem 5.9 and Proposition 5.6, Gλ(xΣ − yΣ − rεν(yΣ)) is uniformly bounded in xΣ ∈
supp χi independent from yΣ and s and we find∫

Ui

χi(ϕi(u))
∣∣Gλ(ϕi(u)− yΣ − rεν(yΣ))

∣∣√detGi(u)du ≤ Ci,1.

Let now yΣ ∈ Ki and set v := ϕ−1
i (yΣ). Note that v belongs to the compact set ϕ−1

i (Ki).
Then by Proposition 3.20 there exists a constant C̃i > 0 such that

|ϕi(u)− yΣ− rεν(yΣ)| = |ϕi(u)−ϕi(v)− rεν(ϕi(v))| ≥ C̃i
(
|u− v|2 + |εr|2

)1/2 ≥ C̃i|u− v|

holds for all u ∈ ϕ−1
i (Ki).

We consider first the case d = 2. Here, the differentiable function Gλ has the asymp-
totics

Gλ(x) ∼ − 1

2π
ln
(
− i
√
λ|x|

)
for x→ 0

and

Gλ(x) ∼
√

1

−8πi
√
λ|x|

ei
√
λ|x|
(

1 +O
(

1

−i
√
λ|x|

))
for |x| → ∞,

cf. Proposition 5.6. So, if |ϕi(u) − ϕi(v) − εrν(ϕi(v))| ≥ 1
2
, then

∣∣Gλ(ϕi(u) − ϕi(v) −
εrν(ϕi(v)))

∣∣ is uniformly bounded and we find∫
{u∈Ui:|ϕi(u)−ϕi(v)−εrν(ϕi(v))|≥ 1

2}
χi(ϕi(u))

∣∣Gλ(ϕi(u)− yΣ − rεν(yΣ))
∣∣√detGi(u)du

≤ c

∫{
u∈ϕ−1

i (Ki):|ϕi(u)−ϕi(v)−εrν(ϕi(v))|≥ 1
2

} du ≤ cΛd−1

(
ϕ−1
i (Ki)

)
,

where Λd−1

(
ϕ−1
i (Ki)

)
is the Lebesgue measure of ϕ−1

i (Ki). On the other hand, if |ϕi(u)−
ϕi(v)− εrν(ϕi(v))| < 1

2
, it holds∣∣Gλ(ϕi(u)− yΣ − rεν(yΣ))

∣∣ ≤ c
∣∣ ln |ϕi(u)− yΣ − rεν(yΣ)|

∣∣ ≤ c| ln(C̃i|u− v|)|

90



by the above considerations. Now, choose R > 0 such that the bounded set
{
u ∈ ϕ−1

i (Ki) :
|ϕi(u)−ϕi(v)− εrν(ϕi(v))| < 1

2

}
is contained in B(v,R). Then using a transformation to

polar coordinates we get∫{
u∈Ui:|ϕi(u)−ϕi(v)−εrν(ϕi(v))|< 1

2

}χi(ϕi(u))
∣∣Gλ(ϕi(u)− yΣ − rεν(yΣ))

∣∣√detGi(u)du

≤ c

∫{
u∈ϕ−1

i (Ki):|ϕi(u)−ϕi(v)−εrν(ϕi(v))|< 1
2

} ∣∣ ln(C̃i|u− v|)
∣∣du

≤ c

∫
B(v,R)

∣∣ ln(C̃i|u− v|)
∣∣du = 2πc

∫ R

0

∣∣ ln(C̃ir)
∣∣rdr

≤ Ci,2

independent from yΣ and s. Thus, we find∫
Ui

χi(ϕi(u))
∣∣Gλ(ϕi(u)− yΣ − rεν(yΣ))

∣∣√detGi(u)du

=

∫{
u∈Ui:|ϕi(u)−ϕi(v)−εrν(ϕi(v))|≥ 1

2

} χi(ϕi(u))
∣∣Gλ(ϕi(u)− yΣ − rεν(yΣ))

∣∣√detGi(u)du

+

∫{
u∈Ui:|ϕi(u)−ϕi(v)−εrν(ϕi(v))|< 1

2

} χi(ϕi(u))
∣∣Gλ(ϕi(u)− yΣ − rεν(yΣ))

∣∣√detGi(u)du

≤ Ci,3.

In the case d ≥ 3, the asymptotics of Gλ are

Gλ(x) ∼ 1

2(2π)d/2
Γ

(
1− d

2

)(
|x|
−i
√
λ

)1−d/2
(
−i
√
λ|x|

2

)1−d/2

for x→ 0

and

Gλ(x) ∼ 1

(2π)d/2

(
|x|
−i
√
λ

)1−d/2√
π

−2i
√
λ|x|

ei
√
λ|x|
(

1 +O
(

1

−i
√
λ|x|

))
for |x| → ∞,

see Proposition 5.6. So, if |ϕi(u) − ϕi(v) − εrν(ϕi(v))| ≥ 1
2
, then

∣∣Gλ(ϕi(u) − ϕi(v) −
εrν(ϕi(v)))

∣∣ is uniformly bounded and we find∫{
u∈Ui:|ϕi(u)−ϕi(v)−εrν(ϕi(v))|≥ 1

2

} χi(ϕi(u))
∣∣Gλ(ϕi(u)− yΣ − rεν(yΣ))

∣∣√detGi(u)du

≤ c

∫{
u∈ϕ−1

i (Ki):|ϕi(u)−ϕi(v)−εrν(ϕi(v))|≥ 1
2

} du ≤ cΛd−1

(
ϕ−1
i (Ki)

)
,

where again Λd−1

(
ϕ−1
i (Ki)

)
is the Lebesgue measure of the compact set ϕ−1

i (Ki). On the
other hand, if |ϕi(u)− ϕi(v)− εrν(ϕi(v))| < 1

2
, it holds∣∣Gλ(ϕi(u)− yΣ − rεν(yΣ))

∣∣ ≤ c|ϕi(u)− yΣ − rεν(yΣ)|1−d ≤ c
(
C̃i|u− v|

)1−d
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and thus, using a transformation to spherical coordinates, we find∫
{u∈Ui:|ϕi(u)−ϕi(v)−εrν(ϕi(v))|< 1

2

}χi(ϕi(u))
∣∣Gλ(ϕi(u)− yΣ − rεν(yΣ))

∣∣√detGi(u)du

≤ c

∫{
u∈ϕ−1

i (Ki):|ϕi(u)−ϕi(v)−εrν(ϕi(v))|< 1
2

} (C̃i|u− v|)1−d
du

≤ c̃

∫ R

0

r1−d · rd−1dr ≤ Ci,4

independent from yΣ and s, where R > 0 is chosen in such a way that
{
u ∈ ϕ−1

i (Ki) :
|ϕi(u)− ϕi(v)− εrν(ϕi(v))| < 1

2

}
⊂ B(v,R). Thus, we find∫

Ui

χi(ϕi(u))
∣∣Gλ(ϕi(u)− yΣ − rεν(yΣ))

∣∣√detGi(u)du

=

∫{
u∈Ui:|ϕi(u)−ϕi(v)−εrν(ϕi(v))|≥ 1

2

} χi(ϕi(u))
∣∣Gλ(ϕi(u)− yΣ − rεν(yΣ))

∣∣√detGi(u)du

+

∫{
u∈Ui:|ϕi(u)−ϕi(v)−εrν(ϕi(v))|< 1

2

} χi(ϕi(u))
∣∣Gλ(ϕi(u)− yΣ − rεν(yΣ))

∣∣√detGi(u)du

≤ Ci,5.

Hence, we have shown in all cases∫
Ui

χi(ϕi(u))
∣∣Gλ(ϕi(u)− yΣ − rεν(yΣ))

∣∣√detGi(u)du ≤ max{Ci,1, Ci,3, Ci,5} =: Ci

and thus, the statement of this proposition follows from the considerations at the beginning
of this proof.
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[36] W. Kirsch and F. Martinelli. On the spectrum of Schrödinger operators with a random
potential. Comm. Math. Phys., 85(3):329–350, 1982.
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