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Abstract

This master’s thesis deals with good drawings of graphs, that is, drawings that are restricted

to certain crossing properties. In particular, edges in such drawings are allowed to have at most

one point in common, a mutual endvertex or a proper crossing.

We recall in detail some properties of such good drawings of the complete graph Kn on n

vertices and the relationship to rotation systems, that is, the cyclic order of all edges emanating

from the vertices in the graph drawing. This involves the notions of isomorphism and weak

isomorphism of graph drawings that are subsequently used to distinguish between essentially

different drawings of Kn under both definitions. We present an algorithm to enumerate all good

drawings of the complete graph D(Kn) for small n, and compile a database of all drawings under

both kinds of isomorphism.

Additionally, we take a closer look at a special kind of good drawings, so called thrackles.

These are good drawings where every pair of edges has exactly one point in common. It was

conjectured in the 1970’s by John Conway that such drawings cannot have more edges than

vertices; however, until today no proof could be given. We summarize most of what is known

about thrackles and give computational results similar to the ones concerning complete graphs,

including the fact that a possible counterexample to the conjecture of Conway would be required

to have at least 13 vertices.

At the end of the thesis, some further results on topics related to good drawings are presented.



Zusammenfassung

Diese Masterarbeit beschäftigt sich mit “Good Drawings” von Graphen, also Zeichnungen die

auf bestimmte Kreuzungseigenschaften beschränkt sind. Im Speziellen sind die Kanten solcher

Zeichnungen darauf beschränkt, maximal einen gemeinsamen Punkt aufzuweisen. Dieser kann

ein gemeinsamer Knoten oder eine Kreuzung der Kanten sein.

Die Eigenschaften solcher “Good Drawings” des vollständigen Graphen Kn auf n Knoten und

der Zusammenhang mit “Rotation Systems”, also der zyklischen Reihenfolge der ausgehenden

Kanten um die Knoten der Zeichnung des Graphen, werden im Detail zusammengefasst. Dies

beinhaltet die Begriffe des Isomorphismus und des schwachen Isomorphismus von “Good Draw-

ings”, welche dazu genutzt werden, um zwischen im wesentlichen unterschiedlichen Zeichnungen,

im Sinne der jeweiligen Definition, zu unterscheiden. Es wird ein Algorithmus angegeben, der alle

unterschiedlichen “Good Drawings” D(Kn) des vollständigen Graphen für kleine n enumeriert

und eine Datenbank aller Zeichnungen unter beiden Varianten des Isomorphismus erstellt.

Zusätzlich wird eine spezielle Art von “Good Drawings” genauer betrachtet, die sogenannten

“Thrackles”. Dabei handelt es sich um “Good Drawings”, bei denen jedes Paar von Kanten

genau einen Punkt gemeinsam haben muss. In den 1970er Jahren vermutete John Conway, dass

solche Zeichnungen nicht mehr Kanten als Knoten aufweisen können, jedoch gibt es bis heute

keinen Beweis dafür. Der Großteil der diesbezüglich bekannten Resultate wird zusammengefasst

und die durch ein Computerprogramm berechneten Ergebnisse, ähnlich denen des vollständigen

Graphen, werden präsentiert. Dies umfasst die Tatsache, dass ein mögliches Gegenbeispiel zur

Vermutung von Conway mindestens 13 Knoten haben muss.

Am Ende der Arbeit werden zusätzliche Ergebnisse, die in Zusammenhang mit “Good Draw-

ings” stehen, angeführt.
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1
Introduction

An abstract graph is a representation of objects called vertices that are related to each other.

This relation is indicated by connections between such vertices, called edges. While there are

many different kinds of graphs, for instance graphs with directed or weighted edges, the simplest

form is a set of vertices together with a set of undirected edges, that link pairs of vertices to

each other.

A common way of visualizing a graph is to draw the vertices as dots on a sheet of paper and

connect them by lines or curves that represent the edges. It is clear that an abstract graph

can be visualized like that in many different ways. The discipline of graph drawing examines

certain properties of such representations in the Euclidean plane. For reasons to be discussed in

a later chapter of this thesis, we will consider so-called good drawings of graphs that essentially

have the property that any pair of edges meets at most once, either in a common vertex or in a

proper crossing.

One important property of graph drawings is the way in which the drawn edges intersect each

other, and one of the most famous problems is to determine whether an abstract graph can be

drawn in such a way that none of its edges cross, i.e., determining whether a graph is planar.

A famous result by Kazimierz Kuratowski states that a graph is planar if and only if it does

not contain a subgraph that is a subdivision of either the complete graph K5 or the complete

bipartite graph K3,3. The ’only if’ part of the theorem is quite intuitive, since the said graphs

themselves cannot be drawn without crossings. The other part takes a bit more effort to prove.

Apart from the above result, there has been quite a lot of research concerning properties of

non-planar graphs. While it is computationally easy to verify whether a graph has a plane

drawing or not, it is incredibly hard to pin down the exact minimum number of crossings that

necessarily occur in any drawing of the graph.

– 1 –



1 Introduction

Definition 1.1. The crossing number cr(G) of a graph G is the minimum number of crossings

among all drawings of G.

The Hungarian mathematician Paul Turán first came to think of the crossing number of a

special class of graphs, namely complete bipartite graphs, while working in a Hungarian labour

camp during World War II. The following quote is from an article Turán himself wrote [67] and

describes the origin of the said problem:

In July 1944 the danger of deportation was real in Budapest, and a reality outside Budapest.

We worked near Budapest, in a brick factory. There were some kilns where the bricks were

made and some open storage yards where the bricks were stored. All the kilns were connected

by rail with all the storage yards. The bricks were carried on small wheeled trucks to the

storage yards. All we had to do was to put the bricks on the trucks at the kilns, push the

trucks to the storage yards, and unload them there. We had a reasonable piece rate for the

trucks, and the work itself was not difficult; the trouble was only at the crossings. The trucks

generally jumped the rails there, and the bricks fell out of them; in short this caused a lot of

trouble and loss of time which was rather precious to all of us (for reasons not to be discussed

here).

To formalize the situation in a mathematical way, consider the kilns to be one class of vertices

in a complete bipartite graph, and the storage yards to be the other. The edges connecting the

vertices of opposite classes represent the railway tracks and the goal is to minimize the number

of crossings among the edges in a drawing of the complete bipartite graph Km,n. Due to obvious

reasons, this special (and most prominent) variant of the crossing number problem is known as

the brick factory problem.

A first attempt to find a solution was made by Kazimierz Zarankiewicz [73]. He supposedly

gave a formula for any m,n to determine the minimum number of crossings in any drawing

of Km,n. His proof, however, contained a serious flaw pointed out by Kainen and Ringel (see

Guy [32], Erdős and Guy [20]). Still, his result is a valid upper bound for cr(Km,n).

Theorem 1.1 (Zarankiewicz). The crossing number cr(Km,n) of the complete bipartite graph

Km,n satisfies the following inequality:

cr(Km,n) ≤ bn2 cbn−1
2 cbm2 cbm−1

2 c

Theorem 1.1 is known to be valid since Zarankiewcz gave a construction to obtain exactly

that many crossings for any complete bipartite graph. Unfortunately, his attempts to show that

no other drawing can have fewer crossings have failed and the erroneous proof could not be

fixed until today. On the other hand, equality of the formula could be established for several

special cases, which also support the conjecture that in Theorem 1.1 indeed equality holds.

See Kleitman [41] who showed equality for min{m,n} ≤ 6, and also Vogtenhuber [68] and

Woodall [72] for further results.

– 2 –
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Conjecture 1.2 (Zarankiewicz). The crossing number cr(Km,n) of the complete bipartite graph

Km,n satisfies the following equality:

cr(Km,n) = bn2 cbn−1
2 cbm2 cbm−1

2 c

The equivalent problem for drawings of complete graphs is said to have its origins in a less

mathematical environment. Most resources credit the first examinations of complete graph

drawings with a minimal number of crossings to the British artist Anthony Hill. He experimented

with drawings for small n and came up with crossing-minimal examples for up to n = 9.

Together with Frank Harary, he later published a paper that also contained conjectured values

for the crossing number for n ≤ 10, where they also explicitly mentioned the case where edges

are represented by straight-line segments only. The first paper to be published mentioning a

conjecture similar to that of Zarankiewicz in the case of complete bipartite graphs was, however,

due to Guy.

Conjecture 1.3 (Guy [32], Harary and Hill [33]). The crossing number cr(Kn) of the complete

graph Kn satisfies the following equality:

cr(Kn) = Z(n) = 1
4bn2 cbn−1

2 cbn−2
2 cbn−3

2 c

While a general resolution of the Harary-Hill conjecture probably requires a great advance-

ment, there are certain classes of good drawings for which the statement could be verified.

Definitions 1.2 to 1.5 can e.g. be found in Ábrego et al. [1].

Definition 1.2. In a 2-page drawing of a graph all vertices are placed on a line and the edges

are, except for their endvertices, entirely contained in one of the halfplanes defined by that line.

Definition 1.3. In a cylindrical drawing of a graph, there are two concentric circles that host

all the vertices, and no edge is allowed to intersect these circles, other than at its endvertices.

Definition 1.4. A drawing is monotone if each vertical line intersects each edge at most once.

Definition 1.5. A drawing is x-bounded if by labelling the vertices v1, v2, ..., vn in increasing

order of their x-coordinates, for all 1 ≤ i < j ≤ n the edge vivj is contained in the strip bounded

by the vertical line that contains vi and the vertical line that contains vj .

Ábrego et al. [1] established that every 2-page drawing has at least Z(n) crossings. Later they

extended their result to a broader class of drawings (see [1]). They introduced the concept of

shellability and proved that for drawings with certain shelling properties Conjecture 1.3 holds.

Definition 1.6 (Ábrego et al., [1]). A drawing D of Kn is s-shellable if there exists a subset

S = {v1, v2, ..., vs} of the vertices and a region R of D with the following property. For 1 ≤ i <
j ≤ s, if Dij denotes the drawing obtained from D by removing v1, v2, ...vi−1, vj+1, vj+2, ..., vs,

then for all 1 ≤ i < j ≤ s, the vertices vi and vj are on the boundary of the region of Dij that

contains R.

– 3 –



1 Introduction

Theorem 1.4 (Ábrego et al., [1]). Let D be an s-shellable drawing of Kn , for some s ≥ bn/2c.
Then D has at least Z(n) crossings.

It was shown that all of the different types of drawings from Definitions 1.2 to 1.5 are indeed

shellable for some s ≥ bn2 c. This settles the Harary-Hill conjecture for these restricted classes of

good drawings.

Theorem 1.5 (Ábrego et al., [1]). The crossing number of 2-page, cylindrical, monotone, and

x-bounded drawings is at least Z(n).

An interesting observation concerning shellability is that it is a property determined solely

by the circular order of the edges emanating from the vertices in the drawing. This means

that every realizable good drawing with the same rotation system has the same properties

concerning shellability 1. Further, see [8] where an interesting relationship between shellability

and monotonicity of drawings is given.

1.1 Rotation Systems

Throughout this thesis we will make use of the circular order of edge incidences because it does

not only determine shellability, but also has an interesting relation to crossing properties of some

classes of graphs. We will denote this information as the rotation system of a graph; however,

terminology is not consistent throughout literature and some authors refer to it as the “rotation

scheme”.

We provide a summary of the historical usage of rotation systems, as defined in [48]. Later in

this work, we adjust it slightly in order to fit the needs for drawings of graphs, particularly in

the plane.

Definition 1.7 ([48, p. 90]). For each vertex v ∈ V (G) of a graph G let πv denote a cyclic

permutation of edges incident with v. We may call such an ordering the rotation at v and denote

the collection of rotations at each vertex of G by π = {πv : v ∈ V (G)}, a rotation system for G.

1.1.1 Embedding graphs in surfaces

Rotation systems were first used by Heffter [38] in 1891 for embedding graphs in orientable

surfaces. Embedding in this context means to draw the graph on a surface without crossings.

We can distinguish between two kinds of surfaces, namely orientable and non-orientable ones.

Informally speaking, a surface is orientable if an object cannot be moved around on the surface

in a closed curve such that it ends up at its starting point looking like its mirror image. If the

said transformation is possible, we call such a surface non-orientable. For orientable surfaces the

genus is the number of handles one needs to attach to the sphere to obtain its homeomorphism

1 Personal communication: Oswin Aichholzer, Thomas Hackl, Alexander Pilz, Birgit Vogtenhuber

– 4 –
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type. The genus of a graph is the minimum genus of a surface where this graph can be embedded

without crossings. Examples of orientable surfaces are the sphere with genus 0 and the torus with

genus 1. The projective plane and the Klein bottle are, for instance, non-orientable surfaces both

having non-orientable genus 1. Definitions in the non-orientable case are similar. For details

refer to [31]. Heffter could show that the genus γ(Kn) of the complete graph on n vertices obeys

the following inequality for all n:

γ(Kn) ≥
⌈

(n− 3)(n− 4)

12

⌉
(1.1)

Further, he could prove that for n ≤ 12 Equation 1.1 is in fact an equality, and conjectured this

to be true for all n; however, it was not until 1968 that a proof could be established [61].

Theorem 1.6 (Ringel and Youngs, 1968). For n ≥ 3 the genus of the complete graph on n

vertices γ(Kn) = d(n− 3)(n− 4)/12e.

Note that a similar result could be established for the non-orientable genus of Kn [57], namely

γ̄(Kn) = d(n−3)(n−4)/6e. Furthermore, Ringel has also used rotation systems to prove similar

results for the complete bipartite graph Km,n [59].

Theorem 1.7 (Ringel, 1965). For all m,n ≥ 2 the orientable genus γ(Km,n) = d(m − 2)(n −
2)/4e, and the non-orientable genus γ̄(Km,n) = d(m− 2)(n− 2)/2e.

Throughout literature (see e.g. [31, 48, 66]) the usage of rotation systems is independently

credited to Edmonds [18] in 1960. He used the last sentence of the following theorem explicitly.

Theorem 1.8 ([48]). Suppose that G is a connected multigraph with at least one edge that is

cellularly embedded in an orientable surface S. Let π be the rotation system of this embedding,

and let S ′ be the surface of the corresponding 2-cell embedding of G. Then there exists a home-

omorphism of S onto S ′ taking G in S onto G in S ′ (in such a way that we induce the identity

map from G onto its copy in S ′). In particular, every cellular embedding of a graph G in an

orientable surface is uniquely determined, up to homeomorphism, by its rotation system.

Speaking of homeomorphism, it is convenient to define equivalence for two rotation systems

π and π′, and finally state an interesting corollary (also presented in [48]).

Definition 1.8. The rotation systems π = {πv|v ∈ V (G)} and π′ = {π′v|v ∈ V (G)} are said to

be equivalent if they are either the same or for each vertex v ∈ V (G) we have that π′v = π−1
v .

Corollary 1.9. Suppose that we have a cellular embedding of a connected multigraph G in

orientable surfaces S and S ′ with rotation systems π and π′, respectively. Then there is a

homeomorphism S → S ′ whose restriction to G induces the identity if and only if π and π′ are

equivalent.

It should be remarked here that the notion of rotation systems can be extended in order to

adapt the preceding theorem and corollary for the case of non-orientable surfaces. This was first

achieved by Ringel [60] in 1977 and Stahl [63] in 1978.

– 5 –
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1.1.2 The map colour theorem

In 1890 Heawood conjectured an interesting relation between the genus γ(S) of an orientable

surface S and its chromatic number χ(S). The latter is defined as the maximum chromatic

number of any graph embeddable in S, where the chromatic number of a graph is the minimum

number of colours required in order to assign colours to each vertex of the graph such that no

adjacent vertices have the same colour. Evidently, it suffices to only consider simple graphs since

replacing multiple edges by a single one does not alter the chromatic number of the underlying

graph.

While many special cases could be proven by various authors (including Ringel), it was not

until 78 years later that Ringel and Youngs could, with extensive use of rotation systems,

establish Heawood’s conjecture as a theorem.

Theorem 1.10 (Ringel and Youngs, [61]). For any orientable surface Sγ with orientable genus

γ ≥ 1 the chromatic number χ(Sγ) = b(7 +
√

1 + 48γ)/2c.

Interestingly, the above theorem states that γ ≥ 1. This explicitly excludes planar graphs

embedded in the sphere S0, while setting γ = 0 yields a chromatic number of 4 by the formula in

Theorem 1.10. This case is known as the famous Four Colour Theorem and was finally verified in

1976 by Appel and Haken [5] with heavy assistance of computers. Based on the same approach,

a simpler proof was published in 1997 by Robertson et al. [62]; however, it is still computer

assisted.

In Theorem 1.10 the genus γ can be replaced by the Euler characteristics c of a surface in order

to also include non-orientable surfaces. With c = V − E + F , where V , E, and F denote the

number of vertices, edges, and faces of a graph embedded in an arbitrary surface, respectively,

we get the following equation valid for all surfaces, except for the Klein bottle.

Theorem 1.11 (Ringel and Youngs, [61]). For any surface Sc with Euler characteristics c,

except for the Klein bottle, the chromatic number χ(Sc) = b(7+
√

49− 24c)/2c. The Klein bottle

N1 has chromatic number χ(N1) = 6.

The special case of the Klein bottle was already settled by Franklin [23] in 1934. He could

prove that for every embedding of a graph in the Klein bottle, six colours suffice.

1.1.3 Graphs in the plane

Apart from being useful for characterizing surfaces, rotation systems have (more recently) also

been used specifically for graphs in the plane (or, equivalently, the sphere).

Donafee and Maple [17] presented an algorithm to determine planarity of a graph and a

given rotation system. In many applications it is of advantage that their method also considers

the circular ordering of edges around each vertex (e.g. genetics, VLSI, communication design,

network optimization). Additionally, the algorithm is also valid for non-simple graphs, which

many others are not.

– 6 –
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Definition 1.9. The crossing number cr(G) of a graph G is the minimum number of edge

crossings in any drawing of G in the plane.

It is known since the 80’s that the problem of determining cr(G) of a graph G is NP-

complete [27], and in 2008 Pesmajer et al. [55] could show that it still remains to be NP-complete

for graphs with fixed rotation systems. Moreover, the same is true for another interesting prob-

lem.

Definition 1.10. A graph G is said to be 1-planar if there exists a drawing of G in the plane

such that each edge is crossed at most once.

NP-completeness of the problem of testing 1-planarity was shown by Korzhik and Mohar [42],

and Auer et al. [7] gave a proof that the situation remains the same given rotation systems. Both

results are interesting considering that simply testing planarity is well-known to be possible in

linear time. Additionally, Auer et al. [7] showed that the crossing number problem for 1-planar

graphs remains NP-complete even given a fixed rotation system.

For the previously presented problems, the use of rotation systems made no difference in terms

of complexity; however, for upward planarity it does.

Definition 1.11. A directed graph G is upward planar if it can be drawn in the plane without

crossings and in such a way that the curves representing the edges of G are monotonically

increasing in y-direction.

It is known to be NP-complete to test upward planarity [28]. Given a rotation system this

question can be answered in linear time [11,16].

1.2 Further Problems Related to Crossing Properties

Aside from relaxing planarity by allowing each edge to be crossed at most once, there are many

other problems concerning edge crossings that have been considered.

One among these is the problem of determining the number of disjoint edges, meaning pairs

of arcs drawn in such a way that they do not share a point, in good drawings of the complete

graph D(Kn). A first result was published by Pach, Solymosi and Tóth [50] and stated that the

number of disjoint edges in any D(Kn) is Ω(log(n)1/6). Pach and Tóth [53] improved this bound

to Ω(log(n) /log(log(n))), and subsequently posed the problem whether it is true that there

exists a constant c > 0, such that every good drawing of the complete graph with n vertices has

at least nc disjoint edges (see Problem 4 in Chapter 9 of [13]). The question was first answered

in the affirmative by Suk [64] in 2012. Later Fulek and Ruiz-Vargas [26] gave a simpler proof of

the same result that the number of disjoint edges in any D(Kn) is Ω(n1/3).

A similar problem with respect to crossing properties of complete graph drawings is presented

in the following. An edge that is not properly intersected by any other edge of the drawing

D(Kn) is called uncrossed or unavoidable. The latter term is appropriate because such an edge
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is necessarily part of any maximal planar subdrawing of D(Kn). Harborth and Mengersen [35]

showed that for n ≤ 7 in any good drawing of the complete graph there exist uncrossed edges.

See Table 1.1 for the exact minimum number of uncrossed edges h(n) in any D(Kn).

n 2 3 4 5 6 7 ≥ 8

h(n) 1 3 4 4 3 2 0

Table 1.1: Minimum number of unavoidable edges in any D(Kn).

As the last entry in the above table suggests, there is always a D(Kn) for n ≥ 8, where each

edge is crossed at least once. At first this may seem easy to achieve, but due to the restrictions

imposed on the way edges are allowed to cross in good drawings, one needs to make such a

construction with care. For details refer to Section 6.6.

Aside from investigating such planar structures in graph drawings, there is another class of

graphs with certain well-defined crossing properties of the edges that deserves thorough exam-

ination. Namely, graphs that can be drawn in the plane in such a way that each pair of edges

crosses or has a vertex in common. This can be regarded as the inverse of planarity. A long

standing conjecture by John H. Conway (see [71]) states that any such good drawing can have

at most as many edges as vertices. Despite a lot of research in this direction, the conjecture

could neither be proved nor disproved since it was first stated in the 1960’s. For further details

refer to Chapter 5.

1.3 Outline of the Thesis

We start in Chapter 2 by recapitulating basic graph theoretic and topological preliminaries that

are required throughout this thesis. Notations therein are taken largely from standard textbooks

on graph theory and are partly adapted when considered adequate.

In Chapter 3 we cover properties of good drawings in detail and introduce rotation systems in

this context. Afterwards we establish the connection between the rotation system of drawings

of the complete graph and their crossing properties, hence, the weak isomorphism of drawings.

We also describe an extended version of a rotation system to further apply to a more general

form of isomorphism that takes the order of crossings along the edges into account.

The information elaborated is then used in the practical part of this thesis (Chapter 4). We

describe an algorithm to enumerate all good drawings of Kn for small n under both forms of

isomorphism defined in the preceding chapter. We present the results of the implementation of

the algorithm together with a first attempt to visualize the obtained drawings.

Chapter 5 is dedicated to Conway’s thrackle conjecture and summarizes most of what is

known to date. We present results achieved so far towards resolving the conjecture and give

insight in what is known about the properties of counterexamples, in the case that one does

exist. We use an algorithm to obtain all non-isomorphic thrackle drawings, similarly used for

enumerating good drawings of the complete graph. The algorithm is further adapted to only
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enumerate certain kinds of graphs that are drawn as thrackles in order to be able to verify that

the conjecture is true for n ≤ 12.

In Chapter 6 we deal with topics related to the contents of the thesis that were not covered in

detail while this thesis was conducted. Most of the content provided originated from a workshop

held in Ratsch in fall 2013. The following people were involved in work on the presented

topics: Oswin Aichholzer, Luis Felipe Barba, Thomas Hackl, Michael Hoffmann, László Kozma,

Vincent Kusters, Alexander Pilz, Raimund Seidel, Birgit Vogtenhuber, Emo Welzl, and Manuel

Wettstein.

The final chapter summarizes the main contents of this work and recalls open problems that

can be subject of future work.
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2
Preliminaries

This chapter recapitulates basic definitions and notations that are frequently used throughout

this thesis.

2.1 Basic Definitions

Basic definitions are largely taken from [12].

Definition 2.1 ([12, p. 2]). A graph G is an orderer pair (V (G), E(G)) consisting of a set V (G)

of vertices and a set E(G) of edges, together with an incidence function ψG that associates with

each edge of G an unordered pair of (not necessarily distinct) vertices of G.

Definition 2.2 ([12, p. 2]). We denote the order, i.e., the number of vertices, and the size, i.e.

the number of edges, of a graph G by n = v(G) = |V (G)| and m = e(G) = |E(G)|, respectively.

Definition 2.3 ([12, p. 2]). If e is an edge and u and v are vertices such that ψG(e) = {u, v},
then e is said to join u and v, and the vertices u and v are called the ends of e.

Note that Definition 2.1 admits parallel edges, that is, edges that join the same pair of vertices,

and edges joining one and the same vertex, so called loops. However, it is often meaningful to

only consider a more restricted class of graphs.

Definition 2.4 ([12, p. 3]). A simple graph G is a graph without parallel edges and loops.

Definition 2.5 ([12, p. 5]). A graph G is connected if, for every partition of its vertex set into

two nonempty sets X and Y , there is an edge with one end in X and one end in Y ; otherwise

G is disconnected.
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Figure 2.1 shows several examples of graphs. The one to the left is not simple because it has

parallel edges joining the vertices u and v. Additionally, there is a loop at w. The graph in

the centre and the graph to the right, on the other hand, are both simple. Also, despite being

drawn in different ways, these two representations depict the same underlying graph.

w

u

v

Figure 2.1: Three different graphs on the same set of five vertices.

Although graphs are a much more abstract concept than simple pencil drawings on a sheet of

paper, many definitions are inspired by this way of thinking about graphs.

Definition 2.6 ([12, p. 3]). The ends of an edge are said to be incident with the edge, and vice

versa.

Definition 2.7 ([12, p. 3]). Two vertices which are incident with a common edge are adjacent,

as are two edges which are incident with a common vertex.

Definition 2.8 ([12, p. 3]). Two distinct adjacent vertices are neighbours and the set of neigh-

bours of a vertex v is denoted by NG(v).

2.2 Special Classes of Graphs

The most frequently used graph throughout this work is a graph where each vertex is joined to

any other vertex by exactly one edge.

Definition 2.9 ([12, p. 4]). A complete graph Kn is a simple graph on n vertices in which any

two vertices are adjacent.

An apparent reason why such graphs are of importance is that any other simple graph on n

vertices is clearly a subgraph of Kn.

Definition 2.10 ([12, pp. 4,10]). A k-partite graph is one whose vertex set can be partitioned

into k subsets, or parts, in such a way that no edge has both ends in the same part. Such a

graph is complete if any two vertices in different parts are adjacent. In particular, if k = 2 with

a partition into two vertex sets, we call them bipartite or complete bipartite graphs.

We now define some other classes of graphs that frequently occur throughout this thesis.

Definition 2.11 ([12, p. 4]). A star S is a complete bipartite graph Km,n with either m = 1

or n = 1. We call a star with k edges a k-star and denote it by Sk.
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Definition 2.12 ([12, p. 4]). A path P is a simple graph whose vertices can be arranged in

a linear sequence in such a way that two vertices are adjacent if they are consecutive in the

sequence, and are nonadjacent otherwise. We call a path on k edges a k-path and denote it

by Pk.

Definition 2.13 ([12, p. 4]). A cycle C on three or more vertices is a simple graph whose

vertices can be arranged in a cyclic sequence in such a way that two vertices are adjacent if and

only if they are consecutive in the sequence. We call a cycle on k vertices a k-cycle and denote

it by Ck.

Definition 2.14 ([12, p. 99]). A graph that does not contain a cycle is called acyclic. A tree T

is a connected acyclic graph.

In a tree any two vertices are connected by exactly one unique path. Since any graph with

a minimum degree of at least two contains a cycle, any tree must have at least one vertex of

degree one. Moreover, the number of edges in a tree is well defined.

Theorem 2.1 ([12, p. 100]). If T is a tree, then e(T ) = v(T )− 1.

Definition 2.15 ([12, p. 46]). A wheel W is obtained by joining a single vertex v to all vertices

of a k-cycle Ck. Edges joining v to Ck are spokes and we call a wheel with k spokes a k-wheel

and denote it by Wk.

2.3 Graph Drawings and Planar Graphs

Since it generally gives some insight to think about graphs as drawn on a sheet of paper, and

a large part of this thesis deals with such drawings, it is required to give some more precise

definitions on this topic.

Definition 2.16 ([48, pp. 4-5]). In a drawing of a graph G vertices are represented by points

in the plane and edges are simple (polygonal) curves joining the points corresponding to their

ends. Curves representing the edges are allowed to cross each other, but their interiors do not

contain any vertices of the graph.

The above definition clearly allows to draw one and the same abstract graph in arbitrarily

many different ways. However, a natural endeavour when illustrating a graph in such a way is

probably avoiding edges that cross each other, if that is somehow possible.

Definition 2.17 ([12, pp. 243-244]). A graph is said to be embeddable in the plane, or planar,

if it can be drawn in the plane so that its edges intersect only at their ends. Such a drawing is

called a plane embedding and will often be referred to as a planar graph.

When talking about drawings of graphs in the plane, it is necessary to point out some intu-

itively obvious things, that; however, are quite delicate to prove rigorously.
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Theorem 2.2 (Jordan Curve Theorem, [48, p. 25]). Any simple closed curve C in the plane

divides the plane into exactly two arcwise connected components. Both of these regions have C

as the boundary.

Theorem 2.3 (Jordan-Schönflies Theorem, [48, p. 25]). If f is a homeomorphism of a simple

closed curve C in the plane onto a closed curve C ′ in the plane, then f can be extended to a

homeomorphism of the entire plane.

The meaning of the Jordan Curve Theorem is obvious. Whenever we draw a simple closed

curve on a sheet of paper, it will partition the paper into two parts, the inside and outside,

where the closed curve serves as the boundary of the partition. The Jordan-Schönflies Theorem

is fundamental for defining isomorphism of graph drawings as we will do later on. In other words

it states that any simple, closed curve in the plane is homeomorphic to the unit circle.
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3
Good Drawings and Rotation Systems

The general definition of graph drawings (Definition 2.16) clearly has one big downside. It makes

no restrictions on how complicated one can make a drawing. As an example see Figure 3.1. All

three pictures show drawings of the complete graph K4. The graph to the left, although being

an absolute valid graph drawing, seems to be unnecessarily complicated. One and the same pair

of edges crosses many times which can easily be avoided as illustrated in the centre drawing;

however, the arcs representing the edges still appear to be too arbitrary. In this case even

straight line segments suffice to capture the key property of the edges drawn red and green,

namely that they cross.

Figure 3.1: A drawing, good drawing, and geometric drawing of K4.

The simplification of reducing the number of crossings on the pair of edges from above might

require some more justification. An important observation is that this can, in fact, always be

done. Additionally, it can be guaranteed that such a redrawing does not produce additional

crossings on other edges. It is therefore meaningful to define such restricted drawings of graphs.
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Definition 3.1. A good drawing D(G) of a graph G is a drawing of the graph where each

vertex is represented by a distinct point in the plane (or equivalently on the sphere) and edges

are drawn as simple arcs connecting the corresponding endpoints (vertices). Additionally, no arc

is allowed to pass through any vertex except for its endpoints, and every pair of arcs is allowed

to cross at most once, either at their common endpoint, or in the interior of the edges.

In Figure 3.2 invalid crossings in good drawings are depicted. An edge drawn such that

it crosses itself (Figure 3.2(a)) contradicts that arcs are required to be simple. Furthermore,

incident edges are clearly not allowed to cross again (Figure 3.2(b)) because any pair of arcs can

have at most one point in common, whether it is an endpoint or a proper crossing (Figure 3.2(c)).

(a) Self-crossing edge. (b) Incident edges. (c) Double-crossing.

Figure 3.2: Forbidden crossings in good drawings.

We should also point out some subtleties concerning degenerate drawings such as arcs drawn

in a way that they “touch” in one point (Figure 3.3(a)), but do not properly intersect each other.

Meaning, they have a point in common, but one edge does not continue on the opposite side of

the other edge right after this point. Furthermore, we restrict vertices to not lie on any arcs.

This, of course, excludes endpoints of the arcs and the corresponding vertices (Figure 3.3(b)).

(a) Edges touching, but not properly
crossing.

(b) A vertex lying in the interior of
an edge.

Figure 3.3: Degenerate cases forbidden in good drawings.

All these cases would invalidate many of the results presented in the following; however, apart

from convenience there are problems concerning graph drawings where the said restrictions

are very appropriate. Consider, for instance, the crossing number problem. In short, we are

interested in a drawing of an abstract graph, that minimizes the overall number of edge crossings.
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Suppose we have any of the cases shown in Figure 3.2. We can always redraw them as done in

Figure 3.4.

In general, it is possible to redraw any edges that intersect multiple times in such a way that

they cross at most once. For details on how such redrawings can be done, see [25].

Observation 3.1. Any drawing of a graph G with pairs of edges mutually intersecting more

than once, can be redrawn as a good drawing of the same graph with at most as many crossings

as the original one.

(a) Redrawing a self-crossing edge. (b) Redrawing incident edges. (c) Redrawing a double-crossing.

Figure 3.4: Forbidden crossings made good.

For the sake of clarity, there are a few things to note about the above definition. Throughout

literature the used terminology is by far not unique. In their joint work Pach and Tóth use

”topological graph” in order to denote a good drawing in the sense of Definition 3.1 (e.g. [50]

and [53]). Jan Kynčl uses a similar term, but makes a difference between ”topological graphs”

and ”simple topological graphs”. Where the first does not restrict the number of crossings a pair

of edges can have, the latter is precisely the same as a good drawing used here. Other authors

use, for simplicity, only the word “drawing” (see e.g. [34] and [35]), but it seems appropriate to

keep the terminology used, for instance, by Paul Erdős for our purpose (e.g. [20], [6], and [3]).

The above implies that, for problems such as determining the crossing number of a graph G,

it suffices to only determine the crossing number of all good drawings of the graph.

However, as in the geometric case, every good drawing of the complete graph on any 4-tuple

of vertices admits at most one crossing. This immediately gives that the maximum number of

crossings in any D(Kn) is
(
n
4

)
.

3.1 Comparison to Geometric Drawings

Apparently, geometric drawings of graphs are a special case of good drawings. The latter clearly

give much more freedom in the way a graph can be drawn. Several well known results for

straight-line drawings do either not apply for good drawings, or are incredibly hard to show.

Consider a geometric drawing D̄(G) of a simple graph G. It is easy to see that in case G is

not a complete graph the drawing can be extended to a drawing D̄(Kn) by adding the missing
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edges. Note that there is no ambiguity in the way these edges can be drawn. The newly added

edges are simply the straight-line segments connecting non-adjacent vertices in G. For good

drawings; however, such an extension to a good drawing of the complete graph is not always

possible.

u v

u v

Figure 3.5: Two good drawings that are not extendible to good drawings of the complete graph. The graph
on the right is taken from [43].

Figure 3.5 depicts two such examples, where the one to the right was published by Jan

Kynčl [43]. In both cases it is not possible to connect the vertices u and v by an edge while

preserving the properties of good drawings.

In a maximal plane drawing of a graph no further edge can be added without violating

planarity. In the case of straight line drawings, it is well known that every maximal plane

drawing has exactly 3n − 3 − h edges, where h is the number of vertices on the convex hull.

For a triangular hull (triangular outer face), this gives 3n − 6 edges; however, the example in

Figure 3.6 shows that this is in general not the case with good drawings. For this graph on

n = 5 vertices, one needs to remove either of the two edges drawn with a bend. But there is

also the choice of either drawing the two dashed lines, or the one that is intersected by them, in

order to obtain a maximal plane graph. These two graphs clearly differ in the number of edges.

A maximum plane drawing of a graph has at least as many edges as any other maximal plane

drawing of the same graph.

Figure 3.6: Maximal plane drawings having a different number of edges.

In Chapter 4 we will present some problems related to good drawings of complete graphs. For

some of them, the solutions to the corresponding problems in the straight-line case are very easy
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to solve or even trivial, whereas for good drawings, they turn out to be incredibly difficult.

3.2 Isomorphism of Graph Drawings

It is natural to ask for a way to distinguish between different drawings of graphs. To make

this clear, consider the examples in Figure 3.7. All three are drawings of one and the same

abstract graph, namely K5; however, informally speaking, nobody would say that these are

equal. Comparing the graph on the left and the others, it is obvious that these are quite different

representations. First of all the number of edges crossing between the graphs is different. Thus,

the plane is subdivided into a different number of cells. But what about the one in the centre

and that to the right? They both have exactly one crossing. But obviously there are differences.

The number of bent edges, for instance, is not the same. Furthermore, the crossing appears

between straight-line edges in the one drawing and between curvy edges in the other. However,

they do have quite a lot in common. Consider the labels placed in the cells of Figures 3.7(b)

and 3.7(c). They are chosen in such a way that it is easy to see that both drawings give a

decomposition of the plane with the same facial structure. Each cell is bounded by the same

cells in the same cyclic order. We can also map vertices onto each other such that they are

incident to the same cells, also in the same cyclic order.

(a) D(K5) with five crossings.

1

2

3 4

7

5 6

8

(b) D(K5) with one crossings.

1

2

3 4

7

5 6

8

(c) D(K5) with one crossings.

Figure 3.7: Different drawings of K5.

In order to be more precise and make the above differences clearer, we define two forms of

isomorphism for good drawings of graphs.

Definition 3.2 ([45]). Two good drawings D(G) and D(H) are said to be weakly isomorphic if

there exists an incidence preserving one-to-one correspondence between V (G), E(G) and V (H),

E(H) such that two edges of D(G) cross if and only if the corresponding two edges of D(H) do.

Definition 3.3 ([45]). Two good drawings D(G) and D(H) are said to be isomorphic if there

exists a homeomorphism of the sphere which transforms D(G) into D(H).

– 18 –



3 Good Drawings and Rotation Systems

As we will see shortly, for graphs with fewer than six vertices, weak isomorphism as defined

above implies the isomorphism. For D(Kn) with n ≥ 6 we will see in Section 4.1.4 examples of

drawings that are weakly isomorphic, however, not isomorphic.

In Section 3.3 we will additionally give an equivalent definition for both kinds of isomorphism

in terms of rotation systems.

3.3 Rotation Systems

Rotation systems as defined in Chapter 1 were used for problems concerning the crossing-free

embedding of abstract graphs on arbitrary surfaces. We will give a similar definition for good

drawings in the plane (or on the sphere) that will, as we see later, contain information about

the structure of the drawing. Since terminology is not always consistent throughout literature,

we will denote the following as a rotation system to clearly distinguish between the two different

contexts.

Definition 3.4 ([43]). The rotation of a vertex v in a good drawing D(G) is the clockwise

cyclic order of the edges incident with v. The rotation ρ(v) of a vertex v is represented by a

cyclic sequence of the vertices adjacent to v. The rotation system R(D(G)) of D(G) is the set

of rotations of all its vertices.

As we will see in the following, it makes sense to extend the above definition to capture the

properties of crossings in good drawings.

Definition 3.5 ([43]). The extended rotation system Re(D(G)) of a good drawing of a graph

is the set of all rotations of the vertices and crossings of D(G). Similar as for the rotation of

vertices, the rotation of a crossing represents the cyclic order of the four segments of the two

edges involved in the crossing.

We should note here that every crossing can have exactly two different rotations. Furthermore,

we say that two (extended) rotation systems of good drawings of the same abstract graph G

are inverse if the rotations of each vertex (and crossing) of the two drawings are inverse cyclic

permutations. This is, for instance, the case for the drawings of K4 depicted in Figure 3.8. The

rotation systems of the drawing to the left and those of the other two drawings are inverse.

It is also easy to verify that all drawings are isomorphic. The same pair of edges crosses, and

all drawings exhibit the same facial structure. While the drawing in the centre appears to be

quite different, the picture to the right is simply the mirror image of the leftmost one. In this

case isomorphism is obvious, since when seen in a mirror, the only thing changing is the cyclic

direction in which the rotations are considered.

In fact, Kynčl [44] [43] showed that Definition 3.3 can also be expressed in terms of extended

rotation systems.

Definition 3.6 ([43]). Two good drawings D(G) and D(H) of connected graphs G and H are

isomorphic if:
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1 3

2 4

2

3

14

13

4 2

Figure 3.8: Good drawings of K4 with inverse rotation systems.

(1) D(G) and D(H) are weakly isomorphic.

(2) the order of the crossings along each edge in D(G) is the same as the order of the crossings

along the corresponding edge in D(H).

(3) the extended rotation systems Re(D(G)) and Re(D(H)) are either the same or inverse.

The above implies that for each face of D(G) there is a corresponding face in D(H), and the

vertices and crossings appear in the same or inverse cyclic order when traversing the boundaries

of the faces. As a consequence of the Jordan-Schönflies Theorem (Theorem 2.3), Definitions 3.3

and 3.6 are equivalent. It should be mentioned here that for simplicity, the above definition is

restricted to drawings with only one connected component. Although Kynčl [43] gave a similar

definition for good drawings with several connected components, Definition 3.6 is adequate here,

since we will only consider connected graphs within this context.

3.3.1 Rotation Systems for Drawings of the Complete Graph

For good drawings of complete graphs, the rotation systems capture even more information

regarding isomorphism. Pach and Tóth [54] proved that two good drawings of the complete

graph on n vertices D(Kn) with the same rotation systems are weakly isomorphic. Gioan [29]

showed that the converse is also true, namely that weakly isomorphic graphs have either the

same or inverse rotation systems. We recall the proof of the following proposition as presented

in [44].

Proposition 3.2 ([44]).

(i) Two good drawings of the complete graph with the same rotation system are weakly iso-

morphic.

(ii) If two good drawings of the complete graph are weakly isomorphic, then their rotation

systems are either the same or inverse.
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Proof. Clearly, both parts of the proposition hold for D(Kn) with n ≤ 3. We will start by

proving the first part for n ≥ 4.

(i) The crossing properties of a good drawing of the complete graph D(Kn) are fixed by the

crossing properties of all drawings D(K4) of complete subgraphs on four vertices. Thus it suffices

to show that whether a pair of edges of D(K4) crosses or not is determined by its rotation system

R(D(K4)). For this purpose we consider labelled graphs and notice that there are exactly four

non-isomorphic good drawings of K4. They are depicted in the first row of Figure 3.9. Each

drawing can be represented by two mutually inverse rotation systems (see the drawings in the

second row). It is also easy to verify that two different rotation systems that are not mutually

inverse are rotation systems for two non-isomorphic graphs.

This proves part one of Proposition 3.2 and the second part for n = 4, since all four non-

isomorphic D(K4) are shown and their rotation systems are fixed, except for inversion when for

instance considering their mirror images.

(ii) We show part two for n ≥ 5. The idea is to prove the result for n = 5 and later extend it

to good drawings of complete graphs with an arbitrary number of vertices.

In Figure 6.1 on page 57 all five non-isomorphic good drawings of K5 can be seen (see also [44]).

All five drawings have different pairs of edges crossing, this again implies that for n = 5 all weakly

isomorphic drawings are also isomorphic.

Consider now a good drawing A = D(Kn) with vertices {1, 2, ..., n} and n ≥ 6. Suppose we

have two five vertex subgraphs of A, say B and C with vertex sets {1, 2, 3, 4, 5} and {1, 2, 3, 4, 6},
respectively. Then the rotation system R(B) uniquely determines the rotation system R(C).

Without loss of generality, let the rotation of vertex 1 in B be ρ(1) = (2, 3, 4, 5). This implies

that the rotation of 1 in the four vertex subgraph that both B and C have in common (the

subgraph on vertices {1, 2, 3, 4}) is (2, 3, 4). This is, however, only the case in one of the two

possible, mutually inverse rotation systems of C. Thus the rotation of vertex 1 in C is fixed, as

well as the whole rotation system of C.

It is easy to see that we can repeatedly use the above argument and obtain that the rotation

system of every complete five vertex subgraph of A is fixed. So finally, we need to argue that

this uniquely determines the rotations of every vertex in A. However, the cyclic order of all

three element subsets in the rotation of a given vertex is fixed, which implies that the cyclic

order of the entire rotation is unique.

We have shown that any good drawing of Kn can only have two mutually inverse rotation

systems, and so the rotation systems of any two weakly-isomorphic drawings are either the same

or inverse.

The first part of the proof contains a rather obvious property that is still worth to be men-

tioned. For each vertex of K4, there are two possible rotations, so in total there are sixteen

possible rotation systems. However, each of the four non-isomorphic D(K4) gives rise to only

two rotation systems (mutually inverse ones). So eight of the possible rotation systems are in

fact not rotation systems of good drawings of K4. Moreover, if a rotation system contains such

a non-realizable rotation system as the rotation system of a four-vertex subset, then the entire
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(a) G1

1

4
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(b) G2

3 4

2 1

(c) G3

3

4

2

1

(d) G4

3

2 1

4

(e) G̃1

3 4

21

(f) G̃2

34

21

(g) G̃3

3

4

2

1

(h) G̃4

Figure 3.9: The eight valid rotation systems of K4.

rotation system is not realizable.

Actually, it is possible to characterize the rotation systems that are realizable as good drawings

of the complete graph on four vertices by a simple parity condition. The rotation at each vertex

i is represented as a triple ρ(i) = (j, k, l) with i ∈ {1, 2, 3, 4} and j, k, l ∈ {1, 2, 3, 4} \ i such

that j = min {j, k, l}. The rotation ρ(i) is called negative if k > l, and positive otherwise. By

examining all eight valid rotation systems in Table 3.1, one can verify that a rotation system

is a rotation system of a good drawing of K4 if and only if the number of negative rotations is

even.

D(K4) R(D(K4)) R(D(K4))

G1 ((2,4,3),(1,3,4),(1,4,2),(1,2,3)) ((2,3,4),(1,4,3),(1,2,4),(1,3,2))

G2 ((2,4,3),(1,4,3),(1,2,4),(1,2,3)) ((2,3,4),(1,3,4),(1,2,4),(1,2,3))

G3 ((2,3,4),(1,3,4),(1,2,4),(1,2,3)) ((2,3,4),(1,3,4),(1,2,4),(1,2,3))

G4 ((2,3,4),(1,4,3),(1,4,2),(1,2,3)) ((2,3,4),(1,3,4),(1,2,4),(1,2,3))

G̃1 ((2,3,4),(1,4,3),(1,2,4),(1,3,2)) ((2,3,4),(1,4,3),(1,2,4),(1,3,2))

G̃2 ((2,3,4),(1,3,4),(1,4,2),(1,3,2)) ((2,3,4),(1,3,4),(1,2,4),(1,2,3))

G̃3 ((2,4,3),(1,4,3),(1,4,2),(1,3,2)) ((2,3,4),(1,3,4),(1,2,4),(1,2,3))

G̃4 ((2,4,3),(1,3,4),(1,2,4),(1,3,2)) ((2,3,4),(1,3,4),(1,2,4),(1,2,3))

Table 3.1: Valid rotation systems for D(K4).

We have recapitulated that for good drawings of the complete graph, the weak isomorphism

classes can be determined solely from the rotation system. In the case of isomorphism for com-

plete graph drawings, we furthermore note that the rotations of the crossings are also determined
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by the rotation system. This becomes clear when again having a look at the different rotation

systems in Figure 3.9. Each 4-tuple of vertices produces at most one crossing, and for each

rotation system there is only one possible rotation for that crossing. Hence, we do not require

the extended rotation system, but only the order of the crossings along the edges. We will make

use of the gathered results in the enumeration algorithm presented in Section 4.1.
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4
Drawings of the Complete Graph and Related

Problems

This chapter deals with good drawings of the complete graph Kn on n vertices. In Section 3.3.1

we have already pointed out the role of rotation systems for such drawings. We will use this

knowledge to give algorithms to enumerate all different drawings D(Kn) under the notions of

weak isomorphism and isomorphism. These algorithms are implemented and used to build a

database containing all the drawings, which can subsequently be used to verify statements for

small n and gain more insight in problems concerning good drawings of the complete graph.

Several such problems are presented in the remainder of the chapter.

4.1 Enumerating Drawings of the Complete Graph

In order to enumerate good drawings of the complete graph for small n, we will make use of the

properties of rotation systems as presented above. For enumerating weakly isomorphic drawings,

it is sufficient to determine all different realizable rotation systems of Kn. To obtain all non-

isomorphic drawings, however, the different realizations have to be taken into account. We

define a fingerprint that can be used to distinguish between different drawings in both manners

and give an enumeration algorithm.
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4.1.1 Fingerprint for Graph Drawings

For the purpose of determining whether two good drawings of Kn are (weakly) isomorphic, we

need to define a standard form, a so called (weak) fingerprint. Two drawings must have the

same standard form if and only if they are (weakly) isomorphic. We will present a fingerprint

suitable for both kinds of isomorphism and explain how these can be determined algorithmically

in the context of our enumeration algorithm.

In case of weak isomorphism, we have already established that two drawings of the complete

graph Kn are weakly isomorphic if and only if their rotation systems are either the same or

inverse. So for a weak fingerprint we can simply use a canonical form of the rotation system. A

convenient choice is the rotation system that gives the lexicographically smallest integer sequence

among all possible rotation systems of the drawing. In general the weak fingerprint is composed

of the individual rotations of vertices 1 to n, while all rotations are represented by the cyclic

permutations read in the same cyclic direction (clockwise or counter clockwise) starting at the

vertex with lowest index. Furthermore, this implies that the integer sequence obtained from the

rotation of vertex 1 is always (2, ..., n). We can therefore omit this part and our weak fingerprint

has the following structure:

FPRS = ((ρmin(2)), (ρmin(3)), ..., (ρmin(n))) (4.1)

In the above equation ρmin(i) denotes the minimal sequence obtained from the rotation of

vertex i under a labelling of the vertices that minimizes the entire fingerprint including the

rotation of vertex 1. In our algorithm, however, we will use a reverse approach. Instead of

generating all possible drawings of Kn and filtering duplicates in terms of weak isomorphism,

we will generate all possible sequences that can represent a weak fingerprint, and afterwards

check for realizability as a good drawing of the complete graph D(Kn). The realizable weak

fingerprints represent all different classes of weakly isomorphic drawings of Kn.

2

1 3

4 5

Figure 4.1: Labelling of D(K5) with three crossings giving minimal fingerprint.

As an example consider Figure 4.1. The labellings are chosen such that the rotation system
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and hence the weak fingerprint is lexicographically minimal. So in this case we can read the

weak fingerprint directly off the rotations as depicted. We have that ρ(1) = (2, 3, 4, 5), ρ(2) =

(1, 3, 5, 4), ρ(3) = (1, 2, 4, 5), ρ(4) = (1, 2, 5, 3) and ρ(5) = (1, 4, 2, 3). Thus we get for the weak

fingerprint FPRS = 1354124512531423.

For the general fingerprint used to distinguish between non-isomorphic drawings (so drawings

that are neither isomorphic nor weakly isomorphic) we will need to include some more informa-

tion of specific drawings. Since isomorphism also implies weak isomorphism, we can simply use

the weak fingerprint as the first part of the general fingerprint. Furthermore, we need to include

the information about the order of crossings along the individual edges. We consider all edges

(i, j) with i, j ∈ V (G) and i < j according to the labelling induced by the weak fingerprint.

Order them lexicographically, and since the number of crossings on each edges is determined by

the rotation system of D(Kn), it suffices to list the indices of edges crossing (i, j) in the order

encountered from i to j:

FP = (FPRS , c(e1), c(e2), c(e3), ...) (4.2)

By c(ei) we denote the indices of edges crossing the edge ei in the order obtained by going from

the lower index vertex to the higher index vertex. We should note some subtleties concerning the

fingerprint used here. The weak fingerprint can, in general, be obtained from several labellings

of the graph. These symmetric labellings could, however, give different sequences for the edge

crossings c(e1), c(e2), c(e3), .... To obtain a unique fingerprint in the case of isomorphism, we need

to check which of those symmetric labellings gives the lexicographically smallest such sequence

of edge crossings.

We will determine all different realizations of a weak fingerprint by a simple backtracking algo-

rithm. For each good drawing obtained by the algorithm, we test the predetermined symmetric

labellings and store the lexicographically smallest sequence c(e1), c(e2), c(e3), ..., c(e|E(Kn)|) as a

fingerprint. The different such sequences obtained after checking all possible realizations repre-

sents the different isomorphism classes within a given weak isomorphism class.

Again, take a look at Figure 4.1. The labels as depicted do not only give the minimal

rotation system, but also minimize the whole fingerprint including the crossings. Ordering edges

lexicographically gives us the following indices for the edges: e0 = (1, 2), e1 = (1, 3), e2 = (1, 4),

e3 = (1, 5), e4 = (2, 3), e5 = (2, 4), e6 = (2, 5), e7 = (3, 4), e8 = (3, 5) and e9 = (4, 5). This order

gives us the following crossing information. c(e1) = (5, 6), c(e3) = (7), c(e5) = (1), c(e6) = (1)

and c(e7) = (3). We finally get for the entire fingerprint FP = 1354124512531423567113, where

the underlined part represents the information about the crossings.

Note that we can simply omit those edges without crossings, since whether an edge is crossed

and especially how many times can be determined from the preceding rotation system part of

the fingerprint (the weak fingerprint).
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4.1.2 Extending Rotation Systems

Now that we are able to obtain unique representations of graph drawings under both weak iso-

morphism and isomorphism, we present an algorithm to obtain all different (weak) isomorphism

classes of D(Kn) from all (weak) isomorphism classes of D(Kn−1).

The algorithm takes a realizable weak fingerprint of a good drawing of the complete graph

on n − 1 vertices as input. It is easy to reconstruct the corresponding rotation system. We

extend the rotation system by an nth vertex such that the rotation ρ(1) = (1, 2, ..., n). In

the remaining rotations, we add the new vertex in any possible way. Those rotation systems we

obtain are certainly not guaranteed to be realizable as a good drawing of Kn. While realizability

itself is tested separately, we can pre-check realizability by determining whether the new rotation

system contains any non-realizable 4-tuple. Of course, the absence of non-realizable 4-tuples does

not imply realizability of the corresponding rotation system, since there are rotation systems

that do not contain such 4-tuples, but are still not realizable as a drawing D(Kn). However,

in case a non-realizable subset is contained, the entire rotation system can definitely not be

realized. This allows us to filter out lots of cases and avoid testing these by the quite costly

backtracking method of checking realizability. If this first test is passed, we then determine the

weak fingerprint by permuting labellings accordingly and store the fingerprint in a database, if

it was not yet encountered before by a different extension.

After the Algorithm was ran on every realizable rotation system of the complete graph on

n− 1 vertices, we compiled a database of possibly realizable weak fingerprints for n vertices. To

filter out non-realizable ones, we use the procedure described in the following.

4.1.3 Realizability of Rotation Systems

We will use a simple backtracking algorithm for generating all non-isomorphic good drawings

D(Kn) with the same underlying rotation system R(D(Kn)). For simply testing realizability,

we can use the exact same algorithm and terminate in case the first valid realization is found.

For representing a drawing in the algorithm, we basically use the half-edge data structure,

a widely used data structure for planar embeddings of graphs introduced by Weiler [69] in

1985 (see also [39] for details). Here the complete graph drawing is represented by directed

twin segments that are linked to their successors, predecessors, and twin segments, such that

following segments along their successors or predecessors will trace out a cell of the drawing in a

certain direction. Each of the two twin segments is part of one of the two cells bounded by the

corresponding part of the edge bounds. Segments point from a vertex or crossing in the drawing

to another vertex or crossing. See Figure 4.2 for a detail of a graph embedding. The solid black

circle depicts an actual vertex of the drawing, while the white circles are the crossings. If we

follow the segment e in either direction, we trace out the boundary of the shaded cell.

First we need to observe that, contrary to geometric drawings, for good drawings the actual

position of the vertices is of no importance. We can therefore use the following idea to guarantee

that our algorithm produces realizations of the given rotation system, if realizable.
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e

nbg(e)

next(e) prev(e)

Figure 4.2: Half-edge data structure.

We start with a star as depicted in Figure4.3. The dummy segments around the outer vertices

are introduced in order to force the drawing to obey the given rotation system. The numbers in

grey around the topmost vertex in Figure 4.3(a) represent the rotation of vertex 2. By setting

the rotations of vertices 2 to n accordingly, we can guarantee our final drawing (if realizable)

to have the desired rotation system. The dummy segments differ from normal segments only in

their property that they are never intersected during the algorithm and therefore do not need

twin segments. In other words, these segments act as attachment points for segments of new

edges that are added. In Figure 4.3(b) it is shown how a new edge is attached to the dummy

segments. The edges that trace out the newly created face are highlighted. These are, in fact,

the only modification we make to the standard half-edge data structure.

1

2

3

4

5

6

8

9

7

8

9

6

4

7

5

3
1

(a) Data structure as initialized.

1

2

3

4

5

6

8

9

7

(b) A first edge added.

Figure 4.3: Initial star of the algorithm as represented by in the data structure.

The function init() in Algorithm 1 takes the rotation system as input and constructs that star

accordingly. This includes three arrays, namely segments[], start[][], and blocked[][][][].

The container segments[] is realized as a stack and contains the objects representing the
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segments with the information as required by the half-edge data structure. This is a meaningful

approach since it guarantees that newly added segments lie on top of the stack after being added

in each step of the recursion.

By using the two dimensional array start[][], we can conveniently access those segments that

define the starting point of the sequence of segments going from vertex i to vertex j. This means

that the entry start[i][j] contains the index of the dummy segment in segments[] where the edge

from i to j is attached to.

Finally, blocked[a][b][c][d] contains the information whether the edge from a to b can intersect

the edge from c to d. Since we want to realize the rotation system as a good drawing, we set

the entries of edges that share a vertex to true in init(). This guarantees our algorithm to not

intersect such edges again. We also obtain whether two vertex disjoint edges must not intersect

from the rotation system and determine this for all pairs of edges beforehand. During the

recursive steps, we keep this four dimensional matrix consistent by setting the corresponding

entries true after intersecting segments and change them to false again, when the recursion

returns and the intersection is undone (see Algorithm 2).

Algorithm 1 realizeRS(R)

1: init(R)
2: nextStep(start[1][2], start[2][1], 1, 2)

We then proceed by adding connections among vertices recursively until we (maybe) end up

with a drawing of the complete graph. The main recursive routine is listed in Algorithm 2. It

is called after init() for the connection between vertices 1 and 2 (all edges between vertex 0 and

all the others were already created before).

The function is called with parameters s and t which are the indices of the starting segments

of the source vertex and the target vertex, respectively. Furthermore, a and b denote the indices

of the vertices that are about to be joined by an edge.

The outer loop (starting at line 2) traces the cell that the starting segment is adjacent. We

do so until we return to where we started. Within the loop we check if the target segment was

reached and add the required segment. In this case we either find a realization of the given

rotation system, or need to further step into the recursion to add missing edges (lines 3 to 12).

Additionally, we check for all segments encountered in the walk around the boundary of the

cell, if they need to be intersected (lines 13 to 19). Whenever we encounter a segment that is

not the target segment, it is checked to see if it is blocked. If so, we simply skip it. Otherwise, it

is intersected and the required entries in blocked[][][][] are set to true. Afterwards we go deeper

into the recursion (line 16) and after returning, we undo the previous intersection and allow the

respective edge to be crossed again.

It is elementary to convince oneself that the described procedure produces only realizations

as valid good drawings and also all possible orders of crossings. Of course, these different

crossing orders need not imply different isomorphism classes. Depending on whether we only

use the algorithm for checking realizability, or enumerating all non-isomorphic good drawings,
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Algorithm 2 nextStep(s, t, a, b)

1: seg ← segments[s].nxt
2: while seg 6= s do
3: if seg = t then
4: addSegment(s,t,a,b)
5: if b < n− 1 then
6: nextStep(start[a][b+ 1], start[b+ 1][a], a, b+ 1)
7: else if a < n− 2 then
8: nextStep(start[a+ 1][a+ 2], start[a+ 2][a+ 1], a+ 1, a+ 2)
9: else

10: foundRealization()
11: end if
12: end if
13: if blocked[a][b][segments[seg].a][segments[seg].b] = FALSE then
14: blocked[a][b][segments[seg].a][segments[seg].b] ← TRUE
15: intersect(–)
16: nextStep(segments[seg].nbg, t, a, b)
17: undoIntersect(–)
18: blocked[a][b][segments[seg].a][segments[seg].b] ← FALSE
19: end if
20: seg ← segments[seg].nxt
21: end while

we either stop in foundRealization() with the result that the input rotation system is realizable,

or we calculate the fingerprint for the good drawing obtained at that point (as desribed in

Section 4.1.1). We leave out details here, since implementation is not very sophisticated and it

would only bloat this thesis with unnecessary technicalities.

Figure 4.4 shows an example of how the algorithm finds a certain realization of a rotation

system of R(D(K5)). Edges added in the individual steps shown in Figures 4.4(b) to 4.4(g) are

highlighted in green. The drawing obtained and depicted in Figure 4.4(h) is isomorphic to the

one used to illustrate the fingerprint in Figure 4.1.
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4.1.4 A Database of Rotation Systems and Drawings

The algorithm was used to set up a database of all realizable rotation systems of Kn and all

non-isomorphic D(Kn) for 3 ≤ n ≤ 8. The numbers obtained are listed in Table 4.1. It is

remarkable how fast these numbers grow.

n # of realizable RS # of non-isomorphic D(Kn)

3 1 1

4 2 2

5 5 5

6 102 121

7 11556 46999

8 5370725 502090394

Table 4.1: The number of realizable RS and non-isomorphic drawings of Kn.

As it was mentioned in the proof of Proposition 3.2, the weak isomorphism implies the iso-

morphism of two good drawings of Kn for 3 ≤ n ≤ 5. This is, in contrast, not the case any

more for n ≥ 6. In fact, there are several rotation systems that admit two non-isomorphic

drawings, and even one with three. The later has the following rotations: ρ(1) = (2, 3, 4, 5, 6),

ρ(2) = (1, 3, 4, 5, 6), ρ(3) = (1, 3, 4, 6, 5), ρ(4) = (1, 5, 2, 6, 3), ρ(5) = (1, 4, 2, 6, 3) and ρ(6) =

(1, 2, 4, 3, 5). In Table 4.2 the orders of the crossings along the edges are listed for the three

drawings D1, D2, and D3. Clearly, the edges involved in the crossings along a certain edge

do not differ among these realizations, since this is already determined by the rotation system.

However, there are different crossing orders along the edges. The underlined entries in the table

indicate changes in these crossing orders with respect to D1.

Since the above rotation system is a minimal example with multiple non-isomorphic drawings,

we should take a look at how these differences in the crossing orders are produced. Consider

a triangular face in a good drawing of Kn that is bounded by the three edges e1, e2, and e3.

Without loss of generality we move the edge e1 across the intersection of the edges e2 and e3.

Obviously, such a triangle switch can always be done without affecting the remainder of the

drawing and in particular the vertex rotations. See [29] and Figure 4.5 for an illustration. This,

however, means that for any of the three edges involved the order of the crossings with the

other two edges exchanges. Note that this can produce a different drawing under the notion of

isomorphism, but it does not necessarily need to be the case. We could, for instance, obtain the

exact same crossing orders by relabelling vertices accordingly.

The three drawings D1 to D3 can be seen in Figures 4.6(a) to 4.6(c). Here triangle switches

indeed produce non-isomorphic drawings. The changes in drawings D2 and D3, with respect to

the first drawing D1, are indicated by the highlighted triangular faces. If we compare these to

the crossing orders in Table 4.2, we can see that each triangle switch induces changes on three

edges as already mentioned before.

The results in Table 4.1 indicate that this maximum number of non-isomorphic realizations
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edge crossings D1 crossings D2 crossings D3

12

13 26 25 24 56 26 25 56 24 26 25 56 24

14 26 26 26

15 26 34 46 24 26 34 46 24 34 26 46 24

16 34 34 34

23 56 56 56

24 13 56 35 15 56 13 35 15 56 13 35 15

25 13 13 13

26 13 14 15 34 13 14 15 34 13 14 34 15

34 56 16 26 15 56 16 26 15 56 16 15 26

35 24 24 24

36

45

46 15 15 15

56 24 13 23 34 13 24 23 34 13 24 23 34

Table 4.2: Orders of crossings in the three non-isomorphic drawings.

e1

e2

e3

e1

e2

e3

Figure 4.5: Local triangle switch in a good drawing as in [29].

per rotation system grows dramatically as n gets larger. For 3 ≤ n ≤ 8 we list the exact numbers

in Table 4.3.

n max. # of non-isomorphic realizations per RS

3 1

4 1

5 1

6 3

7 57

8 46571

Table 4.3: The maximum numbers of non-isomorphic D(Kn) per rotation system.
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(a) First drawing.
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(b) Second drawing.
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(c) Thrid drawing.

Figure 4.6: Unique rotation system with three non-isomorphic D(K6).

4.1.5 Visualization

The database contains all information required to reconstruct a drawing uniquely. Especially

for larger examples, it is very hard to construct the full drawing by hand, given the information

about vertex rotations and crossings. In order to support visualization, a tool in form of an

extension to the graphics editor IPE1 was created. It takes a single entry from the drawings

database as input, determines the planarized graph G̃ (i.e., the graph where all crossings are

replaced by pseudo vertices resulting in a planar graph), and calculates a straight-line embedding

of G̃. Removing the pseudo vertices in the embedding gives a drawing with edges represented

by a sequence of straigt-line segments, comprising the desired drawing.

By a well-known result of Whitney [70], the embedding is guaranteed to be unique in case the

planarized graph is 3-connected. Although the planarized graph of a D(Kn) strongly appears to

be 3-connected, we could not give a general proof for that. So, in addition, one needs to check

in the drawing produced by the IPELET whether the required crossing orders along the edges

are fulfilled.

As Figures 4.7 and 4.8 indicate, this simple method can only be used to give an idea of how

the drawing could look like. The picture to the left in Figure 4.7 was directly created with the

use of the IPE extension. One can see immediately that this drawing is not at all appealing

compared to the drawing to the right, which is a way nicer isomorphic drawing. The example in

Figure 4.8 shows that things clearly get even worse for larger graphs. Although not being drawn

too small, it already is incredibly hard to follow the edges between the vertices in the picture.

1 http://ipe7.sourceforge.net
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Figure 4.7: Isomorphic drawings of K5 created with IPELET and by hand.

Figure 4.8: Drawing of K7 created with IPELET.

4.1.6 Related Work

For n up to seven, Rafla [56] used an algorithm to determine the weak isomorphism classes

of D(Kn). Table 4.1 confirms his results. He also mentioned that, for n = 6, previously

Uytterhoeven had found 100 different drawings and Beckelin 123, while only 96 of them were

not weakly isomorphic. Both determined the drawings by hand which makes it extremely hard

to not overlook or multiply count some of the drawings.

In 1990 Gronau and Harboth [30] have found all 121 non-isomorphic drawings D(K6). These

results could be confirmed by Volker Leck [46] who enumerated all non-isomorphic drawings of

connected graphs on 6 vertices, among them K6.

We should note that our method of checking realizability of rotation systems is very simple,

but not efficient. Clearly, we use a non-polynomial time algorithm. Kynčl [45] showed that

realizability of complete abstract topological graphs (that is a complete graph together with

which pairs of edges cross) as good drawings is in P. Since the pairs of edges that cross can easily
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be determined from the rotation system, realizability of rotation systems as good drawings of

Kn can be verified in polynomial time. In fact, he initially determines a rotation system for the

abstract graph in the algorithm he presents.

Furthermore, the algorithm only gives a realization if possible, so it is also not suitable for

determining all non-isomorphic drawings of a given rotation system.
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5
Conway’s Thrackle Conjecture

This chapter deals with a certain class of good drawings which was brought to attention by John

H. Conway in the 1960s, namely thrackles.

Definition 5.1. A thrackle is a good drawing of a graph where each pair of edges either share

an endpoint or cross exactly once. An abstract graph G is said to be thrackleable if it can be

drawn as a thrackle.

As an example consider the graph P6. Since this graph is thrackleable, it can be drawn

appropriately. See Figure 5.1(a) for a drawing of P6 as a thrackle.

(a) Thrackle embedding of P6. (b) The n-gram on 7 vertices. (c) Thrackle embedding of C6.

Figure 5.1: Thrackle embeddings of P6, C7 and C6.

Note that the above example is in addition drawn with edges represented as straight-line

segments. Yet, not every abstract graph can be thrackled in this manner. Take for instance Cn

the cycle on n vertices. As already mentioned by Woodall [71], there is a thrackle embedding of
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Cn only using straight-line segments for n being odd. The example he uses is the n-gram which

can be seen in Figure 5.1(b). It is easy to verify that this construction can always be extended

by two additional vertices.

In contrast it is never possible to obtain a straight-line thrackle embedding of even cycles.

As a brief argument, consider that for any edge of the cycle, all remaining vertices need to

alternatingly lie in the two half-planes defined by the line passing through the vertices of the

chosen edge. Anyhow, as Figure 5.1(c) depicts, it is possible to draw C6 as a thrackle using

curved lines to represent edges.

In fact, there is such a thrackle embedding of any even cycle except for C4. To see this we

use the following trick mentioned on Stephan Wehner’s web page dedicated to thrackles 1. Take

any P3 in the cycle and replace it by a P5 as shown in Figure 5.2. By drawing the new edges

sufficiently close to the one that is removed, one can guarantee to preserve the properties of

thrackles during such a modification.

Figure 5.2: Extending a thrackle by two vertices.

Definition 5.2. A cycle thrackle on n vertices is a thrackle drawing of the cycle graph Cn.

Definition 5.3. A path thrackle on n vertices is a thrackle drawing of the path Pn.

Together with the existence of a thrackle embedding of C6 and the trivial fact that C3 is

thrackleable, we can state the following observation concerning the two classes of thrackles

defined above.

Observation 5.1. Every cycle graph Cn for n 6= 4 is thrackleable. As a consequence there exists

a thrackle embedding for every path Pn.

The second part of Observation 5.1 follows immediately by deleting an arbitrary edge of the

cycle. For P4 it is straightforward to verify that it is thrackleable too. In addition this tells us

that for any n there exists a thrackle having as many edges as vertices.

Apart from the cycles and a not hard to find substitute for C4, there is an even easier con-

struction to show this, which in addition verifies the second part of Observation 5.1 for linear

thrackles. Consider the triangle C3, which is clearly a thrackle with the same number of edges

1 www.thrackle.org (accessed September 16, 2014)
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as vertices. Now successively add edges incident to the same vertex of the triangle and inter-

secting the remaining edge. Clearly, we obtain a thrackle of the desired kind and this can be

done by only using straight-line edges (Figure 5.3). On the previously mentioned web page this

construction is called the n-ray.

· · ·

Figure 5.3: The n-ray.

We can therefore easily construct thrackles with |V | = |E| and

there are many other such examples aside from the aforementioned

kind. However, after trying for a while using pen and paper, one will

find it intriguingly hard to add one more edge to such a construction.

John H. Conway first believed that this is not possible at all and we

state his conjecture in the words used by Douglas R. Woodall [71] in

one of the first publications on this topic.

Conjecture 5.2 (Conway’s thrackle conjecture). A thrackleable graph

with n vertices cannot have more than n edges.

Despite many efforts the thrackle conjecture still remains unproven;

however, the statement could be verified for several subclasses of

thrackles which we will briefly summarize in the following. Some bounds on the number of

edges are discussed and after recapitulating what is known to date about the structure of possi-

ble counterexamples, we will present computational results obtained in the course of this work.

5.1 Resolved Variants

Although a resolution of the thrackle conjecture appears to be out of reach at the time, there

are several restricted versions of the problem that could already be settled.

5.1.1 Straight-line Thrackles

A first variant that will be covered in detail here is to restrict edges to straight-line segments.

Definition 5.4. A straight-line thrackle is a thrackle that is drawn in such a way that all its

edges are represented by straight-line segments.

The answer to the thrackle conjecture for the straigt-line case was already given in the affir-

mative before Conway even stated the question for good drawings in general. The first proof

can be attributed to Paul Erdős.

His idea for the proof originated in a related question posed some years earlier by Heinz Hopf

and Erika Pannwitz [40] in the annual report of the German Mathematical Society1. They asked

for a proof of the following statement: Let p0, p1, ..., pn−1, pn = p0 be a set of n points in the

plane s.t. the distance between any pair is less or equal to 1 and for successive pairs equality

holds. This is possible if n is odd and impossible if n >= 4 is even.

1 Jahresbericht der Deutschen Mathematiker-Vereinigung
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Several proofs were submitted in a later volume of the report ([65], [21] and [10]). Erdős [19]

noticed that the maximum distance between any two points in the plane can occur at most n

times. He credited this observation to Hopf and Panwitz directly, although it seems that the

most helpful hints appear in Fenchel’s proof of the problem. By pointing out that whenever

two pairs of points p1p2 and p3p4 are both at maximum distance r, the lines p1p2 and p3p4

necessarily intersect. Otherwise the maximum distance among these four points must exceed r.

It is not too hard to finish the proof of the said statement and thus of the thrackle conjecture

in the straight-line case; however, we will give a different, particularly nice proof due to Micha

Perles [51].

Theorem 5.3 (Erdős). The number of edges in any straight-line thrackle does not exceed its

number of vertices.

Proof. A pointed vertex v in a straight-line thrackle is a vertex where all its incident edges lie

one half-plane determined by a line passing through v. We call the edge encountered first while

rotating the line through v by 180◦ in clockwise direction leftmost. Clearly, every vertex has only

one such edge and the claim is that after removing all leftmost edges at the pointed vertices,

then there is no more edge remaining in the graph.

Suppose the contrary is the case and an edge uv remains after the deletion operations as

described above. This implies that the edges were neither removed as leftmost edge at u nor

as leftmost edge at v. Hence, at each vertex u and v there exists an additional edge that is

reachable from the edge uv by rotating it 180◦ counter-clockwise around the respective vertex.

See Figure 5.4(a) where the possible angles for the two edges uv′ and vu′ are shaded. This

implies that the two said edges cannot intersect in a straight-line drawing since they emanate

into opposite half-planes, which contradicts the properties of thrackles and concludes the proof

of Theorem 5.3.

u

v

u′

v′

(a) Argument used in Perles’ proof.

u

v

u′

v′

(b) Why it fails for x-monotone thrackles.

Figure 5.4: The argument used by Perles’ proof in the straight-line and x-monotone case.
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5.1.2 Outerplanar and x-Monotone Thrackles

We will now consider two other interesting special cases of thrackles for which the thrackle

conjecture could be settled in the affirmative.

Definition 5.5. An outerplanar thrackle is a thrackle with the vertices placed on a circle and

all of its edges are contained entirely in the interior of the circle.

To prove the thrackle conjecture in the outerplanar case Cairns and Nikolayevsky [15] first

showed that every such thrackle with minimum degree of at least two is in fact a single cycle of

odd length. To establish this, they used the same proof as Perles did for the straight-line case.

Theorem 5.4. The number of edges in any outerplanar thrackle does not exceed its number of

vertices.

Definition 5.6. An x-monotone thrackle is a thrackle with its edges intersected at most once

by every vertical line.

For x-monotone thrackles the proof used in the above two cases breaks down. See Figure

5.4(b) where both edges uv′ and vu′ intersect invalidating the counting argument used in Perles’

proof. Pach and Sterling [51] instead imposed a partial order on the edges which allowed them

to verify the conjecture for the x-monotone case.

Theorem 5.5. The number of edges in any x-monotone thrackle does not exceed its number of

vertices.

As a counterpart to these three cases, it is worth mentioning a setting where the thrackle

conjecture is no longer valid. If we move from embeddings in the plane (or equivalently the

sphere) to an embedding on the torus, it is already possible to construct a counterexample with

five vertices and six edges [71]. See Figure 5.5 for a thrackle drawing on the surface of a torus.

Also it is possible to embed the 4-gon as thrackle.

Figure 5.5: Embedding of a thrackle with 5 vertices and 6 edges on the torus as in [71].
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5.1.3 Generalized Thrackles

Another variant of the problem is to not impose restrictions on the curves representing the edges

of a thrackle, but instead on their crossing properties. In particular, an interesting problem arises

when the number of crossings between any pair of edges is no longer forced to be exactly one.

Definition 5.7. A generalized thrackle is a drawing of a graph where any two edges share an

odd number of points. Again these points may be a common vertex or proper intersections.

Also in this version of the problem it is not immediately apparent that the thrackle conjecture

is false. Shortly after his first work on the subject, Woodall posed it as an open problem whether

the number of edges in a generalized thrackle can become larger than the number of vertices.

Lovász, Pach, and Szegedy [47] proved that a bipartite graph can be drawn as a generalized

thrackle if and only if it is planar. It is well known that planar bipartite graphs can have up to

2n−4 edges. Thus, there are generalized thrackles with roughly twice as many edges as vertices.

Cairns and Nikolayevsky [14] could then show a bound of 2n− 2 edges and gave examples that

this bound is sharp. Furhtermore, they showed a similar, more general result, namely that any

bipartite graph can be drawn as a generalized thrackle on a closed orientable connected surface

if and only if it can be embedded in that surface.

5.2 Bounds on the Number of Edges

Since proving that any thrackle has at most as many edges as vertices seems to be incredibly

hard, a natural thing to do is to establish reasonable bounds on the number of edges.

For a long time, the only bound known was not even linear in the number of vertices. It relies

on the fact that there are no cycles of length four in any thrackleable graph. The rest of the

proof can be finished using methods taught in basic lectures on graph theory. See for instance

Exercise 2.1.15 in [12] where also the most relevant hints for establishing the following proof are

given.

Theorem 5.6. The number of edges in any thrackle is at most O(n
3
2 ).

a

b

c

Figure 5.6: C(a, b, c).

Proof. Observe that no thrackle can contain a non-thrackleable graph

as a subgraph. In particular, this implies that any thrackle must be

free of C4’s. Let G be a graph on n vertices and m edges. For any

vertex v ∈ V (G) let dv denote the degree of v. Suppose that G does

not contain C4 as a subgraph, we show that m is at most O(n
3
2 ).

Consider a certain type of labelled subgraphs. A cherry C(a, b, c)

is the graph K1,2 with both a and c connecting to the centre b of the

cherry (see Figure 5.6). We count the number of labelled cherries |C|
in G. Every vertex v is the centre of d2

v − dv such cherries. On the

other hand, any ordered pair of vertices (u,w) can have at most one common centre. Otherwise
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G contains a cycle of length four. With both observations we can count/bound the number of

cherries contained in G.

|C| =
∑

v∈V (G)

d2
v − dv ≤ n(n− 1)

With the following well known relation between the root-mean-square and the arithmetic

mean, we can further simplify the equality.

√
d2

1 + ...+ d2
n

n
≥ d1 + ...+ dn

n
d2

1 + ...+ d2
n

n
≥ (d1 + ...+ dn)2

n2

d2
1 + ...+ d2

n ≥
(d1 + ...+ dn)2

n

Together with
∑

v∈V (G)

dv = 2m we can come up with a quadratic inequality for the number of

edges in graphs without cycles of length four.

1

n

 ∑
v∈V (G)

dv

2

−
∑

v∈V (G)

dv ≤ n(n− 1)

(2m)2

n
− 2m ≤ n(n− 1)

m2 − mn

2
− n3 − n2

4
≤ 0

Solving the inequality yields the desired bound on the maximum number of edges in any

thrackleable graph.

m ≤ 1

4
(n+

√
n2(4n− 3)) = O(n

3
2 )

A first substantial improvement to the above bound was given by Lovász et al. [47]. They

showed that any bipartite thrackle is planar. Additionally, they noticed that bipartite planar

graphs without cycles of length four can have at most b3n
2 c − 3 edges. Since it is possible to

make any graph bipartite by removing at most half of its edges, this yields a bound of at most

3n−7 edges for any thrackleable graph. By further exploiting properties of thrackles, the bound

was eventually reduced.

– 43 –



5 Conway’s Thrackle Conjecture

Theorem 5.7 (Lovász, Pach, Szegedy, [47]). Every thrackle of n vertices has at most 2n − 3

edges.

The above bound was further reduced by Cairns and Nikolayevsky [14]. The interesting

thing about their proof is that their argument was based entirely on generalized thrackles (see

Definition 5.7). For the improvement in the case of thrackles, as in the proof of Theorem 5.6,

they only used the property that no thrackle can contain C4 as a subgraph.

Theorem 5.8 (Cairns, Nikolayevsky, [14]). Every thrackle of n vertices has at most 3
2(n − 1)

edges.

The result in Theorem 5.8 represents the to date best known bound achieved without computer

assistance. The best result, however, comes from a very interesting method presented by Fulek

and Pach [24]. By exploiting certain properties of the structure of possible counterexamples to

the thrackle conjecture (see Section 5.3), they gave an algorithm for any ε > 0 terminating in

eO((1/ε2)ln(1/ε)) steps to decide whether the number of edges are not more than (1 + ε)n for all

thrackles with n ≥ 3. In case the algorithm fails to verify the said statement, it produces a

counterexample to the conjecture.

If one takes a look at the runtime of their algorithm, it becomes clear that it will take a

considerable amount of computing time to lower ε substantially. Anyway, the result they could

achieve stands as the best known to date bound on the number of edges of thrackles.

Theorem 5.9 (Fulek, Pach, [24]). Every thrackle of n vertices has at most 167
117n edges.

5.3 The Structure of a Minimal Counterexample

Woodall [71] already mentioned that a counterexample to Conway’s conjecture, if it exists,

would consist of two cycles that are joined by a path, share a path, or meet in exactly one

vertex. Stephan Wehner also mentioned this on his webpage where the corresponding cases are

called dumbbell, theta and figure-8. We will, however, use the general notion of a dumbbell as

introduced by Fulek and Pach [24] which captures all three cases at once.

Definition 5.8. Given three integers c′, c′′ > 2, l ≥ 0, the dumbbell DB(c′, c′′, l) is a simple

graph consisting of two disjoint cycles of length c′ and c′′, connected by a path of length l. For

l = 0, the two cycles share a vertex. The definition extends to negative values of l the following

way. For any l > −min(c′, c′′), let DB(c′, c′′, l) denote the graph consisting of two cycles of

lengths c′ and c′′ that share a path of length −l.

We will now give a proof that a minimal counterexample must be of the above form.

Theorem 5.10. Suppose that G is a minimal thrackleable graph with more edges than vertices,

then G is a dumbbell.
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We will first prove two lemmas of which we will make use of in the proof of Theorem 5.10.

Lemma 5.11. Suppose that G is a minimal counterexample to the thrackle conjecture, then G

(i) is connected.

(ii) has |V (G)|+ 1 edges.

(iii) does not contain vertices of degree one.

Proof. (i) Suppose that G is not connected. To form a counterexample, at least one connected

component is required to have more edges than vertices. This contradicts the minimality of G.

(ii) Trivially, |E(G)| > |V (G)| must hold. In case |E(G)| > |V (G)|+1 we remove an arbitrary

edge on a cycle. Removing a single edge on a cycle can never disconnect a graph and we obtain a

graph with one edge less that is still a counterexample to the thrackle conjecture, contradicting

minimality. We can do so until |E(G)| = |V (G)|+ 1.

(iii) We remove a degree one vertex together with the edge incident to it. The resulting graph

remains connected and since the number of vertices and the number of edges was reduced by

one, it still has more edges than vertices. Thus G was not minimal.

Lemma 5.12. Every minimal counterexample G can be obtained by adding two edges to a path

thrackle.

Proof. By Lemma 5.11 (i) and (ii) G is connected and has n+1 edges. This means in particular

that the sum of degrees in G is exactly 2n + 2. Due to Lemma 5.11 (iii), every vertex has at

least degree 2. This means that there can either be one vertex with degree 4, or two vertices

with degree 3.

Case a: Suppose we have one vertex v of degree four. The induced subgraph on v looks

locally like a star S4 (see Figure 5.7 (left)). Since we cannot have vertices of degree one, each of

the four vertices around v needs to be connected to exactly one of the other vertices adjacent

to v by an edge or a sequence of edges. Since all vertices but v have degree 2, these edges or

sequences of edges are necessarily vertex disjoint. We remove two of the edges incident to v that

do not lie on the same sequence of edges as described before. A connected graph remains with

all vertices having degree 2, except for two vertices of degree 1. This graph clearly resembles a

path thrackle.

Case b: Consider that there are two vertices v1 and v2 with degree 3 in the graph. Both of

these vertices are locally a star S3 as depicted in Figure 5.7 (right). With the same argument

as before, we know that all of the vertices a to f need to be connected to another vertex of that

set by an edge or a sequence of edges. Again, all these sequences of edges are mutually disjoint,

since all other vertices have degree 2. In particular, this means that there is at least one edge

or sequence of edges connecting two vertices from the different S3 subgraphs. This ensures that

the thrackle remains connected after removing two edges in the following manner. Remove one

edge adjacent to v1 and one edge adjacent to v2 and ensure that they are both not part of the
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sequence of edges mentioned above. We then obtain a connected graph where the degrees of v1

and v2 were lowered to 2 and the two degree one vertices lost a neighbour each. Again, what

remains is a path thrackle.

b c

a d

e f

v

v1 v2

Figure 5.7: Degree four vertex and two degree 3 vertices.

Proof of Theorem 5.10. As stated in Lemma 5.12, we can always construct the minimal coun-

terexample by adding two edges to a path thrackle. Since a minimal counterexample cannot

have any vertex with degree 1, we need to cover the end vertices, say a and b, of the path

thrackle with the two edges we are going to add. The order in which we introduce the new edges

is of no importance. We will therefore assume that the first edge e1 we add is not incident to

fewer of the end vertices than the second edge e2. After that we will necessarily obtain a graph

with exactly one cycle C. When adding the second edge, we produce a second cycle and only

the following cases can occur.

Case a: Both endpoints of e2 are on C. This case can only occur if the edge e1 connected

both vertices a and b and we were left with a cycle thrackle. We clearly construct a dumbbell

DB(c′, c′′, l) with l < 0. See Figure 5.8(a).

Case b: Both endpoints of e2 are not on C. Without loss of generality, we can assume that

the edge e1 is only connected to a, but not to b. For otherwise we were left with a cycle thrackle

alone, which makes it impossible to add an edge that is disjoint from the cycle C. So for e2

we can only have one of the endpoints connecting to b and the other somewhere to the path

attached to C, but not part of it. This gives two cycles that are joined by a path, so a dumbbell

of the form DB(c′, c′′, l) with l > 0 as it can be seen in Figure 5.8(b).

Case c: One endpoint of e2 lies on C and the other does not. Again this case only occurs if

the first edge left a cycle with a path attached. b is the only vertex with degree one when adding

the second edge, which means that b is necessarily an endpoint of e2. For the second endpoint of

e2, we are only left with vertices of C. This can either be the vertex where the path is attached

to the cycle or any other vertex on the cycle. In both cases the final construction resembles a

dumbbell DB(c′, c′′, l) with l = 0 and DB(c′, c′′, l) with l < 0, respectively. So either two cycles

sharing a single vertex or a path of length −l. Both cases are depicted in Figure 5.8(c).

In either of the cases, we obtain a minimal counterexample with exactly two cycles of the form

of a dumbbell as defined above. By Lemma 5.11 (iii) it follows that such a structure comprises

the entire minimal counterexample.
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e1 e1

e2

a ab b

(a) Case a.

e1 e1

e2

a ab b

(b) Case b.

e1 e1 e2

e2

a ab b

(c) Case c.

Figure 5.8: Examples of adding e1 and e2 in the three cases of the above proof.

It is moreover possible to show that any dumbbell can be transformed to a dumbbell of the

form DB(c′, c′′, 0) with c′ and c′′ being even, hence two even cycles that share a vertex.

Woodall [71] mentioned this fact while Fulek and Pach [24] gave more details on how to

perform these transformations. At the heart of their method is the so-called Conway doubling

procedure. It is possible to transform a sequence of vertices and edges in a thrackle in such a

way that the resulting drawing is still a thrackle, but the said vertices and edges are doubled.

The original vertices are replaced by pairs of vertices lying sufficiently close together, and the

edges are replaced by two edges following the original one as depicted in Figure 5.9. The dashed

edges on the left side show that we can also avoid duplicating the first vertex of the path, which

we will use later on.

Suppose now that we have a counterexample of the form DB(c′, c′′, l) with l 6= 0. Meaning,

two cycles that are connected by or share a path. In either of these cases one can use the

doubling procedure as described above and transform the thrackle to a dumbbell of two cycles

meeting in precisely one vertex. As an example see Figure 5.10. We can in both cases eliminate

the path between or shared by the cycles such that we obtain two cycles meeting in a single
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vertex. It can also be shown that in case one of the two cycles has odd size, Conway doubling

can be used to transform the counterexample to the form of two even cycles sharing a vertex.

However, the obtained examples do not need to be minimal any longer.

Figure 5.9: Illustration of Conway doubling.

Figure 5.10: Transformations of both kinds of dumbbells with l 6= 0.

In the next section we show by massive computer search that a counterexample to Conway’s

thrackle conjecture needs to have at least 13 vertices.

5.4 Enumerating Thrackles and Searching for Counterexamples

In this section we first present an algorithm to enumerate all non-isomorphic connected thrackles

for small values of n. Afterwards we present an improved version of the algorithm that is no

longer used for enumerating, but rather for finding possible counterexamples to the thrackle

conjecture. First we define three classes of thrackles that are interesting for our purpose.
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Definition 5.9. A tree thrackle is a thrackle on n ≥ 2 vertices with exactly n−1 edges consisting

of exactly one connected component.

Definition 5.10. A full thrackle is a thrackle on n ≥ 3 vertices with exactly n edges consisting

of exactly one connected component.

Definition 5.11. An overfull thrackle is a thrackle on n ≥ 3 vertices with exactly n+ 1 edges

consisting of exactly one connected component.

We will now show that the sets of all non-isomorphic tree thrackles Tn, full thrackles Fn, and

overfull thrackles On on n vertices can be determined from the set Tn−1 by adding a vertex, an

edge or two edges to all elements of Tn−1. Then we give an algorithm that takes the elements

of Tn−1 as input and produces the sets Tn, Fn and On.

Note that assuming the truth of Conway’s thrackle conjecture, we expect On to be the empty

set for all n ≥ 3.

Theorem 5.13. Let Tn, Fn, and On be the sets of all non-isomorphic tree thrackles, full thrackles

and overfull thrackles on n vertices, respectively. There is an algorithm to determine Tn, Fn,

and On given the set Tn−1 as input.

We will prove Theorem 5.13 with the help of Lemmas 5.14 and 5.15 and by developing the

algorithm in Section 5.4.2.

Lemma 5.14. Every element of Tn can be obtained from at least one element of Tn−1 by adding

a missing edge in such a way that it obeys the properties of thrackle drawings.

Proof. Suppose that G is a thrackle with n ≥ 3 vertices and n− 1 edges. The sum of all degrees

in G is 2n − 2 since every edges contributes 2 to this sum. Therefore, the average degree in

G is (2n − 2)/n < 2, which implies that there is at least one vertex v ∈ G with d(v) = 1. If

we remove v together with the edge incident to it, we get G′ a connected thrackle with n − 1

vertices and n− 2 edges. Hence, G′ is a member of the set Tn−1. Adding the vertex v and the

corresponding edge back to G′ gives the original tree thrackle G.

Clearly, a tree thrackle might have more than one vertex of degree 1. Thus it might be (and

in general will be) possible to obtain a unique element of Tn from several elements of Tn−1 by

adding a vertex together with an edge. For the algorithm this means that we require some kind

of fingerprint to distinguish between non-isomorphic thrackles. We will address this issue later

in this section when we go into more detail of the actual algorithm.

Further, we need to show that Fn can be obtained from Tn and On from Fn by adding edges.

Lemma 5.15. Every element of Fn (On) can be obtained from at least one element of Tn (Fn)

by adding a missing edge in such a way that it obeys the properties of thrackle drawings.

Proof. Suppose that G is a full thrackle on n ≥ 3 vertices. Clearly, G contains a cycle and

removing an arbitrary edge on that cycles leaves the resulting thrackle G′ connected. Also the
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removal of an edge cannot violate the restrictions of thrackle drawings and we get an element

of Tn. This implies that G can be obtained from at least one element of Tn by adding a missing

edge that shares exactly one point with any other edge. The argumentation for elements of On

is exactly equivalent.

5.4.1 Fingerprint for Connected Thrackles

As it was mentioned before, it is possible to encounter one and the same thrackle by extending

different thrackles by a vertex and an edge or an edge only. We therefore need a criterion

(fingerprint) to distinguish thrackle drawings from one another.

Let us recall the fingerprint used for non-isomorphic drawings of the complete graph (Sec-

tion 4.1.1). Together with the rotation system, we only needed to determine the order of the

crossings along each edge. This is sufficient because the rotation of the crossing is already de-

termined by this order and we therefore capture all information required in order to distinguish

non-isomorphic drawings. However, this property is no longer valid for good drawings in general,

particularly not for thrackle drawings. See Figure 5.11 for two thrackle embeddings of the same

graph. The rotations and crossings along the edges are the same, but the edges highlighted

intersect from opposite sides. We therefore get a different rotation for the said crossing and it

is easy to verify that, indeed, the drawings are different with respect to isomorphism, since the

cell structure of the drawings obviously differs. The three degree one vertices, for instance, are

incident to the same cell in one drawing and lie in different cells in the other.

4 1

5

3 2

(a) 11123455152342503506140614066

4 1

5

3

2

(b) 11123455152342513506141614066

Figure 5.11: The two kinds of rotations at a crossing between ab and cd.

Because of the above, it is necessary to consider the whole extended rotation system of the

graph along with the order of the crossings. Anyway, there are not much modifications to the

fingerprint used for D(Kn) required. For a crossing we do not only list the indices of the edges

that cross, but an additional binary value encoding the rotation of the crossing. Consider a

crossing between the edges ab and cd with a < b, c < d and a < c. When starting at the vertex
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a with the lowest index of all vertices involved in the crossing, we can only have one of these

two clockwise rotations at the crossing. Either we have (a, c, b, d) or (a, d, b, c). We say that the

crossing rotation in these cases is 0 or 1, respectively.

Additionally, the degrees of the vertices are no longer fixed. For this reason we use the degree

sequence of the graph as the first part of the fingerprint. This has the further advantage that

we can exclude isomorphism for graphs with different degree sequences by only looking at these

first n entries of the fingerprint. It is also necessary to have this information in order to assign

the rotations to the correct vertices and, in the following, determine the edges that are present

in the drawing. Another difference to complete graph drawings is that the information about

what edges cross is no longer contained in the rotation system. We therefore list for every

edge that is in the graph the two indices of the crossing edges together with the binary value

indicating the kind of rotation we have at the crossing. To be able to relate the entries to

the correct edges, we delimit them with the value n + 1 in the fingerprint. Note that edges

without crossings are also considered in the fingerprint. For an example see the fingerprints in

the captions of Figures 5.11(a) and 5.11(b). The crossing rotations are written as subscripts of

the corresponding indices of the edge. It can be seen that the fingerprints only differ in two of

these entries, meaning the drawings differ in one crossing rotation.

a

c

b

d

(a) 0 crossing.

a

c

b

d

(b) 1 crossing.

Figure 5.12: The two kinds of rotations at a crossing between ab and cd.

5.4.2 Enumerating Connected Thrackles

The algorithm we use is quite similar to the one used to enumerate good drawings of the complete

graph Kn. We again use the half-edge data structure to represent the thrackle drawings and in

this case we don’t even need to introduce the dummy segments at the vertices, since we do not

need to enforce a certain rotation system for the drawings. The two main operations required

are the extension of an existing thrackle by a new vertex together with an edge that connects

it, and the addition of an edge between two non-adjacent vertices of the thrackle.

Adding a vertex: For extending a certain thrackle with n vertices and m edges by a new

vertex together with an edge, we need to place the new vertex in every cell. Then we have to

choose every vertex of the thrackle as target of the new edge. This determines the edges that
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need to be intersected. Starting in a certain cell we proceed to recursively intersect required

segments, just as we did in the algorithm presented in Chapter 4. Whenever we have intersected

all edges needed to fulfil the conditions of thrackle drawings, we check whether we are currently

in a cell incident to the target vertex. If this is the case, a valid thrackle drawing with n + 1

vertices and m+ 1 edges was found.

Adding an edge: The operation required to add an edge to a thrackle with n vertices

and m edges is basically the same as the operation described above. Instead of placing a new

vertex in every cell, we start with a segment emanating from every vertex of the thrackle in

every possible order in the rotation of the vertex. Clearly, only non-adjacent vertices are chosen

as targets and the procedure continues exactly as before. Whenever a valid thrackle is found, it

has n vertices and m+ 1 edges.

The diagram in Figure 5.13 shows how the sets to be generated are related to each other.

The arrows between the classes mean that any element of the class that the arrow points to can

be generated from an element of the class where the arrow starts at by either the operation of

adding a vertex together with an edge + vertex, or by adding an edge between non-adjacent

vertices + edge. Given the complete set Tn, we apply the first operation on every element of

Tn to obtain the complete set Tn+1. The set Fn is generated by applying the second operation

on every element of Tn as well. On is then obtained by again applying the second operation

on all elements of Fn. If ever we encounter that the set On is non-empty, we have found a

coutnerexample to the thrackle conjecture.

Tn Fn On

+ edge + edge

Tn+1

+ vertex

Figure 5.13: Relation between the sets Tn, Fn and On.

Note that whenever a new element is encountered, we need to generate its fingerprint according

to Section 5.4.1 and compare it to all elements that are already stored in the database.

So everything required to enumerate non-isomorphic thrackles is the set T2, namely all non-

isomorphic tree thrackles on two vertices. This set only contains one element, which is two

vertices connected by a single edge. The results obtained by running the algorithm up to n = 9
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are listed in Table 5.1.

Although running time becomes an increasing problem for this approach as n gets larger, the

actual problem is to maintain a database of all non-isomorphic tree and full thrackles. As these

numbers rise drastically and searching in the database is necessary whenever a new element is

encountered, the algorithm presented above could not be used to obtain results for n > 9. For

the purpose of finding counterexamples, however, we can make use of several observations which

will be presented in the following section.

n |Tn| |Fn| |On|
2 1 - -

3 1 1 0

4 2 1 0

5 5 6 0

6 41 48 0

7 698 994 0

8 22230 38472 0

9 1166917 2580004 0

Table 5.1: Results of enumeration of connected thrackles for n ≤ 9.

5.4.3 Searching for Counterexamples

As already mentioned above the number of tree and full thrackles rises dramatically already for

relatively small n; however, for the purpose of finding counterexamples, it is not necessary to

enumerate all non-isomorphic thrackles. Due to the results obtained in Section 5.3, we know

that it suffices to generate and extend only path thrackles.

By Lemma 5.12 every minimal counterexample to the thrackle conjecture can be obtained

from at least one path thrackle by adding two edges. So instead of generating the sets Tn of

tree thrackles on n vertices, it suffices to only maintain the sets Pn, all path thrackles of size n.

This enormously reduces computation time for serveral reasons.

First of all |Pn| can be expected to be significantly smaller than |Tn|, since Pn ⊆ Tn. Fur-

thermore, calculating the fingerprint for every element once it is generated requires permuting

through all possible labellings. While in some cases the number of labellings can be reduced

because only vertices with equal degree can be mapped onto each other, in the case of cycle

thrackles, where all vertices have degree two, we cannot avoid determining the fingerprint for

all n! labellings to find the lexicographically minimal one.

In the case of path thrackles, the calculation of the fingerprint can be drastically simplified.

The degree sequence of any path thrackle is (1, 2, 2, ..., 2, 1). So there are only two possible

labellings that can be applied. One labelling for either of the degree one vertices as a start of

the path. Note also that for every path thrackle on n vertices, not only the degree sequence,

but also the rotations of the vertices are exactly the same. We can therefore omit these parts
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and only use the crossings orders together with the crossing rotations as the fingerprint.

To find possible counter examples, we simply extend each element of Pn by two edges in all

meaningful ways. For instance we do not need to add two edges to the path in such a way

that a vertex with degree one remains, since we know that such a graph cannot be a minimal

counterexample.

By this observation we could build up a database of all path thrackles Pn on n vertices for

2 ≤ n ≤ 12. The values for |Pn| can be found in Table 5.2.

n |Pn| |On|
2 1 -

3 1 0

4 1 0

5 2 0

6 12 0

7 121 0

8 2399 0

9 73092 0

10 3502013 0

11 258438398 0

12 31176142191 0

Table 5.2: Results of enumeration of connected path thrackles for n ≤ 12.

Still the cardinality of Pn grows dramatically. While computation time is not the biggest

problem, storage requirements are the main factor of limitation. We could, however, use an-

other observation that is presented in the following section to reduced space complexity of the

algorithm to practically constant. This allowed us to obtain results for n = 11 and n = 12

(entries written in italic font in Table 5.2) giving us the knowledge that a counterexample to

the thrackle conjecture, if existing, must have at least 13 vertices.

Observation 5.16. Let G be a thrackleable graph on n < 13 vertices. Then G has at most as

many edges as vertices.

5.4.4 A Recursive Variant for Generating Path Thrackles

The main problem in the algorithm from Section 5.4.3 is not that all path thrackles need to

be stored in a database on the hard disk, although this would be a big problem for n = 12

because storing all fingerprints of the 31176142191 path thrackles in a database would require

approximately five terabytes of space. The real problem arises because we want to store only

unique fingerprints, which means that for every new element, we need to check whether it is

already contained in the database or not. Considering this huge amount of data, this is a

virtually impossible task today.
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Fortunately, for finding counterexamples to the thrackle conjecture, it is not necessary to keep

all non-isomorphic path thrackles stored. Instead we run the algorithm recursively and give a

condition when to further extend a path thrackle by a vertex such that we guarantee to not

extend one and the same path thrackles multiple times.

We run the algorithm on all elements (i.e., path thrackles) with n−1 vertices in the database.

Whenever we find a new path thrackle with n vertices, we will decide by the condition presented

in the following if we count the newly found thrackle and extend it further in a recursive manner.

Consider the illustration below (Figure 5.14). When we found a path thrackle with n vertices

Pn, we obtained it by extending a path thrackle Pn−1 with one vertex and edge less. Now

we only accept Pn if we could not have reached it by extending a different thrackle with a

lexicographically smaller fingerprint than Pn−1. So we calculate the two fingerprints P ′n−1 and

P ′′n−1, the fingerprints of the thrackles obtained by omitting the first edge and vertex and last

edge and vertex of Pn, respectively. If now one of these is lexicographically smaller than Pn−1,

we can also reach Pn from this thrackle and therefore reject the newly found drawing.

Pn−1

Pn

P ′n−1 P ′′n−1

Pn Pn

Figure 5.14: Fingerprints of path thrackles and how they are extended.

On the other hand, it is possible that a thrackle has a symmetric fingerprint. Meaning, if

we omit the first edge and vertex, we get the same fingerprint as when omitting the last edge

and vertex. In such a case, we can no longer determine when to accept or reject the thrackle.

Therefore we need to store thrackles if they are not rejected and accept it only if it was not

stored before. The effect on the storage requirements is that during the algorithm we only have

to keep all n path thrackles in memory that can be obtained by extending a single n − 1 path

thrackle. We can then avoid further extending the same thrackles multiple times and memory

is freed when the n− 1 path thrackle was completely processed.

In case a new thrackle is accepted by the algorithm, we proceed as in the previous algorithm

by adding two additional edges and test if a counterexample to the thrackle conjecture can be

constructed. We could use this reduction of memory usage of the program to enumerate all path

thrackles up to n = 12 vertices, hence verifying that there is no counterexample with less than

n = 13 vertices. See the last two entries in Table 5.2 for the cardinalities of Pn.

Further computations were not carried out because, set up as four processes in parallel, it took
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a bit more than two weeks to produce the results for n = 12. Although the actual number of

path thrackles for n = 13 can only be roughly estimated, one can intuitively tell from Table 5.2

that verifying that there is no counterexample with n = 13 vertices is a task that is not doable

in reasonable time; at least not without the use of substantially more hardware resources.

5.5 Additional Remarks

Despite having all our efforts to come up with a counterexample to the thrackle conjecture fail,

we have recapitulated many observations concerning the structure of a possible thrackle with

more edges than vertices. In particular, it was shown that proving or disproving the conjecture

is equivalent to proving or disproving that two even cycles that share precisely one vertex can be

drawn as a thrackle. Further, our computations suggest that there is no counterexample with

fewer than n = 13 vertices.

Interestingly, there already exists an abstract overfull thrackle for n = 7. By this we mean

that a rotation system of the complete graph exists where all 4-tuples of vertices are realizable

as either of the two non-isomorphic good drawings of K4. In this case we can determine from

the rotation system whether any two edges cross. The rotation system listed below is such an

example and the edges 13, 15, 17, 24, 26, 34, 37, and 56 either share a vertex or cross, hence form

a thrackle with 7 vertices and 8 edges. The entire rotation system, however, is not realizable as

a good drawing of the complete graph and neither is the subgraph formed by the eight edges

mentioned.

It is also interesting to see that the structure of the abstract thrackle as despicted in Figure 5.15

is also of the in principle possible kind. Meaning, two cycles that share an edge and not both

having an odd size.

1: 2 3 4 5 6 7

2: 1 3 4 5 6 7

3: 1 2 4 6 5 7

4: 1 5 7 2 6 3

5: 1 4 2 6 3 7

6: 1 7 2 4 3 5

7: 1 4 6 2 3 5

7

1 3

5 4

6 2

R(D(K7)):

Figure 5.15: Abstract rotation system of K7 (left) admitting thrackle with n + 1 edges (right).
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6
Related Topics

The following part summarizes results of problems related to good drawings of the complete

graph. As mentioned in the introductory chapter, most of the following content was elaborated

during a workshop in fall 2013.

6.1 Crossing Maximal Drawings

As already mentioned in Chapter 3, it is easy to see that the maximum number of crossings in

any good drawing is
(
n
4

)
. This is also the case with geometric drawings, but in this case there is

only one configuration that can attain this bound, namely sets with all points in convex position.

Figure 6.1: The five non-isomorphic drawings (rotation systems) of K5.

For good drawings, however, this is different. There exist at least two different rotation

systems (and thus good drawings) for fixed n ≥ 5 with the maximum number of crossings. See

Figure 6.1 (left) for the two maximizing good drawings for n = 5. Observe that one of these

drawings (leftmost) is equivalent to the convex case for geometric drawings, whereas the other
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drawing (second) cannot exist as geometric drawing.

The number of different good drawings for the complete graph of n points with
(
n
4

)
crossings

is at least the number of different rotation systems with this property, that is, the number

Tmaxw (n) of weak isomorphism classes of simple drawings of Kn with the maximum number

of crossings [44]. Harborth and Mengersen [36] proved a lower bound of eΩ(
√
n) for Tmaxw (n).

Kynčl [44] improves this estimate to Tmaxw (n) ≥ 2n−5 (n−3)!
n ≥ 2n(log(n)−O(1)). In [43] Kynčl

presents an observation that might help to improve the upper bound of Tmaxw (n) to 2O(n2). At

the moment the upper bound is given by the upper bound for Tw(Kn) (the number of weak

isomorphism classes of good drawings that realize Kn) which is Tw(Kn) ≤ 2n
2α(n)O(1)

[43] (the

constant in O(1) is huge, roughly 4304).

Table 6.1 presents the number of realizable rotation systems with
(
n
4

)
crossings for 4 ≤ n ≤ 10.

n crossing-maximal realizable rotation systems

4 1

5 2

6 10

7 115

8 2657

9 82957

10 3226173

Table 6.1: The number of crossing-maximal realizable rotation systems for 4 ≤ n ≤ 10.

From an exhaustive search for 4 ≤ n ≤ 8, we know that all realizable rotation systems for

these numbers of points induce a plane Hamiltonian cycle. Hence, also all crossing maximizing

rotation systems for that many points induce a plane Hamiltonian cycle. In accordance to the

question about whether a plane Hamiltonian cycle is contained in every good drawing, we ask

the supposedly simpler question: does every good drawing with
(
n
4

)
crossings induce a plane

Hamiltonian cycle?

6.2 Plane Cycles in Drawings of the Complete Graph

The number of Hamilton cycles in the complete graph is very well defined and we give a quick

proof of the following statement.

Proposition 6.1. The complete graph Kn on n vertices contains (n− 1)!/2 distinct Hamilton

cycles.

Proof. Since we have a complete graph, every edge is present and thus any ordering of the vertices

forms a Hamilton cycle if connected in that order and closed by connecting the last vertex to the

first one. There are n! different orderings of n vertices, but since it is not important at which

of the n vertices the cycle starts, any Hamilton cycle is counted exactly n times. Additionally,
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reversing the ordering gives one and the same cycle and therefore we get exactly (n − 1)!/2

distinct Hamilton cycles in any complete graph Kn.

For drawings of complete graphs, however, a slightly different question might be considered.

Namely, the question whether there exists a Hamilton cycle that is formed by arcs that are

pairwise non-intersecting, a plane Hamilton cycle. In the case of geometric drawings this question

is easily settled.

Theorem 6.2. Every geometric drawing of the complete graph Kn on n vertices contains at

least one plane Hamilton cycle.

Proof. Pick an arbitrary vertex v1 and let v2, ..., vn be the remaining vertices ordered radially

around v1. For i = 2 to n− 1 consider the edges (vi, vi+1). Together with the edges (v1, v2) and

(vn, v1) we have a Hamilton cycle which is plane due to the chosen ordering of the vertices and

the fact that all edges are straight-line segments.

While showing existence for geometric drawings is straight forward, the more difficult problem

of determining the maximum number of crossing-free Hamilton cycles any drawing of Kn admits

was first studied by Newborn and Moser [49]. For n ≤ 6 they could show the exact values for

Φ(n) and Φ̄(n), the maximum number of crossing-free Hamilton cycles in any good drawing and

geometric drawing of Kn, respectively. For up to n = 9 lower bounds were given which were

subsequently extended up to n = 13 by Hayward [37]. His results for Φ̄(n) were originally tight

for n ≤ 8, but Aichholzer and Krasser [4] could achieve correct tight bounds for n = 9 and

n = 10. The following table summarizes these lower bounds.

n 3 4 5 6 7 8 9 10 11 12 13

Φ̄(n) 1 3 8 29 92 339 1282 4994 18383 75231 306466

Φ(n) 1 3 8 29 96 399 1461 6354 24687 110162 446798

Table 6.2: Lower bounds on Φ(n) and Φ̄(n) from [37] and [4]

.

In their just mentioned work, Newborn and Moser also give lower and upper bounds for

geometric drawings of Kn.

(3/20) · 10bn/3c ≤ Φ̄(n) ≤ 2 · 6n−2(bn/2c)! (6.1)

The lower bound in Equation 6.1 was improved by Hayward who gave a substantially better

asymptotic result.

c · 3.2684n ≤ Φ̄(n), for some c ∈ R+ (6.2)
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Clearly, the lower bound for Φ̄(n) also holds for Φ(n). For the upper bound Hayward conjectures

it to be c · 4.5n for some c ∈ R+ in both cases.

As far as the above publications on the maximum number of plane Hamilton cycles are

concerned, none of them mentions whether there are good drawings without any crossing-free

Hamilton cycle. However, it appears to be incredibly hard to prove the existence of a single

crossing-free Hamilton cycle in any D(Kn). For 3 ≤ n ≤ 5 one can easily see that all non-

isomorphic good drawings contain a plane Hamilton cycle. Up to n = 8 the same could be

confirmed with the use of the database created with the algorithm in Section 4.1. We therefore

conjecture the following:

Conjecture 6.3. Every good drawing of the complete graph Kn on n vertices contains a plane

Hamilton cycle.

The aforementioned computations were carried out using rotation systems, since they uniquely

determine which pairs of edges cross. Interestingly, among non-realizable rotations systems

there were examples that would in principle not admit any crossing-free Hamilton cycle. This

implies that Conjecture 6.3 can neither be verified nor disproved without taking realizability

of rotation systems into account. Furthermore, compare the existence of an abstract rotation

system without crossing free Hamilton cycle to the existence of an abstract thrackle with more

edges than vertices in Chapter 5.

It is interesting to note that, to the best of our knowledge, there are no publications dealing

with the above conjecture. Only one very interesting doctoral thesis by Nabil Rafla [56] from

1988 could be found. Although, confusingly using the term isomorphic drawings for what we

and (as he also mentions himself) others defined as weakly isomorphic drawings, he gave an

algorithm to enumerate all weakly isomorphic good drawings of the complete graph on n ≤ 7

vertices. His approach is very different from ours and relies on the conjectured existence of at

least one crossing-free Hamilton cycle in any D(Kn). He obtained the same results as we did,

which is no surprise, since we checked Conjecture 6.3 for up to eight vertices. Just to be sure,

note that our approach is completely independent of whether the conjecture is true, or not.

Interestingly, the above mentioned thesis was supervised by M. Newborn (exactly the one cited

before). With obviously having dealt with crossing-free Hamilton cycles in D(Kn) quite a lot,

he seemed to have had no objections against the crucial assumption made in the development

of the algorithm. Furthermore, according to the acknowledgements section in the said thesis, it

appears that Richard Guy and Paul Erdős were also aware of the contents. Both of whom were

prominently involved in topics concerning drawings of complete graphs.

One further question that can be asked in this context is whether any crossing maximal

drawing admits exactly one plane Hamilton cycle. These crossing maximal sets are often referred

to as “convex sets” as in the geometric setting only point sets in convex position have exactly
(
n
4

)
crossings. Also for straight-line drawings each such set has exactly one crossing-free Hamilton

cycle. Figure 6.2 shows, surprisingly, that this is not the case for crossing maximal good drawings

of Kn.
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Figure 6.2: Crossing maximal good drawing of K5 with two distinct plane Hamilton cycles.

6.2.1 Diagonals in Plane Cycles

Despite many efforts, no substantial progress could be made towards resolving Conjecture 6.3;

however, a minor related result concerning diagonals in plane cycles could be established.

Definition 6.1. Let C be a plane cycle in a good drawing, and let v and w be two non-adjacent

vertices of C. If the interior of the edge vw does not intersect C, then vw is called a diagonal

of C.

We will make use of a result of Fulek and Ruiz-Vargas [26].

Definition 6.2 (Fulek, Ruiz-Vargas). A face of a plane graph is a connected component of the

complement of the graph. A vertex is incident to a face F if it is contained in the closure of F ,

but not in F . An edge e is contained in F if the interior of e is a subset of F .

Proposition 6.4 (Fulek, Ruiz-Vargas [26], Corollary 2.3). Let G be a simple topological graph

and H be a connected plane subgraph of G with at least two vertices. Let v be a vertex of G that

is not in H, and F be the face of H that contains v. Assume that for every vertex w incident

to F , we have vw ∈ E(G). Then there exist two edges in G from v to F that are contained in F .

The main idea in the proof of Proposition 6.4 is to first show the result for the case where H

is a cycle. Then, if H is not a cycle, the approach is to draw a cycle H ′ sufficiently close to H

that separates v from H. For |C| = 4, it is easy to see that each vertex is incident to exactly

one diagonal. We can use Proposition 6.4 to obtain the following result.

Theorem 6.5. Let C = 〈v1, . . . , vn〉, n ≥ 5, be a plane cycle in a good drawing of the complete

graph Kn. Suppose v1 is not incident to a diagonal of C. Then v2 and v3, as well as vn−1 and

vn are each incident to a diagonal of C. Moreover the diagonals incident to v2 and v3 do not

cross and the same holds for the diagonals incident to vn−1 and vn.

Proof. See Figure 6.3. Consider the path P = 〈v3, . . . , vn〉. Due to Proposition 6.4, there have

to be at least two edges from v1 to P not crossing P . One is v1vn. Let the other one be v1vk,

n > k ≥ 3. Since v1 is not incident to a diagonal of C, v1vk has to cross an edge of C, which can

only be v2v3; it is the only edge neither in P nor incident to v1. Further, it follows that k > 3.

We obtain a new cycle C̃ = 〈vk, . . . , vn, v1〉, separating v2 from the sub-path 〈v3, . . . , vk−1〉.
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Again, we use Proposition 6.4 with v2 and C̃. There is at least one edge in addition to v1v2 from

v2 to C̃ not crossing C̃, which is a diagonal of C incident to v2. Analogously, we connect v3 to

the plane graph C̃ ∪〈v4, . . . , vk−1〉 to obtain a diagonal from v3. Observe that the two diagonals

that we found do not cross. We can apply the same argument by re-indexing C in the other

direction from v1 for vn−1 and vn.

v1 v2

v3

vk

vn

Figure 6.3: A cycle that does not contain a diagonal incident to v1. The path P is shown bold. Recall that
the choice of the unbounded face is arbitrary.

As ≥ 2
3 of the vertices are incident to a diagonal, and a diagonal counts for two vertices, we

get the following corollary.

Corollary 6.6. Every plane cycle of size n in a good drawing of the complete graph contains at

least dn/3e diagonals.

Figure 6.4 shows that this is tight for 5 vertices.

Figure 6.4: Good drawing of K5 where the bold cycle has dn/3e = 2 diagonals (dashed).
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6.3 Plane Matchings in Drawings of the Complete Graph

A plane matching in a drawing of a graph is a set of pairwise non-adjacent edges which are drawn

in such a way that they do not intersect each other in any point. This section summarizes results

concerning the number of such disjoint edges one can always find in any good drawing of Kn.

A first result was published by Pach, Solymosi, and Tóth [50] and stated that the number

of disjoint edges in any D(Kn) is Ω(log(n)1/6). Pach and Tóth [53] improved this bound to

Ω(log(n) /log(log(n))) and subsequently posed the problem whether it is true that there exists a

constant c > 0 such that every good drawing of the complete graph with n vertices has at least

nc disjoint edges (see Problem 4 in Chapter 9 of [13]). The question was first answered in the

affirmative by Suk [64] in 2012. Later Fulek and Ruiz-Vargas [26] gave a simpler proof of the

same result that the number of disjoint edges in any D(Kn) is Ω(n1/3). We sketch their proof

in the following.

To start, consider a star G around an arbitrary vertex u. For every vertex v adjacent to u,

we can remove the edge uv from this star and by Proposition 6.4, there exist two non-crossing

edges connecting u with the remaining of the star. Thus, at least one edge should be different

than uv. By adding this new edge to G, we obtain a new graph G′ where v has degree ≥ 2. Let

G = G′ and repeat the process for every vertex incident to u.

The resulting graph G∗ is a plane good drawing where every vertex other than u has degree

at least 2.

Case 1. If the maximum degree of a vertex in G∗ other than u is at most n2/3, then remove

u from G∗. From the resulting graph, we can construct a matching by choosing an arbitrary

edge and removing it along with all vertices adjacent to its endpoints. Since we remove at most

O(n2/3) vertices, we can repeat this process at least Ω(n1/3) times before running out of edges,

i.e., we can construct a disjoint plane matching of size Ω(n1/3).

Case 2. If there is a vertex v of maximum degree k = Ω(n2/3) other than u, then we can

look at the subgraph spanned by u, v, and all k neighbours of v. Let V ′ = {u0, u2, . . . , uk−1}
be the common neighbours of u and v sorted according to the rotation order around v. For

1 ≤ i < j ≤ k, notice that the edge uiuj can cross at most once the path uuhv for any

1 ≤ h ≤ k; see Figure 6.5. Let E = {uiuj : 0 ≤ i < j ≤ k − 1} and notice that for every edge

uiuj ∈ E, this edge crosses either the path uu0v or the path uuk/2v. Assume without loss of

generality that at least half of the edges in E intersect the path uu0v and let E′ ⊂ E be such a

set of edges.

Let H be the subgraph with vertex set V ′ and edge set E′. We can show that H can be

redrawn as a quasi x-monotone graph; see Figure 6.5. We will use the following lemma proved

by Ruiz-Vargas and Fulek.

Lemma 6.7. A simple quasi x-monotone topological graph on n vertices without k pairwise

disjoint edges has at most O(k2n) edges.

Since H has at least k = Ω(n2/3) vertices and Ω(k2) = Ω(n4/3) edges, by Lemma 6.7 H

contains at least Ω

(√
(n

4
3
− 2

3 )

)
= Ω(n1/3) pairwise disjoint edges.
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u

u0 u1 u3
u2 u5 u7u6 u8

v

G′0

G′0
u0u1u2u3 u8 u7 u6 u5

P0

P8

Figure 6.5: Redrawing as a quasi x-monotone graph (Figure 9 in [26])

6.3.1 Bichromatic Matchings

If the points of P are evenly coloured red and blue, then we can ask for the existence of plane

bichromatic matchings. Using the computer we obtain the following result.

Lemma 6.8. Every complete good drawing with either 4, 6, or 8 points and any evenly red and

blue colouring contains a planar bichromatic perfect matching as a subgraph.

6.4 Plane Double Stars

Another plane structure that can be shown to always exists in good drawings of Kn is a double

star. Even more interestingly, we will see in the following that we can find such a plane double

star with arbitrary edge degrees summing up to n for the two central vertices.

Let G = (V,E) be a good drawing of a complete graph. Let p and q be to vertices of V .

We define a relation between any two vertices in V \ {p, q} in the following way. For any

u, v ∈ V \ {p, q}, we say that u ≺ v if and only if the edge pv crosses the edge qu. See

Figure 6.6(a).

Observation 6.9. If u ≺ v, then v 6≺ u.

Proof. If u ≺ v, then the edges pv and qu cross; however, the quadruple u, v, p, q can generate

at most one crossing in the complete graph that they induce. Therefore, the edges pu and qv

cannot cross and hence, v 6≺ u.
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Consider the directed graph D having vertex set V \ {p, q}, where there is an arc from u

towards v if and only if u ≺ v.

p q

v0 v1 vk≺ ≺ ≺

p

p q

q

v0

v0

v1

v1

p

p

q

q

v1

v0

vk

vk

v1

v0

p q

v0 v1≺

(c) (d)(b)(a)

v0≺ vk

vk

Figure 6.6: There is no cycle in the partial order of edge crossings.

Theorem 6.10. The graph D is a Directed Acyclic Graph (DAG).

Proof. Assume for a contradiction that there is a cycle in D. Let v0, v1, . . . , vk ∈ V \ {p, q} be

the smallest cycle in D such that v0 ≺ v1 ≺ . . . ≺ vk ≺ v0. See Figure 6.6(b) for a sketch.

Because vk ≺ v0, we know that v0 6≺ vk by Observation 6.9. That is, the edges qv0 and pvk

cannot cross. Furthermore, the edge pvk crosses neither the edge pv0 nor the edge pq by the

properties of a good drawing. Therefore, the edge pvk cannot cross the boundary of the triangle

T = 4(p, q, v0).

For each 0 < i < k, we claim that qvk do not cross the edge pvi. Otherwise, if qvk and pvi

cross, then vk ≺ vi. That is, the sequence vi ≺ vi+1 ≺ . . . ≺ vk ≺ vi forms a smaller cycle in D,

which contradicts the assumption that we consider the smallest cycle.

Because v0 ≺ v1, we know that the edges qv0 and pv1 cross. Therefore, we have two cases for

the quadruple p, q, v0, v1 depicted in Figure 6.6(c).

Case 1. In this case, v1 lies outside of T . Recall that qvk and pv0 cross. Therefore, (a part

of) the edge qvk is at some point in the interior of T . However, as qvk is not allowed to cross pv1,

the edge qvk cannot start in the interior of T , as the boundary of the cell formed by (parts of)

the edges pq, qv0, and pv1 cannot be crossed; see Figure 6.6(c) top. Therefore, the edge qvk must

start in the outside of T and enter T by crossing pv0. Since qvk cannot cross pv1, we conclude

that vk must lie in the cell that is inside T and bounded by (parts of) pv0, qv0, and pv1. That

is, the rotation (radial order) of p is given by (q, v1, vk, v0).

Case 2. In this case, v1 lies inside of T . The edge pv1 must enter T by crossing the edge qv0;

see Figure 6.6(c) bottom. In this case, the edge pv0 is completely contained in the cell bounded

by pv1, pq, and qv0. The edge qvk cannot cross neither pv1, qv0, nor pq. In order for qvk to

cross pv0, qvk must start in the interior of T and hence, it is completely bounded by (parts of)
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the edges pv1, pq, and qv0. That is, vk must lie in the cell bounded by (parts of) pv0, pv1, and

qv0. Therefore, the rotation of p is given by (q, v0, vk, v1).

Regardless of the case, in the rotation of p, the vertices q and vk cannot be adjacent. See

Figure 6.6(d). However, the labeling of the vertices in the cycle was arbitrary, i.e., we can relabel

the vertices of the cycle by shifting the indices any fixed amount. In this way, any vertex in the

cycle can play the role of vk and we know that it cannot be adjacent to q in the rotation of p;

however, if we consider the subgraph of G spanned by {p, q, v0, v1, . . . , vk}, some vertex has to

be adjacent to q in the rotation of p which is a contradiction. Consequently, D has no cycle.

As a consequence of Theorem 6.10, we obtain the following result.

Lemma 6.11. Let p and q be two arbitrary vertices of the vertex set. Let δ(p) ≥ 1 and δ(q) ≥ 1

be their edge degrees. For each choice of δ(p) and δ(q), with δ(p) + δ(q) = n, there exists a plane

double star with p and q as the two centres, having the predefined edge degrees.

Proof. Consider the partial order v1 ≺ v2 ≺ . . . ≺ vn−2 of the vertices of V \ {p, q} with respect

to p, q. For the double star induced by G, use the edges of G that connect the vertices of

{v1, . . . , vδ(p)−1} to p, the vertices of {vδ(p), . . . , vn−2} to q, and p to q. The edges of the stars

around p and q, respectively, do not intersect because they are induced by a good drawing. If

an edge pvi would intersect an edge qvj then, because of the partial order with respect to p, q,

vj ≺ vi. But we chose the edges pvi and qvj such that vi ≺ vj for all 1 ≤ i ≤ δ(p) − 1 and

δ(p) ≤ j ≤ n− 2. Hence, the constructed double star is plane.

6.5 Strictly Weight Decreasing Untangling

To obtain a plane sub graph – like a plane spanning cycle, a plane spanning tree, or a plane perfect

matching – of a given drawing of a complete graph, often the following standard approach is used.

Start with a (not necessarily plane) graph from the same graph class and locally “untangle” its

crossings. For this untangling we replace two crossing edges by two incident edges which don’t

cross each other. More precisely, assume that for the four vertices v1, . . . , v4 the edges v1v2 and

v3v4 properly intersect and are part of the current graph. Then we replace them by one of the

non-intersecting pair v1v3 and v2v4 or v1v4 and v2v3.

It is easy to see that for the above mentioned graph classes, this can be done such that the

resulting graph still belongs to the same class. In this way we “locally” remove one crossing.

If we can repeat this process until no crossings remain, we obtain a plane graph of this class;

however, in this process new crossings might be introduced. Moreover, the process might even

cycle, that is, removed crossings re-appear later again. In order to guarantee that the process

terminates after a finite number of steps, it is usually shown that each untangling reduces some

well defined weight of the graph. In the geometric setting, this is, for example, the sum of the

length of all edges of the graph. Basic geometry shows that the sum of the length of v1v2 and

v3v4 is strictly larger than that of v1v3 and v2v4 or v1v4 and v2v3.
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Instead of considering the length of the edges, we can consider a weighted graph G, such that

each edge vivj obtains a non-negative weight w(vivj). The total sum of the weights of all edges

of G is the weight w(G). Using the same notation as above, assume that for any crossing of the

graph the following two relations hold:

w(v1v2) + w(v3v4) > w(v1v3) + w(v2v4)

w(v1v2) + w(v3v4) > w(v1v4) + w(v2v3)

Then w(G) is reduced in each untangling step, which implies that the above described approach

terminates for G in a finite number of steps.

Can we find such weights for any given good drawing of the complete graph? In the following

we answer this question in the negative.

5 4

1 3

8

7

26

Figure 6.7: A good drawing of a cube-graph where for each face one pair of edges crosses.

Consider the good drawing of Figure 6.7. We will use six of its crossings to obtain a system

of six inequalities for the weights of its edges. To this end consider the cube-like structure that

this graph has, depicted in Figure 6.8.

This structure leads to the following system:

w(v1v2) + w(v3v4) > w(v1v3) + w(v2v4)

w(v1v3) + w(v5v7) > w(v1v5) + w(v3v7)

w(v2v4) + w(v6v8) > w(v2v6) + w(v4v8)

w(v1v5) + w(v2v6) > w(v1v2) + w(v5v6)

w(v3v7) + w(v4v8) > w(v3v4) + w(v7v8)

w(v5v6) + w(v7v8) > w(v5v7) + w(v6v8)
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5 6

1 2

3

4

87

Figure 6.8: Cube structure of the drawing in Figure 6.7, without crossings.

As each involved edge shows up twice, once on each side of the inequalities, summing over

all six inequalities results in 0 > 0, a contradiction. It remains to show that the good drawing

of Figure 6.7 can, in fact, be completed to a good drawing of the complete graph. Figure 6.9

shows that this can be done and we thus obtain the following statement.

5 4

1 3

8

7

26

Figure 6.9: The good drawing of Figure 6.7 can be completed to a good drawing of the complete graph on 8
vertices.

Lemma 6.12. There exist good drawings of the complete graph on n ≥ 8 vertices which do not

allow a weight assignment to the edges of this graph such that each untangling is strictly weight

reducing.

In Figure 6.10 a different completion to a drawing of a K8 is depicted.
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5 4

1 3

8

7

26

Figure 6.10: The good drawing of Figure 6.7 can be completed to a good drawing of the complete graph on 8
vertices; second version, different rotation system.

We finally checked all 102 realizable rotation systems for n = 6 points. For 101 of them we

obtained valid integer weights (range 1 . . . 10), but for the remaining set this is not possible.

From its 15 crossings we derive 30 inequalities and among them are the following six:

w(v1v3) + w(v2v5) > w(v1v5) + w(v2v3)

w(v1v4) + w(v2v6) > w(v1v6) + w(v2v4)

w(v1v5) + w(v4v6) > w(v1v4) + w(v5v6)

w(v1v6) + w(v3v4) > w(v1v3) + w(v4v6)

w(v2v3) + w(v5v6) > w(v2v6) + w(v3v5)

w(v2v4) + w(v3v5) > w(v2v5) + w(v3v4)

As before, summing them up gives the contradiction 0 > 0. The structure of this system,

however, is now the cross polytope, i.e., the dual of the cube. See Figure 6.11 for the related

drawings. As we know (and checked), all realizable rotation systems for n ≤ 5 do not provide

such examples.

A question that arises from the previous observations is the following: under which conditions

do good drawings of the complete graph allow a weight assignment such that each untangling

is weight reducing?
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1
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Figure 6.11: The good drawing of the 6-point example, the octaeder structure, and a good drawing of the
resulting complete graph.

6.6 Unavoidable Edges

As already mentioned in Chapter 1, another interesting problem is to consider uncrossed or

unavoidable edges in drawings of Kn, i.e., edges that are not crossed by any other edge of the

drawing. We mentioned that for n ≥ 8 there always exists a D(Kn) without uncrossed edges

(see Table 1.1). We present in the following the construction of Harborth and Mengersen [35]

that proves the said property:

For now suppose that n is even. The vertices are placed as a convex polygon ordered clockwise

and all but the following edges are drawn as diagonals: (i, i+ 3) for i = 1, ..., n, (2i, 2i+ 2) and

(2i− 1, 2i+ 3) for i = 1, ..., n2 . See Figure 6.12 (leftmost) for the construction so far and notice

that all diagonal edges are crossed at least once.

Now, the (i, i + 3) edges are drawn either starting inside the polygon if i is odd, or starting

outside if i is even. Then each such edge intersects (i + 1, i + 2) and directly connects to the
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corresponding endpoint. The current drawing can be seen in Figure 6.12 (centre left).

The remaining edges are simply connected through the exterior of the polygon giving the final

drawing without uncrossed edges as in Figure 6.12 (centre right).

2

3

456

7

18

2

3

456

7

18 2

3

456

7

18

2

3

456

7

18

9

Figure 6.12: Construction of D(K8) and D(K9) without uncrossed edges.

It remains to extend the above construction to the case where n is odd. We therefore place

the nth vertex close to vertex 1 and draw all edges (n, i) for i = 2, ..., n− 1 in such a way, that

it goes directly very close to the corresponding edge (1, i) and then follows it to the endpoint i.

This will certainly induce crossings on all these edges and the only one left is (1, n). See the

dashed edges drawn in red in the bottom right picture of Figure 6.12. The last edge can always

be drawn such that it follows (1, 5) on the side that was not yet used (green dashed edge). All

of these have no mutual crossings and we therefore get a drawing on an odd number of vertices

with at least one crossing per edge.

Another result that Harborth and Mengersen attribute to Ringel [58] is that the maximum

number of unavoidable edges in any drawing for n ≥ 4 vertices is H(n) = 2n − 2. Moreover,

in [13] they ask for bounds on the least integer l(n) such that any good drawing on n vertices

contains an edge with fewer than l(n) crossings. Using a rather sophisticated construction,
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Kynčl and Valtr [44] showed a lower bound of Ω(n3/2) ≤ l(n). Also an upper bound of l(n) ≤
O(n2/log(n)1/4) is given.

Pach and Tóth [52] conjectured that for any complete topological graph (not necessary simple)

on n ≥ 5 vertices, there is some δ > 0 such that there are at least nδ pairwise crossing edges.

Fox and Pach could eventually confirm this conjecture and establish the following theorem.

Theorem 6.13 (Fox, Pach [22]). For every ε > 0 and every integer t > 0, there exists δ > 0

and a positive integer n0 with the following property. If G is a topological graph with n ≥ n0

vertices and at least n1+ε edges such that no pair of them intersect in more than t points, then

G has nδ pairwise crossing edges.

For good drawings of the complete graph we have t = 1 and ε > 0 and thus the statement

holds.

6.7 Empty Triangles

For geometric drawings the definition of a triangle is rather intuitive. In the case of good

drawings, we should, however, define a triangle and more specifically the notion of emptiness

with care.

Definition 6.3. In a good drawing D(G) of a graph G we denote the induced drawing of any

clique of order 3 as a triangle ∆.

Clearly, in a good drawing of Kn the induced subgraph of any three vertices constitutes a

triangle. Furthermore, such a triangle forms a closed Jordan curve and thus partitions the plane

(or sphere) into two connected components. When drawn in the plane, one of the components

is bounded and the other is unbounded.

Definition 6.4. A triangle ∆ in a good drawing D(G) is said to be empty, if one of the

components formed by ∆ does not contain any other point of D(G).

We consider the problem of determining t(n), the minimum number of empty triangles in any

D(Kn). While in the case of geometric drawings lower and upper bounds are of quadratic order

(see [2] and [9] for lower and upper bounds, respectively), Harboth [34] could provide examples

that the minimum number of empty triangles in any D(Kn) is at most 2n − 4. He could show

that this is tight for 3 ≤ n ≤ 6 and raised the question whether t(n) = 2n− 4 in general. While

he was only able to show that t(n) = 2 for n ≥ 3, the best bound known to date is due to

Aichholzer et al. [3].

Theorem 6.14 (Aichholzer et al., [3]). For n ≥ 4, the number of empty triangles in any good

drawing D(Kn) of the complete graph Kn with n vertices is at least n.

Aside from their proof of Theorem 6.14, they mention an interesting relation to rotation

systems of complete graph drawings.
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Lemma 6.15 (Aichholzer et al., [3]). Let v1, v2, v3 be three vertices of a good drawing D(Kn) of

the complete graph Kn on n vertices that form the triangle ∆. Whether ∆ is empty is determined

by the rotation system R(D(Kn)).

The above allows to determine the minimum number of empty triangles in any good drawing

of the complete graph for 4 ≤ n ≤ 8 by testing all different rotation systems for that property.

This was in fact done by Aichholzer et al. [3] and their results confirmed the conjecture of

Harboth that any D(Kn) contains at least 2n− 4 empty triangles.

Observation 6.16 (Aichholzer et al., [3]). For 3 ≤ n ≤ 8, the number of empty triangles in a

good drawing of Kn is at least 2n− 4.

This supports that Harboth’s question can be answered in the affirmative.

Conjecture 6.17. Any good drawing D(Kn) of the complete graph Kn contains at least 2n− 4

empty triangles.

– 73 –



Rotation Systems and Good Drawings

7
Summary and Open Problems

We have recalled the result of Kynčl [44] that weak isomorphism of good drawings of the complete

graph is determined by the rotation system. We made use of his result to implement an algorithm

and build up a database of all realizable rotation systems and non-isomorphic drawings of D(Kn)

for 3 ≤ n ≤ 8. This database can subsequently be used for testing all good drawings of Kn

with up to eight vertices for certain interesting properties. It allows to make observations and

thus gain more insight into the actual problem of interest, which could eventually lead to a fully

analytical proof.

A critical part of this algorithm is evidently verifying realizability. Although Kynčl proved

that this problem can be solved in polynomial time [43], we only implemented a non-polynomial

time backtracking algorithm for this purpose.

As observations suggest 1, this part could, however, be drastically simplified. While there are

non-realizable rotation systems where the rotation system of every K4 subdrawing is realizable,

no such examples could be found that contain only realizable 5-tuples. If one could prove

that realizability of all K5 subdrawings is a necessary and in particular sufficient condition for

realizability of the entire D(Kn), this part of the algorithm would reduce to simply testing all

Θ(n5) 5-tuples of vertices for realizability. Apart from also being more efficient than Kynčl’s

approach, it is evidently also easier to implement.

As the drawings in Section 4.1.5 suggest, the simple method of embedding the planarized

graph obtained from a certain D(Kn) with straigh-line edges does not yield satisfactory results.

Aside from aesthetics the visualizations hardly give any better insight into the structure of

the drawings. More sophisticated methods that allow for bent edges and take for instance the

angular resolution of the drawing into account could be applied. It is, however, questionable that

1 Personal communication: Oswin Aichholzer, Thomas Hackl, Alexander Pilz, Birgit Vogtenhuber

– 74 –



7 Summary and Open Problems

such algorithms could produce appealing visualizations for complete graphs with many vertices.

It is probably unavoidable to extract certain structural properties giving hints for an adequate

placement of the vertices and shape of the arcs connecting them.

After summarizing what is known to date about the thrackle conjecture, a database with

unique thrackle drawings was created in a similar manner. For 2 ≤ n ≤ 9 we could store all

connected thrackles, i.e., all thrackle with one edge less than vertices and all thrackles with the

same number of edges and vertices. In the attempt of finding a minimal counterexample, we

pointed out that it suffices to only consider all thrackle drawings whose underlying graph is a

path on n vertices. With further observations we modified the algorithm to construct a database

of all path thrackles for 2 ≤ n ≤ 12. By failing in disproving Conway’s conjecture, we could,

however, give evidence that a minimal counterexample must have at least 13 vertices. The best

known previous result was due to Curt McMullen. He too established by massive computer

search that a counterexample must have at least 11 or 12 vertices. This was only mentioned

by John Conway himself in a response to a question in a mathematics forum and he was not

certain about the exact number 1.

In Table 5.2 it can be seen that even the number of non-isomorphic path thrackles grows

astonishingly fast. An exhaustive enumeration and subsequent test for the existence of coun-

terexamples is no longer feasible for n ≥ 13. In order to further follow this approach, one would

need to gain more insight in the structural properties of possible counterexamples. Maybe the

number of path thrackles that actually need to be constructed can be drastically reduced, al-

lowing for covering all the candidates that could be extended to a counterexample for larger n.

So far, however, no promising approaches in that direction are in sight.

1 http://mathforum.org/kb/message.jspa?messageID=1376434

– 75 –



Rotation Systems and Good Drawings

List of Figures

2.1 Three different graphs on the same set of five vertices. . . . . . . . . . . . . . . . 11

3.1 A drawing, good drawing, and geometric drawing of K4. . . . . . . . . . . . . . . 14

3.2 Forbidden crossings in good drawings. . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Degenerate cases forbidden in good drawings. . . . . . . . . . . . . . . . . . . . . 15

3.4 Forbidden crossings made good. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Two good drawings that are not extendible to good drawings of the complete

graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6 Maximal plane drawings having a different number of edges. . . . . . . . . . . . . 17

3.7 Different drawings of K5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.8 Good drawings of K4 with inverse rotation systems. . . . . . . . . . . . . . . . . 20

3.9 The eight valid rotation systems of K4. . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Labelling of D(K5) with three crossings giving minimal fingerprint. . . . . . . . . 25

4.2 Half-edge data structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Initial star of the algorithm as represented by in the data structure. . . . . . . . 28

4.4 Example of D(K5) as produced by Algorithm 1. . . . . . . . . . . . . . . . . . . 31

4.5 Local triangle switch in a good drawing as in [29]. . . . . . . . . . . . . . . . . . 33

4.6 Unique rotation system with three non-isomorphic D(K6). . . . . . . . . . . . . . 34

4.7 Isomorphic drawings of K5 created with IPELET and by hand. . . . . . . . . . . 35

4.8 Drawing of K7 created with IPELET. . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Thrackle embeddings of P6, C7 and C6. . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Extending a thrackle by two vertices. . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 The n-ray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 The argument used by Perles’ proof in the straight-line and x-monotone case. . . 40

5.5 Embedding of a thrackle with 5 vertices and 6 edges on the torus as in [71]. . . . 41

5.6 C(a, b, c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.7 Degree four vertex and two degree 3 vertices. . . . . . . . . . . . . . . . . . . . . 46

5.8 Examples of adding e1 and e2 in the three cases of the above proof. . . . . . . . . 47

5.9 Illustration of Conway doubling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.10 Transformations of both kinds of dumbbells with l 6= 0. . . . . . . . . . . . . . . 48

5.11 The two kinds of rotations at a crossing between ab and cd. . . . . . . . . . . . . 50

– 76 –



List of Figures

5.12 The two kinds of rotations at a crossing between ab and cd. . . . . . . . . . . . . 51

5.13 Relation between the sets Tn, Fn and On. . . . . . . . . . . . . . . . . . . . . . . 52

5.14 Fingerprints of path thrackles and how they are extended. . . . . . . . . . . . . . 55

5.15 Abstract rotation system of K7 (left) admitting thrackle with n+ 1 edges (right). 56

6.1 The five non-isomorphic drawings (rotation systems) of K5. . . . . . . . . . . . . 57

6.2 Crossing maximal good drawing of K5 with two distinct plane Hamilton cycles. . 61

6.3 A cycle that does not contain a diagonal incident to v1. The path P is shown

bold. Recall that the choice of the unbounded face is arbitrary. . . . . . . . . . . 62

6.4 Good drawing of K5 where the bold cycle has dn/3e = 2 diagonals (dashed). . . . 62

6.5 Redrawing as a quasi x-monotone graph (Figure 9 in [26]) . . . . . . . . . . . . . 64

6.6 There is no cycle in the partial order of edge crossings. . . . . . . . . . . . . . . . 65

6.7 A good drawing of a cube-graph where for each face one pair of edges crosses. . . 67

6.8 Cube structure of the drawing in Figure 6.7, without crossings. . . . . . . . . . . 68

6.9 The good drawing of Figure 6.7 can be completed to a good drawing of the

complete graph on 8 vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.10 The good drawing of Figure 6.7 can be completed to a good drawing of the

complete graph on 8 vertices; second version, different rotation system. . . . . . . 69

6.11 The good drawing of the 6-point example, the octaeder structure, and a good

drawing of the resulting complete graph. . . . . . . . . . . . . . . . . . . . . . . . 70

6.12 Construction of D(K8) and D(K9) without uncrossed edges. . . . . . . . . . . . . 71

– 77 –



Rotation Systems and Good Drawings

List of Tables

1.1 Minimum number of unavoidable edges in any D(Kn). . . . . . . . . . . . . . . . 8

3.1 Valid rotation systems for D(K4). . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 The number of realizable RS and non-isomorphic drawings of Kn. . . . . . . . . . 32

4.2 Orders of crossings in the three non-isomorphic drawings. . . . . . . . . . . . . . 33

4.3 The maximum numbers of non-isomorphic D(Kn) per rotation system. . . . . . . 33

5.1 Results of enumeration of connected thrackles for n ≤ 9. . . . . . . . . . . . . . . 53

5.2 Results of enumeration of connected path thrackles for n ≤ 12. . . . . . . . . . . 54

6.1 The number of crossing-maximal realizable rotation systems for 4 ≤ n ≤ 10. . . . 58

6.2 Lower bounds on Φ(n) and Φ̄(n) from [37] and [4] . . . . . . . . . . . . . . . . . 59

– 78 –



Rotation Systems and Good Drawings

Bibliography
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