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The role of inhibitory networks in the self-organization of cortical

microcircuits

by Stefan Grabuschnig

A putative winner-take-all microcircuit motif found in layer 5 of the neocortex is subject

to many modeling approaches. Mutual inhibition of competing excitatory neurons plays

a crucial role in the functioning of these networks. This work investigates the effects

of biologically plausible inhibition via interneurons in a network of spiking neurons.

Previous work from Stefan Häusler models a network containing two different types of

inhibitory interneurons, Basket Cells and Martinotti Cells. This model was adapted

by incorporation of a threshold based bursting mechanism into its excitatory pyramidal

cells, with the property of a delayed temporary threshold decrease triggered by action

potentials of the respective neuron. Inhibition exerted by Martinotti Cells prevents

this threshold decrease. This relation enables efficient control over learning processes in

the network ultimately resulting in significantly improved performance in unsupervised

pattern learning and self-organization.
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Zusammenfassung

Fakultät für Informatik

Institut für Grundlagen der Informationsverarbeitung

Master of Science

The role of inhibitory networks in the self-organization of cortical

microcircuits

von Stefan Grabuschnig

Ein mutmaßliches winner-take-all Netzwerkmotiv in Layer 5 des Neocortex ist Gegen-

stand vieler Modellierungsansätze. Gegenseitige Inhibierung kompetierender erregen-

der Neuronen spielt eine Schlüsselrolle in der Funktionsweise solcher Netzwerke. Im

Rahmen dieser Arbeit wird die Auswirkung biologisch plausibler Inhibierung durch In-

terneuronen in einem Netzwerk mit spikenden Neuronen untersucht. Ausgangspunkt

ist eine Arbeit von Stefan Häusler, welche ein Netzwerk mit zwei verschiedenen Typen

inhibitorischer Interneuronen, Basket Zellen und Martinotti Zellen, modelliert. Dieses

Model wurde durch Einbau eines schwellwertgesteuerten Burst-Mechanismus in die erre-

genden Pyramidenneuronen erweitert, welcher die Eigenschaft hat, dass der Schwellwert

verzögert und vorübergehend durch ein Aktionspotential der jeweiligen Zelle herabge-

setzt wird. Inhibierung durch Martinotti Zellen kann diese Herabsetzung verhindern.

Dieser Zusammenhang ermöglicht effiziente Kontrolle über Lernprozesse innerhalb des

Netzwerks, was in signifikant verbesserter Performance im Bezug auf Selbst-Organisation

bei unüberwachtem Lernen und Erkennen von Mustern resultiert.
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Introduction

Computer models of neural circuits have come a long way since the emergence of the

first artificial neural networks. Biologically plausible spiking neuron models used in

computational neurosciences are aimed at obtaining insights in neural information pro-

cessing while additionally providing inspiration for new machine learning concepts. The

manifold approaches in this field of research vary considerably in architecture and level

of detail.

The models introduced in this work focus on a putative circuit motive found in layer V

of the neocortex, where excitatory pyramidal neurons and different types of interneu-

rons are thought to participate in a so called soft winner-take-all network. In this type

of circuit excitatory neurons compete with each other via exertion of direct or indirect

inhibition until a winner emerges for a certain network input.

In order to investigate the way interneurons orchestrate self-organization and learning

in such circuits a model of Stefan Häusler [31] was used as a starting point. This model

already includes biologically plausible inhibition using two distinct types of inhibitory

interneurons. Basket Cells and Martinotti Cells are excited by the spike output of

excitatory pyramidal neurons via synaptic connections featuring either depressing or fa-

cilitating short term plasticity [25], [22]. Inspired by recent work of Mathew Larkum et.

al [30], [32], [33], [34] a bursting mechanism was incorporated into the excitatory neurons

of this model. This was motivated by the idea of providing distinguishable spike coding

addressing either facilitating synaptic connections in the case of high frequent bursts

of spikes or depressing synaptic connections in the case of normal non-bursting spiking

activity. An important detail is comprised by spike-timing dependent plasticity being

only triggered by bursts of spikes [28], which is in contrast to the original model, where

every spike of an excitatory neuron leads to adjustment of the weights of its synaptic

connections to input units.

The burst mechanism was designed to be operated by a dynamic threshold, where a

preceding action potential of the respective excitatory neuron temporarily decreases the

threshold after a delay of 3 to 7 milliseconds. Inhibitory input of Martinotti Cells is able

to prevent this effect.

1



Introduction 2

In a task testing the model’s ability for self-organization via unsupervised learning of

two sets of patterns with different probabilities to be presented to the network, this

leads surprisingly to a significantly increased performance in comparison to the original

model. The threshold decrease mechanism provides the basis for the inhibitory pop-

ulations to act in a quasi ideal fashion. Excitatory neurons specialized for a distinct

pattern preempt unspecialized competitors in bursting. Their instantly fired burst of

spikes excites Martinotti Cells, which in turn hinder other neurons from picking up a

pattern by prevention of the threshold decrease.

A second feature learning task implements the popular Bars Problem introduced by

Peter Földiak in 1990 [40]. This work’s results show that the applied learning rule for

spike-timing dependent plasticity determines how models internally derive and represent

knowledge from their input. In this task the SEM learning rule [14], [16] fails to derive

common features from different patterns, while a soft winner-take-all learning rule from

[42] performs significantly better.

Altogether the results of this work suggest that details at the level of individual cell

types have an enormous influence on the behavior and computational probabilities of

neural microcircuits, supposedly being crucial for cortical information processing.

Overview

This thesis is organized in five chapters, where in a first chapter the theoretical back-

ground of this work is explained. Starting with basic concepts of spiking neuron models,

such as the leaky integrate-and-fire model, the topic evolves stepwise accompanied by

underlying biological and mathematical backgrounds. The motivation behind a winner-

take-all network motifs is introduced, providing the base for a subsequent introduction

of models performing spike-based expectation maximization and discussion of different

realizations of inhibition in these models. At the end of the chapter the biological back-

ground for the modeling of biologically plausible inhibition is introduced.

The second chapter gives a detailed explanation of the model of Stefan Häusler, where

the basic units representing different cell types are described as well as their commu-

nication via synaptic connections. The second part of the chapter is devoted to the

adaptations of the model performed in the context of this work.

Experimental setup, tasks and results are explained in the third chapter, while the fourth

chapter contains information about the evaluation and illustration of results.

Discussion of results as well as aspects concerning future and related work can be found

in the last chapter. Two appendices contain detailed information about the implemen-

tation and usage of the simulation framework.



Chapter 1

Theoretical Background

1.1 Spiking Neuron Models

The first section deals with the mathematical concept of a spiking neuron model in

the context of computational neurosciences, where modeling approaches at the level of

neurons and small populations of neurons are used in order to understand principles

of information processing in the human brain. Theoretical notions of basic elements

(neurons, synapses, spikes) and formal spiking models are introduced and explained to

the extent as they are necessary to understand the models introduced in this work. For

this purpose some assorted chapters from Wulfram Gerstner’s and Werner Kistler’s book

”Spiking Neuron Models” [1] are summarized in the following subsections.

1.1.1 Elementary Notions

The central information processing units in the brain are neurons forming a dense net-

work. These are specialized cells communicating with each other via electrical and

chemical signals. Their input is received via dendrites being long branching extensions

of the cell body (soma). The elementary units of signal transmission are spikes (or action

potentials (AP)), electrical pulses with an amplitude of 200 mV and a duration of 1 - 2

ms, being generated at the axonal hillock. The hillock is an exposed site of the cell body

with a high density of sodium channels and leads into the axon, another long extension

of the cell body connecting the neuron to the dendrites of other neurons.

Figure 1.1 illustrates a reconstruction of a layer 5 pyramidal neuron from mouse neocor-

tex [2]. The prominent features of this type of neuron are a pyramidal shaped cell body

and the large apical dendrite having a long straight trunk terminating in a complexly

branched tuft. The smaller dendritic compartments extending from the soma are called

3
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basal dendrites.

Signals are transmitted via synapses at the sites where the axon of the presynaptic

neuron makes contact with the dendrite of the postsynaptic neuron. Synapses refer to

bipartite bud-like structures located at spiny extensions of the dendrite and axon. The

presynaptic part of the synapse releases neurotransmitters via exocytosis of vesicles into

a narrow synaptic cleft of about 20 nm. The binding of these neurotransmitters to re-

ceptors at the postsynaptic surface in the synaptic cleft triggers a postsynaptic current.

Excitation via synaptic currents received by a neuron leads to an increase in electric

potential at the cytoplasmatic membrane of the neuron. If the neuron is excited suffi-

ciently, this membrane potential will evoke an action potential at the axonal hillock. The

level of detail at which this process is represented in spiking neuron models goes from

simple point neuron models summarizing over synaptic input to detailed multi compart-

mental models where the membrane potential is calculated for each compartment at any

discrete point in time.

Figure 1.1: Layer 5 pyramidal neuron from mouse neocortex [2]. The dendritic
compartments are colored black, the soma is colored red while the axon is green. The

axis-unit is µm.

1.1.2 Leaky Integrate-and-Fire Model

In the leaky integrate-and-fire (LIF) model the phospholipid bilayer membrane of a

neuron is interpreted as a parallel circuit of a membrane resistivity Rm and a capacitance

Cm being comprised by the membrane’s surface. The equivalent circuit of the model is

shown in Figure 1.2. A driving current Im(t) charges the potential u(t) at the membrane
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and is split into a leak current IR(t) and a current IC(t) charging the capacitance. The

current Im(t) = IR(t) + IC(t) is given by

Im(t) =
u(t)

Rm
+ Cm ·

du

dt
, (1.1)

where introduction of a membrane time-constant τm = Rm · Cm leads to the standard

form of the leaky integrator

τm ·
du

dt
= −u(t) +Rm · Im(t). (1.2)

Figure 1.2: The formal circuit of the LIF model consists of a membrane resistivity Rm

in parallel to a capacitance Cm. The membrane potential u(t) is charged by a driving
current Im(t) and decays exponentially via a leak current IR if no driving current is

present.

If stimulated by a constant current I0 starting at a time t(0), the membrane potential’s

time course can be formulated as

u(t) = Rm · I0 ·
(

1− e−
t−t(0)

τm

)
, (1.3)

being the solution of Equation 1.2 with the initial condition that u(t(0)) is zero.

Note that the original LIF model as described in [1] is gated by a threshold ϑ, where a

spike is fired the moment u(t) reaches this threshold. The neurons used by the model

described in Section 2.1 are stochastic point neurons whose spiking probabilities expo-

nentially depend on u(t).



Chapter 1. Theoretical Background 6

1.1.2.1 Synaptic Input

If the LIF neuron is not viewed apart from but as part of a network of neurons, the

driving current is induced by input spikes of presynaptic neurons j generating current

pulses. In this context the input current Ii(t) of unit i is formulated as a linear sum of

postsynaptic current pulses given by

Ii(t) =
∑
j

wij
∑
f

α(t− t(f)j ), (1.4)

where wij denotes the efficacy of the synaptic connection from unit j to unit i and f

denotes a presynaptic spike fired at a time t
(f)
j . The kernel function α(t− t(f)j ) describes

the shape and time course of a current pulse. The parameter wij , also called weight,

determines the amplitude of the postsynaptic response to a presynaptic spike.

1.1.3 Spike Trains

The output of a single neuron can be represented by binary values in a discretized time

space, where 1 symbolizes a spike at a discrete point in time and 0 the absence of a

spike. The modeling of spike trains depends on the underlying theory of neural coding

varying from precise temporal location of each spike to stochastic processes [3]. If spike

trains are subjected to statistical treatment regarding inter-spike intervals (ISI), their

generation is related to the mathematical concept of a stochastic point process. If in this

process ”events” (spikes) are indistinguishable from each other except for their time of

occurrence, the ISI can be viewed as a random variable being drawn from an underlying

probability distribution. If this distribution does not change over time, the process is

stationary [4]. This leads to the assumption that spike trains can be sufficiently well

described by a Poisson process, where the time a spike is fired does not depend on

a previous spike. This approach neglects the fact that this assumption does not hold

regarding biological observations such as refractoriness and bursts of spikes [5].

In the Poisson model of spike generation [6] the level of excitation of a neuron directly

results in an average output firing rate r(t) at which spikes are generated. If this driving

signal is constant over time this is referred to as homogeneous Poisson process.

A commonly used procedure for numerical generation of Poisson spike trains is based

on the approximation of the spike probability pspike([t, t+ dt]) within the time interval

from t to t+ dt

pspike([t, t+ dt]) ≈ r(t) · dt, (1.5)
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for sufficiently small dt.

1.1.4 Synaptic Plasticity

Learning in neuronal circuits is thought to occur for the most part via synaptic plasticity

referring to a structural change of the synapse leading to growth or shrinkage. With

this comes a change in synaptic efficacy, which is characterized by the synaptic weight

parameter wij as introduced in Equation 1.4. The signal triggering this process is the

back propagation of action potentials via the dendrites. With this signal synapses are

able to relate presynaptic excitation to postsynaptic spike firing. Depending on the

relative timing of a presynaptic spike at t
(f)
j and a postsynaptic AP at t

(f)
i the synaptic

connection is strengthened or weakened, being referred to as long term potentiation

(LTP) or long term depression (LTD).

In mathematical models learning refers to a process relating the expectation value of the

weight vector to the statistical properties of presynaptic and postsynaptic spike trains.

The procedure of adjusting the weights during the learning process is being referred

to as learning rule. Spike-timing depended plasticity (STDP) models plasticity at the

level of individual spikes relating pre- and postsynaptic firing. Using this learning rule

a model acts as coincidence detector. If a set of presynaptic spikes triggers an action

potential, the synapses receiving those spikes with a negative spike timing t
(f)
j − t

(f)
i are

strengthened, while positive spike timing leads to depression of the respective synaptic

connection. This leads to the introduction of a learning window W (s) determining the

change of synaptic weights ∆wij ∝W (t
(f)
j − t

(f)
i ). An example for a learning window is

given by

W (s) =

{
A+ · exp [ sτ1 ] for s < 0

A- · exp [−sτ2 ] for s > 0
, (1.6)

where the parameters A+ and A+ define the amplitude of the weight change and the

time constants τ1 and τ2 define the shape of the window illustrated in Figure 1.3.

1.2 Cortical Microcircuits

The computational power and manifold sophisticated abilities of human and animal

brains have motivated intensive research for decades. Up to now many advances were

made in this concern, but the enormous complexity of this subject still proves to be

inscrutable and enigmatic in many aspects. While understanding neuronal computation

at a high level involving several brain areas seems not to be within reach in the near
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Figure 1.3: STDP learning window for Equation 1.6 with A+ = 1, A- = −A+, τ1 =
10 ms and τ2 = 20 ms.

future, the question arises how one can break down this problem to the level of reoccur-

ring canonical circuit motifs. The extent at which neocortical circuits can be considered

canonical is still unclear [7], nevertheless there exist many different models of circuit

motifs being based on experimental data [8].

1.2.1 Organization and Structure of the Neocortex

The neocortex is the largest part of the human cerebral cortex covering its hemispheres.

Being the most developed of cortical tissues it is involved in higher functions such as

conscious thought, spatial reasoning, motor control, sensory perception and language.

With a thickness of 3 to 4 mm it contains around 1010 neurons and about the same

amount of glial cells, where roughly 80 % of the neurons are comprised by excitatory

pyramidal cells and the remaining 20 % are inhibitory interneurons. Neurons connect to

each other within the neocortex and to other brain areas via a vast number of approxi-

mately 1012 synapses. It is widely agreed on a horizontal organization of the neocortex

into six laminae, labeled by roman numerals from I to VI from outside to inside. A

vertical columnar organization is still discussed, where the basic unit is thought to be

the minicolumn, a narrow chain of 80 to 100 neurons (except for striate cortex where

the amount is about 2.5 times higher) extending vertically through all cortical layers.

Cortical columns are considered to be local modular processing units consisting of many

minicolumns bound together [9].

The Review ”Neural Circuits of the Neocortex” of Rodney J. Douglas and Kevan A.C.

Martin [8] introduces models for laminae specific projections and connectivity patterns

being universal for all neocortical areas. Figure 1.4 shows how the chain of information

processing within the neocortex could look like. The model for neocortical computation
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evolves around layer V pyramidal cells, where information processing is thought to con-

verge. Input from the thalamus enters the circuit in layer IV, where excitatory neurons

project to superficial layers, mostly to layer III. Excitatory neurons in superficial lay-

ers II and III arborize extensively within their layer, forming intralaminar connections.

Also inhibitory interneurons are more densely distributed over those layers. Interlaminar

connections from layer III terminate mainly in layer V but also feedforward projections

to other cortical areas originate in layer III. Layer V projects to layer VI which in turn

projects to the thalamus. Feedback connections originate in layers V and VI terminating

in superficial layers outside of layer IV. A special feature of the neocortex is layer I being

called its ”crowning mystery”. Consisting mostly out of the distal tufts of pyramidal

cells and a few interneurons layer I is the major target for feedback input.

Excitation of pyramidal cells can be adjusted by inhibitory input from interneurons.

Morphology of interneurons is conserved, where ten types of interneurons are distin-

guished being responsible for different types of inhibitory functions. About half of the

interneurons are Basket Cells, targeting specially somata and proximal dendrites of

pyramidal neurons as well as other interneurons [10]. Different types of Basket Cells

are thought to deliver lateral inhibition to their direct vicinity as well as to neighboring

and distant cortical columns. It is believed that pyramidal cells and inhibitory neurons

participate in a network motif that realizes a soft winner-take-all circuit, where a winner

suppresses the output of its local competitors. Different variants of those circuits are

often used in many neural network models. The models introduced in Chapter 2 are

implementations of such a winner-take-all network motif within layer V operating on

feedforward input from layer III.

1.2.2 Winner-Take-All Network Motifs

The simplest implementation of a competitive-learning winner-take-all circuit with n

output units (WTAn) is the hard winner-take-all network motif. Binary gates map their

input, computed as weighted linear sum, to an output with the constraint that exactly

one of the n output units can be 1 at a distinct point in time. Therefore the strongest

unit inhibits all other units with lower levels of activation and forces them to be zero.

In soft WTA modules, the output is comprised by n analog variables, defining the rank

of the respective units.

In more biologically plausible approaches the input and output of the model is encoded

by firing rates. All units inhibit each other laterally depending on their output rate,

where the most active unit exerts the strongest inhibition on its competitors, ultimately

stopping them from firing. In the end only one winner-unit is firing for a certain input

being called ”expert” for this input or class of inputs. After learning, such models
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Figure 1.4: Schematic illustration of dominant interactions between excitatory pyra-
midal cells in their respective layers from the review ”Neural Circuits of the Neocortex”
[8]. Thick arrows indicate directed interactions within a local processing module called
”patch” [8]. Interactions with thalamic and other cortical areas are indicated by thin

arrows.

produce one or a set of experts, each for a set of input-patterns or classes of input

patterns depending on the level of generalization over the respective learning task.

In ”On the Computational Power of Winner-Take-All” [11] Wolfgang Maass gives an

detailed comparison of the properties and computational power between winner-take-all

motifs and well established concepts in machine learning such as the perceptron [12].

Biologically plausible implementations of a winner-take-all motif come with an important

restriction. While in classical artificial neuron models the weights of the connections to

input units can be either positive or negative, a biological plausible implementation can

only be subject to excitatory feedforward input. Therefore only positive weights are

possible, while the lateral inhibition can only be negative. Wolfgang Maas shows that

this restriction does not come with a loss of computational power. The same holds for

a restriction where synaptic plasticity, or more generally the adaption of weights, only

occurs for excitatory feedforward connections but not for lateral inhibitory connections.

It turns out that the computational power of a hard winner-take-all circuit is that of

a multi-layer perceptron. More generally the full computational power of two layers of

threshold gates [13] can be a achieved by a single WTAn network, while vice versa it

takes n2 threshold gates to realize the function of WTAn. In case of a soft winner-

take-all network, the computational power is that of an universal approximator for any

continuous function.
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1.3 Spike-based Expectation Maximization

A class of biological plausible realizations of a winner-take-all circuit is the result of

recent work [14], [15], [16], [17] summed up under the term spike-based expectation

maximization or in short SEM model. This type of model is shown to implicitly perform

Bayesian computation through STDP. Comprising an implicit generative model [13] it

is able to extract hidden causes from high dimensional data by performing an online

stochastic version of expectation maximization (EM). Applied to pattern recognition

tasks or inference of reliable hidden causes EM is considered to be one of the most

powerful or even the most powerful theoretical framework for unsupervised learning.

With this the SEM model is able to so solve demanding computational challenges such

as the recognition of handwritten digits [17], [18].

It is a popular hypothesis that the brain creates and maintains an internal model of its

environment by performing Bayesian inference on perceived impressions. Remarkable

for the SEM model is the linkage of STDP, winner-take-all and EM, which could provide

insight into organization and computation in cortical networks.

1.3.1 Bayesian Inference in Cortical Circuit Models

Inference usually refers to a process where information from a set of observations for

a random variable a is used to infer a model for the probability density p(a). If a

conditionally depends on one or more other random variables, for example a random

variable b, the process of linking information to model this dependencies in form of

posterior probabilities p(a|b) and joint probabilities p(a, b) by applying Bayes’ theorem

p(a|b) =
p(a, b)

p(b)
=
p(b|a) · p(a)

p(b)
(1.7)

is called Bayesian inference.

At the level of neural coding the value of a single variable is represented by the spiking

activity of a population of neurons. The response of such a population is noisy and

shows a significant trial-to-trial variability. How information being represented by a

population, for example in sensory areas, can be decoded by downstream neurons is

an open question but thought to occur via Bayesian computations. This problem can

be formulated as relating the response of a population of N neurons (y1, . . . , yN ) to a

hidden cause Θ being not directly observable. The relation can be represented by the

conditional probability distribution p(y|Θ). Inferring Θ from y takes place by applying

p(Θ|y) ∝ p(y|Θ) · p(Θ). (1.8)
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In the SEM model this inference is performed autonomously via STDP comprising a type

of mixture model [13]. Unsupervised learning of a sparse representation of most likely

hidden causes for observations y happens through implicit inference of the distribution

of y for the respective hidden cause. This distribution is represented by the synaptic

weights learned by the model.

Mixture models define a framework for building complex probability distributions for

latent variables and can also be used to cluster data. This type of generative model

divides the data into subpopulations by assigning data points to specific components of

the mixture, defining interpretations of latent variables. This can be done by finding

likelihood estimators for latent variables by application of the expectation maximization

algorithm.

In context of a winner-take-all motif this can be viewed in the following way. The model

tries to find regularities in the spiking patterns being delivered to the model by input

populations. This is done by assigning putative patterns to the output units of the

WTA motif. By this a unit becomes an expert for a putative pattern by learning its

probability distribution, simultaneously maximizing the likelihood of the pattern being

attributable to a latent variable or hidden cause. The assignment step happens when

the model choses a winner, being most probably the unit with the highest grade of

excitation for a certain input. When the respective winner fires a spike, it draws a

sample from the distribution of the assigned input. By adjusting its synaptic weights, it

tunes the probability distribution represented by those weights towards the most likely

distribution of its input.

The selection of winners within a model depends on its realization of lateral inhibition,

having consequences on the internal representation of knowledge. In a hard winner-

take-all model only one unit may be active at a time and therefore only one unit will

represent a putative hidden cause. In soft winner-take-all implementations there can be

more than one winner, where all winners contribute to an inhibitory signal reducing the

probability for other units to pick up the same pattern. Such a model will converge to

a state where there is sufficient inhibition exerted by winner units for every putative

hidden variable. Different winners may reflect different phenotypes of a hidden cause,

for example different variants of a handwritten digit.

1.3.2 The basic SEM-Model

The illustration in Figure 1.5 shows a schematic overview on the components of the

SEM model. A hidden cause is responsible for a distinct configuration of external vari-

ables (x1, . . . , xM ), resulting in generation of Poisson spike trains by the input units

(y1, . . . , yn). Center of the model is a set of K competing z-units (z1, . . . , zK) being also
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the output units of the model. The z-units calculate their grade of excitation uk(t) via

their respective synaptic weights (wk1, . . . , wkn) applied to the model’s input in form of

the linear sum

uk(t) = wk0 +

n∑
i=1

wkiyn(t), (1.9)

where wk0 is a bias and yn(t) depends on the respective realization of the spike input’s

synaptic integration.

Depending on how inhibition is realized in the respective implementation, the circuit can

either be a hard or a soft winner take all circuit which reflects in the model’s output.

In [17] inhibition is modeled as selection process in a hard winner-take-all circuit, where

every distinct point in time in a discretized timespace only one unit can be active. The

active unit generates a Poisson spike train with a spike every 5 ms on average. The

selection mechanism for the winner neuron at time-step t is modeled by the soft-max

distribution

p(zk|y) =
euk(t)

K∑
l=1

eul(t)
. (1.10)

In the soft winner-take-all implementation of [14], there exists the possibility of two z-

units spiking at the same time (becoming arbitrary small by choosing sufficiently small

time-steps). The effect of lateral inhibition is modeled by a global inhibitory signal I(t),

where every output spike fired by a z-unit contributes to this signal. Therefore a unit

with high excitation, firing many spikes, will suppress its competitors in the circuit. The

stochastic spike firing is modeled by an exponential dependency of the spiking probability

on the grade of excitation given by

p(zk fires a spike at time t) ∝ euk(t)−I(t). (1.11)

A common feature of different implementations of the SEM model is that every time a

z-unit fires a spike, it updates all its synaptic weights according to a generalized STDP

learning rule being referred to as SEM learning rule.

1.3.3 The SEM STDP Learning Rule

The generalized formulation of the theoretical motivated SEM learning rule [15] is given

by

∆wki = η · zk ·
(
α · e−wki · yi(t)− 1

)
, (1.12)
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Figure 1.5: The SEM model as it is introduced by [14]. K competing z-units receive
their feedforward input in form of Poisson spike trains via synaptic connections to the
N input units, where each z-unit is connected to all input units. A global inhibitory

signal affects all z-units equally.

where η denotes the learning rate, zk = 1 indicates a spike fired by zk at the respective

update step and zk = 0 the absence of a spike resulting in ∆wki being zero. α, being a

positive constant, is responsible for balancing potentiation and depression. The shape

of the STDP window (see Section 1.1.4) resulting from this rule depends on the imple-

mentation dependent realization of y(t). In any case α · e−wki − 1 corresponds to a spike

timing dependent LTP-window. The absence of a presynaptic spike before a postsynap-

tic spike leads to y(t) being zero, resulting in LTP since the remaining non-zero term is

−η.

This form of STDP has some important advantages while still fitting in the phenomeno-

logical framework of STDP rules. Stable equilibrium weight settings can be clearly

interpreted by probability theory. The dependency of the level of potentiation on the

weight before spike pairing is consistent with experimental studies as well as the inde-

pendence of the amount of depression. Since synapses cannot grow infinitely in size,

plasticity has to be going into saturation at a certain level of synaptic efficacy. Also the

learning rule can be derived from the principles of adapting generative models to input

statistics.
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1.3.4 STDP performs Expectation Maximization

A generalized description of the EM algorithm can be found in Christopher M. Bishop’s

book ”Pattern Recognition and Machine Learning” [13]. The algorithm comprises a

powerful framework for finding maximum likelihood (ML) solutions for hidden variables,

being applicable to a broad variety of different models. Goal of the algorithm is to derive

knowledge about the distribution of hidden variables from a set of observations from

random variables being (supposedly) conditionally dependent on the hidden variables.

Applied to a mixture model, the algorithm starts with an arbitrary set of parameters

defining the mixture. In a first step the most likely distribution of the hidden variables

is estimated for the current setting of the model’s parameters (E-Step). In the next step

the algorithm tries to find a new configuration of the parameters in order to maximize

the data log-likelihood in respect of the current estimation of the hidden variables (M-

step). E-step and M-step are alternately repeated until the algorithm converges.

In [15] and [14] it is shown how STDP in a winner-take-all circuit with lateral inhibition

can directly be related to the EM algorithm. Application of the SEM learning rule

follows attractor dynamics in weight space, where attraction centers are weight settings

being stable under the dynamics of the network. The equilibrium condition for a weight

wki of the synaptic connection from input yi to output unit zk is given by

E [∆wki] = 0↔ wki = log p(yi|zk fires) + log c, (1.13)

where E [∆wki] denotes the value of the expected weight update and p(yi|zk fires) is the

probability for a presynaptic spike from input yi given zk firing a spike. This stochastic

convergence results from the exponential dependency on the current weight in Equation

1.12 and corresponds to optimal weight settings from the perspective of a generative

model. Using the learned weights of a z-unit to formulate the average rate of a Poisson

process, the z-unit can generate spike trains corresponding to the input distribution of

the respective hidden cause encoded by zk. If all K hidden causes encoding z-units have

the same probability to be active, the generative model is given by

p(y|W) =
1

K

K∑
k=1

N∏
i=1

Poisson(yi, α
−1ewki), (1.14)

where Poisson(y, λ) denotes the Poisson distribution over y with the ”rate” λ.

Note that in contrast to the EM algorithm described at the beginning of this subsection

learning in the SEM model does not make use of a whole set of observations X but

rather of a single observation at a distinct point in time. When spiking for such an

observation, the model performs the E-step of the algorithm in a stochastic way. The

winner is drawn from a distribution based on knowledge of hidden causes modeled by
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the weights of all z-units. The unit whose weights best resemble the observation has

the highest chance to be selected. Applying the STDP learning rule of Equation 1.12,

the weights then are tuned towards the observation, with this increasing the probability

for the unit to spike for this same observation. This corresponds to the execution of

the M-step of the EM algorithm. Like the EM algorithm, learning in the SEM model

is comprised by two basic concepts. While STDP maximizes step by step the likelihood

of a z-unit to represent an actual hidden cause, modeling the distribution of the related

input spike trains, the lateral inhibition is crucial for estimating and selecting a winner.

A problem addressed by the models introduced in Chapter 2 is the availability of the

inhibitory signal in biologically plausible circuits. In contrast to lateral inhibition in the

basic SEM model, this inhibitory signal does not simultaneously arrive with the input.

Because inhibitory neurons have to be activated in a first step, the inhibition exerted

by them on the z-units comes with a temporal delay after the input.

1.4 Modeling biologically plausible Inhibition

There are many open questions when relating computational models of cortical micro-

circuits to their biological counterparts in the brain, where this work’s focus lies on the

role of inhibition by two certain types of interneurons, Basket Cells and Martinotti Cells.

The task of modeling biologically plausible inhibition via interneurons, like in the models

introduced in Chapter 2, is due to the complex interplay of several types of neurons and

synapses very challenging. The following subsection will provide a closer look onto the

biological aspects that were taken into consideration for this approach.

1.4.1 Inhibitory Interneurons

The review ”Interneurons of the Neocortical Inhibitory System” from Henry Markram

et. al [10] gives an overview on scientific insights on properties and function of the

different types of interneurons being found in the neocortex. They vary greatly in

morphology being particularly specialized in targeting of certain neuronal sub-domains,

cortical layers or columns. A common feature of most mature interneurons are the as-

piny dendrites distinguishing them from pyramidal cells. While not all interneurons are

inhibitory, most of them are, using GABA (gamma-amino-butyric acid) as neurotrans-

mitter. Classified by morphology there are different layer dependent compositions of

interneurons as illustrated in Figure 1.6. Especially in layers V and VI different types

of ”local circuit” Basket Cells and Martinotti Cells seem to be the dominant source of

intralaminar inhibition. In addition to classification by morphology interneurons can

be subdivided according to their ability to target different domains, distinguishing axon
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targeting, soma and proximal dendrites targeting, dendrite targeting and dendrite and

tuft targeting interneurons.

Figure 1.6: The graph from [10] shows the layer specific composition of different types
of interneurons in the somatosensory cortex of juvenile rats.

1.4.1.1 Basket Cells

The major part of interneurons is constituted by Large Basket Cells (LBC) and Nested

Basket Cells (NBC). The third of the three main subclasses is the Small Basket Cell

(SBC). All of them target specifically the soma and proximal dendrites of pyramidal

cells, with this being in the unique position to adjust the gain of the integral synaptic

response. Basket cells can be distinguished from other types of interneurons in respect

to immunoreactivity by their expression of two types of calcium binding proteins, par-

valbumin and calbinidin.

LBCs are the ”classic” type of Basket Cells, being the primary source of intralaminar

lateral inhibition across columns. They typically feature sparse axonal arborization,

while SBCs feature dense local arborization restricted to the same cortical column. The

highest number of synapses on pyramidal cells is formed with SBCs. The size of NBCs,

named after their birds’ nest like appearance, is somewhere in between LBCs and SBCs.
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1.4.1.2 Martinotti Cells

Martinotti Cells are found in all neocortical layers with the exception of layer I. Their

axon projects mainly to layer I, where it inhibits the tuft dendrites of pyramidal cells, and

also extends horizontally, inhibiting tuft dendrites of neighboring and distal columns.

An unusual feature of Martinotti Cells is that they are not restricted to a single domain

but rather target proximal dendrites and somata as well.

Interneurons targeting dendritic domains are in the position to influence dendritic pro-

cessing and synaptic plasticity, either locally or by affecting backpropagation of action

potentials. It is also shown that they have a significant effect on the generation of

dendritic calcium spikes [19], [20].

1.4.2 Short Term Plasticity

In contrast to long term plasticity, as introduced in Section 1.1.4, lasting for hours or

even weeks, another form of synaptic plasticity acts on a notable faster timescale lasting

only for seconds. Being referred to as short term plasticity it is thought to comprise a

feature in cortical information processing.

Two basic variants of short term plasticity are distinguished at the level of individual

synapses. While depressing synapses attenuate transmission of high frequent informa-

tion, the synaptic response of facilitating synapses is even amplified. Therefore the same

presynaptic cell might transfer quite different information to postsynaptic neurons de-

pending on the type of synapse connecting them. There exist typical cell type specific

connectivity patterns for short term plasticity. While pyramidal cells are typically con-

nected to Basket Cells via depressing synapses, Martinotti cells are excited by pyramidal

cells via facilitating synapses [21]. The model for an inhibitory circuit in neocortex, be-

ing based on this properties, is illustrated in Figure 1.7.

A phenomenological model of short term plasticity was introduced by Misha Tsodyks

and Henry Markram [22], [23], [24] being based on presynaptic effects such as vesicle

depletion and accumulation of calcium in the presynaptic terminal, affecting utilization

of synaptic efficacy by increasing the release probability of vesicles. The model is also

being referred to as extended Tsodkys Markram Model (eTM-Model) [25] and is given

by two differential equations for the number of vesicles R(t) and release probability o(t)

which corresponds to synaptic utilization. Their dependency on a presynaptic action

potential at a time tAP, modeled by a Dirac delta distribution δ(t− tAP), is given by

dR(t)

dt
=

1−R(t)

τdep
− o(t−) ·R(t−) · δ(t− tAP) (1.15)
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and
do(t)

dt
=
O − o(t)
τfac

+ f
[
1− o(t−)

]
· δ(t− tAP), (1.16)

where τdep and τfac are depression and facilitation time-constants and f [1− u(t−)] mod-

els the increase of release probability after a presynaptic spike, decaying back to the

baseline probability O. t− indicates that these functions should be evaluated in the limit

approaching the time of the action potential from below [25].

Figure 1.7: This schematic from [21] illustrates a model for inhibition in the neocortex.
Frequency dependent excitation of Basket Cells and Martinotti Cells occurs via either
depressing or facilitating synapses by presynaptic spike output of pyramidal cells. In
turn Basket Cells exert inhibition on pyramidal cells targeting somata and proximal
dendrites in their vicinity, while Martinotti Cells also target distal dendritic domains.

1.4.3 Layer 5 Pyramidal Cells

Pyramidal cells are primarily found in structures being responsible for advanced cogni-

tive function. They have several characteristic features, such as relatively short basal

dendrites compared to the large apical dendrite which bifurcates before connecting the

soma to a complex tuft. Emanating from the trunk of the apical dendrite oblique

dendrites extend at various angles. Although being characteristic, those features vary

considerably between different layers and cortical regions [26].

Excitatory input from local sources arrives at the soma and proximal dendrites. The
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tuft is the main target for feedback input, while inhibition is received for the most part

at the soma and axon. Synaptic integration of input at the apical dendrite is a complex

operation involving several nonlinearities. Polsky et. al [27] suggest a three layer model

being shown in Figure 1.8. In a first layer N-methyl-D-aspartate (NMDA) receptors,

a type of glutamate receptor at the postsynaptic terminal, act as a detector for syn-

chronous firing by providing supralinear summation of coinciding synaptic responses if

located in a vicinity within less than 100 µm [28] [29]. A second nonlinearity is com-

prised by a calcium spike initiation zone at the end of the apical trunk close to the tuft.

The calcium spike produces long plateau-type potentials driving the pyramidal cell to

fire a high frequent burst of spikes if triggered [30]. The third and last layer in this

model is the somatic action potential initiation zone at the axonal hillock.

The role of complex dendritic mechanisms in controlling STDP is explained in the review

of Björn Kampa et. al [28], suggesting that long term plasticity is triggered by bursts

of spikes rather than single spikes.

Figure 1.8: The three layer model for dendritic integration at pyramidal cells as in-
troduced in [29]. Supralinear integration zones are depicted by sigmoidal gates. These
nonlinearities are comprised by NDMA receptors in apical (red) and basal (blue) den-
drites, the dendritic calcium spike initiation zone(magenta) and the somatic AP initi-

ation zone at the axonal hillock.
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The Model

2.1 Original Model

This section describes the starting point of this work, a model of a cortical neural circuit

winner-take-all (WTA) motif from Stefan Häusler [31]. It is based on previous work in

the context of spike-based Expectation Maximization (SEM) from Stefan Habenschuss

[16] and Bernhard Nessler [14].

The circuit is composed of a set of N input units y1, . . . , yN , K output units z1, . . . , zK ,

abstracting layer 5 pyramidal cells (PCs), and two populations of inhibitory interneu-

rons abstracting Basket Cells (BCs) and Martinotti Cells (MCs). Figure 2.1 shows the

connectivities of the network topology. The following subsections describe in short the

individual units of the original model.

2.1.1 Input Layer

The input layer is constituted by N Poisson-Processes, delivering the feed-forward input

in form of binary spike trains. Depending on every input unit’s rate it is rolled out if

there occurs a spike or not for every discrete time-step of size dt = 1 ms. For more

details see Section 3.1.2.

2.1.2 z-Layer

The layer 5 pyramidal cells of the z-layer are represented by stochastically spiking point

neuron models, where every unit’s rate rk(t) depends on its membrane potential uk(t)

being updated at every time-step. The membrane potential itself decays exponentially

with a time-constant of τm = 20 ms and is recharged by an excitatory post-synaptic

21
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Figure 2.1: The input layer units y1, . . . , yN are connected to the z-layer units
z1, . . . , zK via weighted static synaptic feed-forward connections (black). Each z-unit
zk is connected to every input unit yn. The two populations of interneurons consist of
M Martinotti Cells m1, . . . ,mM and B Basket Cells b1, . . . , bB , where each inhibitory
unit bb or respectively mm is connected to all z-units and vice versa. The z-units and
interneurons excite (green) or respectively inhibit (red) each other via dynamic synaptic

connections (see Section 2.1.3).

current Iexc(t) minus an inhibitory post-synaptic current Iinh(t). A small fixed random

bias w0 modifies the excitability of each individual PC. The rate is additionally influenced

by a potential UH contributed by a homeostasis mechanism being described later in this

section. The rate’s dependency on the membrane potential is modeled as an exponential

function given by

rk(t) = crate · e
uk(t)+UH(t)+w0

∆u , (2.1)

where crate = 103 Hz is a constant factor and ∆u = 1 mV.

The membrane potential is given by

uk(t) = uk(t− 1) · e
−dt
τm +Rm · (Iexc(t)− Iinh(t)) · (1− e

−dt
τm ), (2.2)



Chapter 2. The Model 23

with Rm being a formal membrane resistance of 1 MΩ.

After updating membrane potential and rate at each distinct time-step every PC zk

produces a spike with a probability pspike = dt · rk(t).

2.1.2.1 Synaptic Input

Each PC zk is connected to all N input units y1, . . . , yN via weighted static synapses,

where wkn is the weight of the synaptic connection from input yn to zk. The dimension

of the weights is chosen to be nano-ampere (nA). The binary spike input yn(t) induces

alpha-shaped post-synaptic currents. Their linear sum comprises the excitatory post-

synaptic current Iexc(t) being given by

Iexc(t) = Iexc(t− 1) · e
−dt

τEPSC + (1− e
−dt

τEPSC ) ·
N∑
n=1

wknyn(t), (2.3)

where τEPSC = 3 ms is its time-constant of exponential decay.

The inhibitory current Iinh(t) is constituted by the linear sum of inhibitory post-synaptic

currents induced via dynamic synapses as described in 2.1.3. Inhibitory post-synaptic

currents decay with a longer time-constant τIPSC of 6 ms.

2.1.2.2 Learning Mechanism

Learning is triggered by a spike of zk at a time tspike after a learn-lag of 1 ms. Then all

synaptic weights of zk are updated according to the learning rule

∆wks = η
(
c · e−wks · ysEPSP(tspike)− 1

)
, (2.4)

where c = 181 is a constant scaling factor and ysEPSP is the post-synaptic potential of

synapse s at tspike.

The inhibition via Martinotti Cells plays a special role in the learning process, as a spike

of any MC at tspike of zk will intercept the respective weight update.

2.1.2.3 Homeostatic Mechanism

The role of the homeostatic mechanism implemented in z-layer units is to prevent single

PCs from becoming either inactive or from firing permanently at high rates. This is

performed by adding a rate-dependent homeostatic potential which either will increase
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or decrease the excitability of a PC if its firing rate differs from a target firing rate rT.

A leaky integrator is used to estimate the firing rate

r̂k(t) = r̂k(t− 1) · e
−dt
τH + zk(t− 1) · (1− e

−dt
τH ), (2.5)

where τH is the homeostasis time-constant of 1000 ms and zk(t− 1) is the binary spike

output of zk.

The homeostatic potential is given by

UH(t) = UH(t− 1)− 10−2 · (r̂k(t)− rT). (2.6)

2.1.3 Inhibitory Populations

The membrane potentials of both types of inhibitory units are updated the same way

as for the PCs with the exception of their membrane time-constant τmInh being only

15 ms. Their excitatory synaptic input is received via dynamic synapses [22] being

either facilitating for frequent activation in the case of Martinotti Cells or depressing

in the case of Basket Cells. Therefore MCs are more efficiently excited by input of

higher frequency while BCs are more efficiently activated by input of lower frequency,

modeling target-cell specific short term plasticity [21], [25]. The post-synaptic current

at t = tspike + dttransmission resulting from a presynaptic spike of zk at tspike is given by

Ik(t) = (1− e
dt

τEPSC ) ·A · o(t) ·R(t), (2.7)

where dttransmission is a synaptic transmission-delay of 1 ms, A is the amplitude of synap-

tic efficacy, o(t) refers to the utilization of synaptic efficacy and R(t) represents the

release probability given by

o(t) = O + [o(tlast) +O · (1− o(tlast))] · e
−(t−tlast)

τfac , (2.8)

and

R(t) = 1 + (R(tlast)−R(tlast) · o(tlast)− 1) · e
−(t−tlast)

τdep , (2.9)

where tlast is the time of the last excitation of the respective dynamic synapse. τfac

and τdep are facilitation and depression time-constants. Table 2.1 shows the respective

parameters for the dynamic synapses used in the model.
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type of synapse PC → BC PC →MC BC → PC MC → PC unit

O 0.74 1.2 · 10−4 0.63 0.7 1
τfac 169 1000 1000 997 ms
τdep 221 1.3 259 241 ms

Table 2.1: Parameters of dynamic synapses used in the model.

The firing rate rb for BCs and rm for MCs is calculated differently than for PCs and is

given by

rb(t) = rbase +
m

1 + e
xhalf−(ub(t)+vMshift)

∆vB

(2.10)

and by

rm(t) = y0 +A2 · e
um(t)+vMshift

∆vM (2.11)

respectively, where the parameters can be found in Table 2.2.

BC MC

rbase −5.22 Hz
m 816.74 Hz
xhalf −37.419 mV
∆vB 0.89904 mV
vMshift −42 mV

A2 479.76 Hz
y0 4.0 Hz

∆vM 10 mV
vMshift −42 mV

Table 2.2: Parameters of the rate calculation for Basket Cells and Martinotti Cells.

2.2 Model Adaptations

Inspired by research of Matthew Larkum et al. [30], [32], [33], [34] the focus of this work

lies on layer 5 pyramidal cells, especially on the impact of bursts triggered by dendritic

Ca2+ spikes on their computational power. For this purpose a simple yet plausible

formal bursting mechanism was incorporated into the model.

Pyramidal neurons make up about 70 to 80 % of the cortex. Their characteristic bursts

of 2 to 4 spikes with about 200 Hz are thought to be a fundamental coding mechanism

[30]. An important feature of burst initiation is the mutual influence of the somatic

Na+ and the dendritic Ca2+ spike initiation zone via the apical dendrite. A single Na+

action potential is able to facilitate the initiation of Ca2+ action potentials at the Ca2+

spike initiation zone near the apical tuft of layer 5 pyramidal cells. During this back
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propagation activated Ca2+ spike firing (BAC firing) a back propagating somatic action

potential decreases the threshold of the Ca2+ spike initiation within a time window of

3 to 7 ms after the somatic action potential [35], [33].

The burst of action potentials resulting from the plateau-type potential of a Ca2+ spike

is thought to trigger spike-timing dependent synaptic plasticity [28], [36] as well as to

link feed-forward input with feedback input [30] (which is currently not implemented in

the model). Another important detail in this relation is the control of synaptic plasticity

exerted by Martinotti Cells being able to suppress the initiation of dendritic Ca2+ spikes

[19], [20].

In order to model this mechanism the currents Iexc and IinhMC from the original point

neuron model were used to calculate a virtual dendritic potential uBurst(t). To meet the

prerequisites for the incorporation of the bursting mechanism a few minor changes had

to be introduced into the model being described in the following subsections.

2.2.1 Model Changes

2.2.1.1 Refractory Times

For distinguishing high-frequency bursts from regular spiking activity the frequency of

regular spiking had to be limited. This was performed by introducing a refractory

time trefrac of 12 ms preventing the somatic spike initiation zone from firing at high

rates, which occurred in the original model with frequencies of up to 1000 Hz, being the

maximal possible frequency for a simulation with discrete time-steps of 1 ms. Because of

this adjustment the synaptic efficacies of connections from the z-layer to the inhibitory

populations had to be increased in order to provide sufficient excitation.

2.2.1.2 Prevention of negative Weights

In the original model weights of input synapses can become negative and with this

induce an inhibitory current instead of excitation. To prevent this implausible behavior

a hard-cap was introduced for weights becoming smaller than zero, where those weights

are set to zero instead.

2.2.1.3 Control of Weight Updates

Long term plasticity is now only induced by bursts of high frequent spikes with more

than 100 Hz, where regular spiking does not trigger any weight updates anymore [28].

Also the effect of inhibitory input from Martinotti Cells was changed. In the original
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model MCs directly prevented synaptic plasticity by intercepting weight updates. In the

current model their inhibitory currents prevent somatic action potentials from decreasing

the threshold for initiation of dendritic Ca2+ spikes for a period of 9 ms [19], [20].

2.2.2 Bursting Mechanism

Figure 2.2 shows the schematic of the bursting mechanism. In contrast to the stochastic

somatic firing mechanism bursts are triggered by uBurst(t) crossing a dynamic threshold

utresh(t). The virtual dendritic membrane potential uBurst(t) depends on the excitatory

feed-forward input of the input layer and the inhibition by Martinotti Cells and is given

by

uBurst(t) = uBurst(t− 1) · e
−dt
τdend + (Iexc(t)− IinhMC(t)) · (1− e

−dt
τdend ), (2.12)

where τdend is a dendritic membrane time-constant of 8 ms.

Simulations in NEURON [37] with a multi-compartment model of a layer 5 pyramidal

cell from Stuart and Häusser [38] have shown, that the membrane time-constant becomes

significantly smaller with increasing distance from the soma.

The somatic membrane potential uk(t) is calculated as described in Section 2.1.2 with

Iinh(t) = IinhMC(t) + IinhBC(t) being the linear sum of the inhibitory currents of both

populations of interneurons. The busting mechanism also underlies a refractory time

trefracBurst of 19 ms.

2.2.2.1 Bursting Profile

Inspired by Izhikevich et al 2003 [39] a random individual bursting profile is assigned to

each z-unit at the begin of the simulation. The properties being individually assigned

are the number of burst spikes (2 to 4), the frequency of the burst spikes (150 to 200

Hz) and the delay tdecrease until the threshold decrease of the bursting mechanism is

maximal (3 to 7 ms). Each burst of a z-unit zk is a replay of its bursting pattern. While

the learning speed of units with a higher number of burst spikes is faster because more

weight updates are performed, the units where tdecrese is lower are bursting and therefore

updating their weights earlier than those with a larger threshold decrease delay.
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Figure 2.2: The illustration shows the bursting mechanism’s functionality. The cur-
rents Iexc and IinhMC of the respective z-unit zk are used to calculate a virtual po-
tential uBurst(t) which operates the threshold function of the mechanism. A precursor
spike(green) of the z-unit causes the threshold uthresh(t) to be temporarily decreased.

Continuous stimulation then is able to trigger a burst of spikes(red).

2.2.2.2 Threshold Decrease

A spike of z-unit zk at a time tlast will decrease the threshold for burst initiation by a

factor dmax of maximal 55 % [30]. The temporal decrease is modeled by two antagonistic

sigmoidals and is given by

uthresh(t) = ûthresh·

[
1− dmax ·

(
1

1 + exp µ1+tlast+tdecrease−t
s1

− 1

1 + exp µ2+tlast+tdecrease−t
s2

)]
,

(2.13)

where ûthresh is the undecreased and therefore maximal value of the threshold. The

remaining parameters of the function can be found in Table 2.3. An example for the

time course of the threshold decrease is given in Figure 2.3.
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Figure 2.3: Time course of the threshold decrease described by Equation 2.13 as
result of a spike at tlast = 0 using the parameters in table 2.3 with tdecrease = 7 ms.

µ1 −1.5 ms
µ2 3.0 ms
s1 0.15 ms
s2 0.35 ms

Table 2.3: Parameters of the threshold decrase function.
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Simulations and Results

3.1 Task 1: Learning Rate-based Patterns

This pattern recognition task is directly adopted from Stefan Häuslers original code [31].

Two classes of patterns are introduced, where the first class has twice the probability to

be presented to the network than the second class. For this task ten distinct patterns are

randomly generated, where five of them have a probability to be presented of 2
15 and the

other five have a probability of 1
15 . In the simulation setup a network of N = 400 input

neurons is used with K = 80 pyramidal neurons in the z-layer along with ten Basket

Cells and Martinotti Cells each. The simulation is performed for 1000000 time-steps of

dt = 1 ms or respectively 1000 seconds. This task puts the network’s ability of self-

organization to the test, where learning the patterns with lower probabilities comprises

a difficult challenge.

3.1.1 Pattern Generation

A pattern is comprised by a firing rate profile of the N input neurons, where 1
4 of them

is set to a high firing rate of 60 Hz and the rest is set to a low firing rate of 2 Hz

representing background noise. Each pattern is generated by a random permutation of

these high and low input neurons.

3.1.2 Pattern Presentation

Patterns are presented to the model in form of Poisson spike trains of 200 ms duration

alternating with spacer periods of the same length, where all of the N input-neurons

are set to low. The firing rate of low input neurons is constant during the presentation

30
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of a pattern with a spike probability of dt · rn(t), where rn(t) refers to the rate or firing

frequency of input unit yn. The firing rate of the high input neurons is additionally

shaped over the duration of pattern presentation and is given by

rn(t) = rpeak
(
e−0.016·t − e−0.024·t

)
+ 20 Hz

(
1− e−0.008·t

)∣∣200
t=0

(3.1)

with

rpeak =
60 Hz− 20 Hz

4 ·max
t

(e−0.016·t − e−0.024·t)
− 20 Hz

∣∣∣∣∣
200

t=0

. (3.2)

The sequence of patterns is rolled out for the duration of the simulation using the

probabilities of the respective patterns. Figure 3.7 shows an example of the network’s

spike input.

3.1.3 Results

Figure 3.3 shows that the bursting model has a significantly improved pattern learning

performance (see Section 4.1.2) for the task described in 3.1, and is always able to recog-

nize all patterns with high probability and all patterns with low probability after a time

of about 300 to 400 seconds. It can be seen in Figures 3.1 and 3.2 that specialization

occurs faster and more directly. The reason for this relies on two major effects.

At first the bursting mechanism constitutes an efficient filter for repetitive excitation at

a naive stage of learning, and afterwards selectively filters updates for the recognized

excitation pattern. At this early stage a predecessor spike, decreasing the threshold of

the burst initiation, will be necessary to trigger a burst in order to recognize and learn

a pattern.

After some recurrences of this pattern the weights will become strong enough to trigger a

burst without predecessor spike, enabling a powerful property of the circuit. Expert neu-

rons, which already have specialized themselves for a distinct pattern, now will preempt

less specialized neurons with bursting and therefore achieve a quasi-ideal inhibition. The

expert’s burst excites Martinotti Cells, which will in turn prevent the decrease in burst-

ing threshold of other units what ultimately leads to prohibiting these units to learn a

distinct pattern.

Ideal inhibition usually refers to inhibition in hard WTA circuits, where only a single

output unit can be active at a discrete point in time. This so called winner instantly

inhibits all other output units if it becomes active. In soft WTA circuits, such as the

SEM model, the inhibition is at least ideal in aspect of timing. A spike of a unit instantly

contributes to the inhibition signal without any delay [14]. In biological plausible models

inhibition faces the problem of a temporal delay. The output of excitatory neurons has
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to excite inhibitory neurons, which then will in turn provide inhibition to the excitatory

cells. Because this process takes some milliseconds time (for lateral inhibition as well),

ideal or at least instantaneous inhibition is obviously not possible in such circuits [10].

The property of a delayed decrease in bursting threshold now allows biological plausible

inhibition to intercept burst firing of output units in time.

Altogether this behavior enables the z-units to distribute themselves evenly over the

patterns and the network will converge fast and efficiently as can be seen in Figure 3.4.

The analysis of update qualities (see Section 4.1.4) in Figures 3.5 and 3.6 shows the

filter effect of the bursting mechanism for finally learned patterns. While there is little

difference in update quality for currently presented patterns in both models, the update

qualities for finally learned patterns differs considerably. The scope of the variance in

this plot is much narrower for the update qualities of the bursting model. This shows

that the z-units of the bursting model update more selectively for a certain pattern than

the original model’s z-units do. Figure 3.7 shows the spiking and bursting behavior of

the model at the start and at the end of the learning process. After learning the bursts

indicating recognition of a certain pattern can be clearly distinguished from the unsys-

tematic spiking activity at an early stage of learning. Also the network output becomes

quite sparse.

3.2 Task 2: Feature Learning with crossing Bars

In this task the 400 input neurons are considered to be arranged as a 20 × 20 matrix

and the patterns are comprised by non-overlapping variants of vertical and horizontal

bars of neurons with high firing rate with a width of three columns or lines respectively.

These patterns are presented to the network as a random combination of a vertical and a

horizontal bar resulting in 111 high and 289 low neurons. The frequencies were adjusted

by the factors 100
111 and 300

289 to obtain approximately the same expectation for the number

of input spikes during a pattern presentation as in Task 1. A small error remains from

the discretization of the time space or non-infinitesimal bin-size dt. Since there are six

possible positions for each type of bar, the number of distinct combinations of a vertical

and a horizontal bar is 36. To avoid over-fitting the number of z-neurons was reduced

to 24 for this task while the remaining setup remained the same as for Task 1.

This task is an implementation of the Bars-Problem (or Bars-Test) introduced by Peter

Földiák in 1990 [40], which has become a standard problem for unsupervised learning

[41]. The goal of this task is to put the network’s ability of internal knowledge rep-

resentation to the test. There are several ways how a network can derive and store

information about patterns and hidden causes. A sparse representation reduces the

amount of elements while preserving the information about a hidden cause. With the
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Figure 3.1: Temporal development of the pattern specificity of the winner neurons
from the bursting model.

reduction of redundancy of information also generalization is promoted.

A distinction is drawn between a local representation and a distributed representation.

In local representations a single unit stores all information about a pattern, while in

distributed representations common statistical regularities or features of a pattern are

learned by a set of units, each representing a distinct feature. Obviously the represen-

tational capacity of distributed representations is higher. For local representations the

number of learnable patterns is equal to the number of z-units. In a distributed repre-

sentation each unit learns a certain feature and the number of representable patterns is

the number of possible combinations of these features.

Regarding the task described in this section the information can be represented in three

different ways. In the first, being the most straight forward but undesired version, each

unit learns a single combination of a horizontal and a vertical bar, depicting a local

representation. A sparse local representation would be to learn the intersection of both

bars, being a characteristic feature of each combination of bars. The fourth panel in the

first row in Figure 3.9 illustrates such a representation. In a distributed representation a

unit learns a feature in form of a single horizontal or vertical bar. This way only twelve

units would be necessary to represent all 36 possible combinations of a horizontal and a
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Figure 3.2: Temporal development of the pattern specificity of the winner neurons
from the original model.

vertical bar. In order to promote feature learning in form of single bars instead of two

crossing bars a different learning rule [42] was used for this task instead of Equation 2.4,

being given by

∆wks = η

[
c ·
(

1 +
1

(a · wks + b)2

)
ysEPSP − 1

]
. (3.3)

Equation 3.3 results from an approximation in consideration of biological plausibility

of a learning rule performing gradient ascent on a log-likelihood p̃(y|z,W) (see Section

1.3.4) in the context of a soft winner-take-all circuit.

In order to display a z-unit’s knowledge about the input patterns the weights of the

z-units are arranged the same way as the input-units, being visualized in form of a

greyscale map, where black indicates a strong weight and white indicates a weight being

zero or very weak.
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Figure 3.3: Temporal development of the mean performance and variance of original
and bursting model for 15 simulation runs. The z-units of the bursting model are
able to distribute themselves better over the learnable patterns achieving a maximal

performance.

3.2.1 Results

Figures 3.8 and 3.9 show the direct comparison of the weights learned by the model using

either the SEM learning rule or Equation 3.3. With the SEM learning rule a z-unit is in

most cases unable to decide for a distinct bar. What happens in detail is the following:

When a z-unit updates its weights for a pattern the first time both bars are learned with

about equal strength. If in the next step a different pattern triggers a weight update,

one bar (bar A) is most likely a common feature shared with the first pattern, while the

other bar (bar B) is new to the unit. With this the weights for bar A are strengthened,

but the strength is increased less than in the first update. The information of the new

bar (bar C) is added to the units’ weights and the information for bar B fades. In the

next step the problem with the SEM learning rule comes into effect. If an update occurs

during a pattern presentation where bar A is not present, but bar B or C, the weights

for bar A are much more decreased for bar A than they were increased in the previous

step, while bar B and C are strengthened or decreased respectively.

Because the change of gradient in weight update strength is very steep this leads to weak
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Figure 3.4: Temporal development of the mean network entropy and variance of
original and bursting model for 15 simulation runs. The bursting model converges

faster due to more selective weight updates (see Figure 3.5).

updates for reoccurring bars and strong updates for the bar of orthogonal orientation to

the reoccurring bar. Additionally the weights for bars with strong weights are decreased

largely if an update occurs for a pattern where this bar is not present. Ultimately the

model is mostly unable to average-out single bars or decide for a single bar, while the

learning rule from Equation 3.3 supports averaging-out of sparse features and therefore

nearly all bars can be distinguished after learning.

The results for this task show that a different learning rule than the SEM learning rule is

necessary for extraction of common features from patterns. While Equation 3.3 consti-

tutes a relatively simple mechanism which is able to achieve this goal, a more sophisti-

cated model of synaptic plasticity might be necessary to match biology. Jochen Triesch

illustrated in his work from 2007 [41] the impact of different mechanisms of synaptic

plasticity in a model where intrinsic plasticity (IP) was combined with Hebbian learn-

ing. Proposing that synaptic plasticity is arising from the computational goal of sparse

signaling, he and Daniel Krieg introduced a model where the spike-timing dependent

plasticity (STDP) mechanism actively maximizes the sparseness of the distribution of

synaptic efficacies [43].
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Figure 3.5: Temporal development of the mean cosine similarity of the weight updates
of the winner neurons to their final patterns of original and bursting model for 15
simulation runs. The winners of the bursting model specialize faster and update their

weights more selectively for their finally learned pattern.
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Figure 3.6: Temporal development of the mean cosine similarity of the weight updates
of the winner neurons to currently presented patterns of original and bursting model

for 15 simulation runs. There is no significant difference between the models.
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Figure 3.7: Comparison of the spike input(large bands) and output(small bands) of
the original model (above) and the bursting model (below). While after learning (right
hand side) the original model’s z-units fire at high frequencies for distinct patterns, the

z-units of the bursting model burst selectively for distinct patterns.
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Figure 3.8: Weights of the z-units after learning using the SEM learning rule. The
model is mostly unable to distinguish distinct bars.

Figure 3.9: Weights of the z-units after learning. Nearly all distinct bars were learned
by the model using the learning rule from Equation 3.3.
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Methods

4.1 Measuring Model Performance

To display learning performance as well as its temporal development the evaluation of

the model is implemented as sliding window over the output of the z-layer. The size of

the sliding window was chosen to cover 10 % of the simulation’s time, propagating with

a step-width of 10 times the duration of a pattern presentation. For the task described

in 3.1 the sliding window has the size of 100 seconds and propagates with a step width

of 2 seconds.

4.1.1 Specificity and Winner Selection

To measure how well a z-unit zk has captured a certain pattern the pattern specificity

Sk(p) of its firing behavior is calculated as number of spikes #spikes(zk, p) it has fired for

pattern p in relation to all spikes #spikes(zk) from zk within the sliding window. This is

equivalent to the posterior probability for pattern p being presented given zk is spiking.

The spacer in between pattern presentations is also treated as a distinct pattern.

Sk(p) =
#spikes(zk, p)

#spikes(zk)
= p(P = p|zk) (4.1)

After evaluating the specificities for all patterns of every z-neuron for all sliding window

positions a winner for every pattern is selected, being the neuron with the highest

specificity for this pattern at the last sliding window position.

41
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4.1.2 Rating Learning Performance

To quantify how well the model has completed the learning task a performance measure

was introduced, where every pattern excluding the spacer contributes the same amount

to the total performance. The performance P is therefore defined as the sum of the

specificities of all winners zp for their pattern p in relation to the number of patterns.

P =

∑
p∈P

S(zp, p)

|P |
(4.2)

Obtaining a specificity of 1 for every winner will therefore result in a performance of 100

%. A separate measure for sensitivity is not necessarily needed, since the homeostasis

mechanism described in 2.1.2.3 would always cause the z-units to spike unspecifically

if they do not spike or burst sufficiently for their respective pattern. This leads to an

increase in spiking activity for their pattern coming with increasing specificity. Z-units

with a high specificity for their pattern will also show a high sensitivity for this pattern.

4.1.3 Conditional Entropy

Another measure for the convergence speed of the learning process is the decrease in

entropy of the network output given a hidden cause over time.

Similarly to Nessler et al. 2013 [14] the temporal development of the normalized condi-

tional entropy H(P |Z)/H(P,Z) was computed using again the sliding window as already

described. Since the model has mostly sparse spiking activity only spiking information

was regarded, discarding all non-spiking times. The conditional entropy H(P |Z) and

the joint entropy H(P,Z) are given by

H(P |Z) =
K∑
k=1

p(zk)
∑
p∈P
−p(P = p|zk) log2 p(P = p|zk) (4.3)

and

H(P,Z) =

K∑
k=1

∑
p∈P
−p(zk)p(P = p|zk) log2 p(zk)p(P = p|zk), (4.4)

with p(zk) given by

p(zk) =
#spikes(zk)
K∑
k=1

#spikes(zk)

. (4.5)
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4.1.4 Quality of Weight Updates

To understand how a model is learning different patterns it is necessary to have insight

into the way neurons update their weights. To quantify the consensus between patterns

and weight updates the cosine similarity

cosφ =
~p · ~yt
‖~p‖‖~yt‖

(4.6)

was computed, with ~p consisting of the frequencies of the input Poisson spike trains and

~yt being the EPSPs at the time the weights of the neuron were updated. Since all vector

elements are always positive numbers, the resulting cosine similarities reside between 0

and 1.

For this evaluation only the winner neurons zp for every pattern were regarded. The

mean update quality over the winner neurons was calculated from their individual mean

update qualities within the sliding window discarding winners not updating their weights

in this span of time. To display the course of specialization of the network the cosine

similarity was calculated for the finally learned patterns of the winner neurons as well

as for the patterns being currently presented to the network at the times of the weight

updates.
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Discussion

The analysis of the results in Chapter 3 gives rise to the questions how much insight in

neuronal information processing might be provided by this modeling approach, or re-

spectively whether these results can somehow be applied to self organization in biological

neocortical neuronal circuits. It may at least be said that dendritic calcium spikes in

combination with a temporary threshold decrease triggered by back propagating action

potentials might contribute a significant amount to the computational power of those

circuits. Still many insights on properties of these circuits and their information pro-

cessing units are more or less intensively debated making argumentation on the base of

computational models an even more delicate matter, considering many biological details

being most likely still unknown.

A central point of interest is the interpretation of the inhibition mechanism that is

comprised by the prevention of burst threshold decrease exerted by Martinotti Cells.

In context of the winner-take-all circuit comprised by this work’s model the delayed

threshold decrease provides a time window for efficient exertion of inhibition in between

pyramidal cells via excitation of Martinotti cells. Something like this might actually hap-

pen in biological circuits. Considering the main feedforward input of the PC arriving at

proximal dendritic segments, while feedback input arrives at distal dendritic segments

in the tuft, this mechanism might provide an interesting possibility in controlling the

linkage of these two types of input. A spike triggered by the feedforward input would

make the respective PC susceptible for appropriate feedback input by depolarizing the

apical dendritic trunk and decreasing the burst threshold for a certain time window.

If a PC already has performed the linkage it would prevent others from doing so via

local inhibitory MCs. This proposes a ”suggest and confirm” mechanism constituted by

PCs, suggesting the outcome of a decision process by a spike response on feedforward

input subsequently confirming it if the feedback from other areas suits this suggestion.
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The delayed threshold decrease itself is already intriguing because of obviously not re-

sulting from supralinear summation of bAPs and dendritic excitation since occurring a

few milliseconds after arrival of the respective bAP. Eventually an enzymatic process is

responsible for the delayed temporary effect on the calcium spike initiation zone. Such

mechanisms are unlikely to evolve incidentally without fulfilling an advantageous func-

tion for the respective organism, therefore this detail most likely plays a distinct role in

the computations performed by pyramidal cells, where the results in Section 3.1 support

this estimation. It is unclear if this idea will find agreement in biological neurosiciences,

but could at least inspire future modeling approaches or experiments.

5.1 Related and Future Work

The already discussed threshold decrease mechanism for calcium spikes in combination

with inhibition via interneurons comprises a unique feature of this work’s model distin-

guishing it from related work in the context of layer 5 pyramidal neurons. There are

several types of modeling approaches being closely related. While models performing

spike based expectation maximization were already introduced in Section 1.3 other mod-

els focus on prediction of spike-timings in electro physiological recordings by modeling a

more complex dendrite including different types of nonlinearities such as NMDA spikes

[44]. Others focus on more complex models of STDP like the work of Jochen Triesch [41]

and Daniel Krieg [43] mentioned in Section 3.2. Also new insight on STDP on molecular

level [45] might provide inspiration for new modeling approaches.

A promising next step for extending this work’s model would be the introduction of

a complex dendrite providing the dendritic potential for the bursting mechanism (see

Section 2.2.2) as well as a dendritic signal transmission function. The three layer model

introduced in Section 1.4.3 and shown in Figure 1.1 would serve as a good starting

point for this task. The incorporation of NMDA spikes into the model would require to

distribute dendrites on a set of dendritic branches, because coincident synaptic inputs

cause NMDA spikes only if the respective synapses are located on the same dendritic

branch within a vicinity of about 100 µm [27], [29]. Therefore also a continuous synaptic

regrouping mechanism might be necessary to enable coupling of corresponding synapses.

A difficult challenge might be providing suitable feedback input for the respective feed-

forward input. This may be realized by extending the network by an additional circuit

providing the feedback input based on the output of the winner-take-all circuit. Such

an approach could model the linkage between feedback and feedforward input which is

thought to occur at the level of neocortical layer 5 PCs. Also a more detailed modeling

of interneurons would be a possible approach for a future refinement of this model.
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Figure 5.1: This illustration from [29] shows the supralinear boosting of coincident
synaptic responses in form of NMDA spikes. While synapses located at the same
dendritic branch are able to trigger NMDA spikes the responses are more or less linearly

summed between different branches.

5.2 Conclusion

The results of this work show that there is a surprising increase of performance in

self organization and pattern recognition tasks when extending the point neuron model

by a burst mechanism. This result is quite robust in respect to modeling parameters

as long as the bursting threshold is set in a reasonable fashion. A dynamic bursting

threshold dependent on bAPs and inhibition by MCs seemingly overcomes the problem

of precisely timed inhibition in circuits where inhibition occurs via spiking interneurons.

It is also shown that the model of STDP or applied learning rule determines how models

internally derive and represent knowledge about the distribution of their input. The large

impact of small details on computational power and behavior suggest that computation

at the level of individual cells might be more sophisticated and powerful than previously

assumed. Eukaryotic cells are on a wholly different level of complexity than bacterial

cells, which already prove to be difficult to understand. It’s most likely that there are

many still unknown details playing a significant role in neuronal information processing.

Improvement in biological neurosciences and molecularbiological methods will lead to

new insights in the functioning of neurons and synapses. Modeling approaches based on

new findings and details might give rise to a new generation of computational models

unleashing the power of neocortical information processing.



Appendix A

Implementation Details

A.1 General Information

The implementation of the WTA network simulation framework is comprised by two

project-folders containing the models described in Chapter 2. The first is a function-

ally identical reimplementation of Stefan Häusler’s model (see Section 2.1) based on his

MATLAB code, while the second contains the adapted model described in Section 2.2.

The reimplementation was realized as object oriented approach in JavaTM. Purpose of

this was to provide a fast simulation framework, appropriate for execution on a personal

computer or notebook on the one hand, while on the other hand the modular organiza-

tion allows an easy access to the model’s components for extension and remodeling.

A.2 Running the Simulation

The simulation can be started by execution of the main-method of the Network class.

The Java VM used in this work was the Java HotSpotTM 64-Bit Server VM 24.45-b08. It

is recommended to set the VM arguments -Xmx and -Xms for maximum and mimimum

heap size in order to prevent the simulation from either running out of memory or

becoming very slow. If the heap usage gets close to the maximum heap size, Java will

make excessive use of the garbage collection, which will tremendously slow down the

application.
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A.3 Package Overview

Figure A.1 gives an overview on packages and classes in the framework. The following

subsections will describe all functional components organized within the packages. For

running different simulations the Network class will be the main address to look into.

In order to remodel network units all classes representing those can be found in the

wta.cell package. The learning tasks described in Chapter 3 are defined in the classes

within the wta.input package. Tools for visualization and evaluation can be found in

the packages wta.gui and wta.evaluation.

Figure A.1: The class diagram gives an overview on the organization of the simulation
framework. Central element of the implementation is the Network class, containing all
components. The packages organize the classes in respect to functionality. Network
elements representing different types of neurons can be found in the wta.cell package.
The other packages provide classes for generation of the network’s input, visualization

of spike trains and weight settings, and for evaluation of simulations.

A.3.1 Package wta

A.3.1.1 Class Network

As already mentioned the Network class is the heart and center of the application. The

class represents and simulates the network being also responsible for organization of all

of its network components and additional components.

All parameters concerning the configuration of the network can be found in the head of

the source file, such as the number of z-units, number of Martinotti and Basket Cells,

duration of simulation, parameters characterizing the spike input, synaptic efficacies and
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many more. By evoking the main-method one instance of a network is created, initial-

ized and simulated. If executed in batch-mode by setting the number of trials in the

main-method, the main method will sequentially create and simulate networks, saving

the simulation results for each trial. In batch-mode no graphical interface is opened to

visualize the network’s input and output spikes or learning process.

In the initialization process all cellular components of the network are instantiated,

initialized and then assigned to populations being special objects implementing the

Callable interface. By doing so, the units are distributed on different threads with

the benefit of splitting the computational overhead on the cores of the CPU.

The simulation process is comprised by a loop feeding spike input batch-wise to the

network. This was designed to enable online generation of input in order to save mem-

ory in case there is no need of saving the spike input. Since the spike input is saved

in the current implementation, the framework does not make use of this feature. But

it can simply be utilized by implementing a class of input not storing the created spike

trains. The simulation itself is basically performed by simply updating all neurons of the

network every time-step by calling their update() method. This happens by invoking

all population-threads using an ExecutorService.

After simulation, the network output is evaluated and results are stored in text files.

A.3.1.2 Class Population

The Population class acts as container for neurons and has the function to divide the

computational load over threads, where each population object comprises a distinct

thread. On instantiation the population receives an ArrayList of neurons as parame-

ter. It’s recommended to assign equal numbers of each type of cell to every population,

since the most time-consuming thread will become the bottleneck of computation.

This class implements the Callable interface comprising a specialized type of thread

being able to deliver a return value on call. The thread is defined by implementing the

mandatory call() method. In this case the thread simply prompts every neuron in

the population to update its synapses, membrane potential and spike output, return-

ing a Boolean object when finished. The callables are invoked simultaneously by an

ExecutorService, where a Future object is created for every thread’s return value.

This ”future” is realized the moment the thread terminates, delivering its return value.

If all callables are finished or terminated otherwise, the execution of the code where

the callables are invoked continues. In case of the network’s simulation all populations

are called in every time-step, where proceeding to the next time-step occurs when all

populations are finished updating their neurons.
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A.3.2 Package wta.cell

Information processing network units representing distinct types of neurons are combined

in this package, being all derived from the abstract mother class Neuron. This design

allows the simulation framework to treat all units the same way. The modeling of

information processing in this framework can be considered being divided into three

layers. While the first layer is the network level, the second level is comprised by the

cell types modeled in this package. The third layer is the level of synapses, where each

cell type describes its own types of synapses in the form of private classes being only

accessible to themselves.

A.3.2.1 Class Neuron

This abstract class serves as the main interface between the simulation environment and

its compartments. It dictates all derived subclasses to implement the update() method

being called by the simulator. In this method every derived subclass has to define

its specific behavior. Furthermore the Neuron class contains all constant parameters

being common to all subclasses of neurons, such as time-constants for excitatory and

inhibitory postsynaptic currents. It also serves as interface for referencing the output

space for distinct types of neurons.

The third major function of this class is acting as the global clock of the simulation,

storing the current time-step accessible to all subclasses. After all neurons are updated

the state of the network is set to the next step by calling the static nextTimeStep()

method of this class.

A.3.2.2 Class PC

The main type of information processing unit participating in the winner-take-all circuit

is the z-unit representing a pyramidal cell. Constant parameters such as membrane time-

constant, parameters concerning STDP and all other cell type specific parameters can

be found in the head of the source code of this class.

The way PCs process their spike input is defined by the private class InputSynapse. Two

additional types of synapses are responsible for input from Basket Cells and Martinotti

Cells. Each PC instance owns a collection of each type of these synapses, connecting it

to all types of inputs. The behavior of the cell is defined in its update() method. The

cell updates its membrane potential by first updating all synapses, each responding to

presynaptic spikes at the current time-step. After updating all postsynaptic currents the

membrane potential is actualized with subsequent update of the output rate. In a next
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step it is decided if the cell switches into burst mode (see Section 2.2) or continues in

normal spiking mode. In each mode the spike output of the respective z-unit is written

in its respective output space. While in burst mode the cell replays its specific bursting

pattern, in normal mode output spikes are randomly generated based on the current

value of the rate variable. Depending on the model (original or adapted bursting model)

the synaptic weights of input synapses are ultimately updated, either when a spike is

fired or when spiking in burst-mode. This is performed by calling the updateWeight()

method of every input synapse. A boolean constant useLR2 decides if the learning rule

of Equation 2.4 is applied or Equation 3.3.

A.3.2.3 Classes BC and MC

Analogue to the PC class the behavior of BCs and MCs is defined in their update()

method, while cell type specific parameters can be found in the heads of the respec-

tive source file. Both classes own just one type of private synapse class being called

PCSynapse in both cases. Although being implemented similarly these synapse classes

contain different parameter settings defining their specific short term plasticity (see Sec-

tions 1.4.2 and 2.1.3).

A.3.3 Package wta.input

The classes contained in this package implement the tasks introduced in Chapter 3,

providing functionality for the creation of patterns, sequence of pattern presentations

and the corresponding input spike trains.

A.3.3.1 Class Input

Representing the network input this class implements the task described in Section 3.1.

By instantiating it the input is created in three steps. First the patterns are randomly

generated through permutation of input units with low and high firing rate plus a pattern

representing the spacer in between pattern presentations. Next the sequence of pattern

presentations is randomly generated using the probabilities of the two classes of patterns

to be presented. Finally the spike trains are generated and stored, organized in batches

with the length of a pattern presentation. By calling the method getBatch() such a

batch of input spikes is returned by an Input object, internally storing the information

which batches were already delivered. Therefore repetitively calling the method will

sequentially return all batches of input spike trains until the end of simulation is reached.
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A.3.3.2 Classes InputBars, InputRandomBarsNoOverlap

These classes derive from the Input class, overriding the procedure of pattern generation,

where InputRandomBarsNoOverlap implements the task described in Section 3.2. Note

that InputRandomBarsNoOverlap derives from InputRamdomBars. Both classes generate

patterns in form of a crossing horizontal bar and a vertical bar. Patterns are neither

stored nor follow a sequence but rather are random combinations of bars, where in

InputRandomBarsNoOverlap no bars of the same orientation overlap with each other

resulting in fewer possible bars of the same orientation than in InputRandomBars.

InputBars generates analogously to class Input a fixed number of distinct patterns and

a sequence of pattern presentations but in the form of crossing bars.

A.3.4 Package wta.gui

The graphical interface of the framework is realized by using the Java Swing toolkit.

While basically the Network class provides the main window in form of a JFrame, the

classes implementing visualization are each realized as JInternalFrame being displayed

within the main JFrame.

A.3.4.1 Class GUI

Using different panels this class displays the whole spike input and output of all neurons

in the network after the simulation is finished. A panel for each type of unit illustrates

the spikes over the whole duration of the simulation as can be seen in Figure A.2. The

borders of the panels have different colors, being blue for the input, red for z-units, green

for Basket Cells and yellow for Martinotti Cells. Each Panel has a horizontal scrolling

bar to scroll through the course of the simulation.

A.3.4.2 Class WeightMonitor

In contrast to the spike trains, being displayed at the end of the simulation, the weights of

the z-units can be monitored online while the simulation is carried out. The weights are

arranged in squares representing all weights of a z-unit as gray-scale pixels, where dark

pixels represent large weights and bright pixels represent low weights. The appearance

of the WeightMonitor window is shown in Figure A.3. In order to update the displayed

information the update() method has to be called during the simulation. The current

implementation of the Network class updates the display every ten batches of input or

respectively every two seconds of simulation time.
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Figure A.2: The graphical interface illustrating the spike trains of all network units
as realized by the GUI class.

Figure A.3: The graphical interface illustrating weights of the network’s z-units as
realized by the WeightMonitor class.
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A.3.5 Package wta.evaluation

The classes ConditionalEntropyEvaluation and UpdateEvaluator of this package

provide the functionalities for evaluating the network’s ouput after simulation as de-

scribed in Chapter 4. ConditionalEntropyEvaluation realizes the sliding window

evaluation over the simulation’s duration and calculates the time course for the per-

formance score (see Section 4.1.2) as well as for the conditional entropy (see Section

4.1.3).

UpdateEvaluator works similarly but uses WeightUpdate objects storing values and

times of weight updates instead of the spike output of the network.

While ConditionalEntropyEvaluation evaluates the output right on instantiation

UpdateEvaluator first requires the weight updates to be passed via the storeUpdates()

method before starting the evaluation by calling the eval() method.
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Package wta

Class Summary
Network

Main class of the WTA simulation framework.

Population
Helper class to distribute neurons over CPU kernels.

wta

Class Network
java.lang.Object

|
+--java.awt.Component

|
+--java.awt.Container

|
+--java.awt.Window

|
+--java.awt.Frame

|
+--javax.swing.JFrame

|
+--wta.Network

All Implemented Interfaces:
java.awt.MenuContainer, java.awt.image.ImageObserver, java.io.Serializable,
javax.accessibility.Accessible, javax.swing.RootPaneContainer,
javax.swing.TransferHandler.HasGetTransferHandler, javax.swing.WindowConstants

public class Network
extends javax.swing.JFrame

Main class of the WTA simulation framework. Abstracts a network of neurons in a WTA circuit. Provides
functionality for configuration, simulation and evaluation of a network applied to a learning task.

Author:
Stefan Grabuschnig

Constructors



Network
public Network(boolean batchMode)

Instantiates and initializes a network according to its configuration. If the number of trials specified
in the main-method is larger than 1 the network is simulated in batch-mode without using graphical
interfaces.

Parameters:

batchMode - determines if simulation is performed in batch-mode.

Methods

getJointEntropy
public double[] getJointEntropy()

Returns:

the joint entropy

getMeanCosSimilarityCurrent
public double[] getMeanCosSimilarityCurrent()

Returns:

cos similarities of weight updates to currently presented patterns

getMeanCosSimilarityFinal
public double[] getMeanCosSimilarityFinal()

Returns:

cos similarities of weight updates to the finally learned patterns

getNetEntropy
public double[] getNetEntropy()

Returns:

the normalized conditional entropy of the network output



getScore
public double[] getScore()

Returns:

the network score

main
public static void main(java.lang.String[] args)

saveOutput
public void saveOutput()

saves the output of the netowrk and evaluations.

sim
public void sim()

throws java.lang.InterruptedException

Runs the simulation of the network.

Throws:

java.lang.InterruptedException -

writeOuptputFile
public static void writeOuptputFile(boolean[][] output,

java.lang.String filename)

writes an output file for a matrix of boolean values.

Parameters:

output - the output
filename - the filename



writeOuptputFile
public static void writeOuptputFile(double[] output,

java.lang.String filename)

writes an output file for an array of double values.

Parameters:

output - the output
filename - the filename

writeOuptputFileDouble
public static void writeOuptputFileDouble(double[][] output,

java.lang.String filename)

writes an output file for a matrix of double values.

Parameters:

output - the output
filename - the filename

wta

Class Population
java.lang.Object

|
+--wta.Population

All Implemented Interfaces:
java.util.concurrent.Callable

public class Population
extends java.lang.Object
implements java.util.concurrent.Callable

Helper class to distribute neurons over CPU kernels.

Author:
Stefan Grabuschnig

Constructors



Population
public Population(java.util.ArrayList population)

Defines a population of neurons.

Parameters:

population - the population of neurons

Methods

call
public java.lang.Boolean call()



Package wta.cell

Class Summary
BC

Represents a Basket Cell.

MC
Represents a Martinotti Cell.

Neuron
Represents an abstract neuron.

PC
Represents a pyramidal layer 5 neuron.

wta.cell

Class BC
java.lang.Object

|
+--wta.cell.Neuron

|
+--wta.cell.BC

public class BC
extends wta.cell.Neuron

Represents a Basket Cell. Provides the functionality for simulation of behavior and communication.

Author:
Stefan Grabuschnig

Constructors

BC
public BC(int ID,

int numPC)

Instantiates a Basket Cell.

Parameters:

ID - index of this Basket Cell
numPC - number of pyramidal cells in the network

Methods



getID
public int getID()

Returns:

the index of the BC

setA
public static void setA(double A)

sets the synaptic efficacy for synapses from PCs.

Parameters:

A - the synaptic efficacy

setDt
public static void setDt(double dt)

sets the size of a simulation time-step.

Parameters:

dt - size of a time-step in milliseconds

setVMShift
public static void setVMShift(double vMShift)

sets vMShift.

Parameters:

vMShift - the vMShift

update
public void update()

Overrides:

update in class wta.cell.Neuron



wta.cell

Class MC
java.lang.Object

|
+--wta.cell.Neuron

|
+--wta.cell.MC

public class MC
extends wta.cell.Neuron

Represents a Martinotti Cell. Provides the functionality for simulation of behavior and communication.

Author:
Stefan Grabuschnig

Constructors

MC
public MC(int ID,

int numPC)

Instantiates a Martinotti Cell.

Parameters:

ID - index of this Martinotti Cell
numPC - number of pyramidal cells in the network

Methods

getID
public int getID()

Returns:

the index of the BC

setA
public static void setA(double A)

sets the synaptic efficacy for synapses from PCs.

Parameters:

A - the synaptic efficacy



setDt
public static void setDt(double dt)

sets the size of a simulation time-step.

Parameters:

dt - size of a time-step in milliseconds

setVMShift
public static void setVMShift(double vMShift)

sets vMShift.

Parameters:

vMShift - the vMShift

update
public void update()

Overrides:

update in class wta.cell.Neuron

wta.cell

Class Neuron
java.lang.Object

|
+--wta.cell.Neuron

Direct Known Subclasses:
wta.cell.BC, wta.cell.MC, wta.cell.PC

public abstract class Neuron
extends java.lang.Object

Represents an abstract neuron. Defines an interface between the network simulator and individual
neurons. Provides an interface for shared access to the spike output of neurons. Contains constants
shared by all types of cells.

Author:
Stefan Grabuschnig



Constructors

Neuron
public Neuron()

Methods

getOutputBC
public static boolean[][] getOutputBC()

Returns:

the output space for Basket Cells

getOutputMC
public static boolean[][] getOutputMC()

Returns:

the output space for Martinotti Cells

getOutputPC
public static boolean[][] getOutputPC()

Returns:

the output space of the z-units

getWeightUpdatesPC
public static double[][] getWeightUpdatesPC()

Returns:

the weight updates



nextTimeStep
public static void nextTimeStep()

sets the network state to the next time-step. Call after updating all neurons.

setDt
public static void setDt(double dt)

sets the size of simulation time-steps and updates all time-constants according to the change.

Parameters:

dt - size of a time-step

setOutputBC
public static void setOutputBC(boolean[][] outputBC)

sets the output space for Basket Cells.

Parameters:

outputBC - the output space for Basket Cells

setOutputMC
public static void setOutputMC(boolean[][] outputMC)

sets the output space for Martinotti Cells.

Parameters:

outputMC - the output space for Martinotti Cells

setOutputPC
public static void setOutputPC(boolean[][] outputPC)

sets the output space for z-units.

Parameters:

outputPC - the output space for z-units



setTimeStep
public static void setTimeStep(int timeStep)

sets all compartments of the network to a distinct simulation time-step.

Parameters:

timeStep - the time-step

setWeightUpdatesPC
public static void setWeightUpdatesPC(double[][] weightUpdatesPC)

sets the storage for weight updates.

Parameters:

weightUpdatesPC - storage for weight updates

update
public abstract void update()

updates all synapses, membrane potential and spike output of a neuron for a current time-step.

wta.cell

Class PC
java.lang.Object

|
+--wta.cell.Neuron

|
+--wta.cell.PC

public class PC
extends wta.cell.Neuron

Represents a pyramidal layer 5 neuron. Provides the functionality for simulation of behavior and
communication.

Author:
Stefan Grabuschnig

Constructors



PC
public PC(int ID,

int numInputs,
int numPC,
int numBC,
int numMC,
double[] inputRates)

Instantiates a pyramidaly cell.

Parameters:

ID - unique index of the neuron
numInputs - number of input synapes
numPC - number of pyramidal cells in the network
numBC - number of Basket Cells in the network
numMC - number of Martinotti Cells in the network
inputRates - fraction of "high" neurons in input patterns

Methods

getID
public int getID()

Returns:

the index of the PC

getUpdateList
public java.util.ArrayList getUpdateList()

Returns:

the weight updates

getWeights
public double[] getWeights()

Returns:

the synaptic weights



setA_BCtoPC
public static void setA_BCtoPC(double A_BCtoPC)

sets the synaptic efficacy for synapses from Basket Cells.

Parameters:

A_BCtoPC - the synaptic efficacy

setA_MCtoPC
public static void setA_MCtoPC(double A_MCtoPC)

sets the synaptic efficacy for synapses from Martinotti Cells.

Parameters:

A_MCtoPC - the synaptic efficacy

setBl
public static void setBl(double bl)

sets the homeostasis target rate.

Parameters:

bl - the homeostasis target rate

setDt
public static void setDt(double dt)

sets the size of a simulation time-step.

Parameters:

dt - size of time-step in milliseconds

setEta
public static void setEta(double eta)

sets the learning rate.

Parameters:

eta - the learning rate



setNextBatch
public static void setNextBatch(boolean[][] batch)

sets the next batch of spike input.

Parameters:

batch - batch of spiek input

update
public void update()

Overrides:

update in class wta.cell.Neuron



Package wta.evaluation

Class Summary
ConditionalEntropyEvaluation

This class provides functionality for evaluating the network's performance and convergence.

UpdateEvaluator
This class provides functionality for evaluating the cos-similarities of the network's weight updates.

WeightUpdate
Stores values and time of the weight update of a z-unit.

wta.evaluation

Class ConditionalEntropyEvaluation
java.lang.Object

|
+--wta.evaluation.ConditionalEntropyEvaluation

public class ConditionalEntropyEvaluation
extends java.lang.Object

This class provides functionality for evaluating the network's performance and convergence.

Author:
Stefan Grabuschnig

Constructors

ConditionalEntropyEvaluation
public ConditionalEntropyEvaluation(int numPatterns,

int patternLength,
boolean[][] outputPC,
int[] patternSequence)

Instantiates the evluator.

Parameters:

numPatterns - number of patterns
patternLength - length of pattern presentation in time-steps
outputPC - spike output of the pyramidal cells
patternSequence - sequence of pattern presentations

Methods



getBest
public double[][] getBest()

Returns:

the time courses of the specificities of the best winner neurons of each pattern

getBestEntropies
public double[][] getBestEntropies()

Returns:

time course of the conditional entropies for the winner neurons

getJointEntropy
public double[] getJointEntropy()

Returns:

time course of the joint entropy of the network

getNetEntropy
public double[] getNetEntropy()

Returns:

time course of the conditional entropy of the network

getScore
public double[][] getScore()

Returns:

scores of the winner neurons



getWinners
public int[] getWinners()

Returns:

IDs of the winner neurons

wta.evaluation

Class UpdateEvaluator
java.lang.Object

|
+--wta.evaluation.UpdateEvaluator

public class UpdateEvaluator
extends java.lang.Object

This class provides functionality for evaluating the cos-similarities of the network's weight updates.

Author:
Stefan Grabuschnig

Constructors

UpdateEvaluator
public UpdateEvaluator(int numCells,

int[] patternSequence,
int patternLength,
int outputLength,
java.util.ArrayList patterns)

Instantiates a weight update evaluator.

Parameters:

numCells - number of pyramidal cells
patternSequence - sequence of pattern presentations
patternLength - duration of a pattern presentation
outputLength - length of the output in time-steps
patterns - the patterns of the learning task

Methods



eval
public void eval(int[] best)

starts the evaluation of the weight updates of the best winner neurons for each pattern.

Parameters:

best - the best neurons for each pattern

getCosSimilaritiesCurrent
public double[][] getCosSimilaritiesCurrent()

Returns:

cos similarities of weight updates to currently presented patterns

getCosSimililaritiesFinal
public double[][] getCosSimililaritiesFinal()

Returns:

cos similarities of weight updates to the finally learned patterns

getMeanCosSimilaritiesCurrent
public double[] getMeanCosSimilaritiesCurrent()

Returns:

average cos similarities of weight updates to currently presented patterns over the winners

getMeanCosSimilaritiesFinal
public double[] getMeanCosSimilaritiesFinal()

Returns:

average cos similarities of weight updates to the finally learned patterns over the winners



getUpdateTimes
public double[][] getUpdateTimes()

Returns:

the times of the weight updates

storeUpdates
public void storeUpdates(int cell,

java.util.ArrayList updateList)

uptake of weight updates from individual cells.

Parameters:

cell - ID of the respective cell
updateList - weight updates of the respective cell

wta.evaluation

Class WeightUpdate
java.lang.Object

|
+--wta.evaluation.WeightUpdate

public class WeightUpdate
extends java.lang.Object

Stores values and time of the weight update of a z-unit.

Author:
Stefan Grabuschnig

Constructors

WeightUpdate
public WeightUpdate(int t,

double[] update)

Instantiates a weight update.

Parameters:

t - time of the update
update - values of the update



Methods

getT
public int getT()

Returns:

the time of the update

getUpdate
public double[] getUpdate()

Returns:

the weight update



Package wta.gui

Class Summary
GUI

The graphical interface, displaying all input and output spikes of the network on different panels,
where each type of unit has its own panel.

WeightMonitor
A window displaying the current state of each of the network's z-units weights represented by
grayscale pixels arranged in a blue frame, where black indicates a high weight and white a weight
close to zero.

wta.gui

Class GUI
java.lang.Object

|
+--java.awt.Component

|
+--java.awt.Container

|
+--javax.swing.JComponent

|
+--javax.swing.JInternalFrame

|
+--wta.gui.GUI

All Implemented Interfaces:
java.awt.MenuContainer, java.awt.image.ImageObserver, java.io.Serializable,
javax.accessibility.Accessible, javax.swing.RootPaneContainer,
javax.swing.TransferHandler.HasGetTransferHandler, javax.swing.WindowConstants

public class GUI
extends javax.swing.JInternalFrame

The graphical interface, displaying all input and output spikes of the network on different panels, where
each type of unit has its own panel. The implementation currently includes panels for input units, z-units
representing pyramidal cells, units representing Basket Cells and units representing Martinotti Cells.

Author:
Stefan Grabuschnig

Constructors



GUI
public GUI(wta.input.Input input)

Creates and initializes the graphical interface, depending on the size of the network input.

Parameters:

input - Instance of the spike input of a network

Methods

drawBCOutput
public void drawBCOutput(boolean[][] batch)

Draws a batch of output spikes on the panel representing the Basket Cell's output space.

Parameters:

batch - a batch of binary spike output

drawInput
public void drawInput()

Draws the network's spike input on the respective panel.

drawMCOutput
public void drawMCOutput(boolean[][] batch)

Draws a batch of output spikes on the panel representing the Martinotti Cell's output space.

Parameters:

batch - a batch of binary spike output

drawZOutput
public void drawZOutput(boolean[][] batch)

Draws a batch of output spikes on the panel representing the z-unit's output space.

Parameters:

batch - a batch of binary spike output



wta.gui

Class WeightMonitor
java.lang.Object

|
+--java.awt.Component

|
+--java.awt.Container

|
+--javax.swing.JComponent

|
+--javax.swing.JInternalFrame

|
+--wta.gui.WeightMonitor

All Implemented Interfaces:
java.awt.MenuContainer, java.awt.image.ImageObserver, java.io.Serializable,
javax.accessibility.Accessible, javax.swing.RootPaneContainer,
javax.swing.TransferHandler.HasGetTransferHandler, javax.swing.WindowConstants

public class WeightMonitor
extends javax.swing.JInternalFrame

A window displaying the current state of each of the network's z-units weights represented by grayscale
pixels arranged in a blue frame, where black indicates a high weight and white a weight close to zero. The
update method has to be called in order to update the content of the window.

Author:
Stefan Grabuschnig

Constructors

WeightMonitor
public WeightMonitor(java.util.ArrayList zLayer)

Instantiates a WeightMonitor window for an ArrayList of z-units.

Parameters:

zLayer - ArrayList containing the z-units, whose weights shall be monitored.

Methods

update
public void update()

Draws the current state of the weights.



Package wta.input

Class Summary
Input

Represents the spike input of a network.

InputBars
Type of network input, where the input units are rectangular arranged and patterns are comprised
by bars of "high" input units, a horizontal and a vertical one each.

InputRandomBars
Type of network input, where the input units are rectangular arranged and patterns are comprised
by a bars of "high" input units.

InputRandomBarsNoOverlap
Type of network input, where the input units are rectangular arranged and patterns are comprised
by a bars of "high" input units.

wta.input

Class Input
java.lang.Object

|
+--wta.input.Input

Direct Known Subclasses:
wta.input.InputBars, wta.input.InputRandomBars

public class Input
extends java.lang.Object

Represents the spike input of a network. Provides functionality for generation and managment of the
network's input. Randomly creates different patterns of "high" and "low" input units. Randomly creates a
sequence of pattern presentations with different classes of patterns with different probabilities to be
presented to network.

Author:
Stefan Grabuschnig

Constructors



Input
public Input(int simDuration,

int dt,
int numInputs,
int numPatterns,
int inputDuration,
double[] patternProbs,
java.lang.Double inputRateHigh,
java.lang.Double inputRateLow,
java.lang.Double inputRateLow2,
double[] inputRates,
double rateScale)

Instantiates and sets up the spike input of a network.

Parameters:

simDuration - number of time-steps of the simulation
dt - size of a time-step in milliseconds
numInputs - number of input units
numPatterns - number of patterns to be generated
inputDuration - number of time-steps a pattern is presented to the network
patternProbs - Array containing probabilities for each class of pattern
inputRateHigh - spiking frequency for "high" input units
inputRateLow - spiking frequency for "low" input units
inputRateLow2 - parameter for the shape of a "high" unit's spike train
inputRates - fraction of "high" neurons
rateScale - scaling factor for spiking rates

Methods

getBatch
public boolean[][] getBatch()

Returns:

sequentially returns a batch of spike input each time the method is called

getInput
public java.util.ArrayList getInput()

Returns:

the input spike trains



getInputDuration
public int getInputDuration()

Returns:

the inputDuration

getNumInputs
public int getNumInputs()

Returns:

the numInputs

getPatternSequence
public int[] getPatternSequence()

Returns:

the sequence of pattern presentations

getPatterns
public java.util.ArrayList getPatterns()

Returns:

the patterns

getSimDuration
public int getSimDuration()

Returns:

the simDuration

saveInput
public void saveInput()

writes the input spike trains to a text-file "input.txt".



wta.input

Class InputBars
java.lang.Object

|
+--wta.input.Input

|
+--wta.input.InputBars

public class InputBars
extends wta.input.Input

Type of network input, where the input units are rectangular arranged and patterns are comprised by bars
of "high" input units, a horizontal and a vertical one each.

Author:
Stefan Grabuschnig

Constructors

InputBars
public InputBars(int simDuration,

int dt,
int numInputs,
int numPatterns,
int inputDuration,
double[] patternProbs,
java.lang.Double inputRateHigh,
java.lang.Double inputRateLow,
java.lang.Double inputRateLow2,
double[] inputRates,
double rateScale)

Instantiates and sets up the spike input of a network.

Parameters:

simDuration - number of time-steps of the simulation
dt - size of a time-step in milliseconds
numInputs - number of input units
numPatterns - number of patterns to be generated
inputDuration - number of time-steps a pattern is presented to the network
patternProbs - Array containing probabilities for each class of pattern
inputRateHigh - spiking frequency for "high" input units
inputRateLow - spiking frequency for "low" input units
inputRateLow2 - parameter for the shape of a "high" unit's spike train
inputRates - fraction of "high" neurons
rateScale - scaling factor for spiking rates



wta.input

Class InputRandomBars
java.lang.Object

|
+--wta.input.Input

|
+--wta.input.InputRandomBars

Direct Known Subclasses:
wta.input.InputRandomBarsNoOverlap

public class InputRandomBars
extends wta.input.Input

Type of network input, where the input units are rectangular arranged and patterns are comprised by a
bars of "high" input units. A horizontal and a vertical bar are randomly generated each time a pattern is
presentation to the network.

Author:
Stefan Grabuschnig

Constructors

InputRandomBars
public InputRandomBars(int simDuration,

int dt,
int numInputs,
int numPatterns,
int inputDuration,
double[] patternProbs,
java.lang.Double inputRateHigh,
java.lang.Double inputRateLow,
java.lang.Double inputRateLow2,
double[] inputRates,
double rateScale)

Instantiates and sets up the spike input of a network.

Parameters:

simDuration - number of time-steps of the simulation
dt - size of a time-step in milliseconds
numInputs - number of input units
numPatterns - number of patterns to be generated
inputDuration - number of time-steps a pattern is presented to the network
patternProbs - Array containing probabilities for each class of pattern
inputRateHigh - spiking frequency for "high" input units
inputRateLow - spiking frequency for "low" input units
inputRateLow2 - parameter for the shape of a "high" unit's spike train
inputRates - fraction of "high" neurons
rateScale - scaling factor for spiking rates



wta.input

Class InputRandomBarsNoOverlap
java.lang.Object

|
+--wta.input.Input

|
+--wta.input.InputRandomBars

|
+--wta.input.InputRandomBarsNoOverlap

public class InputRandomBarsNoOverlap
extends wta.input.InputRandomBars

Type of network input, where the input units are rectangular arranged and patterns are comprised by a
bars of "high" input units. A horizontal and a vertical bar are randomly generated each time a pattern is
presentation to the network, with the restriction that there exists no overlapping of bars of the same
orientation.

Author:
Stefan Grabuschnig

Constructors

InputRandomBarsNoOverlap
public InputRandomBarsNoOverlap(int simDuration,

int dt,
int numInputs,
int numPatterns,
int inputDuration,
double[] patternProbs,
java.lang.Double inputRateHigh,
java.lang.Double inputRateLow,
java.lang.Double inputRateLow2,
double[] inputRates,
double rateScale)

Instantiates and sets up the spike input of a network.

Parameters:

simDuration - number of time-steps of the simulation
dt - size of a time-step in milliseconds
numInputs - number of input units
numPatterns - number of patterns to be generated
inputDuration - number of time-steps a pattern is presented to the network
patternProbs - Array containing probabilities for each class of pattern
inputRateHigh - spiking frequency for "high" input units
inputRateLow - spiking frequency for "low" input units
inputRateLow2 - parameter for the shape of a "high" unit's spike train
inputRates - fraction of "high" neurons
rateScale - scaling factor for spiking rates
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