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Abstract

Objectives. The aim of this thesis is to accomplish data preparation and analysis
of human myocardium by observation of triaxial simple shearing tests. Optimization of
the underlying dataset is obligatory as well as parameter fitting for existent hyperelastic
materials. In addition, further models referred to dispersion of fibers, viscoelasticity and
softening shall be introduced and evaluated.

Methods. The investigated heart specimens have been mounted into a triaxial shear
testing device performing a simple shear loading pattern at the Institute of Biomechanics
as part of the Graz, University of Technology. After preparation of data including filter-
ing, cycle separation and decoupling of elastic and viscous stresses existing hyperelastic
models are used for parameter estimation concerning perfectly aligned fiber models and
dispersed fiber models. Moreover, viscoelastic models based on derivatives of invariants
are introduced and propose two viscoelastic effects, i.e. ‘restructuring’ and ‘damping’.
Finally, a softening model in terms of a strain-energy reduction function dependent on
loading history is established.

Results. In total, 32 hearts have been investigated of which 37 excised specimens
could be used for data evaluation. Data fits for hyperelastic models show that fibers
and sheets are the main load carrying elements of the myocardium. Fiber and sheet
stiffness decrease with first loading but nonlinearity tend to increase initially followed
by rapid decrease at higher loading peaks. This may indicate perimysial fiber rupture.
The proposed viscoelastic model is able to represent the periodic response only. The
‘restructuring’ effect is dominant at low loading peaks whereas ‘damping’ effects remain
constantly unchanged. Thus, ‘restructuring’ may indicate sliding of sheets during cardiac
muscle motion. Eventually, strong softening of fiber and sheet is observed for repeated
loading patterns and relatively reduces with increasing loading peaks.

Conclusion. Decoupling of elastic and viscous stresses for separate data fitting is
a new approach towards myocardial tissue modeling. Approximately, we can reproduce
99.82% of the dispersed elastic and 94.31% of the viscous experimental data including
95.6% of absolute softening at endstage loading. As low shear stresses are required in
order to guarantee easy motion of adjacent sheet layers, the myocardial vitality may be
interpreted in terms of low stiffness, high nonlinearity, low dispersion, high restructuring
and constant damping with absence of geometrical abnormalities or biological defects.



Zusammenfassung

Ziele. Das Ziel dieser Arbeit besteht in der Datenaufbereitung und Analyse von menschlichen Herz-

muskelgewebedaten, welche mittels Scherversuchen unter Zuhilfenahme einer triaxialen Schertestvor-

richtung gewonnen werden. Die Optimierung der zugrunde liegenden Datensätze ist obligatorisch und

für die Bestimmung zuverlässiger Parameter hyperelastischer Materialien notwendig. Darüber hinaus

sollen weitere Modelle, welche die Dispersion von Fasern, Viskoelastizität und Erweichung des Gewebes

beschreiben können, eingeführt und ausgewertet werden.

Methoden. Die Experimentdaten werden mittels einer dreiachsigen Schertestvorrichtung, welche

seitens des Instituts für Biomechanik als Teil der Technischen Universität Graz zur Verfügung gestellt

wird, gewonnen. Nach Aufbereitung der Daten einschließlich Filterung, Trennung der Zyklen und Ent-

kopplung von elastischen und viskosen Spannungen, werden die bestehenden hyperelastischen Modelle

- umfassend ein perfekt ausgerichtetes Fasermodell sowie ein gestreut ausgerichtetes Fasermodell - zur

Parameterschätzung verwendet. Darüber hinaus sollen viskoelastische Modelle auf Basis von zeitlichen

Ableitungen der Invarianten eingeführt werden, wobei “Umstrukturierung” und “Dämpfung” grundle-

gende Teile des Modells bilden. Schließlich wird ein Erweichungsmodell in Bezug auf die Reduktion der

Verzerrungsenergie eingeführt und abhängig von der Belastungshistorie aufgebaut.

Ergebnisse. Insgesamt wurden 32 Herzen zur Verfügung gestellt, von denen 37 verwendbare

Proben exzidiert und für die Datenauswertung verwendet wurden. Die dazugehörigen hyperelastischen

Daten der Modelle zeigen, dass Fasern und Faserschichten die Haupttragelemente des Herzmuskels

bilden. Faser- und Faserschichtensteifigkeit nehmen ab dem ersten Belastungszyklus monoton ab. Im

Gegensatz dazu steigen die Faser- und Faserschichten-Nichtlinearitäten bei höheren Belastungsspitzen

anfänglich, gefolgt von einem raschen Abfall. Dies deutet möglicherweise auf einen perimysialen Faserriss

hin. Das vorgeschlagene viskoelastische Modell ist in der Lage, die eingeschwungene Belastungsantwort

zu repräsentieren. Die “Umstrukturierung” dominiert bei niedrigen Belastungsspitzen, wohingegen die

“Dämpfung” relativ unverändert auf die Belastungsspitzen reagiert. Die “Umstrukturierung” kann als

relatives Gleiten aneinander liegender Faserschichten während der Herzmuskelbewegung interpretiert

werden. Schließlich wird eine starke Erweichung der Fasern und Faserschichten für wiederholte Belas-

tungsmuster beobachtet, welche in nachfolgenden Zyklen leicht abnimmt.

Schlussfolgerungen. Die Entkopplung von elastischen und viskosen Spannungen für die ge-

trennte Modellierung und Parameterschätzung ist der zentrale Ansatz zur Modellierung. Die elastischen

Daten konnten zu 99,82% und die viskosen Daten zu 94,31% bestimmt werden, wobei eine Erweichung

von 95,6% im finalen Belastungszyklus festgestellt wurde. Um eine einfache Bewegung von benachbarten

Faserschichten zu garantieren, sind geringe Schubspannungen erforderlich. Demnach kann die myokar-

diale Vitalität im Hinblick auf geringe Steifigkeit, hohe Nichtlinearität, niedrige Dispersion, hohe Re-

strukturierung und konstante Dämpfung mit der Abwesenheit von geometrischen Unregelmäßigkeiten

oder biologischen Defekten verstanden werden.
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1. Introduction and Objective

1.1. Motivation

‘The heart has its reasons which reason knows not’ (Blaise Pascal)

Introduction. Truly, the heart is one of the most astonishing creations in nature. In
humanoids it pumps blood through arteries and veins with speeds more than four liters
per minute, contraction times being within hundreds of a second and creating pressures
in the range of 16 kPa. Basically, its structure is a four chamber architecture with a
special electrical conduction system. This system guarantees an ordered stimulation of
the myocardium performing a wave like contraction of atria and ventricles.

In 2010, Eurostat as part of the European Commission [16] has published a report
saying ischaemic heart diseases are the number one death causes in the EU-28 countries
as shown in Fig. 1.1. Major causes of death referred to Austria are cardiovascular diseases
followed by malignant growth which vary by sex as stated by the Statistik Austria in
2014 [2]. Figures 1.2(a) and 1.2(b) present the main causes of death for women and men,
respectively. Thus, it is important to understand not only the mechanisms of disease
development and propagation but also analyzing mechanisms during life for diseased
hearts. Therefore, the field of biomechanics and constitutive modeling are useful tools
for understanding the effects and downsides of cardiomyopathies and hypertrophies in
the human heart.

By now, a series of histological, structural and physiological studies presented the compo-
sition and function of the heart including biaxial tensile tests [7, 12, 30, 51] on myocardial
tissue. As reported by Holzapfel et al. [25],

‘... data from biaxial tests alone are not enough to characterize the pas-
sive response of myocardium because such data suggest that the material is
transversely isotropic’.

Therefore, the aim of this thesis is to extend existing models by analyzing data collected
from triaxial simple shear tests being more informational than biaxial tensile tests as
already stated by Truesdell et al. [58].

10
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Figure 1.1.: Causes of death listed by standardized death rate per 100,000 inhabitants
[16].
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(a) Main causes of death for women in Austria.
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(b) Main causes of death for men in Austria.

Figure 1.2.: Main causes of death per sex in Austria [2].
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Objective. The objective of this master’s thesis is

� the preparation of passive myocardial data for

� fitting existing hyperelastic models including

� extension of existing models considering dispersion and

� expansion of hyperelastic models with viscoelastic models.

1.2. Anatomy and Medical Background

The human heart consists of four chambers being the right atrium, right ventricle, left
atrium and left ventricle. In order to guarantee controlled movement of blood a three
layered muscle called myocardium is excited by the electrical conduction system consist-
ing of the sino-atrial node, atrio-ventricular node, bundle of His, bundle branches and
the Purkinje fibers. Thus, the heart more or less performs a torsional movement which
ejects blood in a very efficient way. [33]

Within the focus of this thesis the left ventricle wall is made of endocardium, myocardium
and epicardium. The wall is composed of a solid phase making up 20% of total volume
and 80% of non-flowing fluid phase [43]. The solid phase is further separated into 70%
myocytes in form of sarcomers containing three fiber types: actin, myosin and titin.
The remaining portion of 30% are interstitial components, endomysial collagen type III
(highly deformable) and perimysial collagen type I (high tensile strength) [46]. Fomovsky
et al. [17] summarize the biomechanical importance of extracellular matrix (ECM) com-
pounds and ascertain collagen, elastin and proteoglycans as the main load contributing
elements of the ECM. Nevertheless, elastin rarely contributes to carry load within the
myocardium [17]. Eventually, elastin fibers may be neglected in terms of biomechanical
relevance within the scope of this thesis. In Figure 1.3 the myocyte structure is shown
by Rohmer et al. [46]. Histological analysis have shown that orientation of fibers and
their layered structures called sheets [27] vary from +60◦ to –60◦ through the ventricle
wall [56] (see also Sec. 3.1 Fig. 3.2(a)). The mentioned sheets are approximately three
to four cells thick and build a laminar structure which give the ventricle important me-
chanical properties [5, 27]. Recently, Ticar [57] has shown that the observed sheets seem
to exceed the proposed number of cells per sheet from Rohmer et al. [46] by applying
3-D reconstruction techniques.

1.3. Mechanical Properties of Myocardium

Based on Sec. 1.2 some special biomechanical properties in ventricle wall mechanics are
obvious. Due to the high water content it is said to be incompressible [59]. The complex
formation of fibers, sheets and matrix components cause propagating stiffening linked
with increasing loads showing nonlinear stress strain relations with strong directional

12
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Figure 1.3.: Myocyte structure showing fibers, collagen fibers and layers of myocyte fibers
organized in sheets (taken from Rohmer et al.[46]).

dependence represented by anisotropy. Furthermore, compositional differences lead to
inhomogeneous material behavior.

Myocardial mechanics usually show following characteristics:

� anisotropy,

� inhomogeneity,

� non-linearity,

� quasi-incompressibility,

� multi-phasic,

solid: myocytes, collagen, interstitial components,

fluid: within cells,

physicochemical: adenosine triphosphate (ATP), ions and ion-channels,

� active tissue behavior (not only when electrically stimulated).

Therefore, some simplifications for experimental setup and modeling are obligatory in
terms of control and test redundancy. These are:

� transverse isotropy or orthotropy,

� layer-wise homogeneity,

� exponential behavior,

� incompressibility,

� monophasic,

� passive tissue.
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2. Basics for Modeling

2.1. Continuum Mechanics

In the following section a short introduction into continuum mechanics is given based
on the work of Holzapfel et al. [23].

2.1.1. Deformation Gradient and Invariants

In continuum mechanics, matter is assumed to be continuously distributed. Therefore,
multiple phases can have coinciding positions. In order to describe the deformation of
an arbitrary body with volume Ω and surface ∂Ω a tensor called deformation gradient
F is introduced. Thus, we distinguish between the referential (undeformed) Ω0 and
current configuration (deformed) Ω with coordinates X(t) and x(X, t), respectively. The
deformation gradient is given via

F = grad(x(X, t)) . (2.1)

In general, the deformation gradient is a non-symmetric second order tensor. For com-
putational efficiency a symmetric deformation tensor called right Cauchy-Green tensor
C is introduced. The symmetric tensor is given via

C = FTF , (2.2)

and is often used for modeling strain-energy functions. Regarding the scalar strain-
energy function Ψ, it is necessary to find scalar quantities in order to represent the
deformation gradient. Fortunately, the so-called invariants Ii are capable of describing
the deformation. These invariants are independent of the selected coordinate system
and, therefore, called principal scalar invariants. For a given deformation gradient F the
corresponding eigenvectors n̂i can be found through solving

Fn̂i = λin̂i . (2.3)

The resulting characteristic polynomial for F is given via

det(F− λiI) = −λ3i + I1λ
2
i − I2λi + I3 , (2.4)
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and thus their invariants are given by

I1(F) = tr(F) , (2.5)

I2(F) =
1

2

(
tr(F)2 + tr(F2)

)
, (2.6)

I3(F) = det(F) . (2.7)

I3 is equal to the Jacobi-determinant J = det(F) which describes the relative change of
volume. Thus, incompressible materials force the third invariant to be unity I3 = J = 1.

2.1.2. Structural Components

In order to obtain the stress tensors we need a material law describing the relation of
stress and strain. The deformation gradient F is actually a stretch tensor. The invariants
I1 and I2 are used as quantities for isotropic deformation whereas I3 is used for volumetric
change descriptions. Furthermore, so called pseudo-invariants can be used to describe
anisotropic behavior caused by fibers, sheets or other reinforcements. Within the scope
of this thesis we focus on the fourth, sixth (same as fourth with second fiber family)
and eighth pseudo-invariant as these are used for modeling fibers, sheets and couplings
of myocardial tissue. They are given by the direction of fibers f0 and sheets s0 in the
referential configuration Ω0 as well as their corresponding stretch parameters λf and λs
via

I4 = f0 ·Cf0 = C : (f0 ⊗ f0) = C : F0 = λ2f , (2.8)

I6 = s0 ·Cs0 = C : (s0 ⊗ s0) = C : S0 = λ2s , (2.9)

I8 = f0 ·Cs0 = C : (f0 ⊗ s0) = λfλs , (2.10)

where F0 and S0 are the fiber and sheet second order tensors defined in Ω0, respectively.

These invariants assume perfect fiber alignment. In general, fibers are dispersed which
means that not all fibers have the same axis of alignment as can be seen in recent studies
of the myocardium, e.g. see [15, 57].

2.1.3. Use of Strain-Energy Functions

Having defined the deformation in terms of the deformation gradient F and its scalar
invariants Ii, we have to define the definitions of stress and strain. In engineering, stress is
defined as the force per unit area. When a body is loaded with force the body will deform
in some way. Thus, energy is stored in the volume which we assume to be continuous.
The stored energy per unit reference volume is called Helmholtz free-energy and denoted
as Ψ. The Helmholtz free-energy function can be defined to be a function of F and its
scalar invariants and forms a scalar function Ψ = Ψ(F) = Ψ(I1, I2, I3, I4, I6, I8).

If we neglect the change of area for the body, we call this the nominal stress or first
Piola-Kirchhoff stress tensor P. The first Piola-Kirchhoff stress tensor is a quantity with
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its force defined in the actual configuration Ω and its area defined in the referential con-
figuration Ω0. Thus, the first Piola-Kirchhoff stress tensor is unsymmetrical and defined
via

P =
∂Ψ

∂F
=
∑
i

∂Ψ

∂Ii

∂Ii
F
. (2.11)

Finally, the true stress tensor also called Cauchy stress tensor σ describes the actual
stress referred to the actual surface in Ω. Using Eq. (2.11) and Nanson’s formula the
Cauchy stress is obtained through

σ = J−1PFT . (2.12)

The strain-energy function Ψ can be composed by various energy functions as long as
the laws of thermodynamics are fulfilled. The second law of thermodynamics states that
energy can never be created and dissipation is either zero or positive. Neglecting thermal
effects the internal dissipation is given by

Dint = P : Ḟ− Ψ̇ ≥ 0 . (2.13)

If the internal dissipation is zero, the process is completely reversible without entropic
effects. Hence, we find lossless Clausius-Planck equation

Ψ̇ = P : Ḟ . (2.14)

This relation will later be used for modeling viscoelasticity in Sec. 3.4.3 when dissipation
becomes non-zero.

2.2. Parameter Fit via Objective Function Minimization

Usually, parameter fits are obtained by a given model function ŷ with a certain num-
ber of model parameters ci. Usually, the model function ŷ = f(c,x) with c being the
parameter vector with length np tries to reproduce the discrete experimental data yi[xi]
with n observations. After calculation of the squared error e2 derivatives for all param-
eters are computed (see Eq. (2.15)). All these derivatives should yield zero in order to
guarantee global or at least local error function minimum (see Eq. (2.16)). This is called
minimization of least-squares.

e2 =
∑
i

(yi[xi]− ŷ(xi))
2 = ||y − ŷ||2 . (2.15)

∂e2

∂c
!

= 0 . (2.16)

For nonlinear problems, Matlab® provides integrated solvers like ‘lsqcurvefit’ and
‘lsqnonlin’.
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Unfortunately, in our experimental setup we have a series of pairwise observations which
all underlie the same biomechanical framework given by the strain-energy function Ψ.
Consequently, we have to use a different method for parameter estimation called ‘objec-
tive function minimization’. A series of proposed models can be fitted at the same time
even when different experiments are conducted as long as the underlying parameter set
is identical. Thus, we create an objective function e2obj for every experiment EXP via

e2obj =
∑
EXP

||y(EXP ) − ŷ(EXP )||2 . (2.17)

Based on our triaxial shear problem the objective function will have the special form
given by

e2obj =
∑
EXP

∣∣∣∣∣∣e(EXP )
n ·

(
σ(EXP ) − J−1P(EXP )F(EXP )T

)
e
(EXP )
l

∣∣∣∣∣∣2 , (2.18)

where e
(EXP )
n is the normal unity vector and e

(EXP )
l is the loading unity vector depend-

ing on the experiment. Finally, we utilize Matlab’s® objective function minimization
algorithm via ‘fmincon’ which is a constrained version of ‘fminsearch’. The fundamental
constraint is that all estimated parameters have to be greater or equal to zero, i.e. c ≥ 0.

In order to determine the ‘goodness of fit’ the adjusted coefficient of determination R2

with the total sum of squares SST and total sum of residuals SSR = e2obj is used which
is given by

R2 =
n− 1

n− np − 1

SSR

SST
=

n− 1

n− np − 1

e2obj
SST

, (2.19)

with the total sum of squares

SST =
∑
EXP

∣∣∣∣∣∣e(EXP )
n ·

(
σ(EXP ) − σ̄(EXP )

)
e
(EXP )
l

∣∣∣∣∣∣2 . (2.20)
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3. Methods

3.1. Source of Data

Over the past couple of years, a group of persons including graduates and undergraduates
have performed uniaxial, biaxial and latest triaxal tensile and shear tests including
the set up of constitutive frameworks for different tissues, e.g. healthy and diseased
arteries [26, 53], bones [19], cartilage [42] and hearts [14, 25]. The necessary infrastructure
comprising laboratories, machines, tools and know-how is supplied by the Institute of
Biomechanics at the Graz University of Technology, Austria.

The scope of this thesis lies in data analysis of triaxial shear tests of human myocardium
with a device as shown in Fig. 3.1. Therefore, human myocardial tissue is excised from
different locations reaching from base over equator to apex in longitudinal direction and
from endocardium through myocardium to epicardium in radial direction as shown in
Figs. 3.2(a) and 3.3. At these specific positions small tissue cubes with an average side
length of 3 to 5mm are cut out of the myocardium. In general, the typical excision point
is referred to be the left ventricular free wall (LVFW) (area ‘2’ in Fig. 3.3(B)). If cutting
is not possible due to lack of specimens or damaged wall tissues (see Kutschera [35]),
it is excised from the left ventricular front wall (area ‘3’ in Fig. 3.3(B)). Afterwards,
these cubes are glued to the fixed platen of the triaxial shear testing device as shown
in Fig. 3.4. The used cyanoacrylate adhesive glue (Loctite® : Super Kleber, Power Gel)
is non-penetrating in order to prevent falsification of tissue strength, stiffness and non-
linearity. In Fig. 3.4 the fixation points as well as application of load are shown. As the
platens are not moved towards each other, the tissue is exposed to simple shear until
reaching the shear peaks γ̂ = 0, 0.1, .. 0.5. Simple shear means that a combination of
shear and extension is applied on the specimen causing fibers, sheets and the ground
substance to be elongated. Actually, simple shear enables to build a great information
basis for modeling tissue mechanics as it combines both shear and tensile stress (see
Truesdell [58]).

There are six possible loading modes which are shown in Fig. 3.2(b). For better under-
standing, we introduce a local coordinate system with FSN-coordinates (see Fig. 3.2(a)).
As the heart consists of fibers, layers of fibers called sheets and ground substance, we call
the fiber direction F-coordinate, the sheet direction S-coordinate and the direction per-
pendicular to the fiber-sheet plane N-coordinate in the following sections with f0−s0−n0

in Ω0 and f − s − n in Ω. Hence, in case of simple shearing with applying shear γ the
first letter describes the direction of the mounting surface vector and the second letter
the direction of applied load, e.g. FN-mode loading means that the fibers are oriented
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Figure 3.1.: Illustration showing the triaxial shear testing device (taken from
Kutschera [35]).
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Figure 1. Schematic diagram of: (a) the left ventricle and a cutout from the equator; (b) the
structure through the thickness from the epicardium to the endocardium; (c) five longitudinal–
circumferential sections at regular intervals from 10 to 90 per cent of the wall thickness from the
epicardium showing the transmural variation of layer orientation; (d) the layered organization
of myocytes and the collagen fibres between the sheets referred to a right-handed orthonormal
coordinate system with fibre axis f0, sheet axis s0 and sheet-normal axis n0; and (e) a cube of
layered tissue with local material coordinates (X1, X2, X3) serving as the basis for the geometrical
and constitutive model.

between adjacent muscle fibres, with attachments near the z-line of the sarcomere.
Figure 1b illustrates the change of the three-dimensional layered organization of
myocytes through the wall thickness from the epicardium to the endocardium. In
addition, figure 1c displays views of five longitudinal–circumferential sections at
regular intervals through the left ventricular wall (at 10–90% of the wall thickness
from the epicardium). The sections are parallel to the epicardial surface and are
displayed separately in figure 1c. As can be seen, the muscle fibre orientations
change with position through the wall; in the equatorial region, the predominant
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(a) Fiber and sheet orientation throughout the
myocardium (taken from Holzapfel et al. [25]).

Modelling of passive myocardium 3459

n0

f0

s0

f0

s0

f0

s0

(fs)(a) (c) (e)

(b) (d ) ( f )

n0 (sn) n0 (fn)

n0

f0

s0

f0

s0

f0

s0

(sf ) n0 (ns) n0 (nf )

Figure 4. Sketches of six possible modes of simple shear for myocardium defined with respect to the
fibre axis f0, sheet axis s0 and sheet-normal axis n0: each mode is a plane strain deformation. The
modes are designated (ij), where i, j ∈ {f, s, n}, corresponding to shear in the ij plane with shear in
the j direction. Thus, the first letter in (ij) denotes the normal vector of the face that is shifted
by the simple shear, whereas the second denotes the direction in which that face is shifted. The
modes in which the fibres are stretched are (fn) and (fs).

For the shear in the s0 direction, we have

[B] =
⎡
⎣1 γ 0

γ 1 + γ 2 0
0 0 1

⎤
⎦ , f = f0 + γ s0, s = s0, n = n0, (5.11)

I4 f = 1 + γ 2, I4 s = I4 n = 1, the active shear stress is σ12 = 2γ (ψ1 + ψ4 f) and again
σ13 = σ23 = 0. Hence, the two shear responses in the fs plane are different. Note
that, for each of the above two cases, I8 fs = γ and I8 fn = I8 sn = 0.

(ii) Shear in the sn plane

Next, we consider simple shear in the sn plane, considering separately shear
in the s0 and n0 directions. Shears in the s0 and n0 directions have deformation
gradients with components

[F] =
[1 0 0
0 1 γ
0 0 1

]
and [F] =

[1 0 0
0 1 0
0 γ 1

]
, (5.12)
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(b) All six loading modes and their orientations
(taken from Holzapfel et al. [25]).

Figure 3.2.: Basic model for the myocardium providing fundamental approaches for mod-
eling.
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38 2 Materials & Methods

2.2.3.2 Detailed specimen preparation

In order to obtain suitable data for the shear properties of passive human ventricular my-
ocardium, a definition of possible regions for the separation of specimens (slices), is very
important (e.g. sheet-layers are relatively uniform and aligned at 45° to base, reported
from Dokos et al., 2002) and should be nearly the same for all testing cycles. Appropriate
areas of sample procurement (slices) are also highly dependent on the size of the avail-
able human myocardial tissue, provided from different institutes (high demand on human
tissue!; see chapter 2.1.1.1).

Cubic specimens should have at least 3mm edge length, the dissection of slices out of
the RVFW due to the average of the thickness of human right ventricular walls (much thin-
ner than porcines, see Tab. 1.1), is therefore not useful, only the LVFW and IVW of human
tissues are of interest for the present study. Further, due to simultaneous comprehension
of biaxial tensile and triaxial shear tests, whereby required slices must be separated in two
different ways, and the small amount of human tissue, a precise sample excision protocol
had to be developed (see Appendix 5.2).

Disassembly of the free wall into slices
Slices were either separated from anterior to posterior relating to biaxial tensile tests, cir-

cumferential to the surface of the LVFW (Fig. 2.12 (B) 3), or transverse to it from epi-

cardial to endocardial, perpendicular to the free wall (Fig. 2.12 (B) 2), relating to the
investigation of triaxial shear properties.

Figure 2.12: (A) shows a 3D-model of human myocardium (RVFW, IVW, LVFW); (B)
illustrates locations for the separation of myocardial tissue: the red marked
area identifies the LVFW; (1) the black dashed lines border a typical received
cotter at the front wall, which was received from various departments; (2)
indicates possible slices for the investigation of triaxial shear properties, (3)
represents possible slices dissection corresponding to biaxial tensile tests

Figure 3.3.: (A): Computer model of the heart left ventricle wall and septum (red) and
the right ventricle wall (blue). [35]
(B): Possible cutting position of ventricle walls by Kutschera. The red region
marks the left ventricular free wall (LVFW) with possible excision slices for
triaxial shear testing at region ‘2’ and biaxial tensile testing at region ‘3’. [35]

Scheme of Applying Simple Shear 
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Figure 3.4.: Application of simple shear for FS-mode.
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normal to the mounting platens and the load is applied normal to the fiber-sheet plane.
All in all, six possible shear test loading modes can be conducted being FS, FN, SF, SN,
NF and NS as shown in Fig. 3.2(b). Optimally, five tests at different shear peaks per
loading mode can be performed. Hence, the total number of experiments per specimen
sums up to 30 tests.

Exemplarily, in FS-mode loading we can design

f = f0 , (3.1)

s = γf0 + s0 , (3.2)

n = n0 , (3.3)

which defines the deformation gradient by

F =

 1 0 0
γ 1 0
0 0 1

 . (3.4)

The underlying right Cauchy-Green tensor is then obtained through

C =

 1 + γ2 γ 0
γ 1 0
0 0 1

 , (3.5)

with its most important invariants

matrix stretch/shear... I1 = 3 + γ2 , (3.6)

fiber stretch/shear... I4 = 1 + γ2 , (3.7)

sheet stretch/shear... I6 = 1 , (3.8)

coupling stretch/shear... I8 = γ . (3.9)

Thus, we see that for FS-mode loading the matrix, fibers and coupling structures are
exposed to shear and stretch, respectively. Moreover, the fibers are stretched as I4 ≥ 1
for γ 6= 0 but not the sheets which stay undeformed and, thus, do not contribute in
distribution of load.

As already mentioned, 30 tests can be carried out for every specimen. Unfortunately, if
once glued, the tissue cubes cannot be used for further testing anymore. Hence, three
cubes are excised in order to be exposed to shear in two loading directions for γ̂ =
0, 0.1, .. 0.5. This may cause irregularities due to different location of specimen when
conducting analysis of data.

In order to prevent tissue from drying or developing necrosis some hearts have been
stored and tested in environment of cardioplegic solution (CPS), i.e. an isotonic water
solution in order to prevent diffusion and osmotic processes. As the myocardium is a
muscle of striated type, its main structural element is the sarcomere containing actin,
myosin and titin [38]. These composites can be electromechanically activated as models
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of Sachse et al. [47], Seeman et al. [50] and Tusscher et al. [60] prove. In order to
obtain passive myocardial test data the usage of a substance called 2,3-butanedione
monoxime (BDM) is obligatory. BDM prevents cross-bridge activation through selective
inhibition of myosin adenosine triphosphatase (ATPase) (note: BDM is not a general
myosin inhibitor [40]) and muscle contraction due to injury as stated by Mulieri et
al. [39] as well as force inhibition as shown by Ebus et al. [10]. Remarkably, Soeno et
al. [52] have reported that BDM also affects myofibrillogenesis causing reduced growth
and structural differentiation.

As soft biological tissues show history depended loading behavior, preconditioning is
obligatory establishing orientation of structural components within the tissue [37, 61].
Unpreconditioned soft tissues show viscoelastic unequal mechanical results when sub-
jected to redundant loading which is unfavorable for investigation and modeling. There-
fore, the last cycle of every loading pattern is used for data analysis. Eventually, pre-
conditioning leads to repeatedly redundant hysteresis curves which is a fundamental
requirement for decomposition of hysteresis stress into elastic and viscous stress parts.

Shear loads are applied sinusoidal via γ = γ̂sin(2πft), where γ̂ is the peak of shear for
the current loading cycle and f refers to the loading frequency. In order to reduce the
influence of higher shear rates for constant frequency, the frequency f is adjusted so that
the maximum rate of shear is held constant over a various set of tests (see Eq. (3.11)).

γ̇(t) =
dγ

dt
= 2πfγ̂cos(2πft)

= ˙̂γcos(2πft) (3.10)

Thus, we define the frequency for constant rate of shear loading via

f(γ̂, ˙̂γ) =
˙̂γ

2πγ̂
, (3.11)

which defines the overall platen velocity v(t) = γ̇(t)h through

v(t) = h ˙̂γcos

(
˙̂γ

γ̂
t

)
, (3.12)

with h as the specimen height. Consequently, we keep the rate of shear consistently
independent of the size of the excised myocardial cube, e.g. for a peak amount of shear
γ̂ = 0.2, a peak rate of shear ˙̂γ = 0.02s−1 and a cube height of h = 5mm the resulting
velocity is obtained through

v(t) = 6
mm

min
cos
(
6min−1t

)
. (3.13)

Note. Unfortunately, the test results described in Sec. 4.1 and Fig. 4.4 show that the
rate of shear has been varied between different hearts but kept constant within hearts.
A possible reason for this may be fixation of velocity and determination of rate of shear
via γ̇(t) = v(t)/h. Hence, a direct comparison between heart viscoelasticity is not always
possible.
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3.2. Data Preparation

Having conducted the triaxial shear testing, the raw data needs to be prepared for fitting.

Data Preparation

1. Detection of zero crossings in order to separate preconditioning cycles from main
loading cycles (see Fig. 3.5(a)).

a) In last loading cycle (main loading cycle) traverse of shear testing device re-
duces speed non-sinusoidal causing nonuniform unloading cycles with reduced
amount of shear stress (see blue curve in Fig 3.5(b) compared to perfect sinus
(red)).

2. Smoothing of raw stress data with using Matlab® ’s smooth() function with filter
‘sgolay’ and a span of 1/100 of signal length or at least five (see Fig. 3.5(c)).

3. Correcting offset for main loading cycle so that τmain(γ = 0, γ̇ > 0) = −τmain(γ =
0, γ̇ < 0) (see Fig. 3.5(c)).

4. Separation of cycles in usually two preconditioning and one main loading cycle
(defined in the header of the test file) as shown in Fig. 3.5(d).

a) Selection of new main loading cycle as marked in Fig 3.5(a) (see ‘selected’
region marked with arrows) which is the negative unloading curve of cycle 2
(green cycle in Fig 3.5(d)) combined with the following positive loading and
unloading as well as negative loading curves of cycle 3 (blue).

5. Determine un-/loading curve parts for upper stress parts τupper with γ̇ > 0 and
lower stress parts τlower for γ̇ < 0 (see Fig. 3.5(e)).

6. Assuming τ = τelast + τvisco holds, decouple stresses.

(a) Elastic stress parts with τelast = mean(τupper, τlower).

(b) Viscous stress parts with τvisco = τ − τelast.

7. Determine derivatives for data analysis.

An example of a prepared data file including its header information and data analysis
steps are shown in Appendix A.1. The corresponding data is a composition of cells and
structs. A selection of the first layer of data-structure is shown in Table 3.1.

3.3. Modeling Using Existing Models

Within the last couple of decades a series of constitutive models for tissue have been
designed. Those reach from simple phenomenological polynomial fits up to sophisticated
hyperelastic strain-energy functions. The list of proposed models is long and reaches from
isotropic models by, e.g. Fung in 1967 [18] and Demiray in 1976 [8], over transversely
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Figure 3.5.: Data preparation procedure.
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Table 3.1.: Data description and structure.

strain ... defined peak amount of shear
shear ... complete amount of shear data for all cycles
stress ... complete shear stress data for all cycles
zcross ... zero crossings of shear for cycle separation
peak ... peaks of shear for loading and unloading curve separation
freq ... determined loading frequency for main loading cycle
elastic ... elastic components
visco ... viscous components
selastic ... stiffer elastic shear stress curve
svisco ... stiffer viscous shear stress curve
felastic ... pseudo-elastic components determined via fit of hysteresis data
lelastic ... loading curves only and shifted to zero
damage ... damage components obtained via felastic (optional)
relax ... stress relaxation curves (optional)

isotropic models by, e.g. Humphrey & Yin in 1987 [29], Humphrey et al. in 1990 [28],
Guccione et al. in 1991 [21] and Costa et al. in 1996 [4], up to orthotropic models by,
e.g. Hunter et al. in 1997 [31], Costa et al. in 2001 [3], Schmid et al. in 2006 [48], Gasser
et al. in 2006 [20] and more recently Holzapfel et al. in 2009 [25].

A shortcoming of phenomenologically motivated polynomial models are that the esti-
mated parameter set does not have a direct biomechanical meaning. Thus, models based
on building strain-energy functions provide more information referred to their parameter
set.

Generally, nearly all exponential hyperelastic models are based on the work of Fung [18].
In his work, he states that the stiffness of the tissue is based on the momentary amount
of applied stress (compare Fig. 4.7 in Sec. 4.1). Fung introduces a stiffness parameter a
as well as a nonlinearity parameter b and suggests a relation based on the first Piola-
Kirchhoff stress P11 and its corresponding stretch λ11 via

dP11

dλ11
= a+ bP11 with P11(λ11 = 1) = 0 . (3.14)

Solving this differential equation results to

P11 =
a

b

(
eb(λ11−1) − 1

)
. (3.15)

Fung postulates that the underlying strain-energy function written in terms of the Green-
Lagrange strain tensor E = 1/2(C− I) has the following form

Ψ(E) = c
(
e(Q(E)−1) − 1

)
. (3.16)

This strain-energy function can be used to obtain the symmetric second Piola-Kirchhoff
stress tensor S via

S =
∂Ψ(E)

∂E
= ce(Q(E)−1)∂Q(E)

∂E
. (3.17)
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Therefore, a vast variety of different strain-energy functions can be designed in order to
describe the material behavior via Q(E). In addition, we postulate based on the work of
Dokos et al. [9] that shear stresses for different loading modes have to obey the following
rule:

FS > FN > SF > SN > NF ≈ NS . (3.18)

This guarantees that stresses in direction of fibers or sheets are stiffer than those nor-
mal to them. This fundamental assumption is important for correct data collection of
experiments.

Note. The proposed models which will be discussed in the following sections are or-
thotropic models. Although, isotropic and transversely isotropic models are also capable
of describing the data in some way, we focus on orthotropic models only. In fact, my-
ocardial tissue being exposed to biaxial stretching shows transversely isotropic behavior
and, therefore, those models are sufficient [25] but not when it comes to triaxial simple
shearing. Consequently, biaxial stress loading is an isolated experimental setup which
lacks biomechanical properties of tissue being exposed to shearing and tensile loading
simultaneously [25].

3.3.1. Orthotropic Hyperelastic Model with Perfect Fiber
Alignment by Costa

Costa et al. [3] have designed a Fung-type model with one exponential term combining
fiber, sheet and coupling effects. A lack of this model is that it uses only one stiffness
parameter a and six nonlinearity parameters b. Thus, it assumes that the myocardium
is a fixed structure with matrix-fiber-sheet compound which is treated as one in terms
of stiffness.

The proposed strain-energy function Ψ based on the Green-Lagrange strain tensor E =
1/2(FTF− I) is given via

Ψ = a
(
ebffE

2
ff+bssE

2
ss+bnnE2

nn+2bfsE
2
fs+2bfnE

2
fn+2bsnE2

sn − 1
)
. (3.19)

The resulting Cauchy-stress tensor results to

σ = J−1F
∂Ψ(E)

∂E
FT = J−1F

∑
i,j

∂Ψ(E)

∂Eij

∂Eij
∂E︸ ︷︷ ︸

=ei⊗ej

FT . (3.20)

3.3.2. Orthotropic Hyperelastic Model with Perfect Fiber
Alignment by Schmid

In addition to the model of Costa [3] a decoupled Fung-type exponential model has been
proposed by Schmid et al. [48]. Schmid decouples the exponential terms and, therefore,
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introduces stiffness parameters for fibers, sheets and coupling effects with twelve pa-
rameters in total. Thus, this model does not require fiber shear stresses being higher
than sheet or normal direction stresses as proposed by Dokos et al. [9]. The underlying
strain-energy function is obtained through

Ψ(I1, I4, I6, I8) =
aff
2

(
ebffE

2
ff − 1

)
+
afn
2

(
ebfnE

2
fn − 1

)
+
afs
2

(
ebfsE

2
fs − 1

)
+
ann
2

(
ebnnE2

nn − 1
)

+
ans
2

(
ebnsE2

ns − 1
)

+
ass
2

(
ebssE

2
ss − 1

)
.(3.21)

In fact, this model is capable of fitting experimental data which has been examined
insufficiently. As the model fits every loading mode isolated and not its componential
structure, all curves can be fitted separately and, therefore, fiber-sheet stresses could
possible be lower than normal-sheet stresses which is physically incorrect. As the my-
ocardium is known to show special characteristics concerning shear loading stresses, this
model is overdetermined [25].

3.3.3. Orthotropic Hyperelastic Model with Perfect Fiber
Alignment by Holzapfel and Ogden Using Invariants

A model suggested by Holzapfel et al. [25] describes the biomechanics of myocardium.
This model is a composition of decoupled exponential terms describing the isotropic
matrix, perfectly aligned fibers as well as sheets and fiber-sheet coupling. In the following
sections we will refer to this model as ‘ALIGNED’ model. The corresponding strain-
energy function is given via

Ψ(I1, I4, I6, I8) =
a

2b

(
eb(I1−3) − 1

)
+

af
2bf

(
ebf (I4−1)

2 − 1
)

+
as
2bs

(
ebs(I6−1)

2 − 1
)

+
afs
2bfs

(
ebfsI

2
8 − 1

)
. (3.22)

This model unites the biomechanics of an isotropic matrix, an orthotropic fiber rein-
forcement as well as an orthotropic layered sheet structure. Furthermore, shear testing
of myocardium suggests orthotropic rather than transversely isotropic material behavior
[25]. Note, when conducting biaxial tests the resulting experimental data can be fit-
ted well with transversely isotropic models. This emphasizes the great capability and
importance of triaxial shear tests for detailed material studies and constitutive modeling.

This model will be used for elastic stress description. It is capable of distinguishing
between all modes except the NF-/NS-modes as the perimysial compounds between
sheets are assumed to be part of the matrix compound [25].

27



CONSTITUTIVE MODELING

3.3.4. Modeling Fiber Dispersion with Rotationally Symmetric
Dispersion Using Structure Tensors

Another useful model has been proposed by Gasser et al. [20]. Although, it is meant
to model arterial wall biomechanics it can be used for myocardium as well. Eriksson et
al. [15] combined the model of Holzapfel and Gasser in order to unite them to an or-
thotropic hyperelastic model including fiber and sheet dispersion. Therefore, a dispersed
structure tensor H is introduced.

The dispersion is modeled based on the π-periodic von Mises distribution ρ(M) of
fibers and sheets where M is an arbitrary vector in cylinder coordinates. Actually, ρ is
a point-density function (PDF) describing the probability of finding fibers for certain
orientations. The given cylindrical coordinate system is given by two angles Φ and Θ
and the longitudinal main axis e3. Thus, the arbitrary tensor is obtained through

M = sinΘcosΦe1 + sinΘsinΦe2 + cosΘe3 . (3.23)

The structure tensor is then given via

H =
1

4π

∫ 2π

Φ=0

∫ π

Θ=0

ρ(M(Θ ,Φ))M(Θ ,Φ)⊗M(Θ ,Φ)sin(Θ)dΘdΦ . (3.24)

Assuming the fibers are distributed rotationally symmetric around e3, we can eliminate
Φ. This simplifies Eq. (3.24) to

H =
1

2

∫ π

Θ=0

ρ(M(Θ))M(Θ)⊗M(Θ)sin(Θ)dΘ . (3.25)

Finally, Gasser et al. [20] derives the structure tensor by introducing the dispersion
parameter κ ∈ {x ∈ R|0 ≤ x ≤ 1/3} via

H =

κ 0 0
0 κ 0
0 0 1− 2κ

 = κ

 1 0 0
0 1 0
0 0 1

+

 0 0 0
0 0 0
0 0 1− 3κ

 = κI + (1− 3κ)e3 ⊗ e3 . (3.26)

Remark. In case of fully aligned fibers κ = 0 and for completely isotropically dis-
tributed fibers κ = 1/3.

Consequently, we can replace A = e3 ⊗ e3 with every direction needed. A is then
identified as a perfectly aligned structure tensor with no dispersion at all. The dispersed
invariant representing fibers I∗4 is given by

I∗4 = C : HF

= C : (κfI + (1− 3κ)F0) = κf tr(C)︸ ︷︷ ︸
=I1

+(1− 3κf ) C : F0︸ ︷︷ ︸
=I4

= κfI1 + (1− 3κf )I4 , (3.27)
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and the dispersed invariant representing sheets I∗6 is given by

I∗6 = C : HS

= C : (κsI + (1− 3κs)S0) = κs tr(C)︸ ︷︷ ︸
=I1

+(1− 3κs) C : S0︸ ︷︷ ︸
=I6

= κsI1 + (1− 3κs)I6 . (3.28)

As proposed by Eriksson et al. [15] the complete strain-energy function including dis-
persion of fibers κf and sheets κs is given by

Ψ(I1, I4, I6, I8) =
a

2b

(
eb(I1−3) − 1

)
+

af
2bf

(
ebf (κf I1+(1−3κf )I4−1)2 − 1

)
+

as
2bs

(
ebs(κsI1+(1−3κs)I6−1)2 − 1

)
+

afs
2bfs

(
ebfsI

2
8 − 1

)
. (3.29)

In the following sections we will refer to this model as ‘KAPPA’ model. Note, when
setting κf = κs = 0 there is no dispersion at all and the model of Eriksson et al. [15] is
equal to the model of Holzapfel et al [25].

3.4. Approach for New Models

Motivation. By now, a couple of hyperelastic models have been presented which
describe the biomechanics of myocardium in equilibrium. Recent experiments prove that
rate of shear dependencies cause viscoelastic effects and hysteresis even at low rates of
shear (see [35]). Consequently, viscoelastic modeling is obligatory as viscoelastic effects
show strong influence on myocardial mechanics, e.g. wall thickening [36], sliding of sheets
and reformation of myocardium during systole [55] and diastole [6].

3.4.1. Orthotropic Hyperelastic Model with Perfect Fiber
Alignment Including Perimysium

In order to distinguish NF-/NS-mode loading we need to add an additional term. Saying
I9 = n0 ·Cf0 which is the coupling of normal and fiber direction stretch, we can formulate
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an extended hyperelastic model based on Holzapfel et al. [25] via

Ψ(I1, I4, I6, I8, I9) =
a

2b

(
eb(I1−3) − 1

)
+

af
2bf

(
ebf (I4−1)

2 − 1
)

+
as
2bs

(
ebs(I6−1)

2 − 1
)

+
afs
2bfs

(
ebfsI

2
8 − 1

)
+

anf
2bnf

(
ebnf I

2
9 − 1

)
. (3.30)

This model consists of ten parameters but most of the time NF-/NS-mode stresses are
congruent. Hence, the NF-coupling invariant I9 will be close to zero most of the time,
especially when thin layers of myocardium are tested [9, 15, 25].

Note. The determination of an eight parameter model is a challenging task in terms of
finding the global minimum of the objective function and is even harder when considering
a ten parameter model. Eventually, at some point more parameters reduce the confidence
of single parameters but do not increase confidence in a acceptable manner.

3.4.2. Hyperelastic Model with Ellipsoidal Distribution of Fibers

Recently, within his master’s thesis Reinisch [45] has proposed an orthotropic fiber dis-
persion model including in-plane and out-of-plane dispersions κip and κop, respectively.
The structure tensor H is modeled via a bi-variate von Mises distribution and given by

H =
1

4π

∫ 2π

Φ=0

∫ π

Θ=0

ρ(M(Θ ,Φ))M(Θ ,Φ)⊗M(Θ ,Φ)sinΘdΘdΦ , (3.31)

where the probability density function ρ(Θ ,Φ) of finding a certain direction of fiber
orientation is obtained with a multiplicative merge of the independent in-plane and out-
of-plane PDFs via ρ = ρip(Φ)ρop(Θ). Finally, the complete structure tensor is defined
through a given fiber direction tensor Mf and a normal direction vector Mn which is
orthogonal to the direction of fibers and their dispersion plane. The structure tensor is
given by

H = 3κipκopI + (2κop(1− 3κip)) Mf ⊗Mf + (1− κop(2 + 3κip)) Mn ⊗Mn . (3.32)

Assimilated on myocardial biomechanics two dispersion parameters per fiber- family
would sum up to four dispersion parameters for fibers and sheets in total. Due to the lack
of experimental data on out-of-plane dispersion for myocardial tissue and the assumption
that healthy myocardium shows rotationally symmetric dispersion, this model is not
further reviewed within this thesis. Note, this assumption is not fulfilled when modeling
diseased tissue (see Schriefl et al. [49]).
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3.4.3. Modeling Inelasticity

In the past, various groups tried to reproduce the viscoelastic effects of tissue by using
iterative numerical solutions for modeling (see [3, 22, 24, 32]). Unfortunately, by doing
so direct parameter estimations via objective function minimization algorithms are not
applicable and, thus, data analysis fails from this point of view.

So far, we derived hyperelastic models which are based on the Green-Lagrange strain
tensor E or the right Cauchy-Green tensor C, its volume preserving pendant C̄ and their
scalar invariants Īi (i = 1, 2, 3, 4, 6, 8) only.

As the human heart muscle consists of a solid phase with different compositions of
fibers, sheets and ground substance composites as well as high portion of water (nearly
80% based on Pogàtsa et al. [43], see Sec.1.2), hysteresis in stress-strain curves can be
obtained (see Kutschera [35] and Sommer et al. [54]). Thus, we assume that hysteresis
is a composition of elastic and viscoelastic/inelastic stress terms.

Therefore, we introduce new pseudo-invariants which are time-derivatives ˙̄Ii = dĪi/dt.
Using these new invariants one can now include the rate of shear γ̇ which employs us
to model viscoelastic/inelastic behavior. In case of FS-mode shearing the deformation
gradient F is given via

F̄ =
F

Det(F)1/3
= J−1/3F =

 1 0 0
γ 1 0
0 0 1

 . (3.33)

The corresponding right Cauchy-Green tensor C̄ = J−2/3FTF is composed through

C̄ =

 1 + γ2 γ 0
γ 1 0
0 0 1

 . (3.34)

Furthermore, the material velocity field V(X, t) is given via

V(X, t) =
∂

∂t
(x(X, t)−X(t)) . (3.35)

Finally, the material velocity gradient Ḟ = dF/dt = grad(V(X, t)) can be used to create
the time-derivative of the right Cauchy-Green tensor Ċ = dC/dt which has the following
form

˙̄C =
dC̄

dt
= J−2/3

d

dt

(
FTF

)
= J−2/3

(
ḞTF + FTḞ

)
=

 2γγ̇ γ̇ 0
γ̇ 0 0
0 0 0

 . (3.36)

Now, we can also define the new time-derivative invariants ˙̄Ii (see Eqs. (3.37), (3.38),
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(3.39) and (3.40)).

˙̄I1 =
dĪ1
dt

= Tr( ˙̄C) , e.g. ˙̄I1,FS = 2γγ̇ , (3.37)

˙̄I4 =
dĪ4
dt

= f0 · ˙̄Cf0 , e.g. ˙̄I4,FS = 2γγ̇ , (3.38)

˙̄I6 =
dĪ6
dt

= s0 · ˙̄Cs0 , e.g. ˙̄I6,FS = 0 , (3.39)

˙̄I8 =
dĪ8
dt

= f0 · ˙̄Cs0 , e.g. ˙̄I8,FS = γ̇ . (3.40)

Note. Here, we introduce a condition which arises from quasistatic shearing. Equa-
tions (3.42) and (3.43) show a condition which definition is required for further inelastic-
ity modeling. As quasistatic loading means that low rates of shear are used for testing,
the acceleration γ̈ must be set to zero. Thus, we can write

γ̈ =
dγ̇

dγ

dγ

dt
= γ̇

dγ̇

dγ
!

= 0 . (3.41)

In general, γ̇ 6= 0 which leads to

lim
γ̇→0

(
dγ̇

dγ

)
= 0 , and its tensor pendant (3.42)

lim
Ḟ→0

(
∂Ḟ

∂F

)
= O . (3.43)

This enables us to model inelasticity without knowledge of actual deformation in every
element, e.g. springs or dashpots. Otherwise, we would have to use a numerical approach
with including history variables of previous deformation states and a series of evolution
equations as proposed by Holzapfel et al. [23].

In Fig. 3.6 the viscoelastic/inelastic stress response to simple shearing is shown. The blue
curves show shearing until γ = 0.1 is reached where progressive decrease can be obtained.
The next cycles at γ = 0.2-0.5 always show progressive increase of stress followed by
strong decrease after reaching the previous loading stretch. This can be obtained by
determination of the points of inflection. Apparently, the viscoelastic/inelastic stress
response is characterized through ‘restructuring’ (R) and ‘damping’ (D). It seems that
‘restructuring’ occurs when fibers and sheets are reorientated during higher shear values
than in previous loading cycles whereas ‘damping’ dominates after restructuring effects
decrease and fibers as well as sheets are more detached and softened. Another reason for
the restructuring effect could be declared with sliding sheets of fibers lying next to each
other causing angular rotation of sheets.

The restructuring effect describes fiber realignment as well as softening processes in
the myocardium after loading in one direction, e.g. FS-mode, at higher shear values
than previously in transverse directions, e.g. FN-mode. As widely dispersed fibers are
section-wise crooked in the no-load state, these fiber-sheet compounds block fluid flow
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Figure 3.6.: Viscoelastic/inelastic stress response for [FS-FN]-mode at γ = 0.1−0.5 with
marks at the points of inflection.

and thus increase stress drastically, compared to simple dashpot-damping. After a new
loading cycle in transverse direction the fibers seem to be aligned and allow simple
damping effects to be dominant until the previous shear load limit is reached (see points
of inflection in Fig. 3.6).

Using Eq. (3.36) we create a new approach in order to model the viscoelastic/inelastic
behavior via a composition of different models. As the generalized Maxwell-model cannot
be composed in a simple strain-energy function form, we use a theoretical approach
for describing the periodic viscoelastic/inelastic response. Eventually, the theoretical
framework is given via Eq. (3.44).

Note. The viscoelastic/inelastic stress response models are defined through periodic
equations only. As the experiments are carried out nearly quasi-static, we neglect tran-
sient solution terms of the proposed differential equations in the following models.

Figures 3.7(a) and 3.7(b) are sketches of obtained plots during triaxial shear testing.
These employ us to build up general differential equations for modeling inelasticity. In
Figure 3.8 the complete model is shown. The isochoric part Ψisoc is split up in an elastic
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(a) Viscoelastic/inelastic stress response scheme
showing damping and restructuring effects.

(b) Viscoelastic/inelastic damping
µ = dτvisco/dγ̇ response scheme showing damping
and restructuring effects.

Figure 3.7.: Schemes for modeling viscoelastic/inelastic stress response for quasistatic
loading.

Ψelast and an viscoelastic/inelastic Ψinel energy part. Furthermore, the elastic part is
defined via three terms merging an isotropic Ψisot, a fiber-fabric Ψff and a fiber-sheet
coupling Ψcoup energy part. Finally, the viscoelastic/inelastic part contains of a damping
and a restructuring energy term (see Eqs. (3.45), (3.46) and (3.47)).

Ψ(J, Ī1, Ī4, Ī6, Ī8,
˙̄I1,

˙̄I4,
˙̄I6,

˙̄I8) = Ψvol(J) + Ψisoc(Ī1, Ī4, Ī6, Ī8,
˙̄I1,

˙̄I4,
˙̄I6,

˙̄I8) (3.44)

In detail, the energy parts are designed via

Ψisoc = Ψelast + Ψinel , (3.45)

Ψelast = Ψ
(m)
isot +

∑
i=f,s

Ψ
(i)
ff + Ψ(fs)

coup and (3.46)

Ψinel = Ψ
(R)
inel +

∫
Ψ̇

(D)
inel dt . (3.47)

Finally, we need to define the form of the invariants and their derivatives as well as the
dissipative strain-power function Ψ̇inel and recall the Clausius-Planck [23] equation

Dint = P : Ḟ− Ψ̇ . (3.48)

When considering a complete irreversible process, we postulate that the rate of mechan-
ically reversible work Ψ̇ = 0 and the dissipation is given by

D
(D)
int = P

(D)
inel : Ḟ = Ψ̇

(D)
inel . (3.49)
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Figure 3.8.: Sketch of the approach for modeling elastic and viscoelastic/inelastic behav-
ior.
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Hence, we call this the damping strain-power function Ψ̇
(D)
inel. In general, it is not pos-

sible to determine the stress tensor from the power function and the material velocity
gradient itself. In order to solve this problem, we define the damping effects as the vis-
coelastic/inelastic first Piola-Kirchhoff stress tensor Pinel and the viscoelastic/inelastic
strain-power function Ψ̇inel by using Eq. (3.43) through

Pinel =
∂Ψ

(R)
inel(Ī1, Ī4, Ī6, Ī8,

˙̄I1,
˙̄I4,

˙̄I6,
˙̄I8)

∂F
+
∂Ψ̇

(D)
inel(

˙̄I1,
˙̄I4,

˙̄I6,
˙̄I8)

∂Ḟ

=
∑
i


∂Ψ

(R)
inel(Īi,

˙̄Ii)

∂Īi
+
∂Ψ

(R)
inel(Īi,

˙̄Ii)

∂ ˙̄Ii

∂ ˙̄Ii
∂Īi︸︷︷︸
=0

 ∂Īi
∂F

+
∂Ψ̇

(D)
inel(

˙̄Ii)

∂ ˙̄Ii

∂ ˙̄Ii

∂Ḟ


=
∑
i

(
∂Ψ

(R)
inel(Īi,

˙̄Ii)

∂Īi

∂Īi
∂F

+
∂Ψ̇

(D)
inel(

˙̄Ii)

∂ ˙̄Ii

∂ ˙̄Ii

∂Ḟ

)
. (3.50)

Equation (3.50) shows that the viscoelastic/inelastic response is decoupled into two sepa-

rate terms where Ψ
(R)
inel describes the fiber-sheet reorientation through previous stretching

cycles and Ψ̇
(D)
inel describes the damping effects which cause stress through viscoelastic

effects.

This influences the way we define the strain-power functions in order to have reasonable
results. The complete Cauchy stress tensor with Eqs. (3.36) and (3.50) has the following
form

σ =
2

J
F

(
∂Ψvol(J)

∂C
+
∂Ψelast(Īi)

∂C
+
∂Ψ

(R)
inel(Īi,

˙̄Ii)

∂C
+
∂Ψ̇

(D)
inel(

˙̄Ii)

∂Ċ

)
FT , (3.51)

where Ψvol(J) = p(J − 1) describes the incompressibility constraint with the Lagrange
multiplier p which may be interpreted as isotropic pressure.

After these definitions, we can now create new strain-energy functions Ψ
(R)
inel as well as

strain-power functions Ψ̇
(D)
inel by looking at Figs. 3.7(a) and 3.7(b).

The damping effects can be described through

τ
(D)
inel,i = µ

(D)
i γ̇i , i = m, f, s, fs,

Ψ̇
(D)
inel =

∑
i=m,f,s,fs

τ
(D)
inel,iγ̇i

=
∑

i=m,f,s,fs

µ
(D)
i γ̇i

2 , (3.52)

with following abbreviations: ‘m’ for matrix, ‘f’ for fiber, ‘s’ for sheet, and ‘fs’ for fiber-
sheet coupling. Here, every direction of rate of shear γ̇i is linked to a certain stress term
τ
(D)
inel,i. In case of FS-mode loading the ‘m’, ‘f’ and ‘fs’ components are active.
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The proposed power function has to fulfill the second law of thermodynamics which is
proved via

∆ = τ
(D)
inel γ̇ = µ(D)︸︷︷︸

≥0

γ̇2︸︷︷︸
≥0

≥ 0 . (3.53)

Figure 3.12(a) proves that the dissipation for different amounts of peak shear and direc-
tion of applied loads is always positive (using values from Table 4.8).

Therefore, the damping power function Ψ̇
(D)
inel is defined as

Ψ̇
(D)
inel =

1

4

(
µ
(D)
m

2

˙̄I1
2

Ī1 − 3
+
µ
(D)
f

2

˙̄I4
2

Ī1 − 3
+
µ
(D)
s

2

˙̄I6
2

Ī1 − 3
+
µ
(D)
fs

2
˙̄I8
2

)
, (3.54)

where µ
(D)
i (i = m, f, s, fs) are shear viscosity damping constants with unit [µ

(D)
i ] = Pa s.

Note. The definition of invariants ˙̄Ii requires normalization of time-invariants one,
four and six by the isotropic deformation (Ī1 − 3). As the damping effects are described
through rate of shear only, the normalization in FS-mode is given via

˙̄I
2

1,FS

Ī1,FS − 3
=

4γ2FS γ̇
2
FS

3 + γ2FS − 3
= 4γ̇2FS . (3.55)

Thus, the viscoelastic/inelastic shear response for FS-mode loading is given via

τ
(D)
inel,FS = γ̇FS

(
µ(D)
m + µ

(D)
f + µ

(D)
fs

)
. (3.56)

In Equation (3.56) the viscosity constants are additive and, therefore, simultaneous
fitting by using objective function minimization algorithms are obligatory.

The restructuring effects can be derived when looking at Fig. 3.7(b) and the viscoelas-
tic/inelastic stress curves. In order to isolate the restructuring effect from the damping

effect, we use the following approach to eliminate the damping shear stress τ
(D)
inel from

the total viscous shear stress τinel. This is achieved through using the previously defined
simple Eq. (3.52) for simple damping via τ

(D)
inel = µ

(D)
p γ̇ with µ

(D)
p being a permanent

shear viscosity constant now. As the restructuring effect disappears at zero shear, we
obtain

τinel = τ
(D)
inel + τ

(R)
inel , (3.57)

τ
(D)
inel = µ(D)

p γ̇ , (3.58)

µ(D)
p =

τinel
γ̇

∣∣∣∣
γ=0

. (3.59)

This gives us the restructuring shear stress for any given data via

τ
(R)
inel = τinel −

τinel
γ̇

∣∣∣∣
γ=0

γ̇ . (3.60)
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The resulting decoupling of restructuring and damping stress is shown in Fig. 3.10. If we
compare the restructuring viscosity with the viscoelastic damping curve in Fig. 3.9(b),
we can find that the initial damping effect for low rates of shear is eliminated from
the restructuring viscosity graph in Fig. 3.10. Hence, we assume that the viscosity is a
function of the shear rate itself, and thus we introduce Eq. (3.61) in order to show that

the restructuring is characterized through the permanent shear viscosity constant µ
(R)
p

and an internal restructuring viscosity parameter µ
(R)
r .

dτ
(R)
inel

′

dγ̇
= µ(R)

p + µ(R)
r γ̇ and its solution (3.61)

τ
(R) ′

inel = µ(R)
p γ̇ + µ(R)

r

γ̇2

2
. (3.62)

As the damping effects are already described well through Eq. (3.52), we reduce

Eq. (3.62) by the permanent viscosity constant µ
(R)
p which simplifies Eq. (3.62) to

τ
(R)
inel

′ = µ(R)
r

γ̇2

2
. (3.63)

In addition, we know from observing Figs. 3.9(a) and 3.10 that the inelasticity mod-

ule due to restructuring dτ
(R)
inel/dγ is nearly linear dependent of amount of shear γ and

shows strong gradients towards the peaks of shear γ̂ which is shown in the upper diagram
in Fig. 3.9(a). Further investigation of Fig. 3.10 gives information about the pure re-
structuring stiffness behavior of the myocardium. Apparently, restructuring effects show
directional dependencies and increasing stiffness for higher amount of shear. Therefore,
we introduce a polynomial approach with odd powers in order to preserve symmetry.

This leads to an initial simple cubic spring model which always works against direction
of applied shear via

dτ
(R)
inel

′′

dγ
= c(R)

r γ3 and its solution (3.64)

τ
(R)
inel

′′ = c(R)
r

γ4

4
. (3.65)

As the restructuring effect is modeled as a pseudo Maxwell material (see Fig. 3.8) the

stress balance criterion τ
(R)
inel = τ

(dashpot)
inel

′(γd) = τ
(spring)
inel

′′(γs) has to be fulfilled. As we
do not know the actual values of shear for the dashpot γd and spring γs for every

moment, we postulate the geometric mean of stresses τ
(R)
inel =

√
τ
(R)
inel

′τ
(R)
inel

′′ in order to
obtain the combined strain-energy function. Hence, we model the ‘restructuring’ as a
pseudo-Maxwell material for which dashpot and spring have same amount of shear and
rate of shear in the periodic solution range (γdashpot = γspring and γ̇dashpot = γ̇spring). As
dγ̇/dγ = 0, we assume that the rate of shear is assumed to be constant γ̇ = const. Using

this trick we can derive the restructuring strain-energy Ψ
(R)
inel simply via integration.

Paradoxically, the derived strain-energy function is only useful for deriving the shear
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Figure 3.9.: Viscoelastic shear stress τvisco and slope dτvisco/dγ for [NF]-mode at γ = 0.5.

stresses τ
(R)
inel but not for determination of the true strain-energy. In fact, we cannot

derive the true strain-energy function for the pseudo Maxwell-material but a theoretical
approach for calculation of stresses. We simply build a single equation in order to design
a theoretical approach for defining Ψ

(R)
inel in terms of the momentary amount of shear γ

and the previous loading peak Γ as

Ψ
(R)
inel =

∫ γ

Γ

√
τ
(R)
inel

′τ
(R)
inel

′′ dγ̃

=

∫ γ

Γ

√
1

8
µ
(R)
r c

(R)
r γ̃4(γ̇)2 dγ̃ , with µ

(R)
i =

√
1

8
c
(R)
r µ

(R)
r

=

∫ γ

Γ

(
µ
(R)
i γ̃2γ̇

)
dγ̃

=
1

3
µ
(R)
i

(
γ̃3γ̇
∣∣γ
Γ
−
∫ γ

Γ

(
γ̃3

dγ̇

dγ̃︸︷︷︸
=0

)
dγ̃

)
(see Eq. (3.42))

=
1

3
µ
(R)
i

(
γ3 − Γ 3

)
γ̇

=
1

3
µ
(R)
i γ3γ̇ −Ψ

(R)
inel(Γ ) . (3.66)

Apparently, the restructuring effect is history dependent. The underlying mechanism of
restructuring is shown in Fig. 3.11. Restructuring is an history dependent effect based
on the current and referential configuration of momentary and preceding loading cycles,
respectively. Thus, the restructuring follows a continuous changing configuration via
Ω0 → Ω′ → Ω′′ → Ω′0.

Equation (3.66) enables us to build a general approach for model the restructuring effect
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visco and slope dτvisco/dγ for [NF]-

mode at γ = 0.5.
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Figure 3.11.: Scheme of ‘restructuring’ during different loading patterns.

with introducing the rate dependent stiffness E
(R)
i which defines the total restructuring

stress via

τ
(R)
inel =

∂Ψ
(R)
inel

∂γ
= µ

(R)
i γ2γ̇

=
(
µ
(R)
i γ̇

)
︸ ︷︷ ︸
E

(R)
i =f(γ̇)

γ2 = E
(R)
i (γ̇) γ2 . (3.67)

Summed up, we designed a quadratic spring with a rate dependent stiffness E
(R)
i . Fur-

thermore, the theoretical approach for the viscoelastic/inelastic restructuring strain en-

ergy Ψ
(R)
inel cannot become negative neither for loading nor for unloading cycles. For the

first loading cycle Ψ
(R)
inel is positive due to γγ̇ > 0 with Γ = 0 and for the first unloading

cycle (γγ̇ < 0 and γ < Γ ) the restructuring strain-energy Ψ
(R)
inel = 1

3
µ
(R)
i (γ3 − Γ 3) γ̇ is

also positive because (γ3 − Γ 3)γ̇ ≥ 0. In fact, we neglect that the rate of shear also
influences the integration term. Fortunately, through integration and derivation by dγ
we do not loose any information. In order to prove that the restructuring strain-energy
is always positive we use the second law of thermodynamics. The dissipation for the
pseudo Maxwell-material is given via

∆ = τ
(R)
inelγ̇

= µ
(R)
i︸︷︷︸
≥0

γ2︸︷︷︸
≥0

γ̇2︸︷︷︸
≥0

≥ 0 . (3.68)

Consequently, the total restructuring energy for sinusoidal application of shear is shown
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Figure 3.12.: Prove for fulfilled second law of thermodynamics saying ∆ ≥ 0.

in Fig. 3.12(b) (parameters taken from Table 4.8) and can be calculated via

Ψ
(R)
inel,true(t) =

∫ (
µ(R)γ2γ̇2

)
dt . (3.69)

This means that during loading cycles the tissue is restructured and needs energy to do
so but for unloading cycles the restructured tissue has a new referential configuration
which is considered with Ψ

(R)
inel(Γ ). This may results from sliding sheets next to each other

reducing the necessary amount of energy for unloading. The total amount of energy in
fact can also never be negative as the restructuring effect adds up to the total strain
energy Ψisoc = Ψelast + Ψ

(R)
inel + Ψ

(D)
inel.

Consequently, the viscoelastic/inelastic strain-energy function Ψ
(R)
inel is a polynomial func-

tion of γ and γ̇. A general form can be written as

Ψ
(R)
inel =

1

N

∑
i=m,f,s,fs

µ
(R)
i

{
(Īi − ai)ni

d

dt

[
(Īi − ai)ni

]}
=

1

N

∑
i=m,f,s,fs

µ
(R)
i

[
ni(Īi − ai)(2ni−1) ˙̄Ii

]
. (3.70)

A specific form of the restructuring model with Im = I1, If = I4, Is = I6, Ifs = I8 as
well as ai = (3, 1, 1, 0), ni = (1, 2, 2, 2) and N = 4 is given through

Ψ
(R)
inel =

1

4

(
µ(R)
m (Ī1 − 3) ˙̄I1 + 2µ

(R)
f (Ī4 − 1)3 ˙̄I4 + 2µ(R)

s (Ī6 − 1)3 ˙̄I6 + 2µ
(R)
fs (Ī8)

3 ˙̄I8

)
.

(3.71)
Using this strain-energy function we can derive the shear stress for FS-mode with

τ
(R)
inel,FS =

1

2
γ2FS γ̇FS

(
2µ(R)

m + 12γ4FSµ
(R)
f + 3µ

(R)
fs

)
. (3.72)
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Summed up, we can combine both restructuring and simple-damping models from
Eq. (3.54) to which we will refer to as ‘ResDamp-MaFiSh’ (Restructuring-Damping
including matrix-fiber-sheet coupling) in the following sections, with following charac-
teristics:

� restructuring

– fiber orientation influences damping effects

– sliding of fibers and sheets next to each other cause reconfiguration

– → damping effects are distorted and lowered during ‘restructuring’

� damping

– fibers are oriented

– caused by the sliding of sheets next to each other

– → linear ‘damping’ approach

3.4.4. General Model for Viscoelasticity/Inelasticity

In Sec. 3.4.3 we have obtained a special approach for modeling the viscoelstic/inelastic

effects of myocardial tissue. Based on Eq. (3.54) the damping power function Ψ̇
(D)
inel can

be generalized by using exponential functions rather than polynomials. Therefore, we

introduce the time-pseudo invariant ˙̄I
∗
1 including its normalization by

˙̄I
∗
i =

1

2

˙̄Ii√
Ī1 − 3

. (3.73)

A proposal for the damping effects is given by an exponential strain-power function
model using a viscous nonlinearity parameter b

(D)
i defined by

Ψ̇
(D)
inel =

µ
(D)
m

2b
(D)
m

[
exp

(
b(D)
m

˙̄I
∗
1

2
)
− 1

]
+

µ
(D)
f

2b
(D)
f

[
exp

(
b
(D)
f

˙̄I
∗
4

2
)
− 1

]
+

µ
(D)
s

2b
(D)
s

[
exp

(
b(D)
s

˙̄I
∗
6

2
)
− 1

]
+

µ
(D)
fs

2b
(D)
fs

[
exp

(
b
(D)
fs

˙̄I8
2)
− 1
]
. (3.74)

Note. Applying derivatives ∂Ψ̇
(D)
inel/∂Ċ and setting b

(D)
i = 0 will result to the same

stresses as proposed via the ‘Simple-Damping’ model given via Eq. (3.54).
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Furthermore, a general model representing the restructuring terms can be created via

Ψ
(R)
inel =

µ
(R)
m

4b
(R)
m

˙̄I1
{

exp
[
b(R)
m (I1 − 3)

]
− 1
}

+
µ
(R)
f

4b
(R)
f

˙̄I4

{
exp

[
b
(R)
f (I4 − 1)2

]
− 1
}

+
µ
(R)
s

4b
(R)
s

˙̄I6
{

exp
[
b(R)
s (I6 − 1)2

]
− 1
}

+
µ
(R)
fs

4b
(R)
fs

˙̄I8

{
exp

[
b
(R)
fs I8

2
]
− 1
}
. (3.75)

Both Eqs. (3.74) and (3.75) are based on the same mechanics as their simple versions
proposed in Sec. 3.4.3. Unfortunately, neither of those two models can describe the
viscoelastic/inelastic behavior isolated but only both of them united can describe the
viscoelastic/inelastic biomechanics of myocardium. The major problem is that the com-
bined model has 16 parameters in total. Therefore, it will be nearly impossible to find a
unique parameter set marking the global minimum by using an objective function mini-
mization algorithm. Consequently, we keep focus on the simple versions of the ‘damping’
and ‘restructuring’ effects as proposed in Sec. 3.4.3.

3.5. Modeling of Tissue-Softening

Emery et al. [11] has suggested that displacement of adjacent muscle layers as well as
disruption of perimysial collagen fibers could be possible causes for softening. In order
to evaluate the relative softening ζ(R) we introduce the following algorithm.

Determination of relative softening

1. Fit mean of preconditioned experimental data for every loading cycle i = 1, 2, .. 5
with reference to loading cycles γ̂ = 0.1, 0.2, .., 0.5.

2. Create simulation stress data τi with fitted parameters from all loading cycles i
but stop at γ̂ = 0.1.

3. Calculate temporary softening zi+1(γ) = (1 − τi+1(γ)/τi(γ)) for γ = 0 − 0.1 and
every loading mode FS, FN, SF, SN, NF and NS.

4. Compute softening ζ
(R)
i+1 = z̄i+1(γ) for every loading mode FS, FN, SF, SN, NF and

NS.

The relative softening shows how softening propagates referred to the first main loading
cycle. Nevertheless, the first main loading cycle has precursive preconditioning cycles
and, thus, the first main loading cycle is already affected by reorientation and softening.
Consequently, we need to determine the initial state of tissue.
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The absolute softening ζ(A) can be obtained by comparing the mean elastic stresses for
all cycles γ̂ = 0.1, 0.2, .., 0.5 in the range of |γ| ≤ 0.1. Therefore, the mean of elastic
stresses is fitted with the ‘ALIGNED’ and ‘KAPPA’ models which build the basis for
determination of the absolute softening. The absolute softening is modeled via an expo-
nential function representing the reduction of an unsoftened strain- energy function Ψ0

via including a history parameter Γ [23]. For simplification we apply a multiplicative

term reading Ψ = [1− ζ(A)(Γ )]Ψ0. The absolute isotropic softening ζ
(A)
iso is modeled as a

simple exponential function with softening parameter s per loading cycle step through

ζ
(A)
iso (Γ ) = 1− e−sΓ . (3.76)

Note. The given softening function describes the isotropic softening for the current
loading peak γ̂ with preceding preconditioning at same loading peaks. Consequently, the
history variable Γ is equal to the current loading peak γ̂ for this special loading pattern.

The Cauchy stress tensor including softening effects is given by

σΓ = 2J−1F
Ψ(C,Γ )

C
FT

= 2J−1F
Ψ0(C)

C
FT︸ ︷︷ ︸

=σ0

[
1− ζ(A)iso (Γ )

]
= σ0e

−sΓ . (3.77)

Finally, we obtain the absolute softening as special form of relative softening of tissue
regarding an unstressed tissue as reference with

σΓσ
−1
0 = I

[
1− ζ(A)iso (Γ )

]
. (3.78)

Assuming, we know the unsoftened Cauchy stress tensor σ0 and the current Cauchy
stress tensor σΓ one can derive the isotropic softening function via

ζ
(A)
iso (Γ ) = 1− 1

3

(
σΓσ

−1
0 : I

)
= 1− 1

3
tr(σΓσ

−1
0 ) . (3.79)

Hence, we modify Eq. (3.79) to describe the relative softening using σ1 via

ζ
(R)
iso (Γ ) = 1− 1

3

(
σΓσ

−1
1 : I

)
= 1− 1

3
tr(σΓσ

−1
1 ) . (3.80)

Following Eqs. (3.79) and (3.80) modeling of softening requires several tests at different
loads in order to design softening functions. Within the scope of this thesis, we focus on
modeling softening via Eq. (3.77).

As this approach on determination of softening fails when σ is unknown or only elements
are known, we simplify the testing scenario and assume identical softening for every
loading mode FS, FN, SF, SN, NF and NS at same Γ . Hence, we find the following
algorithm for modeling softening via
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Determination of absolute softening

1. Fit mean of elastic experimental data for every loading cycle i = 1, 2, .. 5 with
reference to loading cycles γ̂ = 0.1, 0.2, .., 0.5 with model ‘KAPPA’.

2. Create simulation stress data τ li with fitted parameters from all loading cycles i
but stop at γ̂ = 0.1 for all loading modes l =FS, FN, SF, SN, NF and NS.

3. Calculate mean via τ l(Γ ) = Meani(τ
l
i (γ)) for γ = 0 − 0.1 at history shear Γ and

every loading mode l = FS, FN, SF, SN, NF and NS.

4. Calculate mean of all loading modes τ̄(Γ ) = Meanl(τ
l(Γ ))

5. Apply nonlinear fit (using NLINFIT() in Matlab® ) on τ̄(Γ ) with function τ̄(Γ ) =
τ̄(0)exp(−sΓ ) and determine unsoftened stress τ̄(Γ = 0) and softening parameter
s.

6. Normalize and find softening function ζ(A)(Γ ) = 1− τ̄(Γ )/τ̄(0).

If wished, step 4 can be omitted and thus we can determine the softening for all loading
modes l.
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4. Results

4.1. Data Analysis

All in all, 32 different hearts have been investigated undergoing 37 tests with BDM
myosin ATPase inactivation conditions and 10 tests without inactivation. In total,
NTOT = NBDM + NBDM,bad + NNOBDM = 426 + 69 + 134 = 629 files of triaxial shear
data have been analyzed. A test is defined through the identifier of the heart (HH## ...
human heart plus id), location of extracted specimen (ventricle type: RV/LV, radial loca-
tion: endocardial/myocardial/epicardial and longitudinal direction: base/equator/apex),
type of loading (FN, FS, SF, SN, NF or NS) and peak of shear (γ̂ = 10%− 50%).

In general, two different testing results can be obtained. Some initial test have been
carried without the usage of BDM-inactivation which leads to activated myocardial
stiffening. In Figure 4.1 the influence of inactivation is shown where Figs. 4.1(a) and
4.1(b) correspond to the active and passive mechanical stress response to simple shear,
respectively. No usage of BDM leads to massive increase in stiffness and hysteresis which
is unfavorable for passive myocardial testing aims as all proposed models neglect the
electromechanical activation in the tissue. In addition, in Figs. 4.2 and 4.3 the influence
of BDM-usage on viscous strain-energy is shown for BDM-inactivated and no usage of
BDM, respectively. The suggested trend lines in the diagrams show that due to BDM-
inactivation no direct coupling between viscous strain-energy and rate of shear is present.
In contrast, no BDM-usage shows a connection of decreasing viscous strain-energy with
higher rates of shear. In summary, hysteresis is unaffected by rate of shear for BDM-
inactivated myocardial tissue but this seems not to be the case for non-inactivated
myocardial tissue. A reason for this may be the fact that activated actin-myosin networks
react to faster movement with contraction causing the whole myocardium to behave more
elastic and less viscous. Therefore, we concentrate on the BDM-inactivated hearts for
testing and modeling.

In Fig. 4.4 for all BDM-inactivated hearts the performed test scenarios are shown. Most
tests have been carried out with same peak rates ˙̂γ of shear within same hearts but differ
between hearts. Fortunately, modeling is based on actual values of amount of shear and
momentary rate of shear whereas design of complete simulation cycles are based on the
average rate of shear over all hearts in order to construct a complete simulation cycle
(see Sec. 3.4.3).

In Table 4.1 the number of tests per BDM-treated heart are shown. Normally, for every
heart six tests should be carried out containing all six loading modes. For hearts HH11,
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Figure 4.1.: Comparison between without and with BDM-inactivation.
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Table 4.1.: Number of performed tests for every human heart identifier (HH##).
Anzahl von Tissue S ‐ Peak Strain
Peak Strain γ 0.1 0.2 0.3 0.4 0.5 Total

HH10 6 6 6 6 6 30
HH11 4 2 2 2 10
HH13 10 10 10 10 8 48
HH14 7 8 8 8 7 38
HH17 10 12 12 12 2 48
HH18 6 6 6 6 4 28
HH19 6 6 6 6 6 30
HH20 6 6 6 6 6 30
HH22 6 6 6 6 6 30
HH23 6 6 6 6 6 30
HH24 6 6 6 6 6 30
HH27 12 12 12 12 6 54
HH28 18 24 24 24 16 106
HH29 24 24 24 24 18 114
HH30 6 6 6 6 4 28
HH33 12 12 12 12 12 60
HH36 4 4 4 4 4 20
HH37 6 6 6 6 4 28
HH39 6 6 6 6 6 30
HH40 6 6 6 6 6 30
HH9 6 6 6 6 6 30
Total 173 180 180 178 141 852

HH17, HH18, HH30, HH36 and HH37 this could not be realized because of problems
during testing, e.g. collision with objects, rupture, program errors or problems with
machine calibration.

Unfortunately, only eleven hearts are appropriate for modeling itself due to a various
number of failures during testing. In some cases, the [NF-NS] stresses are showing higher
stress values than in the [FN-FS]-directions which is impossible from a mathematical and
biomechanical based point of view. All proposed models shall fulfill the condition

σFS > σFN > σSF > σSN > σNF = σNS , (4.1)

as proposed by Dokos et al. [9] (see Fig. 4.15). Therefore, the remaining appropri-
ate hearts for modeling are HH10, HH29 SEP 1, HH36 and HH39 as well as HH11
(SF/SN-switch), HH14 (SF/SN-switch), HH24 (SF/SN-switch), HH28 SEP 1 (FS/FN-
switch), HH29 LV 2 (SF/SN-switch), HH30 (FS/FN-switch) and HH33 LV (FS/FN-
switch) where sometimes switching X/Y-modes is necessary to fulfill Eq. 4.1.
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Figure 4.5.: Shear stress curves and loading pattern for HH10 at γ = 0.3

After reading and preparing all data files, data fitting can be used for the elastic and vis-
cous stress parts. In Figures 4.5, 4.6, 4.7 and 4.8 exemplary plots for HH10 are shown.
Viscoelastic slopes as well as elastic stiffness plots emphasize that myocardial tissue
shows strong non-linearities. A procedure called preconditioning helps to limit the pos-
sible bias through microstructural disorder of tissue components. The difference of pre-
conditioned versus unpreconditioned tissue is shown in Fig. 4.9 where preconditioned
tissue is initially less stiffer and shows higher nonlinearity. Note, main loading cycle
curves do not start from origin as the corresponding rate of shear is non-zero. Inter-
estingly, stresses vary for positive (γ > 0) and negative (γ < 0) loading directions and
are usually not symmetrically distributed, e.g. see Fig. 4.1(b). This phenomenon may
result from imperfections in cube geometry causing a parallelepiped-like geometry. Thus,
when load is applied the tissue could be compressed initially until the amount of shear
is high enough to flip the geometry of the imperfect cube. At that moment, fibers are
initially unstretched which may be the cause for unsymmetric stress curves. In order to
correct this directional dependency the mean for positive and negative stress curves is
computed. Attempts with using the stiffer curves resulted in selective data collection
and is not applicable for data modeling and fitting as perfect cube geometries without
prestretch or residual stresses are assumed.

Eventually, the difference between viscous and elastic stress terms can be found via
observation of strain-energy curves. In Figs. 4.8(a) and 4.8(b) the strain-energy trend
for ∆γ > 0 is shown for viscous and elastic stresses, respectively. Remarkably, the viscous
energy gradient ∆Ψvisco is always positive for both unloading (red) and loading cycles
(green) which means that energy is always consumed and never stored. This emphasizes
the pure dissipative character of viscous stresses within the myocardium. In contrast,
the elastic energy gradient ∆Ψelast is negative for unloading cycles as the tissue releases
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Figure 4.7.: Viscous and elastic effects for HH10 in FN-mode at γ = 0.3.
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Figure 4.8.: Amount of strain-energy for HH10 in FN-mode at γ = 0.3.

stored energy from a previous loading cycle and vice versa.

Note. In Fig. 4.8(a) the strain-energy becomes negative for negative amounts of shear.
The reason for that comes per definition of the initial state reading Ψ(γ = 0) = 0. In
fact, energy as well as dissipation are always positive.

Finally, we deduce that the mean elastic stresses for all observed hearts increase with
higher amounts of shear (see Fig. 4.10). Differences arising from varying loading modes
are obvious although the trends of stress increase resemble. When investigating the mean
viscous stresses versus amount of shear these trends are only slightly to not present (see
Fig. 4.11).

The resulting curves after data preparation and creating the mean of all eleven heart
datasets we use the following hysteresis data for fitting (see Figs. 4.12(a), 4.12(b) and
4.12(c)). Decoupling of elastic and viscous stresses are shown in Figs. 4.13(a), 4.13(b),
4.13(c), 4.13(d), 4.13(e) and 4.13(f). As proposed by Dokos et al. [9] FS > FN , SF >
SN and NF ≈ NS.

4.2. Parameter Fits for Existing Models

4.2.1. Hyperelastic Exponential Model Proposed by Costa

In Table 4.2 the parameter fits for the model proposed by Costa et al. [3] is listed.
As the model is a single exponential function it lacks stiffness parameters for different
compounds like ground substance, fibers, sheets or coupling effects. Thus, anisotropic
effects are mainly described via various nonlinearity parameters b (see Fig. 4.14(a)).
During the first loading cycle with γ̂ = 0.1 Costa’s model proposes very high tissue
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Figure 4.11.: Comparison of viscous shear stresses summarized for all hearts at different
‘amount of shear’.

stiffness and low nonlinearities which changes for higher shear ranges to the opposite.
As the drop from the first loading cycle the upcoming cycles is very high, the model
seems to overestimate stiffness for low shear regions.

4.2.2. Hyperelastic Exponential Model Proposed by Schmid

In contrast to the Costa’s model Schmid et al. [48] proposed a decoupled exponential
function including stiffness parameters for different loading directions. As a matter of
fact, Schmid’s model also overestimates the stiffness parameters for the first loading
cycle and shows nearly no nonlinearity (see Table 4.2). For the upcoming loading cy-
cles Schmid’s model shows little improvements over Costa’s model (compare R2 and
see Fig. 4.14(b)). Nevertheless, the number of parameters makes data fitting difficult.
In addition, the model does not directly assign parameters to tissue components but
directions of applied load.

4.2.3. Hyperelastic Exponential Model with Perfect Fiber
Alignment ‘ALIGNED’ by Holzapfel

The perfectly aligned fiber model is modeled as suggested by Holzapfel et al. [25]. In
order to verify the given model, we try to reproduce the data fit parameters of the data
from Dokos et al. [9]. In Table 4.3 we compare the fit results proposed by Holzapfel with
the conducted fit as part of this thesis. Obviously, all parameters are similar except the
matrix stiffness constant a. Investigations of the initial total stiffness cit = dτ/dγ at zero
strain γ = 0 shows that the stiffness term itself lies in the range of thousands of Pascals.
Therefore, we conclude that the parameter a is properly fitted and the model is appro-
priate for further investigations and expansions. In fact, the initial total stiffness cit also
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(a) Mean hysteresis curve for FS/FN-mode.
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Figure 4.12.: Mean hysteresis curves used for fitting.
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(b) Viscous FN/FS-stress.
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Figure 4.13.: Elastic and viscous stress for mean of data.
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(a) Mean data fit for model ‘COSTA’ for γ̂ = 0.3.
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(b) Mean data fit for model ‘SCHMID’ for γ̂ = 0.3.

Figure 4.14.: Data fit curves for orthotropic models of Costa et al. [3] and Schmid et
al. [48].

Table 4.2.: Parameter fit for model ‘COSTA’ and ‘SCHMID’.

Unit SCHMID COSTA
γ̂ [1] 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
R2 [%] 96.95 98.27 99.03 99.53 99.72 97.09 98.51 99.08 99.61 99.90
a [kPa] 321.9 1.446 0.696 0.565 0.550 - - - - -
aff [kPa] - - - - - 563.2 1.720 0.498 0.384 0.382
bff [1] 6.410 302.3 188.8 100.9 57.42 3.621 262.8 277.3 145.6 77.37
afs [kPa] - - - - - 379.1 0.548 0.367 0.196 0.137
bfs [1] 0.029 3.630 4.641 3.682 2.451 0.051 19.46 18.43 21.97 20.21
afn [kPa] - - - - - 303.9 211.8 102.3 0.264 0.171
bfn [1] 0.019 2.055 2.778 2.445 1.666 0.040 0.032 0.046 12.47 13.12
ass [kPa] - - - - - 0.026 0.056 0.099 0.114 0.081
bss [1] 1.759 122.2 101.6 68.79 38.20 15190 1794 461.1 196.2 106.2
asn [kPa] - - - - - 0.144 0.345 0.514 0.229 0.179
bsn [1] 0.020 2.255 2.883 2.412 1.509 78.96 19.57 8.730 14.11 12.84
ann [kPa] - - - - - 0 0.003 0.033 0.035 0.031
bnn [1] 0 55.29 64.76 44.18 27.05 0 0 626.9 246.1 121.1
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Figure 4.15.: Elastic parameter fit for model ‘ALIGNED’ of data from Dokos et al.[9]

shows a very interesting effect called ‘strain-softening’ which is discussed in Sec. 4.4. The
fit for our mean data is listed in Table 4.4. The obtained parameters show an interesting
trend when compared for rising γ̂. All stiffness parameters decrease rapidly especially
fiber and sheet stiffnesses due to ‘strain-softening’. Initially, nonlinearity increases until
reaching γ = 0.3 but diminishes as soon as the coupling nonlinearity occurs.

Note. If the nonlinearity parameter is zero, tissue will behave mostly linear. In fact,
at small amounts of shear experiments prove that the tissue shows small nonlinearities
which increase with increasing shear.

4.2.4. Hyperelastic Exponential Model Considering Rotationally
Symmetric Dispersion ‘KAPPA’

Eriksson [13] shows possible values for dispersion of fibers and sheets by investigating
data from Karlon et al. [34] and Kovel [6] via using the von Mises point density function
(PDF) and a structure tensor approach. Eriksson states, that the dispersion of healthy

and diseased fibers is κ
(H)
f = 0.00765 and κ

(D)
f = 0.08856, respectively. The sheet dis-
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Table 4.3.: Verification data fit for model ‘ALIGNED’ with data from Dokos et al. [9]
and model fit from Holzapfel et al. [25] (called ‘VERIFIC’).

Model R2 a b af bf as bs afs bfs
- [%] [kPa] [1] [kPa] [1] [kPa] [1] [kPa] [1]

ALIGNED 99.71 0.564 7.452 17.16 16.74 1.620 15.31 0.393 11.73
VERIFIC - 0.059 8.023 18.47 16.02 2.481 11.12 0.216 11.44

Table 4.4.: Mean elastic stress-shear data fit for model ‘ALIGNED’.

Shear R2 a b af bf as bs afs bfs
γ̂ [%] [kPa] [1] [kPa] [1] [kPa] [1] [kPa] [1]

0.1 96.96 6.178 0 506.4 0 102.8 4969 3.362 0
0.2 98.24 3.106 12.53 101.7 22.90 16.65 477.4 2.123 5.669
0.3 98.94 2.002 10.72 25.94 66.37 3.595 170.2 1.294 7.470
0.4 99.52 1.411 8.453 10.42 36.74 2.179 63.82 0.683 7.825
0.5 99.82 0.945 6.733 5.712 19.59 0.622 36.85 0.382 7.226

0,1 0,2 0,3 0,4 0,5
FN 7737,513948 4586,191667 3060,931804 2164,606427 1459,445219
FS 9313,005195 5421,748229 3553,540794 2613,04687 1708,896824
NF 7195,51839 4406,778115 2760,7236 1902,036361 1208,902443
NS 7820,901412 4323,11553 2788,87877 1917,09056 1099,186801
SF 7911,198235 4526,071444 2918,433035 2013,555433 1430,500974
SN 7078,889869 4407,395248 2847,179522 2083,804256 1520,662232

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

In
iti
al
 S
tif
fn
es
s 
‐d
τ/
dγ

 (γ
=0

)‐
[P
a]

Amount of Shear ‐ γ ‐ [1]

Stiffness at Zero Strain

FN

FS

NF

NS

SF

SN

Loading Type

Figure 4.16.: Initial total stiffness dτ/dγ of complete myocardium at zero strain γ = 0.
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(a) Healthy fiber dispersion (taken from Eriksson
et al. [13]).

(b) Diseased fiber dispersion (taken from Eriksson
et al. [13]).

(c) Healthy sheet dispersion (taken from Eriksson
et al. [13]).

Figure 4.17.: Fiber dispersion fit of von Mises PDF used by Eriksson [13] applied on
data from [6, 34].

persion is stated to reach κs = 0.02492. Apparently, diseased myocardium shows higher
fiber dispersion (more than ten times higher) [13]. In Figs. 4.17(a), 4.17(b) and 4.17(c)
Eriksson shows how the von Mises PDF is used to determine the dispersion. Notably,
diseased fiber distribution seems to have multiple means of fiber directions.

The obtained parameter fit is given in Table 4.5 for dispersions κf = 0.00765 and
κs = 0.02492 as well as with recently determined dispersion values of human non-
diseased myocardium at the institute being κf = 0.08 and κs = 0.09. As mentioned in
Sec. 4.2.3, softening is obvious with increasing shear. Interestingly, dispersion reduces
stiffness of matrix compound but increases stiffnesses of fibers and sheets. This means,
that diseased myocardial tissue should show higher dispersion linked with higher fiber
and sheet stiffness making the myocardium less vital and elastic. Another interesting
fact is that stiffnesses decrease steadily but nonlinearities increase until γ̂ = 0.3 and
decrease afterwards. Apparently, the tissue initially increases nonlinearity to compensate
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Table 4.5.: Mean elastic stress-shear data fit for model ‘KAPPA’.

Shear R2 a b af bf as bs afs bfs
γ̂ [%] [kPa] [1] [kPa] [1] [kPa] [1] [kPa] [1]

κf = 0.00765 & κs = 0.02492
10% 96.96 6.177 0 522.2 0 113.8 5502 3.362 0
20% 98.24 3.106 12.52 104.9 23.65 18.45 528.8 2.123 5.669
30% 98.94 2.002 10.72 26.75 68.45 3.983 188.5 1.294 7.469
40% 99.52 1.411 8.452 10.75 37.89 2.414 70.69 0.683 7.825
50% 99.82 0.945 6.733 5.891 20.21 0.689 40.82 0.382 7.226

κf = 0.08 & κs = 0.09
10% 96.95 6.123 0 720.4 0 152.8 7158 3.377 0
20% 98.24 3.103 12.06 145.1 35.47 24.80 717.8 2.124 5.647
30% 98.93 1.997 10.63 36.99 94.10 5.331 254.8 1.296 7.444
40% 99.52 1.406 8.424 14.84 52.02 3.237 95.25 0.685 7.798
50% 99.82 0.941 6.725 8.138 27.72 0.920 55.02 0.383 7.206

the softening effect but at some point the tissue starts to fail. Maybe, decreasing stiffness
and nonlinearity marks the beginning of irreversible tissue damage. In Fig. 4.18 the
relative parameter change to its maximum per peak amount of shear cycle is drawn. Fiber
and sheets stiffness seem to be affected by softening in the same manner whereas coupling
and matrix softening reduces slower. Nonlinearity increases for matrix, fibers and sheets
nearly identically although coupling effects show shifted increase. Paradoxically, the
coupling nonlinearity seems to occur when all other parameters decrease.

In Table 4.6 modeling results of ‘ALIGNED’ and ‘KAPPA’ fits are compared via

r
(a)
i = 1− a

(ALIGNED)
i

a
(KAPPA)
i

, (4.2)

r
(b)
i = 1− b

(ALIGNED)
i

b
(KAPPA)
i

. (4.3)

Relative stiffness parameters seem to show approximately equal changes and equal
changes are seen for nonlinearity. In average, fiber stiffness increases by approximately
∼3% and sheet stiffness increases by ∼9% for the given dispersion from Eriksson et
al. [13]. This is not surprising as sheet dispersion given is about three times higher than
fibers dispersion. Ground substance and coupling parameters show slightly decreased
values due to fibers and sheets taking care of isotropic functions.

In general, a simulation of changed dispersion parameters and how different combina-
tions of fiber and sheet dispersion influence stiffness ai and nonlinearity parameters
bi is shown in Figs. 4.19 and 4.20. As already stated, matrix stiffness and nonlinear-
ity decreases with higher dispersion as fibers and sheets take its place. Fiber stiffness
and nonlinearity increases linearly with increasing fiber dispersion but remains nearly
unaffected by sheet dispersion. Identical observations can be made for sheet stiffness
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Figure 4.18.: Softening shown via trend analysis of fitting parameter of model ‘KAPPA’.

Table 4.6.: Relative parameter changes for ‘ALIGNED’ related to ‘KAPPA’.

Shear r
(a)
m r

(b)
m r

(a)
f r

(b)
f r

(a)
s r

(b)
s r

(a)
fs r

(b)
fs

γ̂ % % % % % % % %

10% -0.015 - 3.033 - 9.736 9.698 0.009 -
20% -0.001 -0.059 3.038 3.195 9.756 9.718 0.002 -0.009
30% -0.003 -0.013 3.038 3.043 9.742 9.718 0.004 -0.006
40% -0.005 -0.006 3.036 3.041 9.741 9.716 0.008 -0.008
50% -0.005 -0.002 3.037 3.038 9.728 9.720 0.009 -0.005

MEAN -0.006 -0.020 3.036 3.079 9.741 9.714 0.007 -0.007
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(b) Study of matrix nonlinearity parameter b.
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(d) Study of fiber nonlinearity parameter bf .

Figure 4.19.: Parameter study of model ‘KAPPA’ for varying fiber and sheet dispersion
of parameters a, b, af and bf .

and nonlinearity. Interestingly, coupling stiffness increases with higher fiber and sheet
dispersion but nonlinearity decreases in this case. The reason for this is that higher dis-
persion also increases fiber and sheet nonlinearity so that coupling effects compensate
this change in the same manner. Thus, higher dispersion directly influence stiffness and
nonlinearity which can be compensated to some extent by coupling effects of fibers and
sheets which can also be obtained when looking at Table 4.6 again.
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Figure 4.20.: Parameter study of model ‘KAPPA’ for varying fiber and sheet dispersion
of parameters as, bs, afs and bfs.
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Table 4.7.: Mean viscoelastic/inelastic stress-shear data fit for model
‘Simple-Damping’.

Damping

Shear R2 µ
(D)
m µ

(D)
f µ

(D)
s µ

(D)
fs

γ̂ [%] [kPa s] [kPa s] [kPa s] [kPa s]

10% 47.09 12.02 15.74 5.305 4.384
20% -250.0 15.52 22.55 6.884 8.161
30% -311.2 19.03 25.86 7.309 9.943
40% -225.2 21.65 27.80 11.66 11.05
50% -166.6 22.84 25.03 8.591 11.57
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(a) Viscoelastic/inelastic parameter fitting for
model ‘SIMPLE-DAMPING’ at γ = 0.1.
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(b) Viscoelastic/inelastic parameter fitting for
model ‘SIMPLE-DAMPING’ at γ = 0.5.

Figure 4.21.: Data fit for all loading modes with inelastic model ‘SIMPLE-DAMPING’.

4.3. Parameter Fits for Proposed Models

4.3.1. Viscoelastic/Inelastic Model: ‘Simple-Damping’

In Table 4.7 the fitted parameters for model ‘SIMPLE-DAMPING’ are listed. As a
matter of fact, the model is not appropriate for higher amounts of shear (see column
‘Confidence’ in Table 4.7). In Figs. 4.21(a) and 4.21(b) the regression for γ = 0.1 and
γ = 0.5 is shown, respectively. It is obvious that this simple model cannot describe the
inelastic stress response of myocardial tissue in an acceptable manner as R2 is negative
for higher amounts of shear. Whenever R2 is negative the proposed model is worse than
a simple linear fit.

Nevertheless, a closer look at the determined parameters allows first estimations about
dependencies of damping viscosity parameters µ

(D)
i and peak value of amount of shear.

In Fig. 4.22(a) the fibers contribute most in terms of highest viscosity parameters. The
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Figure 4.22.: Complete data fit for all loading modes with inelastic model ‘SIMPLE-
DAMPING’.

trend given in Fig. 4.22(b) shows that matrix, fibers, sheets and coupling constants
increase steadily for increasing amount of shear which proves that hysteresis increases
for additional loading cycles at higher amount of shear.

Note. Higher amounts of shear are coupled with lower rates of shear as
γ = γ̂sin(2πft). Due to quasistatic loading, the transient effects can be neglected,
and thus history dependency caused by previous loading cycles cause bigger stress hys-
teresis. Therefore, some type of restructuring during loading must be present. This type
of model is discussed in Sec. 3.4.3.

The simulation of a complete loading cycle is shown for all loading types in Fig. 4.23.
All six loading modes show same peak residuals at higher amounts of shear. Another
lack of this model is that it cannot describe the increase of viscous shear stress during
loading but only a degressive decrease of viscous shear stress for lower rates of shear.
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(a) Simulation for FS-mode.
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(d) Simulation for SN-mode.
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(f) Simulation for NS-mode.

Figure 4.23.: Complete simulation cycle for [FS-FN/SF-SN/NF-NS]-modes with elastic
model ‘KAPPA’ and inelastic model ‘SIMPLE-DAMPING’.
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(a) Viscoelastic/inelastic parameter fitting com-
pared to mean of experimental data for γ̂ = 0.1.
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(b) Viscoelastic/inelastic parameter fitting com-
pared to mean of experimental data for γ̂ = 0.5.

Figure 4.24.: Data fit of visoelastic/inelastic model ‘RESDAMP-MAFISH’ for FS-mode.

Table 4.8.: Mean viscoelastic/inelastic stress-shear data fit for model
‘ResDamp-MaFiSh’.

Restructuring Damping

Shear R2 µ
(R)
m µ

(R)
f µ

(R)
s µ

(R)
fs µ

(D)
m µ

(D)
f µ

(D)
s µ

(D)
fs

γ̂ [%] [kPa s] [MPa s] [MPa s] [kPa s] [kPa s] [kPa s] [kPa s] [kPa s]

10% 86.40 937.3 0 0 436.6 10.14 15.74 5.303 3.072
20% 65.24 519.6 131.2 8.382 283.0 11.36 20.15 6.731 4.767
30% 77.42 378.9 21.60 4.879 181.6 12.22 21.36 6.294 5.047
40% 91.31 288.6 6.294 2.738 127.2 12.43 20.44 8.454 4.958
50% 94.31 212.8 2.166 0.837 79.95 12.22 15.37 4.859 5.586

4.3.2. Viscoelastic/Inelastic Model: ‘ResDamp-MaFiSh’

In Section 3.4.3 we introduced a new approach to model periodic response of viscoelas-
tic/inelastic behavior of myocardium to sinusoidal simple shear deformation. In Fig-
ure 4.24 an example elastic and viscoelastic fit is performed. The extended model is
capable of fitting the mean of data in an acceptable manner for all given γ̂.

In Table 4.8 all fitted parameters are listed and performs with higher confidence than the
‘SIMPLE-DAMPING’ model. Interestingly, when comparing the relative changes of the
parameter shown in Figs. 4.25 and 4.26 the tissue shows decreasing restructuring effects
with higher amounts of shear whereas the damping effects remain nearly unchanged. This
may be due to realignment, rotation or sliding of fibers and sheets so that restructuring
leads to rearrangement of tissue.

Finally, we combine the ‘KAPPA’ and ‘RESDAMP-MAFISH’ models and reproduce the
complete hysteresis. Figures 4.27(a)–4.27(f) present the performance of all models which
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Figure 4.25.: Comparison of parameter distribution referred to parameter maximum for
γ = 0.1− 0.5.
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Figure 4.26.: Parameter distribution vs. increasing shear.
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Table 4.9.: Relative tissue softening for consequent loading cycles.

γ̂i → γ̂i+1 ζ
(R)
iso,FS ζ

(R)
iso,FN ζ

(R)
iso,SF ζ

(R)
iso,SN ζ

(R)
iso,NF ζ

(R)
iso,NS MEAN

Units [%] [%] [%] [%] [%] [%] [%]

0.1� 0.2 54.14 59.78 48.02 53.65 46.43 46.43 51.41
0.2� 0.3 42.43 44.11 38.29 38.11 36.13 36.13 39.20
0.3� 0.4 38.38 33.31 36.89 30.47 30.33 30.33 33.29
0.4� 0.5 37.40 34.29 37.38 34.11 33.57 33.57 35.06

MEAN 43.09 42.88 40.15 39.09 36.61 36.61 -

represent the experimental data very well. FS and FN modes are described best followed
by SF and SN modes. NF and NS modes are modeled as one which cause their related
fits to represent the average.

4.4. Softening of Myocardium

In the previous sections we have shown that for higher loading cycles myocardium seems
to soften in a mechanical point of view. In Table 4.5 all stiffness parameters a, af , as
and afs decrease with increasing γ̂ which is a strong evidence for presence of tissue
softening. In fact, the softening effect may also occur in living tissue extending elasticity
of myocardium, e.g. enabling extended wall thickening during systole and diastole as
stated by LeGrice et al. [36].

In Fig. 4.28 the relative isotropic softening of tissue is shown based on the algorithm
presented in Sec. 4.4. Obviously, softening effects reduce with increasing number of
loading cycles (see Table 4.9). Interestingly, the relative softening referred to the previous
loading cycle shows softening in the range of 50% and slightly decreasing with higher
amount of shear. Consequently, softening seems to be an propagating effect with slight
decrease for higher amount of shear.

Further investigation of relative changes of fitting parameters show that softening in-
fluences the stiffness parameters a at most (see Figs. 4.29 and 4.18). This knowledge
enables us to model softening via reduction of unsoftened strain-energy functions.

The absolute isotropic softening model proposed in Sec. 4.4 gives information about
softening in detail. We apply both elastic models ‘ALIGNED’ and ‘KAPPA’ on the ex-
perimental data provided and use the proposed algorithm with including the fourth step.
Hereafter, softened model versions will be denoted with superscript ‘s’, e.g. ‘ALIGNEDS’.
Finally, we use the softening parameter s to represent softening for the complete my-
ocardium. Based on fitting the mean of data with the ‘ALIGNEDS’ model including
absolute isotropic softening ζ

(A)
iso we can plot Fig. 4.30. Interestingly, the simulated cy-

cles reach the peak stress pretty well but fail representing nonlinearity. The nonlinearity
parameters b have much more influence on fiber stiffness and sheet stiffness but those
are not influenced by softening. In fact, the proposed softening model lowers the overall
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(a) Simulation for FS-mode.
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(b) Simulation for FN-mode.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−6000

−4000

−2000

0

2000

4000

6000
Simulation Cycle: Stress−Shear−Curves for [SFStress]−Mode

γ − Amount of Shear − [1]

τ 
−

 S
he

ar
 S

tr
es

s 
−

 [P
a]

 

 
SIM: SFStress at 10%
EXP: SFStress at 10%
SIM: SFStress at 20%
EXP: SFStress at 20%
SIM: SFStress at 30%
EXP: SFStress at 30%
SIM: SFStress at 40%
EXP: SFStress at 40%
SIM: SFStress at 50%
EXP: SFStress at 50%

−6000

−4000

−2000

0

2000

4000

6000

(c) Simulation for SF-mode.
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(d) Simulation for SN-mode.
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(e) Simulation for NF-mode.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−3000

−2000

−1000

0

1000

2000

3000
Simulation Cycle: Stress−Shear−Curves for [NSStress]−Mode

γ − Amount of Shear − [1]

τ 
−

 S
he

ar
 S

tr
es

s 
−

 [P
a]

 

 
SIM: NSStress at 10%
EXP: NSStress at 10%
SIM: NSStress at 20%
EXP: NSStress at 20%
SIM: NSStress at 30%
EXP: NSStress at 30%
SIM: NSStress at 40%
EXP: NSStress at 40%
SIM: NSStress at 50%
EXP: NSStress at 50%

−3000

−2000

−1000

0

1000

2000

3000

(f) Simulation for NS-mode.

Figure 4.27.: Complete simulation cycle for [FS-FN/SF-SN/NF-NS]-modes with elastic
model ‘KAPPA’ and inelastic model ‘RESDAMP-MAFISH’.
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(a) Relative softening of myocardial tissue re-
ferred to previous loading cycle.
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(b) Cumulative relative softening of myocardial
tissue referred to first loading cycle at γ = 0.1.

Figure 4.28.: Relative and cumulative tissue softening after first loading cycle at γ = 0.1
for consequent cycles with increment ∆γ = 0.1.
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Figure 4.29.: Softening shown via trend analysis of fitting parameter of model ‘KAPPA’.
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Table 4.10.: Fit of absolute softening function ζ
(A)
iso where ‘MEAN’ refers to a separate

fit of all loading modes united.

Loading Mode τ̄(Γ = 0) s
Unit [kPa] [1]

FS 1.436583 6.897547
FN 1.230139 7.964840
SF 0.941679 5.635320
SN 0.676345 6.115662
NF 0.504783 5.133939
NS 0.504783 5.133939

MEAN - 6.246303

Table 4.11.: Fit of model ‘ALIGNEDS’ and ‘KAPPAS’ with κf = 0.00765 and
κs = 0.02492 including softening with softening parameter s = 6.246303.
‘KAPPA’ refers to an unsoftened data fit with parameters taken from Ta-
ble 4.5.

Model Shear R2 a b af bf as bs afs bfs
- γ̂ [%] [kPa] [1] [kPa] [1] [kPa] [1] [kPa] [1]

ALIGNEDS 50% 99.82 21.47 6.733 129.8 19.59 14.14 36.85 8.668 7.226
KAPPAS 50% 99.82 21.47 6.733 133.8 20.21 15.66 40.82 8.669 7.226
KAPPA 50% 99.82 0.950 6.733 5.891 20.21 0.689 40.82 0.382 7.226

1 - KAPPA
KAPPAS 50% - 0.956 0 0.956 0 0.956 0 0.956 0

strain-energy but keeps morphology identical which may be a shortcoming. In Table 4.10
all softening parameters are listed referred to their corresponding loading modes and his-
tory shears Γ .

The underlying fits of models ‘ALIGNEDS’ and ‘KAPPAS’ are applied to the last cycle
at γ̂ = 0.5 and their parameter sets are given in Table 4.11. Both models show drastically
increased stiffness parameters whereas nonlinearity parameters b remain unchanged when
observing Table 4.5. Another interesting fact is that the goodness of fit represented by
R2 is identical for all three fits. The softened models do not change the morphology of
the functions themselves and, therefore, neither improve nor deteriorate the goodness of
fit R2 for the underlying experimental data.

Another interesting fact is that the overall softening shown in Fig. 4.31 is different for
different loading modes FS, FN, SF, SN, NF and NS. Hence, softening seems to be
an anisotropic effect which needs to be investigated in detail regarding different tissue
compounds and directions.
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(a) Simulation for FS-mode.
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(d) Simulation for SN-mode.
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Figure 4.30.: Complete simulation cycle for [FS-FN/SF-SN/NF-NS]-modes with elastic
model ‘KAPPA’ with κf = 0.00765 and κs = 0.02492 including softening
with softening parameter s = 6.246303 and inelastic model ‘RESDAMP-
MAFISH’ based on γ̂ = 0.5.

75



CONSTITUTIVE MODELING

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Simulation Cycle: Absolute Softening−Shear−Curves for ALL−Modes

Γ − Loading History Shear − [1]

ζ ab
s −

 A
bs

ol
ut

e 
S

of
te

ni
ng

 −
 [1

]

 

 

SIM: FSStress
EXP: FSStress
SIM: FNStress
EXP: FNStress
SIM: SFStress
EXP: SFStress
SIM: SNStress
EXP: SNStress
SIM: NFStress
EXP: NFStress
SIM: NSStress
EXP: NSStress
SIM: Mean of Softening
EXP: Mean of Softening

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.31.: Absolute softening for [FS-FN/SF-SN/NF-NS]-modes (NF and NS are con-
gruent).
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4.5. Using Triaxial Data for Simulating Biaxial Behavior

By now, we discussed results from analyzing triaxial shear data. The triaxial shear-
ing is characterized by nonlinear hyperelastic elastic stress terms in combination with
restructuring and damping effects determining the viscous stress terms.

In biaxial tensile testing the tissue can be equally stretched which theoretically should
cause principle stresses only lacking of shear stresses when the main loading directions are
oriented in parallel to the main and cross fiber directions. Recollecting the information
about myocardium from the previous sections sliding of sheets should be prevented
for biaxial tensile testing as we assume homogeneous application of stretch in both
directions. Hence, the underlying mechanics should be a composition of hyperelasticity
combined with damping effects only.

The deformation gradient F for equally applied stretch λ is obtain through

F =

λ 0 0
0 λ 0
0 0 1

λ2

 . (4.4)

Using the ‘KAPPA’ in combination with the ‘SIMPLE-DAMPING’ model we can derive
the main-fiber σff and cross-fiber σss stress vectors. As we use the parameters from
Tables 4.5 and 4.8, we need to refer to the original fiber stretch. The relationship between
simple shear γ and corresponding stretch λ is given with

λ =
√

1 + γ2 . (4.5)

Finally, we need to reduce the damping effect to the matrix compound only as both fibers
and sheets are separated and elongated along their main axis by not moved relatively
to each other. Therefore, we set µ

(D)
f = µ

(D)
s = µ

(D)
fs = 0. Figure 4.32(a) is showing the

loading pattern for cosinusoidal applied shear and the resulting stretch pattern for the
biaxial simulation. Finally, the resulting biaxial simulation is shown in Figs. 4.32(b)–
4.32(f).

The resulting biaxial curves are similar to those provided in the literature [12, 41]. This
proves that myocardium shows light damping effects during tensile testing. In contrast,
there are no restructuring effects present as long as no shear is applied. Therefore, it
seems that sheet sliding is an effect dominantly observed during filling and ejection
phases of the cycle of the heart.
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(b) Biaxial simulation using parameters from fit
of γ = 0.1.
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(c) Biaxial simulation using parameters from fit
of γ = 0.2.
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(d) Biaxial simulation using parameters from fit
of γ = 0.3.
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(e) Biaxial simulation using parameters from fit
of γ = 0.4.
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Figure 4.32.: Biaxial simulation for different loading stretches.
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5. Discussion

5.1. General Findings and Myocardial Vitality

The human ventricular wall mechanics show several special findings. During the last
couple of years several tests have proved that myocardium shows hysteresis during shear
loading [9, 13, 35, 54]. First tests without usage of BDM proved that activation of
specimens due to cutting injury create stiffer and higher hysteresis than inactivated tissue
does. As we focus on modeling passive myocardial tissue and the fact that activated
myocardial muscle tissue can hardly be kept under repeatedly constant experimental
conditions, BDM usage is obligatory for data redundancy. A histological diagnose of
myocardium indicates that a series of structural elements and their interconnection give
myocardial tissue its special biomechanical properties. In short, all known characteristics
are listed in Table 5.1 including their simplifications for modeling.

Elasticity. Based on these model simplifications a list of proposed models have been
presented in Sec. 1.3. In summary, the myocardium shows hysteresis at all times even for
quasistatic tests. Experiments held under dry conditions also proved this thesis true and
therefore hysteresis does not exclusively arise from a fluid flow phase, although the water
content in the heart consumes about eighty percent of the total volume which hardly
can permeate leading to incompressibility [59]. Hence, the conducted experimental stress
curves have been decoupled into an elastic and an inelastic/viscoelastic stress part. The
elastic data has been modeled with known models from Holzapfel et al. [25] and Eriksson
et al. [15]. Data analysis of parameters proved that the human heart has two main load
carrying elements being fibers and sheets. Fibers are the stiffest compound within the
human heart and about 1.2 to 1.5 times stiffer than sheet structures (compare stiffness
parameters in Table 4.4).

Table 5.1.: Biomechanical characteristics of myocardium (see [25, 17, 27, 43, 46, 55]).

Ideally Structural Element Model Simplification

Anisotropy Matrix, Fiber, Sheet, Coupling [5, 46] Orthotropy
Inhomogeneity Endo-/Myo-/Epicardium, Collagen Homogeneous
Compressibility H2O [43], Low Permeability Incompressibility [59]
Nonlinearity Reorientation and Reformation [18] Exponential
Multiphasic Solid, Fluid, Physicochemical [43, 46] Solid
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Dispersion. In addition, including dispersion to the perfectly aligned model gives
even more information about structural components but does not improve modeling
confidence as function morphology remains unchanged. Higher dispersion may arise from
injury or disease [6, 15, 49] and cause fiber and sheet stiffness to be increased but matrix
and coupling stiffness to be decreased.

Softening. Furthermore, softening has been established through an reduction term
for the elastic strain-energy function in order to implement strain-softening of myocar-
dial tissue. For sake of simplification the softening has been made generally identical
for all loading modes although this might be a shortcoming when comparing softening
terms in Table 4.11. FS, FN, SF and SN-modes have approximately identical softening
parameters whereas NF and NS modes show lower affection to softening. Thus, it is
assumed that softening arises from fiber and sheets softening and not directly on com-
plete myocardial softening of interconnections and matrix compounds. This has already
been postulated by Emery et al. [11] and may be substantiated within the scope of this
thesis. Furthermore, softening influences also nonlinearity behavior of tissue as the ini-
tial decrease of stiffness is in some way compensated by higher nonlinearity. For higher
amounts of shear γ̂ > 0.3 stiffness and nonlinearity of tissue decrease simultaneously
possibly indicating the beginning of irreversible tissue damage.

Note. Softening is a reversible process whereas damaging is irreversible induced by
rupture of perimysial fibers and coupling destruction [11].

Viscoelasticity. In addition, the viscoelastic/inelastic stress response has been mod-
eled by introduction of time pseudo-invariants and a postulate on how to include dissi-
pation in modeling viscous stress responses. The key for doing so is to reduce complexity
of the viscoelastic response problem to the periodic solution range and disregard tran-
sient effects. As every test cycle has ongoing preceding preconditioning cycles (at least
two) and that experiments are held under quasistatic conditions, the transient effects
are negligible. Although, this might be a shortcoming of the proposed model. The de-
veloped model is capable of describing a couple of interesting effects happening within
myocardial tissue during shear loading. These effects are stated to be ‘damping’ and
‘restructuring’ effects. Damping describes how myocardial tissue tries to limit circumfer-
ential deformation for higher rates of shear which is favorable as the fast contraction of
the heart shall be as effective as possible with maximum radial contraction. Restructur-
ing effects occur due to circumferential sliding of sheets and reorientation of fibers after
a couple of identical loadings. Interestingly, restructuring effects also show a diminishing
trend for higher shear peaks whereas damping effects stay mostly constant throughout
different loading peaks, directions and components of tissue.

In summary, the myocardial vitality seems to be dependent on stiffness, nonlinearity,
dispersion, damping and restructuring viscosity of tissue besides geometry, wall thickness
and composition. Ashikaga et al. [1] have demonstrated how abnormal shearing of my-
olaminar sheets influence relaxation behavior of hypertrophic myocardium. It has been
reported that filling, contraction and exhausting phases are not significantly affected by
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hypertrophy. In contrast, hypertrophic myocardium seem to show elongated phases of
diastolic isovolumetric relaxation. In addition, sheet shear is drastically increased due
to hypertrophy [1]. This proves the importance of simple shear test on myocardial tis-
sue as it is a marker for myocardial isovolumetric shear stresses during contraction and
ejection.

Finally, the presented models and parameter estimations are useful for application in
finite element modeling (FEM). FEM analysis requires exact constitutive models on the
one hand and precise geometrical models on the other. Pravdin et al. [44] presents ap-
proaches for modeling anisotropy, sheet layers and fiber reorientation throughout the ven-
tricle wall. The combination of present 3-D magnetic resonance imaging (MRI), mapped
FEM-models and constitutive models may be the aim of automated non-invasive screen-
ing of ventricular vitality.

High vitality of myocardium may be linked with

� low stiffness and high nonlinearity (i.e. efficient adaption),

� low restructuring viscosity and, therefore, easy sliding of sheets,

� low fiber and sheet dispersions (in and out of plane),

� reversible low softening parameter,

which eventually leads to lower shear stresses and, therefore, facilitated relative move-
ment of sheets during isovolumetric phases. Thus, we postulate that hypertrophy in-
creases shear and relaxation times which may be attributed to higher shear stresses
caused by higher dispersion and stiffness of fibers and sheets.

5.2. Possible Improvements on Testing

During analysis of data a series of heart specimen test could not be used due to missing
data, failures of tissues or difficulties for determining orientation of fibers and sheets as
well as machine calibration errors. In total, 32 hearts have been investigated of which six
have not been inactivated and, thus, being useless for passive myocardial data analysis.
In fact, only eleven out of 37 BDM-heart specimens could be used for data analysis.
The remaining 26 samples showed incorrect data , i.e. NF/NS stresses have been sev-
eral times higher than FS/FN or SF/SN stresses, partial splice rupture or errors in
machine calibration. Furthermore, imperfections of sample cubes lead to extreme forms
of skew hysteresis curves causing initial prestretch and strong directional dependencies.
Therefore, a couple of improvements on testing and possible pitfalls are summarized in
Table 5.2.
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Table 5.2.: Suggested improvements on triaxial shear testing.

Pitfall Problem Suggested Improvement

Cube geometry Imperfection causing Machine controlled cutting
directional dependencies or using cutting masks

Glue positioning Glue amount, connection of Check for lateral flow of
glue increasing stiffness glue after mounting

Fiber direction Directional misalignment Position markers or add
comments in documentation

Cube size e.g. ±0.1mm/5mm = ±10% Examine cube size precisely,
error in amount of shear use cutting masks

Rate of shear Changing rate of shear because Constant rate of shear approach
of constant velocity approach for independence of geometry

5.3. Conclusion

Conclusions. Summed up, eleven hearts have been analyzed in detail. All in all, 278
experiments were used for data fitting of elastic and viscoelastic/inelastic models. My-
ocardium shows strong anisotropic and nonlinear behavior which is history dependent
causing softening. Elastic and viscous stress terms have been decoupled. It is shown that
mean peaks of elastic stress increase with higher amounts of peak shear whereas peaks
of viscous stress terms remain nearly unaffected by higher peak shear. Structural dis-
crimination proves that matrix and coupling effects are nearly untouched by softening
whereas sheet and fiber stiffnesses decrease significantly. Furthermore, a new approach
for modeling has been presented by using not only energetic terms but also an dissipative
terms. Thus, the viscous stress terms can be described by an history dependent ener-
getic term describing the restructuring in tissue and an dissipative term describing the
damping in tissue. The restructuring actually considers a change of referential configura-
tion which has been modeled via history variables. Restructuring reduces with increased
loading history whereas damping remains relatively unchanged. Finally, softening effects
are present in myocardium in passive testing conditions. The relative softening effect is
reported being approximately 51.41% of reduction of tissue strength in terms of stiffness
for the first to second loading cycle. Consequent loading cycles show reduced relative
softening with a slight increase for the last cycle 0.4 � 0.5. Notably, NF/NS-softening
is lower than for all other loading modes may indicating that softening arises from fiber
and sheet softening mainly.

Eventually, we could reproduce 99.82% of the dispersed elastic and 94.31% of the viscous
experimental data including 95.6% of absolute softening at γ̂ = 0.5.

Limitations. The fundamental assumptions on modeling are that myocardium is
incompressible and that quasistatic loading conditions lead to periodically redundant
shear curves. Thus, all proposed models lack the effects of transient processes like stress
relaxation or creeping in tissue which may be a shortcoming of the viscoelastic/inelastic
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models. Furthermore, determination of fiber directions in tissue is a hard task precisely
because fibers show dispersion on the one hand and may have curly structure on the
other. Thus, residual stresses may arise from structural differences at different locations
that neither have been considered. Finally, the number of analyzed hearts is little which
may cause bias and in addition sometimes determination of fibers seemed incorrect.
Therefore, loading mode switching has been necessary to fulfill Dokos theorem.
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A. Matlab Output

A.1. Function Output of ‘readTraData()’

1 d = readTraData('...\HH10 HH7\... HH10 LV FN FS... 50p... .tra',opts)
2 Selected file: "07-05-2012 HH10 LV FN FS cardiopleg patchwork 50p mitte mitte1"
3 Opening file... Done!
4 Checking loading type... Done!
5 Checking file... Header found!
6 Setting data and correcting units... Done!
7 [INFO]: Found 12 header lines
8 Searching column data... Done!
9 [INFO]: Found 5 columns

10 "pruefzeit" "shear displace" "shear stress" "shear displace" "shear stress"
11 Searching shear-x zero-crossings... Done!
12 [INFO]: Found zero crossings with confidence: 98.88%
13 Searching shear-x peaks... Done!
14 [WARNING]: Set and conducted shear-x differ by max: 0.04%
15 Searching relaxation segments for x-data... Done!
16 [INFO]: Relaxation signal loss due to smoothing: 0.19%
17 Searching shear-y zero-crossings... Done!
18 [INFO]: Found zero crossings with confidence: 98.88%
19 Searching shear-y peaks... Done!
20 [WARNING]: Set and conducted shear-y differ by max: 0.04%
21 Searching relaxation segments for y-data... Done!
22 [INFO]: Relaxation signal loss due to smoothing: 0.10%
23 Smoothing, applying offset and overwriting data-x... Done!
24 [INFO]: Data loss due to smoothing: 0.46%
25 Smoothing, applying offset and overwriting data-y... Done!
26 [INFO]: Data loss due to smoothing: 0.83%
27 Finding data-x elastic term...
28 [INFO]: Symmetry rating: 99.10%
29 Done!
30 Finding data-y elastic term...
31 [INFO]: Symmetry rating: 60.52%
32 Done!
33 Closing file... Done!
34

35 d =
36

37 name: [1x62 char]
38 path: 'DATA\DATA BDM SWITCHED\HH10 HH7'
39 loading mode: 'shearing'
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40 tissue: 'HH10'
41 location: 'LV'
42 loading type x: 'FN'
43 loading type y: 'FS'
44 height: 0.0050
45 width: 0.0040
46 zyklen main x: 1
47 zyklen main y: 1
48 zyklen pre x: 2
49 zyklen pre y: 2
50 geschwindigkeit main: 2
51 geschwindigkeit step test: 150
52 strain x: 0.5000
53 strain x step: 0.5000
54 strain y: 0.5000
55 strain y step: 0.5000
56 time: [39300x1 double]
57 shear x: [39300x1 double]
58 stress x: [39300x1 double]
59 shear y: [39300x1 double]
60 stress y: [39300x1 double]
61 tcross: [13x1 double]
62 time c: [39300x1 double]
63 zcross x: [7x1 double]
64 zcross x conf: 0.9888
65 peak x: [6x1 double]
66 relax x: [1x1 struct]
67 zcross y: [7x1 double]
68 zcross y conf: 0.9888
69 peak y: [6x1 double]
70 relax y: [1x1 struct]
71 freq x: 0.0067
72 freq y: 0.0067
73 res x: 0.0046
74 res y: 0.0083
75 elastic x: [1x1 struct]
76 visco x: [1x1 struct]
77 selastic x: [1x1 struct]
78 svisco x: []
79 elastic y: [1x1 struct]
80 visco y: [1x1 struct]
81 selastic y: [1x1 struct]
82 svisco y: []
83 lelastic x: [1x1 struct]
84 lelastic y: [1x1 struct]
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B. Matlab Code Structure

Figure B.1.: Dependency graph.
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