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značilk

MAGISTRSKO DELO

MAGISTRSKI PROGRAM DRUGE STOPNJE
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Povzetek

Metode za detekcijo objektov osnovane na značilnicah se za določitev lo-

kacije specifičnega objekta v testni sliki zanašajo na diskriminativno na-

ravo značilnic. Nediskriminativne značilnice v množici detektiranih značilnic

se izloča z uporabo podobnostnega pragu. To pomeni da se detektirano

značilnico zavrže, če je ta podobna več kot eni značilnici v modelu. V pri-

merih detekcije objektov s ponovljivimi se vzorci se podobnosti prag izkaže

kot neučinkovit, saj obravnava večino detektiranih značilnic kot nediskrimi-

nativne, t.j., podobnih več kot eni značilnici v modelu. V kontekstu učenja z

enim primerom v magistrski nalogi predlagamo konstelacijski model kot do-

datek k osnovnim metodam za detekcijo objektov, osnovanih na zančilnicah.

Cilj je uporabiti ohranjeno geometrijo med značilnicami kot filter za nedis-

kriminativne značilnice in posledično eliminirati potrebo po podobnostnem

pragu. Delovanje predlaganega konstelacijskega modela z empirično in nu-

merično varianco značilnic primerjamo z osnovnim modelom osnovanim na

značilnicah. Model evaluiramo na zahtevni bazi katera se sestoji iz logotipov

v realnih okoljih. Ugotovimo da je najbolǰsa različica konstelacijskega mo-

dela tista z empirično varianco značilnic, saj slednja značilno zmanǰsa število

nediskriminativnih značilnic brez značilnega poslabšanja delovanja algoritma

za detekcijo objektov.

Ključne besede

učenje z enim primerom, značilnice, geometrija, varianca, konstelacije, de-

tekcija objektov, SIFT, GHT, MLESAC, MND

i





Razširjeni povzetek

Detekcija objektov je proces identifikacije specifičnih objektov v digitalnih

slikah, t.j., digitalnih videjih. Metode za detekcijo objektov tipično upo-

rabljajo tako imenovane silkovne ”značilnice” ter učne algoritme. Slikovne

značilnice so tipično specifične strukture pridobljene iz visoko kontrastnih

slikovnih regij, kot so točke in robovi, npr. [1], lahko pa so tudi rezultat

splošne operacije v okolici visoko kontrastnih regij, npr. [2]. Pred izvedbo

dejanske detekcije specifičnega objekta je potrebno konstruirati abstraktno

reprezentacijo objekta, tako imenovani model objekta. Model je konstruiran

z uporabo slikovnih značilnic pridobljenih iz slike ki prikazuje objekt zani-

manja. V računalnǐskem vidu učenje z enim primerom [3] označuje problem

izgradnje vizualnega model iz ene same učne slike. Glede na to, da je na

voljo zgolj en učni primer je glavni poudarek na izgradnji robustnega vizual-

nega modela, katerega se nato uporabi v procesu detekcije objekta. Prednosti

učenja vizualnega modela iz množice slik so pri učenju z enim primerom izgu-

bljene, kar pomeni, da je potreben drugačen pristop za izgradnjo vizualnega

modela.

Sam proces detekcije objektov z uporabo konstruiranega modela se se-

stoji iz večih korakov. Vsaki značilnici, pridobljeni iz poljubne testne slike ki

vsebuje ali ne vsebuje objekt zanimanja, se v abstratknem modelu objekta

poǐsče najbolj podobno značilnico, t.j., najbližji sosed. Iz množice ujemajočih

se značilnic se z metodo za robustno ocenjevanje točkovnih korespondenc

poǐsče podmnožica najbolje se ujemajočih značilnic, katere slikajo model

objekta na specifično lokacijo v testni sliki. Sledijo lahko dodatni koraki

iii
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Detektirane značilnice

Značilnice v modelu

Slika 1: Ilustracija primera kjer detektirani značilnici, označeni s sivim kro-

gcem, zaradi nediskriminativne narave značilnice ni mogoče prirediti pravilno

značilnico v modelu, prav tako označeno s sivim krogcem.

odstranjevanja šumnih značilnic in verifikacije detekcije. Detekcija objektov

ima širok spekter aplikabilnosti tako v specializiranih kot vsakdanjih izzivih

računalnǐskega vida. Tovrstne aplikacije segajo od sistemov za poizvedovanje

po slikovnih zbirkah [4, 5], nadzornih sistemov [6], avtomatiziranih ”poberi-

in-odloži” sistemov [7] do prepoznavanja vsakdanjih objektov [8, 9, 10].

Kot je ilustrirano v Sliki 1 pri iskanju najbolj podobnih značilnic z me-

todo najbližjih sosedov ni mogoče povsem preprečiti šumne povezave, kjer se

nediskriminativna detektirana značilnica poveže z naključno značilnico v mo-

delu. Za preprečevanje tovrstnih šumnih povezav se v [11] predlaga uporaba

praga podobnosti θ. Potencialna povezava med dvema značilnicama ki →mi

se zavrže, če je prag podobnosti med detektirano značilnico ki in dvema

značilnicama modela mi in mj večji od θ, t.j., s1
s2

> θ, kjer je s1 = ki ∼mi

in s2 = ki ∼mj. Čeprav predlagani pristop prepreči povezave z nediskrimi-

nativnimi značilnicami, hkrati predstavlja potencialni problem. Recimo da je

objekt ki ga želimo detektirati črka ”M”, kot prikazano v Sliki 1.1. Značilnice

ki predstavljajo levi spodnji del in desni spodnji del črke ”M” so identitčne.

Pri poizkusu detekcije objekta, črke M, na predloženi testni sliki se zgodi

naslednje. Ko poizkusimo poiskati povezave med detektiranimi značilnicami
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in značilnicami v modelu, predlagani prag podobnosti zavrže potencialno

uporabne povezave, saj je značilnica, detektirana na levem spodnjem delu

črke M v predloženi sliki zelo podobna dvema značilnicama v modelu ki

predstavljata levi spodnji in desni spodnji del našega objekta, črke M. V ko-

likor ignoriramo prag podobnosti in ǐsčemo povezave med značilnicami zgolj

z uporabo najbližjih sosedov, pa v danem primeru ni jasno katera od dveh

značilnic v modelu je najbolj podobna značilnici, detektirani na levem spo-

dnjem delu črke M v predloženi sliki. Z uporabo praga podobnosti [11] torej

res zmanǰsamo število šumnih povezav, katere generirajo napačne hipoteze

o lokaciji objekta v slikah, a hkrati izgubimo koristne informacije o lokaciji

objekta. Omenjena pomanjkljivost je posebej opazna v primerih detekcije

objektov s ponovljivimi se vzorci, kot so npr. večkratne pojavitve enake črke

v logotipih.

Metode za detekcijo objektov v računalnǐskem vidu uporabljajo vrsto

različnih pristopov, kot je dreseče okno [12], ujemanje predloge [13], segmen-

tacija slike in analiza regij [14], model vreče besed [15] in različne metode,

osnovane na slikovnih značilnicah [11, 16, 2, 17]. Glavna slabost pristopa z

drsečim oknom [12] je veliko število okenj različnih skal ki jih je potrebno

evaluirati, ter potreba po ustrezni množici testnih primerov na podlagi ka-

terih se uči klasifikacijski algoritem. Princip ujemanje predloge [13] temelji

na iskanju regije v sliki ki sovpada z naučeno predlogo. Tovrstni pristopi ne

neaslavljajo deformacij objektov ter niso robustni na delna zakrivanja objek-

tov. Pristopi s predhodno segmentacijo slike in naknadno analizo regij [14] so

zelo odvisni od delovanja segmentacijskih metod, ki pa se izkažejo za proble-

matične pri nasičenih regijah v sliki in pri naslavljanju različnih skal objekta.

Pristop z modelom vreče besed [15] sicer bazira na značilnicah, toda ne

uporablja ohranjene geometrije med značilnicami, kot dodatni filter šumnih

značilnic, ter za delovanje potrebuje naučeni klasifikacijski algoritem. Pri-

stopi osnovani na slikovnih značilnicah uporabljajo različne algoritme za de-

tekcijo značilnic [11, 16, 2, 17]. Eden takšnih je SIFT [11], katerega značilnice

so invariantne na skalo in rotacijo. Ker se slednji izkaže kot eden najbolj ro-
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bustnih algoritmov za detekcijo značilnic v [18], ga tudi sami uporabimo v

magistrski nalogi. Scale-invariant feature transform [11] (SIFT) je algoritem

za detekcijo značilnic ki se uporablja v sodobnih pristopih detekcije objektov.

Algoritem detektira in opǐse lokalne značilnice v procesu detekcije ekstremov

v prostoru skal, lokalizacija značilnih točk, prirejanje orientacije in prirejanje

opisnika regije vsaki značilnici. SIFT značilnica se tako sestoji iz detekti-

rane značilne točke ki je predstavljena z lokacijo, skalo in orientacijo, ter

prirejenega opisnika regije. Od objave SIFT so bili objavljeni številni drugi

algoritmi ki bazirajo na SIFT z različnimi modifikacijami [19, 20, 21, 18, 22].

Učenje z enim primerom v kontekstu kategorij objektov lahko najdemo v [3],

kjer avtorji predstavijo pristop k učenju vizualnih modelov kategorij objek-

tov z uporabo verjetnostnih modelov. Pristop detekcije objektov z uporabo

ohranjenih prostorskih relacij med značilnicami lahko najdemo v [23, 24],

kjer avtorji enkodirajo in v testnih slikah ǐsčejo trojčke značilnic, t.j., po-

vezave med tremi značilnicami. Celoten proces zahteva več različnih učnih

slik, problem deformacije objektov pa je naslovljen z deformacijo učnih oz.

testnih slik saj na takšen način avtorji simulirajo deformacije med prostor-

skimi relacijami značilnic.

V magistrski nalogi generaliziramo tehniko enkodiranja na poljubno šte-

vilo sosednjih značilnic, deformacije med prostorskimi relacijami pa mode-

liramo z dvema pristopoma in tako eleiminiramo potrebo bo množici učnih

slik. Naš pristop torej zahteva zgolj eno planarno sliko za učenje objekta,

t.j., učenje z enim primerom. V nadaljevanju povzamemo postopek gradnje

konstelacijskega model ter postopek detekcije objekta s konstelacijami.

Na podlagi značilnic pridobljenih iz slike ki prikazuje poljubni objekt

konstruiramo abstraktno reprezentacijo objekta, t.j., model M. Za vsako

značilnico enkodiramo prostorske relacije med sosednjimi značilnicami, kot

je prikazano v Sliki 2, s čim pridobimo konstelacije značilnic. V vsaki kon-

stelaciji se modelirajo pričakovane variance enkodiranih značilnic, kot je pri-

kazano v Sliki 3, s čimer pridobimo deformabilne konstelacije katere lahko

naslovijo deformacije lokalinih regij. Variance značilnic se modelirajo na dva
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Slika 2: Značilnice v kooridantnem sistemu slike I, katere ležijo znotraj ϵ

regije okoli korenske značilnice r, se smatra kot sosednje značilnice. Trans-

formacija T U : r → u preslika vse sosednje značilnice v normalizirani enotski

prostor U in posledično enkodira lokalno soseščino korenske značilnice.
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načina in sicer empirično ter numerično. Vse konstelacije so enkodirane v

skupnem prostoru, tako imenovanem enotskem prostoru. Podobne variance

značilnic v enotskem prostoru združimo skupaj in s tem zmanǰsamo skupno

število enkodiranih varianc, kot je prikazano v Sliki 4. Za vsak objekt se

poleg enkodiranih prostorskih relacij med značilnicami v model shranijo še

sredǐsčna točka, okvir objekta, ter intenzitetna predloga objekta. Končna

reprezentacija modela je ilustrirana v Sliki 5.

Postopek detekcije objekta s konstelacijskim modelom je sledeč. Značilni-

cam, pridobljenim iz poljubne testne slike ki vsebuje ali ne vsebuje objekt za-

nimanja, se poǐsče najbolj podobne značilnice v modelu. Za vsako značilnico

se izvede filtriranje s pomočjo enkodiranih konstelacij z namenom izločitve

značilnic ki se ne nahajajo na objektu zanimanja. Na podlagi preostalih

značilnic se določijo potencialne lokacije objekta, t.j., lokacijske hipoteze. Za

vsako lokacijsko hipotezo se oceni lokacija objekta v testni sliki s pomočjo

ujemajočih se značilnic ter shranjenega okvirja. Ocenjena lokacija se izbolǰsa

s pomočjo iterativnega ocenjevanja okvirja. Kot zadnji korak se izvede ve-

rifikacija detekcije z uporabno normalizirane navzkrižne korelacije med oce-

njeno lokacijo objekta v testni sliki ter intenzitetno predlogo objekta. Če

izračunana vrednost presega prag τncc, detekcijo proglasimo za uspešno.

Cilj predlaganega konstelacijskega modela je, da za dani objekt filtrira

značilnice pridobljene iz testne slike katere po gemoetrijskem aspektu ne so-

vpadajo z značilnicami enkodiranimi v modelu, in s tem reducira število

lokacijskih hipotez ki jih je potrebno preveriti. Eksperimentalno evaluiramo

šest različnih modelov: (i) osnovni model B, (ii) osnovni model z uporabo

podobnostnega praga Bτ , (iii) konstelacijski model z empirično varianco CE,
(iv) konstelacijski model z empirično varianco in podobnostnim pragom CEτ ,
(v) konstelacijski model z numerično varianco CN , (vi) konstelacijski model

z numerično varianco in podobnostnim pragom CNτ . Povzetek modelov je

dan v Tabeli 1. Graf 6 prikazuje celotno število generiranih hipotez Htotal

in število hipotez ki presegajo prag za izločitev šumnih lokacijskih hipotez

HτGHT
, medtem ko Graf 7 prikazuje povprečno število generiranih hipotez
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Slika 3: V enotskem prostoru je vsaka značilnica predstavljena z dvema

točkama, t.j., sredǐsčna točka c in kotna točka o. Na obeh točki značilnice

se ”vpne” pričakovana varianca, s čim se tvori deformabilna konstelacija

značilnic.
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Slika 4: Določene variance v enotskem prostoru se prekrivajo, torej so iz

geometričnega vidika zelo podobne. Podobne variance značilnic združimo

skupaj in s tem zmanǰsamo skupno število enkodiranih varianc.
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Slika 5: Reprezentacija modelaM. Vsaka značilnica ki je predstavljena z

ustreznim deskriptorjem di, kateri kaže na eno ali več varianc v enotskem

prostoru, s čim označuje konstelacijo okoli značilnice.
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Tabela 1: Testirani modeli.

Notacija modela Prag podobnosti Empirična varianca Numerična varianca

B × × ×
Bτ ✓ × ×
CE × ✓ ×
CEτ ✓ ✓ ×
CN × × ✓

CNτ ✓ × ✓

µtotal in µτGHT
. Predlagani konstelacijski model v obeh primerih značilno

zmanǰsa število lokacijskih hipotez ki jih je potrebno preveriti. Graf 8 prika-

zuje krivuljo preciznost-preklic. V splošnem ni razvidna značilna razlika med

performancami modelov kar implicira da konstelacije ne poslapšajo delova-

nja osnovnega modela. Graf 9 prikazuje F -mero v odvisnosti od τncc. Tudi

tu ni razvidnih značilnih razlik med testiranimi modeli, t.j., graf nakazuje

podoben trend vseh testiranih modelov.

V magistrski nalogi predlagamo konstelacijski model kot dodatek za alo-

goritem za detekcijo značilnic in s tem nadomestimo potrebno po podobno-

stnem pragu, saj se slednji v določenih primerih izkaže za uporabnega. Pre-

dlagani konstelacijski model filtrira šumne značilnice in posledično zmanǰsa

število lokacijskih hipotez, pri čemer ne vpliva značilno na delovanje algo-

ritma. Filtriranje bazira izključno na geometriji saj se kot filter uporabljajo

prostorske relacije med značilnicami in ne podobnosti med značilnicami. Do-

datna prednost predlaganega model je tudi v tem da ga je moč uporabiti

kot dodatek za poljubni alogoritem za detekcijo objektov, osnovanim na

značilnicah, saj model izkorǐsča enotno predstavitev značilnice velike večine

algoritmov za detekcijo značilnic, konstelacije pa se enkodirajo in uporabljajo

nad detektiranimi značilnic.
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Performance modelov se ne razlikujejo signifikantno, kar implicira da vpliv

predlaganega konstelacijskega modela na zmogljivost algoritma za detekcijo

ni značilen. Torej bistevno ne poslabša ali izbolǰsa delovanje.
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Abstract

Feature-based object detection methods rely on the discriminative nature of

features in order to accurately determine the location of a specific object in

a test image. From a set of detected features, non-discriminative features

are filtered out by means of a similarity threshold, meaning that if a fea-

tures is very similar to more than one model feature, it is considered to be

non-discriminative. However, in cases where an object consists of repeating

patterns the similarity threshold proves inefficient since it considers the ma-

jority of detected features to be similar to more than one model feature, i.e.,

non-discriminative. In the context of one-shot learning we propose a con-

stellation model for enhancing basic feature-based object detection methods,

with the aim in utilizing the preserved geometry between features to filter out

noisy feature matches. This eliminates the need for the similarity threshold.

We evaluate the proposed constellation model whit empirically and numeri-

cally modelled feature variance and compare it to a baseline feature model.

Model evaluation is performed on a challenging real-world dataset, consisting

of logotypes in real-world scenarios. We find that the best variation of the

constellation model is the model with empirically determined feature vari-

ance, which significantly reduces the number of mismatched features, without

significantly affecting detection performance.

Keywords

one-shot learning, keypoints, geometry, variance, constellation, object detec-

tion, SIFT, GHT, MLESAC, MND
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Chapter 1

Introduction

Object detection is the process of identifying instances of specific objects in

digital images or series of digital images, i.e., digital videos. Object detection

methods typically utilize extracted image ”features” and learning algorithms.

Image features are usually specific structures, obtained from high-contrast

regions in images, such as points or edges, e.g. [1], but may also be the

result of a general neighbourhood operation around a high-contrast region,

e.g. [2]. Before a specific object can be detected, an abstract representation

of the object, called the model, is constructed utilizing extracted features

from an image depicting the object of interest. In computer vision, one-shot

learning [3] denotes the problem of constructing a visual model from a single

training image. Given that a single training image is available, the main

focus is on the construction of a robust visual model which in turn is utilized

for the object detection task. The benefits of learning a visual model from

a set of training images are lost, meaning that a different approach for the

construction of a visual model is required.

The object detection task itself, utilizing the constructed model, consists

of several steps. Features are extracted from an arbitrary test image contain-

ing, or not containing, the object of interest, and are matched to features in

the abstract model representation of the object. Feature matching is typically

done in a nearest-neighbour manner, meaning that every extracted feature

1
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Detected features

Model features

Figure 1.1: Illustration of a case where a detected feature, represented by a

gray circle, cannot be correctly matched to a model feature, also represented

by a gray circle, due to its non-discriminative nature.

is matched to the most similar feature in the model. A method for robustly

estimating point correspondences is applied to the set of matched features

in order to find a subset of best matching features, which map the object

model to a specific location in the test image. Additional post detection-

verification and steps towards reducing noisy feature matches may also be

applied. Object detection has a wide range of applications in specialized as

well as everyday computer vision tasks. The applications range from im-

age retrieval systems [4, 5], security and surveillance systems [6], automated

pick-and-place systems [7] to recognition of everyday object [8, 9, 10].

As illustrated in Figure 1.1, using only the nearest-neighbour matching

technique, noisy mismatches, where a potentially non-discriminative detected

feature is matched to a random model feature cannot be avoided. In order to

address noisy mismatches and reject non-discriminative features, a similarity

threshold θ is proposed in [11]. A potential feature match ki → mi is

rejected, if the similarity threshold between the detected feature ki and two

model features mi and mj is higher than θ, i.e., s1
s2

> θ, where s1 = ki ∼mi

and s2 = ki ∼ mj. This does in fact reject non-discriminative features but
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also presents a potential problem. Consider that our object is the letter

”M”, as illustrated in Figure 1.1. The features representing the bottom-left

and the bottom-right ”leg” of the letter M are identical. If we now present

a test image on which we would like to detect our object, the letter M,

the following happens. When we try to match detected features to model

features, the proposed threshold rejects potentially useful matches, since the

feature detected on the bottom-left ”leg” of the letter M in the presented

image is very similar to two model features, representing the bottom-left and

the bottom-right ”leg” of the letter M object. If, however, we ignore the

similarity threshold and match using only the nearest-neighbour technique,

we see that it is not clear which of the two features is the better match for

the feature detected on the bottom-left ”leg” of the letter M in the proposed

image.

Another approach towards addressing noisy matches would be by using

the nearest-neighbour technique to group together similar features within

the model. However, in the proposed case, this also proves inefficient. If

we would group together the two features representing the bottom-left and

bottom-right ”leg” of the letter M object in the model, we eliminate the

problem of matching the two detected ”leg” features to the model, since

both get matched to the ”same” grouped model feature, but this causes con-

fusion when it comes to point-to-point correspondences. From a geometrical

perspective the two features lie in different locations. If both locations get

matched to the same model feature, both are very likely to get rejected by

a method for robustly estimating point correspondences, since the provided

location information for estimating the object location proves to be noisy.

In short, by using the similarity threshold [11] we reduce the noisy matches,

which affect detection performance, but in turn loose valuable information

about the object location. If the similarity threshold is ignored, noisy matches

which interfere with the object detection process are not addressed. Grouping

similar model features eliminates the problem of matching detected features,

but in turn introduces noise when it comes to estimating the object location,
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since multiple detected features can ”point” to the same grouped feature

encoded in the model. These shortcomings are noticeable when detecting

objects containing repeating patterns such as multiple instances of the same

letter in logotypes.

In the master’s thesis we address the problem of noisy feature matches by

looking at constellations of features. Since feature-based detection methods

preserve spatial relations between detected features in images, even under

image deformations and view point changes, they are ideal for building con-

stellations of features, with the aim in utilizing the preserved geometry to aid

the detection task, by filtering out features not corresponding to a specific

constellation. Given that in real-world scenarios objects will most certainly

be subjected to different perspective deformations, we model the expected

deformations of constellations with an empirical and a numerical approach.

And since, by modelling constellation deformations, we ”simulate” expected

deformations of a given object, we eliminate the need for a set of training

images. This is consistent with the one-shot learning restriction, meaning,

that for the model construction we require a single planar training image,

depicting the object of interest. Referring back to our thought experiment of

detecting the letter M, in geometric terms, it is clear that in the case of the

letter M object, the bottom-left ”leg” feature lies opposite of the bottom-right

”leg” feature. This is strong prior knowledge which could potentially prevent

mismatched features from negatively influencing the object detection process

and achieve greater robustness against occlusion and background clutter.

The remainder of the thesis is structured as follows. An overview of

related work is given in Chapter 2, followed by an overview of the computer

vision approaches most relevant to our problem and proposed solutions in

Chapter 3. A detailed description of the constellation model construction is

given in Chapter 4, and a description of the object detection process utilizing

the constructed model is given in Chapter 5. Chapter 6 gives an overview

of the experiment methodology, implementation details and results, followed

by conclusions in Chapter 7.



Chapter 2

Related work

Computer-vision-based object detection applies a range of approaches such

as sliding window [12], template matching [13], image segmentation and blob

analysis [14], bag-of-words models [15], and different feature-based object

detection methods [11, 16, 2, 17]. In the following we provide a brief overview

of these.

A standard technique for the detection of object categories is the slid-

ing window method [12]. In the latter an image is scanned with a number

of windows trough different scales and aspects, and each window is classi-

fied into pre-learned object categories. A drawback of this approach is the

need for a training set of significant size in order to train the classification

algorithms. Another drawback is the large number of windows, which are

essentially various forms of filters across multiple scales, that need to be ver-

ified. This leads to a significant complexity of the approach, which makes

it time-consuming at the least. Template matching [13] is a technique for

locating parts of a test image which match a specific template image. This

usually requires searching a large amount of locations in images, in order to

determine the best-matching location. Template matching techniques rely

solely on a template image of the object, which makes them inadequate in

cases where objects in test images are deformed or occluded, i.e., diverge from

the template image. Image segmentation and blob analysis [14] techniques

5
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require a segmentation step which segments an image into parts, whereby

interesting parts of the image, i.e., blobs, undergo further processing. The

segmentation step is crucial in this process, since the assumption is that

the test image will be segmented in such a way, that segmented parts al-

low for a straight-forward extraction of interesting regions. Although good

performance can be achieved in mostly homogeneous regions, the process is

vulnerable to cluttered and textured areas, since these may get segmented

into separate parts, blurring the distinction from interesting parts. Addi-

tionally, the performance of most segmentation algorithms depends highly

on input parameters and varies with the scale of the object in the test image.

Authors in [15] present the bag-of-keypoints method for efficient information

extraction and classification. The feature-based approach uses local regions

around interest points, defined by descriptors which are invariant to affine

transformation, for object category classification. Utilizing these descrip-

tors a classifier is trained using either the Naive Bayes [25] or the support

vector machine [26] (SVM) method. However, the bag-of-keypoints method

is an orderless representation, ignoring spatial relations between keypoints,

and requires a training set of images in order to construct bags-of-keypoints

which makes it inadequate for our intended purpose. Feature-based object

detection methods utilize a variety of image features, extracted from images

via feature detection algorithms [11, 16, 2, 17]. These algorithms rely on

high-contrast regions, such as points and edges, in order to obtain interest

points for which an corresponding descriptor is computed. The descriptor is

used to match newly detected features to features representing the object.

A method for robustly estimating multiple view relations from point corre-

spondences, such as RANSAC [27] is applied to the set of matched features

in order to find a subset of best matching features, which map the object

of interest to a specific location in the test image. Since feature-based ob-

ject detection methods preserve spatial relations between features in images,

these are ideal for building constellations of features.

The scale-invariant feature transform [11] (SIFT) is a feature detection
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algorithm applied in state of the art feature-based object detection methods.

The algorithm is designed to detect and describe local features in images,

which are extracted in a cascade of scale-space extrema detection, keypoint

localization, orientation assignment and the computation of keypoint de-

scriptors. A SIFT feature consists of a detected keypoint, represented by

its location, scale and orientation, and of a corresponding descriptor. Since

the introduction of SIFT, a number of feature-detection algorithms based on

SIFT with modifications have been published. These modifications include

a rotation-invariant generalization of the SIFT descriptor, i.e., RIFT [19];

a robust general context descriptor encoding edge orientation, density and

hue information, i.e., G-RIF [20]; a vector of image gradients computed in

both 2D space directions within the support region with reduced dimen-

sions as descriptor, i.e., PCA-SIFT [21]; an extension of the SIFT descriptor

with gradient location-orientation histograms to enhance robustness and dis-

tinctiveness, i.e., GLOH [18]; a descriptor generated from a standard SIFT

descriptor, by setting each histogram bin to its rank in a sorted array of

bins, i.e., SIFT-Rank [22]. Authors in [18] conduct an extensive evaluation

of different feature-detection algorithms and conclude that SIFT, and SIFT-

like descriptors outperform other contemporary local descriptors, exhibiting

the highest matching accuracies for affine transformations of regions. The

evaluation suggests that SIFT, and SIFT-based feature descriptors are most

robust and distinctive, and are thus best suited for feature description and

matching. Not included in the evaluation of [18], authors in [16] propose a

feature detection algorithm dubbed Speeded-Up Robust Features, i.e., SURF,

which shares partial similarities with SIFT and is several times faster. SURF

features, based on sums of 2D Haar wavelet responses and integral images,

are less affected by different image transformations than SIFT, as claimed by

the authors. A common aspect of all the above mentioned feature-detection

algorithms is the feature representation. All features consist of a detected

keypoint, represented by its location, scale, orientation, and of a correspond-

ing descriptor.
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Similar work on preserving spatial relations between local features can

be found in [23, 24], where, for a given object, authors present an ap-

proach towards encoding triplets of neighbouring features and locating the

encoded triplets across test images. The mass pipeline detection process

shows promising results on the FlickrLogos-32 dataset [28]. However, the

whole approach requires a set of diverse training images, whereby the prob-

lem of object deformations is addressed by warping either training images, or

database images in order to achieve robustness against object deformations,

i.e., deformations of spatial relations between features. We argue that the

spatial layout encoding technique could be generalized to incorporate an ar-

bitrary number of neighbouring features and spatial deformations of features,

whereby requiring a single planar training image, i.e., one-shot learning.

One-shot learning of object categories in computer vision approaches can

be found in [3], where authors present an approach towards learning visual

models of object categories by probabilistic models. The posterior model

of an object category is obtained by updating the prior, represented by a

probability density function on model parameters, considering one or more

observations. One-shot learning in the context of gesture and facial expres-

sions can be found in [29], wheres authors in [30] deal with zero-shot learning

in the context of visual object categories, i.e., the problem of object recogni-

tion with no training examples.



Chapter 3

Basic object detection theory

In this chapter, we describe computer vision methods which are used through-

out the thesis, in order to provide a better understanding of the basic prin-

ciples of feature-based object detection methods. This principles include

transformation parameter estimation (Section 3.1), image feature extraction

(Section 3.2), object localization (Section 3.3) and robust point-to-point cor-

respondence estimation (Section 3.4).

3.1 Estimating transformation parameters

A commonly encountered task in computer vision is the problem of estimating

transformation parameters between two sets of point correspondences. Given

two sets of point correspondences, where xq and yp denote two corresponding

points, the aim is to estimate the transformation parameters so that the mean

square error between the two sets is minimized [31]. Considering a system of

p linear equations and q unknowns, where a denotes scalar values

a11x1 + a12x2 + ...+ a1qxq = y1

a21x1 + a22x2 + ...+ a2qxq = y2

...

ap1x1 + ap2x2 + ...+ apqxq = yp

9
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the system can be rewritten as Ax = y, where A denotes a p× q real matrix

and x ∈ Rq and y ∈ Rp denote vectors of point correspondences

A =


a11 a12 . . . a1q

a21 a22 . . . a2q
...

ap1 ap2 . . . apq

 , x =


x1

x2

...

xq

 and y =


y1

y2
...

yp

 .

The mean square error to be minimized between point correspondences is

given by

e(x) =

p
i=1

(ai1x1 + · · ·+ aiqxq − yi)
2 = ||Ax− y||22,

where || · ||2 denotes the Euclidean norm. When the matrix A is of full

rank, i.e., rank(Ap×q) = q, the matrix ATA is invertible and the equation

rearranges to

Ax = y,

x = (ATAx)−1AxTy,

x = A†y,

where

A† = (ATAx)−1AxT

denotes the Moore–Penrose pseudoinverse. Alternatively, the solution can be

obtained by singular value decomposition of the matrix A, i.e.,

A
svd
= USV T .

The matrix of right-singular vectors V T is a q × q orthogonal matrix, and

it’s columns represent the eigenvectors of ATA. The last eigenvector of V T ,

corresponding to the smallest eigenvalue, holds the estimated parameters.

It is important to note, that, depending on the number of available corre-

spondences, different transformation parameters can be estimated. Table 3.1

gives a brief summary of the number of correspondences required in order to
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estimate the transformation parameters of a certain transformation, and the

required rank of the matrix A, to ensure that the estimated parameters are

not degenerated.

Table 3.1: Estimating transformation parameters.

Transformation Number of correspondences Matrix rank

Projective 4 8

Affine 3 6

Similarity 2 4

3.2 Scale Invariant Feature Transform

The scale-invariant feature transform [11] (SIFT) is a feature detection al-

gorithm applied in state of the art feature-based object detection methods.

The algorithm is designed to detect and describe local features in images.

SIFT features are extracted from images in a cascade of scale-space extrema

detection, keypoint localization, orientation assignment and the computation

of keypoint descriptors. A SIFT feature thus consists of a detected keypoint,

represented by its location, scale and orientation, and a corresponding de-

scriptor.

3.2.1 Scale-space extrema detection

The scale space of a given image I(x, y), is defined as a function L(x, y, σ),

produced from the convolution of a variable-scale Gaussian G(x, y, σ) with

the given image, where

L(x, y, σ) = G(x, y, σ) ∗ I(x, y),

where ∗ is the convolution operation and

G(x, y, σ) =
1

2πσ2
e(x

2+y2)/2σ2

.
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scale
(next octave)

scale
(first octave)

Gaussian
Difference of

Gaussian (DOG)

Figure 3.1: Image obtained from [11]. The initial image is repeatedly

convolved with Gaussians to produce the set of scale space images shown

on the left. The difference-of-Gaussian images, on the right, are produced

by subtracting adjacent Gaussian images. After each octave, the Gaussian

image is down-sampled by a factor of two. This process is repeated for each

octave of the scale space.

Stable keypoint locations in scale space are efficiently detected using scale-

space extrema in the difference-of-Gaussian (DoG) function, illustrated in

Figure 3.1, convolved with the image D(x, y, σ), which is computed from the

difference of two nearby scales separated by a constant multiplicative factor

k, i.e.,

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)
= L(x, y, kσ)− L(x, y, σ).

3.2.2 Keypoint localization

The local maxima and minima of D(x, y, σ) are detected by comparing each

sample point to its eight neighbours in the current image and nine neighbours
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scale

Figure 3.2: Image obtained from [11]. The extrema of the difference-of-

Gaussian images, i.e., the maxima and minima, are detected by comparing

a pixel, marked with χ, to its 26 neighbours, depicted by gray circles, in a

3× 3 region at the current and adjacent scales.

in the scale above and below, as illustrated in Figure 3.2. The point is selected

as an extrema only if it is larger or smaller than all of its neighbours. Low

contrast or poorly localized candidates along edges present outliers and are

rejected, by computing the function value of D at the extremum χ̂. By

Taylor series expansion, the scale-space function D rearranges to:

D(χ) = D +
∂D

∂χ

T

χ+
1

2
χT ∂

2D

∂χ2
χ, where χ = (x, y, σ)T .

The location of the extrema χ̂ is determined by taking the derivative of the

function D with respect to χ and setting it equal to zero, yielding:

χ̂ = −∂2D

∂χ2

−1
∂D

∂χ
.

By substituting χ̂ into D the equation rearranges to:

D(χ̂) = D +
1

2

∂D

∂χ

T

χ̂.

The value of D(χ̂) at extrema regions must be greater than a threshold

τextrema, i.e., |D(χ̂)| > τextrema, else the extrema point χ̂ is considered to be

unstable and is rejected.

The DoG function has strong responses along edges, even if the location

along the edge is poorly determined, yielding unstable extrema points. These
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are further filtered out by computing principle curvatures at each extrema

point, since unstable points exhibit a large principal curvature across the

edge and a small one in the perpendicular direction. Principal curvatures

are computed at each extrema point from a 2× 2 Hessian matrix H , i.e.,

H =


Dxx Dxy

Dxy Dyy


.

Outliers are removed by evaluating the trace and the determinant of the

matrix H , which correspond to the summation and the product of the eigen-

values of H , which in turn are proportional to the principal curvatures of D.

The trace and determinant of H are computed as:

Tr(H) = Dxx +Dyy = α + β,

Det(H) = DxxDyy −D2
xy = αβ.

If the computed determinant is negative, the curvatures have different signs

and the extrema point is rejected. Let r denote the ratio between the largest

and the smallest magnitude eigenvalue. Then it follows that α = rβ, and

Tr(H)2

Det(H)
=

(α + β)2

αβ
=

(rβ + β)2

rβ2
=

(r + 1)2

r
.

The obtained quantity depends only on the ratio of the eigenvalues, reaching

a minimum when the two eigenvalues are equal, and increasing with r. In

order to check that the ratio of principle curvatures is below a threshold r,

and determine the stability of the extrema, the following term is evaluated

Tr(H)2

Det(H)
<

(r + 1)2

r
.

3.2.3 Orientation assignment

Each localized keypoint is assigned a consistent orientation, based on local

image properties, achieving invariance to image rotation. To ensure that

computations are scale-invariant, the scale of the keypoint is used to select

the Gaussian-smoothed image L with the closest scale. At the selected scale,
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the gradient magnitude m(x, y), and orientation θ(x, y), are precomputed for

each image sample L(x, y) using pixel differences

m(x, y) =


(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1)2,

θ(x, y) = tan−1
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)


.

Within a region around the keypoint, an orientation histogram with 36 bins

is formed, covering the 360 degree range of gradient orientations. Each sam-

ple in the histogram is weighted by its gradient magnitude and a Gaussian-

weighted circular window with a σ = 1.5s, where s is the scale of the key-

point. Histogram peaks represent dominant gradient directions. The highest

peak, along with peaks within 80% of the highest peak, are used to create

keypoints with the given orientations. Therefore, for the same location and

scale, multiple keypoints with different orientations are created, in the case

of multiple peaks with similar magnitude.

3.2.4 Descriptor computation

All previous operations impose a repeatable 2D coordinate system to a local

image region, by assigning an image location, scale and orientation to each

keypoint, providing invariance to these parameters. For each keypoint, a dis-

tinctive descriptor that is invariant to variations such as illumination change

or 3D viewpoint change is computed.

The image gradient magnitude and orientations are sampled around a

keypoint location in a 16× 16 neighborhood, using the scale of the keypoint

to select the level of Gaussian blur for the image. Orientation invariance

is achieved by rotating the coordinates of the descriptor and the gradient

orientations relative to the keypoint orientation. A Gaussian weighting func-

tion with σ equal to one half of the width of the descriptor window is used

to assign a weight to the magnitude of each sample point. The Gaussian

function serves to omit small position changes of the window, and reduce

influence of gradients further away from the center of the descriptor. The
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Image gradients Keypoint descriptor

Figure 3.3: Image obtained from [11]. A keypoint descriptor is created

by computing the gradient magnitude and orientation at each image sample

point in a region around the keypoint location, weighted by a Gaussian win-

dow, depicted by a blue circle as shown on the left. These samples are in

turn accumulated into orientation histograms, which summarize the contents

over 4× 4 subregions, as shown on the right. The length of each arrow cor-

responds to the sum of the gradient magnitudes near that direction within

the region. The figure illustrates a 2× 2 descriptor array computed from an

8 × 8 set of samples, whereas SIFT uses 4 × 4 descriptors computed from a

16× 16 set of samples.

descriptor is obtained from a 4×4 array of histograms with 8 orientation bins

in each histogram, containing the values of the magnitudes of the peaks. By

concatenating these 16 histograms, with 8 orientations each, a 128 dimen-

sional vector representation of the descriptor is formed. The computation of

the keypoint descriptor is illustrated in Figure 3.3. The final steps include

normalizing the vector to unit length, in order to account for illumination

changes. Unit vector values are further bound to a maximum value of 0.2,

and the bound unit vector is re-normalized, emphasizing the distribution

of orientations rather than orientation peaks. This is necessary in order to

address the influence of large gradient magnitudes, which when normalized,

strongly reduce the influence of the smaller gradient magnitudes.
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3.2.5 Keypoint matching

SIFT features are matched to precomputed SIFT features via the correspond-

ing descriptors in terms of the nearest-neighbour principle. This means that

each detected keypoint ki is associated to the closest precomputed keypoint

mi in terms of the smallest Euclidean norm between the descriptors dk
i and

dm
i , i.e.,

ki →mi if dm
i = argmin

dm
i

(||dk
i − dm

i ||2).

The Euclidean norm between two given n-dimensional vectors dk and dm is

defined as:

e(dk,dm) = ||dk − dm||2 =

 n
i=1

(dk
i − dm

i )
2.

However, many extracted features will not have any correct match with

the precomputed features, due to background clutter and noise. This is

accounted for by looking at the ratio of the distances between the closest and

the second closest match. A potential feature match ki →mi is rejected, if

the similarity threshold between the detected feature ki and two precomputed

features mi and mj is higher than a threshold θ, i.e., s1
s2

> θ, where s1 =

ki ∼mi and s2 = ki ∼mj.

As argued in the introduction (Chapter 1), this threshold represents a po-

tential problem, since it does not only reject non-discriminative features, but

also rejects potential useful matches, causing a loss of valuable information.

3.3 The Generalised Hough Transform

In object detection tasks, a commonly used method for localizing objects

in images is the Generalised Hough Transform [32] (GHT). The Generalised

Hough Transform is a generalization of the Hough Transform [33] method,

which was initially designed for the detection of objects described with an

parametric function, such as lines, circles or ellipses. The Generalised Hough
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Transform is modified to use the principle of template matching, enabling it

for the detection of an arbitrary object described with it’s model, instead of

only objects described with an analytical function.

In order to utilize the Generalised Hough Transform method for the de-

tection of an arbitrary object, i.e., shape in a test image, a model of the

shape, i.e., object needs to be constructed beforehand. Given an arbitrary

shape with a fixed reference point, as shown in Figure 3.4, the information

provided by the boundary points is used to construct the R-table, which

acts as a transformation mechanism. For each boundary point the gradient

direction θ and the vector r pointing to the reference point X is computed.

In the R-table (Table 3.2), the vector r is stored as a function of θ. Having

computed this for each boundary point, the R-table acts as a model, repre-

senting the shape, i.e., object. The GHT localizes the object model in the

Table 3.2: The R-table.

θ R(θ)

θa ra

θb rb

θc rc

test image, by accumulating votes for potential model locations in a matrix

A of size p× q, called the accumulator array. In general, the ratio between

p and q equals the ratio of the height and width of the test image, but the

accumulator array may be of smaller resolution.

For a given boundary point E(x, y), detected on a test image, the gradient

direction θe is computed and a lookup is performed in the R-table. Let

R(θe) = r, the boundary point thus casts a vote in the accumulator array by

incrementing the accumulator cellA(Ex+rx, Ey+ry) that corresponds to the

point E+r. If the accumulator array is smaller than the original test image,

the point E + r is scaled down accordingly. In order to address arbitrary

object orientations, α, and scales, s, two more parameters are added to the
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X(x0, y0)

A(xa, xa)

C(xc, xc)

B(xb, xb)

rb

rc

ra
θb

θa

θc

y

x

Figure 3.4: An illustration of an arbitrary shape with a fixed reference

point X and three boundary point A, B and C.

model description and two more dimensions to the accumulator array. Thus,

for each boundary point the gradient direction θ is computed, and for each

resulting evaluation r of the function R(θ) and all values of α and s, x′ and

y′ are computed as:

x′ = s(x cosα− y sinα),

y′ = s(x sinα− y cosα),

and the corresponding accumulator cell A(x′, y′, s, α) is incremented. The

object location in the test image is indicated by peaks in the accumulator

array, since the assumption is that votes from boundary points located on

the object will be accumulated in the same cell, distinguishing it from other

cells.
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3.3.1 SIFT-based model

The Generalised Hough Transform converts the problem of localizing an ob-

ject in a test image, to the problem of determining the transformation param-

eters which map the object model to a specific location in the test image.

Determining the transformation parameters thus indirectly determines the

location of the object in the test image.

LetM denote a set of SIFT features, detected on an arbitrary object of

interest. These features, and for each feature a vector pointing to a reference

point on the object, form an abstract representation of the object, i.e., en-

code positions of features relative to the object center, forming a model of the

object. Let K denote the set of SIFT features, detected on a test image con-

taining the object of interest. When each detected feature ki ∈ K is matched

to a corresponding model feature mi ∈M, a vote is cast in the accumulator

array by computing the transformation TA : mi → ki, which maps a given

model feature to a given detected feature. The computed transformation is

used to map the object reference point to the accumulator array in which

the corresponding cell is incremented. In general, the transformation TA

can be estimated by computing a least-squares fit solution which determines

the transformation parameters from a given model feature mi, to a given

detected feature ki, i.e., mi · TA = ki.

Due to noise interference during the voting process, votes of features

belonging to the object are not likely to be accumulated in the same cell,

but may get scattered around the target cell, accumulating votes in the

neighbouring cells. This, in turn, introduces noise in the localization process

and reduces the capability of distinguishing cells that indicate object presence

from those that do not. In order to address this drawback, a common practice

is to apply non-maxima suppression to the accumulator array, suppressing

all cells that are not part of a local maxima, i.e., suppressing a given cell if an

immediate neighbouring cell accumulated more votes. Cells with the highest

number of accumulated votes in the processed accumulator array indicate a

potential object location in the test image.
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3.4 The Sample Consensus

Given a set of detected features which casted a vote into the same cell in the

accumulator array, the object location in the test image can be determined by

finding the transformation parameters which map the set of model features

to the set of detected features. Since each detected feature is associated

with a model feature, the transformation parameters can be estimated by

considering two sets of point correspondences, i.e., T : A→ B, where A ⊂M
and B ⊂ K.

However, in practice there is no guarantee that the two sets are correctly

matched, meaning that matches contain outliers. Simply determining the

transformation parameters with a least squares method thus results in noisy

parameter estimation, since general least squares methods do not account for

outlier influence. In order to identifying inliers and assure a robust trans-

formation parameter estimation, even in cases with a significant number of

outliers, the Maximum Likelihood Estimation Sample Consensus [34] (MLE-

SAC) is applied. The MLESAC is essentially an improved version of the

Random Sample Consensus [27] (RANSAC) algorithm.

RANSAC is an iterative, stochastic algorithm that consists of two steps:

(i) hypothesis generation and, (ii) hypothesis evaluation. The algorithm

generates a hypothesis by randomly selecting a minimal subset of point cor-

respondences B′ ⊂ B |= A′ ⊂ A in order to estimate a solution T : A′ → B′,

and proceeds with the evaluation of the generated solution for support from

the complete set. The support is measured in terms of the number of inliers,

i.e., the number of points with error e below a given threshold τinliers. The so-

lution T is re-estimated by least-squares, taking all inliers into account. The

RANSAC iteratively repeats these steps and returns the estimated solution

with the highest support, i.e., the maximum number of inliers. The error of

a given point bi ∈ B and it’s transformed correspondence point âi ∈ Â is

measured as the Euclidean norm between the two points, i.e.,

e(b, â) = ||b− â||2 =

(bx − âx)2 + (by − ây)2.
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Let n denote the minimum number of data points required to estimate a

solution, and let w the fraction of correctly matched correspondences. The

expected number of required iterations in order to obtain all inliers with a

high probability α equals to

N =
log(1− α)

log(1− wn)
.

In contrast to RANSAC, whose aim is to maximize the number of inliers

that support an estimated solution, MLESAC aims to maximize the likeli-

hood of the solution. The hypothesis likelihood is estimated by representing

the error probability distribution for the entire set as a mixture of a Gaussian

distributions for inliers and a uniform distribution for outliers, i.e.,

Pr(e) = γ
1√
2πσ2

exp

− e2

2σ2


+ (1− γ)

1

v
,

where the first term models the likelihood that a point is an inlier by

pinlier = γ
1√
2πσ2

exp

− e2

2σ2


,

and the second term the likelihood that a point is an outlier by

poutlier = (1− γ)
1

v
.

Here, γ denotes the mixing parameter, v a constant, and σ the standard

deviation of the error on each coordinate. The determination of the parame-

ters γ and v requires some approximate knowledge of the outlier distribution

in the set. The error minimized by MLESAC is the negative log-likelihood,

where n denotes the number of correspondences,

L = −

i

log


γ
 1√

2πσ2

n
exp


− e2

2σ2


+ (1− γ)

1

v


.



Chapter 4

The constellation model

From an image depicting an arbitrary object, a feature-based model repre-

sentationM of the object is constructed, utilizing detected image features.

For each feature, the spatial relations between the neighbouring features are

encoded, obtaining a constellation. For each constellation, expected varia-

tions of features are modelled in order to obtain deformable constellations,

which are able to address deformations of local regions. All deformable con-

stellations are encoded in a common space, dubbed the unit space. Similar

variations of features in the unit space are merged in order to reduce the

total number of encoded variations. Additionally, the object center point,

the object bounding-box, and an intensity template of the object are stored

in the model.

In this chapter, the process of encoding keypoints in the Cartesian coor-

dinate system is given in Section 4.1. Section 4.2 gives a detailed description

of encoding keypoint constellations, while Section 4.3 describes how constel-

lation deformations are modelled. Section 4.4 describes the process of consol-

idating encoded keypoint constellations, while the constructed constellation

model of an object is presented in Section 4.5.

23
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4.1 Encoding keypoints

In the polar coordinate system a keypoint is represented by a position vector

[x, y]T , which encodes the absolute location of the keypoint in an image, the

scale s and the angular coordinate θ, i.e., kP = [x, y, s, θ]T . Thus, in the

Cartesian coordinate system, a keypoint can be encoded by a pair of points

kC = [c,o]T , whereby, c = [x, y]T , representing the position of the keypoint

and o = [s · cos(θ), s · sin(θ)]T , representing the scale and angle. For further

processing, all keypoints are assumed to lie in Cartesian space, so the upper

P and C notations are left out from here on.

4.2 Encoding constellations of keypoints

A keypoint constellation consists of a set of keypoints, modelling local object

structures. For each keypoint, the corresponding descriptor and the spatial

relations between the neighbouring keypoints are encoded. From here on,

we distinguish between two terms denoting keypoints, i.e., pair keypoints,

denoted with p and root keypoints, denoted with r. A pair keypoint p is

considered to be in the neighbourhood of a given root keypoint r, if the

distance between r and p is less than ϵmax. In order to prevent cases where p

is arbitrary close to r, an additional constraint is that the distance between

r and p must be greater than ϵmin. The region between ϵmin and ϵmax is

dubbed the ϵ region. It follows that a keypoint is considered to be a pair

keypoint p of a given root keypoint r, if p lies within the ϵ region around r,

as illustrated in Figure 4.1.

The ϵ region is determined by considering the sacle s of the root keypoint.

Any detected keypoint, which lies within the two thresholds ϵmin = sα and

ϵmax = sβ is considered to be in the neighborhood of r, i.e., a pair key-

point of r. The threshold ϵmin serves to prevent cases in which keypoints

located too close to the root keypoint are encoded as neighbours. Accord-

ingly, ϵmax serves to prevent cases, where keypoints located too far from the

root keypoint are encoded as neighbours. The two parameters α and β are
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determined as follows. The value of α is set to 0.5, meaning that only key-

points which are located at least half of the root keypoint scale away from

the center are considered as pairs. The value of β is determined by taking

into account the maximal distance dmax, between two detected keypoints,

since it roughly models the object size. Since we would like to ensure a good

ϵ region estimation for objects of arbitrary sizes, the value of β is set to be a

fraction of the estimated distance, i.e., β = τdst · dmax.

Since r represents the root of the constellation, all of the corresponding

pairs pairs are encoded relative to r. The encoding is performed by comput-

ing a similarity transformation T U : r → u, which maps r from the image

space I, to the so called unit keypoint u, which lies in the unit space, i.e.,

u ∈ U . In the unit space, the unit keypoint lies in the cartesian coordinate

system origin with a scale of one and a zero angle, i.e., u = [0, 0, 1, 0]T . Each

pair keypoint p is mapped to the unit space of the root keypoint by the

transformation T U . All pair keypoints are thus encoded relative to the root

keypoint.

4.3 Modelling constellation deformations

When an object is deformed, local structures retain their spatial relations

depending on the degree of deformation. A keypoint constellation consisting

of pair keypoints, encoded in the root keypoint unit space, rigidly models

the spatial relations between the encoded keypoints. And since keypoints are

merely points, i.e., k = [c,o]T , it follows that the encoded constellation does

not address object deformations. In real-world scenarios, however, objects

will likely be subject to different deformations. An encoded constellation

must thus be able to address these expected deformations.

When an object deforms, keypoint locations will change. It follows that

a deformable constellation can be obtained by considering the variance of

the keypoint position. In order to model the expected variance of a key-

point within a constellation, we considered two different approaches. The
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Figure 4.1: Keypoints in the image space I, which lie within an ϵ region

around a root keypoint r are considered to be the pair keypoints. The

transformation T U : r → u maps all pair keypoints to the normalized unit

space U , encoding a local keypoint neighborhood of the root keypoint.
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first approach is to measure the expected variance of a keypoint by taking

a set of images and subjecting them to a series of projective transforma-

tions i.e., warping the images. The expected variance of a keypoint position

is measured by considering each detected keypoint on each warped image.

The second approach is to model the expected variance by considering the

maximal allowed deformation of an image, under which a keypoint detection

method is capable of detecting a keypoint. The expected keypoint variance

can thus be modelled by a function, obtained by considering the maximal

allowed image deformation. The former and latter approaches, essentially

modelling expected keypoint variance with a Gaussian, are presented in Sec-

tions 4.3.1 and 4.3.2, respectively.

4.3.1 Empirical keypoint variance

Given a set of planar images, depicting different objects, keypoint variance

can be measured by warping these images and considering the variance of

each keypoint detected on a warped image, relative to a reference keypoint,

detected on a planar image. A planar image IP is warped by a transformation

H , which transforms the planar image to a warped image, i.e., H : IP → IH ,

as illustrated in Figure 4.2. Given a reference keypoint kP , detected on a

planar image, it’s variance is measured by considering it’s warped instance

kH .

A warped keypoint kH , detected on a warped image is mapped back

to the planar image by the transformation H−1, where the backprojected

keypoint location and orientation will slightly vary compared to the reference

keypoint. The backprojected warped keypoint k̂H is mapped to the unit

space by the transformation T : kP → u, where the center and angular

points are recorded. If this is repeated for a set of keypoints, and a set

of transformations, the measured data yields the expected variance of an

arbitrary keypoint center and angular point, as shown in Figure 4.3.

For both, the measured center and angular data points, the variance

is modelled in two steps: (i) retain 90% of the measured data, (ii) model
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H
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kP

k̂H
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Figure 4.2: Give a transformation H , the planar image IP can be warped,

i.e., subjected to projective transformation. Since H is known, a keypoint

kH , depicted in gray, detected on a warped image can be backprojected by

H−1, and it’s variation determined relative to it’s reference keypoint kP ,

depicted in blue.

the remaining data. At first, a Gaussian is fitted to the measured data

by computing a covariance matrix Σ. Given a matrix of 2D data points

An×2 = [x,y], where x = [x1 . . . xn]
T denotes the x coordinates and y =

[y1 . . . yn]
T denotes the y coordinates of the data points, the Gaussian of the

data is modelled by the multivariate normal distribution NA(µ,Σ), where µ

represents the mean of the data and Σ the covariance matrix,

µ = (x̄, ȳ),

Σ =


Var(x) Cov(x,y)

Cov(x,y) Var(y)


=

1

n
(ATA),

where

x̄ =
1

n

n
i=1

xi,

Var(x) =
1

n

n
i=1

(xi − x̄)2,

Cov(x,y) =
1

n

n
i=1

(xi − x̄)(yi − ȳ).
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All data points, exceeding a standard deviation of σ ≈ 1.65 around µ are

discarded in order to omit noise influence on variance estimation, leaving

approximately 90% of characteristic data points for further processing. A

detailed description of the verification, weather a give point lies within a

given multivariate normal distribution is provided in Section 4.4. On the

remaining data points, a Gaussian is re-fitted obtaining the final variance

model, as illustrated Figure 4.4.

4.3.2 Analytical keypoint variance

Assume that a feature detection method is capable of detecting keypoints

under affine transformations of γ degrees of the image. Keypoint localiza-

tion will slightly vary, depending on γ, and will result in a variance of the

keypoint location. The expected location variance can be modelled as fol-

lows. Imagine a plane Π with a unit keypoint u, and a point q on the x-axis.

By transforming Π with a transformation T γ : Π → Π′, we simulate the

maximal affine transformation by γ degrees, under which a keypoint can be

detected, as shown in Figure 4.5.

The transformation T u : u′ → u maps the transformed unit keypoint

u′ back to its initial position. By using T u to back-project the transformed

point q′, the back-projection error between q and q′′ can be computed, i.e.,

e = ||q − q′′||2. Since the error depends on the distance of the point q from

the coordinate system origin, the back-projection error has to be computed

for n different points q, at different distances. The measured back-projection

error data yields a second degree polynomial function shown in Figure 4.6.

From the measured data, we can extract the analytical relation between γ

and the variance of a point by solving the following polynomial fit equation,

e = Dc,

where the vector e ∈ Rn corresponds to the backprojected errors of each

point, the matrix Dn×3 to the distances of each point from the coordinate

system origin and the vector c ∈ Rn to the second degree polynomial co-
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Figure 4.3: Expected keypoint variance, measured from a set of six images,

each subjected to 1425 projective transformations in x, y and z (rotation)

dimensions. The light gray color depicts the variance of the center point c,

while the dark gray color the variance of the angular point o.

c o

Figure 4.4: Modelled keypoint location and orientation variance by a Gaus-

sian with σ = 1, depicted by a gray circle and ellipse, respectively.
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Π
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T uT γ

Figure 4.5: The plane Π is subjected to the maximal allowed affine trans-

formation of γ degrees, under which a keypoint detection method is capable

of detecting a keypoint. By reprojecting the transformed point q′ back to

the original plane Π, the reprojection error, relative to q, can be measured.
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Figure 4.6: A second degree polynomial function, obtained from measuring

the reprojection error of the point q. The reprojection error e increases with

the increasing distance of the point q from the coordinate system origin.



32 CHAPTER 4. THE CONSTELLATION MODEL

efficients. Using the Moore-Penrose pseudoinverse the equation rearranges

to,

c = (DTD)−1DTe,

and the solution yields the coefficients for the error function E(d), i.e.,

E(d) = c1d
2 + c2d+ c3.

The maximal expected variance of a point q in both x and y directions can

thus be modelled by the multivariate normal distribution N (µ,Σ), where:

µ = q,

Σ =


E(||q||2)2 0

0 E(||q||2)2


.

For each pair keypoint pU = [c,o]T , encoded in the unit space, the ex-

pected variance is modelled relative to the coordinate system origin for the

point c, and relative to c for the point o. After applying the modelled mul-

tivariate normal distribution to each keypoint in the encoded constellation,

we obtain a deformable constellation which is not affected by slight keypoint

variations and is thus capable of addressing object deformations, as shown

in Figure 4.7.

4.4 Constellation consolidation

A deformable keypoint constellation consists of a series of expected multivari-

ate normal distributions of the encoded pair keypoints. All constellations,

even though modelling different local object-structures, are encoded in the

”same” unit space. Because of this, some distributions lie within other distri-

butions, meaning that from a geometrical viewpoint they are very similar and

can be merged, in order to reduce the total number of encoded distributions,

as shown in Figure 4.8.
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Figure 4.7: In the unit space, each keypoint is represented by two points,

i.e., the center point c and the angular point o. The expected variance of

the keypoint center point and angular point is ”attached” to each of these

two points, forming a deformable keypoint constellation.
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Figure 4.8: Certain distributions in the unit space overlap, meaning that

from a geometrical viewpoint they are very similar. In order to reduce the

total number of encoded distributions, overlapping distributions are merged

together.



4.4. CONSTELLATION CONSOLIDATION 35

A distributionNj lies within another distributionNk, if the mean µj ∈ Nj

lies within the distribution Nk under the confidence interval p. By comput-

ing the Mahalanobis radius of the ellipsoid Σk ∈ Nk, which encloses the

probability mass, we translate the confidence interval p into a Mahalanobis

distance. The confidence interval Mahalanobis distance Dconf is computed

using the inverse of the chi-square cumulative distribution function (cdf),

with v degrees of freedom at the confidence value p,

Dconf = Inv-χ2(p, v).

Since Inv-χ2 initially translates to the inverse of the Gamma cumulative

distribution function with parameters α = v
2
and β = 2, we can write:

Dconf = Inv-Gamma(p,
v

2
, 2).

The mean µj lies within the distribution Nk(µk,Σk), if the Mahalanobis

distance between µj and the distribution Nk is less than the computed con-

fidence interval Mahalanobis distance Dconf:
(µj − µk)T · Σ−1

k · (µj − µk) < Dconf,

The consolidation of distributions is performed by means of the greedy ap-

proach. A distribution Nj that lies within two distributions Na and Nb, is

merged with the distribution that contains the larger number of distributions

lying within it, as illustrated in Figure 4.9. The mixture model is approxi-

mated by a single Gaussian by moment matching. A distribution consisting

of n multivariate normal distributions is computed as follows,

µ̄ =
n
i

µi · wi,

Σ̄ =
 n

i

(Σi + µiµ
T
i ) · wi


− µ̄µ̄T .
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Figure 4.9: The merging approach symbolises a greedy approach, since in

the illustrated case the distribution Nj is absorbed by the distribution Na,

as Na contains more distributions than Nb.
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4.5 The constellation object-model

The constellation model construction for a given object merely requires a

single planar training image, i.e., one-shot learning, instead of a set of train-

ing images depicting the same object. This is due to the model encoding

process, which takes keypoint variance into account and automatically con-

structs deformable constellations.

For an arbitrary object we thus construct an abstract, feature-based

model representationM, illustrated in Figure 4.10. The model consists of de-

tected keypoints, their corresponding descriptors and detected constellations.

Each keypoint points to multiple modelled variances of the neighbouring key-

points, i.e., points to a surrounding constellation. Additionally, the center of

the object represented by the vector w, the object bounding-box represented

by the matrix B and an intensity template In×n of the image depicting the

object are stored.

Given the illustrated model representation in Figure 4.10, it is easy to

see the scaling potential of the constructed model with regards to a grow-

ing number of objects. Assume that we want to construct one constellation

model for a number of objects. At first, for each object the keypoint con-

stellations are encoded. Secondly, constellation consolidation is performed

on all encoded constellations, since all constellations lie in the unit space.

For each object, the center of the object represented by the vector w, the

object bounding-box represented by the matrix B and an intensity template

In×n of the image depicting the object are stored. The so constructed model,

consisting of multiple objects is illustrated in Figure 4.11.

Another aspect of the constellation model is the capability of incremen-

tally adding a new object to an existing model. This merely requires adding

new encoded keypoint constellations to the unit space of existing ones and

consolidating the new constellations with existing ones. Additionally, the

center of the new object, the object bounding-box and the object intensity

template are added to the existing model.
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Figure 4.10: ModelM of an encoded object. Each extracted keypoint ki is

represented by the corresponding descriptor di, which points to one or more

multivariate normal distributions encoded in the unit space, indicating the

detected constellation around it.
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Figure 4.11: Model scaling. Representation for encoding a number of

objects with one constellation model.
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Chapter 5

Object detection by

constellations

Object detection by constellation models proceeds as follows. From an arbi-

trary test image, containing or not containing the object of interest, image

features are extracted. The extracted features are matched to the model

features, linking the model of the object to the test image. For each matched

feature, a constellation search is performed utilizing the encoded model with

the aim to distinguish features located on the object from features located

elsewhere. Feature votes for object center are accumulated, yielding poten-

tial object location hypothesis. For each hypothesis the object location in

the test image is estimated using the matched features and the stored object

bounding-box. The location estimation is refined and a final verification uti-

lizing normalized cross-correlation between the estimated object location in

the image and the stored intensity template is performed.

Section 5.1 describes the process of matching detected image features

to model features, while a detailed description of filtering by constellation

matching is given in Section 5.2. The process of object detection by features

and detection verification is described in Section 5.3.

41
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5.1 Feature matching

Extracted features are matched to features in the constructed model via the

corresponding descriptors by nearest-neighbour matching. Each detected

keypoint ki is associated to the closes model keypoint mi in terms of the

smallest Euclidean distance between the descriptors dk
i and dm

i , i.e.,

ki →mi if dm
i = argmin

dm
i

(||dk
i − dm

i ||2).

After detected keypoints have been matched to model keypoints, the encoded

constellations in the model are utilized in order to suppress noisy keypoint

matches.

5.2 Filtering by constellations

For each detected keypoint ki, associated with a model keypoint mi, a con-

stellation search is performed. In the encoded model, every model keypoint

mi points to one or more expected variations of its neighbouring keypoints,

encoded in the unit space as shown in Figure 4.10. It follows that for each

keypoint match we obtain a subset of expected multivariate normal distri-

butions, i.e., ki → mi |= N ′ where N ′ ⊂ N . These serve for detecting

neighbouring keypoints that form an encoded constellation with the current

keypoint ki as the root of the constellation. In general, the larger the number

of keypoints fit in the encoded distributions, up to the size of the subset, the

higher the probability that ki is a keypoint located on the desired object.

Initially, all detected keypoints lie in the image space, i.e., K ∈ I, all
model keypoints in the model space, M ∈M, and all distributions lie in the

unit space, i.e.,N ∈ U . These need to be mapped from the image space to the

unit space in order to verify whether any of the detected keypoints fall into the

subset of distributions and form an encoded constellation with the keypoint

ki ∈ K as root. To address potentially stronger constellation deformations,

the mapping from image space to unit space is done via the model space, as

illustrated in Figure 5.1. At the initial step, the only information we can rely
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on is the association between the detected keypoint ki and the model keypoint

mi, as depicted by 1. iteration in Figure 5.1. This is little information from

which a similarity transformation TM : ki → mi can be obtained, which

maps all the detected keypoints in the image space to the model space. These

are in turn mapped to the unit space via the transformation T U : kM
i → u,

which is obtained by mapping the transformed root of the constellation kM
i ,

which now lies in the model space, to the unit keypoint u. In the unit

space, the verification is performed whether any of the keypoints in the unit

space KU , under the confidence interval p, fall into the subset of distributions

N ′. Additionally, the transformation MU : mi → u transforms all model

keypoints to the unit space, for which the same verification is performed. The

verification itself is performed the same way as described in Section 4.4. In

the case of strong constellation deformations, keypoints closer to the root of

the constellation ki will likely experience a smaller location variation opposed

to keypoints that are further away. Since the model is constructed using a

planar representation of the object, this means that keypoints which are

further away from ki will likely fall out of their designated distributions, in

the event of a stronger object deformation. This problem can be addressed

by refining the mapping step from image space to model space whenever a

newly acquired information is available.

Let the detected keypoints kj, kk and the model keypoints mj, mk where

kj → mj and kk → mk, fall into the j-th and k-th closest distributions

{Nj,Nk} ∈ N ′ under the previously computed transformations. This indi-

cates that kj and kk fit in the encoded constellation around ki, and that the

matches kj →mj and kk →mk are not noisy matches, sincemj andmk fall

into the same distribution. This represents new information that can be used

to compute a more accurate transformation in the mapping from the image

space to the model space, as depicted by 2. iteration in Figure 5.1. By repeat-

ing the mapping step, the transformation TM : {ki,kj,kk} → {mi,mj,mk}
maps all keypoints detected in the image space to the model space with a

greater accuracy. This process is repeated until the set of associated key-
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Figure 5.1: In the first iteration, the transformation TM is estimated con-

sidering only one keypoint correspondence, depicted by a gray line. If, un-

der the constraints of the encoded distributions, neighbouring keypoints are

found, these are considered as new correspondence is the next iteration, from

which a new transformation TM is estimated.

points in the constellation rooted at ki stops changing, as depicted by 3.

iteration in Figure 5.1. Essentially we search for the number of neighbour-

ing keypoints that ki can ”grasp on”, within the limitation of the encoded

distributions. The higher the number of keypoints that form a constellation

around ki, the higher the probability that ki belongs to the desired object.

Keypoints, for which no neighbouring keypoints where found to fit an as-

signed constellation are rejected from the initial set of associated keypoints.

This process in fact acts as a filter, filtering out uncertain keypoint matches.

A brief outline of filtering keypoints by constellation matching is given in

Algorithm 1.
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Algorithm 1 Filtering keypoints by constellation matching

1: for ∀ ki ∈ K do

2: mi ← model keypoint associated with ki

3: N ← distributions associated with ki

4: {·}K ← add ki to set

5: {·}M ← add mi to set

6: repeat

7: TM : {·}K → {·}M
8: KM ← K · TM

9: T U : kM
i → u

10: MU : mi → u

11: KU ← KM · T U

12: MU ←M ·MU

13: if ∃ kU
j ∈ KU such that kU

j ∈ N then

14: {·}K ← add kj to set

15: {·}M ← add mj to set

16: end if

17: until size of {·}K stops changing

18: if |{·}K | = 1 then

19: remove ki from K

20: end if

21: end for
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5.3 Object detection by features

After the constellation filtering, the remaining keypoints are used for ob-

ject localization. Object localization is performed by the Generalised Hough

Transform [32]. In general, each keypoint casts a vote for which a cell in

the accumulator array is incremented. The cells with the highest number of

accumulated votes indicate potential object locations in the test image. Each

potential location, i.e., location hypothesis, is verified by bounding the hypo-

thetical location of the object in the test image, as described in Section 5.3.1

and performing a final detection verification step, described in Section 5.3.2.

5.3.1 Object localization

In the GHT accumulator array, each cell hi ∈ A that exceeds a threshold

τGHT represents a potential object location in the test image. The threshold

serves to eliminate cells with insufficient number of votes and are less likely to

correspond to the object. Thresholding the accumulator array thus yields a

set of object location hypothesis, i.e.,H = {hi ∈ A | hi > τGHT ; i = 1, ..., N}.
Each location hypothesis in turn yields a set of keypoints supporting that

hypothesis, i.e., ∀ hi ∈ H |= K, where K = {ki ∈ I | ki ∈ hi}. For a given

hypothesis hi supported by a set of keypoints K, the location of the object

in the test image is estimated by considering the links between detected and

model keypoints. Since each detected keypoint in K is associated to a model

keypoint, i.e., ∀ ki ∈ K |= ki →mi,K yields the set of model keypointsM =

{mi ∈M |mi → ki}. Thus for a hypothesis hi, K and M represent the set

of matched keypoints which map the object model to a specific location in the

test image. The refined object location for a hypothesis hi can be determined

by computing the transformation parameters which map the set of model

keypoints to the set of detected keypoints, i.e., T : M → K. However,

simply using all associated keypoints to compute the transformation is prone

to errors due to potential outliers as discussed in Section 3.4. Therefore,

object localization is performed in two stages: (i) filtering keypoints by their
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voting scale and (ii) iterative bounding-box estimation. A brief outline of

the object localization procedure is given in Algorithm 2.

Algorithm 2 Object detection

1: for hi ∈ H do

2: K ← keypoints supporting hi

3: procedure Object localization

4: K ′ ← keypoints in K filtered by scale

5: do Iterative bounding-box estimation

6: end procedure

7: do Normalized cross-correlation verification

8: end for

Each keypoint that casted a vote in the accumulator array voted for a

certain scale of the object. Outlier influence on the scale of the object is

omitted by sorting keypoints by their voting scale and removing α percent

of the keypoints that correspond to the smallest and largest voting scales.

The voting scale of a keypoint is determined from the transformation T :

mi → ki, by computing the Euclidean norm between the first two diagonal

elements of the transformation matrix, i.e., S = ||T 1,1 − T 2,2||2.
Keypoints that withstood scale filtering are used to determine the trans-

formation parameters which map the object model to a location in the test

image. The correspondences between model and detected keypoints are pro-

cessed by MLESAC [34], a method for robustly estimating multiple view rela-

tions from point correspondences. The result is a subset of correspondences,

i.e., M ′ ⊆ M and K ′ ⊆ K, from which the best transformation parameters

can be estimated, resulting in a transformation T : M ′ → K ′ which maps

the object model to a location in the image. Using this transformation the

object bounding-box B is mapped to the test image, bounding a fragment

of the test image on which the object of interest is hypothetically located. A

good practice is to check for possible skewing of the transformed bounding-

box B′, check whether B′ falls within the test image borders, and whether

the point w′, transformed by T , falls within B′. If these requirements are

not met, the set of keypoints is considered to be a noisy set, meaning that
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the hypothesis is rejected and a new hypothesis is verified. Additional steps

toward refining the mapped bounding-box B′ include verifying whether all

the detected keypoints in the set K ′ are located within B′, which is a reason-

able assumption since the bounding-box bounds the object and all keypoints

located on the object. If a detected keypoint k̂i ∈ K ′ lies outside of B′, then

this keypoint is considered not to be located on the object. The detected

keypoint k̂i and the associated model keypoint m̂i are removed from the

sets K and M , yielding new subsets K ′′ ⊂ K ′ and M ′′ ⊂ M ′. From these

matches a new transformation T : M ′′ → K ′′ is computed which maps the

object bounding-boxB to a more refined bounding-boxB′ on the test image.

The whole process, dubbed iterative bounding-box estimation and illustrated

by pseudo Algorithm 3, is repeated until the set of keypoints located within

B′ stops changing.

Algorithm 3 Iterative bounding-box estimation

1: M ← set of model keypoints

2: K ← set of detected keypoints

3: repeat

4: M ′,K ′ ← MLESAC(M,K)

5: T : M ′ → K ′

6: B′ ← B · T
7: w′ ← w · T
8: if B′ strongly skewed then

9: break

10: end if

11: if w′ not within B′ then

12: break

13: end if

14: if ∃ ki ∈ K such that ki /∈ B′ then

15: K ← {ki | ki ∈ K ; ki ∈ B′}
16: M ← {mi | mi ∈M ; mi → ki}
17: end if

18: until size of K stops changing
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5.3.2 Detection verification

The final estimated bounding-box B′ bounds a fragment of the test image

on which the object of interest is hypothetically located. A final verification

step is undertaken in order to verify that the detected region corresponds to

the object of interest. The detected region in the test image is transformed

to an intensity template J of size n×n pixels. The detected object intensity

template J and the model object intensity template I are compared using

the normalized cross-correlation.

The normalized cross-correlation is used since the brightness of the bound

fragment on the test image can vary due to lighting and exposure conditions,

compared to the object template image. The normalization is performed by

subtracting the mean value of each template and dividing by the standard

deviation of both templates, i.e.,

ncc(J, I) =
1

n

n
x,y

(J(x, y)− J̄)(I(x, y)− Ī)

σJσI

,

J̄ =
1

n

n
x,y

J(x, y),

σJ =

 1

n

n
x,y

(J(x, y)− J̄)2,

where n denotes the number of pixels in J , J̄ the mean value of J and σJ the

standard deviation of J . If the final matching score exceeds a threshold τncc,

the object location hypothesis passes the verification test yielding a detected

object in the test image, otherwise the hypothesis is rejected.
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Chapter 6

Experimental evaluation

The aim of the proposed keypoint constellation model is that, for a given

object and test image, filter out detected features in the test image that do

not correspond to features located on the object of interest. The proposed

constellation model is designed to merely enhance basic feature-based object

detection methods, since constellations are computed and utilized ”on top”

of extracted features. Considering that the proposed similarity threshold

in [11] does not always prove efficient, the experimental evaluation consists

of comparing the detection performance of six different models, summarized

in Table 6.1.

6.1 Implementation details

The experimental evaluation is conducted as follows. For each object class in

the dataset, a model is constructed from a single planar training image. For

a given object class and a given test image, the object location in the image

is determined by utilizing the corresponding model. Features are extracted

from the test image and matched to features in the model representation.

Non-discriminative features are filtered out by six different approaches. Fea-

tures that withstood the filtering process are used to determine the object lo-

cation in the test image in a cascade of keypoint filtering, iterative bounding-

51
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box estimation and detection verification steps. The following variations of

feature-based object models where tested:

B denoting a model consisting of SIFT features and the object detection

algorithm without the use of the similarity threshold.

Bτ denoting a model consisting of SIFT features and the object detection

algorithm with the use of the similarity threshold.

CE denoting a model consisting of SIFT features, encoded constellations

with empirically modelled variance and the object detection algorithm

with constellation filtering and without the use of the similarity thresh-

old.

CEτ a model consisting of SIFT features, encoded constellations with em-

pirically modelled variance and the object detection algorithm with

constellation filtering and with the use of the similarity threshold.

CN denoting a model consisting of SIFT features, encoded constellations

with numerically modelled variance and the object detection algorithm

with constellation filtering and without the use of the similarity thresh-

old.

CNτ denoting a model consisting of SIFT features, encoded constellations

with numerically modelled variance and the object detection algorithm

with constellation filtering and with the use of the similarity threshold.

For convenience, the tested models are summarized in Table 6.1.

6.1.1 Parameters

All parameters used in the experimental evaluation are listed in Table 6.2

for convenience. The SIFT algorithm parameters are constant throughout

the experiment. The implementation used is the evaluation is the OpenCV 1

1http://opencv.org/

http://opencv.org/
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Table 6.1: Tested models.

Model notation Similarity threshold Empiric variance Numeric variance

B × × ×
Bτ ✓ × ×
CE × ✓ ×
CEτ ✓ ✓ ×
CN × × ✓

CNτ ✓ × ✓

based VLFeat 2 implementation of the SIFT. During the model construction

process, training images are resized to a fixed size by setting the longest axis

to 300 pixels, i.e., Imax = 300. The accumulator array is set to a fixed size by

setting the longest side of the accumulator to Amax = 50 pixels, relative to the

longest side of the test image. All accumulator values are normalized and the

threshold τGHT is set to 0.1, meaning that cells which accumulated less than

10% of the highest scoring cell are suppressed. During the model construction

process the value of the τdst parameter, in the ϵ region determination around

a given keypoint, is set to 0.02. During model construction, the multivariate

normal distribution confidence interval for the constellation consolidation

process is set to 0.68, i.e., σ ≈ 1. The confidence interval for the detection

algorithm during keypoint filtering by constellation matching is set to 0.98,

i.e., σ ≈ 2.5.

6.2 Performance evaluation

The performance of the models was evaluated on the challenging real-world

dataset FlickrLogos-32, described in Section 6.2.1. A description of the per-

formance measures used in the evaluation is given in Section 6.2.2.

2http://www.vlfeat.org/

http://www.vlfeat.org/
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Table 6.2: Experimental evaluation parameters.

Name Value Description

τextrema 0.03 SIFT extrema point threshold

FirstOctave -1 SIFT index of the first octave of the DoG scale space

PeakThresh 5 SIFT peak selection threshold

EdgeThresh 10 SIFT non-edge selection threshold

NormThresh 0 SIFT minimum descriptor L2-norm before normalization

n 4 MLESAC minimum number of required data points

w 0.4 MLESAC fraction of correctly matched data points

α 0.95 MLESAC probability of inliers

N 100 MLESAC approximate number of required iterations

τinliers 1 MLESAC inlier error threshold

Imax 300 pixels Model construction training image maximal axis size

τdst 0.02 Model construction ϵ region determination value

p1 0.68 (σ ≈ 1) Model construction MND confidence interval

p2 0.98 (σ ≈ 2.5) Detection algorithm MND confidence interval

Amax 50 pixels GHT accumulator array maximal axis size

τGHT 0.1 GHT accumulator array threshold

τncc 0.5 Normalized cross-correlation threshold

τpvoc 0.5 Pascal VOC overlap threshold

6.2.1 The FlickrLogos-32 dataset

In order to assure a realistic evaluation of object detection methods, authors

in [28] published a large dataset 3, dubbed FlickrLogos-32, depicting logo-

types in real-world environments. A brief visual summary of the dataset

is depicted in Figure 6.1. The challenging dataset consists of 32 classes of

logotypes obtained from the Flickr website, whereby all logotypes have an ap-

proximately planar surface. For each logotype class, 70 images containing at

least one instance of the class are available. The whole dataset thus consists

of 2240 logotype images, with the maximal image axis fixed at 1024 pixels.

The 32 logotype classes are: Adidas, Aldi, Apple, Becks, BMW, Carlsberg,

Chimay, Coca-Cola, Corona, DHL, Esso, Erdinger, Fedex, Ferrari, Ford, Fos-

3http://www.multimedia-computing.de/flickrlogos

http://www.multimedia-computing.de/flickrlogos
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Figure 6.1: Visual summary of all 32 classes, as provided by [28].

ter’s, Google, Guiness, Heineken, HP, Milka, Nvidia, Paulaner, Pepsi, Ritter

Sport, Shell, Singha, Starbucks, Stella Artois, Texaco, Tsingtao and UPS.

Additionally, a set of images containing no logotype class is provided. How-

ever, this set is left out from the experimental evaluation since our aim is to

verify the affect of constellations of keypoints on object detection in terms

of noise reduction and detection performance.

Although the dataset contains depictions of logotypes, these can be con-

sidered as rigid 2D objects with an approximately planar surface. The chal-

lenge in the dataset arises from the great variance of object sizes, from tiny

logos in the background to image-filling views, perspective deformation and

images containing multiple object instances. Given the good quality of the

images in the dataset from which a sufficient amount of information can be

extracted, the dataset is suitable for the evaluation of keypoint based object

detection methods.
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6.2.2 Performance measures

Detection performance of the object detection algorithm utilizing a given

model is evaluated based on the overlap area of two annotations, i.e., D,

denoting the detected region in a test image, and G, denoting the ground-

truth annotation in the dataset. Detections are verified using the Pascal VOC

overlap [35] measure, defined as the fraction of the intersection between two

bounding boxes and their union, i.e.,

score =
area(D ∩G)

area(D ∪G)
.

If the computed score exceeds the threshold τpvoc = 0.5, the detection of the

object is considered to be successful, otherwise the detection is considered to

be unsuccessful. The performance is evaluated based on the precision, recall

and F-measure values, where:

• Precision denotes the fraction of retrieved instances that are relevant,

• Recall denotes the fraction of relevant instances that are retrieved,

• F -measure denotes the harmonic mean of precision and recall, i.e.,

F -measure = 2
Precision · Recall
Precision + Recall

.

6.3 Results

Figure 6.2 depicts the total number of generated hypothesis, i.e., Htotal and

the number of hypothesis exceeding the threshold τGHT , i.e., HτGHT
, per

tested model. The proposed constellation models CE, CEτ , CN and CNτ signif-

icantly reduce Htotal and HτGHT
when compared to the basic models B and

Bτ . The same trend is visible in Figure 6.3, which depicts the average num-

ber of generated hypothesis, i.e., µtotal and the average number of hypothesis

exceeding the threshold τGHT , i.e., µτGHT
.
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Figure 6.2: The total number of generated object location hypothesis Htotal

vs. the number of generated hypothesis exceeding the threshold τGHT , i.e.,

HτGHT
. The proposed constellation models exhibit a significantly smaller

number of generated hypothesis and hypothesis which need to be verified in

case with and without the similarity threshold.
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Figure 6.3: The mean of the total number of generated object location hy-

pothesis µtotal vs. the mean of the number of generated hypothesis exceeding

the threshold τGHT , i.e., µτGHT
. The proposed constellation models exhibit a

significantly smaller average number of generated hypothesis and hypothesis

which need to be verified in case with and without the similarity threshold.
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Table 6.3 gives Htotal and HτGHT
per dataset class. In general, the pro-

posed constellation models produce a significantly lower number of hypothe-

sis which need to be verified. A significant decrease in the number of gener-

ated hypothesis is visible for the object class apple. This is because the apple

logotype is a textureless object, meaning that very little, if any, features that

describe the object can be extracted. The generated hypothesis are thus

mostly noisy object location hypothesis. However, for logotypes from which

enough information was extracted, such as ups, Htotal is significantly reduced,

e.g., for the given object class from 15407 to 3552 and in the case of HτGHT

from 6254 to 1865. In general, this trend is visible throughout all object

classes.

Although the proposed constellation models significantly reduce the num-

ber of hypothesis Htotal and HτGHT
, the occurring question is how detection

performance is affected. Figure 6.4 depicts the Precision-Recall curves for

the tested models. In general, there is no noticeable difference in the per-

formance of the models, implying that the proposed constellation models

do not affect detection performance significantly. This in turn implies that

the proposed constellation models merely reduce the number of noisy object

location hypothesis. The same trend is visible in Figure 6.5, depicting the

F -measure for each model with respect to the varying threshold τncc.

Detection performance for each object class with respect to each tested

model is given in Table 6.4. For most object classes, poor performance is vis-

ible with precision and recall values equal to zero, meaning that no instances

of those objects were detected. In general this has to do with the strong intra-

object-class variations of the logotype classes, which in some cases represent

extremely hard detection tasks. Some of these challenging variations can be

viewed in the visual summary of the dataset in Figure 6.1. Given that our

model is trained from a single planar training image, for a given object class,

this additionally increases the difficulty of distinguishing between stronger

intra-object-class variations. However, in general the performance between

models is more or less coherent, as visible Figure 6.4. Although cases where
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the basic model slightly outperforms the constellation models can be found

for objects such as aldi and google, cases where the constellation model out-

performs the basic model can also be found for objects such as milka and

dhl.

Figure 6.6 depicts an example of the detection performance for all tested

models for a test image of the object class milka. The constellation models

potential, in the case of CE, is clearly visible, since it is able to detect logo-

types in the upper left, and bottom right corners where the basic model fails,

due to to presence of significant noise in the case of B, and due to lack of

information in the case of Bτ . A similar trend is depicted in Figure 6.7 and

Figure 6.8 for the object classes shell and esso. The basic model is unable to

detect all logotypes, due to presence of significant noise in the case of B, and
due to lack of information in the case of Bτ . The constellation models CE
and CN , however, are able to detect all logotypes. The filtering capabilities of
the constellation models are depicted in Figure 6.9 and Figure 6.10. In both

cases, the constellation model filters out a significant amount of keypoints,

which are not located on the object of interest, and reduces the presence

of noise in the accumulator array. A slight improvement in the detection

accuracy is also visible, where the bounding-boxes, which bound the object

of interest are more refined in the case of the constellation model.

A drawback of the constellation model is a degraded performance in cases

of significant object deformations. In contrast to the basic feature model, the

allowed deformation of the constellation model is restricted by the encoded

geometry, whereas the unconstrained basic model allows for a higher degree

of deformation. These shortcomings can be observed in Figure 6.11 and

Figure 6.12. In the first case, two dhl logotypes are present in the test image.

The logotype on the front of the delivery truck is slightly deformed, whereas

the logotype on the side is subjected to a higher degree of deformation. The

basic models are more or less able to detect both logotypes, whereas the

constellation models fail to detect the logotype, located on the side of the

delivery truck. A similar case is visible in Figure 6.12, depicting the ford
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Figure 6.4: Performance evaluation of the tested models in terms of the

Precision-Recall curve. The performance of the models does not differ sig-

nificantly, meaning that the proposed constellation models do not affect de-

tection performance significantly.

logotype at a stronger deformation. In both cases, the constellation models

fail to detect objects at large perspective deformations. This is due to the

encoded geometry restrictions, which do not allow for large deformations of

keypoint locations, other than those that where modelled in process of model

construction.
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Figure 6.5: F -measure with respect to the normalized cross-correlation

threshold τncc. The F -measure of the tested models does not differ signifi-

cantly, implying that the proposed constellation models do not affect detec-

tion performance significantly.



6.3.
R
E
S
U
L
T
S

63

Table 6.3: Number of generated object location hypothesis. Htotal denotes the total number of generated hypothesis and HτGHT
the

number of generated hypothesis exceeding τGHT . Shaded columns represent tested models without the use of the similarity threshold.

Htotal HτGHT

B Bτ CE CEτ CN CNτ B Bτ CE CEτ CN CNτ
adidas 15316 11353 6189 1530 8357 1781 9064 8445 4750 1258 6100 1500

aldi 15297 13962 5601 1176 9212 1669 5545 4805 1992 570 3375 786

apple 7204 3866 84 8 1861 76 5377 3776 84 8 1861 76

becks 15186 13740 7675 2216 9972 2617 4572 3002 1429 722 2052 768

bmw 13773 6337 2318 871 3603 847 8862 5090 2051 773 3161 758

carlsberg 13524 14075 8074 2054 11330 2618 4821 3447 2048 493 3071 660

chimay 13986 12488 7951 2131 10236 2300 4661 2608 1409 468 1767 539

cocacola 16863 11120 3923 1253 5211 1272 8849 4972 2203 774 2765 788

corona 15610 12692 7655 2608 10323 2958 4268 2685 1449 795 2002 885

dhl 13534 11842 7745 962 10365 1102 6230 6574 4406 729 5950 821

erdinger 14110 13436 9385 3803 9962 3361 3381 2072 1351 897 1468 860

esso 11849 14855 7178 1246 10470 1210 4828 6682 2802 628 3624 629

fedex 17253 7974 4158 1459 5869 1466 9092 3465 1859 740 2478 724

ferrari 14141 7688 2611 1272 3218 1383 5070 3728 1526 822 1688 828

ford 12682 8623 2986 737 4316 903 5040 4004 2012 469 2864 534

fosters 13071 14074 10069 1716 11780 1948 5915 6076 3087 1002 3540 1133

google 13089 8691 4112 1255 5528 1348 5094 3793 2086 596 2948 610

guiness 15330 12120 4678 1589 6974 1823 3872 3483 1715 615 2346 846

heineken 14787 15821 10330 3197 12066 3674 5040 3262 1639 654 2049 647

hp 10997 8456 3074 700 5503 778 3960 4663 2117 528 3371 567

milka 12569 13740 6493 1611 10657 2552 5397 5238 3087 908 4997 1383

nvidia 10608 10377 6148 239 8929 501 5130 7273 3875 166 4737 376

paulaner 13562 14377 9090 2776 10658 3020 2760 1746 930 465 1023 509

pepsi 15545 15869 7545 577 9863 627 8718 13892 6634 465 9105 498

rittersport 15479 14332 9039 3657 11226 3755 3991 2570 1506 681 1846 699

shell 11962 13109 5541 1255 8988 2050 4812 6475 2769 1040 4385 1692

singha 14240 14763 6913 1593 9613 1988 5335 4426 2570 731 3327 881

starbucks 15405 12868 6020 2278 7646 2343 1143 725 438 272 534 307

stellaartois 15631 13787 7750 2855 9448 3024 3241 1364 810 580 1143 607

texaco 15161 13617 7856 2194 9548 2344 6150 4542 2428 878 3007 912

tsingtao 15736 13774 8182 1772 9806 1981 5409 3567 2468 558 2911 598

ups 15407 12086 3552 520 6258 805 6254 4680 1865 329 3024 483

Σ 448907 385912 199925 53110 268796 60124 171881 143130 71395 20614 98519 23904

µ 14028 12060 6248 1660 8400 1879 5371 4473 2231 644 3079 747

σ 2015 2898 2499 935 2728 954 1871 2450 1293 255 1710 326
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Table 6.4: Detection performance for each object class in terms of precision, recall and F -measure. Shaded columns represent tested

models without the use of the similarity threshold.

Precision Recall F-score

B Bτ CE CEτ CN CNτ B Bτ CE CEτ CN CNτ B Bτ CE CEτ CN CNτ
adidas 0.000 0.000 0.032 0.000 0.061 0.000 0.000 0.000 0.008 0.000 0.017 0.000 0.000 0.000 0.013 0.000 0.026 0.000

aldi 1.000 0.979 0.970 0.971 0.914 0.971 0.415 0.434 0.302 0.311 0.302 0.311 0.587 0.601 0.460 0.471 0.454 0.471

apple 0.750 1.000 0.000 0.000 0.000 0.000 0.039 0.066 0.000 0.000 0.000 0.000 0.075 0.123 0.000 0.000 0.000 0.000

becks 0.073 0.050 0.081 0.083 0.079 0.057 0.030 0.020 0.030 0.030 0.030 0.020 0.043 0.029 0.044 0.044 0.043 0.030

bmw 0.917 0.917 0.938 0.929 0.933 1.000 0.149 0.149 0.203 0.176 0.189 0.176 0.256 0.256 0.333 0.295 0.315 0.299

carlsberg 0.170 0.176 0.212 0.192 0.160 0.184 0.074 0.083 0.102 0.093 0.074 0.083 0.103 0.113 0.137 0.125 0.101 0.115

chimay 0.077 0.121 0.136 0.121 0.106 0.081 0.036 0.063 0.080 0.071 0.063 0.045 0.049 0.082 0.101 0.090 0.079 0.057

cocacola 0.947 1.000 0.922 0.939 0.946 0.924 0.554 0.577 0.454 0.477 0.538 0.469 0.699 0.732 0.608 0.633 0.686 0.622

corona 0.044 0.024 0.050 0.031 0.050 0.029 0.024 0.012 0.024 0.012 0.024 0.012 0.031 0.016 0.033 0.017 0.033 0.017

dhl 0.860 0.887 0.870 0.944 0.820 0.857 0.350 0.382 0.325 0.276 0.333 0.293 0.497 0.534 0.473 0.428 0.474 0.436

erdinger 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

esso 1.000 1.000 1.000 1.000 1.000 1.000 0.391 0.356 0.402 0.391 0.425 0.368 0.562 0.525 0.574 0.562 0.597 0.538

fedex 0.855 0.980 0.920 0.938 0.959 0.956 0.500 0.511 0.489 0.479 0.500 0.457 0.631 0.671 0.639 0.634 0.657 0.619

ferrari 0.778 0.750 0.697 0.818 0.677 0.864 0.384 0.370 0.315 0.247 0.288 0.260 0.514 0.495 0.434 0.379 0.404 0.400

ford 1.000 1.000 0.929 1.000 0.929 1.000 0.197 0.250 0.171 0.184 0.171 0.197 0.330 0.400 0.289 0.311 0.289 0.330

fosters 0.300 0.372 0.339 0.400 0.339 0.344 0.184 0.163 0.204 0.122 0.204 0.112 0.228 0.227 0.255 0.188 0.255 0.169

google 0.953 0.938 0.935 0.956 0.956 0.957 0.494 0.542 0.518 0.518 0.518 0.530 0.651 0.687 0.667 0.672 0.672 0.682

guiness 0.892 0.895 0.811 0.914 0.795 0.912 0.337 0.347 0.306 0.327 0.316 0.316 0.489 0.500 0.444 0.481 0.453 0.470

heineken 1.000 0.500 0.500 1.000 0.500 1.000 0.010 0.010 0.010 0.010 0.010 0.010 0.019 0.019 0.019 0.019 0.019 0.019

hp 0.923 0.935 0.906 0.900 0.933 0.966 0.214 0.259 0.259 0.241 0.250 0.250 0.348 0.406 0.403 0.380 0.394 0.397

milka 0.675 0.689 0.701 0.756 0.689 0.740 0.431 0.528 0.523 0.487 0.518 0.477 0.526 0.598 0.599 0.593 0.591 0.580

nvidia 0.100 0.167 0.071 0.143 0.167 0.143 0.009 0.009 0.009 0.009 0.018 0.009 0.016 0.017 0.016 0.017 0.032 0.017

paulaner 0.614 0.623 0.561 0.574 0.596 0.596 0.343 0.373 0.314 0.304 0.304 0.304 0.440 0.466 0.403 0.397 0.403 0.403

pepsi 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

rittersport 0.841 0.827 0.825 0.843 0.837 0.851 0.520 0.539 0.510 0.500 0.505 0.505 0.642 0.653 0.630 0.628 0.630 0.634

shell 0.946 0.921 0.850 1.000 0.861 1.000 0.365 0.365 0.354 0.198 0.323 0.229 0.526 0.522 0.500 0.330 0.470 0.373

singha 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

starbucks 1.000 1.000 1.000 1.000 1.000 1.000 0.326 0.305 0.295 0.295 0.305 0.295 0.492 0.468 0.455 0.455 0.468 0.455

stellaartois 0.957 0.905 0.947 0.950 0.905 0.950 0.253 0.218 0.207 0.218 0.218 0.218 0.400 0.352 0.340 0.355 0.352 0.355

texaco 0.625 0.421 0.500 0.588 0.647 0.529 0.114 0.091 0.125 0.114 0.125 0.102 0.192 0.150 0.200 0.190 0.210 0.171

tsingtao 0.833 0.571 0.714 0.667 0.833 0.667 0.046 0.037 0.046 0.037 0.046 0.037 0.087 0.069 0.086 0.070 0.087 0.070

ups 0.959 0.980 0.977 0.976 0.977 0.930 0.522 0.533 0.478 0.456 0.467 0.444 0.676 0.691 0.642 0.621 0.632 0.602

µ 0.628 0.613 0.575 0.614 0.583 0.610 0.228 0.237 0.221 0.206 0.221 0.204 0.316 0.325 0.306 0.293 0.307 0.292

σ 0.394 0.392 0.388 0.407 0.387 0.413 0.193 0.203 0.183 0.179 0.187 0.179 0.251 0.260 0.240 0.238 0.244 0.239
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Figure 6.6: Results on image Milka 4733039798.jpg. The potential of the constellation

models, in the case of CE , is clearly visible, since it is able to detect logotypes in the upper

left, and bottom right corners where the basic model fails, due to to presence of significant

noise in the case of B, and due to lack of information in the case of Bτ .
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Figure 6.7: Results on image Shell 2178487983.jpg. Constellation models CE and CN ,

even without the use of the similarity threshold, substantially reduce the amount of noisy

keypoints, i.e., accumulator array noise, when compared to basic model B and even Bτ ,
with the use of the similarity threshold. Additionally, only the constellation models are

able to detect all logotypes in the test image.
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Figure 6.8: Results on image Esso 1305435891.jpg. The filtering capability of con-

stellation models CE and CN , without the use of the similarity threshold, is similar to

the performance of the basic model with the use of the similarity threshold Bτ . All three

accumulator arrays have a similar degree of noise, but only the constellation models detect

the far left object, additionally to reducing accumulator array noise.
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Figure 6.9: Results on image Milka 3244960835.jpg. Constellation models with the

use of the similarity threshold CEτ and CNτ essentially reduce the number of object location

hypothesis in the accumulator array, to the exact number of objects located in the test

image. Essentially all noise in the accumulator array gets filtered out, i.e., only keypoints

corresponding to the object of interest are left, while all other keypoints get filtered out.
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Figure 6.10: Results on image Guiness 4746900318.jpg. The potential of the constella-

tion model is visible in test images with a high degree of background clutter. Additionally

to filtering out noisy keypoints, detection accuracy is improved to some extent.
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Figure 6.11: Results on image DHL 357147293.jpg. Depiction of constellation model

shortcomings when encountering objects, subjected to stronger perspective transforma-

tions. Although constellation models address object deformations to some extent, a

strongly deformed geometry between detected keypoints will nevertheless conflict with

the encoded geometry restrictions in the model, resulting in the incapability to detect

objects under stronger transformations.
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Figure 6.12: Results on image Ford 2390642427.jpg. Depiction of a case where the

constellation models prove incapable of detecting the object of interest, since the deformed

geometry between detected keypoints conflicts with the encoded geometry restrictions in

the constellation model.
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Chapter 7

Conclusion

We deal with the problem of one-shot learning and propose a constellation

model for the construction of object models as an enhancement of basic

feature-based object detection methods. In contrast to the use of the simi-

larity threshold, the proposed constellation model aims in filtering out mis-

matched features and producing clearer object location hypothesis by the

use of pure geometry. In terms of the onte-shot learning restriction a key

advantage of the constellation model is that constellations are computed and

utilized ”on top” of detected features.

Our model exploits the unified representation of most feature extraction

methods, enabling it to work independent of the feature-detection algorithm

itself. In order to effectively exploit the spatial relations between detected

features, these need to be encoded in a matter that allows for their utilization

in the object detection process. A constellation should thus span a certain

region of an object in order to obtain a constellation with enough features to

achieve a distinctive representation of a local region, and at the same time, re-

tain global robustness to potential object occlusions and distortions. Because

of this, multiple constellations that model local object-structures are encoded

for an arbitrary object, achieving a global coverage. Another aspect is that

an encoded constellation cannot merely rigidly model the spatial relations

between features, but must allow for a certain degree of deformation within

73
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the constellations itself in order to address potential object deformations.

For this, a special model that encodes spatial relations between features and

also allows for their deformation needs to be constructed. In order to utilize

the encoded constellations, a new step needs to be implemented in the de-

tection process which is able to exploit the encoded spatial relations to the

benefit of the object detection algorithm. Ideally this leads to a reduction of

the number of regions of interest, i.e., object location hypothesis which need

verification.

In the context of one-shot learning, the proposed constellation model re-

quires a single planar training image for model construction as it implicitly

models the expected deformations of the object. Constellation model con-

struction proceeds as follows. Initially, features are extracted from a test

image depicting the object of interest. For each feature, a constellation is

obtained by encoding the spatial relations between the neighbouring features.

For each constellation, the expected variations of features are modelled in or-

der to obtain deformable constellations, which are able to address local region

deformations. The expected feature variation are modelled by two different

approaches, i.e., empirically and numerically. All constellations are encoded

in a common space, i.e., the unit space. Similar variations of features in

the unit space are merged together in order to reduce the total number of

encoded variations. Additionally, the center point of the object, the object

bounding-box and an intensity template of the object are stored in the model.

Two variations of the proposed constellation model, with empirically and

numerically modelled variance, and the basic feature model, all with and

without the similarity threshold were evaluated on the challenging real-world

dataset FlickrLogos-32 [28], depicting logotypes in real-world environments.

Overall, the proposed constellation models reduce the number of mismatched

features, without significantly affecting detection performance. The best vari-

ation of the constellation model is the constellation model with empirically

determined feature variance. By reducing the number of mismatched fea-

tures, the constellation model reduces the number of potential object location
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hypothesis which need to be verified, achieving a substantial noise reduction

compared to the similarity threshold, even in highly cluttered environments.

The solely on geometry based constellations are computed and utilized ”on

top” of detected features, so any feature extraction method whose keypoints

are represented by a center location, scale and orientation can be enhanced

with the proposed constellation model.

Although multiple different objects can be encoded in the same constel-

lation model, in practice this would not prove useful since at a certain point

constellations would lose their discriminativeness, starting to filter out less

and less noisy keypoints for a given object, as they would start accounting

for a group of otherwise different objects. A better practice would be to

firstly determine most probable objects located on a test image, for example

with a bag-of-words method, and later apply constellation models for specific

objects, most likely located on the test image.

7.1 Future work

The proposed constellation model produces a significant amount of feature

variations, which need to be verified in the constellation filtering process.

This represents a bottleneck of the constellation model, since for each de-

tected feature, matched to a feature in the constellation model, a number of

distributions need to be verified. The process of verifying whether a feature

is within a given distribution should be optimized in future work, since the

process is highly paralyzable.

The incapability of the constellation model to address stronger object

deformations, due to the encoded geometry restrictions in the model itself,

is also an opened problem which would need to be addressed in future work.

One solution could be to predetermine the relative position of an object in

a test image and accordingly ”deform” the constellation model to coarsely

fit on the relative position of the object. Another solution would be to use

multiple training images depicting stronger object deformations, since the
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constellation model is easily scaled to an arbitrary number of objects. An

analogy to the first solution would be to use the estimated transformations

between the training images and generate constellation deformations accord-

ingly.

A possible application of the proposed constellation model could be in

querying large image collections. In a given image, the constellation model

would be constructed on a marked region of interest and utilized to find

matching instances in a large collection of images.
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