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Abstract 

Soil nailing has been widely used to stabilize slopes and excavations in the last few 

decades. The soil nail as a passive inclusion particularly improves the stability of 

geotechnical engineering structures by mobilizing the axial frictional resistance in the 

passive zone. A method of evaluation of the in-soil deformation of the nail is discussed 

based on the simplified hypotheses regarding frictional properties between soil and nail 

and tensile force vs. strain relationship of nail material. By solving the derived differential 

equation based on the assumptions, distribution of relative displacement, shear stresses 

and tensile forces acting any part of the nail can be calculated. Moreover, the tensile and 

shear forces mobilized in the nail at the intersection with failure surface depending on 

relative displacements between soil and nail regarding to circular slope rotation can be 

also obtained. 

The concept and principals involved in different methods of slope stability analysis of 

slopes have been discussed. Theoretical studies have shown that a common formulation 

of the equilibrium equations can be used for all of the methods. The factor of safety has 

been derived with respect to either moment equilibrium or force equilibrium or both of 

these equations. The mathematical equations and the methodology for assessing the 

factor of safety of reinforced soil slope of any specified (chosen) slip circle by Bishop and 

Spencer methods have been given. The forces which act within a soil mass have been 

discussed. The interslice normal and shear forces which are being also considered in 

Spencer method have been described and mathematical equations given to calculate 

them for the analysis. The specified function 𝑓 (𝑥) (constant function) and applied function 

ratio indicated by ‘𝜆’ has been explained.  

An analytical code has been developed by MATLAB software to simulate a specified soil 

nail reinforced slope. This Program uses an iterative method to calculate the mobilized 

displacements along and normal to the nail at the failure surface by considering some 

assumptions regarding the variation of slope rotation angles. Consequently resisting 

forces (tensile and shear forces) developed in the nail are calculated. To analyzing the 

slope stability reinforced with nails additionally, the codes are developed using both 

Bishop and Spencer methods. Since calculating Spencer factor of safety for a reinforced 

slope needs assumptions which make this method extremely complex, further research 



works will be necessary. Therefore the factor of safety results from the Bishop method 

which includes interslice normal forces and satisfies only moment equilibrium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Nomenclature 

𝐷                   =  Diameter of the nail 

𝐸𝐼                 =  Bending stiffness of the nail  

𝑐’                   =  Effective cohesion 

𝜙’                  =  Effective angle of internal friction 

𝑘𝑠                   =  Modulus of lateral soil reaction  

𝑠                    =  Shear strength 

𝜎𝑛                   =  Normal stress 

𝜏(𝑥)               =  Shear stress 

 𝑆                   =  Tensile stiffness of the nail  

𝑊                  =  The total weight of a slice  

𝑃                   =  The total normal force on the slice base 

𝑆𝑚                  =  The shear force mobilized on the base of each slice 

𝐸                   =  The horizontal interslice normal forces 

𝑋                   =  The vertical interslice shear forces 

𝑅                   =  The radius for a circular slip surface 

𝐴                   =  The resultant external water forces 

𝜃                   =  The angle between the tangent to the center of the base of each slice and     

                         the horizontal 

𝛼                   =  The angle of nail with horizontal 

𝐹                   =  The factor of safety 

𝑇                   =  Nail tensile force for the reinforcement emerging out from the slice base 

𝐹𝑠                   =  Nail shear force mobilized at the intersection with failure surface 

𝑡𝑝                  =  Peak shear stress at the interface of soil and nail 

𝑢𝑝                 =  Soil-nail displacement causing peak shear stress 
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1 Introduction and Motivation 

Soil nailing has been widely used to stabilize slopes and excavations in the last few 

decades. The soil nail as a passive composition principally improves the stability of 

geotechnical engineering structures by mobilizing the axial frictional resistance in the 

passive zone. (Hong et al. 2012). These days, a large number of mathematical 

approaches have been developed to simulate the fundamental interaction behavior 

between soil and soil inclusions (Abramento and Whittle 1995; Madhav et al. 1998; 

Gurung and Iwao 1999; Wang and Richwien 2002; Zhou and Yin 2008). These 

relationships include different parameters, such as the mobilized soil thickness at the 

interface, the soil shear modulus, the nail dimensions and elastic modulus of the nail. The 

design methods that have been mostly used are Davis (Mitchell 1987), German (Stocker 

and Riedinger 1990), and French methods (Schlosser et al. 1992), on which the limit 

equilibrium approaches are based (Juran and Elias 1987). Newly, a kinematical limit 

equilibrium design method has been introduced by Juran (Juran et al. 1990) and Byrne 

(Byrne 1992). This method provides estimated values of maximum tensile and shear 

forces mobilized in each reinforcement. In Juran’s method, the normal stress distribution 

along the failure surface is evaluated by using Kotter’s equation (Leshchinsky 1991). 

Therefore, the method has the advantage that a force developed in each nail can be 

obtained from the horizontal force equilibrium of the slice including a nail (Kim et al.1997).  

The objective of the research reported in this thesis was to study the in-soil deformation 

behavior of nail by taking the frictional properties and stiffness of each material into 

account. Based on some simplified assumptions an analytical model is proposed to 

describe the evolution of resisting forces along the nail regarding to relative displacement 

between soil and nail in the process of the failure of a slope. The slope stability analysis 

is done by Spencer and Bishop Methods. Compared with other methods Spencer takes 

both the interslice normal and shear forces and also provide moment equilibrium and 

force equilibrium into account giving both moment and force factor of safety. The Bishop 

method includes interslice normal forces and ignores the interslice shear forces and 

satisfies only moment equilibrium. This thesis presents the Spencer and Bishop methods 

in detail, and the advantage and limitations of different methods have also been 

discussed. An analytical code has been developed to make it possible to handle the 
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complexity of formulations proposed to describe the interaction mechanism between a 

soil nail and soil in the failure process. The codes are developed using both Bishop and 

Spencer methods. Since calculating Spencer factor of safety for a reinforced slope needs 

assumptions which make this method extremely complex, further research works will be 

necessary. Therefore the factor of safety results from the Bishop method.      
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2 Literature Review 

2.1 The soil nailing technique 

Soil nailing is a creation technique for reinforcing existing ground conditions. In general 

soil is a poor structural material because it is weak in tension. In contrast, steel is strong 

in tension. The basic concept of soil nailing is the support of soil by the installation of 

closely spaced, passive, steel bars, called ‘nails’, into a slope, to increase the overall 

shear force of the soil and hence, restrain displacement. The term ‘passive’ is applied. 

‘Passive’ means that the nails are not pre-tensioned when installed and are forced to 

develop tension as the ground deforms laterally. Soil nails are used to stabilize either 

existing slopes or future slopes/cuts created by excavation activities at a site (Zhou and 

Yin 2008). 

2.2 Behavior of a soil nailed system 

A soil nailed system is recognized as a geotechnical structure, stabilized by soil nailing 

techniques, principally through the development of tensile force in the soil due to the nails. 

It can be a soil nailed slope, a soil nailed retaining wall, or a soil nailed excavation. The 

tensile forces are mobilized in the soil nails primarily through the frictional interaction 

between the soil nails and the ground, and the reactions provided by soil-nail heads/facing 

(Zhou and Yin 2008). 

Two-zone model of a soil nailed system  

Schlosser (1982) suggested a two-zone model to access the internal stability of a soil-

nailed system. This model has been used in limit equilibrium analysis in soil nailing 

design, as shown in figure 2.1. The model divides the soil nailed system into two zones 

by potential failure surface, namely the active zone and the passive zone (or resistance 

zone). The active zone is the area in front of the potential failure surface, where it has a 

tendency to separate from the soil-nailed system and pull out the reinforcements. The 

passive zone is the region behind the potential failure surface, where the area remains 

more or less stable and prevents the sliding of the system. The soil nails act to tie (or 
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fasten) the active zone to the passive zone (Juran 1985, Jewell and Pedley 1990 and 

1992, Bridle and Davies 1997). 

As shown in figure 2.1, during the slope failure, the soil nail is not only faced with tensile 

forces but also shear forces and bending moments. These loads originate as reactions to 

the slope movement before and during the slope failure. To date, the common belief is 

that soil nails work predominantly in tension, but stresses are also mobilized due to shear 

and bending at the intersection of the slip surface with the soil nails (Juran 1985, Jewell 

and Pedley 1990 and 1992, Bridle and Davies 1997). 

 

 Figure 2.1. Two-zone model of a soil nailed system (after GEO 2008) 

It should be noted that the two-zone model is only a simplification of the soil-nailed system 

for limit equilibrium analysis where the system deformation is not accounted for. In reality, 

instead of a slip surface, an irregular shearing failure zone is generally observed, as 

shown in figure 2.2. The interaction between the soil nail and surrounding soil is complex, 

and the forces developed in the soil nails are affected by many factors, Such as the nail 

features (i.e., tensile strength, shear strength and stiffness), the inclination of the soil 

nails, the soil characteristics (i.e., shear strength, saturation condition and gravel size), 

the friction between the soil nails and the soil, the size of soil-nail heads and the nature 

of the slope facing (Zhou 2008). 
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Figure 2.2. Post-failure observation of the first large-scale experimental soil nailed wall 

(Zhou 2008). 

Tensile force distribution in the soil nails 

The small displacements in a soil nailed system result in forces being mobilized in the soil 

nails. The major forces are axial tension, with bending moments and shear forces being 

of secondary importance. The tensile forces in the soil nail differ from the passive zone 

to the nail head: beginning as zero at the end of the nail, increasing to a maximum value 

in the intermediate length, and reducing to a value at the nail head. A schematic 

distribution of tensile forces in the soil nails are shown in figure 2.3. The locus of maximum 

tensile forces of soil nails and the potential failure surface of a slope are also shown in 

figure 2.3 (Zhou 2008). 
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Figure 2.3. Schematic distribution of tensile forces along soil nails (after GEO 2008) 

Gassler (1987) and Plumelle et al. (1990) reported that large bending moments take place 

in the reinforcement in place of the structure reaches collapse, at which point the 

observed displacements are large and the structure cannot be serviceable. Observed 

shear forces compared with the mobilized axial forces have been shown to be limited. In 

contrast to a consensus of concerning the mobilization and consideration of axial forces 

there is more discussion on the necessary consideration of shear forces for the design. 

There are some different suggestions regarding the stability calculations. The German 

code of practice for soil nailing, Institut fur Bautechnik (1986), Shen et al. (1981) (Davis 

method), Stocker and Reidinger (1990) and Kakurai and Hori (1990) take into account 

reinforcement axial force only. While the French design method suggested by Schlosser 

(1983) studies both shear and axial force in stability calculations, as do design methods 

proposed by Juran et al. (1990) and Bridle (1989). In other methods it is assumed that 

there is just one specific failure surface passing through the nailed structure; 

reinforcement crossing this surface is subjected to bearing stresses as a result of relative 

displacement of the soil on either side (figure 2.4). The amount of the shear force at the 

failure surface is a function of the lateral stress distribution on the reinforcement and is a 

maximum at this point. It is also considered in the above analyses that the interaction 

between the reinforcement and soil can be characterized by elastic parameters. 
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Figure 2.4. Bearing stresses acting on reinforcement on one side of a slip surface 

(Pedley 1990). 

Delmas (1987) proved that including the reinforcement shear force in the calculation, led 

to a maximum increase in factor of safety of about 10%. Although the effect of shear force 

decreased rapidly as the density of reinforcement increased to typical quantities. (On the 

other hand investigating new nailing systems with larger diameters, other materials and 

etc.).              

According to presented data, there is no doubt about the presence of both axial and shear 

force in soil nails. However there is still a great deal of uncertainty about the magnitude 

of the shear force and its effect on the stability of nailed structures; it is for this reason 

that many designers conservatively prefer to ignore the influence of reinforcement shear 

force (Pedley 1990). 

2.3 Direct shear test 

The shear strength parameters determination is critical since they are involved in the 

slope stability evaluation, the estimation of the risk of progressive failure and the 

evaluation of the engineering properties of soil deposits in stability problems (Bishop 

1971). The ring shear apparatus and the direct shear Box permit to reach these 

parameters. Other devices (cone penetrometer, laboratory vane, plane strain and 

independent stress control ‘triaxial’, cellstriaxial apparatus) are also used (Bromhead 
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1992). At failure if stable yielding persists, the stress-strain curve is flat (Morgenstern and 

Tchalenko 1967). But for dilatant soils and soils with clay content greater than 30%, 

unstable yielding occurs requiring a negative stress increasing for a positive strain 

increment. Finally, stable yielding will be re-established at the residual strength where a 

dominant displacement discontinuity forms that can provide all further imposed 

deformation. These features are shown in figure 2.5. 

 

Figure 2.5. Typical stress-strain curve showing the stable and unstable yielding (Osano 

2009). 

Figure 2.5 describes peak and residual shear strength parameters. If shearing is 

continued after the peak point to the maximum displacement of the apparatus (for the ring 

shear), a curve of the type shown in figure 2.5 for the softening material is obtained 

(Manual of Soil Laboratory Testing 1994). At first, the shear strength decreases rapidly 

from the peak point, but finally reaches a steady state (ultimate) value, which describes 

the displacement increases. 

The shear test is the oldest, the simplest and the most respective effective stresses for 

sufficient slow test procedure to present excess pore water pressure procedure for 

measuring the shear strength of soils in terms of total stresses. It is also the easiest to 

understand, but it has some shortcomings (Manual of Soil Laboratory Testing 1994). A 

diagram of the apparatus and the shearing action is shown in figure 2.6. 
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Figure 2.6. The shear box (http://www.iitgn.ac.in/research/stl/directshear.php). 

The primary feature of the apparatus is a quadratic box, divided horizontally into two 

halves and containing a quadratic prism of soil. While a constant vertical compressive 

force is applied to the prism, the upper half of the box is subjected to an increasing 

horizontal force, therefore causing the prism to swear along the dividing plane of the box.  

Some identical specimens are tested using different vertical stresses so that a diagram 

of shearing resistance against vertical stress can be plotted. The vertical movement of 

the top surface of the specimen (volume changes) is also measured and enables changes 

in voids ratio and density during shear to be evaluated (Osano 2009). 

2.4 Modeling of nail behavior  

2.4.1 Mathematical Model of a Soil Nail Subjected to Pullout Force 

To evaluate the pullout response of a soil nail in a soil nailing system a mathematical 

model was developed, which study the behavior of a soil nail section below the potential 

sliding surface. The soil nail is idealized as an isotropic, elastic inclusion. The effect of the 

pull out in the axial direction of a soil nail leads to the shear stress of the soil-nail interface, 

which is distributed uniformly in the diametrical direction. The radial deformation of the 

soil nail induced by axial pullout force is ignored. The pullout response of a soil nail 

element in a soil mass is shown in figure 2.7. A soil nail is subjected to external load 

(Gurung 2001; Misra et al. 2004; Misra and Chen 2004), force equilibrium is satisfied 

along the axial direction of the soil nail element as follows: 
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                        [𝑇(𝑥) + 𝑑𝑇(𝑥)] − 𝑇(𝑥) −  𝜏(𝑥)𝜋𝐷[𝑑𝑢(𝑥) + 𝑑𝑥] = 0                            

(1) 

where 𝑇(𝑥) and 𝑇(𝑥) + 𝑑𝑇(𝑥) = pullout forces at the two ends of the soil nail element 

(Figure 2.7); 𝑑𝑥 and 𝑑𝑢(𝑥) = length of nail element and the related length change caused 

by pullout force, respectively; and 𝜏(𝑥) = relevant pullout shear stress of the nail-soil 

interface. The preceding equation can be simplified as  

𝑑𝑇(𝑥)

𝑑𝑥
− 𝜏(𝑥)𝜋𝐷 [

𝑑𝑢(𝑥)

𝑑𝑥
+ 1] = 0 

(2) 

The strain of the nail element can be written in terms of the axial pullout force and is given 

as   

𝜀(𝑥) =
𝑇(𝑥)

𝐸𝐴
=
𝑑𝑢(𝑥)

𝑑𝑥
  

(3) 

Combining Eqs. (2) and (3) yields  

𝐸𝐴
𝑑𝑢2(𝑥)

𝑑𝑥2
−  𝜏(𝑥)𝜋𝐷[1 + 𝜀(𝑥)] = 0 

(4) 

Because the pullout strain 𝜀(𝑥) is generally very small, Eq. (4) is approximated as  

𝐸𝐴
𝑑𝑢2(𝑥)

𝑑𝑥2
−  𝜏(𝑥)𝜋𝐷 = 0 

(5) 
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Figure 2.7. A schematic view of a soil nail element subjected to a pull out force in soil 

mass (modified from Mitachi et al. 1992). 

A simple ideal load transfer model describing the relation between the shear stress 𝜏(𝑥) 

and pullout displacement 𝑢(𝑥) of the nail-soil interface at a distance of 𝑥 from the nail tip 

is utilized (Guo 2001; Misra and Chen 2004), as shown in figure 2.8. The defined stiffness 

factor 𝑘 may be taken from direct shear tests. 

                                     𝜏 = 𝑘𝑢                        (u ≤  up)                                             (6-1) 

                                      𝜏 = 𝜏𝑝                         (u >  up)                                              (6-2) 

                                                       𝑘 =
𝜏𝑝
𝑢𝑝

 

(6-3) 

 

Figure 2.8. Load transfer model at the soil-nail interface during pullout of a nail (Hong et 

al. 2012). 

In this model the shear stress of the nail-soil interface changes linearly with shear 

displacement in the elastic phase, but after the ultimate shear stress of the interface is 

approached, the shear stress becomes constant (Hong et al. 2012). 

2.4.2 Tensile force 

Soil nails as the passive inclusions require a soil displacement which leads to mobilize 

the resisting forces in the nails. Consequently, it is important to measure the frictional 

properties between soil and nails. The solution for tensile stresses developed in nails was 
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derived from the following assumption that has been proposed by Mitachi et al. (1992) in 

calculating the soil behavior of geo-grids. 

The figure 2.8 shows the assumed frictional property at the interface. Combining 

equations of force equilibrium in the soil-nail system Eq. (5) with the frictional behavior 

Eqs. (6-1) and (6-2), the following differential equations are obtained.   

𝑑²𝑢

𝑑𝑥²
=
𝐷𝜋𝑘

𝑆
𝑢              ( 𝑢 ≤ 𝑢𝑝) 

(7-1)  

𝑑²𝑢

𝑑𝑥²
=
𝐷𝜋𝜏𝑝
𝑆

              ( 𝑢 > 𝑢𝑝) 

(7-2) 

Where  𝑆 = tensile stiffness of the nail (=  𝐸𝐴), 𝑢 =  displacement between soil and nail 

in the direction of the nail length axis, 𝐷 = diameter of the nail, and 𝑢𝑝  = displacement 

mobilizing peak shear stress at the interface of soil and nail (Kim et al. 1997). 

Distribution of relative displacement, frictional stress and tensile force developed 

in the nail 

By solving Eq. (7) with boundary conditions, the distribution of relative displacement, 

frictional stress and tensile force developed in the nail are determined. According to the 

magnitude of the mobilized displacement, two different cases should be separately 

considered. All parameters which are used in the following equations are shown in figure 

2.9. 
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Figure 2.9. Relative displacements and resisting forces mobilized in the nail.  

(1) For case I: 𝑢𝑡 <  𝑢𝑝 at  𝑋 =  𝐿(BC’s: 𝜀 =  0 at 𝑋 =  0 & 𝑢 =  𝑢𝑡  at 𝑋 =  𝐿) 

In this case, the magnitude of the mobilized displacement at the assumed failure surface 

is less than the magnitude of displacements causing peak shear stress at the interface of 

soil and nail. 

The function satisfying Eq. (7-1) is as follows. 

                                                   𝑢 = 𝑐1𝑒
𝑎𝑥 + 𝑐2𝑒

−𝑎𝑥                                                  (8) 

Where, 𝑐1 and 𝑐2 are integral constants and 𝑎 = √𝐷𝜋𝑘 𝐸𝐴⁄   

Derivative of Eq. (8):  

𝑑𝑢

𝑑𝑥
= 𝑐1𝑎𝑒

𝑎𝑥−𝑐2𝑎𝑒
−𝑎𝑥 

(9) 

By putting the boundary condition (𝑥 = 0 ∶  𝜀 = 𝑑𝑢 𝑑𝑥⁄ = 0 𝑎𝑛𝑑 𝑥 = 𝐿: 𝑢 = 𝑢𝑡) into Eq. (8) 

& (9), following equations are obtained: 

             @ 𝑥 = 0 ∶  𝜀 = 0                  →                   𝑐1 = 𝑐2 
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              @ 𝑥 = 𝐿 ∶  𝑢 = 𝑢𝑡        →           𝑐1 =
𝑢𝑡

2cosh (𝑎𝐿)
 

                                                  𝑢 =
𝑢𝑡

cosh (𝑎𝐿)
cosh(𝑎𝑥)                                          0 < 𝑥 ≤ 𝑥𝑝 

(10-1) 

𝜏 = 𝑘𝑢 =
𝑘𝑢𝑡

cosh (𝑎𝐿)
cosh(𝑎𝑥) 

(10-2) 

     T =  ∫ 𝐷𝜋𝜏𝑑𝑥
𝑥

0

 =
𝐷𝜋𝑘𝑢𝑡

a cosh (𝑎𝐿)
sinh (𝑎𝑥) 

(10-3) 

                @𝑥 = 𝐿:            𝑇𝑡 = 
𝐷𝜋𝑘

𝑎
tanh(𝑎𝐿) . 𝑢𝑡 = √𝐸𝐴𝐷𝜋𝑘 tanh(𝑎𝐿) . 𝑢𝑡 

(10-4) 

(2) For case II: 𝑢𝑡 ˃ 𝑢𝑝  at  𝑋 =  𝐿 (BC’s: 𝑥 = 𝑥𝑝: 𝑢 = 𝑢𝑝 𝑎𝑛𝑑 𝑇 = 𝑇0) 

The 𝑋𝑝, is the position in which the peak frictional stress starts to develop.  

The function satisfying Eq. (7-2) is as follows. 

                                                          𝑢 =  
𝐷𝜋𝜏𝑝
2𝑆

𝑥2 + 𝐴𝑥 + 𝐵                                           𝑥𝑝 < 𝑥 ≤ 𝐿 

(11) 

𝑑𝑢

𝑑𝑥
=  
𝐷𝜋𝜏𝑝
𝑆

𝑥 + 𝐴 

(12) 

Where, 𝐴 and 𝐵 are constants 

For the case 𝑥 = 𝑥𝑝 in Eq. (10-3)   

𝑇0  =  
𝐷𝜋𝑘𝑢𝑝
a 

tanh (𝑎𝑥𝑝) 

(13) 

Constant A is obtained by putting  𝑥 = 𝑥𝑝 into Eq. (12) and derivative of Eq. (10-1), in 

addition by applying (𝑥 = 𝑥𝑝: 𝑢 = 𝑢𝑝 ) to Eq. (11), constant 𝐵 is determined and following 

equations can be achieved. 



15 | P a g e  
 

    𝑢 =
𝐷𝜋𝜏𝑝
2𝑆

(𝑥 − 𝑥𝑝)
2
+ 𝑎 𝑢𝑝 tanh (𝑎𝑥𝑝)(𝑥 − 𝑥𝑝) + 𝑢𝑝                             𝑥𝑝 < 𝑥 ≤ 𝐿 

(14) 

Combining Eq. (13) with Eq. (14) we obtain  

  𝑢 =
𝐷𝜋𝜏𝑝
2𝑆

(𝑥 − 𝑥𝑝)
2
+
𝑇0
𝑆
(𝑥 − 𝑥𝑝) + 𝑢𝑝 

(15-1) 

𝑇 = 𝑇0 +∫ 𝐷𝜋𝜏𝑝𝑑𝑥 = 𝑇₀ + 𝐷𝜋𝜏𝑝(𝑥 − 𝑥𝑝)
𝑥

𝑥𝑝

 

(15-2) 

The tensile force developed at 𝑥 =  𝐿 can be obtained as follows. 

𝑇𝑡 = √𝐸𝐴𝐷𝜋𝑘 tanh(𝑎𝑥𝑝) 𝑢𝑝 + 𝐷𝜋𝜏𝑝(𝐿 − 𝑥𝑝) 

(15-3) 

Thus the distribution of relative displacements, frictional stresses and tensile forces acting 

any part of reinforced soil can be obtained by suing Eqs. (10) and (15) as schematically 

in figure 2.10. 

 

 

 

 

 

Figure 2.10. Distribution of relative displacement, frictional stress and tensile force along 

the nail (Mitachi et al.1992). 
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Furthermore, the relative displacement at 𝑥 =  𝐿 can be calculated by: 

                  𝑢𝑡 – 𝑢𝑝 =
𝑇𝑡
𝐸𝐴

− ∫
𝐷𝜋𝜏𝑝𝑥

𝐸𝐴

𝑙

0

𝑑𝑥 

= 
(𝐿 − 𝑥𝑝)

𝐸𝐴
√𝐸𝐴𝐷𝜋𝑘 tanh(𝑎𝑥𝑝) 𝑢𝑝 + 

𝐷𝜋𝜏𝑝(𝐿 − 𝑥𝑝)
2

2𝐸𝐴
 

(16) 

Where 𝑙 =  𝐿 −  𝑋𝑝. Then, the value of 𝑥𝑝 can be obtained by a numerical method 

provided that the value of 𝑢𝑡 is given. 

Mitachi et al. (1992) showed that 𝑢 = 0 does not exist means that irrespective of the length 

of nail, frictional resistances acting along the entire length of nail. The axial force in the 

nail decreases toward the rear end of nail, and therefore it should be considered that the 

rear end of nail moves even if it is microscopically small. And the required embedment 

length should be determined by taking allowable rear end displacement into consideration 

(Kim et al. 1997). 

2.4.3 Shear force 

The shear stress mobilized in the soil nail is determined by considering the equation of 

an elastic bending of the inclusion. Theoretically the soil nail is considered as infinitely 

long, and then the solution for the maximum shear force (𝐹𝑠) mobilized at the intersection 

with failure surface is calculated as 

𝐹𝑠  =  2 𝐸 𝐼 𝜆
3𝑢𝑠    

(17) 

Where 𝜆 =  4√𝑘𝑠𝐷/(4𝐸𝐼), 𝑘𝑠  = modulus of lateral soil reaction, 𝐷 = diameter of the nail, 

𝐸𝐼 = bending stiffness of the nail and 𝑢𝑠  = displacement normal to the direction of nail 

length (Kim et al. 1997). 

2.5 Limit Equilibrium Slope Stability Methods 

2.5.1 Background and history 

Limit equilibrium types of analyses for evaluating the stability of slopes have been used 

in geotechnical engineering for many years.  In the 20th century the idea of discretizing a 
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potential sliding mass into vertical slices was founded and is consequently one of the 

oldest numerical analysis technique in geotechnical engineering. 

In 1916, Petterson (1955) presented the stability analysis of the Stigberg Quay in 

Gothenberg, Sweden and assumed that the slip surface is circular and the sliding mass 

was divided into slices. During the next decades, Fellenius (1936) introduced the Ordinary 

method of slices. In the mid-1950s Janbu (1954) and Bishop (1960) developed advances 

in the method. The advent of computers in the 1960s, handling the iterative procedures 

became easy which led to the mathematically more accurate formulations such as those 

developed by Morgenstern and Price (1965) and by Spencer (1967). 

Limit equilibrium formulations according to the method of slices are also being applied to 

the stability analysis of structures such as nail reinforced slopes, tie-back walls and the 

sliding stability of structures subjected to high horizontal loading arising. 

2.5.2 Method basics 

Some different solution techniques for the method of slices have been developed over 

the years. Primarily, all are very similar. The differences between the methods are which 

including and satisfying equations of statics, which including interslice forces and what is 

the assumed relationship between the interslice shear and normal forces. Figure 2.11 

shows a typical sliding mass divided into slices and the possible forces on the slice. 

Normal and shear forces act on the slice base and on the slice sides (Krahn 2012). 

 

 

 

 

 

 

 

 
 

Figure 2.11. Slice discretization and slice forces in a sliding mass (Krahn 2012). 
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The Ordinary, or Fellenius method ignored all interslice forces and satisfied only moment 

equilibrium as the first method developed. Using these simplified assumptions made it 

possible to compute a factor of safety using hand calculations. 

Later Bishop (1960) developed a method that included interslice normal forces, but 

ignored the interslice shear forces. Bishop’s Simplified method satisfies only moment 

equilibrium. This method by including the normal interslice forces proposed this fact that 

the factor of safety equation turned into nonlinear and an iterative procedure was 

necessary to calculate the factor of safety. 

The Janbu’s simplified and the Bishop’s Simplified methods are quite the same as in both 

the normal interslice forces included and the interslice shear forces ignored. The 

difference between them is that the Janbu’s Simplified method satisfies only horizontal 

force equilibrium.  

Later, computers made it possible to easily handle the iterative procedures in the limit 

equilibrium method, this lead to mathematically more accurate formulations which include 

all interslice forces and satisfy all equations of statics such as Morgenstern_Price and 

Spencer methods. 

Table 2-1 lists the methods and indicates what static equations are satisfied for each of 

the methods. Table 2-2 gives a summary of the interslice forces included and the 

assumed relations between the interslice shear and normal forces. 

Table 2-1 Equations of Statics Satisfied (Krahn 2012) 

 

 
 
 

Method Moment Equilibrium  Force Equilibrium  

Ordinary or Fellenius  Yes  No  

Bishop’s Simplified  Yes  No  

Janbu’s Simplified  No  Yes  

Spencer  Yes  Yes  

Morgenstern-Price  Yes  Yes  

Corps of Engineers – 1  No  Yes  

Corps of Engineers – 2  No  Yes  

Lowe-Karafiath  No  Yes  

Janbu Generalized  Yes (by slice)  Yes  

Sarma – vertical slices  Yes  Yes  
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Table 2-2 Interslice force characteristics and relationships (Krahn 2012) 

 
2.5.3 Definition of variables (Factor of safety) 

The factor of safety is a factor that reduces the shear strength of the soil to bring the soil 

mass into a limiting equilibrium state along the desired slip surface. 

For effective stress analysis, the shear strength is defined as: 

𝑠 =  𝑐′ + (𝜎𝑛 −  𝑢) tan𝜙′ 

(18) 

Where (all the variables are defined as in (Krahn 2012)): 

𝑠      =  Shear strength, 

𝑐’     =  Effective cohesion, 

𝜙’    =  Effective angle of internal friction, 

𝜎𝑛    =  Total normal stress, and 

𝑢     =  Pore-water pressure. 

For a total stress analysis, the resistance parameters are determined in terms of total 

stresses and pore-water pressures are not needed. 

The stability analysis includes passing a slip surface through the earth mass and dividing 

the inscribed portion into vertical slices. The slip surface may be circular, composite (i.e., 

Method 
Interslice 

Normal (E)  
Interslice 
Shear (X)  

Inclination of X/E Resultant, and 
X-E Relationship 

Ordinary or Fellenius  No  No  No interslice forces  

Bishop’s Simplified  Yes  No  Horizontal  

Janbu’s Simplified  Yes  No  Horizontal  

Spencer  Yes  Yes  Constant  

Morgenstern-Price  Yes  Yes  Variable; user function  

Corps of Engineers – 1  Yes  Yes  Inclination of a line from crest to t  

Corps of Engineers – 2  Yes  Yes  Inclination of ground surface at top 
of slice  

Lowe-Karafiath  Yes  Yes  Average of ground surface and slice 
base inclination  

Janbu Generalized  Yes  Yes  Applied line of thrust and moment 
equilibrium of slice  

Sarma – vertical slices  Yes  Yes  X = C + E tan φ  
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combination of circular and linear portions) or consist of any shape defined by a series of 

straight lines (i.e., fully specified slip surface) (Krahn 2012). 

As mentioned by Krahn (2012) the limit equilibrium formulation presume that: 

 The factor of safety of the cohesive component of strength and the frictional 

component of strength are mobilized in the same relation for all soil layers involved  

 The factor of safety is the same for all slices. 

Figure 2.12 shows all the forces acting on a circular slip surface. The variables are defined 

as follows (all the variables are defined as in Krahn (2012)): 

𝑊    =  The total weight of a slice of width 𝑏 and height ℎ. 

𝑃     =  The total normal force on the slice base. 

𝑆𝑚    =  The shear force mobilized on the base of each slice. 

𝐸     =  The horizontal interslice normal forces. Subscripts 𝐿 and 𝑅 designate the left and  

            right sides of the slice, respectively. 

𝑋     =  The vertical interslice shear forces. Subscripts 𝐿 and 𝑅 define the left and right   

            sides of the slice, respectively. 

𝑅     =  The radius for a circular slip surface. 

𝑥     =  The horizontal distance from the centerline of each slice to the center of rotation  

            or to the center of moments. 

ℎ     =  The vertical distance from the center of the base of each slice to the uppermost  

            line in the geometry (i.e., generally ground surface). 

𝑎     =  The perpendicular distance from the resultant external water force to the center  

            of rotation or to the center of moments. The 𝐿 and 𝑅 subscripts designate the left   

            and right sides of the slope, respectively. 

𝐴     =  The resultant external water forces. The 𝐿 and 𝑅 subscripts designate the left and  

            right sides of the slope, respectively. 

𝜃     =  The angle between the tangent to the center of the base of each slice and the   

            horizontal. The sign convention is as follows. When the angle slopes in the same   

            direction as the overall slope of the geometry, α is positive, and vice versa. 
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Figure 2.12. Forces acting on a slice through a sliding mass with a circular slip surface 

(Krahn 2012).  

The magnitude of the shear force mobilized to satisfy conditions of limiting equilibrium is: 

𝑆𝑚 =
𝑙 𝑆

𝐹
=
𝑙

𝐹
(𝑐′ + (𝜎𝑛 −  𝑢)𝑡𝑎𝑛𝜑

′) 

(19) 

𝜎𝑛     =
𝑃
𝑙⁄ =   Average normal stress at the base of each slice 

𝐹                  =   The factor of safety 

𝑙                   =   The base length of each slice 

The summations of forces in two directions and the summation of moments which are 

known as the elements of statics, can be used to derive the factor of safety. However, the 

elements of statics, along with failure criteria, are insufficient to solve the problem. More 

information is necessary about either the normal force distribution at the base of the slices 

or the interslice force distribution. Table 2-3 and Table 2-4 summarize the known and 

unknown quantities associated with a slope stability analysis (Krahn 2012). 
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Table 2-3 Summary of known quantities in solving for a safety factor (Krahn 2012) 

  

Table 2-4 Summary of unknown quantities in solving for a safety factor (Krahn 2012) 

 
 
Since the number of unknown quantities is more than the number of known quantities, 

the problem is indistinctive. To make the problem determinate, some assumptions 

concerning the magnitude, directions, and/or point of application of some of the forces 

must be done. The first assumption in most methods is the point of application of the 

normal force at the base of a slice that acts through the centerline of the slice. Then an 

assumption is most commonly made regarding the magnitude, direction, or point of 

application of the interslice forces. 

In overall, the various methods of slices can be classified in terms of: 

•    The statics used in determining the factor of safety equation, and 

•    The interslice force assumption used to solve the problem. 

 

Number of Known 
Quantities  

 
Description 

n  Summation of forces in the horizontal direction  

n  Summation of forces in the vertical direction  

n  Summation of moments  

n  Material Shear Failure Criterion  

4n  Total number of equations  

 

Number of Unknown 
Quantities  

Description 

n  Magnitude of the normal force at the base of a slice, N  

n  Point of application of the normal force at the base of each slice  

n - 1  Magnitude of the interslice normal forces, E  

n - 1  Magnitude of the interslice shear force, X  

n - 1  Point of application of the interslice forces   

n  Shear force on the base of each slice, Sm  

1  Factor of safety, F  

1  Value of Lambda, λ  

6n - 1  Total number of unknowns  
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General limit equilibrium method 

As it is well explained by Krahn (2012) the General Limit Equilibrium method (GLE) uses 

the following equations of statics in solving for the factor of safety: 

 To calculate the normal force at the base of the slice, 𝑁, the summation of forces 

in a vertical direction for each slice is applied. 

 To calculate the interslice normal force, 𝐸, the summation of forces in a horizontal 

direction for each slice is used. This equation is applied in an integration manner 

across the sliding mass (i.e., from left to right). 

 The summation of moments about a common point for all slices. The equation can 

be rearranged and solved for the moment equilibrium factor of safety, 𝐹𝑚. 

 The summation of forces in a horizontal direction for all slices, giving rise to a force 

equilibrium factor of safety, 𝐹𝑓. 

Since the analysis is still indeterminate, further assumption must be made concerning the 

direction of the outcome interslice forces. The direction is assumed to be characterized 

by an interslice force function. The direction along with the interslice normal force is 

utilized to compute the interslice shear force. Thereafter, the factors of safety can now be 

computed based on force equilibrium (𝐹𝑓) and moment equilibrium (𝐹𝑚). These factors of 

safety can be varied relying on the percentage (𝜆) of the force function used in the 

computation. The factor of safety providing both moment and force equilibrium is 

recognized to be the converged factor of safety of the GLE method. 

It is also feasible to specify a variety of interslice force conditions and satisfy only the 

moment or force equilibrium conditions using the same GLE approach. The assumptions 

made to the interslice forces and the selection of overall force or moment equilibrium in 

the factor of safety equations, lead to the various methods of analysis (Krahn 2012). 

Moment equilibrium factor of safety 

To obtain the moment equilibrium factor of safety equation, reference can be made to 

figure 2.12. In every case, the summation of moments for all slices can be written as 

follows: 

𝛴𝑊𝑥 −  𝛴𝑆𝑚𝑅 ±  𝛴𝐴𝑎 =  0 
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(20) 

After substituting for 𝑆𝑚 and rearranging the terms, the factor of safety with respect to 

moment equilibrium is: 

𝐹𝑚 =
∑[𝑐′𝑙 + (𝑃 − 𝑢𝑙) tan𝜙′]𝑅

∑𝑊𝑥 ± 𝐴𝑎
 

(21) 

This equation is a nonlinear equation since the normal force 𝑃 is also a function of the 

factor of safety (Krahn 2012). 

Force equilibrium factor of safety 

Again, reference can be made to figure 2.12 to derive the equation of force equilibrium 

factor of safety. The summation of forces in the horizontal direction for all slices is: 

∑(E𝐿 − E𝑅) −∑(𝑆𝑚 × cos(θ)) +∑(P × sin(θ)) ±∑𝐴 = 0 

(22) 

The term ∑(E𝐿𝑖 − E𝑅𝑖) presents the interslice normal forces and must be zero when 

summed over the entire sliding mass. After substituting for 𝑆𝑚 and rearranging the terms, 

the factor of safety with respect to horizontal force equilibrium is: 

𝐹𝑓 =
∑[𝑐′𝑙 + (𝑃 − 𝑢𝑙) tan𝜙′] cos 𝜃

∑𝑃 sin 𝜃 ± 𝐴
 

(23) 

Slice normal force at the base 

The normal force at the base of a slice is derived from the summation of forces in a vertical 

direction on each slice. 

X𝐿 − X𝑅 +W− 𝑆𝑚 × sin(θ) − P × cos(θ) = 0  

(24) 

Once again, after substituting for 𝑆𝑚 the equation for the normal force at the base of each 

slice is: 

𝑃 =
𝑊 + (X𝐿 − X𝑅) −

𝑐′𝑙 sin 𝜃
𝐹

+
𝑢𝑙 tan𝜙′ sin 𝜃

𝐹

cos 𝛼 + 
sin 𝛼 tan𝜙′

𝐹
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(25) 

The equation for the normal force is nonlinear, with the value dependent on the factor of 

safety, 𝐹. The factor of safety is equal to the moment equilibrium factor of safety, 𝐹𝑚, 

when solving for moment equilibrium, and equal to the force factor of safety, 𝐹𝑓, when 

solving for force equilibrium. 

Since the factor of safety (𝐹) and the interslice shear forces, (i.e., X𝐿 and X𝑅) are unknown, 

the base normal equation cannot be solved directly. Consequently, 𝑃 needs to be 

determined using an interactive scheme. 

To solve the factor of safety, at first the interslice shear and normal forces are ignored 

and the normal force on each slice can be calculated directly by summing forces in the 

same direction as the normal force. 

𝑃 = 𝑊 𝑐𝑜𝑠𝜃  

  (26) 

To obtain commencing values for the factor of safety calculations, we can use this 

simplified normal equation which is known as Fellenius or Ordinary method factor of 

safety. 

If we ignore the interslice shear forces, but retain the interslice normal forces, then the 

slice base normal force equation is 

𝑃 =
𝑊 −

𝑐′𝑙 sin 𝜃
𝐹

+
𝑢𝑙 tan𝜙′ sin 𝜃

𝐹

cos 𝛼 + 
sin 𝛼 tan𝜙′

𝐹

 

(27) 

If we use this equation for the base normal, Janbu Simplified factor of safety is the factor 

of safety with respect to force equilibrium. And the factor of safety according to moment 

equilibrium is the Bishop simplified factor of safety (Krahn 2012). 

Interslice forces 

The interslice forces are defined as the normal and shear forces appearing in the vertical 

faces between slices. The interslice normal forces are determined using an integration 

procedure starting at the left end of each slip surface. 

The summation of forces in a horizontal direction can be written for each slice as: 
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E𝐿 − E𝑅 − 𝑆𝑚 × cos (𝜃) + P × sin(θ) = 0 

(28) 

Substituting 𝑆𝑚 in this and then solving for the interslice normal on the right side of each 

slice gives: 

E𝑅 = E𝐿 −
(𝑐′𝑙 − 𝑢𝑙 tan𝜙′) cos 𝜃

𝐹
+ P × (sinθ −

tan𝜙′ cos 𝜃

𝐹
) = 0 

(29) 

Because the left interslice normal force of the first slice is zero (i.e., 𝐸𝐿 = 0) , the interslice 

normal force of all slices can be calculated. It is noticeable that the equation for computing 

the interslice normal force is relying on the factor of safety and it is renewed through the 

iteration process. 

Thanks to empirical equation proposed by Morgenstern and Price (1965) the interslice 

shear force can be calculated as a percentage of the interslice normal force, once the 

interslice normal force is known: 

𝑋 =  𝐸𝜆 𝑓 (𝑥) 

(30) 

where: 

𝜆           =   The percentage (in decimal form) of the function used, and 

𝑓(𝑥)     =   Interslice force function representing the relative direction of the resultant   

                 interslice force. 

Figure 2.13 shows some typical function shapes. The type of force function used in 

calculating the factor of safety is the prerogative of the user.  
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Figure 2.13. Example interslice force functions (Krahn 2012) 

Slope stability with nails 

In this section, the stability of nailed slopes is discussed with the modified equilibrium 

equations incorporating the effect of soil nails. In the present analysis not only nail tension 

is considered but also shear force of soil nails is included in the moment and force 

equilibrium formulation. Tensile and shear forces mobilized in the nail are calculated in 

previous sections. 

Bishop Method  

As mentioned earlier, method of slices with circular failure surface is employed in this 

method for analyzing stability of nailed slope. Only those nail tensile forces are considered 

in the equilibrium equations of the slices which are from the reinforcements emerging out 

of the base of the slices. Forces acting on a typical slice are presented in figure 2.14. 
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Figure 2.14 applied forces on a slice including nail tension and shear force 

Where (the variables are defined as in Krahn (2012)), 

𝑊    =  The total weight of a slice of width 𝑏 and height ℎ 

𝑃     =  The total normal force on the base of the slice 

𝑆𝑚    =  The shear force mobilized on the base of each slice. 

𝐸     =  The horizontal interslice normal forces. Subscripts 𝐿 and 𝑅 designate the left and  

            right sides of the slice, respectively. 

𝑋     =  The vertical interslice shear forces. Subscripts 𝐿 and 𝑅 define the left and right   

            sides of the slice, respectively. 

𝑅     =  The radius for a circular slip surface. 

ℎ     =  The vertical distance between the center of the base of each slice to the uppermost  

            line in the geometry (i.e., generally ground surface). 

𝑙      =  The base length of each slice. 

𝜃     =  The angle between the tangent to the center of the base of each slice and the   

            horizontal.  

𝛼     = The angle of nail with horizontal 

𝑇     =  Nail tensile force for the reinforcement emerging out from the slice base 
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𝐹𝑠     =  Shear force of nail mobilized at the intersection with failure surface 

𝐹     =  The factor of safety 

Considering overall moment equilibrium of the forces acting on each slice is given by 

∑𝑊𝑅 sin 𝜃 −∑𝑆𝑚𝑅 −∑𝑇𝑅 cos(𝛼 + 𝜃) −∑𝐹𝑠𝑅 sin(𝛼 + 𝜃) = 0 

(31) 

Replacing Eq. (19) in Eq. (31) and rearranging  

𝐹 =
∑ 𝑙𝑐′ + ∑𝑃 tan𝜙′ + 𝐹 ∑𝑇 cos(𝛼 + 𝜃) + 𝐹 ∑𝐹𝑠 sin(𝛼 + 𝜃)

∑𝑊 sin 𝜃
 

(32) 

From vertical force equilibrium of each slice 

∑𝐹𝑣 = 𝑃 cos 𝜃 + 𝐹𝑠 cos 𝛼 + 𝑆𝑚 sin 𝜃 −𝑊 − 𝑇 sin 𝛼 = 0 

(33) 

Replacing Eq. (19) in Eq. (33) and rearranging  

𝑃 =
𝑊 + 𝑇 sin 𝛼 −

𝑙
𝐹
𝑐′ sin 𝜃 − 𝐹𝑠 cos 𝛼

cos 𝜃 + 
tan𝜙 ′ sin 𝜃

𝐹

 

(34) 

Combining Eq. (32) with Eq. (34)   

𝐹 =
∑
1
𝑚𝑎

(𝑙𝑐′ cos 𝜃 + (𝑊 + 𝑇 sin 𝛼 − 𝐹𝑠 cos 𝛼) tan𝜙′ + 𝐹 ∑𝑇 cos(𝛼 + 𝜃) + 𝐹 ∑𝐹𝑠 sin(𝛼 + 𝜃)

∑𝑊 sin 𝜃
 

(35) 

Where  

𝑚𝑎 = cos𝜃 + 
tan𝜙 ′ sin𝜃

𝐹
 

(36) 

Spencer Method  

Similar assumptions are also applied in this method for calculating stability of nailed 

slopes. As mentioned earlier, the method includes all interslice forces and satisfy all 

equations of statics. Forces acting on a typical slice are the same as in Bishop Method, 

as given in figure 2.14. 
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As derived in the previous case, the normal force obtained from the vertical equilibrium 

of the slice is given by 

𝑃 =
𝑊 + 𝑇 sin 𝛼 −

𝑙
𝐹
𝑐′ sin 𝜃 − 𝐹𝑠 cos 𝛼 − 𝑋𝑅 + 𝑋𝐿

cos 𝜃 + 
tan𝜙 ′ sin 𝜃

𝐹

 

(37) 

In case of an individual slice 𝑖, the horizontal force equilibrium equation is given by 

𝐸𝑅 − 𝐸𝐿 + 𝐹𝑠 sin 𝛼 + 𝑇 cos 𝛼 − 𝑃 sin 𝜃 + 𝑆𝑚 cos 𝜃 = 0 

(38) 

The term ∑(E𝐿𝑖 − E𝑅𝑖) presents the interslice normal forces and must be zero when 

summed over the entire sliding mass. By replacing Eq. (19) in Eq. (38) and rearranging 

the equation, following factor of safety with respect to the force equilibrium may be 

obtained 

𝐹𝑓 =
∑(𝑙𝑐′ + 𝑃 tan𝜙′) cos 𝜃 + 𝐹 ∑(𝐹𝑠 sin 𝛼 + 𝑇 cos 𝛼)

∑𝑃 sin 𝜃
 

(39) 

Similar to the previous method, factor of safety with respect to moment equilibrium can 

be solved  

𝐹𝑚 =
∑(𝑙𝑐′ + 𝑃 tan𝜙′) + 𝐹 ∑𝐹𝑠 sin(𝛼 + 𝜃) + 𝐹 ∑𝑇 cos(𝛼 + 𝜃)

∑𝑊 sin 𝜃
 

(40) 
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3 Analytical Coding  

3.1 Introduction  

MATLAB is an interpreted language with dynamic, inferenced types. It is a high-level 

language with nice syntax for performing matrix operations, and has many high-

performance matrix math libraries built-in.  

This thesis proposes an analytical code programing by MATLAB software. It describes 

the evolution of resisting forces along the nail regarding to relative displacement between 

soil and nail in the process of the failure of a slope. 

The analytical code has been developed to simulate a specified soil nail reinforced slope. 

It is able to estimate values of tensile and shear forces mobilized in each reinforcement 

regarding to specified relative displacement between soil and nail by considering different 

parameters, such as the soil shear modulus, the nail dimensions and elastic modulus of 

the nail.     

The program makes it possible to analyze the slope stability reinforced with nails by using 

Bishop and Spencer Methods and finally to compare the values of factor of safeties with 

respect to different relative displacements between soil and nail.  

3.2 Definition of parameters 

At first we should specify the input parameters to define the geometry of slope and 

estimate the material parameters to calculate the key variables to obtain resisting forces 

mobilized in the nails and consequently to compute Factor of safety by using Bishop and 

Spencer methods. Parameters of the slope are presented in figure 3.1. 
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Figure 3.1. Slope parameter specifications 

Input variables are defined as follows: 

Slope parameters 

𝑝1                   =  Desired start point to draw the slope ([100,0]) 

𝑝2                   = The point which specifies toe of the slope 

𝑝3                   = The point which specifies top of the slope 

𝑝4                   = The point which specifies top of the circular slip surface 

𝑝6                   = The point which specifies center of the circular slip surface  

𝐷1                   = Horizontal distance between 𝑝2 and 𝑝1    

𝐻                     = Height of the slope 

𝑏𝑒𝑡𝑡𝑎              = Slope angle  

𝑔𝑎𝑚𝑚𝑎         = Specific weight of soil 

𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛       = Cohesion of soil 

𝑝ℎ𝑖                  = Angle of internal friction 

𝑡𝑒𝑡𝑡𝑎              = Slope rotation angel 

Nail parameters 

𝐿                      = Soil-nail length 

𝐿𝑝                   = Passive length of the nail 
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𝐷𝑠                   = Diameter of steel 

𝐷𝑐                   = Diameter of nail hole 

ℎ                      = Vertical distance of the nail head from the ground 

𝑎𝑙𝑝ℎ𝑎             = Angle of soil-nail below the horizontal 

𝐸𝑠                    = Elastic modulus of the steel 

𝑡𝑝                     = Peak shear stress at the interface of soil and nail 

𝑢𝑝                    = Soil-nail displacement causing peak shear stress 

𝐾𝑠ℎ                 = Modulus of lateral soil reaction 

𝐹𝑠ℎ𝑚𝑎𝑥        = Peak shear force 

𝑢𝑡                    = Displacement between soil and nail in the direction of nail length at the   

                        distance of 𝐿𝑝 from the nail tip  

𝑢𝐸                  = The length of the nail that is pulled out from the slope face 

Matrixes which describe the input data: 

𝑖𝑛𝑝𝑢𝑡𝑑𝑎𝑡𝑎 =  [𝐷1,𝐻, 𝑏𝑒𝑡𝑡𝑎, 𝑔𝑎𝑚𝑚𝑎, 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛, 𝑝ℎ𝑖] 

𝑛𝑎𝑖𝑙𝑑𝑎𝑡𝑎 =  [𝐿, 𝐷𝑠, 𝐷𝑐, ℎ1, ℎ2,…  ℎ𝑛, 𝑎𝑙𝑝ℎ𝑎, 𝐸𝑠, 𝑡𝑝, 𝑢𝑝, 𝐾𝑠ℎ, 𝐹𝑠ℎ𝑚𝑎𝑥] 

ℎ1 ℎ2…  ℎ𝑛 specify the vertical distances of nails’ head from the ground  

To draw a simple slope and soil-nails following terms are defined: 

Number of nails is calculated as follow  

𝑛𝑛𝑎𝑖𝑙 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛𝑎𝑖𝑙𝑑𝑎𝑡𝑎) − 9 

Where  

 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛𝑎𝑖𝑙𝑑𝑎𝑡𝑎)  refers to the number of elements of matrix 𝑛𝑎𝑖𝑙𝑑𝑎𝑡𝑎  

 Number 9 refers to the number of elements of matrix 𝑛𝑎𝑖𝑙𝑑𝑎𝑡𝑎 without ℎ1 ℎ2 …  ℎ𝑛 

𝑛𝑎𝑖𝑙𝑠 =  𝑧𝑒𝑟𝑜𝑠(𝑛𝑛𝑎𝑖𝑙, 4) 

Nails head height, passive length 𝐿𝑝, displacements 𝑢𝐸 and 𝑢𝑡 for each nails will be 

calculated and placed as the elements of matrix 𝑛𝑎𝑖𝑙𝑠 = [height, Lp, uE, ut]. Each array 

belongs to parameters of one nail.  

𝑎1 =  𝑛𝑎𝑖𝑙𝑑𝑎𝑡𝑎(1, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛𝑎𝑖𝑙𝑑𝑎𝑡𝑎) − 5) × 𝑝𝑖/180 

𝑎1 describes orientation of soil-nail below the horizontal in radian  

𝐴    =  Section area of steel nail = 𝑝𝑖 × 𝐷𝑠^2/4    

𝐼𝑠𝑡 =  Second moment area of steel nail = 𝑝𝑖/64 ∗ 𝐷𝑠^4 
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Length and width of rectangular area which contains center of circular slip surface are 

assumed as follow  

𝑙     =  Length of the rectangle =  0.4 × 𝑚𝑎𝑥(𝐻/𝑡𝑎𝑛(𝑏𝑒𝑡𝑡𝑎), 𝐻) 

𝑏    =  Width of the rectangle  = 0.6 × 𝑚𝑖𝑛(𝐻/𝑡𝑎𝑛(𝑏𝑒𝑡𝑡𝑎), 𝐻)  

Position of slope points 

In the figure 3.2 slope points are specified  

 

Figure 3.2. Slope point specifications 

𝑝1 =  [100; 0] 

𝑝2 =  [𝑝1(1) − 𝐷1; 0] 

𝑝3 =  [𝑝1(1) − (𝐷1 + 𝐻/𝑡𝑎𝑛(𝑏𝑒𝑡𝑡𝑎)); 𝐻] 

Position of nails’ points  

Matrix 𝑛𝑎𝑖𝑙𝑝 includes position of head and tip of nails 𝐵1(𝑥, 𝑦), 𝐵2(𝑥, 𝑦)  

𝑛𝑎𝑖𝑙𝑝  =  [𝐵1𝑥, 𝐵1𝑦, 𝐵2𝑥 , 𝐵2𝑦] 

      = [𝑝2(1) −
𝑛𝑎𝑖𝑙𝑠(:,1)

𝑡𝑎𝑛(𝑏𝑒𝑡𝑡𝑎)
, 𝑝2(2) + 𝑛𝑎𝑖𝑙𝑠(: ,1), 𝑝2(1) −

𝑛𝑎𝑖𝑙𝑠(:,1)

𝑡𝑎𝑛(𝑏𝑒𝑡𝑡𝑎)
−  𝐿1 ∗ 𝑐𝑜𝑠(𝑎1), 𝑝2(2) +

                   𝑛𝑎𝑖𝑙𝑠(: ,1) −  𝐿1 ∗ 𝑠𝑖𝑛(𝑎1)] 

 To specify point 𝑝5 we considered two conditions: 
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{
 
 
 

 
 
 𝑏𝑒𝑡𝑡𝑎 > 45                                 p5 = [p2(1) + 2.2; H + 0.51 ∗ min (

H

tan(betta)
, H)]          

 
 

𝑏𝑒𝑡𝑡𝑎 ≤ 45                    p5 = [p2(1) − 2.5 ∗

H
tan(betta)

6
; H + 0.5 ∗ min (

H

tan(betta)
, H)]

      

Following matrixes return to the rectangular area 

𝑝7 =  [𝑝5(1) + 𝑏; 𝑝5(2)] 

𝑝8 =  [𝑝7(1); 𝑝5(2) + 𝑙] 

𝑝9 =  [𝑝5(1); 𝑝5(2) + 𝑙] 

𝑝6 = Center point of circular slip surface =  𝑝5 + [2 ∗ (𝑏/4);  2 ∗ (𝑙/4)] 

3.3 Plotting the soil nailed slope 

To draw the slip surface we can plot a part of a circle (arc) when begin point, end point 

and center point of the circle are known. 

1. Circular slip surface radius 

𝑣 = Radius vector =  𝑝2 − 𝑝6 

𝑟 = Radius = 𝑛𝑜𝑟𝑚(𝑣) 

2. To control if the center point is placed in a proper position it means if the 

horizontal distance between center point 𝑝6 and 𝑝3 is less than the radius of slip 

surface  

𝑥 = Horizontal distance between 𝑝6 and 𝑝3 =  𝑠𝑞𝑟𝑡(𝑟^2 − (𝐻 − 𝑝6(2))^2) 

𝑥 > (𝑝6(1) − 𝑝3(1)) 

3. Drawing slip circular surface 

            𝑝4 =  [𝑝6(1) − 𝑥;𝐻] 

            𝑥1 =  𝑝4(1) 

            𝑦1 =  𝑝4(2) 

            𝑥2 =  𝑝2(1) 

            𝑦2 =  𝑝2(2) 

            𝑑 =  𝑠𝑞𝑟𝑡((𝑥2 − 𝑥1)^2 + (𝑦2 − 𝑦1)^2) 

            𝑎 =  𝑎𝑡𝑎𝑛2(−(𝑥2 − 𝑥1), (𝑦2 − 𝑦1)) 

            𝐵 =  𝑎𝑠𝑖𝑛(𝑑/2/𝑟) 
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            𝑐 =  𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑎 − 𝐵, 𝑎 + 𝐵) 

            𝑒 =  𝑠𝑞𝑟𝑡(𝑟^2 − 𝑑^2/4) 

            𝑥 =  (𝑥1 + 𝑥2)/2 − 𝑒 ∗ 𝑐𝑜𝑠(𝑎) + 𝑟 ∗ 𝑐𝑜𝑠(𝑐) 

            𝑦 =  (𝑦1 + 𝑦2)/2 − 𝑒 ∗ 𝑠𝑖𝑛(𝑎) + 𝑟 ∗ 𝑠𝑖𝑛(𝑐) 

            Plot (𝑥, 𝑦, ′𝑏′, 𝑥1, 𝑦1, ′𝑏′, 𝑥2, 𝑦2, ′𝑏′, ′𝐿𝑖𝑛𝑒𝑊𝑖𝑑𝑡ℎ′, 1.5) 

Plotting the slices  

For slope stability analysis we should divide the slip surface by number of desired 

slices. Figure 3.3 presents the specifications of slices. Here we assumed that all slices 

have the same width and made an assumption for width value:  

𝑤𝑖𝑑𝑡ℎ =  𝐻/𝑡𝑎𝑛(𝑏𝑒𝑡𝑡𝑎)/4 

 

Figure 3.3. Slices specifications 

Number of slices:   

𝑣1 =  𝑝4 − 𝑝3       

𝑛1 =  𝑓𝑙𝑜𝑜𝑟(𝑛𝑜𝑟𝑚(𝑣1)/𝑤𝑖𝑑𝑡ℎ) 

𝑣2 =  𝑝3 − 𝑝2 

𝑤𝑖𝑑𝑡ℎ𝑏𝑒𝑡𝑡𝑎 = 𝑤𝑖𝑑𝑡ℎ/𝑐𝑜𝑠(𝑏𝑒𝑡𝑡𝑎) 

𝑛2 =  𝑓𝑙𝑜𝑜𝑟(𝑛𝑜𝑟𝑚(𝑣2)/(𝑤𝑖𝑑𝑡ℎ𝑏𝑒𝑡𝑡𝑎)) 

𝑣11 =  𝑣1/𝑛𝑜𝑟𝑚(𝑣1) 
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𝐶1 =  𝑝2 

𝐶2 =  𝑝3 

𝑣22 =  𝑣2/𝑛𝑜𝑟𝑚(𝑣2) 

𝑛𝑠 = 𝑛1 + 𝑛2 

The determined value of base length of slices will be placed in the second column of 

matrix L, the first column specifies the number of slice. 

𝐿 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑠, 2) 

The coordinate of points which are result of cross of the slices with slip surface will be 

stored in matrix 𝐶𝑝𝑜𝑖𝑛𝑡𝑠.  

𝐶𝑝𝑜𝑖𝑛𝑡𝑠 = 𝑧𝑒𝑟𝑜𝑠(2, 𝑛𝑠 + 1) 

𝐶𝑝𝑜𝑖𝑛𝑡𝑠(: ,1) = 𝑝2 

𝐶𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝑛𝑠 + 1) = 𝑝4 

𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠 matrix will store the angle of slice bases to x-axis 

𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑠, 2) 

ℎ𝑒𝑖𝑔ℎ𝑡 matrix will store the slice heights  

ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑠 − 1,2)  

𝑎𝑟𝑒𝑎 matrix will store the slice areas  

𝑎𝑟𝑒𝑎 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑠, 2) 

𝑤𝑒𝑖𝑔ℎ𝑡 matrix will store the weight of slice soil mass  

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑠, 2) 

𝑚𝑎𝑙𝑝ℎ𝑎 matrix returns to Equation 𝑚𝑎 = cos 𝜃 + 
tan𝜙′ sin 𝜃

𝐹
  which is required to determine 

factor of safety     

𝑚𝑎𝑙𝑝ℎ𝑎 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑠, 1) 

Right slices             

           for 𝑖 =  1: 𝑛2 (from slice 1 to slice 𝑛2) 

                𝐶2 =  𝑝3 − (𝑛2 − 𝑖) ∗ 𝑤𝑖𝑑𝑡ℎ𝑏𝑒𝑡𝑡𝑎 ∗ 𝑣22 

                𝑠𝑦𝑚𝑠 𝐶11 (To find the point which is result of crossing of arc line and slice) 

                𝑔1 =  𝑠𝑜𝑙𝑣𝑒((𝐶2(1) − 𝑝6(1))^2 + (𝐶11 − 𝑝6(2))^2 − 𝑟^2, 𝐶11) 

                By solving the equation, we have 2 answers that the first one is smaller than   

                the second. For our problem the smaller one is the required answer.                                               
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                𝑦𝑔1 = 𝑔1(1) (Vertical distance of point 𝑔1 from the origin of coordinates) 

                Create the line of slices  

                line ([𝐶2(1), 𝐶2(1)], [𝐶2(2), 𝑦𝑔1], ′𝐶𝑜𝑙𝑜𝑟′, [1 0 1]) 

                𝐶𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝑖 + 1) = [𝐶2(1); 𝑦𝑔1]  (Point’s coordinate) 

                ℎ𝑒𝑖𝑔ℎ𝑡(𝑖, : ) = [𝑖; 𝐶2(2) − 𝑦𝑔1]  (Slice height)     

            for 𝑖 = 1: 𝑛2 (from slice 1 to slice 𝑛2) 

                𝑏𝑎𝑠𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑣𝑒𝑐𝑡𝑜𝑟 = 𝐶𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝑖 + 1) − 𝐶𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝑖) 

                𝐿(𝑖, 1) = 𝑖 (Slice number) 

                𝐿(𝑖, 2) = 𝑛𝑜𝑟𝑚(𝑏𝑎𝑠𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑣𝑒𝑐𝑡𝑜𝑟) (Length of the slice base)                 

                𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 1) = 𝑖 (Slice number) 

                𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) = 𝑎𝑡𝑎𝑛2(𝐶𝑝𝑜𝑖𝑛𝑡𝑠(2, 𝑖 + 1) − 𝐶𝑝𝑜𝑖𝑛𝑡𝑠(2, 𝑖), 𝐶𝑝𝑜𝑖𝑛𝑡𝑠(1, 𝑖 +

                    1) − 𝐶𝑝𝑜𝑖𝑛𝑡𝑠(1, 𝑖)) ∗ 180/𝑝𝑖 (𝑎𝑛𝑔𝑙𝑒 = 𝑎𝑡𝑎𝑛2(𝑦2 − 𝑦1, 𝑥2 − 𝑥1) ∗ 180/𝑝𝑖)   

                (Angle of the slice base from the horizontal) 

              {

𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) < −90               𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) = −180 − 𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2)
 
 

𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) > 90                      𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) = 180 − 𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2)

 

            for 𝑖 = 1: (𝑛2 − 1) (from slice 1 to slice 𝑛2 − 1) 

                𝑎𝑟𝑒𝑎(𝑖 + 1,1) = 𝑖 + 1 (𝑠𝑙𝑖𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟) 

                𝑎𝑟𝑒𝑎(𝑖 + 1,2) = (ℎ𝑒𝑖𝑔ℎ𝑡(𝑖, 2) + ℎ𝑒𝑖𝑔ℎ𝑡(𝑖 + 1,2)) ∗ 𝑤𝑖𝑑𝑡ℎ/2 (Slice area) 

            𝐶2 = 𝑝3 

Left slices 

            for 𝑖 = (𝑛2 + 1): (𝑛𝑠 − 1) (from slice 𝑛2 + 1 to slice 𝑛𝑠 − 1) 

                𝐶2 =  𝐶2 +  𝑤𝑖𝑑𝑡ℎ ∗ 𝑣11 

                𝑠𝑦𝑚𝑠 𝐶22 (To find the point which is result of crossing of arc line and slice)                   

                    𝑔2 =  𝑠𝑜𝑙𝑣𝑒((𝐶2(1) − 𝑝6(1))^2 + (𝐶22 − 𝑝6(2))^2 − 𝑟^2, 𝐶22)  

                By solving the equation, we have 2 answers that the first one is smaller than   

                the second. For our problem the smaller one is the required answer.                                  

                𝑦𝑔2 = 𝑔2(1) (Vertical distance of point 𝑔2 from the origin of coordinates) 

                Create the line of slices 

                line ([𝐶2(1), 𝐶2(1)], [𝐶2(2), 𝑦𝑔2], ′𝐶𝑜𝑙𝑜𝑟′, [1 0 1]) 
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                𝐶𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝑖 + 1) = [𝐶2(1); 𝑦𝑔2] (Points coordinates) 

                𝑏𝑎𝑠𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑣𝑒𝑐𝑡𝑜𝑟 = 𝐶𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝑖 + 1) − 𝐶𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝑖) 

                𝐿(𝑖, 1) = 𝑖 (Slice number) 

                𝐿(𝑖, 2) = 𝑛𝑜𝑟𝑚(𝑏𝑎𝑠𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑣𝑒𝑐𝑡𝑜𝑟) (Length of the slice base)   

                𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 1) = 𝑖 (Slice number) 

                𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) = 𝑎𝑡𝑎𝑛2(𝐶𝑝𝑜𝑖𝑛𝑡𝑠(2, 𝑖 + 1) − 𝐶𝑝𝑜𝑖𝑛𝑡𝑠(2, 𝑖), 𝐶𝑝𝑜𝑖𝑛𝑡𝑠(1, 𝑖 +

                    1) − 𝐶𝑝𝑜𝑖𝑛𝑡𝑠(1, 𝑖)) ∗ 180/𝑝𝑖      (𝑎𝑛𝑔𝑙𝑒 = 𝑎𝑡𝑎𝑛2(𝑦2 − 𝑦1, 𝑥2 − 𝑥1) ∗ 180/𝑝𝑖)    

               (Angle of the slice base from the horizontal) 

             {

alphaangles(i, 2) > 90                        alphaangles(i, 2) = 180 − alphaangles(i, 2) 
 
 

alphaangles(i, 2) ≤ 90                                      alphaangles(i, 2) = alphaangles(i, 2)

 

                ℎ𝑒𝑖𝑔ℎ𝑡(𝑖, 1) = 𝑖 (Slice number) 

                ℎ𝑒𝑖𝑔ℎ𝑡(𝑖, 2) = 𝐶2(2) − 𝑦𝑔2  (Slice height) 

            for 𝑖 = (𝑛2 + 1): (𝑛𝑠 − 1) (from slice 𝑛2 + 1 to slice 𝑛𝑠 − 1) 

                𝑎𝑟𝑒𝑎(𝑖, 1) = 𝑖 (Slice number) 

                𝑎𝑟𝑒𝑎(𝑖, 2) = (ℎ𝑒𝑖𝑔ℎ𝑡(𝑖 − 1,2) + ℎ𝑒𝑖𝑔ℎ𝑡(𝑖, 2)) ∗ 𝑤𝑖𝑑𝑡ℎ/2 (Area of slices) 

                𝐿(𝑛𝑠, 1) = 𝑛𝑠 (Slice number 𝑛𝑠) 

                𝐿(𝑛𝑠, 2) = 𝑛𝑜𝑟𝑚(𝐶𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝑛𝑠 + 1) − 𝐶𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝑛𝑠)) (base length of the slice 

                   𝑛𝑠) 

                𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑛𝑠, 1) = 𝑛𝑠 (Slice number 𝑛𝑠) 

                𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑛𝑠, 2) = 180 − 𝑎𝑡𝑎𝑛2(𝐶𝑝𝑜𝑖𝑛𝑡𝑠(2, 𝑛𝑠 + 1) −

                   𝐶𝑝𝑜𝑖𝑛𝑡𝑠(2, 𝑛𝑠), 𝐶𝑝𝑜𝑖𝑛𝑡𝑠(1, 𝑛𝑠 + 1) − 𝐶𝑝𝑜𝑖𝑛𝑡𝑠(1, 𝑛𝑠)) ∗ 180/𝑝𝑖 (Angle of the slice  

               base (number 𝑛𝑠) from the horizontal) 

               𝑎𝑟𝑒𝑎(1,1) = 1 (Slice number 1) 

               𝑎𝑟𝑒𝑎(1,2) = ℎ𝑒𝑖𝑔ℎ𝑡(1,2) ∗ 𝐿(1,2) ∗ 𝑐𝑜𝑠(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(1,2) ∗ 𝑝𝑖/180)/2 (Area of   

              slice 1) 

              𝑎𝑟𝑒𝑎(𝑛𝑠, 1) = 𝑛𝑠 (Slice number 𝑛𝑠) 

              𝑎𝑟𝑒𝑎(𝑛𝑠, 2) = ℎ𝑒𝑖𝑔ℎ𝑡(𝑛𝑠 − 1,2) ∗ 𝐿(𝑛𝑠, 2) ∗ 𝑐𝑜𝑠(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑛𝑠, 2) ∗ 𝑝𝑖/180)/2  

              (Area of slice 𝑛𝑠) 

            for i=1:ns (From slice 1 to slice 𝑛𝑠) 

              𝑤𝑒𝑖𝑔ℎ𝑡(𝑖, 1) = 𝑖 (Slice number) 
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              𝑤𝑒𝑖𝑔ℎ𝑡(𝑖, 2) = 𝑎𝑟𝑒𝑎(𝑖, 2) ∗ 1 ∗ 𝑔𝑎𝑚𝑚𝑎 (Weight of slice soil mass) 

Displaying calculated values of base length of slices, base angle of slices from the 

horizontal and weight of slices soil mass in the matrix 𝑑𝑎𝑡𝑎 

            𝑑𝑎𝑡𝑎 = [𝐿(: ,1) 𝐿(: ,2) 𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(: ,2) 𝑤𝑒𝑖𝑔ℎ𝑡(: ,2)] 

            disp('slide   base length   base angle    weight') 

            disp(data) 

Nails specifications  

 

Figure 3.4. Nails specifications 

Matrix 𝑎𝑙𝑝ℎ𝑎𝑛𝑎𝑖𝑙 will store the angle of slice base which cross a nail (𝑛𝑛𝑎𝑖𝑙 is the number 

of nails) 

            𝑎𝑙𝑝ℎ𝑎𝑛𝑎𝑖𝑙 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑛𝑎𝑖𝑙, 1) 

            for i=1:nnail (from the first nail to the last nail, 𝑛𝑛𝑎𝑖𝑙) 

               𝑠𝑦𝑚𝑠 𝐹𝑥 𝐹𝑦 (To find the point of the nail which cross the failure surface) 

              Circle equation: 

               𝑒𝑞𝑛1 =  (𝐹𝑥 −  𝑝6(1))^2 + (𝐹𝑦 −  𝑝6(2))^2 −  𝑟^2   

               𝑟 = Radius of failure surface 

              Line/nail equation (Blue lines on figure 3.4.) 
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              𝑒𝑞𝑛2 =  (𝑛𝑎𝑖𝑙𝑝(𝑖, 2) − 𝐹𝑦) −  𝑡𝑎𝑛(𝑎1) ∗ (𝑛𝑎𝑖𝑙𝑝(𝑖, 1) − 𝐹𝑥)  

              (𝑒𝑞𝑛2 =  (𝐵1(2) − 𝐹𝑦) −  𝑡𝑎𝑛(𝑎1) ∗ (𝐵1(1) − 𝐹𝑥)) 

              When two lines meet each other: 

              𝑎𝑛𝑠𝑤𝑒𝑟 =  𝑠𝑜𝑙𝑣𝑒(𝑒𝑞𝑛1, 𝑒𝑞𝑛2, 𝐹𝑥, 𝐹𝑦) 

              There are two answers: 

              𝑔𝑔 = 𝑑𝑜𝑢𝑏𝑙𝑒(𝑎𝑛𝑠𝑤𝑒𝑟. 𝐹𝑥) 

               ℎℎ = 𝑑𝑜𝑢𝑏𝑙𝑒(𝑎𝑛𝑠𝑤𝑒𝑟. 𝐹𝑦) 

              The point where nail crosses the failure surface 

               {

𝑔𝑔(1) < 𝑝2(1)                         nailp(i, 5: 6)  =  [gg(1);  hh(1)]
 
 

𝑔𝑔(1) ≥ 𝑝2(1)                    nailp(i, 5: 6) =  [gg(2); hh(2)]   

 

    

 Vector 𝐿𝑝𝑝: 

              𝐿𝑝𝑝 =  [𝑛𝑎𝑖𝑙𝑝(𝑖, 5); 𝑛𝑎𝑖𝑙𝑝(𝑖, 6)] − [𝑛𝑎𝑖𝑙𝑝(𝑖, 3); 𝑛𝑎𝑖𝑙𝑝(𝑖, 4)] 

              Passive length 𝐿𝑝: 

              𝑛𝑎𝑖𝑙𝑠(𝑖, 2)  =  𝑛𝑜𝑟𝑚(𝐿𝑝𝑝)  

              To calculate the factor of safety equations we need to know the angle of slice     

              base that includes nail (𝑎𝑙𝑝ℎ𝑎𝑛𝑎𝑖𝑙, figure 3.4.). Already we obtained the point in   

              which nail crosses the    

              failure surface(𝐹𝑝𝑢𝑛𝑘𝑡 = [𝑛𝑎𝑖𝑙𝑝(𝑖, 5); 𝑛𝑎𝑖𝑙𝑝(𝑖, 6)]). The required angle is   

              obtained as fallow: 

              𝑎𝑙𝑝ℎ𝑎𝑛𝑎𝑖𝑙(𝑖, 1) = 𝑝𝑖/2 − 𝑎𝑡𝑎𝑛2(𝑝6(2) − 𝑛𝑎𝑖𝑙𝑝(𝑖, 6), 𝑝6(1) − 𝑛𝑎𝑖𝑙𝑝(𝑖, 5)) 
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3.4 Calculating tensile force 

Programming process flow chart  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Determining 𝑢𝐸 

3. First Assumption: 

𝑢𝑡1 = 0,5. 𝑢𝐸  

2. Determining passive length  L 

𝑇(𝐿) = √𝐸𝐴𝐷𝜋𝑘 tanh (𝑎𝐿). 𝑢𝑡 

𝑎 = √𝐷𝜋𝑘/𝐸𝐴 

Numerical method to determine 𝑥𝑝 

 𝑓(𝑥𝑝) = 0  

First assumption 𝑥𝑝 = 𝐿/2 

𝑇(𝐿) = √𝐸𝐴𝐷𝜋𝑘 tanh(𝑎𝑥𝑝) . 𝑢𝑝 +𝐷𝜋𝜏𝑝(𝐿 − 𝑥𝑝) 

𝑥𝑝 = the position in which the peak 

frictional stress starts to develop 

 

𝛥𝐿𝑝1 =
0,7. 𝑇(𝐿)

𝐸𝐴
∙ 𝐿𝑝 

𝐿𝑝= nail length behind 

the failure surface 

 

𝑢𝑡2 = 𝑢𝐸 − 𝛥𝐿𝑝1 

𝑢𝑡2 ≠ 𝑢𝑡1 

(
𝑢𝑡2 − 𝑢𝑡1
𝑢𝑡1

≈ 2%) 

 

 

𝑇(𝐿)  

𝛥𝐿𝑝1 =
0,7. 𝑇(𝐿)

𝐸𝐴
∙ 𝐿𝑝 

𝐿𝑝= nail length behind 

the failure surface 

= 

 

 

𝑢𝑡2 = 𝑢𝐸 − 𝛥𝐿𝑝1 

𝑢𝑡2 ≠ 𝑢𝑡1 

𝑇(𝐿)  

𝑢𝑡 ≤ 𝑢𝑝 𝑢𝑡 > 𝑢𝑝 

Else 

if 

Else 

if 
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Figure 3.5. Tensile force distribution 

To calculate 𝑢𝑡, we made three assumptions: 

1. The distribution of tensile force along the nail is as shown in figure 3.5 (green part).  

2. 𝑢𝑡 = 𝑢𝐸 − 𝛥𝐿𝑝1 

3. To obtain relative displacement along the part of the nail behind the failure surface 

𝛥𝐿𝑝1 we assumed that tensile force distribution is constant and is a percentage of 

tensile force at the failure surface 0.7𝑇(𝐿)(black part). This percent is considered as a 

parameter which can be changed.   

𝛥𝐿𝑝1 =
0,7. 𝑇(𝐿)

𝐸𝐴
∙ (𝐿 − 𝐿𝑝) 

Tensile Force              

𝐾 = Nail stiffness = 𝑡𝑝/𝑢𝑝       

𝑎 =  𝑠𝑞𝑟𝑡(𝐷𝑐 ∗ 𝑝𝑖 ∗ 𝐾/(𝐸𝑠 ∗ 𝐴)) 

𝑖𝑛𝑡 is defined to specify the number of rotation angles. Its interval can be changed 

            0.1 ≤ 𝑖𝑛𝑡 ≤ 𝑜. 6    𝑖𝑛𝑡(𝑖 + 1) − 𝑖𝑛𝑡(𝑖) = 0.1 

𝑟𝑒𝑠𝑢𝑙𝑡𝑠1 is a matrix that will store the amounts of rotation angles 𝑡𝑒𝑡𝑡𝑎 and their related 

relative displacements 𝑢𝑡 and 𝑢𝑠 of each nail  

𝑟𝑒𝑠𝑢𝑙𝑡𝑠1 = [𝑡𝑒𝑡𝑡𝑎, 𝑢𝑡1(𝑐𝑚), 𝑢𝑡2(𝑐𝑚),… , 𝑢𝑡𝑛(𝑐𝑚), 𝑢𝑠1(𝑐𝑚), 𝑢𝑠2(𝑐𝑚),… , 𝑢𝑠𝑛(𝑐𝑚)]  

𝑟𝑒𝑠𝑢𝑙𝑡𝑠2 will store passive length of nails 𝐿𝑝 and displacements 𝑢𝐸 regarding to rotation 

angles 𝑡𝑒𝑡𝑡𝑎 

          𝑟𝑒𝑠𝑢𝑙𝑡𝑠2 = [𝑡𝑒𝑡𝑡𝑎 𝐿𝑝1(𝑚) 𝐿𝑝2(𝑚) . . . 𝐿𝑝𝑛(𝑚) 𝑢𝐸1(𝑐𝑚) 𝑢𝐸2(𝑐𝑚). . . 𝑢𝐸𝑛(𝑐𝑚)] 
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𝑟𝑒𝑠𝑢𝑙𝑡𝑠3 will store the amounts of rotation angles 𝑡𝑒𝑡𝑡𝑎 and their related 

1- tensile and shear forces 𝐹𝑡 and 𝐹𝑠ℎ mobilized in nails and  

2- factor of safeties using Bishop method and Spencer method 

3- obtained Lambda value that made the two factor of safeties equal using Spencer 

method  

𝑟𝑒𝑠𝑢𝑙𝑡𝑠3 = [𝑡𝑒𝑡𝑡𝑎, 𝐹𝑡1(𝑘𝑁), 𝐹𝑡2(𝑘𝑁), … , 𝐹𝑡𝑛(𝑘𝑁), 𝐹𝑠ℎ1(𝑘𝑁),  

                   𝐹𝑠ℎ2(𝑘𝑁), . . . , 𝐹𝑠ℎ𝑛(𝑘𝑁), 𝐹𝑂𝑆𝑏, 𝐹𝑂𝑆𝑠𝑝, 𝐿𝑎𝑚𝑏𝑑𝑎] 

𝑖𝑛𝑡2 will be used to calculate factor of safety with respect to different 𝑙𝑎𝑚𝑏𝑑𝑎 values             

           0 ≤ 𝑖𝑛𝑡2 ≤ 𝑛𝑢𝑚    𝑖𝑛𝑡2(𝑖 + 1) − 𝑖𝑛𝑡2(𝑖) = 0.2 

            𝑟𝑒𝑠𝑢𝑙𝑡𝑠1 =  𝑧𝑒𝑟𝑜𝑠(𝑙𝑒𝑛𝑔𝑡ℎ(𝑖𝑛𝑡),2 ∗ 𝑛𝑛𝑎𝑖𝑙 + 1) 

            𝑟𝑒𝑠𝑢𝑙𝑡𝑠2 =  𝑧𝑒𝑟𝑜𝑠(𝑙𝑒𝑛𝑔𝑡ℎ(𝑖𝑛𝑡),2 ∗ 𝑛𝑛𝑎𝑖𝑙 + 1) 

            𝑟𝑒𝑠𝑢𝑙𝑡𝑠3 =  𝑧𝑒𝑟𝑜𝑠(𝑙𝑒𝑛𝑔𝑡ℎ(𝑖𝑛𝑡),2 ∗ 𝑛𝑛𝑎𝑖𝑙 + 4) 

            𝑖𝑖 =  0 

𝑥𝑝𝑡𝑒𝑡𝑡𝑎 will store the amounts of relative displacement 𝑥𝑝 regarding to rotation angles 

when 𝑢𝑡 < 𝑢𝑝 

            𝑥𝑝𝑡𝑒𝑡𝑡𝑎 = 𝑧𝑒𝑟𝑜𝑠(𝑙𝑒𝑛𝑔𝑡ℎ(𝑖𝑛𝑡), 𝑛𝑛𝑎𝑖𝑙 + 1)  

            𝐹𝑡𝑚𝑎𝑥 = 𝑧𝑒𝑟𝑜𝑠(3,2)   

            for 0.1 ≤ 𝑡𝑒𝑡𝑡𝑎 ≤ 𝑜. 6    𝑡𝑒𝑡𝑡𝑎(𝑖 + 1) − 𝑡𝑒𝑡𝑡𝑎(𝑖) = 0.1   

                𝑖𝑖 =  𝑖𝑖 + 1 

                𝑥𝑝𝑡𝑒𝑡𝑡𝑎(𝑖𝑖, 1)  =  𝑡𝑒𝑡𝑡𝑎  

                𝑡𝑒𝑡𝑡𝑎 = 𝑡𝑒𝑡𝑡𝑎 ∗ 𝑝𝑖/180 (𝑡𝑒𝑡𝑡𝑎 in radian) 

                for 𝑛 = 1: 𝑛𝑛𝑎𝑖𝑙 

                  𝐹𝑡𝑚𝑎𝑥(𝑛, 1) = 𝑛   

                  Calculating part of the nail length which is pulled out from the soil surface  

                 (parameters are shown in figure 3.6). 
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Figure 3.6. Parameters to calculate 𝑢𝐸 

                  𝐵1 = [𝑛𝑎𝑖𝑙𝑝(𝑛, 1); 𝑛𝑎𝑖𝑙𝑝(𝑛, 2)] 

                  𝑅1 =  𝑛𝑜𝑟𝑚(𝐵1 − 𝑝6)  (Distance of nail head B1 from center point p6) 

                  𝐵1𝑝6 =  𝑝6 −  𝐵1 (A vector from B1 to p6) 

                  𝐵1𝑝2 =  𝑝2 −  𝐵1 (A vector from B1 to p2) 

                  𝑎𝑝6𝑝2 =  𝑎𝑐𝑜𝑠(𝑑𝑜𝑡(𝐵1𝑝6, 𝐵1𝑝2)/(𝑛𝑜𝑟𝑚(𝐵1𝑝6) ∗ 𝑛𝑜𝑟𝑚(𝐵1𝑝2))) (Angle    

                  between 𝐵1𝑝6 and 𝐵1𝑝2 in radian) 

                  𝑎𝑝6𝐵11 =  (𝑝𝑖 − 𝑡𝑒𝑡𝑡𝑎)/2 (Angle) 

                  𝑎𝐵11𝑝2 =  𝑎𝑝6𝑝2 − 𝑎𝑝6𝐵11 (Angle) 

                  𝐿𝐵1𝐵11 =  𝑠𝑖𝑛(𝑡𝑒𝑡𝑡𝑎) ∗ 𝑅1/𝑠𝑖𝑛(𝑎𝑝6𝐵11)  (Length between B1 & B11) 

                  𝑢𝐸 =  𝑠𝑖𝑛(𝑎𝐵11𝑝2) ∗ 𝐿𝐵1𝐵11/𝑠𝑖𝑛(𝑝𝑖 − (𝑏𝑒𝑡𝑡𝑎 + 𝑎1)) (Pull out length) 

                  𝑎𝐵1𝐵11 =  𝑏𝑒𝑡𝑡𝑎 + 𝑎1 − 𝑎𝐵11𝑝2 (Angle) 

                  𝑢𝑠 =   𝐿𝐵1𝐵11 ∗ 𝑠𝑖𝑛(𝑎𝐵1𝐵11)  (Relative displacement normal to nail length) 

                  𝑢𝑡2 = 0 

                  First assumption for 𝑢𝑡 : 

                  𝑢𝑡 =  0.5 ∗ 𝑢𝐸 

                  𝑢𝑡𝑡 refers to the accuracy of determined ut   

                  𝑢𝑡𝑡 = 𝑎𝑏𝑠(𝑢𝑡2 − 𝑢𝑡)/𝑢𝑡 
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                  𝐿𝑝 = 𝑛𝑎𝑖𝑙𝑠(𝑛, 2) (Passive length) 

                  𝑐𝑜𝑢𝑛𝑡_𝑚𝑎𝑥 =  10 is defined to check if a special 𝑡𝑒𝑡𝑡𝑎 makes the loop   

                  operates infinitely) 

                  𝑐𝑜𝑢𝑛𝑡 =  0 

                  while (𝑢𝑡𝑡 > 0.02) && (𝑐𝑜𝑢𝑛𝑡 <  𝑐𝑜𝑢𝑛𝑡_𝑚𝑎𝑥) 

                     𝑐𝑜𝑢𝑛𝑡 <  𝑐𝑜𝑢𝑛𝑡_𝑚𝑎𝑥 is considered to prevent of loop operating infinitely  

                     𝑐𝑜𝑢𝑛𝑡 =  𝑐𝑜𝑢𝑛𝑡 +  1 

                     if  𝑢𝑡 ≤   𝑢𝑝  it means that if the magnitude of the mobilized displacement at    

                                        the failure surface is less than the magnitude of displacement    

                                        causing peak shear stress at the interface of soil and nail 

               

                          𝐹𝑡 =  (𝑠𝑞𝑟𝑡(𝐸𝑠 ∗ 𝐴 ∗ 𝐷𝑐 ∗ 𝑝𝑖 ∗ 𝐾)) ∗ 𝑡𝑎𝑛ℎ(𝑎 ∗ 𝐿𝑝) ∗ 𝑢𝑡   

                          𝐹𝑡 = Tensile force developed in the nail at failure surface    

                          𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =  0.7 

                          𝑑𝐿𝑝1 =  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ∗ 𝐹𝑡 ∗ (𝐿1 − 𝐿𝑝)/(𝐸𝑠 ∗ 𝐴) 

                          𝑢𝑡2 = 𝑢𝐸 −  𝑑𝐿𝑝1 

                          𝑢𝑡𝑡 = 𝑎𝑏𝑠(𝑢𝑡2 − 𝑢𝑡)/𝑢𝑡 

                          𝑢𝑡 = 𝑢𝑡2  (Displacement at failure surface 𝑥 = 𝐿𝑝) 

                          𝑢𝑡𝑥𝑝 = 𝑢𝑡  

                   else  

                   break (it means to leave the loop while) 

                   end 

               end 

               if  𝑢𝑡 <=  𝑢𝑝  (calculating 𝑥𝑝 when 𝑢𝑡 < 𝑢𝑝) 

                  𝑔1 = @(𝑥11) 𝑡𝑝 − 𝐾 ∗ 𝑢𝑡𝑥𝑝 ∗ 𝑐𝑜𝑠ℎ(𝑎 ∗ 𝑥11)/𝑐𝑜𝑠ℎ(𝑎 ∗ 𝐿𝑝) 

                  𝑥𝑝𝑔1 = 𝑓𝑧𝑒𝑟𝑜(𝑔1, 𝐿1) 

                  𝑥𝑝𝑡𝑒𝑡𝑡𝑎(𝑖𝑖, 𝑛 + 1) = 𝑥𝑝𝑔1 

               end 

               for the state 𝑢𝑡 >  𝑢𝑝 we should define again some assumptions such as: 

                𝑢𝑡2 = 0 

                𝑢𝑡𝑡 = 𝑎𝑏𝑠(𝑢𝑡2 − 𝑢𝑡)/𝑢𝑡 
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               𝑐𝑜𝑢𝑛𝑡_𝑚𝑎𝑥 =  10 is defined to check if a special 𝑡𝑒𝑡𝑡𝑎 makes the loop   

               operates infinitely)                 

               𝑐𝑜𝑢𝑛𝑡 =  0 

              while (𝑢𝑡𝑡 > 0.02) && (𝑐𝑜𝑢𝑛𝑡 <  𝑐𝑜𝑢𝑛𝑡_𝑚𝑎𝑥) 

              𝑐𝑜𝑢𝑛𝑡 =  𝑐𝑜𝑢𝑛𝑡 +  1 

               if 𝑖𝑖 >  2  it means that the number of 𝑡𝑒𝑡𝑡𝑎 (rotation angle) should be more than   

                              2 to calculating following equations  

                   if 𝑢𝑡 >  𝑢𝑝  

                   𝑥𝑝𝑡𝑒𝑡𝑡𝑎(𝑖𝑖, 𝑛 + 1)  =  𝑥𝑝𝑡𝑒𝑡𝑡𝑎(𝑖𝑖 − 1, 𝑛 + 1) + (𝑥𝑝𝑡𝑒𝑡𝑡𝑎(𝑖𝑖 − 2, 𝑛 + 1) −

                                                                  𝑥𝑝𝑡𝑒𝑡𝑡𝑎(𝑖𝑖 − 1, 𝑛 + 1))/(𝑥𝑝𝑡𝑒𝑡𝑡𝑎(𝑖𝑖 − 2,1) −

                                                                  𝑥𝑝𝑡𝑒𝑡𝑡𝑎(𝑖𝑖 − 1,1)) ∗ (𝑥𝑝𝑡𝑒𝑡𝑡𝑎(𝑖𝑖, 1) − 𝑥𝑝𝑡𝑒𝑡𝑡𝑎(𝑖𝑖 − 1,1)) 

                      if 𝑥𝑝𝑡𝑒𝑡𝑡𝑎(𝑖𝑖, 𝑛 + 1) >  0  

                           𝐹𝑡 =  𝑠𝑞𝑟𝑡(𝐸𝑠 ∗ 𝐴 ∗ 𝐷𝑐 ∗ 𝑝𝑖 ∗ 𝐾) ∗ 𝑡𝑎𝑛ℎ(𝑎 ∗ 𝑥𝑝𝑡𝑒𝑡𝑡𝑎(𝑖𝑖, 𝑛 + 1)) ∗ 𝑢𝑝 +

                                             𝐷𝑐 ∗ 𝑝𝑖 ∗ 𝑡𝑝 ∗ (𝐿𝑝 − 𝑥𝑝𝑡𝑒𝑡𝑡𝑎(𝑖𝑖, 𝑛 + 1)) 

                           𝐹𝑡 = Tensile force developed in the nail at failure surface 

                           𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =  0.7 

                           𝑑𝐿𝑝1 =  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ∗ 𝐹𝑡 ∗ (𝐿1 − 𝐿𝑝)/(𝐸𝑠 ∗ 𝐴) 

                           𝑢𝑡2 = 𝑢𝐸 −  𝑑𝐿𝑝1 

                           𝑢𝑡𝑡 = 𝑎𝑏𝑠(𝑢𝑡2 − 𝑢𝑡)/𝑢𝑡 

                           𝑢𝑡 = 𝑢𝑡2  (Displacement at failure surface 𝑥 = 𝐿𝑝) 

                           𝐹𝑡𝑚𝑎𝑥(𝑛, 2) = 𝐹𝑡 

                      else 

                           𝐹𝑡 = 𝐹𝑡𝑚𝑎𝑥(𝑛, 2) 

                      break 

                      end 

                   else 

                      𝐹𝑡 =  (𝑠𝑞𝑟𝑡(𝐸𝑠 ∗ 𝐴 ∗ 𝐷𝑐 ∗ 𝑝𝑖 ∗ 𝐾)) ∗ 𝑡𝑎𝑛ℎ(𝑎 ∗ 𝐿𝑝) ∗ 𝑢𝑡 

                      𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =  0.7 

                      𝑑𝐿𝑝1 =  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ∗ 𝐹𝑡 ∗ (𝐿1 − 𝐿𝑝)/(𝐸𝑠 ∗ 𝐴) 

                      𝑢𝑡2 = 𝑢𝐸 −  𝑑𝐿𝑝1 

                      𝑢𝑡𝑡 = 𝑎𝑏𝑠(𝑢𝑡2 − 𝑢𝑡)/𝑢𝑡 
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                      𝑢𝑡 = 𝑢𝑡2           

                   end 

                 else 

                   In this state it will be displayed that the number of rotation angles is not      

                   sufficient to calculate tensile force  

                   disp('𝑛𝑎𝑖𝑙') 

                   disp(𝑛) 

                   disp('𝑡𝑒𝑡𝑡𝑎') 

                   disp(𝑡𝑒𝑡𝑡𝑎 ∗ 180/𝑝𝑖) 

                   disp(' 𝑖𝑖 ≤ 2 ') 

                 break 

               end 

            end 

         Shear force 

         Calculating the shear force using Eq. (17) discussed in the previous chapter      

         (2.4.3) gives values greater than maximum allowable shear force. Therefore the   

          magnitude of shear force is calculated with respect to the distribution of normal    

          stress along the nail as follow:                         

{
 
 

 
 
Lp <  1m            Fsh = Lp ∗ 2 ∗ Dc ∗ Ksh ∗ us/2

 
 

Lp ≥  1m              Fsh = 1 ∗ 2 ∗ Dc ∗ Ksh ∗
us

2

 

           𝐹𝑠ℎ = 1𝑚 ∗ 2 ∗ 𝐷𝑐 ∗ 𝜎𝑠    

           𝜎𝑠 =  𝐾𝑠ℎ ∗ 𝑢𝑠/2 

            if 𝑐𝑜𝑢𝑛𝑡 == 10 (it means that loop operates infinitely at a specified 𝑡𝑒𝑡𝑡𝑎) 

                disp ('<<error in loop for 𝑡𝑒𝑡𝑡𝑎 =>>') 

                disp (𝑡𝑒𝑡𝑡𝑎 ∗ 180/𝑝𝑖) 

                By considering following values, later in the results table we will understand   

                that at which 𝑡𝑒𝑡𝑡𝑎 the error had been occurred. 

                𝑢𝑡 = 0 

                𝐹𝑡 = 0 
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                𝐹𝑠ℎ = 0 

                𝑢𝑠 = 0 

            end 

            𝐹𝑡𝑛 = 𝐹𝑡     (Tensile force)   

            Matrixes 𝑟𝑒𝑠𝑢𝑙𝑡𝑠1 and 𝑟𝑒𝑠𝑢𝑙𝑡𝑠2 and 𝑟𝑒𝑠𝑢𝑙𝑡𝑠3 include the parameters as follow 

            𝑟𝑒𝑠𝑢𝑙𝑡𝑠1 = [𝑡𝑒𝑡𝑡𝑎, 𝑢𝑡1(𝑐𝑚), 𝑢𝑡2(𝑐𝑚),… , 𝑢𝑡𝑛(𝑐𝑚), 𝑢𝑠1(𝑐𝑚), 𝑢𝑠2(𝑐𝑚), … , 𝑢𝑠𝑛(𝑐𝑚)] 

    𝑟𝑒𝑠𝑢𝑙𝑡𝑠2 = [𝑡𝑒𝑡𝑡𝑎 𝐿𝑝1(𝑚) 𝐿𝑝2(𝑚) . . . 𝐿𝑝𝑛(𝑚) 𝑢𝐸1(𝑐𝑚) 𝑢𝐸2(𝑐𝑚). . . 𝑢𝐸𝑛(𝑐𝑚)] 

𝑟𝑒𝑠𝑢𝑙𝑡𝑠3 = [𝑡𝑒𝑡𝑡𝑎, 𝐹𝑡1(𝑘𝑁), 𝐹𝑡2(𝑘𝑁),… , 𝐹𝑡𝑛(𝑘𝑁), 𝐹𝑠ℎ1(𝑘𝑁), 𝐹𝑠ℎ2(𝑘𝑁),…,  

                                       𝐹𝑠ℎ𝑛(𝑘𝑁), 𝐹𝑂𝑆𝑏, 𝐹𝑂𝑆𝑠𝑝, 𝐿𝑎𝑚𝑏𝑑𝑎] 

            𝑟𝑒𝑠𝑢𝑙𝑡𝑠1(𝑖𝑖, 𝑛 + 1)  =  𝑢𝑡 ∗ 100 

            𝑟𝑒𝑠𝑢𝑙𝑡𝑠1(𝑖𝑖, 𝑛𝑛𝑎𝑖𝑙 + 𝑛 + 1)  =  𝑢𝑠 ∗ 100 

            𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 𝑛 + 1)  =  𝐹𝑡𝑛 

            𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 𝑛𝑛𝑎𝑖𝑙 + 𝑛 + 1)  =  𝐹𝑠ℎ 

            𝑟𝑒𝑠𝑢𝑙𝑡𝑠2(𝑖𝑖, 𝑛 + 1)  =  𝐿𝑝 

            𝑟𝑒𝑠𝑢𝑙𝑡𝑠2(𝑖𝑖, 𝑛𝑛𝑎𝑖𝑙 + 𝑛 + 1)  =  𝑢𝐸 ∗ 100 

            end 

3.5 Calculating factor of safety using the Bishop Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

First assumption for 𝐹 = 1 

𝐹 =

∑
1
𝑚𝑎,𝑖

(𝑏𝑖𝑐
′ + (𝑊𝑖 + 𝑍𝑖𝑠𝑖𝑛𝛼𝑖 − 𝐹𝑠 cos 𝛼𝑖)𝑡𝑎𝑛𝜑

′) + 𝐹.∑ 𝑍𝑖 cos(𝛼𝑖 + 𝜃𝑖) + 𝐹.∑ 𝐹𝑠 sin(𝛼𝑖 + 𝜃𝑖)𝑖𝑖𝑖

∑ 𝑊𝑖𝑠𝑖𝑛𝜃𝑖𝑖
 

𝑚𝑎,𝑖 = 𝑐𝑜𝑠𝜃𝑖 + (
𝑡𝑎𝑛𝜑′

𝐹
) 𝑠𝑖𝑛𝜃𝑖 

If (𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝐹 ≠  𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝐹 ) 

𝐹𝐹𝑠 =
𝑎𝑏𝑠(𝐹2 − 𝐹1)

𝐹1
≠ 0.01 

𝐹 = 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝐹 𝐹𝑂𝑆 

Else 
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            The first assumption for factor of safety 

            𝐹𝑠 = 1    

            𝐹𝐹𝑠 refers to the accuracy of determined 𝐹𝑠, for the beginning we should   

            assume a value for 𝐹𝐹𝑠 

            𝐹𝐹𝑠 = 2 

            𝐹𝑖𝑛𝑑2 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑛𝑎𝑖𝑙, 1) 

            𝐹𝑖𝑛𝑑3 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑛𝑎𝑖𝑙, 1) 

            𝑓𝑖𝑛𝑑𝑓 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑠, 1) 

            𝑤𝑠𝑖𝑛 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑠, 1) 

            𝑙𝑐𝑜𝑠𝑎𝑙𝑝ℎ𝑎 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑠, 1) 

            for 𝑖 = 1: 𝑛𝑠 (from slide 1 to slide 𝑛𝑠) 

              𝑤𝑠𝑖𝑛(𝑖) = 𝑤𝑒𝑖𝑔ℎ𝑡(𝑖, 2) ∗ 𝑠𝑖𝑛(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) ∗ 𝑝𝑖/180)   (𝑤𝑠𝑖𝑛 = 𝑊 ∗ 𝑠𝑖𝑛(𝜃)) 

              𝑙𝑐𝑜𝑠𝑎𝑙𝑝ℎ𝑎(𝑖) = 𝐿(𝑖, 2) ∗ 𝑐𝑜𝑠(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) ∗ 𝑝𝑖/180) (𝑙𝑐𝑜𝑠𝑎𝑙𝑝ℎ𝑎 = 𝑙 ∗ 𝑐𝑜𝑠(𝜃)  

              we will use the Eq. when using Spencer method) 

            end 

            while  𝐹𝐹𝑠 >  0.01 

                  𝑚𝑎𝑙𝑝ℎ𝑎 = 𝑐𝑜𝑠(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(: ,2) ∗ 𝑝𝑖/180) + 𝑡𝑎𝑛(𝑝ℎ𝑖)/𝐹𝑠 ∗

                                            𝑠𝑖𝑛(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(: ,2) ∗ 𝑝𝑖/180)   

                       (𝑚𝑎 = cos 𝜃 + 
tan𝜙 ′ sin 𝜃

𝐹
) 

                  for 𝑖 = 1: 𝑛𝑠 (from slide 1 to slide 𝑛𝑠) 

                      𝑓𝑖𝑛𝑑𝑓(𝑖) = (𝐿(𝑖, 2) ∗ 𝑐𝑜𝑠(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) ∗ 𝑝𝑖/180) ∗ 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 +

                                                   𝑤𝑒𝑖𝑔ℎ𝑡(𝑖, 2) ∗ 𝑡𝑎𝑛(𝑝ℎ𝑖))/𝑚𝑎𝑙𝑝ℎ𝑎(𝑖) 

                             (𝑓𝑖𝑛𝑑𝑓 =
1

𝑚𝛼
(𝑙𝑐′ cos 𝜃 +𝑊 tan𝜙′)) 

                  end 

                  for 𝑖 = 1: 𝑛𝑛𝑎𝑖𝑙 (from nail 1 to slide 𝑛𝑛𝑎𝑖𝑙) 

                             (𝐹𝑖𝑛𝑑2 =
(𝑇 sin 𝛼 − 𝐹𝑠 cos 𝛼) tan𝜙′

cos𝜃 + 
tan𝜙 ′ sin𝜃

𝐹

) 

                       𝐹𝑖𝑛𝑑2(𝑖)  =  ( 𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 𝑖 + 1) ∗ 𝑠𝑖𝑛(𝑎1) − 𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 𝑛𝑛𝑎𝑖𝑙 + 𝑖 + 1) ∗

                          𝑐𝑜𝑠(𝑎1)) ∗ 𝑡𝑎𝑛(𝑝ℎ𝑖)/(𝑐𝑜𝑠(𝑎𝑙𝑝ℎ𝑎𝑛𝑎𝑖𝑙(𝑖)) + 𝑡𝑎𝑛(𝑝ℎ𝑖) ∗ 𝑠𝑖𝑛(𝑎𝑙𝑝ℎ𝑎𝑛𝑎𝑖𝑙(𝑖))/𝐹𝑠) 
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                      (𝐹𝑖𝑛𝑑3 = 𝐹 𝑇 cos(𝛼 + 𝜃) + 𝐹 𝐹𝑠 sin(𝛼 + 𝜃)) 

                      𝐹𝑖𝑛𝑑3(𝑖) =  𝐹𝑠 ∗ 𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 𝑖 + 1) ∗ 𝑐𝑜𝑠(𝑎1 + 𝑎𝑙𝑝ℎ𝑎𝑛𝑎𝑖𝑙(𝑖)) + 𝐹𝑠 ∗

                                                  𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 𝑛𝑛𝑎𝑖𝑙 + 𝑖 + 1) ∗ 𝑠𝑖𝑛(𝑎1 + 𝑎𝑙𝑝ℎ𝑎𝑛𝑎𝑖𝑙(𝑖)) 

                  end 

                 Factor of safety using Bishop Method 

                    𝐹 =
∑
1
𝑚𝑎

(𝑙𝑐′ cos 𝜃 + (𝑊 + 𝑇 sin 𝛼 − 𝐹𝑠 cos𝛼) tan𝜙′ + 𝐹 ∑𝑇 cos(𝛼 + 𝜃) + 𝐹 ∑𝐹𝑠 sin(𝛼 + 𝜃)

∑𝑊 sin 𝜃
 

    𝐹𝑂𝑆𝑏 =  (𝑠𝑢𝑚(𝑓𝑖𝑛𝑑𝑓) +  𝑠𝑢𝑚(𝐹𝑖𝑛𝑑2)  +  𝑠𝑢𝑚(𝐹𝑖𝑛𝑑3))/(𝑠𝑢𝑚(𝑤𝑠𝑖𝑛)) 

                  𝐹𝐹𝑠 = 𝑎𝑏𝑠(𝐹𝑂𝑆𝑏 − 𝐹𝑠)/𝐹𝑠 (Accuracy) 

                  𝐹𝑠 = 𝐹𝑂𝑆𝑏 

            end 

            𝑟𝑒𝑠𝑢𝑙𝑡𝑠1 = [𝑡𝑒𝑡𝑡𝑎, 𝑢𝑡1(𝑐𝑚), 𝑢𝑡2(𝑐𝑚),… , 𝑢𝑡𝑛(𝑐𝑚), 𝑢𝑠1(𝑐𝑚), 𝑢𝑠2(𝑐𝑚),… , 𝑢𝑠𝑛(𝑐𝑚)] 

    𝑟𝑒𝑠𝑢𝑙𝑡𝑠2 = [𝑡𝑒𝑡𝑡𝑎 𝐿𝑝1(𝑚) 𝐿𝑝2(𝑚) . . . 𝐿𝑝𝑛(𝑚) 𝑢𝐸1(𝑐𝑚) 𝑢𝐸2(𝑐𝑚). . . 𝑢𝐸𝑛(𝑐𝑚)] 

𝑟𝑒𝑠𝑢𝑙𝑡𝑠3 = [𝑡𝑒𝑡𝑡𝑎, 𝐹𝑡1(𝑘𝑁), 𝐹𝑡2(𝑘𝑁),… , 𝐹𝑡𝑛(𝑘𝑁), 𝐹𝑠ℎ1(𝑘𝑁), 𝐹𝑠ℎ2(𝑘𝑁),…,  

                                       𝐹𝑠ℎ𝑛(𝑘𝑁), 𝐹𝑂𝑆𝑏, 𝐹𝑂𝑆𝑠𝑝, 𝐿𝑎𝑚𝑏𝑑𝑎] 

             𝑟𝑒𝑠𝑢𝑙𝑡𝑠1(𝑖𝑖, 1)  =  𝑡𝑒𝑡𝑡𝑎 ∗ 180/𝑝𝑖 

             𝑟𝑒𝑠𝑢𝑙𝑡𝑠2(𝑖𝑖, 1)  =  𝑡𝑒𝑡𝑡𝑎 ∗ 180/𝑝𝑖 

             𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 1)  =  𝑡𝑒𝑡𝑡𝑎 ∗ 180/𝑝𝑖 

             𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 2 ∗ 𝑛𝑛𝑎𝑖𝑙 + 2)  =  𝐹𝑂𝑆𝑏 (Bishop Method) 
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3.6 Calculating Factor of safety using The Spencer Method 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑝𝑖 =
𝑊𝑖 + 𝑍𝑖𝑠𝑖𝑛𝛼𝑖 −

𝑙𝑖𝑐
′

𝐹
sin 𝜃𝑖 − 𝐹𝑠cos𝛼𝑖 + 𝑋𝐿 − 𝑋𝑅

𝑐𝑜𝑠𝜃𝑖 + (
𝑡𝑎𝑛𝜑′

𝐹
) 𝑠𝑖𝑛𝜃𝑖

 

𝑋𝐿 = 𝐸𝐿 × 𝜆 
𝑋𝑅 = 𝐸𝑅 × 𝜆 

0 < 𝜆 < 0.6 

E𝑅𝑖 = E𝐿𝑖 − 𝑆𝑚𝑖 × cos(θ𝑖) + p𝑖 × sin(θ𝑖) − Z𝑖 cos 𝛼𝑖 − 𝐹𝑠sin𝛼𝑖  

At first slide (left) 𝐸𝐿 = 0 

𝑆𝑚𝑖 =
𝑙𝑖

𝐹
(𝑐′ + 𝜎𝑖𝑡𝑎𝑛𝜑

′) 

𝐹𝑚 =
∑ (𝑙𝑖𝑐

′ + 𝑝𝑖𝑡𝑎𝑛𝜑
′) + 𝐹. ∑ 𝑍𝑖 cos(𝛼𝑖 + 𝜃𝑖) + 𝐹. ∑ 𝐹𝑠𝑖sin (𝛼𝑖 + 𝜃𝑖)𝑖𝑖𝑖

∑ 𝑊𝑖𝑠𝑖𝑛𝜃𝑖𝑖
 

𝐹𝑓 =
∑ (𝑙𝑖𝑐

′ + 𝑝𝑖𝑡𝑎𝑛𝜑
′)cos (𝜃𝑖) + 𝐹. ∑ 𝑍𝑖 cos(𝛼𝑖) + 𝐹. ∑ 𝐹𝑠𝑖sin (𝛼𝑖)𝑖𝑖𝑖

∑ 𝑝𝑖𝑠𝑖𝑛𝜃𝑖𝑖
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             𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥 = 𝑧𝑒𝑟𝑜𝑠(𝑑𝑛𝑢𝑚, 3) 

             𝑖𝑚 = 0 

             𝐹𝑎 = 𝐹𝑂𝑆𝑏   (First assumption for factor of safety)  

             𝐷𝑖𝑓ℎ = 1 

             𝐹𝑖𝑛𝑑4 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑛𝑎𝑖𝑙, 1) 

             𝐹𝑖𝑛𝑑5 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑛𝑎𝑖𝑙, 1) 

             for 𝑖 = 1: 𝑛𝑛𝑎𝑖𝑙 (from nail 1 to slide 𝑛𝑛𝑎𝑖𝑙) 

                  (𝐹𝑖𝑛𝑑4 = 𝑇 cos(𝛼 + 𝜃) + 𝐹𝑠 sin(𝛼 + 𝜃)) 

                 𝐹𝑖𝑛𝑑4(𝑖)  =  𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 𝑖 + 1) ∗ 𝑐𝑜𝑠(𝑎1 + 𝑎𝑙𝑝ℎ𝑎𝑛𝑎𝑖𝑙(𝑖)) + 𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 𝑛𝑛𝑎𝑖𝑙 +

                                              𝑖 + 1) ∗ 𝑠𝑖𝑛(𝑎1 + 𝑎𝑙𝑝ℎ𝑎𝑛𝑎𝑖𝑙(𝑖)) 

                (𝐹𝑖𝑛𝑑5 = 𝑇 cos 𝛼 + 𝐹𝑠 sin 𝛼) 

                 𝐹𝑖𝑛𝑑5(𝑖) =  𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 𝑖 + 1) ∗ 𝑐𝑜𝑠(𝑎1) + 𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 𝑛𝑛𝑎𝑖𝑙 + 𝑖 + 1) ∗

                                             𝑠𝑖𝑛(𝑎1) 

              end 

              while 𝐷𝑖𝑓ℎ > 0.01  

                   for 𝑙𝑎𝑚𝑏𝑑𝑎 = 0: 0.2: 𝑛𝑢𝑚    ( 0 ≤ 𝜆 ≤ 𝑛𝑢𝑚     𝜆(𝑖 + 1) − 𝜆(𝑖) = 0.2 ) 

                     It means that the following statements will be done in the assumed interval   

                     of 𝜆 

                     𝑖𝑚 = 𝑖𝑚 + 1 

                     𝑝 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑠, 1)   Determined normal forces for all slices will be stored in   

                     matrix 𝑝 

                     for 𝑖 = 1: 𝑛𝑠 (from slide 1 to slide 𝑛𝑠) 

                           𝑝(𝑖) = 𝑤𝑒𝑖𝑔ℎ𝑡(𝑖, 2) ∗ 𝑐𝑜𝑠(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) ∗ 𝑝𝑖/180)  First assumption  

                           of normal force      

                     end 

                     𝑃𝑃 = 𝑜𝑛𝑒𝑠(𝑛𝑠, 1)  The differences between calculated normal forces and   

                     previous normal forces will be stored in matrix 𝑃𝑃 (𝑃𝑃 = 𝑃𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 − 𝑝) 

                  while 𝑚𝑎𝑥(𝑎𝑏𝑠(𝑃𝑃)) > 0.01 

                          (𝐹 =
∑(𝑙𝑐′ + 𝑃 tan𝜙′) + 𝐹 ∑𝐹𝑠 sin(𝛼 + 𝜃) + 𝐹 ∑𝑇 cos(𝛼 + 𝜃)

∑𝑊 sin 𝜃
) 
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                     𝐹 =  (𝑠𝑢𝑚(𝐿(: ,2)) ∗ 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 + 𝑠𝑢𝑚(𝑝) ∗ 𝑡𝑎𝑛(𝑝ℎ𝑖) + 𝐹𝑎 ∗ 𝑠𝑢𝑚(𝐹𝑖𝑛𝑑4))/

                                     (𝑠𝑢𝑚(𝑤𝑠𝑖𝑛))  (Factor of safety) 

                     𝐸𝑅 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑠, 1) Right horizontal interslice normal forces will be   

                    calculated 

                     𝐸𝐿 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑠, 1) left horizontal interslice normal forces will be determined 

                     𝑚𝑛 = 𝑛𝑛𝑎𝑖𝑙  to calculate right and left interslice normal forces we should   

                     know if any resisting forces of nails must be considered in related  

                     equations   

                     𝐸𝐿(𝑛𝑠) = 0 

                     for 𝑖 = 1: 𝑛𝑠 − 1 (from slide 1 to slide 𝑛𝑠 − 1) 

                                (𝑆𝑚 =
𝑙

𝐹
(𝑐′ +

𝑃

𝑙
𝑡𝑎𝑛𝜑′)) 

                         𝑆𝑚 = 𝐿(−𝑖 + 𝑛𝑠 + 1,2)/𝐹 ∗ (𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 + 𝑝(−𝑖 + 𝑛𝑠 + 1)/𝐿(−𝑖 + 𝑛𝑠 +

                                           1,2) ∗ 𝑡𝑎𝑛(𝑝ℎ𝑖)) 

                         if 𝑚𝑛 > 0  

                            if 𝑛𝑎𝑖𝑙𝑝(𝑚𝑛, 5) < 𝐶𝑝𝑜𝑖𝑛𝑡𝑠(1, −𝑖 + 𝑛𝑠 + 1) 

                                          (𝐸𝑅 = 𝐸𝐿 − 𝐹𝑠 sin 𝛼 − 𝑇 cos 𝛼 + 𝑃 sin 𝜃 − 𝑆𝑚 cos 𝜃 = 0)                           

                                      𝐸𝑅(−𝑖 + 𝑛𝑠 + 1) = 𝐸𝐿(−𝑖 + 𝑛𝑠 + 1) − 𝑆𝑚 ∗ cos (𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(−𝑖 + 𝑛𝑠 +

                                                                                     1,2) ∗
𝑝𝑖

180
) + 𝑝(−𝑖 + 𝑛𝑠 + 1) ∗ 𝑠𝑖𝑛 (𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(−𝑖 +

                                                                                     𝑛𝑠 + 1,2) ∗
𝑝𝑖

180
) −  𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖,𝑚𝑛 + 1) ∗ 𝑐𝑜𝑠(𝑎1) −

                                                                                     𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 𝑛𝑛𝑎𝑖𝑙 + 𝑚𝑛 + 1) ∗ 𝑠𝑖𝑛(𝑎1) 

                                   𝐸𝐿(−𝑖 + 𝑛𝑠) = 𝐸𝑅(−𝑖 + 𝑛𝑠 + 1)  

                                   𝑚𝑛 = 𝑚𝑛 − 1 

                               else 

                                          (𝐸𝑅 = 𝐸𝐿 + 𝑃 sin 𝜃 − 𝑆𝑚 cos 𝜃 = 0 

                                  𝐸𝑅(−𝑖 + 𝑛𝑠 + 1) = 𝐸𝐿(−𝑖 + 𝑛𝑠 + 1) − 𝑆𝑚 ∗ 𝑐𝑜𝑠 (𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(−𝑖 + 𝑛𝑠 +

                                                                                    1,2) ∗
𝑝𝑖

180
) + 𝑝(−𝑖 + 𝑛𝑠 + 1) ∗ 𝑠𝑖𝑛(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(−𝑖 +

                                                                                    𝑛𝑠 + 1,2) ∗ 𝑝𝑖/180); 

                                         𝐸𝐿(−𝑖 + 𝑛𝑠) = 𝐸𝑅(−𝑖 + 𝑛𝑠 + 1) 

                          end 
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                        else 

                           𝐸𝑅(−𝑖 + 𝑛𝑠 + 1) = 𝐸𝐿(−𝑖 + 𝑛𝑠 + 1) − 𝑆𝑚 ∗ 𝑐𝑜𝑠 (𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(−𝑖 + 𝑛𝑠 +

                                                                            1,2) ∗
𝑝𝑖

180
) + 𝑝(−𝑖 + 𝑛𝑠 + 1) ∗ 𝑠𝑖𝑛(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(−𝑖 +

                                                                             𝑛𝑠 + 1,2) ∗ 𝑝𝑖/180); 

                                𝐸𝐿(−𝑖 + 𝑛𝑠) = 𝐸𝑅(−𝑖 + 𝑛𝑠 + 1) 

                      end 

                  end 

                 slice 1: 

                      (𝑆𝑚 =
𝑙

𝐹
(𝑐′ +

𝑃

𝑙
𝑡𝑎𝑛𝜑′)) 

                  𝑆𝑚 = 𝐿(1,2)/𝐹 ∗ (𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 + 𝑝(1)/𝐿(1,2) ∗ 𝑡𝑎𝑛(𝑝ℎ𝑖)) 

                  We assumed that slide 1 doesn't include any nail 

                  𝐸𝑅(1) = 𝐸𝐿(1) − 𝑆𝑚 ∗ 𝑐𝑜𝑠 (𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(1,2) ∗
𝑝𝑖

180
) + 𝑝(1) ∗

                                        𝑠𝑖𝑛(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(1,2) ∗ 𝑝𝑖/180) 

                  𝑋𝐿 = 𝐸𝐿 ∗ 𝑙𝑎𝑚𝑏𝑑𝑎       Left vertical interslice shear forces 

                  𝑋𝑅 = 𝐸𝑅 ∗ 𝑙𝑎𝑚𝑏𝑑𝑎      Right vertical interslice shear forces 

                  𝑃𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑠, 1)    Pdetermined is the determined normal force 𝑃 

                  𝑑𝑑 = 1  

                  for 𝑖 = 1: 𝑛𝑠 (from slide 1 to slide 𝑛𝑠) 

                      if 𝑑𝑑 <= 𝑛𝑛𝑎𝑖𝑙 

                          if 𝑛𝑎𝑖𝑙𝑝(𝑑𝑑, 5) < 𝐶𝑝𝑜𝑖𝑛𝑡𝑠(1, 𝑖 + 1) 

(𝑃 =
𝑊 + 𝑇 sin 𝛼 −

𝑙
𝐹
𝑐′ sin 𝜃 − 𝐹𝑠 cos 𝛼 − 𝑋𝑅 + 𝑋𝐿

cos 𝜃 + 
tan𝜙 ′ sin 𝜃

𝐹

) 

                              𝑃𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑(𝑖) = (𝑤𝑒𝑖𝑔ℎ𝑡(𝑖, 2) − 𝑋𝑅(𝑖) + 𝑋𝐿(𝑖) − 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛/𝐹 ∗ 𝐿(𝑖, 2) ∗

                                                                              𝑠𝑖𝑛(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) ∗ 𝑝𝑖/180) + 𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 𝑑𝑑 + 1) ∗

                                                                              𝑠𝑖𝑛(𝑎1) − 𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 𝑛𝑛𝑎𝑖𝑙 + 𝑑𝑑 + 1) ∗ 𝑐𝑜𝑠(𝑎1))/

                                                                             (𝑐𝑜𝑠 (𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) ∗
𝑝𝑖

180
) +

1

𝐹
∗

                                                                             𝑠𝑖𝑛(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) ∗ 𝑝𝑖/180) ∗ 𝑡𝑎𝑛(𝑝ℎ𝑖)) 

                               𝑑𝑑 = 𝑑𝑑 + 1 
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                            else 

                                       (𝑃 =
𝑊 + (X𝐿 − X𝑅) −

𝑐′𝑙 sin 𝜃
𝐹

cos 𝛼 + 
sin 𝛼 tan𝜙′

𝐹

) 

                              𝑃𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑(𝑖) = (𝑤𝑒𝑖𝑔ℎ𝑡(𝑖, 2) − 𝑋𝑅(𝑖) + 𝑋𝐿(𝑖) −
𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛

𝐹
∗ 𝐿(𝑖, 2) ∗

                                                                                𝑠𝑖𝑛(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) ∗ 𝑝𝑖/180))/

                                                                               (𝑐𝑜𝑠 (𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) ∗
𝑝𝑖

180
) +

1

𝐹
∗

                                                                               𝑠𝑖𝑛(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) ∗ 𝑝𝑖/180) ∗ 𝑡𝑎𝑛(𝑝ℎ𝑖))   

                          end 

                       else 

                                (𝑃 =
𝑊 + (X𝐿 − X𝑅) −

𝑐′𝑙 sin 𝜃
𝐹

cos 𝛼 + 
sin 𝛼 tan𝜙′

𝐹

) 

                          𝑃𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑(𝑖) = (𝑤𝑒𝑖𝑔ℎ𝑡(𝑖, 2) − 𝑋𝑅(𝑖) + 𝑋𝐿(𝑖) −
𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛

𝐹
∗ 𝐿(𝑖, 2) ∗

                                                                           𝑠𝑖𝑛(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) ∗ 𝑝𝑖/180))/

                                                                          (𝑐𝑜𝑠 (𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) ∗
𝑝𝑖

180
) +

1

𝐹
∗

                                                                           𝑠𝑖𝑛(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) ∗ 𝑝𝑖/180) ∗ 𝑡𝑎𝑛(𝑝ℎ𝑖))       

                     end 

                  end 

                  𝑃𝑃 = 𝑃𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 − 𝑝 

                  𝑝 = 𝑃𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 

               end 

                𝐹1 = 𝐹 

                𝑑𝑖𝑓𝑓1 = 1 (Accuracy of determined factor of safety) 

                while 𝑑𝑖𝑓𝑓1 > 0.01 

𝐹𝑚 =
∑(𝑙𝑐′ + 𝑃 tan𝜙′) + 𝐹 ∑𝐹𝑠 sin(𝛼 + 𝜃) + 𝐹 ∑𝑇 cos(𝛼 + 𝜃)

∑𝑊 sin 𝜃
 

                       𝐹𝑚 =  (𝑠𝑢𝑚(𝐿(: ,2)) ∗ 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 + 𝑠𝑢𝑚(𝑝) ∗ 𝑡𝑎𝑛(𝑝ℎ𝑖) + 𝐹1 ∗

                                          𝑠𝑢𝑚(𝐹𝑖𝑛𝑑4))/(𝑠𝑢𝑚(𝑤𝑠𝑖𝑛)); 

                           𝑑𝑖𝑓𝑓1 = 𝑎𝑏𝑠(𝐹𝑚 − 𝐹1)/𝐹1 

                      𝐹1 = 𝐹𝑚 
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                end 

                𝑝𝑐𝑜𝑠𝑎𝑙𝑝ℎ𝑎 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑠, 1) 

                𝑝𝑠𝑖𝑛𝑎𝑙𝑝ℎ𝑎 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑠, 1) 

                for 𝑖 = 1: 𝑛𝑠 (from slide 1 to slide 𝑛𝑠) 

                         (𝑝𝑐𝑜𝑠𝑎𝑙𝑝ℎ𝑎(𝑖) = 𝑃 ∗ cos 𝜃) 

                    𝑝𝑐𝑜𝑠𝑎𝑙𝑝ℎ𝑎(𝑖) = 𝑝(𝑖) ∗ 𝑐𝑜𝑠(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) ∗ 𝑝𝑖/180)     

                        (𝑝𝑠𝑖𝑛𝑎𝑙𝑝ℎ𝑎(𝑖) = 𝑃 ∗ sin 𝜃)  

                    𝑝𝑠𝑖𝑛𝑎𝑙𝑝ℎ𝑎(𝑖) = 𝑝(𝑖) ∗ 𝑠𝑖𝑛(𝑎𝑙𝑝ℎ𝑎𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 2) ∗ 𝑝𝑖/180) 

                end 

                𝑑𝑖𝑓𝑓2 = 1 

                𝐹2 = 𝐹 

                while 𝑑𝑖𝑓𝑓2 > 0.01 

                          𝐹𝑓 =
∑(𝑙𝑐′ + 𝑃 tan𝜙′) cos 𝜃 + 𝐹 ∑(𝐹𝑠 sin 𝛼 + 𝑇 cos 𝛼)

∑𝑃 sin 𝜃
 

                    𝐹𝑓 = (𝑠𝑢𝑚(𝑙𝑐𝑜𝑠𝑎𝑙𝑝ℎ𝑎) ∗ 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 + 𝑠𝑢𝑚(𝑝𝑐𝑜𝑠𝑎𝑙𝑝ℎ𝑎) ∗ 𝑡𝑎𝑛(𝑝ℎ𝑖) + 𝐹2 ∗

                                    𝑠𝑢𝑚(𝐹𝑖𝑛𝑑5))/(𝑠𝑢𝑚(𝑝𝑠𝑖𝑛𝑎𝑙𝑝ℎ𝑎)) 

                    𝑑𝑖𝑓𝑓2 = 𝑎𝑏𝑠(𝐹𝑓 − 𝐹2)/𝐹2 

                    𝐹2 = 𝐹𝑓 

                end 

                Where the curves of 𝐹𝑚 and 𝐹𝑓 cross each other is the Spencer factor of     

                safety  

                𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑚, 1) = 𝑙𝑎𝑚𝑏𝑑𝑎 

                𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑚, 2) = 𝐹𝑚 

                𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑚, 3) = 𝐹𝑓 

             end 

             Following statements are written to draw a diagram that shows how the moment  

             and force factors of safety vary with lambda 

             for 𝑖𝑖𝑖 = 1: (𝑑𝑛𝑢𝑚 − 1) 

                 if (𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑖𝑖, 2) − 𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑖𝑖, 3)) ∗ (𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑖𝑖 + 1,2) −

                         𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑖𝑖 + 1,3)) < 0   ((𝐹𝑚(𝑖) − 𝐹𝑓(𝑖)) ∗ (𝐹𝑚(𝑖 +) − 𝐹𝑓(𝑖 + 1)) < 0) 
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                        𝑎𝑎1 = (𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑖𝑖 + 1,3) − 𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑖𝑖, 3))/(𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑖𝑖 +

                                           1,1) − 𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑖𝑖, 1))      (𝑎𝑎1 =
𝐹𝑓(𝑖+1)−𝐹𝑓(𝑖)

𝜆(𝑖+1)−𝜆(𝑖)
) 

                        Equation of line 𝐹𝑓: 

                        𝑏𝑏1 = 𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑖𝑖, 3) − 𝑎𝑎1 ∗ 𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑖𝑖, 1) 

                        𝑎𝑎2 = (𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑖𝑖 + 1,2) − 𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑖𝑖, 2))/(𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑖𝑖 +

                                            1,1) − 𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑖𝑖, 1))      (𝑎𝑎2 =
𝐹𝑚(𝑖+1)−𝐹𝑚(𝑖)

𝜆(𝑖+1)−𝜆(𝑖)
) 

                        Equation of line 𝐹𝑚: 

                        𝑏𝑏2 = 𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑖𝑖, 2) − 𝑎𝑎2 ∗ 𝐹𝑂𝑆𝑚𝑎𝑡𝑟𝑖𝑥(𝑖𝑖𝑖, 1) 

                        𝑥𝑙𝑎𝑚𝑏𝑑𝑎 = (𝑏𝑏2 − 𝑏𝑏1)/(𝑎𝑎1 − 𝑎𝑎2) 

                        𝑦𝑙𝑎𝑚𝑏𝑑𝑎 = 𝑎𝑎1 ∗ 𝑥𝑙𝑎𝑚𝑏𝑑𝑎 + 𝑏𝑏1 

                        𝐹𝑎𝑐𝑡𝑜𝑟𝑜𝑓𝑠𝑎𝑓𝑒𝑡𝑦 = 𝑦𝑙𝑎𝑚𝑏𝑑𝑎 

                        𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑𝐿𝐴𝑀𝐵𝐷𝐴 = 𝑥𝑙𝑎𝑚𝑏𝑑𝑎 

                        break 

                 end 

             end 

             𝐷𝑖𝑓ℎ = 𝑎𝑏𝑠(𝐹𝑎𝑐𝑡𝑜𝑟𝑜𝑓𝑠𝑎𝑓𝑒𝑡𝑦 − 𝐹𝑎)/𝐹𝑎 

             𝐹𝑎 = 𝐹𝑎𝑐𝑡𝑜𝑟𝑜𝑓𝑠𝑎𝑓𝑒𝑡𝑦 

            end  

             𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 2 ∗ 𝑛𝑛𝑎𝑖𝑙 + 3)  =  𝐹𝑎𝑐𝑡𝑜𝑟𝑜𝑓𝑠𝑎𝑓𝑒𝑡𝑦   (Obtained Spencer factor of         

                                                                                         safety)  

             𝑟𝑒𝑠𝑢𝑙𝑡𝑠3(𝑖𝑖, 2 ∗ 𝑛𝑛𝑎𝑖𝑙 + 4)  =  𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑𝐿𝐴𝑀𝐵𝐷𝐴    

          end 

      end 

3.7 Displaying results  

            disp('𝑟𝑒𝑠𝑢𝑙𝑡𝑠1 = [𝑡𝑒𝑡𝑡𝑎 𝑢𝑡(𝑐𝑚) 𝑢𝑠(𝑐𝑚)]') 

            disp(results1) 

            

            disp('𝑟𝑒𝑠𝑢𝑙𝑡𝑠2 = [𝑡𝑒𝑡𝑡𝑎 𝐿𝑝(𝑚) 𝑢𝐸(𝑐𝑚)]') 

            disp(results2) 
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            disp('𝑥𝑝𝑡𝑒𝑡𝑡𝑎 = [𝑡𝑒𝑡𝑡𝑎 𝑥𝑝]') 

            disp(xptetta) 

             

            disp('𝑟𝑒𝑠𝑢𝑙𝑡𝑠3 = [𝑡𝑒𝑡𝑡𝑎 𝐹𝑡(𝑘𝑁) 𝐹𝑠ℎ(𝑘𝑁) 𝐹𝑂𝑆𝑏 𝐹𝑂𝑆𝑠𝑝 𝐿𝑎𝑚𝑏𝑑𝑎]') 

            disp(results3) 

            Figure of slope  

            Line ([𝑝1(1), 𝑝2(1)], [𝑝1(2), 𝑝2(2)], ′𝐶𝑜𝑙𝑜𝑟′, [.7 .5 0], ′𝐿𝑖𝑛𝑒𝑊𝑖𝑑𝑡ℎ′, 1.5) 

            Line ([𝑝2(1), 𝑝3(1)], [𝑝2(2), 𝑝3(2)], ′𝐶𝑜𝑙𝑜𝑟′, [.7 .5 0], ′𝐿𝑖𝑛𝑒𝑊𝑖𝑑𝑡ℎ′, 1.5) 

            Line ([𝑝3(1), 𝑝4(1)], [𝑝3(2), 𝑝4(2)], ′𝐶𝑜𝑙𝑜𝑟′, [.7 .5 0], ′𝐿𝑖𝑛𝑒𝑊𝑖𝑑𝑡ℎ′, 1.5) 

            Displaying center point  

            Plot (𝑝6(1), 𝑝6(2), ′𝑀𝑎𝑟𝑘𝑒𝑟′, ′𝑝′, ′𝐶𝑜𝑙𝑜𝑟′, [.1 .3 0.5], ′𝑀𝑎𝑟𝑘𝑒𝑟𝑆𝑖𝑧𝑒′, 5) 

            Drawing of nails 

            for i=1:nnail 

                𝐵1 = [𝑛𝑎𝑖𝑙𝑝(𝑖, 1); 𝑛𝑎𝑖𝑙𝑝(𝑖, 2)] 

                𝐵2 = [𝑛𝑎𝑖𝑙𝑝(𝑖, 3); 𝑛𝑎𝑖𝑙𝑝(𝑖, 4)] 

                line([𝐵1(1), 𝐵2(1)], [𝐵1(2), 𝐵2(2)], ′𝐶𝑜𝑙𝑜𝑟′, [1 .5 0], ′𝐿𝑖𝑛𝑒𝑊𝑖𝑑𝑡ℎ′, 1.5) 

            end 

            for 𝑖 = 1: 𝑛𝑛𝑎𝑖𝑙 (for nail 1 to nail nnail) 

               plot(𝑥𝑝𝑡𝑒𝑡𝑡𝑎(: ,1), 𝑥𝑝𝑡𝑒𝑡𝑡𝑎(: , 𝑖 + 1), ′𝑟 ∗ ′) 

               xlabel('𝑡𝑒𝑡𝑡𝑎(0.04: 0.03: 0.65)') 

               ylabel('𝑥𝑝(𝑚𝑒𝑡𝑒𝑟)') 

            end 
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3.8 Example  

The design parameters used for this example were as follows; height of slope =  6𝑚, 

slope angle = 75°, number of nails = 4, nail length = 4 𝑚, inclination angle of nail = 10°, 

unit weight of soil =  21 𝑘𝑁/𝑚3, 𝑐 =  0, 𝜙 =  30 °, elastic modulus of the steel nail =

 21𝑒7 𝑘𝑁/𝑚2, diameter of nail hole =  0.076 𝑚, diameter of steel rod (nail) =  0.038 𝑚, 

vertical distance of the nails heads from the ground =  2 𝑚, 3 𝑚, 4 𝑚, 5 𝑚 (nail number 1 

is at the bottom and nail number 4 is at the top of the slope), peak shear stress at the 

interface of soil and nail 𝜏𝑝 =  170 𝑘𝑁/𝑚^2, soil-nail displacement causing peak shear 

stress 𝑢𝑝  =  0.02 𝑚, modulus of lateral soil reaction 𝐾𝑠ℎ  =  5000 𝑘𝑁/𝑚^3, and slope 

rotation angles vary from 0.04° to 0.65°. 

The potential failure surface is drawn and the nails are placed in the slope as displayed 

in figure 3.7. Table 3-1 indicates the measured values of mobilized displacement between 

soil and nail 𝑢𝑡 and 𝑢𝑠 regarding to variations of slope rotation angles 𝜗. The calculated 

tensile and shear forces mobilized in the nails and the related Bishop factor of safety are 

listed in table 3-2.  

 

Figure 3.7. Schematic of soil nailed slope 

 



61 | P a g e  
 

Table 3-1 

 

 
 

Table 3-2  

 

𝑡𝑒𝑡𝑡𝑎(°) 𝐹𝑡1(𝑘𝑁)  𝐹𝑡2(𝑘𝑁)   𝐹𝑡3(𝑘𝑁)   𝐹𝑡4(𝑘𝑁)    𝐹𝑠1(𝑘𝑁)  𝐹𝑠2(𝑘𝑁)   𝐹𝑠3(𝑘𝑁)   𝐹𝑠4(𝑘𝑁)    𝐹𝑂𝑆           

𝑡𝑒𝑡𝑡𝑎(°) 𝑢𝑡1(𝑐𝑚)  𝑢𝑡2(𝑐𝑚)    𝑢𝑡3(𝑐𝑚)    𝑢𝑡4(𝑐𝑚)   𝑢𝑠1(𝑐𝑚)      𝑢𝑠2(𝑐𝑚)  𝑢𝑠3(𝑐𝑚) 𝑢𝑠4(𝑐𝑚)  
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Looking at the table of output 3-1, the mobilized displacements between soil and nails 

increase by enhancing the rotation angle. Consequently the magnitude of resisting forces 

developed in the nails increase with increment of mobilized displacements. Results of the 

calculated factor of safeties depending on rotation angles lead to estimating the 

rotation(deformation) of the slope that results in 𝐹𝑂𝑆 =  1 (which could 

be understood as the serviceability state).  
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4 Conclusion 

This thesis proposed a method for calculating tensile and shear forces developed in nails 

of a soil nailing structure depending on mobilized displacement between soil and nail. 

Based on the goal of the thesis the following conclusions can be obtained: 

 Relative displacements of a nail in any part of the reinforced soil as well as the 

resisting forces versus mobilized displacement can be predicted by using direct 

shear test results. 

 It should be considered that the rear end of nail moves even if it is microscopically 

small. The required embedment length is largely affected by material strength of 

soil and nails and allowable displacements of the nail improved slope itself. 

 The amount of tensile force along the nails is calculated depending on the 

magnitude of relative displacement between soil and nails at the intersection of 

nails with failure surface. By calculating the soil-nail displacement normal to the 

direction of nail length, shear force at failure surface is obtained. The relationship 

between shear forces and relative displacements is affected by the modulus of 

lateral soil reaction. 

An analytical code is developed which can 

 calculate soil-nail displacements regarding the variation of soil nail rotation angle 

by considering some primary assumptions.  

 obtain resisting forces developed in the nail at the failure surface using an iterative 

method. 

 Solve the factor of safety for reinforced soil slope using Bishop method.  

Results of the calculated factor of safeties depending on rotation angles lead to finding 

the rotation angle that results in 𝐹𝑂𝑆 =  1 (limit equilibrium). Regarding the maximum 

material strength of the nails and the soil resisting forces cannot exceed a certain value 

and consequently the maximum factor of safety can be achieved. Based on the present 

model a certain deformation (rotation) of the slope is shown for this maximum factor of 

safety.   

As Bishop Method includes interslice normal forces and ignores the interslice shear 

forces. In addition I started to analyze slope stability using Spencer method that includes 
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all interslice forces and satisfy all equations of statics. Developing codes to solve Spencer 

factor of safety need further works which should be done in a next master thesis. 
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