

Christoph Svetina, BSc

Konstruktive Durchbildung der Rahmenecke bei Integralisierungen

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

Masterstudium Bauingenieurwissenschaften - Konstruktiver Ingenieurbau

eingereicht an der

Technischen Universität Graz

Betreuer

O. Univ.-Prof. Dr.-Ing. habil. Nguyen Viet Tue Dipl.Ing. Regina della Pietra

Institut für Betonbau

Graz, September 2015

EIDESSTATTLICHE ERKLÄRUNG AFFIDAVIT

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all material which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present master's thesis.

Datum / Date

Unterschrift / Signature

DANKSAGUNG

Mein größter Dank gilt meinen Eltern Ulrike und Reinhold sowie meinem Bruder Max, die mich in jeder Phase meines Lebens unterstützen und mir jederzeit bedingungslos zur Seite stehen. Ebenso möchte ich mich bei meinen Großmüttern Friederike und Hermine sowie meiner Tante Susanne bedanken, die mir ebenso eine große Stütze im Leben sind.

Einen besonders herzlichen Dank möchte ich meiner Betreuerin Dipl.-Ing. Regina della Pietra aussprechen, die mir im Laufe dieser Arbeit mit Rat und Tat zur Seite gestanden ist und mir in jeder Situation weiter geholfen hat. Einen herzlichen Dank auch an Herrn Prof. Tue der mich im Laufe der Arbeit mit seinem fachkundigen Wissen unterstützt hat. Ebenso möchte ich mich bei allen Mitarbeitern des Betonbauinstitut bedanken, die mich herzlich aufgenommen und bei speziellen Fragen zur Verfügung gestanden sind. Ein weiteres Dankeschön gilt Herrn Dipl.-Ing. Kammersberger für die Unterstützung im Rahmen dieser Arbeit.

Ein ganz besonderer Dank geht an meine Freunde und Studienkollegen aus dem Beton- und Holzbauzeichensaal, ohne die ich das Studium sicher nicht in dieser Art und Weise geschafft hätte. Danken möchte ich auch all jenen Freunden, die mich im Laufe des Studiums begleitet und unterstützt haben.

KURZFASSUNG

Viele der in Österreich bestehenden Brückentragwerke wurden in den Jahren 1960 bis 1990 als konventionelle Brücken erbaut. Durch die stetig steigende Verkehrsanzahl und den normativ höheren Verkehrslasten ist es erforderlich, dass Instandsetzungsarbeiten gekoppelt mit Ertüchtigungsmaßnahmen durchgeführt werden. Es werden unterschiedliche Lösungsmöglichkeiten gesucht, die die Dauerhaftigkeit erhöhen, die Kosten senken sowie die Tragfähigkeit der bestehenden Brücke erhöhen. Da es sich in den meisten Fällen um eine konventionelle Brücke handelt, rückt der Umbau in eine integrale Brücke, eine sogenannte Integralisierung, immer mehr in den Vordergrund. Durch den Entfall möglicher Schadstellen, wie Fahrbahnübergangskonstruktionen und Lager, kann eine Erhöhung der Tragfähigkeit und der Dauerhaftigkeit des Brückentragwerks gegen äußere Lasten erreicht werden. Beim Umbau ist auf die Ausführung der Rahmenecke besonders zu achten, wobei es unterschiedlichste Lösungsansätze gibt. Der Fokus dieser Arbeit liegt dabei auf der Rahmeneckenausbildung mit Hilfe einer erdseitigen Vorsatzschale, einer sogenannten Rucksacklösung.

Ziel ist es, den Umbau einer konventionellen Brücke in eine integrale Brücke zu erläutern. Dabei werden alle Einflüsse, theoretischen Grundlagen, Bemessungs- und Nachweisführungen für negative Momentenbeanspruchung angeführt und sämtliche konstruktive Maßnahmen zur Ausbildung des Rahmenecks aufgezeigt. Zusätzlich wurde mit der Finite-Elemente-Software SOFISTIK eine Parameterstudie durchgeführt, welche die Veränderung der Rucksackabmessung und deren Auswirkungen auf die Spannungen und Bewehrungen zeigt.

Abstract

The increase of traffic loads and the storm of the bridge structure getting higher cause very expensive refurbishments of the structures. As a result, a longer lifetime of these bridges (called conventional bridges) is required. In the case of that, the integral bridges come more and more to the foreground. Damage spots such as the expansion joints and bearings are removed and instead a frame corner is built. An important task is the execution of the frame corner but there are a quite lot of solutions. In practice the most common method is the solution by using of a facing framework, which is placed on the soil side of the bridge.

The aim of this master thesis is to show the reconstruction from a conventional bridge to an integral bridge. In order to show a good execution of the frame corner, theoretical research and some constructive measures are carried out. A parametric study using the finite element software SOFISTIK was also performed to illustrate the changes of the dimension of the reinforcement under different geometric measurements.

Verwendete Symbole und Abkürzungen

В	Bernoulli
D	Diskontinuität
EC	Eurocode
FÜK	Fahrbahnübergangskonstruktion
HDW	Hochdruckwasserstrahl
Mu	rechnerisches Bruchmoment
M _{Ru}	rechnerisches Widerstandsmoment
NAD	Nationales Anwendungs Dokument (ÖNorm B)
RE	Rahmeneck

INHALTSVERZEICHNIS

1	EINI	EITUNG	1		
2 BEGRIFFSDEFINITIONEN					
	2.1	Konventionelle brücke			
	2.2	INTEGRALE BRÜCKE	4		
	2.3	Semi-integrale brücke	5		
	2.4	Umbau einer konventionellen in eine integrale Brücke	5		
3	THE	ORETISCHE GRUNDLAGEN "RAHMENECKEN"	9		
	2.4		0		
	3.1 2.1	KRAFIFLUSS	9		
	5.1. 2 1	1 B-Bereich	. 10		
	3.1.	2 D-Bereich	. 10		
	3.1.	2 Zustana I - Ungerissener Beton	. 10		
	3.1.4	4 Zustana II - Gerissener Beton	. 11		
	3.2	STABWERKMODELL.	. 11		
	3.2.	1 Innerer Klajteverlauj	. 11		
	3.2	2 Rahmenecke unter positiven Noment	. 12		
	3.2.	3 Rahmenecke unter hegativem Moment	. 15		
	3.3	UNTERSCHIEDLICHE QUERSCHNITTSABMESSUNGEN	. 17		
	3.3.	Rahmenecke unter positivem Noment	. 17		
	3.3.	2 Rahmenecke unter negativem Moment	. 17		
	3.4	VERSUCHSREIHEN	. 18		
	3.4.	1 Rahmenecke unter positivem Noment	. 18		
	3.4.	2 Ranmenecke unter negativem Moment	. 21		
4	BEN	1ESSUNGSMODELL	. 25		
4	BEN 4.1	IESSUNGSMODELL	. 25 . 25		
4	BEN 4.1 <i>4.1</i>	IESSUNGSMODELL ULS – Nachweis der Tragfähigkeit 1 Druckstrebennachweis	. 25 . 25 . <i>25</i>		
4	BEN 4.1 4.1	IESSUNGSMODELL ULS – Nachweis der Tragfähigkeit 1 Druckstrebennachweis 2 Zugstrebennachweis	. 25 . 25 . <i>25</i> . 26		
4	BEN 4.1 4.1 4.1	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT	. 25 . 25 . 25 . 26 . 27		
4	BEN 4.1 4.1. 4.1. 4.2	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT 1 Druckstrebennachweis 2 Zugstrebennachweis 3 Knotennachweis SLS – NACHWEIS DER GEBRAUCHSTAUGLICHKEIT	. 25 . 25 . 26 . 27 . 30		
4	BEN 4.1 4.1 4.1 4.2 4.2	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT	. 25 . 25 . 26 . 27 . 30 . 30		
4	BEM 4.1 4.1 4.1 4.2 4.2 4.2	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT	. 25 . 25 . 26 . 27 . 30 . 30 . 30 . 30		
4	BEN 4.1 4.1 4.1 4.2 4.2 4.3	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT. 1 Druckstrebennachweis 2 Zugstrebennachweis 3 Knotennachweis 3 Knotennachweis 5LS – NACHWEIS DER GEBRAUCHSTAUGLICHKEIT 1 Begrenzung der Spannungen 2 Begrenzung der Rissbreite ERMÜDUNG	. 25 . 25 . 26 . 27 . 30 . 30 . 30 . 31		
4	BEN 4.1 4.1 4.1 4.2 4.2 4.3 AUF	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT. 1 Druckstrebennachweis 2 Zugstrebennachweis 3 Knotennachweis 3 Knotennachweis 5LS – NACHWEIS DER GEBRAUCHSTAUGLICHKEIT 1 Begrenzung der Spannungen 2 Begrenzung der Rissbreite ERMÜDUNG	. 25 . 25 . 26 . 27 . 30 . 30 . 30 . 31 . 33		
4	BEN 4.1 4.1 4.1 4.2 4.2 4.3 AUF 5.1	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT	. 25 . 25 . 26 . 27 . 30 . 30 . 30 . 31 . 31 . 33		
4	BEN 4.1 4.1 4.2 4.2 4.3 AUF 5.1 5.2	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT	25 . 25 . 25 . 26 . 27 . 30 . 30 . 30 . 31 . 33 . 33 . 34		
4	BEN 4.1 4.1 4.1 4.2 4.2 4.2 4.3 AUF 5.1 5.2 5.3	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT. 1 Druckstrebennachweis 2 Zugstrebennachweis 3 Knotennachweis 3 Knotennachweis 3 SLS – NACHWEIS DER GEBRAUCHSTAUGLICHKEIT 1 Begrenzung der Spannungen 2 Begrenzung der Rissbreite 2 Regenzung der Rissbreite 3 Regenze 4 Regenze 5 Regenze 4 Regenze 5 Regenze 6 Regenze 7 Regenze 8 Regenze 8 Regenze 8	25 . 25 . 25 . 26 . 27 . 30 . 30 . 30 . 30 . 31 . 33 . 33 . 34 . 35		
5	BEN 4.1 4.1 4.2 4.2 4.3 AUF 5.1 5.2 5.3 5.3	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT	25 . 25 . 26 . 27 . 30 . 30 . 30 . 30 . 31 . 33 . 33 . 34 . 35 . 35		
4	BEN 4.1 4.1 4.2 4.2 4.3 AUF 5.1 5.2 5.3 5.3 5.3	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT. 1 Druckstrebennachweis 2 Zugstrebennachweis 3 Knotennachweis 3 Knotennachweis 3 Knotennachweis 3 Knotennachweis 3 SLS – NACHWEIS DER GEBRAUCHSTAUGLICHKEIT 1 Begrenzung der Spannungen 2 Begrenzung der Rissbreite ERMÜDUNG	25 . 25 . 26 . 27 . 30 . 30 . 30 . 30 . 31 . 33 . 33 . 33 . 34 . 35 . 35 . 35		
5	BEN 4.1 4.1 4.2 4.2 4.3 AUF 5.1 5.2 5.3 5.3 5.3 5.3 5.3	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT. 1 Druckstrebennachweis 2 Zugstrebennachweis 3 Knotennachweis 3 Knotennachweis 3 Knotennachweis 3 Knotennachweis 3 Knotennachweis 3 Knotennachweis 3 Ksteine 5LS – NACHWEIS DER GEBRAUCHSTAUGLICHKEIT 1 1 Begrenzung der Spannungen 2 Begrenzung der Rissbreite ERMÜDUNG	25 . 25 . 26 . 27 . 30 . 30 . 30 . 30 . 31 . 33 . 33 . 34 . 35 . 35 . 35 . 36		
5	BEN 4.1 4.1 4.2 4.2 4.3 AUF 5.1 5.2 5.3 5.3 5.3 5.3 BEN	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT. 1 Druckstrebennachweis 2 Zugstrebennachweis 3 Knotennachweis 3 Knotennachweis 3 SLS – NACHWEIS DER GEBRAUCHSTAUGLICHKEIT 1 Begrenzung der Spannungen 2 Begrenzung der Rissbreite 2 USTANDSKLASSEN NACH RVS 13.03.11 VerkehrsLast. VerkehrsLast. 1 ÖNorm B 4002-1954. 2 ÖNorm B 4002-1954. 3 ÖNorm B 4002 1970.	25 . 25 . 26 . 27 . 30 . 30 . 30 . 30 . 30 . 30 . 30 . 33 . 34 . 35 . 35 . 35 . 35 . 36 . 37		
5	BEN 4.1 4.1 4.2 4.2 4.3 AUF 5.1 5.2 5.3 5.3 5.3 5.3 BEN 6.1	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT 1 Druckstrebennachweis 2 Zugstrebennachweis 3 Knotennachweis 3 SLS – NACHWEIS DER GEBRAUCHSTAUGLICHKEIT 1 Begrenzung der Spannungen 2 Begrenzung der Rissbreite ERMÜDUNG	25 . 25 . 26 . 27 . 30 . 30 . 30 . 30 . 30 . 30 . 33 . 34 . 35 . 35 . 35 . 35 . 35 . 36 . 37		
5	BEN 4.1 4.1 4.2 4.2 4.2 4.3 AUF 5.1 5.2 5.3 5.3 5.3 5.3 5.3 6.1 6.1 6.2	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT 1 Druckstrebennachweis 2 Zugstrebennachweis 3 Knotennachweis 3 SLS – NACHWEIS DER GEBRAUCHSTAUGLICHKEIT 1 Begrenzung der Spannungen 2 Begrenzung der Rissbreite ERMÜDUNG ERMÜDUNG ZUSTANDSKLASSEN NACH RVS 13.03.11 VERKEHRSLAST REGELDETAILS 1 ÖNorm B 4002-1954 2 ÖNorm B 4002 1970 IESSUNGSBEISPIEL BESTANDSTRAGWERK BERECHNING AM RAHMEN	25 . 25 . 26 . 27 . 30 . 30 . 30 . 30 . 30 . 30 . 30 . 30		
5	BEN 4.1 4.1 4.2 4.2 4.3 AUF 5.1 5.2 5.3 5.3 5.3 5.3 5.3 6.1 6.2 6.3	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT. 1 Druckstrebennachweis 2 Zugstrebennachweis 3 Knotennachweis 3 Knotennachweis 3 SLS – NACHWEIS DER GEBRAUCHSTAUGLICHKEIT 1 Begrenzung der Spannungen 2 Begrenzung der Rissbreite 2 Begrenzung der Rissbreite 2 Begrenzung der Rissbreite 2 Regeloetalls 2 Zustandsklassen Nach RVS 13.03.11 Verkehrslast Regeloetalls 1 ÖNorm B 4002-1954. 2 ÖNorm B 4002-1964. 3 ÖNorm B 4002 1970. IESSUNGSBEISPIEL Bestandstragwerk. Berechnung Am Rahmen. Lock Je Brechnung	25 . 25 . 26 . 27 . 30 . 30 . 30 . 30 . 30 . 30 . 30 . 30		
5	BEN 4.1 4.1 4.2 4.2 4.3 AUF 5.1 5.2 5.3 5.3 5.3 5.3 5.3 6.1 6.2 6.3 6.2	IESSUNGSMODELL ULS – NACHWEIS DER TRAGFÄHIGKEIT. 1 Druckstrebennachweis 2 Zugstrebennachweis 3 Knotennachweis 3 Knotennachweis 3 Knotennachweis 3 Knotennachweis 3 Knotennachweis 3 Knotennachweis 5LS – NACHWEIS DER GEBRAUCHSTAUGLICHKEIT Begrenzung der Spannungen 2 Begrenzung der Rissbreite 2 USTANDSKLASSEN NACH RVS 13.03.11 VERKEHRSLAST RegelDETAILS 1 ÖNorm B 4002-1954. 2 ÖNorm B 4002-1954. 3 ÖNorm B 4002-1964. 3 ÖNorm B 4002 1970. IESSUNGSBEISPIEL BestANDSTRAGWERK. Berechnung Am Rahmen. Lokale Berechnung. Lokale Berechnung. Lokale Berechnung.	25 . 25 . 26 . 27 . 30 . 30 . 30 . 30 . 30 . 30 . 30 . 30		
5	BEN 4.1 4.1 4.2 4.2 4.2 4.3 AUF 5.1 5.2 5.3 5.3 5.3 5.3 BEN 6.1 6.2 6.3 6.3 6.2	ULS – NACHWEIS DER TRAGFÄHIGKEIT	25 . 25 . 26 . 27 . 30 . 30 . 30 . 30 . 30 . 30 . 30 . 30		

	6.4	Ergebnisse	41			
	6.4.	1 Hauptzugspannungen	41			
	6.4.	2 Hauptdruckspannungen	42			
	6.4.	3 Bemessungsquerschnitt	43			
	6.5	Bemessung	44			
	6.5.	1 Verwendete Materialien	44			
	6.5.	2 ULS - Bemessung Längsbewehrung	45			
	6.5.	3 ULS - Querkraft	48			
	6.5.	4 SLS - Bemessung Querbewehrung	49			
	6.5.	5 Stabwerkmodell	50			
	6.5.	6 Nachweis Stabwerksmodell	50			
	6.5.	7 Schubfugennachweis Rucksack nach EC 2	56			
	6.5.	8 Schubfugennachweis Aufbeton nach RVS 15.02.34	62			
7	PAF	RAMETERSTUDIE	67			
	7.1	VARIANTEN	67			
	7.2	Einfluss "erdseitige Vorsatzschale"	68			
	7.3	EINFLUSS ÜBERBAU	71			
	7.4	Vergleich Variante 1 zu Variante 3	74			
8	CO	NCLUSIO	77			
	0 1	S CHILLICEDET DA CHITUNIC				
	0.1		72			
δ.Z FURSCHUNGSBEDARF						
V	ERZEIC	HNISSE	81			
	Abbild	UNGEN	81			
TABELLEN		EN	83			
	LITERAT	TURVERZEICHNIS	84			
A	ANHANG					
Α	1 BRÜ	ĴCKENKATALOG	87			
	1 Ö	NORM B 4002 1954	87			
	2. C	ОNORM В 4002 1964	92			
	3. Č	роки В 4002 1974	97			
Α	2 BERECHNUNGSERGEBNISSE					
Α	3 BEWEHRUNGSPLAN					

1 **EINLEITUNG**

Brücken sind künstliche Gebilde zur Schaffung von gangbaren Wegen wo es keine gibt. Bereits im 3. Jahrtausend vor Christus entstand die erste hölzerne Balkenbrücke auf Steinpfeilern über den Euphrat bei Babylon. Bis heute folgten unzählige Brückenbauten auf der ganzen Welt. Das seit den letzten Jahrzehnten sich vervielfachende Verkehrsaufkommen (siehe Abbildung 1), die zunehmende Komplexität der Bauvorhaben sowie der Preisdruck bei den Bauvorhaben, bedeuten eine enorme Herausforderung für die Brückenerhaltung.

Abbildung 1: Transitverkehr Österreich [23 S.20]

In Österreich wurden die meisten Straßenbrücken in den Jahren 1960 bis 1990 errichtet [23]. Die generelle Ausführung dieser Bauwerke erfolgte in konventioneller Bauweise als Stahlbeton- oder Spannbetonbrücke mit Tragwerkslängen von 2 – 65 m mit einem Platten- oder Plattenbalkenquerschnitt. Laut einer aktuellen Studie [9] über den Erhaltungszustand sind 35 % der österreichischen Straßenbrücken mit Zustandsnoten von 3 bis 4 bewertet, dies bedeutet laut RVS 15.02.34 [26] eine Sanierungsmaßnahme in den nächsten 5 bis 10 Jahren. Damit stehen die Brückenerhalter vor steigenden Erhaltungs- und Instandsetzungskosten allein zur Aufrechterhaltung der bestehenden Brückeninfrastruktur. Zur Senkung der Erhaltungs- und Instandsetzungskosten im Hinblick auf das Alter der Brücken und der stetig steigenden Verkehrslast wird international und österreichweit immer mehr der Umbau der konventionellen Brücke in eine integrale Brücke forciert, es findet somit eine "Integralisierung" der konventionellen Brücken statt. Dabei werden die Schadstellen wie Fahrbahnübergangkonstruktionen und Lager durch eine monolithische Verbindung von Überund Unterbau ersetzt. Durch den Entfall von Fahrbahnübergangskonstruktion und Brückenlagern verringern sich die Erhaltungskosten. Daneben ergeben sich aus den Tragreserven des Rahmensystems auch statische Vorteile. Die fehlende Fahrbahnübergangskonstruktion bedeutet auch einen höheren Fahrkomfort und eine geringere Lärmbelästigung. Zu beachten ist aber, dass die integrale Konstruktionsweise mehr Detailarbeit bedeutet. Dies trifft vor allem den planerischen Bereich sowie vor allem den Statiker. Durch die Boden-Bauwerks-Interaktion des Rahmensystems muss bei der Modellierung auf eine sehr genaue Ausführung geachtet werden. Ebenso müssen die in der Berechnung angesetzten Steifigkeiten den in der Realität vorhandenen Materialen entsprechen. Neben der aufwendigeren Bemessung und der genaueren Parametereingabe ist die Bildung von zusätzlichen Schnittgrößen, wie z.B. aus Zwang zu berücksichtigen.

Abbildung 2: konventionelles Brückentragwerk (li); integrale Brücke¹ (re)

Der Umbau einer konventionellen in eine integrale Brücke kann auf mehrere Arten erfolgen. Durch die monolithische Verbindung des Über- mit dem Unterbau mittels einer biegesteifen Rahmenecke, können Verstärkungen an Widerlagerwänden, der Brückenplatte oder des Fundaments notwendig werden. Der Umfang der Verstärkung ist von mehreren Faktoren abhängig, wie z.B. dem Zustand der Bestandsbrücke und den neuen Anforderungen an das neue Brückentragwerk in Bezug auf die Verkehrslasten. Unter den unterschiedlichen Ausführungsvarianten hat sich vor allem die erdseitige Vorsatzschale, die sogenannte Rucksacklösung, als meist ausgeführte Bauweise durchgesetzt. (siehe Kapitel 5)

Ziel ist es dem Anwender die Ausführung eines Umbaus von einer konventionellen in eine integrale Brücke zu erläutern. Dabei wird zuerst ein Einblick in die Theorie der Rahmenecken sowie theoretischen Grundlagen mit bereits vorhandenen Versuchsergebnissen gegeben (Kapitel 3). Anhand von Ausführungsbeispielen und einer durchgeführten Datenerhebung bereits bestehender Brückenbauten, soll auf die Problemstellungen im Vorfeld der Ausführung eingegangen werden (Kapitel 2). Ebenso werden sämtliche Bemessungs- und Nachweisführungen, sowie alle konstruktiven Maßnahmen zur Ausbildung einer Rahmenecke erläutert (Kapitel 4 und 6). Zusätzlich wird mit Hilfe des Programms SOFISTIK eine Parameterstudie durchgeführt, welche die Veränderungen der Rucksackabmessungen und deren Auswirkungen auf die Spannungen und Bewehrungen zeigt (Kapitel 7).

https://www.google.at/search?q=integrales+Br%C3%BCckentragwerk&source=lnms&tbm=isch&sa=X&ved=0CAcQ_AUoAWoVChMliLaRh93VxwIVSd0sCh3eqge4&biw=1366&bih=696#tb m=isch&q=integrale+str%C3%9Fenbr%C3%BCcken&imgrc=mNYN6J6HmXaTzM%3A

¹ Quelle: Google; Suchbegriff integrales Brückentragwerk,Bilder

2 BEGRIFFSDEFINITIONEN

Im folgenden Kapitel werden die unterschiedlichen Ausführungsarten von Brücken erläutert. Zusätzlich wird auf deren Besonderheiten in Form von Vor- und Nachteilen, sowie den Detailpunkten nach [1, 5, 6, 8, 24] eingegangen.

2.1 KONVENTIONELLE BRÜCKE

Diese Art der Brückenform ist in Österreich am meisten verbreitet, wobei Abbildung 3 verschiedene Auflagerausführungen zeigt. Die Brücke kann in zwei große Teilbereiche, den Über- und den Unterbau unterteilt werden. Die Verbindung wird durch den Einbau eines Lagers ermöglicht. Durch Temperaturschwankungen, Kriechen und Schwinden können Dehnungen des Überbaus auftreten. Aus diesem Grund wird eine Fahrbahnübergangskonstruktion (FÜK) eingebaut um die Längsänderungen sicher aufnehmen zu können. [9] AP 1 S.6

Abbildung 3: Konventionelle Brücke [2, 9 S.5]

Die häufigsten Schadensfälle dieses Brückentyps betreffen die stählernen Lager und die Fahrbahnübergangskonstruktion. Vor allem die Fahrbahnübergangskonstruktion wird sowohl durch mechanische Beanspruchung wie z.B. durch Schneeräumfahrzeuge oder durch chemische Beanspruchung wie z.B. Tausalze schnell beschädigt. Insbesondere verliert die Konstruktion ihre Dichtheit, Abwässer sowie chemische Substanzen können so ohne Probleme in Auflagernähe dringen und dabei Korrosionsschäden am Lager verursachen. Auch Abplatzungen der obersten Betonschicht bis zur Bewehrung können durch die bereits erwähnten Ursachen resultieren, wie in Abbildung 4 ersichtlich ist. Aus diesem Grund müssen diese beiden Konstruktionsteile früher saniert bzw. getauscht werden als andere Brückenkomponenten.

Lager

FÜK

Abbildung 4: Korrosionsangriff am Lager²

² ZT Büro DI Dr.tech. Kurt Kratzer

2.2 INTEGRALE BRÜCKE

Eine Integralbrücke weist einen monolithischen Verbund des Unterbaus mit dem Überbau auf, wie in Abbildung 5 dargestellt. Durch die starre Verbindung der beiden Bereiche entsteht ein statisch unbestimmtes System. Durch den Entfall von Lager- und Fahrbahnübergangskonstruktion muss dem Einfluss durch Dehnungen aufgrund von Temperatur, Kriechen, Schwinden usw., sowie der Interaktion des Bauwerks mit dem Boden, bei der Bemessung und Ausführung große Beachtung geschenkt werden. [9] AP 1 S.7

Abbildung 5: Integrale Brücke [9 S.5]

Durch das vorhandene statisch unbestimmte Tragwerk entstehen bei Temperaturbelastungen, Auflagerverschiebungen oder Langzeiteffekten des Betons sogenannte Zwangsschnittgrößen. Einen großen Einfluss auf deren Größe haben das Verhältnis der Steifigkeiten von Über- und Unterbau, die Geometrie des Bauwerks sowie die Baugrundverhältnisse. Aufgrund von Rissbildung im Beton kann es zu einem Abbau der Zwangsschnittgrößen kommen. In der statischen Berechnung kann der Abbau vereinfacht mit einer Steifigkeitsreduzierung von 0,6 [DINFB] berücksichtigt werden, dies entspricht der mittleren Bauteilsteifigkeit. [9]

Durch die Längenänderung des Bauwerks aufgrund von Temperatur kommt es zu einem Zusammenspiel mit dem umliegenden Erdreich, der sogenannten Boden-Bauwerks Interaktion. Diese wird in der Bemessung mit einem erhöhten Erddruck aufgrund einer Pumpbewegung berücksichtigt. In Abbildung 6 sind die Bewegungen des Bauwerks schematisch dargestellt.

Abbildung 6: Sommer/Winterstellung Widerlagerwand [9 S.5]

In Tabelle 1 sind die Vor- und Nachteile von integralen Brücken zusammenfassend dargestellt.

Tabelle 1: Vor- und Nachteile einer integralen Brücke [9] AP 1 S.9

Vorteile	Nachteile	
Entfall von Lager und	Aufwendigere Bemessung	
Übergangskonstruktionen	 Bildung von Zwangsschnittgrößen 	
 Geringe Unterhaltungskosten 	Genauere Parametereingabe im statischen	
Tragreserven durch statische	Modell notwendig	
Unbestimmtheit	Größerer Einfluss der Boden-	
Einfachere Bauausführung	Bauwerksinteraktion	
 Höherer Fahrkomfort (keine FÜK) 		

2.3 SEMI-INTEGRALE BRÜCKE

Eine Semi-Integrale Brücke ist eine Mischform aus einer konventionellen und integralen Brücke. Sie besitzt entweder Lager oder Fahrbahnübergangskonstruktionen, beides zusammen wird bei dieser Brückenart nicht verwendet. Beispiele für die Ausführung einer solchen Brücke sind der Abbildung 7 zu entnehmen. Eine genauere Beschreibung findet sich unter [9] AP 1 Punkt 3.1.3. [9 S.8]

Abbildung 7: Semi-integrale Brücke [9] [2 S.5]

2.4 UMBAU EINER KONVENTIONELLEN IN EINE INTEGRALE BRÜCKE

Viele der bereits ausgeführten Brückentragwerke in Österreich sind als konventionelle Brücken ausgeführt worden. Aufgrund der steigenden Verkehrsbelastung wie bereits in Kapitel 1 erwähnt, werden diese Bauwerke auf die aktuelle Normbelastung nach [19] ertüchtig. Um die Unterhaltungskosten zu senken und die Tragfähigkeit zu steigern, wurden in den letzten Jahren viele Umbauten konventioneller Tragwerke in integrale Tragwerke vorgenommen. Dabei werden Lager und Fahrbahnübergangskonstruktion entfernt und der Überbau mit dem Unterbau monolithisch verbunden. Es entsteht ein sogenannter Rahmen, der in der Berechnung ein Gesamtsystem bildet. Die Integralisierung von Bestandsbrücken bedeutet daher eine Änderung des statischen Systems, der Schnittkraftverlauf wird durch nennenswerte Zwangsschnittgrößen infolge der Verformungsbehinderung sowie durch die Wechselwirkung zwischen Bauwerk und Baugrund erheblich beeinflusst. Zahlreiche Randbedingungen wie die Bauwerksgeometrie und die Baugrundverhältnisse beeinflussen das Ausmaß der Verstärkungen an verschiedenen Stellen des Brückentragwerks. Vor allem die Feldmitte, die Rahmenecke und Widerlagerfuss sind davon betroffen. [9]

Als Vorbereitung für die Intergalisierung muss beim Bestandstragwerk die Asphaltschicht, die Kammerwand des Widerlagers und der beschädigte Beton der Fahrbahnplatte abgetragen werden. Durch Verlegen der Rahmeneckbewehrung und durch anschließendes Ausbetonieren der Rahmenecke wird der Verbund des Unterbaus mit dem Überbau sichergestellt. Durch diese hergestellte biegesteife Rahmenecke ist es möglich

Normal- und Querkräfte sowie Momente aus dem Überbau in den Unterbau einzuleiten. Abhängig von ihrer Größe gibt es verschiedene Möglichkeiten, die Umbaumaßnahme der Rahmenecke auszuführen.

Rahmenecke mit Aufbeton und Fugenverguss

Eine oft ausgeführte Lösung in der Praxis siehe Abbildung 1Abbildung 8 ist das Verfüllen des Lagerspaltes mit Vergussmörteln, um so eine monolithische Verbindung des Überbaus mit dem Unterbau zu erhalten. Dabei muss aber beachtet werden, dass der Mörtel eine geringere Steifigkeit als der bereits vorhandene Beton aufweist. Dies hat die Folge, dass die Kraftübertragung erst bei einer bestimmten Verformung bzw. Verdrehung der Fahrbahnplatte möglich ist. Durch große Spannungskonzentrationen im inneren Eck kann es zum Abplatzen des Betons an der Widerlagerwand kommen. Außerdem muss die Sicherstellung des Haftverbundes des bestehenden Betons und des Mörtels beachtet werden. Dies kann z.B. durch das Aufrauhen des Betons durch Hochdruckwasserstrahlen erfolgen. Bei einer geringeren Dicke der Lagerfuge bedeutet dies einen großen Arbeitsaufwand, da ein großer Teil des Widerlagerbetons abgetragen werden muss. Abbildung 8 zeigt das Auflagerdetail sowie in Rot gehalten den Bereich der möglichen Schadensstelle.

Abbildung 8: Auflagerdetail mit Vergussmörtel

Der Aufbeton auf der Fahrbahnplatte erlaubt es die erforderliche Rahmeneckbewehrung einfach in der Platte zu verankern. Die Querschnittserhöhung des Überbaus durch den Aufbeton bewirkt eine Vergrößerung des inneren Hebelarms z. Bei ausreichender Bewehrung des bestehenden Widerlagers kann die Rahmeneckbewehrung eingebohrt und verklebt werden.

Rahmenecke mit Vorsatzschale

Abhängig vom Erhaltungszustand und vorhandenen Bewehrungsgrad des Widerlagers ist eine einseitige oder zweiseitige Vorsatzschale zur Verstärkung des Unterbaus möglich. Die Vorsatzschale wird mit Verbunddübeln mit dem bestehenden Widerlager verbunden, ihre Länge kann bis zur Fundamentoberkante reichen. Zweiseitige Vorsatzschalen stellen einen tiefen Eingriff in das Bestandsystem dar und sind mit hohem Arbeitsaufwand verbunden, wie z.B. in Abbildung 9.

Abbildung 9: Rahmenecke mit Vorsatzschale(zweiseitig)

Rahmenecke nur mit erdseitiger Vorsatzschale

Bei Verwendung einer Rucksacklösung wie sie in Abbildung 10 dargestellt ist, ist es möglich, den Aushub des konsolidierten Erdreichs auf ein Minimum zu reduzieren. Üblicherweise reicht die Länge des Rucksacks bis zum Momentnullpunkt. Im Gegensatz zu einer Vorsatzschale die bis zum Fundament reicht (vgl. Abbildung 9) wird nur geringfügig in den Bestand eingegriffen. Durch die erwähnten Vorteile dieser Verstärkungsmaßnahme, wird diese Lösung in dieser Arbeit genauer betrachtet.

Abbildung 10: Auflagerdetail Rucksack mit Aufbeton

3 THEORETISCHE GRUNDLAGEN "RAHMENECKEN"

In diesem Kapitel werden die theoretischen Grundlagen des Stahlbetonbaus mit dem Schwerpunkt "Rahmenecke" erläutert. Der Weg bis zum abschließenden Bemessungsmodell soll übersichtlich dargestellt werden.

3.1 KRAFTFLUSS

K.Zilch und G. Zehentmeier [12] S.127 beschreiben den Kraftfluss als den anschaulichen Weg von Kräften auf Lastpfaden, ausgehend vom Punkt der Lasteinleitung durch das Tragwerk hindurch bis zu den Auflagern. Die Kräfte versuchen den kürzesten Weg zum Auflager zurück zu legen, wie dies in Abbildung 11 zu sehen ist. Im Stahlbetonbau ist die Unterscheidung eines gerissenen oder ungerissenen Bereichs besonders wichtig, da sich die unterschiedlichen Steifigkeiten im Zustand I und Zustand II auf den Kraftfluss auswirken. Kommt es zu Rissen im Bauteil kommen, treten Umlagerungen auf, welche sich direkt auf den Kraftfluss auswirken. Einen weiteren Einfluss haben Bereiche mit einer höheren Steifigkeit, da diese auftretende Kräfte stärker anziehen und den Lastpfadweg ändern können. [12 S.127]

Abbildung 11: Lastpfade und Umlenkung (links) und Stabwerkmodell (rechts) [13 S.294]

Neben den bereits erwähnten Punkten ist weiters zu beachten, in welchem Bereich des Bauteils man sich mit dem Verlauf des Kraftflusses beschäftigt. Dabei sind zwei Bereiche zu unterscheiden welche in Abbildung 12 abgebildet sind.

Abbildung 12: Diskontinuitätsbereiche [13 S.287]

3.1.1 B-BEREICH

Die Abkürzung "B" steht für Bernoulli. In diesem Bereich kann die Bernoulli-Hypothese angewandt werden, wobei von einem Ebenbleiben der Querschnitte bei schlanken Balken auch bei größeren Verformungen ausgegangen wird. Ein weiterer Grundsatz ist, dass auftretende Dehnungen linear über den Querschnitt verteilt werden. [13 S.287]

3.1.2 D-BEREICH

Im Gegensatz zu den B-Bereichen geht man im D-Bereich von einer nichtlinearen Verteilung der Dehnungen und einem nicht ebenbleiben des Querschnitts aus. Zusätzlich treten Unregelmäßigkeiten oder Spannungskonzentrationen auf, welche auf zwei Gründe zurückzuführen sind. Einerseits kann eine geometrische Diskontinuität vorliegen, welche bei Querschnittsänderungen wie z.B. einer Rahmenecke zu finden ist. Andererseits kann eine statische Diskontinuität auftreten, welche beispielhaft bei Spannungskonzentrationen in Folge von Einzellasten auftritt. Den D-Bereichen ist aufgrund der höheren Schadensanfälligkeit besondere Beachtung zu schenken. Die Größe des D-Bereichs wird dabei in der Literatur mit unterschiedlichen Werten angegeben. Nach [13] wird die Länge mit der Bauteildicke beziffert, wie in Abbildung 13 ersichtlich. [12 S.133]

Abbildung 13: Größe des Diskontinuitätsbereiches [12 S.133]

3.1.3 ZUSTAND I - UNGERISSENER BETON

Im ungerissenen Beton erfolgt die Art der Lastabtragung über Druck- und Zugkräfte. Die Darstellung der Lastpfade kann in zwei unterschiedlichen Formen erfolgen. Die erste Möglichkeit ist die Illustrierung über Hauptspannungen, diese werden als Vektoren gezeichnet, wie Abbildung 14 links zeigt, wobei ihre Länge die Größe und der Winkel ihre Richtung wiederspiegelt. Die zweite Möglichkeit ist das Abbilden mit Trajektorien, wie Abbildung 14 rechts entnommen werden kann. Diese verlaufen tangential zu den Hauptspannungen, Zug und Druck sind dabei immer orthogonal aufeinander gerichtet. Der Abstand der einzelnen Spannungstrajektorien untereinander gibt die Intensität und damit die Größe der Spannung wieder. [12 S.127]

Abbildung 14: Hauptspannungen (li) und Trajektorien (re) im Zustand I [12 S.127]

3.1.4 ZUSTAND II - GERISSENER BETON

Die Abtragung der Kräfte erfolgt im gerissen Zustand etwas komplexer als im ungerissenen Zustand. Durch das Vorhandensein eines Risses müssen die Zugkräfte allein durch die Bewehrung aufgenommen werden. Vor allem in den Diskontinuitätsbereichen kommt es vermehrt zur Rissbildung. Auch der Verlauf der Spannungen über den Querschnitt ist nicht mehr eindeutig bestimmbar, da oft unregelmäßige Spannungsverläufe vorliegen und so keine eindeutigen Lastpfade vorhanden sind. Abhilfe bei der Beschreibung des Lastpfades im gerissenen Beton schaffen sogenannte Stabwerkmodelle. [12 S.128]

3.2 STABWERKMODELL

Ein Stabwerkmodell dient der Modellierung und als Bemessungsgrundlage eines Bauteils. Für die Umsetzung werden die Grundlagen der Fachwerksanalogie angewandt. Die Bausteine sind Streben für Druck und Zug, sowie Knoten. An einem gewählten statischen Modell werden sämtliche Schnittkraftverläufe ermittelt, welche in weitere Folge zur Erstellung der Lastpfade dienen. Die Entwurfsgrundsätze eines Stabwerkmodells können Zilch und Zehetmaier [12 S.134] entnommen werden. Bei Rahmenecken muss bei der Modellierung auf einige Punkte besonders geachtet werden, diese werden in weiterer Folge erläutert. [13 S.289]

3.2.1 INNERER KRÄFTEVERLAUF

Im Gegensatz zu geraden Bauteilen, welche als Berechnungsbasis die linearisierte Balkentheorie zugrunde legen, stellt sich bei Knickbereichen eines Querschnitts ein zweidimensionaler Spannungszustand ein. Dies belegen auch elastizitätstheoretische Spannungsuntersuchungen. In Abbildung 15 links sind sämtliche Spannungsverläufe für ein Rahmeneck unter positiver sowie rechts unter negativer Momentenbeanspruchung dargestellt. Die Auswirkungen dieser Verläufe werden vertiefend in den weiteren Kapiteln erläutert. [11 S.2]

Abbildung 15: Spannungsverlauf in RE, positives Moment (li) und negatives Moment (re) [11 S.5]

Wie in [7] S.159 beschrieben entstehen Umlenkkräfte aus der Richtungsänderung der inneren Kräfte, welche orthogonal zur Bauteilachse wirken. Die Spannungsverläufe in stark gekrümmten Trägern sind im Gegensatz zu einem geraden Bauteil nicht mehr linear sondern hyperbolisch wie Abbildung 16 darstellt. Durch die Umlenkung tritt in der Rahmenecke in radialer Richtung eine Spannung σ_{y} auf. Bei negativen Momenten entsteht eine Druck- und bei positiven Momenten eine Zugspannung. Um Tragfähigkeitsversagen der Rahmenecke sowie größere Rissbildungen zu vermeiden, muss eine geeignete Bewehrungsführung gewählt werden. Die Rissabfolge wird in den nächsten Abschnitten anhand eines positiven und eines negativen Momentes erläutert. [13 S.311]

Abbildung 16: Innerer Kräfteverlauf unter negativen Moment [7 S.159]

3.2.2 RAHMENECKE UNTER POSITIVEN MOMENT

In Abbildung 17 sind das Spannungstrajektorienbild sowie die Spannungsverläufe für eine Rahmenecke unter positiver Momentenbeanspruchung abgebildet. In Teilbild 1 ist der Verlauf der radial wirkenden Zugspannung σ_y welcher aus der Umlenkung der inneren Kräfte resultiert, in Teilbild 2 ist der Spannungsverlauf für σ_x dargestellt, aus dem man erkennt, dass aufgrund eines positiven Moments eine hohe Zugspannung am inneren Eck auftritt. Das Bild 3 zeigt eine enge und starke Umlenkung der Zugspannungen.

Abbildung 17: Spannungsverteilung unter positivem Moment, oy (1); ox (2); Spannungstrajektorien (3) und Rissbildung (4) [13 S.311]

Aufgrund der auftretenden hohen Zugspannungen in der Rahmenecke kommt es bei Überschreitung der Betonzugfestigkeit zu einem sogenannten Kehlriss. Wie in Abbildung 17 (4) ersichtlich startet dieser im inneren des Rahmenecks und führt in Richtung der Winkelhalbierenden der resultierenden Zugkräfte. Durch die Rissbildung wird die im Zustand I vorhandene Spannungsspitze abgebaut und durch weitere plastische Umlagerungen verkleinert. Die danach freiwerdende Kraft muss im Bereich des Kehlrisses ein eingelegter Bewehrungsstab übernehmen. Wird die Kraft weiter gesteigert so entsteht ein Querriss. Dieser schnürt die Biegedruckzone ein und bei weiterer Kraftsteigerung kommt es zu einem Abspalten der Druck- von der Zugzone. Die einzige spannungsfreie Fläche ist der grau schraffierte Bereich in Abbildung 17 Teilbild 3. Dieses Spannungstrajektorienbild dient im weiteren Verlauf als Basis für die Erstellung geeigneter Stabwerkmodelle. [11 S.4] [13 S.311]

Abbildung 18: Schematisches Tragverhalten und Kraftfluss bei positivem Moment [13] S.308

Das Stabwerkmodell in Abbildung 18 ist sehr einfach ausgebildet. Eine genaue Abbildung des Kraftflusses in der Rahmenecke ist mit diesem Stabwerkodell nicht möglich. Dieses führt schlussfolgernd zu einem niedrigen Wirkungsgrad, welcher das prozentuelle Verhältnis der Tragfähigkeit M_{RU}, bezogen auf das rechnerische Bruchmoment M_U, darstellt. Treten größere positive Momente auf, ist eine Verfeinerung des Stabwerkmodells vorzunehmen, wie z.B. in Abbildung 19. Der größte Wirkungsgrad der Rahmenecke wird in Abbildung 19 rechts erreicht. Der schräge Zugstab F_{sd,3} sowie die beiden Zugstäbe in Richtung von F_{sd} teilen die Zugkraft auf, welche das Auftreten eines Kehlrisses so klein wie möglich halten. [13 S.310]

Abbildung 19: Kraftflussmodell bei positivem Moment [13 S.309]

Jene Kraft welche den Querriss in Abbildung 20 verursacht, entsteht als Resultierende der beiden inneren Zugkräfte Z_e. Wie in Abbildung 20 ersichtlich, ergibt sich bei einem rechtwinkeligen Eck und gleich großen Zugkräften eine resultierende Kraft im Winkel von 45 Grad. Der Verlauf der dabei entstehenden Zugspannungen σ_{bz} ist parabelförmig, wie in Abbildung 20 3 dargestellt. Die Länge Iz entspricht der Länge des Querisses. Bei üblichen Bewehrungsgraden kann davon ausgegangen werden, dass aufgrund der großen Spannung eine Rissgefahr besteht. Daher sind weitere konstruktive Maßnahmen zur Verhinderung dieses Problems notwendig. [7]

Abbildung 20: Rissbildung unter positivem Moment, Bewehrungsführung (1) und Rissbildung (2), Zugspannungsverteilung bei positivem Moment (3) [7 S.163] [11 S.4]

3.2.3 RAHMENECKE UNTER NEGATIVEM MOMENT

In Abbildung 21 sind das Spannungstrajektorienbild sowie die Spannungsverläufe für eine Rahmenecke unter negativer Momentenbeanspruchung abgebildet. Links ist der Verlauf der radial wirkenden Druckspannung σ_{γ} und im mittleren Bild ist der Spannungsverlauf für σ_x dargestellt. Dieser zeigt im Gegensatz unter Belastung eines positiven Momentes nun eine Druckspannungskonzentration im inneren Eck. Das rechte Bild zeigt eine enge und starke Umlenkung der Druckspannungstrajektorien am inneren Rand, der grau schraffierte Bereich stellt den spannungslosen Bereich in der Rahmenecke dar.

Abbildung 21: Spannungsverläufe unter negativem Moment, oy (links); ox (mitte); Spannungstrajektorien (rechts); Rissbild [13 S.311]

Durch die Richtungsänderung der Zugkraft entsteht in radialer Richtung eine Umlenkpressung. Weist der Bewehrungsstab eine konstante Krümmung in der Ecke auf, entwickelt sich daraus eine Resultierende in Richtung der Winkelhalbierenden wie es in Abbildung 22 ersichtlich ist. Durch die auftretende Druckspannung σ_{cd} ist der Nachweis der effektiven Betonfestigkeit zu führen. Ist wie in Abbildung 22 eine zweilagige Bewehrungsführung vorhanden, müssen auf spezielle Einhaltungskriterien nach der Norm EC 1992-1-1 [20] und ÖNorm B 1992-1-1 [16] geachtet werden. Außerdem ist darauf zu achten, dass das Aufspalten des Betons durch die senkrecht zu Betrachtungsebene auftretenden Zugspannungen, sogenannte Querzugspannungen, verhindert werden. [12 S.145] [13 S.311]

Abbildung 22: Druckspannung + Zugkräfte bei negativem Moment [12] S.145

Die Umlenkung der Längskräfte sollte, wie schon erwähnt, mit einem gleichmäßig großen Biegerollendurchmesser erfolgen, um eine Rissbildung zu verhindern. [12] Der Mindestradius ergibt sich nach [13] mit:

$$d_{br} \ge 3 \cdot \frac{f_{yk}}{f_{ck}} \cdot d_s \cdot \sqrt{\frac{d_s}{s_d}} \qquad \begin{array}{c} \mathsf{d}_{\mathsf{B}}\\ \mathsf{d}_s\\\mathsf{s}\\\mathsf{s}_{\mathsf{R}}\end{array}$$

- Biegerollendurchmesser
- Durchmesser Bewehrung
- Abstand der Bewehrung
- Randabstand Bewehrung

Formel 1: Biegerollendurchmesser [13 S.311]

In Leonhardt [7] S.161 wird der erforderliche Biegerollendurchmesser mit ähnlichen Formeln angegeben. Zu beachten sind dabei die Achsabstände der Stäbe untereinander und der Abstand der äußersten Stabachse zum Rand. In Abbildung 23 sind die einzelnen Abstände dargestellt.

Es gilt für $s_d = s_R$ wenn $s \ge 2 \cdot s_R$ und $s_d = s$ wenn $s < 2 \cdot s_R$. [13 S.161]

Abbildung 23: Spaltgefahr infolge Umlenkpressung [7 S.161]

Zusätzlich hat der Biegerollendurchmesser einen Einfluss auf den Hebelarm z der inneren Kräfte, wie es in Abbildung 24 dargestellt ist. Aufgrund der identen Hebelarme in Steg und Riegel kann nach Abbildung 24 ein vereinfachtes Stabwerkmodell angenommen werden. [7]

Abbildung 24:Einfluss Biegerollendurchmesser (li) und Stabwerksmodell (re) [7 S.162]

3.3 UNTERSCHIEDLICHE QUERSCHNITTSABMESSUNGEN

Unterschiedliche Querschnittsabmessungen von Riegel und Stiel wirken sich vor allem auf einen komplexeren Kraftfluss aus. Weiterführend ist ein aufwendigeres Stabwerksmodell nötig.

3.3.1 RAHMENECKE UNTER POSITIVEM MOMENT

Abbildung 25: Stabwerksmodell bei veränderlichem Querschnitt unter positivem Moment [12 S.312]

Aufgrund der in Abbildung 25 unterschiedlichen Bauteilhöhen und einhergehend des unterschiedlichen inneren Hebelarms z weißt die Zugkraft F_{sd} im Riegel eine geringere Beanspruchung als die Zugkraft F_{sd} des Stiels auf. Die auftretende Differenzkraft ΔF_{sd} muss über die Riegelhöhe abgetragen werden. Durch die Ausbildung eines Fachwerksmodells im Bereich des Riegels kann die Differenzkraft abgetragen werden. Mit Hilfe zusätzlich eingelegter Bügel kann dies konstruktiv ausgebildet werden.

3.3.2 RAHMENECKE UNTER NEGATIVEM MOMENT

Analog zu Kapitel 3.3.1 muss auch bei einer Rahmenecke unter negativem Moment die Differenzkraft ΔF_{sd} über die Riegelhöhe abgebaut werden, siehe Abbildung 26 rechts. Ein zusätzliches Stabwerksmodell von Zug- und Druckgliedern ermöglicht den Abbau der Differenzkraft. Das Stabwerkmodell wird durch Einlegen von Bügeln umgesetzt. [12 S.145]

Abbildung 26: Stabwerksmodell für veränderlichem Querschnitte unter negativem Moment [12 S.312]

3.4 VERSUCHSREIHEN

Die Bewehrungsführung in der Rahmenecke muss dem ermittelten Stabwerkmodell angepasst werden. Um die Auswirkung der Bewehrungsführung auf die Rissbildung im Bereich der Rahmenecke zu untersuchen, wurden daher einige Testreihen zur Ermittlung der Rissursache durchgeführt, untersucht wurden der Einfluss eines positiven und eines negativen Momentes.

3.4.1 RAHMENECKE UNTER POSITIVEM MOMENT

Nach I.H.E Nilsson

Bei dieser Belastungsart tritt das Versagen der Rahmenecke durch Abspalten der Druckzone ein, wie es die durchgeführten Versuche von I.H.E. Nilsson in Abbildung 27 zeigen. Der Versuchsaufbau ist im Diagramm am linken unteren Rand dargestellt. Die Ordinate des Diagramms zeigt das prozentuelle Verhältnis der Tragfähigkeit MRU bezogen auf das rechnerische Bruchmoment MU, welche den Wirkungsgrad der Rahmenecke darstellt. Auf der Abszisse wird der Bewehrungsgrad µ angezeigt. Die verwendete Betongüte des Versuches ist BN 250 (C 25/30) laut ONR 24008 [22]. Die Stahlgüte wird mit BSt 42 / 50 angegeben. Aus dem Diagramm wird ersichtlich, dass auf die entstehende Diagonalzugkraft welche den Kehlriss erzeugt, großer Wert gelegt werden muss. Ist dies nicht der Fall, können nur rund 20 – 70 % des rechnerischen Bruchmomentes genutzt werden. Die einzige Konstruktion welche den besten Wirkungsgrad erzielt ist jene, die durch die Einlage eines Schrägeisens eine Verbindung zwischen den Druckzonen aufweist und somit bei Auftreten eines Kehlrisses die einwandfreie Kraft übernimmt und damit das Abspalten der Druckzone verhindert, welche in Abbildung 27 hervorgehoben ist. Außerdem nimmt der schräge Stab Zugkräfte auf, führt zu einer höheren Steifigkeit in der Ecke und hat Einfluss auf die Rissbildung (vgl. Rahmenecke unter positiven Moment). Den Versuchen nach sind zusätzlich eingebrachte Eckbügel zur Rissvermeidung erst bei größeren Bauteilabmessungen sinnvoll. Abbildung 28 zeigt des Weiteren die einzelnen Rissbilder der Rahmenecken mit verschiedenen Bewehrungsverläufen. [7 S.162,163]

Abbildung 27: Versuchsergebnisse nach Nielsson [7 S.165]

Abbildung 28: Rissbilder unter positivem Moment [7 S.165]

Nach Kordina

Eine weitere Testreihe wurde von Kordina [11 S.5] durchgeführt. Dabei wurden sechs Rahmenecken mit zwei unterschiedlichen Breiten, sowie verschiedenen Bewehrungsführungen und -graden getestet. Der Versuchsaufbau ist in Abbildung 29 ersichtlich, die Rahmenecken wurden dabei liegend betoniert und auch in dieser Position geprüft. Als Bewehrungsstahl wurde ein BST 42/50 RK (III K) und eine Betongüte mit einer Druckfestigkeit von mindestens 45,9 N/mm² verwendet. Anhand der Festigkeit könnte man diese mit einem C 35/45 nach ONR 24008 [22] vergleichen. Weitere Details zu den Versuchen sind der Literatur [11] zu entnehmen. In Abbildung 30 ist jene Rahmenecke inklusive Bewehrungsführung abgebildet, welche unter positivem Moment nach [11] empfohlen wird.

Abbildung 29: Versuchsaufbau unter positivem Moment nach Kordina [11 S.10]

In [11] S.26 wird weiters angeführt, dass die Anordnung einer Schrägbewehrung nur dann notwendig ist, wenn der Bewehrungsgehalt (p=As/Ac) der anschließenden Teile der Rahmenecke unter 0,4 % liegt. Das Einlegen der konstruktiven Bewehrung ist im Hinblick auf die Rissbildung unverzichtbar. Abbildung 30 zeigt dabei zwei verschiedenen Möglichkeiten. Des Weiteren wird in [11] empfohlen, ab einem Knickwinkel des Riegels zum Stiel von 100 Grad eine Voute anzuordnen, da sie sich dies positiv auf das Umlenkmoment auswirkt. Dieses spielt auch bei Bauteilhöhen größer 1 m eine Rolle, da ab diesem Maß die Umlenkkräfte durch zusätzlich eingelegte Bügel in Richtung der Eckdiagonalen aufgenommen werden müssen. Um eine größere Sicherheit gegen möglich auftretende Risse zu erhalten, sollte eine Zusatzbewehrung in horizontaler wie auch in vertikaler Richtung über den Querschnitt eingebaut werden. Zu beachten gibt es weiter, dass die Verankerungslängen eingehalten werden.

Abbildung 30: Empfohlene Bewehrungsführung bei positivem Moment nach Kordina [11 S.26]

Nach Stekelenburg

Weitere Versuchsergebnisse liefert P.J. van Stekelenburg [10] S.135. Das Versuchsprogramm wurde darauf ausgelegt, den Einfluss der Bewehrung auf Festigkeits- und Verformungsverhalten der Rahmenecke zu untersuchen. Die Ecken unter positiver Momentenbeanspruchung wurden dabei mit drei verschiedenen Hauptbewehrungen inklusive einiger Zulagen getestet. Der Versuchsaufbau des Rahmensystems ist in Abbildung 31 dargestellt.

Abbildung 31: Versuchsaufbau nach Stekelenburg [10 S.135]

Details des Versuchsaufbaues und Ergebnisse sind [10] S.135 zu entnehmen. Die Schlussfolgerungen der Versuchsprogramme können zusammenfassend wie folgt dargestellt werden.

• Bewertung der Tragfähigkeit:

Die Versuche ergeben, dass eine schlaufenartige Bewehrung eine bessere Tragfähigkeit als eine durchlaufende aufweist. Diese kann durch Zulagenbewehrung in Diagonalrichtung erhöht werden.

• Steifigkeitsverhältnis:

Eine durchlaufende Bewehrung weist eine größere Steifigkeit auf als eine schlaufenartige Bewehrungen auf. Eine Zusatzbewehrung welche im 45 Grad Winkel eingebaut wird oder beidseitig eingebaute Netzbewehrung können die Steifigkeit zusätzlich erhöhen, auch eine höhere Betongüte kann die Steifigkeit steigern.

 Verformungsvermögen:
 Eine schlaufenartige Bewehrung weißt ein größeres Verformungsvermögen als eine durchlaufende Bewehrung auf. Wenn zu letzterer Diagonalbügeln oder Haarnadeln eingelegt werden, kann eine Vergrößerung der Verformung bewirkt werden.

Schlussfolgerung für die Integralisierung

Aufgrund der bestehenden Auflagerdetails (Fahrbahnplatte, Lagerkonstruktion und Widerlagerwand) wie folgend in Kapitel 5 dargestellt, ist nur eine eingeschränkte Umsetzung der Bewehrungsführung für positive Momente möglich. Die Empfehlung eines schräg eingebauten Bewehrungsstabes wie in Abbildung 29 ist beim Umbau einer konventionellen Brücke in eine integrale Brücke eingeschränkt möglich.

3.4.2 RAHMENECKE UNTER NEGATIVEM MOMENT

Nach Kordina

In Abbildung 32 sind der Versuchsaufbau nach Kordina [11 S.8] sowie die Abmessungen der Probekörper dargestellt. Die Rahmenecken wurden dabei liegend betoniert und auch in dieser Position getestet. Als Bewehrungsstahl wurde ein BST 42/50 RK (III K) und eine Betongüte mit einer Druckfestigkeit von 30 N/mm² verwendet. Anhand der Festigkeit könnte man diese mit einem C 35/45 nach ONR 42008 [22] vergleichen. Nach Kordina [11 S.28] wurde somit festgestellt, dass eine Rissentwicklung unter Gebrauchslast für Bauteile d \geq 70 cm möglich ist. Daher sollte eine Verteilung der Zugbewehrung über den Querschnitt erfolgen, wobei die Konzentration der Zugbewehrung nahe am äußeren Querschnitt liegen sollte. Dies vergrößert den Hebelsarm z der inneren Kräfte. In Abbildung 32 rechts ist die empfohlene Bewehrungsführung angegeben.

Abbildung 32: Versuchsaufbaus und empfohlene Bewehrungsführung (rechts) nach Kordina für negatives Moment [11 S.10/14]

Kordina beschreibt den Einfluss einer Betonierfuge und dazugehöriger Bewehrungsführung auf die Rissbildung in der Rahmenecke anhand zweier Prüfkörper. Prüfkörper 1 weist eine Abmessung von h = 90 cm und b = 25 cm nach [11] auf und besitzt keine Betonierfuge, wie Abbildung 33 zeigt. Um einen großen Hebelarm z zu erhalten, wurde die Zugbewehrung außen nahe des Randes geführt. Zusätzlich wurde zur Begrenzung der Rissbreite eine Bügelbewehrung sowohl im Riegel und Steg sowie schräg in die Rahmenecke eingelegt.

Abbildung 33: Bewehrungsführung Prüfkörper 1 [11 S.38]

Der Prüfkörper 2 weist Abmessungen von h = 60 cm und b = 84 cm nach [11] auf und besitzt eine Betonierfuge im Anschnitt zum Riegel. Zusätzlich wurde zu Hauptbewehrung eine Bügelbewehrung eingelegt, welche im Rahmeneck nicht schräg sondern netzartig verläuft. Weiters wurde die Längsbewehrung (Pos. 1) direkt im Bereich der Rahmenecke gestoßen.

Abbildung 34: Bewehrungsführung Prüfkörper 2 [11 S.41]

In weiterer Folge wird ein Vergleich der beiden Prüfkörper in Bezug auf ihre Rissbilder unter Bruchzustand vorgenommen. Die Laststufen für Prüfkörper 1 und Prüfkörper 2, sowie die zugehörigen Rissbilder sind in Tabelle 2 angegeben. Die Rissbilder der beiden Prüfkörper sind im Bereich des Stiels und des Riegels sehr ähnlich. Die Zahlenwerte entlang der Risse geben dabei die Nummer der Entstehungsreihenfolge an. Wesentliche Unterschiede sind im Bereich der Betonierfuge ersichtlich, dabei folgen die Diagonalrisse im Prüfkörper 1 der Richtung der zusätzlich eingelegten schrägen Bügel. Bei Prüfkörper 2 kommt es im Bereich des Übergreifungsstoßes der Längsbewehrung (Pos. 1) zur Konzentration von Rissen. Bei Prüfkörper 2 ergab sich bei Laststufe 11 ein schlagartiger Riss welcher zum völligen Bruch des Bauteils führte.

Tabelle 2: Laststufen der Probekörper 1 und 2

Nach Stekelenburg

Weitere Versuchsergebnisse liefert P.J. van Stekelenburg [10]. Das Versuchsprogramm wurde darauf ausgelegt, den Einfluss der Bewehrung auf das Festigkeits- und Verformungsverhalten der Rahmenecke zu untersuchen. Die Versuchskörper wurden dabei mit drei verschiedenen Hauptbewehrungen inklusive Zulagen getestet. Der Versuchsaufbau des Rahmensystems ist in Abbildung 35 ersichtlich.

Abbildung 35: Versuchsaufbau unter negativem Moment [10 S.135]

Details des Versuchsaufbaues und Ergebnisse sind aus [10 S.135] zu entnehmen. Die Schlussfolgerungen der Versuchsprogramme können zusammenfassend dargestellt werden.

• Bewertung der Tragfähigkeit:

Die Versuche haben gezeigt, dass eine durchlaufende Bewehrung als vorteilhaft zu betrachten ist. Zugbewehrung mit Übergreifungsstößen sowie auch schlaufenartige Verbindungen können mit der richtigen Wahl von Verankerungslängen, Betongüte, Biegeradius und Zusatzbewehrung gleich gute Ergebnisse liefern.

• Steifigkeitsverhältnis Ecke/Riegel:

Auch hier wird darauf verwiesen, dass die durchlaufende Bewehrung bessere Werte liefert als jene mit einer schlaufenartigen Bewehrung. Tritt eine Rissbildung in der Rahmenecke auf, vergrößert sich das Steifigkeitsverhältnis. Dieses kann durch einlegen von Haarnadeln oder einem kleinen Biegeradius nochmals gesteigert werden.

 Verformungsvermögen:
 Eine schlaufenartige Verbindung mit eingelegten Haarnadeln weist ein besseres Verformungsvermögen gegenüber einer durchlaufenden Bewehrung auf. Die Betongüte hat keinen Einfluss.

Schlussfolgerung für die Integralisierung

Aufgrund der bestehenden Auflagerdetails (Fahrbahnplatte, Lagerkonstruktion und Widerlagerwand) wie folgend in Kapitel 5 dargestellt, kann die oben empfohlenen Bewehrungsführungen für negative Momente ausgeführt werden.

4 BEMESSUNGSMODELL

4.1 ULS – NACHWEIS DER TRAGFÄHIGKEIT

Der Nachweis der Tragfähigkeit (ULS) wird nach der Methode der Stabwerksmodelle geführt, Grund dafür ist das nicht Ebenbleiben des Querschnittes im Diskontinuitätsbereich. Ist das Stabwerkmodell endgültig festgelegt, so können die Kräfte in den Einzelstäben und Knoten ermittelt werden. Dies erfolgt nach dem statischen Grenzwertsatz, welcher besagt, dass für eine bestimmte Last ein Stabwerkmodell entwickelt werden muss, das sowohl mit inneren als auch äußeren Kräften im Gleichgewicht steht. Die Bemessung der einzelnen Modellteile erfolgt mit [13]. [12 S.140]

4.1.1 DRUCKSTREBENNACHWEIS

Druckstreben müssen auf einachsialen Druck nachgewiesen werden und muss an einem Knotenpunkt die Bedingung nach Formel 2 einhalten:

$$\left|\sigma_{Rd,max}\right| = \frac{\left|F_{cd}\right|}{a \cdot b} \le \alpha \cdot f_{cd}$$

Formel 2: Nachweis der Druckstrebe [13 S.290]

Dabei ist F_{cd} die Betondruckkraft, a die Breite der Druckstrebe, b die Breite des Bauteils, f_{cd} der Bemessungswert der Betondruckkraft und α ein Faktor zur Berücksichtigung der Randbedingungen, wie dies in Abbildung 36 dargestellt ist. Umso höher der Einfluss der Querzugspannung auf die Tragfähigkeit der Druckstrebe ist, umso mehr muss der Faktor α reduziert werden. Dies ist vor allem bei Rissen parallel zur Druckstrebe der Fall, da es zu einer Spannungsausbreitung im diesen kommt. Nach DIN 1045-1 [4] wird α folgendermaßen begrenzt:

- Für ungerissene Druckzonen $\alpha = 1, 0 \cdot \eta_1$
- ο Für Druckstreben, die Risse kreuzen können α = 0,6 \cdot η₁
- ο Bei sehr ungünstigen Verhältnissen α = 0,525 · $η_1$

Nach ÖNorm EN 1991-1-1 [19] + Nationaler Anhang [16] ist beim Nachweis der Betondruckstrebe zu achten, in welchem Spannungsfeld die Druckstrebe liegt und ob dieser im Bereich mit oder ohne Querzug liegt, siehe Tabelle 3

Abbildung 36: Spannungsfeld mit begrenzter Ausbreitung (li) oder mit unbegrenzter Ausbreitung der Druckspannung (rechts) [20 S.117]

Tabelle 3: Bereich mit/ohne Querzug [20]

4.1.2 ZUGSTREBENNACHWEIS

Bei der Modellierung der Zugstrebe ist darauf zu achten, dass diese möglichst parallel zum Rand abgebildet wird. Um die Verformbarkeit des Bewehrungsstabes zu berücksichtigen, sollte mit möglichst mehreren kurzen Zugstäben modelliert werden, dies kann vor allem bei verschmierten Knoten genutzt werden. Im ULS wird davon ausgegangen, dass die Streckgrenze der Bewehrung erreicht wird. Somit ist es möglich mit Formel 6 und Formel 7 auf eine erforderliche Bewehrungsfläche zurück zu schließen. Der Nachweis nach DIN 1045-1 [4] und nach EC [16, 20] wird dabei mit folgender Formel geführt:

$$F_{sd} \leq F_{tRd} = A_s \cdot f_{yd}$$

Formel 6: Nachweis der Zugstrebe [12 S.140]

$$A_{s,erf} = \frac{F_{sd}}{f_{yd}}$$

Formel 7: erforderliche Bewehrung der Zugstrebe [13 S.291]

Nach ÖNorm EN 1992-1-1 [19] und ÖNorm B 1992-1-1 [16] ist die Zugstrebe bei Spannungsfeldern mit (b≤H/2) und ohne (b≥H/2) begrenzter Ausbreitung der Druckspannung nach Abbildung 36 zu überprüfen. Dabei wird auch kontrolliert, ob eine Spaltzugbewehrung notwendig ist. In Abbildung 36 sind die Parameter zur Bestimmung der Querzugkräfte in einem Druckfeld mit verteilter Bewehrung dargestellt. Tabelle 4 gibt die Nachweisführung für eine Zugstrebe wieder.

Tabelle 4: Nachweis Zugstrebe

Nachweis der Zugstrebe	Nachweis der Zugstrebe
mit begrenzter Ausbreitung	ohne begrenzter Ausbreitung
$T = \frac{1}{4} \cdot \frac{b-a}{b} \cdot F$	$T = \frac{1}{4} \cdot \left(1 - 0.7 \cdot \frac{a}{h}\right) \cdot F$
Formel 8: Nachweis der Zugstrebe mit begrenzter Ausbreitung [20	Formel 9:Nachweis der Zugstrebe ohne begrenzter Ausbreitung [20
S.117]	S.118]

4.1.3 KNOTENNACHWEIS

Wenn Zug- und Druckstreben sich in einem Knoten treffen, sollte der Winkel der Streben untereinander zwischen 30 und 60 Grad liegen. Dies wird durch die Schnittgrößenumlagerung aufgrund des plastischen Verhaltens unterstützt, wobei der optimale Winkel 45 Grad ist. Für die Berechnungen werden folgende Beiwerte nach Tabelle 5 angegeben. Für die Spannungsnachweise wird dabei in Druck-Druck-Druck Knoten und Druck-Zug-Zug Knoten unterschieden.

Tabelle 5: Beiwerte

nach ÖNorm EN 1992-1-1 und NAD [16, 20]	nach DIN 1045-1 [4]
k1 = 1,25	$\eta_1 = 1$
k ₂ = 0,9	$\eta_1 gilt f$ ür Normalbeton
k ₃ = 0,9	-

4.1.3.1 DRUCK-DRUCK-DRUCK KNOTEN

Liegt ein Druck-Druck-Druck Knoten vor ist im ULS nachzuweisen, dass sämtliche Randspannungen $\sigma_{cd,1}$, $\sigma_{cd,2}$ und $\sigma_{cd,3}$ die Betondruckfestigkeit $\sigma_{Rd,max}$ nicht überschreiten, wie Abbildung 37 zeigt. Die genaue Ermittlung der einzelnen Randspannungen sind Zilch und Zehetmaier [12 S.143] zu entnehmen. Ein Vergleich der Nachweise für ÖNorm EN 1992-1-1 [20]und NAD [16] sowie DIN 1045-1 [4] sind in Tabelle 6 dargestellt.

Abbildung 37: Druckknoten [12]

Tabelle 6: Nachweis Druck-Druck-Druck Knoten

nach ÖNorm EN 1992-1-1 und NAD [16, 20]	nach DIN 1045-1 [4]	
$\sigma_{cd,i} \leq \sigma_{Rd,max}$		
Formel 10: Nachweis Druc	k-Druck Knoten [12] S.141	
$\sigma_{Rd,max} = k_1 \cdot \nu' \cdot f_{cd}$	$\sigma_{Rd,max} \leq 1.1 \cdot \eta_1 \cdot f_{cd}$	
Formel 11: Druck-Druck-Druck Knoten Spannungsnachweis [19	Formel 12: Druck-Druck-Druck-Knoten Spannungsnachweis [4	
5.119]	5.291]	
$\nu' = 1 - \frac{f_{ck}}{250}$	-	
Formel 5: Abminderungsbeiwert [20 S.117]	-	
$\sigma_{cd.i} = \frac{F_{cd,i}}{a_i \cdot b}$		

4.1.3.2 DRUCK-DRUCK-ZUG-KNOTEN OHNE UND MIT VERANKERUNG DER ZUGSTREBE IN EINE RICHTUNG Aufgrund der Querzugspannungen welche durch die Bewehrung entstehen, muss die effektive Betondruckfestigkeit bei nicht einachsialen Spannungszuständen verringert werden. Die Nachweise sind nach Tabelle 7 zu führen.

Formel 14: Druck-Druck-Zug Knoten mit und ohne Verankerung [20 S.119]

Tabelle 7: Nachweis Druck-Druck-Zug Knoten

nach ÖNorm EN 1992-1-1 und NAD [16, 20]	nach DIN 1045-1 [4]	
$\sigma_{cd,i} \leq \sigma_{Rd,max}$		
Formel 15: Nachweis des Druck-Druck-Zug Knotens [12 S.145]		
$\sigma_{Rd,max} = k_1 \cdot \nu' \cdot f_{cd}$	$\sigma_{Rd,max} \le 0.75 \cdot \eta_1 \cdot f_{cd}$	
Formel 16: Druck-Druck-Zug Knoten ohne Verankerung [20 S.118]	Formel 17: Druck-Druck-Zug-Knoten Spannungsnachweis [13 S.291]	
$\sigma_{Rd,max} = k_2 \cdot \nu' \cdot f_{cd}$	-	
Formel 18: Druck-Druck-Zugknoten Spannungsnachweis mit Verankerung [19 S.119]	-	
$\sigma_{cd.i} = \frac{F_{cd,i}}{a_i \cdot b}$		
Formel 19: Spannungen am Knotenrand bei Druckknoten [12 S.143]		

4.1.3.3 DRUCK-ZUG-ZUG KNOTEN MIT VERANKERUNG DER ZUGSTREBE IN MEHRERE RICHTUNGEN

Aufgrund der Umlenkungen ist es wichtig, dass die Druckspannungen σ_{cd} die effektiven Druckspannungen nicht überschreiten, wie in Tabelle 8 angegeben. Nach DIN 1045 [4] muss die Druckfestigkeit aufgrund der Querzugspannung in zwei Richtungen abgemindert werden. Wird nur eine einlagige Bewehrung eingelegt, braucht dieser Nachweis nach beiden Normen [4, 20] nicht geführt werden, da bereits der Nachweis durch einhalten des Biegerollendurchmesser erfüllt ist. Liegt eine mehrlagige Bewehrung vor, werden die Umlenkkräfte addiert. Dies wirkt sich auf die Betondruckspannung σ_{cd} aus. Außerdem muss wie in Abbildung 38 darauf geachtet werden, dass die resultierende Druckkraft in der Winkelhalbierenden liegt.

Abbildung 38: Knoten mit Umlenkung der Bewehrung [12 S.146]

nach ÖNorm EN 1992-1-1 und NAD [16, 20]	nach DIN 1045-1[4]	
$\sigma_{cd,i} \leq \sigma_{Rd,max}$		
Formel 20: Nachweis für Zug-Zug-Druck Knoten mit Verankerung und Umlenkung [12 S.147]		
$\sigma_{Rd,max} = k_3 \cdot \nu' \cdot f_{cd}$	$\sigma_{Rd,max} = 0.75 \cdot \eta_1 \cdot f_{cd}$	
Formel 21: Spannungsnachweis mit Verankerung [19 S.120]	Formel 22: maximale Betondruckfestigkeit [12 S.290]	
$\sigma_{cd} = \frac{F_{cd}}{b \cdot d_{br} \cdot \sin\theta}$	$\sigma_{cd.i} = \frac{F_{cd,i}}{a_i \cdot b}$	
Formel 23: vorhandene Betondruckfestigkeit bei 45° [12 S.146]	Formel 24: Spannungen am Knotenrand bei Druckknoten [12 S.143]	
$\sigma_{cd} = \frac{\max\{F_{td,1}, F_{td,2}\}}{b \cdot d_{br} \cdot \sin\theta \cdot \cos\theta}$	-	
Formel 25: vorhandene Betondruckfestigkeit bei ≠ 45° [12 S.146]	-	

4.2 SLS – NACHWEIS DER GEBRAUCHSTAUGLICHKEIT

In diesem Kapitel werden alle Nachweise für eine Rahmenecke nach den Grenzzuständen der Gebrauchstauglichkeit angeführt. Dabei werden die Nachweise nach DIN 102 "Betonbrücken" [3] dem ÖNorm EN 1992-2 "Betonbrücken" [21] gegenübergestellt.

4.2.1 BEGRENZUNG DER SPANNUNGEN

Dabei werden in den Normen unterschiedliche Werte für die Einhaltung der Betondruckspannungen angegeben, welche nicht überschritten werden dürfen.

4.2.1.1 DIN 102

Nach DIN 102 [3] darf die Zugspannung des Betonstahls unter nicht-häufigen Einwirkungskombination den Wert $0.8 \cdot f_{ck}$ nicht überschreiten.

4.2.1.2 ÖNORM EN 1992-2

Die Betondruckspannungen nach ÖNorm EN 1992-2 [16] sind auf den Wert $k_1 \cdot f_{ck}$ zu begrenzen. Übersteigen die Spannungen unter der charakteristischen Einwirkungskombination den kritischen Wert nach Formel 26 werden in weiterer Folge Längsrisse verursacht.

$$\sigma_{Rd,max} = k_1 \cdot f_{ck}$$

Formel 26: Begrenzung der Betonspannung [21 S.40]

4.2.2 BEGRENZUNG DER RISSBREITE

Die Begrenzung der Rissbreite dient dem Schutz der Bewehrung vor Korrosion. Diese kann über den Nachweis des modifizierten Grenzdurchmesser oder über Höchstwerte der Stababstände geführt werden.

4.2.2.1 DIN 102

Nach DIN 102 [3] kann ein modifizierter Grenzdurchmesser der Bewehrungsstäbe angenommen werden. Dieser steht in Abhängigkeit mit den Querschnittsgrößen des Bauteils sowie der wirksamen Betonzugfestigkeit.

$$d_s = d_s^* \cdot \frac{\sigma_s \cdot A_s}{4 \cdot (h-d) \cdot b \cdot f_{ct,0}} \ge d_s^* \cdot \frac{f_{ct,eff}}{f_{ct,0}}$$

Formel 27: Grenzdurchmesser [3 S.183]

Tabelle 9: modifizierter Grenzdurchmesser [3]

Zeile	Spalte	1	2
	Stahlspannung <i>o</i> ,	Grenzdurchmesser der Stäbe in mm in Abhängigkeit vom Rechenwert der Rissbreite wk	
	N/mm ²	$w_k = 0.3 \text{ mm}$	$w_k = 0,2 \text{mm}$
1	160	42	28
2	200	27	18
3	240	19	13
4	280	14	9
5	320	11	7
6	360	8	6
7	400	7	5
8	450	5	4

4.2.2.2 ÖNORM EN 1992-2

Im ÖNorm EN 1992-2 [20] sind mehrere Möglichkeiten für die Rissbreitenbeschränkung angegeben. Der Nachweis wird in dieser Arbeit mit der Begrenzung der Rissbreite ohne direkte Berechnung geführt. Der Grenzdurchmesser unter Biegung wird mit folgender Formel berechnet:

$$\phi_s = \phi_s^* \cdot \frac{f_{ct,eff}}{2.9} \cdot \frac{k_c \cdot h_{cr}}{2 \cdot (h-d)}$$

Formel 28:Grenzdurchmesser [20 S.135]

Stahlspannung ^b	Grenzd	Grenzdurchmesser der Stäbe [mm]		
[N/mm ²]	$w_{\rm k}$ = 0,4 mm	w _k = 0,3 mm	w _k = 0,2 mm	
160	40	32	25	
200	32	25	16	
240	20	16	12	
280	16	12	8	
320	12	10	6	
360	10	8	5	
400	8	6	4	
450	6	5		
^a Die Werte der Tabe $c = 25 \text{ mm; } f_{d,eff} = 2,$ $\boxed{\mathbb{AC}} k_i = 1,0 \ \boxed{\mathbb{AC}}; k_i =$ Unter der maßgebei	lle basieren auf den fol 9 N/mm ² ; \mathbb{A} $h_{cr} = 0,5h$ 0,4 und $k' = 1,0.$ nden Einwirkungskomb	genden Annahmen: (ﷺ); (h – d) = 0,1h; k ₁ = 0	0,8; k ₂ = 0,5; k _c = 0,4;	

Tabelle 10 :Grenzdurchmesser bei Betonstählen [20 S.134]

4.3 ERMÜDUNG

Der Nachweis gegen Ermüdung nach [16, 20, 21] ist grundsätzlich ein Nachweis der Tragsicherheit, welcher sich jedoch vom ULS Nachweis in seinen Grundsätzen unterscheidet. Im Vordergrund steht die Betrachtung der auftretenden Lasten über eine gewisse Lebensdauer des Bauteils. Das bedeutet, dass Schädigungen durch wiederkehrende Belastungen auftreten, welche in ihrer Größe auch weit unter den Materialfestigkeiten liegen. Daraus resultierend spricht man von einer Materialermüdung. Diese muss für die einzelnen Bestandteile des Bauteils, also für Beton und Betonstahl, getrennt durchgeführt werden. Grundsätzlich werden zwei Arten der Materialermüdung unterschieden:

- Materialermüdung, resultierend aus kurzzeitigen Beanspruchungen und geringen Lastwechseln
- Materialermüdung, resultierend aus langwidrigen Beanspruchungen und vielen Lastwechseln

Einen Überbegriff der Ermüdung stellt die sogenannte Betriebsfestigkeit dar. Diese beinhaltet die aus den Wechselbeanspruchungen resultierende Schwingbeanspruchung und die dabei zu erwartende Lebensdauer des Bauteils. Die Grundlagen für die Berechnung der Betriebsfestigkeit sind dabei das Ermüdungsverhalten des Werkstoffes, die auftretenden Betriebslasten, sowie das Nachweiskonzept. Der Nachweis der Ermüdung kann grundsätzlich in drei Stufen eingeteilt werden, welche sich mit steigender Zahl auch in ihrer Genauigkeit und Komplexität erhöhen.

- Stufe 1: Nachweis über die Spannungsbegrenzung (Quasi-Dauerfestigkeitsnachweis)
- Stufe 2: Nachweis über die schädigungsäquivalenten Spannungen
- Stufe 3: Nachweis der expliziten Betriebsfestigkeit

Aufgrund des Verhältnisses Arbeitsaufwand zu wirtschaftlichen Ertrag wird der Nachweis der schadensäquivalenten Spannungen (Stufe 2) als genügender Nachweis angesehen, welche auch in der Literatur als vereinfachter Betriebsfestigkeitsnachweis angeführt wird.

Die Nachweise werden anhand des DIN 102 Fachberichtes [3] und der ÖNorm EN 1992-2 [21] geführt. Beide Normen weisen im Gegensatz zu ULS und SLS Nachwiesen eine andere Belastungsannahme.

Im Zuge dieser Arbeit wird auf die Ermüdung nicht näher eingegangen, da sie bei den kurzen Spannweiten der Bestandsbrücken (siehe Kap. 1) vernachlässigt werden kann.

5 AUFLAGERDETAILS

In Zusammenarbeit mit der Landesregierung Steiermark (A16 Verkehr und Landeshochbau), welche Einblicke in die bestehenden Brückenbauten gab, wurde ein Regeldetailkatalog für Bestandsbrücken erstellt. Um einen Umbau durchführen zu können, ist es von großer Wichtigkeit, schon vor der Planung eine Bestandsanalyse durchzuführen, was die Erkenntnis sämtlicher geometrische Daten, Materialfestigkeiten sowie Ausführungsdetails beinhaltet. Durch das Studieren der vorhandenen Parameter kann die richtige Lösung für eine Sanierung oder einen Umbau gefunden werden.

Durch die große Anzahl der Brückenobjekte mussten verschiedene Kriterien zur Reduktion der zu untersuchenden Bauwerke getroffen werden. Dabei wurden folgende Grenzwerte gesetzt:

- Baujahr 1950 1990
- Einfeldrige Ortbeton- und Stahlbetonbrücken (bis Spannweite 25 m)
- Plattenwinkel max. 20 Grad Abweichung von der Straßenachse (lt. Leonhardt [7] Berechnung als gerade Brücke möglich)
- Breite des Querschnitts zwischen 8,5 11 m (≡ 2-spuriger Straße)
- Zustandsklasse 3, 4 und 5 nach RVS 13.03.11 [25]
- Verkehrslast ÖNORM B 4002 1954 [14], 1964 [15] und 1970 [18] (Klasse 1)

In weitere Folge wurden die Pläne auf ihre Vollständigkeit und ihre Lesbarkeit untersucht. Spezielle Punkte stellten bei der Untersuchung vor allem die bemessungsrelevanten Abmessungen der gesamten Brücke, sowie die Bewehrungsführung am Plattenende sowie der Widerlagerkopf dar. Mit Hilfe von Exceltabellen und dem Ausdruck von sämtlichen Details konnte ein Vergleich getroffen werden.

5.1 ZUSTANDSKLASSEN NACH RVS 13.03.11

Der Großteil des österreichischen Brückenbestandes befindet sich in einem guten bis ausreichendem Zustand, wie dies aus [23] S.81 entnommen werden kann. Bei vielen dieser Brücken stehen Instandsetzungs- oder Sanierungsmaßnahmen in den nächsten 10 Jahren bevor, dies entspricht einer Prüfnote 3 laut RVS 13.03.11 [25]. Die genaue Beschreibung der Beurteilung durch den Prüfer kann Tabelle 11 entnommen werden. Anhand der Bauwerksprüfung und somit dem Zustand der Brücke wird der Umfang des Umbau- oder Sanierungskonzeptes festgelegt.

Note	Beschreibung
1	Keine oder sehr geringe Schäden, Mängel aus der Bauzeit wie Abweichungen der Abmessungen,
	ästhetische Mängel.
1	Keine Einschränkung der Tragfähigkeit, Gebrauchstauglichkeit und Dauerhaftigkeit.
	Keine Instandsetzung erforderlich.
	Geringe, leichte Schäden. Mängel aus der Bauherstellung, die noch keine Verschlechterung zeigen.
2	Keine Einschränkungen der Tragfähigkeit und Gebrauchstauglichkeit.
	Bei Nichtbehebung kann es erst längerfristig zu einer Verminderung der Gebrauchstauglichkeit bzw.
	Dauerhaftigkeit kommen.
	Behebung im Zuge von Wartungs- und Instandsetzungsarbeiten empfohlen.
	Mittelschwere Schäden, die keine Einschränkung der Tragfähigkeit zur Folge haben.
3	Es sind Anzeichen einer Verminderung der Gebrauchstauglichkeit bzw. Dauerhaftigkeit des
	Bauwerks zu erkennen.
	Eine Instandsetzung soll mittelfristig in Angriff genommen werden, um die Gebrauchstauglichkeit
	bzw. Dauerhaftigkeit auf das geplante Maß anzuheben.
4	Schwere Schäden, die derzeit noch keine Einschränkung der Tragfähigkeit zur Folge haben.
	Es sind Anzeichen einer Verminderung der Gebrauchstauglichkeit bzw. Dauerhaftigkeit deutlich
	erkennbar.

Tabelle 11: Objektbewertung nach RVS 13.03.11 [25 S.24]

	Eine Instandsetzung soll kurzfristig in Angriff genommen werden, um die Gebrauchstauglichkeit		
	bzw. die Dauerhaftigkeit auf das geplante Maß anzuheben. Eine Instandsetzung kann innerhalb der		
	genannten Frist zugunsten einer neuerlichen Prüfung/Sonderprüfung ausgenutzt werden		
	(Prüfintervall verkürzen).		
	Sehr schwere Schäden, die eine Einschränkung der Tragfähigkeit und/oder Gebrauchstauglichkeit		
5	5 bis zum Abschluss der Instandsetzung/Erneuerung zur Folge haben.		
	Instandsetzungs-/Erneuerungsarbeiten sind unverzüglich einzuleiten.		

5.2 VERKEHRSLAST

Aufgrund des stetig steigenden Verkehrs werden auch die für die Tragwerksbemessung genormten Lastmodelle laufend angepasst. In Abbildung 39 ist die Normanpassung der Verkehrslasten der letzte 60 Jahre ersichtlich. Da die meisten Brücken in Österreich in den Jahren 1960 bis 1990 erbaut wurden, wird ein kurzer Vergleich der Verkehrslastnormen ÖNorm B 4002 1954 [14], 1964 [15] und 1970 [18] durchgeführt um Unterschiede hervorzuheben.

Abbildung 39: Entwicklung der zulässigen Verkehrslasten in Österreich [23]

Ein maßgebender Unterschied ergibt sich beim Lastkraftwagen. Nach ÖNorm B 4002 1954 [14] ist dieser mit 25 t und weiteren 14 t schweren LKWs beziffert. In den ÖNormen B 4002 1964 [15] und 1970 [18] sind jedoch die Zusatzfahrzeuge mit 16 t angegeben. Außerdem sind die Einzelkräfte der Fahrzeuge von Vorder-, Hinter- und die Ersatzlast verschieden. Die ÖNorm B 4002 1970 [18] beinhaltet im Gegensatz zu seinen Vorgängern die tabellarische Differenzierung der Gleichlast in Abhängigkeit der geometrischen Verhältnisse. Wie in [14] beschrieben ist nur ein Wert für die Bremskraft möglich. Durch weitere Überarbeitungen wie in der ÖNorm B 4002 1970 [18] ersichtlich, muss der Maximalwert mehrerer Berechnungsformen gewählt werden. Die ÖNorm B 4002 aus dem Jahre 1954 [14] weist keine Berücksichtigung in Bezug auf Erdbebeneinwirkungen auf. Die ÖNormen B 4002 aus dem Jahre 1954 [14] und 1964 [15] haben idente Fahrbahnbreiten. Eine Änderung ist im Jahre 1970 [18] getroffen worden, da z.B. eine Fahrspur von 4,0 m auf 4,5 m verbreitert wurde.

5.3 REGELDETAILS

Aufbauend auf den zur Verfügung gestellten Brückendaten wurde ein Regeldetailkatalog mit dem Fokus auf das Auflagerdetail erstellt. Der gesamte Regelkatalog findet sich in Anhang A1 wieder. Auszugsweise werden für jede Verkehrslastnorm ein typisches Auflagerdetail in den folgenden Kapiteln dargestellt.

5.3.1 ÖNORM B 4002-1954

Die Auflager der Brücken errichtet nach der ÖNorm B 4002 1954 [14] weisen im Regelfall das in Abbildung 40 dargestellte Detail auf. Dieses besteht aus einem feuerverzinktem Blech mit den Abmessungen I/b/h = 10/10/1 cm. Zusätzlich ist mittig im Blech ein Loch mit einem Steckeisen, einem sogenannter Dorn, eingebracht, welcher als Gegenmaßnahme der Verschiebung der Platte in horizontaler Richtung dient. Die Durchmesser dieser Steckeisen betragen zwischen 10 -20 mm. Die Plattenstärken wurden in den meisten Fällen dünn gehalten und weisen eine Dicke von 24 - 40 cm auf, dies entspricht einem L/h-Verhältnis von 10-20. Weiters ist zu erwähnen, dass alle Widerlager unbewehrt ausgeführt sind. Der Bereich unterhalb des Auflagers wurde in den überwiegenden Fällen der Brücken mit einer höheren Betongüte als das restliche Widerlager ausgeführt. Anzumerken ist, dass sich in vielen Fällen eine Steinverkleidung innenseitig (luftseitig) am Widerlager befindet.

Abbildung 40: Auflagerdetail ÖNorm B 4002 1954 [14]

5.3.2 ÖNORM B 4002-1964

Die Auflagerdetails der ÖNorm B 4002 1964 [15] können in zwei Gruppen gegliedert werden. Wie in Abbildung 41 links sind einige Brücken im Auflagerbereich ident ausgeführt, wie jene der ÖNorm B 4002 1954 [14]. Die Beschreibung des Details kann daher Kapitel 5.3.1 entnommen werden. Als Unterschied kann hervorgehoben werden, dass der Bereich in Auflagernähe neben einer besseren Betonqualität, auch eine eingelegte Bewehrung enthält, dies dient der Auflagerbankverstärkung. Der restliche Teil des Widerlagers ist in den meisten Fällen wieder unbewehrt ausgeführt. In Abbildung 41 rechts ist das Auflagerdetail mit einem Neoprenlager dargestellt. Diese sind in geringer Anzahl im Gegensatz zu den einfach ausgeführten Knotenblechen mit Steckeisen vorhanden. Die Fugenhöhe beträgt dabei zwischen 3 - 7 cm. Auffallend dabei ist die dicker ausgeführte Platte, die bis zu einer Höhe von 60 cm hergestellt wurde. Außerdem wurde die Widerlagerdicke stärker ausgeführt.

Abbildung 41: Auflagerdetails ÖNorm B 4002 1964 [15]

5.3.3 ÖNORM B 4002 1970

Die Auflagerdetails der ÖNorm B 4002 1970 [18] sind den bereits beschriebenen Detailen der ÖNormen B 4002 1954 [14] und 1964 [15] ähnlich, wie auch Abbildung 42 zeigt. Daher ist die detaillierte Beschreibung den beiden vorherigen Kapiteln 5.3.1 und 5.3.2 zu entnehmen. Die Unterschiede liegen in der höheren Anzahl der eingebauten Neoprenlager, sowie der detaillierteren Ausführung der Auflagerbereiche. In Abbildung 42 rechts ist zu sehen, dass unter dem Neoprenlager eine eigens eigebaute Auflagerbank ausgeführt wurde. Außerdem wurden viele Brückentragwerke als Plattenbalken oder als vorgespannte Systeme ausgeführt, die jedoch nicht Inhalt dieser Arbeit sind.

Abbildung 42: Auflagerdetails ÖNorm B 1970 [18]

6 BEMESSUNGSBEISPIEL

In diesem Kapitel wird der Umbau einer konventionellen Brücke in eine integrale Brücke mit Hilfe der Rucksacklösung erläutert. Dabei wird die Vorgangsweise der Berechnung und Nachweisführung der Rahmenecke mit negativ auftretendem Moment beschrieben. Durch den gegliederten Aufbau soll der Weg von der Modellierung bis hin zur Nachweisführung erklärt und auf wichtige Punkte in der Berechnung sowie in der konstruktiven Ausführung eingegangen werden. Da im Zuge dieser Arbeit mehrere Berechnungen aufgrund der Parameterstudie erfolgen, wird hier exemplarisch eine Berechnung der Rahmenecke darstellt. Die Ergebnisse werden mit den anderen Varianten in Kapitel 7 verglichen und die Unterschiede aufgezeigt. Einzelne Rechenschritte der anderen Berechnungen sind dem Anhang A 2 zu entnehmen.

Um die Berechnung der Rahmenecke durchzuführen und um Spannungsbilder für die Bemessung zu erhalten, werden zwei Systeme betrachtet. Das erste System ist das globale Brückentragwerk, modelliert als Rahmen, an dem alle Lastfälle aufgebracht werden. Die maximal resultierenden Schnittgrößen der Rahmenecke werden dann am zweiten lokalen System angesetzt und die Ergebnisse ausgewertet.

6.1 Bestandstragwerk

Das Bestandstragwerk ist als einfeldrige konventionelle Brücke ausgeführt, laut Brückendatenblatt wurde die Brücke 1975 errichtet. Die Dimensionierung erfolgte nach der ÖNorm B 4002 1970 für die Brückenklasse 1. Der Überbau besteht aus einem Vollplattenquerschnitt mit einer Höhe von 60 cm, die Widerlager sind 100 cm stark ausgeführt. Das Bestandstragwerk wurde in einem Beton C 25/30 und einer Bewehrungsstahlgüte BSt 500 laut ONR 24008 [22] errichtet. Die Spannweite der Brücke beträgt 8 m, die Brückenlagerung erfolgt mit Hilfe eines Knotenbleches und einem Steckeisen. Das Auflagerdetail entspricht jenem Regeldetail aus Kapitel 5.3. In Abbildung 43 ist der Aufriss schematisch dargestellt.

Abbildung 43: Bestandsbrücke im Aufriss

Die Integralisierung des bestehenden Tragwerks wird mit einer Rucksacklösung ausgeführt, welche auf die Verkehrslasten der ÖNorm EN 1991-2 [19] und ÖNorm B 1991-2 [17] ausgelegt ist.

6.2 BERECHNUNG AM RAHMEN

Alle Rechenvorgänge zur Ermittlung der Schnittgrößen und Spannungen wurden mit dem Finite Elemente Programm SOFISTIK durchgeführt. Die numerische Eingabe erfolgte dabei mit SOFISTIK Editor TEDDY Version 12.20-27.

Im ersten Schritt erfolgt die Berechnung am Rahmen für die gesamte Brücke, wie sie in Abbildung 43 dargestellt ist. Das Berechnungsmodell wurde der Diplomarbeit [27] entnommen. Die Modellierung des Systems sowie die Angabe der Lastfälle und Kombinationen sind dort detailliert beschrieben. Die Steifigkeit der Gründung wurde mittels vertikalen und horizontalen Druckfedern abgebildet. Zusammenfassend wurden folgende Lastfälle unter Berücksichtigung der Bauzustände auf das System aufgebracht:

Die vertikalen Verkehrslasten entsprechen dem Verkehrslastmodell 1. Der Erddruck ergibt sich bei Rahmenbauwerken durch Bewegungen resultierend aus der Temperatur, da infolge ΔT_N die Längenänderung über die Widerlagerwände an die Hinterfüllung weiter gegeben wird. Geht man von einem Erdruhedruck E0 bei einer Ausgangstemperatur von 10°C aus, kann der Erddruck im Winter bei Verkürzung auf den aktiven Erddruck E_a absinken. Bei einer Verlängerung (im Sommer) kann ein Wert bis zum Mobilisierungserddruck E_{mob} anwachsen. Der Einfluss der zyklischen Verdichtungswirkung infolge mehrerer Jahre und vieler Temperaturwechsel kann der Wert E_{mob} vernachlässigt werden, da bei Rahmen mit kurzer Spannweite bis 30 m ein viel geringerer Wert auftritt. Die Temperaturlasten wurden laut ÖNorm EN 1992-1-1 und NAD [16, 20] mit 60 % angesetzt.

In Abbildung 44 ist die Stelle des maßgebenden Schnittes 1 für die Schnittgrößen des Teilsystems für die Rahmenecke ersichtlich. Folgende Bemessungsschnittgrößen wurden am System ermittelt:

Negatives Moment:	-323	[kNm]
Normalkraft:	-76	[kN]
Querkraft aus Eigengewicht :	81	[kN] (Platte und Aufbeton)
Querkraft aus Aufhängelasten:	136	[kN] (Verkehr, Erddruck, Ausbaulasten, Temperatur)

Abbildung 44: maßgebender Schnitt Rahmenecke

6.3 LOKALE BERECHNUNG

6.3.1 MODELLIERUNG UND GEOMETRIE

Um die Rahmenecke detailliert abbilden zu können wurde diese als Scheibenmodell, mittels SOFISTIK Editor TEDDY Version 12.20-27 modelliert, dabei wurden durchgehend Flächenelemente (QUADs) verwendet. Um eine exakte Berechnung der Spannungsverläufe zu erhalten, wurde die Netzfeinheit auf 1 x 1 cm eingestellt. Mit dieser Netzfeinheit kann der Spannungsverlauf z.B. im Bereich des Lagerspaltes oder bei Materialänderungen detaillierter wiedergegeben werden. Die Lagerung des Systems wurde so gewählt, dass die Verschiebung in alle drei Richtungen sowie die Verdrehung um die x-Richtung gesperrt ist. Weiters wurde darauf geachtet das die lokalen Koordinatensysteme der Elemente einheitlich ausgerichtet sind.

In Abbildung 45 ist der Bestand (blau) und der Neubau (grün) ersichtlich, welcher die monolithische Verbindung zwischen Widerlager und Platte herstellt. Gleichzeit ist auch der Aufbeton auf der bereits bestehenden Platte ersichtlich. Die Gesamtüberbauhöhe beträgt inklusive Aufbeton 72 cm. Die Rucksacklänge muss dabei so gewählt werden, dass der Momentenullpunkt des Widerlagers überschritten wird, um so das Moment aus dem Überbau vollständig in den Unterbau einzuleiten. Die Länge des Rucksacks wurde mit zwei Metern festgelegt. Die restliche Länge bis zu den Auflagern, sowie die Überbaulänge, wurde frei gewählt.

Abbildung 45: Rahmenecke als Scheibensystem

6.3.2 BELASTUNG

Die ermittelten Schnittgrößen aus der globalen Berechnung nach Kapitel 6.2 werden für die lokale Berechnung übernommen. In Abbildung 46 ist die Lastaufbringung auf das Detailsystem dargestellt. Um lokale Spannungsspitzen aus den Punktlasten zu vermeiden, werden sämtliche Einwirkungen (M,N,Q) als Flächenlasten verschmiert aufgebracht. Das Moment und die Normalkraft werden dabei vereinfacht über ihre Spannungsverläufe aufgetragen. Die Umrechnung der beiden Schnittkräfte kann Tabelle 12 werden.

Tabelle 12: Lastaufbringung

Die einwirkende Querkraft wird geteilt in Eigengewicht und Aufhängelasten aufgeteilt. Grund dafür sind die unterschiedlichen Bauzustände während der Integralisierung. Das Eigengewicht q_{d,EG} der Bestandsplatte wird über das bestehende Lagerblech in das Wiederlager eingeleitet, deshalb wird diese Last von der Widerlagervorderkante bis zum Plattenende verschmiert. Die Aufhängelasten q_{d,AL} werden vereinfacht über eine konstant verschmierte Last in der Platte auf das System aufgebracht.

Abbildung 46:Lastaufbringung

6.4 ERGEBNISSE

Die folgenden Spannungsbilder werden dem Finite Elemente Programm SOFISTIK entnommen. Spezielle Punkte und Verläufe werden dabei näher beschrieben. Die dargestellten Berechnungsbilder sind dem Überlagerungslastfall entnommen, das bedeutet, dass alle vorher angegebenen Lasten auf das Scheibenmodell einwirken.

6.4.1 HAUPTZUGSPANNUNGEN

Die auftretenden Hauptzugspannungen für den Überlagerungsfall sind in Abbildung 47 dargestellt. Auffallend ist, dass der obere Bereich der Platte kurz vor Umleitung der Kräfte in das Widerlager am stärksten beansprucht wird (1). Grund dafür ist das Auftreten des maximalen Momentes ($M = Q \cdot a = M_{max}$) am Brückenüberbauende. Weiters kann man die hohe punktuelle Beanspruchung am Ende des Rucksacks zum Übergang zum bestehenden Widerlager erkennen (2). Dies begründet sich durch den Querschnittssprung von Rucksack zur WL-Dicke und somit einem geringeren Hebelarm für das Moment. Der weise Bereich stellt die Zonen mit sehr geringer bis keiner Zugspannung dar. So treten wie schon in Kapitel 3 erwähnt, im linken oberen Teil der Rahmenecke keine Spannungen auf (3). Das Rucksackende ist ebenfalls spannungslos, da die Zugkräfte über die Rucksacklänge in das bestehende Widerlager eingeleitet werden.

Abbildung 47: Hauptzugspannungen für den Überlagerungslastfall

ΤU

6.4.2 HAUPTDRUCKSPANNUNGEN

In Abbildung 48 sind die Hauptdruckspannungen des berechneten Systems dargestellt. Ersichtlich ist dabei, dass ein Großteil der Scheibe niedrige Druckspannungen aufweist. Ausnahme bildet dabei der Bereich der inneren Ecke, da hier eine sehr hohe Spannungskonzentration auftritt, welche auf den sehr engen Verlauf der Druckspannungen zurückzuführen ist. Letztgenanntes resultiert aus der lokalen Lasteinleitung der Kräfte.

Abbildung 48: Hauptdruckspannungen

6.4.3 Bemessungsquerschnitt

Aus den Spannungsverläufen kann in weiterer Folge auf den für die Bemessung gültigen Querschnitt rückgeschlossen werden. Vereinfachend werden nur jene Bereiche berücksichtigt die eine lineare Spannungsverteilung über den Querschnitt besitzen, kann daraus die statische Nutzhöhe d und der innere Hebelarm z bestimmt werden.

Bei der Bemessung des Überbaus darf die volle Querschnitthöhe angesetzt werden, da diese eine lineare Spannungsverteilung über den Querschnitt aufweist. Im Gegensatz dazu ist dies im Widerlager nicht der Fall. In Abbildung 49 links ist die Lage der Nulllinie ersichtlich, auffallend dabei ist, dass diese sich nicht im Schwerpunkt des Querschnitts befindet. In Höhe der Lagerfuge (1) treten große Druckspannungen auf, die durch die lokale Spannungsspitze aufgrund der Krafteinleitung entstehen. Im weiteren Verlauf kommt es zu einer Vergrößerung der Druckzone aufgrund des Eigengewichtes qd,EG. Da über die Rucksacklänge die Kräfte stetig in das bestehende Widerlager eingeleitet werden, kommt es wieder zu einer Vergrößerung der Zugzone im unteren Bereich des Rucksacks. Im Übergangsbereich Rucksack zu Widerlager ist gut zu erkennen, dass der Querschnitt fast jeweils zur Hälfte mit Zug- und Druckspannungen aufgeteilt ist.

Abbildung 49: Zug- und Druckzone des Querschnittes (li); ermittelter Bemessungsquerschnitt (re)

Anhand des Spannungsverlaufes wird der in Abbildung 49 rechts dargestellte Bemessungsquerschnitt gewählt. Der Bemessungsquerschnitt des Widerlagers wurde mit einer Breite von der Außenkante des Rucksacks bis Beginn des Lagerspaltes gewählt und läuft konstant nach unten. Der Grund für den konstanten Verlauf über die gesamte Höhe liegt darin, dass die Berechnungen konservativ und somit auf der sicheren Seite geführt werden sollen.

6.5 BEMESSUNG

In diesem Kapitel wird die Bemessung durchgeführt.

6.5.1 VERWENDETE MATERIALIEN

Hier werden alle Materialkennwerte für die folgenden Berechnungen angegeben. In Tabelle 13 sind beide Arbeitslinien der verwendeten Materialien dargestellt.

6.5.2 ULS - BEMESSUNG LÄNGSBEWEHRUNG

Die Bemessung zur Ermittlung der erforderlichen Hauptbewehrung in Längsrichtung wurde mit dem Spannungsblock-Verfahren nach EC 2 [20] durchgeführt. Die Berechnungen werden getrennt für den Überbau und den Unterbau aufgrund unterschiedlicher Geometrien geführt. Die Abmessungen der einzelnen Bemessungsquerschnitte sind in Abbildung 49 (re) dargestellt.

$N_c = b \cdot \lambda \cdot x \cdot \eta \cdot f_{cd}$		
$N_c = 1 \cdot 0.8 \cdot x \cdot 1 \cdot 14.17[MN]$	$N_c = 1 \cdot 0.8 \cdot x \cdot 1 \cdot 14.17[MN]$	
Hebelarm	(Formel 3)	
z = d	$-\frac{\lambda \cdot x}{2}$	
$z = 0,66 - \frac{0,8 \cdot x}{2} [m] \qquad \qquad z = 0,84 - \frac{0,8 \cdot x}{2} [m]$		
Resultierende Endgleichung (einsetzen Formel 2 und 3 in 1)	
$x^2 \cdot b \cdot \frac{\lambda^2}{2} \cdot \eta \cdot f_{cd} + x \cdot b \cdot \lambda \cdot \eta \cdot d$	$l \cdot f_{cd} + M_{ed,s} - N_{ed} \cdot \frac{h - d_1}{2} = 0$	
Auflösen der Gleichung nach x r	nit der quadratischen Gleichung	
$ax^2 + bx$	c + c = 0	
Druckzo	nenhöhe	
x ₂ = 4,09 [cm]	x ₂ = 2,77 [cm]	
Nc = 463,64 [kN]	Nc = 313,89 [kN]	
z = 64,36 [cm]	z = 82,89 [cm]	
Kontrolle der Stahldehnung		
$\varepsilon_{s1} = \varepsilon_{cu3} $	$ \cdot\left(\frac{d}{x}-1\right)$	
ε _{cu3} = -	3,5 [‰]	
ε _{s1} = 52,97 [‰] ≥ 4 [‰]	ε _{s1} = 102,65 [‰] ≥ 4 [‰]	
Bewehrung in	Längsrichtung	
$A_{sl,erf} = \frac{l}{z}$	$\frac{M_{ed,s}}{f_{yd}} + \frac{N_{ed}}{f_{yd}}$	
$A_{sl,erf} = \left(\frac{323,66 \cdot 10^{-3}}{0,64 \cdot 478,26}\right) \cdot 10^4 + \left(\frac{-76,50 \cdot 10^{-3}}{478,26}\right) \cdot 10^4$	$A_{sl,erf} = \left(\frac{323,66 \cdot 10^{-3}}{0,82 \cdot 478,26}\right) \cdot 10^4 + \left(\frac{-151,11 \cdot 10^{-3}}{478,26}\right) \cdot 10^4$	
A _{sl,erf} = 8,97 [cm ²]	A _{sl,erf} = 5,00 [cm ²]	
Gewählte Bewehrung		
Ø = 1,6 [cm]	Ø = 1,6 [cm]	
A _{s,vorh} = 12,06 [cm ²]	A _{s,vorh} = 12,06 [cm ²]	
Auf 1 m Breite sind 6 ø 16 / 15 einzulegen Auf 1 m Breite sind 6 ø 16 / 15 einz		
Mindestbewehrung		
Nach EC 1992-1-1 [20]		
$A_{s,min} = \max\left[0,26 \cdot \frac{f_{ctm}}{f_{vk}} \cdot b \cdot d; 0,0013 \cdot b \cdot d\right]$		
$A_{s,min} = \max\left[0,26 \cdot \frac{2,6}{550} \cdot 1 \cdot 0,66; 0,0013 \cdot 1 \cdot 0,66\right] A_{s,min} = \max\left[0,26 \cdot \frac{2,6}{550} \cdot 1 \cdot 0,84; 0,0013 \cdot 1 \cdot 1,10000\right]$		
A _{s,min} = [8,11;8,58] [cm ²]	A _{s,min} = [10,32;10,92] [cm ²]	

Nach EC 1992-2 [19]			
$A_{s,min} = \frac{M_{ed}}{z \cdot f_{yk}}$			
$A_{s,min} = \frac{323,66 \cdot 10^{-3}}{0,64 \cdot 550} \cdot 10^4$	$A_{s,min} = \frac{323,66 \cdot 10^{-3}}{0,82 \cdot 550} \cdot 10^4$		
A _{s,min} = 9,14 [cm ²]	A _{s,min} = 7,10 [cm ²]		
Maximalb	ewehrung		
Nach EC 19	92-1-1 [20]		
$A_{s,max} =$	0,04 · A _c		
$A_{s,max} = 0,04 \cdot 0,72 \cdot 1 \cdot 10^4$	$A_{s,max} = 0,04 \cdot 0,90 \cdot 1 \cdot 10^4$		
A _{s,max} = 288,0 [cm ²]	A _{s,max} = 360 [cm ²]		
Bewehru	ngsskizze		
$(1) \ \emptyset \ 16$ $(3) \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $			

6.5.3 ULS - QUERKRAFT

Der Nachweis wird im Abstand d vom Auflager geführt, somit kann die Querkraft V_{ed,red} angesetzt werden. Aufgrund der monolithischen Verbindung des Aufbetons mit der Platte kann die gesamte Querschnittshöhe in Rechnung gestellt werden. Grundsätzlich ist dieser Nachweis auch für den Unterbau zu führen, da dieser aber analog zum Überbau ist, wird auf diesen in weiterer Folge verzichtet.

Querkraftwiderstand ohne Querkraftbewehrung für den Überbau		
Einwirkende Querkraft		
V _{ed,red} = 0,165 [MN/m]		
Querkraftwiderstand		
$V_{Rd,1,c} = \left[C_{Rd,c} \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} + k_1 \cdot \sigma_{cp}\right] \cdot \mathbf{b} \cdot d$		
Beiwert		
$C_{Rdc} = \frac{0.18}{\gamma_c}$ $C_{Rdc} = 0.12 [-]$		
Längsbewehrungsgrad		
$\rho_l = \frac{a_{sl}}{d}$		
$a_{sl} = a_{sA}$ $a_{sl} = 0,0012 \text{ [m}^2/\text{m]}$		
ρι = 0,001996 [%]		
Maßstabseffekt		
$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{660}}$		
k = 2,74 [-]		
Beiwert		
k1 = 0,15 [-]		
$V_{Rd,1,c} = \left[0,12 \cdot 2,74 \cdot (100 \cdot 0,001996 \cdot 25)^{\frac{1}{3}} + 0,15 \cdot 0\right] \cdot 1 \cdot 0,66$		
V _{Rd,1,c} = 0,370 [MN/m]		
Minimaler Querkraftwiderstand		
$V_{Rd,2,c} \ge \left(\nu_{min} + k_1 \cdot \sigma_{cp}\right) \cdot \mathbf{b} \cdot d$		
$\nu_{min} = 0,035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$		
v _{min} =0,346 [-]		
$\sigma_{cn} = \frac{N_{sd}}{N_{sd}}$		
$\sigma_{cp} = 0$ [MPa]		
$V_{-1.2} > (0.346 + 0.15 \cdot 0) \cdot 1 \cdot 0.66$		
$Rd_{2,c} \simeq (0,570 + 0,15 + 0,15 + 0,00)$		

Tabelle 15: Querkraftwiderstand Überbau

Nachweis	
$V_{Rd,c} = \max[V_{Rd,1,c}; V_{Rd,2,c}] \ge V_{Ed}$	
$0,370 \ [MN] \ge 0,165 \ [MN] \rightarrow Nachweis \ erf \ddot{u}llt$	

6.5.4 SLS - BEMESSUNG QUERBEWEHRUNG

Tabelle 16: Bemessung Querkraftbewehrung

$A_{s,vorh} = gewählt \ 0 \ 12 \ / \ 20 = 5,65 \ [cm^2]$	A _{s,vorh} = gewählt ø 10 / 30 = 2,62 [cm ²]			
Maximalbewehrung				
A _{s,max} = Vorgabe ø 12 / 15 = 7,54 [cm ²]	A _{s,max} = Vorgabe ø 12 / 15 = 7,54 [cm ²]			
Innenliegende Bewehrung	-			
Dabei wird vereinfacht angenommen, dass eine Ausführung mit 50 % der äußeren Stahlfläche ausreicht.	-			
A _s = 5,65 [cm ²] · 0,5 = 2,825 [cm ²]	-			
A _{s,vorh} = gewählt ø 10 / 25 = 3,15 [cm ²]	-			

6.5.5 STABWERKMODELL

Anhand der ausgegebenen Spannungsbilder nach 6.4 kann in weiterer Folge ein Stabwerk entwickelt werden. Die Aufgabe besteht darin, dieses so einfach wie möglich auszuführen. Der Nachweis des erstellten Systems besteht in der Berechnung der einzelnen Stäbe, sprich Druck- und Zugstäbe sowie den vorhandenen Knoten. In Abbildung 55 ist ein Detailausschnitt der Rahmenecke mit den Hauptzugspannungen ersichtlich. Das Stabwerksmodell wurde gegenüber den in Kapitel 3 beschriebenen Modellen noch einmal vereinfacht. Aufgabe der Zugstreben ist die Aufnahme der Kräfte bei Rissbildung des Betons. Es ist zu erkennen, dass die Zugstrebe welche im Bereich der Zugzone liegt, diese Funktion übernehmen kann, da wie in Kapitel 3 beschrieben die Risse an der Außenseite der Rahmenecke entstehen. Im Druckbereich übernehmen die sogenannten Druckstreben die vorherrschenden Druckkräfte.

6.5.6 NACHWEIS STABWERKSMODELL

Da es sich bei der Rahmenecke um einen Diskontinuitätsbereich handelt ist es nicht möglich anhand der globalen Bemessung und linearen Bemessung wie sie in den Kapitel 6.4.3 geführt wurde, eine Aussage über die Einhaltung der Nachweise der Rahmenecke zu treffen. Wie schon erwähnt ist die geometrische sowie statische Diskontinuität dafür verantwortlich, dass von einer nichtlinearen Verteilung der Dehnung ausgegangen werden muss. Der Nachweis der Rahmenecke selbst muss daher anhand eines Stabwerksystems erfolgen. Dabei werden einzelne Nachweise für Zug- und Druckstrebe, sowie für den Knoten geführt. In Abbildung 56 ist das vorhandene Stabwerkssystem detailliert dargestellt.

Abbildung 56: Stabwerksystem

6.5.6.1 DRUCK- UND ZUGSTREBE

Tabelle 18: Nachweis Druck- und Zugstrebe

Nachweis des Überbaus	Nachweis des Unterbaus	
Betondruckkraft aus Spannungsblock (aus Kapitel 1.1.1)		
N _c = 463,64 [kN] =F _{cd} Σ H = 0 F _{sd} - F _{cd} = 0 F _{sd} = 463,64 [kN]	N _c = 313,89 [kN] =F _{cd} Σ H = 0 F _{sd} - F _{cd} = 0 F _{sd} = 313,89 [kN]	
Nachweis der Druckstrebe D1 und D2		
$\left \sigma_{Rd,max}\right = \frac{\left F_{cd}\right }{a \cdot b} \le \alpha \cdot f_{cd}$ Formal 20: Formal Nachwaid dar Druckstraha		
Bei einem negativen Moment entstehen die Risse wie in Kapitel 3 gezeigt wurde, meist an der Aussenseite in der Zugzone. Daher wird für ungerissene Druckzonen $\alpha = 1,0 \cdot n_1$ angesetzt, wobei $n_1 = 1$ ist.		
Eingangsparameter		
$\label{eq:alpha} \begin{array}{l} \alpha = 1 \ [-] \\ f_{cd} = \ 14,17 \ [N/mm^2] \\ F_{cd} = \ 463,64 \ [kN] \\ a = \ 40,9 \ [mm] \\ b = \ 1000 \ [mm] \end{array}$	$\label{eq:alpha} \begin{array}{l} \alpha = 1 \ [-] \\ f_{cd} = \ 14,17 \ [N/mm^2] \\ F_{cd} = \ 313,89 \ [kN] \\ a = \ 40,9 \ [mm] \\ b = \ 1000 \ [mm] \end{array}$	
$\alpha \cdot f_{cd} = 14,17 \left[\frac{N}{mm^2}\right]$	$\alpha \cdot f_{cd} = 14,17 \left[\frac{N}{mm^2}\right]$	
$\left \sigma_{Rd,max}\right = \frac{ 463,64 \cdot 1000 }{40,9 \cdot 1000} = 11,33 \left[\frac{N}{mm^2}\right]$	$\left \sigma_{Rd,max}\right = \frac{ 313,89 \cdot 1000 }{27,70 \cdot 1000} = 11,33 \left[\frac{N}{mm^2}\right]$	
$11,33 \leq 14,17 \rightarrow Nachweis erfüllt$	11,33 \leq 14,17 \rightarrow Nachweis erfüllt	
Formel 30: Nachweis der Druckstrebe		
Nachweis der Zugstrebe Z1 und Z2		
$F_{sd} \leq F_{tRd} = A_s \cdot f_{yd}$ Formel 31: Formel Nachweis der Zugstrebe		

Eingangsparameter		
F _{sd} = 463,64 [kN] A _{s,vorh} = 12,06 [cm ²] f _{yd} = 478,26 [N/mm ²]	F _{sd} = 463,64 [kN] A _{s,vorh} = 12,06 [cm ²] f _{yd} = 478,26 [N/mm ²]	
$F_{tRd} = 12,06 \cdot 100 \cdot 478,26 \cdot \frac{1}{1000} = 577 \ [kN]$	$F_{tRd} = 12,06 \cdot 100 \cdot 478,26 \cdot \frac{1}{1000} = 577 [kN]$	
$463,64 [kN] \leq 577[kN] \rightarrow Nachweis erfüllt$	$463,64[kN] \leq 577[kN] \rightarrow Nachweis erfüllt$	
Formel 32: Nachweis der Zugstrebe		

6.5.6.2 DRUCK-ZUG-ZUG KNOTEN K1

Aufgrund der unterschiedlichen Bauteilabmessungen von Über- und Unterbau besitzen die Zugkräfte F_{sd} nicht die gleiche Größe, daher liegt die Resultierende Druckkraft F_{cd} nicht in der Winkelhalbierenden.

Abbildung 57: Druck-Zug-Zug Knoten nach EC 2 [20]

$\sigma_{cd} \leq \sigma_{Rd,max}$

Formel 33: Formel Nachweis für Druck-Zu-Zug Knoten

$$\sigma_{cd} = \frac{\max\{F_{td,1}, F_{td,2}\}}{b \cdot d_{br} \cdot \sin\theta \cdot \cos\theta}$$

Formel 34: vorhandene Betondruckspannung

 $\sigma_{Rd,max} = k_3 \cdot \nu' \cdot f_{cd}$

Formel 35: Formel für Druck-Zug Spannungsnachweis mit Verankerung nach EC 2 [19 S.120]

Da dieser Knoten im Bereich des eingebrachten Betons liegt, kann die Druckfestigkeit auch mit jenem Wert des neu verwendeten Betons angesetzt werden.

Eingangsparameter

k₃ = 0,9 [-] lt. ÖNORM 1992-1-1 [16] F_{td,1} = 463,64 [kN] F_{td,2} = 313,89 [kN]

b = 1 [m]

d_s =1,6 [cm]

Biegerollendurchmesser nach [13]

$$d_{br} \ge 3 \cdot \frac{f_{yk}}{f_{ck}} \cdot d_s \cdot \sqrt{\frac{d_s}{s_d}}$$

 $s_d = s_R$ wenn $s \ge 2 \cdot s_R$

$$d_{br} \ge 3 \cdot \frac{550}{30} \cdot 1.6 \cdot \sqrt{\frac{1.6}{5}} = 49.78 \ [cm]$$

Druckstrebenbreite a

$$a = d_{br} \cdot \sin \theta$$

$$\theta = \tan^{-1} \left(\frac{F_{td,2}}{F_{td,1}} \right) = \tan \left(\frac{313,89}{463,64} \right) = 0,59 = 34 \ [°]$$

$$a = 49,78 \cdot \sin 0,59 = 27,68 \ [cm]$$

Vorhandene Betondruckspannung

$$\sigma_{cd} = \frac{\max\{F_{td,1}, F_{td,2}\}}{b \cdot d_{br} \cdot \sin\theta \cdot \cos\theta}$$

$$\sin 0,65 = 0,605$$

$$\cos 0,65 = 0,796$$

$$\sigma_{cd} = \frac{463,64 \cdot 1000}{1000 \cdot 49,78 \cdot 10 \cdot 0,605 \cdot 0,796} = 1,94 \left[\frac{N}{mm^2}\right]$$

 $\sigma_{Rd,max} = k_3 \cdot \nu' \cdot f_{cd}$

Abminderungsbeiwert

$$\nu' = 1 - \frac{f_{ck}}{250} = 1 - \frac{30}{250} = 0,88$$

$$\sigma_{Rd,max} = 0.9 \cdot 0.88 \cdot 17 = 13.46 \left[\frac{N}{mm^2}\right]$$

 $1,94 \leq 13,46 \rightarrow Nachweis erfüllt$

Formel 36: Nachweis Druck-Zug-Zug Strebe

6.5.6.3 DRUCK-DRUCK-DRUCK KNOTEN K2

Bei diesem Nachweis dürfen alle drei Betondruckspannungen die maximale Betondruckspannung nicht überschreiten.

Abbildung 58: Druck-Druck-Druck Knoten [20]

$$\sigma_{Rd,max} = k_1 \cdot \nu' \cdot f_{cd}$$

Formel 37:maximale Betondruckspannung

$$\sigma_{cd.i} = \frac{F_{cd,i}}{a_i \cdot b}$$

Formel 38: Spannungen am Knotenrand

 $\sigma_{cd,i} \leq \sigma_{Rd,max}$

Formel 39: Nachweis Druck-Druck-Druck Knoten

Die einzelnen Spannungen, welche am Rande des Knotens entstehen, müssen kleiner sein als die maximale Betondruckspannung.

Eingangsparameter

k1 = 1,25 [-] lt. Önorm 1992-1-1

Fcd,1=463,64 [kN]

F_{cd,2} = 313,89 [kN]

$$F_{cd,3} = \sqrt{F_{cd,2}^2 \cdot F_{cd,3}^2} = \sqrt{463,64^2 + 313,89^2} = 557,81 \ [kN]$$

Maximale Betondruckspannung

 $\sigma_{Rd,max} = k_3 \cdot \nu' \cdot f_{cd}$

Abminderungsbeiwert

$$\nu' = 1 - \frac{f_{ck}}{250} = 1 - \frac{25}{250} = 0,90$$

$$\sigma_{Rd,max} = 1,25 \cdot 0,90 \cdot 14,17 = 15,94 \left[\frac{N}{mm^2}\right]$$

Tabelle 19: Nachweis Druck-Druck-Druck Knoten

Nachweis Betondruckspannung 1	Nachweis Betondruckspannung 2	Nachweis Betondruckspannung 3
F _{cd,1} =463,64 [kN]	F _{cd,2} =313,89 [kN]	F _{cd,3} =582,29 [kN]
a1 = 4,09 [cm]	a ₂ = 2,77 [cm]	a₃ = 27,7 [cm]
$\sigma_{cd,i} = \frac{F_{cd,i}}{a_i \cdot b}$		
$\sigma_{cd,1} = \frac{463,64 \cdot 1000}{4,09 \cdot 10 \cdot 1000} = 11,33 \left[\frac{N}{mm^2}\right]$	$\sigma_{cd,2} = \frac{313,89 \cdot 1000}{2,77 \cdot 10 \cdot 1000} = 11,33 \left[\frac{N}{mm^2}\right]$	$\sigma_{cd,3} = \frac{557,81 \cdot 1000}{27,7 \cdot 10 \cdot 1000} = 1,96 \left[\frac{N}{mm^2}\right]$
Nachweis		
$11,33 \leq 15,94$ $\rightarrow Nachwais arfüllt$	$11,33 \leq 15,94$ $\rightarrow Nachwais arfüllt$	$1,96 \leq 15,94$ $\rightarrow Nachwais arfüllt$

6.5.7 Schubfugennachweis Rucksack nach EC 2

Die Verbindung zwischen dem bereits bestehenden Widerlager und dem auf der Rückseite betonierten Rucksack, muss auf seine kraftschlüssige Verbindung geprüft werden. In Abbildung 59 ist die zu bemessende Fuge eingezeichnet.

Abbildung 59: Schubfugennachweis Rucksack

Wie bereits bei der Herstellung in Kapitel 2.4 erwähnt wird der bereits bestehende Beton mit z.B. HDW aufgerauht, um eine bessere Verzahnung der beiden Betone zu erhalten. Dies wirkt sich auch auf die einzelnen Faktoren c und μ in der Berechnung aus, welche die Werte für eine rauhe Fuge annehmen.

6.5.7.1 SCHUBFUGENEINWIRKUNG

Die Schubfugeneinwirkung kann auf zwei unterschiedliche Arten ermittelt werden. Im ersten Fall wird im Finite-Elemente Programm SOFISTIK an der Stelle der Schubfuge ein Schnitt gesetzt. Dadurch werden die Scheibenschubspannungen in Schnittrichtung ausgegeben, welche die Größe der Beanspruchung darstellen. Die zweite Methode stellt eine Schnittführung horizontal alle 10 cm entlang des Rucksackes dar. Ausgegeben werden die Normalspannungen senkrecht zum Schnittufer, welche auf Schubspannungskräfte umgerechnet werden. Beide Varianten stellen eine Lösung zur Ermittlung der vorhandenen Schubspannungen dar. Variante 1 stellt dabei die genauere Berechnung dar, wobei hier auf die Eingabe der Netzfeinheit geachtet werden muss. Fällt diese zu grob aus, kann keine definierte Aussage über die Genauigkeit der Werte gegeben werden. Somit könnte bei einem grobmaschigen Netz mit Variante 2 gearbeitet werden. Um einen Vergleich der beiden Varianten zu erhalten, werden diese nachfolgend dargestellt.

Variante 1

In Abbildung 60 sind die vorhandenen Schubspannungen im Übergang Rucksack und Widerlager abgebildet. Am Ende des Rucksacks entsteht aufgrund des Querschnittsprunges und der starren Kopplungen der Elemente (Kompatibilitätsproblem) eine Spannungsspitze im Schubkraftverlauf. Aufgrund von Rissbildung und Verschiebungen in diesem Bereich ist davon auszugehen, dass die Spitze abgebaut und in andere Bereiche umgelagert wird. Vereinfachend wird für den Nachweis der Bereich in den letzten 50 cm des Rucksacks, welcher in Teilbild 3 dargestellt ist, auf einen Mittelwert umgerechnet. Konstruktiv wird am Ende ein kleinerer Abstand der Dübel gewählt, um dies auch in der Ausführung zu berücksichtigen.

Abbildung 60: Spannungen für Schubfugenberechnung

Abbildung 61: Ausschnitt Schubspannungen Variante 2

Variante 2

57

Die Normalspannungen am Rand des Rucksacks σ_1 und jene an der Schubfuge σ_2 wurden den Berechnungsergebnissen, siehe Abbildung 61 entnommen. Die beiden Werte werden über den in Rot dargestellten Bereich gemittelt und bilden den Wert σ_m laut Formel 40.

$$\sigma_m = \frac{\sigma_1 + \sigma_2}{2} \ [\frac{MN}{m^2}]$$

Formel 40: mittlere Spannung Schubfuge

Die resultierende Kraft F wird mit der Formel 41 ermittelt. Die Fläche bei der Ermittlung der Kraft ist dabei bei allen Schnitten konstant.

 $F = \sigma_m \cdot A [MN]$

Formel 41: Formel für Normalspannung

Breite b = 1 [m]

Länge $d_x = 0,3 [m] \equiv$ Breite des Rucksacks

 $A = b \cdot d_x = 1 \cdot 0,3 = 0,3 \; [m^2]$

Als letzten Schritt wird die Schubspannung τ laut Formel 42 berechnet. Hierfür wird die Differenz zweier nachfolgender Normalkräfte gebildet, und durch die vorhandene Fläche dividiert. Die Fläche dx \cdot b ist dabei konstant, da alle Schnitte im Abstand von 10 cm gesetzt wurden.

$$\tau = \frac{F_1 - F_2}{d_x \cdot b} \left[\frac{MN}{m^2}\right]$$

Formel 42: Schubspannungen

Breite b = 1 [m]

Länge d_x = 0,1 [m]

Die Ergebnisse für die gesamte Schubfuge der Berechnung sind in folgender Tabelle 20 ersichtlich:

	σ_1	σ ₂	σ _m	F	τ	Abstand [m]
Schnitt 1	4,41	1,86	3,14	0,94		0
Schnitt 2	4,62	1,86	3,24	0,97	-0,32	0,1
Schnitt 3	4,57	1,78	3,18	0,95	0,20	0,2
Schnitt 4	4,37	1,68	3,03	0,91	0,45	0,3
Schnitt 5	4,08	1,59	2,84	0,85	0,57	0,4
Schnitt 6	3,76	1,51	2,64	0,79	0,60	0,5
Schnitt 7	3,45	1,46	2,46	0,74	0,54	0,6
Schnitt 8	3,18	1,41	2,30	0,69	0,48	0,7
Schnitt 9	2,95	1,38	2,17	0,65	0,39	0,8
Schnitt 10	2,76	1,35	2,06	0,62	0,33	0,9
Schnitt 11	2,60	1,33	1,97	0,59	0,27	1,0
Schnitt 12	2,45	1,31	1,88	0,56	0,26	1,1
Schnitt 13	2,30	1,30	1,80	0,54	0,24	1,2
Schnitt 14	2,12	1,29	1,71	0,51	0,29	1,3
Schnitt 15	1,90	1,31	1,61	0,48	0,30	1,4
Schnitt 16	1,61	1,35	1,48	0,44	0,38	1,5
Schnitt 17	1,20	1,43	1,32	0,39	0,50	1,6
Schnitt 18	0,73	1,59	1,16	0,35	0,46	1,7
Schnitt 19	0,00	1,89	0,95	0,28	0,65	1,8
Schnitt 20	-0,12	2,00	0,94	0,28	0,01	1,9
Schnitt 21	0,00	10,20	5,10	1,53	-12,47	2,0

Tabelle 20: Schubspannungen in Schubfuge

6.5.7.2 SCHUBFUGENWIDERSTAND

Hier soll die Formel für den Widerstand einer Schubfuge nach EC 1992-1-1 [16] näher erläutert werden. Der grüne Teil stellt den Haftverbund dar, welcher neben der Zugfestigkeit des Betons vor allem von der Oberflächenbeschaffenheit der Fuge abhängig ist. Der blaue Teil berücksichtigt den Reibungsverbund, wobei hier die Einwirkung von Druck-oder Zugspannungen eine große Rolle spielt. Der rote Teil stellt den Übertragungsanteil über die Bewehrung bzw. Schubdübel dar.

Formel 43: Schubfugenwiderstand [20]

Tabelle 21: Nachweis Schubfuge Rucksack

OHNE BEWEHRUNG	MIT BEWEHRUNG				
Berechnung des Fugenwiderstandes v _{RDi}					
$v_{Rdi} = c \cdot f_{ctd} + \mu \cdot \sigma_n + \rho \cdot f_{yd} \cdot (\mu \cdot \sin \alpha + \cos \alpha) \left[\frac{MN}{m^2}\right]$					
c = 0,40 [-]					
$f_{ctd} = \alpha_{ct} \cdot \frac{f_{ctk,0,05}}{\gamma_c} \left[\frac{MN}{m^2}\right]$					

$\alpha_{ct} = 1,0$ [-]				
f _{ctk0,05} = 1,8	8 [MN/m²]			
$f_{ctd} = 1.0 \cdot \frac{1.8}{1.5} = 1.2 \left[\frac{MN}{m^2}\right]$				
μ = 0,	,70 [-]			
σ _n = 0 [MN/m ²]			
Bewehru	ngsgehalt			
$\rho = \frac{A}{A}$	$\frac{l_s}{l_i}$ [%]			
$A_s = 0,00[cm^2]$	A _s = 7,54 [cm ²]			
Betonfläche mit b = 1	0 [m] und d _x = 0,1 [m]			
A _i = 1000 [cm ²]	A _i = 1000 [cm ²]			
$\rho = \frac{0,00}{1000} = 0,00 \ [\%]$	$\rho = \frac{7,54}{1000} = 0,0075[\%]$			
$\alpha = 5$	90 [°]			
$v_{Rdi} = 0.4 \cdot 1.2 + 0.7 \cdot 0 + 0.00 \cdot 478.26 \cdot (0.7 \cdot 0.894 - 0.448)$	$v_{Rdi} = 0.4 \cdot 1.2 + 0.7 \cdot 0 + 0.00754 \cdot 478,26$			
$= 0,48 \left[\frac{MN}{m^2}\right]$	$\cdot (0,7 \cdot 0,894 - 0,448) = 1,12 \left[\frac{MN}{m^2}\right]$			
Aufnehmbare Schubkraft v _{Rdi,max}				
$v_{Rdi,max} = 0.5 \cdot f_{cd} \cdot \nu$				
$\nu = 0.6 \cdot \left(1 - \frac{f_{ck}}{250}\right) = 0.6 \cdot \left(1 - \frac{f_{ck}}{250}\right) = 0.54 [-]$				
$v_{Rdi,max} = 0.5 \cdot 14.17 \cdot 0.54 = 3.82 \left[\frac{MN}{m^2}\right]$				
Nachweis				
$v_{Rdi,max} \ge v_{Rdi}$				
$3,82 \ge 0,40 \rightarrow Nachweis erf \ddot{u}llt$ $3,82 \ge 1,04 \rightarrow Nachweis erf \ddot{u}llt$				
Mindestbewehrung				
$\rho_{min} = 0,20 \cdot \frac{f_{ctm}}{f_{yk}} \ge 0,001$				
$\rho_{min} = 0.20 \cdot \frac{2.6}{550} = 0.000945 \le 0.001$ $\rho_{min} = 0.20 \cdot \frac{2.6}{550} = 0.000945 \le 0.001$ $\rightarrow maßgebend$ $\rho_{min} = 0.20 \cdot \frac{2.6}{550} = 0.000945 \le 0.001$				
Nachweis				
$\rho_{vorh} \ge \rho_{min}$				
$ \rho_{vorh} = 0,0000 \ge 0,001[\%] \\ \rightarrow Nachweis \ nicht \ erf \ "ullt $ $ \rho_{vorh} = 0,0074 \ge 0,001[\%] \rightarrow Nachweis \ erf \ "ullt $				

6.5.7.3 DISKUSSION DER ERGEBNISSE Vergleich Variante 1 und Variante 2

In Abbildung 60 betragen die maximal einwirkenden Schubspannungen, welche nicht am Ende des Rucksacks auftreten, 0,507 [MN/m²]. Im Endbereich des Rucksacks, welcher mit 50 cm definiert wird, werden die vorhandenen Schubspannungen gemittelt, dies bedeutet eine gemittelte Einwirkung von 1,12 [MN/m²]. Variante 2 zeigt, dass im Bereich von Schnitt 4 bis 9 eine maximale Schubspannung von 0,60 [MN/m²] zu finden ist. Mittelt man den Bereich des letzten halben Meters, so bekommt man eine mittlere Schubspannung von 2,8 [MN/m²]. Das bedeutet, dass beide Varianten über den Verlauf nahezu gleiche Lösungen ergeben. Der einzige Unterschied liegt im Bereich der Spannungsspitzen am Ende des Rucksacks, welcher besonders behandelt werden muss, wird im nächsten Punkt erwähnt. Folgend werden die einwirkenden Schubspannungen mit 0,507 [MN/m²] für den ersten Bereich und 1,12 [MN/m²] für den Endbereich des Rucksacks als bemessungsrelevant angenommen.

Nachweis Schubfuge

Der Nachweis kann in drei Schritten erfolgen. Im ersten Schritt wird der Fugenwiderstand ohne Bewehrung ermittelt. Deckt dieser die Schubspannungen nicht ab, muss eine Bewehrung gewählt werden. Der dritte Schritt ist den Bereich der Spannungsspitze zu bearbeiten. In dieser Arbeit werden die Schubspannungen über die letzten 50 cm des Rucksacks verschmiert, wodurch die vorhandenen Spitzenwerte abgebaut werden. Die Verlegung der Dübel bilden ø 10/30, welche einen Fugenwiderstand von 0,70 [MN/m²] aufweisen, der größer ist als die einwirkenden 0,507 [MN/m²]. Am Ende des Rucksackes werden im ø12 /12,5 eingebracht, welche einen Widerstand von 1,25 [MN/m²] ergeben und somit die 1,12 [MN/m²] abdecken. Wird bei der Fugenwiderstandsberechnung keine Bewehrung berücksichtigt, beträgt der Widerstand rein aus der Haftung v_{Rdi} = 0,48 [MN/m²]. Das bedeutet, wenn man die Ergebnisse aus Variante 1 und 2 betrachtet, dass ein Großteil der Flächen mit der Mindestbewehrung abgedeckt werden könnte. Die Bereich kurz nach Beginn des Rucksacks sowie am Ende weißen größere Schubspannungen auf, eine Bewehrung zur Verstärkung der Schubfuge ist erforderlich. Den Berechnungsverlauf für die Schubfuge ohne Bewehrung und mit Bewehrung sind der Abbildung 63 zu entnehmen.

Abbildung 63: Bewehrungsskizze Schubdübel Rucksack

6.5.8 Schubfugennachweis Aufbeton nach RVS 15.02.34

Die Verbindung zwischen der bereits bestehenden Fahrbahnplatte und dem Aufbeton muss auf seine kraftschlüssige Verbindung nach RVS 15.02.34 [26] geprüft werden. In Abbildung 64 ist die Fuge in Rot eingezeichnet. Zu erwähnen ist dabei, dass für die in der Berechnung angegeben Beiwerte, die Einhaltung der Vorbereitungsarbeiten der RVS einzuhalten ist. Diese werden in der RVS 15.02.34 [26] angeführt.

Abbildung 64: Schubfuge Aufbeton

In Abbildung 65 sind die aus dem Finite-Elemente Programm auftretenden Scheibenschubspannungen in Schnittrichtung angeführt.

Abbildung 65: Schubspannungswerte Übergang Neu- zu Altbeton im Überbau

6.5.8.1 TRAGFÄHIGKEIT DER FUGE

Die Fugenwiderstände nach RVS [26] können dabei auf zwei unterschiedliche Arten ermittelt werden. In Variante 1 wird der Schubfugenwiderstand nach ÖNORM EN 1992-1-1 [16] mit den angegebenen Beiwerten ermittelt. In Variante 2 wird mit einer verzahnten Schubfuge gerechnet, welche höhere Anforderungen an die Fugenvorbereitung stellt, welche höhere Beiwerte ergeben.

Variante 1 nach [20]

OHNE BEWEHRUNG	MIT BEWEHRUNG			
Berechnung des Fugenwiderstandes v _{RDi}				
$\nu_{Rdi} = c \cdot f_{ctd} + \mu \cdot \sigma_n + \rho \cdot f_{yd} \cdot (\mu \cdot \sin \alpha + \cos \alpha) \left[\frac{MN}{m^2}\right]$				
c = 0,40 [-]				

	£ MAN			
$f_{ctd} = \alpha_{ct} \cdot$	$\frac{\int ctk,0.05}{v} \left[\frac{MN}{m^2}\right]$			
γ_c μ^c				
fetko os = 1	8 [MN/m ²]			
$f_{1,1} = 10^{-1}$	$\frac{8}{MN} = 1.2 \left[\frac{MN}{M}\right]$			
$J_{ctd} = 1,0$	$\frac{1}{5} = \frac{1}{2} \left[\frac{1}{m^2} \right]$			
μ=0	,/U [-]			
0n - 0				
Bewenru				
$\rho = \frac{1}{2}$	$\frac{\mathbf{A}_s}{\mathbf{A}_i}$ [%]			
$A_s = 0,00[cm^2]$	A _s = 2,62 [cm ²]			
Betonfläche mit b = 1	,0 [m] und d _x = 0,1 [m]			
A _i = 1000 [cm ²]	A _i = 1000 [cm ²]			
$\rho = \frac{0.00}{1000} = 0.00 \ [\%]$	$\rho = \frac{2,62}{1000} = 0,00262[\%]$			
α =	90 [°]			
$\nu_{Rdi} = 0.4 \cdot 1.2 + 0.7 \cdot 0 + 0.00 \cdot 478,26 \cdot (0.7 \cdot 0.894 - 0.448)$ MN	$\nu_{Rdi} = 0.4 \cdot 1.2 + 0.7 \cdot 0 + 0.00262 \cdot 478,26$ <i>MN</i>			
$= 0,48 \left[\frac{1}{m^2}\right] \qquad (0,7 \cdot 0,894 - 0,448) = 0,70 \left[\frac{1}{m^2}\right]$				
Aufnehmbare Schubkraft v _{Rdi,max}				
$\nu_{Rdi,max} = 0.5 \cdot f_{cd} \cdot \nu$				
$\nu = 0.6 \cdot \left(1 - \frac{f_{ck}}{250}\right) = 0.6 \cdot \left(1 - \frac{f_{ck}}{250}\right) = 0.54 [-]$				
$v_{Rdi,max} = 0.5 \cdot 14.17 \cdot 0.54 = 3.82 \left[\frac{MN}{m^2}\right]$				
Nachweis				
$\nu_{Rdi,max} \ge \nu_{Rdi}$				
$3,82[\frac{MN}{m^2}] \ge 0,40[\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \ge 0,62\ [\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \qquad 3,82[\frac{MN}{m^2}] \rightarrow Nachweis\ erf \ddot{u}llt \ a hlt \ $				
Mindestbewehrung				
$\rho_{min} = 0,20 \cdot \frac{f_{ctm}}{f_{yk}} \ge 0,001$				
$\rho_{min} = 0,20 \cdot \frac{2,6}{550} = 0,000945 \le 0,001$ $\rho_{min} = 0,20 \cdot \frac{2,6}{550} = 0,000945 \le 0,001$ $\rho_{min} = 0,20 \cdot \frac{2,6}{550} = 0,000945 \le 0,001$ $\rightarrow maßgebend$				
Nachweis				
$\rho_{vorh} \ge \rho_{min}$				
$\rho_{vorh} = 0,0000 \ge 0,001[\%] \\ \rightarrow Nachweis nicht erfüllt \qquad \rho_{vorh} = 0,0074 \ge 0,001[\%] \rightarrow Nachweis erfüllt$				

Variante 2 nach [26]

In Tabelle 23 wird die Berechnung des Fugenwiderstandes nach der verzahnten Fuge gerechnet.

OHNE BEWEHRUNG	MIT BEWEHRUNG			
Berechnung des Fugenwiderstandes v _{RDi}				
$\nu_{Rdi} = c \cdot f_{ctd} + \mu \cdot \sigma_n + \rho \cdot j$	$f_{yd} \cdot (\mu \cdot \sin \alpha + \cos \alpha) \left[\frac{MN}{m^2}\right]$			
c = 0,	50 [-]			
$f_{ctd} = \alpha_{ct} \cdot \frac{f_{ctd}}{f_{ctd}}$	$\frac{\mathcal{E}_{ctk,0,05}}{\gamma_c} \left[\frac{MN}{m^2}\right]$			
$\alpha_{\rm ct} = 2$	1,0 [-]			
f _{ctk0,05} = 1,8	3 [MN/m²]			
$f_{ctd} = 1.0 \cdot \frac{1}{1.1}$	$\frac{8}{5} = 1,2 \left[\frac{MN}{m^2}\right]$			
μ = 0,	90 [-]			
σ _n = 0 [1	MN/m ²]			
Bewehrungsgehalt				
$\rho = \frac{A_s}{A_i} [\%]$				
$A_s = 0,00[cm^2]$	A _s = 2,62 [cm ²]			
Betonfläche mit b = 1,	0 [m] und d _x = 0,1 [m]			
A _i = 1000 [cm ²]	A _i = 1000 [cm ²]			
$\rho = \frac{0,00}{1000} = 0,00 \ [\%]$	$\rho = \frac{2,62}{1000} = 0,00262[\%]$			
α = 90 [°]				
$\nu_{Rdi} = 0.5 \cdot 1.2 + 0.9 \cdot 0 + 0.00 \cdot 478,26 \cdot (0.9 \cdot 0.894 - 0.448)$ $= 0.60 \left[\frac{MN}{m^2}\right]$	$v_{Rdi} = 0.5 \cdot 1.2 + 0.9 \cdot 0 + 0.00262 \cdot 478.26$ $\cdot (0.9 \cdot 0.894 - 0.448) = 1.05 \left[\frac{MN}{m^2}\right]$			
Aufnehmbare Schubkraft V _{Rdi,max}				
$\nu_{Rdi,max} = 0.5 \cdot f_{cd} \cdot \nu$				
$\nu = 0.6 \cdot \left(1 - \frac{f_{ck}}{250}\right) = 0.6 \cdot \left(1 - \frac{f_{ck}}{250}\right) = 0.54 [-]$				
$v_{Rdi,max} = 0.5 \cdot 14.17 \cdot 0.54 = 3.82 \left[\frac{MN}{m^2}\right]$				
Nachweis				
$v_{Rdi,max}$	$r \ge \nu_{Rdi}$			
$3,82[\frac{MN}{m^2}] \ge 0,50 [\frac{MN}{m^2}] \rightarrow Nachweis \ erf \ ``ullt'$	$3,82[\frac{MN}{m^2}] \ge 0,90[\frac{MN}{m^2}] \rightarrow Nachweis erf \ddot{u}llt$			
Mindestbewehrung				
$\rho_{min} = 0.20 \cdot \frac{f_{ctm}}{f_{yk}} \ge 0.001$				

Tabelle 23: Nachweis Schubfuge verzahnt

$\rho_{min} = 0.20 \cdot \frac{2.6}{550} = 0.000945 \le 0.001$ $\rightarrow maßgebend$	$\begin{split} \rho_{min} &= 0.20 \cdot \frac{2.6}{550} = 0.000945 \leq 0.001 \\ &\rightarrow maßgebend \end{split}$			
Nachweis				
$ \rho_{vorh} \ge \rho_{min} $				
$ \rho_{vorh} = 0,0000 \ge 0,001[\%] $ $ \rightarrow Nachweis nicht erfüllt $	$\rho_{vorh} = 0,0074 \ge 0,001[\%] \rightarrow Nachweis erfüllt$			

6.5.8.2 DISKUSSION DER ERGEBNISSE

Die in der Schubfuge wirkenden Spannungen wie in Abbildung 65 ersichtlich, ergeben einen Maximalwert von 0,66 [MN/m²]. Die Schubfuge weist ohne Bewehrung einen Widerstand von 0,48 [MN/m²] in Variante 1 und in Variante 2 von 0,6 [MN/m²] auf, welche Tabelle 22 und Tabelle 23 zu entnehmen ist. Um die Mindestbewehrung einzuhalten, müssen ø10/30 eingebohrt werden. Diese ergeben einen Widerstand der Schubfuge von 0,70 [MN/m²] in V1 und 1,05 [MN/m²] in V2 und sind damit ausreichend.

7 PARAMETERSTUDIE

Mit Hilfe einer Parameterstudie soll der Einfluss der Geometrie des Über- und Unterbaus sowie die Rucksacklängen auf die Spannungen untersucht werden. Die einzelnen Berechnungsschritte wurden analog zu Kapitel 6 durchgeführt. Detaillierte Ergebnisse der folgend angeführten Varianten sind dem Anhang A 2 zu entnehmen. Bei der Parametererstellung wurden insgesamt 18 verschiedene Varianten gerechnet. In diesem Kapitel sollen die wichtigsten Hauptunterschiede kurz und prägnant aufgezeigt werden.

7.1 VARIANTEN

Im Zuge der Parameterstudie wurden 18 Varianten berechnet, welche in Tabelle 24 abgebildet sind. In dieser sind die Geometrien und Schnittgrößen der untersuchten Brücken angeführt. In den nachfolgenden Vergleichen werden zur besseren Übersicht 3 Varianten ausgewählt (Variante 1 bis 3). Die Schnittgrößen werden wie in Abbildung 46 beschrieben, auf das Teilsystem aufgebracht. Der genaue Vorgang zur Ermittlung der Schnittkräfte ist Kapitel 6 zu entnehmen. Das im Kapitel 6 berechnete Brückenbeispiel entspricht in Tabelle 24 der Variante 1, daher wurde diese hervorgehoben.

	Wide	rlager	Überbau		Schnittgrößen				
Variante	Dicke [m]	Höhe [m]	Höhe [m]	Stützweite [m]	L/H [-]	m _d [kN/m]	n _d [kN]	q _{d,EG} [kN]	q _{d,AL} [kN]
1	1,0	5	0,6	8	13	-323	-76	81	136
2	1,0	5	0,6	13	22	-581	-115	131	171
3	1,2	8	0,8	20	25	-1157	-161	270	192
		V	Veitere un	tersuchte Vari	anten	(nicht dargest	ellt)		
4	0,8	5	0,4	8	20	-293	-70	54	159
5	0,8	5	0,6	8	13	-309	-75	81	136
6	0,8	5	0,8	8	10	-333	-78	108	86
7	0,8	5	0,6	13	22	-560	-114	132	171
8	0,8	5	0,8	13	16	-551	-113	176	160
9	0,8	5	0,8	20	25	-1011	-180	270	188
10	1,0	5	0,4	8	20	-299	-71	54	159
11	1,0	5	0,8	8	10	-360	-82	108	86
12	1,0	5	0,8	13	16	-595	-118	176	160
13	1,0	5	0,8	20	25	-1072	-186	270	188
14	1,2	5	0,4	8	20	-334	-81	54	166
15	1,2	8	0,6	8	13	-392	-88	81	147
16	1,2	8	0,8	8	10	-462	-96	108	142
17	1,2	8	0,6	13	22	-642	-112	132	177
18	1,2	8	0,8	13	16	-687	-118	176	167

Tabelle 24:	Geometrie +	Schnittkräfte	Parameterstudie

7.2 EINFLUSS "ERDSEITIGE VORSATZSCHALE"

Um den Einfluss der Länge der erdseitigen Vorsatzschale aufzuzeigen, wurde dem Beispiel aus Kapitel 6 und (hier Variante 1) der Rucksack auf einen Meter reduziert. Die genauen Abmessungen und die einwirkenden Schnittgrößen sowie das Bemessungsvorgehen sind Kapitel 6 zu entnehmen. In folgender Tabelle 25 sind die Geometrien der beiden Varianten, die Hauptzugspannungen sowie die Scheibenschubspannungen in der Fuge des Rucksacks dargestellt. Die genaue Beschreibung der Position der Fuge und deren Einflüsse sind Kapitel 6.4.10 zu entnehmen.

Tabelle 25: Einfluss "erdseitige Vorsatzschale"

Schubspannungen Rucksack				
0218 0.144 0.319 0.430 0.489 0.507 0.496 0.468 0.431 0.391 0.352 0.318 0.291 0.272 0.262 0.262 0.262 0.262 0.266 0.282 0.307 0.341 0.391 0.352 0.318 0.291 0.272 0.266 0.282 0.307 0.341 0.394 0.354 0.435 0.435 0.454 0.282 0.307 0.341 0.394 0.563 0.654 0.792 1.05 1.00	0.469 0.271 0.0957 0.00243 0.190 0.325 0.444 0.546 0.633 0.705 0.770 0.818 0.887 0.889 0.915 0.940 0.959 0.977 0.996 1.02 1.02 1.05 1.09 1.15 1.24 1.38 1.63 2.19			
Die Länge es Rucksacks hat deutlichen Einfluss auf die Scheibenschubspannungen v1 verkurzter Rucksack kurzen Rucksacklängen zeigt sich, dass der Verlauf konstant zunimmt, die Werte übersteigen dabei den Fugenwiderstand aus Haftverbund von 0,4 [MN/m ²] bei unbewehrter Ausführung. Bei einer längeren Ausbildung des Rucksacks zeigt sich ein nahezu konstanter Verlauf der Schubspannungen.				
<u>Schubdübel</u>				
verlegung 0 – 1,5 m: Ø 10/30 Verlegung 0 – 1,5 m: Ø 12/15 Verlegung 1,5 – 2,0 m: Ø 12/12,5 Verlegung 1,5 – 2,0 m: Ø 16/12				
Empfohlen wird, die Rucksacklänge bis zum Momentnullpunkt des Widerlagers auszuführen, um eine gleichmäßige Krafteinleitung in das Bestandswiderlager zu ermöglichen und um die Einwirkung der Schubfuge zu reduzieren.				

7.3 EINFLUSS ÜBERBAU

In diesem Beispiel soll der Einfluss der Schnittkrafthöhe beschrieben werden, dazu werden die Varianten 1 und 2 miteinander verglichen. Wie in Tabelle 24 dargestellt, unterschieden sich die beiden Brückentragwerke durch ihre Stützweite und die daraus resultierenden ungleichen Schnittgrößen. Tabelle 26 zeigt zusammenfassend die Berechnungsergebnisse.

Tabelle 26: Einfluss Überbau

Schubspannungen Rucksack				
0.144 0.144 0.319 0.430 0.489 0.507 0.486 0.489 0.507 0.496 0.496 0.496 0.496 0.497 0.496 0.497 0.496 0.496 0.497 0.496 0.496 0.496 0.497 0.496 0.496 0.497 0.496 0.496 0.497 0.496 0.496 0.497 0.496 0.496 0.497 0.496 0.496 0.497 0.496 0.496 0.497 0.496 0.496 0.496 0.497 0.272 0.262 0.266 0.286 0.286 0.286 0.391 0.391 0.391 0.357 0.391 0.357 0.266 0.286 0.286 0.286 0.391 0.391 0.391 0.357 0.391 0.357 0.266 0.286 0.286 0.286 0.391 0.391 0.391 0.357 0.391 0.357 0.366 0.286 0.286 0.286 0.391 0.391 0.391 0.357 0.391 0.357 0.366 0.286 0.286 0.286 0.391 0.391 0.391 0.357 0.366 0.286 0.286 0.391 0.563 0.654 0.792 1.05	0.0662 0.0662 0.0662 0.0666 0.721 0.748 0.724 0.748 0.724 0.670 0.600 0.604 0.537 0.478 0.478 0.478 0.478 0.478 0.478 0.402 0.399 0.402 0.575 0.663 0.575 0.663 0.757 0.896 1.06			
Abbildung 70: Scheibenschubspannungen V1 Bei beiden Varianten ist durch die Überschreitung des Fugenwiderstandes aus Haftverbund von 0,4 [MN/m ²] bei unbewehrter Ausführung eine Verlegung von Schubdübeln von Nöten. Die größeren Werte in Variante 2 sind auf die größeren Schnittkräfte als Variante 1 zurückzuführen, da beide Varianten dieselbe Rucksacklänge aufweisen.				
Schubdübelanzahl				
Verlegung 0 – 1,5 m: Ø 10/30 Verlegung 0 – 1,5 m: Ø 12/25 Verlegung 1,5 – 2,0 m: Ø 12/12,5 Verlegung 1,5 – 2,0 m: Ø 14/10				
Empfohlen wird, die Rucksacklänge bis zum Momentnullpunkt des Widerlagers auszuführen, um eine gleichmäßige Krafteinleitung in das Bestandswiderlager zu ermöglichen und um die Einwirkung der Schubfuge zu reduzieren.				

7.4 VERGLEICH VARIANTE 1 ZU VARIANTE 3

In diesem Beispiel soll der Einfluss der Schnittkrafthöhe und der Geometrie beschrieben werden, dazu werden die Varianten 1 und 3 miteinander verglichen. Tabelle 24 zeigt zusammenfassend die Berechnungsergebnisse. In sind die Hauptzugspannungen der beiden Varianten dargestellt.

Tabelle 27: Vergleich Variante 1 und Variante 3

8 CONCLUSIO

8.1 SCHLUSSBETRACHTUNG

Durch die vielen Sanierungs- und Verstärkungsmaßnahmen, die auf die österreichische Brückenbetreiber in den nächsten Jahren zukommen, ist es sinnvoll Alternativen zu entwickeln, die eine Verbesserung der Wirtschaftlichkeit und der Tragfähigkeit sowie Dauerhaftigkeit zur Folge haben. Die Integralisierung von konventionellen Brücken stellt dabei eine sehr gute Lösung dar. Trotzdem muss beachtet werden, in welchem Zustand sich das Bestandstragwerk befindet, da ein Umbau nie teurer sein darf als ein Neubau. Wird eine Lösung mit einem Umbau zu einer integralen Brücke angestrebt, ist eine genaue Begutachtung des Bestandes sowie die Ermittlung sämtlicher Parameter unerlässlich, um eine geeignete Lösung zur Ausbildung der biegesteifen Rahmenecke zu finden.

Die in dieser Arbeit beschriebenen Ausführungsvariante der erdseitigen Vorsatzschale, der sogenannten Rucksacklösung, ist eine sehr effiziente Lösung um das Rahmeneck biegesteif auszubilden. Die Ausbildung der Rahmenecke sowie die Verstärkung der Fahrbahnplatte mit Aufbeton stellen machbare Arbeitsschritte dar. Abhängig von Geometrie und Belastung und somit der Länge des Rucksackes wird das umliegende Erdreich gering beeinflusst. Trotzdem sollte noch einmal erwähnt werden, dass der Umfang und die Komplexität einer Integralisierung auf planerischer sowie ausführender Seite höher sind, als bei einem konventionellen Bauwerk. Die in der Bemessung angesetzten variablen Parameter (z.B. Fugenrauhigkeit) müssen im Zuge der Ausführung überprüft und gegebenenfalls in der Berechnung angepasst werden. Bei der konstruktiven Durchbildung ist dabei besonders auf die Rahmenecken zu achten, wie dies in Kapitel 3 in Bezug auf die Rissbildung dargestellt wird. Schräg eingelegte Bewehrungsstäbe können zusätzlich zur Hauptbewehrung eine bessere Kraftumleitung und eine Rissentwicklung einschränken. Zugleich muss auch die Ausbildung der konstruktiven Bewehrung überlegt werden, um die Rissbreiten so klein wie möglich zu halten und um Abplatzungen des Betons oder Korrosionsangriff der Bewehrung zu verhindern. Bei der Bemessung wie in Kapitel 4 beschrieben, ist besonders auf die Schnittstelle Planung und Ausführung zu achten, gegebenenfalls sind in der Bemessung angenommene Werte (wie z.B. Bodenparameter, Fugenrauhigkeit) zu adaptieren. Durch das Bemessungsbeispiel in Kapitel 6 wird ersichtlich, auf welche Detailpunkte im Zuge einer Rahmeneckenbemessung zu achten ist. Die Einflüsse aus Geometrie und Lasten sind in Kapitel 7 anhand einer Parameterstudie dargestellt. Hervorgehoben werden kann, dass die Rucksacklänge großen Einfluss auf die Fugenschubspannung hat. Empfohlen wird, die Rucksacklänge bis zum Momentenullpunkt des Widerlagers auszuführen, um eine gleichmäßige Krafteinleitung in das Bestandswiderlager zu ermöglichen. Weiters ist darauf zu achten, dass bei der Bemessung des Rucksackendes mit einer verschmierten Schubspannung ausreichend Bewehrung eingelegt wird. Auf der sicheren Seite liegend wird empfohlen im unteren Bereich die Schubdübel mit geringerem Abstand einzulegen. Ein Bewehrungsvorschlag für das in Kapitel 6 bemessene Rahmeneck ist Anhang A3 zu entnehmen.

8.2 FORSCHUNGSBEDARF

Einfluss Höhe Lagerspalt

In dieser Arbeit wurden Rahmenecken mit 1 cm Lagerfuge unter negativer Momentenbeanspruchung bearbeitet. Wie in Abbildung 78 oder Kapitel 5.3 beschrieben gibt es Brückenbauten ab den 1960 Jahren, welche mit einem Neopren- oder Elastomerlager ausgeführt wurden. Die Höhe des Lagerspalts beträgt bei diesen Ausführungsdetails zwischen 3 bis 7 cm. Bei einem höheren Lagerspalt kann es daher sinnvoll sein, auch den vorderen Bereich des Widerlagers als Druckzone in der Bemessung zu nutzen. Dadurch könnte ein Entfall des Rucksacks möglich sein, ein einbohren und einkleben der Bewehrung in das Bestandswiderlager ist dabei unerlässlich.

Abbildung 78: Elastomerlager

Einfluss positive Momentenbelastung

Als Ergänzung zum negativ einwirkenden Moment sind Berechnungen eines positiven Moments durchzuführen. Bei der Nachweisführung muss das Stabwerkmodell an den Kraftfluss angepasst werden, dabei ist die Lage und Länge der Zugstrebe im Widerlager von großer Bedeutung. Die Einbohrlänge der Bewehrung im Widerlager ist abhängig von der mittleren Betonzugfestigkeit f_{ctm} sowie der Bestandsbewehrung des Unterbaus. Der günstige Einfluss der Drucknormalkraft im Widerlager kann bei der Bestimmung der Einbohrlänge herangezogen werden. Ein beispielhafter Spannungsverlauf aus positiver Momentenbeanspruchung ist in Abbildung 79: Hauptzugspannungen (li) und Hauptdruckspannungen (re) bei positivem Moment dargestellt. Sämtliche in dieser Arbeit angeführten Arbeitsschritte und Fachwerkmodelle müssen an die neue Beanspruchung angepasst werden.

Abbildung 79: Hauptzugspannungen (li) und Hauptdruckspannungen (re) bei positivem Moment

VERZEICHNISSE

Abbildungen

Abbildung 1: Transitverkehr Österreich [23 S.20]	1
Abbildung 2: konventionelles Brückentragwerk (li); integrale Brücke (re)	2
Abbildung 3: Konventionelle Brücke [2, 9 S.5]	3
Abbildung 4: Korrosionsangriff am Lager	3
Abbildung 5: Integrale Brücke [9 S.5]	4
Abbildung 6: Sommer/Winterstellung Widerlagerwand [9 S.5]	4
Abbildung 7: Semi-integrale Brücke [9] [2 S.5]	5
Abbildung 8: Auflagerdetail mit Vergussmörtel	6
Abbildung 9: Rahmenecke mit Vorsatzschale(zweiseitig)	7
Abbildung 10: Auflagerdetail Rucksack mit Aufbeton	7
Abbildung 11: Lastpfade und Umlenkung (links) und Stabwerkmodell (rechts) [13 S.294]	9
Abbildung 12: Diskontinuitätsbereiche [13 S.287]	9
Abbildung 13: Größe des Diskontinuitätsbereiches [12 S.133]	10
Abbildung 14: Hauptspannungen (li) und Trajektorien (re) im Zustand I [12 S.127]	10
Abbildung 15: Spannungsverlauf in RE, positives Moment (li) und negatives Moment (re) [11 S.5]	11
Abbildung 16: Innerer Kräfteverlauf unter negativen Moment [7 S.159]	12
Abbildung 17: Spannungsverteilung unter positivem Moment, σy (1); σx (2);Spannungstrajektorien (3)	und
Rissbildung (4) [13 S.311]	12
Abbildung 18: Schematisches Tragverhalten und Kraftfluss bei positivem Moment [13] S.308	13
Abbildung 19: Kraftflussmodell bei positivem Moment [13 S.309]	13
Abbildung 20: Rissbildung unter positivem Moment, Bewehrungsführung (1) und Rissbildung	(2),
Zugspannungsverteilung bei positivem Moment (3) [7 S.163] [11 S.4]	14
Abbildung 21: Spannungsverläufe unter negativem Moment, σy (links); σx (mitte);Spannungstrajekto	rien
(rechts); Rissbild [13 S.311]	15
Abbildung 22: Druckspannung + Zugkräfte bei negativem Moment [12] S.145	15
Abbildung 23: Spaltgefahr infolge Umlenkpressung [7 S.161]	16
Abbildung 24:Einfluss Biegerollendurchmesser (li) und Stabwerksmodell (re) [7 S.162]	16
Abbildung 25: Stabwerksmodell bei veränderlichem Querschnitt unter positivem Moment [12 S.312]	17
Abbildung 26: Stabwerksmodell für veränderlichem Querschnitte unter negativem Moment [12 S.312]	17
Abbildung 27: Versuchsergebnisse nach Nielsson [7 S.165]	18
Abbildung 28: Rissbilder unter positivem Moment [7 S.165]	19
Abbildung 29: Versuchsaufbau unter positivem Moment nach Kordina [11 S.10]	19
Abbildung 30: Empfohlene Bewehrungsführung bei positivem Moment nach Kordina [11 S.26]	20
Abbildung 31: Versuchsaufbau nach Stekelenburg [10 S.135]	20
Abbildung 32: Versuchsaufbaus und empfohlene Bewehrungsführung (rechts) nach Kordina für negat	ives
Moment [11 S.10/14]	21
Abbildung 33: Bewehrungsführung Prüfkörper 1 [11 S.38]	22
Abbildung 34: Bewehrungsführung Prüfkörper 2 [11 S.41]	22
Abbildung 35: Versuchsaufbau unter negativem Moment [10 S.135]	23
Abbildung 36: Spannungsfeld mit begrenzter Ausbreitung (li) oder mit unbegrenzter Ausbreitung	der
Druckspannung (rechts) [20 S.117]	25
Abbildung 37: Druckknoten [12]	27
Abbildung 38: Knoten mit Umlenkung der Bewehrung [12 S.146]	29
Abbildung 39: Entwicklung der zulässigen Verkehrslasten in Österreich [23]	34
Abbildung 40: Auflagerdetail ÖNorm B 4002 1954 [14]	35
Abbildung 41: Auflagerdetails ÖNorm B 4002 1964 [15]	36

Abbildung 42: Auflagerdetails ÖNorm B 1970 [18]	. 36
Abbildung 43: Bestandsbrücke im Aufriss	. 37
Abbildung 44: maßgebender Schnitt Rahmenecke	. 38
Abbildung 45: Rahmenecke als Scheibensystem	. 39
Abbildung 46:Lastaufbringung	. 40
Abbildung 47: Hauptzugspannungen für den Überlagerungslastfall	. 41
Abbildung 48: Hauptdruckspannungen	. 42
Abbildung 49: Zug- und Druckzone des Querschnittes (li); ermittelter Bemessungsquerschnitt (re)	. 43
Abbildung 50: Bilineare Spannungsdehnungslinie [20]	. 44
Abbildung 51: Arbeitslinie Stahl [20]	. 44
Abbildung 52: Bewehrungsskizze Längsbewehrung	. 47
Abbildung 53: Skizze Rucksack	. 49
Abbildung 54: Skizze Aufbeton	. 49
Abbildung 55:entwickeltes Stabwerkmodell	. 50
Abbildung 56: Stabwerksystem	. 51
Abbildung 57: Druck-Zug-Zug Knoten nach EC 2 [20]	. 52
Abbildung 58: Druck-Druck-Druck Knoten [20]	. 54
Abbildung 59: Schubfugennachweis Rucksack	. 56
Abbildung 60: Spannungen für Schubfugenberechnung	. 57
Abbildung 61: Ausschnitt Schubspannungen Variante 2	. 57
Abbildung 62: Resultierende Kraft (Schnitt 6 und 7)	. 58
Abbildung 63: Bewehrungsskizze Schubdübel Rucksack	. 61
Abbildung 64: Schubfuge Aufbeton	. 62
Abbildung 65: Schubspannungswerte Übergang Neu- zu Altbeton im Überbau	. 62
Abbildung 66: Variante 1	. 68
Abbildung 67: Variante 1 verkürzter Rucksack	. 68
Abbildung 68: Hauptzugspannungen V1	. 69
Abbildung 69: Hauptzugspannungen V1 verkürzter Rucksack	. 69
Abbildung 70: Scheibenschubspannungen V1	. 70
Abbildung 71: Scheibenschubspannungen V1 verkürzter Rucksack	. 70
Abbildung 72: Variante 1 und 2	. 71
Abbildung 73: Hauptzugspannungen Variante 2	. 72
Abbildung 74: Scheibenschubspannungen V2	. 73
Abbildung 75: Variante 3	. 74
Abbildung 76: Hauptzugspannungen Variante 3	. 75
Abbildung 77: Scheibenschubspannung V3	. 76
Abbildung 78: Elastomerlager	. 78
Abbildung 79: Hauptzugspannungen (li) und Hauptdruckspannungen (re) bei positivem Moment	. 79

TABELLEN

Tabelle 1: Vor- und Nachteile einer integralen Brücke [9] AP 1 S.9	5
Tabelle 2: Laststufen der Probekörper 1 und 2	23
Tabelle 3: Bereich mit/ohne Querzug [20]	
Tabelle 4: Nachweis Zugstrebe	27
Tabelle 5: Beiwerte	27
Tabelle 6: Nachweis Druck-Druck Knoten	28
Tabelle 7: Nachweis Druck-Druck-Zug Knoten	28
Tabelle 8: Nachweis Knoten mit Umlenkung	29
Tabelle 9: modifizierter Grenzdurchmesser [3]	30
Tabelle 10 :Grenzdurchmesser bei Betonstählen [20 S.134]	31
Tabelle 11: Objektbewertung nach RVS 13.03.11 [25 S.24]	33
Tabelle 12: Lastaufbringung	40
Tabelle 13: Arbeitslinien der Baustoffe	
Tabelle 14: Bemessung der Längsbewehrung	45
Tabelle 15: Querkraftwiderstand Überbau	48
Tabelle 16: Bemessung Querkraftbewehrung	49
Tabelle 17: Grenzdurchmesser bei Betonstählen [20] S.134	49
Tabelle 18: Nachweis Druck- und Zugstrebe	51
Tabelle 19: Nachweis Druck-Druck Knoten	55
Tabelle 20: Schubspannungen in Schubfuge	59
Tabelle 21: Nachweis Schubfuge Rucksack	59
Tabelle 22: Nachweis Schubfuge Aufbeton	62
Tabelle 23: Nachweis Schubfuge verzahnt	64
Tabelle 24: Geometrie + Schnittkräfte Parameterstudie	67
Tabelle 25: Einfluss "erdseitige Vorsatzschale"	68
Tabelle 26: Einfluss Überbau	71
Tabelle 27: Vergleich Variante 1 und Variante 3	74

LITERATURVERZEICHNIS

- [1] Berger, D. 1999. Besonderheit bei Entwurf und Bemessung integraler Betonbrücken. Betonbrücken und Stahlbetonbau. Heft 4.
- [2] Bundesamt für Strassen. Konstruktive Einzelheiten von Brücken, ASTRA.
- [3] Deutsches Institut für Normung. 2009. *Betonbrücken. Concrete bridges = Ponts en béton*. DIN-Fachbericht 102. Beuth, Berlin.
- [4] DIN 1045-1 08.2008. 2008. *Tragwerke aus Beton, Stahlbeton und Spannbeton*. DIN Deutsches Inst. für Normung, DIN 1045.
- [5] Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UEVK Bundesamt für Strassen, Ed. 208. *Integrale Brücken Sachstandsbericht*, Greifensee.
- [6] Engelsmann, Stephan, Schlaich, Jörg und Schäfer. 1999. *Heft 496: Entwerfen und Bemessen von Betonbrücken ohne Fugen und Lager*, Berlin.
- [7] Fritz Leonhardt and Eduard Mönning. 1977. *Grundlagen zum Bewehren im Stahlbetonbau. Vorlesungen über Massivbau*. Springer, Berlin [u.a.].
- [8] Geier, R. 2011. *Heft 596: Planung integraler Brücken*, Wien.
- [9] Institut für Betonbau der TU Graz. Oktober / 2014. *Handlungsanweisung und Konstruktionsdetails zur Adaptierung von Bestandsbrücken in Integralbauwerke*. *Arbeitspaket 1*. Literaturstudie Integrale Brücken, Graz.
- [10] J.P. van Stekelenburg. 1976. Bewehren von Rahmenecken mit negativen und positiven Moment.
- [11] K. Kordina, G. Wiedemann. 1978. Abschlussbericht. Bewehrungsführung in Rahmenecken, Braunschweig.
- [12] K. Zilch, G. Zehetmaier. 2010. Bemessung im konstruktiven Betonbau. Nach DIN 1045-1 (Fassung 2008) und EN 1992-1-1 (Eurocode 2). Springer, Berlin [u.a.].
- [13] König, G., Nguyen, V.-T., and Schenck, G. 2008. *Grundlagen des Stahlbetonbaus. Einführung in die Bemessung nach DIN 1045-1.* Studium. Vieweg + Teubner, Wiesbaden.
- [14] ÖNA Österreichischer Normenausschuss 08.03.1958. Allgemeine Grundlagen, Berechnung und Ausführung der Tragwerke, Wien.
- [15] ÖNA Österreichischer Normenausschuss 11.1964. *Allgemeine Grundlagen, Berechnung und Ausführung der Tragwerke,* Wien.
- [16] ÖNorm 1992-1-1 01.02.2007. Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken.
- [17] ÖNorm B 1991-2. Einwirkungen auf Tragwerke -Teil 2: Verkehrslasten auf Brücken Nationale Festlegungen zu ÖNorm EN 1991-2 und nationale Ergänzungen. Austrian Standards Institute/Österreichisches Normungsinstitut, Wien.
- [18] ÖNorm B 4002 1970 01.12.1970. *Allgemeine Grundlagen, Berechnung und Ausführung der Tragwerke*. ÖNA Österreichischer Normenausschuss, Wien.
- [19] ÖNorm EN 1991-2 01.03.2012. *Einwirkungen auf Tragwerke, Verkehrslasten auf Brücken*. Austrian Standards Institute/Österreichisches Normungsinstitut, Wien.
- [20] ÖNorm EN 1992-1-1 01.12.2011. *Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken*. Austrian Standards Institute/Österreichisches Normungsinstitut, Wien.
- [21] ÖNorm EN 1992-2 01.03.2012. *Bemessung und Konstruktion von Stahlbeton- und Spannbetonbauwerken, Betonbrücken*. Austrian Standards Institute/Österreichisches Normungsinstitut, Wien.
- [22] ONR 24008 01.12.2006. Bewertung der Tragfähigkeit bestehender Eisenbahn- und Straßenbrücken. Österreichisches Normungsinstitut, Wien.
- [23] Plösch Robert. 2015. Verdeutlichung des Potenzials für die bestehende Integralisierung von Bestandsbrücken in Österreich. Masterarbeit, Technische Universität Graz.
- [24] Pötzl, Michael, Schlaich, Jörg und Schäfer Kurt. 1996. *Heft 461: Grundlagen für den Entwurf, die Berechnung und konstruktive Durchbildung lager- und fugenloser Brücken*, Berlin.
- [25] RVS 13.03.11. 2012. *Monitoring von Brücken und anderen Ingenieurbauwerken*. FSV Österreichische Forschungsgesellschaft Straße, Schiene, Verkehr, Wien.
- [26] RVS 15.02.34. 2011. *Bemessung und Ausführung von Aufbeton auf Fahrbahnplatten*. FSV Österreichische Forschungsgesellschaft Straße, Schiene, Verkehr, Wien.

[27] Stefan Oberwalder. 2013. *Statische Untersuchung mittels FE-Simulation konventioneller Brückenbauwerke nach Systemänderung zu integralen Tragwerken*. Masterarbeit, Technische Universität Graz.

ANHANG

- A 1 Brückenkatalog
- A 2 Berechnungsergebnisse Variante 2 und 3 des Kapitel 7
- A 3 Bewehrungsplan

A 1 BRÜCKENKATALOG

Graz

	Länge Brücke	5 00 m	Winkel	90°
	Breite Brücke	10.00 m	Plattendicke	0.32 m
	Betongüte Platte	B 225	L/d-Verhältnis	-
	Höhe Widerlager	2,24 m	L/h-Verhältnis	15,63
	Breite Widerlager	0,5 m	Plattenlänge Auflager	0 <i>,</i> 50 m
	Länge Widerlager	-	Fugenhöhe	1,0 cm
71	Betongüte Widerlager	-	Abstand Steckeisen	- m
	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
	Länge Brücke	6,50 m	Winkel	92,7°
Auflagerdetail 1:10	Breite Brücke	9,60 m	Plattendicke	0,42 m
112 Service Statements	Betongüte Platte	B 225	L/d-Verhältnis	1,71
	Höhe Widerlager	3,80 m	L/h-Verhältnis	15,48
· · · · · · · · · · · · · · · · · · ·	Breite Widerlager	1,20 m	Plattenlänge Auflager	0,50 m
	Länge Widerlager	-	Fugenhöhe	1,5 cm
	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,50 m
· · · · · · · · · · · · · · · · · · ·	Widerlagerart	Lagerblech	Größe Kupferblech	15 cm
	Länge Brücke	5,70 m	Winkel	77°
	Breite Brücke	9,00 m	Plattendicke	0,40 m
KINPERPEDEL 240-10	Betongüte Platte	B 225	L/d-Verhältnis	0,95
8 21	Höhe Widerlager	6,00 m	L/h-Verhältnis	14,25
	Breite Widerlager	1,20 m	Plattenlänge Auflager	0,60 m
® ⊕ U 8	Länge Widerlager	9,40 m	Fugenhöhe	1,0 cm
ETTSE LAGEL PLATE 100 10/	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,50 m
	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm

	Länge Brücke	4.30 m	Winkel	115°
24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Breite Brücke	9,00 m	Plattendicke	0,33 m
Auflagerdetail 1: 10	Betongüte Platte	B 225	L/d-Verhältnis	2,32
E BOIN	Höhe Widerlager	1,85 m	L/h-Verhältnis	13,03
	Breite Widerlager	1,05 m	Plattenlänge Auflager	0,60 m
	Länge Widerlager	9,50 m	Fugenhöhe	1,0 cm
	Betongüte Widerlager	B225/B160	Abstand Steckeisen	-
	Widerlagerart	Lagerblech	Größe Kupferblech	-
	Länge Brücke	3,60 m	Winkel	90°
	Breite Brücke	8,50 m	Plattendicke	0,28 m
ved ed	Betongüte Platte	B 225	L/d-Verhältnis	1,20
	Höhe Widerlager	3,00 m	L/h-Verhältnis	12,86
	Breite Widerlager	1,40 m	Plattenlänge Auflager	0,52 m
	Länge Widerlager	8,94 m	Fugenhöhe	1,0 cm
/ ³ ¹⁵ 52 30	Betongüte Widerlager	B225/B160	Abstand Steckeisen	-
B 160	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
	Länge Brücke	10,80 m	Winkel	90°
	Breite Brücke	8,40 m	Plattendicke	0,50 m
	Betongüte Platte	B 300	L/d-Verhältnis	3,72
	Höhe Widerlager	2,90 m	L/h-Verhältnis	21,60
	Breite Widerlager	1,20 m	Plattenlänge Auflager	0,35 m
(OXX;	Länge Widerlager	-	Fugenhöhe	1,0 cm
1 19 19 19 1	Betongüte Widerlager	B300/B160	Abstand Steckeisen	-
	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
an a chairte e an amhra fhairte ann an an 1970 an Martin an 1970.				

$\frac{1}{225/8160} = \frac{1}{225/8160} + \frac{1}{225/8160} + \frac{1}{225/8160} + \frac{1}{220} + \frac{1}{220$		Länge Brücke	12 70 m	Winkel	70°
$\frac{1}{2}$		Breite Brücke	9.80 m	Plattendicke	0.65 m
Hohe Widerlager2,90 m (J-VerhältnisU/h-Verhältnis19,54 $\frac{1}{27}$ $\frac{1}{280}$ $\frac{1}{290}$ $\frac{1}{290}$ $\frac{1}{290}$ $\frac{1}{29,54}$ $\frac{1}{270}$ $\frac{1}{280}$ $\frac{1}{290}$ $\frac{1}{290}$ $\frac{1}{200}$ $\frac{1}{200}$ $\frac{1}{280}$ $\frac{1}{280}$ $\frac{1}{290}$ $\frac{1}{200}$ $\frac{1}{200}$ $\frac{1}{200}$ $\frac{1}{280}$ $\frac{1}{280}$ $\frac{1}{280}$ $\frac{1}{290}$ $\frac{1}{200}$ $\frac{1}{200}$ $\frac{1}{280}$ $$	rechtes Wrderteger 1:10	Betongüte Platte	B 300	L/d-Verhältnis	4,38
Breite 1,33 m Plattenlänge 0,40 m Widerlager - Fugenhöhe 2,0 cm Betongüte B.160 Abstand 1,1 m Widerlager - Fugenhöhe 2,0 cm Betongüte B.160 Abstand 1,1 m Widerlager Lagerblech Größe 15 cm Widerlager 1,20 m Plattenlänge 0,83 m Breite Breite Breite 0,83 m Breite Breite B.225 U/d-Verhältnis 2,86 Höhe 4,925 U/d-Verhältnis 15,78 Breite Breite 2,35 m Plattenlänge 0,62 m Widerlager 2,35 m Auflager 0,62 m Widerlager 2,25/81.60 Steckeisen 0,50 m Widerlager Lagerblech Größe 15 cm Widerlager Lagerblech Größe 15 cm Widerlager Lagerblech Größe 15 cm Widerlager 2,35 m Plattenlänge 0,62 m Widerlager 1,20 m Fiste	3).45	Höhe Widerlager	2,90 m	L/h-Verhältnis	19,54
Lange - Fugenhöhe 2,0 cm Widerlager - Fugenhöhe 2,0 cm Betongüte B 160 Abstand 1,1 m Widerlageratt Lagerblech Kupferblech 15 cm Widerlageratt Lagerblech Kupferblech 15 cm Widerlager - Scole 0,3 m Betongüte B 225 U/d-Verhältnis 2,66 Höhe 4,58 m L/h-Verhältnis 15,78 Widerlager 2,35 m Plattenlänge 0,62 m Widerlager 7,94 m Fugenhöhe 1,0 cm Widerlager 1,30 m Vinkel 107° Betongüte 8225/8160 Stackeisen 0,50 m Widerlager 7,94 m Fugenhöhe 1,0 cm Widerlager 1,30 m Winferlager 0,40 m Widerlager 1,20 m Vinkel 107° Betongüte 8,30 m U/A-Verhältnis 2,10 Widerlager 1,30 m Auflager 0,30 m </th <th>si.67 5.68 si.67 Nerthol/second</th> <td>Breite Widerlager</td> <td>1,33 m</td> <td>Plattenlänge Auflager</td> <td>0,40 m</td>	si.67 5.68 si.67 Nerthol/second	Breite Widerlager	1,33 m	Plattenlänge Auflager	0,40 m
Betongüte Widerlager B 160 Abstand Steckeisen 1,1 m Widerlagerart Lagerblech Größe Kupferblech 15 cm Image: State	303 0 30.5	Länge Widerlager	-	Fugenhöhe	2,0 cm
Widerlagerart Lagerblech Größe Kupferblech 15 cm Länge Brücke 13,10 m Winkel 103° Bereite Brücke 7,50 m Plattendicke 0,83 m Betongüte B 225 L/d-Verhältnis 2,86 Höhe 4,58 m L/h-Verhältnis 15,78 Widerlager 2,35 m Plattenlänge 0,62 m Widerlager 2,35 m Auflager 0,62 m Widerlager 7,94 m Fugenhöhe 1,0 cm Widerlager 7,94 m Fugenhöhe 1,0 cm Widerlager 7,94 m Fugenhöhe 1,0 cm Widerlager 7,60 m Plattenlänge 0,50 m Widerlager 1,0 cm Betongüte B 225/8160 Steckeisen 0,50 m Widerlager 1,30 m Vinkel 107° Betongüte B 225/8160 Steckeisen 0,30 m Widerlager 1,30 m Vinkel 100° Meterlager 0,30 m Meterlager 0,30 m Widerlager 1,30 m Vinkel 100 m Meterlager 0,30 m Meterlager	2700	Betongüte Widerlager	B 160	Abstand Steckeisen	1,1 m
Image: Structure intermediate intermedi		Widerlagerart	Lagerblech	Größe Kupferblech	15 cm
Länge Brücke 13,10 m Winkel 103° Betongüte B225 L/d-Verhältnis 2,86 Platte B225 L/d-Verhältnis 2,86 Platte B225 L/d-Verhältnis 2,86 Platte B225 L/d-Verhältnis 2,86 Platte B225 L/d-Verhältnis 15,78 Breite Brücke 2,35 m Auflager 0,62 m Bagennähte ME M. 2020 Miderlager 7,94 m Fugenhöhe 1,0 cm Widerlager R.255/B160 Abstand 0,50 m Miderlager 1(m) /g B60 m Größe 15 cm 100°° Widerlager 1,30 m Winkel 107° Betongüte B400 m U/d-Verhätnis 2,10 Höhe 4,00 m U/d-Verhätnis 2,10 Höhe 1,00 m Winkel 107° Breite Brücke 7,60 m Plattenlänge 0,30 m Uiderlager 1,30 m Kuffager 0,30 m Widerlager 1,30 m Kuffager 0,30 m Widerlager<					
Breite Brücke 7,50 m Plattendicke 0,83 m Betongüte B 225 L/d-Verhältnis 2,86 Höhe 4,58 m L/h-Verhältnis 15,78 Breite Brücke 2,35 m Plattenlänger 0,62 m Breite Brücke 2,35 m Auflager 0,62 m Breite Brücke 2,35 m Auflager 0,62 m Breite Brücke 8,40 m Vinkel 1,0 cm Betongüte B225/B160 Abstand 0,50 m Widerlager Länge Brücke 8,40 m Winkel 107° Breite Brücke 8,40 m Winkel 107° Breite Brücke 8,40 m Winkel 107° Breite Brücke 9,30 m Långe d.0,50 m Plattendicke 0,46 m Breite Brücke 1,30 m Plattendicke 0,30 m Biage Widerlager 1,30 m Plattenlänge 0,30 m Betongüte B300 L/d-Verhätnis 18,26 Widerlager 1,0 cm Betongüte B300 Botongüte Botongüte Betongüte B300 <		Länge Brücke	13.10 m	Winkel	103°
Betongüte B 225 L/d-Verhältnis 2,86 Betongüte B 225 L/d-Verhältnis 2,86 Widerlager Auffager 0,62 m Widerlager 2,35 m Auffager 0,62 m Widerlager 7,94 m Fugenhöhe 1,0 cm Betongüte B225/B160 Abstand 0,50 m Widerlager 7,94 m Fugenhöhe 1,0 cm Betongüte B225/B160 Abstand 0,50 m Widerlager 7,60 m Plattenlänge 0,30 m Widerlager 1,30 m Winkel 107° Breite Brücke 8,40 m Winkel 107° Breite Brücke 8,40 m Winkel 107° Breite Brücke 8,40 m L/d-Verhätnis 2,10 Höhe 4,00 m L/d-Verhätnis 18,26 Breite Brücke 1,30 m Plattenlänge 0,30 m Widerlager 1,30 m Plattenlänge 0,30 m Widerlager 1,30 m Plattenlänge 0,30 m Widerlager 1,30 m Plattenlänge 0,30 m		Breite Brücke	7,50 m	Plattendicke	0,83 m
Höhe 4,58 m L/h-Verhältnis 15,78 Widerlager 2,35 m Plattenlänge 0,62 m Breite 2,35 m Plattenlänge 0,62 m Breite 2,35 m Plattenlänge 0,62 m Widerlager 7,94 m Fugenhöhe 1,0 cm Betongüte B225/B160 Abstand 0,50 m Widerlager Länge 7,94 m Fugenhöhe 1,0 cm Betongüte B225/B160 Steckeisen 0,50 m Widerlager Länge Brücke 8,40 m Winkel 107° Breite Brücke 8,40 m Winkel 107° Betongüte B 300 L/d-Verhätnis 2,10 Höhe 4,00 m L/h-Verhätnis 18,26 Breite 1,30 m Plattenlänge 0,30 m Uänge - Fugenhöhe 1,0 cm Widerlager 3,00 L/h-Verhältnis </th <th>1</th> <td>Betongüte Platte</td> <td>B 225</td> <td>L/d-Verhältnis</td> <td>2,86</td>	1	Betongüte Platte	B 225	L/d-Verhältnis	2,86
Breite 2,35 m Plattenlänge 0,62 m Widerlager 7,94 m Fugenhöhe 1,0 cm Betongüte B225/B160 Abstand 0,50 m Widerlager 7,94 m Fugenhöhe 1,0 cm Widerlager 7,94 m Fugenhöhe 1,0 cm Betongüte B225/B160 Abstand 0,50 m Widerlager Cröße 15 cm Widerlager 7,60 m Plattendicke 0,46 m Betongüte B 300 L/d-Verhätnis 2,10 Höhe 4,00 m L/h-Verhätnis 18,26 Breite 1,30 m Plattenlänge 0,30 m Widerlager - Fugenhöhe 1,0 cm Widerlager 3,30 m L/h-Verhätnis 3,06 Widerlager 3,30 m L/h-Verhätnis 3,06 Widerlager - Fugenhöhe 1,0 cm Betongüte <th></th> <th>Höhe Widerlager</th> <th>4,58 m</th> <th>L/h-Verhältnis</th> <th>15,78</th>		Höhe Widerlager	4,58 m	L/h-Verhältnis	15,78
Länge7,94 mFugenhöhe1,0 cmWiderlager8225/8160Abstand Steckeisen0,50 mWiderlagerBetongüte Widerlager8225/8160SteckeisenWiderlagerLänge Brücke8,40 mWinkel107°Image: Sterie Struck in Struck in Steckeisen0,50 mPlattendick0,46 mImage: Sterie Struck in Steckeisen0,50 mPlattendick0,46 mImage: Sterie Struck in Steckeisen0,50 mPlattendick0,46 mImage: Steckeisen0,50 mPlattendick0,46 mImage: Steckeisen0,50 mPlattendick0,46 mImage: Steckeisen1,30 mL/h-Verhätnis18,26Image: Steckeisen1,30 mL/h-Verhätnis18,26Image: Steckeisen1,30 mAuflager0,30 mImage: Steckeisen1,0 cmSteckeisen0,50 mImage: Steckeisen1,0 cmSteckeisen0,50 mImage: Steckeisen10,10 mWinkel72°Image: Steckeisen10,10 mSteckeisen10,00 mImage: Steckeisen1,30 mL/h-Verhältnis3,06Image: Steckeisen1,30 mL/h-Verhältnis19,06Image: Steckeisen1,15 mSteckeisen0,30 mImage: Steckeisen1,15 mSteckeisen0,30 mImage: Steckeisen1,0 cmSteckeisen0,50 mImage: Steckeisen1,0 cmSteckeisen0,50 mImage: Steckeisen1,0 cmSteckeisen0,50 mImage: Steck	1. (B225) (+ + (anarchicker 150 15 1740)	Breite Widerlager	2,35 m	Plattenlänge Auflager	0,62 m
Betongute WiderlagerB225/B160Abstand Steckeisen0,50 mWiderlagerLagerblechGröße Kupferblech15 cm1(m) Lg 8,60 mG1107°1(m) Lg 8,60 mG111(m) Lg 8,60 m1111(m) Lg 8,60 m	B160	Länge Widerlager	7,94 m	Fugenhöhe	1,0 cm
WiderlagerartLagerblechGröße Kupferblech15 cm1(m) /g 8601107°1(m) /g 860118,261(m) /g 860118,261(m) /g 8601,30 m141(m) /g 8601,30 m13,261(m) /g 8601,30 m13,261(m) /g 8601,30 m11,30 m1(m) /g 8601,30 m11,30 m1(m) /g 8601,30 m11,30 m1(m) /g 8601,30 m11,30 m1(m) /g 86010,00 m10,00 m1(m) /g 86010,00 m1(m) /g 86010,00 m1(m) /g 8601,00 m1(m) /g 860		Betongute Widerlager	B225/B160	Abstand Steckeisen	0,50 m
Image: Second		Widerlagerart	Lagerblech	Große Kupferblech	15 cm
Image: Second					
Image: constraint of the second sec					
PlatteB 300L/d-Verhätnis2,10PlatteB 300L/d-Verhätnis18,26PlatteHöhe4,00 mL/h-Verhätnis18,26Widerlager1,30 mPlattenlänge Auflager0,30 mDistrictB1,30 mPlattenlänge Auflager0,30 mDistrictB225Betongüte BB225/B160Abstand Steckeisen0,50 mViderlager-Fugenhöhe1,0 cmDistrictB225Betongüte WiderlagerantB225/B160Abstand Steckeisen0,50 mViderlager10,10 mWinkel72°DistrictB10,10 mWinkel72°DistrictB300L/d-Verhältnis3,06Höhe Widerlager3,30 mL/h-Verhältnis19,06Breite Breite1,15 mPlattenlänge Auflager0,30 mUiderlager-Fugenhöhe1,0 cmBetongüte 	75	Länge Brücke	8,40 m	Winkel	107°
India4,00 mL/h-Verhätnis18,26101112131313131310131313131313131310130130130130131313131313013013013013131313131313130130130130131313131313131301301301301313131313131313013013013013131313131313130130130130131013131313130130130131313131313131313013013013013013 <td< th=""><th>$\frac{2}{2}$</th><th>Länge Brücke Breite Brücke</th><th>8,40 m 7,60 m</th><th>Winkel Plattendicke</th><th>107° 0,46 m</th></td<>	$\frac{2}{2}$	Länge Brücke Breite Brücke	8,40 m 7,60 m	Winkel Plattendicke	107° 0,46 m
Image: Sector of the sector)(w) lg 8,60 m 6 2 1	Länge Brücke Breite Brücke Betongüte Platte	8,40 m 7,60 m B 300	Winkel Plattendicke L/d-Verhältnis	107° 0,46 m 2,10
UnderlagerFugenhöhe1,0 cm1013013013010 cm1013013010 cm10 cm101010 cm101010 cm101010 cm101010 cm1010 cm10 cm1010 cm10 cm1010 cm10 cm1010 cm10 cm1010 cm10 cm	7(w) lg 8,60 m 6 2 1	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager	8,40 m 7,60 m B 300 4,00 m	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis	107° 0,46 m 2,10 18,26
Betongute WiderlagerB225/B160Abstand Steckeisen0,50 mWiderlagerLagerblechGröße Kupferblech10 cmImage: SteckeisenImage: Steckeisen10 cmImage: SteckeisenImage: Steckeisen19,06Image: SteckeisenImage: Steckeisen19,06Image: SteckeisenImage: Steckeisen1,0 cmImage: SteckeisenImage: Steckeisen1,0 cmImage: SteckeisenImage: Steckeisen1,0 cmImage: SteckeisenImage: Steckeisen0,50 mImage: SteckeisenImage: SteckeisenIm	7(w) lg 8,60 m 6 2 1 (1)	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager Breite Widerlager	8,40 m 7,60 m B 300 4,00 m 1,30 m	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager	107° 0,46 m 2,10 18,26 0,30 m
WiderlagerartLagerblechGröße Kupferblech10 cm1261010101261010101012610101010126101010101261010101011101010101011101010101011101010101011010101010101101010101010110101010101011010101010101101010101010	7(w) lg 8,60 m 6 2 1 11 11 10 120 130 130 130 130 130 130 130 13	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager Breite Widerlager Länge Widerlager	8,40 m 7,60 m B 300 4,00 m 1,30 m -	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager Fugenhöhe	107° 0,46 m 2,10 18,26 0,30 m 1,0 cm
12110Winkel72°12688300L/d-Verhältnis3,06PlatteB300L/d-Verhältnis3,06Höhe3,30 mL/h-Verhältnis19,06Widerlager1,15 mPlattenlänge Auflager0,30 mLänge-Fugenhöhe1,0 cmBetongüte WiderlagerB225/B160Abstand Steckeisen0,50 mWiderlagerLagerblechGröße Kupferblech10 cm	$\frac{1}{10} \frac{1}{120} \frac{1}{130} \frac{1}{$	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager Breite Widerlager Länge Widerlager Betongüte Widerlager	8,40 m 7,60 m B 300 4,00 m 1,30 m - B225/B160	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager Fugenhöhe Abstand Steckeisen	107° 0,46 m 2,10 18,26 0,30 m 1,0 cm 0,50 m
Länge Brücke10,10 mWinkel72°12688300L/d-Verhältnis3,06PlatteB300L/d-Verhältnis3,06Höhe3,30 mL/h-Verhältnis19,06Widerlager1,15 mPlattenlänge Auflager0,30 mUderlager-Fugenhöhe1,0 cmBetongüteB225/B160Steckeisen0,50 mWiderlagerLagerblechGröße Kupferblech10 cm	$\frac{1}{10} + \frac{1}{120} + \frac{1}{130} + \frac{1}{$	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager Breite Widerlager Länge Widerlager Betongüte Widerlager	8,40 m 7,60 m B 300 4,00 m 1,30 m - B225/B160 Lagerblech	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager Fugenhöhe Abstand Steckeisen Größe Kupferblech	107° 0,46 m 2,10 18,26 0,30 m 1,0 cm 0,50 m 10 cm
126Betongüte PlatteB 300L/d-Verhältnis3,06Höhe Widerlager3,30 mL/h-Verhältnis19,06Breite Widerlager1,15 mPlattenlänge Auflager0,30 mUmber 130 Betongüte Betongüte Betongüte Betongüte-Fugenhöhe Steckeisen1,0 cmBetongüte WiderlagerB225/B160Abstand Steckeisen0,50 mWiderlagerLagerblechGröße Kupferblech10 cm	$\frac{1}{10} \frac{1}{120} \frac{1}{130} \frac{1}{130} \frac{1}{120} \frac{1}{130} \frac{1}{$	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager Breite Widerlager Länge Widerlager Betongüte Widerlager	8,40 m 7,60 m B 300 4,00 m 1,30 m - B225/B160 Lagerblech	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager Fugenhöhe Abstand Steckeisen Größe Kupferblech	107° 0,46 m 2,10 18,26 0,30 m 1,0 cm 0,50 m 10 cm
Höhe Widerlager3,30 mL/h-Verhältnis19,063Feite Widerlager1,15 mPlattenlänge Auflager0,30 m130110Betongüte Widerlager-Fugenhöhe1,0 cmBetongüte WiderlagerB225/B160Abstand Steckeisen0,50 mWiderlagerLagerblechGröße Kupferblech10 cm	$\frac{1}{10} \frac{1}{120} \frac{1}{130} \frac{1}{$	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager Länge Widerlager Betongüte Widerlager Widerlager	8,40 m 7,60 m B 300 4,00 m 1,30 m - B225/B160 Lagerblech	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager Fugenhöhe Abstand Steckeisen Größe Kupferblech	107° 0,46 m 2,10 18,26 0,30 m 1,0 cm 0,50 m 10 cm
Breite Widerlager1,15 mPlattenlänge Auflager0,30 m31301210Etongüte Widerlager-Fugenhöhe1,0 cmBetongüte WiderlagerB225/B160Abstand Steckeisen0,50 m0,50 mWiderlagerLagerblechGröße Kupferblech10 cm	$\frac{1}{10} + \frac{1}{120} + \frac{1}{130} + \frac{1}{$	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager Länge Widerlager Betongüte Widerlager Widerlager Länge Brücke Betongüte Platte	8,40 m 7,60 m B 300 4,00 m 1,30 m - B225/B160 Lagerblech 10,10 m B 300	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager Fugenhöhe Steckeisen Größe Kupferblech Winkel L/d-Verhältnis	107° 0,46 m 2,10 18,26 0,30 m 1,0 cm 0,50 m 10 cm 72° 3,06
JLänge WiderlagerFugenhöhe1,0 cmBetongüte WiderlagerBetongüte WiderlagerB225/B160Abstand Steckeisen0,50 mWiderlagerWiderlagerLagerblechGröße Kupferblech10 cm	$\frac{1}{10} + \frac{1}{120} + \frac{1}{130} + \frac{1}{$	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager Länge Widerlager Widerlager Widerlager Widerlager Uterlager Widerlager	8,40 m 7,60 m B 300 4,00 m 1,30 m - B225/B160 Lagerblech 10,10 m B 300 3,30 m	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager Fugenhöhe Abstand Steckeisen Größe Kupferblech Winkel L/d-Verhältnis	107° 0,46 m 2,10 18,26 0,30 m 1,0 cm 0,50 m 10 cm 72° 3,06 19,06
Betongüte Betongüte B225/B160 Abstand Betongüte Widerlager B225/B160 Abstand Widerlager Uterlager Betongüte B225/B160 Widerlager Lagerblech Größe 10 cm	$\frac{1}{10} + \frac{1}{120} + \frac{1}{130} + \frac{1}{130} + \frac{1}{120} + \frac{1}{130} + \frac{1}{$	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager Länge Widerlager Widerlager Widerlager Widerlager Widerlagerart	8,40 m 7,60 m B 300 4,00 m 1,30 m - B225/B160 Lagerblech 10,10 m B 300 3,30 m 1,15 m	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager Fugenhöhe Abstand Steckeisen Größe Kupferblech Winkel L/d-Verhältnis Plattenlänge Auflager	107° 0,46 m 2,10 18,26 0,30 m 1,0 cm 0,50 m 10 cm 72° 3,06 19,06 0,30 m
ZZ5WiderlagerartLagerblechGröße Kupferblech10 cm	$\frac{1}{10} + \frac{1}{120} + \frac{1}{130} + \frac{1}{10} + $	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager Länge Widerlager Widerlager Widerlager Widerlager Widerlager Höhe Betongüte Platte Höhe Widerlager Breite Widerlager	8,40 m 7,60 m B 300 4,00 m 1,30 m - B225/B160 Lagerblech 10,10 m B 300 3,30 m 1,15 m	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager Fugenhöhe Steckeisen Größe Kupferblech U/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager Fugenhöhe	107° 0,46 m 2,10 18,26 0,30 m 1,0 cm 0,50 m 10 cm 72° 3,06 19,06 0,30 m 1,0 cm
	$\frac{1}{10} + \frac{1}{120} + \frac{1}{130} + \frac{1}{120} + \frac{1}{$	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager Länge Widerlager Widerlager Widerlager Widerlagerart Länge Brücke Betongüte Platte Höhe Widerlager Breite Widerlager Breite Widerlager Breite Widerlager Breite Widerlager	8,40 m 7,60 m B 300 4,00 m 1,30 m - B225/B160 Lagerblech 10,10 m B 300 3,30 m 1,15 m - B225/B160	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager Fugenhöhe Steckeisen Größe Kupferblech Winkel L/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager Fugenhöhe	107° 0,46 m 2,10 18,26 0,30 m 1,0 cm 0,50 m 10 cm 72° 3,06 19,06 0,30 m 1,0 cm 1,0 cm

	Länge Brücke	10.80 m	Winkel	110°
<u></u>	Breite Brücke	9.00 m	Plattendicke	0.67 m
	Betongüte Platte	B 225	L/d-Verhältnis	2,57
	Höhe Widerlager	4,20 m	L/h-Verhältnis	16,12
$\overline{(4)}$	Breite Widerlager	1,70 m	Plattenlänge Auflager	0,62 m
	Länge Widerlager	9,44 m	Fugenhöhe	1,0 cm
B 160 \	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,50 m
	Widerlagerart	Lagerblech	Größe Kupferblech	15 cm
	Länge Brücke	4,70 m	Winkel	86°
	Breite Brücke	9,00 m	Plattendicke	0,36 m
LIPFERFEDEL. 240-10	Betongüte Platte	B 225	L/d-Verhältnis	0,88
	Höhe Widerlager	5,37 m	L/h-Verhältnis	13,06
	Breite Widerlager	1,60 m	Plattenlänge Auflager	0,65 m
	Länge Widerlager	9,60 m	Fugenhöhe	1,0 cm
/ (E) II SHE LAGER PLATE 100-101	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,50 m
	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
il Z Trac um	Länge Brücke	12,60 m	Winkel	78°
	Breite Brücke	9,00 m	Plattendicke	0,65 m
100.10 49.0200 8	Betongüte Platte	B 225	L/d-Verhältnis	1,53
55. 69 250 0.50au 564105ersst	Höhe Widerlager	8,25 m	L/h-Verhältnis	19,38
	Breite Widerlager	2,20 m	Plattenlänge Auflager	0,80 m
40 40 \$ 15, 15	Länge Widerlager	9,40 m	Fugenhöhe	4,0 cm
112	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,50 m
	Widerlagerart	Lagerblech	Größe Kupferblech	15 cm

	Länge Brücke	5,65 m	Winkel	80°
JGAS-KIT JGAS-KIT <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KIT</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u> <u>JGAS-KITA</u>	Breite Brücke	9,00 m	Plattendicke	0,40 m
	Betongüte Platte	B 225	L/d-Verhältnis	1,21
	Höhe Widerlager	4,68 m	L/h-Verhältnis	14,13
U THACHEISEN	Breite Widerlager	1,23 m	Plattenlänge Auflager	0,75 m
B 160	Länge Widerlager	9,40 m	Fugenhöhe	1,0 cm
	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,50 m
	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm

2. ÖNorm B 4002 1964

	Länge Brücke	4,60 m	Winkel	100°
	Breite Brücke	9,00 m	Plattendicke	0,29 m
iband k b d	Betongüte Platte	B 225	L/d-Verhältnis	1,80
	Höhe Widerlager	4,68 m	L/h-Verhältnis	15,86
B225	Breite Widerlager	1,00 m	Plattenlänge Auflager	0,40 m
	Länge Widerlager	9,08 m	Fugenhöhe	1,0 cm
B 160	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,50 m
1	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
	Länge Brücke	10,73 m	Winkel	90°
	Länge Brücke Breite Brücke	10,73 m 8,50 m	Winkel Plattendicke	90° 0,51 m
	Länge Brücke Breite Brücke Betongüte Platte	10,73 m 8,50 m B 300	Winkel Plattendicke L/d-Verhältnis	90° 0,51 m 1,51
	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager	10,73 m 8,50 m B 300 7,11 m	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis	90° 0,51 m 1,51 21,04
Neeprene-Layer	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager Breite Widerlager	10,73 m 8,50 m B 300 7,11 m 0,90 m	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager	90° 0,51 m 1,51 21,04 0,60 m
Neoprene-Lauer Tistuck 100/150/201	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager Breite Widerlager Länge Widerlager	10,73 m 8,50 m B 300 7,11 m 0,90 m 9,38 m	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager Fugenhöhe	90° 0,51 m 1,51 21,04 0,60 m 7,0 cm
Neoprene-Layer TSiuck 100/155/25A	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager Breite Widerlager Länge Widerlager Betongüte Widerlager	10,73 m 8,50 m B 300 7,11 m 0,90 m 9,38 m Bv225	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager Fugenhöhe Abstand Neoprenlager	90° 0,51 m 1,51 21,04 0,60 m 7,0 cm 0,50 m
Neoprene-Layer HStück 100/155/23A	Länge Brücke Breite Brücke Betongüte Platte Höhe Widerlager Breite Widerlager Länge Widerlager Betongüte Widerlager	10,73 m 8,50 m B 300 7,11 m 0,90 m 9,38 m Bv225 Neoprenlager	Winkel Plattendicke L/d-Verhältnis L/h-Verhältnis Plattenlänge Auflager Fugenhöhe Abstand Neoprenlager Größe Kupferblech	90° 0,51 m 1,51 21,04 0,60 m 7,0 cm 0,50 m 10 cm

14 1	Länge Brücke	6 93 m	Winkel	00°
B- GOADSIII - CAR	Breite Brücke	4.60 m	Plattendicke	0.41 m
	Betongüte Platte	B 300	L/d-Verhältnis	3,85
x 30-1 x 54	Höhe Widerlager	1,80 m	L/h-Verhältnis	16,90
	Breite Widerlager	0,93 m	Plattenlänge Auflager	0,62 m
- 455 - 465 - Q	Länge Widerlager	8,40 m	Fugenhöhe	1,0 cm
8	Betongüte Widerlager	Bv225	Abstand Steckeisen	0,50 m
1 , 1 , 1	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
0.9X 0,9X	Länge Brücke	4,60 m	Winkel	102°
Gomaștit 22	Breite Brücke	9,50 m	Plattendicke	0,31 m
	Betongüte Platte	B 225	L/d-Verhältnis	1,87
B225 B222	Höhe Widerlager	2,46 m	L/h-Verhältnis	14,84
2 (2) \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	Breite Widerlager	1,00 m	Plattenlänge Auflager	0,30 m
,cos B225	Länge Widerlager	10,24 m	Fugenhöhe	1,0 cm
B160	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,30 m
	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
5	Länge Brücke	3,00 m	Winkel	90°
	Breite Brücke	9,44 m	Plattendicke	0,25 m
	Betongüte Platte	B 225	L/d-Verhältnis	1,18
	Höhe Widerlager	2,54 m	L/h-Verhältnis	12,00
	Breite Widerlager	0,90 m	Plattenlänge Auflager	0,30 m
30 30 30 F	Länge Widerlager	9,94 m	Fugenhöhe	1,0 cm
3	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,33 m
90	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm

-Platte - Tragwerk	Länge Brücke	4.60 m	Winkel	۹N°
3.00 5,17	Breite Brücke	9.44 m	Plattendicke	0.32 m
Gem Vabilbelog (bei Tragwerk auf Bilumenlackdichlung) Kib (nicht biluminis)	Betongüte Platte	B 225	L/d-Verhältnis	1,30
B225	Höhe Widerlager	3,55 m	L/h-Verhältnis	14,38
Auflingerbonk OK	Breite Widerlager	1,40 m	Plattenlänge Auflager	0,30 m
() Loger bleche J 10/100 () B 125	Länge Widerlager	9,94 m	Fugenhöhe	1,0 cm
	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,33 m
	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
12 /	Länge Brücke	5,62 m	Winkel	95°
	Breite Brücke	9,44 m	Plattendicke	0,50 m
	Betongüte Platte	B 225	L/d-Verhältnis	1,32
	Höhe Widerlager	4,26 m	L/h-Verhältnis	11,24
	Breite Widerlager	1,22 m	Plattenlänge Auflager	0,30 m
B225 (7)*	Länge Widerlager	18,02 m	Fugenhöhe	1,0 cm
	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,25 m
B 160	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
NABITBARG I GONDANT 20/20/20.900 %	Länge Brücke	8,60 m	Winkel	90°
<u>↓</u>	Breite Brücke	9,44 m	Plattendicke	0,50 m
TEAGHTER 6225	Betongüte Platte	B 225	L/d-Verhältnis	1,81
KCHRONEORE AUTOSCESONE OL	Höhe Widerlager	4,75 m	L/h-Verhältnis	17,20
Diversity of the operation of the operat	Breite Widerlager	1,20 m	Plattenlänge Auflager	0,55 m
	Länge Widerlager	9,68 m	Fugenhöhe	1,0 cm
	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,32 m
6760	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm

1 1 1	Längo Prücko	E 60 m	Winkol	00°
	Breite Brücke	9.44 m	Plattendicke	90 0.37 m
	Betongüte	5,44 111	Hattenuicke	0,57 111
at the st	Platte	B 225	L/d-Verhältnis	1,45
	Höhe	3.85 m	l/h-Verhältnis	15 1/
	Widerlager	5,65 11	L/II-Vernattins	13,14
B 2 2 5	Breite	1,10 m	Plattenlänge	0,45 m
· · · · · ·	Länge		Aunager	
	Widerlager	9,94 m	Fugenhöhe	1,0 cm
1,10	Betongüte	B225/B160	Abstand	0.33 m
	Widerlager	022370100	Steckeisen	0,00 m
	Widerlagerart	Lagerblech	Große	10 cm
			Rupterblech	
: ung [22]20]				
	Länge Brücke	16,00 m	Winkel	99°
	Breite Brücke	7,60 m	Plattendicke	0,73 m
20 1	Betongute	B 300	L/d-Verhältnis	4,57
Neoprene Lu	Höhe			
B 225	Widerlager	3,85 m	L/h-Verhältnis	21,92
Scha	Breite	2.00 m	Plattenlänge	0.43 m
	Widerlager	2,00 111	Auflager	0,43 m
(a) - 31 - L V-	Länge Widerlager	8,30 m	Fugenhöhe	1,4 cm
	Betongüte		Abstand	
	Widerlager	Bv225	Neoprenlager	-
1.38	Widerlagerart	Neonrenlager	Größe	15 cm
	Widehügerürt	Neopreniager	Kupferblech	19 611
· · · · · ·				
(12)3束 15	Länge Brücke	10,60 m	Winkel	90°
3,8%	Breite Brücke	8,30 m	Plattendicke	0,53 m
	Betongüte	B 300	L/d-Verhältnis	6,79
	Platte		,	- ,
GOMASTITLEISTE	Widerlager	1,56 m	L/h-Verhältnis	20,00
	Breite	0.00	Plattenlänge	0.25
/ B225	Widerlager	0,90 m	Auflager	0,35 m
/ [Länge	8.90 m	Fugenhöhe	3.0 cm
(\overline{P})	Widerlager		Alexternel	-,- •
\$2'+e-2am	Widerlager	B225/B160	Abstand	1,42 m
	Wideflager		Größe	
B 160	Widerlagerart	Neoprenlager	Kupferblech	15 cm

	Längo Brücko	8 60 m	Winkol	٥٥°
	Broito Brücke	8,60 m	Plattendicke	90 0.44 m
	Betongüte Platte	B 225	L/d-Verhältnis	3,02
B 225	Höhe Widerlager	2,85 m	L/h-Verhältnis	19,55
	Breite Widerlager	1,00 m	Plattenlänge Auflager	0,35 m
	Länge Widerlager	-	Fugenhöhe	1,0 cm
1 cc	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,33 m
	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
L 100/75/9	Länge Brücke	8,60 m	Winkel	79°
	Breite Brücke	9,38 m	Plattendicke	0,45 m
CHUEPP-PLATTE B 225 Abditchlung TEELFEU B 225 D 225 D 225 UTOFEE B 225 D 25 D 25	Betongüte Platte	B 300	L/d-Verhältnis	3,33
	Höhe Widerlager	2,28 m	L/h-Verhältnis	19,11
	Breite Widerlager	0,90 m	Plattenlänge Auflager	0,35 m
	Länge Widerlager	-	Fugenhöhe	1,4 cm
	Betongüte Widerlager	B225/B160	Abstand Neoprenlager	0,33 m
	Widerlagerart	Neoprenlager	Größe Kupferblech	10 cm
	Länge Brücke	3,60 m	Winkel	90°
ברשים	Breite Brücke	9,30 m	Plattendicke	0,25 m
	Betongüte Platte	B 225	L/d-Verhältnis	1,13
Base M 2	Höhe Widerlager	3,19 m	L/h-Verhältnis	14,40
15 17 28 30 3	Breite Widerlager	0,90 m	Plattenlänge Auflager	0,35 m
	Länge Widerlager	9,04 m	Fugenhöhe	-
	Betongüte Widerlager	B225/B160	Abstand Steckeisen	-
	Widerlagerart	Lagerblech	Größe Kupferblech	-

Gomastilleiste	Länge Brücke	5,60 m	Winkel	80°
	Breite Brücke	9,50 m	Plattendicke	0,38 m
	Betongüte Platte	B 225	L/d-Verhältnis	2,11
	Höhe Widerlager	2,65 m	L/h-Verhältnis	14,74
	Breite Widerlager	0,92 m	Plattenlänge Auflager	0,52 m
B 225	Länge Widerlager	14,78 m	Fugenhöhe	1,0 cm
91 . 3	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,25 m
B 160	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
	Länge Drücke	10.10 m	\\/inkol	00°
	Lange Brucke	10,10 m	VVINKEI	90
	Betongüte Platte	В 300	L/d-Verhältnis	1,80
B225 Fil	Höhe Widerlager	5,60 m	L/h-Verhältnis	21,04
	Breite Widerlager	1,8 m	Plattenlänge Auflager	-
B160 2 40 78	Länge Widerlager	-	Fugenhöhe	1,0 cm
	Betongüte Widerlager	B225/B160	Abstand Steckeisen	-
	Widerlagerart	Lagerblech	Größe	-

3. ÖNorm B 4002 1974

Länge Brücke	5,60 m	Winkel	90°
Breite Brücke	8,80 m	Plattendicke	0,35 m
Betongüte Platte	B 225	L/d-Verhältnis	2,13
Höhe Widerlager	2,63 m	L/h-Verhältnis	16,00
Breite Widerlager	0,90 m	Plattenlänge Auflager	0,60 m
Länge Widerlager	9,20 m	Fugenhöhe	1,0 cm
Betongüte Widerlager	B 225	Abstand Steckeisen	0,33 m
Widerlagerart	Lagerblech	Größe Kupferblech	10 cm

	Längo Brücko	2.60 m	Winkol	67 5°
C-ISOLIERUNG	Breite Brücke	8.80 m	Plattendicke	0.25 m
	Betongüte Platte	B 225	L/d-Verhältnis	1,32
	Höhe Widerlager	2,72 m	L/h-Verhältnis	14,40
L/GERBLECH TO / 100 mm	Breite Widerlager	0,90 m	Plattenlänge Auflager	0,60 m
GCM AST!T	Länge Widerlager	9,20 m	Fugenhöhe	1,0 cm
90	Betongüte Widerlager	B 225	Abstand Steckeisen	0,33 m
1 1	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
	Länge Brücke	5.60 m	Winkel	78°
- <u>+</u> 2 ²	Breite Brücke	8,80 m	Plattendicke	0,30 m
ISOLIERUNG	Betongüte Platte	B 225	L/d-Verhältnis	1,84
21 21 21 21 21 21 21 21 21 21 21 21 21 2	Höhe Widerlager	3,05 m	L/h-Verhältnis	18,67
	Breite Widerlager	0,90 m	Plattenlänge Auflager	0,60 m
	Länge Widerlager	9,10 m	Fugenhöhe	1,0 cm
	Betongüte Widerlager	B 225	Abstand Steckeisen	0,33 m
	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
	Länge Brücke	10,8 m	Winkel	87°
	Breite Brücke	9,00 m	Plattendicke	0,48 m
B 300	Betongüte Platte	В 300	L/d-Verhältnis	4,91
30 15-20 - 6.2 cm 15-20 - 6.2 cm 16 - 20 - 6.2 cm 16 - 20 - 6.2 cm 16 - 20 - 6.2 cm 17 - 20 - 6.2 cm 17 - 20 - 6.2 cm 18 - 20 - 7.2	Höhe Widerlager	2,20 m	L/h-Verhältnis	22,50
	Breite Widerlager	0,80 m	Plattenlänge Auflager	-
B 225	Länge Widerlager	9,70 m	Fugenhöhe	7,0 cm
and a set of the sector of the	Betongüte Widerlager	B 225	Abstand Neoprenlager	1,40 m
H 225	Widerlagerart	Lastblocklager	Größe Kupferblech	15 cm

19 Breite Brücke 8,50 m Plattendicke 0 Breite Brücke 8,50 m Plattendicke 0 Breite Brücke 8,225 L/d-Verhältnis 1 Höhe 1,60 m L/h-Verhältnis 1 Breite 1,00 m Plattenlänge 1 Bareite 1,00 m Plattenlänge 1 Länge 9,43 m Fugenhöhe 1 Betongüte B 225 Abstand 0 Widerlager B 225 Abstand 0 Widerlager Lagerblech Größe 1 Breite Brücke 9,80 m Winkel 1 Breite Brücke 8,50 m Plattendicke 0 Uiderlagerart Lagerblech Kupferblech 1 Breite Brücke 9,80 m Winkel 1 Breite Brücke 8,50 m Plattendicke 0 Widerlager B 300 L/d-Verhältnis 1 Höhe 4,30 m L/h-Verhältnis 1	,30 m 2,88 15,33 - .,0 cm ,47 m L5 cm 1111° ,55 m 2,28 L5,33
Betongüte B 225 L/d-Verhältnis Platte B 225 L/d-Verhältnis Höhe 1,60 m L/h-Verhältnis 1 Breite 1,00 m Plattenlänge 1 Breite 1,00 m Auflager 1 Länge 9,43 m Fugenhöhe 1 Betongüte B 225 Abstand 0 Widerlager B 225 Steckeisen 0 Widerlager Lagerblech Größe 1 Betongüte B 225 Steckeisen 0 Widerlager Lagerblech Größe 1 Breite Brücke 9,80 m Winkel 0 Breite Brücke 9,80 m Winkel 0 Breite Brücke 9,80 m Vinkel 0 Breite Brücke 8,50 m Plattendicke 0 Betongüte B 300 L/d-Verhältnis 1 Höhe Höhe 4,30 m L/h-Verhältnis 1	2,88 15,33 - .,0 cm .,47 m 15 cm 111° .55 m 2,28 15,33
Höhe 1,60 m L/h-Verhältnis 1 6 Breite 1,00 m Plattenlänge Auflager 1 Breite 1,00 m Plattenlänge Auflager 1 Bareite 1,00 m Plattenlänge Auflager 1 Breite 1,00 m Plattenlänge Auflager 1 Betongüte B 225 Abstand 0 Widerlager B 225 Abstand 0 Widerlager Länge Brücke 9,80 m Winkel 1 Breite Brücke 9,80 m Winkel 0 1 1 Breite Brücke 8,50 m Plattendicke 0 Betongüte B 300 L/d-Verhältnis 1 Höhe 4,30 m L/h-Verhältnis 1	15,33 - .,0 cm .,47 m L5 cm 111° .,55 m 2,28 L5,33
Breite 1,00 m Plattenlänge 6 Länge 9,43 m Fugenhöhe 1 1 Betongüte B 225 Abstand 0 Widerlager B 225 Abstand 0 Widerlager B 225 Abstand 0 Widerlager Länge Brücke 9,80 m Winkel 1 Example Breite Brücke 9,80 m Winkel 1 Example Breite Brücke 8,50 m Plattendicke 0 Betongüte B 300 L/d-Verhältnis 1 Höhe 4,30 m L/h-Verhältnis 1	- ,0 cm ,47 m L5 cm 111° ,55 m 2,28 L5,33
Länge 9,43 m Fugenhöhe 1 Widerlager B 225 Abstand 0 Widerlager B 225 Abstand 0 Widerlager Lagerblech Größe 1 Widerlager Lagerblech Größe 1 Länge Brücke 9,80 m Winkel 1 Länge Brücke 9,80 m Winkel 1 Breite Brücke 8,50 m Plattendicke 0 Betongüte B 300 L/d-Verhältnis 1 Höhe 4,30 m L/h-Verhältnis 1	.,0 cm ,47 m L5 cm <u>111°</u> ,55 m 2,28 L5,33
Betongüte B 225 Abstand 0 Widerlager B 225 Abstand 0 Widerlager Lagerblech Größe 1 Widerlagerart Lagerblech Größe 1 Länge Brücke 9,80 m Winkel 1 Breite Brücke 8,50 m Plattendicke 0 Betongüte B 300 L/d-Verhältnis 1 Höhe 4,30 m L/h-Verhältnis 1	1,47 m 15 cm 111° ,55 m 2,28 15,33
Widerlagerart Lagerblech Größe Kupferblech 1 Image: State of the	L5 cm 111° ,55 m 2,28 L5,33
Länge Brücke 9,80 m Winkel Breite Brücke 8,50 m Plattendicke 0 Betongüte B 300 L/d-Verhältnis 1 Höhe 4,30 m L/h-Verhältnis 1	111° ,55 m 2,28 L5,33
Länge Brücke 9,80 m Winkel Breite Brücke 8,50 m Plattendicke 0 Betongüte B 300 L/d-Verhältnis 0 Höhe 4,30 m L/h-Verhältnis 1	111° ,55 m 2,28 L5,33
Breite Brücke 8,50 m Plattendicke 0 4 27ø 14-33 Betongüte B 300 L/d-Verhältnis 0 Höhe Höhe 4,30 m L/h-Verhältnis 1	2,28 15,33
Betongüte B 300 L/d-Verhältnis Höhe Höhe 4,30 m L/h-Verhältnis	2,28
Höhe 4,30 m L/h-Verhältnis 1	15,33
7) 208 Widenager	
Breite 1,10 m Plattenlänge 50%8-20 Widerlager 1,10 m	-
5 6 6 For Evgenhöhe 1 Widerlager 9,80 m	.,0 cm
Betongüte B 225 Abstand O Widerlager 0 Steckeisen 0	,30 m
WiderlagerartLagerblechGröße Kupferblech1	l0 cm
Länge Brücke 5,00 m Winkel	90°
Tehrbehn en Fein Breite Brücke 7,60 m Plattendicke 0	,37 m
for Fortraidle B 225 B 225 Platte B 225 L/d-Verhältnis	1,43
Zerr elest, Eugensleit Jogensleit 3,50 m L/h-Verhältnis 1	13,51
Breite 1,20 m Plattenlänge Auflager),4 m
Länge 8,30 m Fugenhöhe 1	.,0 cm
Betongüte B225/B160 Abstand O Widerlager Steckeisen	,26 m
WiderlagerartLagerblechGröße Kupferblech1	LO cm

	Länge Brücke	9 38 m	Winkel	74°
te išolatkung	Breite Brücke	16.80 m	Plattendicke	0.80 m
B 300 Anstrict 2 see	Betongüte Platte	В 300	L/d-Verhältnis	2,02
NEOPHENE LAGEN 200/259/22	Höhe Widerlager	4,64 m	L/h-Verhältnis	11,73
UK.TAAGHEBE FUGERAARD im Breezen der Schieren in den Mittenbart, Lacre	Breite Widerlager	1,50 m	Plattenlänge Auflager	-
400 100 100 100 100 100 100 100 100 100	Länge Widerlager	9,30 m	Fugenhöhe	7,0 cm
.19	Betongüte Widerlager	B 225	Abstand Neoprenlager	1,75 m
B.225	Widerlagerart	Neoprenlager	Größe Kupferblech	20 cm
	Länge Brücke	19,00 m	Winkel	90°
	Breite Brücke	8,50 m	Plattendicke	0,74 m
20 La SI 7 SH VT Lager	Betongüte Platte	B 400	L/d-Verhältnis	4,73
	Höhe Widerlager	4,02 m	L/h-Verhältnis	25,68
	Breite Widerlager	1,02 m	Plattenlänge Auflager	0,8 m
	Länge Widerlager	9,22 m	Fugenhöhe	1,0 cm
	Betongüte Widerlager	B 225	Abstand Steckeisen	-
	Widerlagerart	Lagerblech	Größe Kupferblech	15 cm
M = 1 : 10	Länge Brücke	2.70 m	Winkel	88°
	Breite Brücke	9,40 m	Plattendicke	0,24 m
ž	Betongüte Platte	B 225	L/d-Verhältnis	1,13
20 3 225	Höhe Widerlager	2,40 m	L/h-Verhältnis	11,25
	Breite Widerlager	0,60 m	Plattenlänge Auflager	0,40 m
8225 20	Länge Widerlager	9,20 m	Fugenhöhe	1,0 cm
30 30 6	Betongüte Widerlager	B 225	Abstand Steckeisen	0,30 m
	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm

	Lönge Drücke	2 70 m	\\/inkol	00°
+	Lange Brucke	2,70 m	VVINKEI	90
7	Botongüto	0,80 M	Plattendicke	0,24 m
	Platte	B 225	L/d-Verhältnis	0,98
(20) 8225	Höhe Widerlager	2,75 m	L/h-Verhältnis	11,25
	Breite Widerlager	0,60 m	Plattenlänge Auflager	0,40 m
35 30	Länge Widerlager	9,20 m	Fugenhöhe	1,0 cm
<u> </u>	Betongüte Widerlager	B 225	Abstand Steckeisen	0,30 m
•	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
,				
	Länge Brücke	3,00 m	Winkel	85°
7	Breite Brücke	8,80 m	Plattendicke	0,24 m
23 B225	Betongüte Platte	B 225	L/d-Verhältnis	1,20
B225 30 30 62	Höhe Widerlager	2,50 m	L/h-Verhältnis	12,50
	Breite Widerlager	0,60 m	Plattenlänge Auflager	0,40 m
	Länge Widerlager	9,20 m	Fugenhöhe	1,0 cm
	Betongüte Widerlager	B 225	Abstand Steckeisen	0,30 m
	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
de Italiana 1	Länge Brücke	12,80 m	Winkel	108°
	Breite Brücke	8,50 m	Plattendicke	0,52 m
3 400	Betongüte Platte	B 400	L/d-Verhältnis	5,33
Noopernelager AED/200/55 mig 2H. korisentat vorlegen	Höhe Widerlager	2,40 m	L/h-Verhältnis	24,62
Loguibert OL	Breite Widerlager	1,00 m	Plattenlänge Auflager	-
40 40 20	Länge Widerlager	9,20 m	Fugenhöhe	7,0 cm
Dreikantleiste <u>3300</u> einlegen	Betongüte Widerlager	B300/B225	Abstand Neoprenlager	-
	Widerlagerart	Neoprenlager	Größe Kupferblech	15 cm

	Länge Brücke	16.83 m	Winkel	86°
$(5) \rightarrow \frac{20}{2}$	Breite Brücke	8,50 m	Plattendicke	0,71 m
	Betongüte Platte	В 300	L/d-Verhältnis	4,44
	Höhe Widerlager	3,79 m	L/h-Verhältnis	23,70
(5) (7) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Breite Widerlager	1,20 m	Plattenlänge Auflager	-
	Länge Widerlager	9,24 m	Fugenhöhe	-
	Betongüte Widerlager	B225	Abstand Steckeisen	1,64 m
40 80 3	Widerlagerart	Lasto-Block- Lager	Größe Kupferblech	20 cm
	Länge Brücke	9.60 m	Winkel	77°
U 170K0 (Breite Brücke	8,60 m	Plattendicke	0,56 m
ERLIZO MI ERLIZO MI 10 EAG	Betongüte Platte	B 225	L/d-Verhältnis	3,31
	Höhe Widerlager	2,90 m	L/h-Verhältnis	17,14
	Breite Widerlager	0,92 m	Plattenlänge Auflager	0,60 m
	Länge Widerlager	-	Fugenhöhe	1,0 cm
	Betongüte Widerlager	B 225	Abstand Steckeisen	0,30 m
	Widerlagerart	Lasto-Block- Lager	Größe Kupferblech	10 cm
/ \	Länge Brücke	15,80 m	Winkel	90°
	Breite Brücke	8,50 m	Plattendicke	0,70 m
	Betongüte Platte	B 300	L/d-Verhältnis	3,95
	Höhe Widerlager	4,00 m	L/h-Verhältnis	22,57
	Breite Widerlager	1,30 m	Plattenlänge Auflager	-
40	Länge Widerlager	-	Fugenhöhe	10,0 cm
the second se	Betongüte Widerlager	B 225	Abstand Neoprenlager	-
	Widerlagerart	Neoprenelager	Größe Kupferblech	15 cm

		10.00		0.70
9	Lange Brucke	10,60 m	Winkel	8/*
1 Jakietung	Breite Brücke	8,70 m	Plattendicke	0,51 m
Sr 🖟	Betongute Platte	B 300	L/d-Verhältnis	3,03
Anstruct & North	Höhe Widerlager	3,50 m	L/h-Verhältnis	20,78
Button a set	Breite Widerlager	0,90 m	Plattenlänge Auflager	-
	Länge Widerlager	9,90 m	Fugenhöhe	1,0 cm
90	Betongüte Widerlager	B 225	Abstand Steckeisen	0,50 m
B225	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
	Länge Brücke	5,60 m	Winkel	108°
	Breite Brücke	7,50 m	Plattendicke	0,38 m
Римали, П Головинан Isriezienman Isriezi	Betongüte Platte	B 225	L/d-Verhältnis	1,87
	Höhe Widerlager	3,00 m	L/h-Verhältnis	14,74
	Breite Widerlager	0,90 m	Plattenlänge Auflager	0,30 m
	Länge Widerlager	8,40 m	Fugenhöhe	1,0 cm
	Betongüte Widerlager	B 225	Abstand Steckeisen	-
	Widerlagerart	Lagerblech	Größe Kupferblech	-
	Länge Brücke	10,80 m	Winkel	79°
	Breite Brücke	7,60 m	Plattendicke	0,50 m
<u>1307</u>	Betongüte Platte	B 225	L/d-Verhältnis	4,15
	Höhe Widerlager	2,60 m	L/h-Verhältnis	21,60
<u>B 225</u> 40 30 10 NEUNISHIC LAGER 20' 15' 2 1 e 2725 cm R	Breite Widerlager	1,00 m	Plattenlänge Auflager	0,40 m
	Länge Widerlager	8,42 m	Fugenhöhe	2,0 cm
<u>8 160</u>	Betongüte Widerlager	B225/B160	Abstand Steckeisen	-
3 80 20 4	Widerlagerart	Neoprenelager	Größe Kupferblech	20 cm

35 30 10	Länge Brücke	1.60 m	Winkel	03°
6 11 6	Breite Brücke	4,00 m	Plattendicke	0.22 m
	Betongüte	0,00 11	Thattentaleke	0,22 111
<u>N</u>	Platte	B 300	L/d-Verhältnis	2,20
300	Höhe Widerlager	2,09 m	L/h-Verhältnis	20,91
B225 67	Breite Widerlager	0,90 m	Plattenlänge Auflager	0,65 m
	Länge Widerlager	8,81 m	Fugenhöhe	1,0 cm
AP	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,33 m
8160	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
	Länge Brücke	12,00 m	Winkel	83°
	Breite Brücke	8,50 m	Plattendicke	0,60 m
Elastomerlager recardert \$25 Type 2 6-200001g 3 Stock je Waterlager	Betongüte Platte	B 300	L/d-Verhältnis	10,62
horizontal entauen 3300 2	Höhe Widerlager	1,13 m	L/h-Verhältnis	20,00
	Breite Widerlager	1,10 m	Plattenlänge Auflager	0,65 m
	Länge Widerlager	-	Fugenhöhe	9,3 cm
B 225	Betongüte Widerlager	B 225	Abstand Neoprenlager	-
	Widerlagerart	Elastomerlager	Größe Kupferblech	25 cm
	Länge Brücke	20,00 m	Winkel	79°
i i	Breite Brücke	8,50 m	Plattendicke	0,81 m
	Betongüte Platte	B 400	L/d-Verhältnis	10,62
B 400	Höhe Widerlager	3,60 m	L/h-Verhältnis	20,00
	Breite Widerlager	1,00 m	Plattenlänge Auflager	-
	Länge Widerlager	-	Fugenhöhe	15,3 cm
10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Betongüte Widerlager	B 225	Abstand Neoprenlager	1,25 m
B 225	Widerlagerart	Elastomerlager	Größe Kupferblech	25 cm

	Länge Brücke	6 66 m	Winkel	106°
2	Breite Brücke	7.50 m	Plattendicke	0.44 m
	Betongüte Platte	B 225	L/d-Verhältnis	1,71
	Höhe Widerlager	3,90 m	L/h-Verhältnis	15,14
5 94	Breite Widerlager	1,60 m	Plattenlänge Auflager	0,60 m
and ba	Länge Widerlager	7,94 m	Fugenhöhe	1,0 cm
10 cq (mum	Betongüte Widerlager	B 225	Abstand Steckeisen	0,3/0,8 m
B 160	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
	Länge Brücke	17,90 m	Winkel	90°
	Breite Brücke	6,90 m	Plattendicke	0,72 m
B 400	Betongüte Platte	B 400	L/d-Verhältnis	8,48
	Höhe Widerlager	2,10 m	L/h-Verhältnis	15,14
	Breite Widerlager	1,10 m	Plattenlänge Auflager	-
	Länge Widerlager	-	Fugenhöhe	23 cm
	Betongüte Widerlager	B300/B225	Abstand Neoprenlager	2,05 m
	Widerlagerart	Elastomerlager	Größe Kupferblech	40 cm
	Länge Brücke	4,10 m	Winkel	90°
(14) 26- 16l	Breite Brücke	8,80 m	Plattendicke	0,30 m
	Betongüte Platte	B 225	L/d-Verhältnis	1,11
	Höhe Widerlager	3,70 m	L/h-Verhältnis	13,67
	Breite Widerlager	0,90 m	Plattenlänge Auflager	0,6 m
	Länge Widerlager	9,20 m	Fugenhöhe	1,0 cm
	Betongüte Widerlager	B 225	Abstand Steckeisen	0,33 m
+-	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm

THE MARK BY STREET, STREET	Länge Duösla	12.00 m	\\/:l.al	0.0%
FAUSDAIN CE. DETAIL, A"	Regito Brücke	13,80 m	VVINKel Diattordiaka	δ2 ⁻
	Breite Brucke	9,00 m	Plattendicke	0,55 M
LEPPPLATTE Southers	Platte	B 400	L/d-Verhältnis	1,11
TRAGWERK	Höhe Widerlager	3,83 m	L/h-Verhältnis	25,09
18. 15 15 2 - MORTALDETT	Breite Widerlager	1,20 m	Plattenlänge Auflager	0,73 m
22 20 20 \$14/33cm 32 40 13	Länge Widerlager	9,75 m	Fugenhöhe	6,0 cm
₽225	Betongüte Widerlager	B225/B160	Abstand Neoprenlager	1 <i>,</i> 45 m
	Widerlagerart	Neoprenelager	Größe Kupferblech	20 cm
	Länge Brücke	10,60 m	Winkel	90°
	Breite Brücke	8,60 m	Plattendicke	0,47 m
	Betongüte Platte	B 300	L/d-Verhältnis	4,24
ch	Höhe Widerlager	2,50 m	L/h-Verhältnis	22,55
3 225	Breite Widerlager	0,90 m	Plattenlänge Auflager	0,62 m
	Länge Widerlager	-	Fugenhöhe	1,0 cm
B 160	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,30 m
	Widerlagerart	Lagerblech	Größe Kupferblech	- cm
	Länge Brücke	9,96 m	Winkel	100°
	Breite Brücke	9,00 m	Plattendicke	0,47 m
B 300	Betongüte Platte	В 300	L/d-Verhältnis	3,32
3.15CH A 225	Höhe Widerlager	3,00 m	L/h-Verhältnis	21,19
с — слбо — <u>исор</u> а	Breite Widerlager	1,60 m	Plattenlänge Auflager	0,42 m
6 10 0 200) MORT	Länge Widerlager	-	Fugenhöhe	2,0 cm
	Betongüte Widerlager	B225/B160	Abstand Steckeisen	1,21 m
	Widerlagerart	Neoprenelager	Größe Kupferblech	20 cm

J sotexbitumen	Länge Brücke	7.60 m	Winkol	۹۵°
X *	Breite Brücke	9.50 m	Plattendicke	0.40 m
<u>300</u> <u>B 225</u> <u>8</u> <u>4</u> <u>8</u>	Betongüte Platte	В 300	L/d-Verhältnis	2,38
	Höhe Widerlager	3,20 m	L/h-Verhältnis	19,00
3 30 30 15 15	Breite Widerlager	0,90 m	Plattenlänge Auflager	0,60 m
<u>B 225</u> S	Länge Widerlager	-	Fugenhöhe	1,0 cm
	Betongüte Widerlager	B225/B160	Abstand Steckeisen	-
<u>B 160</u>	Widerlagerart	Lagerblech	Größe Kupferblech	-
FUGENKITT (ISOTEXBITUMEN) \\(Gomastit	Länge Brücke	5.60 m	Winkel	96°
	Breite Brücke	9.50 m	Plattendicke	0.30 m
<u>B 300</u> 7 POROZELL 4 3	Betongüte Platte	В 300	L/d-Verhältnis	1,87
	Höhe Widerlager	3,00 m	L/h-Verhältnis	18,67
2 3 30 30 15 15 9	Breite Widerlager	0,90 m	Plattenlänge Auflager	0,60 m
<u>B 225</u>	Länge Widerlager	11,86 m	Fugenhöhe	1,0 cm
3 90 <u>B 160</u>	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,33 m
	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
/ Kulipaniar				
job 25. John Starting .	Länge Brücke	9,10 m	Winkel	71°
	Breite Brücke	10,00 m	Plattendicke	0,48 m
3 300 B225	Platte	B 300	L/d-Verhältnis	2,32
1 States Rollen	Höhe Widerlager	3,92 m	L/h-Verhältnis	18,96
galatien partiesa 100/10 B 225	Breite Widerlager	0,90 m	Plattenlänge Auflager	0,60 m
	Länge Widerlager	11,30 m	Fugenhöhe	1,0 cm
50 50 k 12 , 41 20 ,	Betongüte Widerlager	B 225	Abstand Steckeisen	-
	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm

	Längo Brücko	6 70 m	Winkol	٥٥°
	Breite Brücke	8.60 m	Plattendicke	0.37 m
B 225 TUGEN DAND 15 CM	Betongüte Platte	B 225	L/d-Verhältnis	2,58
STYROPOR LAGER 100/10 HM	Höhe Widerlager	2,60 m	L/h-Verhältnis	18,11
B225	Breite Widerlager	1,00 m	Plattenlänge Auflager	0,60 m
	Länge Widerlager	-	Fugenhöhe	1,0 cm
2 30 7 30 7 100 7	Betongüte Widerlager	B 225	Abstand Steckeisen	0,30 m
B 225	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
Fahrbahnoperkante	Länge Brücke	8,60 m	Winkel	90°
2	Breite Brücke	9,50 m	Plattendicke	0,37 m
2 cm Schaumslotteinlage	Betongüte Platte	B 225	L/d-Verhältnis	2,39
Lagerblech = 100/	Höhe Widerlager	3,60 m	L/h-Verhältnis	17,92
	Breite Widerlager	1,10 m	Plattenlänge Auflager	0,60 m
B225	Länge Widerlager	10,20 m	Fugenhöhe	1,0 cm
<u> </u>	Betongüte Widerlager	B225/B160	Abstand Steckeisen	0,25/0,33 m
	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
Zem Schoundlollevil.ge FDK	Länge Brücke	10,60 m	Winkel	82°
	Breite Brücke	9,50 m	Plattendicke	0,61 m
Rogueria 8225 indexistentiation	Betongüte Platte	B 225	L/d-Verhältnis	3,31
Encoder and the second se	Höhe Widerlager	3,20 m	L/h-Verhältnis	17,38
	Breite Widerlager	1,00 m	Plattenlänge Auflager	0,60 m
B225	Länge Widerlager	10,20 m	Fugenhöhe	1,0 cm
	Betongüte Widerlager	B 225	Abstand Steckeisen	0,25 m
	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm

X 5				
	Länge Brücke	3,10 m	Winkel	86°
	Breite Brücke	10,30 m	Plattendicke	0,25 m
	Betongüte Platte	B 225	L/d-Verhältnis	1,35
	Höhe Widerlager	2,30 m	L/h-Verhältnis	12,40
	Breite Widerlager	0,90 m	Plattenlänge Auflager	0,58 m
B 225	Länge Widerlager	11,04 m	Fugenhöhe	1,0 cm
= 15 15 ² 28 30	Betongüte Widerlager	B 225	Abstand Steckeisen	0,33 m
$\frac{1}{4}$ $\frac{90}{4}$	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm
	Länge Brücke	5,10 m	Winkel	90°
the second se	Breite Brücke	8,50 m	Plattendicke	0,32 m
1	Betongüte Platte	B 225	L/d-Verhältnis	1,22
	Höhe Widerlager	4,17 m	L/h-Verhältnis	15,94
B 225	Breite Widerlager	1,10 m	Plattenlänge Auflager	0,58 m
	Länge Widerlager	-	Fugenhöhe	1,0 cm
	Betongüte Widerlager	B 225	Abstand Steckeisen	0,30 m
90	Widerlagerart	Lagerblech	Größe Kupferblech	10 cm

A 2 BERECHNUNGSERGEBNISSE

1. Variante 2

- ULS Nachweis Bemessung Längsbewehrung Überbau
- ULS Nachweis Bemessung Längsbewehrung Unterbau
- Nachweis Stabwerkmodell
- SLS Bewehrung in Querrichtung
- Schubfugennachweis Rucksack nach EC 2

2. Variante 3

- ULS Nachweis Bemessung Längsbewehrung Überbau
- ULS Nachweis Bemessung Längsbewehrung Unterbau
- Nachweis Stabwerkmodell
- SLS Bewehrung in Querrichtung
- Schubfugennachweis Rucksack nach EC 2

1 Variante 2

ULS - Bemessung Längsbewehrung Überbau

Materialeigenschaften

\mathbf{f}_{ck}	=	25	[N/mm²]
f_{yk}	=	550	[N/mm²]
f _{ctm}	=	2,6	[N/mm²]
γ _c	=	1,5	[-]
α_{cc}	=	0,85	[-]
γs	=	1,15	[-]
f_{cd}	=	14,17	[N/mm²]
f_{yd}	=	478,26	[N/mm²]
Geom	<u>etrische</u>	Daten	
		4	r 1
b h	=	1	[m]
	-	0,72	[111]
Wider	standsm	oment	$W_t = \frac{b * h^3}{1}$
			6
W	=	0,09	[m³]
		_	
C	=	5 Johnung	[cm]
Annan Ø	=	enrung 2	$[cm] \leq a/26$
φ	-	2	
d_1	=	6	[cm]
-			
d	=	66,00	[cm]
M_{ed}	=	-581,00	[kNm]
N_{ed}	=	-115,00	[kN]

Berechnen der Druckzonenhöhe x

Formel für Spannungsblock

Betondruckkraft

Hebelarm

 $0 = N_c \cdot z - N_{ed} \cdot \frac{h - d_1}{2} + M_{ed,s}$ $N_c = b \cdot \lambda \cdot x \cdot \eta \cdot f_{cd}$ $z = d - \frac{\lambda \cdot x}{2}$ $-x^2 \cdot b \cdot \frac{\lambda^2}{2} \cdot \eta \cdot f_{cd} + x \cdot b \cdot \lambda \cdot \eta \cdot d \cdot f_{cd} + M_{ed,s} - N_{ed} \cdot \frac{h - d_1}{2} = 0$

 $ax^2 + bx + c = 0$

result. Endgleichung

η λ	=	1,00 [0,80 [[-] [-]
a b c	-4,53	3333333 7,48 -0,54	
x	=	7,61 [[cm]
Beton	druckkra	ft	
N _c	=	862,59 [[kN]
Hebel	arm	z = d -	$\frac{\lambda \cdot x}{2}$
z	=	62,96 [[cm]
Kontro	olle der S	tahldehn	ung $\varepsilon_{s1} = \varepsilon_{cu3} \cdot \left(\frac{d}{x} - 1\right)$
ε _{cu3}	=	3,5 [[‰]
ε _s	=	26,85 l	[‰] ≥ 2,39 ‰
Bewel	hrung in l	Längsrich	tung $A_{sl,erf} = \frac{M_{ed,s}}{z \cdot f_{yd}} \pm \frac{N_{ed}}{f_{yd}}$
$A_{sl,erf}$	=	16,89 [[cm ²]
gewäł	nlte Bewe	ehrung	
Ø A _{s,vorh}	=	2 [18,85 [[cm] [cm²]
Minde	estbeweh	irung nacl	h EC 1992-1 $A_{s,min} = \max\left[0,26 \cdot \frac{f_{ctm}}{f_{yk}} \cdot b \cdot d; 0,0013 \cdot b \cdot d\right]$
A _{s,min}	=	8,11 [8,58 [[cm²] [cm²]
Minde	estbeweh	irung nacl	h EC 1992-2 $A_{s,min} = \frac{M_{ed}}{z \cdot f_{yk}}$
A _{s,min}	=	16,78 [[cm²]
Maxin	nalbeweł	nrung	$A_{s,max} = 0.04 \cdot A_c$
A _{s,max}	=	288,00 [[cm²]

ULS - Bemessung Längsbewehrung Unterbau

<u>Materialeigenschaften</u>

\mathbf{f}_{ck}	=	25	[N/mm	n²]
f_{yk}	=	550	[N/mm	n²]
f_{ctm}	=	2,6	[N/mm	n²]
γ _c	=	1,5	[-]	
α_{cc}	=	0,85	[-]	
γ_{s}	=	1,15	[-]	
f_{cd}	=	14,17	[N/mm	n²]
\mathbf{f}_{yd}	=	478,26	[N/mm	1 ²]
Geon	netrisch	e Daten		
b	=	1	[m]	
h	=	0,90	[m]	
Wide	rstandsı	noment	$W_t =$	$=\frac{b*h^3}{6}$
W	=	0,14	[m³]	
с	=	5	[cm]	
Anna	hme Be	wehrung		
Ø	=	2	[cm]	≤ ø 26
d_1	=	6	[cm]	
d	=	84,00	[cm]	
M_{ed}	=	-581,00	[kNm]	
N_{ed}	=	-190,00	[kN]	
Bered	chnen de	er Druckzo	nenhöh	he x $ax^2 + bx + c = 0$
Form	el für Sp	annungsb	lock	$0 = N_c \cdot z - N_{ed} \cdot \frac{h - d_1}{2} + M_{ed,s}$
Betor	ndruckki	raft		$N_c = b \cdot \lambda \cdot x \cdot \eta \cdot f_{cd}$
Hebe	larm			$z = d - \frac{\lambda \cdot x}{2}$
result	t. Endgle	eichung	-0	$-x^2 \cdot b \cdot \frac{\lambda^2}{2} \cdot \eta \cdot f_{cd} + x \cdot b \cdot \lambda \cdot \eta \cdot d \cdot f_{cd} + M_{ed,s} - N_{ed} \cdot \frac{h - d_1}{2} = 0$

n	=	1.00 [-]	
λ	=	0,80 [-]	
2	1 52	222222	
a h	-4,55	0 53	
u -		9,52	
С		-0,50	
х	=	5,40 [cr	m]
Beton	druckkra	ft	
N _c	=	612,43 [ki	N]
Hebel	arm	$z = d - \frac{\lambda}{2}$	$\frac{x}{2}$
Z	=	81,84 [cr	m]
Kontro	olle der S	tahldehnur	ng $\varepsilon_{s1} = \varepsilon_{cu3} \cdot \left(\frac{d}{x} - 1\right)$
ε _{cu3}	=	3,5 [%	oo]
ε _s	=	50,91 [%	[no] ≥ 2,39 ‰
Beweł	nrung in l	Längsrichtu	ng $A_{sl,erf} = \frac{M_{ed,s}}{z \cdot f_{yd}} \pm \frac{N_{ed}}{f_{yd}}$
A _{sl,erf}	=	10,87 [cr	m²]
gewäł	lte Bewe	ehrung	
Ø	=	1,6 [cr	m]
A _{s,vorh}	=	14,07 [cr	m²]
Minde	estbeweh	irung nach I	EC 1992-1 $A_{s,min} = \max\left[0,26 \cdot \frac{f_{ctm}}{f_{yk}} \cdot b \cdot d; 0,0013 \cdot b \cdot d\right]$
A _{s min}	=	10.32 [cr	m²]
3,1111		10,92 [cr	m ²]
Minde	estbeweh	irung nach I	EC 1992-2 $A_{s,min} = \frac{M_{ed}}{z \cdot f_{yk}}$
A _{s,min}	=	12,91 [cr	m²]
Maxin	nalbeweh	nrung A_s	$_{s,max} = 0.04 \cdot A_c$
A _{s,max}	=	360,00 [cr	m²]

Stabwerksberechnung Überbau

F _{cd}	=	862,59 [k	N]		
F _{sd}	=	862,59 [k	N]		
Nachweis c	ler Druck	<u>kstrebe</u>	𝒏 _{Rd,max}	$=\frac{ F_{cd} }{a \cdot b} \le \alpha$	• f _{cd}
а	=	76,11 [m	וm]		
b	=	1000,00 [m	າm]		
$\sigma_{\rm Rd,max}$	=	11,33 [N	/mm²]		
α	=	1 [-]			
f _{cd}	=	14,17 [N	/mm²]		
Nachweis					
$\sigma_{\rm Rd,max}$	=	11,33	≤	14,17	[N/mm²]
<u>Nachweis c</u> $A_{s,erf} = \frac{1}{2}$	ler Zugst F _{sd} f _{yd}	<u>rebe</u> F _{sa}	F_{tRd}	$= A_s \cdot f_{yd}$	
A _{s,vorh}	=	18,85 [c	m²]		
F _{tRd}	=	902 [k	N]		
F _{sd}	=	863	≤	902	[kN]

Stabwerksberechnung Unterbau

F_{cd}	=	612,43	[kN]		
F_{sd}	=	612,43	[kN]		
<u>Nachweis der</u>	Druckstro	<u>ebe</u>	$\left \sigma_{Rd,max}\right $	$=\frac{ F_{cd} }{a \cdot b} \le \alpha \cdot f_{cd}$	
а	=	54,04	[mm]		
b	= 1	.000,00	[mm]		
$\sigma_{\text{Rd,max}}$	=	11,33	[N/mm ²]		
α	=	1	[-]		
f_{cd}	=	14,17	[N/mm²]		
Nachweis	_	11 33	<	14 17	[N/mm ²]
CRd,max	-	11,55	2	17,17	
<u>Nachweis der</u> $A_{s,erf} = \frac{F_{sd}}{f_{yd}}$	<u>Zugstreb</u>	<u>e</u>	$F_{sd} \leq F_{tF}$	$A_{d} = A_{s} \cdot f_{yd}$	
$A_{s,vorh}$	=	14,07	[cm ²]		
F_{tRd}	=	672,91	[kN]		
F _{sd}	=	612	≤	673	[kN]

Berechnung der Knoten in der Rahmenecke

Druck-Zug	-Zug Knote	$en \sigma_{cd} \le \sigma_{cd}$	$\sigma_{Rd,md}$	ıx	
fck	=	30 [N/r	nm²]		
fcd	=	17 [N/r	nm²]		
maxmimal	e Betondr	uckspannung		$\sigma_{Rd,max} = k_3$	$v' \cdot f_{cd}$
k ₃	=	0,90 [-]			
Abminder	ungsbeiwe	rt $v' = 1$	$-\frac{f_{ck}}{250}$	<u>,</u>	
v	=	0,88			
$\sigma_{\rm Rd,max}$	=	13,46 [N/r	nm²]		
Druckstreb	penbreite	$a = d_{br}$	sin θ		
tan^-1(F _{td,}	₁ /F _{td,2})	0,61 [-]			
θ	=	35 [°]			
θ	=	0,61			
sinθ	=	0,57			
Biegerolle	ndurchme	sser $d_{br} =$	$3 \cdot \frac{f_y}{f_c}$	$\frac{k}{k} \cdot d_s \cdot \sqrt{\frac{d_s}{s_d}}$	
s _d = s _R wenr	n s ≥ 2 · s _R				
S _d	=	5 [cm]]		
d _{br}	=	69,57 [cm]]		
d _{br,vorh}	=	0,70 [m]			
а	=	39,89 [cm]]		
vorhander	ne Betondr	uckspannung		$\sigma_{cd} = \frac{max}{b \cdot d_{br}}$	$\frac{\{F_{td,1}, F_{td,2}\}}{\sin\theta \cdot \cos\theta}$
F _{td,1}	=	862,59 [kN]			
F _{td,2}	=	612,43 [kN]			
F _{cd}	=	1052,88 [kN]			
cosθ	=	0,82			
σ_{cd}	=	2,64	≤	13,46	[N/mm²]

<u>Druck-Dru</u>	<u>ck-Druck</u>	Knoten o	$\sigma_{cd,i} \leq \sigma_{Rd,max}$	x
$\sigma_{Rd,m}$	$ax = k_1 \cdot$	$v' \cdot f_{cd}$		
k ₁	=	1,25 [-]		
Abminder	ungsbeiw	ert $v' =$	$= 1 - \frac{f_{ck}}{250}$	
v	=	0,90		
$\sigma_{\rm Rd,max}$	=	15,94 [N/	mm²]	
$\sigma_{cd,i} = 0$	$\frac{F_{cd,i}}{a_i \cdot b}$			
b	=	1000 [mr	n]	
a ₁	=	76,11 [mr	m]	
$F_{cd,1}$	=	862,59 [kN]	
$\sigma_{cd,2}$	=	11,33	≤	15,94 [N/mm²]
a ₂	=	54,04 [mr	m]	
F _{cd,2}	=	612,43 [kN]	
$\sigma_{cd,2}$	=	11,33	≤	15,94 [N/mm²]
a ₃	=	398,92 [mr	m]	
F _{cd,3}	=	1052,88 [kN]	
$\sigma_{cd,3}$	=	2,64	≤	15,94 [N/mm²]

Bewehrung in Querrichtung

<u>Materialeigenschaften</u>

\mathbf{f}_{ck}	=	25 [N/mm²]			
\mathbf{f}_{yk}	=	550 [N/mm²]			
f _{ctk0,05}	=	1,8 [N/mm²]			
		4 5 5 1			
γ _c	=	1,5 [-]			
α_{cc}	=	0,85 [-]			
γ _s	=	1,15 [-]			
f _{cd}	=	14.17 [N/mm²]			
fud	= .	478.26 [N/mm ²]			
·yu		170,20 [N/IIII]			
Geomet	trische Da	aten			
b	=	1 [m]			
h	=	0,30 [m]			
٨		0.2 [2]			
A _{ct}	=	0,3 [m ⁻]			
σ.	=	240 [N/mm²]			
, für Rissl	breite w :	= 0.2 mm	Ø	=	1.6 [cm]
		-,	F		_,_ []
Λ	_ 0,5	$\cdot A_{ct} \cdot f_{ct0,05} \cdot 0,5$			
$A_{S,\gamma}$	nin = ——	σ_s			
٨	_	$E(2) = 0 [mm^2]$			
A _{s,min}	_	562,50 [mm ² /m]			
	-	5,65 [cm²/m]			
Ac work	=	5 65 [cm²/m]	Ø	=	12 /20
- 's, vom		5)55 [cm /m]	ç		12 / 20
A _{s, max}	=	7,54 [cm²/m]	Ø	=	12 /15
<u>Bewehr</u>					
	ung hinte	en 50 %			
Δ	ung hinte	$2.81 \ [cm^2/m^2]$			
A _{s,min}	ung hinte	<u>en 50 %</u> 2,81 [cm²/m]			
A _{s,min}	ung hinte =	2,81 [cm²/m]	б	=	8 /20
A _{s,min} A _{s, vorh}	ung hinte = =	<u>en 50 %</u> 2,81 [cm²/m] 2,51 [cm²/m]	Ø	=	8 /20
A _{s,min} A _{s, vorh} A _{s, may}	<u>ung hinte</u> = =	2,81 [cm²/m] 2,51 [cm²/m] 2,51 [cm²/m] 7,54 [cm²/m]	Ø	=	8 /20

Schubfugennachweis Rucksack nach EC 2

<u>Materialien</u>

C 30/37		Neubau		
C 25/30		Altbau		
B21 220				
f _{ck}	=	25	[N/mm²]	
f _{ck}	=	20	[N/mm²]	
\mathbf{f}_{yk}	=	550	[N/mm²]	
γ _c	=	1,5		
γ_s	=	1,15		
α_{cc}	=	0,85		
<u>Fugenwide</u>	<u>rst</u>	and	$v_{Rdi} = c \cdot f$	$f_{ctd} + \mu \cdot \sigma_n + \rho \cdot f_{yd} \cdot (\mu \cdot \sin \alpha + \cos \alpha)$
с	=	0,40	[-]	raue Oberfläche
α_{ct}	=	1,00	[-]	
f _{ctk,0,05}	=	1,80	[N/mm²]	$f_{ctd} = \alpha_{ct} \cdot \frac{f_{ctk,0,05}}{\alpha_{ct}}$
f_{ctd}	=	1,20	[N/mm²]	Yc
μ	=	0,70	[-]	raue Oberfläche
σ _n	=	0,00		bei Druck $\sigma_n \leq 0,6^*f_{cd}$ ist diese eine Zug σ , c mal f_{ctd} 0 setzen
Verbundbe	we	hrungsgrad	$\rho =$	$=\frac{A_s}{A_i}$
A _s	=	4,52	[cm²]	Fläche des Betonstahls
A _i	=	1000,00	[cm²]	
ρ_{vorh}	=	0,0045	[-]	
f _{yd}	=	478,26	[N/mm²]	
α	=	90,00	[°]	45°≤ α ≤ 90°
Bereich 2				
v_{Rdi}	=	0,86	[MN/m²]	
Bereich 1	=	0,40	[MN/m²]	ohne Bewehrung
Bereich 2	=	0,86	[MN/m²]	ø12/25
Bereich 3	=	1,79	[MN/m²]	ø14/10
aufnehmba	are	<u>Schubkraft</u>	v_{Rd}	$f_{i,max} = 0.5 \cdot f_{cd} \cdot v$
f_{cd}	=	14,17	[N/mm²]	
v = 0.6	•	$1 - \frac{f_{ck}}{250}$		
ν	` =	0,54	[-]	

 $v_{Rdi,max}$ = 3,83 [MN/m²]

 $v_{Rdi} \leq v_{Rdi,max}$

0,78 ≤ 3,825 [MN/m²]

Mindestbewehrung

 $\rho_{min} = 0.20 \cdot \frac{f_{ctm}}{f_{yk}} \ge 0.001$ f_{ctm} = 2.6 [N/mm²]

 ρ_{min} = 0,000945 [-]

2 Variante 2

ULS - Bemessung Längsbewehrung Überbau

Materialeigenschaften

f_{ck}	=	25	[N/mm²]
f_{yk}	=	550	[N/mm²]
f_{ctm}	=	2,6	[N/mm²]
γ_c	=	1,5	[-]
α_{cc}	=	0,85	[-]
γ_{s}	=	1,15	[-]
† _{cd}	=	14,17	[N/mm²]
f_{yd}	=	478,26	[N/mm²]
C • • • •	. .	ha Datan	
Geom	etrisc	<u>ne Daten</u>	
b	=	1	[m]
h	=	0,92	[m]
			$h_{*}h^{3}$
Wider	stand	smoment	$W_t = \frac{b * h}{6}$
W	=	0,14	[m³]
С	=	5	[cm]
Annah	nme B	ewehrung	
Ø	=	2	[cm] ≤ø26
d₁	=	6	[cm]
1		Ū	[en]
d	=	86,00	[cm]
M_{ed}	=	-1157,00	[kNm]
N_{ed}	=	-161,00	[kN]

Berechnen	der	Druckzonenhöhe x	

Formel für Spannungsblock

Betondruckkraft

result. Endgleichung

Hebelarm

$$\begin{split} N_c &= b \cdot \lambda \cdot x \cdot \eta \cdot f_{cd} \\ z &= d - \frac{\lambda \cdot x}{2} \\ -x^2 \cdot b \cdot \frac{\lambda^2}{2} \cdot \eta \cdot f_{cd} + x \cdot b \cdot \lambda \cdot \eta \cdot d \cdot f_{cd} + M_{ed,s} - N_{ed} \cdot \frac{h - d_1}{2} = 0 \end{split}$$

 $0 = N_c \cdot z - N_{ed} \cdot \frac{h - d_1}{2} + M_{ed,s}$

 $ax^2 + bx + c = 0$

Graz

η λ	=	1,00 [-] 0,80 [-]
а	-4,53	333333
b	9,74	666667
С		-1,09
x	=	11,81 [cm]
Beton	druckkra	ft
N _c	=	1338,36 [kN]
Hebel	arm	$z = d - \frac{\lambda \cdot x}{2}$
Z	=	81,28 [cm]
Kontro	olle der S	tahldehnung $\varepsilon_{s1} = \varepsilon_{cu3} \cdot \left(\frac{d}{x} - 1\right)$
ε _{cu3}	=	3,5 [‰]
ε _s	=	21,99 [‰] ≥ 2,39 ‰
Bewel	hrung in I	Längsrichtung $A_{sl,erf} = \frac{M_{ed,s}}{z \cdot f_{yd}} \pm \frac{N_{ed}}{f_{yd}}$
$A_{sl,erf}$	=	26,40 [cm²]
gewäł	nlte Bewe	ehrung
Ø	=	2,6 [cm]
$A_{s,vorh}$	=	26,55 [cm²]
Minde	estbeweh	arung nach EC 1992-1 $A_{s,min} = \max\left[0,26 \cdot \frac{f_{ctm}}{f_{yk}} \cdot b \cdot d; 0,0013 \cdot b \cdot d\right]$
A _{s,min}	=	10,57 [cm²] 11,18 [cm²]
Minde	estbeweh	arung nach EC 1992-2 $A_{s,min} = \frac{M_{ed}}{z \cdot f_{yk}}$
$A_{s,min}$	=	25,88 [cm ²]
Maxin	nalbeweł	nrung $A_{s,max} = 0,04 \cdot A_c$
A _{s,max}	=	368,00 [cm²]

ULS - Bemessung Längsbewehrung Unterbau

<u>Materialeigenschaften</u>

\mathbf{f}_{ck}	=	25	[N/mm²]		
\mathbf{f}_{yk}	=	550	[N/mm²]		
f_{ctm}	=	2,6	[N/mm²]		
γ _c	=	1,5	[-]		
α_{cc}	=	0,85	[-]		
γs	=	1,15	[-]		
f _{cd}	=	14,17	[N/mm²]		
\mathbf{f}_{yd}	=	478,26	[N/mm²]		
<u>Geom</u>	etrisch	ie Daten			
b	=	1	[m]		
h	=	1,00	[m]		
Wider	rstands	moment	$W_t = \frac{b * h^3}{6}$		
W	=	0,17	[m³]		
с	=	5	[cm]		
Annał	nme Be	wehrung			
Ø	=	2	[cm] ≤ ø 26	ô	
d_1	=	6	[cm]		
d	=	94,00	[cm]		
M_{ed}	=	-1157,00	[kNm]		
N_{ed}	=	-192,00	[kN]		
Berec	hnen d	er Druckzo	nenhöhe x	$ax^2 + bx + c = 0$	
Forme	el für Sj	pannungsb	lock	$0 = N_c \cdot z - N_{ed} \cdot \frac{h - d_1}{2} + M_{ed,s}$	
Beton	druckk	raft		$N_c = b \cdot \lambda \cdot x \cdot \eta \cdot f_{cd}$	
Hebel	arm			$z = d - \frac{\lambda \cdot x}{2}$	
result	. Endgl	eichung	$-x^2 \cdot b$	$\frac{\lambda^2}{2} \cdot \eta \cdot f_{cd} + x \cdot b \cdot \lambda \cdot \eta \cdot d \cdot f_{cd} + M_{ed,s} - N_{ed} \cdot \frac{h}{2}$	$\frac{d_1}{d_1} = 0$

η λ	=	1,00 [-] 0,80 [-]
а	-4,53	33333
b	10,6	533333
С		-1,07
x	=	10,48 [cm]
Beton	druckkra	ft
N_{c}	=	1187,83 [kN]
Hebel	arm	$z = d - \frac{\lambda \cdot x}{2}$
Z	=	89,81 [cm]
Kontr	olle der S	tahldehnung $\varepsilon_{s1} = \varepsilon_{cu3} \cdot \left(\frac{a}{x} - 1\right)$
ε _{cu3}	=	3,5 [‰]
٤ _s	=	27,89 [‰] ≥ 2,39 ‰
Bewe	hrung in	ängsrichtung $A_{sl,erf} = \frac{M_{ed,s}}{z \cdot f_{yd}} \pm \frac{N_{ed}}{f_{yd}}$
$A_{sl,erf}$	=	22,92 [cm ²]
gewäl	hlte Bewo	hrung
Ø	=	2,6 [cm]
$A_{s,vorh}$	=	26,55 [cm ²]
Minde	estbeweł	rung nach EC 1992-1 $A_{s,min} = \max \left[0,26 \cdot \frac{f_{ctm}}{f_{yk}} \cdot b \cdot d; 0,0013 \cdot b \cdot d \right]$
A _{s,min}	=	11,55 [cm²]
		12,22 [cm ²]
Minde	estbeweł	rung nach EC 1992-2 $A_{s,min} = \frac{M_{ed}}{z \cdot f_{yk}}$
A _{s,min}	=	23,42 [cm ²]
Maxir	nalbewel	arung $A_{s,max} = 0,04 \cdot A_c$
A _{s,max}	=	400,00 [cm ²]

Stabwerksberechnung Überbau

F_{cd}	=	1338,36	[kN]			
F_{sd}	=	1338,36	[kN]			
Nachweis der	Druckst	<u>rebe</u>	σ_{Rd}	$_{max} = -$	$\frac{ F_{cd} }{a \cdot b} \le \alpha \cdot f_{cd}$	
а	=	118,09	[mm]			
b	=	1000,00	[mm]			
$\sigma_{\text{Rd,max}}$	=	11,33	[N/m	m²]		
α f _{cd}	=	1 14,17	[-] [N/m	m²]		
Nachweis						
$\sigma_{\text{Rd},\text{max}}$	=	11,33		≤	14,17	[N/mm²]
<u>Nachweis der</u> $A_{s,erf} = \frac{F_{sa}}{f_{ya}}$	<u>Zugstre</u> 1	be .	$F_{sd} \leq$	$F_{tRd} = I$	$A_s \cdot f_{yd}$	
A _{s,vorh}	=	26,55	[cm²]			
F_{tRd}	=	1270	[kN]			
F _{sd}	=	1338		≤	1270	[kN]

Stabwerksberechnung Unterbau

F_{cd}	=	1187,83	[kN]		
F_{sd}	=	1187,83	[kN]		
<u>Nachweis der</u>	Druckst	<u>rebe</u>	$\left \sigma_{Rd,max}\right = \frac{1}{2}$	$\frac{F_{cd} }{a \cdot b} \le \alpha \cdot f_{cd}$	
а	=	104,81	[mm]		
b	=	1000,00	[mm]		
$\sigma_{\text{Rd,max}}$	=	11,33	[N/mm²]		
lphaf _{cd}	=	1 14,17	[-] [N/mm²]		
Nachweis					
$\sigma_{\text{Rd,max}}$	=	11,33	≤	14,17	[N/mm²]
<u>Nachweis der</u> $A_{s,erf} = \frac{F_{sd}}{f_{yd}}$	Zugstre	<u>be</u>	$F_{sd} \leq F_{tRd}$ =	$= A_s \cdot f_{yd}$	
A _{s,vorh}	=	26,55	[cm ²]		
F_{tRd}	=	1269,78	[kN]		
F _{sd}	=	1188	≤	1270	[kN]

Berechnung der Knoten in der Rahmenecke

Druck-Zug-Zu	ug Knote	$\sigma_{cd} \leq \sigma_{cd}$	Rd,md	ax	
fck	=	30 [N/m	וm²]		
fcd	=	17 [N/m	י. 1m²]		
			-		
maxmimale	Betondr	uckspannung		$\sigma_{Rd,max} = k_3 \cdot$	$v' \cdot f_{cd}$
k ₃	=	0,90 [-]			
			£		
Abminderun	gsbeiwe	rt $v' = 1 - 1$	$\frac{J_{ck}}{250}$	<u>,</u>	
v	=	0,88			
$\sigma_{\rm Rd,max}$	=	13,46 [N/m	nm²]		
Druckstrebe	nbreite	$a = d_{br} \cdot$	sin θ		
	- \				
tan^-1(F _{td,1} /I	⁻ td,2)	0,71 [-]			
θ	=	41 [°]			
ein O	=	0,71			
SINO	=	0,05			
Biegerollend	urchme	sser $d_{br} =$	$3 \cdot \frac{f_y}{f_c}$	$\frac{d_k}{k} \cdot d_s \cdot \sqrt{\frac{d_s}{s_d}}$	
s _d = s _R wenn s	$\geq 2 \cdot s_R$				
s _d	=	5 [cm]			
d _{br}	=	103,12 [cm]			
d _{br,vorh}	=	1,03 [m]			
а	=	67,23 [cm]			
				max{	Fran Fran}
vorhandene	Betondr	uckspannung		$\sigma_{cd} = \frac{mm}{b \cdot d_{hr}}$	$\sin\theta \cos\theta$
-				DI	
F _{td,1}	=	1338,36 [kN]			
F _{td,2}	=	1187,83 [kN]			
F _{cd}	=	1765,06 [kN]			
cosθ	=	0,76			
σ_{cd}	=	2,63	≤	13,46	[N/mm²]

<u>Druck-Dru</u>	ck-Druck	Knoten o	$\sigma_{cd,i} \leq \sigma_{Rd,max}$	x
$\sigma_{Rd,m}$	$ax = k_1 \cdot$	$v' \cdot f_{cd}$		
k ₁	=	1,25 [-]		
Abminder	ungsbeiw	ert $v'=$	$1 - \frac{f_{ck}}{250}$	
v	=	0,90		
$\sigma_{\text{Rd,max}}$	=	15,94 [N/	mm²]	
$\sigma_{cd,i} = 0$	$\frac{F_{cd,i}}{a_i \cdot b}$			
b	=	1000 [mi	n]	
a ₁	=	118,09 [mi	n]	
$F_{cd,1}$	=	1338,36 [kN]	
$\sigma_{cd,2}$	=	11,33	≤	15,94 [N/mm²]
a ₂	=	104,81 [mi	n]	
F _{cd,2}	=	1187,83 [kN]	
$\sigma_{cd,2}$	=	11,33	≤	15,94 [N/mm²]
a ₃	=	672,30 [mi	n]	
F _{cd,3}	=	1765,06 [kN]	
$\sigma_{cd,3}$	=	2,63	≤	15,94 [N/mm²]
Bewehrung in Querrichtung

<u>Materialeigenschaften</u>

\mathbf{f}_{ck}	=	25 [N/mm²]						
f_{yk}	=	550 [N/mm²]						
f _{ctk0,05}	=	1,8 [N/mm²]						
		4 - 1	1						
Υc	=	T'2 [-] 1						
α _{cc}	=		-] 1						
γs	=	1,15 [-]						
f _{cd}	=	14,17 [N/mm²]						
f _{vd}	=	478.26 [N/mm²]						
yu			, 1						
Geometrische Daten									
b	=	1 [m]						
h	=	0,30 [mJ						
Act	=	03[m²]						
C		0,0 []						
σ_{s}	=	240 [N/mm²]						
für Riss	breite w	= 0,2 mm	1	ø	=	1,6 [cm]			
A	$=\frac{0,5}{-1}$	$\cdot A_{ct} \cdot f_{ct}$	_{0,05} · 0,5						
5,7	nın	σ_s							
Δ	-	562 50 [mm ² l						
's,min	_	5 63 [cm²/ml						
		5,05 [
A _{s, vorh}	=	5,65 [cm²/m]	ø	=	12 /20			
$A_{s, max}$	=	7,54 [cm²/m]	Ø	=	12 /15			
Powebr	ung hint	on E0.9/							
Bewenrung ninten 50 %									
A _{s min}	=	2,81 [cm²/m]						
-,		, ι							
A _{s, vorh}	=	2,51 [cm²/m]	Ø	=	8 /20			
A _{s, max}	=	7,54 [cm²/m]	Ø	=	12 /15			

Schubfugennachweis Rucksack nach EC 2

<u>Materialien</u>

C 30/37		Neubau							
C 20/25		Altbau							
BSt 550									
f _{ck}	=	25	[N/mm²]						
f _{ck}	=	20	[N/mm²]						
f _{yk}	=	550	[N/mm²]						
γ _c	=	1,5							
γ _s	=	1,15							
α_{cc}	=	0,85							
<u>Fugenwiderstand</u> $v_{Rdi} = c \cdot f_{ctd} + \mu \cdot \sigma_n + \rho \cdot f_{yd} \cdot (\mu \cdot \sin \alpha + \cos \alpha)$									
С	=	0,40	[-]	raue Oberfläche					
α_{ct}	=	1,00	[-]	C					
f _{ctk,0,05}	=	1,80	[N/mm²]	$f_{ctd} = \alpha_{ct} \cdot \frac{J_{ctk,0,05}}{\gamma}$					
f_{ctd}	=	1,20	[N/mm²]	Υc					
μ	=	0,70	[-]	raue Oberfläche					
σ_n	=	0,00		bei Druck σ_{n} \leq 0,6*f_{cd} ist diese eine Zugo, c mal f_{ctd} 0 setzen					
				Δ					
Verbundbe	ewe	hrungsgrad	$\rho =$	$\frac{n_s}{4}$					
				n_l					
A _s	=	7,54	[cm ²]	Fläche des Betonstahls					
A _i	=	1000,00	[cm²]						
$ ho_{vorh}$	=	0,0075	[-]						
f _{yd}	=	478,26	[N/mm²]						
α	=	90,00	[°]	45°≤ α ≤ 90°					
Bereich 2	-								
v_{Rdi}	=	1,12	[MN/m²]						
Bereich 1	=	0,40	[MN/m²]	ohne Bewehrung					
Bereich 2	=	1,12	[MN/m²]	ø12/15					
Bereich 3	=	1,90	[MN/m²]	ø16/12					
<u>aufnehmba</u>	aufnehmbare Schubkraft $v_{Rdi,max} = 0.5 \cdot f_{cd} \cdot v$								
c			[N] / 2]						
T _{cd}	=	14,17	[N/mm²]						
	1	f_{ck}							
$\nu = 0.6 \cdot \left(1 - \frac{7c\kappa}{250}\right)$									
v	、 =	0.54	[-]						
•	-	0,04							

 $v_{Rdi,max}$ = 3,83 [MN/m²]

 $v_{Rdi} \leq v_{Rdi,max}$

1,04 ≤ 3,825 [MN/m²]

Mindestbewehrung

 $\rho_{min} = 0.20 \cdot \frac{f_{ctm}}{f_{yk}} \ge 0.001$ $f_{ctm} = 2.6 [N/mm^2]$

 ρ_{min} = 0,000945 [-]

A 3 BEWEHRUNGSPLAN

CAD - SYSTEM ABIS® PLAN