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Abstract

Calibration of a Sensory Motor Rhythm (SMR) based Brain-Computer Interface (BCI) is

often found to be tedious and lengthy by naive users. The lack of feedback during training

is assumed to be a major cause. This thesis addressed the issue by utilizing a genera-

tive model entitled Restricted Boltzmann Machine (RBM). We show that it is capable

of extracting representations from logarithmic bandpower features which generalize well

across users. That is to say a pre-trained RBM can be transfered to a new user and,

consequently, feedback-training started immediately.

Although the model was not trained on an individual’s patterns, a mean accuracy

of 73% with a standard-error of 4% was achieved for a two-class problem covering 9

participants in a simulated experiment.

In a subsequent online experiment discriminative fine-tuning of a pre-trained RBM

yielded even significantly better results. 8 of the 10 naive users reached a criterion level

above 70% within a single co-adaptive training-session. The median accuracy achieved

was 84% with a standard-error of 7%. Faller et al. 2012 reached 80 ± 3% in 2-3 sessions

with a comparable co-adaptive system.

In this thesis, the online training lasted for approximately 45 minutes. Feedback was

already presented after a 1 minute setup stage, whose purpose was to estimate initial

statistics and train an online artifact detection system.

Keywords. transfer learning, co-adaptive training, restricted boltzmann machines, arti-

ficial neural networks, online brain computer interface
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Kurzfassung

Das Kalibrieren von Gehirn-Computer Schnittstellen, die auf Modulationen von Oszilla-

tionen basieren, wird von neuen Probanden oft als mühsam und langwierig empfunden. Es

wird angenommen, dass das Fehlen von Feedback beträchtlich dazu beiträgt. Diese Arbeit

adressiert das Problem durch die Verwendung eines generativen Modells mit der Bezeich-

nung Restricted Boltzmann Machine (RBM ). Wir zeigen dass dieses Modell Muster aus

logarithmischen Bandleistungs-Features von Signalen mehrere Benutzer extrahiert, die gut

generalisieren. Das heißt, eine vor-trainierte RBM kann auf neue Benutzer transferiert

und daher auch sofort mit Feedback-Training begonnen werden.

Obwohl das Modell nicht auf Daten eines Individuums trainiert wurde, hat ein

simuliertes Experiment für 2 Klassen basierend auf Daten von 9 Benutzern eine mittlere

Genauigkeit von 73% mit einem Standardfehler von 4% ergeben.

Darüber hinaus konnte in einem nachfolgenden online Experiment gezeigt werden,

dass diskriminatives Adaptieren der vor-trainierten RBM zu einem signifikant besseren

Ergebnis führt. 8 von 10 naiven Probanden erreichten eine Genauigkeit von über 70%

in einer co-adaptiven Trainings-Sitzung. Der Median beträgt 84 ± 7%. In Faller et al.

2012 wurde für ein vergleichbares co-adaptives System ein Median von 80 ± 3% in 2-3

co-adaptiven Trainings-Sitzungen erreicht.

Für diese Arbeit betrug die tatsächliche Trainingszeit circa 45 Minuten pro Proband.

Feedback wurde bereits nach einem 1 minütigen Setup, während dem initiale Statistiken

geschätzt und ein Artefakt-Detektions System trainiert wurde, präsentiert.

Stichwörter. Transfer-Learning, co-adaptives Training, Restricted Boltzmann Machines,

künstliche neuronale Netzwerke, online Gehirn-Computer Schnittstelle
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Breakthroughs in cognitive neuroscience and brain imaging technologies enabled us

with the ability to interface directly with the human brain. This is made possible through

the use of sensors that can monitor physiological processes that occur within the brain

and correspond with certain aspects of intent. In the last decades researchers have used

these technologies to build Brain-Computer Interface (BCI). They are communication

systems that do not depend on the brain’s normal output pathways of peripheral nerves

and muscles. In these systems, users explicitly manipulate their brain activity instead

of using motor movements to produce signals that can be used to control computers or

communication devices [46].

The described systems are often the only means of communication for individuals with

severe motor disabilities such as Amyotrophic Lateral Sclerosis (ALS). [30]. Consequently,

research groups worldwide are working on systems with better performance in terms of

accuracy, convenience, reliability and robustness.

1.1 Background and Related Work

Back in 1924 Dr. Berger discovered the Electroencephalography (EEG). It is defined as

electrical potential, recorded at the scalp, which is caused by physiological processes in

the brain. He was also first to observe different rhythms present in the EEG and their

modulation through closing the eyes for example [8]. Since then there has been increasing

research on the EEG and ways to decode intent.

1
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2 Chapter 1. Introduction

In the 1990s Pfurtscheller et al.[37, 38] as well as Wolpaw et al.[35, 54] worked exten-

sively on methods to measure changes in the EEG during execution and later imagination

of specific movements. Pfurtscheller et al. entitled the observed task-dependent changes in

power of frequency bands Event Related (De-)Synchronization (ERDS) [38]. Their work

yielded the first so called Sensory Motor Rhythm (SMR) BCI s [39]. Since then scientists

put effort in improving them to get the technology out of the lab-environment to real-life

situations. The common aim lead to increased collaboration among the labs and a general

definition of the parts a BCI consists of [53]. Their interplay is depicted in Figure 1.1.

The Signal Acquisition block deals with the recording of brain signals such as the EEG .

Signal processing tools are employed to extract useful information in the Feature Extrac-

tion stage. In the Feature Translation block they are translated into a control signal for

the Application, which provides Feedback to the User.

B
ra

in
 s

ign
al
s

Signal Acquisition Feature Extraction Feature Translation

Feedback

Application

Figure 1.1: Building blocks of a BCI system. All components starting from the user, who
modulates brain signals, up to the application, which provides feedback, form a closed loop system.
Screenshot of the application taken from the brainrunners game designed for [41].

Still, there are several hurdles to master. The following gives a selection of current

limitations formulated in [1]:

1. Bandwidth: The number of reliably distinguishable classes for non-invasive BCIs

based on brain oscillations is low (2-4) and varies between subjects and time [21].

2. BCI inefficiency: There is a fraction of up to 30 % of users for which the necessary

ERDS patterns cannot be detected within EEG [2, 50]. Scientists have not identified

all reasons for this phenomenon yet.

3. Training: Brain-oscillations based BCI s initially require recording sessions during

which the participant does not get any feedback. In other words, the user is unaware

Reference:
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Wolpaw, Jonathan R and Birbaumer, Niels and McFarland, Dennis J and Pfurtscheller, Gert and Vaughan, Theresa M (2002)
Brain-computer interfaces for communication and control.
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Riener, Robert and Seward, Linda J (2014)
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Allison, Brendan Z and Dunne, Stephen and Leeb, Robert and Millán, José Del R and Nijholt, Anton (2012)
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Reference:

Grosse-Wentrup, Moritz and Schölkopf, Bernhard (2013)
A Review of Performance Variations in SMR-Based Brainâ Computer Interfaces (BCIs)
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of how well he/she is performing and might lose focus and attention. According to

[49] this contributes also to the BCI inefficiency issue.

In recent years there has been extensive research on increasing the bandwidth. Algo-

rithms, intended for two class problems, such as Common Spatial Patterns (CSP) were

extended to multi-class versions [20] and numerous classifiers, inherently supporting mul-

tiple classes, were applied [34, 45].

Other researchers focus on the exploration of mental tasks alternative or additional

to motor imagery [17, 19] to tackle the first and second challenge. The BCI inefficiency

itself is attracting rising attention. Scientists try to find predictors for BCI performance

to identify possible reasons [13, 22].

The community puts also effort in pushing the training time down. It’s only lately

that impressive results were achieved with co-adaptive systems by Faller et al. [18]. They

proposed an adaptive system which employs only very basic feature extraction methods.

The key idea was to present feedback already after minutes of auto-calibration. The result:

10 out of 12 naive participants were able to operate a 2-class system above 70 % accuracy

after 2 to 3 training-session.

Another very recent approach is to transfer classifiers, learned on data recorded from

multiple users, to a new user. It has been successfully applied to an Event-Related Po-

tential (ERP) based BCI [28] and also to some extent to SMR based BCIs [51]. In [51]

Vidaurre et al. argue that this approach could even reduce BCI inefficiency, since some

users have difficulty in performing well in the absence of feedback. Their reported results

support this view since 5 out of 10 users who were unable to control a BCI before exceeded

the 70 % threshold within a single training-session.

This thesis aims to exploit a generative classifier to extract representations of a mixture

of users. It is then transfered and fine-tuned on an individual in a co-adaptive training-

session. The experimental results, discussed in detail below, match the findings of Faller

et al. [18] and Vidaurre et al. [51] suggesting that immediate feedback and continu-

ous adaption not only shortens training-time but also contributes to a reduction of BCI

inefficiency. Furthermore, the transfer learning approach enables researchers to exploit

previously recorded data and might, therefore, lever up the model complexities as well as

the information transfer rate of BCI s.

To conclude, the benefits of transfer learning across users are: (1) One is able to utilize

much more data for training the classifier. Consequently, more complex models can be

trained without risking severe overfitting. (2) The training time during which the user

does not receive feedback can be skipped because the pre-trained system is used initially.

(3) Adapting the classifier to a new individual allows to either stay close to the prior1 if

the data is hard to fit or change to a specific model if the new data is good to fit.

1Model learned from other users.
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4 Chapter 1. Introduction

1.2 Structure of the Thesis

The remainder of this thesis is divided into five chapters. The first 3 present studies

whose results were prerequisites for the design of the online system discussed in detail in

chapter 5.

The next chapter answers the question whether the generative Restricted Boltzmann

Machine (RBM) introduced in section 1.4.4 is able to perform as well as two standard

machine learning approaches used in BCI-literature when it is trained only on an individual

user’s data2. This is assessed with a publicly available dataset of recorded EEG signals of

9 subjects. As expected the major finding was that the discriminative models are superior.

In chapter 3 the concept of transfer learning is exploited to enlarge the data available

for training. Based on the same dataset the question which classifier generalizes best on

data of a previously unseen user is answered. Here, the generative training-criterion of the

RBM yielded best results.

Chapter 4 questioned whether the weights and biases learned by the RBM in transfer

mode are better seeds than random ones. Consequently, the RBM of chapter 3 was dis-

criminatively fine-tuned to the individual users data as described in section 1.4.5. Using

the RBM ’s weights and biases yielded higher mean performance and less variation across

users.

All findings of the offline studies were considered during the development of the online,

adaptive BCI . Its underlying paradigm, methods as well as results of a co-adaptive training

study covering 12 participants are summarized in chapter 5. The very last chapter is

intended to present general conclusions and potential future work.

2Only dozens of observations available.
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1.3 Contributions of the Thesis

Before presenting the basic concepts of RBM s in the next section, the major contributions

of this thesis to the field of non-invasive BCI s are highlighted.

Firstly, in [4] the applicability of RBM s on detecting oscillatory EEG components was

shown in an offline study. RBM s are known to require datasets with many observations

to achieve superior generalization than discriminative models. However, typically there

are only dozens of trials available for a single user [33]. In [4] they tried to overcome this

issue through extraction of multiple strongly correlated feature vectors of a single trial

with some success. Here the idea of transfer learning is exploited to boost the pool of

available training-data.

Secondly, the relevant baseline power of spontaneous EEG varies within and between

subjects and is believed to be modulated through activity of other non-task relevant net-

works within the brain [21]. Here an adaptive normalization technique in feature space is

employed to handle this issue and standardize the data.

Thirdly, based on findings of simulations on a publicly available dataset, an adaptive

online BCI was developed. Its aim is to provide feedback from the first trial onwards. The

feedback initially originates from a pre-trained RBM which is then adapted to the user’s

specific patterns. As a consequence the training can be immediately conducted within the

closed loop system displayed in Figure 1.1.

Lastly, during the course of the thesis numerous extensions to the RBM -toolbox cre-

ated by David Balderas were implemented. Among others they comprise of algorithms

for obtaining a learning signal such as Persistent Contrastive Divergence (PCD) [48] and

Parallel Tempering (PT) [15], extensions for Gaussian-Bernoulli Restricted Boltzmann

Machine (GBRBM)s [14] and hybrid optimization criteria [7, 32].
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1.4 Restricted Boltzmann Machines

1.4.1 Motivation

With regard to [11] pattern recognition methods can be divided into generative and dis-

criminative models. The former learn each class’ distribution and can be used to choose

the most likely for new observations e.g via Bayes’ rule. The latter do discrimination di-

rectly through maximizing the posterior3 of all samples in the dataset. As a consequence,

discriminative models require labeled data.

Many algorithms applied to EEG data are of discriminative nature [33]. An intuitive

reason is that datasets are typically small (dozens of trials per subject) [33]. Therefore,

estimates for the more complex joint distribution tend to be poorer than direct ones of

the posterior. Also, with regard to [11], in practice, generalization of generative models is

often found to be worse than for discriminative ones.

However, in recent years generative models – also based on Restricted Boltzmann

Machines (RBMs)– showed to outperform discriminative ones in other research fields e.g.

object [25], [31] and speech recognition [24]. Their key advantages are that they can learn

from unlabeled data as well as make use of internal representations through learning the

joint distribution.

The major application is found to be feature extraction for supervised learning al-

gorithms [25], [27]. This is typically done through training of a RBM on a dataset.

Subsequently, the learned weights are applied as seeds for an Artificial Neural Network

(ANN), which is fine-tuned through backpropagation learning with a small learning rate.

1.4.2 Definition

RBM s as a useful machine learning tool were first introduced by Hinton et al. in 2002

[26]. They are defined as a two layer neural network with stochastic activation functions,

binary states, and symmetric weight connections. The two layers form a bipartite graph

of visible v = (v1, . . . , vi, . . . )
T and hidden h = (h1, . . . , hj , . . . )

T units – see Figure 1.2.

v v
i

h h
j

wij

Figure 1.2: Visualization of a RBM consisting of a visible layer v and a hidden layer h. Note
that there are no connections within the same layer.

3Conditional distribution of labels given the observations.
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The joint probability of the configuration being active p(h = 1,v = 1) is defined by

the Boltzmann distribution:

p(h,v; Θ) =
e−E(v,h;Θ)∑
v̂,ĥ e

−E(v̂,ĥ;Θ)
(1.1)

Which is itself defined by an energy function with parameters Θ = (W,b,a) consisting of

the weight matrix W, visible b and hidden biases a for binary units.

E(v,h; Θ) = −hTWv − bTv − aTh (1.2)

The bipartite structure of the RBM results in conditionally independent units of the

same layer. This enables sampling of the entire layer at once. The energy function of

binary units in visible and hidden layer yields

p(hj = 1|v) = σ(aj +
∑
i

viwij) (1.3)

p(vi = 1|h) = σ(bi +
∑
j

hj wij) (1.4)

with activation function σ(·) being the logistic function. The state or output of unit hj
or vi is either 0 or 1 and is sampled from a Bernoulli distribution based on these conditional

probabilities.

Since the hidden variables are not observed, the generative objective function is the

model’s marginal distribution pmodel(v) which is fitted to the data’s pdata(v).

pmodel(v; Θ) =
∑
h

p(h,v; Θ) =

∑
h e
−E(v,h;Θ)∑

v̂,ĥ e
−E(v̂,ĥ;Θ)

∼ pdata(v) (1.5)

This is usually done by optimizing a function called Contrastive Divergence (CD) –

not the likelihood directly because it would be computationally intractable [26]. The basic

learning scheme is to compute statistics of the model’s states when the visible units are

clamped to training-data and subtract so called negative statistics calculated from 1 step

reconstructions, derived though Gibbs Sampling from the conditional probabilities. The

learning process is elaborated in detail in [26].

Reference:

Hinton, Geoffrey E (2002)
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1.4.3 Gaussian-Bernoulli Restricted Boltzmann Machines

The original RBM consists of neurons which have binary states. That is, each neuron’s

output is either 0 or 1. However, in nature real valued data, like EEG , is dominant.

Researchers have worked extensively on expanding the framework to continuous data

[14, 29, 52].

This lead to GBRBM s which include Gaussian distributed visible units with diagonal

covariance matrix and binary hidden units. They are defined via the following energy

function:

E(v,h; Θ) =
∑
i

(vi − bi)2

2σ2
i

−
∑
i

∑
j

wij hj
vi
σ2
i

−
∑
j

aj hj (1.6)

Under the modified energy function, new conditional probabilities of visible and hidden

neurons can be derived:

p(hj = 1|v) = σ(aj +
∑
i

vi
σ2
i

wij) (1.7)

p(vi = v|h) = N (v | bi +
∑
j

hj wij ; σ2
i ) (1.8)

With N (·|µ, σ2) being the Gaussian probability density function with mean µ and

variance σ2. The conditional probability of the visibles tells us that the model parameters

(b and W) can be utilized to learn the mean, whereas the variance is solely used to model

observation noise. In literature it is recommended to normalize the variance of each feature

to 1.0 [23].

Based on the work of [4] and a comparison of standard deviations of the features, we

concluded that observed small differences4 in noise level can be neglected. Hence, we

followed the recommendation for our experiments.

GBRBM s can be trained similarly to RBM s. The update rules for gradient descent of

the likelihood change slightly [14]. Due to the intractability problem the gradient of the

likelihood is also approximated via CD learning.

4The variation changes mainly across sessions and subjects and might, therefore, mostly be caused
through electrode mounting.

Reference:

 ()


Reference:

Hinton, Geoffrey (2010)
A practical guide to training restricted Boltzmann machines

Reference:

Balderas, David and Zander, T. and Bachl, F. and Faller, J. and Neuper, Christa and Scherer, Reinhold (2011)
Restricted Boltzmann Machines as Useful Tool for Detecting Oscillatory EEG Components

Reference:

Cho, KyungHyun (2011)
Improved learning algorithms for restricted Boltzmann machines



1.4. Restricted Boltzmann Machines 9

1.4.4 RBMs for discrimination

So far we have discussed RBM s as methods for modeling distributions of binary and real

valued data. However, they can also be employed for classification.

There are three straight forward ways [23]. (1) the output of the hidden neurons can

be used as features for some other standard discriminative method. (2) For each class a

separate RBM is trained. A test vector is assigned to the class whose RBM computes

highest probability under the model. (3) A single RBM is used to train the joint density

model. This requires a combination of class labels and feature vectors as visible units.

The structure is depicted in Figure 1.3.

Figure 1.3: A self-contained GBRBM for discrimination between 2 classes. The model consists
of binary neurons in the hidden layer h, Gaussian for the features x and a softmax unit for the
labels y.

With reference to the findings of [31] and results of the offline EEG study conducted

in [4], we decided to use the latter approach. The energy function of the model is

E(x,y,h; Θ) =
∑
i

(xi − bi)2

2σ2
i

−
∑
i

∑
j

xi
σ2
i

wij hj −
∑
j

aj hj −
∑
k

dk yk −
∑
k

∑
j

dk ukj hj

(1.9)

where the parameters Θ = (W,b,a,d,U) are the weight matrix W, visible b, hidden

a and class bias d as well as the class weight matrix U. In this setup the class labels are

one-out-of-K encoded. This is, the vector y = (1y=i)
K
i=1 consists of zeros except a single

one at the label y. This energy function yields the following conditional probabilities:

p(hj = 1|x, y) = σ(aj + ujy +
∑
i

vi
σ2
i

wij) (1.10)

p(xi = x|h) = N (x | bi +
∑
j

hj wij ; σ2
i ) (1.11)

p(y|h) =
edy+

∑
j ujy hj∑

y∗ e
dy∗+

∑
j ujy∗ hj

(1.12)

Because of the conditional independence of the visibles given the hidden states, the

equation for the feature vector x is similar to 1.8. Gibbs Sampling is run on these equations
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to create a learning signal in a similar fashion to the models elaborated before.

1.4.5 Discriminative Fine-Tuning

As a generative model, RBM s are suitable for extracting useful representations of the

data. These representations are usually also of discriminative nature. To enforce this, the

labels can be incorporated into the visible layer, as described before.

In literature, however, even better results in terms of classification accuracy are re-

ported when the learned weights are fine-tuned with a discriminative objective function

[27, 29, 31].

An intuitive way is to employ the extracted weights and biases as seeds5 for an ANN .

The pendant to the model displayed in Figure 1.3 is shown in Figure 1.4.

Figure 1.4: A shallow ANN with real valued inputs x, one hidden layer h with sigmoid activation
functions and a softmax output y.

As discriminative objective function the cross-entroy error is minimized. Similarly to

[27] the method of conjugate gradient descent with Polak-Ribière updates [40] is applied

to standard backpropagation learning [10]. One advantage of the conjugate method over

steepest descent is that gradients of previous iterations are incorporated into the current

update step. Consequently, it is not prone to criss-cross patterns in valleys.

Instead of a line search the Armijo rule for sufficient decrease is used to determine the

step size in each iteration [3]. The key idea is that for a larger step towards the current

iteration’s descend direction6 the residual error of the ANN must decrease sufficiently.

If this is not the case the step size is reduced in exponentially decaying steps until the

criterion is fulfilled or convergence.

5Initial weights and biases.
6The descend direction is computed via the conjugate gradient method.

Reference:

 ()


Reference:

Hinton, Geoffrey E and Salakhutdinov, Ruslin (2006)
Reducing the dimensionality of data with neural networks

Reference:

Polak, Elijah and Ribiere, Gerard (1969)
Note sur la convergence de méthodes de directions conjuguées

Reference:

Bishop, C.M. (2006)
Pattern Recognition and Machine Learning

Reference:

Armijo, Larry (1966)
Minimization of functions having Lipschitz continuous first partial derivatives



2
Model evaluation: Standard Mode

2.1 Introduction

The goal of this experiment was to compare RBM s to standard machine learning algo-

rithms in a setup for which little (∼ 100 trials/subject) training-data is available. The

mode is entitled standard because for each participant an individual classifier is learned.

Which is the standard way to set up a brain oscillations based BCI [33].

Shrinkage Linear Discriminant Analysis (sLDA) and an ANN were chosen as reference

classifiers. LDA and its regularized version through shrinkage, on the one hand, are wide

spread in the BCI community [4, 12, 45]. Moreover, they serve as a kind of gold standard

to test new methods. The ANN model for pattern recognition on the other hand is

very similar to the RBM for classification. The key difference is in how weights and

biases are trained. The former tries to minimize the classification error and is therefore

a discriminative method. Whereas the latter aims to learn the distribution of the visible

units1 and can therefore be called a generative method. The distinction in objective

function but similarity in model complexity2 makes the ANN model an ideal candidate for

these investigations. The differences are elaborated based on previously recorded data. To

maintain comparability to actual online experiments, the final signal processing methods

were designed to be causal.

2.2 Methods

2.2.1 Dataset

We decided to use dataset 2a of BCI Competition IV for the following reasons. (1) A

number of 72 trials per class and session is moderate to high. (2) It contains data of 9

participants with different performance levels. This variety is also beneficial for the transfer

1Observations x and labels y in this case.
2If the same number of hidden units with sigmoid activation functions are used.

11
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learning approach discussed later. (3) The dataset is publicly available and therefore easy

to retrieve.

The cue-based paradigm is depicted in Figure 2.1. It defines four motor imagery tasks,

namely imagination of the movement of the left hand, right hand, both feet and tongue.

The participants were instructed to start the imagery process as soon as they realized the

target class indicated by a visual cue.

Figure 2.1: Timing scheme of the cue-based paradigm. Image taken from [47]. A trial starts
with a green fixation cross at the center of a black screen. At second 2 a cue indicates the mental
task. A trial ends when the green cross disappears at second 6. The break in between trials lasts
for 1.5 to 2.5 seconds.

For each study-member 2 sessions were recorded on different days. Every session

consists of 6 runs with short breaks in between. One run in particular is comprised of 12

trials per class, yielding 72 trials per class per session.

In addition, the experimental protocol includes around 5 minutes of recordings to

estimate the influence of Electrooculography (EOG) – see Figure 2.2 for the timing of one

session.

Figure 2.2: Sequence of recording blocks during one session. Image taken from [47]. First, 3
short blocks of about 5 minutes in total were recorded for EOG estimation. Subsequently, 6 runs
interrupted by short breaks were captured.

22 Ag/AgCl electrodes were used to record EEG around central and parietal areas

according to the international 10-20 system. The signals were sampled at a rate of 250 Hz

and band pass filtered between 0.5 and 100 Hz. A notch filter at 50 Hz was employed to

reduce line noise. Moreover, an expert visually inspected all data and annotated trials

which were corrupted by artifacts. Further details, such as the exact electrode positions,

are listed in [47].
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Without loss of generality we decided to use 2 classes out of the 4 possible. The three

major arguments in favor of this decision are. (1) We are interested in elaborating the

basic principles. (2) An extension of RBM s to support multiple classes is straight forward.

(3) Most importantly, RBM s are usually applied to datasets comprised of thousands up

to even billions of observations. As this is certainly not the case here, we try to keep the

number of classes3 and features low4.

After initial experiments, left hand and both feet motor imagery were chosen because

they showed highest classification accuracy.

2.2.2 Feature Extraction

Out of the 22 channels available we used 13 namely FC3, FCz, FC4, C5, C3, C1, Cz,

C2, C4, C6, CP3, CPz and CP4. As spatial filtering technique Laplacian derivations

around C3, Cz and C4 were applied. They extract local activations, which match with

the associated areas of hands and feet on the motor and somato-sensory humunculus.

Simultaneously, the noise – especially inherent on all channels – is suppressed [55]. After

this process 3 signals remained.

They were, subsequently, filtered by 2 causal Infinite Impulse Response (IIR) bandpass

filters. The Butterworth filter-type was chosen because it does not show ripples in pass

and stop band. The order was set to be minimum to fulfill the specifications listed in

Table 2.1. As filter implementation a concatenation of second order structures (SOS) was

chosen. The MATLAB (Mathworks Inc., Natick, USA) provided functions fdesign and

design of the DSP-Toolbox were applied to match exactly the passband specifications.

For numerical stability reasons the coefficients were scaled to lie in the interval [−1, 1].

filter fstop1 fpass1 fpass2 fstop2 Astop Apass
- Hz Hz Hz Hz dB dB

1 6 8 15 17 20 0.5
2 14 16 30 35 20 0.5

Table 2.1: Specifications of stop-band edge frequencies fstop and associated minimum attenuation
Astop as well as pass-band edge frequencies fpass and maximum attenuation Apass.

For all bands and trials a 2 s long window starting from second 3.0 and ending at second

5.0 in Figure 2.1 was employed to compute logarithmic bandpower features. Therefore,

each filtered signal within the time-window was squared and summed. The base-10 loga-

rithm of the sum resulted in the final feature-value.

All in all, this method yields 6 features as well as 1 feature-vector/observation per trial.

Moreover, the feature extraction chain itself does only depend on the relevant electrode

positions. Thus, it can be readily applied across subjects which is done in the next chapter.

3The applied RBM has to learn the joint density of classes and observations.
4In the setup depicted in Figure 1.3 the labels are also features.
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2.2.3 Normalization

As already pointed out in chapter 1, the non-stationarity of EEG has a severe impact

on BCI performance. One method to overcome this issue is adaptive normalization of

the signals. At first the question where to estimate the statistics arises? In an initial

experiment we compared standardization of raw, spatially filtered signals and features.

The results were in favor of normalizing the features. From a theoretical perspective one

can argue that the feature extraction steps reduce the signal to noise ratio. Thus, when

normalization is done at last the impact of noise on the estimates of mean and standard-

deviation is minimal.

The next question was to find a proper time scale for adaptation. Therefore, two

time spans were chosen. Either all trials of the selected classes of one session, which

took about 30 minutes of recording time, or one run, lasting approximately 4 minutes,

were utilized to compute mean and standard-deviation per feature. The session’s/run’s

associated observations where then standardized to have zero-mean and unit-variance.

As this approach is clearly non-causal, exponentially weighted estimates for mean

µ and standard-deviation σ were implemented to retrieve results for simulated online

experiments. The estimated mean of trial k and feature i is

µ̂k,i = λ µ̂k−1,i + (1− λ)xk,i (2.1)

with forgetting factor λ and the trial’s feature vector xk. Along, the standard devia-

tions’ estimates are given by

σ̂k,i =
√
λ σ̂2

k−1,i + (1− λ) (xk,i − µ̂k,i)2 (2.2)

For the sake of simplicity the same forgetting factor λ was applied for all estimates. The

following theoretical considerations help to determine suitable values for λ. Equation 2.1

can be transformed to5:

µ̂k,i = (1− λ)

∞∑
j=0

λj xk−j,i (2.3)

The sum of the last N observations’ weights defines a truncated geometric series for λ ∈
(0, 1) an has therefore a closed form solution:

(1− λ)

N−1∑
j=0

λj = 1− λN !
= p (2.4)

Since the sum of the weights of all observations is 1.0, this equation expresses the last N

weights’ fraction p. For given N and p the desired weighting factor is

5This holds also for the variance’s estimates.
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λ = N
√

1− p (2.5)

Besides λ the initial estimates are also crucial. This issue was addressed by computing

feature vectors with data of the EOG estimation blocks – see Figure 2.2. In particular,

the first 1 minute block with eyes open condition was exploited, since the subjects were

instructed to look at the center of the screen. This fits best to the motor imagery phase

during a trial. The block’s mean and standard-deviation per feature were applied as initial

estimates.

2.2.4 Data Partitioning

The standardized data are then separated into training and test set according to Figure 2.3.

That is, the algorithms are evaluated on each subject individually. They are trained on

the first session and tested on the second.

Figure 2.3: The training-set consists of participant i’s data of the first session (highlighted green)
while the test-set is comprised of all runs of the second session (highlighted red).

2.2.5 Hyper-Parameter Estimation

sLDA The optimal regularization parameter can be computed analytically. Hence, this

method can be applied to the dataset right away. For details see [12].

RBM During all subsequently presented experiments the architecture was fixed to a

single layer double-entry RBM depicted in Figure 1.3. The model’s hyper-parameters

(initial weights, biases, momentums, ...) were chosen with reference to guidelines published

by Bengio and Hinton [5, 23].

The parameters which all subsequent experiments have in common are CD with 1 step

of Gibbs-Sampling as generative training algorithm. The size of a mini-batch was set to
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cover 16 observations. The initial weights were drawn from a normal distribution6 with

parameters N (0, 0.52) for Softmax-Binary and Gaussian-Binary connections, while the

biases were set to 0. On all weights and hidden bias updates a L2 regularization term of

10−3 , penalizing large values, was imposed. A momentum, to speed up gradient descent,

was set to 0.5 first and linearly increased to 0.9, whereas with regard to [23] the learning

rates were decreased to half their initial values over the course of the learning-process.

The remaining (hyper-)parameters were determined using a grid search over a range

of possible values. Details see section A.1 in the appendix. For this experiment the initial

learning rate of weights W was set to 10−3 and for class weights U to 10−2 respectively.

The number of hidden units h was found to be 50. The epochs, standing for how often

the algorithm iterates over the entire training-set, were set to 500. Every feature vector’s

association to a mini-batch was randomly selected during an epoch.

ANN The model was determined through unrolling the above described RBM into a

directed graph as displayed in Figure 1.4. The implementation employs conjugate gradient

descent introduced in chapter 1. To ease comparability, the aim was to change as few

hyper-parameters as possible.

Consequently, the initial weights and biases, number of hidden units, mini-batch size

and L2 regularization were the same. The learning rate was also annealed towards half

the initial value. In each epoch the current value was used as starting step-size for the

Armijo rule. The rule’s other parameters were set to common values in literature; β = 0.5,

σ = 10−3 and n = 7. Solely, the number of epochs and initial learning rate were optimized

similarly to the RBM using the same range of values. It yielded 100 iterations and

λ = 10−2 respectively.

2.2.6 Performance Measure

There are many criteria for comparing classification performance. The most common in

BCI research is the observed accuracy p̂. However, for this work the choice fell on Cohen’s

Kappa [16] because it also incorporates the off-diagonal elements of the confusion matrix.

They are utilized to calculate the expected accuracy of random agreement pe between

targets and model assigned labels. Kappa is defined as the following ratio

κ̂ =
p̂− pe
1− pe

(2.6)

which can lie within the range [−1.0, 1.0]. 1.0 stands for perfect agreement and −1.0

for total disagreement respectively. A value of 0.0 indicates random agreement. Since the

number of available trials for one subject was limited, the two-sided confidence interval

6The variance was determined empirically so that initial conditional probabilities of the hidden units
were around 0.5. In this regime the sigmoid activation is not saturated, which speeds up initial learning.

Reference:

Hinton, Geoffrey (2010)
A practical guide to training restricted Boltzmann machines

Reference:

Cohen, Jacob (1960)
A coefficient of agreement for nominal scales
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for chance level was calculated applying the method discussed in [9]. The interval’s limits

are

κu,l =
p̂− pe
1− pe

± z1−α
2

√
p̂(1− p̂)

N · (1− pe)2
(2.7)

where z1−α
2

is the 1− α
2 quantile of the standard-normal distribution. For an unbiased

test-set7 the expected level of chance is 0.5, which is also the expected accuracy of a

random classifier p̂. The 95 % one-sided confidence interval’s limit are then κu,l = ±0.16

for N = 2 · 72 = 144 observations per session. That is, the practical level of chance lies in

the interval [0.16,−0.16] with a probability of 95%.

2.3 Results and Discussion Normalization-Methods

For exponential weighted moving average normalization the initial estimates are impor-

tant. Therefore, the difference in first and second order statistics between the first run

and the block with eyes open condition of the same session was calculated in feature

space. Figure 2.4 depicts boxplots across subjects, sessions and features for a selection of

time-spans. Each takes the samples from the beginning of the eyes open block until the

time-stamp displayed on the x-axis into account.

From Figure 2.4a follows that the variance of estimated means across the factors par-

ticipant, session and feature is quite high. Additionally, the chance that the estimate is

biased is high i.e. the median of µopen is larger than µrun1. The estimation time itself has

little influence.

On the contrary, the effect on the standard-deviation, shown in Figure 2.4a, exhibits

a trend. One can observe improvement until a window length of 30 seconds, which covers

15 consecutive feature vectors8 for each estimate.

Altogether, for longer windows the improvement of the standard-deviation can be

neglected, while the variance of mean estimates tends to increase. As a trade-off a 20 s

long window was selected.

Table 2.2 lists kappa values for a sLDA classifier trained on the data of the first ses-

sion and evaluated on the second. The table compares the presented methods versus no

standardization at all. sLDA was chosen at this early stage, since there were no hyper

parameters to identify.

The results point out that normalizing the features offline improves classification per-

formance across sessions for almost every individual in the group. Moreover, standardizing

run-wise yields a 0.01 larger Kappa value than session-wise. In Figure 2.5 the course of

raw feature vectors across runs and sessions for study-member 7 is displayed. One can see

that the statistics vary not only across but also during sessions.

7The amount of observations of both classes are similar.
8A 2 s long window is used to estimate band power.

Reference:

Billinger, Martin and Daly, Ian and Kaiser, Vera and Jin, Jing and Allison, Brendan Z and Müller-Putz, Gernot R and Brunner, Clemens (2013)
Is it significant? Guidelines for reporting BCI performance
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Consequently, the adaptive method’s forgetting factor λ was chosen such that the last

run’s trials, which are 24, possess 90% of the weights. Putting this into equation 2.5 yields

a value of 0.90.

On the one hand, the adaptive, causal approach shows better overall kappa values

than no normalization. Participants 3, 6 and 7 exhibit even considerable improvement.

On the other hand, it can not perform as well as the non-causal methods. Because of that

succeeding simulated online experiments used acausal run normalization for the training-

set and the causal adaptive method for the test-set.
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Figure 2.4: Boxplots of the difference between a session’s first run (run1) and the preceding block
with eyes open condition (open) over all subjects, sessions and features. The blue box covers 50
percent of the values, while the red line within the box indicates the median. A red cross highlights
outliers. Some are not displayed due to better visualization of the boxes. The whiskers end at the
most extreme data point or 1.5 times the upper or lower bound of the box. This would cover 99%
of normal distributed data.

normal- participant
overall

ization 1 2 3 4 5 6 7 8 9

no 0.87 0.65 0.57 0.39 0.09 0.42 0.76 0.50 0.86 0.57±0.25
session† 0.90 0.65 0.79 0.42 0.04 0.60 0.93 0.52 0.86 0.63±0.28
run† 0.94 0.61 0.81 0.41 0.09 0.59 0.94 0.52 0.91 0.64±0.29
adaptive 0.86 0.59 0.73 0.37 0.11 0.55 0.90 0.48 0.78 0.60±0.25

Table 2.2: Kappa values of the test-set for an sLDA classifier learned on session 1 and evaluated
on session 2. The normalization techniques applied are: no for no standardization, session, run
and adaptive as described above. The overall column summarizes mean and standard-deviation
across participants.
† Non-causal methods.
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Figure 2.5: Boxplots of 2 selected features for all observations of subject 7. They illustrate the
change during as well as across sessions. Every boxplot summarizes the statistics of a single run.

2.4 Results

After fixing the normalization method and its parameters, the 3 models were evaluated.

The obtained Kappa values are presented in Table 2.3. sLDA is a deterministic method.

Hence, repeats result in the same value. Whereas, ANN s and RBM s depend on random

initial weights. Moreover, the RBM ’s units are stochastic by nature. To estimate the

variance introduced, the experiments were repeated 64 times for both methods. Com-

plementary, the mean Kappa values together with their standard-error are depicted in

Figure 2.6.

classifier
participant

overall
1 2 3 4 5 6 7 8 9

sLDA 0.88 0.58 0.78 0.44 0.03 0.58 0.89 0.53 0.89 0.62±0.28

ANN
µ 0.84 0.61 0.78 0.36 0.07 0.61 0.90 0.49 0.88 0.62±0.28
σ 0.02 0.01 0.01 0.03 0.05 0.02 0.01 0.02 0.01 0.02±0.01

RBM
µ 0.80 0.59 0.64 0.38 0.14 0.51 0.85 0.44 0.76 0.57±0.23
σ 0.02 0.04 0.03 0.09 0.04 0.04 0.02 0.05 0.02 0.04±0.02

Table 2.3: Comparison of classifiers applied to the two class problem standard-mode. Since ANNs
and RBMs started with random weights and RBMs are stochastic by nature, their mean Kappa
value µ and its standard-deviation σ were computed based on 64 repetitions. The last column
states mean and standard-deviation overall participants.

As expected, the combination of run and adaptive standardization methods slightly

improved the results by 0.02 for sLDA – see Table 2.2 versus 2.3. It is closely followed
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Figure 2.6: Visualization of the mean Kappa values across participants presented in Table 2.3.
The bars indicate the standard-error of the mean for N = 64 repeats. The solid black line stands
for the practical level of chance.

by the ANN , which produces very similar results for all members of the population –

see Figure 2.6. Both methods, however, outperform the RBM . Its mean of 0.57 across

participants is smallest. A paired Wilcoxon signed rank test resulted in a p-value p =

0.1484 (Bonferrioni corrected) for the difference between Kappa values of ANN and RBM.

2.5 Discussion

During this study we investigated the competitiveness of the RBM model in a typical BCI

setup with few trials. Based on a participant’s recordings 6 log-bandpower features were

computed, normalized and session-wise split into training- and test-set.

The first goal was to find a causal normalization procedure which improves inter-session

classification performance. Theoretical considerations and initial experiments favored nor-

malization in feature space. Thereupon, a suitable time-span for first and second order

statistics estimation was assessed. The results listed in Table 2.2 and depicted in Fig-

ure 2.5 indicate that standardizing run-wise seems to be a good trade-off between accurate

estimates and keeping track of changes.

Still the adaptive approach does not perform as well. We assume that a major part

of the performance loss is caused due to the biased initial estimates – see Figure 2.4a.

The bias itself might be created due to a different mental state since it can be observed

across all participants, sessions and features. Because its sign is negative we can infer that

on average the power in the covered frequency bands (α and β) was lower during motor
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imagery. I.e. the participants were more engaged.

The second goal pursued was assessing whether the RBM -model is competitive in this

scenario. The applicability to successfully classify SMR patterns was already shown in

[4]. They derived multiple correlated feature vectors of a single trial to boost the dataset.

Here, we did not consider this method, since we wanted to compare the effects if the

training-set is little (= dozens of trials).

In Table 2.3 and Figure 2.6 one can clearly see that the model’s optimizing a discrim-

inative criterion achieve higher Kappa values. Moreover, the ANN and RBM share the

same model complexity and use similar L2 regularization. Nevertheless, the RBM per-

forms worse9. We reason that the limited observations do not suffice the RBM to learn the

real distribution underlying the data accurately enough. With reference to [11], generative

models are only competitive or superior to discriminative ones if they achieve exactly this.

Another way of boosting the training-set – transfer-learning – is presented and applied in

the next chapter. Since the feature extraction methods do not change the results of both

approaches can be compared.

Lastly, participant 5’s Kappa values, presented in Figure 2.6, of sLDA and ANN are

within the 95% confidence interval of chance level, while the RBM ’s value is close to

its border. One could therefore argue that the user would perform at chance level. To

find out whether there is a task relevant change in activity ERDS -maps for both sessions

and classes were computed. They are displayed in Figure A.1 in the appendix and show

significant change in alpha- and beta-band of C3. One can also see that the Event-Related

Desynchronization (ERD) is more pronounced in the second session. For that reason we

decided to use the recordings of participant 5 also for training in subsequent chapters.

9Based on the trend displayed in Figure 2.6 the difference might turn significant if more participants
would be evaluated.

Reference:

Balderas, David and Zander, T. and Bachl, F. and Faller, J. and Neuper, Christa and Scherer, Reinhold (2011)
Restricted Boltzmann Machines as Useful Tool for Detecting Oscillatory EEG Components

Reference:

Bishop, C.M. and Lasserre, Julia (2007)
Generative or discriminative? getting the best of both worlds





3
Model evaluation: Transfer Mode

3.1 Introduction

The findings of the previous chapter point out that for limited data discriminative models

are superior to the RBM . Here, we boosted the data available for training by a factor of

up to 81 by applying transfer learning. Similar to [28] the classifiers were trained on a

mixture of participants.

On the one hand, we were interested in the impact on classification performance across

models. We assumed that it would decrease because no data of the participant under test

was presented. Consequently, they were not able to identify and adapt to a participant’s

individual patterns. Nonetheless, they could make use of patterns discovered from other

study members.

On the other hand, the question whether the RBM is able to make more use of the

larger training-set than the discriminative classifiers arose. Based on results presented in

other disciplines such as image-processing we suspect that this should be the case. If so,

it urges the question which effect the composition of participants in the training-set have.

Should it consist of good performers, poor ones or a mixture?

3.2 Methods

The feature extraction and normalization methods presented before did not changed since

they were already designed to work in this mode as well. To maintain comparability with

the previous experiment, the same classes (left hand versus both feet motor imagery) were

selected.

1The dataset consists of 9 participant. Hence, the data of 8 can be used for training.

23

Reference:

Kindermans, Pieter-Jan and Tangermann, Michael and Müller, Klaus-Robert and Schrauwen, Benjamin (2014)
Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller.
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3.2.1 Data Partitioning

For this experiment leave one participant out cross validation was employed. Therefore,

the data was separated into training- and test-set according to Figure 3.1. The first session

of the tested participant was not considered to maintain comparability with the results

of the previous chapter. This procedure was repeated until every participant was in the

test-set once.

Figure 3.1: The training-set consists of all recordings except participant i’s data (highlighted
green) while the test-set is comprised of all runs of the second session (highlighted red).

Recordings of distinct groups of study-members were used to investigate effects of

the training-set’s composition. The participants were split into groups of three, denoted

poor (Kappa values from 0.03 to 0.53), fair (0.58 to 0.73), good (0.88 to 0.89) and mixed

(participants 1,6,8), based on their Kappa values of the previous chapter – see sLDA row of

Table 2.3. If a group-member was selected to be in the test-set, its data was not considered

for training.

3.2.2 Hyper-Parameter Estimation

RBM Almost all parameters of the preceding chapter were kept. These include, CD-1

learning and the parameters: mini-batch size, initial weight variance, initial biases, L2

regularization, number of hidden units.

The same grid-search procedure, described in appendix A.1, was applied to find optimal

values for the remaining hyper-parameters. The initial learning rates of weights λweights
and class-weights λclass were found to be 10−3. The training epochs were determined to

be 50.

ANN Similar to the RBM -model only the learning rate λ and number of epochs were

selected from the same range of values. The optimization of the average Kappa value

across all subjects yielded λ = 10−3 and #epochs= 25.
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For the training-set composition evaluation the data available for learning was shrunk

to about a third. As compensation the number of epochs was tripled.

3.3 Results

To demonstrate the importance of normalizing the features across participants, mean raw

feature vectors per run were computed. Their distributions across the 9 users are dis-

played in Figure 3.2. Compared to Figure 2.5 the baseline variation across study-members

is huge. Consequently, one can not expect competitive generalization without proper

standardization.
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Figure 3.2: Boxplots of run-wise mean log-bandpower features per participant for non-normalized
data. The subjects are color-coded.

Learning the 3 models on standardized features resulted in overall Kappa values of

0.44 for sLDA, 0.45 for the ANN and 0.46 for the RBM respectively. Details are listed

in Table 3.1. The simulations were again repeated 64 times to estimate the variances

introduced by the models. The RBM achieved highest mean and most peak Kappas. It is

closely followed by the ANN and sLDA. However, the overall differences are too small to

testify whether the RBM is superior. The listed results are also presented graphically in

Figure 3.3. For most participants the variation of classifier means is lower than 0.10, only

for participants 4 and 7 it is higher.
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classifier
participant

overall
1 2 3 4 5 6 7 8 9

sLDA 0.86 0.17 0.60 0.27 0.13 0.43 0.42 0.27 0.77 0.44±0.26

ANN
µ 0.85 0.17 0.62 0.35 0.10 0.39 0.50 0.28 0.76 0.45±0.26
σ 0.01 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.02±0.01

RBM
µ 0.81 0.19 0.61 0.39 0.13 0.39 0.63 0.21 0.79 0.46±0.26
σ 0.02 0.03 0.03 0.01 0.02 0.02 0.01 0.02 0.02 0.02±0.01

Table 3.1: Comparison of classifiers applied to the two class problem in transfer-mode. µ and
σ were estimated based on 64 repetitions. The last column states mean and standard-deviation
overall participants.
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Figure 3.3: Mean kappa values across participants presented in Table 3.1. The bars indicate
standard-errors of the means for N = 64 repeats. The solid black line is the practical level of
chance.

Next, the training-set composition was evaluated. Table 3.2 summarizes the simulation

outcomes for sLDA and RBM . For every tested group the RBM works overall better than

sLDA. The gap was larger when the models were trained on poor (0.47 versus 0.41) or

fair (0.46 versus 0.41) performers, while it shrunk for good (0.45 versus 0.45) and mixed

(0.48 versus 0.47) ones. Interestingly, the difference of the RBM ’s Kappas are smaller

than 0.09 across groups for every tested participant. I.e. the RBM was able to extract

representations that generalize well on other participants independent of the dataset’s

composition. The sLDA, however, exhibits considerable changes up to 0.44 – see columns

of participant 2, 3, 6, 7 and 8 for example.
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classifier
participant

overall
1 2 3 4 5 6 7 8 9

poor
sLDA 0.81 0.43 0.46 0.29 0.09 0.58 0.20 0.12 0.71 0.41±0.26

µ 0.82 0.25 0.61 0.35 0.16 0.46 0.60 0.23 0.74 0.47±0.24
RBM

σ 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.02 0.02±0.01

fair
sLDA 0.87 0.10 0.33 0.37 0.17 0.58 0.20 0.45 0.65 0.41±0.25

µ 0.83 0.21 0.57 0.39 0.13 0.42 0.62 0.25 0.75 0.46±0.25
RBM

σ 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.02 0.01 0.02±0.01

good
sLDA 0.80 -0.01 0.64 0.31 0.06 0.28 0.72 0.33 0.89 0.45±0.33

µ 0.81 0.16 0.59 0.36 0.12 0.37 0.62 0.21 0.83 0.45±0.27
RBM

σ 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.02 0.01 0.01±0.01

mixed
sLDA 0.74 0.25 0.67 0.24 0.16 0.49 0.46 0.42 0.77 0.47±0.23

µ 0.87 0.25 0.62 0.37 0.14 0.46 0.62 0.24 0.75 0.48±0.25
RBM

σ 0.01 0.01 0.03 0.01 0.02 0.02 0.01 0.02 0.01 0.02±0.01

Table 3.2: Transfer mode results for various compositions of participants in the training-set. The
9 study-members were categorized into poor (4,5,8), fair (2,3,6) and good (1,7,9). The mixed

group consists of a blend (1,6,8).

3.4 Discussion

In this chapter we investigated the effects if data of other participants is used for training

instead of an individual’s first session. The large variations in baseline activity, displayed

in Figure 3.2, became a severe issue compared to the previous chapter. Unification through

standardization turned out to yield good results, considered that the classifiers did not see

data of the subject tested. The overall kappa values in standard-mode are approx. 0.15

larger. That corresponds to a difference in accuracies of 7.5% for an unbiased test-set.

The difference varies among individuals, if one compares Figure 2.6 with Figure 3.3.

It is marginal for 1, 4 and 5, moderate for 3, 6 and 9 and considerable for 2, 7 and 8.

For further investigations ERDS -maps of participants 2 and 7 were computed. Subject

2’s patterns, for example, show Event-Related Synchronization (ERS) instead of expected

ERD which contradicts with data of the others – see Figure A.3. This explains why the

performance decreased that much. The maps of participant 7, depicted in Figure A.4,

show strong ERD for both classes on C3 and C4, which is not that pronounced in any

other subject.

These findings indicate that there were no stereotypical matching subjects in the

training-set, whose patterns would match to the tested one. We argue that if there were

many more subjects in the dataset, the chance of a matching stereotype would be higher.

Consequently, the performance of the classifiers in transfer mode should not drop that

much. Furthermore, more complex models could be learned on a larger set of features.
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Finally, we investigated whether the composition of the training-set has an effect on

classification performance. Again, the RBM -model performed better than sLDA. Fasci-

nating is that its results hardly vary no matter what group it was trained on. Nonetheless,

the mixed group achieves best overall Kappa. It is even higher than the value of the RBM

trained on all other subjects. A possible explanation could be that the very good per-

formers’ patterns might be too dominant. The sLDA accomplishes higher peak Kappas

but depends considerably on the constitution of the training-set.

All in all, the presented results are encouraging to employ transfer-learning for SMR

based BCI s. As expected the mean accuracy is lower than in standard-mode. However,

the difference is not large and a pre-trained classifier could be used to give feedback to new

participants from the first run onwards. The simulations showed that out the 3 possible

models the RBM obtains best classification performance. It is not significant, however.
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Standard vs. Transfer Mode

4.1 Introduction

In this chapter we assessed whether the information encoded in a pre-trained RBM can

be exploited for a classifier trained in standard-mode. Therefore, we incorporated the

weights and biases learned by the RBM in transfer-mode as seeds for an ANN , which

was subsequently trained in standard-mode. The choice fell on the ANN -model because

it outperformed the RBM in the standard-mode simulations.

Moreover, fine-tuning the network discriminatively is a common approach [7, 27]. The

assumption is that the RBM has found a solution which is already close to a good local

minimum for classification. Initializing the neural network with its weights rather than

random ones should result in less variation and slightly better results.

4.2 Methods

The fine-tuning approach, discussed in section 1.4.5, was applied. A trade-off between fine-

tuning the RBM ’s weights and exploring the adjacent energy-landscape to find a better

minimum for the individual subject but also risking divergence had to be found.

As a consequence, most parameters of the ANN were fixed to the same values as in

chapter 2. To reduce the step sizes in each update, the (mini-)batch size was increased to

span the entire training-set and the learning rate was reduced to 0.005 (= half its value).

The seeds were extracted from the RBM ’s trained for Table 3.1 applying leave one

subject out cross validation. The left out participant’s first session was employed as

training-set.

4.3 Results

The classification performance is displayed in the last row of Table 4.1. The first row is

taken from Table 2.3 to ease comparison of the individual’s Kappa values.

29
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The ANN with generatively pre-trained seeds achieves not only best overall mean

Kappa (0.64) but also smallest standard-deviation (0.25). Whereas, the model with ran-

dom initial weights yielded larger variation across subjects (0.03) and repetitions (0.01).

A Wilcoxon signed rank test between the mean kappa values across participants resulted

in a p-value of 0.125. That is, the difference is not significant based on this dataset.

classifier
participant

overall
1 2 3 4 5 6 7 8 9

ANN
µ 0.84 0.61 0.78 0.36 0.07 0.61 0.90 0.49 0.88 0.62±0.28
σ 0.02 0.01 0.01 0.03 0.05 0.02 0.01 0.02 0.01 0.02±0.01

RBM + µ 0.84 0.61 0.78 0.44 0.12 0.64 0.89 0.53 0.88 0.64±0.25
ANN σ 0.00 0.01 0.00 0.02 0.03 0.00 0.00 0.01 0.00 0.01±0.01

Table 4.1: Comparison of classifiers applied to the two class problem in standard-mode. Similar
to before, 64 repetitions were used to estimate the models’ µ and σ. The last column states mean
and standard-deviation overall participants.

4.4 Discussion

For this experiment we employed weights and biases of the RBM learned in transfer-mode

as initial values for an ANN . The ANN was subsequently learned discriminatively on the

participant’s first session and tested on the second respectively. The simulation results

indicate that this method of choosing initial weights works better random seeds. This

means that the generatively pre-trained RBM found a local minimum (for a mixture of

subjects) which helped in finding a good local minimum for a new individual. This is

especially true for the previously as poor (4,5,8) or fair (6) classified participants, since

their Kappa values are higher – see Table 4.1.

This method is even overall better than sLDA in single-subject mode for the investi-

gated dataset and extracted features. A key advantage is that its variance across individ-

uals is lower while the mean is higher. However, one would have to assess whether the

difference is significant utilizing a larger dataset.

Furthermore, the (hyper-)parameters of the ANN and RBM were optimized on this

dataset using cross-validation. Thus, estimates of the true classification performance are

biased. However, since both method’s parameter-sets were optimized, the relations be-

tween ANN and RBM should be accurate.
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5.1 Introduction

The findings of the preceding chapters indicate that the RBM based transfer learning

approach is applicable for SMR-BCI s. A combination of generative pre-training and

discriminative fine-tuning achieved very good results on a previously recorded dataset,

although very simple feature-extraction methods were employed. In this chapter we went

one step further to an actual online BCI system. The goal was to assess whether the

combination works online as well as to quantify its performance on naive participants.

Since the models learned in transfer mode achieved high mean accuracies1, we decided

to exploit this and present feedback from the first trial onwards with the aim to engage

participants more into the experiment. To achieve this the entire offline dataset was

employed for pre-training. The RBM was chosen as model because it performed best

in the transfer-mode scenario. Also, the paradigm of the experiment to estimate initial

statistics was changed with the aim to reduce the bias of baseline activity estimates.

Moreover, the results listed in chapter 4 tell us that adaptation of the pre-trained

system to the individual’s patterns is possible and leads to improved classification per-

formance. Therefore, each new participant’s recorded data is employed for discriminative

online-adaptation of the model. That is, during recording the training of the classifier is

continued. Other co-adaptive BCI systems presented in [18, 51] reported results that let

us feel positive about what to expect.

Essential for effective adaptive learning is to identify and discard outliers. Therefore,

an online Electromyography (EMG) and EOG detection system was implemented. An

inverse filter, learned adaptively, represents its core.

1A kappa value of 0.46 corresponds to an accuracy of 73% for a balanced two-class test-set.

31
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5.2 Methods

5.2.1 Experimental Setup

A single session experiment was designed to assess if the combination of pre-training and

adaptation works for a new subject. The session’s timing scheme is depicted in Figure 5.1.

At first, a one minute pre-run is employed to estimate initial statistics of features as well as

to train the artifact detection model. Thereafter, 4 runs – each lasting roughly 5 minutes

– are recorded for co-adaptive training. The number of trials per run was set to 40. Based

on Equation 2.7 and [36] the practical level of chance lies below 65%2 with a probability

of 95%. Hence, the performance of the pre-trained RBM on the first run can be assessed

with reasonable certainty.

pre-run run 1 run 2 run 3 run 4

Figure 5.1: Timing of a training-session. In a single pre-run the first and second order statistics
per feature are estimated. This lasts about 1 minute. Subsequently, 4 runs are employed to
estimate a subject’s performance. Each run takes about 5 minutes. The runs were interrupted by
short breaks.

5.2.2 Experimental Paradigm

Figure 5.2 displays the sequence of events for a trial of runs 1 to 4. It is inspired by

Figure 2.1 because the RBM is trained on recordings generated by that paradigm. There

are deviations though. The break between consecutive trials lasts about 0.5 seconds longer.

More interestingly, at second 5 the current classifier’s output is presented to the subject

for 1 second.

We decided to present the feedback in a discrete way for the following reasons. (1)

The participants can focus better on the motor imagery task. (2) A 2 s long window is

used for estimation. That means the lag between displayed feedback and input would be

relatively high for continuous presentation. (3) It is not straightforward for the participant

to interpret the presented feedback because it is an output of a non-linear transformation.

The feedback was explained to participants as the classifier’s certainty that it detected

the type of thought. The visual presentation is depicted in Figure 5.3. It consists of a

white frame pointing from the center to the preceding cue’s direction. The classifier’s

probability for the current target exceeding chance level (50%) is displayed. If it does not

exceed 50% no bar appears. I.e. only the magnitude of positive feedback is presented. If

the classifier was 100% certain to choose the correct target, the bar would have touched

the other end of the frame.

2Or a Kappa value of 0.3 for an equal number of trials for the 2 classes.

Reference:

Müller-Putz, Gernot and Scherer, Reinhold and Brunner, Clemens and Leeb, Robert and Pfurtscheller, Gert (2008)
Better than random: A closer look on BCI results.
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The participants were asked to avoid producing artifacts as long as they saw the green

fixation cross on the screen. Any type of movements (neck, eyes, tongue, jaw, ...) and eye

blinks were classified as such. In addition, an artifact detection system was implemented.

A white circle above the green fixation cross was displayed above the feedback for the

current trial, if an artifact was detected between seconds 2 to 5. This information told the

participant that the feedback presented was corrupted – see Figure 5.3b for example.

Regarding the type of thought, the subjects were instructed to either think of making

a fist or squeezing an anti-stress ball for imagination of left hand movement. For both feet

they were told to imagine either pedal movements with their feet or pressing against the

floor. For details please see the study information sheet in Appendix B .

Figure 5.2: Timing of one trial in particular. The cues were presented as red arrows pointing to
the left for imagination of left hand and down for the feet respectively. The break between two
consecutive trials was chosen randomly to last 2 to 3 seconds.

(a) Uncertain; left hand. (b) Certain; both feet;
detected artifact.

Figure 5.3: Visualization of the way how feedback was provided. A white frame indicates the
target class. The fraction of the classifier’s output probability for the target exceeding 0.5 was
displayed as a white bar. A white dot above the green fixation cross tells the participant that an
artifact was detected.

During electrode montage videos of a pre-run, a run with artificially generated random

EEG and a good performer were presented to a new participant. He/she was instructed

to use the time for training and memorizing the sequence of events.
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5.2.3 Data Recording

Thirteen Ag/AgCl electrodes were used to record EEG . They were mounted according

to the international 10/20 system at positions FC3, FCz, FC4, C5, C4, C1, Cz, C2, C4,

C6, FC3, FCz and FC4. The signals were recroded monopolarly with the left mastoid

as reference and the right one as ground. This setup was chosen because the offline

dataset was recorded in this fashion [47]. The data were sampled at a frequency of 512 Hz

and band-pass filtered between 0.5 Hz and 100 Hz. An additional 50 Hz notch filter was

employed to suppress line noise. An additional EOG electrode was placed at the center

of the forehead to ease detection of eye blinks.

5.2.4 System Overview

A simplified block diagram of the adaptive system’s core is sketched in Figure 5.4. The

logic, which creates the sequence of events for each run, is also employed to trigger indi-

vidual blocks. As already mentioned, a single feature vector is extracted per trial. It is

sampled at t = 5.0 s – see Figure 5.2. In addition, the trial’s label as well as whether there

was an artifact in the relevant time window is stored. This information is used to update

the class’ statistics if no artifact happened.

The sampled observation is temporarily stored in a buffer. Every 10th trial the adapt

event is issued. In that case the buffer’s content is sent to the adaptation algorithm. It

incorporates the new data into its trianings-set. A new classifier is sent back before the

next trial starts.

EEG

EOG

Laplace logBP

target

Classify

Buffer
n = 10

adapt

Class 
Probabilities

sample

Artifact
Detection

Sample
& Hold

Normalize

Adapt
μ & ᶥ

Adaptation 
Algorithm

Figure 5.4: Block diagram of the online BCI system. The events, triggering the blocks, are
derived from the paradigm displayed in Figure 5.2. The sample event, for instance, is generated at
t = 5.0. target stands for the type of thought for the current trial. The adapt event is triggered
every 10 trials when the buffer gets full.

Reference:

Tangermann, Michael and Müller, Klaus-Robert and Aertsen, Ad and Birbaumer, Niels and Braun, Christoph and Brunner, Clemens and Leeb, Robert and Mehring, Carsten and Miller, Kai J and Mueller-Putz, Gernot and Nolte, Guido and Pfurtscheller, Gert and Preissl, Hubert and Schalk, Gerwin and Schlögl, Alois and Vidaurre, Carmen and Waldert, Stephan and Blankertz, Benjamin (2012)
Review of the BCI Competition IV
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5.2.5 Feature Extraction

As already pointed out, a RBM was pre-trained on the offline dataset used in the previous

chapters. To maintain comparability, the feature extraction chain was not altered. Hence,

the 13 EEG channels were spatially filtered using Laplacian derivations for C3, Cz and C4.

Similar bandpasses as described in Table 2.1 were employed to extract 2 frequency-bands

for each spatially filtered signal. Their band-power was estimated with a 2 s long window.

5.2.6 Normalization

The results presented in Figure 2.4a indicate that the estimation of baseline activity based

on a preceding block with rest and eyes open condition tends to be biased. This issue is

tackled through the introduction of a short pre-run experiment. It consists of 2 trials (one

for each class in random order) following the timing scheme displayed in Figure 5.5.

Figure 5.5: Pre-run experiment: Timing. At t = 0 s an auditory warning and green fixation cross
mark the beginning of a trial. At t = 2.0 s a red arrow indicates the type of thought. It stays on
the screen for 17 s. A black screen indicates a 5 s long break.

The participants were asked to start with motor imagery of the indicated class as soon

as they see the cue. A 16 s long window starting at t = 3.0 s was extracted to compute

8 successive feature vectors for each type of thought. Rather than estimating the overall

mean and standard-deviation, the within-class values were calculated.

Adaptive estimation of first and second order statistics per class was already success-

fully applied in [50]. The advantage for training is that if randomly several consecutive

trials of just one class are generated, the overall method will get biased towards the mean

of this class. If the class means are estimated instead, the order of trials has no influence.

Consequently, slightly better performance is expected.

Equations 2.1 and 2.2 can be readily adapted to compute µ and σ per feature and class.

Since this is a supervised method, the label of a new trial decides which class-statistics to

update.

Based on equation 2.5 the forgetting factor λ for adaptive class estimates can be de-

termined. For this experiment the number of trials per class and run has roughly doubled

compared to the offline dataset but also the number of classes has halved. That is, the

trials per run stay roughly constant. And so does the time a run lasts. Hence, λ was again

Reference:

Vidaurre, Carmen and Sannelli, Claudia and Müller, Klaus-Robert and Blankertz, Benjamin (2011)
Co-adaptive calibration to improve BCI efficiency.
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chosen so that a run’s trials cover 90 % of the weight fraction. This results in a value of

0.9 for 20 trials per class.

The averages of within-class means and standard-deviations were computed to stan-

dardize a new feature vector.

5.2.7 Adaptation Algorithm

In essence the algorithms used for fine-tuning in chapter 4 were applied here as well. That

means, an ANN was initialized with the weights of the pre-trained RBM in the first run.

After recording 10 trials3, the model was trained by backpropagating the errors exploiting

conjugate gradient descent and Armijo’s step-size selection rule. The resulting classifier

was sent back to the online system.

For all subsequent blocks of 10 trials, the composition of the training-set changed a bit.

Early simulations showed that if previous blocks are also used for training, better results

can be achieved. Hence, the new block was appended to the older ones. However, the

network was already trained on them in an earlier stage. To compensate this effect, error

weights were introduced. They scale the contribution of a single observation’s error to the

total cross entropy error4. Consequently, exponentially decaying weights were applied. A

block’s weights werr(b) are given by

werr(b) = λ(Nblocks−b)
err (5.1)

where b stands for the block’s index, Nblocks the number of blocks received so far and

λerr for the decaying factor. For example, the newest block’s observations’ error weights

are 1.0. Simulations on the offline dataset resulted in choosing λerr = 0.7 and removing

blocks for which werr(b) ≤ λ4
err holds. I.e. only the 4 most recent blocks were kept in the

training-set. This procedure was also continued across runs.

Almost all model parameters of chapter 4 were taken over. Solely, the number of epochs

was reduced from 100 to 25 since the ANN is updated 4 times during a run.

5.2.8 Artifact Detection

Inverse filtering is a common technique to detect muscular activity. As pointed out in [43]

the EEG can be described by an Adaptive Autoregressive (AAR) process. Its parameters

can be identified through a Finite Impulse Response (FIR) adaptive linear prediction filter.

In this setup the adaptive filter is also called inverse filter. Here, Recursive Least Squares

(RLS) was employed as estimation algorithm.

Consequently, the filter’s error signal contains the part which it is unable to explain.

When the EEG is corrupted with muscle activity the power of the error signal rises. Simple

3Before a block was added to the training-set, its features were standardized using the most recent
estimates for µ and σ.

4The total error over the entire training-set is used for backpropagation.

Reference:

Schlögl, Alois (2000)
The electroencephalogram and the adaptive autoregressive model: theory and applications
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thresholding can then be applied to detect it. For further theoretical and technical details

we refer to [43].

For this BCI , the RLS -algorithm was trained on the pre-run. In particular, the spa-

tially filtered signals of the two 16 s blocks were used. Once trained, its adaptation rate

was reduced significantly so that it would adapt slowly during the 4 training-runs. If the

power of the filter’s error exceeds 3 times its average level, an artifact event is triggered.

The threshold was chosen based on simulations with a previously recorded and annotated

dataset.

For eye blink detection the single EOG channel was utilized. The procedure is similar

except that no adaptive filter was used and the threshold was set to 4 times the average

power level. Its purpose is mainly for an easier computation of ERDS -maps because the

artifact signal was also recorded and saved. Hence, trials with eye blinks in the reference

interval or motor imagery phase could be discarded readily.

Reference:

Schlögl, Alois (2000)
The electroencephalogram and the adaptive autoregressive model: theory and applications
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5.3 Results

The RBM was trained on standardized data. I.e. its decision boundary is optimal for zero-

mean and unit-variance features. Thus, ideally the initial estimates of mean and standard-

deviation per feature are accurate. In this chapter the paradigm for their estimation was

slightly adapted. Figure 5.6 depicts box-plots for the differences in first and second order

statistics of non-normalized features between first run and pre-run. They summarize the

factors participant and feature similar to Figure 2.4.
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Figure 5.6: Boxplots of the difference between raw feature values (logBP) of the training-session’s
first run (run1) and the 32 s long block extracted from the preceding pre-run (open) over all 12
participants and features.

The performance of the presented artifact detection method was assessed using a pre-

viously recorded dataset . The recordings of 6 participants with a total of N = 431 trials

were manually inspected and artifacts annotated. Thereafter, the system was applied to

do the same. Table 5.1 lists their confusion matrix. After inspecting the raw signals, we

can say that the 33 false negatives were mainly eye blinks. Nevertheless, sensitivities and

accuracies of around 80% are acceptable [44].

TN FP FN TP N Sensitivity Accuracy

245 31 33 122 431 0.79 0.83

Table 5.1: Confusion matrix of the artifact detection system versus the manually annotated
ground truth. N = 431 trials of 6 participants were utilized. TP sums the matches for the case
that both detected a trial corrupted by an artifact. The sensitivity states the probability that
the system identifies an artifact successfully given it was manually marked.

In the online study the artifact detection mechanism discarded on average around 10

out of 4× 40 = 160 trials per user – see Table 5.2. The table lists the individual’s Kappa

values as well. They are summarized over runs in the columns and subjects in the rows
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respectively. Where the last row considers only naive users. They achieved a mean Kappa

value of 0.57 ± 0.355. The 95% confidence intervals for chance level are 0.0 ± 0.31 for a

single run and 0.0± 0.16 overall runs. Hence, participants 7 and 10 performed at chance

level. The 8 other naive users’ Kappa values exceeded the limit of 0.4 (= 70% accuracy in

this setup), in the 3rd and 4th run.

Boxplots of naive subject’s Kappa values were computed to estimate the underlying

distribution – see Figure 5.7. One can see that the performance increased during runs. The

last box summarizes the values of the entire session. One can observe that the session’s

distribution is skewed. Its median is 0.68, which is considerably higher than the mean

(0.57).

The experiment was repeated again in an offline simulation. Instead of adapting the

model the pre-trained RBM was utilized as classifier. The results of this retrospective

simulation are listed in the last column of Table 5.2. A paired Wilcoxon signed rank test

between the adaptive and non-adaptive method resulted in a p-value of p = 0.016. I.e.

the adaptive method performed significantly better.

Figure 5.8 depicts colored boxplots of normalized log-bandpower values for all subjects

of the offline dataset (both sessions) and the online experiment (first run). The black-gray

pairs were generated through sampling from the pre-trained RBM . One is able to see that

the power tends to be smaller for imagination of left hand condition across all features and

subjects (offline and online). Moreover, the RBM models the offline dataset’s distribution

per feature very well.

This capability is reduced during discriminative adaptation. Figure 5.9 visualizes the

evolution of samples drawn from the fine-tuned model for subject 8. For him/her one is

also able to see a learning effect. The distance between the distributions of observations

for the two classes increased during the training-session.

However, if the discriminative learning signal is small i.e. when the features generated

by the user contain little discriminative information the model adapts only slowly – see

Figure 5.10. The Figure summarizes the evolution of the C4 beta-band feature of user

7, who performed at chance level. For 1st and 2nd run the cyan and magenta boxplots

overlap considerably. That is, the user was not capable of modulating the C4 beta-band.

As a result the distance between the distribution of samples shrunk slightly – see rbm0

vs. ann1 vs. ann2. For runs 3 and 4 the modulation worked a bit better resulting in an

increased distance between the samples’ medians.

5Which corresponds to an accuracy of 79 ± 18%.
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user type
run

# trials
overall overall

1 2 3 4 adaptive RBM

1 exp 0.89 1.00 1.00 1.00 153 0.97 0.93
2 nav 0.83 0.95 0.82 0.53 140 0.78 0.71
3 nav 0.84 0.79 0.65 0.85 156 0.78 0.67
4 exp 0.85 0.90 0.78 0.95 152 0.87 0.72
5 nav 0.32 0.90 0.80 0.90 157 0.73 0.73
6 nav 0.21 0.15 0.42 0.54 148 0.33 0.01
7 nav 0.15 -0.16 0.03 0.16 141 0.04 0.02
8 nav 0.79 0.78 0.94 1.00 145 0.88 0.79
9 nav 0.55 1.00 0.95 0.85 154 0.84 0.56
10 nav -0.29 0.04 -0.08 -0.06 143 -0.09 -0.10
11 nav 0.35 0.47 0.58 0.64 144 0.54 0.44
12 nav 0.76 0.95 0.73 0.69 150 0.78 0.80

µ 0.52 0.65 0.64 0.67 149 0.62 0.52
all

σ 0.36 0.40 0.33 0.32 5.9 0.35 0.35

µ 0.50 0.59 0.58 0.61 148 0.57 0.46
nav

σ 0.37 0.41 0.34 0.32 6.2 0.35 0.35

Table 5.2: Kappa values for all 12 participants of the online study. The 10 naive subjects are
marked by nav; experienced ones by exp. Each user’s Kappa per run as well as the mean (overall
adaptive) is listed. Mean and standard-deviation across all or only naive subjects are stated in
the last rows. The column overall RBM was computed offline. It states a users’s overall Kappa
value if the pre-trained RBM would not have been adapted.
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Figure 5.7: Visualization of the Kappa values of Table 5.2 across naive subjects. The first 4
boxplots summarize a single run, while the last combines all. Black horizontal lines highlight the
95% confidence interval limits for chance level.
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Figure 5.8: Boxplots of standardized log-Bandpower values. For each feature (C3alpha to
C4beta) 6 boxplots are displayed. The first two summarize the offline-dataset’s values across
all sessions and subjects for both classes (LH Left Hand, BF Both Feet). The next 2 were computed
from samples of the RBM trained on the offline dataset. The last 2 stand for the 1st run of the
online experiment across all users.
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Figure 5.9: Evolution of the samples generated through discriminative training based on partic-
ipant 8’s recordings. Two features were selected for demonstration. For each 3 black-gray pairs of
boxplots summarize the samples of the pre-trained RBM , ANN after run 1 and 4. Whereas the
cyan-magenta pairs show the adaptively normalized log-Bandpower values of run 1 and 4.
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Figure 5.10: Evolution of features for the C4 beta-band generated by participant 7. For whom
the system performed at chance level. His/her features per class are plotted across runs 1 to 4.
Similar to Figure 5.9 samples generated by the pre-trained model (rbm0) as well as the updated
model after each run are summarized by black and gray colored box-plots.

5.4 Discussion

In this chapter an online BCI system, incorporating the findings of preceding chapters,

was presented. Key concepts were (1) generative pre-training of a RBM on an offline

dataset (2) adaptive fine-tuning it discriminatively on an individual user (3) exploiting

the pre-training to give feedback from the first trial onwards.

Since the system’s feedback is only as good as its weakest part, accurate initial esti-

mates for mean and standard-deviation are of importance. Additional to gazing at the

center of the fixation cross, continuous imagination of both tasks was used in the pre-run.

The effect caused by the changed paradigm can be neglected, if one compares Figure 5.6a

to 2.4a and 5.6b to 2.4b. To conclude, performing motor imagery rather than only looking

at the green cross with open eyes did not result in better initial estimates.

However, the participants were also asked to avoid artifacts (including eye-blinks), so

that the artifact detection model could be trained on the pre-run. This could have forced

participants to focus on not to blink with their eyes rather than motor imagery. Another

possible explanation for the bias of the estimator could be that the participants got more

involved as soon as they were confronted with the system’s feedback.

Starting with feedback of a subject-independent classifier and co-adaptive training

has recently achieved promising results [50]. Although different methods were employed

here, one can also see steady improvement over the course of co-adaptive training across

participants – see Figure 5.7. This results in a skewed distribution of the session with a

median Kappa value of 0.68 (= 0.84% accuracy).
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The two users who performed at chance level are 7 and 10. Their ERDS -maps, dis-

played in Figures A.6 and A.7, show that the co-adaptive training did not result in dis-

tinguishable patterns in the relevant time window t = [1.0 s, 3.0 s] after the cue. Immedi-

ately, after the experiment all users were asked for feedback. User 7 answered that he/she

conducts autogenetic training regularly and associated the mental tasks with it. Which

resulted in getting in a relaxed and sleepy mental state. Participant 10’s answer was that

he/she had a hard time to relax his/her jaw because the associated muscles corrupted the

signals of electrodes C5 and C6 substantially.

Very interesting are also the result of user 6. If the model would not have been adapted,

he/she would have performed on chance level too. Figure A.5 displays the ERDS -maps.

The upper β-band of Cz is the most discriminative band. However, the broadband feature

extraction filter combines mid and upper β-band which is not optimal for this subject.

Nevertheless, co-adaptative learning improved the performance substantial over runs.

Another interesting observation is that for the average subject (online and offline) left

hand motor imagery results in lower band-power (α and β) than both feet – see Figure 5.8.

The samples drawn from the RBM model this accurately due to the generative training

criterion.

A beneficial property of the pre-trained and adapted model is the dependency of adap-

tation on the strength of the learning signal. On the one hand, if there is a lot of dis-

criminative information like for user 8 – see Figure 5.9 – the classifier adapts quickly. On

the other hand, if there is little information like for user 7 – see Figure 5.10 – the clas-

sifier adapts slowly. That is, the system is somewhat patient with poor performers and

encourages them to generate already known patterns6 through positive feedback.

6Extracted from the users in the offline dataset by generative training.
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Conclusions & Future Work

6.1 Conclusions

Although SMR based BCI s have been introduced already in the 1990s, they still have not

succeeded to get out of the laboratory environment to real world applications. We referred

to 3 major hurdles which have to be overcome. (1) BCI -training can take a long time until

a user generates stable patterns. (2) Due to the BCI inefficiency issue a non-negligible

fraction of users might not be able to get control at all. (3) The bandwidth of EEG based

systems is relatively low.

In recent years scientists put effort into pushing the training time down. It is only

lately that impressive results were achieved with co-adaptive systems. For example by (1)

Faller et al. in [18] – 10 out of 12 naive participants were able to operate a 2-class system

above 70 % accuracy after 2 to 3 training-session. (2) Vidaurre et al. in [51] – 5 out of 10

users, who were unable to control a SMR BCI before, exceeded the 70 % threshold within

a single-training session.

In this work, generative transfer learning in the context of co-adaptive training was

investigated. Based on the findings of Chapter 3 the RBM was utilized to extract repre-

sentations of a mixture of users. In Chapter 4 we have demonstrated that this model can

be fine-tuned to an individual. Even better, it benefits from the information of other users.

A discriminative optimization criterion was chosen since better results were achieved for

limited data in Chapter 2.

Lastly, all these observations were exploited to construct a 2-class online BCI that

is capable of giving feedback immediately. Within a single co-adaptive training-session

8 out of 10 naive participants exceeded the 70 % accuracy threshold. Furthermore, the

results reported in the simulated transfer experiments match with the Kappa values of

the non-adaptive online system. That is, for (9 + 12) users studied, the pre-trained RBM

achieved a mean Kappa value of 0.46. In other words, the transfered classifier worked with

an accuracy of 73% on average. The adaptive fine-tuning improved this even significantly.
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6.2 Future Work

The results of this work suggest that the transfer learning-approach based on RBM s is

useful for brain oscillations based BCI s. An obvious next step would be to expand the

training-set to even more subjects of other studies. Consequently, more complex models

could be trained on more or different features without an increased risk of overfitting.

The combination of generative transfer learning and co-adaptive fine-tuning could also

be utilized to train users to generate pronounced patterns for more than 2 mental states

and, therefore, contribute to improve the bandwidth issue. Moreover, extending RBM s to

support multiple classes is straightforward. This property was utilized to detect 3 distinct

mental states in [4].

Very recently, [45] reported that a non-linear method was superior to sLDA for SMR-

BCI s. Because of that, the non-linearity (and complexity) could be elevated by training

deeper models such as Deep Belief Networks [25], Deep Boltzmann Machines [42] or Gen-

erative Stochastic Networks [6]. Also other types of generative models could be applied.

Density forests, for example, since [45] exploited random forests which are a close relative.

In the long run, co-adaptive training is aimed to help handicapped individuals to reach

a satisfactory level of BCI control in a faster and more motivating way.
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Preissl, H., Schalk, G., Schlögl, A., Vidaurre, C., Waldert, S., and Blankertz, B. (2012).

Review of the BCI Competition IV. Frontiers in Neuroscience, 6. (page 12, 34)

[48] Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to

the likelihood gradient. In Proceedings of the 25th international conference on Machine

learning, pages 1064–1071. (page 5)

[49] Vidaurre, C. and Blankertz, B. (2010). Towards a cure for BCI illiteracy. Brain

Topography, 23(2):194–198. (page 3)



BIBLIOGRAPHY 51

[50] Vidaurre, C., Sannelli, C., Müller, K.-R., and Blankertz, B. (2011a). Co-adaptive cal-

ibration to improve BCI efficiency. Journal of neural engineering, 8(2):025009. (page 2,

35, 42)

[51] Vidaurre, C., Sannelli, C., Müller, K.-R., and Blankertz, B. (2011b). Machine-

Learning-Based Coadaptive Calibration for Brain-Computer Interfaces. (page 3, 31,

45)

[52] Welling, M. and Sutton, C. (2005). Learning in Markov random fields with contrastive

free energies. Artificial Intelligence and Statistics, pages 397–404. (page 8)

[53] Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan,

T. M. (2002). Brain-computer interfaces for communication and control. Clinical neuro-

physiology : official journal of the International Federation of Clinical Neurophysiology,

113:767–791. (page 2)

[54] Wolpaw, J. R., McFarland, D. J., Neat, G. W., and Forneris, C. A. (1991). An EEG-

based brain-computer interface for cursor control. Electroencephalography and clinical

neurophysiology, 78:252–259. (page 2)

[55] Wolpaw, J. R. and Winter Wolpaw, E. (2011). Brain-Computer Interfaces: Principles

and Practice. Oxford University Press. (page 13)





A
Supplementary Material

A.1 Model evaluation

Grid Search

Due to the high dimensionality of the parameter space implying long simulation times, a

less time consuming greedy approach was chosen. That is, all parameters but one were

clamped. Then this one was varied within certain values. The optimal value, yielding

highest Kappa across all participants, was chosen. Thereupon values of the next parameter

were varied. After the last parameter the iterative procedure started all over again until

convergence. The value ranges are listed in Table A.1.

parameter value range

λweights 0.01, 0.0075, 0.005, 0.0025, 0.001
# units 10, 50, 100, 500
λclass 0.01, 0.0075, 0.005, 0.0025, 0.001
# epochs 25, 50, 100, 250, 500

Table A.1: Value ranges of model parameters used for optimization.
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A.2 ERDS-maps

BCI Competition IV Dataset 2a

The subsequent ERDS-maps were computed for large Laplacian derivations around C3

(left), Cz (center) and C4 (left). At second 0 the cue was presented. It triggered either

imagination of left hand (LH) or both feet (BF). The reference power was computed for

the interval t = [−1.125 s,−0.125 s] and averaged across all trials (LH & BF). The break

after a trial started at t = 4.0 s. Bootstrapping was applied to test the mean statistics. A

significance level of α = 0.05 was chosen.
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ERDS maps 0.7 (BP).  Calculated on 30-Jul-2015 20:03:11.
Trials: 61, classes: 3, fs: 250Hz, time: [-2, 0, 5.5]s, ref: [-1.125, -0.125]s
f borders: [3, 60]Hz, f bandwidths: 2Hz, f steps: 1Hz, Bootstrap significance test ( α = 0.05)

(a) Session 1 BF.
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ERDS maps 0.7 (BP).  Calculated on 30-Jul-2015 19:52:09.
Trials: 54, classes: 1, fs: 250Hz, time: [-2, 0, 5.5]s, ref: [-1.125, -0.125]s
f borders: [3, 60]Hz, f bandwidths: 2Hz, f steps: 1Hz, Bootstrap significance test ( α = 0.05)

(b) Session 1 LH.

Figure A.1: ERDS-maps of session 1 for participant 5.
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ERDS maps 0.7 (BP).  Calculated on 30-Jul-2015 20:26:19.
Trials: 61, classes: 3, fs: 250Hz, time: [-2, 0, 5.5]s, ref: [-1.125, -0.125]s
f borders: [3, 60]Hz, f bandwidths: 2Hz, f steps: 1Hz, Bootstrap significance test ( α = 0.05)

(a) Session 2 BF.
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ERDS maps 0.7 (BP).  Calculated on 30-Jul-2015 20:15:14.
Trials: 64, classes: 1, fs: 250Hz, time: [-2, 0, 5.5]s, ref: [-1.125, -0.125]s
f borders: [3, 60]Hz, f bandwidths: 2Hz, f steps: 1Hz, Bootstrap significance test ( α = 0.05)

(b) Session 2 LH.

Figure A.2: ERDS-maps of session for participant 5.
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ERDS maps 0.7 (BP).  Calculated on 01-Aug-2015 19:13:09.
Trials: 65, classes: 3, fs: 250Hz, time: [-2, 0, 5.5]s, ref: [-1.125, -0.125]s
f borders: [3, 60]Hz, f bandwidths: 2Hz, f steps: 1Hz, Bootstrap significance test ( α = 0.05)

(a) Session 2 BF.
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ERDS maps 0.7 (BP).  Calculated on 01-Aug-2015 19:02:10.
Trials: 67, classes: 1, fs: 250Hz, time: [-2, 0, 5.5]s, ref: [-1.125, -0.125]s
f borders: [3, 60]Hz, f bandwidths: 2Hz, f steps: 1Hz, Bootstrap significance test ( α = 0.05)

(b) Session 2 LH.

Figure A.3: Participant 2’s ERDS-maps of session 2.
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ERDS maps 0.7 (BP).  Calculated on 01-Aug-2015 19:56:10.
Trials: 59, classes: 3, fs: 250Hz, time: [-2, 0, 5.5]s, ref: [-1.125, -0.125]s
f borders: [3, 60]Hz, f bandwidths: 2Hz, f steps: 1Hz, Bootstrap significance test ( α = 0.05)

(a) Session 2 BF.
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ERDS maps 0.7 (BP).  Calculated on 01-Aug-2015 19:45:49.
Trials: 65, classes: 1, fs: 250Hz, time: [-2, 0, 5.5]s, ref: [-1.125, -0.125]s
f borders: [3, 60]Hz, f bandwidths: 2Hz, f steps: 1Hz, Bootstrap significance test ( α = 0.05)

(b) Session 2 LH.

Figure A.4: Participant 7’s ERDS-maps of session 2.
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Online Study

The following ERDS-maps were computed for large Laplacian derivations around C3 (left),

Cz (center) and C4 (left). At second 0 the cue was presented. It triggered either imag-

ination of left hand (LH) or both feet (BF). The reference power was computed for the

interval t = [−1.125 s,−0.125 s]. The break after a trial started at t = 4.0 s. The feed-

back was presented in the interval t = [3.0 s, 4.0 s]. Bootstrapping was applied to

identify significant changes. A significance level of α = 0.05 was chosen.
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ERDS maps 0.7 (BP). Calculated on 15−Jul−2015 08:15:20.
Trials: 59, classes: 2, fs: 512Hz, time: [−2, 0, 6]s, ref: [−1.125, −0.125]s

f borders: [3, 60]Hz, f bandwidths: 2Hz, f steps: 1Hz, Bootstrap significance test (α = 0.05)

(a) Both Feet.
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ERDS maps 0.7 (BP). Calculated on 15−Jul−2015 08:04:21.
Trials: 56, classes: 1, fs: 512Hz, time: [−2, 0, 6]s, ref: [−1.125, −0.125]s

f borders: [3, 60]Hz, f bandwidths: 2Hz, f steps: 1Hz, Bootstrap significance test (α = 0.05)

(b) Left Hand.

Figure A.5: Participant 6’s ERDS-maps.
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ERDS maps 0.7 (BP). Calculated on 15−Jul−2015 08:36:36.
Trials: 51, classes: 2, fs: 512Hz, time: [−2, 0, 6]s, ref: [−1.125, −0.125]s

f borders: [3, 60]Hz, f bandwidths: 2Hz, f steps: 1Hz, Bootstrap significance test (α = 0.05)

(a) Both Feet.
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ERDS maps 0.7 (BP). Calculated on 15−Jul−2015 08:26:40.
Trials: 55, classes: 1, fs: 512Hz, time: [−2, 0, 6]s, ref: [−1.125, −0.125]s

f borders: [3, 60]Hz, f bandwidths: 2Hz, f steps: 1Hz, Bootstrap significance test (α = 0.05)

(b) Left Hand.

Figure A.6: Participant 7’s ERDS-maps. He/she swallowed very often in the breaks between
trials.
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ERDS maps 0.7 (BP). Calculated on 16−Jul−2015 20:02:26.
Trials: 61, classes: 2, fs: 512Hz, time: [−2, 0, 6]s, ref: [−1.125, −0.125]s

f borders: [3, 60]Hz, f bandwidths: 2Hz, f steps: 1Hz, Bootstrap significance test (α = 0.05)

(a) Both Feet.
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ERDS maps 0.7 (BP). Calculated on 16−Jul−2015 19:50:58.
Trials: 68, classes: 1, fs: 512Hz, time: [−2, 0, 6]s, ref: [−1.125, −0.125]s

f borders: [3, 60]Hz, f bandwidths: 2Hz, f steps: 1Hz, Bootstrap significance test (α = 0.05)

(b) Left Hand.

Figure A.7: Participant 10’s ERDS-maps.



Pre-Run: One Trial in particular

1. After starting the pre-run the screen will become black for a short time.

2. A green cross will appear in the middle of the screen. Simultaneously you will hear a short 
audio warning. 

3. Additionally to the green cross a red arrow will appear on the screen. This arrow specifies 
the required body part/ imagination of movement. 

4. As soon as the arrow appears, you should start to imagine the movement of the required 
body part. The arrow will stay at the screen for  ~15 seconds. Try to keep focused on the 
mental task during this period.

5. In addition, during you see the red arrow avoid producing artifacts. Artifacts are any type of 
movements (neck, eyes, tongue, jaw,...), clenching your teeth, eye blinks.

6. The green cross and white arrow will disappear – the screen will become black again – this 
indicates a short break which has a length of ~5 seconds.

7. This procedure will be repeated 1 time for the other type of thought.

ProbandInnen-Information Seite 4 von 9

B
e
e
p

Fixation cross

Cue
Break

Motor Imagery

B
Excerpt of the Study-Information Sheet

61



Run 1-4: One Trial in particular

1. After starting this experiment the screen will become black for a short time.

2. A green cross will appear in the middle of the screen. Simultaneously you will hear a short 
audio warning. 

3. Additionally to the green cross a red arrow will appear on the screen. This arrow specifies 
the required body part/ imagination of movement. 

4. As soon as the arrow appears, you should start to imagine the movement of the required 
body part. 

5. The red arrow will disappear after 1 second – the green cross will still be on the screen- 
continue the imagination until a white frame appears

6. The white frame/bar indicates the system's guess for the current trial. If the frame is empty, 
the system was not able to detect your intention. If there is a white bar in the frame the system
was able to detect your intention. The length of the white bar indicates the system's certainty.

7. In addition, during you see the white bar a white circle will pop up if the system identified 
artifacts during the motor imagery phase. When you see a white circle the system's guess is 
corrupted!

8. The green cross and white frame will disappear – the screen will become black again – this 
indicates a very short break which has a length between 2 and 3 seconds.

9. This procedure will be repeated 40 times until a run is over.
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Which movement should be imagined? 
Here are some examples: 

Right/left hand: making a fist; pressing an anti-stress ball

Legs/both feet: pressing and releasing a pedal; pressing against the floor

Execute different voluntary (not pre-programmed) movements for each body part. Then 
imagine the movements you executed before. Select the movement for each body part which 
you can imagine best in terms of vividness, concentration,  repeatability. 
You will soon get some minutes to execute and imagine several movements. 

Attention
Start the imagination of the movement as soon as the red arrow shows you the required part 
of the body. 
To precise the type of thought a little for you, we have a few tips:

→ Imagine a sustained (ununterbrochen) movement
→ Focus on kinesthetic/tactile sensation (put attention on what you (would) feel in your
     hand/feet)
→ It might also be helpful to picture the movement simultaneously from your perspective  
     (1st person perspective)

You found the right one, if you think you can recall the thought/mental task often easily and 
that it is life-like in your brain.

It is IMPORTANT to maintain the chosen movements over ALL runs!!! 

As already mentioned, the developed system is pre-trained on a dataset recorded of 9 different
subjects. We try to exploit the learned patterns via transformation and adaption to your 
individual one during the entire 4 runs.

The experiment itself can be somewhat compared to the following situation: You try to teach 
a baby (the system) its first word (e.g. to say 'mama'). Your strategy is to repeat the word 
always in a similar way (repetition). 
After each utterance you listen to what the baby says. Most likely it takes some time until you 
hear something similar like 'ma' or 'm' or 'mam' (this corresponds to occasional correct but 
maybe random guesses of the system). Occasional hits are okay but we want to get the 
entire word. So you stay focused on the pronunciation (type of thought) so that the baby hears
the same over and over again (patience).
We are happy when we hear 'mama' for the first time (= a dozen of subsequent correct system 
guesses), however, as our baby (the system) is forgetful and listening to all what you say we
stay focused on the task until we are absolutely sure (= end of experiment).
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Code of behavior
•Try to sit comfortable and avoid movements during the measurement. 

•Always look at the center of the green cross during each trial

•Put your hands on your lap/ or specific place. 

•Relax the muscles of your face, neck, shoulders and lower jaw! 

•Avoid clenching your teeth! 

•Please reduce blinks and swallowing to a minimum during each trial- for those actions you 
should use the short breaks between the trials (black screen)! 
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